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A study is made of certain properties of speech which are concerned with

determining the presence of speech on a telephone circuit. A speech detector

is constructed to yield an output of spurts and gaps, corresponding to the
presence or absence of energy above a threshold. A computer program then
attempts to correct this pattern for spurious noise operation and for gaps
due to stop consonants, eventually yielding a pattern of talkspurts and
pauses. Data reported here include the distributions of the spurts and gaps
resulting from the detector as well as the distributions of talkspurts and
pauses from the computer program. Studied here are the influence on these
distributions of detector threshold variations as well as of parameter varia-
tions within the computer program. The gaps occurring within talkspurts
retain their distribution over a range of thresholds, but the spurts do not.
It appears that 200 msec forms a boundary between intersyllabic gaps and

listener -detected pauses.
The detection technique developed here is considered to be an improve-

ment over conventional methods, but still yields data whose significance is
uncertain. It may be that a simple automatic speech detecting technique

using fixed parameters is inadequate for some purposes.

I. INTRODUCTION

The object of this study is to investigate certain properties of speech
pertinent to the problem of establishing the pattern of its presence and
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absence on a telephone circuit. Recent developments in telephony, such
as the introduction of long circuits with appreciable delay and the
increasing use of voice -operated devices, have prompted learning more
about speech patterns, especially as they occur in conversation.1.2.3

Although the task of detecting the presence of speech may seem at
first to be an almost trivial problem, it is in fact very difficult. Speech
has a large dynamic range, and its level frequently falls into the noise,
even during segments audible to a listener. In addition, momentary
interruptions due in part to stop consonants (/p/, /t/, /k/, etc.) might
cause a speech detector to indicate a silent interval whereas a listener
would indicate a continuing flow of speech.

Most existing designs of speech detectors employ a slow release, or
hangover, to bridge such gaps, but an error equal to the hangover time
is made every time the person actually stops talking. The method of
detection which was investigated in this study will hopefully avoid some
of the pitfalls of conventional detectors.

II. THE DETECTION TECHNIQUE

The detection technique used here is a two-step process. Speech is
first played through a speech detector, whose output is then processed
by a computer program. These steps will be discussed separately.

2.1 The Speech Detector - Spurts and Gaps

A block diagram of the speech detector used in this study is shown
in Fig. 1. The incoming signal is first amplified and then full -wave recti-
fied. A threshold detector is set at this point to detect the presence of a
voltage above some fixed value. The threshold detector triggers a flip-
flop which is cleared 200 times per second by a clock. If the flip-flop is
triggered in between clock pulses, a pulse will appear on the output when
the flip-flop is cleared. That is, an output pulse indicates that at some
time during the last 5 msec the speech energy crossed the threshold.
A pulse is therefore an indication of an "on interval," and the absence
of a pulse indicates an "off interval." The pulse train from the de-
tector serves as the data for computer analysis.

The threshold width is the difference, in db, between the 1000 -cps
signal level just required to cause pulses to appear sporadically at the
output, and the signal level required to maintain a constant train of
pulses. It is about 1 db in this detector. The frequency response of the
detector is flat over the voice range.

The detector is thus able to resolve speech into 5-msec segments, this
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Fig. 1 - Apparatus toconvert speech to on -off states.

interval being considered long enough to avoid audio -frequency fluc-
tuations in the energy pattern. This is not exactly the same as a linear
RC smoothing operation, but there is a rough correspondence. An RC
network simply smoothes out fluctuations in the energy pattern, while

our sampling circuit divides the energy pattern into 5-msec segments
and for each segment produces a yes -no output, depending on the
maximum amplitude in the segment. The RC circuit is much simpler
to instrument, but the sampler is more suitable for subsequent computer
analysis.

An on interval is defined as a 5-msec interval during which the speech
energy exceeds the threshold at some time. In an off interval, the energy
remains below the threshold during the entire interval.

A spurt is defined as an unbroken sequence of on intervals. A gap is

an unbroken sequence of off intervals. By these definitions, therefore,
speech can be transformed into a spurt -gap pattern. If a 1 represents an
on interval and a 0 represents an off interval, the spurt -gap pattern
could look like  00111100011 .
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2.2 Talkspurts and Pauses

We have already indicated that even while a person is talking his
speech can still contain many gaps due to stop consonants and slight
hesitations. To obtain a correspondence to the presence or absence of
speech, we define a talkspurt and a pause.

A talkspurt is a time period which is judged by a listener to contain
a sequence of speech sounds unbroken by a pause.

A pause is a time period which is judged by a listener to be a period of
nontalking, other than one caused by a stop consonant, a slight hesita-
tion, or a short breath.

2.3 The Computer Program

Spurts and gaps, as they come from the speech detector, are by
definition physically measurable events, while talkspurts and pauses are
determined subjectively. It is the function of the computer program to
attempt to transform the spurt -gap pattern into a talkspurt-pause pat-
tern. The program which was used actually performs two distinct func-
tions:

(1) An attempt is made to obtain a talkspurt-pause pattern from the
speech detector output. The manner in which this is done is described
below. The original speech data are thus converted into "corrected
data."

(2) The cumulative distribution functions of the durations of talk -
spurts and pauses are tabulated and plotted. Also computed are the
per cent time speech is present and its converse, the per cent time speech
is not present, as well as other data such as the mean and median talk-

spurt and pause lengths.
The procedure used by the computer program to obtain the corrected

data is best described by an example. In Fig. 2, pattern (a) is a typical
spurt -gap pattern produced by the speech detector. Each spurt and
gap has, of course, a duration which is an integral multiple of 5 msec.
The first step in data processing is to throw out all spurts which are
less than or equal to a throwaway time. This is done because noise oc-
casionally operates the speech detector for short periods, and the
resulting spurts should be discarded. The throwaway operation produces
pattern (b).

At this point, gaps less than or equal to a fill -in -time are filled in and
considered as speech. This is an attempt to correct for the gaps due to
stop consonants and other brief interruptions. It is hoped that pattern
(c), obtained after fill-in, will correspond to talkspurts and pauses rather
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Fig. 2- Process used by the computer to obtain talkspurts and pauses: (a)
data from speech detector, (b) speech pattern after throwaway, (c) final pattern
after fill-in, and (d) speech pattern if hangover were used instead of fill-in.

than to spurts and gaps. For convenience, this pattern will be labeled
"talkspurts and pauses" even though such use of these terms is impre-

cise.
Notice that fill-in is not the same as hangover. With hangover, the

beginning of every gap is filled in, regardless of the ultimate length of the
gap. Pattern (d) would result if hangover were applied.

If the fill-in operation had preceded, rather than followed the throw-
away operation, the resulting pattern would not have corresponded with
pattern (c) of Fig. 2. The order of operation is, therefore, important.
Now, the fill-in time, used to bridge stop consonants, should intuitively
be much longer than the throwaway time, used to reduce noise effects.
If the speech were filled in first, errors of fill-in time magnitude could
occur as noise pulses were bridged to the adjacent speech. To avoid this
problem, the throwaway operation is performed first.

2.4 Discussion of Technique

The process described above of using a speech detector with a fixed
threshold in conjunction with a computer program with fixed throwaway
and fill-in times was adopted here simply because it appeared to be a
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reasonable technique to use. No formal study was made in which several
schemes were compared, as such an investigation did not seem war-
ranted. The suitability of this technique for obtaining a talkspurt-
pause pattern will be discussed later, after some of the resulting data
have been examined.

III. PROCEDURE TO OBTAIN PARAMETER VALUES

3.1 Outline of Method

Values had to be determined for the speech detector threshold, throw-
away time, and fill-in time. It was decided to make up a recording of
"continuous speech," that is, speech which contained no noticeable
pauses. This speech would be played many times into the detector, with
the threshold set lower for each time. It was hoped that eventually the
spurt and gap distributions would stabilize so that continued lowering
of the threshold would contribute little to the detection of speech. This
would establish a threshold.

To determine a throwaway time, the original (unedited) tapes would
be examined for spurious noise. This noise would hopefully be of some
maximum short duration and could be discarded with a throwaway time.

The fill-in time would finally be established by again processing the
continuous speech, this time using the fixed threshold and throwaway
time, and since the computer should ideally view the continuous speech
as one long talkspurt, the fill-in time would be chosen equal to the
longest observed gaps.

3.2 Source of Speech - the Telephone Conversations

Eight pairs of subjects were asked to hold telephone conversations
over a special circuit. The circuit, illustrated in Fig. 3, was a four -wire
circuit which had losses which simulated the effect of a long distance
connection. Delay could be switched into one of the paths. *

The conversations were recorded on a two -channel tape recorder
connected, as shown, to a level point representative of the zero TL
point. t The two members of each pair of subjects were good friends

* The delay was included for use in a separate study. Some speech recorded on
the delay circuit is analyzed here because, by doing so, twice as much continuous
speech becomes available than if only the "standard" circuit were used. Also, note
that although in this case a delay of 400 msec is inserted from B to A, the subjects
cannot distinguish this condition from a 200-msec delay in each path, provided
that they have no common time reference.

t The zero transmission level point is a point to which all level points in a toll
system can be referred. It is analogous to citing altitude by referring to height
above sea level.
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who had many mutual interests. They received instructions to engage
in active conversation about any topic they desired. They were told that
their conversations would be recorded for use in "speech analysis work,"
but no other details were furnished. In the opinion of the experimenter,
the subjects conversed readily and easily. There is no apparent evidence
that their knowledge they were being recorded had a constraining effect
on their conversations, but the reader should be aware that the experi-
mental conditions differed in certain respects from those encountered
in real life. The speech of the subjects was, however, certainly of a con-
versational nature and did not result from any formal preparation, as
would occur with readings from printed matter.

The eight pairs of subjects consisted of four pairs of women and four
of men. Each pair was allowed about a minute of warm-up time before
the recorder was started. Then they talked for seven minutes over a
standard circuit, followed by seven minutes over the 400 -inset delay
circuit. (One pair of girls spoke for only 3.3 minutes on the standard
circuit and did not talk on the delay circuit.)

3.3 Preparing Continuous Speech Tapes

Each recording of each person's speech was edited by the author so
that only segments of continuous speech, containing no pauses, were
allowed to remain. This procedure was, of course, arbitrary and the
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edited tape could not possibly be exactly duplicated, even by the ex-
perimenter. There were, however, certain rules which the experimenter
tried to follow :

(1) In the edited tape there were no obvious long conversational
pauses.

(2) Pauses for breathing were excluded, unless the breaths were very
short and embedded in a train of speech. This event occurred only a
few times in all the samples.

(3) Brief comments ("of course," "really?") and other short sounds
("uh-huh," "urn") were excluded, as those were too difficult to handle
in the splicing operation.

(4) Similarly, stuttering and other meaningless speech was excluded.
(5) Very low-level speech, which was difficult to hear, was excluded.

This was an infrequent occurrence in speech which was part of an at-
tempt to converse. Most very low-level speech consisted of sighs and
other such remarks and could be ruled out by (3) and (4), above.

On the average, seven minutes of conversation of one person was
reduced to about 55 seconds of continuous speech. The average length
of a speech segment uninterrupted by tape splices was 2.13 seconds.
In all, there were 27.4 minutes of continuous speech, made up of 773
tape segments.

To show that the edited tape did indeed consist only of continuous
speech, a panel of six people was invited to listen to all of the samples.
The listeners were provided with tally sheets, and were requested to
make a checkmark whenever they felt that the speaker paused, or
that there was any break in his conversation. The panel members were
asked to be severe - if they detected any hesitancy in the speaker's
voice, or any gap which they felt could be used as an opportunity to
interrupt, they were told to count this as a pause.

On the average each listener indicated 14.7 pauses in the 27.4 minutes
of recorded speech. Computer analysis of this speech (discussed later)
showed that thousands of gaps did occur in the continuous speech.
Thus, a negligible number of the gaps in the edited tape were judged by
the listeners to be conversational pauses.

Although the continuous speech tapes contain virtually no pauses,
the tapes do not by any means contain all of the continuous speech
which occurred in the conversation. The data of this study are there-
fore not representative of all the spurts and gaps that were present in
the original speech, but rather of a large number of them. Gaps which
occurred in the neighborhood of pauses were usually excluded, since the
editing process tended to select speech away from the beginnings and
endings of talkspurts.
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IV. RESULTS USED TO SET PARAMETERS

4.1 Threshold

9

The speech detector threshold should ideally be chosen low enough to
pick up almost all of the speech signal and high enough to avoid noise
operation. To see how low a threshold was required for the first criterion,
the effect of threshold variation on the continuous speech gap and spurt
distributions was studied. If a point were reached where the data remain
substantially unchanged as the threshold is lowered, then that threshold
would be considered sufficiently low to cause operation on most of the
speech.

Volume measurements were made of the 16 samples of continuous
speech taken from the conversations made on the no delay circuit. A
Daven volume level indicator, Model 1866, was used to obtain VU
readings, a commonly accepted indication of speech volume.4'5 The read-
ings for the samples ranged from - 29.9 VU (weakest talker) to -16.5
VU (loudest talker). The loudest, softest, and median speakers were
selected from both the male and female talkers, thus providing six speech
samples for analysis. Each of these samples was played through the
speech detector four times, with the threshold set at -44, -40, -36,
and -32 dbm,* for each time respectively. The lowest (most sensitive)
threshold was chosen as -44 dbm, since greater sensitivity would have
aggravated noise problems resulting from low-level tape hiss.

The four samples from each speaker were analyzed to see the effect
of threshold variation on gap and spurt distributions. A fill-in time of
10 msec was provided to eliminate the introduction of gaps due to tape
splices. t The throwaway time was zero.

The set of gap distributions of subject AD, volume = -24.1 VU, is
typical of the subjects, and is shown in Fig. 4. The abscissa is the length
of the gap and the ordinate is the per cent of gaps which are less than
the abscissa. For example, when the threshold was set at -44 dbm,
50 per cent of the gaps were less than 28 msec long. There are no gaps
equal to or less than 10 msec, because those that existed were filled in.

The curves are very much alike, except possibly the -32-dbm curve.
At first glance, it appears that for reasonably low thresholds, the thresh-
old value is not critical for measuring speech. A fill-in time of about 130
msec would bridge all the gaps for any of the chosen threshold values.

* That is, db re 1 milliwatt into 600 ohms, so that zero dbm equals 0.775 volts
rms.

f A typical splice in tape traveling at 15 ips causes the level of a tone to drop
about 6 db for about 8 msec. A fill-in time of 10 msec bridges any gap caused by
this momentary level drop.



10 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1965

>-

0.9

cr 0.8

w
> 0.7

2
D 0.6

0.5

O
0.4

z
D
IL 0.3
z
0
 0.2

 0.1
5

1.0

0

/ /
THRESHOLD,
DBM= -44 -

/
/

/

/-40 /
66.6 SECONDS OF

\ CONTINUOUS SPEECH
THRESHOLD NO. OF GAPSI-36 -44 130

//4----32
-40 229

/ -36 271

/ -32 374
/ FILL-IN = 10 MILLISECONDS

THROWAWAY= 0

/

10 20 40 60 80 100 200 400 600 ISECOND
MILLISECONDS

Fig. 4 - Gap distribution for subject Al).

But the gap distribution tells only part of the story. The total number
of gaps almost triples as the threshold is raised from -44 to -32 dbm,
going from 130 to 374 gaps in a continuous speech sample 66.6 seconds
long.

The spurt distributions are plotted in Fig. 5. These change appreciably
as the threshold is varied, showing shorter spurts with the higher thresh-
olds. Also, whereas the low threshold indicates energy present 94 per
cent of the time, the higher threshold yields only 75 per cent, as found
from other results of the computer analysis.

Examination of the gap distributions of the six talkers whose speech
was analyzed at four different thresholds indicates that gap distributions
remain fairly stable for ally threshold which is at least 12 db below the
VU level. * As the threshold increases above this level, the gaps generally
become noticeably longer. The 12-db value is only an estimate, which
was arrived at by visual inspection of the data. It is a conservative esti-
mate; a somewhat higher threshold would probably suffice for most of
the speakers. However, until more data can be obtained for better
analysis, 12 db will be used as a rule of thumb.

Although the gap distribution may stabilize as the threshold is lowered,
the spurt distribution does not, and neither does the per cent time

* A similar analysis of the speech samples of all speakers also shows very little
effect on gap distributions as the threshold is varied, as long as the threshold re-
mains fairly low.
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talking. It appears, then, that the threshold should be set as low as
possible in order to pick up most of the speech.

The threshold cannot be set so low as to cause excessive noise opera-
tion. To estimate a lower bound, the original unedited tapes were played
and the experimenter compared the detector output with his impressions
of the sound on the tape. For thresholds much below -40 dbm there
was noticeable detector triggering on breathing, moving the telephone
handset, and other spurious noises. It was found that passing the speech
through a high-pass filter helped considerably in reducing such noise
operation. An SKL filter was used with a cutoff frequency of 170 cps.
The filter has unity gain at 1000 cps.

Even with the filter in place, however, setting the threshold much
below -40 db still seemed to result in some unwanted noise operation,
and -40 dbm became the arbitrary choice for the fixed threshold. This
is still a fairly sensitive value; echo suppressors, for example, commonly
operate at - 32-dbm sensitivity and adequately detect speech. * (Of
course, the suppressors are equipped with hangover, which helps bridge
subthreshold gaps. The comparison is still within reason, since fill-in
will later be applied to our present data.)

The threshold is thus an unavoidable compromise between too much
noise and too much lost speech. The value was chosen arbitrarily be-

* Echo suppressors are voice -operated devices which insert losses into trans-
mission paths to alleviate the irritating effects of echoes.'
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cause the data did not indicate an optimum setting, contrary to our
initial expectations.

4.2 Throwaway Time

The throwaway operation is intended to remove spurts generated by
short bursts of noise. The throwaway time should be long enough to
eliminate most of the spurious noise operation, but short enough to
avoid discarding much speech. Electrical disturbances from various
sources, such as the tape recorder, constitute a type of spurious noise.
From listening to the tapes, it appears that this noise consists of an
occasional impulse of fairly low level. This would normally register as
one pulse on the speech detector and show up as a 5-msec spurt. The
impulse of noise is, of course, smeared out by the tape recording process,
and if the impulse occurs near the end of a sampling interval, it may be
wide enough to bridge two intervals, causing a 10-msec spurt to register.
Visual observation of the detector output shows that every so often,
one or two speech detector pulses appear when the talker appears to be
silent. As a first guess, 10 msec seems reasonable as a throwaway time.

To see if a throwaway time could be determined from the data, the
original unedited speech tapes were processed with a detector sensitivity
of -40 dbm, using the high-pass filter. An arbitrary fill-in time of 150
cosec was chosen to bridge over most of the short gaps occurring within
talkspurts, leaving long pauses suitable for searching for spurious noises.
Thus, if a 5-msec spurt is observed it is a relatively isolated event, for
the fill-in operation has presumably bridged over such short spurts
occurring within talkspurts. The eight conversations analyzed lasted
a total of 51.56 minutes, representing 103.12 minutes of speech by the 16
subjects.

The results showed that of a total of 3375 spurts observed, 953, or 27
per cent, were 5 or 10 msec long. A 10-msec throwaway time would
eliminate this excess of very short spurts. Should the throwaway time
be greater? It turned out that an excess of spurts did not occur in other
short spurt regions, such as 15 to 20 cosec (61 spurts) 25 to 30 msec
(45 spurts), or 35 to 40 msec (41 spurts). Since there is no reason to
believe that spurts longer than 10 msec are due to circuit noise rather
than the conversants, a 10-msec throwaway time was chosen.

Now, there are several types of noise which a 10-msec fill-in time
could never eliminate. A great deal of the noise on the tapes was caused
by the conversants; breathing, coughing, etc., generally operated the
speech detector, sometimes for long durations (at least 100 msec).
There seems to be little possibility of distinguishing talker -generated
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noises from speech solely on the basis of their on -off patterns. However,
it is reasonable to include such sounds in the speech analysis because:

(1) These noises, although they carry little speech information, are
generally audible to the listener and are a legitimate part of the con-
versational exchange.

(2) If there are any voice -operated devices on a communications
circuit, these will be influenced just as much by coughing, etc., as by
speech. If the results of this study are ever to be used to predict the
behavior of these devices, then the data must include all sounds, speech
or otherwise.

4.3 Fill -In Time

The should be chosen just long enough to bridge the
longest gaps in the continuous speech, having applied the throwaway
operation. The distribution of the long gaps in the continuous speech
gap distribution is shown in Table I.

From the data of Table I, there appears to be no obvious setting for
the time which should be used to bridge the gaps. A fill-in time in
excess of 250 msec would be required to bridge all the gaps, but it seems
unreasonable to pick a value based on the one or two longest gaps.
Because the distribution trails off smoothly without an obvious break-
point, we arbitrarily select 200 msec as a fill-in time. There are two
justifications for this choice:

(1) 200 msec is an easily remembered number. By its very nature,
it appears to be rounded off, and therefore an approximation, which of
course it is.

(2) When the panel of listeners monitored the continuous speech
tapes, each member detected, on the average, 15 pauses in the speech.

TABLE I - DISTRIBUTION OF GAPS GREATER THAN 150 MSEC
FOR ALL TALKERS*

Length, msec Number Per Cent

155,160 20 0.44
165,170 12 0.26
175,180 8 0.18
185,190 4 0.09
195,200 8 0.18
205-225 5 0.11
230-250 3 0.07

>250 2 0.04

Total number of gaps = 4537
* Continuous speech, 16 talkers, both circuit conditions. Throwaway = 10

mime, fill-in = 10 msec, threshold = -40 dbm; 170 -cps high-pass filter.
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If the 15 longest gaps are thrown out of the Table I distribution, the
longest remaining gap is, by happy coincidence, 200 msec long. (This
does not imply that the 15 longest gaps are those particular ones which
the subjects called pauses.)

4.4 Additional Gap and Spurt Data

Although the continuous speech data already reported were sufficient
for purposes of setting threshold and fill-in, additional data were ob-
tained which may be of interest to some researchers. Fig. 6 is a plot of
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27.4 minutes of continuous speech; both delay and no -delay circuit conditions;
speech detector threshold -43 dbm with no filter; throwaway time 0; fill-in 10
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the gap distribution for the 27.4 minutes of continuous speech for all 16
talkers over both circuit conditions. The speech detector threshold was
set at -43 dbm. No filter was used prior to the detector.

To determine the variations in the gap distribution among the differ-
ent talkers, the individual gap distributions for all 30 samples* were
plotted on one graph. The left boundary of this graph is shown as the
"left extreme" curve of Fig. 6. This curve is not necessarily the curve
for a single sample but is a composite of all curves which happen to fall
on the boundary. The same applies to the "right extreme" curve.

* Sixteen talkers on the standard circuit, fourteen on 400-msec delay.
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Visual inspection of the curves for individual talkers shows no ap-
parent over-all differences between male and female talkers.

Fig. 7 shows the continuous speech spurt distribution. The spurt
distribution might be considered representative of syllabic bursts, but
care must be taken in drawing conclusions from these data since the
graph is strongly influenced by the threshold setting (as shown in Fig. 5)
and also because of a possible tape splice effect, described as follows.

A probabilistic analysis of the influence of tape splices on the speech
reveals that of the more than 770 splices which were present, about 130
of them involved a gap. Thus, 130 of the 3754 gaps (or 3.5 per cent)
were affected by splices, probably only slightly influencing the gap
distribution of Fig. 6.

It turns out, however, that almost all of the splices had a spurt on
one side or both (virtually all of the 130 splices involving a gap had a
spurt on the other side). This means that over 20 per cent of the total
number of spurts were .affected in some way by tape splices.

Because of the influence of artifacts on the spurts, further analysis of
the spurt distribution (such as obtaining the range among subjects) was
not carried out.

AND PAUSE DISTRIBUTIONS FOR CONVERSATIONAL SPEECH

5.1 Data from Conversations

This section is an illustration of the results obtained from analysis of
conversational speech. Fig. 8 is a plot of the distribution of talkspurts
and pauses for all 16 speakers engaging in eight conversations over the
standard circuit. The conversations lasted almost 52 minutes, yielding
about 103 minutes of conversation data for all subjects. Some of the
more interesting statistical measures of these data are shown in Table II.

The results shown here are included only to illustrate the speech
measuring technique developed in this study. The conversations were
artificially induced in a test -room atmosphere in which the subjects knew
they were being recorded. There is no assurance that the statistical
measures shown in Table II and in Fig. 8 are representative of those
which would be obtained on real telephone calls.

5.2 A Comparison with Other Studies

Many other studies have been concerned with measuring some of the
statistical properties of speech patterns. Three of these studies are
selected for comparison with our results.
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Fig. 7 - Continuous speech spurt distribution. Conditions: 16 speakers; 27.4
minutes of continuous speech; both delay and no -delay circuit conditions; thresh-
old -43 dhm; throwaway time 0; fill-in 10 msec; 3754 spurts.

Norwine and Murphy6 observed "talkspurts" and "pauses" in os-
cillograph recordings of telephone conversations made on a special
circuit between New York and Chicago. The circuit had a round-trip
delay of almost 600 msec and was equipped with echo suppressors.
Detailed observations were made from about 4400 feet of graph paper,
representing 51 calls with a total duration exceeding 13,000 seconds.
The Norwine and Murphy definition of talkspurt is significantly differ-
ent from ours and is included here.

"A talkspurt is speech by one party, including his pauses, which is
preceded and followed . . . by speech from the other party perceptible
to the one producing the talkspurt." (Italics mine.)

Since Norwine and Murphy include pauses in their talkspurts, their
talkspurts are much longer than ours, and a direct comparison of their
distributions with ours is inappropriate. It is possible, however, to apply
a correction on one or two statistics and make a fair comparison. Con-
sidering the mean talkspurt length, Norwine and Murphy indicate a
value of 4.3 seconds for 2845 talkspurts. These talkspurts include,
however, 2811 pauses with a mean of 0.73 seconds. One may then cal-
culate that there were about 10,200 seconds of speech composed of
2845 --I- 2811 = 5656 "shortened talkspurts." (For each pause inserted,
a new talkspurt is created.) The new average talkspurt length is 1.8
seconds, which compares with our average of 1.34 seconds.
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103.12 minutes. Conditions: no delay; threshold -40 dbm; throwaway 10 msec;
fill-in 200 msec; 170 -cps high-pass filter in detector circuit; 2042 talkspurts, 2054

pauses.

More recently, measurements were made on calls placed on the At-
lantic cable via TASI.* "Spurts" and "gaps" were determined by the
TASI speech detector operation, and results were tabulated for about
600 commercial calls. The TASI speech detector has an operate (pickup)
time of 5 msec and a deferred hangover of 240 msec. A deferred hangover
means that the full hangover value is applied only for longer spurts
(60 msec or greater) but for very short spurts the hangover is shorter
(minimum of 25 msec). The sensitivity is -40 dbm re OTL.

