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The results of measurements at moderate to high magnetic fields on a
large number of nonmagnetic ion substituted yttrium iron garnets suggest
that intrasublattice interactions play an important role in determining
their spontaneous magnetizations and Curie temperatures. It is shown that
the system. IY3-.CazI[Fe2](Fe3-.Si.)012 is continuously related to the system
{Y3_.Cax}[Zr.Fe2,](Fe3)012 or {Y3}[SczFe2,](Fe3)012. It is concluded
that in these systems the tetrahedral -tetrahedral (d -d) antiferromagnetic
interactions are stronger than octahedral -octahedral (a -a) antiferromag-
netic interactions. The changes in magnetic structure from an ideal ferri-
magnet, yttrium iron garnet, to an end -member in which there are at least
short-range antiferromagnetic interactions (i.e., in { Ca3} [Fe2] ( Si3)012 or a
hypothetical { YCa2} [Zr2] (Fe3)012) should bear an analogy to the crystal
chemical changes. It is therefore proposed that when substitution is made
exclusively in one sublattice, the moments of the Fe3÷ ions in that sublattice
remain parallel (as in the Yafet-Kittel theory), while the weakened average
a -d interactions and the intrasublattice interactions lead to random canting
of the Fe3+ ion moments of the other. This tendency occurs as soon as sub-
stitution begins. On continued substitution, a point is reached beyond which
canting increases much more rapidly with increasing substitution. In this
region, the intrasublattice interactions dominate the a -d interactions, but it
is probable that the canting continues to be random.
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In the (Y3)[Mg.Fe2-.](Fe3-.Si.)012 system, the point at which the
tetrahedral intrasublattice interactions dominate is reached at about x =
0.95 as contrasted with x 0.70 for the { Y3,Ca.}[ZrxFe2_A(Fe3)012 and
IY31[SczFe2,](Fe3)012 systems. The canting of the d -site ion moments
increases at the same rate in the three systems to x s 0.70, but beyond this
point, the canting in the Mg -Si substituted YIG is always substantially less
than for the other two systems. This together with data on other substituted
gaimets indicates that the substitution of the S7,4+ ions in the d -sites tends to
decrease the average d -d interaction strength. Similarly, substitution in the
a sites tends to decrease the average a -a interaction strength.

Measurements on some garnets in the systems {Y3,Cay} [SGFe2-xl-
(SiyFea-)012, { Y3-1, -F.0 ay -.}[M g.F c2-x](F 3-y Siy) 012 and {173,Caz+v}-
{ZrsFe2_x](Sii,Fe3,)012 indicate that different nonmagnetic ions may
produce different magnetic behavior. This is especially noticeable in the
region in which the intrasublattice interactions are dominant. Comparative
behavior of the systems { 173) [SczFe2-x](Fe3)012 and { Y3,Car} [ZrzFe2-x]-
(Fe3)012 and of the systems { Y3_,Ca.}[Fe2](Fe3,M.)012, M = Si and
Ge, also indicates that the ion type is important in determining magnetic
behavior. It is speculated that this results from effects on the interaction
geometry, especially when the interactions are weak.

Results on garnets in systems { Y3_Ca,,}[ScsFe2,](Fe3,Siy)012,
{Y3, +.0 ay,)[111 g xF e2,](F e3, Siy) 012 , and { Y3,,Cax+y} [ZrxI e2_x]-
( SiyF e3-0012 also aided in substantiating the other ideas put forward as
well as in determining the distribution of ions in the system { Y3} Fes_.A1.012 ,
on which more extensive studies than heretofore were made. Some anomalies
occur in this system for values of x > 2.0.

Application of the ideas derived from these studies are made to the ferro-
spinels, and it is shown that one may thereby account for the high Curie
temperature of lithium ferrite, the lower Curie temperature of nickel ferrite,
and the substantially lower Curie temperature and low 0°K moment of
manganese ferrite.

It is noted that although the ideas presented may account in a general
way for the behavior of the Sb5÷ and 175+ ion substituted garnets, their be-
havior could not have been quantitatively predicted from the results of the
present work. It is probable that the chemical bonding of the Sb5÷ and r+
ions has much greater effects on the magnetic behavior than does that of the
various ions treated in this paper.

I. INTRODUCTION

Studies of substitutions for iron ions in yttrium iron garnet of non-
magnetic ions which prefer exclusively (or almost exclusively) octa-
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hedral sites have been reported earlier.' '' The results of the study of the
tin -substituted yttrium iron garnets led to Gilleo's statistical treatment,'
which appeared to account well for the 0°K moments and Curie tem-
peratures in this system as well as in those involving zirconium,2 scan-
dium,2-4 and indium2-4 substitutions. However, the data available at the
time of these developments were still not sufficient for a complete test
of the method.

The study of substituted yttrium iron garnets has now been extended
to systems in which substitution for Fe3+ ions is made exclusively in the
tetrahedral sites (i.e., {Y3--.Caz} [Fe2] ( Fe3-zSi.)012), equally in both
octahedral and tetrahedral sites

(i.e., { Y3} [MgzFe2_z] ( Fe3,Siz ) 012 , Y3....Caz} [SczFe2_ z] ( Fft_zSiz ) 012 ,

and

Y3-2xCa2x Fe3-xSix ) 012),

and unequally in the two sites

(e.g., { Y3+,,Cau_z} [MgzFe2_z] ( Fe3,Si,, ) 012 ,

Y3,Cay} [SczFe2_z]( Fe3_,,Si,) 012

and { [Zr,Fe2-x] ( Fea-vSiu )012 . Analogous germanium -sub-
stituted systems have also been studied. The system {17.3_zCaz} [ZrzFe2--.]-
(Fe3)012 has been reinvestigated and the study of the { Y3}[SczFe2-z[-
(Fe3)012 system extended to larger values of .r. High -field measurements
have been made on specimens when required. The study of the system
Y3AlzFe5,0124 has been extended to large values of x, and the distribu-
tion of the ions vs x deduced.

The results of these investigations indicate that the Gilleo treatment
does not in general give good agreement with the observed 0°K moments
of the substituted yttrium iron garnets. Application of the Yafet and
Kittel theory5 to the tin -substituted garnets was made by de Gennes.6
Agreement of 0°K moments appeared to be good, although not nearly
as good as that shown2 .3 by the Gilleo theory. However, an arithmetic
error was made in de Gennes' calculation; when corrected, the agree-
ment deteriorates. Furthermore, using the same approach as that of de
Gennes for the silicon -substituted garnets, that is, assuming the Pauthe-
net' molecular field coefficients of yttrium iron garnet to remain con-
stant for the whole system, no semblance of agreement is found.

Contrary to earlier assumptions, there is substantial evidence that
intrasublattice interactions are not negligible; they appear to play an
important role in determining the spontaneous magnetizations and Curie
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temperatures of the substituted garnets. It also must be concluded that
different nonmagnetic ions may produce different effects on the mag-
netic behavior when the amounts of substituent for the Fe' ions in
particular sites are the same.

In the course of our study of the yttrium iron garnet -calcium iron
silicate system, on which a preliminary report was made some time ago,8
we learned that Smolenskii, Polyakov, and Iodin8 had reported on this
system. However, their magnetic measurements were made at 77°K and
presumably they did not make any high -field measurements.

The above description should make it clear that the problem of the
behavior of the substituted garnets has increased in complexity with
the number of experiments performed. Following the completion of the
draft form of this manuscript, new garnets containing S136+ (Ref. 10),
V8+ (Refs. 10-12), and BP+ (Refs. 10, 12, 13) ions were discovered.
(Many of these no longer contain yttrium or rare earth ions.) The
magnetic behavior of these garnets was in part unpredictable from the
results given in the present paper. However, there are unifying con-
sistent features of the garnet systems described herein and we feel it
worthwhile to describe them.

Complete understanding, it is felt, will eventually come from various
studies of single crystals in the various systems. Neutron diffraction
studies should play an important role, but also of utmost importance,
it would appear, are spectroscopic studies which would give an insight
into the effects of changes in chemical bonding on changes in magnetic
interactions.

II. EXPERIMENTAL

2.1 Preparation of Specimens

As we have recently described in some detail our present techniques
for specimen preparation," we shall not do so here. Utmost care is
required in these preparations, including the use of pure starting ma-
terials, correction for adsorbed moisture or CO2 in the starting materials,
proper mixing and avoidance of inhomogeneous loss of constituents,
the insuring of the theoretical weight losses on firing, the careful exami-
nation of powder photographs or diffractometer patterns to be sure that
single phases, preferably sharply defined ones, are obtained, and careful
measurement of lattice constants to be sure that these fit properly on
the curves characterizing the systems. The preparation of the specimens
in most cases required several regrindings and refirings.
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2.2 Magnetic Measurements

Measurements of magnetic moment were made in the temperature
range 1.4-298°K at applied fields, Ha , to 15.3 koe, by means of a pen-
dulum magnetometer described elsewhere." Calibration was carried out
with spectroscopically pure Ni; measurements on Mohr's salt" corrob-
orated the calibration with Ni.

Measurements at fields to 80 koe were made with the Bitter -type
magnet and an extraction method used for determination of the moment.
Calibration was carried out with spectroscopically pure Ni.

2.3 Crystallographic Measurements

Lattice constants were obtained from measurements of powder
photographs taken with Norelco Straumanis-type cameras of 114.6-mm
diameter and CrK radiation.

III. MAGNETIC AND CRYSTALLOGRAPHIC DATA

3.1 The Systems IY3,Ca.,}17e5_,111 7012 , 1W = Si, Ge

3.1.1 Magnetic Data

In the system 1Y3,Ca.IFe5-,Si.012 , specimens with x < 1.77 were
saturated at fields 12.6 koe at 1.4°K. For x > 1.88, saturation was
not attained at low fields, and therefore measurements were made at
the high fields at 4.2°K. The specimen with x = 1.88 was saturated at
60 koe. None of the other specimens was saturated at fields below 80
koe and at 4.2°K. For these specimens the behavior of the magnetiza-
tion at fields > 50 koe was such that nB(H. ,T) = nB(0,T)
x(H. ,7')H0 the values of nB(0,T) in these cases were determined by
extrapolation to H. = 0.

Typical curves of nB(H0 ,T) vs T obtained with the pendulum mag-
netometer are shown in Figs. 1 and 2. When x = 2.25 (Fig. 2), the
magnetization curves at the two higher fields appear to reach a maxi-
mum at about 40°K, then decrease, cutting the ordinate with positive
slope. At 5 koe, the curve cuts the ordinate with zero slope. The curves
for x = 2.50 behave similarly.

In Fig. 3, curves of nB vs Ha at 4.2°K for x = 2.00, 2.25, and 2.50 are
shown. For all these, measurements were made on sintered specimens.
For x = 2.25, measurements were also made on the finely powdered
specimen. Note that although the slope is greater for the sintered speci-
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In Table I, the spontaneous moments listed for specimens with
x < 1.77 are extrapolated to 0°K; for specimens with x > 1.88, the
values are those extrapolated to Ha = 0 at 4.2°K.17 These are plotted
vs x in Fig. 4. Negative values of nB mean that the moment of the octa-
hedral sublattice is dominant.

Where possible, Curie temperatures (Table I and Fig. 5) were ob-
tained from extrapolation of a plot of nR2(0,T) vs T to 7/132(0,71) = 0
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Fig. 3 - nB vs applied field, H. , at 4.2°K, for some specimens in the system
Y3_.Cax I [Fe 21 (Fe3_xSix)012 .

and from extrapolation of 1/x vs T to 1/x = 0 when Te was suffi-
ciently below room temperature. (See Ref. 14.)

The garnet ICa3l[Fed(Si3)012 cannot be made by solid-state reaction
at atmospheric pressure. Small crystals were grown by Van Uitert and
Bonner, and magnetic measurements were made on 2.99 g of these over

TABLE I - MAGNETIC AND CRYSTALLOGRAPHIC DATA FOR THE GARNETS
{ Y3,Car) Fe5_,Mx4+012 , M = Si,Ge

x

M Si M E--- Ge

Te(°K) a(A) uRu Tc(eK) a(A)

0.00 5.01 553" 12.376 dE 0.003 5.01 553h 12.376 dE 0.003
0.40 2.98 543e 12.344
0.70 12.375
0.75 508 12.314
1.00 0.06 12.291 0.18 12.372
1.01 -0.07 12.291
1.02 -0.14 12.291
1.50 -2.36 367 12.243 -2.31 365 12.365
1.75 -3.15 316 12.360
1.77 -3.40 312 12.212
1.88 -3.8 280 12.202
2.00 -3.8 266 12.186 f 0.005 -3.15 258 12.355
2.25 -1.9 180 12.157 -1.55 180 12.348 f 0.004
2.50 -0.65 86 12.126 -0.35 80 (?) 12.339
2.75
3.00 0

12.093"
12.0481 f 0.003

0
f

12.329
12.3206

a For M = Si, Ge and x < 1.88, 1.75 respectively, values are those from ex-
trapolation to 0°K; for x >= 1.88, 1.75 respectively, values are at 4.2°K, extrapo-
lated to H. = 0. " From J. Loriers and G. Villers, Compt. Rend., 252, 1590 (1961).
a Measured by E. A. Nesbitt . d Not single-phase: see text. a From Ref. 20. 'From
Ref. 21. 6 From Ref. 38.
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Fig. 4 - Spontaneous magnetizations vs composition for the silicon- and ger-
manium -substituted yttrium iron garnets. For x < 1.88, saturation was attained
at low fields and nB values obtained by extrapolating nB(T) to T = 0°K. For x
1.88, saturation was not attained at low fields, and the ng values were obtained
by extrapolating ns(11.) to H. = 0 at 4.2°K (see Fig. 3). Shown also are the curves
given by the Gilleo and Neel models for substitution by nonmagnetic ions ex-
clusively on tetrahedral sites.

the temperature range 1.4 to 296°K. At a field of 5.0 koe, there was a
peak in the susceptibility at about 9°K. However, the nature of the
peak is not conclusive evidence of an antiferromagnetic transition. On
the other hand, 0 for the specimen is 29°K, which is indicative of anti -
ferromagnetic interaction. The Curie constant C = AT/0 (1/xn) =
1.47 X 10-8, to be compared with the theoretical value of 1.56 X 10-3.
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Fig. 5 - Curie temperatures vs x for the systems (1) Dral[Mg.Fe2-x]-
(Fe3_.Si.)012 (2) {Y31 [Sc.Fe2-.](Fe3)012 (3) iY3-.Ca.)[Fe21(Fes.-.Si.)012

In the system { Y3_xCa.}Fe5-,Cre.012 , specimens with x < 1.50 were
saturated at fields 12.6 koe at 1.4°K. In measurements with the
pendulum magnetometer, the specimen with x = 1.75 appeared to be
saturated at 9.6 koe at both 1.4 and 4.2°K. Measurements on the sin-
tered specimen at high fields at 4.2°K indicated that saturation was not
attained until about 50 koe. However, the difference in n8 is only 0.1 AB
For the specimens with x > 2.00, saturation was not attained at 1.4° or
at 4.2°K at fields below 80 koe. As in the case of the first system dis-
cussed, nil (0, 4.2°K) was determined by extrapolation of the straight
line portion of the nil(H. ,4.2°K) vs H. curve to H. = 0. The mag-
netization curves in this system were similar in character to those of
the specimens in the analogous Si system. Curie temperatures (Table I)
were determined as described above. The spontaneous magnetizations
extrapolated to T = 0, Ha = 0 or at T = 4.2°K," H. = 0 are listed in
Table I and plotted vs x in Fig. 4.

3.1.2 Crystallographic Data

The lattice constants of specimens in these systems are listed in Table
I and plotted vs x in Fig. 6. All garnets involving Ge substitution gave
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Fig. 6 - Lattice constants vs composition of silicon- and germanium -substi-
tuted garnets.

final powder photographs having sharp back -reflection lines. However,
in a few cases of the silicon -rich specimens (that is, with x = 2.25 and
2.50) sharp back -reflection lines appeared to be unattainable. Because
no extraneous phases appeared to be present, it seemed worthwhile to
carry out the magnetic measurements on these anyway. In some cases,
the indicated larger limits of error on the lattice constants are a result
of only few back -reflection lines on which the measurements are based.
However, because of the smoothness of the curves which may be passed
through the central values, all the indicated estimates of limits of error
(Table I) are felt to be conservative.

In both systems, the lattice constant vs composition behavior is
nonlinear; such behavior has been observed in other garnet sys-
tems.1,14,18,19 We might expect the larger volumes than given by the
straight line joining the lattice constants of the end -members to indi-
cate greater entropies, the disorder apparently arising from the dis-
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parity of the sizes and possibly of the electrostatic charges of tetrahe-
drally coordinated ions of Fe3+ vs Si4+ or vs Ge4+. However, the lattice
constant itself is not always indicative of the disorder which may exist
in a solid solution. The latter cannot obey the third law of thermo-
dynamics because the crystalline fields about space group equipoints
cannot all be the same, even if the lattice constant -composition behavior
is a linear one.

An attempt was made to prepare the specimen with M = Si, x =
2.75; a slight amount of an extra unidentified phase was observed in
this case. The lattice constant (Table I) indicated that the garnet
phase present had almost the composition sought. However, it is pos-
sible that some excess silicon with divalent iron could be present in this
garnet."

The specimen of Ca3Fe2Si3012 prepared by Van Uitert and Bonner
had a lattice constant of 12.067 ± 0.003 A. This is substantially larger
than the 12.048 A reported" for a specimen prepared at high pressure.
The difference in lattice constant implies that at least one of the speci-
mens contains impurity ions. However, our main interest was to show
the presence of antiferromagnetic interaction in Ca3Fe2Si3012 , and it
does not seem that the impurity ion (or ions) could introduce it in this
case. Magnetic measurements were also made on a mineral specimen
from Graham County, Arizona, having a lattice constant of 12.068 ±
0.003 A, with essentially the same results as obtained on the synthetic.

3.1.3 Discussion of the Garnets { Y2Cal [Fe2](Fe2Si)012 and
1 Y2Cal Fe.,Ge012

The present work indicates that earlier results21 on these garnets are
erroneous. The 0°K moments reported earlier were 0.5 and 1.5 AB
respectively, as compared with 0.06 and 0.18 IAB obtained in the present
work. That the latter two results are the more reliable is easily ascer-
tained by examination of Fig. 4; these points lie well on the curves for
the appropriate systems.

It is precisely in sensitive regions where the greatest care in prepara-
tion must be exercised. In the case of the Si -substituted garnet, we can
only guess that perhaps there was present in the earlier preparation an
extraneous phase which was not observed on the powder photograph or,
that despite the good agreement between lattice constants (see Tables
I of Ref. 21 and of this paper), the stoichiometry was not exact. For
example, excess Si4+ ions would cause the reduction of some Fe3+ to
Fe2+ ions. While the excess Si4+ ions would tend to reduce the lattice
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constant, the presence of Fe2+ would tend to increase it." Also, any
deviation in stoichiometry would tend to increase the absolute value
of the spontaneous moment.

In fact, the observed deviation, 0.06 /AB from exactly 0.00 AB for
{ Y2Ca} [Fe21(Fe2Si)012 , amounts to only 0.5 mg of Si02 in the 0.001
mole of specimen prepared. The specimens with x = 1.01 and 1.02 were
also prepared in an attempt to find the exact zero spontaneous mag-
netization at 0°K for this system. However (see Table I), neither of
these gave exactly zero values. It would appear from the results that
the experimental error could be as large as the equivalent of 0.01 of a
Se+ ion or 0.05 1.111 in this region of the system.

The high value previously obtained for the garnet fY2Cal Fe4Ge012 is
more easily explained, and a number of experiments (see Table II)
were carried out to prove this contention. Examination of Fig. 6 shows
that the change of lattice constant with x in the system
Y3Cax}Fe5_.C4e.012 is not very large over rather large ranges of x.

At x = 1.00, a change of ±0.003 A. (our quoted limits of error) implies a
change of -0.25 or +0.20 respectively in x, which in turn implies a
change (Fig. 4) of ± 1.00 1.0) in 0°K moment. The broadness of back -
reflection lines in the x-ray powder photograph may indicate a variation
in range greater than 0.75 < x < 1.20. As shown in Table II, repro -

TABLE II - EXPERIMENTS TO OBTAIN THE CORRECT DATA FOR
Y2Ca} Fe4e012

Specimen a(A) t
(1.4°utK)

nit
(77°K)

Description

594 12.372 1.00 After firing 16 hrs. at 1300°C, then 16 hrs. at
1350°C. Specimen contained 6.5% excess
Ge02 (based on total Ge02). Broad 116'
line.

12.371 0.23 After third firing 39 hrs. at 1425°C. Speci-
men contained 4.1% excess Ge02 . Sharp
116 line.

602 12.371 0.18 0.17 After firing 19 hrs. at 1405°C, then 63 hrs. at
1400°C. Sharp 116 line.

12.372 0.17 After third firing 66 hrs. at 1300°C. Sharp
116 line.

606 1.12 1.08 After firing 16 hrs. at 1315°C, then 16 hrs. at
1300°C. Broad 116 line.

0.00 After third firing 64 hrs. at 1275°C. 116 line
still broad.

0.28 After fourth firing 17 hrs. at 1410°C. 116 line
much sharper.

12.372 0.18 After fifth firing 16 hrs. at 1410°C. 116 line
sharp.

a That is, it' k2 + /2 = 116.
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ducible results are obtained for single sharply defined stoiehiometrie
phases.

The preparation of { Ir2Cal Fe40e012 requires a temperature of about
1400°C; even rather long firings at about 1300°C did not produce
homogeneity. On the other hand ( see Table II, specimen 602), firing at
1300°C for a long period produced no significant change in a homogene-
ous specimen formed at 1400°C.

Because of its volatility, an excess of Ge02 is usually added to the
reactants required for the preparation of Ge4+ ion substituted garnets.
Firings are carried out until this excess is lost. It is possible, however, to
add too great an excess and it is then best to discard the specimen.
However, as seen in Table II, for specimen 594, an excess of 4.1 per cent
Ge02 was not as important as the correct firing temperature.

3.2 The Systems IY31[Se.,Fe2,](Fe3)012 and I 173_.Cari[Zr.Fe2,1-
(Fe3)012

3.2.1 Magnetic Data

Part of the tY31[Sc.Fe2-3](Fe3)012 system' and the whole { Y3-.Ca.r}-
[Zr.rFe2,]( Fe3)012 system2 have been investigated earlier in these labora-
tories. In the present investigation several new specimens have been
prepared and high -field measurements made on specimens with x > 0.72.
For values of x < 0.60, specimens were magnetically saturated at an
applied field of 9.6 koe at 1.4°K. For x = 0.72, the specimens were
saturated at 60-70 koe at 4.2°K, and for x > 0.72, saturation was not
attained at fields to 80 koe at 4.2°K. In these cases the spontaneous
magnetizations, nB(0,4.2°), were obtained by extrapolating the straight
line portions of the n.(H. ,4.2°) to Ha = 0. The values thus obtained
are listed in Table III; the actual spontaneous magnetizations of 0°K
may, of course, be slightly higher.'7 Spontaneous magnetizations ob-
tained by extrapolating nB(Ha,4.2°) vs 1/H. to 1/H0 = 0 are also
shown in Table III. The spontaneous magnetizations are plotted vs x
in Fig. 7. Curie temperatures (Table III, Fig. 5) of specimens in these
systems were determined as described above. For x > 1.50, results were
inconclusive. Examples of plots of /in vs T for specimens in these systems
have been given in other papers. The behavior of n. vs T for high sub-
stitution is similar to that of the Y3_,Casl[Fe2](Fe3,Si.,)01. system for
high x.

The values nB(Ha ,4.2°) vs IL for high .r of specimens in both sys-
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TABLE III - MAGNETIC AND CRYSTALLOGRAPHIC DATA FOR GARNETS
Y3} [ScxFe2_.](Fe3)012 AND { Ya_rCa.} [Zr.Fe 2-x] (Fe 3) 012

x

Sc Zr

ttna

T e(°K) a(A) T c(°K) a(A)

II = o II,, -
co

11= 0 11

0.20' 5.9 5.9 12.404

0.25, 5.99 5.99 504 12.392

0.40' 6.7 6.7 12.434

0.60 7.44 7.44 408 12.424 7.39 7.39 12.470

0.72 7.65 7.65 386 12.433 7.6 7.6 386 12.490

0.75, 375 12.438

0.80 7.1 8.1 12.442 6.9 8.2 12.501

1.00 5.7 7.6 294 12.457 5.2 6.6 288 12.534

1.25 3.1 6.2 200 12.478 2.8 5.7 200 12.573

1.50 1.4 4.6 100(?) 12.497 1.1 4.0 65(?) 12.614

1.75 0.4 2.0 48(?) 12.653

1.95 0.0 12.684

a For x < 0.72, nB was obtained by extrapolation to T = 0; for x Z 0.72, n11

is at 4.2°K. b Data from Ref. 2. Data from Ref. 4.

tems are plotted in Fig. 8. In all cases, for the same value of x, the
values of nB at the same Ha are higher for Sc substitution than for Zr
substitution. This will be discussed further later.

A plot of 1/x. vs T for {Y1.05Cal.35}[Zri.35Feo.od(Fe3)012 is given in
Fig. 9. A conclusive antiferromagnetic transition was not observed at
fields as low as 4.9 koe. Above 70°K, 1/xn follows a Curie -Weiss law
with C equal to the calculated theoretical value for 3.05 Fe3+ ions per
formula unit. The linear portion of 1/x. vs T intersects the abscissa at
- 66°K, indicating that there is antiferromagnetic interaction among
the Fe3+ ions at low temperatures.

Shown also in Fig. 9 is a plot of 1/x. vs T for {YCa2}[Zrd-
(Gao.25Fe2.76)012 . In this case again, there was no conclusive evidence
of a transition to long-range antiferromagnetic order, but the inter-
section of the extrapolated linear portion of 1/x. vs T with the abscissa,
- 40°K, indicates that antiferromagnetic interaction is present at low
temperatures. As one would expect, the interaction strength is weaker
than for { Y1 .05Cal .95} [ZI% .95Feo .33] ( Fe3 ) 012 

For both specimens, there does not appear to be any indication of
weak ferromagnetism.22 Below the linear portions of 1/x. vs T, the
curves are concave upwards and neither specimen appears to have a
residual moment at 1.4°K.
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Fig. 7 - Spontaneous magnetizations vs composition for the zirconium- and
scandium -substituted yttrium iron garnets. For x < 0.72, saturation was attained
at low fields and the n8 values were obtained by extrapolating n8(T) to T = 0°K.
For x 0.72, saturation was not attained at low fields and the n8 values were
obtained by extrapolating n8(H.) to H. = 0 at 4.2°K (see Fig. 8). Shown also are
the curves given by the Gilleo and Neel models for substitution by nonmagnetic
ions exclusively on octahedral sites.

3.2.2 Crystallographic Data

Lattice constants for these systems are given in Table III and plotted
vs x in Fig. 10. Shown also in Fig. 10 are values obtained in the former
studies made in these laboratories. For the most part, agreement of the
former with the present values is good. However, in the present study,
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Fig. 8 - nB vs applied field H. , at 4.2°K, for some scandium- and zirconium -
substituted yttrium iron garnets.
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Fig. 9 - Reciprocal susceptibility (xn in Bohr magnetons per oersted per
formula unit) vs temperature for the garnets {Y1.05Ca1.95}[Zr1.96Fe0.ofi](Fe3)012
and (Wad [Zr2](Ga0.25Fe2.75)012 .
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all points for both systems lie almost exactly on the two straight lines
(Fig. 10) and, where differences occur, the present values are considered
to be the more reliable ones.

An attempt to prepare fY31[Scd(Fe3)012 produced a specimen con-
taining an extraneous perovskite-type phase and a garnet phase with
lattice constant 12.508 A. This value corresponds to the composition
x = 1.62, which is the maximum value attainable, at least under the
conditions of preparation.

o<

12.72

12.68

12.64

12.60

12.56

12.52

12.48

12.44

1240

12.36
0

v3_2caxf [zrx Fe2_,](Fe3)0,2r

c PRESENT WORK
FROM REFERENCE 2

04

{e3}[Scx Fe2-1(Fe3) 0,2
0 PRESENT WORK
6 FROM REFERENCE 4

0.8
X

1.2
1

1.6 2.0

Fig. 10 - Lattice constants vs composition for the scandium- and zirconium -
substituted yttrium iron garnets.
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In the case of Zr substitution, previously we reported2 obtaining a
specimen with x = 2.00. However in attempting to reproduce this com-
position, very careful examination of x-ray data indicated a slight
amount of extraneous phase. The garnet present had a lattice constant
12.686 A, indicating a maximum x = 1.96. It was possible, however, to
make the garnet { irCa21[Zr2](Ga0.25Fe2.75)01223 with lattice constant
12.681 ± 0.003 A.

3.3 The System Y3 [117grFe2,](Fe3-sSix)012

3.3.1 Magnetic Data

For values of x < 0.85, all specimens in this system were essentially
saturated over the whole temperature range at fields of 9.6-12.6 koe.
For x = 0.90, measurements were made only at 1.4°K; the specimen
was saturated at 11.3 koe. For x = 1.00, saturation was attained at 11.3
koe at 1.4°K, yielding a spontaneous magnetization of 3.5 1.01 per formula
unit. However, subsequent high -field measurements showed that this
specimen was more likely saturated at 70 koe with a moment of 3.8 µB .

For x >= 1.10, saturation was not attained at 1.4°K and at fields
14.24 koe; therefore high -field measurements were made on these

specimens at 4.2°K. The specimen with x = 1.10 was saturated at 70
koe. All others were not saturated below 80 koe; in these cases the values
of spontaneous magnetization were obtained by extrapolation of the
linear portions of the n8 vs H. curves to H. = 0. Values of moments
were also obtained by extrapolation of n8 vs 1/H. to 1/Ha = 0. Both
sets of values are given in Table IV and plotted vs x in Fig. 11. Note
that the points for x = 1.00 and 1.10, which must lie on a reasonable
curve representing the system, fit distinctly better on the n8(0) than
on the n8( °o) curve.

Curves of n8 vs T at 14.24 koe for various specimens are given in
Fig. 12. To show the effect of different fields on the magnetization when
saturation is not attained, typical curves for the specimen with x = 1.25
are given in Fig. 13.

When x = 1.7, there appears to be an antiferromagnetic transition
at about 10°K. This is seen at fields of 9.6 koe or lower. There appears
also to be a residual moment of 0.2 /.03 at 4.2°K.

Measurements were made on the specimen with x = 0.55 at fields
from 4.8 to 80 koe at 4.2°K. Saturation was attained at 4.8 koe; the
moment obtained was 4.62 i.t8 , an excellent corroboration of the value
obtained with the pendulum magnetometer (Fig. 12).

Curie temperatures, obtained from plots of n82 (0,T) vs 7' (see above)
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TABLE IV - CRYSTALLOGRAPHIC, MAGNETIC AND PREPARATION DATA
FOR Y31 [MgrFe2--.](Fe3--.Si.)012 SYSTEM

x a(A) nit c(°K) Firing Procedure,b Temp., °C (hr)

0.40 12.348 4.65 432 1250(2)0425(24)0445(24)
0.55 12.336 4.60 396 1400 (4 )0450(24 )0465 (24)
0.70 12.321 4.35 356 1450(4)0480(3)0500(3)
0.85 12.308 4.25 327 1400(4)0490(2)0500(2)0550(2)
0.90 12.305 4.17 1400(4)0460(2)0540(2)
1.00 12.289 3.8(3.8)c 265 1420(1)0480(3)0520(3)0500(2)
1.10 12.282 3.2(3.2) 220 1420(1)0480-1500(44)0520(4)
1.25 12.265 2.2(3.4) 187 1450(4)0525(3)0550(3)
1.40 12.252 1.25(2.7) 110 1400(4)0500(2)0560(2)
1.50 12.237 0.9(2.4) 84 1400(4)0500(4),1525(5)0550(5)
1.60 12.229 0.55(2.0) 50(?) 1400(4)0500(34) ,1525(2)0560(2)
1.70 12.220 0.35(2.25) 1375(0,1500(2)0550(4)0590(4)0575(4)
1.85 12.197 1300(1), 1E00 (4)0525(4)0535(7)

a For x 5 0.90, n5 was obtained by extrapolation to T = 0; for x > 0.90,
n5 is at 4.2°K. b All specimens were first calcined at 500-900°C over a period of 1
hr. Numbers in parentheses are from extrapolation to H. = co , others to H. = 0.

and 1/x. vs T when possible, are listed in Table IV and plotted vs x in
Fig. 5. The Curie temperatures obtained from the Gilleo treatment agree
almost perfectly with those observed. The discrepancies are noticeable
only at high x: for x = 1.5, it is 9°K, for x = 1.6 it is 14°K.

3.3.2 Crystallographic Data

Lattice constants for this system are given in Table IV and plotted vs
x in Fig. 14. The limits of error assigned to each lattice constant are
±0.003 A. All points but one deviate no more than 0.002 A from the
curve a vs x, and in no case is more than a deviation of x = 0.02 implied
by any deviation of lattice constant; in fact, a deviation of x = 0.02 is
implied for only three out of thirteen specimens, namely for those with
x = 0.90, 1.00 and 1.70.

Careful examination of the powder data, both photographic and
diffractometric, indicated that specimens with x = 1.90, 1.95 and 2.00
were not single-phase. As it is known that the Mg2+ ion may also occupy
c sites in garnets, at least one specimen was made in which substitution
was made in both c and a sites simultaneously. The garnet (Y2 AME0.21-
[Mg1.7Fe1.3](Fe1.1Sil.9 )012 has a lattice constant of 12.177 ± 0.003 A.

Because such substitution is feasible, the exact maximum value of x
in the (Y3) [MgxFe2-.] (Fea-xSi.)012 system cannot really be obtained
and the preparation of specimens in this system requires more care
perhaps than those in which a substituent ion prefers one site exclusively.
(For this reason, we have included the firing data in Table IV.)
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Fig. 11 - Spontaneous magnetizations vs composition for the system { Y3)-
[Mg.Fez_.](Fe3_.Si.)012 . For x 5 0.90, saturation was attained at low fields and
the n8 values were obtained by extrapolating n8(T) to T = 0°K. For x z 1.00,
saturation was not attained at low fields and the n8 values were obtained at 4.2°K
by extrapolating n5(H0) to H. = 0 and n8(11H.) to 11H. = 0. Shown also is the
curve given by the Gilleo model.
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Fig. 12 - nB(14.24 koe,T) vs T for specimens in the system
{Y3} [Maez_d(Fe3_.Si.)012 
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The behavior of the lattice constant vs composition (Fig. 14) is
again not linear for the IY31[MgxFe2,](Fe3,Si.0012 system. However,
as will be shown later, of all the ions substituted for trivalent iron, the
A/Ig2+ ion appears to make the "best fit," in the octahedral sites.

3.4 Miscellaneous Specimens in the Systems IY3_Cayl[SciFe2A-
(SiyFe3_y)012 7 I 173-1/-1-reay-xl [111g1Fe2](SiyFe3_,,)012 and
IY3-,,Ca.,+,1[ZrzTe2,](SiyFe3_,,)012

Measurements were made on various specimens in these systems for
the purpose of making certain points to be given later. In some cases,
magnetic saturation was attained at low fields, in some at high fields,
and not in some at fields to 80 koe. Results are given in Table V. Several
Ge-substituted garnets analogous to the Si -substituted ones were also
made. Data for these are given in Table VI.

3.5 The System Y3AlxFe6-.012

3.5.1 Magnetic Data

Results obtained in these laboratories on part of this system were
reported several years ago.4 In the present investigation, the range of
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Fig. 14 - Lattice constant vs composition for the system
Y 3) [1%40'e 2-1. 1 (Fe 3-xS10012 

substitution has been extended. In this system, for x < 1.75, magnetic
saturation was attained at 1.4°K at applied fields 9.6 koe.

Although there is no doubt that the specimen with x = 2.0 has a
spontaneous magnetization, the results on the two specimens with x =
2.5 and 3.0 are not conclusive. In both cases, there appears to be an
antiferromagnetic transition at about 10°K (see Fig. 15) which appears
at fields of 4.8 and 9.6 koe, but not at 14.24 koe. The plots of 1/x vs
T follow a Curie -Weiss law. For x = 2.5, the straight line portion of
1/xn vs T intersects the T axis at -40°K and for x = 3.0 at -20°K.
(See Fig. 16.) The values of Aeff are 3.29 and 3.34 AB respectively. These
results indicate that at least short-range antiferromagnetic interaction
is present over a wide temperature range.

High -field measurements at 4.2°K were made on specimens with x =
2.0, 2.5, and 3.0. Each showed a residual moment when nB(Ha) was
extrapolated to H. = 0. The values obtained lie on the smooth curve
joining the points at values of x < 2.0. This, however, may be fortuitous.
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TA BLE V - MAGNETIC AND CRYSTALLOGRAPHIC DATA FOR GARNETS
{ Y3_+xCay_x} [MgrFe2,] (SiyFe3,)012 Ya-yCaul [ScrFe2-x]-

(Siz,Fea-0012 AND { [Zr.Fe2-.] (SiyFe3,) 012

Octahedral
Ion

Mg2+

Se+

Zr4+

x

0.175
0.30
0.18
0.90
0.50
0.44
0.22
0.75
0.85
0.30
0.30
0.30
1.10
1.00
0.90
0.76
0.60
0.35
0.30
0.85
0.30
1.10
1.00
0.90
0.60
1.25

0.825
1.47
1.57
1.10
1.50
1.76
1.98
1.75
0.85
1.47
1.52
1.60

0.90
1.00
1.10
0.24
0.60
1.15
1.20
0.85
1.60
0.90
1.00
1.10
1.60

1.25

ne

1.64

-0.92
-1.83
3.2

-0.24
-1.29
-3.1
-0.18
4.0

-0.92
-1.12
-1.39
2.8
2.9
2.8
5.9

4.39
0.88
0.41
3.6

-1.40
1.8
2.1
1.9

-0.3

T , (°K)

450

294
325
298
245
250

220
235
260
340
360
370

190
200
210
200

Approx.
Saturation
Field, koe

a(A)

4.8
4.8
7.3
9.6
9.6
9.6
60

11.3
12.6
4.8

<4.8
<4.8
>70
>70
>70
>70

9.6
4.8
9.6

70
4.8

>70
>70
>70

12.309
12.246
12.237
12.283
12.244
12.223
12.191
12.214
12.381
12.270
12.265
12.258
12.398
12.380
12.362
12.475
12.421
12.331
12.319
12.440
12.277
12.477
12.450
12.426
12.32
12.466

a When approximate saturation field is 60 koe, these values are at 4.2°K;
when >70, they are extrapolated to Ha = 0. All others at 0 or 1.4°K.

TABLE VI - MAGNETIC AND CRYSTALLOGRAPHIC DATA FOR GARNETS
Y3_+xCa,..} MgYeb_r,Gey012 , Y3,Cay Sc.Fe 5_._Ge012

AND { Y3_x_yeax+,,}ZriFe5Ge,012

Octahedral
Ion x Y ne T (0 K) Saturation a(A)

Alg2+ 1.00 1.00 3.9 60 12.364
1.25 1.25 2.2 >70 12.362

Sc3+ 1.00 1.00 2.9 >70 12.457
2:r4+ 0.60 0.60 4.35 360 9.6 12.467

0.85 0.85 2.9 >70 12.506
1.00 1.00 1.6 >70 12.530

* See footnote, Table V.
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Fig. 15 - /in vs T at different magnetic fields for Y3A13Fe2012 

The values of ng at H. = 0, T = 0 are listed in Table VII and plotted
vs x in Fig. 17. The value for the specimen with x = 1.00 fits the curve
somewhat better than that obtained in the previous work.4 Curie tem-
peratures, obtained as described earlier, are given in Table VII and
plotted vs x in Fig. 18. Shown also are the values of T c obtained from
the Gilleo theory (see discussion).

3.5.2 Crystallographic Data

The lattice constants for specimens in this system are listed in Table
VII and plotted vs x in Fig. 19. Shown also are the values obtained in
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Fig. 16 - Reciprocal susceptibility vs temperature for Y3Al2.5Fe2.5012 and
for Y3A13Fe2012 
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TABLE VII - MAGNETIC AND CRYSTALLOGRAPHIC DATA FOR GARNETS
Y3.A.1.Fe5._.012

x
ma Telt) a (A)

Present Work Ref. 4 Present Work Ref. 4 Present Work Ref. 4

0.00 5.01 4.96 545 12.376 12.376
0.33 3.50 497 12.353
0.67 12.331
1.00
1.50

1.73
0.94

1.63 430
365

415
. _

12.311
12.276

12.306

1.67 12.265
1.75 0.55 295 12.256
2.00 0.15 240 12.239
2.33 12.215
2.50 -0.15(?) 12.206
3.00 --0.25(?) 12.164
3.00 12.161 12.159
5.00 12.003

the earlier investigation in these laboratories. Except for x = 1.00, the
latter values lie within individual experimental error on the curve given
by those more recently obtained and which are considered to be im-
proved. To a value of x = 2.5, the a vs x behavior of the Y3Fe5 Al-x-x -0 12

system is linear (and extrapolates to a value of 12.030 A for Y3Al2A13012).
However, beyond this point, there appears to be an inflection toward
the abscissa. Two specimens with x = 3.00 were carefully prepared,

nB

{Y,}Fes_xAtx 0,2

ALL Ae+IONS\\
TETRAHEDRAL

OBSERVED

0.5 1.0 1.5 2.0
X

2.5 3 0

Fig. 17 Spontaneous magnetization vs composition for aluminum -substi-
tuted yttrium iron garnets. (See text for explanation of values for x > 2.0.) Shown
also is the line expected, when 0 5 x 5 1.0, if all A13÷ ions replaced Fe+ ions in
tetrahedral sites.
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Fig. 18 - Curie temperatures vs composition for the aluminum -substituted
yttrium iron garnets. Shown also is the curve obtained from the Gilleo model

the distributions given in Fig. 29. The points denoted were ob-
tained from specimens in which Mgt* or Zrd+ were substituted for Fea+ ions in octa-
hedral sites and Si4+ for Fea+ ions in tetrahedral sites, with required electrostatic
balance by Ca2+ ions in dodecahedral sites (see text).
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Fig. 19 - Lattice constant, vs composition for aluminum -substituted yttrium
iron garnets.
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one with ultra -pure A1203 ; the lattice constants obtained for the two
specimens are 12.164 and 12.161 A (the latter for the ultra -pure speci-
men). The larger of the two values still is far from the straight line of
the first half of the system (Fig. 19). As will be shown in a subsequent
paper, a vs x for the Gd3Fes_.A1.012 system also does not behave exactly
linearly, although the inflection occurs at a much lower value of x.

IV. GENERAL DISCUSSION

The original purpose of this investigation was to test further the
Gilleo theory3 and the extension thereof to substituted rare earth iron
garnets." Following this paper, we shall publish one concerned with the
latter systems which will show, unfortunately, that this extension" of
the theory does not fit the results because, as the present paper will
show, the Gilleo theory for substituted yttrium iron garnets does not
fit the results. In fact, no existing theory accounts for the observations
quantitatively, and though the over-all agreement is rather poor, the
Gilleo theory comes the closest.

In this paper, we shall develop a descriptive theory for substituted
yttrium iron garnets which draws on various theories of Neel," Yafet
and Kittel,5 Gilleo3 and Anderson." The possibility of a quantitative
theory which can predict the magnetic behavior of the substituted
garnets is complicated by the various effects of substitution on the
magnetic structure. These effects appear to be more complex for higher
substitution, and in fact there is now evidence that, especially for high
substitution, different nonmagnetic ions in the same site produce different
behavior (see also Refs. 10-13 and Section 4.3). In a sense, this is a
rather unfortunate result because, before we discovered it, we believed
that even without a quantitative theory, we should be able from limited
data to predict the magnetic behavior of any substituted yttrium iron
garnet. Actually, as will be shown later, this can still be done within a
certain range of substitution and for particular ions.

The present data strongly indicate that the Si4+ ion has a preference
exclusively for tetrahedral sites in the garnets." The preference of the
GO+ ion for tetrahedral sites is not quite as great as that of the SP+ ion;
that is, with increasing Ge4+ ion substitution, there does appear to be
some tendency for a small percentage of these ions to go into octahedral
sites. However, this percentage is not nearly as large as previously"
indicated.

Assuming that our present conclusion regarding the site preference of
the Si"- ion is correct, we may compare Fig. 4 with the observed data,
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nB(0°K) vs x calculated on the basis of a simple Neel model26 and on
that proposed by Gilleo.2 It is seen that neither model gives satisfactory
agreement with the observations over the whole range of substitution.
In the range to x 1.9 there is apparently better agreement with the
simple Neel model than with the Gilleo one. The observed minimum,
-3.85 AB , occurs at x = 1.94; the minimum predicted by the Gilleo
model is -1.8 AB at x = 1.77; the Neel theory does not predict a mini-
mum, but does not preclude one (see Section 11 of Ref. 26). Agree-
ment of observed 0°K moments for octahedral substitution (see Fig. 7)
with those calculated with the Gilleo theory is somewhat better than
for tetrahedral ion substitution, but it cannot be said to be satisfactory.
For the 1Y31[MgrFez_x](Fe3,Si.)012 system (see Fig. 11), the moments
calculated with the Gilleo theory are also not in good agreement with
the observed values. Thus, although the Gilleo theory predicts a maxi-
mum for octahedral and a minimum for tetrahedral substitution, it
does not appear to account quantitatively for the observed moments in
any of the systems. It should be pointed out, however, that unlike others,
this theory takes into account the statistical nature of the problem,
while on the other hand it has neglected the importance of intrasub-
lattice interactions.

Wojtowicz29 has shown that intrasublattice interactions are negligible
in the (unsubstituted) yttrium and lutecium iron garnets, while the
results of Pauthenee and of Aleonard" based on the Weiss molecular
field theory (as applied by Neel to ferrospinels) show that they are
important. The theory of Yafet and Kitte1,5 also based on the Weiss
molecular field theory, leads to the result that at a certain concentra-
tion of nonmagnetic ions in a particular site in a ferrospinel, a transition
occurs to a ground state in which there is canting of moments in the
unsubstituted sublattice. We shall show below that this theory also
does not account for the behavior of the substituted garnets. Neverthe-
less, an important implication of our structural argument is the impor-

tance of intrasublattice interactions.
As indicated earlier, there is an arithmetic error in the de Gennes

application6 of the Yafet-Kittel theory to the Sn4÷ ion substituted
garnets: the molecular field equations for YIG determined by Pauthe-
net7 should have been written

HA = -7000 MA - 14,800 MB

HB = -14,800 MA - 4200 MB

from which n = +14,800, «2 = -0.95, 72 = -0.57. Thus according to
the theory it is at y = 0.57 or x = 0.29 that the canting first occurs.
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Also, the maximum moment, 6.45 AB , in the system should then be
attained at x = 0.29. Actually, if this system is assumed to behave
similarly to those of Fig. 7, the maximum moment of 7.8 AR is attained
at about x = 0.7 and the canting appears experimentally to occur earlier
(see later discussion).