Although the TASI detector uses hangover rather than fill-in and a
delayed operate time rather than throwaway, the values used for the
measuring parameters are very similar to ours, especially since the
sensitivity is the same. The TASI data indicate an activity period
(fraction of time the TASI detector is operated) of 48 per cent averaged
over all calls. This compares with 44.3 per cent obtained in our study,
as shown in Table II. In addition, the mean TASI "spurt" length is 1.3
seconds, compared with our value of 1.34 seconds.

A distribution of TASI talkspurts is shown in Fig. 9 and was taken
from an unpublished report by H. Miedema,8 printed here with the
author's permission. Fig. 9(a) shows both the talkspurt distribution

* TASI is essentially a bank of voice -operated switches which connects a sub-
scriber to a channel only when he is actually talking. Thus 72 people may talk
over 36 channels.?
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TABLE II - SOME STATISTICAL MEASURES OF EIGHT CONVERSATIONS

Total conversation time 51.56 min
Per cent time both speakers are silent 18.2%
Per cent time circuit in use by either or both speakers 81.8%
Per cent time double talking 7.2%
Per cent time the average conversant talks 44.3%

(obtained by dividing the total time all speakers A talk
plus the total time of all B talk by 103.12 minutes)

Number of talkspurts (all 16 speakers) 2042
Median talkspurt length 0.77 sec
Mean talkspurt length 1.34 sec
Number of pauses 2054*
Median pause 0.72 sec
Mean pause 1.67 sec
Circuit conditions: 500 -type sets, four -wire connections, 16-db loss between

speakers, speech recorded at OTL point, 6 db from each transmitter.
Measurement parameters: speech detector threshold set at -40 dbm re OTL,

throwaway time = 10 msec, fill-in time = 200 msec, 170 -cps high-pass
filter.

* There are more pauses than talkspurts because several of the eight conversa-
tions began and ended with a pause for each of the speakers.

obtained in our study and the distribution of TASI speech detector
spurts for U. S. talkers. Also included is a "corrected" curve, in which
the 10-msec pickup time is added to each talkspurt and the hangover
time is subtracted. Since the hangover time is variable, the correction
depends on the talkspurt length. The net effect is to shift the curve left
15 msec for short spurts (25-msec hangover minus 10-msec pickup) and
230 msec for long spurts. This widens the discrepancy between our
results and the TASI data, making the TASI talkspurts appear shorter.
Some of the short TASI spurts, however, may have been due to line
noise on the trunk. The magnitude of this effect cannot be determined,
since there are at present no available data on TASI noise operation.

Fig. 9(b) shows the pause distributions. Again, the original pause
curve must be corrected for hangover. We will assume that a hangover of
240 msec preceded each gap (and it did for all gaps following the 90
per cent of the talkspurts exceeding 60 msec). The 10-msec pickup time
will reduce the correction to 230 msec. The resulting curve is in this
case very close to ours.

Finally, J. F. Agnello of Ohio State University made an analysis of
the gaps which occur in spoken text, and he studied the effect on the
distributions of varied text (prose, poetry, single sentences).9 He differ-
entiated between intraphase pauses (gaps) and interphase pauses (pauses)
and had the speakers listen, as a group, to their own speech, indicating
on the printed text whenever they detected a pause. A "pause timer"
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detected and classified by duration 887 pauses exceeding 150 msec in
about 40 minutes of speech, and the listeners indicated 710 pauses.
Agnello concludes that "the minimal detected pause was estimated . . .

to be 190 msec." He also concludes on other grounds that the longest
intraphase pause was 200 cosec long. These results are in excellent agree-
ment with our choice of 200 msec as a fill-in time.
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VI. DISCUSSION

6.1 Suitability of Technique

The question which now presents itself is whether or not the method
developed here for speech detecting is a good technique. In answering
this question, we are immediately faced with another one, that of de-
fining what is meant by a "good technique." The answer to the latter
question is, of course, a function of the intended purpose of the detector.

It was originally hoped that the computer would yield speech patterns
such that segments of talkspurts would be bridged together and spurious
activity would be ignored. One way of evaluating this criterion is to
look at the curves of Fig. 8 and see if these results are consistent with
our goals.

On one hand, the detection technique seems to be a meaningful
indication of perceived speech because of the many points of corre-
spondence between the Fig. 8 data and that of other studies. For ex-
ample, although our data do not exactly duplicate the TASI detector
operation, there are many similarities, and people are able to converse
fluently over TASI.

On the other hand, the talkspurt data of Fig. 8 seem unreasonable
because of the presence of numerous short spurts. Note that 10 per cent
are less than 60 cosec long. It is unlikely that an utterance of such
short duration would be considered by a listener to be a "talkspurt."
What, then, are these sounds?

On listening to the tapes, one observes that there are occasional short
utterances, such as those produced when a person begins to talk but
suddenly realizes that he has been interrupted. These are sometimes as
short as a few pitch periods. Short sounds are often produced by parting
the lips quickly, or by clicking the tongue against the roof of the mouth.
Another source of short sounds is the low-level speech which triggers
the speech detector only intermittently. An informal experiment was
carried out in which a speech detector was hooked up to cut out any
speech exceeding a threshold, leaving only the subthreshold speech
audible. (The detector consisted of a relay with 5-msec pickup and
hangover times.) The three people who listened to the speech noticed
that occasionally whole phrases would get through. This was an in-
frequent event, however, for sensitivities as low as -40 dbm.

The author is convinced that these short sounds are indeed produced
by the talkers and are not extraneous noises. They may be fragmentary
parts of talkspurts, or clicks, or whatever you will, but their sources are
indistinguishable to the computer. Within the framework of the de-
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tection technique adopted here there are two things which can be done
with them:

(1) Throw them out with some arbitrary throwaway time. This
introduces the possibility of discarding real speech, as well as the diffi-
culty of establishing a suitable throwaway time.

(2) Keep them as is, realizing that there is some doubt that they
represent meaningful speech, and hope that they will not hamper
further work with speech analysis. The author has chosen to adopt this
second approach.

0.2 Relationship to the Acoustics of Speech Production

The curves presented in Fig. 8 are obtained from gross statistics of
over 100 minutes of speech. No effort has been made to refine and classify
the data into subheadings such as "plosives" or "glottal consonants,"
etc. Accordingly, it is not possible, given only the curves shown here, to
explain the shape of the curves in terms of the acoustics of speech pro-
duction. This could easily be a study unto itself, and, indeed, studies of
this nature presently constitute an important phase of speech research
by acousticians and phoneticians who are expert in this field.

If anyone wishes to examine our results in the light of data in the
speech literature, he must note that our speakers were not trained and
made no effort to talk clearly and precisely. In addition, they spoke over
telephones, not high -quality microphones. This procedure is quite
different from that used in most speech studies, in which the speech is
carefully manicured to approach an "ideal" sound.

VII. CONCLUSION

This study has shown that even small changes in the measuring tech-
nique can produce noticeable effects on the results. Data on speech
dynamics must therefore include a detailed description of the technique
used to measure the speech. Without this, the results must be regarded
as unrepeatable.

Many unforeseen difficulties arose with the proposed technique of
using a speech detector with a fixed threshold followed by a computer
program with simple throwaway and fill-in operations. The setting of
the detector threshold is a compromise between excessive noise and too
little speech operation, and errors of both kinds must be expected.
Although a fill-in time of 200 msec seems fairly well established, the
throwaway time of 10 msec is not adequate to remove many short
spurts, some of which may represent legitimate talkspurts, while others



22 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 19 65

do not. Indeed, it may turn out that a simple automatic speech detect-
ing technique involving fixed parameters is inadequate for some pur-
poses, and a considerably more sophisticated method must be employed.

What therefore originally began as a seemingly straightforward
attempt to build a speech detector has instead exposed a problem of far
more difficulty than was first imagined. The data obtained here have
hopefully shed light on some aspects of the problem, but further study
is required before a completely satisfactory solution is obtained.
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Interaction of Adaptive Antenna Arrays
in an Arbitrary Environment

By SAMUEL P. MORGAN

(Manuscript received July 22, 1964)

This paper deals with adaptive transmitting arrays in which the excita-
tions of the elements are varied in response to a pilot field incident on the
array from a distant source. General theorems, some quite simple, are ob-
tained relating to optimal power transfer from an adaptive array in an arbi-
trary reciprocal medium to either a single receiver or a receiving array. We
assume first that the amplitudes and phases of the transmitting elements are
separately adjustable, and afterward that only the phases are adjustable.
The results involve in particular the matrix which represents the pilot fields
produced at the elements of the transmitting array by currents at the locations
of the receiving elements. In some important special cases, optimal power
transfer results from making the phase of each transmitting element equal to
the negative of the phase of the pilot field at that element.

We also consider the dynamic behavior of two adaptive arrays which simul-
taneously transmit and receive, the phases on transmission being made equal
to the negatives of the received phases. Analysis of an idealized model indi-
cates that the arrays will reach a unique steady state which is in practical
cases identical with or very close to the condition for optimal power transfer.
Some numerical simulations of 2- and 3 -element interacting arrays have
been made to show how such arrays approach an essentially steady state
under moderately realistic assumptions.

I. INTRODUCTION AND SUMMARY

A number of recent papers' ,2 have dealt with adaptive antenna arrays,
also called self -steering or retrodirective arrays. In an adaptive trans-
mitting array, the excitations of the individual elements are electroni-
cally varied in response to a pilot field incident on the array from a
distant terminal, in order to steer the beam to the terminal which is origin-
ating the pilot signal. It is easy to see that in free space the required
steering can be accomplished by making the phase of each element equal

23
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to the negative of the phase of the pilot beam at the given element.
Cutler, Kompfner, and Tillotson' and others' have shown how phase
reversal can be obtained using frequency conversion techniques.

This paper deals with general adaptive transmitting arrays in an
arbitrary environment. The transmission medium need not be homogene-
ous or isotropic, but it is assumed to be linear and symmetric and to be
time -invariant, at least over intervals comparable to the propagation
time between transmitter and receiver. We are concerned in particular
with the conditions for optimal power transfer from an adaptive trans-
mitting array to either a single receiver or a receiving array. We shall also
investigate the transient and steady-state behavior of two interacting
adaptive arrays, each of which simultaneously transmits and adjusts
the excitations of its elements in response to the field received from the
other array.

In Section II we consider an adaptive array in which the amplitudes
and phases of the excitations of the individual elements are separately
adjustable, but the total radiated power is fixed. Such an array is easier
to treat mathematically than one in which the excitation amplitudes are
all fixed and only the phases are variable, even though the latter array
might be easier to build. In the most general case, the power radiated by
the transmitting array is a positive definite Hermitian form in the ele-
ment excitations, and the received power is a positive definite Hermitian
form in the electric fields at the elements of the receiving array. The dis-
tribution of excitations which maximizes the ratio of received to radiated
power is the eigenvector corresponding to the largest eigenvalue of a
certain pencil of Hermitian matrices. The matrices in question are con-
structed from the impedance matrix of the transmitting array, the ad-
mittance matrix of the receiving array, and a Green's function matrix
of pilot fields produced at the transmitting elements by currents at the
receiver locations. The results simplify considerably if the elements of
each array are uncoupled and are identical among themselves. In par-
ticular, if the receiver consists of but a single element, and if the trans-
mitter elements are identical and uncoupled, then the optimal excitation
of each element is merely proportional to the complex conjugate of the
pilot field at that element.

Section III contains a brief discussion of the problem of maximizing
the power transferred from an arbitrary transmitting array to an arbi-
trary receiving array when the excitation amplitudes are fixed and only
the phases are adjustable. Maximum power is always conveyed to a
single receiver by reversing the phase of the pilot field at each element of
the transmitting array. This phase reversal principle, first recognized for
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free -space transmission, is thus shown to be valid for an arbitrary trans-
mission medium. For multielement receivers an explicit solution is not
given; but an example shows that even when each array consists of iden-
tical, uncoupled elements, maximum power transfer does not generally
correspond to reversing the phase of the total pilot field at the trans-
mitter elements.

Section IV deals with the interaction of two adaptive arrays or, in
principle, the interaction of an adaptive radar array with itself. A mathe-
matical model is set up, in which each array transmits constant power and
continuously adjusts the excitations of its own elements to be propor-
tional to the complex conjugate of the incident field. A single delay time
is taken to represent the transmission delay between the two arrays. The
transient behavior of this model turns out to be quite simple, and it is
shown that in general, excluding mathematically pathological cases, the
two arrays reach an equilibrium configuration which depends only on the
Green's function (pilot field) matrix corresponding to the given geome-
try and transmission medium. In the most general case the equilibrium
configuration is not the same as the condition for optimal power transfer
derived in Section II; but it is the condition for optimal power transfer
in the important special case when the elements of each array are identi-
cal among themselves and the interelement coupling is zero. If the ele-
ments are nearly identical and the mutual impedances are small coin -
pared to the self -impedances, then the equilibrium configuration should
be nearly the same as the configuration for optimal power transfer.

Numerical simulations of the transient behavior of 2- and 3 -element
interacting adaptive arrays are described in Section V, both for the case
of simultaneous phase and amplitude variations, and for the case of phase
variations only. The simulations also include the effects of small dif-
ferences in the interelement delay times compared to the average delay
between the arrays. Random choices are made for the elements of the
Green's function matrix and for all pairs of interelement delays. Simula-
tions of 50 pairs of 2 -element arrays and 25 pairs of 3 -element arrays
indicate that arrays with only phase adjustment approach a steady
state about as quickly as arrays with both phase and amplitude adjust-
ment (of course, the two steady states are not the same). Interelement
delay differences which are small compared to the average interelement
delay produce small fluctuations about the steady state which would be
achieved for equal delays.

The results obtained in this paper depend only on the linearity, sym-
metry, and time -invariance of the transmission medium; in particular,
they do not involve calculating any antenna patterns. Pattern calcula-
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tions would be necessary if one wished to get numerical values for maxi-
mal power transfer, or to estimate the radiated fields in unwanted direc-
tions. Furthermore, the analysis is essentially for a single frequency;
variations in phase and amplitude are assumed to be very slow compared
to the transmission times involved. It would be worthwhile to study the
behavior of adaptive arrays over a finite frequency band, but such a
study is outside the scope of the present paper.

II. OPTIMAL POWER TRANSFER BETWEEN ARBITRARY ANTENNA ARRAYS

Consider a transmitting array and a receiving array embedded in an
arbitrary linear, time -invariant medium, as in Fig. 1. The medium may
be inhomogeneous and anisotropic, but the permeability, permittivity,
and conductivity tensors at any point are assumed to be symmetric.
(This rules out ferrites and plasmas in the presence of a magnetic field.)
All fields are assumed to be time -harmonic with angular frequency w,
the time dependence exp iwt being suppressed. For simplicity the in-
dividual radiators and receivers are taken to be elemental electric dipoles,
although they could equally well be elemental current loops. The assump-
tion of dipole sources is not a major restriction, since the dipoles could
be used, for example, together with microwave circuitry to feed aperture -
type radiators such as elemental horns.

Let the transmitting array have 111 elements and let the complex
excitation of the ith element he 11,i . Physically /Li may he regarded
as the electric moment of an elemental current, having the dimensions
of ampere -meters. The M -component vector

jl = (1-11 , /1,2 , , (1)
whose components are complex scalars, will be called the excitation of
Array 1. Similarly let the receiving array have N elements, and let the

Niks\E2,2

E2,1 t

E2,N

ARRAY 1 ARRAY 2

Fig. 1 - Schematic representation of arbitrary transmitting and receiving
arrays of electric dipoles.
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complex electric field component at the location and in the direction of
the jth element be E2,j . Then the electric field at Array 2 is the N -com-
ponent vector

E2 = (E2,1, E2,2 , ... E2,N) (2)

If Array 2 is transmitting and Array 1 is receiving, we define the vectors
12 and E1 in an analogous way.

The total power PT radiated by the transmitter over all space is given
by the Hermitian form

PT = EZ111 711), (3)

where Z1 is an M X M positive definite Hermitian matrix and (x,y)
represents the scalar product of two vectors x and y. A fuller discussion
of notation and of the properties of Hermitian forms is given in Appendix
A.

In principle the radiation impedance matrix Z1 may be determined
from experimental measurements, or it may be calculated from the
fields of the radiating elements. For example, if the field due to unit
excitation of the ith element at a great distance R from all currents and
material media is 81,i/R, then by integrating the Poynting vector due
to the whole array over a large sphere we find that the total radiated
power is given by an expression of the form (3), with

Zi; = 1 f ;1,,  Vq,,*(/St, i = 1,2, , Al; j = 1,2, , ill, (4)

where , is the characteristic impedance of free space and d12 is an element
of solid angle.

We now assume that the power PR received by Array 2 is given by a
Hermitian form in E2 , the electric field which would exist at Array 2 if
its elements were open -circuited. Thus we write

PR = 1(172E2 E2), (5)

where Y2 is an N X N positive definite Hermitian matrix. Equation (5)
is equivalent to the assumption that the transmitter field is independent
of whether or not currents are flowing in the elements of Array 2, i.e.,
that the back reaction of Array 2 on Array 1 is negligible. This will be a
very good approximation in the practical case where the arrays are far
apart, so that PR is a very small fraction of PT

The field at Array 2 is related to the excitation of Array 1 by the Green's
function matrix 1'; thus

E2 = TI1, (6)
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where r is an N X M matrix and ri; represents the field at the ith ele-
ment of Array 2 due to unit excitation of the jth element of Array 1. A
basic reciprocity theorem for linear, time -invariant, symmetric media,
proved in Appendix B, guarantees that F,. also represents the field at
the jth element of Array 1 due to unit excitation of the ith element of
Array 2. Thus if Array 2 has the excitation 12 , the field at Array 1 is
given by

Ei = r'I2 , (7)

where r' is the transpose of r.
From (5) and (6), the power received by Array 2 is

PR = 1(Y2rI1 , 111) = I( rtY2FII , II), (8)

where rt is the adjoint ( = conjugate transpose) of r. We wish to maxi-
mize the ratio of received power to transmitted power, which is

PR (rtY2ri1,L)
(9)

PT (z1r1,11)

But the right side is the quotient of two Hermitian forms in which the
denominator is positive definite; and it is well known (see Appendix A)
that the maximum value of the quotient is the largest eigenvalue X m of
the pencil of matrices rtY2r - xzi . The desired eigenvalue is the largest
root of the equation

det ( rtY2r - xZi) = 0; (10)

and the corresponding eigenvector, which maximizes the right side of
(9), is any nonzero solution of the system of equations

rtY,n, - x z,ii = 0. (11)

The foregoing equations simplify in a special case which will be im-
portant in what follows, namely when all the self -impedances and self -
admittances are equal and all the mutual impedances and admittances
are zero. In this case we may write

Z1 - R113f , Y2 = G21N (12)

where R1 and G2 are real scalars and 1M and 1N are unit matrices of orders
M and N respectively. Then (9) becomes

PR G2 (rtrIi
P (1I1)

(13)
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and the maximum value of the ratio is proportional to the largest eigen-
value of the matrix rtr, that is, the largest root XM of

det ( rfr - Al) = 0. (14)

The excitation corresponding to maximum power transfer is any non-
zero solution of

rtrIi - = 0. (15)

The optimal transmitter excitation given by (14) and (15) is one
which can exist when both arrays are transmitting and the excitation of
each element of each array is proportional to the complex conjugate of
the field incident on the element from the other array. Suppose, for ex-
ample, that

Il = M1E1*, I2 = 11I2E2*) (16)

where M1 and M2 are complex scalars and E1 and E2 are related to 12
and II by the Green's function matrix, as in (6) and (7). Then it is easy
to show that II must satisfy

Il = M1/112*rtrIl . (17)

A nonvanishing solution of (17) exists if and only if

/1/1M2* = 1/X, (18)

where X is an eigenvalue of rtr, that is, a root of the determinantal equa-
tion (14). Although steady-state excitations satisfying (16) are mathe-
matically possible when X is any eigenvalue of er, it is shown in Sec-
tion IV that the system is unstable unless X is the largest eigenvalue, and
that the excitations corresponding to the largest eigenvalue are in fact
the excitations toward which two interacting adaptive arrays tend.

We shall now consider optimal power transfer in the special case where
Array 2 consists of but a single receiver. Then Z1 is an M X M matrix,
Y2 is a 1 X 1 matrix, i.e., a scalar quantity G2 and r is a 1 X M matrix.
Equation (10) is therefore equivalent to

det (XG21Z1 - er) = det (XG21Zi) det (1. - { XG2-1Z1}-Irtr)

= X mG2-m det Zi det (11 - rt)

= (x/G2)m-1(X/G2 - rZi-Irt) det Z1

= 0,

where in the second step we have made use of a lemma due to Sandberg,'

(19)



30 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1965

which is stated and proved in Appendix C. It follows that the only non-
zero eigenvalue of (19) is

XM = G2rZ1-irt. (20)

The corresponding eigenvector is

11(m) = Z1-'rt (21)

up to a constant factor, since it is easy to see that

rtG2rIi(m) - XZII1(m) = rtG2rZI-Irt - xmZIZI-Irt
pi -Am - x3frt 0.

(22)

If the elements of the transmitting array are uncoupled, then the
mutual radiation impedances vanish, and Z1 and Z1-' are diagonal mat-
rices. The optimal excitation of the jth element is then

IL; = = 1, 2, , M, (23)

up to a constant factor, where rii* is the complex conjugate of the pilot
field produced at the jth element by a dipole at the location of the re-
ceiver, and lij; is the radiation resistance of the jth element. If all the
radiation resistances are equal, then since the eigenvector is determined
only up to a multiplicative constant, we may take

/Li = r17, = 1, 2, , M; (24)

in other words, the excitation is merely- proportional to the complex
conjugate of the pilot field.

We have shown that if the mutual radiation impedances of the trans-
mitter elements are zero, then the field at the receiver is maximized, for
constant radiated power, when the phase of the excitation of each trans-
mitter element is the negative of the phase of the pilot field. If, however,
the transmitter elements are coupled by their radiation fields, so that the
impedance matrix Z1 is not diagonal, the optimal excitations are given
by (21) and do not generally satisfy the phase reversal condition.

III. OPTIMAL POWER TRANSFER WITH PHASE ADJUSTMENTS ONLY

If the amplitudes of the transmitter excitations are fixed but the phases
are adjustable, we wish to maximize the received power,

PR = 4( rtY2rIl , = , rI1), (25)

when
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11,1 = j = 1, 2, , M, (26)

and the r are fixed but the 0; are at our disposal.
If there is only one receiver (N = 1), the solution is immediate. We

have to maximize

PR = 1G2 E
J=i

(27)

by adjusting the phases of the /Li ; and it is clear that the modulus of the
sum will be greatest when the phases of all the summands are equal, that
is, when

arg 0; = - arg r1; + constant, j = 1, 2, , M. (28)

In other words, the phase of the jth transmitting element should be the
negative of the phase of the pilot field produced at that element by a
radiating element at the position of the receiver. This result is independ-
ent of the nature of the transmission medium, subject only to the re-
quirements of linearity, time -invariance, and symmetry, and it is in-
dependent of the position of the receiver relative to the transmitting
array.

For a two -element transmitter (III = 2) and an arbitrary receiving
array, we have

2P = ( rtY2F)11/.12 1 Y2F)12rir2ee2-91)
(29)

( eY2r)20.17.2ei(8'82) ( ey2r)22r22 .

Since Ft Y2 F is Hermitian, the right side of (29) is maximized by taking

arg /1,; - arg 12,j 01 - 02 = arg (rtir2r)12, (30)

and this is the condition for optimal power transfer if the transmitting
array has only two elements.

A complete analytic solution of the problem of maximizing PR for an
arbitrary transmitter with III > 3 and an arbitrary receiver with N 2

has not been found, although since PR is a continuous, periodic function
of each of the , it is obvious that a maximum exists and could be lo-
cated as accurately as desired by an iterative numerical procedure.

In contrast to the situation for arrays with both amplitudes and phases
adjustable, the condition for optimal power transfer between multiele-
ment arrays with fixed excitation amplitudes is not generally satisfied
by making the phase of each element equal to the negative of the phase
of the field incident from the other array, even if it be assumed that the
array elements are uncoupled and are identical among themselves. As a
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counterexample, consider the case in which each array has two elements,
and Y2 is a multiple of the unit matrix. Let the element currents be

11,1 = ,

11,2 = rei82,

12,1 = peis°'

122 = pei",
(31)

where r and p are real and positive, and the phases are at our disposal.
Equations (6) and (7) give

E2,1 = r(rnelei ri2e2),

E2,2 = r(r2iei81 r22ei82),

E1,1 = p( rnel4P1 r21eiv2),

E1,2 = P(r12e1V1 r22e1V2).

The phase reversal condition leads to the following pair of simultaneous
equations:

-
ri2ei(91-,P2) 1_ .P 22

01 - 02 = arg E1,2 - arg E1,1 = arg
r2,

r21ei(91-132) r22
cal - 402 = arg E2,2 arg E2,1 = arg

rue ri2

(32)

(33)

On the other hand, the condition (30) for maximum power transfer re-
duces to

01 - 02 = arg (rtr)i, = arg + r21*r22). (34)

Since r is an essentially arbitrary complex matrix, equations (33) are
not equivalent to (34), although it is possible that in practical cases the
two conditions will yield values of 01 - 02 which do not differ by very
much.

IV. DYNAMIC BEHAVIOR OF INTERACTING ADAPTIVE ARRAYS

In this section we set up a simple model of the dynamic behavior of
two adaptive arrays, each of which continuously adjusts the excitations
of its own elements in response to the fields from the other array. In
principle the same equations would apply to a single array interacting
with itself, as a combined radar transmitter and receiver. The funda-
mental assumption is that the amplitudes and phases of the element cur-
rents vary so slowly, compared with the transmission time between the
arrays, that a single -frequency analysis is valid.

Since in this model the excitation of an adaptive array is indeterminate
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in the absence of an external field, we have to use an auxiliary antenna
or beacon to turn the system on. The steps are as follows: First the bea-
con is turned on, illuminating at least Array 1. Then Array 1 is turned on,
Array 2 is turned on, and the beacon is turned off, leaving Arrays 1 and 2 to
interact only with each other. It is convenient to assume that when a
transmitter is switched on or off, its radiated power changes continu-
ously, during a finite time interval, from one steady-state value to an-
other.