But the discrepancies for the silicon -substituted yttrium iron garnet
are even worse. Again using the Pauthenet equations, the triangular
configuration (c) of the Yafet-Mittel theory would be expected, that is,
for 1/ I a2 I < y. The system is I Y3_sCaxl [Fe2](Fe3_xSi.)012 ; thus y =
2/(3 - x). Canting should therefore begin at x = 1.1. For x < 1.1,
nB(0°K) = 5(1 - x) while for x > 1.1,

nB(0°K) = 5(3 - x)(1 - 1/ 1422 I ) = -0.25(3 - x).

The algebraic minimum, -0.5 All , should occur at x = 1.1; the observed
values are -3.85 AB at x = 1.94.

For the {Cal} [Fe2](Si3)012 specimen, the value of 1/x. in units com-
parable to those used by Aleonard," is -1.9. Thus naa = -1.9, which
is abouti12- the value of naa in YIG. This value of naa indicates very weak
magnetic interaction in line with the 0,, of 29°K and the possible Neel
temperature of 9°K and also implies that the interaction coefficients
change with substitution. Thus it appears that the use of the interaction
coefficients of YIG to predict the behavior of the entire system is not
correct.

In a first approximation, it appears now that the following picture of
the behavior of the substituted yttrium iron garnets (discussed in this
paper) is a plausible one. Yttrium iron garnet itself may be considered
an ideal Neel ferrimagnet; that is, at 0°K, the moments of all a -site
Fe"- ions are exactly parallel, the moments of all d. -site Fe3+ ion moments
are exactly parallel and the moments of a -site Fe3+ ions are exactly
antiparallel to those in the d -sites. Under these circumstances the the-
oretical moment, 5.0 AB per formula unit, should be and is observed.
When the d -sites are filled with nonmagnetic ions, as in Ca3Fe2Si3012 ,

at the very least, short-range antiferromagnetic order occurs among the
moments of the a -site Fe3+ ions. When the a -sites are filled with non-
magnetic ions, as for example in hypothetical { YCa2} [Zr2](Fe3)012 , at
the very least, short range antiferromagnetic order occurs among the
moments of the d -site Fe' ions (see also Ref. 27).

Thus, on a structural basis, replacement of Fe3+ ions in a particular
site by nonmagnetic ions must ultimately change a ferrimagnetic to
some type of antiferromagnetic structure. Figs. 4 and 7 show that this
occurs continuously; Figs. 20 and 21 show the connection between the
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silicon- and zirconium -substituted yttrium iron garnet systems and give
a pictorial summary of the behavior of these systems. Now, let us assume
(see Fig. 21) that in the silicon -substituted garnets at 0°K, only the
effective momene of the octahedral Fe3+ ion sublattice is reduced by
canting of the moments of these ions because of linkages to tetrahedral
nonmagnetic ions and the effect of a -a antiferromagnetic interaction.
Analogously, we assume (see Fig. 21) that in the zirconium (or similar)
ion substituted garnets, only the effective moment of the tetrahedral
Fe3+ ion sublattice is reduced. We can then determine the average
effective' moment per octahedral and per tetrahedral Fe3+ ion, respec-
tively, as a function of x. The results (Fig. 22, curves 1 and 4) indicate
that far more silicon than zirconium substitution is always required to
cause reduction of the average Fe3+ ion moment in the octahedral and
tetrahedral sublattice, respectively.

A small part of the arrangement of cations in the a and d sites of a
zirconium -substituted garnet crystal is shown in Fig. 23. For further
clarity, we show in Fig. 24 the arrangement of cations in the three types
of sites in four octants of the garnet unit cell. In yttrium iron garnet,32

each ion on an a site is linked through pairs of oxygen ions to eight
a -site ions at distance 5.36 A and through single oxygen ions to six
d -site ions at 3.46 A. Each d -site ion is linked through pairs of oxygens
to four d -site ions at 3.79 A and through single oxygens to four a -site
ions at 3.46 A. These distances and linkages through oxygen ions imply
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Fig. 21 --- Summary of proposed explanation for the magnetic behavior of the
systems Y I [Fed (Fe3_,Siz)( )12 and Y [ ZrzFe2_,J(Fe 3)012 .

that in YIG the a -d interaction should be strongest, next the d -d and
finally the a -a.

The results shown in Fig. 22 indicate that the average a -d interaction
weakens as substitution of nonmagnetic ions is made in either site.
Nevertheless the a -d interactions remain dominant until the changes in
direction of the curves are reached. At .ro = 0.70, a transition occurs to a
state in which the d -d interactions are dominant.33 Similarly at .r, = 1.92,
a transition occurs to a. state in which the a -a interactions are dominant.33
Because the transition occurs for .re = 1.92 as against .ro = 0.70, there
is little question that the d -d interactions in the Zr4+ ion substituted
garnets are stronger than the a -a interactions in the Si4+ ion substituted
system. Moreover, as shown in Fig. 25, the ratio of xe/xa required to
reduce the effective Fe3+ ion moment to a particular value is everywhere
greater than 1.75.

The decreases in effective moments of the sublattices with increasing
.r are small but real until the transition points are reached. However, it
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(Fe3-zSix)012 system; (4) octahedral sites for (Y3_,.Caz} [Fe2](Fe2_zSi.)012 system.
Circle points are for {Y3 -.Ca. } [Sc.Fez--.](Fea-xSi.)012 specimens and triangles for
( Y3-2xCa 2. j [Zr.Fe2._.](Fe3_.Si.)012 specimens (see text) .

would appear from the Yafet-Kittel theory that if there were no short-
range disorder, there should actually be no decrease in effective moments
before the transitions are reached, since the ground state before the
transition should be an ideal ferrimagnetic one, with no splitting of the
sublattices. That is, because the a -d interactions are dominant, the
molecular field of the d sublattice, in the case of tetrahedral substitu-
tion, would act to keep the a sublattice moments aligned antiparallel to
the d; while in the case of octahedral substitution, the molecular field
of the a sublattice would act to keep the d sublattice moments aligned
antiparallel to the a. On the other hand, it would appear that chemical
disorder which always exists in a solid solution would cause magnetic
disorder. This chemical disorder implies further that distinct "sublattice
splitting" does not really occur in these substituted garnets, but rather
that the canting of the moments within a sublattice is random, and that
since the crystals are ferrimagnetic, a statistical long-range order must
exist.

We see also in Fig. 22 that although until the transition points are
reached the rates of decrease in effective moments of the sublattices
with increasing x are both small, that for tetrahedral substitution is
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Fig. 23 - Part of the arrangement of cations in the a and d sites of a zirconium -
substituted yttrium iron garnet crystal.

much smaller than for octahedral substitution. This shows again that
the d -d interactions are stronger than the a -a. Now it is unlikely that
short-range magnetic disorder occurs before the transition and not be-
yond it. Thus it appears that what is occurring differs from the idealiza-
tion given by the Yafet-Kittel theory. The transition is almost surely
one at which a change from dominance of the a -d to a -a or d -d inter-
actions occurs, but not one in which there is an abrupt change from a
strictly ferrimagnetic to a canted ground state. That is to say, there is
always a competition among the various interactions, and as soon as
the strictly antiparallel one is disrupted, one of the others may begin to
manifest itself.

To emphasize at this point the importance of the competing inter-
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Fig. 24 - Arrangement of cations in c, a, and d sites in four octants of the
garnet unit cell.

actions, we outline some further evidence to be discussed in more detail
later. Suppose we look at a system in which substitution of nonmagnetic
ions is made in both sites. We choose ions such as Sc3+ and Si4+ which we
believe have exclusive preference for octahedral and tetrahedral sites
respectively. A formula representing such a system is { 1.-3,Ca}[Sc,Fe2-,]-
(Fe3,Siy)0,2 . Suppose we begin with y = 0 and x = 0.30. We see from
Fig. 22 that some canting will occur among the Fej+ ion moments on
the tetrahedral sites. Now we keep x constant and increase y. As y
increases, the canting of the d -site Fe3+ ion moments will decrease. A
value of y will be reached for which the particular garnet will again
appear to be an ideal Neel ferrimagnet. The value of y for which this
occurs (see Table V) is 1.52, that is to say, for the garnet 117.1.48Cal.521-

[Sco .3oFei .70] (Si1.52Fe1 .48)012 . For this garnet, the difference in the num-
ber of Fe3+ ions in the two sites is 0.22, which according to the Neel
model would give a 0°K spontaneous magnetization of - 1.10 All ; the
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Fig. 25 - The ratio, xi/xi, , of tetrahedral to octahedral nonmagnetic ions,
required to produce the same effective moment per Fe"- ion in the appropriate
sublattice. Also shown is the curve xi/x,, vs x. .

observed value, - 1.12 is in good agreement with this value. Note
( Table V) that for the garnet Y1.53Cal .471 Pc° .3Fe1 .7] (Sii .47Fei .53)012

the observed 0°K spontaneous magnetization is -0.92 ALB to be com-
pared with -5 X 0.17 = -0.85 AR from the Neel model. Thus for this
garnet canting of the Fe3+ ion moments occurs in the tetrahedral sites.
On the other hand, in the case of the garnet I Y1.4Cai .61[Sco.3Fel .71-

(Sii.6Fei.4)012 the observed 0°K spontaneous magnetization is -1.39
to be compared with -5 X 0.30 = -1.50 AB from the Neel model.

Thus for this garnet canting of the Fe"- ion moments occurs in the
octahedral sites. (This example also demonstrates that the 0.3 Se+
ions are in octahedral sites exclusively.)

The above discussion has been concerned only with what occurs at or
very near 0°K. It appears, however, that the behavior of these sub-
stituted garnets may be similar at higher temperatures. We note (see
Fig. 5) that xe/so required to give the same Curie temperature is every-
where greater than 1.68. Fig. 5 also shows the effect of transition from
a -d to intrasublattice interaction dominance, even though, except for
the Y3[Mg1Fe2-x1(Fe3-xSix)012 systems, it does not show as clearly as
Fig. 22 where the transition values of x are.
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Also shown in Fig. 5 is the plot of T c vs x obtained from the Gilleo
theory. The agreement with observed Curie temperatures is rather
good; for the { Y3} [MgrFe2--.1(Fe3-.SL)012 system, it is almost perfect.
Thus it is possible that, although the Gilleo theory does not hold at low
temperatures, it does at higher temperatures. However, it is also possible
that this good agreement of Curie temperatures is fortuitous (see later
discussion).

In the system {Y3} [Mg.Fe2-7](Fe3-.Si.)012 there is always 1.0 more
Fe' ion per formula unit in the tetrahedral than in the octahedral
sites. Thus the apparently continuous decrease in total 0°K moment
(Fig. 11) in the early stages of substitution must, according to our
model, mean that canting of the Fe3+ ion moments is occurring in the
tetrahedral sites. If we assume that the moments of the a -site Fe3+ ions
remain parallel we may determine for each composition the effective
moment contributed to the ferrimagnetism by each tetrahedral Fe'
ion, as shown in Fig. 22, curve 3.

We note that there are two main regions of behavior similar to those
in the systems in which substitution of nonmagnetic ions is made ex-
clusively either in octahedral or in tetrahedral sites. The decrease in

effective moment (or increase in canting) is initially at the same rate as
in the 1 Y3,Ca.1 [Zr.,Fe2,] Fea )012 or { Y3} [ScxFe2-x] (Fe3) 012 systems,

but beyond x 0.7 the rate of decrease of effective moment is lower than
in the latter system. Thus we conclude tentatively (see later discussion)
that:

( 1) canting of Fe3+ ion moments in the tetrahedral sublattice occurs
from the beginning of substitution;

(2) in the region 0 < x < 0.7, the replacement of d -site Fe3+ ions by
Sid+ ions does not have a significant effect on the average d -d interaction
strength, but when x > 0.7, decreases the average d -d interaction
strength; thus

(3) in the { Y3} [IVIgiFe2-x] (Fe3-xSi.)012 system, the transition to the
dominance of the d -d interactions over the a -d interactions (see Ref. 33)
occurs at x 0.95 as against x = 0.70 in the {Y3,Caz}VrxFo2-.1(Fe3)012
system.

The Curie temperatures of the { Y3} [MgrFe2,](Fe3-xSi.)012 system
are shown in Fig. 5 (curve 1). The latter are almost everywhere smaller
than those of the { Y3} [SczFe2,](Fe3)012 system for the same x. However,
the differences are nowhere greater than 35°K even though x in the
{ Y3} [Mg1Fe2,](Fe3-28ix)012 system represents as many nonmagnetic
ions in d as in a sites, or twice as much total substitution of nonmagnetic
ions. This comparison already indicates that the canting may also have
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an effect on the Curie temperature; that is, that the intrasublattice
interactions are important over a wide temperature range and not only
at 0°K.

We may obtain a clearer idea of the effect of the intrasublattice inter-
actions on the Curie temperatures by plotting Tc vs total per cent
substitution of nonmagnetic for Fe3+ ions as in Fig. 26 for exclusively
a -site, d -site and equal a -d -site substitution. Now we see that on this
basis, the Curie temperatures for the { Y3) [MgxFe2_x]( Fe3,Si.)012 sys-
tem are everywhere substantially greater than those for the
{ [SeJe2,](Fe3) 012 system for the same total per cent replacement of
Fe3+ ions. Further, to about 37 per cent substitution, the values of Tc
for the -17-3[MgsFe2._x](Fe3,Sia:)012 system are lower than for the
{Y-3,Ca.) [Fe2] (re3,Si.)012 system. (The actual values of x are
about 0.9 and 1.85 for the systems, respectively.) In the region
below 37 per cent substitution, canting of d -site moments in
the former system is greater than canting of a -site moments
in the latter (Fig. 22). In the region above 37 per cent the
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reverse is true. For example, for 50 per cent substitution the formulas
are respectively Y3[Mg1.25Fe0.75](Fe1.76Si1.25 10, 12 and { Yo .5Ca2 .5} [Fe2]-

(Fe0.5Si2.6)0,2 ; Fig. 22 shows that the effective moment of the d -site
Fe3+ ion in the former is 3.35 AB while that of the a -site Fe3+ ion in the
latter is 1.6 µB . [Thus we see also why even when there are only 1.8
Fe3+ ions left per formula unit, i.e., { Y3} [Mg1.6Fe0.4](Fe1.4Sii .6) 012 , we

still have a ferrimagnetic specimen with T = 50°K. In fact, even when
x = 1.7 (1.6 total Fe3+ ions per formula unit), the garnet may still be
ferrimagneticl

We should expect that in the general system { Y3+x_Cay,}[MgxFe2-.]-
(Fe3,Siy)0i2 there will be, for a given (x y), a value of x
(or ft = y/x y) such that there will be no canting of Fe3+ ion mo-
ments in either sublattice. We saw above for x y = 2.50 (50 per
cent substitution) that the effective moments when x = y = 1.25
(f t = 0.5) and when x = 0, y = 2.50 (ft = 1.0) are both lower than
5.0 AB . Because canting occurs in different sublattices for these two
garnets, the garnet in which no canting will occur [for this value of
(x y)] should have 0.5 < ft < 1.0. Moreover, this garnet should
have the maximum Curie temperature for x y = 2.50. We have not
attempted to obtain this particular garnet, but in the course of our
investigations we have made one very close to it. The garnet with for-
mula {Y2Ca}[Mgo.75Fei.25](Fel.26Sii.75) 012 (f t = 0.70) has a 0°K mo-
ment of -0.18 AB (Table V). Our accumulated data indicate that
the canting occurs in the tetrahedral sites (the octahedral sublattice
then dominates, therefore the choice of negative sign); the effective
moment of a tetrahedral Fe3+ ion is 4.85 µB . The Curie temperature
is 250°K; for ft = 0.50 and 1.00, the Curie temperatures (see Tables I
and IV, respectively) are 187 and 86°K respectively. It is also note-
worthy that the garnet with ft = 0.70 saturates at low temperatures
at about 10 koe, whereas the other two do not.

In the foregoing discussion, it would appear that it was tacitly assumed
that the 0°K moments and Curie temperatures do not depend signifi-
cantly on the type of nonmagnetic ion substituted for the Fe3+ ion in
yttrium iron garnet. That is to say, it would appear that we had im-
plied that a garnet such as { Y3,_yCa.+y} [ZrzFe2,](Fe3-vSiy)012 will
have the same 0°K moment and Curie temperature as

Y3,Cay) [ScxFe2-.] ( Fe3,Siy) 012

or as {Y3+s,Cay,}[MgzFe2_x] (Fe3,Siu)012 provided all x's are the
same and all y's are the same. This appears to be a generally accepted
idea.
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However, there now appears to he some evidence that this is not
generally true (see also Refs. 10-13 and Section 4.3). In Fig. 7 and
Table III, it will be noted that beyond about x = 0.7 the moments
for the system 1.172_.Caz)[Zr.Fe2,](Fe3)012 are lower than those for
the system I Y31[ScrFe2-x](Fe3)012 . The differences are outside experi-
mental error. We shall discuss substituted gadolinium iron garnets
fully in a future paper, but as further evidence of the reality of the
differences in the two systems we point out here the moments obtained
from high -field measurements at 4.2°K of {Gd2Ca) [ZrFe](Fe3)012 and
Cld2171[ScFe]( Fes) 012 . Extrapolation of n8(Ha) vs H. to H. = 0

gives 5.3 and 4.6 AB for these, respectively. Extrapolations of n8 (Ha) vs
1/H. to 1/H. = 0 give 7.1 and 6.7 AB for these respectively. Regardless
of which values are more nearly the correct ones for these garnets, the
moment of the Zr-substituted gadolinium iron garnet is significantly
higher than that for the Sc-substituted one. Because the net moments
from the iron sublattices of these garnets are antiparallel to those of
the gadolinium sublattices, the net moment per formula unit of the
Zr-substituted gadolinium iron garnet should be larger than that of the
Sc-substituted gadolinium iron garnet, if the moments of the analogous
substituted yttrium iron garnets are in the reverse order.

One may well ask whether these differences are a result of some
Zr4+ or Sca+ ions being in tetrahedral sites. While this possibility cannot
he completely eliminated, evidence will be presented which indicates
that it does not account for the results. Now, the Zr4+ ion is a rather
large one; in Zr02 it prefers eight-coordination,34 while in zirconates it
prefers six -coordination. Lower coordination for Zr4+ has, as far as we
know, not been reported, although there is no a priori reason to deny
its possibility. If we, however, assume that all Zr4+ ions go into octa-
hedral sites in the garnets, we may ask if some Sc3+ ions go into tetra-
hedral sites. Consideration of this possibility leads to the conclusion
that if some Sc3+ ions do go into tetrahedral sites, the percentage doing
so decreases to a minimum and then increases again.

We arrive at this conclusion in the following way. We assume that a
small amount of Sca÷ ions in the tetrahedral sites does not alter the ef-
fect of the presence of the large amount of Sc3+ ions in octahedral sites
on the moments of the Fe3+ ions in the tetrahedral sites. Thus for one
Sc3+, if we assume a formula of f Y3) [Sc0.9Fei .1](Fe2.9Sco d) 012 , the
effective moment (Fig. 23) of a tetrahedral Fe3+ ion will be 3.85 µB .

The 0°K spontaneous magnetization per formula unit would then he
5.7 AB, in agreement with the observed value. A distribution given by
Yal [Sco .96Fe1 .00] Fe2 .95Sco .00 )012 gives a moment per formula unit of
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5.4 AB . For 1.25 Sc3+ ions with a distribution given by {Y3} [Sc1.2Feo.8]-
(Fe2.95Sco.05)012 , the effective tetrahedral Fe3+ ion moment is 2.43

AB and the 0°K moment per formula unit is 3.16 AB , which is in good
agreement with the observed value. The distribution { Y3} [Sc1.15Feo.85]-

(Fe2.90Sco.10)012 , however, leads to a 0°K moment per formula unit of
3.4 AB . For 1.50 Se"- ion with a distribution given by {Y3} [Sci AFeo.6]-
(Fe2.9Sco.1)012 , the derived 0°K moment per formula unit is 1.4 AB
in agreement with the observed values.

One can see then from these examples that if the assumptions were
correct, the percentages of Sc3+ ions entering tetrahedral sites would
be 10, 4 and 6.7 respectively. Such a situation is felt to be rather un-
likely; one would expect the fraction of Sc3+ ions going into tetrahedral
sites to increase monotonically. Under such conditions, the curves
of Fig. 7 for the Zr- and Sc-substituted yttrium iron garnets should
actually cross at a value of x > 0.70. It is still possible that very small
amounts of Zr4+ ions may go into tetrahedral sites, in which case, if
Sc3+ ions also go into tetrahedral sites, the situation would be more
complex; but there is further evidence that this alone would still not
account for the observations.

Fig. 4 indicates a resemblance of the behavior of the Ge- and Si -
substituted yttrium iron garnets to those of the Zr- and Sc-substituted
garnets. At x > 1.0, the 0°K moments per formula unit (absolute
values) of the Ge-substituted garnets are lower than those for the Si -
substituted garnets. Now, in Figs. 7 and 23 and Table III it will be
noted that to x = 0.70 the Zr and Sc-substituted garnet systems behave
in very nearly the same way. Below x = 0.70, it is expected that all
these garnets will saturate magnetically at moderate fields. It is mainly
in the region in which the intrasublattice interactions become dominant
that substantial differences occur (but see Refs. 10-13 and Section 4.3);
this is the region in which saturation is not attained at fields to 80 koe.

As pointed out earlier, it is now felt that it is unlikely that Si4+ ions
enter the octahedral sites in the garnets. Thus it may be concluded that
because between x 1.0 and 1.92 the Ge-substituted garnets have
lower moments (absolute values) than the analogous Si"- ion substituted
garnets, some Ge4+ ions do enter octahedral sites. When x = 1.00, the
distribution of ions is probably given by Y2Ca} [Fe1.99Geo.01]-

(Fe2.01Geo.99)012 . When x = 1.92, the distribution is probably given by
Y1 .atrai .92} [Fel .94Geo .06] ( Fei .14Gel .86) 012. However, if the percentage

of Ge entering octahedral sites increases with increasing total substi-
tution, and if there are no other effects on the spontaneous magnetization
resulting from the particular ion, the curve for Ge substitution should
cross that for Si substitution.
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If, for the sake of discussion, a linear relation between percentage
Ge in octahedral sites vs total Ge substitution is assumed for x > 1.0,
the distribution for x = 2.0 would be given by { YCa2} [Fei.98Geo
(Fei .07Ge1.93) 012 and for

= 2.25, WO CR rFA ne 1 ( FP GP.75 - -2.25, ,- -1.91 -0.09, - -0.94 --2.16) 012 .

Using Fig. 22, the effective moments of the octahedral Fe3+ ions would
be 4.70 and 3.40 AB respectively. The 0°K moments then should be
-4.0 and -2.3 AB respectively, as compared with the observed values
-3.15 and -1.55 1.113 respectively. Note (see Fig. 4) that the observed
value for 2.0 Si is -3.8 AB . It is probable that for x = 1.92 there is
somewhat less than 0.06 Ge in octahedral sites, but regardless of the
actual amounts, the single assumption of some Ge4+ ions in octahedral
sites cannot account for the observations if it is also assumed that Si4+
ions go only into tetrahedral sites in the garnets. But even if the latter
assumption were unacceptable, it is certain that the Si4+ ions would
have a greater preference for the tetrahedral sites than Ge4+ ions.
And it would then still appear necessary for the Ge curve to cross the
Si curve if there were no additional effect resulting from the substi-
tution of a particular ion.

This conclusion also is perhaps contrary to the thinking on ferri-
magnetic materials. Generally, it is believed that for a given total
substitution, when the net difference in the number of Fe3+ ions is
greater, the moment per formula unit should be greater. However,
there is concrete evidence that the conclusion is correct.

This may be illustrated by the following example. The garnet
{ Y1 .24Cal .76} [mg0.22Fei .78] ( Fel .02Sil .98) 012 has a 0°K moment of -3.1
AB35 and a Curie temperature of 245°K. The garnet {Y0.8Ca2.2} [Fe2]-
(Fe0.8Si2.2)012 has a 0°K moment (see Fig. 4) of -2.3 1.ip and a Curie
temperature (see Fig. 5) of 200°K. (Note that the difference in the
number of Fe"- ions in the former is 0.76 and in the latter 1.2.) If it is
again assumed that the tetrahedral Fe3+ ion moments remain parallel,
then in the former the effective moment of an octahedral Fe3+ ion is
4.5 Az3 . Examination of Fig. 22 shows that this is just slightly larger
than the effective moment of the octahedral Fe3+ ion in {Y1.02Cal.98}-
[Fed (Fe1.02Sii.98)012 . The 45°K lower Curie temperature of {Y0.8Ca2.2) -
[Fed( Fe0.8Si2.2 ) 012 than that of {Y.1.24Ca1.76}[Mg0.22Fel.78](Fel .02Si1 .98)012
is in accord with the stronger interactions in the latter. The Curie
temperature of the latter is 25°K lower than that of {Y1.02Cai.94 [Fe2]-
(Fei.02Sii.98)012 (Fig. 5), which has a larger number of interactions of
about the same strength.

The effects of different ions on magnetic behavior are more marked
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in several of the specimens shown in Tables IV and V. The systems
involved are { Y3--yeayl [Se.Fe2-x](Si F__y_ e3-x) 012 , Y3-y-1-xCay-01 [MgrFe2-2]-

(SiyFe2-y) 012 , and {Y3,,Cas+y) [Zr.Fe2_.](SiyFe3,) 012. The results
for specimens with values of x and y: x = y = 0.85; x = y = 1.00;
x = 0.90, y = 1.10; and x = 1.10, y = 0.90 are retabulated in Table
VIII. In the last case, it is not now possible to prepare the specimen
in which M = Mg2+ because electrostatic balance with a tetravalent
ion in the c -sites would be required. It is seen that the moments and
Curie temperatures decrease in the order Mg, Sc, Zr and that satura-
tion is more easily attained in those garnets containing magnesium
than in the others. If we assume for the time being that all the Mg2+

ions go into octahedral sites, it appears that if it were possible to find
a tetravalent ion to balance electrostatically the Mg2+ ions as in a
hypothetical system {Y3_xMe7}[Mgx2+Fe2-x](Fe3)012, the effective
moment of a tetrahedral Fe3+ ion for given x would be higher than for an
analogous Setsubstituted yttrium iron garnet. This, of course, neg-
lects any effect that the ions substituted in the c -sites would have on
the magnetic structure. There are probably effects of the c -site substi-
tuted ions,u but it is impossible to determine them for divalent ions
such as Ca2+ separately. It should be pointed out that when x = y
no substitution for Y is necessary when M = Mg2+; x Ca2+ is necessary
when M = Sc3+, and 2x Ca2+ is necessary when NI = Zr4+.

The important question again arises: are some of the ions assumed
to be in octahedral sites actually in tetrahedral sites? To try to answer
this question directly, we have taken quantitative x-ray intensity data

TABLE VIII - RETABULATION OF DATA FROM SELECTED SPECIMENS
FROM TABLES IV, V AND VI

Octahedral Ion all

Ila= 0 re , °K
Saturation Field,

koe

x = y = 0.85
Mg 4.25 327 11.3

Sc 4.0 12.6

Zr 3.6 70
x= y= 1.00

Mg 3.8 205 70
Sc 2.9 235 >70
Zr 2.1 200 >70

x= 0.90, y = 1.10
Mg 3.2 294 9.6
Sc 2.8 260 >70
Zr 1.9 210 >70

x = 1.10, y = 0.90
Sc 2.8 220 >70
Zr 1.8 190 >70
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from the specimens of 1-17-0.6Ca2 .51 [Zri .25Feo .76] ( Fel asSi1.25)012 and
{ Y3} [Mg1.84Feo .14]( Fel .15Sil .45)012012. The data were collected with the
Norelco powder diffractometer using CuKa radiation. Integrated
intensities were measured on the charts with a Keuffel and Esser polar
planimeter. In the calculations of intensities, corrections were made for
anomalous dispersion,36 the imaginary parts being included." Estimates
of oxygen ion positions were as far as possible based on interatomic
distances expected between the ions involved. Calculations were made
for the above distributions and also for {Y0.5Ca2.4}[Zr1.00Fel .00]-

(Fel.40Zro .24Sil .24 )012 and { Y3} [NI& .70Feo .30](Fei .oMgo.i5Sii .85 )012 
The results indicated that the x-ray data cannot give unequivocal

conclusions regarding the exact distribution of the ions in these gar-
nets. However, the assumptions that the Mg2+ and Zr" ions substitute
only in the octahedral sites in the two garnets are certainly compatible
with the data. Furthermore, examination of powder photographs of
related garnets indicates that it is more likely that the Zr" and Me"
ions prefer octahedral sites exclusively than that some enter tetra-
hedral positions.

If, however, we examine the Curie temperatures in each x,y (for
x y = 2.0) group of Table VIII, we might be led to believe that if
all Zr4+ ions are considered to be in octahedral sites, because substitution
in the octahedral sites has a far greater effect on Curie temperature than
tetrahedral substitution in this region of x and y, some Sc3+ ions go into
tetrahedral sites and more Mg2± ions do. On the other hand, we note
that for Zr" ion substitution the highest moment is obtained for
x = y = 1.00, those for x = 0.90, y = 1.10 and x = 1.10, y = 0.90
being lower. In fact, the same seems to be true for Mg2+ and for Se'
substitution. It thus appears unlikely that the results can be explained
on the basis that the distributions of ions are different from those as-
sumed.

To examine this conclusion further, we note the results on several
other specimens. Table VI lists some Ge4+ ion substituted specimens
analogous to those in Tables IV and V. For 1731\1gFe3Ge012 , Y3Mg1.24-
Fe2.40Gei.24012 and for { Y2Ca} ScFe3Ge012 , Ge does not have a signifi-
cant effect. But for {Y1.3Ca1.7}Zro .8bFe3 .3Geo .85012 and for {Yea2}ZrFe3-
Ge012 the differences are substantial. These differences may be partly
a result of a substantially different effect on the interaction geometry
by the Ge4+ ion as compared with the Si" ion and partly because some
of the Ge" ions enter octahedral sites in these garnets.

We have also prepared and made measurements on {Y1.8Cal.21-
[Zro.6Fel.4](Sio .6Fe2 .4) 012 and { Yi .8Cal .2} Zro .6Fe3.4Geo .6012 ( Tables V and
VI) for comparison with { Y3{ [Mgo .6Fe1.41( Sio .6Fe2 .4) 012 ( Fig. 11) .



608 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1964

Although the differences are small, they could be real. The Mg -substi-
tuted garnet has the highest moment and the Zr-Ge substituted one
the lowest. Again in the latter case, it is possible that some Ge4+ ions

substitute in octahedral sites.
For the most part, however, in the region in which magnetic satura-

tion is attained, differences in behavior for different nonmagnetic ions
are either insignificant or small, as can be seen from an examination of
Tables IV, V and VI and from later discussion. There is one garnet
listed in Table V which behaves anomalously, as will be seen more
clearly later; it is Yo .8Ca2 .2) [Zro .817e1.4]( Fel .4Sii.6) 012 . Although its
moment appears to be right, its Curie temperature appears to be too
low. This garnet, however, was very difficult to make. Although its
lattice constant indicates that the composition is as given, the back -
reflection lines in the powder photograph were not sharp.

It appears then that we must conclude that, especially in the regions
of substitution in which intrasublattice interactions are dominant,
there is a substantial effect on the magnetic structure of the types of
ions substituted. Once it is realized that this occurs, it is not too diffi-
cult to find reasons that it should.

It has been shown that the geometry of different garnets may .differ
substantially. For example in a grossularite ({Ca3}[Al2](Si2)012),48 the
oxygen octahedron is much more nearly regular than in yttrium iron
garnet.32 Also, the oxygen tetrahedron about the Si4+ ion is more regular
than that about the Fe3+ ion in yttrium iron garnet. However the
oxygen dodecahedron about the Ca2+ ion is more irregular than that
about the Y3+ ion in yttrium iron garnet. The Si -O -Al angle in the grossu-
larite is 136°, while the Fe(a)-O-Fe(d) angle in yttrium iron garnet is
127°.

Because ions of different valence and size produce different effects
on the geometry (a manifestation of differences in chemical bonding)
or crystal structure, it may be speculated that they will also produce
different effects on the magnetic structure, especially when weak inter-
actions are important (see also Refs. 21, 24 and 10-13).

In the earlier discussion of the { Y3} [Mg.rFe2,](Fe3-.Si.)012 system,
it was pointed out that the substitution of Si4+ ions in the tetrahedral
sites, had, beyond x = 0.70, the tendency to weaken the d -d interactions.
However, it is now seen that the Mg2+ ion appears also to disrupt the
magnetic structure less than does Sc3÷ or Zr4+ substitution. Unfortu-
nately, it is again not possible to determine experimentally the separate
effect of the Mg2+ ion. Nevertheless, if our assumption requiring the
moments in one sublattice to remain parallel is valid, then our conclu-
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sions appear thus far to be plausible. In Fig. 22 we have plotted points
for the effective moments of the tetrahedral Fe"- ions for x = 0.85 and
1.00 in the garnets 1Y3....2iCa2r1[ZrzFe2,](Fe3Six)012 and {Y3-xCax}-
[SczFe2A(Fea,Si.)012 . It is seen that these are higher than for the
analogous garnets { Y3_,Ca.4 [Zr.fFe2_21(Fe3)012 and 1Y31[Sc,Fe2-x]-
( Fe3) 012 respectively.

If there were no effect of particular nonmagnetic ions substituted for
the Fe+ ions, it would be possible to plot a series of curves of 0°K
moment vs f t = y/ (x y), where x,y equals the number of nonmag-
netic ions in the octahedral, tetrahedral sites respectively. Thus it
would have been possible with limited data to predict the moments for
all nonmagnetic ion substituted yttrium iron garnets. Within the range
that the a -d interactions are everywhere dominant, this is still possible
for the garnets discussed here. We have seen that even when x y
is large, if y is substantially larger than x, the a -d interactions may still
be dominant and therefore such curves would still be valuable.

Some curves of this type are plotted in Fig. 27. Included are curves
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Fig. 27 - Spontaneous magnetizations, nB(0,0) of substituted yttrium iron
garnets vs f, , the fraction of nonmagnetic ions in the tetrahedral sites. [x = num-
ber of nonmagnetic ions in octahedral sites; y = number of nonmagnetic ions in
tetrahedral sites; f, = y/(x y).] Shown also is the curve for the Y3Fes,A1,01.2
system.



610 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1964

which have regions in which the intrasublattice interactions are domi-
nant. Points in the region ft Z 0.5 are mostly from the system {Y3+x_y 
Ca,,,} [Mg.Fe2_.](Fe3,Siy)012 . In Fig. 28, Curie temperatures vs ft are
shown for some values of x y. The curves should be considered
rather rough, because not many points have been obtained.

Fig. 27 shows that for x y = 2.0, there is an algebraic minimum in
the curve at ft 0.98. For x -1- y = 2.20 the algebraic minimum is
more pronounced and occurs at ft 0.93. This makes clearer the
discussion given above regarding the occurrence of garnets in which,
for a given x y, there is a higher (absolute value) moment when

1(3 - y') - (2 - x1)1 < 1(3 - Y2) - (2 - x2)1. Note also that there
are algebraic maxima in the curves for values of x -1- y > 0.70. The
value of x -1- y at which the maximum or the minimum first occurs
appears to be at the point at which the intrasublattice interactions
become dominant in the exclusively octahedral and tetrahedral ion
substituted garnets respectively (see above). The crossover point for
the Ge-substituted system should then be at the point of the algebraic
minimum for the Si -substituted system. Examination of Fig. 4 shows
that extension of the curve for the former system does intersect that
of the latter system at about the predicted point.

The arguments regarding the effects of particular ions may be made
still clearer. Referring again to Table VIII, we see that if one wished to
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Fig. 28 - Curie temperatures vs ft for various substituted yttrium iron gar-
nets. (The lines connecting the points are, in this case, somewhat speculative.)
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assume that the lower moments for Se+ and Zr4+ substitution when
x = y = 1.0 (that is, with one Si"- in tetrahedral sites) resulted from
some Se+ or Zr4+ ions entering tetrahedral sites, ft for the former
would be 0.56 and for the latter 0.60 (Fig. 27). But then in Fig. 28 we
see that the Curie temperatures should be in reverse order from those
observed. Furthermore, magnetic saturation should also be more, rather
than less, easily attainable than for the analogous Mg2+ ion substituted
garnet. The garnet IY2Cal[Algo.fiFel.5](Fel.5Sii.5)012 (ft = 0.75) satu-
rates at 9.6 koe at 1.4°K (see Table V).

Fig. 28 also appears to corroborate the idea that the intrasublattice
interactions are effective over the whole temperature range, since for a
given value of x y, the maximum value of Te is almost surely attained
when the effective moments are at a maximum. It should be kept in
mind, however, that Figs. 27 and 28 are based mainly on data from
garnets which are magnetically saturated at 1.4°K and the data from
the system { [Mg7Fe2,](Fe3-ySiv)012 . The data from the
system I I3_,Cayl [ScxFe,,]( Fe3,Si )012 in the region where saturation
is not attained must be treated separately, as must the data from such
a system as 11-3-z-vCax+yl [ZrrFe2,1(Fea.--uSi0012 . This results, as shown
above, from the effect of the individual nonmagnetic ions on the mag-
netic structure.

Knowing that the Gilleo theory does not account for the 0°K mo-
ments of the substituted garnets and also that the x-ray method is not
apt to give very narrow limits for the ionic distribution in the system
Y3Fe6_Al.012 , it was felt that it might be determined from such data
as plotted in Fig. 27. If the particular ion effect is neglected, one may
draw a curve (see Fig. 27) intersecting those for particular' x y at
values of HR found in the Y3Fe5,A1.,012 system and thereby find ft
for each x y in this system, as plotted in Fig. 29.

The results obtained appear to be reasonable. It will be noted first
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Fig. 29 -ft vs x for the system 17.3Fe5_zA1.012 as derived from Fig. 27.
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that the curve extends naturally from39 x y = 2.5 to x y = 5.0,
in which ft must be 0.60. Secondly, for x < 2.00, (x as in Y3Fe6_.A1,012)
magnetic saturation is obtained at low fields at 1.4°K. Furthermore,
two specimens in the system {173.1.,Cay_.}[MgxFe2._.](Fe3,Sio) 012
namely those for x = 0.175, y = 0.825 and x = 0.75, y = 1.75 and a
third Y1 .60Cal .601 [Zro .36Fei .od ( Fei .86Sii .16) 012 give very good checks
on the moments found in the Y3leeo_.A1.012 system (see Tables V and
VII). The Curie temperatures for the three specimens are plotted vs
x y in Fig. 18 together with those found for the specimens in the
Y3Fe5_4+,0A1(.+0012 system. The agreement in the region x y =< 1.50
is good but deteriorates in the region x y > 1.50. This may again be
an indication of the "particular ion effect."

Now consider a set of substituted garnets which have the same
Curie temperature and which saturate magnetically at low fields. It is
uncertain whether at a given temperature below Te the values of the
intrinsic spontaneous moments per octahedral Fe3+ ion, Mo , will all
be the same, and similarly whether those of the tetrahedral Fe3+ ions,
Mt, will be the same. It is unlikely, however, that they will differ
greatly, and we shall assume that they are the same.

We take the three garnet specimens with measured extrapolated or
interpolated Curie temperatures 367-375°K:

( 1) I Y1.50CaLool [Zr0.36Fe1.66[(Fei .86Sil .16)012 (Tc = 370°K)

( 2 ) { .50Cal .od [Fed ( Fel .6oSii .60) 012 (Tc = 367°K)

(3) Yd [Mgo .82Fe1.3d ( Fe2 .32Sio .62) 012 (Tc = 375°K).

(For all these, the values calculated on the basis of the Gilleo model
differ by S 11°K.) The observed spontaneous moments at 0, 100, 200,
and 300°K are respectively as follows:

(1) 0.88, 0.79, 0.59, 0.38 AB

(2) -2.36, -2.15, -1.65, -1.08 pB

(3) 4.46, 4.00, 3.04, 2.00 µB (by interpolation; see Fig. 30).

In specimen (1) the canting must take place in the d sites, the sine of
the angle being 0.99 [i.e., {5(1.65) + 0.88}/(1.85)5]. In (2) the cant-
ing occurs in the octahedral sites, the sine of the angle being 0 .99.
Designating the octahedral and tetrahedral moments Mo and Mt re-
spectively, we have from (1) and (2) at 100°K:

1.85(0.99)Mg - 1.65Mo = 0.7S) An

1.50M, - 2 (0.99 )Mo = -2.15
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0 5 1.0 1.5 2.0

61:1

Fig. 30 - Spontaneous magnetizations, nB(11. = 0), vs x for given temperatures
in the {1(3}[Mg.Fe2,](Fe3_zSii)012 system.

for which

and

For (3), we should have

2.38(0.96)/11, - 1.38/1/0 = 4.00 AB ,

the canting angles being obtained from the effective moments given in
Fig. 22. Putting the moments obtained from (1) and (2) into the ex-
pression for (3), we obtain 4.00 AB

To obtain the other values for (3) we substitute the 200 and 300°K
moments in turn for the 100°K ones. At 200°K, we obtain from (1) and
(2) 111 e = 3.36, Mo = 3.38 AB , and the net moment for (3) calculated
from these Fe3+ ion moments is 3.01 ;LB , to be compared with 3.04
AB observed. At 300°K, (1) and (2) yield Alt = 2.14 I.LB, /11 = 2.17
uil ; the net moment calculated for (3) from these is 1.89 12B, to be
compared with 2.00 I.LB observed. The agreement of calculated with
observed values is generally good.

llf = 4.44 AR

/11 = 4.45 I.LB .
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Now we try the same procedure with the Gilleo model. The three
equations would he

(1) 1.85(0.97)Mt - 1.65(0.96)/W. = nB(1)(T)

(2) 1.50/1ft - 2.00(0.89)M. = nB(2)(T)

(3) 2.38(0.91)Mt - 1.38(0.99)M. = nB(3)(T).

If we solve (2) and (3) of the Gilleo model for T = 100°K, we ob-
tain Mt = 5.57 ph and Mo = 5.90 ALB , clearly impossible values, and
there is therefore no point in checking these equations further.

It therefore appears that the intrasublattice interactions in these
garnets may be important over the whole temperature range to or near
Tc and that the Gilleo model is inapplicable in this range. However,
the agreement of observed Curie temperatures with those predicted by
the Gilleo theory is so good as to indicate either that the Gilleo theory
is applicable very near the Curie temperature or that agreement is
somehow fortuitous. In any case the Gilleo formula for Curie tempera-
ture is useful for the garnets of the systems discussed here.

When the canting model favored in this paper is used to calculate
the intrinsic moments of the Fe3+ ions in the two different sites, the
values obtained are only slightly different; in fact, the difference is so-.rislight as to appear insignificant. The work of Bertaut et al.,40 r nce"
and Kuzminov et al.,42 indicates that in yttrium iron garnet itself, the
moments at temperatures above 110°K of the crystallographically
different Fe3+ ions are substantially different. This is not corroborated,
at least by the results on the substituted garnets.

There is some question as to how the determinations of the spon-
taneous magnetizations should be made when saturation is not attained
at fields up to 14.24 koe. This "unsaturation" occurs noticeably after
the intrasublattice interactions become dominant, an indication that
the tendency not to saturate is associated with the canting. It is
probable that when a specimen appears not to be saturated it is, in a
sense, "oversaturated"; that is, the applied field disrupts the true zero -
field structure by causing some alignment of the canted moments. If
such were the case, it would appear that extrapolation to zero field
would yield the more nearly correct results. This was especially well
demonstrated by the results on the IY31 [Mg.Fe2,](Fe3-.Si.)012 system.
It is possible, however, that increased anisotropy also plays a role in
preventing saturation. Measurements on single crystals, not now avail-
able, should aid in clarifying this situation.

In Gilleo's theory, an Fe3+ ion in one coordination not linked to at
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least two Fe3+ ions in the other coordination does not participate in
the ferrimagnetism, at least at temperatures above 20°K. Gilleo points
out3 that the ions thus excluded should behave nearly as free ions at
these temperatures, i.e., between 20°K and Tc . We do not find this
to be the case. For example, in the { Y3,Casl[Fe2](Fe3-.Si.)012 system,
for substitutions which have the a -d interactions dominant, that is,
for xt < 1.92 and xo < 0.70, the specimens are saturated or very nearly
so at nominal fields. Beyond x1 = 1.92 or x0 = 0.70 saturation is not
attained even at 1.4°K. But generally we observe that nB(Ha ,T) -
nB(0,T) for fixed Ha < 14.24 koe is essentially constant to temperatures
somewhat below the Curie temperature. For example, in the case of
[ YCa2) [Fed (FeSi2)012 with 7' c = 266°K, nB(Ha ,T) - nB(0,7') is
approximately equal to 0.2 AB at Ha = 14 koe to T 220°K. In the
case of { Yo.5Ca2.5) [Fed ( Feo .fiSi2.6) 012 with Tc = 86°K, nB(Ha,T)

T) is approximately equal to 0.5 mu at Ha = 14 koe to T ti 80°K.

4.1 Application to Ferrospinels

In the present article, it has been shown that the substitution of any
nonmagnetic ion for an Fe3+ ion in the garnets tends to weaken the
average a -d interaction. In a previous paper," it was shown that divalent
paramagnetic ions and Cr"- ions also tend to weaken the average a -d
interaction when substituted for the Fe3+ ions. The weakening of these
interactions also results in an apparent reduction of the effective moment
of the magnetic ions in at least one of the sublattices. We have put
forward the idea that this reduction may be the result of random cant-
ing of these moments resulting from the intrasublattice antiferromag-
netic interactions.

The ideas discussed in this paper should be applicable to the ferri-
magnetic spinels. In a spinel, there is one cation in a tetrahedral site
and there are two cations in octahedral sites per formula unit AB204
The antiferromagnetic interactions between magnetic ions on the two
different sites would be expected to be the strongest present in the
crystal; the antiferromagnetic interactions within the octahedral sub-

lattice would be expected to be stronger than the antiferromagnetic
interactions within the tetrahedral sublattice.

In the system IY3,Cail [Fed (Fe3,Six)012 , there is very little effect
on the effective moment of the Fe3+ ions in octahedral sublattice of
substitution to x = 1.0, and only small effect even to x = 1.50. Thus one
would predict that substitution in the octahedral sublattice of a ferro-
spinel would give similar behavior. On the other hand, substitution for
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a -site Fe"- ions in the garnets has almost an immediately obvious effect
on the effective moments of the Fe3+ ions in the d sites. Similarly,
substitution in the tetrahedral sites of the ferrospinel might be expected
to have a substantially larger effect than an analogous (twofold) sub-

stitution in the octahedral sites.
Lithium ferrite, (Fe)[Lio.5Fei.5]04 , accordingly has the highest Curie

temperature, 953°K," among the ferrospinels. Any substitution - i.e.,
by paramagnetic or nonmagnetic ions - for trivalent Fe"- ions in this
spinel reduces the Curie temperature." Now the spinel nickel ferrite is
inverse,'" i.e., the formula may he written (Fe)[NiFeJ04 . In the garnet
{Y3}[Ni2](FeGe2)012 , the Ni2±-02--Fe' interaction is about as strong
as the Fe3+-02--Fe3+ interaction!' In (Fe)[Lio.5Fei.5]04 , each tetra-
hedral Fe3+ ion is linked through oxygen ions, on the average, to three
Li3+ and nine Fe3+ ions in the octahedral sublattice; in (Fe)[NiFe]04
each tetrahedral Fe3+ ion is linked, through oxygen ions, on the average
to six Ni2+ and six Fe3+ octahedral ions. In both cases, octahedral ions
are linked only to Fe3+ ions in the tetrahedral sublattice. The average
interaction strength in (Fe) )[Lio.fiFei.5]04 is then ,i-.-19/8 of that in
(Fe)[NiFe]04 . If there were at least an approximately linear relation-
ship between Curie temperature and interaction strength,'" the Curie
temperature of (Fe)[NiFe]04 should he c: 850°K. This value compares
favorably with that observed, 853°K.