First we consider arrays in which the excitation of each element is pro-
portional to the complex conjugate of the field incident on that element,
and the total radiated power is a prescribed function of time. Thus let
I'M and I2(t) be the (slowly varying) complex excitations of the two
arrays. We assume that the dynamic behavior of the arrays is described
by the following equations:

11. )(I) = Ai(t)ei [Erk,412,k*(t - Tkj - + 131,,*(t - Ti)],
k=i

j= 1, 2, , M;

[mI2,k(t) = 1.42(t)ei°2 E rkj*Ii,;*(t - Tkj - T2) + B2,k*(1 - T2) ,

;=,

k = 1, 2, , N.

(35)

(36)

In these equations, B1(t) and B2 (t) are the beacon fields, if any, at Arrays
1 and 2, Tkj is the transmission delay between the jth element of Array 1
and the loth element of Array 2, Ti and T2 are constant time delays in the
amplifiers of Arrays 1 and 2, 19i and 02 are constant phase shifts, and
µi(1) and µ2 (t) are real normalization factors determined by

EZII1(t),L(t)) = PM), (37)

1(Z2I2(t),I2(t) ) = P2(t), (38)

where the radiated powers P1(t) and P2(t) are given functions of time.
Similarly, the equations describing two arrays in which the excitation

amplitudes I 1.1,,(t) I and I I2,k(t) I are prescribed functions of time, while
the phases are continuously adjusted to satisfy the phase reversal condi-
tion, are as follows:

arg /1,;(t) = - arg [E ro/2,k(t - Tkj T1) + Bl,j(t Ti)],
k=1

j= 1,2, , M ;

(39)
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arg /2,k(t) = 02 - arg [E - Tk; - T2) +B2,k(t - T2)1,
5-1 (40)

k = 1, 2, , N.

Before undertaking numerical simulations of the dynamic behavior
of adaptive arrays, we consider an example which can be handled ana-
lytically, namely the special case of two power -limited arrays in which
all the interelement delay times are equal. We obtain this case from (35)
and (36) by setting

Tk j = T3 = constant. (41)

If we assume for simplicity that the beacon has been turned off, (35)
and (36) take the form

I1(t) = 1.41(t)e' rtI2*(t - T3 -ri),(42)
I2(t) = 1.42(t)e 2 r*Ii* (I - T3 - T2)

Eliminating 12 yields

(43)

I1(t) = ,ui(t)eitY rii(t - r),
where

zY = ty1 - 02 T = Ti T2 + 2T3

(44)

(45)

and the normalizing factor 121(t) may be expressed, if needed, in terms
of the radiated power Pi(t) by (37).

The Hermitian matrix er is at least positive semidefinite and will
have M real eigenvalues. We suppose that the eigenvalues are numbered
in order of increasing size and that the largest eigenvalue is unique;
that is,

0 <X1 <X2< :5- X < Xm (40)

The corresponding eigenvectors z(1), z(2), , z(m) satisfy

rtrz") = Xiz"), i = 1, 2,

and may be taken as orthonormal, i.e.,

(z"),z(j)) = a,, .

, 111, (47)

(48)

Let I1(t) be expanded in terms of the z"), with coefficients depending,
of course, on time; thus

L(t) = ci(oz"). (49)
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Repeated application of (44) and (47) gives

II( t nr) = Nn(t)el"6 E c,(t)x,,,z(j), (50 )
3=1

where Nn(t) is again a normalization factor chosen to satisfy (37).
Now suppose that there is an interval of length r, say to =< t < to + r,

in which all the c; (t) are bounded and cm(t) is bounded away from zero.
It follows from (46) that the term in X Mn in (50) will eventuallydominate
all the others, and we shall have

II( nr)
[2/31(t)] exp [inkarg cm(t)] zoo->

77 -i00 (Z ) ,z(") (51)

for to < t < to ± T.

It is easy to verify that the phase of I1(t), as given by (51), is continuous
at t = to + (n + 1)T if the phase of cm(t) is continuous at t = to + T.

We have just proved that two power -limited adaptive arrays with
equal interelement delays will reach an equilibrium state in which the
excitation of Array 1 is proportional to the eigenvector belonging to the
largest eigenvalue of rtr. Similarly, the equilibrium excitation of Array
2 is proportional to the eigenvector belonging to the largest eigenvalue of
re (again X m). But it was shown in Section II that the eigenvector be-
longing to the largest eigenvalue of rtr corresponds to maximum power
transfer when Z1 and Y2 are multiples of the unit matrix; that is, when
all the mutual impedances and admittances are zero and all the self -

impedances and self -admittances are equal. If this condition is approxi-
mately satisfied, as will often be the case in practice, then the equilibrium
excitation should be nearly the same as the excitation for optimal power
transfer.

We observe that the equilibrium excitation is unique except in the
pathological case where er has two or more equal eigenvalues which are
larger than all the rest. Steady states in which the current distribution
corresponds to one of the smaller eigenvalues of rtr are mathematically
possible, but are unstable. Also, if the arrays are moved with respect to
each other or if the transmission medium changes (either case would
correspond to changing the Green's function matrix), the final equilib-
rium state depends only on the final positions of the arrays and the prop-
erties of the transmission medium, and not at all on how the situation
was reached.

It should be pointed out that the foregoing argument does not apply,
at least in its present form, to fixed -amplitude arrays with only phases
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adjustable. Clearly there are extreme cases in which the behavior of
fixed -amplitude arrays will be qualitatively different from that of power -
limited arrays. For example, if r is diagonal, so that each element of Ar-
ray 1 is coupled to only one element of Array 2, then power -limited arrays
will ultimately cut out all of the elements except for the pair which is
most closely coupled; but the elements of fixed -amplitude arrays will go
on indefinitely talking to each other in pairs, with no particular phase
relationship between the elements of different pairs. Nevertheless, the
numerical simulations of the next section indicate that in typical cases
fixed -amplitude arrays do settle down to a steady state about as quickly
as power -limited ones. As yet, however, no mathematical theorem has
been proved about the steady-state behavior of fixed -amplitude arrays.

V. NUMERICAL SIMULATIONS

Because the equations describing the dynamic behavior of interacting
adaptive arrays generally do not lend themselves to analytic treatment,
we have made a few numerical simulations of 2- and 3 -element arrays on
an IBM 7094, in order to get some feeling for the possible behavior of
interacting adaptive arrays in practice. Since these simulations were
only computational experiments, no physical significance is to be at-
tached to the specific numerical results.

We shall first describe the method of simulation, then show the out-
come of a typical calculation, and finally summarize the results of the
whole study.

For each simulation we selected the elements of the 2 X 2 or 3 X 3
matrix r according to the following scheme: We set

rik = Gjk exp ( -irnik/5), (52)

where Gjk was a random number selected with equal probability from
the set 11,2,4,81, and kik was selected with equal probability from the
set {- 5, - 4, , 5}. For the interelement delay times we took

T;k. = 20 --I-- n Jk . (53)

As a matter of interest, we also computed the Hermitian matrix er
and its eigenvalues and eigenvectors.

If the time delays are all commensurable, (35) and (36) or (39) and
(40) can easily be solved recursively on a digital computer. To start the
system off, Array 1 was supposed to be illuminated initially by a con-
stant beacon field. Array 2 was turned on linearly during a period of 20
time units, and the beacon was turned off linearly during a similar period.
Four cases were run with each choice of F.
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Case I. Power limited, equal delays. The condition

(II , = (12 , 12) = 1 (54)

was imposed, and all interelement delays were set equal to 20 units. This
case must approach a steady state, according to Section IV, provided
only that the largest eigenvalue of rtr is unique.

Case II. Power limited, unequal delays. Same as Case I, except that
the time delays given by (53) were used.

Case III. Fixed amplitudes, equal delays. The condition

I = /2.k = 1 (55)

was imposed, and all interelement delays were set equal to 20 units.
Case IV. Fixed amplitudes, unequal delays. Same as Case III, except

that the time delays given by (53) were used.
In a typical run, the random number generator produced:

-1 -1 -2
(nJk) =( 0 -5 -5),

-1 1 3

(
8/36° 2/36° 8/72°

(rik) = 2/0° 8/180° 1/180°
8/36° 8/ -36° 2/ -108°

It follows that

(56)

(57)

132.0/0°
(

64.0/-72.0° 46.4/37.5°
64.0/72.0°rtr = 132.0/0° 26.5/-12.7° ; (58)
46.4/-37.5° 26.5/12.7° 69.0/0°

Xi = 20.6, X2 = 109.8, X3 = 202.6. (59)

The eigenvector corresponding to X3 is

Z(3) = (0.719/0°, 0.656/64.5°, 0.229/-6.2°). (60)

Figs. 2 through 5 show the results of running Cases I through IV over

the time interval 0 t < 400. In the figures the phases are referred to
the phase of the first element of each array, and the following notation
is used:

Il = ( A 1 , A 2/(12 , A3/423), (61)

12 = ( B2 , B2/132, B3/13). (62)
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The initial behavior of the two arrays depends on the particular way
in which they were turned on and is of no great importance; what we are
really interested in is the behavior at large times. In Cases I and III
(Figs. 2 and 4 ), under the assumption of equal interelement delay times,
the system appears to settle down to a perfectly steady state. It is easy
to verify that in Case I the steady-state excitation of Array 1 corresponds
to the eigenvector z(3) given by (60 ). On the other hand, in Cases II and
IV (Figs. 3 and 5), where the delays are not all equal, the array excita-
tions continue to show small residual fluctuations about the steady-state
solutions of Cases I and III. These fluctuations are quite apparent in the
original plots from which the present figures were redrawn.

In the numerical study, 50 pairs of 2 -element arrays were simulated
and four cases run for each pair. The ratio of eigenvalues X2/X1 of rtr
ranged from 293.5 to 1.385. As expected, the larger values of X2/X1 gener-
ally produced quicker convergence; but only one case, out of all those
tried, failed to reach essentially steady values by / = 400. In this par-
ticular example X2/X1 was 7.37, and the interelement delays happened to
range all the way from 15 to 25. Cases I, II, and III settled down rela-
tively quickly, but Case IV (fixed amplitudes, unequal delays) went into
a large -amplitude oscillation which was obviously not dying out at

= 1000. A similar, subsequent run in which the extreme interelement
delay times were changed to 16 and 24 settled down normally.

Twenty-five pairs of 3 -element arrays were simulated, with eigenvalue
ratios X3/X2 ranging from 26.02 to 1.458. Every one of these cases ap-
peared to have reached an essentially steady state at t = 400. The ex-
ample shown in Figs. 2 through 5 is entirely typical.

From the numerical simulations it is clear that sufficiently large delay
differences (perhaps ±25 per cent of the average delay time) can make
a pair of interacting adaptive arrays fail to settle down. We conjecture,
however, that the arrays will always reach an essentially steady state if
the delay differences are a sufficiently small fraction of the average delay.
Conceivably one could put bounds on the fluctuations as a function of
the deviations of the delays from the mean delay, but a more practical
approach might be to do some experiments with real adaptive arrays.
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APPENDIX A

Vectors, Matrices, and Hermitian Forms

We summarize here the notation used in this paper, as well as some
properties of Hermitian forms which are proved in textbooks like that
of Gantmacher.4

A vector in n -dimensional complex space is an ordered array of n
complex numbers:

X = (Xi X2 xn) (63)

The scalar product of the vectors x and y is written (x,y) and is defined
by

n

(x,y) xiYi*, (64)

where the asterisk denotes complex conjugate.
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Fig. 5 Transient behavior of phases in fixed -amplitude adaptive arrays
with unequal interelement delays.

A matrix is an m X n array of complex numbers:

A= (Au), i = 1, 2, , in; j = 1, 2, , n. (65)

Associated with a given matrix are the following matrices:

Conjugate (A*) = At,*,

Transpose (A')i, = (66)

Adjoint (g) = A
Note that this definition of the adjoint, while in accord with modern
usage, differs from the definitions given in some older textbooks.

A Hermitian matrix is one which is equal to its own adjoint:

H = Ht or Hi; = (67)

The product of an m X n matrix and an n -component vector is an
m -component vector, written
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y = Ax or yi = E Aiixi, i = 1, 2, , m. (68)
j=1

If x is an m -component vector, y an n -component vector, and A an
m X n matrix, then from (64) and (66),

m n

(X34) = E E xiAii*y;* = (Atx,y). (69)

A Hermitian form is the scalar product of Hi with x, where H is a
Hermitian matrix:

n n

(Hx,x) = E E xi* T H$1. J- j=1

Hermitian forms are real -valued, since in view of (67),
n n n n

(70)

(Hx,x)* E E = E E emixi = (Hx,x). (71)
- j=1 i=1

A Hermitian form is positive definite if

(Hx,x) > 0 whenever (x,x) 0 0. (72)

If the > sign is replaced by , the form is called positive semidefinite.
The product of an m X n matrix A and an a X p matrix B is an

m X p matrix C whose elements are given by

Ca; = E AikBk, , i = 1, 2, , m; j = 1, 2, , p. (73)
k=1

A square matrix whose determinant vanishes is called singular. If the
determinant does not vanish, the matrix is called nonsingular. The matrix
of a positive definite Hermitian form is nonsingular.

The inverse of a nonsingular n X n square matrix A is the n X n
square matrix AT1 which satisfies

A -1A = = 1 , (74)

where 1 is the n X n unit matrix with l's on the main diagonal and
0's elsewhere. The elements of are given by

(A-1)  -
det A'

(75)

where a ji is the cofactor of the element A in the determinant of A.
If r is an arbitrary in X n matrix, rtr is an n X n Hermitian matrix,

since
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(rtr)i 771

rk.,*rk; = E = (rtr) ji*,
k=1 k=1

= 1, 2, , n; j = 1, 2, , n.

If A and B are n X n Hermitian matrices and X is a complex parameter,
then A - XB is called a pencil of matrices. If B is positive definite, the
pencil is called regular. The characteristic equation of a regular pencil,
namely

(76)

det (A - AB) = 0, (77)

always has n real roots Al , X2 , , X , which are called the eigenvalues
of the pencil. The eigenvalues correspond to eigenvectors zw, z(2),
z(n), which satisfy the homogeneous equations

Az(k) = XkBz(k), k = 1, 2, , n. (78)

The eigenvectors may be chosen to satisfy

(Bz"),z(j)) = Si; ,

where Si; is the Kronecker delta.

(79)

The largest eigenvalue X of the regular pencil A - XB satisfies

= (Ax,x) (80)max ,

xoo (Bx,x)

and this maximum is assumed only for eigenvectors of the pencil corre-
sponding to the eigenvalue X. .

APPENDIX B

Reciprocity Theorem for Time -Harmonic Fields

We shall prove the reciprocity theorem in a form convenient for use in
the present paper, following an approach similar to that of Harrington.'

Consider a linear, time -invariant medium characterized by the permit-
tivity tensor £, the permeability tensor i, and the conductivity tensor d.
All three tensors are assumed to be symmetric, although they may be
functions of the space coordinates. Let

= d ticoe, Z = , (81)

where w is the angular frequency of the time -harmonic fields.
Consider two sets of electric current densities, Ja and Jb, which are
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vector functions of position and which give rise to the fields Ea, Ha and
Eb, Hb respectively. INIaxwell's equations are

V X H' = Ea j",

-V X E" = ZHa,

From the first and fourth equations,

X Hb = ,y Eb Jb,

-v X Eb = Zllb.

(Eb Ha) X Ha Ha Eb

= Eb (.j E" Eb  ja + Ha  zHb,

and from the second and third,

-V (Ea X Hb) = E"- x Hb - X Ea

= EacyEb EaJb zHa.

Subtracting (83) from (84) and using the symmetry of cy and Z, we

obtain

(82)

(83)

(84)

(Eb X Ha Ea X Hb) Ea Jb Eb (85)

Now integrate over a large spherical volume V bounded by the surface
S, which contains all sources and matter in its interior. The divergence
theorem yields

fs
(Eb X Ha - Ea X Hb)  n dS = f ( Ea  Jb - Eb  J°) (IV, (86)

where n is the outward normal to S. The individual fields fall off as 1/r,
where r is the radius of V, but for large r the leading terms satisfy

Ea = nHaX n, Eb = nHb X n, (87)

where i is the characteristic impedance of free space.

Hence for the leading terms,
77-1[Eb Ha Ea XH'']n

= kW X n) X H" - (Ha X n) X Hb]fl (88)

= [n(H" le ) - 1-1b(n  H" ) - Ha  1-1b) Ha (111-1')]n = 0.

It follows that if all sources and matter are of finite extent, then

fEa  pi' = f Ebjadv, (89)

where each integral is taken over the region in which the source currents
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are different from zero. If the medium is not symmetric, the theorem is
still true provided that Eb represents the field produced by r in the
"transposed" medium; but this generalization is not very useful in the
present context.

Now let r correspond to an electric dipole of unit moment in the di-
rection le at the point Pa , and let Jb correspond to an electric dipole of
unit moment in the direction ub at Pb . Equation (89) takes the form

ubEa(Pb) = uaEb(Pa), (90)

where the left side represents the components of electric field due to
source A at the location and in the direction of source B, and the right
side represents the component due to source B at the location and in the
direction of source A. This is the desired reciprocity theorem.

APPENDIX C

Sandberg's Lemma

We reproduce Sandberg's proof' of the following result.
Lemma. If A and B respectively are n X m and m X n matrices, then

det (1 + AB) = det(1m+ BA).
Proof. First consider the case in which A and B are square p X p

matrices. Then, if A is nonsingular,

det [1, + AB] = det (1, + AB)A]

= det [1, + BA].

If A is singular, it has a zero characteristic root, and hence there exists a
positive number Xo such that A + Xl, is nonsingular for all real X satis-
fying 0 < I X I < Xo . Thus when 0 < I X I < Xo ,

det [1,, + (A + X1,,)B] = det [1,, + B(A + X1,)]. (92)

Both sides of (92) are polynomials in X of degree at most p. Furthermore
these polynomials must he identical since they agree throughout the
real interval (0,Xo). Therefore (92) is valid when X = 0.

Consider now the case in which A and B are not square. Let
p = m n,

m n n m
A = r -A Oln FB 0 lm.

L0 0 jm' L0 0 jn '

(91)

(93)
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and let the symbol + denote a direct sum of matrices. Observe that

det [1, + ABJ = det [(in + AB) 1,] = det [in + AB],
( 94 )

det Al = det [(1. + BA) -1- 11 = det [1,,, + BA],

which proves the lemma.

REFERENCES

1. Cutler, C. C., Kompfner, R., and Tillotson, L. C., A Self -Steering Array Re-
peater, B.S.T.J., 42, Sept., 1963, pp. 2013-2032.

2. Special Issue on Active and Adaptive Arrays, IEEE Trans. on Antennas and
Propagation, AP -12, Mar., 1964, pp. 140-233.

3. Sandberg, I. W., On the Theory of Linear Multi -Loop Feedback Systems,
B.S.T.J., 42, Mar., 1963, p. 379.

4. Gantmacher, F. R., Theory of Matrices, trans. K. A. Hirsch, Vol. I, Chelsea,
New York, 1959. Gantmacher's notation for Hermitian forms differs slightly
from that adopted here.

5. Harrington, R. F., Time -Harmonic Electromagnetic Fields, McGraw-Hill, New
York, 1961, pp. 116-118.



s

i



Optimum Design of a Gravitationally
Oriented Two -Body Satellite

By E. Y. YU

(Manuscript received July 15, 1964)

Optimum ranges of the inertia ratios, the spring constants, and the
damping constants have been obtained for the design of a gravitationally
oriented two -body satellite with satisfactory over-all damping performance.
In the case of viscous damping, optimum damping constants can be simply
chosen from diagrams of complex root loci. It is found impossible to con-
vert the optimum viscous damping constants into optimum magnetic hys-
teresis damping constants, and the latter have to be obtained from computer
solutions. The result of this optimization work makes possible a better
design of the satellite with lighter attitude control weight, shorter rod lengths,
and smaller earth -pointing error than previously reported in articles in the
Bell System Technical ,Journal.

I. INTRODUCTION

The dynamics analysis by Fletcher, Rongved, and Yu' has shown
that a two -body satellite will achieve an earth -pointing motion from an
initial tumbling as a result of energy dissipation in the hinge joint
through the relative motion between the two bodies. For a practical
application, we shall consider the earth -pointing body to be like a
dumbbell and the auxiliary body like a sheet, the two being connected
to each other through a hinge mechanism of universal -joint type to
allow a two -degree -of -freedom relative motion. When the satellite is
in an earth -pointing motion, the auxiliary body is parallel to the local
horizontal in its unstable orientation, and the two axes of relative mo-
tions are aligned with the roll and pitch direction (see Fig. 1). The over-
all aspect of such a passive gravitational attitude control system has
been studied by Paul, West, and Yu2 employing the magnetic hysteresis
damping mechanism. Certain designs of the satellite in terms of moments
of inertia, spring constants, and damping constants have been given
in both Refs. 1 and 2 for an altitude of 6000 nautical miles (nm). They

49
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DECK

DAMPING
UNIT

MAST

ORBIT

Fig. 1 - Two -body satellite configuration.

are found workable, but by no means "optimum," which means the
achievement of the best over-all damping performance in tumbling
motion, large -angle motion, torque -free librations, and forced librations
under environmental torques of various frequencies.

The present work concerns a parameter optimization of the afore-
mentioned two -body satellite employing two types of damping: the
linear velocity of viscous type, and the nonlinear magnetic hysteresis
type. With damping of the viscous type, analytical results can be ob-
tained for the librational motions which may be used as a basis of
parameter design in the case of magnetic hysteresis damping. The
employment of magnetic hysteresis damping even makes the (linearized)
equations of librational motions highly nonlinear, such that analytical
treatment becomes intractable and results have to be obtained by
numerical means.

II. GENERAL EQUATIONS OF MOTION

The equations of rotational motion which have been derived in Ref. 1
will be repeated here. The coordinate systems, as indicated in Fig. 2,
are defined as follows. Let O-XYZ be a nonrotating frame, with its
origin at the geocenter 0, its Z-axis passing through the perigee of the
orbit, and its Y-axis parallel to the orbital angular momentum vector.
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Let So-xyz be an earth -pointing frame, with its origin So at the center
of mass of the composite satellite, with z axis parallel to OS (the local
vertical) making an angle 1,t, with OZ and with the y axis parallel to 0 Y.
The body coordinates of body 1, , are defined along its principal
axes, with adjusted' moments of inertia (11 , /2 , /3). Euler parameters
(, n, g-, x) are employed to describe the motion of S1-xlyizi relative to
So-xyz. The matrix of transformation from the latter to the former
frame is given as

faiil =

- 712 + x2

2(En - rx)
2(r rix)

2(E, + rx)
772 ± x2

2( EX + nr)

2(Er - nx)
2(tx n3') (1)

t2 .712 + x2

Among the Euler parameters the relation e + n2 g.2 x2 1 holds.

0
(GEOCENTER)

Fig. 2 - Coordinate systems.
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The coordinates 82-x2y2z2 are defined along the principal axes of body 2,
with moments of inertia (14 , /6 , /6). The rotation of body 2 relative to
body 1 is specified by an angle, a, about the x1 axis and then an angle,
f3, about the y2 axis. The transformation matrix from S1-x1y1z1 to S2-x2y2z2
is

CO SceS13 -CceS13

= 0

_SO

Ca

-SaC#

Sa

CaCi3

(2)

where C and S are abbreviations of cosine and sine, respectively.
The equations of motion of the two -body satellite with the hinge

joint situated at the center of mass of the auxiliary body and at the
earth -pointing z1 axis of the satellite body are:

/icih = (12 - /3)(6263 - Gn2n3) TA. Tdl (3a)

/262 = ( /3 - /1) (ce3co1 - Gn3ni) (Tr2 Td2)Ca

- TeSa,

/363 = (I' - /2)(616)2 - Gnin2) + (71,2 + T d2)Sa

 T cCa,

14W4 = (15 - 16) (0)504 - Gnats) - ( Tdi CO

 T,S#,

/5C;)5 = (16 14) ( Ce6W4 Gn6n4) Tr2 Td2

/6C.40 = (14 - /6) ( W4W6 0474) - LOSS

- TRO.

In the above, (col , co2 , 63) are the components of the total angular
velocity of body 1 along 81-x1Y1ti , and (co4 , 66 , 66) are those of body 2
along 82-s2Y2z2 . The coefficient G involves orbital elements: i.e.,

(3b)

G = 3S12(1 - e2)-3(1 eCO3,

(3c)

(3d)

(3e)

(3f)

where e = orbital eccentricity, and g = 27 divided by the orbital pe-
riod. Also,

3

ni = ai3 , ni+3 = E bikak3 ,
k=-1

i = 1, 2, 3,
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with ai, and bi; the elements of the transformation matrices (1) and
(2). The constraint torque, Tc , is given as

{7.7 CO1CO3 Gnin3) + (Tr2 Td2)Coe]

- [(11 - 12) (wico2 - Gnin2) (Tr2 Td2)Sal
/3

- 14- R/5 - /6) (0)5(06 - Gnsn6) - (T r1-F Za)C13]

Cf3+ R /4 - /5) (c04(45 - Gn4n5) - Tdi)S131

 Oi(co2Ca co3Sa) - Q ((.04C0' + w6S13)}

(4)

The restoring torques Tri and Tr2 acting on body 1 along the x1 and ://2
axes, respectively, are linear with the relative angle of rotation: i.e.,

= k1a, 77,2 = k23, where k1 and k2 are spring constants. The damping
Td1 and Td2 , along the x1 and 1/2 axes, re-

spectively, are defined in the following. For viscous damping, Tdl

and Td2 = C20, where C1 and C2 are viscous damping coefficients. For
magnetic hysteresis damping, the torque is dependent on the history
of motion and is defined in regions I and III of Fig. 3 for Td2 as

- /3*
Td2 = Td2*

ff.,
d2 (5)

as long as I Td2 I < Td2 , where 13, Td2 are constants, and 0*, Td2* are

the values of /3, Td2 when 0 last changed sign. After I Td2 I reaches
Td2 then Td2 remains at Td2 as long as 0 does not change sign, as repre-
sented in regions II and IV of Fig. 3. The magnitudes of II and Td2 will
be given in Section IV, where the minor loops will be described. Accord-
ing to the major loop in Fig. 3, no energy dissipation will result if the
amplitude of oscillation is less then Tdi is defined by replacing 0
by a and subscript 2 by 1 in (5).

It can be shown that the Euler parameters and the relative angles of
rotation are related to the oils, i = 1, , 6, as follows:

= i(xx, - -)k2 + ?AO) (6a)

= + xX2 - EX3), (6b)
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Fig. 3 - Magnetic hysteresis damping torque vs amplitude, rd2

= + 02 XX3 (6c)

?.c = -EX' - 77X2 - iA3), (6d)

a= -coi ce4CQ co6S13, (6e)

= --co2Ca - w3Sa co5 (6f)

where

wi - = 1,2,3, (7)

and

= SZ(1 - e) i(1 + C0)2. (8)

If the wi's in (3a) through (3f) are treated as dependent variables,
then (3a) through (3f) together with (6a) through (6f) form a system
of 12 first -order equations in the 12 unknowns E, x, a, (3 and wi ,

= 1, , 6. This system of equations has been programmed on an
IBM 7090 for numerical solutions for any given initial conditions and for
given dimensionless parameters: satellite moment of inertia ratios
I;/I2 , i = 1,3, , 6, spring constants ki/1202, damping constants
Ci = Ci//22 (viscous damping) or Ta/I202, i = 1,2, 6,f1 (hysteresis
damping). Some numerical results have been given in Ref. 1, while
more numerical results are summarized in Section IV for parameter
optimization in the case of hysteresis damping.
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III. PARAMETER OPTIMIZATION WITH VISCOUS DAMPING

O)

In the case of librational motion, the S1-xiyizi and 82-x2y2z2 axes
oscillate about the earth -pointing rotating frame So-xyz with infinitesi-
mal angles , ni , and E2 n2 respectively. Because of the uni-
versal joint constraint, we have a = 2 -6 , = n2 - '1i , and =
The position vector of the hinge in the Si-xiyizi coordinate system is

, while in the 82-x2y2z2 it is zero. Let us assume that the orbital
eccentricity, e, is small compared with unity: i.e., E is assumed to be of
the same order as the infinitesimal angles, Ei , ni, 6 , a, and (3. Hence,
from (8) one obtains' = S2 + 2eStatt + 0( e2), = 2eSOt + 0( e2),
and 1:b = -2e122SSZt 0(e2). Equations (3a) through (3f) can then be
linearized in the case of viscous damping to two sets of equations in
pitch and roll -yaw librations. Upon transformation of the independent
variable from t to V. = Sit, these equations become:

(12ni

-1i d2 3pini - k213d2
d2(3

den,
Td2 (3p2 Xk2)0 3p27714,2 dtk2 -I- /5

dg).(126 _
/1

T, + (1 - qi) + 40.6 -
(AV

d2a d2E1 1
Td1 ± (1 - q2)

(11//2 14 dik

(4q2 Arc' )ce 4q2E1

c125'1+ dEI da
( 1 f2 ( f2 f,

ch,G2 dik

where

Tdl
d

C1S2 da
tk

lci =

A = 12/15,

pi = (11- /3)/12,
qi = (12 - /3)//1 ,
A = -1- 13 - 12)/(13 + 16), and

71d2 =

Ice =

,u

= 2eSqi, (9a)

= 2eSik. (9b)

= 0, (10a)

(10b)

= 0,

= 0, (10c)

P2 =

q2 =

(14

(/5

- /6)/15 ,
- /6)//4 ,

,f2 = (14 + 16 - /5)/
(13 ± /6).
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Note that (10c) is obtained by adding up the linearized versions of
(3c) and (3f).

3.1 Free Librational Motions

For the free pitch libration, i.e., with e = 0 in (9a) and (9b), the
stability criteria have been obtained in Ref. 1. To ensure that the
earth -pointing frame, So-xyz, be the equilibrium position, it has been
found that the spring constant should be larger than the following critical
value:

k2* = - 37)1732

Xpi p2

Thus, the pitch spring constant k2 is chosen as

3pip2
k2 = arc2* -

X13a1 ± 732

where a > 1. Similarly, the roll critical spring constant is found to be

(11a)

(lib)

ki* = - 4g49'2 (12a)
IAD q2'

and the roll spring constant is chosen to be

Elk1 = bki* = - bqlq2

q2 '
(12b)

where b > 1. The characteristic equations in the complex variable s
for the free pitch and roll -yaw librations are, respectively, of fourth order
and sixth order:

s4 + C2(1 + X )S3 + i3(pi p2) - 3a(A 1)7)17)2/(X73I p2)]52
(13)

3C2(Xpi p2)8 + 97)1732(1 - a) = 0,

and

86 ei( 12)85 (µ-A)+A(1 -q2)2 +µx(1 q1)2

+ 1) - X (AD q2)

4q2[q2 - - 1)qd 4q1[Aqi - (b - 1)q2]
s4

'41 q2

±e [(1 iL)(ou - ± X(1 - q2)2 tiX(1 - qi)(1 - q2)
kt(X + 1) - X(141 q2)
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+ 4(41 + q2) -I- (1 - &IA A(1 - 41) ± (1 - q2) 1
A(X + 1) - X(pqi q2)

4

(4(4 - X)q2[q2 - AL(b - 1)qii
qi[Aqi - - 1)q2]{(µ - A) + X(1 - q2)2}

(14)

q2) {Ai(X + - X (ilqi q2)1

biAqiq2(1 - qi)(1 - q2) 4(b - 1)q1q2
(Aqi q2) {11(x + 1) - X (Aqi + q2))

[bqiq2(1 - q2)

- (1 - qi)AX - q2(1 - qi)[q2 - t4(b - 1)qii 82

q2) fil(X + 1)-A(µg1-I-g2)}

4C
-

s
- X) (Aqi + q2) 16q1q2(A - ) (1 - b) - O.1

1.1(X + 1) -X(Aqi+ q2) µ(X + 1) - XA(µ81qi q2)

In deriving (14) the satellite body has been assumed to be axisymme-
tric. The optimization problem for the free librational motions is such
that by varying the parameters in the coefficients of (13) and (14) one
gets the largest possible negative real part of the complex roots for the
most slowly damped mode of librations. These parameters are C2
a, A, p1 , and 7)2 for the pitch motion, and C1 , b, pc, D., and q2 for the roll -
yaw motion. The parameter A contained in the roll -yaw characteristic
equation is determined from the pitch optimization and is not treated
as a varying parameter in the roll -yaw optimization. From the optimized
values of the six parameters A, µ, pi , p2 , q1 , and q2 , one can determine
the optimized inertia ratios Ii/I2 , i = 1,3, , 6. The value of /2 is
chosen from the magnitude of the gravitational torque at a given orbi-
tal altitude such that, in the presence of various environmental disturb-
ing torques, the forced libration amplitude will not be larger than a
specified value.

For a two -body satellite with geometric configuration of a dumbbell -
sheet combination, we have

pi = 1, p2 = -1, q1 = 1, and q2 = -1;

the characteristic equations are simplified to

+ + )e2s3
3a

X

X +
1

1

82

+ 3(A - 1)C2s + 9(a - 1) = 0,

with parameters 02 a, and A, and

(15)
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[(1 + ih)(A
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[4X ± - X) + 4b(1

1965

s4

± X

X) + 4X + 4(A, - 1)1

1pi]

cis'
±-

(16)

+4 [b(12 - ))(1 ± au) + 4AX ± 4A(b - 1) + 4(b - 1)] s2
- 1) + X)

+ 401
A)(11 1) 1601 X)(1) 1)

s
_0

µ+A +A
with parameters Cl , b, and g. These two equations have been pro-
grammed on a digital computer for computation of complex roots with
a,b = 1.0 to 2.0, 01 , C2 = 0 to 7.0, X = 1.25 to 6.00, and µ = 2.0 to
24.0. The case with a,b < 1.0 will give rise to positive real parts of the
roots and is of no interest to us.

The root loci of (15) and (16) are plotted in Figs. 4 and 5, respec-
tively, with fixed spring constants (a = 1.2, b = 1.2) and varying
damping constants and inertia ratios. The roots are plotted only in the
second quadrant of the complex plane, as they are complex conjugates
with negative real parts. In the case of critical and overcritical damping,
roots degenerate into the negative real axis. In the pitch case, with
X = 2/[3 - 51] 2.61804, the two distinct modes will, at C2 1.2805,
coalesce into a single point, -n = - Re( s) = -1.16, on the negative
real axis, corresponding to a 1/e damping time of 0.137 orbit at large
t or 1k. This is the result given by Zajac.' For other values of X, there
always exists a pair of complex conjugates for the two modes if C2 is
not too large. It is noted from Fig. 4 that when A is in the range of 2.5 to
4.0, a proper choice of the damping constant C2 will make -n1 of the
least damped mode not less than 0.7, which corresponds to a 1/e damp-
ing time of 0.23 orbit. Values of X in the above range and the corre-
sponding optimum damping constants are given in Table I. This gives
the satellite designer a wide choice of the inertia ratio, 12/16, and the
damping constant, C2//2S2, and still the 1/e damping time is not greater
than 0.23 orbit in the free pitch libration case.

From the complex root -locus plot for the roll -yaw free libration (Fig.
5 at b = ici/re = 1.2), it is noted that the highest and the intermediate
modes coalesce into a single point at Ai 6.425, and C1 0.3625.
The corresponding lowest mode has a poor damping. The intermediate
and the lowest modes coalesce into a single point at 18 and C1''
0.0935, which gives a poor damping for the highest mode. A close exami-
nation of the plot indicates that forµ lying in the range of 8 to 10,
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TABLE I - OPTIMUM DAMPING CONSTANT OF PITCH LIBRATION

61

x
/2)(=
Is

C2

Negative Real Part in #, -Re(s)

Lower Mode Higher Mode

2.5 1.425 0.88 critically
2.6 1.299 1.04 damped

2.61804 1.2805* 1.16f 1.16
2.75 1.165 0.85 1.33

3.0 0.995 0.81 1.17
3.25 0.870 0.78 1.00

3.5 0.80 0.74 0.90
4.0 0.69 0.70f 0.75

* Both modes coalesce into a single point on the negative real axis.
f Re(s) = -1.16# corresponds to 1/e settling time of 0.137 orbit. Re(s) =

-0.70# corresponds to 1/e settling time of 0.228 orbit.

a proper choice of the damping constant, CI , will make the negative
real part of the least damped mode, -Re(s)min , larger than 0.24,
which corresponds to a 1/e damping time of 0.66 orbit. If the lower
bound of -Re(s)min is relaxed to 0.20 (1/e time ti 0.796 orbit), the
range of A becomes much wider, i.e., 6 to 14, as indicated in Table II
with the corresponding optimum damping constant.

The variation of -Re(s) with the spring constants is such that the
pitch optimum spring constant (for the least damped mode) depends
on the choice of damping constant, C2, at a given inertia ratio, X, as
shown in Fig. 6 for a few chosen cases. In the roll -yaw case, the

TABLE II - OPTIMUM DAMPING CONSTANT OF ROLL -YAW LIBRATIONS

11)
Ci

Negative Real Part in 0, -Re(s)

Lowest Mode Intermediate
Mode Highest Mode

6 0.65 0.216 0.211 critically
damped

7 0.49 0.233 0.225
8 0.375 0.247 0.250

9 0.30 0.258 0.254 0.990
10 0.25 0.265 0.250 0.715

12 0.175 0.280 0.230 0.660
14 0.13 0.271 0.212 0.495

Note: Re(s) = -0.20 corresponds to 1/e settling time of 0.796 orbit. Re(s) =
-0.28# corresponds to 1/e settling time of 0.568 orbit.



2.
5

2.
0

1.
5

z E

1.
0

0.
5 0

/1
1.

6

\1
1.

5

14

IV

\2
 1

.3

.1
5

...
2:

1 -°
-.

,..
..

X
=

2.
5,

 E
2=

1.
2

1.
05

--
0-

0 
=

1.
0

a 
=

 k
i/

I.1

-* ka
 =

1.
0

. 1.
0

1\
1.

25 1.
15

\.1
.2

5

X
=

2.
61

80
4

2=
1.

28 11
95

 

1.
15

,

rj 1.
18

X
 =

 2
.5

 ,
.5

2=
1.

38
5

1.
3

1.
25

ry
p/

-

lc
1.

6

1.
4 

-:
'1

,1
7

: 1
41

)(
4

1.
3

2.
0

13

62
=

1.
38

5

1.
2

1.
2

b1
.1

9

.
1.

2 .

-
1.

2

12
5 1.

15

/ /

E
2=X

 =
 2

.5
1.

2

1

-2
.0

-1
.8

-1
.6

-1
.4

-1
.2

-1
 0

R
ef

s)
 IN

 ti
s

-0
.8

-0
6

-0
4

Fi
g.

 6
 -

 V
ar

ia
tio

n 
of

 p
itc

h 
da

m
pi

ng
 w

ith
 s

pr
in

g 
co

ns
ta

nt
s 

at
 f

ix
ed

 X
 a

nd
 0

2.

-0
 2

0



TWO -BODY SATELLITE 63

optimum spring constant for the lowest mode is found always smaller
than that for the intermediate mode, as indicated in Fig. 7, while the
highest mode gets better damping for increased ici or b. For example,
atµ = 8.0, and C1 = 0.35, optimum lc,. equals 1.13 re for the lowest
mode but equals 1.31 re for the intermediate mode. From a practical
consideration of the spring design, one should not choose the spring
constant too close to the critical value because of possible decrease due
to vibrations, thermal effects, etc. Furthermore, an analysis of pointing
errors resulting from deviations in geometric configuration (due to
rod deflections,1.2 etc.) indicates the advantage of employing larger
spring constants. In view of these conflicting results, one may have to
settle for some compromise values, e.g., a,b 1.2 to 1.8.

3.2 Forced Pitch Libration by Orbital Eccentricity

The steady-state solution of (9a) and (9b) for ni is found to be

ni = FICIP GISIP. (17)

Here F1 = 20-1C2P2(P1 - P2), and

G1 = 26A-1[PIP22 + (1 + 2X)/C2P1P2

k.2P22 + (1 + X) (XP1 -I- P2) (C22 + k22)1,

where I'i = 3p1 - 1, and P2 = 3P2 - 1. The ratio of the amplitude,
yi2 Gi2,

) to the eccentricity, E, is plotted in Fig. 8 versus the
spring constant, a, with varying C2 and X. This plot indicates the ad-
vantage of using a lower spring constant, and, for 1.0 < a S 1.4, the
advantage of employing a smaller damping constant. This latter ad-
vantage is further reflected in the plot of lji/e versus C2 (a = 1.2)
(Fig. 9), especially when A is in the range of 2.5 to 3.5. It is noted from
both Figs. 8 and 9 that at C2 = 0.5 (a = 1.2), fide is relatively inde-
pendent of X. If the optimum damping constant for the free librational
motion, as given in Table I, for A = 2.5 to 4.0 is used, the average value
of +We is approximately 2.25, which is only about 30 per cent larger
than that given by C2 = 0.5.

IV. PARAMETER OPTIMIZATION WITH MAGNETIC HYSTERESIS DAMPING

4.1 Energy -Fitting Method

In the case of magnetic hysteresis damping, the equations of libra-
tional motions are the same as (9a) and (9b) for pitch, and (10a)
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through (10c) for roll and yaw, except that the damping torques LI
and Td2 become nonlinear and may be defined as follows. If, for example,
the pitch relative angle of rotation from a neutral position, (3, is larger
then r3, then the major hysteresis loop (see Fig. 3) will be traced, and
(5) will be applied for the pitch damping torque. If however, 0 is less
than i3 after a change of sign of (3, then the torque will in general trace
a minor loop as, for example, that shown in Fig. 10. The maximum
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magnitude of the torque in the minor loop may be a function of the angu-
lar excursion. Since the torque always opposes the motion, the plot of
the torque versus time is a broken curve (see Fig. 10). Each section
of the curve can be represented by an analytical expression if it is ap-
proximated as a section of a rhomboid or an ellipse. Such an approxima-
tion can be used for numerical integration of the equations of motion.

If the Td2-13 curve is approximated as a closed loop for a slowly
damped system, the loop area which represents the energy of dissipa-
tion per cycle of oscillation, E,,, is related to the angular amplitude of
oscillation [3 as follows:

Eh = 4D1120 for )3 130 , (18a)

and

= KDd2f3m for )3 < I. . (18b)

In the above, 0, 130 , K, and m are constants depending on the charac-
teristics of the damping material, etc., where 0 and 130 are found usually
to be very small, e.g., 0 = 1° to 4°, and )30 = 3° to 7°. If one equates
E,, to the energy dissipation per cycle with the viscous damping,
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Et, = irC242 (w = circular frequency of one of the principal modes)
at a certain value of (3, then a relation between C2 and Td2 results. For
example, when Eh = Ei, at (3 = (3o , then

Td2 Fir (V w cf
(19)

/222 L4
t..,2

A similar relation can be obtained between C1 and Td1/I11. Thus,
from the "optimum" viscous damping constants obtained in Section
III, one may find the equivalent "optimum" hysteresis damping torque.
Nevertheless, it is pointed out that the equivalent "optimum" Td
obtained in such a way could be erroneous for the following reasons.
First, this is not a slowly damped system, as can be observed from the
computer solutions' of equations (3) with hysteresis damping, and also, as
can be noted from Figs. 4 and 5, Re(s) is of the same order as Im(s) in the
case of viscous damping. Hence, a closed -loop approximation for com-
puting Eh and E,, based on a particular frequency is obviously a very
poor one. Second, since the quadratic curve for Ei, can fit the Eh -curve

(in ti 1.5 power for (3 i30 and linear for [3 z [3o) at only one point
(see Fig. 11), (19) gives a much worse approximation at other values of
(3 than at the point of fit.

4.2 Numerical Method - Computer Solutions

From the foregoing, it is apparent that "optimum" magnetic hystere-
sis damping constant cannot be accurately evaluated from the "opti-

Td2 Td2

-T-d2

p

1

ii. ., 1

, Iwt. ,_.p.spr..-.emir -.N.
I / ..p.../' I 1

I II 1 I
1

I7r I35 I27r Is I37r Il
(f3 =Po SIN WO

ACTUAL HYSTERESIS LOOP

I Td2 I

--- APPROXIMATED AS AN ELLIPSE
----- APPROXIMATED AS SKEW ELLIPSE --APPROXIMATED AS RHOMBOID

Fig. 10 - Minor magnetic hysteresis loops: torque -time diagram.
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mum" viscous damping constant by means of the energy method or
other approximation methods, such as, the describing function method*
(for example, see Ref. 4). Therefore, in the case of hysteresis damping,
it is necessary to resort to numerical methods for the parameter optimi-

* If one defines the equivalent gain as the ratio of the first harmonics of the
output, hysteresis damping torque, to the amplitude of the oscillation angle,
assumed to be sinusoidal, and equates it to Cis or C2s in the characteristic equa-
tions, then the equations will only have terms of even power with, however,
complex coefficients. This method is actually the same as the energy -fitting method
and clearly offers no advantages.
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zation. The results obtained in Section III for the viscous damping
case may, however, be used as a guide. It is found from the computer
solutions that the critical spring constants (11a) and (12a) obtained
from the linearized equations (9a), (9b), and (10a) through (10c)
with the viscous damping apply also for the case of hysteresis damping.
It has also been demonstrated by computer solutions that the values
of the inertia ratios, X and pc, in the ranges given in Tables I and II,
will give better damping for the same hysteresis damping torques and
spring constants. We shall numerically integrate (3a) through (3f )
and (6a) through (6f) with the hysteresis damping torque defined in
(5) by putting a and equal to 1° to 4°. This eliminates the unnecessary
complex programming of the minor loops of the hysteresis damping,
though no damping will result when a and Q are smaller than 'a and r3 ,
respectively. If the initial condition is a tumbling motion, the numerical
results will cover tumbling motion, large -angle motion, and librational
motion. Only in the librational motion does the solution get less and
less accurate when the relative angles get closer to a and 0.

A number of computer runs have been made employing hysteresis
damping constants in a wide range. The results indicate: (a) the number
of orbits after which the satellite will stop tumbling from the initial
condition, col = S2, cot = 5SZ, 0)5 = SZ, co3 = co4 = co6 = 0; and (b) the
librational angles after 20 orbits. Computer runs have also been made
(for the case of X = 3.333, II = 7.4 only) to determine the librational
angles after 10 orbits from the initial condition: at t = 0, Oz = 36°,
0, = 43°, 0, = 27°, a = 1°, = 10°, wl = W2 = 1.170, (.03 =
-0.30. These angles are defined as Oz = C-'(&14), 0,, = C-1(914),
and Oz = i), (the caret denotes a unit vector), where 0, is the
earth -pointing error angle. The results of these computer runs are
summarized in Figs. 12 through 14 for three sets of inertia ratios.

It is noted from Figs. 12-14 that the damping constants which give
better damping in librations are, in general, smaller than those for
better tumbling damping. Poor damping will result in both tumbling
and librational motions when Tdl and Td2 are either too small or too
large. In the intermediate wide range of the damping constants there is
relatively small variation in the damping time. The "optimum" damp-
ing constants may be chosen from this wide range as, for example,

0.19 - 0.38 for X = 2.62, 11 = 6.28

Pd2//2122 = 0.16 - 0.32* for X = 3.33, A = 7.4

0.08 - 0.16 for X = 4.0, µ = 14,
* The upper limit is taken to be smaller than that given in Ref. 2.
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and Tdl is chosen to be one-half of Pd2 . Since only a limited number of

computer runs have been made, it is not possible to display Tai://222

(i = 1,2) as a function of X( = 2.5 to 4.0) and µ(= 6 to 14). The
"optimum" damping constants corresponding to other values of X
and µ have yet to be determined from computer runs.

The effects of spring constants have also been investigated on the
computer by varying the spring constants under the same hysteresis
damping constants. It is found that the variation in damping time is
relatively small for = 1.2 to 1.8 (i = 1,2). The lower limit is
chosen to guarantee stability.' To ensure torsional fatigue strength
of the torsion wire, it is preferable to choose high spring constants.
Furthermore, employment of larger spring constants will reduce the
error angle in case of rod bending, as indicated in the error analysis.

The relation between the forced librational amplitude and the orbital
eccentricity has been found from the computer runs to be

Oz 2 to 3

for e < 0.10. At e = 0.2, the satellite starts tumbling from an earth -
pointing position after 1.5 orbits, whereas at E = 0.4 tumbling begins
immediately after the start.

Due to the nonlinear characteristics, the effectiveness of the magnetic
hysteresis damping cannot be measured by the 1/e settling time as
with viscous damping. However, an equivalent 1/c settling time for
the hysteresis damping may be obtained in the following way. Take,
for example, a typical computer run as plotted in Fig. 15 for

02[X = 4, µ = 14, ti//2122 = 0.06, Da2//21/2 = 0.12, kt = 1.4k (i = 1,2),
a = = 2°j. From the envelope curve of the amplitudes of the damped
large -angle motion, the logarithmic decrements can be approximately
evaluated by taking the motion as exponentially damped. It is found
that the equivalent 1/e time ranges from one to three orbits with an
average of two orbits. Within the validity of the librational motion, this
represents an average 1/e time for both pitch and roll -yaw librations
with the above parameters.

V. SUMMARY - ILLUSTRATION OF A PRACTICAL DESIGN

The results given in the previous sections indicate that there does not
exist a single set of optimum parameters which give the best over-all
damping performance. However, there have been found relatively
wide optimum ranges of the inertia ratios, the spring constants, and the
damping constants for the design of a two -body satellite. The optimum
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14

ranges of the inertia ratios and the spring constants are found applicable
to both viscous and magnetic hysteresis damping. They are X ( = /2/15)
= 2.5 to 4.0, µ ( = /1//4) = 6 to 14, and ki,2/ki,2* = 1.2 to 1.8. The
optimum viscous damping constants, as tabulated in Tables I and II,
can be read directly from the complex root -locus plots, whereas the
optimum ranges of the magnetic hysteresis damping constants cor-
responding to a few inertia ratios are obtained from the computer runs.
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As far as the inertia ratios are concerned, it is advantageous to employ
large X and µ so that the deck rods2 can be made shorter or the tip
mass can be smaller. By employing shorter deck rods and furthermore
by shortening the mast rod,2 it is possible to balance out the solar torque,
which was the largest disturbing torque for the satellite described in
Ref. 2. As long as the solar torque is reduced to a small magnitude, the
lowered gravity torque level resulting from the shortening of the mast
rod will not substantially increase the error angles produced by other
relatively small disturbing torques. In view of the foregoing, we could
improve the design previously given in Ref. 2. The parameters may now
be chosen as follows:

Il = 12 = 600, /3 = 10 slug-ft2
pitch gravity torque, T, = 0.23 X 10-5 ft-lb/deg = 31 dyne-cm/deg
X = 4, /5 = 150; AL = 14, /4 = 42.8 slug-ft2
Tai/1222 = 0.06, IT di = 0.446 X 10-4 ft -lb
Tae/I222 = 0.12, P d2 = 0.892 X 10-4 ft -lb
/el = 1.8 ki* = 0.55, ki = 0.247 X 10-4 ft-lb/rad
k2 = 1.8 k2* = 1.8, k2 = 0.804 X 10-4 ft-lb/rad
length of mast rod = 30 ft (assuming 160 -lb satellite proper)
length of deck rod = 16.5 ft (4 deck rods)
roll tip mass = 2 X 2.5 = 5 lbs
pitch tip mass = 2 X 9 = 18 lbs
total mass for attitude control (excluding mast motor and support)

= 26 lbs.
The solar torque error angle is now only 1°, and the total error angle

is found to be about 4° excluding the effect of the orbit eccentricity:

magnetic dipole moment (TELSTAR's) 2°

solar torque 1°

rod bending (silver-plated rod) 1°

orbital eccentricity, E 2 to 3

total 4° + 2.5e.

In the preceding, the error angle due to the residual magnetic dipole
moment can be easily reduced to 1° or less by further refinement of the
cancellation techniques used on the TELSTAR satellite.
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The Existence of Eigenvalues for the
Integral Equations of Laser Theory

By J. ALAN COCHRAN

(Manuscript received July 15, 1964)

In this paper the general integral equations governing the mode spectra
of optical masers are investigated from. a point -of -view based upon certain
theoretical results for Holder continuous kernels. Using an estimation origi-
nally per formed by Fredholm, it is proved that the homogeneous integral equa-
tion

cp(x) = X K(x,y) (p(y) dy
a

has at least one eigenvalue for Holder continuous kernels K with exponent
a > z and with nonvanishing trace. All the integral equations which have
been treated in laser theory so far can be "factored" into one-dimensional
equations with continuously differentiable kernels, to which this result ap-
plies directly.

Although in practice the vanishing of the trace is the exception rather than
the rule, the later sections of this paper are devoted to demonstrations of the
nonvanishing character of the trace of several of the common "laser kernels"
associated with practical reflector configurations. These results provide in
almost all cases the first rigorous proofs of the existence of eigenvalues and
eigenfunctions for the integral equations of the optical maser.

I. INTRODUCTION

Homogeneous linear Fredholm integral equations with nonsingular
kernels of normal type (which includes Hermitian kernels as a special
case), i.e., kernels for which

b K(x,z) K(y,z) dz = f K(z,x) K(z,y) dz,f
a

have been extensively studied. Within the framework of complex -valued
£2 functions, questions of existence, uniqueness, and representation of

77
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solutions can be largely answered for such equations. Recently, however,
a number of integral equations involving kernels which are neither
Hermitian nor normal have arisen in laser theory. These kernels, of which

K(x,y) = iik(x-Y)2, (1)

with lc a given complex constant, may be considered representative, do
have the seemingly beneficial property of being complex -symmetric, viz.