Several investigators have sought an explanation for the low 0°K
moment observed for manganese ferrite. As far as we know, there has
been no direct evidence of other than divalent manganese and trivalent
iron in a carefully prepared ferrite of composition MnFe204 . Now man-
ganese ferrite has a low Curie temperature, 603°K, as compared with
nickel ferrite. Our work on the garnets would indicate that the strength
of the Mn2+-O2-Fe3+ interaction should not differ substantially from
that of the Ni2+-02--Fe3+ interaction. Thus, the low Curie temperature
must be associated with the evidence that MnFe2O4 is actually an almost
normal spinel, that is, the distribution of ions is given by

if-
Mn0 ,81Fe0 .19) [Fe1.81Mn0 .191V/4 .46,47

But this is analogous to the substitution in the a sites in yttrium iron
garnet. Now an Fe3+ ion in an octahedral site in the ferrite is linked to
mostly Mn2+ ions in tetrahedral sites; thus the average a -d interaction
is substantially weaker in this ferrite than in lithium ferrite, and ac-
cordingly the Curie temperature is substantially lower.

We have shown" also that even substitution of 0.4 Mn2+ in the a
sites of yttrium iron garnet causes canting of the d -site ion moments.



BEHAVIOR OF SUBSTITUTED YIG 617

We propose that the behavior of manganese ferrite is similar to that of
the divalent magnetic ion substituted garnets; that is, that the substitu-
tion of any ions for Fe3+ ions causes a weakening of the a -d interactions,
whereupon the competing intrasublattice interaction manifests itself.
For MnFe204 the usually observed value of the spontaneous magnetiza-
tion at 4.2°K is 4.6 AB . Hastings and Corliss" have measured three
specimens which give this value and very nearly the same ionic dis-
tribution. However, they could not resolve the problem of the low
moment.

It is possible that if the specimens were not stoichiometric a low value
could be obtained. However, if it is accepted that 4.6 AB is the correct
value of spontaneous magnetization at 4.2°K, then we have, analogously
to the garnets, that the canting may occur among the Fe3+ and Mn2+
ion moments on the d -sites. The effective moment (i.e., the component
antipa.rallel to the a sublattice Fed+ ion moments) of a d -site ion would
then be 4.8 An . In the garnet IY31[1Ino.4Fei.6](Fe2.6Sio.4)012 , the effec-
tive d -site Fe3+ ion moment is 4.96. Comparisons (see Fig. 22) with the
effects of substitution of nonmagnetic ions in the garnets lead intuitively
to the conclusion that the proposed amount of canting of the octahe-
dral cation moments in manganese ferrite is plausible.

In discussing this conclusion with Hastings and Corliss, they have
informed us that in the course of their investigation of MnFe204 they
considered the moments proposed by us but concluded that the value
of 4.6 12B for the average moment per ion in each sublattice gave a better
fit with the observed data. This conclusion has not been changed after
recent further consideration; however, the authors inform us that the
model proposed by us cannot be ruled out by the existing data.

4.2 Neutron Diffraction Studies

We should mention what our ideas mean as far as neutron diffraction
studies are concerned. First, consider a crystalline substance which is a
solid solution. Coherent x-ray diffraction effects average over the crystal;
that is, they do not tell us about local or short-range structure. For
example, if two chemically different kinds of atoms may he thought to
occupy highly specialized space group positions (i.e., with no allowable
degrees of freedom), these are seen by the coherent x-ray "reflections"
as having a weighted average atomic form factor of the two different
atoms. Further, it could happen that these atoms, in the short range,
may not lie exactly on the space group sites, but over the crystal space;
that is, in the long range, appear to lie on these sites. In such a case the



618 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1964

average thermal parameter may look too high, because the displacements
of the atoms from the exact sites will appear from the coherent x-ray
diffraction effects to be vibrations. Only the incoherent scattering will

contain the information sought, but this may be too complicated to
interpret.

Similarly, coherent neutron diffraction reflections may not give us a
direct insight into the short-range magnetic disorder of the substituted
garnets. They will give us only the average effective moment per ion

of the particular sublattice. Incoherent neutron scattering might, how-

ever, be more elucidating.

4.3 Garnets Containing Pentavalent Vanadium and Antimony

Recently we have discovered new garnets containing pentavalent
vanadium and antimony ions. In the case of V54- ion substitution Smolen-
skii et al.' had reported on the system x 117-Ca21Fe4V012-(1 - x)
Y3Fe2Fe3012 but could not obtain a single-phase specimen with
x = 1.0. We found that we could obtain a single-phase garnet with
formula Ca3 [Fed( Fe, .5V1.5) 012 and that the complete solid solution
range in the system { Y3_2zCa2r} [Fe2](Fe3,V.)012 exists.11,12 The end
member, i.e., with x = 1.5, has a 0°K moment not significantly different
from that of the Se+ ion substituted garnet { Yi .5Cal .5) [Fe2] (Fe1.5Si1 .5)012 ,
but its Curie temperature, 493°K, is 126°K higher than that of the Se+
ion substituted garnet. In the range of x studied, the Curie temperatures
of the system { Y3_21Ca2.} [Fe2] ( Fea-.Vx ) 012 are all higher than those for
Y3 -.Ca.) [Fe2] ( Fe3-.Si.)012 for the same x. In fact, the Curie tempera-

ture, 563°K, of f Y2 .2Cae .81 [Fed (Fe2.13V0.4) 012 is even higher than that of
YIG itself. This behavior could not have been predicted from the re-
sults on the systems discussed in detail in this paper.

It was also found" that garnets in the yttrium -free { Bi3_2xCa2.} [Fe2]-
(Fe3,V.)012 system could be prepared, the probable range of x being
1.5 > x > 0.8. In particular the magnetic behavior of {Bio .5Ca2 .5) [Fed-

( Fe1.25V1.25)012 is essentially the same as that of the yttrium analog,
despite the fact that Bi3÷ for Y'÷ ion substitution in YIG, i.e., in the
system { Fe2Fe3012 , resulted in increased Curie temperature!'

Pentavalent antimony may be put into garnets,w as in the system
Y3_2.Ca2,1[Fe2_,Sbi](Fe3)012 ; garnets exist over the whole range

0 < x 5 1.5. To x 0.6 this system behaves similarly to the Sc3+ and
Zr4+ ion substituted systems at 0°K, but with some differences at higher
temperatures. In the high substitution region, 0°K moments of the
system are substantially lower than those of the Sc3+ and Zr4+ ion
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substituted systems. The turn down (see Fig. 4) of 0°K moment occurs
sooner for the SW+ ion substituted systere than for the other two.

The end -member { Ca3} [Sb1 .5Feo .5] (Fe3)012 forms a complete solid
solution range with { Ca3} [Fed( Fe1.5V1.5)012 ; the system may be written
{Ca3}(SbxFe2,](Fel.5+xV1.5,)012 . The behavior of this system° could,
in part, have been predicted from the results given in this paper. How-
ever, for x = 0.75, for example, the specimen does not saturate at
moderate fields and its moment at 4.2°K is 2.5 AB . This may be com-
pared with the 0°K moment, 4.35µB , of {Y3} 0 .75,[IVIgo.75Fei.25](Fe226Si )0-12 ,
which is magnetically saturated at moderate fields.

Further details regarding these garnets and others involving Sb6+ and
V6+ ion substitution will be found in Refs. 10-12. In the cases of SI&
and V5+ ions, their effects on the magnetic interactions occur even when
substitution is not large. Therefore, even in these regions, all the results
could not have been predicted from those of the present paper. Never-
theless, the ideas given in the present paper may still account for the
behavior; we have pointed out earlier that systems which show large
differences must be treated separately.
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Note Added in Proof

To ensure that the reader who so wishes may be able to duplicate our
results, we have decided to list the preparation conditions of all speci-
mens, rather than only those of Table IV. In Table IX the firing tem-
perature is given, followed by the number of hours at that temperature.
Each comma represents a regrinding and recompacting of the specimen.
All firings were carried out in air except as indicated. In garnets con-
taining Ca2+ and Me- ions, starting materials were carbonates of these;
in such cases a calcining was carried out. Usually, this consisted of vary-
ing the temperature in the initial firing from 500 to 900°C over a period
of 1-2 hours.

It should be emphasized that the magnetic and crystallographic meas-
urements were always made on the specimens quenched rapidly in air
from the last firing temperature.



TABLE IX - PREPARATION DATA

Firing conditions, °C (hr.)

IY3_zCaz I[Fed(Fea_xSi.) 012

0.00
0.40
0.75
1.00
1.01
1.02
1.50
1.77
1.88
2.00
2.25
2.50
2.75

1405(16)
1435(15)
1150(4), 1375(23)
1410(16), 1435(16), 1400(18), 1450(66)
1250(2), 1380(16), 1330(18), (75)
1250(4), 1285(17), 1275(20), 1415(7)
1280(16, 1300(19), (68), 1350(40)
1235(1), 1275(4), 1295(2), 1300(40), (?)a
1225(1), 1265(5), 1280(18), 1300(16)
1200(2), 1270(2), 1300(24), (18), (19)
1225(4), 1265(2), (2), 1285(6)
1225(1), 1260(2), 1265(48), 1260(1), 1270(24)
1225(4), 1200(64), 1220(22), 1240(19), 1245(64)

Ya_.Ca.r[Fefi_,Ge..012

0.70
1.00
1.50
1.75

2.00
2.25
2.50

2.75

1225(4), 1350(8), 1390(19)
1340(16), 1320(16), 1300(66), 1435(17), (6)
1280(16), 1300(19), (68), 1350(40)
1225(4), 1260(14), 1300(2), 1350(24), 1385(14)
1225(1), 1250(2), 1280(2), 1330(24), 1385(14)
1225(4), 1250(2), 1300(2), 1350(2)
1225(1), 1260(1)b, 1280(2)b, 1330(3)b, 1360(2)b, 1400(44)

1420-1370(17)
1225(14), 1300(2), 1350(3), 1365(2), 1225(7)

{ Y3} [SczFe2_..] (Fe3)012

0.60
0.72
0.80
1.00
1.25
1.50

1300(1),
1250(4),
1300(4),
1250(4),
1300(1),
1300(1),

1350(24), 1395(21)
1300(2), 1350(24),
1400(3), 1420(17)
1325(4), 1400(16),
1350(24), 1400(44)
1350(24), 1400(44)

1400(2), 1425-1450(4)

1440(21)
, 1420(21)
, 1420(21)

Y3_.Caz [Zri.Fe2_:](Fe3)012

0.60
0.72
0.80
1.00
1.25
1.50
1.75
1.95

1280(1), 1320(19), 1300(65), 1325(40)
1300(4), 1350(24), 1350(3), 1380(2), 1425(14), 1400(19)
1350(4), (5), (5), 1355(22), 1400(16), 1450-1430(18)
1250(4), 1325(4), 1350(4), 1400(16)
1300(4), 1350(5), (16)
1300(4), 1350(3), 1320(164)
13000), 1350(5), (16)
1300(4), 1350(3), 1320(164)

11(8-y+xCau-.1[Mg.Fe2-.](SiFea-v)012

0.175
0.30
0.18
0.90
0.50
0.44
0.22
0.75

0.825
1.47
1.57
1.10
1.50
1.76
1.98
1.75

1275(4), 1350(2), 1390(2), 1400(24), 1315(18)
1300(1), 1350(4), 1375-1400(5), 1180(63), 1275(16), 1360(16)
1205(4), 1300(3), 1330(4), 1390-1360(22)
1300(4), 1450-1420(17), 1400(6)
1300(4), 1375(2), 1380(3), 1385(2)
1300(4), 1375(2), 1385(2), 1380(34)
1250(4), 1300(2), 1315(2), 1300(24), (16), 1200(19), 1340-1345(68)
1290(4), 1325(5), 1395(4), 1340(70), 1400(20), 1190(17)
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TABLE IX -PREPARATION DATA -continued

, Firing conditions °C (hr.)

{Y3_,,Cay) [SczFe2_.r](SiFe3-y)012

0.85
0.30
0.30
0.30
1.10
1.00
0.90

0.85
1.47
1.52
1.60
0.90
1.00
1.10

1225(4), 1350(3), 1400(16), 1395(20), 1425(5)
1285(1), 1325(4), 1350-1310(21), 1345(29)
1275(1), 1300(5), 1340(23), 1320(19), 1350(17)
1250(1), 1300-1330(3), 1340(21), 1360(22)
1300(4), 1400(3), (16), 1450(16)
1300(1), 1325(21), 1400(5), 1450(3), 1500(4)
1300(1), 1355(3), 1400(20), (16)

Y3-z-vCa,+ J [Zr,Fe2_.](SiyFe2-y)012

0.76 0.24
0.60 0.60
0.35 1.15
0.30 1.20
0.85 0.85
0.30 1.60
1.10 0.90
1.00 1.00

0.90 1.10
0.60 1.60

1.25 1.25

1285(1), 1360(2), (2), 1395(3), 1330(16), (42)
1275(1), 1300(4), 1310(22), 1340(23), 1365(70)
1225(4), 1325(34), 1360(2), 1250(16), 1300(21)1,
1250(4), 1350(4), 1375-1400(20), 1400(65), 1315(21), 1300-1275(41)
1200(1), 1325(4), 1375(5), 1360(16), 1210(68)b
1200(4), 1325(4), 1330(20), 1210(68), b1330(16), 1350(21)
1300(1), 1355(3), 1375(23)
1275(1), 1350(2), 1360(24), P4), 1305(21), 1300(16), 1360(20),

1400-1385(66)
1200(1), 1325(4), 1375(5), 1360(16), 1210(68)b, 1280(23)
1200(1), 1260(4), 1300(4), 1350(4), 1375(4), 1360(16), 1355(16),

1300(70), (118), 1180(63)
1250(4), 1325(4), 1350(4), 1355(16), 1375(20), 1270(64), 1350(19)

1.00
1.25

1.00
1.25

1250(4), 1300(4), 1395(5), 1450-1460(3), 1500-1525(28), 1340(16)
1330(4), 1400(4), 1410(16), 1400(22)

{Y3_,,CaujSc,Feb_i_.,,Ge012

1.00 1.00 1200(1), 1300(41), 1390(21), 1400(22)

Y3-.x-1/Caz-Ey1 Zr:Fe 5-x-yGey01 2

0.60
0.85
1.00

0.60
0.85
1.00

1275(1), 1300(4), 1310(22), 1340(22), 1365(70), 1385(16)
1200(1), 1300(31), 1330(16), 1340(21), 1315(16), 1340(23), 1375(18)
1250(4), 1325(24), 1375(4), 1425(20), 1450(3)

Y3A.11Fe5_z022

1.00
1.50
1.75
2.00
2.50
3.00
3.00

1400(1), 1440(16), 1475(48)
1450(2), 1500(16), 1475(40)
1300(1), 1450(2), 1490(2), (2), 1510(4)
1400(1), 1500(19)
1450(1), 1525(24), 1540(17), 1530(64), 1600-1660(5)
1300-1340(2), 1350-1430(3), 1420(40), 1520(42)
1425(1), 1445-1520(5), 1480(40), 1500(16), 1535(24)

" Unknown because of furnace burn -out.
b Fired in 02 .
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Pulse Sharpening and Gain Saturation
in Traveling -Wave Masers*

By E. 0. SCHULZ-DUBOIS

(Manuscript received September 12, 1963)

A pair of coupled nonlinear differential equations is given which de-
scribes the reduction of gain in a traveling -wave maser due to high -power
signals. Integrals in closed form are obtained for two cases of interest. The
first applies to pulsed optical amplifiers where no replacement of stored
energy occurs during a signal pulse. The result is a pulse sharpening
phenomenon; i.e., the leading edge of an input pulse is amplified by the
original full gain while later parts of the signal experience reduced gain.
The second case is that of steady-state gain saturation in the presence of a
continuous pumping process. The results describe the observed gain com-
pression of microwave ruby traveling -wave masers.

I. INTRODUCTION

This paper presents earlier considerations concerning the gain process
in traveling -wave masers in cases where the signal energy, over an ap-
propriate period of time, is comparable to the energy stored in the maser
material. The results were communicated several years ago in reports
with limited circulation.' '2'3 The studies were prompted originally by
the development of microwave masers, in particular the ruby comb -struc-
ture traveling -wave maser.4 Here gain saturation is of interest primarily
in a negative sense: it is a condition that should be avoided in system
applications. The maser may handle input signals up to some typical
saturation limit which depends on the tolerable gain compression, the
signal duty ratio, and the low -power gain. Thus the situation of drastic
gain reduction due to saturation is largely of academic interest. It may
he used, however, as a check on the theoretical understanding of the
maser gain process.' It should be added that even with drastically com-
pressed gain the maser is still a linear amplifier in the sense that it does

* This work was supported in part by the U.S. Army Signal Corps under con-
tracts No. DA 36-039 SC -73224 and SC -85357.
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not create intermodulation frequencies due to a nonlinear mixing inter-
action. Rather, the output is still a faithfully scaled replica of the input
signa1.5,6

The advent of optical masers in more recent years7.8,9 has led to a
more genuine interest in maser high -power saturation phenomena. The
generation of high -power ("giant") pulses by the Q -switching technique,"
for example, makes use of the fast exhaustion of the energy stored in the
maser material. Similarly, pulse sharpening is an inevitable and in some
applications a desirable effect in a pulsed high -power postamplifier.n.12
The more prominent role of high -power phenomena in the optical maser
field has suggested the present, more complete publication of the earlier
reports.

The theory of masers is largely identical for those in the microwave
and in the optical range. This applies, for example, to the derivations of
the gain and noise behavior. The same is true for the high -power phe-
nomena treated in the present paper. Thus the term traveling -wave
maser (TWM) can be used without further distinction except in nu-
merical examples.

The coupled differential equations governing the TWM high -power
behavior are given in the following section. The integral applicable to
pulsed TW1VI's is derived in Section III. Some numerical consequences
for pulse sharpening are discussed in Section IV, and an experimental
example of pulsed optical TWM performance is analyzed in Section V.
The integrals describing steady-state gain saturation are derived, and
computed gain saturation curves are presented, in Section VI. Experi-
mental gain saturation data obtained with a microwave TWM are
shown for comparison in Section VII.

II. THE DIFFERENTIAL EQUATIONS

The gain process in the TWM is stimulated emission. It is the inter-
action of two forms of energy. One is the radiation energy of the mode
under consideration. Its strength may be measured in terms of the num-
ber of photons per unit of time, nt' (z' ,e), which pass the maser or the
mode cross-section at a point z' along the maser length and at a time
t'. Here z' ranges from z' = 0 at the input to z' = L at the output. In
the absence of gain or loss interaction, the radiation energy propagates
through the maser with a group velocity v , so that then nt = ng'
(z' - v01').

The other form of energy is that stored in the maser material. It can
be given in terms of the number of available quanta per unit of maser
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length, nAz',C), within the cross section occupied by the signal trans-
mission mode. The number of available quanta is half the excess number
of particles in the upper state of the signal transition over those in the
lower state, nz' = i(n2 - n11). nz' may depend on the length coordinate
z' along the TWM and on time 1'. A quantity Nz may be introduced as
the "pumped -up value" of nz'. It is the maximum value which nz' may
assume either with low signal power operation under steady-state con-
ditions or before any signal energy withdrawal with pulsed pump
operation.

Using these energy variables, a system of two coupled partial differ-
ential equations may be given which describes the high -power effects in
TWMs. It is of first order and nonlinear

an, 1 ane'- - - ant - bite' (1)az' vu at' -

anz

at= -anginzi c(Nz - nz'). (2)

The first terms on the right-hand side are equal and opposite. This is
an expression of energy conservation; i.e., each quantum of energy
stored in the maser material is converted into a photon propagating in
the signal mode. In a maser, energy conservation of this type may he a
justified assumption, at least under high -power conditions where other
processes such as spontaneous transitions are insignificant by comparison.

The dimensionless constant a describes the gain interaction between
both forms of energy. In units of decibels, the low -power electronic gain
of the TWM is 4.35 a NIL. This allows a numerical evaluation of the
constant a from experimental data. The line shape of the maser transi-
tion is reflected in the frequency dependence of a. Implicit in such a
treatment of line shape is the assumption that the maser transition
considered is homogeneously broadened. However, the present theory
may also be applied to lines with inhomogeneous broadening provided
the energy diffusion across the overall line is rapid enough to prevent a
line shape distortion or "hole burning" under high -power conditions.
Formally, for a magnetic dipole transition at the maser signal line, a can
be given in the form

a -
27rov(v - v,) f < I 0/74 I n > 12 dA

AM

V gh1.40A. mf I1112 dA
(3a)
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Here co/2r = v = signal frequency, g(v - ;inn') = line shape function,
(n' I OR  S I n) = matrix element of the transition, v, = group velocity,

= Planck's constant, = vacuum permeability, A a, = cross section
of maser material, As = cross section of structure; finally, the ratio of
the magnetic field energy integrals alone in (3a) defines the filling factor.
The symbols used are those introduced in Ref. 4, to which the reader is
referred for a derivation of traveling -wave maser theory. In the optical
range it is more convenient to characterize a maser line by its spontane-
ous transition rate, W(0,co,P), which is a function of the direction of
emission expressed by spherical angular coordinates 0 and co, and of the
polarization P of the emitted light. Using this term, a becomes

2Xo2g(v - Po) COA-P)a -(3b)
where X0 = vacuum wavelength of light, g(v - vo) = line shape function,
e = dielectric constant of maser material, Am = cross section of amplified
mode. These symbols are defined as in Ref. 11, where the theory of
optical traveling -wave maser amplifiers is derived.

The constant b accounts for signal loss along the TWM. In a micro-
wave TWM it may consist of ohmic structure losses (copper loss) and
the forward attenuation of the isolator (ferrite loss). In an optical TWM,
the losses may be contributed by scattering, diffraction and the isolator,
although the latter two do not really occur in a distributed fashion. In
units of decibels, the total propagation loss in the maser is 4.35 bL.

For the case of CW pumping, a maser recovery rate c is included in
(2). It is the reciprocal of the exponential time constant which describes
the low -power gain recovery after a saturating pulse. In microwave
masers the pump power usually available is relatively high, so that c is
essentially given by the spin -lattice relaxation rate of the idler transi-
tion. In CW optical masers the pump levels usually available tend to be
lower in terms of pump photons, so that c may be largely determined by
the pump power.

The left-hand side of (1) is a combination of partial derivatives with
respect to time t' and space z', which indicates that signal propagation
with a group velocity vo is considered in the positive z' direction. Propa-
gation in the negative z' direction would require a minus sign. The
complication of propagation effects can be eliminated from (1) by a
transformation

z = z'

vet = vet' - z'

nt' = nt

nz' = nz
(4)
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which results in the differential equations

ant
az

an
at

= aninz - bnt

= -antnz c(N z - ne).

(5)

(6)

The physical situation and this transformation in particular are illus-
trated in the space-time diagram of Fig. 1. It is seen that the new time
coordinate t remains constant for any part of the signal as it passes from
the input to the output. For example, the leading edge of a pulse is char -

D
a.

FINAL STORED ENERGY

nz(z,to) o<z<L

NITIAL STORED ENERGY

nz(z, o) o<z<L

0
4-)

< V
Z
O V
Tij 0

D
a 4-)

C

Fig. 1- Schematic presentation of the maser gain process by removal of
stored energy; also shown are space and time coordinate systems.
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acterized by I = 0, whereas in real time it would pass the input at 1' = 0
and the output at 1' = L/vg .

The figure also suggests that the problem contained in (5) and (6) is
hyperbolic in nature; that is, it is characteristic of propagation. In the
present case this implies that the physical situation at a point z,t is
determined by all interactions which happened earlier, i.e., from time
0 to 1, and closer, i.e., from 0 to z. Such a problem is not specified unless
two boundary conditions are set up. The first is an initial condition
which specifies the situation for values of z, 0 < z < L, at the time I = 0.
The second is an input condition which specifies the situation for times t,
t > 0, at the input z = 0. Then the equations permit a unique evaluation
of the variables at any point z and time t.

The boundary conditions for the present problem include the initial
stored energy

inz(z) for 0 < z < L
nz(z,t = 0) = (7a)

(0 for z < 0 and L < z

and in the simplest case may involve a uniform distribution of stored
energy

1N, for 0 < z < L
nz(z,t = 0) = (71))

(0 for z < 0 and L < z.

The other condition specifies the input signal

for t > 0
nt(z = 0,t) = Int(t) (8a)

0 for 0 > t

which in the simplest case may consist of a step function signal

IN for t > 0
nt(z = 0,t) = (8b)

(0 for 0 > t.

It turns out that the equation system (5) and (6) with the boundary
conditions (7) and (8) cannot be integrated in general. An exact integral
can be obtained, however, for b = c = 0. It will be derived in the next
section. This integral describes the response of a maser amplifier with
negligibly small internal losses and no replacement mechanism for the
drain of stored energy. It is of interest, since these mathematical condi-
tions approximate very closely the physical situation of pulsed solid-
state optical maser amplifiers.

Another integral can be readily obtained from (5) and ( 6 ) by letting
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anz/at = 0 in (6) and with b 0 and c 0. This leads to the steady-
state gain saturation formulas which are discussed in the later parts of
this paper and which are of interest in applications of microwave
TWMs.

For numerical calculations it may not he too convenient to interpret
nt as the number of photons per unit time and nz as the number of stored
quanta per unit length. Instead n, may be made to mean the stored
energy in joules per unit of maser length and nt the signal power in
joules per second, i.e. watts. This new convention changes the definition
of the constant a in (3). Now 4.35 a becomes equal to the decibel elec-
tronic gain of a TWM under consideration divided by the energy stored
(in units of joules) in the same TWM.

III. SOLUTION FOR THE TRANSIENT CASE

For b = c = 0, (5) and (6) can be conveniently rewritten

ant an, = (9)az at

anz-a at= a2ntnt . (10)

In this form, (9) is recognized as a conservation law. Using the
language of gas kinetic chemical reactions, (10) describes a bimolecular
reaction whose yield is proportional to the density of either molecular
species, the photons and stored quanta in this case.

The integration of the system (9), (10) subject to the boundary con-
ditions (7a) and (8a) is outlined in the following paragraphs of this
section. The method of integration was suggested to the author by J. A.
Morrison. It is presented here because it does not follow an established
standard approach.

A new function 'F is introduced subject to the requirements

act.

az
= - ant ,

at
= ant. (11)

This "ansatz" satisfies (9) by definition, and the remaining differential
equation (10) becomes

a a(i)
at az 840_

act. dt

az

(12)
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Logarithmic integration with respect to t yields

, cic1

dz
3 , dF (z)In - -4 3 m (13)

dz

where the last term is an integration constant which may be a function
of z alone. After rearrangement this is

e

dF(z) (14)
az dz

A second integration is possible, with the result

= F(z) K(t) (15)

or

c13 = In [F(z) K(t)] (16)

where K is an arbitrary function of / alone.
The as yet arbitrary functions F and K are specified by the boundary

conditions (7a) and (8a). Using these and the definition of (13 in (11),
one has

dK(t)

nt(t)1 d(13(z = 0) 1 dt-
a dl a F(0) K(t)

dF (z)
1 dz

a dz a F(z) K(0)

for / < 0

for 0 < z < L.

These equations can be easily integrated and the results may he com-
bined in the form

exp [a nt(s)ds] exp nz(u)du] - 1f f
(z) + K(t)

F(0) + K(0)

When this result is inserted into (16) and the original definition of
43, (11), the final solution is

(19)

nt(t) i
72i (Z,t)

S(t)-1 G(zS

(tr
)--' - 1 (20)

)nz(z W1nz(z,t) - S(t)1 G(z)-iW- 1 (21)
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where G(z) is the initial power gain

G(z) = exp [a f nz(u) du (22)
0

and S(t) is the saturation parameter at the input, i.e., the fraction to
which the original stored energy near the input is reduced after a time t

S(t) = exp [-a f ng(s) ds] . (23)

For the simpler boundary conditions (7b) of an initially uniform gain
distribution and (8b) of a step function input signal, the solutions (20)
and (21) take the form

Ng exp (aN ,t)nt(z,t) - (24)
exp (aN,t) exp ( -aNzz) - 1

NZ exp ( -aNz)znz(z,t) - (25)
exp (aNit) exp ( -aNzz) -

The solutions (20) and (21) show a number of mathematical proper-
ties which should be expected in view of the physical situation. With
general definitions for the gain and saturation parameters

G(z,t) = ng(z,t)/nz(t)

S(z,t) = nz(z,t)inz(z)

the following features may be mentioned:
(i) The gain G(z,t) decreases monotonically with time from the ini-

tial value (22) down to unity. G(z,t) is greater for larger values of z.
(ii) Similarly, the saturation parameter S(z,t) decreases monotoni-

cally with time from the initial value of unity to zero. The drop is faster
for greater values of z.

G(z,t) may be expressed in the form (20) using the initial gain,
but it may be also obtained by computing the gain due to the instantane-
ous excess energy storage nz(z,t). Thus

G(z,t) - S(t)-1 - exp [a f nz(lt,t) dui. (27)G(z)- - 1
(iv) A corresponding relation holds for S(z,t)

S(z,t) =
S(t)--'

G(z)
G(z-1)-i -1- exp[-d f nt(z,$) dsi. (28)

(v) Fig. 1 suggests that the situation at some time ti might be used as

(26)
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a boundary condition instead of the initial condition at time t = 0.
Thus there is an addition theorem for the gain formula

S(ti 12)-1
G(z,ti t2) S(ti 4)-1 G(z)-1 - 1

S(12)-'
(29)

S(12)-' G(z,t1)-1 - 1

(vi) A similar iteration formula applies to the saturation parameter,
which may be defined either directly by the initial total gain and input
saturation, or by the initial gain of a part of the maser and the saturation
at the beginning of this part

G(zi z2) -1
S(z1 z2,1) -

N(1)-1 G(zi z2)-1 - 1

G(z2)-1
(30)

S(z1,t)-1 G(z2)-1 - 1

(vii) Energy conservation requires that the excess of the output
energy over the input energy equal the loss in stored energy

L

rz

[ni(z,$) - ni(s)] ds = [nz(u) - nz(u,t)] du. (31)
 0

Equations (27) to (31) may be verified directly.
Equations (20) to (21) can be simplified if the original gain is large,

G(z) >> 1, and if the degree of saturation at the input is small,

a
fni(s) ds 1.

0

The greater part of the decrease in gain occurs before this last condition
is violated. With these approximations

ni(z,t) 1

n,(t)G(z) 1 + G (z) a f' nt(s) ds
0

(32)

nz (z,t) - 1
(33)

nz(z)
1 G(z)a fo nt(s) ds

Equations (32) and (33) describe a hyperbola, as shown in Fig. 2.
In the case of a step function input signal (8b), for example, the curve
describes directly the shape of the output signal. The initial output power
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Fig. 2 - Decrease of gain as a function of input energy and decrease of stored
energy vs input energy. The graph can be also interpreted as showing the shape
of the output signal vs time if a step function input signal is applied.

in that case, of course, is given by the input signal multiplied by the
original gain and the ordinate of the curve would have to be scaled
accordingly. As one expects from energy conservation, the reciprocal
scaling applies to the time scale on the abscissa. In other words, the
drop of the output signal occurs faster if the input signal and the initial
gain are higher. Also, as expected, the drop of the output sets in more
slowly if the stored energy per db of initial gain, (4.35 0-1, is greater.

The curve in Fig. 2 also describes the reduction of stored energy as a
function of input energy. Directly at the input, the stored energy decays
by an exponential law (23). Further along the TWM at points z, where
there is an appreciable initial gain G(z), the reduction of stored energy
follows the hyperbolic law. The initial drop is faster for higher G(z), but
then the loss of stored energy levels off, although it is always faster than
directly at the input.

The reduction of gain with input energy is plotted in another way in
Fig. 3. Roughly speaking, the plot is a double logarithmic presentation
of the data in Fig. 2. The ordinate shows the gain in db. The abscissa
shows the decibel degree of saturation at the input

10 logo = 4.35 a f n(s) ds

plotted on a logarithmic scale. In this presentation, the hyperbola of
Fig. 2 becomes a horizontal line curving into another line with a slope
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Fig. 3 - Drop of the initial gain in db vs integrated input energy, in db of
saturation at the maser input. The plot shows that with the same constant input
signal, the gain of a maser with initial 10 db higher gain drops 10 times faster.

of minus unity. A family of curves results because abscissa and ordinate
now contain the initial gain explicitly. In this way the plot demonstrates
that, of two otherwise identical TWMs excited by the same input signal,
the one with a 10-db higher gain, for example, suffers gain reduction 10
times faster. In the lower right-hand of the figure it is seen that the
asymptote to all curves is no longer a straight line but levels off. This is
the region where the gain is very large compared to unity and the degree
of saturation at the input is small. Thus there the expression (32) no
longer approximates the gain behavior, and hence the exact formula
(20) had to be used for plotting the curve.

IV. DISCUSSION OF PULSE SHARPENING

The results of the last section show that the instantaneous gain of a
TWM is a decreasing function of time. The decrease can be particularly
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rapid if the energy stored in the TWM is not too high. The question
arises whether this phenomenon can be used as an optical pulse shaping
mechanism. From a practical viewpoint, such a method of pulse genera-
tion would be of interest only if it could be used to produce pulses of
higher peak power within a diffraction -limited beamwidth and/or of
shorter duration than those produced by other methods. High peak
power allows the study of nonlinear interactions in matter, and short
pulses can be used in optical ranging devices with extremely high resolu-
tion. The generation of very short, very high-powered pulses will be
discussed in this section with the aid of some numerical examples. These
examples are deliberately chosen to be between the present state of the
art and optimistic forecasts.

As a first example consider a step function input at a power of Nt = 106
watts incident on a unidirectional optical TWM of the type developed
by Geusic. and Scovi1,11 but with an initial gain of 40 db. The leading
edge of the pulse experiences the initial gain and hence results in 1010
watts = 10 gigawatts at the output. The duration of the pulse may be
defined as the time at which the output has dropped 3 db. It can be ob-
tained from Fig. 2 or 3.

In the ruby optical TWM,11 the stored energy is about 1 joule for every
6 db of gain, provided the signal transmission mode matches the cross
section of the ruby rods. Thus 4.35 a = 6 db/joule. The gain is reduced
3 db after a time

ti = (GaN t)-1. (34)

For the numbers chosen, ti = 0.7 X 10-16 seconds. The energy tlEi
released by the TWM up to that time can be found, for example, by in-
tegrating (24) with respect to time. It can also be given without calcula-
tion, however, if one considers that at any time there is proportionality
between the stored energy and the decibel gain.. Thus AEI is equal to the
energy stored originally in a fraction of the amplifier length which ini-
tially gives rise to 3 db of gain:

AEI - NIL, (35)

which is joule in the case considered.
With less stored energy in the amplifier, for example by signal trans-

mission which utilizes only a fraction of the ruby cross section, the pulse
duration ti would tend to be shorter. This is hardly possible, however,
because the time given already comes close to the linewidth-limited rise
time of the amplifier.
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The computed pulse duration and peak power would seem rather at-
tractive, and certainly they are beyond the capabilities of existing
technology. It should be questioned whether the calculation is based on
realistic assumptions. Geusic has operated a TWM with initial gain
values of 20 to 30 db. Thus the assumed initial gain of 40 db is feasible.
An optical power level in the megawatt range can be produced over
short periods of time by the Q -switching technique.° Usually, however,
that power is spread over a larger beam divergence than the diffraction
minimum. Only a diffraction -limited beam can be fed conveniently into
an aperture -limited TWM. The greatest discrepancy exists, however,
with respect to the rise time of the input pulse, or step function, as used
in the calculation. The calculation presented and the results are mean-
ingful only if the input power rises in a time short compared to ti or at
least comparable to it. If this were the case, the pulse would have its
original fast rise and the exhaustion of the gain mechanism discussed
here would produce a reasonably sharp cutoff at the trailing edge. Re-
alistic rise times for Q -switched giant pulses are about two orders of
magnitude longer than the ti quoted. With such a pulse fed into a TWM,
most of the stored energy and amplification would be depleted long be-
fore the input ever reached the assumed 1 megawatt level.

The question therefore arises as to what degree of pulse forming may
be observed under conditions when the input signal is a rising function
of time. The situation is schematically indicated in Fig. 4. The input
signal may be the initial rise of a giant pulse. A TWM with initial gain
G1 will amplify the first portion of the input signal proportionally until a
noticeable fraction of the stored energy is exhausted. The resulting drop
of gain may be so rapid that a distinguishable pulse is obtained at the
output. With higher initial gain G2 > G1 in the amplifier, the peak power
of the pulse is greater, the peak is reached sooner and the subsequent
drop to I of the peak power occurs faster.

The rise of the input signal may be described by a power law

nt(t) = (t/to)nP, n = 1, 2, 3 - . (36)

The numbers used in the example are a peak input power of P = 106
watt which is reached after a rise time of to = 10-8 second. The initial
TWM gain considered is 60 db, G(L) = 106. Application of (32) shows
that the peak of the output pulse occurs at a time tilin. where

(tinaj _ n(n -I- 1) tOn
aPG(L)

The output power is down 3 db from the peak value at the time ti where

(37)
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ti 2
n + 1

(38)r,ma,

At the peak of the pulse the remaining gain is

G(L,tmax) G(L) (39)

(40)

+1

and the peak output power /NM/max, becomes-

[n PG(L) n
n 1 ago

Table I summarizes the numerical results. The true rise of the giant pulse
may come sufficiently close to a cubic or quartic parabola. From the last
two entries in the table one then can estimate that the peak of the output
pulse will exceed the peak of the input by about 30 db. This is a sizable

rr

a_

TIME -4. -

Fig. 4 - Pulse sharpening during rise time of input signal. The pulse is higher
and the rise time shorter for higher initial gain.
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TABLE I

Exponent of Input Rise
[n in (36)]

n = 1
Straight-line rise

n = 2
Quadratic parabola

n = 3
Cubic parabola

n = 4
Quartic parabola

Pulse Duration
114 in (38)]

Peak Pulse Power (watts)
[nt(L,1,,,,) in (40)]

4.8 X 10-10 sec

2.3 X 10-9 sec

4.6 X 10-9 sec

6.7 X 10-9 sec

6 X 10'

1.9 X 109

1.3 X 109

1.1 X 109

Values used: input: rise time to = 10-8 sec
maximum power P = 106 watt

maser: initial gain G(L) = 106
energy storage (4.35 a)-1 = 6 db/joule

increase, although it is much less than the initial gain of 60 db. The pulse
power obtained in this fashion from the TWM has essentially the same
frequency spectrum and mode distribution as the input pulse. This can
be understood by observing that the TWM is, for any short time ele-
ment, a truly linear amplifier although the gain decreases continually
with time. It is therefore clear that the output frequency spectrum is
only slightly wider than that of the input, namely to the extent that the
pulse duration was indeed shortened. Similarly, appreciable mode con-
version by a TWM amplifier is possible only if the gain over the cross
section is grossly nonuniform. In this sense, the TWM is a "faithful"
amplifier even under high power saturating conditions. The duration of
the pulse, measured here from t = 0 to the time ti when the output power
has passed the peak value and dropped to Z of it, is at best not quite one
order of magnitude shorter than the assumed initial build-up time to of
the input signal.

It is beyond the scope of this paper to suggest whether or not the pulse
sharpening discussed is a practical way of producing the extreme in fast,
high -power pulses. It is a way, however, where, although with diminish-
ing returns, the peak power is only limited by whatever high -power limits
exist in the stimulated emission process itself and in transmission through
materials like glass and sapphire, and where the ultimate pulse rise time
is limited only by the bandwidth of the maser signal line itself, not by the
time for a round trip of light through the device, as in the Q -switched
oscillator.

There remains one point which is more curious than serious. The reader
might ask why the power law (36) was used for the input power in the
pulse sharpening analysis. If instantaneous switching of the shutter can
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be assumed, the initial rise of the giant pulse follows an exponential°

ni(t) = P exp (t/to) -t, < t < 0. (41)

Is it possible to use this input signal for pulse sharpening analysis?
It turns out that the ideal exponential rise, -1 = -00 , does not pro-

duce an output pulse at all. Rather, the output becomes a monotonically
increasing function of time. Loosely speaking, the exponential input
clears the stored energy out of the TWM in such a smooth fashion, slowly
at first while the gain is still high and more rapidly when the gain has
started to decrease, that it never can develop the kind of "overswing"
or "shock wave" indicated in Fig. 4. One consequence is therefore that
deviations from the exponential rise in the actual input signal are signifi-
cant and helpful for achieving pulse sharpening.

V. AN EXPERIMENTAL EXAMPLE OF PULSE SHARPENING

One of the aims of optical traveling -wave maser development is the
generation of very high pulse power by amplification of an already high
input signal. Pulse sharpening due to partial exhaustion of the maser
energy storage is unavoidable in this situation, as pointed out in the
paper on the optical traveling -wave maser." Even with more moderate
power levels, some pulse sharpening can be observed if pulse duration
and initial gain are sufficiently large. Geusic and Scovil'2 demonstrated
the effect in experiments with the optical TWM, and an example of their
observations is given in Fig. 5. It shows the tracing of a dual -beam os-
cilloscope presentation of pulse amplification. Part of the amplifier input
and output was detected by photomultipliers. A time constant of about
a microsecond was used to smooth both responses. In reality the input
signal contains spikes which appear faithfully amplified at the output.
In the oscillogram of Fig. 5, the sensitivity of the output detection was
reduced 15 db by inserting a grey glass attenuator, and the polarities of
both signals are reversed for easier presentation of the data. The figure
clearly indicates reduced gain for the later portions of the signal and the
resulting pulse sharpening.

The data of Fig. 5 were used to evaluate the intrinsic gain decay curve
shown in Fig. 6. Here the ordinate shows the numerical power gain, that
is, essentially the amplitude ratio of Fig. 5. The abscissa represents the
input energy which was obtained by numerical integration of the lower
curve in Fig. 5. The circles show the numerical data points. According
to the theory [see (32)], the reduction of gain in this presentation should
follow a hyperbola such as shown in Fig. 2. The solid curve in Fig. 6 is a
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OUTPUT (LESS 15135)

--100y5

INPUT

TIME

Fig. 5 - Dual -beam oscilloscope record of a pulse sharpening experiment taken
with a ruby optical traveling -wave maser by J. E. Geusic." The arrows indicate
the time at which half of the energy stored in the amplifier was exhausted, thus
reducing the numerical gain by a factor of 2 (or the db gain by 3 db).

hyperbola which was fitted to the data by adjusting two parameters. It
should be mentioned that the first and last points of the data are ap-
preciably uncertain because there the absolute magnitude of the signals
is rather small. Considering this, the agreement between the data points
and the curve is remarkably good. This may be taken as support for
the theory. It would be impossible, for example, to fit the data with an
exponential law.

Some further details may be read off the curve. The initial gain was
52 (17.2 db). At the time of the signal peak, the gain had already dropped
by 1 db to 40.5 (16.1 db). At the point indicated by arrows, the gain is
reduced by 3 db to 26 (14.2 db). The energy contained in the output pulse
up to that time is equal to the energy originally stored in a 3-db section
of the amplifier [(35) applies here, too]. This would be about joule if
the output beam filled the entire aperture of the amplifier. Actually, the
beam area in this experiment covered one-half of the ruby cross section,
so that the output energy, taken from the rise of the pulse to the time
marked by the arrows, was about 4 joule. The corresponding average
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Fig. 6 - Replotting of the data of Fig. 5: numerical power gain is shown vs
integrated input energy. Points are data read oil Fig. 5 and solid line is hyperbola,
predicted by theory, fitted to the data.

pulse power is 5 kilowatts. This power level, incidentally, implies a rather
high power per solid angle. The acceptance angle of the amplifier, which
was measured to be in agreement with the actual angular spread of the
output pulse, is 10-3 radians. This comes close to the diffraction -limited
beam spread of 10-4 radians for a I -inch diameter ruby amplifier. Ap-
plication of (33) allows one to evaluate the energy still stored, for exam-
ple, at the 3-db time. At the output, the stored energy is then reduced
to z the original value. By comparison, at the input only 31-1/ of the
total has been spent. For the latest portions of the signal, the gain has
dropped to 20 (13 db), down 4 db from the initial value.

The presentation of the gain data in Fig. 6 shows two other points.
Loss of stored energy due to spontaneous transitions is negligible; other-
wise the gain would drop faster. This should not occur here, since the
pulse is fast compared to the fluorescence decay. The other point con-
cerns the pumping. Fig. 6 shows that the pumping process was com-
pleted at the time of the signal pulse, because otherwise an increase in
gain with time should be observed.

VI. STEADY-STATE GAIN SATURATION

Under steady-state conditions, the differential equation (5) remains
inialtered
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dne
-dz an n, - bnt (5)

and the differential equation (6) becomes the well-known saturation
formula

na -N (42)
1 + nt/Pc

where a characteristic saturation power level Pc is defined by

P, = c/a. (43)

It is the level which reduces the stored energy to one-half. Another
convenient definition is

R = aNt/b (44)

the ratio of low -power electronic gain to structure loss. Using (42), (43)
and (44), (5) results in the ordinary differential equation

dz 1(aN. - )
b' dne = ne Pc(R 11) - nt (45)

Integration yields

In n` (L) -R In nt(L) - Pc (R - i) -
nt(0) nt(0) - Pc(R - (aN - b)L. (46)

This function is an implicit relation between input, nt(0), and output
signal power, ne(L). If one considers ne(L) as a function of L, it is a
function which has two branches. If

nt(0) < Pc(R - 1)

a branch results which describes gain. For very small input powers, in
particular

nt(0) < PC(R - 1)

the TWM has simply its low -power gain

ni(L) = nt(0) exp (aN, - b)L.

For

nt(0) > Pc(R - 1)
(46) describes net loss. In particular, for very high input power

nt(0) >> 1),(R - 1)

(47)

(48)

(49)
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the gain mechanism in the TWM is inactive and the device behaves as
an attenuator

nt(L) = n,(0) exp (- bL).

If the input signal assumes the value

n,(0) = Pc(R - 1)

(50)

(51)

it can be shown that the maser exhibits neither gain nor loss; it is trans-
parent

ni(0) = nt(L). (52)

At this level, the energy stored in the TWM is uniformly distributed

nz(z) = NZ/R. (53)

Equation (46) loses its meaning for a TWM without intrinsic loss,
b = 0. The relation valid in this case may be derived directly from the
differential equation or by a limiting process for R -) 00 applied to (46).
The result is

, nt(L) nt(L) - nt(0)
in - aNzL. (54)

nt (0) Pc

This equation describes an exponential amplification under low signal
conditions as before, but an additive amplification process for signal
levels large compared to Pc . This means that every section of amplifier
having a low -power gain of 4.35 db or a power gain factor of e increases
the signal additively by Pc .