K(x,y) = K(y,x)

Unfortunately, due to the lack of a sufficient analytic theory for such
kernels, this "advantage" has yet to be adequately exploited. Thus,
although it is well-known that every Hermitian kernel distinct from the
zero transformation has at least one eigenvalue, the existence of eigen-
values for general complex -symmetric or other non -normal kernels
still remains an open mathematical question.

These remarks are not meant to imply that there has been a paucity
of theoretical investigation to complement the widespread experimental
work with masers and lasers of various geometries. Quite the contrary!
Boyd and Gordon,' for instance, have shown that for the confocal geome-
try the resultant integral equation is equivalent to that considered earlier
by Slepian and Pollak' and has prolate spheroidal wave functions as
eigenfunctions. Somewhat later, Boyd and Kogelnik8 generalized this
work to resonators with unequal reflector apertures and curvatures.
Moreover, iterative computational methods have been applied by Fox
and Li4'5 and Li' to integral equations arising from a wide range of inter-
ferometer geometries. Their techniques have produced plausible numeri-
cal descriptions of the characteristic low -order modes and eigenvalues
for the configurations considered.

Even with the contributions represented by the above papers, how-
ever, there still remains a dearth of knowledge, in a mathematical sense,
about the eigenfunctions and eigenvalues (if any) of the homogeneous
integral equations encountered in the general theory of the optical
maser. The nature of some of the mathematical questions yet to be
answered in this area was considered in an early 1963 paper by S. P.
Morgan.' Since that time some progress has been made regarding the
existence of eigenvalues for certain "laser kernels." Newman and
Morgan,' by means of lengthy Taylor series techniques, have proved
that kernels of the form

K(x,y) = G(x) F(xy) H(y)

with rather general G, F, H and with nonvanishing trace possess at
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least one nontrivial eigenvalue. Other recent work"° has centered
around the use of the natural Hilbert -Schmidt expansions of "planar"
and "near-confocal" kernels in terms of their singular systems [Ref. 11,
p. 142 ff.].

In this paper we want to assume a somewhat different approach based
upon certain theoretical results for Holder continuous kernels. We first
prove (in Section III) the following

Theorem: Let the kernel K(x,y) be Holder continuous in either variable,
with exponent a > 1, for a < x,y =< b. Then if the trace of K does not
vanish, the homogeneous integral equation

cO(x) = X K(x,y) co(y) dy

has at least one eigenvalue.

The essential step in the proof is an estimation of the coefficients in the
classical series representation for the Fredholm determinant of the
kernel K(x,y), an estimation originally carried out by Fredholm him-
self .12

We next observe that all the integral equations which have actually
been treated in laser theory so far can be "factored" into one-dimensional
equations with continuously differentiable kernels, to which the above
theorem applies directly. Although we expect that in practice the vanish-
ing of the trace is the exception rather than the rule, we devote the
latter sections of this paper to demonstrations of the nonvanishing char-
acter of the trace of several of the common "laser kernels" associated
with practical reflector configurations. These examples are indicative of
the ease with which the existence of eigenvalues and eigenfunctions
can be rigorously established for many of the one-dimensional kernels
arising in the theory of the optical maser.

II. MATHEMATICAL PRELIMINARIES

In general we shall consider complex -valued kernels K(x,y) defined
on the hounded real domain a =< x,y < b. Thus, where limits of integra-
tion on integrals are not specified, the integrations are to be performed
over the interval [a,b]. We shall also assume that K belongs to the class
22,

b rb
norm K = IIKII = [1 I IK(x,y) 12 dx dy] < co,a a

and that K(x,y) is a square-summable function of y for each value of
x and conversely.
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Our notation for composite kernels shall be

KL = f K(x,z) L(z,y) dz.
a

Iterated kernels will be denoted by

= KIC-1

= K(x,z) Kv-1(z,y) dz
a

with K1 = K(x,y). In the same manner

trace K = tr(K) = f K(x,x) dx
a

and

2

b

ki, = tr(K") = f K"(x,x) dx
a

K(x,z) K"-j(z,x) dz
a a

Reference should be made to Smithies" for further definitions and
standard theorems on integral equations as needed.

Certain notions regarding the characterization of entire or integral
functions will also be of value in our work. In particular, recall that the
order m of entire f(z) = E,7=0 one is given by

n log n= lim sup (2)
log W I a. I)

Other definitions and results may be found in texts such as Boas."
The property of Holder continuity is indicative of the smoothness of

a given function. Kernels for which there exist positive constants A and
a such that either

I K(x,Y) - K(z,Y) I <Alx-zIa for all x,y,z in [a,b]

or

K(x,y) - K(x,z) z I a for all x,y,z in [a,b]

are termed Holder continuous in x or y respectively with exponent a.
If a = 1 the functions are said to satisfy a Lipschitz condition, and thus
Holder continuity is occasionally designated Lipa . It should be noted



EXISTENCE OF EIGENVALUES 81

that continuously differentiable functions automatically satisfy Lip-
schitz conditions with a = 1.

III. THE MAIN THEOREM

Theorem: Let the kernel K(x,y) be Holder continuous in either variable,
with exponent a > -1, for a < x,y < b. Then if the trace of K does not
vanish, the homogeneous integral equation

40(x) = X K(x,y) w(y) dy (3)
a

has at least one eigenvalue.

Proof: The eigenvalues of (3) are the zeros, if any, of the Fredholm
determinant D(X) associated with the kernel K(x,y). The classical
series representation12 for this entire function D(X) is

D(X) = dX' (4)

where do = 1 and

d ,S2'  's" dsids2
,

_ (-1)P if f K (s1,s2,  ,sv

with

K (Si
,s2 ' s) det (K(si ,s,) )
,s2 , SP

K(si

K(s2 ,s1)

K(si ,52)

K(s2 ,s2)

ds, (v > 1) (5)

K(si ,s,)

K(s2 ,s,)
(6)

K(s, ,s1) K(sp ,s2) K(ssy)
We want to determine the order /I of D( X) under the above hypotheses
on the kernel K(x,y). Let us assume, therefore, that K is uniformly
Holder continuous with respect to the second variable, that is

K(x,y) -K(x,z)I<Aly-zla (7)

with a > 2.
To estimate the coefficients d, ,* we first transform the determinant

in (6) by subtracting the second column from the first, the third column
from the second, etc., thus obtaining

* This estimation was originally performed by Fredholm in 1903.12
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det (K(si ,s;)) = [(s' - 82)(82 - sa) (sv-1 -

En Ell? (1,p-1 K(SI sv)

21 22 2,v-1 K (s2 , sv)

Evl 1,2 K(s, , sv)

where

Ern - if( s, ,sn ) - K( sn, ,s.+1)
(s. - s. -1-1)u

m= 1,2, , p; n= 1,2, , - 1.
Since I em. I < A by (7), and K(x,y) itself is bounded by continuity,
a simple application of Hadamard's inequality yields

det (K(si , si)) I< CP11/2 I (si - s2)(s2 - s3) (sv_i - sv) I , (8)

where C is a constant. Inasmuch as the determinant of (6) is symmetric
in the si , we may assume in deriving a further upper bound that

b > s1 > s2 > sp a.

The right side of (8) is then maximized by spacing the si uniformly
between a and b. As a consequence we obtain

acv-1)

det (K(ssa)) < C1112 [b a- 1 j (P > 1)

from which it follows that the estimate*

dv I < (const. )v

is valid for the coefficients of the power series of (4).
The relation (9) implies that the order of the entire function D(X)

satisfies

1
< a

which becomes less than 1 for a > 1. Since

(9)

d1 = - f K(81,81) C181 = -tr(K) (10)
 a

* We have used Stirling's expansion for the factorial function.



EXISTENCE OF EIGENVALUES 83

does not vanish by hypothesis, D(X) must be a nonconstant entire func-
tion of order less than 1 and hence must have at least one zero (see
Ref. 13, p. 22 ff ). It follows then that the integral equation has at least
one eigenvalue.* Q.E.D.

For entire functions of finite order a general product expansion follows
from the Hadamard factorization theorem. In view of the above results,
therefore, D(X) may be written as the canonical product

D(X) = l(1 - ,X) (11)
AY=1 y

where Al , X2 ,  are the zeros of D (X) arranged in order of increasing
modulus. This expansion converges absolutely and uniformly on corn-
pacta.

If we differentiate the two representations of D(X) given by (4) and
(11), set A = 0, and make use of (10) we obtain

tr(K) = E 1. (12) t
Y=1 Ay

Thus kernels Holder continuous in either variable with exponent a >
are one of the overlapping categories of nondegenerate kernels for which
the expansion (11) and hence the relation (12) is valid. Other classes
include

(1) Hermitian kernels with only a finite number of eigenvalues of
one sign or the other (Mercer's Theorem), and

(ii) composite kernels of the form K = K1K2 (Lalesco's result; see
Ref. 15).

IV. ONE-DIMENSIONAL EQUATIONS FOR THE OPTICAL MASER

Careful analysis of an idealized diffraction model for the optical maser
results in the following coupled integral equations for typical field quan-
tities, such as the current densities:5

6131( ,yi ) = Al K12 ( ,yi ;x2 ,y2) 432 ( s2 ,y2) dx2dy2 ,

4'2( X2 ,y2 ) = A2 f K21( X2 ,y2 ; NI )(Di ( NI) dxidyi ,

s,

( 13 )

* If the order A of the Fredholm determinant D(X) satisfies 0 < p < 1 then we
can conclude that there exists a countably infinite set of eigenvalues of the equa-
tion (3) since entire functions of nonintegral order have an infinite set of zeros.

f This relation is not generally valid for arbitrary 22 kernels. In fact it may
be inferred from results of Salem" that there are continuous symmetric kernels
with denumerably many eigenvalues for which E71. (1/X,) does not even exist.
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where

K12(XI yi ; X2 Y2) = K21(X2 Y2 ; X1 I Y1)

= exp ik [(x1 - x2)2 + (y' - y2)2 (14)

hi(xi , yi) h2(x2 , y2)].

In these relations, S1 and 52 are the mirror surfaces, hi(xi , yi) and
h2(x2 , y2) represent their respective departures from parallel planes,
and k is a dimensionless parameter containing the wavelength as well
as various geometrical dimensions such as the average mirror separation.

The solutions C131,2 of (13) are eigenfunctions which describe the field
distributions at the reflectors of the possible normal modes of laser
oscillation; Xi and X2 are the corresponding eigenvalues that specify
the loss and phase shift which a propagating wave undergoes between
the reflecting surfaces. Note in particular that these coupled equations
(13) are single -transit relations; that is, they give the field at each mirror
in terms of the reflected field at the other. They can, of course, be com-
bined into a single integral equation with a composite kernel.

In the derivation of the above relations, the active maser material
is assumed to be infinite in extent, homogeneous and isotropic. Diffrac-
tion effects at the edge of the reflecting surfaces are neglected. Moreover,
the separation between the reflectors, as well as the radii of curvature
of these surfaces, is taken to be large compared to typical transverse
dimensions.

Although the integral equations (13) are two-dimensional, the pre-
ponderance of analytic work on this problem has been under the addi-
tional assumption that the laser kernels (14) can be adequately approxi-
mated by a product of functions of single variables. If the field quantities
are correspondingly decomposable, namely if

43(x,y) = X(x) Y(y)

or

Er,0) = R(r) 0(0),
the general problem may be reduced to consideration of integral equa-
tions in one independent variable. These equations take the form

b2

coi(xi) = X1 f Ki2(xi,x2) 402(x2)
422

f
bi

4C2(X2) = X1 K21( X2 ,X1) 401(X1) dx1,
al

(15)
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with the single -transit kernels K given, for instance, by

Ki2(xi , x2) = K2i(x2 , xi) = exp ik [(x1 - x2)2 + p2(x2)]. (16)

Since these kernels are in general continuously differentiable functions of
their arguments, we can use the main theorem of the preceding section
directly to show the existence of eigenvalues whenever the trace is non -
vanishing.

V. ANALYSIS OF SPECIAL REFLECTOR CONFIGURATIONS

In this section we examine the kernels associated with several well-
known practical interferometer geometries and establish the general
nonvanishing character of the traces.

5.1 Plane Reflectors

For rectangular plane reflecting surfaces which are mirror images of
each other, the integral equation of interest is

co(x) = X K(x,x') cp(x') dx'

with kernel

K(x,x') = exp [ik(x - x')2].

It is a trivial matter to verify that the trace of this differentiable func-
tion is 2, from which we infer the existence of eigenvalues of the above
integral equation. In fact, for this kernel one can use parity arguments
to show there are at least two eigenvalues for k # 0.8

5.2 Circular Plane Reflectors

When the plane reflecting surfaces have circular cross section the
integral equation kernel becomes'

K(r,r') = J(krr') r' exp [ik(r2 + 7./2)/2] r,r' in [0,1]

where J,, is a Bessel function of the 1st kind and nth order. The integer
index n is indicative of an angular variation e'n8 which has been sup-
pressed. The trace of the kernel K is proportional to

7'. = J(kr) eikr dr
0

and thus the nonvanishing of T will imply the existence of normal
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modes of oscillation for the system. Using an integral representation of
Jo , for example, we obtain

1 1
eikrt ( t2)--1 eikr

dtdT
0 7 -11 1'1ri= - (1 - t2)-1 ei",(i+t) drdt

7r J--1

1
r1 ik(14-1)

- 1

dor --
= j (1 - t2 e)-1[1 dt.

It is easy to see that for Im (k) > 0, for instance, the real part of the
integrand is negative almost everywhere. Hence the trace of the kernel
does not vanish in this particular case, and we may draw our conclusion
as to the existence of eigenvalues.

5.3 Other Reflector Configurations

For certain kernels, of course, there is little ,to be learned from applica-
tion of our results on Holder continuous functions. Such is the situation
regarding the kernel

K (x x') = eikxx'

associated with mirror image reflectors of square cross section, each
having the curvature of a sphere centered at the center of the other
reflector. As noted previously, this particular kernel gives rise to eigen-
values and eigenfunctions which may be expressed in terms of prolate
spheroidal wave functions.2

At the same time, however, it is advantageous that the eigenvalue
existence question can be easily settled for more general reflector geom-
etries which do not exhibit as beneficial analytic properties as the
confocal configuration. In particular, the kernel

K(x,x') = exp ik[(x - x')2 p(x) p(x')],

which pertains to mirror image square reflectors with shape function
proportional to p(x), has eigenvalues if

T = f K(x,x) dx = f e2ikp(x) dx 0.

The vanishing of T for practical geometries would certainly seem to be
the exception rather than the rule.



EXISTENCE OF EIGENVALUES 87

5.4 Composite Kernels

The above examples show how our main theorem can be used to
establish simply yet rigorously the existence of eigenvalues and eigen-
functions for the one-dimensional laser kernels arising when the reflectors
are mirror images of each other. For more generalized configurations in
which the reflecting surfaces may be of unequal size and curvature, the
applicable kernels are of a composite nature (see Refs. 3 and 5). In
view of this one might choose to reason from Lalesco's results on com-
posite kernels mentioned earlier rather than from our main theorem.
This would be an acceptable method of attack. However, since (12),
relating the trace to the sum of reciprocal eigenvalues, is valid in both
situations, a verification of the nonvanishing character of the kernel
traces is needed in either case. As a last illustrative example we shall
provide this verification for the integral equations associated with
asymmetric spherical reflectors of arbitrary curvature.

Let al = -b1 , a2 = - b2 , Pi(xl) = ax12 and p2 (x2) --= j3x22. The one-
dimensional integral equations (15) then become appropriate for analysis
of an idealized interferometer having two rectangular mirrors of unequal
size and unequal curvatures. As usual, these two coupled equations (15)
can be combined into a single integral equation for either (pi or go2 .

Moreover, this new integral equation may then be split apart into two
subsidiary equations according to whether the eigenfunction modes are
even or odd. The kernels resulting from this division are given by

Ke,o(x,Y) = 2 exp fik[(x2 + y2)(1 + a)
fb2

cos 2kx'y
t, {i sin 2kx'y

2x'2(1 13) - 2x' x11 dx'

and have traces
bl b2f cos 2kx'x

tr(Ke,o) = sin 21a!x2 exp 12ik[x2( 1 + a )
b2

(17)

(18)

+ x12(1 + 13) - x'xli dx'dx.

It is easy to show that at least one of these traces is different from zero
for real k and arbitrary curvatures a, 13.

Note first that
bi b2

tr(L) - tr(K0) = 2 f exp {2ile[x2(1 + a)
() 1,2

+ 27'2(1 + dx'dx
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= 4

Ub,

exp 2ik(1 a)x21dx]

U
bg

exp {2ik(1 ,3)xa

Now neither of the two bracketed terms on the right-hand side van-
ishes, since the real parts of these Fresnel integrals are positive for real
k, a, f3. Thus, the difference between the two traces, and hence at least
one of the traces itself, is different from zero [one suspects, of course, that
both of the kernels (17) have nonvanishing traces]. Although this argu-
ment gives no measure of the loss to be expected with any individual
eigenmode, it does show that normal modes of oscillation exist for this
arbitrary asymmetric spherical configuration.
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A Model of the Switched Telephone
Network for Data Communications

By E. 0. ELLIOTT
(Manuscript received August 20, 1964)

The error statistics from data -transmission field tests on the telephone
network may be compactly represented by about one dozen parameters.
These relate to a model of the telephone network in which there are three
distinct channels. The errors in binary data on each channel are produced
by a renewal process in which a bit -error is a renewal event. The mixture
of three such channels allows a close fit to the error statistics for a large
range of block lengths. It is not implied that the errors on the telephone
network are actually produced by such processes, but merely that they may
be conveniently and compactly represented by them.

Use of this model simplifies the analysis of error -control systems and
the determination of error rates for error -control codes. In this paper the
model is applied to study the effect that interleaving (time division multi-
plexing) has on the effectiveness of error -correcting codes.

I. INTRODUCTION

In the study of errors on data communication channels, several
mathematical models of the error proees have been proposed. Gilbert'
proposed a two -state Markov process, and Berger and Mandelbrot2 have
employed a Pareto distribution to fit data collected from the German
telephone network. Sussman' has applied a Pareto fitting to part of the
Alexander-Gryb-Nast data.4 Common to the models of Gilbert and
Berger-Mandelbrot is the assumption that the error process is of the
renewal type wherein the state of a bit -error is the renewal event whose
occurrence frees the process from dependence upon past history and
starts it anew. In such models the distributions of lengths of error -free
intervals (gaps) determine the processes, because the lengths of the gaps
before and after an error are independently distributed. One may calcu-
late from this distribution the probabilities P(m,n) that m bit -errors
occur in a block of n consecutive bits. These probabilities are useful

89
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in the analysis of error -control methods for data communications
systems.'

On the telephone network, as exemplified by the Alexander-Gryb-
Nast (AGN) data, the P(m,n) for individual calls are, as noted in Ref. 5,
quite diverse in nature. This suggests that there are several error proc-
esses involved. In fact, the combined AGN data cannot be described by
just one error process of the renewal type but require the mixture of
several such processes for a satisfactory description. The mixture of a
collection of processes is determined by a corresponding set of channels
on which the separate error processes act and specification of the proba-
bilities of being assigned the various channels when placing a call (the
assignment, and hence the error process acting, is fixed for the duration
of the call).

The purpose of the present paper is to show that in this way the use
of three distributions for gap lengths can yield satisfactory approxima-
tions to the probabilities P(m,n) for the telephone network. This cannot
be accomplished with just one or two distributions, and conceivably
four or more might be required in some cases. The P(m,n) for renewal
processes depend heavily on the first few values of the gap -length dis-
tribution. Because of this there is some choice of distributions for
satisfactory models of the telephone network. Noting how various
gap -length distributions affect the P(m,n) distributions, we select
three gap -length distributions with appropriate weightings to represent
the combined switched telephone network. This selection gives excellent
agreement to P(m,n) over a wide range of block lengths n. To exemplify
further this means of representing the telephone network we apply it
also to the Townsend -Watts (TW) data given in Ref. 6.

In the present paper we do not attempt to optimize the degree to
which the models represent the telephone network. Rather, we attempt
to demonstrate the feasibility of such representations and note that a
better accuracy of fit would hardly affect the applications suggested.
Also, no attempt is made to associate the parameters with particular
causes, such as type of exchange or calling distance, etc. These goals
would be the object for future work. We do suggest, however, that drop-
outs (momentary open -line conditions) and the test words used in field
tests are at least partially the cause for the hump in the P(m,n) curves
at m near n/2.

II. RENEWAL -TYPE ERROR PROCESSES

For a renewal error process, the lengths of successive gaps are inde-
pendent and distributed according to a common distribution. Let p(k)
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be the probability that a gap length is k - 1, i.e., p(k) (ok-ii

where 1 denotes an error -bit, 0 a correct bit and 02 denotes i consecutive
0's.

Let

P(k) = t: p(m)

so that P(k) is the probability that at least k - 1 0's follow a given
error [i.e., P(k) Pr (0k-1 1)j Now, if pi is the unconditional proba-
bility of a bit -error, then p1P(k) = Pr (1) Pr (0" I 1) is the probability
of 10". But, because of the independence among gap -lengths of a
renewal process, order is irrelevant and it is clear that the events 10"
and 0"1 are equiprobable. Hence, piP (k) (01c-1-.J.) To obtain the
value of pi , note that pi = 1/k where rc, the average distance to the
next error, is equal to

E kp(k).
k=1

The probabilities of individual error patterns of a renewal process
are easily calculated (but we do not make use of these here). For ex-
ample, consider a block of n consecutive bits which contains m bit -
errors and, as in Ref. 5, p. 1985, let a be the number of 0's before the
first 1 in c the number of 0's following the last 1 in and bi (i = 1,

, m - 1) be the number of 0's between consecutive l's in Then,
the probability of rs occurrence is given by

Pr (0 = piP(a ± 1) {if p(bi 1)} P(c + 1).

Calculations of the above sort may be of use in evaluating both error -
correcting and error -detecting codes on renewal -type channels. For more
general, but approximate, applications, the probabilities P (m,n) that
m bit -errors occur in a block of length n are of use. To calculate these
we may use recurrence relations or generating functions as follows.

First, let R(m,n) be the probability that m - 1 errors occur in the
next n - 1 bits following an error. Thus, R(l,n) = P(n) for n > 1, and

n -m+1

R(m,n) = E p(k)R(m - 1,n - k)
k=1

for 2 n.
Now,
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n-m+1
P(m,n) = E p1P(k)R(m,n - k 1)

k=1

whenever 1 n.
Computer programs for computing P(m,n) from the above recurrence

relations have been written and used in obtaining the data presented
later in this paper.

An alternate approach to the above relation is through generating
functions. If we let g(z) and 0(z) be the generating functions associated
with p(k) and P(k + 1) respectively

(i.e., g(z) = E p(k)zk and 0(z) = P(k 1)zk)
k=1

then, from Ref. 7, p. 249, we have

-G(z) - 1 g(z)
1 - z

Letting
CO

= E P(m,n)zn
n =m

we obtain that

H.(z) = pizG(z)g(z)m-1G(z)

considering that m errors involve m - 1 gaps in a total number of bits
adding up to n and that the generating function for a convolution of
variables is the product of their associated generating functions. [pizG(z)
is the generating function for the probabilities of the events Ok-'1, g(z)
is that of Ok-11 I 1 and 0(z) is that of Ok 11.1

Thus, we obtain

H i(z) = piz 11 -
1

g(z) }2
t z

Calculation of P(m,n) from this generating function is rather incon-
venient. The recurrence equations are generally preferred in practice.

III. A REPRESENTATION OF THE TELEPHONE NETWORK

In both of the data -transmission field-test programs on the telephone
network, data calls were placed on a variety of circuits and bit -errors
were recorded. In Refs. 5 and 6 the composite effects of these are repre-
sented by the P(m,n) probabilities. Fig. 1 shows P(m,31) for these two
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field tests and is typical of P(m,n) for other intermediate block lengths
n. These curves appear to have three separate segments: an initial
segment with a steep slope, an intermediate segment with a smaller
slope, and a terminal hump and tail. Using the recurrence equations of
the previous section, the P(m,31) curves for the three gap -length dis-
tributions (determined by trial and error) given in Table I were calcu-
lated and are displayed in Fig. 2. The unconditional bit -error rate for
each curve is taken to be that of the AGN data. In so doing we essen-
tially assume that the tails of the gap -length distributions are appro-
priately tailored. The tails of these distributions, of course, do not
influence P(m,n) when n is not too large. Each of these three curves is
Wore -or -less parallel to the respective first, second or third segment of
the P(m,31) curve for the AGN data. They are to be added together,
after multiplication by suitable weighting factors, to produce our
approximation to the AGN curve. By trial and error, we find that weight-
ing factors of 50, 25, and 25 per cent respectively give the close fit which
is shown in Fig. 3 for block length 31 and again in Figs. 4-7 for some
other block lengths. This trial and error procedure of finding curves of
the right shape and then appropriate weighting factors represents a
simple attempt to approximate the P(m,n) curves of the AGN data
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TABLE I GAP -LENGTH DISTRIBUTIONS p(k) FOR AGN MODEL

k= 2 3 4 5 >5

Initial segment 0.12 0.06 0.0 0.0 0.0
Intermediate segment 0.40 0.20 0.10 0.05 0.0
Hump 0.56 0.24 0.06 0.0 0.12

over a wide range of block lengths n. It would be desirable to use analytic
methods instead of trial and error in obtaining such approximations, but
the number of parameters involved is large and the analytic expressions
for P(m,n) are cumbersome. Undoubtedly, appropriate programming
techniques can be developed to improve upon our trial and error method.

The gap -length distributions and weighting factors given in Table II
furnish an approximate model for the TW data. Figs. 8-10 compare
the original and the model at block lengths 10,31, and 63.

IV. CHOICE AND INTERPRETATION OF COMPONENT DISTRIBUTIONS

Suppose the field test data we wish to represent by a mixture of
different renewal processes have an unconditional bit -error rate P1 and
suppose that gap -length distributions pi( k) (the superscript is not an

to -3

5

2

10-4

5

2

to -5

01 5

E

10-6

5

2

10-7

5

2

10-6
0

X

X

X

X

1616\
AGN

.0 # \

\`

X

I

4 8 12

m
16 20

Fig. 2 - P(m,31) for components of model.

24 28



E

10-3

10-4

5

2

5

2

10-5

2

10-6

2

lo -7

5

2

10-8
0

SWITCHED TELEPHONE NETWORK MODEL 95

- _

1

r 1

S
".....

- 1/

rte/4
AG N`\ MODEL

-

N

I
t

4 8 12

m
16 20

Fig. 3 - P(nz,31) for model of AGN data.

24 28

exponent) and weighting factors Xi (i = 1, , J) have been decided
upon. (Determination of pi(k) and Xi will be discussed subsequently.)
Then, let Pi(m,n) be calculated for each distribution pi(k) using the
prescribed error rate PI . For the model we then take

1'(m,n) = E XiPi(m,n) .
i=1

Use of the common value pi in computing Pi(m,n) does not imply that
each distribution pi(k) has this bit -error rate, but is just a device to
assure that the model has the same unconditional bit -error rate as the
field-test data. In fact, since pi(k) is generally specified for only a few
small values of k, we assume that pi(k) for larger values of k is distrib-
uted so that its real bit -error rate pi, i may be different from PI , and it
is not used explicitly in our model. Incidentally, Xipi represents the por-
tion of the total error rate attributable to the channels with gap -length
distribution pi(k) and we could say that the percentage of channels of
this type is X'i where = Xipi 

To choose candidate distributions pi(k) we must first observe some
principles, pertaining separately to the segments i = 1,2,3, which are
noted in the next few paragraphs. We begin by examining the simplest
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TABLE II GAP -LENGTH DISTRIBUTIONS p(k) AND WEIGHTING
FACTORS FOR TW MODEL

Weighting Factor

2 3 4 5 >5

Initial segment 57% 0.20 0.10 0.0 0.0 0.0

Intermediate segment 18% 0.35 0.25 0.15 0.05 0.0
Hump 25% 0.45 0.25 0.15 0.10 0.03

case analytically, namely that of a gap -length distribution p(k) such
that p(1) = a and p(k) 0 for k > 1. Then the generating function
g(z) for p(k) is essentially az and

[1 -H=(z) = piz (azr-1.1 - z
Determining the coefficient of in in the above [using (1 - z)-2 = 1 +
2z + 3z2 + 1 we obtain

P(m,n) = piam-1[(n -m 1) - 2a(n - m) a2(n -m - 1)]
which in a logarithmic plot as a function of in is almost a straight line.

A distribution of this type with a small, or a slight modification
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thereof, may be useful in matching the initial segment of field test data
as in the foregoing examples. In general, the initial segment of a P(m,n)
curve which has the same general shape as our two field test examples is
determined by a gap -length distribution p(k) having 5 to 40 per cent
of the probability spread over the first three or four values of k. It is
reasonable to assume also that p(k) is monotonically decreasing and
that p(k) 0 for k much larger than 4.

For the intermediate segment of such a curve, the gap -length dis-
tribution may contain between 70 and 80 per cent of the probability
in the first four or five terms. A definite hump begins to appear in the
P(m,n) curve when much over 90 per cent is contained in the same
range. Amounts of 95 to 99 per cent produce humps as extreme as we
note in our examples.

The exact way in which p(k) is distributed over these first few terms
can influence the shape of the P(m,n) curve considerably. In general,
large values of p(1) cause the P(m,n) to remain large for a more ex-
tended range of values of m. Beyond these few general remarks, the
process of fitting remains a matter of trial and error. First we find gap -
length distributions which give rise to P(m,n) curves which approxi-
mate in shape the various segments of the curve we are trying to match.
Then weighting factors are chosen so that when the various components
are so weighted and added together, they yield numerical agreement
with the desired curve.

Berger and Mandelbrot2 and Sussman3 have claimed that the error
processes on the telephone network are indeed of the renewal type and
they have some data2 to support this view. We have not investigated
this matter, but we do note that for the AGN data the composite gap -
length distribution given in Table III is approximated reasonably well
by that for our model. Our model, however, has p(k) 0 for k > 5,
whereas for the AGN data p(k) 0 for k > 5. These observations neither
confirm or deny the existence of renewal processes on the telephone
network. The accuracy with which our model approximates the field
data is, however, indirect support for the notion that the error processes
are at least not widely different from renewal processes.

The humps in the P(m,n) curves at m n/2 are rather remarkable.
We have suspected that they are at least partially due to drop -outs and
to the nature of the error -recording procedures in the field tests. For
example, in the AGN tests during a drop -out, the error pattern recorded
would coincide with the test word (Ref. 8, p. 1402) and would appear as
repetitions of

111101111001011000010000110110.
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TABLE III - GAP -LENGTH DISTRIBUTIONS FOR AGN DATA
AND MODEL

101

k= 1 2 3 4 5

AGN data 0.24 0.09 0.05 0.02 0.03

Model 0.20 0.14 0.04 0.01 0.03

When this pattern is present, the gap -length distribution induced would
be that given in Table IV. This is essentially the distribution we have
used to produce the hump in our model for the AGN data (cf. Table I).
We found that it gave a slightly better fit than some other distributions
we tried, but other distributions did yield rather good fittings. This is
not sufficient evidence to conclude that the hump is entirely due to
drop -outs but it does support the hypothesis that it is at least partially
caused by them.

One other tentative interpretation of our models for the AGN and
TW data lies in the gap -length distributions for their initial segments.
The term p(1) for the TW data is almost twice as large as that for the
AGN data, which means that double errors would be more prevalent
in the TW data. This is consistent with the occurrence of dibit errors
for the four -phase data set employed in the TW tests.6

So many gap -length distributions seem to give reasonable approxima-
tions to the intermediate segment of the P(m,n) curves of these field

tests that it is difficult to ascribe much significance to them. They do,
however, represent instances where errors have high probabilities of
following other errors, thereby producing bursts. Very short drop -outs
would offer one explanation, but there are no doubt others.

The accuracy of our approximations is certainly sufficient for many
purposes, and in particular for the estimation of error rates for codes
by the methods given in Ref. 5. An advantage of the models which is
somewhat independent of accuracy is the following. When the block
length n is very large there are two defects in the P(m,n) values obtained
directly from the field-test data. First, the plot of P(m,n) becomes
erratic due to the small sample size afforded by the field-test data, and,
second, the computer processing time to obtain P(m,n) becomes ex-
cessive. On the other hand, P(m,n) computed from the model yields a

TABLE IV - GAP -LENGTH DISTRIBUTION FOR TEST WORD

k

p(k) 0.563

2

0.250

3

0.062

4 5 >5

0.0 0.125 0.0
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smooth curve with very little time required in the computations. This
appears to be a significant advantage of representing the telephone
network by way of mathematical models.

V. ERROR RATES ON THE TELEPHONE NETWORK

The use of P(m,n) in estimating error rates for error -detecting codes
is described in Ref. 5. It has also been used for some error -correcting
codes in Ref. 9. For error -correcting codes, the probability Pe of in-
correct decoding may be conveniently and usefully bounded in some
cases. For example, if the code is capable of correcting all (m - 1) -fold
(or fewer) errors, then certainly Pe :C. m,n) where

m,n) = E P(i,n)

and n is the code's block length.
In Ref. 5 we find another use for the probabilities P(_. m,n). For an

error -detecting code used with retransmissions for error correction, let
P. be the probability of an undetected error and Pr be the probability
of retransmission. Then,

2-eP (> d,n)

and

P,. 1,n)

where d is the minimum distance of the code and c is the number of
check bits in each code word. The above approximation for P. is best if
c is small, n is moderately large, and the check bits are not too trivial.
It may be used in some other cases but with special caution if either
extremely low error rates are desired or n is quite large.

Using the model for the AGN data, P(-_ m,n) vs n has been com-
puted and displayed in Fig. 11 for m = 1, , 10. Fig. 11 is useful for
the kind of estimates indicated above and for other considerations in
error -control systems (e.g., synchronization).

VI. THE EFFECT OF INTERLEAVING ON ERROR RATES

Time division multiplexing (interleaving) has often been considered
as a means of enhancing the error -control effectiveness of error -correct-
ing codes. Its effect on the error statistics of a Gilbert burst -noise channel
were noted in Ref. 5, p. 1987.
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With interleaving, the blocked bits from the data source are rearranged
(by some delay and storage device) and put onto the line so that of two
originally adjacent bits in a block, the second is the tth bit on line
following the first. The number t will be called the "interleaving con-
stant." When t = 1 there is no interleaving. We let n be the block
length, and for error -rate considerations we are concerned with the
probabilities P t(m,n) that m bit errors occur among the n bits of an
interleaved data block. For Pi( m,n) we write simply P(m,n) as before.
Thus, Pt(m,n) is the probability of in errors among n bits which are
equally spaced with t - 1 other bits between each two.

To obtain m errors among n bits spaced t - 1 hits apart, we must
have r errors in the total block of In hits where m 5 r < (t - 1) n m.

X
Given a total of r errors in to bits, there are

r to - r collections of
m n -m

n bits (from the total) containing in errors. There are, however,
(tnn)
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possible collections of n bits. The probability that n bits selected from
the to bits contain m errors is hence

(r (t: r (tnmn)
and, assuming that a sample of n regularly spaced bits is similar to a
random sample of n bits, we may conclude that

r (to r
0 -1)n -Fm

Pt(m,n) P(r,tn). (1)
rmna (tn)

This formula could be used to approximate P t(m,n) from the P (r,tn)
values, except that N = in may be quite large and the computation
of P (r,N) then becomes infeasible even with the efficient programs used
in connection with our mathematical model of the telephone network.
Let us abandon this approach.

Now, P(r,N) is expressed by
3

P(r,N) = E XiPi (r,N)

where Pi (r ,N ) is associated with the renewal channel determined by
the gap -length distribution pi (j) . If we interleave on one of these re-
newal channels, we effectively have another renewal channel deter-
mined by a modified gap -length distribution p t' (j). Expressions for this
will be given below. Thus,

a

P t(m,n) = E xiN(m,n) (2)

where P ti (m,n) is obtained from p ti(j) in the same way that p'(r,N)
is obtained from 2? (j) and involves only modest computations.

Using (2) we are then capable of computing the P t(m,n) values for
the switched telephone network that are displayed and discussed below.

For a renewal channel the gap -length distribution p(j) specifies the
probability Pr (0'11 I 1) that, given a bit error, the next error is the
jth following bit. (The superscript i is dropped from p(j) here, since
the three cases i = 1 to 3 are treated the same.) Let a be the autocor-
relation function for the process so that a(j) = Pr (al 11) where a is
any binary word of length j - 1. Then

a(1) = p(1)
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a(j) = p(j) E P(8)0:7 - s) (3)

for j > 1.
Now, if we interleave with a constant t, error bits remain renewal

events and p g(j) is the probability

Pr (oti0a20  cx;_10ajl I 1)

that looking at every tth bit there are j - 1 correct bits preceding the
next error (al , a2 , , a; are arbitrary binary sequences of length
- 1).
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Thus,

and

pt(1) = a(t)

Pt(i) = a(tj) -E a(t8)Pg(j - s)
8-1

(4)

for j > 1.
This last equation follows from the fact that the first term on the

right is the probability that the tjth bit following an error is also in
error, and the second term is the total probability that at least one of
the tth, (20th, , (j - 1) tth bits is in error. Their difference then is
Pt(i).

We reintroduce the superscript i ( =1,2,3) on pi(j) to denote re-
spectively the initial, intermediate and hump gap -length distributions
given in Table I. The corresponding autocorrelation functions deter-
mined by (3) turn out to be well approximated (at multiples of 25) by
the following formulae.

ce(j25) = 1.43 X 10-'3{2.295 X 10-13}l-1

ot2(j 25) = 0.990[1.863 X 10-21i-1

ce(j  25) = 0.407{0.763}'-'.

TABLE V - GAP -LENGTH DISTRIBUTIONS pti(j)

t j i = 1 2 3

1 0 0.01 0.41
2 0 0 0.14

25 3 0 0 0.05
4 0 0 0.02
5 0 0 0.01

1 0 0.0002 0.31
2 0 0 0.08

50
3 0 0 0.02
4 0 0 0.01

1 0 0 0.18
100 2 0 0 0.03

3 0 0 0.005

1 0 0 0.06
200 2 0 0 0.004

3 0 0 0.0002

1 0 0 0.008
400

2 0 0 0.0001
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Using (4), these give rise to the following gap -length distributions
pti(j) (for t = 25, 50, 100, 200 and 400) shown in Table V (therein
0 indicates a number less than 10-4).

To illustrate further the dependence on t we have plotted pa3(j)
(j = 1 to 8) in Fig. 12.

Using the gap -length distributions in Table V, we have computed
P t(n,m) for n = 15, 31, 93 to obtain P m,n). These are summa-
rized in Figs. 13 and 14, which give P t( m,31) vs t for m = 1 to 7
and Pt( 3,n) vs n for the values of tin Table V.

The correction of all single and double errors is generally considered
to be a reasonable procedure for capable codes of almost any block
length. For such codes, the probability Pe of a decoding error cannot
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exceed P1( 3,n), where n is the code's block length (and the inter-
leaving constant is t) .

Noting Fig. 13 and considering the Bose-Chaudhuri (31, 21) code,'°
which corrects all double errors, we conclude that interleaving with

= 300 would provide an error rate PB of 10-7 or less. Such error rates
are usually acceptable. The storage capacity required to obtain t = 300
for this block length is 31 X 300 = 9,300 bits.

VII. CONCLUSIONS

Representation of the telephone network by a combination of re-
newal -type channels may be accomplished by the specification of
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slightly more than a dozen parameters. This has the advantages of being
compact and convenient, and of admitting to extrapolation to large
block lengths and giving accuracies which are more than adequate for
most error -control evaluations.

Interleaving on the telephone network can significantly enhance the
error -control effectiveness of error -correcting codes when the separation
between adjacent bits of a code word is on the order of several hundred
bits. The storage requirements for achieving such interleaving are ex-
cessive for general application, hut, where computers or other special
storage facilities are available, interleaving can provide an interesting
trade-off between decoding complexity and simple storage.
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Differential Detection of Binary FM
By R. R. ANDERSON, W. R. BENNETT,

J. R. DAVEY and J. SALZ

(Manuscript received August 27, 1964)

Detection of binary FM by multiplication of the received signal by itself
delayed is analyzed. Error rates vs signal-to-noise ratio for additive Gaus-
sian noise are calculated as a function of sampling time, differential delay
at the receiver, and delay distortion in the channel. It is found that the
differential detector can give better pelormance than the more conventional
zero -crossing counter or frequency discriminator under conditions of severe
delay distortion in the channel.

I. INTRODUCTION

It has been found possible to realize excellent practical performance
in FM transmission of binary data by use of a detector in which the
signal is multiplied by a delayed replica of itself. This method has been
called "differential detection" on account of its resemblance to the
scheme of that name in widespread use as a detector of phase -modulated
waves. The name "product demodulation" has also been applied. We
can regard the detector either as a particular kind of frequency dis-
criminator or as a phase comparator operating on the phase changes
inherent in an FM wave. The former concept is suitable for a steady-
state analysis, while the latter is more convenient in the study of signal
transitions.

II. THE DIFFERENTIAL DELAY PRODUCTOR AS A FREQUENCY DISCRIMINATOR

Viewed as a discriminator, the detector has a steady-state response
function calculable by multiplying a sine wave A cos (co, + w)t by the
corresponding delayed wave A cos [(we + co) (t - 7)1, i.e.,

A cos (co, ± co)t A cos [(co, ± co) (t - 7)1

= (A2/2) cos (co, + w)r (1)

+ (A2/2) cos [2(co, co)t - (w, + w) -r].
111
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When the double -frequency component is suppressed by a low-pass
filter, we obtain the response

Vtf = (A2/2) cos (CO c w) T. ( 2)

Consider w as the frequency deviation in radians/sec from the midband
frequency w, . Then a discriminator characteristic can be realized by
setting cos COO' = 0, sin COO' = ±1, giving

V if = (A2/2) sin COT. (3)

The resulting steady-state response is nearly proportional to frequency
deviation over the range in which sin COT is approximately equal to um

A linear relationship is not necessary for binary FM detection, since
only the sign of the deviation is significant. Unambiguous results in
the noise -free case can be secured over a range of COT from -a to r.
In particular, if w = ±wb/2 where COI) is ar times the bit rate, values of
7 in the range zero to the reciprocal of the bit rate could be used, and a
value equal to half the bit interval appears to be a good compromise.
As T is made small the linearity improves, and, as will be shown later,
the performance approaches that of an ideal phase differentiator, which
we shall refer to as a thp/dt detector. The latter type is of particular
interest because its performance is closely approximated by either a
zero -crossing counter or a frequency discriminator.

III. FM DETECTION BY DIFFERENTIAL PHASE COMPARISON

We illustrate the operation as a differential phase comparator by
following a particular noise -free sequence through the detection process.
The binary signal to be transmitted is shown in Fig. 1(a). It is assumed
that this rectangular wave modulates the frequency of a carrier with a
total shift between mark and space equal to the bit rate. This results
in the phase change during a marking bit interval differing from that
during a spacing bit interval by 360°. With respect to the mid -frequency
as a reference, the variation of carrier phase versus time becomes E 180°
per bit interval, as indicated by the solid triangular wave of Fig. 1(b).
When the channel is shaped to give a raised -cosine pulse spectrum at
the demodulator input, the phase -versus -time pattern becomes rounded
at the transitions approximately as shown by the dotted waveform of
Fig. 1(b). The received signal is passed through a network with an
envelope delay of one-half bit interval and with a phase shift at midband
frequency of 270°. The phase -versus -time pattern of the delayed signal
is shown by the dashed -line wave of Fig. 1(b). For a long mark interval
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the two phase patterns are seen to be in phase, while for a long space
interval they are 180° apart. The demodulation process consists of
taking the product of these two waves with a switch -type modulator
and filtering out the high -frequency component. If the amplitude
modulation of the received signal is negligible, the demodulated signal
becomes equal to the cosine of the phase difference between the delayed
and undelayed versions of the signal.

The phase difference between the two signals at numerous points is
indicated in Fig. 1(b). The shape of the demodulated wave, together
with appropriate sampling times to recover the binary information, is
shown in Fig. 1(c). It will be noted that the demodulated wave is de-
layed one -quarter bit interval from the instantaneous frequency of the
received signal but is advanced one -quarter bit interval from the in-
stantaneous frequency of the delayed signal.

A signal space diagram, such as described by J. R. Davey,' is given in
Fig. 1(d) with lettered points corresponding to the lettered points on
the phase pattern of the received signal. At a transition in the demodu-
lated signal, the vectors representing the received signal and its delayed
version are in phase at points such as (i), (k), (n), and (o). At a sampling
instant having a transition on only one side, such as at ti , the vectors
representing the received signal and the half -bit delayed signal are at
points such as (d) and (i). These form an angle of approximately 80°
which, when the delayed signal is shifted 90°, becomes an angle of 10°
or 170° depending on whether a mark or space is received. At a sampling
instant having a transition on both sides, such as at t2 , the two vectors
are at points such as (o) and (n). The angle is then about 70°, which,
after the added 90° shift, results in an angle of 20° or 160°.

For a constant -amplitude signal the departures from the ideal 0°
and 180° angles would decrease the amplitude of the demodulated signal
at the sampling time. The diagram of Fig. 1(d) shows, however, that at
least one of the vector amplitudes at these times is above steady state.
If the increased signal amplitude appears at the linear input of the
demodulating productor, it more than compensates for the phase error,
thus tending toward an overshoot of the baseband signal. The low-pass
filtering will of course determine the final extent, if any, of the overshoot.
It is of interest to note that a linear productor would over -emphasize
these amplitude variations. Consequently, it would be expected that a
switched -type modulator would result in a more perfect eye pattern. *

* By "eye pattern" is meant the oscilloscope trace obtained by sweeping the
detector output against a linear time base synchronized with the bit rate. A basic
description of the properties of such patterns has been given by Brand and Car-
ter.2



BINARY FM DETECTION 115

This does not mean, however, that the probability of decision error
would be different. In fact, as will be shown later, limiting one of the
two inputs to the multiplier, and hence obtaining in effect a switched -
type modulator, does not change the error rate.

Fig. 2 shows a computer printout of the noise -free eye pattern corre-
sponding to one-half bit delay when the demodulator follows a product
law, the total frequency shift is equal to the bit rate, and full raised -
cosine spectra apply. The origin is taken at the midpoint of the bit
interval in the undelayed wave. Traces of like polarity are concurrent at
this point, showing the absence of intersymbol interference at these
particular instants. The peak responses of the detector are not reached
until a time later by half the differential delay, and the individual peaks

2

0

-2

r

-1.0 -0 5 0
TIME IN BIT INTERVALS

0.5 1.0

Fig. 2 - Eye pattern from product of undelayed and delayed FM waves with
delay of one-half bit interval.

for different adjacent data sequences are spread over a range of values.
The traces concur again at a time equal to the differential delay, and
the same signal levels are observed as at the first point of concurrence.
The decision -threshold (zero signal level) crossings are almost concurrent
at a time preceding the origin by half the difference between the hit
interval and the differential delay.

The time relations of Fig. 2 are peculiar to the choice of differential
delay, ratio of frequency shift to bit rate, and spectral shaping. It will
be shown later* for example, that if the differential delay is S bit in-
tervals, the first concurrence of traces is at the origin, the second one is
at S bit intervals later, the peaks occur at 6/2, and the threshold cross-
ings nearly at - (1 - 6)/2. If the raised -cosine shaping were changed to
any other satisfying Nyquist's first criterion' for suppression of inter-

* See Figs. 9-12 and the discussion following equation (99).
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symbol interference, all concurrences would be maintained except the
threshold crossings, which could spread out more. Finally, if the rela-
tion between frequency shift and bit rate were changed, all concurrences
would be destroyed, but this would not by itself imply a significant
increase in error rate.

Eye patterns obtained when a limiter is inserted in one, but not both,
of the two inputs are shown in Fig. 3. In Fig. 3(a), the undelayed signal
is limited, giving in effect a switched modulator with the polarity of the
undelayed signal switching the delayed signal. In Fig. 3(b), the delayed
signal is limited, thereby interchanging the switching roles of Fig. 3(a).
Comparing Fig. 3(a) with Fig. 2, we note that the concurrence of traces
at 0.5 is destroyed and that the peaks of the responses are shifted to the
left. In Fig. 3(b) the concurrence at 0 is destroyed and the response
peaks are shifted to the right. In spite of these differences, which can
be verified by fairly straightforward analysis, the probability of error
at a specified sampling instant must be the same for all three cases, as
will be shown in detail later.

2

0

0

-2

(a)

-1.0 -0.5 0

TIME IN BIT INTERVALS
05 1.0

Fig. 3 - Eye patterns when one signal is limited before application to mul-
tiplier input. Delay of one-half bit interval. (a) Undelayed signal is limited; (b)
delayed signal is limited.
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The eye pattern for a dApidt receiver, which is equivalent to the case
of zero differential delay, is shown in Fig. 4. The traces concur at the
peak response, which is at the origin, and the threshold crossings are
half a bit interval away, as would be deduced by setting (3 = 0 in the
discussion of the detector with differential delay. As 6 approaches zero,
we thus approach an equivalence with the performance of conventional
frequency detectors.

The question of utility of eye patterns for nonlinear detection proc-
esses merits some further discussion. Although we cannot deduce error
rates from them, we can at the least distinguish between "go" and "no
go" conditions in the absence of noise. We can also use a given pattern
as a basis for choosing the best sampling time. In making the choice,

2

0

-2
- 1.0 -05 0

TIME IN BIT INTERVALS
0.5

Fig. 4 - Eye pattern for riv/dl detector.

1.0

we consider both the horizontal and vertical margins, since relative
immunity to timing jitter is important as well as the spread of sample
values at the time of decision. We have verified in our calculations that
the direction of change in the error rate with sampling time can be
deduced by comparing eye openings for the two instants. Such deduc-
tions are not valid for comparing error rates corresponding to eye
patterns for two different conditions.

Another use of the eye pattern is in laboratory diagnosis of system
distortion. For such purposes we make use of established correspondence
between the nature of the eye and various kinds of distortion in the
particular system under test.

IV. THE EVALUATION PROBLEM

We are concerned here with the performance of the differential FM
detector when the binary FM signal suffers transmission impairments.
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We analyze particularly the effects of delay distortion and noise in the
channel. A significant measure of performance is the curve of error rate
vs signal-to-noise ratio at a specified bit rate for a channel with specified
amplitude and delay variations with frequency. It is important that
such a measure be determined over the range of transmission impair-
ments encountered in actual channels. It is found that the principal
virtue of the differential -delay scheme relative to the more familiar
axis -crossing and frequency -discriminator types is an improved im-
munity to severe delay distortion.

Since there are many parameters which influence the performance of a
data transmission system, the discussion would get out of hand if
individual attention were given to all possible combinations of condi-
tions. Fortunately, we can select representative regions of interest
which are describable in terms of relatively few quantities. Our approach
makes use of both direct analysis and digital computer back-up. In
calculating the noise -free responses of the system under various condi-
tions, we first establish formulas for a generalized data sequence. We
then go to the computer to evaluate response functions vs time for a
family of sequences of given length.

In theory it would be possible to calculate error rates by adding
programmed noise in the computer calculation of response functions.
A practical deterrent to such a procedure is the long computing time
needed in the interesting cases of almost error -free transmission. It has
been our experience that determination of error rates by computer
simulation of additive noise is inferior to computer evaluation of analytic
formulas for probability of error. Use of the latter procedure has been
chiefly successful with additive Gaussian noise, but this does not neces-
sarily imply serious limitation of utility. The premise that rank -order
established on the basis of Gaussian noise holds for other kinds of
interference has a good empirical foundation. A useful simplification
from the Gaussian analysis is that the curves for error rate vs signal-to-
noise ratio tend to be roughly parallel for different systems and to be
characterized sufficiently well by their asymptotic slopes.

In terms of the normalized signal-to-noise ratio M, which is defined
as the ratio of average signal power to the average white Gaussian noise
power in a bandwidth equal to the bit rate, the asymptotic error rate is
expressible3 in the form F(M) exp (- KM). The function F(M) turns out
to be of slight interest because of its relatively minor effect when M is
large. For practical purposes the number K determines the performance.
For an ideal binary phase modulation system, K has its maximum value
of unity. The quantity 10 logio (1/K) expresses noise impairment in db
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relative to the ideal. It has been found possible to calculate this quantity
directly without determining the entire error -rate curve.

The calculations we have made evaluate the effect of the following
factors important in system design:

1. The sampling time relative to the signaling interval. The preferred
sampling time is indicated by the eye patterns, but is more precisely
established by error -rate calculations.

2. The length of the delay line. Equivalence of zero delay with a
dip/dl detector establishes a reference at one end of the range in terms of
a better-known system.

3. The data sequence. Results for the most and least vulnerable
sequences are exhibited.

4. The delay distortion. Parabolic and linear variation with frequency
are studied. The results are presented in terms of maximum delay
variation expressed in bit intervals.