For the most interesting range, where input or output power levels
are comparable to P, , (46) has to be applied without approximations.
The relation between input, n,(0), and output power nt(L) was machine -
computed for a number of low -power gain values,

Gdb = 4.35 (aNz - b)L,

and gain -to -loss ratios, R = aNz/b. These data are shown in a series of
plots in Figs. 7 through 10. Each family of curves applies to masers with
the same low -power net gain and with the intrinsic loss varied from 3 db
to 18 db in 3-db steps. The six families of curves are characterized by
low -power net gains from 15 db to 40 db in 5-db steps. Essentially all
practical masers are designed for gain in this range. Fig. 7 presents the
data as a relation between input and output power, both normalized to
the characteristic saturation level, Pc . Fig. 8 shows the apparent gain
as a function of input power and Fig. 9 as a function of output power.
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Fig. 7 - Output vs input power for traveling -wave masers having low-level
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trinsic loss for each family of curves increases from 3 db to 18 db in steps of 3 db;
all power levels are measured relative to characteristic saturation power.
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Fig. 8 - Plot of apparent gain vs input power for traveling -wave masers of
Fig. 7.

For many applications, the onset of gain saturation in the maser is sig-
nificant and, depending on the system function, gain compression of 34,
1 or 3 db or even more may be tolerated. The region of beginning gain
compression is shown in Fig. 10. It is a plot of apparent gain versus input
power as in Fig. 8, although on an expanded scale.
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Fig. 7.

Inspection of Fig. 7, for example, shows that in the range of drastic
gain saturation, a TWM can be used for automatic gain control (AGC).
Here the average output stays approximately constant for input varia-
tions almost as great as the electronic low -power gain. The AGC time
constant is nearly, although usually somewhat shorter than, the recovery
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time of the TWM, c 1. Masers with high net gain and high intrinsic
loss have close to ideal AGC characteristics. It should be pointed out
that, over periods of time short compared to c 1, the response of a TWM
in an AGC application is still linear, i.e., rapid amplitude variations in
the input are strictly reproduced at the output. This distinguishes AGC
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action from that of a leveler which clips every power level above a cer-
tain minimum without delay. The instantaneous TWM response is more
fully discussed in two other papers.'''

For small degrees of gain saturation such as those shown in Fig. 10,
it is desirable to have a more manageable approximation of the rigorous,
transcendental gain saturation formula (46). The result of a lengthy
but straightforward expansion can be given in the form

nt(0)(dbm) G(db) + A = Pc(dbm) (55)

where

A = 6.39 + 10 logio -D (db) - 10 log10 [0 (db)]. (56)

This formula may be used to solve two typical experimental problems.
First, it permits the evaluation of the characteristic saturation power
Pc (in units of dbm) from gain saturation measurements. According to
(55), Pc is found by the following prescription. Take the input level
ng(0) in dbm at which the gain is reduced by A(db), add to it the low -
power gain G(db) and a constant A. Typical values of A are given in
Table II. Second, the formula and the table (as well as Fig. 10) can be
used to study the details of the gain saturation behavior, assuming that
Pc is known. For this purpose it may be advantageous to rewrite (55) in
terms of the output power

ng(L) (dbm) = n1(0) (dbm) G(db) - A(db)

= Pe(dbm) -A - A(db)

According to (55') and the first row of A values, for example, it is ap-
parent that the maser output at 0.5 db gain reduction is about 10 db
lower than Pc . Similarly, at 3 db gain reduction the output is roughly
3 db below Pc . One also sees from the table, for example, that gain re-
duction by 1 db occurs at input levels 3.5 db higher than for a gain re-
duction of 0.5 db. Similarly, a gain tolerance of -3 db allows 10.3 db
greater input signals than a permissible gain compression of 0.5 db.
Formula (55) can, of course, also be used in reverse to calculate the

TABLE II - VALUE OF A

(55')

R = 2 4 6 8 10

o(db) = 0.5 11.9 10.1 9.6 9.4 9.3
1 8.4 6.6 6.1 5.9 5.8
3 1.5 -0.1 -0.7 -0.9 -0.9
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maximum permissible input level nt(0) from a given gain tolerance
A(db) and the known saturation level Pc P.

In the original paper on the microwave TWM,4 it was suggested that
the degree of gain saturation in a maser depends only on average power.
Thus the same amount of gain reduction was found with a certain CW
power level and with pulses of a 30-db higher peak power applied with a
30-db duty ratio. This feature of maser gain saturation is examined here
more closely.

Let ti be the duration of signal pulses and 12 the time after which the
pulse repeats. The leading edge of the pulse may be at t = 0. Then the
energy storage is essentially determined by

= 0 < t < (57)
at

an, = c(N z - nz) ti < t < 12.at(58)
In (57), spin recovery is neglected during pulse duration. This leads to
a small error for short pulses. The error can be largely compensated for,
however, if the recovery in (58) is formally extended over the whole
period, 0 < t < 12 . The solution nz will be a steady-state solution if it
repeats after a time 12 , that is

nz(z,0) = nz(z,t2). (59)

From (57), (58), (59)

n$ (z,0) =
1 - exp [-a f nt ds - chi

N z[1 - exp ( -c12)]
t, (60)

If the pulses repeat with a fast rate compared to the maser recovery
time and if the energy per pulse is not very large, that is, if

and

ct2 << 1

e,

a
J

nt(s) ds << 1
0

then (60) can be approximated by

(z,0) =
11,

C nt(s)
ds

N,

(61)

(62)

(63)
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This equation is identical to (42), the usual saturation formula, except
that here the average power takes the place of CW power in (42). Thus
all statements made in the equations of this section and in Figs. 7 through
10 are applicable to pulse power, provided the terms used there are
interpreted in terms of average power.

In the case of a ruby microwave TWM, the restrictions are not severe.
If a safety factor of 10 is included on account of the inequality relations,
(61) means that pulse repetition rates should be 100 pps or faster. Since
the stored energy in typical microwave masers is between 10-6 and 10-7
joule, the condition (62) restricts the energy per pulse to about 10-8
joule. This may imply 0.1 -microsecond pulses of 100 milliwatts or less,
or 10 -microsecond pulses of 1 milliwatt or less. It is of course possible
to operate a TWM under conditions which violate (61) and (62). In
that case, the graphs of Figs. 7 through 10 will no longer apply and there
will be an appreciable extent of pulse sharpening, as discussed in the
earlier sections of this paper.

VII. EXPERIMENTS ON GAIN SATURATION

In this section, some measurements of gain saturation in a microwave
traveling -wave maser are reported. The measurements were carried out
by F. S. Chen.' The maser was developed by P. J. Pantano and W. J.
Tabor," and it features the earlier design of a round -finger comb with a
single slab of ruby on one side of the comb. The passband extends from
6.2 to 6.8 gc and the highest net gain occurs at 6.25 gc. Signal frequencies
of 6.25, 6.35, and 6.45 gc which were used in the measurements are
associated with phase shifts between comb fingers of about 20°, 45°, and
75°, respectively.

TWMs of a more advanced design with hobbed square fingers and
double -sided ruby loading"," were under development at the time of
this study, but they were not available for extended gain saturation
measurements. Nevertheless, the general conclusions about gain satura-
tion derived in this section should be equally applicable to those newer
masers. The only difference might be the absolute value of the charac-
teristic saturation power.

Four aspects of the TWM gain saturation theory presented in the
previous section were studied by the experiments:

(i) The theory makes use of a single interaction constant a as defined
in (3a). On closer examination this equation suggests, however, that the
interaction depends on the local strength of the RF magnetic field, which
is a function of the coordinates x,y within the maser material cross sec-
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tion AM . Thus the interaction should be described by a function a(x,y)
whose average is equal to the previously used constant a

1 a(x,y) dx dy = a. (64)

The use of a function a(x,y) implies that there is a varying degree of
saturation throughout the cross section of the maser material, i.e. the
saturation formula (42) is replaced by

where

NZ,/AM
n.(x,y) = 1 ± a(x,y)vic-1

(65)

fnz(x,y) dx dy = . (66)
Am

When introducing (65) into the earlier differential equation (5), it has
to be observed that once again the gain interaction a(x,y) varies over
the cross section. Thus (5) takes the rigorous form

dnt ntNt a(x,y) dx dy -bnt (67)
dz JAMl nta(x,y)

This equation takes into account the nonuniform exhaustion of stored
energy within the maser material cross section, A Af . Parts of the maser
material exposed to higher RF fields nearer the comb saturate at a lower
signal power level and vice versa. The differential equation (67) pre-
dicts a more gradual drop of gain and a slower transition to net attenu-
ation as the input power is increased than the corresponding equation
(5) with an averaged value a.

The function a(x,y) was evaluated by F. S. Chen's space harmonic
analysis of the comb structure!' It consists of a Fourier or space harmonic
sum involving combinations of trigonometric and hyperbolic functions.
Unfortunately, it is not possible to approximate the result by a simple
analytical expression for a(x,y). This is so mathematically because many
terms in the sum are of appreciable magnitude, which in turn is due- to
the physical fact that several of the relevant dimensions are comparable.
Thus, while the computed function a(x,y) may be used in machine com-
putations of the gain saturation from (67), this would require a separate
set of computations for each comb design and for each phase shift value
within the passband (in addition to the number of parameters already
entering the computation). Clearly, such a procedure does not appear
attractive. Instead, it would be more convenient if it were possible to
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interpret the experimental data in terms of the theoretical curves in
Figs. 7 to 10, which were computed on the basis of an averaged interac-
tion constant a. In this case one should in principle expect some dis-
crepancy between the theoretical curves and the observed results. The
question arises whether this discrepancy, if observable at all, is of prac-
tical significance.

(ii) The characteristic saturation power, P , in (43) is independent
of the amount of stored energy in the maser transition. Hence it should
be independent of the degree of inversion or the amount of pump power
supplied. This feature is obvious from maser theory and would perhaps
not deserve experimental verification. For amplifiers other than the
maser, however, it would be an unusual property. In conventional volt-
age amplifiers, for example, the maximum output voltage tends to be
proportional to the supply voltage.

(iii) The phase shift between comb fingers and the RF magnetic field
pattern changes with the signal frequency. This implies a change of
a(x,y) and possibly of the average value a with frequency. It is con-
ceivable then that the saturation power Pc varies also with frequency.

(iv) The theoretically predicted equivalence of gain saturation by
pulse and CW power of the same average value had not been checked
before over a large range of power levels.

The experimental results are presented in Figs. 11 to 13. Theoretical
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Fig. 11 - Measured and calculated gain saturation under CW conditions. Sig-
nal frequency is 6.25 gc and intrinsic circuit loss is 9 db. Fitting of theoretical
curves to the data yields a characteristic saturation power level of -28.7 dbm for
both curves.
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Fig. 12 - Gain saturation under CW conditions at signal frequencies of 6.35
gc (9 db circuit loss) and 6.45 gc (12.5 db circuit loss). The characteristic power
level is -28.7 dbm for both curves.

curves taken from Fig. 8 are shown as solid lines, and the experimental
data are shown by points and crosses. The theoretical curves were fitted
to the data by adjusting the characteristic saturation power, Pc . The
figures suggest the following conclusions:

(i) The theoretical curves fit the experimental data remarkably well.
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Fig. 13 - Measured net gain under pulse saturation conditions with -20-db
duty ratio at signal frequency of 6.25 gc. Data taken with two different pump
levels and with two different types of pulses are compared with theoretical curves.
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The greatest deviations are ±0.5 db and could in part be caused by ex-
perimental errors. There is a consistent tendency of the experimental
points, however, to follow a slightly flatter curve than the theoretical
one. Nevertheless, gain saturation follows the simplified theory suffi-
ciently well for practical purposes. The discrepancies are ±0.5 db here
and could be ±1 db for a maser with 40 db low -power gain. This result
eliminates the need for more rigorous computations based on equation
(65).

(ii) The two curves in Fig. 11, taken with pump power levels of 50
and 10 milliwatts, respectively, are characterized by the same saturation
level, P , to within better than ±0.25 db. This shows, in agreement with
theory, that Pc is independent of the amount of pump power.

(iii) The curves in Figs. 11 and 12 result in the same value of Pe ,
again to better than ±0.25 db for signal frequencies of 6.25, 6.35, and
6.45 gc. In the case of the 6.45-gc data, no compatible theoretical curve
was available from Fig. 8, but Pc there was determined from the zero-db
conditions (51) and (52). Since all these data were taken only in the
lower half of the passband, it is not necessarily justified to assume the
same constant Pe in the higher -frequency parts of the passband where
the field is even more tightly bound to the comb.

It should be emphasized that a constant Pe across the signal band does
not imply that at al] frequencies the gain is reduced by 1 db, for example,
at the same signal input level. As shown in formula (55), this level de-
pends also on the ratio R and the low -power gain.

(iv) The curves of Fig. 13 show the same data with pulse measure-
ments that Fig. 11 shows for CW measurements. Small discrepancies
between both figures can be accounted for by the experimental errors in-
herent in pulse measurements, in particular in an accurate setting of the
duty ratio. Taking this into account, the measurements prove over a
50-db range of input power that the degree of gain saturation depends
only on average power.

CONCLUSIONS AND ACKNOWLEDGMENTS

The pulse sharpening phenomenon in an optical TWM is, in principle,
a means of producing coherent optical pulses of higher peak power and
shorter rise time than any other method. The peak power is limited only
by the onset of nonlinearities in light transmission, and the rise time is
limited only by the linewidth of the optical transition.

Considering the present optical maser technology, however, it would
appear difficult to produce pulses of appreciably higher peak power and
shorter duration by application of pulse sharpening, compared to those
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which are available now by the giant pulse technique. This will have to
wait for the development of TWMs which for very short periods of time
exhibit very high gain despite the rapid exhaustion of stored energy due
to saturation on the intrinsic spontaneous emission. It will also have to
wait for the devlopment of more rapid shutter techniques which, for
example, may allow a further steepening of the initial rise of a giant
pulse so that it may be used subsequently as the driver signal for the
TWA/ pulse sharpening chain. It also should be mentioned that the
pulses so produced will show the desirable extremely rapid rise, but a
rather slow "hyperbolic" trailing edge. This, however, may be adequate
for many purposes, such as high -resolution optical radar.

The analysis of recorded data from a pulse sharpening experiment
using a maser of more moderate gain indicates agreement with the
theoretical model derived in this paper, in particular with the predicted
gain decay.

The gain saturation observed in a microwave TWM distinguishes this
device from other amplifiers. In the range of reduced gain, the TWM acts
as a slow time constant AGC circuit responding to the signal average
power. More rapid signal variations such as modulation of any kind are
transmitted and amplified without distortion. At very high signal power,
the device is effectively an attenuator of moderate insertion loss. Gain
saturation experiments covering power level variations of many orders
of magnitude showed that the gain saturation theory derived in this
paper is applicable with gratifying accuracy to practical comb structure
ruby microwave TWMs. Experiments with pulsed signal power sub-
stantiated the suggestion that the degree of gain saturation depends
only on the average power.

This work was aided by contributions from many individuals. H. E.
D. Scovil predicted the pulse sharpening phenomenon and suggested a
study more than four years ago. J. E. Geusic provided the experimental
data shown in Fig. 5 on pulse sharpening in his optical TWM. J. A.
Morrison conceived the method of solving the pulse sharpening dif-
ferential equations as reproduced in (11) to (23). W. J. C. Grant pro-
grammed the machine plotting of Fig. 3. J. S. Wright programmed the
numerical evaluation of (46) and the machine plotting of the data shown
in Figs. 7 to 10. F. S. Chen provided the experimental data on gain
saturation in a microwave TWM shown in Figs. 11 to 13. He also sug-
gested the derivation of the small gain compression formula (55) and of
the average pulse power formula (63). The author gratefully acknowl-
edges these contributions.

Note added in proof. After completion of the manuscript, a paper on
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"Pulse Propagation in a Laser Amplifier" by Frantz and Nodvik's ap-
peared in print. These authors independently derived some of the results
contained in our 1959 report' and in certain parts of Sections II, III,
and IV of the present paper.
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Microwave Heating of a Luneberg Lens
By SAMUEL P. MORGAN

(Manuscript received October 7, 1963)

A calculation is made of the maximum steady-state temperature rise due
to a small amount of dielectric dissipation in a Luneberg lens which is
continuously illuminated by a powerful microwave transmitter, when the
surface of the lens is held at a constant temperature. The temperature
distribution along the axis of the lens is computed both when the focus is at
the surface, and also when it is outside the surface at a distance equal to
one -tenth of the lens radius. The numerical results are given in such a form
that the maximum temperature rise is easily deduced when the loss tangent
is any linear function of the refractive index of the lens material. In general
the maximum steady-state temperature occurs on the axis at some interior
point between the center of the lens and the focus. The total power dissipated
in the lens is also computed. Finally, a brief discussion is given of the time
scale associated with transient heating of the lens.

I. INTRODUCTION AND SUMMARY

When a Luneberg lens is to be used as an antenna for a long-range
radar,' it is important to know how much the lens will be heated by
dielectric dissipation when it is illuminated by a powerful transmitter.
This paper presents a calculation of the maximum steady-state tempera-
ture rise in the interior of the lens, when the surface is held at a constant
temperature and only a small fraction of the incident power is dissipated.
Since the maximum temperature rise depends critically on the loss
tangent of the lens material, and since the loss tangent may vary with
index of refraction, the results are given in such a form that the maxi-
mum temperature rise is easily deduced when the loss tangent is any
linear function of the index of refraction. The index of refraction is
assumed to vary with radius in a manner appropriate for a Luneberg
lens of the desired focal length. Numerical computations have been
made for the case in which the focus is at the surface of the lens, and
also when it is outside the surface at a distance equal to one -tenth of
the lens radius.

659
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In the idealized problem to be studied, the temperature rise per watt
of incident power will be the same for a distant transmitter, which
illuminates the lens with an essentially uniform plane wave, as for a
transmitter at the focus, with a feed pattern corresponding to a uniform
plane emergent wave. In either case, if the lens is illuminated from a
particular direction, and if the index of refraction and the loss tangent
are functions of the radial coordinate only, the heat source distribution
and the temperature distribution will be axially symmetric, and in all
practical cases the maximum temperature will occur somewhere on the
axis of the lens. Hence to find the maximum temperature we need only
calculate the temperature distribution along the axis.

Suppose that the loss tangent of the lens material can be adequately
represented by a linear function of the index of refraction; thus

tan 5 = An, + B, (1)

where n, is the refractive index and A and B are constants. Then we
shall show that the axial temperature distribution can be written in the
form

T() = (Po/kX)[AT A(E) BT Ban (2)

where t is axial distance in units of the lens radius, with t = -1 corre-
sponding to the plane wave side and E = +1 to the side nearest the
focus. Po is the total power incident on the lens, k is the thermal con-
ductivity, and X is the free -space wavelength. The dimensionless func-
tions TA (t) and TB(t) are given in Table I of Section V and are plotted
in Figs. 2 and 3 for lenses with normalized focal distances of 1.0 and 1.1,
measured from the center. Note that the maximum temperature given
by (2) is independent of the lens radius.

The foregoing remarks apply to the case in which the lens is illumi-
nated from a single direction, so that the maximum temperature rise
occurs on the axis. If the total power Po striking the lens comes from
several different directions, we can deduce upper and lower bounds on
the maximum temperature rise in the "multiaxial" case from a knowl-
edge of the temperature distribution along the axis in the "uniaxial"
case. Since the heat conduction equation is linear, the principle of
superposition guarantees that the temperature at the center of the lens
is the same in both cases. Also, the maximum temperature in the multi-
axial case is less than the maximum temperature in the uniaxial case,
since the maximum temperature point in the uniaxial case is on the
axis defined by the incident beam, and this point is not on the other
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axes in the multiaxial case. It follows that the maximum temperature
rise in the multiaxial case is at least as great as the rise at the center of
the lens in the uniaxial case, but not as great as the maximum rise in
the uniaxial case. The numerical example in Section V indicates that
in practical situations these two bounds may be so close together that
a more detailed treatment of the multiaxial case would be superfluous.

The body of the paper is concerned with the determination of the
functions TA (E) and TB(E) which occur in (2). In Section II we intro-
duce a convenient approximation to the index of refraction of the
Luneberg lens, which is exact if the focus is at the surface, and show
that under this approximation the ray paths are ellipses. In Section III
we compute the power flow through every element of a lossless lens,
and the approximate rate of dissipation .of heat, assuming small dissipa-
tion and a loss tangent of the form (1). An integral representation of
the temperature along the axis is obtained in Section IV, as well as an
expression for the total dissipated power. Results:of numerical integra-
tions carried out on an IBM 7090 are given in Section V. Appendix A
contains a proof that in all practical cases the maximum "uniaxial"
temperature occurs on the axis, while Appendix B is concerned with the
nature of the mathematical singularity which occurs in the idealized
model when the focal point is at the surface of the lens. The time scale
for transient thermal effects is briefly discussed in Appendix C.

II. RAY PATHS IN A LUNEBERG LENS

The path of a typical ray in a Luneberg lens of normalized radius
unity is shown schematically in Fig. 1. In general the path of a light

Fig. 1 - Typical ray path in a Luneberg lens.
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ray in a radially symmetric medium with refractive index n(r) is given
bye

K dr
0 Oo = ±

ro itor2 K21i (3)

where (r,O) are polar coordinates in the plane of the ray, and K is con-
stant for a particular ray, being determined, together with the ambiguous
sign, by the direction of the ray at the initial point (ro ,0). In the
special case where the rays are all initially parallel, K is equal to the
initial distance of the given ray from the axis of the system.

In principle, (3) may be integrated to find the ray path whenever n
is a known function of r. For a Luneberg lens with focal point offset
from the surface, however, the relationship between n and r is given
by two parametric equations' involving a function defined by a definite
integral, and it does not seem possible to obtain the equation of the ray
path explicitly in terms of known functions. An approximation to the
refractive index which does permit analytic integration of (3) is

2 (n02 1) ,2] (4)

where no is the index at the center of the lens according to the accurate
theory; no is a decreasing function of the focal length ro . The relation-
ship (4) is exact if the focus is at the surface (no = V2), and is a good
approximation if the distance from the focus to the surface is small.

To find the equation of a typical ray in a lens whose refractive index
is given by (4), it is convenient first to locate the "turning point"
(r*,0*) at which the distance of the ray from the center of the lens is a
minimum. The turning point is defined by

r*n(r*) = K, (5)

(6)

00

which yields, using (4),

- - [no4 - 4K2(n02 -
2(n02 - 1)

The corresponding angle is derived from (3), setting 0 = 7 when r
and noting that 0 and r decrease together. We obtain

r.
K dr K dr

0* (K) ---- 7 + r(r2 K2)1 Jt r[r2n2(r) - K2]'}

3r
-1

no2 - 2K2
= - sin K tan

2K(1 - K2)1'

(7)
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on substituting (4) into the second integral and carrying out some
straightforward integrations.

We can now determine the equation of the ray path inside the lens.
Proceeding along the ray in either direction from the turning point, we
have from (3) and (4),

K dre - e*(K) = fr. r[n2r2 -2
2,2 - 02 2

= cos -1 r2[7104 _ 4K2(no2 -
(8)

or, by rearrangement,

F(r,0;K) = r2{ [no' - 4K2(no2 - cos 2(0 - 0*) not} - 2K2 = O. (9)

Since 0* (K) is constant for a particular ray, it is easy to write (9) in
rectangular coordinates and to verify that it is the equation of an ellipse.

III. RATE OF INTERNAL DISSIPATION OF HEAT

If the total dissipated power is a small fraction of the incident power,
as it must be in a practical lens, then the heat losses may be regarded
as a small perturbation on the power flux in the lossless case, which we
shall now compute.

Henceforth we regard each ray as defining a surface of revolution,
although the ray itself lies in a plane through the axis of the system.
According to geometrical optics, the total power flow along the tube
bounded by the ray surfaces corresponding to K and K dK is constant.
Let dv be the elementary distance normal to the ray in the direction of
increasing K. If K is regarded as a point function defined by (9), we have

a,
ap

oF/av I VF
aF/aK I I ale/a,

(10)

where VP is evaluated by differentiating F with respect to the coordi-
nate variables while holding lc fixed.

Now let S(r,0) be the power flux along a ray at any point of the lens;
appropriate units for S with the present normalization of lengths are
watts/(radius)2. The total power flow along an elementary tube is then

dP = 2irr sin 0 S(r,0)dv = constant. (11)

The constant can be evaluated by considering a ring -shaped element of
area normal to the incident beam, where K is just the distance of the
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given ray from the axis. If Po is the total power incident on the lens,
then

dP = 2P0K dK. (12)

Combining (10), (11), and (12) yields

S(r,0) - .
PoK I V/71 (13)

irr sm 0 I aF/aKi

The attenuation constant a at any point of the lens is given by the
well-known approximate relationship

a = (irn/X) tan 5, (14)

where n is the refractive index, tan 6 is the loss tangent (assumed
small), and X is the free -space wavelength, measured here in units of
the lens radius. Hence the rate of energy dissipation per unit volume,
in watts/(radius) is

Kn tan 6 I V le I

Q(r,0) = 2,01S(r,O) -
2Po

(15)
Xr sin 0 aF/aKi'

On the right side of (15), K is defined implicitly by (7) and (9) as a
function of r and 0. The refractive index n(r) is given by (4), and tan 6
is supposed to be a known function of n. Differentiation of (7) and (9)
yields

al?
= 27* UN' - 4K2(no2 - 1)]4 cos 2(0 - 0*) 1102)) (16)

ar

aF {[Tio, - 4K2(no2 - OP sin 2(0 - 0*) I , ( 17 )
ao

al? 2 4K ( nO2 - 1)= -
[no4 - 4K2(no2 - 1)]1

cos 2(0 - 0*)
aK

(18)

d0*}2[no4 - 4K2(no2 - 1)]1 sin 2(0 - 0*)
dK

- 4K

do* 1 (n: - 2K2) (not - 1) (19)
dK (1 - K2)1 no' - 4K2(no2 - 1)

Hence in principle the rate of heat generation Q(r,O) is a known func-
tion of position within the lens.

To determine the power flux from (13) and (16)-(19) when K =
or K = 1 requires the evaluation of some indeterminate forms. Deriva-
tions of the following results are straightforward and will be omitted.
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The power flux along the axis is given by

Po
not 2

S - [not- (no2 1)E214 (no2 (20)

where is the normalized axial coordinate defined below (2) of Section
I. The power flux at the equator of the lens is

lim S(r,ir/2) = Po/rno2. (21)

If the focus is at the surface of the lens (no = Al2-), then

lirn S(r,O) = 0, 0 < 0 < 7r/2. (22)

In this case, particular interest attaches to the power flux in the im-
mediate neighborhood of the focal point. It is convenient to introduce
new polar coordinates p,19-, with origin at the focus and polar axis in the
direction of decreasing (see Fig. 1). Then for small p the power flux
is

Po COS 29
irp2

IV. AXIAL TEMPERATURE DISTRIBUTION AND DISSIPATED POWER

(23)

The steady-state temperature distribution inside the lens satisfies
Poisson's equation,

V2T = -Q/k, (24)

where T is the temperature above any convenient reference level, Q
is the source distribution, and k is the thermal conductivity, expressed
for the moment in units of watts/ (degree  radius). Since the surface of
the lens is assumed to be held at a constant temperature, say by air
conditioning the space between the lens and the radome, the boundary
condition may be taken as

T = 0 at r = 1. (25)

The source distribution Q is a function of the coordinates r,0 only, and
in all practical cases it decreases with increasing distance from the axis.
It is proved in Appendix A that the maximum temperature rise then
occurs on the axis; and as shown in Section I, a knowledge of the axial
temperature distribution in this case enables us to put upper and lower
bounds on the maximum temperature rise in a Luneberg lens illumi-
nated from more than one direction.
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The temperature distribution on the axis may easily be written down
in terms of the Green's function for the interior of a sphere; thus,

=
1 foT Q(r,O)G(r,0;)271-r2 sin 0 dr do,

where

G(r,0;) = (1/47)[(r2 E22rcos 0)-1

(26)

(27)
- (1 ± E2r2 - 2rE cos 0)'].

If desired, one may think of (26) as representing the electrostatic
potential due to a distributed electric charge of density 0(2(r,0)/k
inside an earthed, conducting sphere of unit radius, but the analogy
has nothing to do with the mathematics.

Before starting calculation, we shall assume that tan S is a linear
function of n, say

tan 6 = An + B.

Then making use of (15), we may write (26) in the form

T(E) = (Po/kX)[ATA(E) BTB(E)],

7 1

TA (S) = 47r f0 01,2

7 1

TB(S) = 4r
0

ot
0

VP
aFiax1G(r,64,E)r dr do,

vfi
alelatc

G(r,0,0r dr do.

(28)

(29)

(30)

The dimensionless functions TAW and TB( are calculated numerically
in the next section. Note that although the radius of the sphere has
heretofore been taken as the unit of length, the factor Po/kA has the
dimensions of temperature, and any consistent set of units (e.g., MKS)
may be used for Po k, and X in (29).

It has been tacitly assumed in the foregoing that the thermal con-
ductivity k is constant throughout the lens. But the conductivity of
polystyrene foam, out of which Luneberg lenses are usually made, is
known to increase with increasing temperature, and therefore it may
be greater in some parts of the lens than in others. However we know
from general theory that if in a body with a fixed distribution of heat
sources, the thermal conductivity is increased at any point, the steady-
state temperature at each point either decreases or remains unchanged.
Hence the solution of the heat flow problem with a constant value of k
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less than or equal to the actual value of k at all points, provides a tem-
perature distribution which is an upper bound to the actual tempera-
ture distribution at all points.

Finally, the fraction of the total incident power which is dissipated in
the lens is given by integrating Q/Po over the volume. We obtain, from
(15) and (28),

AP [
=

a
A

AP
B APR

Po a P1. Po

where a is the radius of the lens in the same units as X, and

AP,, 2= 47 11 n K
Po

VF
oF/aK

r dr dB,

ir

ApB
f J.'

VF
r dr d0.

Po
=

o 0 ar / OK

V. NUMERICAL RESULTS

(31)

(32)

The functions TA() and TB(E) were evaluated on an IBM 7090 by
a straightforward double application of Simpson's rule to (30). The
value of K at each point was found by solving (9) by Newton's method;
then I VF/(OF/ati) I was calculated from (16)-(19) and G(r,O;E) from
(27). Two values of normalized focal distance, measured from the
center of the lens, were considered, namely,

ro = 1.0,

ro = 1.1,

no =

no = 1.36025.

(33)

(34)

The numerical results are given in Table I, and are plotted in Figs. 2
and 3. Also the total dissipated power was computed from (32). For
ro = 1.0,

(AP/Po) = (a/X)[16.91A 13.97g;

and for ro = 1.1,

(35)

( AP/Po) = (a/X)[15.46A 13.13/3]. (36)

For the numerical integration a graded net was used, as follows:

Region I r = 0.00 (0.05) 0.40
0 = 0.0° (7.5°) 180.0°

Region II r = 0.40 (0.05) 0.80
0 = 0.0° (3.0°) 12.0°
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Region III r = 0.80 (0.02) 1.00
0 = 0.0° (1.0°) 12.0°

Region IV r = 0.40 (0.05) 1.00
6 = 12.0° (3.0°) 30.0°

Region V r = 0.40 (0.05) 1.00
= 30.0° (7.5°) 180.0°

Experimentation with a finer net, obtained by simultaneously halving
the intervals in r and 0 in Regions III and V, indicates that any errors
in Table I and (35)-(36) do not exceed a few units of the last figure
shown. The accuracy is therefore believed to be sufficient for all practical
purposes.

A few aspects of the calculation deserve comment. In the first place,
the Green's function (27) is infinite when the field point coincides with
the source point; but the integrand of (26) does not become infinite as
the field point approaches the source point, provided that Q(r,0) re-
mains finite on the axis. The limiting value of the integrand may be
either zero or finite, depending upon the direction from which the field
point approaches the source point; but in any event the contribution of
the apparent singular point during a naive application of Simpson's

TABLE I - THE FUNCTIONS T A(t) AND TB(E)

t
ro = 1.0 ro = 1.1

TA TB TA TB

--1.0 0.0000 0.0000 0.0000 0.0000
--0.9 0.1060 0.0861 0.0985 0.0823
--0.8 0.2155 0.1727 0.1993 0.1645
--0.7 0.3241 0.2564 0.2981 0.2431
--0.6 0.4308 0.3369 0.3940 0.3179
--0.5 0.5345 0.4140 0.4860 0.3887
--0.4 0.6345 0.4876 0.5734 0.4553
--0.3 0.7298 0.5574 0.6553 0.5174
--0.2 0.8198 0.6234 0.7310 0.5749
--0.1 0.9037 0.6856 0.7998 0.6277

0.0 0.9809 0.7440 0.8609 0.6754

0.1 1.0493 0.7974 0.9123 0.7169
0.2 1.1090 0.8464 0.9535 0.7521
0.3 1.1588 0.8907 0.9831 0.7802
0.4 1.1984 0.9306 0.9997 0.8003
0.5 1.2267 0.9659 1.0005 0.8105
0.6 1.2386 0.9937 0.9785 0.8051
0.7 1.2317 1.0132 0.9255 0.7771
0.8 1.2040 1.0251 0.8243 0.7109
0.9 1.1521 1.0324 0.6206 0.5552
1.0 1.0000 1.0000 0.0000 0.0000
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Fig. 2 - The functions TA and TB for a lens with focus at the surface (ro = 1).

rule is at most a finite quantity, which tends to zero as the interval of
integration is reduced. In the numerical calculation the contribution
from this point was omitted.

A discussion of the mathematical singularity at the focus when
= 1 is given in Appendix B. In the mathematical model, the tempera-

ture near the focus is given by
T(p,d) To cos 1,, (37)

where To is a finite constant and p,IY are spherical polar coordinates in
the local coordinate system introduced at the end of Section III. The
value of To is determined by the source strength in an infinitesimal
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Fig. 3 - The functions TA and TB for a lens with focus outside the surface
(ro = 1.1).
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region around the focus; in the limit this region makes no contribution
to the temperature at other points of the sphere. Hence TAW and
TB(E) were calculated, for 1, by setting the integrands of (30)
equal to zero at r = 1, 0 = 0; and TA(1) and TB(1) were evaluated as
in Appendix B.

It goes without saying that in a physical lens the temperature at the
focus will be well defined, which the limit of the expression (37) is not,
and that the temperature distribution will not have an infinite gradient.
The actual distribution will be determined by the amount of heat that
the air conditioning can carry away from the immediate neighborhood
of the focus, as well as by the physical structure of the feed, if the antenna
is being used for transmission. Since, however, the numerical example
at the end of this section suggests that the maximum temperature rise
in a Luneberg lens with surface cooling will be well inside the lens, we
shall not attempt here a more elaborate analysis of the conditions near
the focus.

If ro > 1, so that the focal point is outside the lens surface, then (4)
is not an exact expression for the index of refraction. However, when
ro = 1.1, the maximum difference between the exact index calculated
according to Ref. 2 and the approximate index is about 0.0055 at about
r = 0.87, the approximate index being smaller. As a second test, we
have calculated the distance from the center of the "approximate"
lens at which various initially parallel rays intersect the axis. The
distance varies from 1.0881 for paraxial rays (K = 0) to 1.1205 for rays
with K = 0.95, compared with the design value of 1.1. It tends toward
infinity for marginal rays, but such rays are insignificant so far as the
heating problem is concerned anyway, since by hypothesis the surface
of the lens is in contact with a constant -temperature heat reservoir. We
therefore feel well justified in using (4) to compute the ray paths for
ro = 1.1.

To give an idea of the size of the numbers involved, Fig. 4 shows plots
of the axial temperature rise in degrees Fahrenheit per watt of incident
power, as calculated from (29) and Table I for a lens with the following
parameters:

Po = 1 watt
BTU

0.036
wattsk = 0.25 hr  f t2. (°F/in)m  °C

X = 60 cm (500 inc)

tan S = [1 + 25(n - 1)] X 10-4
a= 40 ft

(38)
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Fig. 4 - Numerical example of axial temperature distribution in two Lune -
berg lenses.

The assumed values of thermal conductivity and loss tangent are more
or less representative of polystyrene foam loaded with metal slivers.
The maximum temperature rise is roughly 0.06°F/watt, and occurs
about a third of the way from the center of the lens to the surface, in
the direction of the focal point. It is of interest to note that the maxi-
mum temperature differs from the temperature at the center of the lens
by less than 15 per cent, even when the focus is at the surface.

The power dissipated in the lens is easily calculated from (35) or
(36). For ro = 1.0,

while for .i.o = 1.1,

(AP/Po) = 0.1777 or 0.85 db; (39)

(OP/Po) = 0.1450 or 0.68 db. (40)

Equations (39) and (40) give the dissipated power when a uniform plane
wave is incident on the lens. Observe, however, that this is not quite
equal to the power loss when the lens is being used as a transmitter,
since in that case there is usually a deliberate illumination taper
across the lens aperture. With a conventional taper, in which the power
density is higher at the center of the lens than at the edges, the loss
will be higher than that obtained with uniform illumination; but one
cannot deduce the total loss from the numbers given in this paper.
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Note Added in Proof

A recent paper by Lerner' is concerned with essentially the same prob-
lem as the present paper. On the basis of a considerable number of ap-
proximations, Lerner calculates the temperature distribution along the
axis of a surface -focus lens when the thermal conductivity and the loss
tangent are constant. The "Average" curve of his Fig. 6 is therefore
comparable to the plot of TRW in our Fig. 2. The two curves do in fact
lie close together except for points less than a quarter of the lens radius
distant from the surface focus. Lerner's approximate analysis predicts
that the maximum temperature rise will occur at the surface focus and
will be equal to 1.25(Po/kX1 tan S. Our calculations give a maximum
rise of about 1.03(Po/kX) tan 3 at a distance of about one -tenth of the
lens radius from the focus, while the temperature rise at the focus is
(Po/kX) tan S.

APPENDIX A

Position of Temperature Maximum

We consider the steady-state temperature distribution which satisfies

V'T = -f for r < a,
T = 0 at r a.

(41)

The source function f (= Q/k) is assumed to be axially symmetric
and nonnegative, and to have continuous first derivatives in the region
r < a.

We shall use rectangular coordinates (x,y,z), cylindrical coordinates
( r,(p,z), or spherical coordinates (r,O,,,o) as convenient. It is assumed
that f is independent of (p , and that it is a nonincreasing function of
distance from the axis, i.e.,

(af/ar) 0. (42)

Now consider the function

IV - (aT/ay) = - (871/ar) sin yo (43)
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in the hemispherical region S defined by

± 2 <a2, 0 <So < Ir. (44)

From (41) and (42) it follows that W is superharmonic in the interior
of S, since

CPIV = (aPay) = (aflar) sin so < 0. (45)

Furthermore on the curved surface of the hemisphere we have

W = -(aT/ay) = -(y/r)(aT/ar) > 0 for r = a, y > 0, (46)

since

(aT/or) < 0 at r = a (47)

if f is nonnegative and does not vanish identically. A formal proof of
this physically obvious statement can be obtained using the Green's
function representation of the solution of (41). On the base of the
hemisphere, (43) yields

W=O at y = O. (48)

Let U be a harmonic function which takes the same values as W
on the IV we have

U (49)

in the interior of S. But U achieves its minimum value zero only on the
boundary of S, so neither U nor W can vanish in the interior of S. It
follows from (43) that aT/Or cannot vanish in the interior of S, and so
T cannot have a maximum there. Hence the maximum value of T must
occur on the axis.

In the present problem the source distribution is given by (15),
namely

f (i'©)

An analytic proof that the right-hand side of (50) is a decreasing func-
tion of distance from the axis would probably be very laborious. We
have, however, calculated the expression in braces numerically for the
two cases treated in this paper, using a square grid of about 600 points
in r and z, and have verified that on such a grid it is a decreasing func-
tion of r, except for a very small region near the surface of the lens
(where r is slightly less than 1 and 0 slightly greater than 7/2 in Fig. 1).
On the other hand, the refractive index n is a decreasing function of r,

Q (7' 0) 2P0 tan Kn VP
(50)

k Xk r sin 0 OF/ax
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and in practical cases tan S will be a sufficiently rapidly increasing func-
tion of n so that the whole source distribution will be a decreasing func-
tion of r. In particular, we have verified numerically that (42) is satisfied
throughout the lens if tan 5 is given by (38).

It will be appreciated, of course, that (42) is a sufficient condition but
not a necessary one to make the maximum temperature rise occur on
the axis. Whether there could exist a hypothetical loss tangent, having
a sharp peak at a particular value of n, which would lead to a ring -
shaped temperature maximum instead of to a maximum on the axis is
still an open question, though not of much practical importance.

APPENDIX B

Temperature Distribution near a Surface Focus

To determine the nature of the temperature singularity in the pres-
ent mathematical model at a surface focus, we investigate the tempera-
ture distribution T(p,6) in the half -space 6 :5_ 7/2 due to the source
function

(pd) =
C cos 4

0,

0 < p < b,

p > b.
(51)

Here b and C are constants, and p,t, are the polar coordinates introduced
at the end of Section III. All quantities are independent of the azimuth
angle v. We seek a solution which vanishes on the plane .0 = 7/2, re-
mains finite as p ---> 0 and as p 00 , and is continuous, together with its
normal derivative, at p = b.

Substitution of a function of the form

T(p,t) = R(p) cos 4 (52)

into Poisson's equation (24) yields the following equation for R(r):

d 2 dR -C/k, 0 p < b,
p - 2R =

p b.
(53)

A solution which satisfies the boundary and continuity conditions is
easily found to be

CR(p) = 2- 1 - 3b

P

)

R(p) = C -
6k p2

0 < p < b,

P > b
(54)
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We observe that

lira R(p) = C /2k, (55)

and this limit is independent of b. On the other hand, if p has any fixed
value greater than zero,

lira R(p) = 0.
ago

(56)

It follows that the limiting value of the axial temperature is determined
by the source distribution in an arbitrarily small hemisphere around
p = 0, and that in the limit this hemisphere makes no contribution to
the temperature at other points of the lens.

If we make the constant C agree with the source distribution given
by (15) and (23), then using (28) and the fact that n = 1 at the sur-
face of the lens, we have

C -2aPo 2(A ± B)Po (57)

Combining (57) with (55) leads to the results given in Table I, namely

lim TAW = lira N(E) = 1. (58)

APPENDIX C

Time Scale for Transient Healing

Suppose that in a Luneberg lens, initially at zero temperature through-
out, an internal source distribution Q(r,O) is turned on at I = 0 and
then remains constant in time, while the surface of the lens is held at
zero temperature. The temperature within the lens must satisfy

kV2T Q = pc(37' /at), (59)

where k is the thermal conductivity, p the density, and c the specific
heat of the medium. Conventional units, such as MKS, are used through-
out this section.

It is well known that the solution of (59) can be written as the sum
of a steady-state part and a transient part, i.e.,

T(r,O,t) = Ta(r,O) T t(r,O,t). (60)

The steady-state term satisfies

kV2T8 = -Q, (61)
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while the transient term satisfies

DV271t = aTi/ot, (62)

where

D = k/ pc (63)

is the diffusivity. The transient term vanishes as t 00 and cancels
the steady-state solution at I = 0; that is,

T t(r,0,0) = -118(r,0). (64)

At the surface of the sphere both terms vanish; namely,

T 8(a,0) = T t(a,0,0 = 0. (65)

A transient solution sufficiently general for our needs may be written
in the form

CO CO

T t(r,0,t) = E E A,iii(x.r/a)P.(cos 0)e-a"mt, (66)
n=0 m=i

where jn is a spherical Bessel function defined in terms of the ordinary
Bessel function by

in(X) = (7/2X)4( n+i(X),

Pn is a Legendre polynomial, x= is the mth root of j(x), and

= Dxnnt2/a2.

(67)

(68)

The Bessel and Legendre functions form complete, orthogonal sets,
so that at t = 0 any reasonable function of r and 0 may be expanded in
a double series of the form (66), where the coefficients A. are given
by integrals similar to those which define the coefficients in a double
Fourier series. In particular, if we had calculated the steady-state solu-
tion T 9(r,0) at all points of the sphere, we could expand it in such a
series and thus satisfy the initial condition (64). We shall not compute
the coefficients An. ; we merely observe that in a transient solution of
the form (66), the individual terms decay exponentially with time, the
faster the larger a... The longest -lived term is the one with smallest
a, namely

Anjo(xoir / a)e'oit = ;101
sin (77-r/ a) e-(Dola2)1 (69)
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The rate at which this term decays permits us to define an approximate
"thermal time constant" for the transient solution, unless of course the
steady-state solution is such that A01 is zero or very small compared to
the other coefficients. Comparing the form of (69) with the expected
form of the steady-state solution makes it appear obvious that /101 will
not be unusually small; and therefore an estimate of the time required
to establish the steady-state solution is furnished by the "half-life" of
the lowest mode,

loi
a2/7r2D.= ljam

Assuming for polystyrene foam the numerical values

p = 1.5 lb/ft3,

c = 0.32 cal/gm  °C,

BTUk = 0.25
hr ft2. (°F/in)

(70)

(71)

we find after some conversions of units,

D = 1.12 X 10-6 m2/sec. (72)

For a sphere of diameter 1 ft,

tol = 35 min, (73)

and for a sphere of diameter 80 ft,

tot = 156 days. (74)

The heating time for a large Luneberg lens may thus be several months
after the transmitter is turned on, with a similar cooling time after it
is turned off.
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Scattering Losses in a Large Luneberg
Lens Due to Random Dielectric

Inhomogeneities
By SAMUEL P. MORGAN

(Manuscript received October 7, 1963)

An approximate theoretical calculation is made of the scattering losses
due to random inhomogeneities in a large Luneberg lens made of dielectric
blocks. A simple model is used in which the average index of refraction of
each block may differ slightly from the value called for by the lens design,
and the index may vary linearly with position inside a given block. The
losses are described by attributing an effective scattering loss tangent to the
lens medium. Tables and curves are given to facilitate the computation of
total scattering loss as a function of block size, mean -square deviation of
average index, and mean -square index gradient within the blocks.

Manufacturing processes for foam dielectric blocks are monitored by
testing the blocks in various orientations in an oversize resonant cavity. An
approximate relationship is derived between the results of cavity resonator
measurements and the parameters of the theoretical model; but it is pointed
out that the assumption of linear index variation across a single block can
be quite unrealistic in practice. Numerical results derived from the present
theory are most likely to be meaningful if the dimensions of the individual
blocks are less than one wavelength.

I. INTRODUCTION

In recent years, large Luneberg lenses have been used as antennas for
long-range radars.' Such lenses have been built of cubical blocks of very
low density polystyrene foam, loaded with varying amounts of aluminum
slivers' in order to approximate the desired variation of refractive index
between the surface of the lens and the center. In theory each block is
perfectly homogeneous and isotropic and has a specified permittivity;
in practice, however, the blocks are not perfectly homogeneous or iso-
tropic, and the average permittivity of a block generally differs more or
less from the value called for by the designer. If the tolerances on the

679
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blocks are too loose, excessive power will be lost from the lens by scatter-
ing from the "misfits"; in extreme cases, scattering may also lead to
unacceptable antenna patterns. On the other hand, if the tolerances are
too tight the yield of acceptable blocks by any reasonable manufacturing
process will be reduced, and the cost of the lens correspondingly in-
creased. Considerable importance attaches, therefore, to setting the
proper tolerances.

This paper treats the problem of scattering losses in a large Luneberg
lens, due to random dielectric inhomogeneities, on the basis of a simple
mathematical model which is described in Section II. According to the
present analysis, the effect of dielectric scattering can be described by
attributing to the material of the lens an effective loss tangent given
by (1) of Section II. The expression for the effective loss tangent is
derived in Section III. Section IV discusses the relationships between
the dielectric deviations whose mean -square values appear in (1) and
the results of resonant cavity measurements on individual blocks, and
stresses that real blocks may not be very well represented by the idealized
model. Finally, a few illustrative numerical examples are worked out in
Section V.

II. DESCRIPTION OF THE MODEL

We consider a "block" lens, that is, a structure built of cubical di-
electric blocks which are intended to approximate an ideal, spherically
symmetric Luneberg lens with a continuously varying index of refrac-
tion. The analysis is based on the following assumptions.

(i) We suppose that a nominal design for a block lens is given. We
do not attempt to decide how many different index values are neces-
sary, or how large the individual blocks can be. We merely assume that
the electrical performance of the lens would be satisfactory if all blocks
were perfectly uniform and homogeneous and had exactly the specified
refractive indices; and we investigate how much the performance of the
lens would be degraded by deviations in the dielectric properties of the

blocks.
(ii) We assume that the permittivity of each block is in fact a linear

function of rectangular coordinates in the block, and that the average
permittivity (which in the linear model occurs at the center of the
block) may differ slightly from the value assigned to the block in the
nominal design.

(iii) Since the lens is many wavelengths in diameter, we assume that
the power scattered out of the lens by a particular block is equal to the
power which would be scattered from a plane wave by a similar block in
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an infinite, uniform medium having the dielectric properties of the
nominal block at that point. We further assume that the scattering
pattern of a single block is so much broader than the beamwidth of the
lens that all the scattered power may be considered lost.

(iv) We assume that the deviations in permittivity are completely
uncorrelated from one block to the next, and that the direction of di-
electric gradient is uniformly distributed over all angles. The assumption
of statistical independence permits us to add the scattered power from
each block directly, instead of adding complex amplitudes and then
squaring, as we would have to do if the properties of a given block were
correlated with those of its neighbors.

(v) We approximate the scattering from a cubical block by the scatter-
ing from a spherical "blob" of equal volume and similar dielectric
properties. This is certainly as accurate as the other approximations
involved in the model, and it reduces the mathematical problem essen-
tially to one which has already been solved in the theory of tropospheric
scattering.3'4

Under the foregoing assumptions and approximations, it turns out
that the power lost by scattering from random dielectric inhomogeneities
in a medium built of cubical blocks may be represented by an effective
loss tangent:

tan (5 = 3 ((An0)2) coo(x) 16 ((An1)2)
soi(x). (I)not 9 not

The symbols on the right side of (1) are defined as follows:
no : nominal refractive index of a given block;

Ono : difference between average index of a given block and nominal
index;

An' : difference between average indices of the "heaviest" and "light-
est" halves of a linearly -varying block (the direction of index gradient
need not, of course, be parallel to any edge of the block) ;

x = 2rano/X , where Xi, is the vacuum wavelength;
a = 0.6201: radius of a sphere whose volume is equal to that of a

cube of edge 1;
coo(s), (pi(x) : functions defined by (30) and (31), tabulated in Table

I, and plotted in Figs. 1 and 2;
( ): average over the neighborhood of a given block.
It must be emphasized that (1) is not applicable to the effects of

systematic deviations from the ideal Luneberg lens structure. For ex-
ample, one might be tempted to apply it to calculate how large the
individual blocks could be, if each block were perfectly uniform and
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had the index of refraction called for by the ideal Luneberg law at its
center. In that case the index of the part of each block nearest the center
of the lens would be systematically too low, while the index of the
farthest part would be systematically too high. This would violate the
assumption of block -to -block randomness, on the basis of which we
added the scattered power to obtain (1). The equation therefore cannot
be used to deduce the allowable coarseness of the nominal design. It
can only tell us the effects of random variations in a nominal design
which is believed, on other grounds, to be satisfactory.

III. SCATTERING BY A "SOFT" SPHERICAL BLOB

In this section we shall compute approximately the power scattered
out of an incident plane wave by a "soft" spherical blob, that is, a
spherical region whose permittivity differs but little from the permit-
tivity of the uniform surrounding medium. This kind of scattering is
often called Rayleigh -Gans scattering and has an extensive literature.5
We shall briefly derive the specific results that we need.

Consider a blob of radius a, centered at the origin of the spherical
coordinate system (r,O,c0). The permittivity of the blob is taken to be

e(r) = eo ei(r),

where eo is the permittivity of the surrounding medium, and

I 1(r)/0 I << 1.

(2)

(3)

For an anisotropic blob 1( r) would be a tensor function, but we shall
not consider this additional complication. A linearly polarized plane
wave, whose electric field is given by

E(r) = Eo exp ( (4)

is incident upon the blob. Here E0 is a constant vector, k' is a unit vector
in the direction of propagation, and 13 = 2ir /X0 , where Xo is the wave-
length of a free wave in the surrounding medium. The time dependence
e' is understood throughout.

According to the basic Rayleigh -Gans approximation, a typical
differential volume element dr' at r' scatters as if it were immersed in a
uniform medium of permittivity co and had an electric dipole moment

dp = iwei(e)E(e)dr'. (5)

We wish to describe the scattered field at the point r = ki in the far
zone, where k is a unit vector in an arbitrary direction. For this purpose
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we defines the magnetic radiation vector N. The contribution to N
from a typical scattering element is

dN = exp (ifikr') dp = iwei(e)E0 exp [43(k - k')  r'] dr', (6)

so the total magnetic radiation vector in a given scattering direction is

N(k - k') = icoEu 1(r') exp [if3(k - k') dr', (7)

where the integration is taken over the whole spherical scattering volume
V.

So far the dependence of the "dielectric deviation" 1(r') on position
has not been specified. We now introduce the assumption that Ei(e)
is a linear function of position with a mean value which possibly differs
from zero. In symbols,

1(r') = Eo[au + -al n r'] (8)a

where ao and al are real numbers whose magnitudes are small compared
to unity, a is the radius of the sphere, and n is a unit vector in an arbi-
trary direction. The expression (7) then becomes

N(k - k') = iwe0E0V[a0/0 a1/1], (9)
where

Io
1= v iv exp [i/3(k - k')  r') dr', (10)

r=
aTT J v

n'ri exp [ifl(k - k')  r'] dr', (11)

and

V = 1ra3/3. (12)

We are at liberty to choose any convenient coordinate system to
describe the scattering problem. We take the z-axis in the direction of
propagation k' of the incident wave, and the x-axis parallel to Eo . The
angular coordinates of the scattering direction k are denoted by (0,i0).

In order to evaluate the integrals /0 and Il , we take advantage of the
spherical symmetry of the scattering volume and introduce a new set
of angular coordinates (x,a), with the new polar axis x = 0 along the
vector k - k'. The plane a = 0 is defined by the two vectors k - k'
and n, so that the angular coordinates of n in this system are (xo ,0).
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Noting that k - k' I = 2 sin 10, we have by a straightforward integra-
tion,

Io =
V
-

J

f
V

17r a exp (2i,3/ sin 10 cos x)r" 1 (Isin x (1x da
o Jo o

where

= Go(2(3a sin lo),

(13)

Go(u) = (3/u3)[sin u - u cos u]. (14)

Similarly,

Il
f2r

[sin xo sin x cos a + cos xo cos x]
a V Jo J0 0

X exp (2i13r' sin 10 cos x)7/3 sin x dr' dx da

= G1(20a sin i0) COS xo,

where

(15)

Gi(u) = (3/u4)[(3 - u2) sin u - 3u cos ul, (16)

and xo is the angle between n and k - k'.
From (9), (13), and (15), the only component of N is the one parallel

to the incident electric field, and it is given by

Nx = iwe0E0V[a0G0(20a sin 10) + a1G1(2fla sin 10) cos xo]. (17)

The scattered power per unit solid angle is6

(1) =
8X02

I N. 12 [COS2 0 COS2 sine go], (18)

where Rio = . / o is the characteristic impedance of the medium. The
total scattered energy is obtained by integrating it over all directions
in space.

Ultimately, we are going to assume that all directions n of dielectric
gradient are equally probable, and it will simplify the subsequent calcu-
lations to carry out the averaging over n first. We obtain

2r rf f I Nz 12 sin xo dxo da
4r o o

(4202E02v2[a02G02(2(a sin o)
012-12 (2/3a sin lob

(19)

If C9,9) is the result of the preliminary averaging over n, the average
power scattered per unit volume of the spherical blob can be written
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in the form

V fo fo
sin 0 d0 (Igo - [32C/13 VO(X) al2c01(X)1)

where*

and

x = 13a = 2ra/X0,

X3 r
<MX) = -9

o

Go (2:r sin 10) (cos2 0 + 1) sin 0 dO,

2
X

'M 9
X) = G1 (2x sin 10) (cos2 0 + 1) sin 0 dO.

0

On the other hand, the average scattered power per unit volume may
be written in terms of the incident power density E02/2no and an effec-
tive attenuation constant a, or an effective loss angle 8, as

2aEo2 2r tan 5 E02
(24)

2no Xo 2no

Comparing (20) and (24), we obtain for the effective loss tangent,

tan S = [3ao2coo( x ) ( x ) . (25)

Since the dielectric deviations described by the constants ao and al are
assumed small, and since the index of refraction of a dielectric medium
is just the square root of the relative permittivity, the refractive index
of the sphere described by (2) and (8) is approximately

n = no -I- all]. 
2a

(26)

The relative deviation of the average index of the sphere from the sur-
rounding value no is

no ao=2
no

(27)

and the relative difference between the average indices of the "heaviest"
and "lightest" halves of the sphere is

On, 2 1.27, f.17,- air cos 0
r2 sin 0 dr do =

3-
8

ai
no 27a3/3 Jo

. (28)- -
Jo o 2a

* The parameter x defined by (21) has nothing to do with the coordinate x,
which will never appear in the same context.
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Substituting (27) and (28) into (25) and averaging over a random
collection of blobs gives

tan = 3 ((Ono)?) 16(r) + 16 ((An,)2) (29)
9

which is just (1) of Section II.
The functions coo(x) and soi(x), which were defined by (22) and (23),

may he expressed either as infinite series or in closed form; thus,
n 2n-1( n2 2)

')(s) 2n(n 1)2(2n)!

5 x _ sin 4x 7

8x 2 16x2 64x3

1 .- -2x Cm 4x,

(1 - cos 4x) (30)

( -)n -1(4x)271 -1(n2 - n + 2) (n -
n-3 2n(n 1)2(2n)!

where

3 37
Vt;

7

.

r3 1

32x5 64x3 6 8x3
-2xCiii 4x (31)

3
(-- 11 ) .-) cos 4x + 2

3 sin 4x
32x5 64x3 (8:iT4 16x2

,

Cin x =
x1 - cos t

dt. (32)

The functions coo(s) and coi(x) are tabulated in Table I and plotted in
Figs. 1 and 2 (note the difference in scale of the two figures).

IV. RESONANT CAVITY TECHNIQUES FOR TESTING DIELECTRIC BLOCKS

In practice, the dielectric blocks are tested in an oversize resonant
cavity' before being assembled into the lens. A typical cavity is shown
in Fig. 3; the cavity dimensions are / X 2/ X 3/, and a cubical block of
edge / is placed with one face against the center of one of the long sides
of the cavity. If the block were perfectly uniform and isotropic, a single
measurement of resonant frequency would suffice to determine its
permittivity, with the aid of an experimental or theoretical calibration
curve which could be derived once for all. The dissipation, which we are
neglecting in the present paper, could be deduced from the change in Q
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of the loaded cavity. Actually the frequency shift when a cubical block
is placed in the cavity depends on the orientation of the block. Twelve
orientations altogether are possible for a block in the location shown
in Fig. 3, and from the measured frequency shifts one attempts to deduce
something about the nonuniformity and/or anisotropy of the given
block.

Ideally one would like to have a simple correlation between the re-
sults of cavity resonator measurements and the total power scattered
by a given block in the lens. In a real block, however, the permittivity
is a (possibly tensorial) function of position, having in principle an
infinite number of degrees of freedom. A single measurement of fre-
quency shift yields a weighted average of the dielectric deviations,
according to (33) below. On the other hand, the total power scattered
by the block in the lens is a different and nonlinear functional of the
dielectric deviations, given by (7) and (18) of Section III. In the general
case it is obviously impossible to write the scattered power as a function
of the results of any finite number of resonant cavity measurements.

In order to make any sort of connection between cavity resonator
experiments and the performance of blocks in the lens, one has to adopt
some model of the dielectric deviations in the blocks, describe the model
in terms of a small number of parameters, express the parameters in
terms of the results of cavity measurements, and finally calculate the
scattered power as a function of the parameters. The parameters which
have been used in the present work are the quantities AN and An1
defined in Section II. It is assumed that each block is isotropic but
nonuniform, with a small constant gradient of the refractive index (or
the permittivity) in an arbitrary direction. We now consider how the
parameters of such a block might be deduced from cavity resonator
measurements.

The average index of the block is taken as the mean of the twelve
measurements corresponding to the different orientations of the block
in the oversize cavity; Ano is the difference between the average index
and the index called for by the lens design. The theoretical dependence
of resonant frequency on the permittivity of a uniform block in the
cavity can be computed numerically using the Rayleigh -Ritz variational
procedure.

The difference Ln1 between the average indices of the "heaviest" and
"lightest" halves of the block cannot be determined quite so directly,
since the direction of dielectric gradient is not necessarily parallel to
any edge of the cube. An experimentally measurable quantity, however,
is the "half -block spread" H, i.e., the difference between the maximum



TABLE I - THE SCATTERING FUNCTIONS (pp (X) AND vi (X)

x c (x) w1 (x) x vo(x) r1(x)

0.0 0. 0.

0.1 0.00029512 0.00000024 6.1 2.8440 0.85496

0.2 0.0023328 0.00000746 6.2 2.8966 0.87218

0.3 0.0077182 0.00005556 6.3 2.9492 0.88947

0.4 0.017795 0.00022784 6.4 3.0016 0.90692

0.5 0.033547 0.00067025 6.5 3.0538 0.92456

0.6 0.055537 0.0015960 6.6 3.1057 0.94243

0.7 0.083883 0.0032751 6.7 3.1574 0.96048

0.8 0.11828 0.0060134 6.8 3.2088 0.97869

0.9 0.15805 0.010125 6.9 3.2601 0.99697

1.0 0.20225 0.015896 7.0 3.3113 1.0153

1.1 0.24975 0.023547 7.1 3.3624 1.0335

1.2 0.29940 0.033205 7.2 3.4136 1.0515

1.3 0.35009 0.044880 7.3 3.4649 1.0694

1.4 0.40087 0.058451 7.4 3.5164 1.0871

1.5 0.45105 0.073672 7.5 3.5680 1.1045

1.6 0.50021 0.090192 7.6 3.6197 1.1219

1.7 0.54820 0.10758 7.7 3.6715 1.1391

1.8 0.59515 0.12537 7.8 3.7234 1.1564

1.9 0.64140 0.14311 7.9 3.7752 1.1737

2.0 0.68742 0.16039 8.0 3.8269 1.1910

2.1 0.73375 0.17689 8.1 3.8784 1.2085

2.2 0.78091 0.19243 8.2 3.9298 1.2261

2.3 0.82932 0.20695 8.3 3.9811 1.2439

2.4 0.87929 0.22054 8.4 4.0322 1.2617

2.5 0.93092 0.23338 8.5 4.0831 1.2796

2.6 0.98416 0.24580 8.6 4.1341 1.2975

2.7 1.0388 0.25812 8.7 4.1850 1.3154

2.8 1.0944 0.27073 8.8 4.2359 1.3331

2.9 1.1507 0.28396 8.9 4.2870 1.3507

3.0 1.2072 0.29809 9.0 4.3381 1.3682

3.1 1.2634 0.31328 9.1 4.3893 1.3855

3.2 1.3190 0.32961 9.2 4.4406 1.4028

3.3 1.3739 0.34702 9.3 4.4920 1.4200

3.4 1.4278 0.36537 9.4 4.5434 1.4371

3.5 1.4809 0.38443 9.5 4.5947 1.4544

3.6 1.5333 0.40393 9.6 4.6460 1.4716

3.7 1.5851 0.42357 9.7 4.6972 1.4890

3.8 1.6367 0.44308 9.8 4.7482 1.5064

3.9 1.6883 0.46225 9.9 4.7992 1.5240

4.0 1.7401 0.48094 10.0 4.8500 1.5416

4.1 1.7923 0.49907 10.1 4.9008 1.5592

4.2 1.8450 0.51667 10.2 4.9515 1.5768

4.3 1.8981 0.53382 10.3 5.0023 1.5944

4.4 1.9517 0.55069 10.4 5.0530 1.6119

4.5 2.0055 0.56743 10.5 5.1039 1.6293

4.6 2.0594 0.58424 10.6 5.1548 1.6466

4.7 2.1133 0.60127 10.7 5.2058 1.6639

4.8 2.1669 0.61864 10.8 5.2568 1.6810

4.9 2.2201 0.63640 10.9 5.3079 1.6982

5.0 2.2729 0.65456 11.0 5.3590 1.7153

5.1 2.3252 0.67307 11.1 5.4100 1.7324

5.2 2.3772 0.69182 11.2 5.4610 1.7496

5.3 2.4288 0.71070 11.3 5.5119 1.7668

5.4 2.4803 0.72955 11.4 5.5627 1.7842

5.5 2.5318 0.74827 11.5 5.6135 1.8015

5.6 2.5833 0.76674 11.6 5.6641 1.8190

5.7 2.6350 0.78491 11.7 5.7148 1.8364

5.8 2.6869 0.80278 11.8 5.7654 1.8539

5.9 2.7391 0.82036 11.9 5.8160 1.8713

6.0 2.7915 0.83772 12.0 5.8666 1.8886
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Fig. 1 - The scattering function po(x).
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and minimum of the twelve measurements of apparent index for each
block, taken in all possible orientations. Intuitively one feels that the
half -block spread of a linearly -varying block must be approximately
proportional to And . To get an estimate of the proportionality factor
we proceed as follows.

First let the cavity contain a uniform, isotropic block of permittivity
eo Let the corresponding resonant frequency be fo and let the electric
field be E0(x,y), perpendicular to the broad faces of the cavity. If the
relative permittivity is nearly unity, then Eo is nearly the field of the
lowest mode in the empty cavity. Coefficients of the expansion of Ea
in terms of the modes of the empty cavity can be obtained numerically,
if desired, for any given permittivity by the Rayleigh -Ritz method.

In any case, if the permittivity of the block is now taken to be eo

2.0

1 . 5

H
1 . 0

0.5

0
O 2 3 4 5 6 7 8

Fig. 2 - The scattering function car (x) .

9 10 11 12
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Fig. 3 - Oversize resonant cavity for testing dielectric blocks.

where El is an arbitrary small dielectric deviation, it is well known8 that
the shift in resonant frequency is given approximately by

etEo2 dV

fo

Af -
2fEE02 dV

(33)

The upper integral in (33) is taken over the volume of the block, since
1 vanishes elsewhere. The lower integral is taken over the volume of
the whole cavity, with  = Eo in the block and E = 7, (free space) else-
where. Equation (33) could be generalized to apply to anisotropic
media if desired.

Let us define the effective index deviation An, to be equal to the
uniform deviation which would give the same shift from the frequency
associated with the nominal block. From (33),

fAnE02 dV
An, -

fE02 dV
(34)

where An is the pointwise deviation from the nominal value and both
integrals are taken over the volume of the block. We shall consider two
cases: (a) a linearly varying block with the index gradient parallel to
one edge, and (b) a linearly varying block with the index gradient
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parallel to a body diagonal. In the present calculation we shall take
E0 to be the field of the lowest mode of the empty cavity; the extra labor
involved in using a more accurate field would not be justified, because
of the crudeness of the approximations which have already been made
in treating the scattering problem. If the origin is taken at the center
of the cavity, so that the block fills the space 0 < x < 1, y I < V,

z I < V, then the electric field is in the z -direction and is proportional to

irJE0 = cos irscos
3/

(35)

If the index gradient is in the x -direction and 0n1 is the difference
between the average indices of the heaviest and lightest halves of the
block, then

AniAn = - - x).
11

The maximum effective index deviation is

Ani
1/

Ane = 2

- x) cos"rx dx
4Ani

I:1

ir
cos2 -7TX dx

21

corresponding to a half -block spread of

8AniH - - 0.811An1 .
2

(36)

(37)

(38)

When the index gradient is parallel to a body diagonal of the block,
the calculation is a little more complicated. We shift the origin to the
center of the block, so that the block occupies the space I x'

11, I z' I <V, and write the electric field as

E0 = cos 71-(x' + V) 'Ty

2/ cos
(39)

Let the index deviation be

An = -cs = - /3
c(.17' y' z')

where c is a constant and

X'

(40)

(41)
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is the equation of a plane normal to the diagonal x' = y' = z' and at a
distance s from the origin. The area of the part of the plane which lies
inside the cubical block can be shown by a little geometry to be

31/3 (le - s2), 0 < s < 1/A/3,
A(s)

la° (1.0/ - 8)2, s Wa2 2

The difference between the average index of the heaviest and lightest
halves of the block is

1 3Z

An! = f csA(s)ds - 13 V
483c/V 0

From (34), the effective index deviation is
f.1/ /1/ c(s' z') 2 r(X,' 1/)

J--;/ LI/ 1A-3-
cos

2/
cos 2

:3/
dx' dy' dz'

(42)

(43)

2c1

11' fil 27(x' + 11) cos2-71-y/
dx,

dy' dz'cos
.1-;1 J-11 -11 2/ 3/

721/3 1371-2

(44)

where we have used (43) to express c/ in terms of An' . It follows that
the half -block spread is

64AniH - = 0.499An1
137T-2

(45)

It is reasonable to expect that, whatever the orientation of index
gradient in a linearly varying block, the proportionality constant relat-
ing An' to H will lie between the values given by (38) and (45). When
in the present approximate treatment it is necessary to express An, in
terms of H, we shall take an intermediate value of the coefficient and set

H 0.6256,n1 An' ti 1.6H. (46)

In view of the universal temptation to substitute numbers into any
formula which appears to be written in terms of measured quantities,
it must be emphasized that the linearly varying block model used in the
foregoing analysis is known to be incorrect, at least for sufficiently large
blocks produced by current manufacturing techniques. Experiments
in which 2 -foot cubes of loaded polystyrene foam were sawed up into
smaller cubes and individually measured have shown the presence of



LUNEBERG LENS SCATTERING LOSSES 693

marked short-range fluctuations in permittivity which contribute very
little to the half -block spread. If the properties of a typical block do
not vary linearly but in a more complicated way with position inside
the block, it is difficult to know what, if any, significance to attach to
the "effective scattering loss tangent" given by (29).

V. NUMERICAL EXAMPLES

We shall use the present theory to compute some numerical examples
of scattering loss in Luneberg lenses, in order to get an idea of the size
of the numbers involved, even though we have just observed that the
linearly varying block may in many cases be an unrealistic model.

If we assume that the probability distribution of Ano is uniform
between - (Ono)max and ±( Ano)max , and that H is uniformly distrib-
uted between 0 and H. , then expressing An, approxiMately in terms
of H by (46), we find that (29) becomes

tan 8 = (An()):nax2
VOW

Hmax2+ 1.5 coi(x), (47)

where

x = 27ran0/X, , (48)

a = 0.6201, (49)

and X is the vacuum wavelength.
In a companion paper,9 numerical formulas have been given for the

attenuation of electromagnetic energy by a uniformly illuminated Lune -
berg lens in which the loss tangent of the lens material is any linear
function of the refractive index. In the reference cited, the loss tangent
was supposed to be due to dissipation, but it can equally well be due to
scattering so far as the effective power loss is concerned. It is assumed
that the loss tangent can be written in the form

tan B = An + B, (50)

where A and B are constants determined by passing a line through the
values of tan 6 corresponding to the surface and the center of the lens,
or by a least -squares fit to more than two points if desired. Then, for
example, the fractional power loss in a lens of radius R, whose focal
point is at a distance 0.1R outside the surface, is given by

AP R= [15.46A + 13.13B].
i-0 Ay

(51)
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In the following examples we shall assume that (Ono)max and Hmax
are constant throughout the lens. For any given ratio of block size to
wavelength, it is simple to calculate tan S at the surface of the lens
(n = 1) and at the center (n = 1.36) from (47), and then to determine
the values of A and B in (50). Finally the fractional power loss may be
written in the form

AP R
= [Fo(Ano),x2 ..1.

Po X.
(52)

The dimensionless coefficients Fo and F1 are given as functions of l/X, in
Table II, and are plotted in Fig. 4.

As a first example, consider a lens 40 wavelengths in diameter, made
of one -wavelength dielectric cubes. If we take

R/X, = 20,

//X = 1,

( Ano), = 0.005,

Hmaa = 0.020,

(53)

then (52) and Table II yield

AP/Po = 0.077 or 0.35 db loss. (54)

The loss would be the same if the frequency were doubled and the block
size halved, while the lens diameter and the values of ( Ano). and
H,.x were held constant.

TABLE II -THE FUNCTIONS Fo AND F1

1/he Fo A IA, Fe Fe

0 . 0 0. 0.

0.1 0.248 0.007 1.1 22.05 9.553

0.2 1.544 0.160 1.2 24.42 10.69

0.3 3.625 0.765 1.3 26.76 11.89

0.4 5.798 1.777 1.4 29.05 13.12

0.5 7.960 2.837 1.5 31.36 14.31

0.6 10.23 3.833 1.6 33.67 15.47

0.7 12.59 4.848 1.7 35.97 16.65

0.8 15.01 5.906 1.8 38.25 17.84

0.9 17.42 7.075 1.9 40.53 19.02

1.0 19.73 8.344 2.0 42.82 20.19
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As a second example, consider a lens with

R/X, = 40,

//Xi, = 2,

(Ano)... = 0.005,

H. = 0.020.
The loss computed from (52) and Table II is

AP/Po = 0.37 or 2.0 db loss.

1.8 2 0
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(55)

(56)

This would correspond to the lens treated in the first example if it were
used at double the frequency with no alterations in physical structure.
Of course it is hardly legitimate to apply (52), which was derived on
the assumption that the scattering loss is a small perturbation, to predict
a loss of 2 db. We can conclude from (52), however, that to reduce the
scattering loss in the second lens to 0.35 db, it would be necessary to
hold H. down to 0.0065 if (Ono)max were still equal to 0.005.

Finally we note that the examples just given refer to blocks whose
dimensions are comparable to or greater than a wavelength, and for
which the assumption of linear index variation is very likely to be in-
valid. If the formulas were applied to blocks of fractional wavelength
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size, as can easily be done using Table I or Table II, the half -block
spread might be a more significant parameter, since very short-range
fluctuations scatter so little energy, and the computed results might be
more meaningful. The working out of additional numerical examples,
however, is left to the reader.
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The 1962 Survey of Noise and Loss on
Toll Connections

By INGEMAR NASELL

(Manuscript received October 14, 1963)

The 1962 sample survey of message circuit noise and loss on Bell System
toll connections is described and discussed in this article. The results are
presented in terms of the distribution of noise levels on toll calls as estab-
lished in the present system, the distribution of end -office to end -office losses
on these calls, and the distribution of airline distances between end -offices.
It is shown that the noise distribution referred to the subscriber's set has a
mean of 19.7 dbrnc with a standard deviation of 7.8 db, that the mean of the
distribution of end -office to end -office losses is 7.7 db with a standard devia-
tion of 3.0 db, and that 60 per cent of all toll calls are shorter than 30 miles,
while only 10 per cent span a distance of more than 250 miles. The noise
level versus distance and loss versus distance relationships are investigated
and analyzed. The noise level is found to increase by 2.2 db for each doubling
of the airline distance between end -offices, while the loss shows an increase
of 0.6 db for each doubling of the distance. Finally, present performance of
the Bell System toll plant is evaluated in terms of noise and volume grade -of -
service estimates.

I. INTRODUCTION

Most transmission engineering studies require some knowledge
about the noise and loss performance of the telephone plant. When
transmission objectives are being reviewed and new ones are to be set,
such knowledge is of particular importance. Because of the significance
of decisions in this area, it is necessary that the data used be representa-
tive and give an accurate systemwide picture of the performance. Recog-
nizing these needs in the current work of setting new message circuit
noise objectives, a nationwide sample survey of noise and loss on toll
connections in the Bell System toll network has been undertaken. It is
the purpose of this article to describe the survey and discuss its results.
The application of the findings of the survey to the setting of new over -
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all message circuit noise objectives is treated in an accompanying
article.'

II. DEFINITION OF POPULATION

As in any sample survey, it is important that a precise definition be
given of the population, in order that the extent and limitation of the
survey results be known.

The population was defined to consist of all toll calls made during the
busy hour of an ordinary business day and originating from Bell System
central office buildings within Continental U.S.A. However, only those
central office buildings were included that were in service at the begin-
ning of 1960, while all Bell System and independent company central
offices in Continental U.S.A. were included as terminating points for
the toll calls. The busy hour was defined as the "official" busy hour of
the toll office on which the originating central office homes. It was not
considered practical to study the variation with time of the noise dis-
tribution on toll calls, and therefore the arbitrariness introduced by
not specifying one or more particular "ordinary business days" was
accepted.

All calls terminating within Continental U.S.A. were considered to be
toll calls if they satisfied the following two criteria: (i) the customer was
detail billed for the call; i.e. an operator ticket was issued or the call was
recorded by automatic message accounting (AMA) equipment, and
(ii) the originating and terminating central offices did not home on the
same toll office. The latter criterion was introduced because, in areas
with extended area service (EAS), the customers are in general not
detail billed for those short -haul calls where originating and terminating
central offices home on the same toll office. However, in areas where
EAS has not been introduced, the opposite is in general true. This
accounts for large deviations in the apparent toll calling patterns be-
tween central offices. Since these deviations are only artificial, and
since they contribute toward a decrease in sampling precision, criterion
(ii) above was introduced in order to make such deviations less pro-
nounced.

III. SAMPLING PLAN AND SAMPLE SIZE

The sample was selected in two stages in the following way:*
From a listing of the 7878 Bell System central office buildings in

* Detailed discussions of the sampling plan used and of methods for determin-
ing the sample size and selecting the sample are found in standard works on the
subject of sample surveys. See Refs. 2 and 3.
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service at the beginning of 1960, 17 were selected at random. The prob-
ability of selecting any one office was made proportional to an estimate
of size, where the size of the office is defined as the number of outgoing
toll calls in the busy hour of an ordinary business day. The number of
lines per office served as an estimate of this size, and the assumption
was made that these two numbers were approximately proportional.
Randomness in the selection was assured by the use of tables of random
numbers. After these offices had been chosen, information was acquired
from each of them about its outgoing toll traffic. This information had
the form of lists of all outgoing detail billed toll calls during the busy
hour of one ordinary business day. It was, however, estimated that in
some offices the total outgoing toll traffic would be less than the sample
size. For these cases the lists contained the outgoing toll traffic during
the busy hour of several consecutive business days. The data for the
lists were obtained from operator toll tickets and AMA printouts. The
main information given for each call was the terminating central office.
By the use of information in the Long Lines Dept. dial routing pamphlet,
it was then possible to exclude from these lists all calls that terminated
in a central office that homed on the same toll office as the originating
central office. Furthermore, information in the Long Lines Dept. dis-
tance dialing reference guide was used to exclude all calls that did not
terminate inside Continental U.S.A.

To test the whole procedure for the survey, a pilot survey was per-
formed at Dover, N. J., in the spring of 1962. Among other results, this
survey showed the ratio of the number of long -haul calls to the number
of short -haul calls to be quite low. However, in order for us to be able to
perform an analysis of noise level versus distance, it was necessary that
the sample contain a reasonably large number of both short -haul and
long -haul calls. In view of this, the findings at Dover indicated that the
sample size would have to be made very large in order for the sample to
contain a reasonably large number of long -haul calls, and this would
imply making an unnecessarily large number of measurements on short -
haul calls. To solve this problem, it was decided to perform two separate
surveys, one on toll calls terminating inside the originating numbering
plan area (NPA), and the other on calls terminating outside the originat-
ing NPA. These two surveys will be referred to as subsurveys of the
connection survey.

All entries on the lists of outgoing toll calls were therefore referred to
one of the two categories defined above. After this had been done, the
total number of calls to be included in the sample for each subsurvey and
each central office was determined. Finally, this number of calls was
selected from the corresponding list by the use of random number tables.
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In this selection, all entries on a list had the same probability of being
included in the sample.

Table I lists the 17 central offices included in the sample as well as
the corresponding number of inside-NPA and outside-NPA calls. The
table shows that the sample contained a total of 514 inside-NPA calls
and 727 outside-NPA calls. For each of the 17 central offices, the sample
size was determined in such a fashion that the resulting sample is self -
weighting. This means that all measurements taken carry equal weight,
and it leads to convenient and straightforward methods of data analysis.

The sample sizes were determined from estimates of variability of
noise level readings within and between central offices, combined with
the precision criterion that the mean of the noise distribution be stated
within ±1 db at the 90 per cent confidence level.

IV. METHOD OF MEASUREMENT

The measurement phase of the survey consisted of setting up the
toll connections selected in the sample and measuring the noise and
loss at the originating end; see Fig 1. The connections were set up so as
to duplicate as closely as possible the conditions prevailing at the time
the original call was made. All of the original calls were made during the
busy day. The probabilities of alternate

TABLE I - CONNECTION SURVEY SAMPLE SIZES

Central Office Location
Sample Size

Inside NPA Outside NPA

Boston, Mass. 72 126
Brooksville, Fla. 24 88
Cheshire, Conn. 33 20
Dallas, Tex. 2 23
Detroit, Mich. 9 28
El Paso, Tex. 0 8
Fairfield, Conn. 40 50
Fort Lauderdale, Fla. 21 13
Hyattsville, Md. 3 8
Keyport, N. J. 100 22
Kingston, Pa. 17 23
Knoxville, Tenn. 11 21
Niagara Falls, N. Y. 77 30
Queens, N. Y. 0 137
Richmond, Va. 11 15
Riverside, N. J. 61 96
Selma, Cal. 33 19

Total sample size: 514 727
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Fig. 1 - Connection survey measurements in a Boston central office.
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routing and of high loading of the transmission facilities are then high.
To keep these probabilities at the same levels, all measurements were
performed during the busy period of ordinary business days.

The conditions at the time the original call was set up differed from
those during our measurements in one respect: all measurements were
made from the originating central office and they all terminated in the
distant central office; in other words, the loops were excluded from
consideration. This was done deliberately in order to isolate the trans-
mission characteristics of the toll plant from those of the loop plant.
In addition, any other procedure would have been very impractical
and time-consuming, since it would involve subscribers at least at one
end of the connection. In considering a toll connection from subscriber
to subscriber, the influence of the loop plant must be taken into account;
its performance is reported on in the accompanying article.'

For each sample call two measurements were made. In the first one,
the near -end noise level was recorded on a toll connection terminated in
the distant central office. The distant termination was made either in
the quiet or balanced termination of the central office, or in the "hold"
circuit of a telephone set in that office, or by a telephone set itself - in
the latter case with the transmitter covered so that room noise was ex-
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eluded from the connection. The use of the quiet termination of the
distant office was avoided in all cases where "on -hook" supervision of
that termination was known or could be suspected, since this condition
results in the in -band signal on some types of carrier being left on. Such
a tone would tend to give an erroneously high noise reading on the
connection. As can be seen by this example, care was exercised to ensure
that all noise measurements gave the noise level that would occur in the
silent intervals between speech on actual telephone connections. *
Termination in a telephone set, with the transmitter covered, was used
only in those cases where no telephone set with "off -hook" supervision
in the distant central office was equipped with a "hold" feature. In
these cases, monitoring at the receiving end ensured that room noise was
effectively kept out of the connection.

The second measurement for each call in the sample was made to
record the end -office to end -office loss. For practical reasons a standard -
level tone could not be supplied from the far end on the noise measure-
ment calls. Therefore a new connection was established, terminating in
the 1000 -cycle milliwatt supply of the distant office. In this way, it is
entirely possible that the two calls were routed differently. No effort
was made to find out what route was used in any particular case. There-
fore the route length of the connections is not known. However, distance
is an important parameter. The airline distance between the end -offices
was therefore associated with each measured connection.

Both types of connections mentioned above were established from
an ordinary telephone set connected to a "zero" loop in the originating
central office. This set was located in the same building as the central
office equipment.

After a particular connection had been established, the set was
switched out of the circuit and replaced by a 900 -ohm resistor across
which a 3A noise measuring set4 was connected in the bridging position.
The time average during 10-30 seconds of the level indicated by the 3A
set was taken as the noise level reading of the circuit. The noise measur-
ing set was always used with C -message weighting, and hence the meas-
ured levels are expressed in dbrnc. Since the C -message weighting
introduces no loss at 1000 cycles, it was used also in the measurement of
end -office to end -office loss.

Routing of outgoing toll calls could in general he expected to be
different for operator -handled versus direct -dialed (DDD) calls. This

* When compandors are present in a connection, the noise level during speech
is higher than in the silent intervals. The subjective rating of the noise is there-
fore poorer than that based on the measured noise level. This compandor effect
will be ignored.
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fact was taken into account in the natural way; connections were set up
by operators or direct dialed depending on whether the original calls
were operator -handled or AMA -recorded.

All of the terminating central offices were not equipped with milliwatt
supplies or balanced terminations, nor were all of them attended. This
meant that some measurements could not be made with distant termi-
nations as given by the calls in the sample. The method used to treat
these cases was to make measurements on a toll connection terminated
in a central office geographically close to the desired one. The errors
introduced by this procedure were judged to be negligibly small for
long -haul calls and small enough to be disregarded even for short -haul
calls. For calls terminating inside originating NPA, 1.9 per cent of the
noise measurements and 8.8 per cent of the loss measurements had to be
made with a substituted terminating central office. For outside-NPA
calls, the corresponding figures are 1.1 per cent and 3.9 per cent.

V. CONNECTION SURVEY RESULTS

All data were punched on IBM cards, and most of the analysis re-
ported here was made on the IBM 7090 digital computer at the Murray
Hill, N. J., location of Bell Telephone Laboratories. One card was
punched for each call in the sample; each card gives the originating
and terminating central offices of the corresponding toll connection, the
measured noise level, the measured end -office to end -office loss, and
the airline distance between the central offices. The latter were com-
puted by the use of geographical coordinates given in the Long Lines
Dept. distance dialing reference guide.

In the discussion to follow, a set of measurements called the "pooled"
data will be referred to several times. In particular, it will be used
whenever the performance of all toll calls is discussed. This set of data
consists of 998 toll calls, of which 514 are inside-NPA and 484 outside-
NPA calls. In this way, all inside-NPA calls and part of the 727 outside-
NPA calls are included; the percentage of outside-NPA calls included
was chosen to make the pooled data representative of all toll calls. This
percentage reflects the fact that 52 per cent of all toll calls terminate
inside and 48 per cent outside the originating NPA.

5.1 Noise

Evaluation of grade of service' cannot be made directly from the
survey noise distributions. The reason is that subscribers' reactions are
given in terms of opinion curves for noise measured across their subset,



704 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1964

while all measurements in the survey were made at the end of a "zero"
loop. The conversion from this point of measurement to the subscriber
set is, however, quite simple. The equalizing properties of the 500 set
imply that the combined response of loop and receiver is essentially
constant for loop lengths up to 15,000 feet. A recent survey of loop
characteristics has shown this to account for about 83 per cent of all
Bell System loops.' For these loops, then, an increased loop loss is
compensated for by a higher sensitivity of the receiver. For the opinion
curves to be applicable, the connection noise should therefore be trans-
formed to the end of a loop equipped with a subset having the same
sensitivity as the subsets used in the subjective tests that established
the opinion curves. The sensitivity is determined by the dc current,
which was 55 ma in the above -mentioned tests. A regression analysis
of loop loss vs dc current, using data from recent loop surveys,' showed
the average loss of a 55 -ma loop terminated in a 500 set to be 5 db.
Therefore the conversion to the subset is made by subtracting 5 db from
the noise levels measured in the connection survey, and after this
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Fig. 3 - Scatter diagram of noise level vs distance: toll calls terminating
outside NPA.

conversion the opinion curves can be applied directly to evaluate noise
grade of service.

For loops longer than about 15,000 feet the combined loss of loop and
receiver is larger than for the shorter loops. The received noise levels are
therefore lower and the percentage of calls classified good or better is
higher. However, the received volumes are also consistently lower, and
therefore it would be incorrect to regard the service provided to these
subscribers as superior to the service provided to subscribers on short
loops. These arguments justify the use of one loop loss figure for all
loops in the conversion of noise levels to the subscriber set. In the dis-
cussion to follow, all noise levels are referred to the subset.

The relation between noise level and distance is shown in Figs. 2 and
3, which are scatter diagrams wherein the abscissa gives the airline
distance in miles and the ordinate gives the measured noise level re-
ferred to the subset. From these figures we observe that the noise levels
increase with distance and that the variability of the noise levels de-
creases with distance. The scatter diagrams cannot be used directly
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for quantitative analysis, since two observations with coinciding distance
and noise level are recorded by just one point. However, the above
observations form the basis for regression analysis of noise versus dis-
tance discussed later.

Fig. 4 shows the cumulative distribution functions for noise levels
on inside-NPA calls, outside-NPA calls, and all toll calls. The mean
and standard deviations of these three noise distributions are given in
Table II. This table also shows the precision achieved in terms of the
90 per cent confidence limits of the true mean for each of the three
distributions. These confidence limits have been estimated from the
sample by methods discussed in Ref. 3.

The present noise performance of the toll system in terms of the
over-all objective can be estimated from Fig. 4. The "classical" over-all
noise objective states that noise from all sources in a subscriber -to -
subscriber connection should seldom exceed 26 dbrnc at the line termi-
nals of the station set. Fig. 4 shows that on 23 per cent of all toll calls
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TABLE II - DISTRIBUTIONS OF NOISE LEVELS ON TOLL CALLS,
REFERRED TO THE SUBSET

Mean in dbrnc Std. Dev. in db

Inside NPA 17.4 dE 2.7 7.2
Outside NPA 23.6 dE 3.4 7.5
All toll calls 19.7 dE 2.6 7.8

this limit is exceeded even before the influence of loop noise has been
considered.

A nationwide survey of transmission conditions in the switched mes-
sage network, with special regard to their influence on data transmis-
sion, was undertaken in 1959.6 In this survey, various transmission
characteristics, among them message circuit noise, were measured on
two classes of toll calls, short -haul calls of up to 400 miles airline distance,
and long -haul calls 401-3000 miles long. The results of this survey have
found wide application; a comparison with the results of the connection
survey is therefore of interest. In this comparison, the distinction be-
tween calls terminating inside and outside originating NPA is nonessen-
tial. Therefore, the pooled data have been used to compute mean and
standard deviation in the noise distribution on toll calls spanning 0-400
miles and 401-3000 miles, respectively. Table III gives these figures as
well as those from the data survey, where the latter have been converted
from dba to dbrnc. The deviations between the two sets of results are
regarded as moderate in view of the different scopes and objectives of the
two surveys.

Using regression analysis, the pooled data have been used further to
analyze quantitatively the relation between toll noise level and distance
between central offices. The independent variable x is defined as the
logarithm to the base 2 of the airline distance in miles, and the dependent
variable y as the toll noise level referred to the subset. The model used

TABLE III - COMPARISON OF NOISE DISTRIBUTIONS OF THE 1959
DATA SURVEY WITH THOSE OF THE 1962 CONNECTION SURVEY;

NOISE LEVELS REFERRED TO THE SUBSET

Short -Haul Long -Haul

Mean, dbrnc Std. Dcv., db Mean, dbrnc Std. Dev., db

1959 data survey 22.0 4.7 28.9 5.5
1962 connection survey 19.1 7.4 30.3 4.5
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in the analysis is that the mean noise level E(y I x) for given distance is
a linear function of x. The slope of the regression line will then be ex-
pressed in db per double distance (db /dd). An additional assumption
must be made concerning the variance of y corresponding to a given
value of x. The first assumption made here was that this variance is
constant. The hypothesis of equality of the variances of y in the different
length classes into which the data were grouped was then subjected to
a statistical test. (In all regression analyses made of the connection
survey data, these classes had length x = 1, or one double distance.)
The outcome of this test (Bartlett's test) showed that the probability
of the hypothesis being true was less than 0.1 per cent. On the basis of
this the hypothesis of equality of the variances was rejected. The next
step was to investigate the reason for this inequality of the variances.
To this end a regression analysis was made with the same independent
variable x as above, but with the variance of y for given values of x as
the dependent variable. This analysis showed the variance to decrease
with x according to the formula

E[Var (y) I x] = -6.6x + 80.7 (1)

(valid for 3 x 11); i.e., the average variance decreases at a rate of
6.6 for each doubling of the distance. The slope of the regression line
(1) deviates significantly from zero; this fact is a good reason for using
(1) rather than equality of the variances as an assumption in the re-
gression analysis of y on x. Carrying through a regression analysis on
this basis gave the result

E(y I x) = 2.2x -I- 7.9, (2)

i.e. the average noise level increases by 2.2 db for each doubling of the
distance. The hypothesis of linearity of the regression curve was tested
and accepted. Therefore (1) and (2) give together in condensed form a
description of the behavior of noise on toll connections as a function of
the airline distance between originating and terminating central offices.
A plot of these two regression lines is found in Fig. 5. The two dashed
curves in this figure are confidence limits for the mean and will be dis-
cussed later.

The precision achieved in the survey is shown in Table II in terms of
the 90 per cent confidence intervals for the true mean. These intervals
are considerably wider than the required ±1 db. It is therefore of interest
to consider possible alternate ways of stating the precision. One reason
for the poor precision achieved was the unexpectedly large variability
of the mean noise levels between central offices. This is illustrated in
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Fig. 5 - Regression lines of noise level and noise variance vs airline distance.

Table IV, which shows pooled data results for each of the 17 central
offices in the sample as given by the mean of the measured noise levels,
the mean of the end -office to end -office losses, and the distance in miles
that corresponds to the mean of the distribution of the logarithm of the
distances. One factor that contributed to this variability was the varia-
tion in calling habits and traffic patterns from one office to another.
Because of the variation of noise level with distance, it seems likely that
these variations should have a less pronounced effect on the precision if
the latter were stated for the mean of a noise distribution on calls that
are confined to a particular mileage stratum. That this is actually the
case is shown in Table V, where the precision is given for the pooled
data grouped into length classes, each of which is one double distance
wide. Although the number of observations in each length class is
considerably lower than the total, it is seen that the precision is in
several cases increased, the reason being a decrease in the variability of
the data.