V. THE MODEL

A block diagram of the transmission system under study is shown in
Fig. 5. The data source emits a sequence of binary symbols which for
full information rate are independent of each other and have equal
probability. The analysis can be generalized without analytical incon-
venience by assigning a probability m1 to one of the two binary symbols
and 1 - m1 to the other. In conventional binary notation the symbols

DATA
SOURCE

TRANSMITTER

NOISE

BANDPASS
FILTER

LOW-PASS
FILTER

1

LIMITER

DELAY
LINE

FM BANDPASS
OSCILLATOR FILTER

RECEIVER

MULTIPLIER .1104
LOW-PASS

FILTER
SLICER

DATA
OUT

Fig. 5 - Binary FM transmission system with differential delay detection.
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are 1 and 0. It is convenient to express binary frequency modulation of
an oscillator in terms of positive and negative frequency deviations.
The combination of data source and low-pass filter is accordingly defined
by the shaped baseband data wave train

where

s(t) = E bg(t - nT)
= -co

bn = 2an - 1.
The values of an represent the data sequence in binary notation. The
probability is m1 that the typical an is unity, and 1 - m1 that it is
zero. The value of bn is +1 if an is unity, and -1 if an is zero. The
function g(t) represents a standard pulse emitted by the low-pass
filter for a signal element centered at t = 0.

Ideally, the oscillator frequency follows the baseband signal wave
s(t). This would imply an output voltage from the FM oscillator speci-
fied by

V( t) = A cos [wet + 00 ± s(X)dX].
t o

(6)

Here, A is the carrier amplitude, we is the frequency of the oscillator
with no modulating signal applied, to is an arbitrary reference time,
00 is the phase at t = to , and /I is a conversion factor relating frequency
displacement to baseband signal voltage. The instantaneous angular
frequency of the wave (6) is defined as the derivative of the argument
of the cosine function. It can be written in the form we + wt , where
wi , the deviation from midband, is ideally expressed by

wi = AO). (7)

In the practical case, the transmitting bandpass filter restricts the
frequency -modulated wave to the range of frequencies passed by the
channel. The purpose of this filter is to prevent both waste of trans-
mitted power in components which will not reach the receiver and
contamination of the line at frequencies assigned to other channels.
The result is a transformation of the voltage wave (6) to a band -
limited form, which must depart in more or less degree from the ideal
conditions of constant amplitude and of linear relationship between
frequency and baseband signal. The line also inserts variations in ampli-
tude- and phase -versus -frequency which cause further departures from
the ideal. For our purposes it is sufficient to combine the line charac-
teristics with those of the transmitting filter into a single composite
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network function determining the wave presented to the receiving
bandpass filter.

The receiving bandpass filter is necessary to exclude out -of -band noise
and interference from the detector input. It also shapes the signal wave-
form and can include compensation for linear in -band distortion suffered
in transmission. Two contradictory attributes are sought in the filter -a
narrow band to reject noise and a wide band to supply a good signal
wave to the detector. Previous work3 has indicated a cosine filter as a
near optimum.

The noise -free input to the detector will be written in the form

Vr(t) = P(t) cos (wet + 0) - Q(t) sin (wet + 0). (8)

P(t) and Q(t) represent in -phase and quadrature signal modulation
components respectively, which are associated with a carrier wave at
the midband frequency co, with specified phase 0. Such a resolution can
always be made, even though the details in actual examples may be
burdensome. The added noise wave at the detector input is assumed to
be Gaussian with zero mean and can likewise be written as

v(t) = x(t) cos (wet + 0) - y(t) sin (coot + 0). (9)

If v(t) represents Gaussian noise band -limited to ±2w x(t) and y(t)
are also Gaussian and are hand -limited to ±coe . If the spectral density
of v(t) is ?Mu)), the spectral densities of x(t) and y(t) are given by3

wx(w) = wy(w) = wv(coc + w) + wv(coc - w), I co I < we . (10)

In general, x(t) and y(t) are dependent, with cross -spectral density

wxy(w) = Awv(co, - w) - wv(coc + co)] (11)

and cross -correlation function expressed in terms of Ru(r), the auto -
correlation function of v(t), by

Rzy(T) = -2/?,(T) sin war. (12)

The cross -correlation vanishes at T = 0, and hence the joint distribution
of x(t), y(t) at any specified t is that of two independent Gaussian
variables.

A convenient analytical model of the detector is a multiplier with
delayed and undelayed waves applied as inputs and with a low-pass
filter in the output to select the difference -frequency components of the
product. In practical systems various departures from the basic model
may offer a more convenient realization by physical circuits. The pure
product law can be approximated by a switched modulator, an example
of which is shown in Fig. 6(a). Here one of the two inputs operates a
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Fig. 6 - Differential detector with switched modulator.

two -transistor reversing switch in the path of the other input. The
second input wave is in effect multiplied by a rectangular wave with
axis crossings determined by the first input. The same result would be
obtained from a strictly analog multiplier if the amplitude of one input
were severely limited beforehand as shown in Fig. 6(b). We will base our
analysis on a true productor with no limiter, but we show in Appendix
A that limiting one input does not affect the results in the narrow -band
case. In this detector the noise waves associated with the delayed and
undelayed signal inputs are correlated. The amount of correlation de-
pends on the value of the delay. The value of the delay relative to one
bit interval will remain as a parameter to be optimized. However, we
will require that the delay line should be designed to have a phase shift
equal to an odd multiple of 7r/2 radians at the midband angular fre-
quency co, .

VI. ANALYTICAL SOLUTION

By adding (8) and (9) we obtain the signal at the input of the detector

E(t) = xi(t) cos wet - yi(t) sin wet (13)
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xi(t) = x(t) P(t)

yi(t) = y(t) Q(t).
(14)

The delayed signal is,

E(t - T) = xi(t - r) cos (wet - war) - yi(t - 7) sin (coct - war) (15)

where

0 < T < T.

In the case in which cocr = 270°, we write for E(t - T)

Ed(t) -Xld sin wet - yid cos wet (16)

where we set f(t - A Id
The low -frequency component Elf (t) of the product E(t)Ed(t) is

given by

2E11 = yixid - = t. (17)

The performance of our system can be studied by analyzing the prob-
ability distribution of the quadratic form in (17). Since this is a binary
system we only need the distribution at one point, namely "zero."

By a relabeling of the variables in which yi y xl Yid , and xi,/ are
replaced by x1, x2 , x3 , and x4 , respectively, the calculation is reduced
to the single problem of evaluating the probability that the quadratic
form xix4 x2x3 is negative or positive, where x1, x2 , x3 and x4 are
Gaussian random variables with equal variances a2 and mean values
given by :

E{xi} = Q(t), E{x2} = -P(t)

Elx3) = Q(1 - r), Elx41 = P(t - 7).

We remark that all these average values, in general, will depend on the

signal sequence.
A solution of this general problem in terms of an integral has been

found' when the variables are independent. The present case is more
complicated in that with an arbitrary delay T, the noise samples become
dependent. We must now include a nonzero covariance of x1 and xid
and of yl and Yid  We point out that a solution based on uncorrelated
noise samples would indicate a considerably poorer performance than
found when the actual correlation is included. This is a case in which
noise correlation is beneficial rather than harmful.

(18)
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It has been found possible to apply the previous solution for the
independent case by subjecting the four dependent Gaussian variables
to a linear transformation. The new set of variables z1 , z2 , z3 , and z4
becomes independent while preserving the invariance of the quadratic
form on which decisions are based, i.e.,

z1z4 z2z3 = xis4 x223 .

The nonzero covariances of the variables are:

cov (x1 , 53) = cov (y,yd) = ro-2

coy (x2 , 54) = -cov(x,xd) = -ro-2.

(19)

(20)

The value of r is the normalized autocorrelation function of the noise
evaluated at lag time T. The autocorrelation function is the Fourier
transform of the spectral density. In the optimum receiver design the
filter preceding the detector has a cosine amplitude -frequency response
reaching zero at a frequency displacement from midband equal to the
bit rate. Hence with white Gaussian noise on the line, the spectral
density of the noise at the detector input is a squared- or raised -cosine
function. Such a spectral function has the property that its Fourier
transform, the autocorrelation function, decreases to zero when the
lag time increases from zero to T. The solution we shall give is valid
for any value of r within the permissible range from -1 to +1.

The transformation that satisfies (19) and at the same time diago-
nalizes the covariance matrix of the z variables is:

Z1 = 1(X1 - X2 + X3 ± X4)

z2 = 1(.2'1 ± X2 ± X3 - 54)

23 = - xl + X2 + X3 + X4)

Z4 = EX1 + X2 - X3 + X4)

(21)

It can be verified that (19) is satisfied when this transformation is
applied and also that if the correlation matrix of the x's is:

ri
I 0

Rx o-2

0

the correlation matrix of the z's becomes:

0 r 0
1

0

0

1

-r
0

(22)

-r 0 1



I?: = 0.2

BINARY FM DETECTION 125

1r 0 0 0

0 1 + r 0 0

0 0 1 - r
0 0 0 1-0 ri.

(23)

We now recall the previously obtained result3 for the four uncorre-
lated Gaussian variables zi z2 , z3 , and z4 , with the pair z1 and z2 hav-
ing equal variances 0-02 and the pair 23 and 24 having equal variances

2
0-1

Prob [(ziz4 + 2223) < 0 when 2124 + 2223 > 01 = A(p,a,b)

1 (24)
= 2 - f exp (-pY) erf [ap(1 - x2)4 - bx]dx

where

In our case

p

a

2

21

2.:

2o-02

2124 + 2223
2cria2P2

2224 - 2123

0.02 r)0.2,

20-10-2p

0-12 = (1 - 00-2.

(25)

(26)

(27)

(28)

It is shown in Appendix B that the integral in (24) can be simplified
and reduced to a two -parameter form. We also show how the general
asymptotic expression for large signal-to-noise ratio is derived.

The simplified version of (24) is

A ( p,a,b) = -1
c2

exp
27r

f
[1 ± d2

(hp (29)
cos fp]

where

and k = b/ p.

,) 2 2a p
k2 a2 + 1

(30)

[(1,2+a2- 1 )2 4k2V

rl (31)
d_ 02 d_ 1
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The signal-to-noise ratio appears only in the parameter p. The asymp-
totic expression for large signal-to-noise ratio is therefore obtained as
the limiting form of (29) when c2 becomes large. The result, as shown
in Appendix B, is:

1 + 2
exp

2cd-V27,- 1 ±
-c

d2

2

A(p,a,b) -.. G(c,d) ,---, (32)[ i
It is of particular interest in our problem to write the asymptotic ex-
pression in the form:

_13p2G(c,d) = -a ep

The values of a and 13 are:

k2 a2 + 1 + [(k2 a2 - 1)2 + 401a -
47ria[(k2 a2 - 1)2 -I- 4k2]1

2a2
1.3 k2 a2 1 ± R k2 a2 1 2) 4k9i.

These are the general results we need.

VII. A REPRESENTATIVE EXAMPLE

(33)

(34)

A convenient analytical representation of a band -limited FM signal
was first proposed by Suede.' This representation approximates very
closely the actual signals generated by practical data sets.3 In the case
of ideal transmission, we write for the signal at the input to the detector

E(t) = A sin coat sin wet - Asi(t) cos wet (35)

where
CO

8,(t) = E (-1)nbg(t - nT) (36)

TWd =

n -co

T .6, bit interval.

The standard pulse response g(t) must satisfy Nyquist's first criterion,
i.e.,

g(mT) = Omo (37)

The value of b. is +1 for mark and -1 for space.
As can be seen, the signal (35) can be synthesized by exciting a net-

work having impulse response g(t) by a series of or - impulses oc-
curring at integral multiples of the bit interval T. The sinusoidal com-
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ponents of the signal are added to the response to the impulses. When
delay distortion is present, the impulse response g (t) is suitably modified
by introducing a quadrature component.

The delayed version of (35) becomes:

Ed(t) = A sin (wdt - (tun) sin (wet - wen)

- As1(t - To) cos (wet - well)

where S = T/T. When the noise components are added and the condition
w,Ta = 37/2 is satisfied, the low -frequency product is

t) = -[A sin (wdt - y(t - To)][Asi(t) x(t)]

+ [A sin wed y(t)][Asi(t - TO) x(t - TO].
(39)

The function t(t) represents the signal as it appears at the output of
the ideal low-pass filter. To obtain the information, t(t) must be sam-
pled at integral multiples of the bit interval. The sample thus obtained
at t = T eT , 0 e 1 is

(T Te) = -IA sin [7(1 E - 0)] ± y[T( 1 + - 0)]1

[Asi[T(1 + x[11(1 + oil

+ [A sin [7(1 e)] y[T (1 +e)]}

 {Asi[T (1 + e - (3)] x[T (1 ± e - 8)])

As is characteristic of nonlinear detection processes, the presence of
noise introduces dependence on signal history. The memory can be
minimized by using a pulse spectrum which satisfies the second as well
as the first of Nyquist's criteria,5 i.e., one which preserves the spacing
of transition times as well as axis crossings. To illustrate let e = 0
and 8 = In this case (40) reduces to:

E(T) = + y(T/2)}{si(T) s(T)}
(41)

{y(T)}{As1(T/2) x(T/2)}

where

(38)

(40)

si(t) = E (-1)nb,,g(t - nT) (42)
00

si(T/2) = - 2(b1 - bo), si(T) = -b1 . (43)

The memory is thus reduced to one previous symbol. It follows, there-
fore, that

t(T) [x - - Al + Y[xd - (A/2)(11 - bo)I (44)
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The probability of error is the weighted average of the conditional
probabilities that the sample is negative when b1 is +1 and that the
sample is positive when b1 = -1. Since the sample depends on the
present and immediately preceding symbols, there are four different
cases to consider: b1 = -bo = 1; b1 = bo = b1 = -bo = -1; and
bi = bo = -1. If marking and spacing symbols are equally probable,
each case has a probability of one-fourth. We now write for the average
probability of error

4

Pe = I E Prob [(xinzin + x2.x3n) < 0] (45)
n=1

where the variables xln , x2n , x3n , and zin are specified by Table I.
A physical interpretation of the detection process in this case can he

obtained by regarding the quadratic form in (44) as the scalar product
of two vectors, e.g.:

x1x4 + x2x3 = uv (46)

where if i,j represent unit vectors along rectangular coordinate axes,
the four possible pairs of vectors are:

ui = i(- A + x) jy

vi = i(- A - yd) j( -A + xd)

= i( -A + x) jy

v2 = i(- A - yd) jxd

u3 = i(A x) - jy
v3 = i(A yd) j(A xd)

114 = i(A x) - jy
v4 = i(A + yd) + jxd

Occurrence of error is synonymous with a negative value for the
scalar product of any pair of vectors, and hence is also equivalent to an

TABLE I

(47)

(48)

(49)

(50)

n xin x2n xsn X4n

1 x -A y Xd - A -yd -A
2 x -A y xd -xi -A
3 x ± A -y xd ± A yd -I- A
4 x ± A -y xd lid ± A
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angle greater than 90° between the vectors of a pair. We can use this
representation to explain the beneficial effects of correlated noise
samples. There is positive correlation between x and xd as well as
between y and Yd . This means that xd is likely to have the same
sign as x and similarly for yd and y. Inspection of the vector com-
ponents shows that such noise values have opposite effects on the size
of the angle between the two vectors, as shown in Fig. 7, illustrating
(49).

At this point we can obtain an explicit expression for the probability
of error. From Table I, we note that the average values of the x's are
given by Table II. From (21), the 2's are given by Table III. It is seen
that the cases of n = 3 and 4 differ from n = 1 and 2 respectively by a
change of sign throughout. A change of sign in all the 2's in (25)-(27)

U AND yd OF SAME SIGN HAVE OPPOSING EFFECTS IN GOING FROM (1, CBI
X AND rd OF SAME SIGN HAVE OPPOSING EFFECTS IN GOING FROM Ai --02

/'

LA -t- jA

iXd

Lgd
v,c)

/,' ,,v30+ Lyd

U30 LA

113 Ly

LI30

(u30, v30) = (u3, 113)
WITHOUT NOISE

Fig. 7 - Effect of correlated noise samples on angle between vector inputs to
detector.
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TABLE II

xen

1 -A 0 -A -A
2 -A 0 0 -A
3 A 0 A A
4 A 0 0 A

leaves the parameters a and b unchanged. Therefore, the four probabil-
ities of (45) reduce to two distinct ones with the multiplying factor
changed from 4 to I.

The values of the parameters for the two cases are found to he

2 5A2

4(1 + r) 6,2

a1
2 4/1 r= _
5 1 - r

A= -
20-V5(1 -

2P2 - 2(1 + )(72
12

a2

b2 = 0.

r
1 - r (51)

As demonstrated in Ref. 3, the mean square of the signal wave on the
line with random data is A2 in the optimum case for white Gaussian
noise. The noise input to the detector has a squared -cosine spectral
density function, with o.2 equal to the area. Hence a2 is one-half the mean -
square value of the noise on the line in a band of width equal to twice
the bit rate. In terms of the parameter M, defined as the ratio of average
signal power on the line to average noise power in the bit -rate band-
width, we have

M A2/0.2.

Substituting the appropriate correlation value of r

TABLE III

(52)

1, we obtain

tt f1n Z2n f3n

1 -3 A/2 -A/2 -A /2
2 -A 0 0
3 3 A/2 A /2 A/2
4 A 0 0

f4n

-A/2
-A

A /2
A
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for the two sets of parameters

P12 =
6-

a
2_

2 Mp2 =

a2 = 1/3 (53)

11/TO-
b2 = O.

The probability of error is given by

P. = A(Pi , aj , bi) ± z A(p2 , a2 , b2). (54)

Using the computer program previously established for A(p,a,b), S.
Habib has obtained the uppermost curve of Fig. 8. Also shown are the
ideal performance for coherent binary detection, the ideal performance
for noncoherent binary detection, and an experimental curve obtained
by E. R. Day.

It is also instructive to apply the asymptotic formulas given in (33).
In this example, applying (53) to (34), we obtain

3 /5 2

al - 4/ 5

/73
a2 = 2 /I/

132 = 1.

Substituting these values in (30) we find

3 3 9
Pe - e-M13

-M/3 -M/3

4V27M 8V27/l1 e 8V2rM

In terms of the notation introduced in Section IV, K = I. The asymptote
is plotted in Fig. 8 and is found to be very close to the result of the
exact calculation in the region of interest. Since the optimum coherent
system has an error probability proportional to e -m, the half -bit differ-
ential system in the limit requires 10 logio 3 or 4.8 db more signal-to-
noise ratio than the optimum for the same performance. Of this penalty,
3 db is accounted for by the steady-state informationless tones which
make up half the average power of the FM signal. The remaining 1.8 dh
can be ascribed to the differential -detection scheme.

It is also possible to decode the message by providing a full -bit delay
at the receiver. However, the decoding has to be performed on the
transitions. In addition, the phase shift must be such that cos cocT = 1.

(55)

(56)
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Fig. 8 - Error rates in binary data transmission.

18

As before, if we perform the indicated multiplication, reduce to a sum
of single -frequency terms, and reject those that contain the midband
frequency we , we obtain the post -detection filter output, which we now
designate as Vif(t). Again, to simplify the formulas we omit showing
the functional dependence on t and use the subscript d to indicate
values of functions at t - T. Then

2V11 = xisid - x1Asld - xidAsi A2s1s1d

+ A (m, - yid) sin coat + you - sin' coat.
(57)
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Finally, we assume samples to be taken at multiples of T, which means
that sin wdt becomes sin wdmT = 0 and

s1 = si(mT) = (-)mbm (58)

Bid - 1) = ( - )
For the mth sample, then

2 V/1 = avid yiyid - ( -)1"A (binsid - - A2bmbni-1 

(59)

(60)

Let the binary information be coded in the transitions. Then, for ex-
ample, a "1" is represented by b,,, = -bm_1 and a "0" by bin = bm-i
The two signaling conditions are then:

2 V,11 = A2 + - n,bmA (21 + Sid) X1X1d mid

= [A + (-)mb,xt][A (-)nibmxid] yiyid

2V/10 = -A2 + ( )"bmil(si - sid) xixid YlYld

= - [A - ( - "b,xi][A (-)mbmsid] myid .

The sampling interval T is typically large enough in this case to make
the delayed noise samples independent of the direct samples. With this
assumption we can regard x1 , yi , xld , and yid as independent Gaussian
variables. In the first condition, we set

(61)

(62)

t = A + (-)mb,xi (63)

td = A ( - ) (64)

2V = ad + yiyid (65)

Then E, Sd , yl , and yid are independent Gaussian variables with standard
deviation a, where a is the rms noise voltage at the detector input, i.e.,
the rms value of either x1 or yi . The mean values of yi and yid are zero,
and the mean values of t and Ed are A. In the second condition, we set

= -A + (-)"11),x1 (66)

and obtain the same relations except that the mean value of t 1:ecomes
-A instead of A.

Correct decisions are made in the first condition if 2V,1 is positive,
and in the second condition if 2V,1 is negative. Hence if we let

Z = EEd yiyid (67)

and designate pi(z) and p2(z) as the probability density functions of z
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when has the means A and -A respectively, the probabilities of error
in the two conditions become

= f pi(z)dz

P2 = p2(z)dz.
0

(68)

(69)

This is the same problem solved in equations (54)-(58) of a previous
paper', and the final result is found to be

P = Pl = 1-)2 = CA2/(2.72) -M/2 (70)

Equation (70) shows 3 db poorer performance than ordinary differ-
entially coherent phase modulation. The one -bit delay differential
system with transition coding thus suffers 3.9 db penalty relative to
ideal coherent detection in the error probability range of 10-4.

An interesting result is obtained when the delay line at the receiver
is allowed to become small relative to the bit interval while still main-
taining the condition that the phase shift at the carrier frequency c
equals 270°. We show in Appendix C that the performance in this case
approaches the performance of an ideal phase differentiator.

VIII. RESULTS WITH NO DELAY DISTORTION

The first part of our numerical results deals with the performance of
the differential FM detector as a function of the value of differential
delay and the sampling instant in the absence of delay distortion on the
line. As a preliminary, we show in Figs. 9-12 inclusive the computer
print-outs of the eye patterns for differential -delay values of 0.2, 0.4,

2

0

-2
-1.0 -0 5 0

TIME IN BIT INTERVALS
05

Fig. 9 - Eye pattern for differential delay of 0.2 -bit interval.

1.0
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-2
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- 1 0 -05 0

TIME IN BIT INTERVALS
05 1.0

Fig. 10 - Eye pattern for differential delay of 0.4 -bit interval.

2

0

-2

x
-1.0 -0.5 0

TIME IN BIT INTERVALS
05 1.0

Fig. 11 Eye pattern for differential delay of 0.0 -bit interval.

2

0

-2

'410likk

- 1 0 -0 5 0

TIME IN BIT INTERVALS
05 1.0

Fib;. 12 - Eye pattern for differential delay of 0.8 -bit interval.
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0.6, and 0.8 bit interval. Some of the features found have been previously
mentioned in Sec. III. As before stated, the patterns are not to be
interpreted as furnishing quantitative evaluation of performance. For
the latter, we rely entirely on error rates vs signal-to-noise ratio. The
figures illustrate what would be seen at the detector output in the
absence of noise for the various cases and indicate the preferred sam-
pling time for each case.

For any pair of values of S and E in (40), is a random variable possess-
ing a probability density determined by the additive noise and previous
signal history. We have conserved computation time without loss of
essential information by concentrating attention on the asymptotic
performance when the signal-to-noise ratio is large. The corresponding
db impairment or degradation relative to optimum binary PM as
expressed by 10 logio (1/K) has been computed for various values of
5 and e and for all data sequences of length 5 bits. For a few representa-
tive cases, we have used the exact formula over a range of signal-to-noise
ratios to indicate the degree of approximation given by the asymptotic
formula for typical conditions of interest. A raised -cosine pulse spectrum
on the line has been assumed. Details of the computations are given in
Appendix D.

The IBM 7090 computer was programmed to evaluate the parameters
developed in Appendix D for all 32 possible 5 -bit sequences and for
different values of S and E. Figs. 13-18 represent the degradation vs
value of delay for different sampling instants across the bit. The sampling
time is measured from the midpoint of the bit interval in the undelayed
wave. The curves on each graph represent the various sets of sequences.
It appears from the graphs that the 32 sequences tend to bunch into
four distinct sets. We did not attempt to label or identify these sets,
since the average performance is more closely determined by the se-
quences which suffer the most. This is because the relative probability
of error for the sets varies exponentially with the degradation. It can be
seen that as the value of delay exceeds half a bit the performance
degrades rapidly.

We next examined the performance of the receiver for fixed delay line
values and variable sampling instants. As shown in Appendix C, the
chp / dt detector may be regarded as a limiting form of differential delay
as the value of delay approaches zero. Fig. 19 shows the performance
for the worst and best sequences as the sampling instant is varied across
the bit. It is clear from this figure that the best sampling instant is in
the middle of the bit, i.e., midway between transitions of the detector
output wave. It turns out that the best sequence is the sequence of all
marks or spaces, while the worst sequence is that of reversals.
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Fig. 10 - Db degradation vs differential delay with sampling at 0.31 -bit
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Fig. 17 1)11 degradation vs differential delay with sampling at 0..11 -hit
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Fig. 19 - Db degradation vs sampling time for thp dt detector with no delay
distortion.

Fig. 20 exhibits the same information as Fig. 19 with the half -bit
delay. In this case the worst sequence is a function of the sampling
instant. At one-fourth bit and three -fourths bit sampling points re-
ferred to an origin at the transition points of the detector output, the
intersymbol interference is zero, and at these instants the degradation
is 4.8 db for all sequences. Nearer the center of the bit interval as seen
from the detector output, the degradation is slightly greater. We never-
theless conclude that the best sampling instant is at this center, which
we shall refer to as "mid -bit." By sampling at this time, we obtain a
spread of half a bit interval tolerance to sampling jitter.

Similar curves are found when the receiver delay line is other than
zero or a half -bit. In Fig. 21 we show the degradation of the worst
sequence as a function of the receiver delay line. The zero and half -bit
values are as shown on Figs. 19 and 20. The curve as shown applies to
use of a delay line in which the phase shift is an odd multiple of r/2 at
midband. We have previously shown that the signal can be recovered
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tector with no delay distortion.

25

20

15

10

5

0
0 02 04 06 08

DIFFERENTIAL DELAY IN FRACTION OF BIT
10
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with low degradation at a full -bit delay by differential encoding and use
of a delay line with phase shift equal to a multiple of r at midband.

The above results indicate that, neglecting sampling jitter, least
degradation results with least receiver delay, and the chp/dt receiver is
best. Differences are small up to a half -bit. Addition of delay distortion
alters this conclusion.