Still another way of stating achieved precision is by way of the re-
gression analysis. The confidence interval of the mean of y can be given
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TABLE IV - CONNECTION SURVEY RESULTS: MEAN NOISE LEVEL,
MEAN END -OFFICE TO END -OFFICE LOSS, AND DISTANCE CORRE-

SPONDING TO MEAN OF DISTRIBUTION OF LOG DISTANCE

Central Office Location
Mean Noise Level
at Subscriber Set,

dbrnc

Mean End -Office
to End -Office Loss,

db

Distance Corr. toMean
of Distr. of

Log Distance,
Miles

Boston, Mass. 18.5 9.3 58
Brooksville, Fla. 32.5 8.3 62
Cheshire, Conn. 20.7 8.3 37
Dallas, Tex. 23.2 6.0 203
Detroit, Mich. 21.7 9.1 129
El Paso, Tex. 28.0 7.8 508
Fairfield, Conn. 18.0 7.4 28
Fort Lauderdale, Fla. 21.9 6.7 75
Hyattsville, Md. 20.9 10.3 136
Keyport, N. J. 14.1 7.3 21
Kingston, Pa. 18.2 11.5 48
Knoxville, Tenn. 25.3 6.1 121
Niagara Falls, N. Y. 24.7 6.6 33
Queens, N. Y. 16.8 8.0 36
Richmond, Va. 24.6 7.6 99
Riverside, N. J. 14.6 6.1 15
Selma, Cal. 16.8 6.2 41

Total 19.7 7.7 40

for any particular value of x. In the determination of such a confidence
interval, all observations made for all x values are used. It can therefore
be expected that these confidence intervals are narrower than those
given in Table V. That this is true is shown by the dashed curves in
Fig. 5 - the 90 per cent confidence interval has width ±0.3 db for
x = 6.2, and this width increases to no more than db when the
deviation of x from its mean value 6.2 is maximum. Looked at in this
fashion, the achieved precision can certainly be regarded as satisfactory.

TABLE V - CONNECTION SURVEY PRECISION

Distance Class, Miles Width of 90% Confidence Interval For Mean Of
Noise Distribution, db

6-11 ±4.0
11-23 ±2.7
23-45 +3.8
45-91 ±2.9
91-181 +2.4

181-362 ±1.4
362-724 +1.4
724-1448 ±2.1

1448-2896 +2.2
All pooled data ±2.6
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As a conclusion of the discussion of noise results, it is of interest to
examine present performance as expressed by noise grade of service. The
over-all grade -of -service figures for all toll calls made are 97.0 per cent
good or better and 0.3 per cent poor or worse. These figures indicate
that the over-all noise performance of the present toll plant is quite good.
However, a detailed study of the relation between grade of service and
distance shows that the performance is less satisfactory on toll calls
spanning large distances. This is discussed in some detail in the accom-
panying paper,' and the concept is actually used as a basic tool in the
derivation of new over-all noise objectives.

5.2 Loss

The end -office to end -office losses are shown as a function of distance
in the scatter diagrams of Figs. 6 and 7. It is apparent from these dia-
grams that the variation of loss with distance is only moderate. This
variation is the subject of the regression analysis discussed later.

The cumulative distribution functions for end -office to end -office

20

m

Z15
U)
U)

_J

w

LL
U_

0
010

0

LL
LL

w

5
z
w

 

      
   

 
---.---1 r -

10 30 100 300 1000 3000
AIRLINE DISTANCE IN MILES

Fig. 6 - Scatter diagram of loss vs distance: toll calls terminating inside NPA.



712 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1964

20

o3
0
Z 15

rn
cf)
0

LL
LL

100

O

w
U
LL
LL

z

5

z
w

0

3

  011 
  N   I

11   
MN N. 00

 
  

   040 IN     a  N 
 "NON ONO   

      Me    
   DO    I

  
  

. .  

10 30 100 300
AIRLINE DISTANCE IN MILES

1000 3000

Fig. 7 - Scatter diagram of loss vs distance: toll calls terminating outside NPA.

losses on inside-NPA calls, outside-NPA calls, and all toll calls are
shown in Fig. 8. The mean and standard deviations of these three loss
distributions are given in Table VI.

The 90 per cent confidence intervals for the true mean loss are seen
to have a width of ±0.6 or ±0.7. This indicates that the precision of
the loss data is considerably higher than that of the noise data. The
reason is that the loss distribution variances are much lower than the
variances in the distributions of noise levels.

In the 1959 data survey, loss measurements were made from which
the distributions of end -office to end -office losses on short -haul and

TABLE VI - DISTRIBUTIONS OF END -OFFICE TO END -OFFICE
LOSSES ON TOLL CALLS

Mean, db St. Dev., db

Inside NPA 6.9 f 0.7 2.7
Outside NPA 8.3 dE 0.6 3.1
All toll calls 7.7 f 0.7 3.0
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long -haul calls have been established? Again, we compare these results
with the corresponding distributions of the pooled data of the connection
survey. The comparison is made in Table VII, which gives means and
standard deviations of the corresponding distributions.

Both parameters are seen to be lower for the connection survey dis-
tributions than for those of the data survey. The difference between
the means could be taken as a measure of the decrease of the average
end -office to end -office losses in the toll plant between 1959 and 1962

TABLE VII - COMPARISON OF DISTRIBUTIONS OF END -OFFICE TO

END -OFFICE LOSSES OF THE 1959 DATA SURVEY WITH

THOSE OF THE 1962 CONNECTION SURVEY

Short -Haul Long -Haul

Mean, db Std. Dev., db Mean, db Std. Dev., db

1959 data survey 9.5 3.7 10.9 4.0
1962 connection survey 7.8 2.7 9.3 3.5
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as a result of the continuing conversion to low -loss operation. However,
this quantitative interpretation of the data is dangerous, since the con-
nection survey was based on probability sampling techniques, while the
data survey was not.

In the regression analysis of end -office to end -office loss versus
distance, the independent distance variable x was defined in the same
way as for the noise analysis, while the dependent variable y was the
measured loss. The pooled data were used for this analysis. Bartlett's
test showed in this case that the hypothesis of equality of the variances
of y corresponding to given values of x was true with probability smaller
than 0.1 per cent. Therefore this hypothesis was rejected, and a re-
gression analysis of variance versus x was performed. This analysis
showed that the variance increases with x according to the formula

E[Var(y) = 1.5x - 0.7 (3)

(valid for 2 x < 10); i.e., the average variance increases with 1.5
for each doubling of the distance. This slope deviates significantly from
zero, so again we take this as a strong indication that the systematic
variation of the variance with x according to (3) was the prime reason
for the inequality of the variances. Proceeding with the regression
analysis of y on x on this basis gave the result

E(y x) = 0.6x + 4.5; (4)

i.e., the average loss increases by 0.6 db for each doubling of the distance.
The hypothesis of linearity of the regression curve was tested and
accepted. It follows that (3) and (4) give, in condensed form, a descrip-
tion of the behavior of end -office to end -office losses on toll connections
as a function of the airline distance between the offices. A plot of the
two regression lines is found in Fig. 9. The two dashed curves give the
90 per cent confidence intervals for the mean of y corresponding to
given values of x. The confidence interval has its minimum width of
±0.1 db at x = 4.7. For low values of x the width increases to ±0.3 db,
while for high values of x the maximum width is ±0.5 db.

It is of interest at this point to compare (1) and (3), which show that
noise variance decreases and loss variance increases with distance. It
can be seen from the scatter diagrams of Figs. 1 and 2 that the reason
for the decrease of the noise variance with distance is the fact that a
"noise floor" exists, below which no noise level occurred, and that this
noise floor increases with distance, while the apparent upper limit for
the noise levels is essentially constant. On the other hand, the reason for
the increase of loss variance with distance is that long connections in
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Fig. 9 - Regression lines of end-oflice to end -office loss and loss variance vs
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the present toll network may contain between one and seven intertoll
trunks, (ITT), in tandem while for short ones the maximum possible
number of ITT's is lower than seven. Over the range of distances where
(1) and (3) are both valid (3 < x < 10), we find that the noise variance
is always greater than the loss variance. It should be observed that these
variances are not the squares of the standard deviations that appear in
Tables II and VI. The latter are standard deviations of noise and loss
distributions over all distances, while the former are the variances that
appear when the distance is kept constant.

A nationwide survey of speech volumes, measured at the originating
end of Bell System toll calls, was performed by Bell Telephone Labora-
tories in 1959-1961.8 The data of that survey can be used in conjunction
with our loss data to evaluate volume grade of service and thus give an
insight into customer satisfaction of present toll plant loss performance.
The distribution of speech volumes on toll calls, referred to the originat-
ing central office, has a mean of -16.8 VU with a standard deviation of
6.4 db. By applying volume opinion curves,9 we find that the present
distribution of losses on all toll calls gives a received volume grade of
service of 87.1 per cent good or better and 1.2 per cent poor or worse.
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These figures can be compared with the grade -of -service estimates of 83
per cent good and 3 per cent poor or worse that were made on the basis
of a 1950 volume survey!) The comparison indicates a substantial im-
provement in satisfaction of received volumes over the time period
1950-1962.

5.3 Distance

The airline distance between originating and terminating central
offices is known for each call in the sample. The distributions of these
distances for inside-NPA, outside-NPA and all toll calls, respectively,
are shown in Fig. 10. It is seen from this figure that 50 per cent of all
toll calls are shorter than 30 miles, and that only 10 per cent are longer
than 250 miles. The distance scale used in Fig. 10 is logarithmic, and in
this way the distributions plotted have reasonably low skewness. Had
a linear scale been used instead, the distributions would have been ex -
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TABLE VIII - DDD CALLS EXPRESSED AS A PERCENTAGE OF ALL
TOLL CALLS IN DIFFERENT DISTANT CLASSES

Distance Class, Miles Proportion of Toll Calls Direct -Dialed by
Customers

3-6 73
6-11 84

11-23 66
23-45 58
45-91 45
91-181 33

181-362 38
362-724 27
724-1448 17

1448-2896 20
All toll calls 55

tremely skew, and a plot would reveal very little about their true charac-
ter.

The proportions of toll calls that are direct -dialed by customers
(DDD calls) have been evaluated from the connection survey data.
Table VIII shows the results of these evaluations as a function of dis-
tance. It can be seen that although an average of 55 per cent of all toll
calls (as defined in Section II) are DDD calls, this percentage is not
constant with distance. Thus, about 80 per cent of the short -haul toll
calls are direct -dialed by customers, and this percentage decreases with
distance to a value of about 20 in the longest category.

Some questions related to the routing of toll calls in the present Bell
System toll network can be answered on the basis of connection survey
data. Two examples are: (i) the average number of intertoll trunks and
(ii) the relation between circuit length and airline distance, both given
as a function of the distance spanned by the toll connection. Further
studies would, however, be required to answer any of these or similar
questions.

VI. CONCLUDING REMARKS

The feasibility of performing a statistically sound sample survey of
the very complex Bell System toll plant has been satisfactorily shown by
the survey described in this article. The prime importance of the survey
lies in the information it gives about noise and loss performance of the
present toll plant. However, a significant and very important part of
the result is the experience that has been gained in carrying through a
systemwide sample survey. Specifically, it should be pointed out that
the two -stage sampling plan used is extremely well suited for surveys of
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transmitted and received speech volumes, as well as noise, loss, and
composition of loops, of facilities and of trunks. The acquiring of data
of these types is vital in the present work of building a statistical model
of the Bell System plant.
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A New Objective for Message
Circuit Noise

By D. A. LEWINSKI

(Manuscript received October 14, 1963)

The reduction and control of noise on message circuits must be based on
sound noise objectives. For many years the Bell System over-all performance
objective has been "26 dbrnc (20 dba) seldom to be exceeded at the telephone
station set." In this article the derivation of a more flexible and operationally
feasible noise objective is presented. This objective specifies a limit of 20
dbrnc not to be exceeded on subscriber loops, and stipulates various distribu-
tions for noise originating beyond class 5 offices on built-up connections.
The objective is such as to provide Bell System customers with a noise grade
of service ranging from 99 per cent good or better on short connections to 90
per cent good or better on intercontinental connections spanning distances up
to halfway around the world.

I. INTRODUCTION

For many years the Bell System over-all performance objective for
message circuit noise has been as follows: "Noise from all sources in a
subscriber -to -subscriber connection should seldom exceed 26 dbrnc*
(20 dba) at the line terminals of the station set." Since its inception
this objective has been a primary influence in the design of broadband
transmission systems, and it has served as a guide for the engineering
and maintenance of the message network. But improved and new serv-
ices have gradually changed the makeup and the performance require-
ments of the plant. Thus, work was recently undertaken to establish a
new performance objective - one better suited to the noise conditions
imposed by a changing communication network.

The new objective provides a long-range Bell System goal and, as
such, serves as a guide for the design of future systems and for establish-
ing maintenance procedures. In addition, it indicates those areas where

* The new unit for noise measurement with the 3 -type noise measuring set is
dbrnc.1 Reference noise, "rn," is 10-12 watts of 1000 -cps power, whereas "c" re-
fers to C -message weighting.
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efforts to improve the noise performance of existing systems should be
directed. For economic and technical reasons, however, it appears to be
impractical to upgrade the performance of all existing equipment, most
of which was designed to earlier standards. Therefore, it will probably
be a number of years before the level of performance and customer
satisfaction associated with the new objective can be fully realized in
the Bell System plant.

Derivation of the new objective necessitated two major systems
engineering projects: (i) subjective tests to establish a quantitative
description of the effects of noise experienced by telephone users in terms
readily translatable into an over-all transmission standard; (ii) noise
surveys to provide data on Bell System noise performance. From this
information, system noise performance estimates were made and exam-
ined from the telephone user's standpoint. In addition, a model of
system noise behavior was constructed. These steps were necessary in
order to (i) establish a framework for the statement of the objective,
and (ii) provide insight for the derivation of the associated numerics
so that a desired level of customer satisfaction could be realized. In
accord with present philosophy, customer satisfaction is stated in terms
of "grade of service."'

We begin by discussing the work on the subjective effects of noise
and emphasize how the results lend themselves to noise grade of service
estimates. We then use the latter tool to evaluate system noise perform-
ance and show in turn that this requires the new objective to be com-
prised of two parts, (i) a limit for noise attributable to the customer's
loop, and (ii) distributions for noise on toll connections where the aver-
age values and standard deviations of these distributions are length -
dependent. Last, we derive the actual numerics which constitute the
new over-all objective and are the basis for new noise objectives for
design and maintenance.

II. SUBJECTIVE EFFECTS OF NOISE

2.1 General

In setting performance objectives for speech transmission it is im-
portant to have a quantitative description of the subjective effects of
the transmission parameter under consideration. Instead of describing
these effects on a psychological scale, experience has shown that simple
expressions of attitude such as absolute judgments are adequate when
the experiment is properly designed. Assessments made on an absolute
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basis can be readily transformed into satisfaction criteria, which in turn
can be used as a foundation for over-all transmission objectives.

2.2 Description of Tests

To get a comprehensive picture of telephone user attitude toward
noise, three subjective evaluations were actually undertaken. In addi-
tion to noise effects, the effects of received speech volume and signal to
noise were also evaluated. Except for the relevant test instructions,
each of these evaluations was conducted similarly by asking observers
to appraise a series of simulated telephone calls in terms of a given set of
response categories: excellent (E), good (G), fair (F), poor (P), and
unsatisfactory (U).

The noise tests were conducted using 500 -type station sets with
received volume at a constant level of -28 VU,* and noise (a composite
of power hum, switching office and thermal noise) varied between 18
and 62 dbrnc (set input) in 4-db steps. Three presentations consisting of
different random permutations of the 12 test conditions were given to
each participating group of observers.

The volume tests were conducted using both 302 and 500 -type sets,
the former being used primarily to tie in with previous work carried out
by Coolidge and Reier.4 Noise level was held constant at 26 dbrnc (set
input) with received speech volume varied between -24 and -60 VU
in 4-db steps. As in the noise tests, three different random permutations
of the 10 volume conditions were given to each group of observers.

The signal-to-noise tests were conducted with 500 -type sets with
both noise level and received volume varied over 44 randomly given
conditions compatible with the range of values used in the noise and
volume tests.

In each of the above tests, the simulated speech -noise conditions
consisted of two short sentences of spoken material mixed with the noise.
The spoken material and the noise were taped on separate recorders
and played simultaneously to the observers at the required levels through
a network equivalent to 6000 feet of 24 -gauge cable, representing a
subscriber loop. Groups of six to eight observers were accommodated in
a specially constructed subjective test room, comprised of individual
cubicles equipped with telephones, as shown in Fig. 1. A loudspeaker
placed in the center of the oval array supplied recorded room noise at a

* VU (volume unit) is the unit for expressing the magnitude of a complex
electric wave when measured with a standard volume indicator.3
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Fig. 1 - Observers at multiple listening positions during subjective test.

sound pressure level of 48 db re 0.0002 microbar. The line current in the
test circuit was adjusted to 55 ma direct current to each station set.*

The test period for each group of observers fell into two parts: a
preliminary period of introductory remarks which included instructions
and a 15 -to -25 minute period for the particular evaluation.

A total of 666 observers, both male and female, took part; all were
chosen at random from among Bell Laboratories employees. None was
required to participate more than once.

2.3 Test Results

While all three of the above tests are necessary to gain insight into
customer attitude towards noise in the presence of speech transmission,
only the noise test data are used in setting noise objectives. This reflects
the present practice that transmission parameters be treated independ-
ently when deriving transmission objectives. As such, the data describing
noise effects rather than the data on signal-to-noise are considered basic
when deriving message circuit noise objectives. In general, however, the
interdependence between noise and volume effects is recognized, and

* The significance of this choice of line current as it influences noise at the line
terminals of the station set is discussed in Appendix A.
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therefore the results of the noise -volume tests are potentially more
useful for the evaluation and specification of over-all performance.5

The results of the noise tests plotted as "noise opinion curves" in
cumulated categories are shown in Fig. 2. Presented in this way, the
set of curves show the proportion of E (excellent), E G (good or
better), E G F (fair or better) and Ed-G.-FF.-FP (poor or better)
judgments at particular noise levels over the range of values tested. In
essence, these curves are estimates of p(R I x), the conditional probability
of placing a given noise level x in cumulated category R. A good model
of opinion is obtained by fitting normal ogives, i.e., normal distribution
functions, to the data points. As such, each curve can be defined by
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stating the 50 per cent point and the parameter "b," which is computed
in the same way as the standard deviation of a normally distributed
random variable.

The data shown are comprised only of second -presentation judg-
ments, adjusted* for each observer where necessary to conform with

gor E G G G F Fy P U P U.
Here the first transition level is 24 dbrnc, since this value of noise is equally
likely to be judged excellent or good. The second is 36 dbrnc since this level is
equally likely to be judged good or fair and so on for 48 and 56 dbrnc. Thus the
corresponding adjusted judgment would become

1

* The adjustment compensates for the uncertainty in judgment found in the
neighborhood of the transition levels. As an example, consider a typical observer
response
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the four noise "transition" levels at which he essentially changed his
judgment from one category to the adjacent one.

Many of the initial judgments in the first presentation appeared to
be influenced by the lack of an "anchor." The observer's first judgment,
for example, is either made at random or based on past experience.
Thereafter his judgment is modified, so that in a short period of time his
judgments tend to be made relative to the range of the stimuli presented.
Thus the first set of data were the least reliable. During the third presen-
tation it appeared that judgments were unduly biased, due to observer
adaptation to the experiment. The second presentation data, between
these extremes, seemed to be the best choice.

Collectively, these curves indicate that, in the presence of the desired
received speech volume, noise levels up to about 30 dbrnc at the line
terminals of the station set are quite acceptable. At 30 dbrnc, about 47
per cent of the subjects gave a rating of excellent, 47 per cent - good,
and about 6 per cent - fair. Thereafter, degradation becomes increas-
ingly evident : for example, notice the rapid decrease in per cent good
and excellent response, as clearly indicated by the rate of change of the
good -or -better noise opinion curve.

III. NOISE GRADE OF SERVICE

If it is assumed that the noise opinion curves p(R I x), Fig. 2, are
indicative of customer reaction to any particular telephone connection
within the bounds of the noise levels tested, then for any probability
density function f(x) of noise levels on subscriber -to -subscriber telephone
calls, the integral

f :p(R 1 x)f(x) dx

evaluates the proportion of calls placed in category R, giving the ex-
pected value of customer opinion.* As such, this integral is very useful
as a noise performance evaluation tool. It is also useful for specifying
a desired "noise grade of service" which can be regarded as a statement
of noise objective. Given a statement of objective in terms of a desired
proportion of telephone connections assignable to a particular category

* Once category R is defined, p(R I x) is simply treated as a function of x, say
g(x), called "opinion." Hence

fc. PM I x)f(x) dx -=- g (x)f (x) dx = E[g(X)]f
that is, the expected value of g(X) where the random variable X is noise level.
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R, i.e., a desired level of noise grade of service, one can solve for the
noise density function f(x) which, in turn, can serve as the objective
"numeric."

It can be shown, however, that the correspondence between noise
distribution and noise grade of service is not one-to-one. Infinitely
many noise distributions yield the same noise grade of service. This
means that there is considerable leeway in choice of distribution to
satisfy a given grade -of -service requirement. Choices of requirement,
on the other hand, are fairly narrow if customer preference is to be
satisfied.

IV. NOISE SURVEYS

4.1 General

Having conducted tests to describe the subjective effects of noise and
having established a means for using the results in an evaluation scheme
such as grade of service, the next step in the derivation of an over-all
noise objective is to obtain estimates of system noise performance. The
determination of which estimates are pertinent is obviously an opera-
tional one. While subscribers are aware only of the total noise from all
sources, there are two distinct types of plant which contribute: loops and
trunks. Hence noise performance information is needed on the two
basic parts of an over-all connection: that part which is assigned to the
customer at all times (the loop including subset) and that part between
end -offices (i.e., connections) which he shares with other customers.

A series of noise surveys were therefore made in the loop plant in
1960 and 1961, and in the toll plant on toll connections between end -
offices in 1962. Toll, rather than toll -plus -local, connections were chosen
for the population of "connections," so as to associate connection noise
performance with that part of the plant which is more complex in
makeup and which has the most costly noise problems.

4.2 Loop Plant

The loop plant was surveyed' by selecting six end -offices with at
least one in each of five central office size strata characterized by offices
having 1 to 999 lines, 1000 to 9999 lines, 10,000 to 19,999 lines, 20,000 to
29,999 lines and 30,000 lines or more. Using the known stratum statis-
tics,' this approach enabled an extrapolation of the individual sets of
data to provide a reasonably accurate estimate of noise on loops for the
entire Bell System.
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TABLE I - SUMMARY DATA - EXCHANGE AREA LOOT' NOISE SURVEYS

Location of Survey Marshall,
Va.

Enola, Pa. Waltham,
Mass.

Kenosha,
Wis.

Trois-
Rivieres,

Que.

Cambridge,
Mass.

Type office SxS SxS %5 x -bar SxS SxS Ar 1

x -

bar

panel

S Lines 400 2,200 14,600 19,800 22,700 67,600

Sample size 148 158 149 123 178 109

Nm (all lines) m 18.4 3.5 1.3 2.8 2.7 3.514.4
dbrnc s 14.1 8.3 9.8 7.7 10.8 5.4 4.3

max. 53 33 32 27 38 14 35

Nm (ind. lines) m
dbrnc s

11.0
11.1

0.1
5.8

-5.0
4.2

1.5
7.2

-2.3
6.5

..._

Wm (party lines) m 25.4 9.9 8.7 8.4 7.6
dbrnc s 13.0 8.5 9.2 7.4 11.9

Ng (all lines) in 31.4 27.2 24.4 17.6 18.5 9.3
dbrnc s 13.3 6.3 8.2 7.3 9.8 5.9

max. 62 47 42 37 58 25

Ng (all lines) in 65.0 63.3 53.4 49.5 53.5 38.5
dbrn 3 lcc s 14.8 8.3 8.4 7.5 7.7 6.2

max. 84 83 76 66 78 52

* Party line in -51.6 -57.8 -58.3 -52.5 -47.7 -53.9
balance, db s 6.4 6.7 6.1 6.2 6.2 6.4 -
Loop loss, db in 6.4 6.1 5.2 6.6 5.3 4.9

s 3.1 2.0 1.8 1.9 2.2 1.3
max. 15.5 11.7 9.2 11.3 11.5 7.2

Transmitter m 60.4 55.6 44.9 46.3 46.5 47.8142.7
current, ma. s 13.5 15.9 12.2 13.4 16.5 11.8 16.2

m = mean.
s = standard deviation.
* Balance for tip and ring party fiat rate lines except Waltham, Mass., where

balance is for ring party flat and tip party message rate lines.

The offices chosen were Waltham and Cambridge, Massachusetts;
Kenosha, Wisconsin; Trois-Rivieres, Quebec; Marshall, Virginia; and
Enola, Pennsylvania. For each office a simple random sample of approxi-
mately 150 loops was selected for measurement. The loops were termi-
nated in the central office "quiet -termination" and at the customer's
location with a 500 -type set. Measurements of "noise metallic" (Nm)
were made with the 3A noise measuring set bridged across the line ter-
minals of the station set and also from line terminals to ground (Ng) at
the customer's location. Table I summarizes the results.
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As is seen, the noise on loops in general is very low. However, it was
found that there is considerable difference (7 to 14 db) between party
line noise and the noise on individual lines. Except for the influence of
some open wire lines in Marshall, Virginia (not uncommon for offices
in stratum 1) the reason for this difference is that party lines are
inherently more unbalanced than individual lines due to grounded ringers
in party station sets. This is certainly evidenced by the party line balance
row in Table I. Balance* is seen to be about -55 db on the average for
party lines compared to -75 db for individual lines. Thus for noise
induction from neighboring power lines one would expect, on the aver-
age, about 20 db more hum on party lines than on individual lines. t

Since it was found that loop noise at the higher levels is predominantly
power line hum, noise -to -ground and balance data rather than actual
Nm measurements were used to characterize noise in each central office
area. Noise metallic (hum) distributions were derived from the expres-
sion Nm = balance -I- (Ng + 40). To get best estimates of mean and
standard deviation, regression analysis was performed over the six
offices in their respective strata. Weighting these regression estimates
by the corresponding stratum statistics resulted in the over-all loop
noise distribution of the Bell System shown in Fig. 3.

4.3 Toll Plant

Estimates of the noise levels that subscribers are currently experienc-
ing on end -office to end -office toll connections were supplied by the
1962 connection survey described in a companion paper.' For complete-
ness the sampling plan and the results will be summarized.

A sample of connections was selected using two -stage sampling.
Sample size was determined on the basis of a desired precision of E 1 db
in the over-all mean at the 90 per cent confidence level. The population
contained the toll calls originating in all end -offices in Bell System
service as of January 1, 1960. Seventeen offices were selected by sam-
pling proportional to estimated size, the size estimates being defined by
the number of customer lines served. For each of these offices, a self -

weighting sample of previously made toll calls was chosen. The frames
for the second -stage sample consisted of listings of all toll calls made
during the busy hour of one business clay. The sample calls were dupli-

* Balance is defined to be Nnt - (Ng 40). This is consistent with 20 log
Vm/Vg; Ng, as measured with a 3 -type noise measuring set, is 40 db below the
total voltage to ground.

t This can be remedied by the use of station sets with gas -tube isolators which
essentially remove the ringer from ground during the talking condition. Such sets
are often employed in severe cases.
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Fig. 3 - Loop survey data, 1961: estimated loop noise (power hum) distribu-
tion.

cated either via operator placement or by dialing between terminating
class 5 offices. Noise and end -office to end -office loss were measured at
the originating end -office with a 3A noise measuring set on a zero loop
terminated in 900 ohms.

The results indicate that at the station set the toll connection noise
distribution has a mean of 19.7 dbrnc and a standard deviation of 7.8
db. The data are accumulated in Fig. 4. In addition, it was found that
the mean of the distribution of end -office to end -office loss is 7.7 db
with a standard deviation of 3.0 db. Analysis of the relationship between
noise level and airline distance indicates a linear increase in average
noise level of 2.2 db per double distance, with variance decreasing with
increasing distance.

V. EVALUATION OF NOISE PERFORMANCE

Once pertinent estimates of noise performance are in hand, the next
step is to evaluate noise performance. Consider first an evaluation from
the point of view of the present standard: 26 dbrnc (20 dba) seldom
exceeded at the line terminals of the station set. From Fig. 4, it is seen
that in the absence of loop noise approximately 23 per cent of the toll
connections in the sample had noise in excess of 26 dbrnc at the line
terminals. Whether or not this is satisfactory performance in terms of
the present objective depends on the interpretation of the phrase "seldom
exceeded."
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Fig. 4 - Connection survey data, 1962: distribution of noise levels on cus-
tomer -placed toll connections. Mean = 19.7 dbrnc; standard deviation = 7.8 db.

A more specific statement for noise evaluation is obviously desirable.
In terms of noise grade of service, discussed in Section III, 97.0 per
cent of the measured values in Fig. 4 (i.e., connections) would be con-
sidered good or better and only 0.3 per cent poor or worse.* This may
appear to be in contradiction to the finding that 23 per cent of the meas-
urements do not meet the 26-dbrnc objective. The fact, however, is that
when the average noise level is low, over-all grade of service is very
impressive. But this does not assure satisfactory noise performance on
all toll calls. For example, the noise on close to 1 per cent of the connec-
tions was found to exceed 39 dbrnc, which essentially defines a bound on
the levels that telephone users consider good or better [i.e. for x > 39

* Grade of service for measured connection noise does not reflect the subjective
effects associated with compandored links. In the absence of speech (i.e. when
noise is measured) compandor action is such that the listener perceives a lower
noise level. On the whole this effect is small. Estimates show that the above
good -or -better noise grade of service figure is affected by less than 1.0 per cent
and the poor -or -worse figure by less than 0.1 per cent.
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dbrnc p(E G ( x) < 0.5]. Furthermore, from Fig. 5, we see that these
higher values (the tail of Fig. 4) are attributable mainly to noise on the
longer and thus more costly connections. Hence it is misleading to look
only at grade of service for noise on all toll calls. The customer who
primarily makes calls spanning long distances is apt to get poorer per-
formance; for example, the connection survey showed that grade of
service on calls within a 100 -mile radius is 97.8 per cent good or better
whereas on coast -to -coast calls it is only 86.5 per cent good or better.
In order to avoid this shortcoming, it appears necessary to have a
particular noise requirement for various physical lengths of connections,
instead of a single number seldom exceeded for all lengths.

Consider next the noise contribution from the loop plant. On the
basis of data in Fig. 3, close to 2 per cent or an estimated 800,000 cus-
tomers (main stations) have loop noise in excess of the present 26-dbrnc
objective. While this is only a relatively small percentage, loop noise is
a problem to the affected customers because the same level tends to be
present at all times. As stated earlier, the principal source of audible
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loop noise is power line induction, appearing as hum in the telephone
circuit. The hum level is determined by the extent of the power system
influence (which is fairly constant in any particular location) and the
degree of balance of the line and terminal equipment. Party lines,
because of the use of grounded ringers and other unbalanced station
set circuitry, are found on the average to be much noisier than individual
lines. If a telephone user has excessively high loop noise, it is almost
certain that he is on a party line and that the noise is power line hum.
Fig. 3 shows that an estimated 0.2 per cent of Bell System customers
have 39 dbrnc of power hum loop noise. Since they can expect nearly
this level on every call, their grade of service on both local and toll calls
collectively will be only about 40 per cent good or better and as much
as 10 per cent poor or worse.

VI. REQUIREMENTS FOR AN OVER-ALL NOISE OBJECTIVE

The present noise objective is not so formulated as to focus attention
on substandard noise performance on the longer toll connections and
the existence of power line hum on loops. To direct attention to areas
of inadequate noise performance and emphasize the need for improve-
ment of loops and trunks that are now substandard, we must select a
noise objective that is not only satisfactory from the grade -of -service
point of view, but is also in harmony with actual system noise behavior.

Fig. 5 shows that the average noise level on toll connections is posi-
tively correlated with airline distance. This implies that for noise con-
tributed by the toll plant, the objective should be length -dependent.
Short connections therefore should meet more stringent requirements
than long ones, making the objective consistent with actual system
performance. In addition, the objective should incorporate the inherent
variability of noise level on connections spanning the same over-all
distance and recognize that this variability decreases with distance, a
fact also shown by Fig. 5. The most expedient way to incorporate these
length dependencies is first to divide distance into a number of classes
or categories (that is, short, medium, long, and intercontinental), then
to establish for each class a suitable noise distribution, wherein mean
noise increases and variance decreases with distance. A study of the
connection survey data shows that the distributions may be assumed to
be normal within each distance class.

With regard to the form and statement of the objective as it pertains
to loop noise, Table I and Fig. 3 indicate that each central office area
can be expected to have a small percentage of loops which will be quite
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noisy. Furthermore, because the noise is predominantly power hum it
may be assumed that if a customer has a noisy loop then his noise level
can be expected to be about the same on every call. To alleviate this
situation, it would appear desirable to adopt one universal loop limit -
a limit which would insure all telephone users the same noise grade of
service on a long-term average basis.* The latter requirement is satisfied
by a limit having the property that the desired grade of service assigned
to any class of end -office to end -office connection is not significantly
altered when a noise level equal to the limit is "added" to the numeric
requirement for any of the connection classes.

VII. DERIVATION OF THE NEW OBJECTIVE

From the foregoing discussions, it may be concluded that an over-all
noise objective should incorporate both a connection and a loop noise
objective: for connections, it should state requirements on mean and
standard deviation for noise as a function of distance; for loops, a limit
not to be exceeded. The actual numerics, viewed in terms of grade of
service, should assure high customer satisfaction and be economically
feasible for the telephone company.

From the evaluation of the connection survey data, Section V, it was
evident that noise grade of service could be impressive on the whole
and yet not be acceptable on the longer connections. We stated, for
example, that the grade of service on coast -to -coast connections is only
86.5 per cent good or better. In general, it will be found that grade of
service is less satisfying on the longer connections, because of the in-
crease in connection noise level with increasing airline distance.
However, the number of toll calls established by customers decreases
rapidly with increasing airline distance, so that a subclass such as all
coast -to -coast connections will have a negligible influence on over-all
grade of service. It follows therefore that: (i) it is insufficient to simply
satisfy one over-all grade of service requirement; (ii) the same grade of
service level cannot be expected on all lengths of connections, since the
length -dependent increase in connection noise must be recognized.
Appropriate adjustment for grade of service is therefore necessary.
A study of various promising adjustments showed that "balance" may
be achieved if grade of service does not vary with distance more than
from near 100 per cent good or better to a minimum value of 90 per

* This assumes all customers to be "average" in their calling habits. Despite
variability which is known to exist, this assumption is justified from a practical
standpoint. Without it each customer could have a loop limit depending on his
particular calling habits. This would be impossible to administer.
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cent on the longest connections and, in the same way, from near 0 per
cent poor to a maximum of 0.5 per cent.

The first step then is to satisfy the extreme requirements, that is, a
grade of service of at least 90 per cent good or better and at most 0.5
per cent poor on the longest connections, i.e., on the class of intercon-
tinental calls. On the assumption that noise on such connections is
normally distributed, there exist many well-defined choices of mean
and standard deviation that will satisfy these conditions. However, the
choice can be narrowed, since the objective for the longest connections
is constrained by our noise model to large values of mean and small
values of standard deviation. While it is desirable to have as large a
value of mean as possible, there cannot be too small a standard devia-
tion because of the variation in circuit losses. The practical limit for
standard deviation in view of the latter appears to be a value between 3
and 4 db. With a choice of standard deviation of 3.5 db, Fig. 6* implies
that a mean of 30 dbrnc is permissible for the noise at the line terminals
of the station set on the class of longest possible connections spanning
an airline distance halfway around the world. Using these two param-
eters as an anchor at the upper end, we may now assign noise require-
ments to the remaining shorter connections. A satisfactory breakdown
is shown in Fig. 7. Using binary log -mile cells, distance is divided into
the four broad categories defining short, medium, long and interconti-
nental connections. The corresponding allowable values of mean and
standard deviation for noise in these classes and the resulting grade -of -
service values are indicated. It can be seen that all of the previously
mentioned requirements are fulfilled.

Fig. 8 shows the 1962 connection survey noise data for each distance
category and Fig. 9 shows the desired noise distribution functions in the
same coordinates. Comparison of the two demonstrates that existing
and desired performance are fairly compatible and that the assumption
of normality is justified. Except for whatever improvement is required to
overcome the subjective impairment due to compandors, little or no
noise improvement is needed on short connections other than in the
tail of the distribution, while on medium and long connections noise
should be decreased respectively by about 3 and 4 db on the average and
somewhat more in the tails. Since these improvements seem economically
feasible in future system designs, the parameters in Table II were
established as the new noise performance objective for customer -to -
customer connections referred to the line terminals of the station set.

* A discussion of how grade -of -service curves may be readily constructed for
normal distribution is given in Appendix B.
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Having this basic breakdown for the new objective for connection
performance, we can now make a choice of loop limit. Fig. 10 shows
grade of service for the range of loop noise levels up to 30 dbrnc in com-
bination with the new noise requirements for each distance category. It
is seen that no significant deterioration in grade of service results with
loop noise less than 20 dbrnc. Above this value, however, there is a
definite downward trend in per cent good or better and an upward
trend in per cent poor. Hence, it is appropriate to choose a loop limit
at 20 dbrnc. On the basis of Fig. 3, we see that an estimated 5 per cent,
or approximately 2 million main stations, are above this value; hence
corrective measures for reduction of noise on loops will be required
throughout the system.
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Finally, it is of interest to compare the new objective with the current
26 dbrnc seldom exceeded objective. We see from Fig. 9 that for con-
nection noise 26 dbrnc may be exceeded on 12 per cent of the short
connections, on 27 per cent of the medium connections, on 60 per cent
of the long connections, and on 88 per cent of the intercontinental

TABLE II - NEW NOISE PERFORMANCE OBJECTIVE

Airline Distance, miles Mean, dbrnc Standard Deviation,
db

Grade of Service

Good or Better Poor

Up to 180 19.0 6.0 9970 0.03%
181-720 23.0 5.0 98 0.07
721-2900 27.0 4.0 95 0.2
2901 and above 30.0 3.5 90 0.5
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connections. This implies that for connection noise the new performance
objective is more lenient, in that it allows noise levels above 26 dbrnc
for an appreciable per cent of calls. Notice, however, that the range is
"restricted" to around 39 dbrnc, the 50 per cent point of "good -or -
better" response, which is highly desirable. On the other hand, approxi-
mate evaluations show that the present design objective of 44 dbrnc at
0 TLP for a 4000 -mile circuit would have to be made more stringent in
order for the new over-all objective to be satisfied. Lastly, we note that
for loop noise the limit of 20 dbrnc not to be exceeded is more stringent
than the present objective would indicate.
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APPENDIX A

Noise Opinion and Noise at the Line Terminals of the Station Set

Noise "at the line terminals of the station set" refers to noise across
the line terminals of a 500CD type telephone set on a loop drawing 55
ma. While rather specific, this choice of customer reference is a natural
one, since the noise opinion curves (Fig. 2) refer to noise level measured
across the line terminals of a 500CD set on a 55 -ma test circuit. More-
over, there is no loss in generality in having this type of customer ref-
erence as a standard.

In the evaluation of message circuit noise, we are concerned with two
main noise sources: that originating on connections beyond class 5
offices and that originating on receiver loops. Consider the noise origi-
nating on connections. The first step in its evaluation is to decide on a
point of measurement. Operationally, the best point is at the end -office
at the input to a zero loop terminated in 900 ohms. Take any level
measured there, say x dbrnc. What will be the subjective effect of this
level on customers? It will be slightly different for customers on short,
medium, and long loops, yet the difference is small enough to be neg-
lected because of the "equalizing" properties of the 500 set. The com-
bined response of a receiving loop and 500 set is reasonably constant for
the majority of customers; hence it may be assumed that "received
noise volume" (for noise originating beyond class 5 offices) is indepen-
dent of loop length. Thus to evaluate x dbrnc, we must determine what
this level will be across the line terminals of a 500 set drawing 55 ma.
From loop loss data it is estimated that the average loss of a 55 -ma
loop terminated in a 500 set is 5 db. Hence, we may postulate that the
subjective effect of x dbrnc of connection noise is the same for all cus-
tomers, and that it is given by referring to (x - 5) dbrnc on the noise
opinion curves. As a consequence, a statement of objective for noise on
connections referred to "the line terminals" (in our sense) really means
that at the point of measurement, that is, the class 5 office, the require-
ment is 5 db less stringent.

Consider now the evaluation of noise originating on loops. If meas-
ured across the line terminals of a 500 set, we would expect a different
acoustic response for the same value of noise level on short, medium,
and long loops. Fortunately, the difference is hardly noticeable. Noise
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originating on loops is predominantly power line hum concentrated at
180 and 300 cycles. At these frequencies the 500 set input impedance
is essentially constant over the range of loop currents encountered in the
field. Hence we can assume that the subjective effect of a particular loop
noise level at the telephone set is the same for all values of loop current,
which suggests that for loop noise the noise opinion curves are directly
applicable to any line terminal measurements, whether on short, me-
dium, or long loops. Therefore, an objective for noise on loops can be
applied equally to all customers - even though specified "at the line
terminals" in our sense. Finally, we note that to evaluate the combined
(over-all) effect of x dbrnc of noise originating on any connections and y
dbrnc originating on any loop, it suffices to refer to the opinion assigned
to a noise level equal to the power sum of (x - 5) and y dbrnc in Fig. 2.

APPENDIX B

Grade of Service for Normal Noise Distribution

In Section 2.3 we stated that normal ogives can easily be fitted to
the response data which result from evaluating the subjective effects
of noise by absolute judgment. As such, opinion in category R

f_-`2 ex p ( -1212)
p(R f /2- dtV r

where a is the value of x such that p(R I a) = 0.5 and b is a parameter
equal to the "standard deviation" of the ogive curve. With this model
for opinion, grade of service for any probability density function f(x) of
noise levels is given by

r exp ( -t2/2)
A/27r

f (x) dt dx.

If f(x) is normal with mean X and standard deviation a, we have

f ( [exp [- (x - )21201
dt dx.

Lc. -0. 1/Ki

On the assumption that is fixed, the above integral is a function of
a only, say F(X). Changing variables

x - X

and differentiating under the integral sign we get
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expi_ fy2 (X ± a)21

F' (2) = 21--
2

dy.
rb

Furthermore letting b' = b2 0-2 and u = b' Ibly - a) Ib'2]1

we find

exp [-(.T; - a)2/2b'2

V271-11

Finally integrating between - C° and t, we get

exp [- (t - a)2/20-1 exp (-t2/2)
F = dt = b / dt

-V 2r

which is the value of grade of service for a normal probability density
function f(x) having mean ai; and constant standard deviation a. The
above integral is easily constructed with the aid of normal probability
paper. Simply plot F(. = a) = 50 per cent and F(a = a + 1/b2 + =
15.9 per cent, for the given category R, and join the two points by a
straight line.
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Propagation of Light Rays through a
Lens-Waveguide with Curved Axis

By D. MARCUSE

(Manuscript received November 7, 1963)

The problem of the propagation of a light ray in a lens-waveguide with
arbitrarily bent axis is solved. The solution can conveniently be expressed
in form of an integral if the waveguide is bent sufficiently gradually.

In general, a ray which is incident on the axis of the straight lens -wave -

guide follows an undulating path after traversing the bend. The undulations
can be kept arbitrarily small if the bend is tapered and if its curvature is
sufficiently gentle. By properly dimensioning the bend, the undulations can
be made to cancel out completely, so that a ray which follows the axis of the
straight waveguide can be made to leave the bend on the axis of the outgoing
straight waveguide.

The cases of circular and tapered bends as well as tilts and offsets are
discussed.

I. I NTRODUCTION

The invention of the laser has revived interest in light as a communica-
tions carrier. One of the many problems which have to be solved before
a light communications system becomes feasible is the propagation of a
light beam from transmitter to receiver. It is well known' that a sequence
of converging lenses can guide a light beam and keep it from spreading.
The losses of such a lens-waveguide can be calculated only by means of
wave optics. However, even geometric optics can demonstrate the guid-
ing properties of a lens-waveguide.2 It can show that a light beam, once
it is injected into a sequence of lenses, follows an undulating path without
wandering away from the axis of the lens-waveguide.

The present paper is limited to describing the behavior of a light beam
in a lens-waveguide whose axis is not straight everywhere, but which
is allowed to follow bends of the transmission path or exhibit abrupt
changes like tilts of its axis or an offset of one of its lenses from the axis
on which all the other lenses are centered. The description is given in

741
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terms of geometric optics, so that no information about the losses of
light transmission through a lens-waveguide with bent axis can be ob-
tained. It is clear, however, that the loss of power from the light beam
is caused partly by diffraction losses at the edge of the lenses. These
losses are certainly minimized if the center of gravity of the light dis-
tribution in the beam, which is described as the light ray, remains as
far from the edges of the lenses as possible. It is desirable, therefore, that
the light ray follow the axis of the structure as much as possible. The
mathematical description of the light ray presented in this paper shows
that a ray which follows the axis of the straight lens-waveguide will be
forced into an oscillatory trajectory whenever the axis of the lens-
waveguide deviates from perfect straightness.

It is necessary, at times, to lead the lens-waveguide through a bend
to circumvent obstacles which might lie in its path. If it is possible to
design a bend such that a beam which is incident on the axis of the
straight incoming waveguide will leave the bend on the axis of the out-
going straight waveguide, we will call such a bend one of optimum
design. It is, of course, equally desirable also to keep the deviations of

the beam from the waveguide axis on the bend as small as possible.
We show in this paper that one can inject a light beam into a circular

section of the lens-waveguide in such a way that it travels through the
bend at a constant distance from the waveguide axis. It can, further-
more, be readmitted into the outgoing straight section of the lens -wave -
guide so as to continue along its axis. An optimization of a circular
bend is thus possible.

Another way of reducing the oscillations caused by a bend is to taper
its radius of curvature gradually from its infinite value on the straight
section to a minimum value and back to the infinite value of the out-
going straight section.

The theory of ray optics in a lens-waveguide with curved axis is a
generalization of Pierce's theory.2 The solution of the difference equation
can be approximated by a convenient integral expression in the limit
of a lens-waveguide whose axis changes direction only gradually.

II. RAY OPTICS OF THE CURVED LENS-WAVEGUIDE

The light ray is described by its distance r from the center of the lenses
at the position of each lens (see Fig. 1). The lenses are spaced a distance
L apart and have a focal length f = 1/C. The quantity C is known as
the "lens power."

If we assume that all angles are so small that tan a can be taken = a,
we obtain the following relations between the radii 9.. and 7...14 of the
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ray at the positions of the nth and (n 1)th lens

r4..1 = r aL
Crn+i = 7n+1. ± an - an+i

(1)

(2)

an is the angle between the ray and the straight line connecting succes-
sive lenses taken to the right of the nth lens. 7 is the angle at the nth
lens between the two straight lines connecting the lenses. The geometrical
relations (1) and (2) can be read off Fig. 1(a) through (c).

Eliminating an and a±i from (1) and (2) results in

rn+2 - (2 - LC)rn+1 r. = DY.+1 = Yn-I-2 (3)
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Equation (3) agrees with Pierce's equation for the straight lens -wave -
guide in the case 'yn+1 = 0. In this case the equation has the solution

ri, = A cos nO B sin n6 ( 4)

cos 0 = 1 - (LC /2) (5)

with

or equivalently

sin 0 = V LC 4C (6)

This solution shows that, in general, the ray oscillates around the axis
of the lens-waveguide.

From Fig. 2 it is apparent that the quantity y+2 occurring in (3)
is given by

Yn+2 = L2/Rn+1 (7)

Equation (3) is the mathematical description of the ray optics of the
curved lens-waveguide. It allows the successive calculation of the
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Fig. 2 - Definition of the quantities y.+2 and Rn+i
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distances rn of the ray from the centers of the lenses for any distribution
of lenses and suitable initial conditions.

III. SOLUTION OF THE RAY EQUATION

By standard methods for solving difference equations,' a rigorous
solution of (3) was obtained:

L2 n -2 sin 0(n, -m - 1)
rn = A cos ne B sin ne E (8)

Sift tio m=0 Rn14.1

The sum in (8) is defined only for n > 1. The constants A and B are
determined from the initial position of the ray at ro and ri

A = ro (9)

r1 - ro Cos 0
sin

(10)

The validity of (8) can be checked by substitution into (3).
Equation (8) can be converted to a convenient integral expression.

We use the identity

sin 0(n -m - 1

and obtain instead of (8)

r = A cos nO B sin n0

m+2

sin 0(n - x) dx (11)
2 sin 0 J,

0L2
E
n -2 m+2 (12)

sin 0(n - x) dx.
2 sin2 0 ,n-0 Rm+1

Now let us assume that R. varies so slowly that we can write

R, = R(x). (13)

The value R, defined in Fig. 2 has become the radius of curvature R(x)
of a curve f(x) which smoothly connects the centers of the lenses. With
the use of (13) the sum of (12) can be changed into an integral, and we
obtain

rn = A cos ne + B sin ne

L2 cos(n - 1)0 - cos ne 1 - cos 0+± 2 sin2 0 RI Rn_1

J' sin 0(n - x)
R(x)

dx .

(14)



746 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1964

Equation (14) holds for arbitrary values of L and C as long as

0 < I 1 - (LC/4) I < 1. (15)

Its validity is restricted to the extent to which the approximation (13)
holds. That is, (14) holds as long as the lens-waveguide is bent only
gradually.

For completeness let us state the result in the limit L 0. It follows
from (6) that 0 -> -V LC in that case. If we introduce the length s = nL
or a = xL as the new coordinate, we obtain from (14) in the limit of

closely spaced lenses

ar(s) = A COS KS B sin KS + f
R(

1 Sin K (8 - Q) do- (16)
o o-)

K2 = lim (C/L). (17)

The solution (16) could have been obtained by first converting the
difference equation (3) into a differential equation. Equation (16) is

the solution of this differential equation.

with

IV. BENDS, TILTS AND OFFSETS

We study first the problem of transmitting a light ray along two
sections of straight lens-waveguide which are connected by a circular
bend. To make the problem more general we assume that the straight
sections are not tangents of the circle at the point of contact and that
the axis of the straight section of the guide does not go through the cen-
ter of the first lens which is located on the circle. In other words, we as-
sume that the circle is tilted by an angle a and offset by an amount "a"
with respect to the incoming and outgoing straight lens-waveguides (see
Fig. 3). For the solution of this problem we go back to the exact equa-
tion (8) and limit ourselves to a beam which enters the bend on the axis
of the incoming straight guide (A = 0, B = 0). A study of the geometry
shows that

2
R1 = RN -1 = ;

2L2R
R2 = N-2 ; R, = RL2 + 2aLR - 2aR '

m 1, 2, N - 1, N - 2.
Using the identity

sin (n,
2

- -10 sin -1 (k + 1)0
2E sin 0(n - in) -

m-0
sin

. 1
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we obtain from (8) on the circular bend

1

0
L2 a 2

sin 0 L2
si

cot
0 cos 0(n - 2)

1 a
cot 611 (18)

L-
[a

L
(1 - cos 0)] sin 0(n - 2) -I- r

2R

2 n N - 2
and on the straight outgoing section

1
1

cot 2-01
1

- sin
20

sin 0 - AT)I-L-a2 sin 0
2/?

(1sm 0 _ _ [ a ,

2N L cos 0)]

 cos 0 2N - 2)1 N <n < Co.

(19)
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By properly adjusting tilt and offset we can assure that the beam will
continue to travel on the axis of the outgoing straight lens-waveguide
without undulations. We adjust a and a so that both expressions in
brackets in (19) vanish simultaneously. This leads to

L2 cot2 cot 10
La - - - (20)

2R sin RC

and

a = (a/L)(1 - cos 0) = L/2R. (21)

These values for the tilt and offset, by which the circular bend is con-
nected to the two sections of straight line, provide us with an optimum
circular bend - that is, one which guides the light ray around a curve
without causing it to undulate. It is apparent from (18) that these
optimum values for tilt and offset assure simultaneously that the light
beam traverses the circular section of the bend at a constant distance
from the center of the lenses which is equal to the amount of offset (20).
It is clear that the offset injects the beam into the circular bend just at
the spacing at which the beam can travel around the circle without
undulating.

There are other ways to design a bend to guide a light beam without
introducing undulations of the outgoing beam. For example, if we con-
nect the circular bend smoothly to the straight sections (a = 0 and
a = 0) we can still suppress undulations by choosing the length of the
bend and the properties of the lenses such that sin 0(1-N - 2) = 0.
However, such a design is more complicated and depends on the length
of the bend.

As a second example, we consider the case of a bend with tapered
radius of curvature :

2

-2-Ly 0 y
1

;

(N - y)L 2 y N .

(22)

Here, N is the number of periods L which fit on the bend (Fig. 4), 6
is the angle through which the bend leads, and D = NL is the total
length of the bend.

The trajectory of the ray can be computed with the help of (14). We
assume that the ray is incident on the axis of the incoming straight
waveguide (A = B = 0) .
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Fig. 4 -A tapered bend of the lens-waveguide.
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For 2 5 n 5 iN + 2,
2S.L3 {(n - 2) (1 + cos 0)rn

D2 sin2 0
(23a)

2 .[sm 0 - sin 0(n - 1)]

for N ± 2 5 n 5 N 2,

- 26L3 {(N -n + 2) (1 + cos 0)r
D2 0sin2

(23b)
1[2 sin 0 - 1 - - sin 0(n - 1) - sin© }

for N + 2 5n < co,
325L 2 N)

{2 - 1-r sin
D2 sin2 0 0 2 j

(23c)

- sin 0(n - 1 - N) - sin 0(n - 1)}

Equation (23c) can be rewritten to show the amplitude of the undula-
tion more clearly
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16SL3 2 1 1

rn
D20 sin2 0

sin 0
4

N sin 0 n - 1 - N) . (24)

As in the case of the circular bend, the undulations can be made to
cancel out if we design the lens-waveguide and the length of the bend
such that sin OIN = 0. It is also apparent that the amplitude of oscilla-
tion decreases rapidly if the length D of the bend is increased.

Finally, we state the equations for the case of a tilt and for an offset
of one lens in the waveguide (see Figs. 5 and 6). Assuming, as always,
that the incident ray follows the axis of the incoming straight waveguide,
we obtain from (8) in case of a tilt which is spaced a distance from the
lens,

5
(7.7, L - o)' a2 ± 2a (L - a)  cos 0 sin [0(n - 1) -6] (25)

sin 0

with

= arctan a. sin 0
(26)(L - a) + a cos

If one lens is offset by an amount i and if the incident ray follows the
axis of the incoming straight waveguide

-
sin 0

sin2
1 0 sin 0(n - 2) (27)

describes the ray on the outgoing straight waveguide.

V. DISCUSSION AND NUMERICAL RESULTS

In the preceding section we have found that a light ray which is
incident along the axis of the incoming straight waveguide, in general
leaves a bend, an offset or a tilt undulating around the axis of the
straight outgoing waveguide. We have found that these undulations
can be suppressed by properly designing the bends. In this last section
we will discuss the maximum undulations of the outgoing light ray if
no provision for canceling the undulations has been made.

If one does not intend to use an optimum design, one would not
include a tilt or an offset in the bend but would connect the circular
bend smoothly to the straight sections. If we take a = a = 0 in (19)
we see that the maximum amplitude which the undulations can reach
is given by

1L2 coy
2 Lrya- R sin = RC

(28)
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Fig. 5 - The lens-waveguide tilted by an angle 5 a distance a from a lens.

The same equation describes the maximum deviation of the beam on
the circular section of the bend.

The maximum deviation of the ray from the axis on the tapered bend
can be obtained from (23). We assume that N >> 1 and find that the
maximum deviation on the tapered bend is

25/2r... 1)821:i::2 0 + cos 0) - (29)
o D( 4 - LC)

0

1 1 A
Ri R3 LZR1

a

' '-----s4.--"-- \

1 2A
R2 0 aJ

/
/ l

/ \
/ \

jR2 1

1

/ 1

/ 1

1

1

3 4

R3=R1

Fig. 6 - One lens of the waveguide is offset by an amount A.
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while the maximum amplitude of the undulations on the straight out-
going section is given by (24)

166L3 64,31,2
m,,,r. -

D20 sineBLC (30)
D2 [arccos (1 - C(4 - LC)

A comparison of (29) and (30) shows that the maximum deviation on
the tapered bend is considerably larger than the maximum amplitudes
of the undulating beam after it has left the bend. The maximum devia-
tion on the tapered bend is larger than the maximum amplitude of the
undulating beam leaving the bend by a factor of roughly ADC. The
taper has the effect of canceling some of the oscillations which build
up in the bend.

Equations (29) and (30) show that the amplitudes become infinitely
large if LC = 4. This failure to guide the beam around a bend is not
apparent from (28) for the circular bend. In fact, a beam which enters
the circular bend on the axis of the incoming waveguide tangentially to
the circle does not experience such a catastrophe. However, we see
from (18) or (19) that this geometry is rather unique, since in general
both (18) and (19) become infinite for sin 0 = VLC(1 - LC/4) = 0.

Only in the case considered (a = a = 0) can the beam be confined even
if LC = 4.

Table I lists the values of rmax for the circular and the tapered bend
for the case LC = 2 (confocal geometry). It is further assumed that
both bends lead the waveguide through an angle of S = 90°.

The maximum amplitude of undulation of a ray which has traversed
a tilt is, according to (25),

26
V - aLC(L - a)

VIZI - LC

and the amplitude after an offset is, from (27)

AVLC
rpm, = 2

V4 - LC

TABLE I - VALUES OF rm.. FOR CONFOCAL GEOMETRY

(31)

(32)

rmax/L

D/L

10 100 1000 10,000

Circular bend 1.57 10-' 1.57 10-2 1.57 10-3 1.57 10-4

Tapered bend
on bend
after bend

1.57
1.60

10-'

10-'

1.57

1.60
10-2 1.57
10-' 1.60

10-3

10-'

1.57

1.60

10-4

10-7
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Both of these amplitudes become infinite for LC = 4. However, if the
tilt is placed exactly halfway in between two lenses (2a = L), (31)
becomes rma. = (5L/2 if LC = 4. In this way even a lens-waveguide
with concentric geometry can be tilted without loss of the beam.
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Circular Electric Wave Propagation
in Periodic Structures

By G. W. LUDERER and H. -G. UNGER

(Manuscript received November 7, 1963)

T E 01 propagation in helix waveguide and spaced -ring guide is ana-
lyzed for frequencies where the wavelength is comparable to the period of the
structures. By conformal mapping the boundary value problem is reduced
to that of a waveguide with smooth walls but inhomogeneous dielectric lining.
The lining modifies the magnetic field near the wall and changes the dis-
tribution of eddy currents and heat losses in the wires. As frequency in-
creases, the field penetrates more into the space between wires, the eddy
currents are more evenly distributed and the heat loss decreases from its
quasistatic value of, for example, 10 per cent more than in plain waveguide

more. Any loss occurs only
when the wavelength is shorter than the period of the structure. Due to the
periodicity, there are stop -bands when any number of half wavelengths
just fit into the period. The relative width of the stop -band and its maxi-
mum attenuation per period are independent of waveguide diameter and
period length and are only functions of the relative geometry of the section.
Because of the stop -bands being so narrow and their attenuation being
quite modest, one may well accept them within the range of operating
frequencies.

I. INTRODUCTION

Low -pitch helix waveguide closely wound from insulated wire has
been shown to be a good transmission medium for circular electric
waves.' Likewise, spaced -ring or spaced -disk guides have been con-
sidered for TEN transmission.2 All these structures are periodic along
the axis of propagation. In analyzing them, however, the period has
always been assumed short compared to the wavelength of propagation
and the periodic structure then replaced by an anisotropic but homo-
geneous mode1.3-6

Recently, measurements have indicated that the TEol loss is low
755
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enough at very high frequencies - perhaps up to 300 gc - for the helix
waveguide to be operated there? At these frequencies the period could
no longer be assumed to be short compared to the wavelength. Further-
more, a detailed study of the optimum jacket for most efficient unwanted
mode absorption over wide frequency bands ha$ indicated that the
helix wire diameter and spacing should be nearly a third of the wave-
length at the upper band limits Both these results point out the need
for a more accurate analysis of circular electric wave propagation in
periodic structures, taking into account a period comparable to the
wavelength of propagation. It is to be expected that the distribution
of electric surface currents around the helix wires or rings and disks
will depend on frequency. The losses associated with these eddy cur-
rents will therefore also depend on frequency. Furthermore, a stop -
band of propagation is to be expected when the wavelength becomes
half the period of the structure. Both the eddy current losses and the
width and height of the stop -band will be studied here.

II. MATHEMATICAL MODELS FOR PERIODIC STRUCTURES

2.1 Spaced -Ring Guide

Helix waveguide for TE01 transmission is of very low pitch. For pres-
ent purposes the pitch may be neglected entirely and the helix wave -

guide replaced by a spaced -ring guide. Furthermore, the dielectric
material in between the wires and the lossy structure surrounding the
helix are of very little influence on TE01 propagation. They and the
helix pitch may be taken into account separately.4'6 The spaced -ring
structure of Fig. 1 embedded in a homogeneous and isotropic medium
will be used as a model for the present study. While this model with
rings of round cross section refers in particular to helix wires of round
cross section, it may readily be modified to refer to other wire cross
sections or to other spaced -ring and spaced -disk guides. The general
method of analysis will always be the same.

Dimensions and coordinates (x,o,y) in Fig. 1 are chosen with respect
to a mean radius a of the rings. The structure being periodic, it suffices
to consider a section I/II/III/IV of the guide. Because of symmetry
even only one-half (I/II'/III'/IV) of this section may be considered.

2.2 Round Waveguide with Inhomogeneous Dielectric Lining

2.2.1 Maxwell's Equations

Corresponding to a circular electric wave in round waveguide, the
electromagnetic field in the spaced -ring guide will be assumed to have
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Fig. 1 - Spaced -ring guide.

only components:

757

E,,Hy, Hz.

For perfectly conducting rings the tangential component E 1 of the
electric field and normal component H of the magnetic field vanish
on the surface of the rings

E t = H = O. (1)

It is therefore expedient to use orthogonal and curvilinear coordinates
which have the conducting boundaries as coordinate surfaces. Wire
radius and spacing in practical structures are much smaller than the
waveguide radius

b << a, c a. (2)

The curvilinear coordinates should therefore approach rectilinear co-
ordinates as the distance from the wires increases. The coordinate

cup may be assumed rectilinear throughout.
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II

Z = x + jy

b

a

a

d *

WAVEGUIDE AXIS

2

Fig. 2 - Section of spaced -ring guide in Z plane with curvilinear coordinates
u and v.

Fig. 2 shows a basic section I/II'/III"//V' of the spaced -ring line
in the (x,y) plane. The curvilinear coordinates are indicated by u and v.
Regarding x and y as real and imaginary coordinates in the plane of
the complex variable,

= x jy,

the curvilinear coordinates u and v may be regarded as real arid imagi-
nary parts of the complex variable

W(Z) = u(x,y) jv(x,y). (3)

The transition from Z to W constitutes a conformal transformation.
W being an analytic function of Z, the Cauchy-Riemann equations are
satisfied

ax
=

ay as ay
au av av

-= au

and the derivative may be written

(4)
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dZ __ax ay
dW au

.

au'

dZ
(TIT'

(aX\ 0_02
kat()

The elements of length in the Z plane of Fig. 2 are

du*
= (Lx ay

au

I du* I = 11I du

dv* = 11Idv.

The metrical coefficients of the curvilinear coordinates u*,
from

hy. = M, h,= 1, hu. = M.

Maxwell's equations written in the curvilinear system are

a
au

(E) = jcolioMH..

-a (E)
av

-a
au a

(mH,.) --a Om.) = jwoiii2E0
v

4(mH,)+-1(11/1Hu.) = 0.
au
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(5)

(6)

(7)

(8)

cp, v follow

(9)

(10)

Substituting

Hu = Mflu. , = MHu. , e = 1112(u,v) (11)

Maxwell's equations for a fictitious W plane of rectilinear coordinates
u and v obtain

-a (E,) = jcopollv
au

-a
av

(E,) = -3copoTiu

--a
av

(H.) jw0E,

a a(HO +
azc

(Ha) = 0.

(12)
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Comparing (10) and (12), the problem of finding the electromagnetic
field between curved boundaries has been transformed into the problem
of finding the field between straight and parallel boundaries in a me-
dium of varying permittivity t(u,v) . The transition from one plane
to the other ensues by conformal mapping. The analytic function of
this conformal transformation by (6) and (9) determines the per-
mittivity e(u,v) . This method was first developed by Routh,° who stud-
ied the vibration of a membrane of irregular shape by transforming it
into a rectangle. The method was first applied to electromagnetic bound-
ary value problems by Meinke" and Rice." While in the more general
field problem a fictitious inhomogeneous medium of anisotropic char-
acter has to be dealt with, at present, due to the axial symmetry
(a/aso = 0) of the fields, the fictitious inhomogeneous medium is iso-
tropic.

2.2.2 Conformal Transformation

A suitable analytic function to effect the desired transformation
approximately was found by Richmond12 and used by Morrison" to
calculate the heat loss of circular electric waves in helix waveguide.
The function is in parameter form(b/a)1Z- [tanh-1 V). - 1 xlf taiih-I + (13)

7
2(1 ±) Vi" + v -\/*

tlr-1)/ a r
(14)±- 9 Lsiii-1 sic' (2r v 1)1

The plane of the complex variable Z = x jy is by means of an auxil-
iary variable r = jt mapped onto the plane of the variable
W = u jv. The parameter NI, is the smallest positive root of

sill [Ire (1 +)
2b

= tank [1r-c (1 - (15)
2 b

and v is given by

V = C th2 [- (1 )+ Me 2U[ (1 + 01. (16)

The derivative of the above analytic function is

(1,Z . 2 N4 + 1 + -1
(1 ± 4') VI' + 1 ± -4 v 

(17)

The transformation of the Z plane boundaries via the t- plane into
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straight lines of the W plane is shown in Fig. 3. The waveguide radius a
has been set equal to one and is the unit of length in the Z and W planes.

The transformation by (13) and (14) is only approximate and will
give circular contours (D,C,B) in the Z plane only if c is somewhat
smaller than b. For c/b -> 1 the transformation will be into a square

A

Z = x + jy

H

a

F G C

F

0

W= u + jv

+

B
A

Fig. 3 -- Conformal transformations by (13) and (14).
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contour. For c/b < 0.5 the largest deviation from a circle is 2 per cent
of c. In a closely wound helix the wire spacing will be determined by
its insulation. Presently used helix wires have c/b = 0.70 0.85.
The maximum deviation from a circular radius is here between 8 and
20 per cent.

Fig. 4 shows three contours for different ratios c/b. They are obtained
from (13) by letting

-1 +1, n = ±0.

The resulting equations are

x =
2b'

sgn(n 0. ±) a
tanh-1

2
b

a tan' 1-y=7r(1
11)

(18)

The deviations from a circular contour will be neglected subsequently.
The inverse trigonometric and hyperbolic functions in (13) and (14)

are multiple valued. To obtain the rectilinear boundaries in the IV plane
a suitable combination of principal and other values of these functions
has to be chosen (see Appendix, Section A.1).

In Fig. 5 a number of elementary cells BDEF of Fig. 3 have been
arranged back-to-back to form a round waveguide filled with periodi-
cally varying permittivity. The waveguide is bound by the conducting
surface BCD of the rings transformed into a straight contour.

Asymptotic values of the permittivity are obtained from (17).

-= 0.80

Fig. 4 - Wire contours according to (13) and (14).



WAVE PROPAGATION IN PERIODIC STRUCTURES 763

D C BB C DD CB

a

A,H 1 A,H 1 A,H

G G G

1 1

1 1

E F F E E F

E F F E E F

1

H_ ab

1
1

I
1

I I

D D D

G
A,H

G
A,H

CB B C

G
A,H

CB

v

r
z

Fig. 5 - The smooth -wall waveguide formed by arranging transformed sec-
tions of Fig. 3 back-to-back.

Moving from the spaced rings towards the center of the guide:

lim
Z-1.-1-420

Moving outwardly in the opposite

dZ 2

= 1.

2

(19)
dW

direction

rim
I

dZ = co (20)
dW

According to (19), inside the guide sufficiently far from the rings, the
permittivity is uniform and as in free space.

Because of (2) it differs from free space only close to the walls and
may therefore be regarded as a thin dielectric lining.

According to (20), at A ,H in Figs. 3 and 5 the permittivity is infinitely
large. Because of (11) the region outside the rings is therefore practi-
cally free of magnetic fields.

The mathematical model thus obtained for the spaced -ring guide is a
closed round waveguide with inhomogeneous dielectric lining. The
permittivity of the lining may be found from (14) and (17) anywhere
in the W plane.

2.3 Approximate Model for Closed Structures

As it is, the present model is not suitable for perturbational analysis
of loss and wave interaction. Such perturbational analysis requires the
relative permittivity to be distributed in the guide such that



764 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1964

S s
if (M2 - 1) ds 1

for any cross section. In cross sections containing the pole A,H of per-
mittivity this condition will not be satisfied. The pole at A,H is of such

a nature that not even the integral f f M2 du dv over an area in the

W plane including A,H is finite.
Actually, one should expect such poles in the transformed structure.

The original structure extends to infinity in cross-sectional direction.
Circular electric waves in the original structure cannot be lossless nor-
mal modes but must be leaky waves, since there is some leakage of
power, however small, through the gaps between the helix wires. The
transformed structure, on the other hand, is bound by conducting sur-
faces and cannot support leaky waves.

In order to get around this difficulty and still meet the objectives of
this analysis, the original structure is according to Fig. 6(a) surrounded
by a magnetically conducting shield (e = 0, µ = 00) close to the wires.
In the transformed structure of Fig. 6(b) the shield will appear as a thin
wire of magnetic conductor located at A,H. This magnetic wire, being
so very thin and so close to the wall, will not change the field distribu-
tion very much. It will only displace the electric field somewhat and
modify the magnetic field so that it has no tangential components on
its surface. For all wire spacings of practical interest this magnetic wire
will be of so little influence that it may be neglected entirely and the
small cross-sectional area of the wire be assumed to have e = = 1.

The mathematical model thus obtained no longer represents the open
structure of spaced wires but is an approximate representation of the
magnetically closed structure. It will serve well to calculate eddy cur-
rent losses and stop -bands but will not show the leakage of power through
the gaps. The latter has been calculated approximately elsewhere.8

In all subsequent calculation the magnetic shield will be assumed at
e = b. The corresponding small area near A,H in the transformed struc-
ture will be assumed to have e = µ = 1 and will be excluded from inte-
grations over the W plane.

III. HEAT LOSS IN HELIX WIRES

3.1 The Magnetic Field near the Conducting Surfaces

In round waveguide with smooth walls a dielectric lining will modify
the tangential magnetic field of circular electric waves near the wall.
In general, the field will be increased and will therefore add to the heat
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(a)

(b)

MAGNETIC CONDUCTOR (e = 0, g= 00)

C

B

A , H
b/a

I I

r

A, H

L _

A,H

d/a

s/a

J

Fig. 6 -A magnetic shield (a) transformed into thin magnetic wires (b). For
c/b = 0.5 and e/b = 1 the wire size is s/b 0.015 and its distance from the wall
is d/b 0.000. For larger values of c/b, wire size and spacing decrease rapidly.

loss of circular electric waves. In helix waveguide this effect has to be
taken into account in addition to the eddy current loss of the current
distribution around the wire.

The change in magnetic field at the wall due to a lining, the per-
mittivity of which is only a function of guide radius, has been calcu-
lated before"

a

Huo
= 2/20E0 fo [6 (r) 1]1][a- r] dr. (21)

Ho is the longitudinal magnetic field at the smooth wall of a waveguide
filled with a medium of uniform wave number co-VktgE, . The relation
may readily be generalized to take into account also a z -dependence



766 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1964

of permittivity (Appendix, Section A.2). Introducing the free -space
wavelength

2ir

(41/;.--tofo

and coordinates u and v = (1/a) (a - r), the u -dependent change in
magnetic field may be calculated from

2

= 471-
1AH 2 (a) [M2(u,v) - i]v dv.

Huo
(22)

According to (11), the actual magnetic field H. tangent to the con-
ducting surfaces of the spaced -ring guide can now be written as

[WsiiliBCD

2

(u,0)
{1 ± 471-2 (-0 [M2(u,v) - 1]v dv} = f(u).

No closed -form solution of the integral in (23) is available. Evalua-
tion of (23) requires (14) to be solved numerically for and n. M may
then be computed from (17). Representative distributions of magnetic
field around the wire surface are plotted in Fig. 7. go., is the azimuthal
angle of a slightly deformed wire cross section.

At low frequencies the space between the rings forms a waveguide
below cutoff for circular electric wave fields. The magnetic field decreases
rapidly with increasing 40, . For a/A -> 0 the quasistatic approximation
obtains from (17) with

11.0

dW
dZ

(23)

= I grad (u) I. (24)

As the frequency increases the magnetic field penetrates more and
more into the space between the rings. Eventually, at very high fre-
quencies substantial circular electric wave loss will result from radia-
tion through the rings.

3.2 Heat Loss at High Frequencies

Assuming the skin depth a to be small compared to the curvature
radius of a conductor surface, the power P, lost as heat through a sur-
face F with conductivity a may be found from the tangential magnetic
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field according to

P, = 1 IHt 12 dF.
2crS F

(25)

In a waveguide section of length 2b and radius a with uniform magnetic
field Huo at the walls, the power lost as heat is

27r(b/a)
Pvo

o -a

Hno2a2. (26)

The power lost in one section of the spaced ring guide is

 2 2

-}-(b/2a)H 2

= - nuo a du.
-(b/2a) n uo

The attenuation constant is proportional to these power losses. The
ratio of attenuation due to heat loss in the spaced -ring guide to attenua-

Huw

Huo
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1.4

1.2

1.0
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0.2

0

1

20.= to

0.55

0.01

10 20 30 40 50 60 70

sow = TAN -I (y/x) IN DEGREES

80 90

Fig. 7 - Magnetic field at the wire surface: c/b = 0.70.
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tion in plain waveguide is therefore
+0/) 2 i2. 2

P, a 1 r
1

ia\
, 47r w Jo (M - 1) v dv du

Pic = (b/2a) 1/12

which by substitution of u = (b/a) a is independent of b/a

P =
r 1 2 t 2

v + 472 (--a) f (M2 - dv] (27)
X o

As in (23), no closed -form solution of the integrals is available. From a
numerical evaluation of (27) representative curves of loss ratio versus
frequency are plotted in Fig. 8. From its quasistatic value at low fre-
quencies the loss ratio decreases a few per cent with increasing frequency.
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0

-= 0.7
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02 04 06 08
20,

1.0 1.2 1.4

Fig. 8 - Heat loss of TEoi wave in helix waveguide compared to heat losses
in smooth -wall waveguide.
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There is a minimum of loss ratio when the free -space wavelength is
nearly twice the period (X 4b). This minimum in loss ratio is due
to more evenly distributed currents around the wire surface, when the
magnetic field penetrates more into the space between the wires.

Any substantial increase in loss ratio will only occur when the free -
space wavelength is less than the period of the structure (X < 2b).
But here the present approximations are beginning to fail.

At low frequencies for a/X -> 0, heat loss in the quasistatic case ob-
tains from

Pv0 b -(b12a)

The integral in (28) has been evaluated by Morrison:"

vo
= +

{1 - Ao (sin- T,K)
V1 -2

Pt,

where

M2 du. (28)

+ cos [7--c ( 1 + T) cot Pr-c (1 + NTH K (1')
2b 21) 7rT

K2= 1 --cos [7re (1 + if)1 .

2b

(29)

Here K(K) is the complete elliptic integral of the first kind and modulus
K, Ao (j3,K) is Heumann's lambda function.

IV. PROPAGATION CHARACTERISTICS OF SPACED -RING SECTION

4.1 Transmission Line Equations

Wave propagation in the mathematical model of round waveguide
with periodically inhomogeneous lining may be represented in terms of
normal modes of the round waveguide without lining. The effect of
the lining is to introduce coupling between these normal modes.'5

Interaction will be strongest between those modes the beat wave-
length of which is near the period of lining variations. As the frequency
increases, such interaction will first occur between forward- and back-
ward -traveling components of the circular electric wave when the
guide wavelength is near twice the period length of the structure.
When it is exactly twice this period length, reflections from each section
will add in phase and propagation will suffer from destructive inter-
ference. Interaction with all other modes may be neglected in this
range.
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Coupled line equations for forward -traveling components A and
backward -traveling components B of one and the same wave are written
as' 6

dA 7(z)A - k(z)B
dz

dB = k(z)A -y(z)B.
dz

(30)

A and B are the amplitudes of traveling waves normalized with respect
to power. 7(z) is the propagation factor 70 of the wave in empty
waveguide modified by the presence of the linings

(z) = 0,2PoE06, (z)

2-yc
(31)

k(z) is the coupling or reflection coefficient between forward- and back-
ward -traveling components of the wave

0.12/10E0A (Z)
k (Z) (32)

27c

(z) depends on the permittivity of the lining and its distribution
over the cross section as well as on the particular wave under con-
sideration. For TEN with cylinder coordinates (r,(1),z)

a 2[Er(r,z) - 1] j12 (1'2°1 r)r dr
a(z) = -fo (33)

a2 J02(poi)

The relative permittivity differs from unity only close to the wall.
The Bessel function in (33) may therefore be replaced by its linear
approximation at its first zero poi

In normalized coordinates u and v, one obtains instead of (33)

[M2(u,v) - v2(1 - v) dv. (34)(u) = - 2poi2 f

The coupling coefficient may now be written as

ak(z) =
A 2

4 r2poi
.10 [M2 - 1]2)2(1 - dv

(35)
a poi a12

where



WAVE PROPAGATION IN PERIODIC STRUCTURES 771

2

2 pm
70 = co21.1foo

a
(36)

and u has been replaced by z.
Since

I

k « y I the modification of -y from (31) may be neglected
in (30). Thus simplified, the transmission line equations written in
matrix notation are

.(71z[131 k(z) -y B

d A

or

(37)

[A]' = [7(z)] [A] (38)

In Fig. 9 the coupling coefficient k(z) is plotted for representative
values of c/b. As c/b -> 1 the coupling disappears because of deformation
of the round wire into a square cross section by the conformal trans-
formation.

2.0 x10-7

1.5

1.0

k(z)
N 0.5

0

-0.5

-1 0

b--o 5

0.85

0 b/2 a b/a
z/a

3b/2a 2b/a

Fig. 9 - Coefficient of coupling between forward- and backward -traveling
TE01 waves in spaced -ring waveguide.
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4.2 The Transmission Matrix

The matrix [7(z)] in (38) is almost diagonal for all values of z.
An approximate solution to (38) is therefore easily found by iterative
integration. Thus without specifying any initial values the general
transmission matrix of (38) will be calculated.

Formally integrating (38), one obtains

[A(l)] = [A(0)] f [y(z)] [A(z)] dz (39)

in form of an iterative procedure

[A,+1(1)] = [A(0)] f [-y(z)] [A,(z)] dz. (40)

After two iterations, as shown in Section A.3 of the Appendix, a suitable
approximation is found for the transmission matrix [T] in

[A(1)] = [T]  [A (0)]. (41)

The elements of

Ti21
[T] = (42)

are

Ta 7122 _1

=T11 e-71[ - e27z f k(z1)e-2"' dz' (id
0 0

T12
-71-e Ik(Z)e27z dz

(43)

T21 = e'l f k(z)c-2' dz

T22 = -f k(z)e-2' f k(z')e2"" dz' dz] .

Substantial interaction between forward- and backward -traveling
components A and B will be found only in a narrow band of frequencies
centered about X = 4b. Of all the Fourier components contained in
k(z), only the component k1 of first order will contribute to the elements
of the transmission matrix at frequencies near X = 4b. Replacing k(z)
in (43) by this Fourier component according to
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k(z) N k1 cos (72)

N= j 4r2 poi

YV \Poi/.7r

2 x 2

a

773

(44)

(45)

is therefore indicated.
The integrals in (43) have been evaluated with this substitution and

-y = a + ji3. In case of perfectly conducting walls for a period 2b cor-
responding to one section of the spaced -ring line the transmission
matrix is

-1213b (1 - Cu) -e12131) C12
[71

e
+fo b p+-i2Pb (1 - C22)[

(46)

where

C11 = (e+i4Pb - 1) P
[ 02b2

2

. p2 (402b2 + q2) 2
4#2b2 - 7,2 2f3b (4132b2 - 7r2)

4$2b2 + 2-F-
C22 = (e'4f3b - 1)

P
[

4-4[32b2 - 1r2 2p; ((44'3M2bb22 !22))

(47)

C12
(c+i4Ob 1 )

P
[

4$2b2

(121

402b2 - 7r2]

c21 = ce--34" - 1)
4132b2

q2

(48)

4/32b2 -

pcn.2klP= 2

q = 2 -a (49)

In case of 213 = 7r/b when the section is just half the guide wavelength
p2 72 2 ,2 72 q2 2

C11
22 2' 47r r

2 + 2
pC12 = j [2. ' .

c 21

(50)
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4.3 Transmission Factor

To evaluate wave propagation in the periodic structure, its normal
modes should be considered as they are composed of forward- and back-
ward -traveling components of modes in plain guide. The normal modes
propagate along the structure, changing their fields only by a constant
factor from section to section. This transmission factor G of normal
modes is found by looking for solutions

A(l) = GA(0)

B(l) = GB(0)

of (41). Substituting (51) for A (1) and B(1) into (41), a homogeneous
system of linear equations obtains which can have nontrivial solutions
only for

(51)

det ([11] -G RID = 0 (52)

where [U] is the unit matrix. Values of G solving the characteristic
equation (52) are

1 r,
G12

G
= a + 7122 ± (I'll - T22)2 + 4T12 1721] (53)

They are eigenvalues of the transmission matrix [T] and transmission
factors of normal modes of the periodic structure. Substituting from
(47), (48) and (49) for the elements of [T]:

GI = cos (2/30 4p2
2

4p2b2 1

2

sine(2$b) cos (4-#b)4(32b2 _ 72

b2 q21 22 (402

p22 (4
(213b) ± 4

202b2 q[
2

sine (20)
(4021)2 72) 432b2 -

- sin2 (20) - 4 (2/3b) cost (40)

p4(432b2 q2)4 cost (20b)
4/32b2 (402b2 - 7r2)2

2°+ 4 [p 4'32b-, q2,12
4

sin2 ((2(3b)(3

p2(402b2 q2)2 sin (40b)
213b ( 432b2 - R-2)

cos (40b)

p4(402b2 + q2)4, sin (40b) (40b)}+ 2 ens
2gb(4192b2 - 7r2 )3

(54)
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Since for b << a, I p I< 1, also, the terms of second order in p may be
neglected. The transmission factors reduce to

2 2

q1 sine (2pb)
7r2

442b2
41:32b2 ;Irg S111- (2014 COS (4/3b) (55)

p2 (4,32b2 q2) 2

sin (4j3b)
( 4432b2 - 72 )

2

2

4132b2
G1 = cos (20 )

2
± {4 [p 0

In case of 213b = r:

G1 = -1 p 7r+(
2

(12\

7F

(- P014
kir Po1 2 , a= -1 ±

2 7F

4.4 Evaluation of the Transmission Factor

Writing G = e-711, attenuation factor

2a'b = in G I

and phase factor

(56)

(57)

2" = IG (58)

of one section of a spaced -ring guide obtain.
Frequency ranges for which G is real constitute stop -bands of the

periodic structure. There is no phase change from section to section
in stop -bands, but only a decrease in amplitude by G. Stop -bands are
characterized by a positive quantity under the square root of (55).
Outside of stop -bands this quantity is negative. The stop -bands ex-
tend to the zeros of the square root.

Since I p I << 1, the square root will be zero only when I sin 2,3b << 1

also; letting 2$b = r - 0 with I 0 I << 1, (55) may be approximated
near the stop -band by

G1 r'.1 -1 ± 1/p271-2 - 02. (59)
2

Within the stop -band for

< Pr
L

P012 Nor

2
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the attenuation constant is:

a.a'a = / 2

With

b/a
2f3b 4r

X/a

for waves sufficiently far from cutoff, the deviation 0 from the half -
wavelength condition may be expressed by

b)
0 = 7T (1- -

and the attenuation constant be written

aa a =
2b

(Poi22kory (1 (60)

For 0 = 0 the center frequency of the stop -band obtains, corresponding
to

a
X /V(fib)2 (P)2

a
-77
40

when -b << 1.
a

(61)

Here the attenuation constant is

P012koraa a - (62)
4b/a

With 0 = ± (po12kiir)/2, for the stop -band limits the relative width of
the stop -band is

Aci.)
= POI2ICI . (63)

w

In the present approximation, neglecting heat losses in the conductors,
there is no attenuation outside of stop -bands.

Taking these heat losses into account, 2gb in (55) has to be replaced
by 2/3b - j2ab, where

P.
a

= -Pco

according to Section II. Since 2ab << 1, the attenuation constant at
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the center of the stop -band is in this case

pol2ki(r - 4ab)aa ft - (64)
4b/a

The numerical evaluations in Section II and plots of Fig. 8 show
a am well beyond the first stop -band. Since 4ab << it also the stop -
band attenuation and width will not be affected noticeably by the finite
conductivity of the wires.

For numerical evaluation of stop -band attenuation and width the
Fourier coefficient k1 according to (44) has been computed and plotted
in Fig. 10 versus c/b. k1 is larger the smaller the ratio c/b. For c ---> b
the present conformal transformation is into square wires without
spaces. In this case k1 0. But for c/b < 0.80 the approximation of
round wires is satisfactory.

Stop -band attenuation 2a1b per section and relative stop -band width
Aw/co according to (62) and (63) are both proportional to k1. Fig. 10
has therefore been provided with additional scales to also represent
these two quantities as a function of c/b.
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Fig. 10 - First -order Fourier coefficient of TEot coupling in spaced -ring guide;
additional scales indicate stop -band width and attenuation.
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It is most important for practical purposes that the stop -band at-
tenuation reach only quite modest values and that the stop -band be
very narrow. 2a'b and Ow/co being only functions of c/b, the absolute
quantities a' and Ow of the stop -band will both be smaller the larger
the length 2b of the section, provided of course one stays within the
range where present approximations hold.

Take for example a helix wire spaced by 2b = 0.15 mm with c/b =
0.75, corresponding to present design practices!' The stop -band would
occur at X = 0.3 mm, corresponding to f = 1000 gc. The width Of =
925 kc and attenuation a' = 35 db/mile of the stop -band would not be
objectionable because it is well beyond the frequency range where the
helix waveguide will be operated.

Helix wires spaced by 2b = 0.3 mm with c/b = 0.75 corresponding
to an optimum design for wideband unwanted mode absorptions would
have a stop -band at 500 gc of width Of = 462.5 kc and attenuation
a' = 67 db/mile. Both quantities are smaller but also not objectionable
since still outside the operating range.

If, however, no other limitation is imposed on the wire geometry but
the space between to be cutoff for circular electric wave fields at the
highest operating frequency, then with c/b = 0.75 and er = 3 for the
space between wires:

1
2(b - c) < Xmin2 -Or

2
2b < Xmin

-V Er

To utilize the full range of mm -waves Xmin = 1 mm. Then 2b = 1
mm will keep the space between wires sufficiently below cutoff.

The stop -band will now occur within the operating range at f = 150
gc but it will only he Of = 139 kc wide and have the attenuation a' =
20 db/mile. Both values are small enough not to be objectionable.

V. CONCLUSIONS

Helix waveguide, spaced -ring or spaced -disk guides or other periodic
structures for circular electric wave transmission may well be operated
close to or beyond the frequency where the wavelength of propagation
is twice the period of the structure. The nonuniform but periodic struc-
ture of the conducting boundaries in such waveguides will cause an
increase in wall current losses due to nonuniform distribution of the
eddy currents. From its quasistatic value at low frequencies this distri-
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bution will become more even as the frequency increases and the
magnetic field penetrates more into the grooves or spaces between
wires, rings or disks. The relative loss with respect to smooth wall guide
will thus decrease by up to 5 per cent before it shows any substantial
increase when the wavelength of propagation becomes smaller than the
period of the structure.

The periodic structure causes a stop -band in circular electric wave
transmission, when the wavelength of propagation is twice the period
length. The stop -band attenuation is, however, quite modest and, what
is even more important, the stop -band is very narrow. The relative
width of the stop -band and the stop -band attenuation per section are
independent of waveguide size and frequency and are functions only of
the ratio of wire size to wire spacing or of corresponding dimensionless
factors describing the geometry. Deviating from present design prac-
tices, one may therefore make the structure of relatively large period,
accepting a very narrow stop -band within the operating range. In 2 -inch
I.D. helix waveguide of optimum design for unwanted mode absorption
the wire size is 2c = 0.225 mm and wire spacing 2b = 0.300 mm. The
stop -band occurs near 500 gc; its width is AT = 462.5 kc and maximum
attenuation a' = 67 db/mile. Keeping the ratio c/b = 0.75 the same,
but increasing the spacing to 2b = 1 mm, the stop -band will occur at
150 gc but will be only 139 ke wide and have a maximum attenuation
of 20 db/mile.

APPENDIX

A.1 Conformal Transformation

Parameter if of the transformation was found for several values of
c/b by solving (15) numerically using Newton's formula. Subsequently
P was calculated from (16). Both quantities are listed in Table I. Also
listed in this table for all values of c/b is the largest deviation of the

TABLE I

c/b 'V I, rmaxic PdP0

0,5 0.653 257 600 1 1.155 982 500 1.018 1.225
0,6 0.528 077 816 1 1.034 531 436 1.039 1.170
0,7 0.391 940 793 8 1.003 248 064 1.078 1.126
0,8 0.247 192 783 0 1.000 024 889 1.149 1.082
0,85 0.176 268 291 6 1.000 000 146 1.199 1.060
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contour Dr/3 in Fig. 3 from a circle as it is found from (18) and

[V[ (c/b)(b/a)T + (c/b)(b/a)11.; (65)

For further reference the loss ratio P./Po in the quasistatic case
according to (29) is likewise listed in Table I.
The area in the Z plane to be mapped on to the W plane is multiple -
connected. Hence care has to be taken to select suitable values of the
multiple -valued functions in (13) and (14). From (14)

27ra

b
(u jv) = (r) + sin -1 (x) (66)

p - 1
x p + 1

(67)

To obtain rectilinear boundaries in the W plane, principal and other
values of sin -1 r and sin -1 x must be combined. Suitable combinations
are listed in Table II.

TABLE II

Phase range of X = Re fsin-1 (01 Im fsin-1 (n1

0
7r/2

- r/2-r

<
<
<
<

< < 7r/2
<n- < r
4 < 0
<- < -7r/2

r/2 > X > 0
0 > X > - r/2
r > X > 7r/2

3r/2 > X > r

Y > 0
Y > 0
Y > 0
Y > 0

X = Re (sin'' (x)] 1' = Im (x)1

< <x < 7r/2 ,r/2> X> 0 Y > 0
7r/2 < <rx < 0 > X > - r/2 Y > 0

-7,12 < <X < 0 -2r < X < -37r/2 Y < 0
-7r < <x < -7r/2 -5r/2 < X < -2r Y < 0

Of the inverse hyperbolic functions in (13) the principal value is
used throughout, but both values of the square roots of the arguments
are taken alternatively.

Likewise, suitable values of the square roots in the derivative (17)
must be selected as well as in

dZ_ b/a 1

ir(1 1.0[A,/ - l v
and

dW _ .b/ar-
dr 3 27r L0* - 1  Nk v Vr ± 1. VI'

(68)

(69)
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where r = jn, which are subsequently used in numerically solving
(13) and (14).

Since only areas of the Z plane with y > 0 are being mapped, the
square roots t\/-- 1 and -V/. vin Z(r) according to (13) must be
chosen of equal sign in case of 77 0 and opposite sign in case of t < 0.
This choice will insure the proper asymptotic values of I dZ/dW 12 in
(19) and (20).

A.2 Magnetic Field and Wall Current (if Circular Electric Waves in Lined
Waveguide

From Maxwell's equations in cylindrical coordinates

aHr aHZ.
= 3weeon,.

az ar

For the difference of magnetic field OH = H - Ho in lined waveguide
and empty waveguide

aalz aAH,- -iweo(cE - E00) "1- azar
(70)

may be written.
The radial component Hr of magnetic field vanishes at the wall; close

to the wall it is small. In order to find the change in magnetic field at
the wall due to a thin lining (70) may be approximated by

aa,Hz .-
(3r

jw(E - 1)0E0 (71)

and the change in magnetic field at the wall calculated from the relative
permittivity e(r,z) and the electric field

1E,p0 = jApowpolJoI(poir)e 7z (72)

of a circular electric wave in empty guide.
Substituting for Evo from (72) into (71) and integrating

AHz = Aco2i.too ( - 1)PoiJo' (No.) dr e-72 .
13

a

For a thin lining

A1-12 = Aco214Eopoi2Jo(poict)

(73)

(e - 1)(a - r) dr e--." (74)



782 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1964

which, when compared to the magnetic field

IIZo = ApoiVo(poir)

at the wall of the empty guide, gives

//z 2

a

= uoco - 1)(a - r) dr .
0

The relative change in wall current is given by the same expression.

A.3 Integration of Coupled Line Equations

, A(1) = v(1)e-'1

B(l) = u(1)e'l

By substituting

= ve-" A(0) = v(0)

B = we" , B(0) = w(0)
(75)

for A and B in (37) the following system of equations for v and w ob-
tains:

[v(z) 0

w (z) ke-272

- rv(0)]
0 L. (0)i

(76)

Integrating according to the procedure (40), the first -order approxima-
tion to a solution is

zv (z) 1 - ke2" dzo

w(z) f ke-2' dz
0

Another iteration results in the second -order solution

v (z)

w(z)

'1 - ke2" f ke-2yz dz'dzf
0

foz
ke-27z dz

ke2" dz

1 - ke-2" f ke2Tz' dz'dzf
0

(78)

Fv(0)

Lw(0)]

which is adequate for present purposes. Replacing v and w by A and
B, the transmission matrix is contained in
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[1 -f keg" f k e-2"'

ke-2" dz e71
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The ALPAK System for Nonnumerical
Algebra on a Digital Computer II:

Rational Functions of Several
Variables and Truncated Power
Series with Rational -Function

Coefficients

By W. S. BROWN, J. P. HYDE and B. A. TAGUE
(Manuscript received November 13, 1963)

This is the second in a series of papers describing the ALPAK system
for nonnumerical algebra on a digital computer. The first paper, Ref. 1, is
concerned with polynomials in several variables and truncated power
series with polynomial coefficients. This paper is concerned with rational
functions of several variables and truncated power series with rational -
function coefficients. A third paper, Ref. 3, will discuss systems of linear
equations with rational -function coefficients.

The ALPAK system has been, programmed within the BE-SY S-4
monitor system on the IBM 7090 computer, but the language and concepts
are machine -independent. Several practical applications are described in
Ref. 1.

This paper is divided into five sections. The first deals with basic con-
cepts, the second defines canonical forms, and the third describes ALPAK's
greatest common divisor algorithm. These three sections do not presuppose
any knowledge of computers or computer programming. Section IV de-
scribes the use and the implementation of the algebraic operations relating
to rational functions of several variables and truncated power series with
rational function coefficients. The reader of this section is assumed to be
familiar with the basic concepts of computer programming and with Ref. 1.
Finally, Section V discusses very briefly some of our plans and hopes for
the future.
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I. SUMMARY OF THE AVAILABLE RATIONAL -FUNCTION OPERATIONS

1.1 Introduction

The ALPAK system is a programming system for performing routine
manipulations of algebraic expressions on a digital computer. The
system operates on rational functions of several variables and on trun-
cated power series in several variables with rational functions of several
other variables as coefficients. It is capable of performing the operations
of addition, subtraction, multiplication, division, substitution and
differentiation. In the present version of the program the coefficients
of the rational functions are integers, but the change to coefficients
from any other integral domain can be made without major program
reorganization. ALPAK is also capable of solving systems of equations
linear in certain variables with coefficients which are rational functions
of other variables (see Ref. 3). The ALPAK system as described in this
paper has been programmed for the IBM 7090 computer.

1.2 Input -Output

Rational functions can be entered into the machine from punched
cards, and the output can be printed and/or punched. The polynomial

P(x,y,z) = 8xy2z 2xy2z2 - 10xsyza

can be entered into the machine by punching the following array of
coefficients and exponents one term per card:

8 1,2,1
2 1,2,2

-10 3,1,3
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The zero coefficient is an end -of -polynomial signal. The subroutine
which reads these cards must have access to a polynomial format state-
ment (previously read from cards) containing the names of the variables
and the number of bits to be allocated for the exponents of each. One
full word (35 bits plus sign) is allocated for the coefficient of each term,
thus permitting coefficients up to 235 - 1 in magnitude. Rational func-
tions which are not polynomials are entered by punching the numerator
and denominator polynomials successively and calling the rational -
function reading subroutine.

The punched and printed output consists of arrays of coefficients and
exponents similar to those that are accepted as input. Input and output
are accomplished by simple commands such as

RFNRDF FMT read format statement FMT
RFNRDD R,FMT read rational function R
RFNPRT R print rational function R.

1.3 An Example of the ALPAK Language

The simplicity of ALPAK programming is illustrated by the following
example. Suppose rational functions A, B, C, and D and a format state-
ment FMT have been punched on cards, and we wish to compute and
print the rational function

F = *B,,C) D,

where the asterisk denotes nll( ipliezt ion.
The required program is

RFNBEG 10000 begin (reserve 10000 words of storage
for data and working space)

RFNRDF FMT read polynomial format statement FMT
from cards

RFNRDD A,FMT read polynomial A from cards
RFNRDD B,FMT read polynomial B from cards
RFNRDD C,FMT read polynomial C from cards
RFNRDD D,FMT read polynomial D from cards
RFNMPY F,A,B replace F by A *B
RFNDIV F,F,C replace F by F/C (C must not be

zero)
RFNADD F,F,D replace F by F D

RFNPRT F print F
TRA ENDJOB go to ENDJOB.
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II. CANONICAL FORMS

2.1 Introduction

All rational functions stored by the program are kept in a unique
canonical form which is the subject of this section. The read routines
place the input functions in canonical form and all operations leave
their results in canonical form. The uniqueness of the canonical form
ensures that two equal rational functions with the same format are
precisely identical in storage and that, in particular, zero is uniquely
represented.

2.2 Polynomial Canonical Form

A polynomial is always represented as an ordered list of its nonzero
terms. It is convenient to order the terms according to the magnitude
of the first exponent, and to order those terms having the same first
exponent according to the magnitude of the second, etc. The order of
the variables is the order in which they appear in the format statement.

2.3 Rational -Function Canonical Form

A rational function is represented as an ordered pair of polynomials,
namely its numerator and denominator respectively. These must be in
polynomial canonical form, and they must be relatively prime. In addi-
tion, the sign of the numerator must be chosen so that the first term of
the denominator is positive.

III. THE GREATEST COMMON DIVISOR ALGORITHM

3.1 Introduction

Since rational functions in canonical form must have numerator and
denominator relatively prime, the ALPAK program must be capable
of finding the greatest common divisor (G.C.D.) of polynomials in
several variables. This is the essential ingredient in the extension of
ALPAK from polynomials to rational functions. Since each rational -
function operation must leave its result in canonical form, the G.C.D.
operation will be performed very frequently in most programs involving
rational functions.

Let al a2 , , a be a set of nonzero polynomials. A G.C.D. of
al , a2 , , a is defined to be a polynomial g such that
(i) g divides each of al , a2 , , a ; and
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(ii) any polynomial g' that divides each of a1, a2, , a. also divides g.
We denote a G.C.D. of al , a2 , , an by (a1, a2 , , an). Since every
polynomial has a decomposition into primes that is unique up to sign, this
definition implies that a G.C.D. is unique up to sign. In the special case
of integers, the positive value is often referred to as the G.C.D.

The next three subsections discuss the Euclidean algorithm for in-
tegers, ALPAK's generalization of it for polynomials, and some special
strategies which make the latter more effective. The final subsection
attempts to present a balanced picture of the present capabilities of the
ALPAK algorithm.

Algebraic background relevant to the following discussion can be
found in Chapter 1 of Ref. 2, or almost any other algebra text that
treats polynomial rings.

3.2 The Euclidean Algorithm

The G.C.D. of a set of n nonzero integers can be obtained by a series
of pairwise computations, because

(a1,
, an) = ( ( ( ( (ai ,a2),a3), ),an-i),an). (1)

The Euclidean algorithm obtains the G.C.D. of two nonzero integers a
and b. Without loss of generality we can assume that both are positive
and that a z b. By the division algorithm we can write

a = gb c (2)

with

0 c < b. (3)

If c = 0, then b divides a, so (a,b) = b. Otherwise the common divisors
of a and b are the same as those of b and c, so (a,b) = (b,c). Since

b c < a b, the process terminates in a finite number of steps.

3.3 The ALPAK G.C.D. Algorithm

We shall consider a polynomial in v variables as a polynomial in one
variable, to be called x, with coefficients from the integral domain of
polynomials in the remaining v - 1 variables. We shall represent these
v - 1 variables by the vector y. If p(x,y) is such a polynomial, then
Or(p) denotes the degree in x of p.

Now let a and b be a pair of nonzero polynomials. We shall present
an inductive definition of the ALPAK algorithm, to be called POLGCD,
for obtaining their G.C.D. Let v' be the number of variables in the pair.
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If v' = 0, then a and b are both integers and the Euclidean algorithm
is used. Assume POLGCD works for v' < v. We shall define it for v' = v.
To begin, we write

a(x,y) = ar(y)xr 1(Y)xl-1 +  + ao(Y)

b(x,y) = b8(y)x8 b8-1(Y)a8-1 +  + bo(Y)
Our first task is to rewrite this as

a(x,y) = xaf(y)a'(x,y)

b(x,y) = xt3g(y)b'(x,y)

where a' and b' are primitive in x; that is, neither is divisible by x or by
any polynomial independent of x except ±1. Clearly, a and # are the
largest integers such that x" divides a(x,y), and i9 divides b(x,y); while
f(y) is the G.C.D. of the nonzero ai(y), and g(y) is the G.C.D. of the
nonzero bi(y). Since the ai and the bi depend on fewer than v variables,
our induction hypothesis implies that POLGCD will obtain f and g.
Next we observe that

(4)

(5)

(a,b) (42)(f,g)(a',b'). (6)

(The proof of this depends on the fact that a' and b' are primitive.) It
is obvious that

(x ,x ) = (7)

where -y is the smaller of a and )3. Since f and g depend on fewer than v
variables, our induction hypothesis implies that we can use POLGCD
to obtain (f,g).

We shall now define a subalgorithm, to be called PRMGCD, for
obtaining the G.C.D. of the primitive polynomials a' (x,y) and b'(x,y).
To begin, we write

(x,y) (y)xm mam-i(Y)x ±  + au' (Y)

b'(x,y) = b'(y)x" b-i'(y)xn-1 + -I- bo'(y),

where a,',a0',b',bo are all nonzero. Without loss of generality we can
assume that az(a') > ax(w). If ax(v) = 0, then b' = bof = ±1,* so
(a' ,b' ) = 1. Otherwise, we use POLGCD to compute

h = (a,/,b'). (9)

(8)

Then we form

c(x,y) - [bn
hoi

(x y) - [a: (y)] b'( u)x"'" (10)
Y) h(Y)

* Here we have used the definition of priinitivity which is given following (5).
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in which the bracketed fractions are polynomials. If c = 0, then a' =
±b';* so (a',b') = b'. Otherwise, let c'(x,y) be the primitive part of
c(x,y), defined as in (6). Then the common divisors of a' and b' are
the same as those of b' and c',* so (a',b') = (11,c1). (Note the similarity
of this algorithm to the Euclidean algorithm, which was defined in the
preceding subsection.) By construction

ax(c') 6 (Mc) < az(a'). (11)

Hence

Mb') ax(c' ) < az(a') az(11), (12)

and so the process terminates in a finite number of steps.

3.4 Special Strategies

From a practical point of view the POLGCD algorithm leaves much
to be desired. As the degree in x is reduced, the coefficients grow. This
phenomenon is vividly illustrated by the following example. It is desired
to find the G.C.D. of the primitive polynomials

{-39x4 125x3 - 15x2 - 135x - -14
-12x4 - 89x3 192x2 - 6x - 85.

The successive pairs of primitive polynomials produced by the
PRMGCD algorithm are:

{-12x4 - 89x3 192x2 - 6x - 85
-1657x3 2556x2 462x - 929

f 178145x3 - 312600x2 - 1206x 140845
- 1657x3 2556x2 + 462x - 929

f -1657x3 2556x2 + 462x - 929
5219965x2 - 6692054x - 5656955

{2253497062x3 - 6961950605x - 4849347485
5219965x2 - 6692054x - 5656955

(13)

(14)

To proceed farther would require double -precision coefficients, which
are not now available in ALPAK. For polynomials in many variables
this problem is even more acute. If POLGCD were programmed to
handle coefficients and exponents of arbitrary size, the time it would

* Here we have used the definition of primitivity which is given following (5).
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require to find the G.C.D. of two general polynomials in n variables,
each having degrees d1, , do respectively and each having coeffi-
cients of modest size, can be shown to be proportional to

/proportional

(cdn_1)

(Cdn)

(15)

where c 2.6 is the square of the Fibonacci ratio, -1(1 +
It is apparent that any real solution to the problem of coefficient

growth would require a fundamentally different algorithm. However,
many of the G.C.D. problems which arise in practice exhibit special
properties which can be exploited.

The most important of these special properties is variable independ-
ence. If one of the inputs to POLGCD is independent of one or more of
the variables, then the other can immediately be broken into subpoly-
nomials, and we obtain a set of subproblems each involving only those
variables which both of the original inputs depend on. For example, it
is clear by inspection that the G.C.D. of the pair

2z(2x4 - 17x3 65x2 - 144x ± 72)
- 3y2(2x3 - 17x2 + 66x - 72)

6x4 - 41x3 104x2 - 116x ± 48

is equal to the G.C.D. of the triple

2x 4 - 17x3 + 652 - 144x + 72
2x3 - 17x2 + 66x - 72
6:1.4 - 412 + 104x2 - 116x + 48,

and the POLGCD algorithm will discover this provided that x is the
last variable in the format statement. Unfortunately POLGCD does
not now optimize the order of the variables. If the preceding example is
attempted using the variable ordering (x,y,z), disaster ensues. The in-
puts are viewed as

4zx4 - (6y2 34z)x3 (51y2 130z)x2
- (198y2 288z)x (216y2 + 144z)

6x4 - 41x3 104x2 - 116x + 48,

and it is easily seen that both are primitive in x. The next two pairs of
primitive polynomials produced by PRIVIGCD are
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- 41x3 + 104x2 - 116x + 48
(18y2 + 20z)x3 - (153y2 + 182z)x2

+ (59y2 + 452z)x - (648y2 + 336z)

+ 68z)x3 - (423y2 + 158z)x2
+ (450y2 - 76z)x + (216y2 + 240z)

(18y2 + 20z)x3 - (153y2 + 182z)x2
+ (59y2 + 452z)x - (648y2 + 336z).

The variable independence has now been lost, and the subsequent
pairs will have progressively higher degrees in y and z, and progressively
larger coefficients.

Both POLGCD and PRMGCD test their inputs to see whether
either divides the other. Since a given G.C.D. problem may involve
many recursive calls to POLGCD and PRMGCD, this strategy pays
frequent dividends. POLGCD and PRMGCD also make full use of
the fact that the G.C.D. of the set of terms of a polynomial, and simi-
larly the G.C.D. of a monomial and a polynomial, can be computed
simply and directly.

Finally, we remark that the PRMGCD process is terminated as soon
as the degree in x of either input is zero or one. A primitive polynomial
of degree zero is obviously equal to ±1, while a primitive polynomial
of degree one is irreducible. At the last variable level the PRMGCD
process is terminated as soon as the degree in x of either input is three
or less. A quadratic polynomial can be factored, if it is reducible, with
the aid of the quadratic formula. A reducible cubic must have at least
one rational root. A simple change of variable produces a related cubic
which must have at least one integral root, and it is easy to test for this
numerically.

3.5 Concluding Remarks

As we have already stated, the G.C.D. operation is the essential
ingredient in the extension of ALPAK from polynomials to rational
functions. The weakness of the ALPAK G.C.D. algorithm is apparent
from (15). Its strength lies in the fact that most G.C.D. computations
which arise in problems of practical interest have a degree of immunity
from that formula because of their special structure.

As an example we wish to mention the problem of a single -server
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queue with feedback. The computation of the first two moments of the
total time is outlined in Section II of Ref. 1 and in the Appendix of
Ref. 5. We recently obtained the third moment in a six -minute run on
the 7090. This involved solving a triangular linear system of nine
equations in nine unknowns. The equations, expressed as polynomials
in the nine unknowns and five additional parameters, have over 900
terms. The result is a rational function of the five parameters with a
numerator of 200 terms and a denominator of 39 terms. The coefficients
of largest magnitude are 1896 in the numerator and 1460 in the de-
nominator. The degrees are 1, 1, 3, 7, and 9 for the numerator and
0, 0, 0, 7, and 9 for the denominator.

IV. INFORMATION FOR THE ALPAK PROGRAMMER

4.1 Introduction

This section is an extension of Section HI of Ref. 1. The use and
implementation of the ALPAK polynomial operations are described
there, while the use and implementation of the rational -function opera-
tions are described here. The loading instructions are unchanged except
that an additional binary deck, called ALPAK3, must be included for
a run.

A nonpolynomial rational function is stored as an ordered pair of
polynomials, namely its numerator and denominator, as illustrated in
Fig. 1. It consists of a pointer, a rational -function heading, and two
polynomials stored in the usual way (see Fig. 2 of Ref. 1). The rational -

function heading contains pointers to the polynomials, which must
have a common format.

Integers and polynomials are always recognized as special cases of
rational functions. If a rational -function operation is used where a
polynomial operation might have been used, the only penalty will be a
fraction of a millisecond of additional overhead.

A rational function can be constructed from its numerator and de-
nominator polynomials by using RFNDIV (divide) or RFNFRM
(form). RFNDIV duplicates the two polynomials and constructs the
rational function from the copies. RFNFRM constructs the rational
function from the given polynomials and clears their pointers. RFNFRM
has an optional argument which can be used to indicate that the numera-
tor and denominator are known to be relatively prime.

4.2 Input -Output Operations

RFNRDF F read format (a)
F RFNCVF (X,15,Y,21,Z,36) convert format (b)
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Fig. 1 -A rational function I? with format F.
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DATA

RFNRDD R,F read data (0*
RFNCVD R,F,HN,HD convert data (d)
RFNCLR R clear (e)
RFNSTZ R store zero (f)
RFNSTI R store identity (g)
RFNSTC R,A,B store constant (h)
RFNSTV R,X,F store variable (i)
RFNPRT R,CC,(NAME) print (i)
RFNPCH R,(NAME) punch (k)*
RFNPRP R,CC,(NAME) print and punch (1)*

RFNRDP R,F,CC,(NAME) read and print (m)
RFNCVP R,F,HN,HD,CC,(NAME) convert and print (n)

A = numerator of constant
B = denominator of constant; if omitted, the denominator is un-

derstood to be one

* RFNRDD reads two polynomials from cards, interpreting the first as the
numerator and the second as the denominator of a rational function. If a poly-
nomial is to be read by RFNRDD, a unit denominator with a complete set of
zero exponents must be provided. A rational function with a constant numerator
(denominator) punched by RFNPCH or RFNPRP cannot be read by RFNRDD
unless a complete set of zero exponents is added to the numerator (denominator).
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CC = control character for printer
F = format (symbolic address of/for format statement)

HN = Hollerith data for numerator (symbolic address of data)
HD = Hollerith data for denominator (symbolic address of data);

if omitted, the denominator is understood to be one
NAME = alternative name for rational function (not exceeding 21

characters)
R = rational function (symbolic address of pointer)
X = variable (specified in the manner indicated by the last previ-

ous VARTYP declaration. See Ref. 1, Section 3.5).

(a) RFNRDF F

Same as POLRDF. See Ref. 1, Section 3.2.

(b) F RFNCVF (X,15,Y,21,Z,36)

Same as POLCVF. See Ref. 1, Section 3.2.

(c) RFNRDD

Read the rational function R from cards according to format F. R is the
address of a pointer for the rational function and F is the address of a
format statement. R must consist of a polynomial numerator and poly-
nomial denominator punched in cards in that order as specified by Ref. 1,
Section 3.2.

(d) RFNCVD R,F,HN,HD

Same as RFNRDD except that the numerator and denominator poly-
nomials are to be found in core in blocks of no more than 12 BCI words
each starting at HN and HD, respectively.

(e) RFNCLR R

Clear the rational function R. This clears both numerator and denomi-
nator polynomials as well as the R heading if R is not itself a polynomial.
If the R pointer contains zero or points to an idle heading, then RFNCLR
is a no -op.

(f) RFNSTZ R

Same as POLSTZ. See Ref. 1, Section 3.2.

(g) RFNSTI

Same as POLSTI. See Ref. 1, Section 3.2.

(h) RFNSTC R,CN,CD
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Same as POLSTC if CD is omitted. See Ref. 1, Section 3.2. If CD is
present, then CN and CD are the addresses of constants which become
the numerator and denominator, respectively, of the rational constant
R = CN/CD.

(i) RFNSTV R,X,F

Same as POLSTV. See Ref. 1, Section 3.2.

(j) RFNPRT R,CC,(NAME)

Print the rational function R using CC for the control character of the
first line of print and NAME (not more than 21 characters) for the name.
If NAME is not provided, "R" will be used for the name; and, if CC is not
provided, a minus (for triple spacing) is used for the control character. A
rational function not a polynomial is printed by printing the name on the
first line, followed by two polynomial prints with the names "NUMER-
ATOR" and "DENOMINATOR" respectively

(k) RFNPCH R, (NAME)

Punch the rational function R on cards using NAME (no more than 21
characters) for the name. If NAME is not provided "R" will be used for
the name. A rational function not a, polynomial will be punched as two
polynomials, numerator and denominator in that order.

(1) RFNPRP R,CC,(NAME)

Same as RFNPRT followed by RFNPCH.

(m) RFNRDP R,F,CC, (NAME)

Same as RFNRDD followed by RFNPRT.

(n) RFNCVP R,F,HN,HD,CC, (NAME)

Same as RFNCVD followed by RFNPRT.

4.3 Arithmetic Operations

RFNADD R,P,Q if = P ± Q add ( a)

RFNSUB R,P,Q If, = P -Q subtract ( b)

RFNMPY R,P,Q R = P*Q multiply (c)
RFNDIV R,P,Q R = P/Q divide (d)*
RFNSST G,F( LISTR) G = F ( LISTV substitute (e)

(LISTV) = LISTR)
* RFNDIV can form the quotient of any two rational functions provided the

divisor is not zero. In contrast, POLDIV has a "no divide" return which is used
whenever the quotient is not a polynomial.
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RFNDIF Q,P,X Q = aP/ax differentiate (f )

RFNZET R Skip tiff R = 0 zero test (g)
RFNNZT R Skip R 0 nonzero test (h)
RFNEQT P,Q Skip P = Q equality test (i)
RFNDUP Q,P Q = P duplicate (j)
RFNCHS R R = -R change sign (k)

F,G,P,Q,R = rational functions (symbolic addresses of pointers)
X = variable (specified in the manner indicated by the last

previous VARTYP declaration) f
LISTR = list of rational functions.
LISTV = list of variables (specified in the manner indicated by the

last previous VARTYP declaration)

4.3.1 Notation

In the following descriptions, if R denotes a rational function, we de-
note its numerator by RN and its denominator by RD. In particular, if
R is a polynomial, RD is the constant polynomial 1.

4.3.2 Descriptions

(a) RFNADD R,P,Q

The inputs P and Q are rational functions in canonical form. First
POLGCD is used to obtain

G = (PD,QD).

Then the polynomials

AN = PN*(QD/G) QN*(PD/G)

and

AD = (PD/G)*(QD/G)*G

are computed. Note that the parenthesized fractions are polynomials.
Next,

H = (AN,G)

is obtained and

R - (AN/H)
(AD/H)

f See Ref. 1, Section 3.5.
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is formed. RN and RD are now relatively prime (the proof of this is an
exercise for the reader), so POLGCD need not be used when placing R
in canonical form.

(b) RFNSUB R,P,Q

RFNCHS [see (k) below] and RFNADD are applied to compute

R = P (-Q).

(c) RFNMPY R,P,Q

First the functions

A = PN/QD

and

B = QN/PD

are formed and placed in canonical form. Then

R = AN*BN/AD*BD

is formed. RN and RD are already relatively prime, so POLGCD need
not be used when placing R in canonical form.

(d) RFNDIV R,P,Q

RFNDIV is identical to RFNMPY except that Q must be not zero and
the roles of QN and QD are interchanged. If Q is zero, the diagnostic re-
mark "ZERO DENOMINATOR" is printed and the job is termi-
nated.

(e) RFNSST G,F(LISTR) (LISTV)

RFNSST is exactly the rational function equivalent of POLSST; in par-
ticular, the format constraints on F and G are identical. If F is a poly-
nomial, the rational functions of LISTR are substituted for the varia-
bles in LISTV term -by -term to accumulate the final result. If F is a
rational function, this procedure is applied to the numerator and de-
nominator polynomials of F in succession and the resulting rational func-
tions are divided (using RFNDIV) to obtain G.

(f) RFNDIF Q,P,X

First POLDIF is used to compute

PN' = a(PN)/ax
PD' = a(PD)/02C,
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and POLGCD is used to obtain

G = (PD,PD').

Next the polynomials

Ju ST = (PD/G)*PN' - PN*(PD7G)
and

AD = PD*(PD/G) = (PD/G)2*G

are computed. Note that the parenthesized fractions are polynomials.
Finally

H = (AN,G)
is obtained, and

(AN /H)Q - (AD/H)

is formed. Since QN and QD are relatively prime, POLGCD need not
be used when placing Q in canonical form.

(g) RFNZET R

Same as POLZET. See Ref. 1, Section 3.3

(11) RFNNZT R

Swine as POLNZT. See Ref. 1, Section 3.3.

(i) RFNEQT P,Q

If P and Q are both polynomials, POLEQT is applied. If only one of
them is a polynomial, they are not equal. If neither is a polynomial,
POLEQT is applied to both numerators and both denominators. If the
rational functions are unequal, the next instruction is executed, if they
are equal, then the next instruction is skipped.

(j) RFNDUP Q,P

Q is replaced by a copy of P.

(k) RFNCHS R

If R is a polynomial, POLCHS is applied to R. If R is not a polynomial,
POLCHS is applied to its numerator polynomial.

4.4 Truncated Power Series Operations

ALPAK contains two macros for dealing with truncated power series
with rational function coefficients. These are RFNTRC (truncate) and
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RFNMPT (multiply and truncate). Addition can be handled with
RFNTRC and RFNADD. Each truncated power series must be stored
as a rational function in a format whose first k variables are the power
series variables. The denominator, if any, must be independent of these
variables. The command

RFNTRC P,ORD,K

where K contains the number of power series variables k and ORD con-
tains an integer n, causes P to be truncated to order n. That is, all terms
of order greater than n in the first k variables are deleted. The command

RFNMPT R,ORDR,P,ORDP,Q,ORDQ,K

is represented by the equation

R = P*Q

where P and Q are truncated power series. K is the address of the num-
ber of power series variables, ORDP and ORDQ are the addresses of the
orders of P and Q respectively, and ORDR is an address for the order
of R, which is to be comupted. If P(Q) contains any terms of order
greater than ORDP(ORDQ), they will be deleted.

4.5 Miscellaneous Operations

(Caution: read descriptions

POLGCD G,A,B

INTGCD

PWVSTO XK,K,W,FA

VARNUM
RFNFRM
EXPAND
SUBLCK
PWVFAC

W,X,FA
R,N,D
N,D,R,IORP
PJ,P,J,W
K,P,W

DEGREE K,P,W

(a) POLGCD

carefully.)

greatest common divisor of
polynomials

greatest common divisor of in-
tegers in AC and MQ

store a power of the Wth vari-
able

variable number
form
expand
sub -block
factor off a power of the Wth

variable
degree.

G,A,B

Replace G by a greatest common divisor of the polynomials A and B.

(b) INTGCD
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Replace the integer in the AC by the greatest common divisor of it and
the integer in the MQ.

(c) PWVSTO XK,K,W,FA

Replace XK by the Kth power of the Wth variable in the format whose
address is at FA. K is the address of the power, and W is the address of
the variable number.

(d) VARNUM W,X,FA

Replace the contents of W by the variable number of the variable X in
the format whose address is at FA. X is the address of the variable name
in BCI.

(e) RFNFRM R,N,D

Same as RFNDIV except: (i) N and D must be polynomials; (ii) N
and D become the property of R, and their pointers in the calling pro-
gram are replaced by zeros; (iii) I? must be distinct from N and D;
and (iv), if N and D are known to be relatively prime, a fourth argu-
ment NOGCD can be added to the calling sequence in order to save the
time which would otherwise be spent in finding their greatest common
divisor.

(f) EXPAND N,D,R,IORP

This is the inverse of RFNFRM. N and D must initially contain zeros.
They are filled in with pointers to the numerator and denominator of I?
respectively. The R heading is marked as idle. If R is an integer or a poly-
nomial, N is filled in with a pointer to I?, the R pointer is replaced by
zero, and control is transferred to IORP. If IORP is omitted, control is
transferred to the next instruction.

(g) SUBLCK PJ,P,J,W

P must be a polynomial independent of the first TV - 1 variables, if
any. Then, by the definition of the polynomial canonical form, the terms
of P are ordered according to the powers of the Wth variable. SUBLCK
replaces PJ by the polynomial consisting of that sub -block of P, if any,
whose terms all involve the Jth power (0 < J < degree of P) of the
Wth variable. If P contains no terms involving the Jth power of the
Wth variable, SUBLCK replaces PJ by the zero polynomial.

(h) PWVFAC K,P,W

P must be a polynomial independent of the first W - 1 variables, if
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any. PWVFAC replaces the contents of K by the smallest exponent of

the Wth variable in P, and divides P by that power of the Wth variable.

(i) DEGREE K,P,W

P must be a polynomial independent of the first W - 1 variables, if
any. DEGREE replaces the contents of K by the degree of P in the
Wth variable.

V. OUTLOOK

A new version of ALPAK (to be called ALPAKB) is now being
developed. Its foundation is a programming system (see Ref. 4) called
STGPAK (storage package), which provides (i) dynamic storage
allocation, (ii) automatic recursion, and (iii) "delayed -decision diag-
nostics."

The storage allocation orders make it possible to obtain contiguous
blocks of storage of arbitrary length as needed (provided that sufficient
space is available) and to return idle space to the system. A block may
contain sub -blocks and/or pointers to other blocks. This will permit
the introduction of higher level data structures including formal prod-
ucts of polynomials, thereby helping to alleviate the greatest -common -
divisor problem.

The use of a public push -down list for subroutine storage makes
recursive programming fully automatic. That is, a subroutine can call
itself without taking special measures to preserve its arguments and
intermediate results. The diagnostic facilities permit the decision re-
garding what to do about an overflow (shortage of space or time) or
error detected in a given subroutine, to be delayed until control has been
returned to some higher level subroutine or to the main program.

The authors hope that STGPAK together with a macro compiler
now being developed by Miss D. C. Leagus and W. S. Brown will
simplify and expedite the programming of ALPAKB subroutines. The
compiler should also be useful in the writing of main programs.

Apart from these matters, which are not directly related to algebra,
our plans for ALPAKB include multiple precision integer arithmetic,
an improved strategy for finding greatest common divisors, and a
complete set of operations for truncated power series.
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The Theory of Direct Transitions
in Semiconductors

By R. H. PANTELL, M. DIDOMENICO, JR., and 0. SVELTO
(Manuscript received November 26, 1963)

The problem of direct interband transitions in semiconducting crystals
is considered in detail. The solution of the problem is shown to lead to a
system of simultaneous coupled nonlinear differential equations. These
equations do not distinguish between static and dynamic fields, and are
obtained without recourse to any approximation procedures. They therefore
apply for electromagnetic fields of arbitrary amplitude. It is shown, finally,
that the linearization of these equations correctly predicts the fundamental
optical absorption edge and the photoconductive rate equations which result
in photomixing phenomena.

I. INTRODUCTION

Within the past year there has been an increasing interest in semi-
conductor behavior, resulting from the development of the optical maser.
In addition to the fact that the semiconductor can be used as an optically
active medium, this interest results, in part, from a variety of nonlinear
effects which can occur in semiconductors at infrared and optical fre-
quencies.

Optical masers are capable of providing very high -intensity fields at
photon energies corresponding to the energy gap between valence and
conduction bands. Since nonlinear effects generally vary as some power
of field strength, the laser has stimulated keen interest in semiconductor
nonlinear phenomena. Examples of such phenomena are the Franz-
Keldyshi .2 effect and the multiple -photon process.' Closely allied with
these nonlinear interband effects is the process of photomixing" (photo-
conductivity), where two coherent optical signals are beat together to
produce a photosignal which is proportional to the instantaneous density
of photoexcited electrons and hence contains sum and difference fre-
quency terms.

The aforementioned phenomena have been analyzed previously by
805
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calculating the interband transition probabilities from time -dependent
perturbation theory'-' for the case where an electrostatic and electro-
magnetic field act on an electron in a crystal. This approach involves
discarding quadratic terms in the vector potential in the Hamiltonian
(the static and dynamic fields are treated differently), and neglecting
higher -order nonlinearities in the population distribution.

In this article, a more general theory of direct transitions in semi-
conductors is presented. A semiclassical approach is used, wherein the
semiconductor properties are quantized and the electromagnetic field
is treated classically. A set of rather simple coupled nonlinear differential
equations is obtained for the equations of motion governing the funda-
mental absorption process, without resorting to any perturbation or
approximation procedures. In contrast to the usual method of analysis,
these equations do not distinguish between static and dynamic fields.
The linearization of the nonlinear equations correctly predicts the funda-
mental optical absorption, and is shown to lead to the photoconductive
rate equation for the generation of conduction band electrons.

II. SOLUTION TO THE WAVE EQUATION

The equation of motion for an electron in a crystal is the wave equation

= iii,(M///0/), (1)

where 3C is the Hamiltonian operator and ' is the one -electron wave
function. Without the presence of the radiation or static fields the
Hamiltonian, 3C0 is

3C0 = (p2/2m) V(r).

Here m is the electron mass, V(r) is the lattice potential, and p is the
momentum operator. With 3C0 as the operator in (1), the eigenfunctions
of Co3 are the Bloch functions:

3Co{uN(r; k) exp (ikr)1 = 8N(k)uN(r; k) exp (ikr), (2)

where

(pN(r: k) = uN(r; k) exp (ikr),

are the Bloch functions, and 8N(k) are the energy eigenvalues. The
subscript N refers to the different energy bands, and the function
uN(r; k), which is normalized over the volume of the unit cell, has the
periodicity of the lattice. In the presence of a static and dynamic field,
the Hamiltonian becomes
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2

3C =2m - A) + V(r) - Fr, (3)

where e is the electronic charge, c is the vacuum light velocity, A is the
vector potential for the dynamic field (the gauge (I) = 0 and V A = 0
is chosen), and F = eE0 is the force due to the static field E0 . The static
and dynamic fields enter differently in (3), because of the fact that the
vector potential for the static field increases linearly with time. It will
be shown, however, that in the solution there is no distinction between
the two fields.

With the Hamiltonian given by (3), the wave function ik is chosen so
that the equation of motion (1) does not contain secular terms, and so
that the solution to the wave equation [(7) and (8) below] takes a
relatively simple form in which the time -dependent and time -inde-
pendent fields both appear. A normalized wave function that satisfies
these two criteria is given by

4/(r,t) -
01

E f dkaN(t, k) uN[r; K(t)](27N

X exp i {kr + --
h

Frt - - f gN[K(r)] dr + SA,(t; k)},
ii o

1 1 t

where A is the volume of a unit cell, and where, for the sake of sim-
plicity, the function SN(t; k) has been defined as

( 4 )

SN(t; k) = i e E I droll v* (r; IC) VKuN(r; K).
-4

(5)

Here VK is the gradient operator in K -space and the asterisk denotes the
complex conjugate. One result of the added force on the electron, deter-
mined by the total electric field vector

1 aA
E = Eo - -c

at

is to change the electron wave vector from the constant value k to the
time -varying value

K(t) = k -1 Ft - ±- A(t)ftc , (6)

which describes the intraband electronic motion. The integral over k-

space entering in (4) extends over all values of the wave number within
an energy band, and the volume integral over coordinate space appearing
in (5) extends over the volume of a unit cell. It should be noted that



808 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1964

the dc field does not appear symmetrically with the time -varying field
in (4); this is due to the fact that the Hamiltonian has a different form
for static and time -dependent fields. The form of the wave function
given by (4) was suggested by Houston's choice of wave function for an
applied de field.'

It is assumed now that the wavelength of the applied radiation is
much greater than the dimensions of the unit cell, and that the electron
wave vector k has the same value for the lowest state in the conduction
band as for the highest state in the valence band. Thus the electron
momentum vector for the final state is the same as the momentum
vector for the initial state (direct transitions). In Appendix A, it is
shown that the substitution of the wave function IP from (4) into the
wave equation (1) yields a differential equation for the undetermined
probability coefficients aN(t; k). Considering only direct transitions
between valence and conduction bands, there results [see (29)]

aadat = -Qa,
actdat = Q*cic

where

(7)

e EM i [f t codr - (Sc - Sy)] . (8)
m wci, o

The subscripts c and v refer, respectively, to the conduction and valence
bands; M is the matrix element for transitions between the two bands,

M = f dvouc*Duc;

and wet, is an angular frequency given by

8C - gti

COcv
ti

In taking the complex conjugate of Q it should be noted that the func-
tion SN defined by (5) is real. This follows from the fact that the electric
field E is chosen to be real, and that the integral

is imaginary, since

VIC

fdvouN*V'KuN

J
UN*UNC1110 = DKONN = 0.
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The interaction between the semiconductor and the electromagnetic
field results in the generation of a probability current density in the
crystal. The expectation value of this current, in turn, acts as a source
of radiation in the Maxwell equation for the curl of H. Therefore a
complete solution of the problem of the interaction between the semi-
conductor and radiation field requires an evaluation of this current
source. The expectation value of the probability current density, J,
can be expressed as follows, by noting that the canonical momentum
operator p is Hermitian,

e / e \
mV \P

--A/ (9)

where V is the crystal volume and the angular brackets denote averaging
over the volume V.

It is now convenient to define a vector j by

J = f d3kj

such that j is the averaged current density per unit volume in k -space.
In Appendix B it is shown that j satisfies the simple relationship [see
(36)]

jE = aw /at,
where W is the energy of the system per unit volume, i.e.,

W = (1/V) ( I a. I2g. i a. 128).

( 10)

Equation (10) is just the statement of conservation of power flow, for
the left-hand side of this equation is the power transferred into the
semiconductor, as given by the scalar product of current density and
total electric field. The right-hand side of (10) is, of course, the resultant
rate of increase of energy density in the quantized semiconductor sys-
tem.

Equations (7), (10), and (11) contain the necessary information to
solve various types of semiconductor problems involving direct transi-
tions. The derivation of these equations did not require discarding A2
terms in the Hamiltonian, and the solution for the unknown amplitudes
aN did not necessitate using perturbation or approximation methods. It
should be emphasized at this point that the results do not distinguish
between static and dynamic fields. The set of equations (7), (10), and (11)
is nonlinear and may be solved to any order in the electric field E to
determine the various nonlinear interband phenomena. The remainder
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of this paper will be devoted to a detailed treatment of the linear solu-
tions, which will be shown to lead to the rate equation for the generation
of electron -hole pairs (photoconductivity).

III. SMALL -SIGNAL SOLUTIONS AND DERIVATION OF THE PHOTOCONDUC-

TIVE RATE EQUATION

The equations of motion for optical interband transitions [(7), (10),
and (11)] can be greatly simplified by seeking solutions for a, and a,
correct to first order in the electric field E. Under this condition, which
applies when the external electromagnetic force influencing the elec-
tronic motion in the crystal is small, the wave vector K(t) can be re-
placed by k, so that o.) becomes time -independent. It is then easy to
show from (7) and (8) that the solutions for a, and at, correct to first
order are:

a, = a,(0) - a(°) ie M  fEe'w"` dt
mcocv

at, = a(0) - a,(0) Ze M*. f Ee-i'cut dt.
MCOCI,

(12)

The superscript (0) indicates the zero -order solutions which, for this
example, are independent of time. For the case where the crystal is in
thermal equilibrium at 0°K, the constant amplitudes acm and au(°) can
be determined by noting that the electrons are confined to states in the
valence band only, i.e.,

and

I a,(0) 1 2 = 0,

av(°) 12(13k = p(k)",

where p(k) is the density of states. Integrating (13b) over a spherical
shell gives for the number of states in a range dk

I av(°) 12dk =
/72) k2dic, (13c)

in which V is the crystal volume.
A second -order linear differential equation can now be derived for

the crystal current density j. Since the external forces are assumed to be
small, K(t) k, whereupon one obtains from (10) and (11)

jE = tiwc, a I a, 12 (14)
v at '
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where use has been made of the relation 2 2 constant.
By substituting the first -order solution for ac from (12) into (14), it is
found after some manipulation that j satisfies the equation of motion
for a forced harmonic oscillator, i.e.,

where

at2+ wev2i = C aEat '

2h ( )2 121 ay(0)

v I m

and ME is the component of M in the direction of the electric field E.
The validity of (15) may be checked by calculating the absorption

coefficient a(w) for the fundamental absorption edge. It is assumed that
the semiconductor has spherical energy surfaces with the same reduced
effective mass, 1/m* = 1/mc* - 1/mu*, along all crystal axes, and that
in consequence

(15)

(16)

co. coo (h/2m*)le, (17)

where hwo is the minimum energy gap between the two bands. By making
use of (13c) for I

a,(°) 2 and (17) for coev , the observable crystal current
density J can be found by integrating j, as determined from (15), over
k -space. The resultant expression is given by the following constitutive
relation between J and E

1 e )2 VW= - - - I Mg I2 (M*)1 coo (18)\m/ co

where w is angular oscillation frequency of the radiation field. The
absorption coefficient can now be found directly by observing that in
the frequency domain the coefficient of E in (18) is the macroscopic
conductivity, u, of the solid and is related to the absorption coefficient by

a = 4rojnoc,

in which no is the index of refraction of the crystal. The value for a
obtained in this manner from (18) is the same as that given elsewhere.'

The photoconductive rate equation for generation of conduction
electron -hole pairs also follows from the small -signal solution. If n is
the number of conduction electrons per unit volume (equal to the
number of holes), then one may express n as the k -space integral of
I ac I

2:
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n = f d3k 1 ac 12
V

(19)

The rate of increase of conduction electrons is obtained from (14),
whereby

an
= cek,

b

E f
ev

(20)

In order to account for lattice collisions which produce intraband transi-
tions and eventual interband recombinations, it is necessary to add a
phenomenological loss term to (20). This is accomplished by adding a
term n/ 7,, to the left-hand side of (20), where T is the lifetime of an
electron in the excited states of the conduction band. Equation (20)
then leads to the photoconductive rate equation

fd3k
,icocv

(21)

A situation of particular interest is where E is an optical field made
up of several coherent frequencies. Combining (15) and (21) then results
in the rate equation for photomixing

an -4nocn
at T"kr- - = (22)

P.4 n'

In this equation the subscripts p and q enumerate the different frequency
components in the incident radiation. It is seen from (22) that n con-
tains the sum and difference beat frequencies of the incoming radiation.
This equation may be used to calculate the optical mixing properties of
semiconductor crystals, where the mixing process results from photo-
conductivity.8

IV. CONCLUSIONS

The analysis of the problem of direct transitions in semiconductors
has led to several simultaneous nonlinear differential equations. Lineari-
zation of these equations correctly predicts the fundamental optical
absorption and photoconductive mixing effects. Nonlinear effects such
as might result from the time dependence of co, (Franz-Keldysh effect),
or from the time dependence of I a, 12 and I a, 12 (multiple -photon
effects) can be predicted by appropriate higher -order approximation
procedures.
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APPENDIX A

Derivation of the Equations of Motion Governing Direct Transitions

Equation (2) can be rewritten as

[2m
+ V(r) ] uN(r; k) exp = 8N(k)uN(r; k) exp (7.10, (23)

where uN(r; k) exp ikr are the stationary Bloch functions, and p is
the operator -iIIV. It follows directly from (23) that in the presence of
an electromagnetic field

[ 1
2

(p - A) + V(r)1 uN(r; K) exp i(k + Ft)  r
(24)

= 8N(K)uN(r; K) exp i(k + Ft) r.

Equation (24) can be verified by performing the indicated operations
and invoking (23).

The substitution of the wave function Cr, t) from (4) into the wave
equation with the Hamiltonian of (3) yields, with the help of (24),

0 = f d3k aaN uN(r; K) a.,[OK V'KuN(r; K)
at at

i - uN(r, i(exp r
asN
at f " k, N)

where exp i(r,t,k,N) is an abbreviation for the exponential function

exp i{kr 1 Frt - -1 f gx (IC) dr SN(t; k)} .
h 0t

(25)

Equation (25) is now multiplied by

uN,*(r; K') exp -i(r,t,k',N'),

and integrated over all coordinate space. The resulting equation is then
simplified by making use of the lemma9
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dv f dk,(13(r; k,k') exp i(k - k')  r - (2703 f
dvelqr; kk),

all spa.

where 4(r; k,k') is a lattice periodic function. Recall that the volume
integral on the right-hand side of this expression extends over the
volume of a unit cell.

The result of performing the above operations on (25) is

aaL aSr,
at ' at

= - E a,
at
IC {f dPOUL*V KILN}

t
(26)

X exp i [f coLN d +r (SN - SL) ,
o

where /IWLN = 81, - 8N . It can be shown from the definition of SL [see
(5)] that the time derivative, OSL/at, is

aSL. 3K- = - dVOUL*V KUL
at at

so that (26) may be rewritten as

acti,

at
=

, 3KE aN - IfdvouL*VKuN)

at
(27)

X exp rr
coLN dT ± (SN SO] ,

where E, indicates that N = L is excluded from the sum.

There is a rather simple relationship between the matrix element of
the gradient operator in K -space and in coordinate space, which for
N L, can be expressed as9

f dVoUL*VKUN
f

dvouL*VuN
MCOLN

(28)

By combining (27) and (28) and noting from (6) that aK/at = eE/h,
the results

aaL - i -e E  E aN --L{f dvouL*vuN}
at m N CO LN

X exp if cola dr (SN - Sr)].

For transitions between valence and conduction bands only, (29) reduces
to (7).

(29)
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APPENDIX B

The Relationship between Current Density and Energy

The expectation value, or volume average, of the probability current
density in the presence of an electromagnetic field is given by

=mV(1) A).
(30)

Considering only transitions between the valence and conduction bands
for the wave function of (4), the current density determined from (30)
becomes

eh 3= f k,
mV iK(1 ac 12 + ay 12) -I- I ac 12 f dvouc*vue

+ a.12 f di'ouy*Vu, ac*aM exp 1 [ w dr + (S, - Sc)] (31)
.o

- aca*M* exp [f wet, dr + (Sy - Sc)

Equation (31) can be simplified considerably by making use of the
relationship

h2 VK8N(K) = iK + f dvouN*(r; IC) VuN(r; (32)

Combining (31) and (32) results in the expression

J = ne4 f dk{i; (I (412 Vic8c + an 12 VAgy)

ae*avM exp i[lo we, dr + (St, - Sc) ]

- accte,*M* exp co dr + (Sv - Sc)0

The energy density, W, for the quantized semiconductor system is
given by (11). By differentiating W with respect to time, one has

aw 1 12 aic

+= -v lac -Ot v Koe lay -at v Kov
aK

at

(33)

(34)

+
(a,* aa

at,
aalg, (a,* aa, aa*)8y1
at at at j
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Now, from the preceding work in Appendix A the time dependences of
a, and a are known and, for the present situation, are given by (7).
Thus by combining (7) with (34) and noting that alc/at = eE/1,
one obtains the following formula for aW/at:

aw vfie= E a. c /C{I 12 V c av+ I 12 V 8Kv

ac*avM exp [f coc, dr + (Sy - Sc)

h2

- aca*M* exp [f Wet, dr + - Sc)
0

A comparison of (33) and (36) illustrates the desired relationship
between current density and energy density, viz.,

j  E = aw/at, (36)

where J = f d3kj.
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