IX. EFFECTS OF DELAY DISTORTION

We preface our discussion by exhibiting sets of computed eye patterns
for cases of linear and quadratic delay distortion in the channel. The
amount of distortion is specified by the increment in delay measured in
bit intervals between the center and edge of the transmission band.
Results for the thp/dt detector are shown in Fig. 22 and for the half -bit
delay differential detector in Fig. 23. The eye is found to close for smaller
amounts of linear delay variation than for quadratic. As before, these
results are not to be taken as quantitative measures of performance.
The same numbers which determine the eye traces are also used in
calculating error probabilities, but in a different way which precludes
derivation of either final result directly from the other.

Fig. 24 shows the calculated degradation from the ideal for the thp/di
detector with various amounts of quadratic delay distortion measured
in bit intervals. The results are plotted as a function of sampling time
for the most vulnerable data sequence. There is an indication that the
best sampling time is not at mid -bit when the delay distortion is large.
However, the decreased tolerance to timing jitter would make such a
shift undesirable. The effect of linear delay distortion, as exhibited in
Fig. 25, is considerably worse. A comparison between effects of the two
kinds of distortion is obtained in Fig. 26 by replotting the mid -bit
sampling results of Figs. 24 and 25 as a function of delay distortion.
As stated before, the chp/dt detector is equivalent to zero differential
delay.

Figs. 27 and 28 present corresponding curves for the case of a half -bit
differential delay. The shapes are similar to those for dtp/dt. There is
slightly more tolerance to jitter, and the best sampling time is still at
mid -bit.

In an effort to compare various receiver delay lines, previous data are
cross -plotted in two ways. In Fig. 29, we in effect extend Fig. 21 to
show how performance is affected by amount of differential delay when
various amounts of specified linear and quadratic delay distortion are
present in the channel. The curve for zero delay distortion replotted
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SAMPLING TIME IN FRACTION OF BIT

145

Fig. 24 - llb degradation of do/dt detector vs sampling time for quadratic
delay distortion.

from Fig. 21 shows the thp / dt receiver as best for a constant -delay channel.
For quadratic delay distortion of two bit intervals or linear delay distor-
tion of one bit interval, there is slightly less degradation at a half -bit of
differential delay. For larger amounts of delay distortion the advantage
from more receiver delay is greater.

The same conclusions can be drawn from Fig. 30, in which the absciskt,s
are amounts of quadratic delay distortion and the curves are drawn for
specified values of differential delay. The curves cross over from the
condition of a preference for least differential delay with low delay
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Fig. 25 - llb degradation of thp/dt detector vs sampling time for linear delay
distortion.

distortion to a preference for greatest delay with high delay distortion.
The exact choice of delay line depends on several factors. Say the maxi-
mum delay distortion is not greater than three bit intervals, then the
half -bit delay is best over most of the range and only slightly worse
over the rest. If the delay distortion is never more than one bit interval,
a di o / dt detector is best, while if very high delay distortions are encoun-
tered, and fairly high degradation is permissible at lower values, a delay
line of 0.7 bit interval would be better. It was also found that the longer
delay lines provide more tolerance to jitter in the sampling time.
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Fig. 28 - llb degradation with half -bit differential delay vs linear and quad-
ratic delay distortion.

The asymptotic values of db impairment at large signal-to-noise
ratio have been used throughout our discussion of Figs. 24-30 as a
measure of performance for conditions of practical interest. As a check
on the validity of this concept, complete curves of error probability vs
signal-to-noise ratio have been computed from the exact formulas in
representative cases. These curves are shown in Fig. 31 together with
the asymptotic approximations. It appears that the latter are sufficient
for most engineering applications.

APPENDIX A

Assume that a limiter is inserted in the undelayed input to the mul-
tiplier as shown in Fig. 6(b). The input to the limiter is then given by
(13), which can also be written in the equivalent form

E(t) = R(t) cos [wet co(t)]

R(t) = [x12(t) y12(t)J1 (71)

tan (p(t) = yi(t)/xi(t).
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If the limiter is ideal, its output EL(t) is a positive constant Eo when
the value of the cosine function is positive and is a negative constant
-E0 when the cosine is negative. That is, if z = wet +'(t),

Eo , cos z > 0

-E0, cos z < 0
EL(t)

4E0 E- -n cos (2n + 1)z
r n =0 2n + 1

(72)

Multiplying EL(t) by the delayed signal and substituting cos co,T = 0,
Sill w,7- = -1, gives:

2E0R(I - ) (-)"
'

E L(t)E(1 - r) -
41-'1 0 2n + 1

{sin (2nu.),./ + (2n -I- 1)0.(t) - (p(t - T)] (73)

- sin [2( n + 1)0.0 + (2n 1)co(t)

-1-yo(t - .011.

If it is possible by low-pass filtering to accept the term

sin ko(t) - co(t - r)]

while rejecting the next higher -frequency terms sin [2wct 39(0 -
(t - r)] and sin {loci v(t) +co(t - r)], the filtered response becomes:

2E0R(t - r)
f sin [co(t) - co(t -

2E0R(t - 7)
(sin cos cod - cos 9 sin sod) (74)

ir

2E0R(t - r)(yixid - xiyid)
ir(xi2 -1- Y?)I(xid2 + yid2)i

The only term in (74) which can have both plus and minus signs is
yaw - xiyid which is the same term found to be the basis of binary
decisions in (17) for the case in which a pure product was taken. The
switched modulator therefore gives the same error performance as the
productor if there is sufficient frequency separation between the desired
low -frequency output and the sidebands on 2coc .

An ideal limiter was assumed for simplicity in the argument just
given, but the equivalence can be proved for a wide class of nonlinear
devices in one of the two paths. It is sufficient that the output of the
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device is of the same polarity as the input and can be expanded as a
Fourier series in terms of the input values. We can then write

EL(t) = F(R cos z)

Fo E_ F cos n2
2 H-1

1
3,12

F,, = -f F(R cos z) cos nz dz.r -r/2
Note that I? varies with time hut cannot he negative.

In particular

(75)

(76)

1

-

3r/2 i'3T/2F1 = - F(R cos z) cos z dz -1 F(R cos z) cos z dz. (77)r 7/2 r -r/2

In the first integral cos z is positive and hence F(R, cos z) is positive.
In the second integral cos z is negative, F(R cos z) is negative, and the
product is positive. It follows that F1 is positive.

If we repeat the calculation leading to (74) with the Fourier series
(75) replacing (72), we find that 2E0/7r is replaced by F1 , and since
Fi is positive, the conclusion is the same. It will however be more diffi-
cult to isolate the desired low -frequency term when Fe and F2 are present,
since these coefficients lead to components centered about co, . It is
therefore preferable that the nonlinear function F have odd symmetry
about the origin, in which case the even -order coefficients vanish.

The more general argument is useful in showing that the switched
modulator does not have to be perfect. Note that the equivalence is
destroyed if limiters are inserted in both paths. There would then be
sidebands on harmonics in both inputs to the modulator, and the beats
between these sidebands would generate additional components in the
low -frequency band.

APPENDIX B

Simplification of the Error Probability Formula and Determination of Its
Asymptotic Form

First, replace the parameter b by

b 2224 - 2123k- - (78)
2(ria2P2
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The expression to be evaluated is now

1

Ai(p,a,k) = 2- -
-p2x2 erf [p(aVi - - kx)]dx . (79)

Substitute px = x' and replace the error function by its definition as an

integral. The result is

Ai(p,a,k) =2f-1 - -1

P f pz-x2-kx
e-(x2+1'2)dx dy. (80)

p Jo

A graph of the region of integration in the xy-plane is shown in Fig. 32.
From this figure, we deduce that by a change to polar coordinates, we
obtain the equivalent expression

Kp

0

-k

`,0
\.:\-v

7
,

a2+k2p

_-y = ailp2-X2 -ki

/
-kp ap

4a2--f-k2

1

 ..11a., ÷ka

\ .s,\ \
7

\ ''P
\'),

-p 0x- p

Fig. 32 --- Pegiun integnitiun fur evaluation of double integral iii (80).
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1 1
7-are tank f i (0)

-r2
Al (p,a,k) = --

Z 7 f0
dB

0

e r dr

-p / cos

- - f do f e-r2r dr (81)
7 7-arc tank 0

-aro tank Plcos
1 de 4 e-r2r dr
7 JO

where

MO) = Ap[(sin 8 k cos 0)2 a2 cos2 0]-1/2 (82)

The integration with respect to r can be Performed, and after some sub-
sequent combining of terms,'We find

a2 2
p[-Ai(p,a,k

Zr o

) = fw exp d6. (83)
(sin 6 k cos 0)2 a2 cos2 8

By the substitution 20 = co, (83) transforms to

1 2'Ai(p,a,k) = - f
4r o

 exp

We then

- 2a2p2[
(84)

k2 + a2 + 1 + (k2 + a2 - 1) cos so - 2k sin so

note that
( /02 a2 1) cos so - 2k sin so

= [(k2 a2 1)2 + 4k2]3/4
2k+ tan

(85)
cos co arc .

Taking advantage of the fact that the range of integration is one com-
plete period of the integrand in co, we can replace the sum of co and a
constant angle by a new variable without changing the limits. Noting
furthermore that the integrand then becomes an even function of the
variable of integration, we obtain finally

Ai(p,a,k) = G(c,d)

1 f c2 (86)

27r , o
exp [

1 + d2 cos
co] dco

where c2 and a2 have the values given by (30) and (31).
Applying the method of steepest descents to the case in which c2 is

large, we write
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G(c,d) = -1 f e'24)(')dso
27r c,

cp(co) = (1 ± d2 cos co) -1

G1V (co) = d2(1 + d2 cos so) -2 sin co

Csoo) = 0 at sOo = 0 or r

(P" (!00) = d2(1 + (12 cos coo) -2 cos sco > 0 for = 0.

Hence, we set coo = 0 and approximate 4)(4o) by

43(r) = `1'(9 O) 14)"(rO) (c° ro)2
d2)-1 1d2( 1 d2)-2(1,2

If c2 >> 1,
2

G(c,d) -1
27r exP (

c

J.
exp

C2d2c02[ - dr1 + d2) 2(1 + d2)21

1 d2 / C2

2cd-V271- exP Y-1 d2) "

APPENDIX C

(87)

(88)

(89)

(90)

Limit of Performance as Delay Approaches Zero

As the delay T is made small, the delayed variables in (17) can be
expressed in terms of the undelayed ones by the linear approximations,

X1 d ti X1 - T4;1
(91)

Yid crz-z, yl - 7-711 ,

where the dot signifies the derivative with respect to time. In the limit
we then find

2E11 T(ripi - y1±1) (92)

The amplitude of the detected signal approaches zero as the delay is
made small, but if T is not actually zero, the lack of output can be com-
pensated by linear amplification. Hence in the absence of imperfections
other than additive noise in the channel, binary decisions are made on
the basis of the sign of 41 - yi±] .

In the case of a dco/dt detector, binary decisions are made on the
basis of the sign of
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di d -- = - arc tan ' - (93)
dt dt xi + y12

Since x12 + y12 cannot change sign, the decisions are actually made on
the sign of x41 - y1±1 . We conclude that the binary error rates of the
two systems must approach equality as T approaches zero.

APPENDIX D

Computational Details

For the pulse response (36) we use the impulse response corresponding
to a raised -cosine spectrum, namely

sin
(-11 t)

71

g(t) f77 2t\ ri otri (94)

7r )1_

The sampled value of the pulse train at t = T ET is then given by

si[T(1

= E - 1)"b sin 27141 - (52
27(1 - 62 - n)[1 -4(1 - 62 - n)2]

and the delayed version after T seconds by

si[71(1 - b)]
sin 27[1 - -= E -1)"b 27(1 - - n)[1 -4(1 - - n)2]

where

si0(62) (95)

(96)

= T/T, 5 - E = 51 51 - = 52 (97)

In terms of the two new variables Si , 52 , the noise correlation is
given by

sin 27(61 - (62)r(3) = (98)
27(61 - 62)[1 - 4(61 - 62)1

The observed voltage or current can now be written as a function of
51 and 62 in the following form:

E(Oi ,(52) = [Asi°(52) x][- A sin 761 - Yd]

+ [A sin 762 + y][Asi(61) + sal .

(99)

= s10(51)
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In the calculation of eye patterns, the noise samples x, xd , y, and yd
are omitted. By dropping these terms in (99) and substituting suc-
cessively E = 0 and e = 6, we verify that the samples at these instants
depend on only one value in the data sequence. This confirms the state-
ments made in Section III in the discussion of eye patterns. When the
noise samples are inserted, the entire previous signal history exerts its
effect at all sampling instants, and in fact the preferred sampling instant
from the standpoint of low error rate and tolerance to jitter in sampling
time is not necessarily the one in which intersymbol interference vanishes
in the absence of noise.

The probability of error for a particular sequence is:

Pe = Z Pr {[Asi±(62) x][- A sin 7r6i - Yd]

+ [A sin r82 y][Asi+ (61) + .r,i} < 0}

+ z Pr 1[AsC(62) x][- A sin rbi - yd]

+ [A sin 1-62 + Y][As1(81) 1,11

where

si±(u)

sin 2141 - -= E -1)"b
n 2r(1 -µ - n)[1 - 4(1 - p - n)2] ± r(A)

Applying the transformation in (21) we obtain:

21± = (A/2)[si±(62) - sin 7r5.2 si(6) - sin rbi]

.22± = (A/2)Esi±(52) + sin 7r62 s1±(61) + sin 7r6,]

23± = (A/2)[-si±(62) + sin 762 + 81±(61) - sin r5,]

24± = (A /2)[8](62) + sin 7r152 -si((51) - sin 7r6d .

The required parameters in (25)-(27) are

2P = M. 212 ± 222
8A2 1 + r(61 - 62)

2124 + 2223 1 r(61 - 62)a -
212 + 222 1 - r(61 - 62)

k224- - 2123 1 ± r(61 - 62)
+ 222 1 - 7.(61 - 62).

( 100)

( 101)

(102)

(103)

(104)

(105)

As pointed out before, the asymptotic degradation is given by

degradation = 10 logio (1/K)db (106)
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where

k2 a2 + 1 -1- [(k2 a2 - 1)2 + 401
K

2a2p12

and

(107)

P = MPi (108)

When delay distortion is present in the channel, a convolution is
performed to evaluate the resulting in -phase and quadrature components
of the noise -free input to the detector. It is convenient to combine the
assumed delay distortion with the equivalent amplitude characteristic
arising from signal pulse shaping, sending filter, transmission line, and
receiving filter to form a single complex transmittance function

H(w) = A(w)ej" . (109)

The impulse response of the medium is then

h(t) = f H(w)e't dco/2r

= f A (w) dw/2r (110)

A(co) cos [0(w) + wt] dco/r

Let A(co) = - coc) = B(v), 0(w) = co(co - we) + coo = co(v) + coo ,
and decompose (110) into the in -phase and quadrature components

h(t) = f B(v) cos ko(v) vt wit + cool dv/r
.0 (111)

where

= h1(t) cos coct - h2(t) sin wet

14(0 =
-

B(v) cos ko(v) vt + coo] dv/r
.0

ce.

h2(t) = f B(v) sin [co(v) vt cool dv/r.
Wo

(112)

Since the medium is assumed to be linear, the signal input to the
detector is the convolution of the input and the impulse response,

V1(t) = f V(t - r)h(r)dr, (113)
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where V(t) can be written in the form:

V(t) = Po(t) cos wct - Qo(t) sin wet.

Then from (111),

(114)

V1(t) = [Po(t - 7-) cos (wet - coo-)
(115)

- (20(t - 7) sin (coct - cocT)i[hi(T) cos wer - h2(T) sin wcridr.

Dropping the double -frequency terms, we obtain for the input to the
detector

where

V r(t) = P(t) cos coct - Q(t) sin coct (116)

P(t) = f [Po( - 7-)111( - Q0(t - )h2(T )1(1712

(117)

Q(t) = f [P0(1 - T)h2(T) (20(t - r)14(7)1612.

REFERENCES

1. Davey, J. R., Signal Space Diagrams, B.S.T.J., 48, Nov., 1964, pp. 2973-2983.
2. Brand, S., and Carter, C. W., A 1,650 -Bit -Per -Second Data System for Use over

the Switched Telephone Network, A.I.E.E. Trans., Pt. I, Comm. and Elect.,
80, Jan., 1962, pp. 652-661.

3. Bennett, W. R., and Salz, J., Binary Data Transmission by FM Over a Real
Channel, B.S.T.J., 42, Sept., 1963, pp. 2387-2426.

4. Sunde, E. D., Ideal Pulses Transmitted by AM and FM, B.S.T.J., 38, Nov.,
1959, pp. 1357-1426.

5. Nyquist, H., Certain Topics in Telegraph Transmission, Trans., A.I.E.E
47, pp. 617-644, Apr., 1928.



1



Nonlinear RLC Networks

By CHARLES A. DESOER* and JACOB KATZENELSON

(Manuscript received July 16, 1964)

This article considers the question of existence and uniqueness of the
response of nonlinear time -varying RLC networks driven by independent
voltage and current sources. It is proved that under certain conditions the
response exists, is unique, and is defined by a set of ordinary differential
equations satisfying some Lipschitz conditions. These conditions are of two
types: (1) the network elements must have characteristics which satisfy
suitable Lipschitz conditions and (2) the network must satisfy certain
topological conditions. It should be noted that elements with nonmonotonic
characteristics are allowed and that the element characteristics need to be
continuous but not differentiable.

I. INTRODUCTION

This article considers the questions of existence and uniqueness of
the response of nonlinear time -varying RLC networks. It is proved that
under conditions imposed on the network elements and the network
topology the response exists, is unique, and is defined by a set of ordi-
nary differential equations satisfying some Lipschitz conditions. Thus,
from the conditions imposed on the network it follows that the response
of a network of this class is continuous whenever the sources applied to
the network are continuous functions of time. In other words, for the
class of networks under consideration, jump phenomena (of the type
that occur in relaxation oscillators) are excluded.'

One motivation for studying this problem is the construction of non-
linear network models for physical devices and processes. The behavior
of these models is often investigated by simulation studies performed on
digital computers. It is clear that in order to get meaningful answers the
existence and uniqueness of the model's response have to be assured.
The simulation study requires the setting up of an appropriate set of
differential equations and their integration. As networks of the class

* On leave of absence from the Department of Electrical Engineering, Univer-
sity of California, Berkeley, California.
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considered here do not have jump phenomena, their equations can be
integrated by some standard subroutines.

This article may be viewed as an extension to the RLC case of the
articles by R. J. Duffing .3,4 and G. Birkhoff and J. B. Diaz5 which were
devoted to nonlinear resistive networks. We make heavy use of topologi-
cal considerations and had to extend the techniques developed fOr the
linear case by many people6,7,8 P. R. Bryant in particular.' J° For further
references see Ref. 16.

In the next section, we classify the network elements and exhibit the
basic assumptions which hold for the remainder of the article. Some
simple nonlinear circuits are also considered. Section III presents some
standard reductions of sources and the definition of determinateness.
Section IV deals with one -element -kind networks; its theorems are
generalizations of Duffin's work and include some of his theorems as
corollaries. The main result of the article is Theorem IV in Section V,
which states the conditions under which a nonlinear RLC network is
determinate. The conditions are of two types: (i) every characteristic
has to satisfy suitable Lipschitz conditions and (ii) the network has to
satisfy certain topological conditions. It has to be noted that, first,
elements with nonmonotonic characteristics are allowed and, second,
that each characteristic has to be representable by a function which is
continuous but not necessarily differentiable. Finally, in Section VI we
introduce a symbolic notation which allows us to write the differential
equations for the nonlinear case in a manner which resembles that of
the linear case.

II. ELEMENTS AND SIMPLE CIRCUITS

2.1 Elements

We assume that the reader has some familiarity with network theory,
so that the basic concepts need not be defined." ,12 A network may be
considered as a set of points, called nodes, and a set of connecting
branches. Each branch represents a physical two -pole. We assume that
the voltage drop across each two -pole and the current through each
two -pole can be measured at any time. The sign conventions are shown
in Fig. 1: if, with respect to some arbitrary reference, the potential of A
is larger (smaller) than the potential of B, then v is positive (negative);
if the current actually flows in the direction of the arrow (opposite to the
arrow) then i is positive (negative). Thus the product vi gives the power
delivered by the outside world to the two -pole under consideration.
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In most of the following, the branches consist of either a single source
or a single element such as a resistor, an inductor or a capacitor. For each
of these elements we shall adopt very broad definitions which we will
narrow down in stating specific results. A two -pole is called a resistor
if it is defined, for each t, by a set of ordered pairs (v, i), where v and i
are finite numbers representing all the possible values, at time t, of the
voltage and the current associated with the resistor. If the set of ordered
pairs is independent of t, the resistor is said to be time -invariant. The set
of (v, i) is called the characteristic of the resistor; for example, the charac-
teristic of an ideal diode is given by

I (0,i): 0 i < co ) U I (v,0 ) : - co -15 0) .

A resistor is called current -controlled if, for all time and all currents in
the interval (- co , co ), the voltage v (t) is a function* of the current i (t)
and time t (we shall write v (t) = 6t (i (t),t)), and the function 61 (i,t) is

a piecewise-continuous function t of t for each fixed number i. A voltage -

A
0

U

V

B
0

Fig. 1 - Sign conventions for two -pole.

controlled resistor is defined ill the dual manner. For example, a voltage
source is a current -controlled resistor and a current source is a voltage -
controlled resistor. If a resistor is current -controlled and time -invariant
then the characteristic can be represented by a function v = CR (i). A
resistor is called a one-to-one resistor if, for each t, the voltage is related
to the current by a one-to-one mapping from (- co , co) onto (- co , co )

which may depend on time.
A two -pole is called an inductor if it is defined, for each t, by a set of

ordered pairs (co,i) which represent the instantaneous flux and current
associated with the inductor. The voltage across the inductor is given by
v = dio/dt. The current -controlled inductor, the flux -controlled inductor
and the one-to-one inductor are defined as in the case of resistors. In the
first two cases, if the elements are time -invariant, we shall write = (i)
and i = P (co), respectively.

* Unless specifically indicated, we follow modern usage: each function is single -
valued; i.e., to each element of its domain it associates one and only one element
of its range.

t A vector -valued function of time is said to be piecewise-continuous if it is
continuous in every finite interval except at a finite number of points where it is
discontinuous. At these points the function has a finite limit on the left as well
as on the right.
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A two -pole is called a capacitor if it is defined, for each t, by a set of
ordered pairs (q,v) which represent the instantaneous charge and voltage
associated with the capacitor. The current through the capacitor is given
by i = dq/dt. The charge -controlled capacitor, the voltage -controlled capaci-
tor and the one-to-one capacitor are defined as in the case of resistors. In
the first two cases, if the elements are time invariant, we shall write
v = (q) and q = e(v), respectively.

Throughout the article we consider only elements whose characteris-
tics can be represented, at all times, by a function defined on the interval
( - co , 00 ). For example, Fig. 2 (a), (b) and (c) represents the charac-
teristics at time t of three time -varying resistors; we consider only re-
sistors of the type shown in Fig. 2 (a) and (b), since they are current- and

v

(a)

(C)

L

Fig. 2 - Characteristics at time t of three time -varying resistors: (a) and (b)
are current- and voltage -controlled, respectively, while (c) is neither current -
nor voltage -controlled.
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voltage -controlled; these characteristics can be represented by

v(t) = 61(i(t),t), and i(t) = 9(v(t),t),

respectively. The characteristics of Fig. 2 (c) cannot be represented in
this way, and resistors of this type will not be considered.

Throughout the paper, whenever time -varying network elements are
considered, it is assumed that the functions (Ft(  ,t), g ( ,t), 2 (  ,t),
11(  ,t), (  ,t), e (  ,t) are piecewise-continuous functions of t for all
fixed values of their first argument.

In addition to resistors, capacitors and inductors, our networks in-
clude voltage and current sources. Throughout this article we shall as-
sume that the voltages of the voltage sources and currents of current
sources are regulated functions of time.* For convenience we shall say
that an element is continuous and monotonically increasing, when we
mean that its characteristic is represented by a continuous monotonically
increasing function which is defined on (- co , co ).

It is convenient to refer to functions like 61(  ,t) and 21 (  ,t), which
represent the characteristics of some elements, as the characteristics of
the elements. This slight misuse of the concept of a function and a rela-
tion will be used only when there is no danger of confusion between the
two.

2.2 Two -Poles and Simple Connections of Two -Poles

A two -pole is called voltage -controlled [current -controlled] if, for any
initial time to and for any initial state, the voltage v() [the current i()]
from to on across its terminals determines uniquely the current i()
through [the voltage v() across] the two -pole for I Z to .

A two -pole is said to be one-to-one if (a) it is both current -controlled
and voltage -controlled and (b) it satisfies the following condition: for
any initial state so , any initial time to , and any input current i (  ), let
f (so ,i) be the voltage appearing at the terminals; for any initial state
so , any initial time to , and any input voltage v(. ), let g (so ,v) be the
current - then it is required that

(so f (so i)) =
for all initial states so and all input currents i( ).

An immediate consequence of these definitions is that any parallel
connection of a finite number of voltage -controlled two -poles is voltage -con-
trolled.

* A vector -valued function of time is said to be regulated when, for all t, it,
has a limit on the left as well as a limit on the right." A step function and a rec-
tangular wave are regulated functions.
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Consider the case where there are only two two -poles in the parallel
connection. Let them be characterized by the functions

ik = F k (v,sk (to)), (k = 1,2),

where v is the voltage across the parallel connection, ik is the current
through the kth two -pole, sk (to) is the state of the kth two -pole at time
to . The vk and ik are real -valued functions defined on [to , co ). Kirchoff's
current law implies that the current i through the parallel connection is
given by

Fi (v,si (to) ) ± F2(v,s2 (to) );

hence, for fixed (si (to),s2 (to) ), i is a function of v. This argument obvi-
ously extends, by induction, to the case where there are a finite number
of two -poles.

A dual argument would show that any series connection of a finite num-
ber of current -controlled two -poles is current -controlled.

A parallel connection of current -controlled two -poles is not necessarily
current -controlled. Refer to Fig. 3, which shows the characteristics of two
current -controlled resistors. The dashed line shows the characteristic of
the parallel connection: depending on the operating point there may be
three distinct values of the voltage for the same input current. Dually,

CHARACTERISTIC OF THE
/ / PARALLEL COMBINATION

////////
/ ,,.-f/ ////

/////

CHARACTERISTIC OF
SECOND RESISTOR

CHARACTERISTIC OF
FIRST RESISTOR

V

Fig. 3 - Parallel connection of two current -controlled resistors.
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g3
SERIES CONNECTION

OF si AND gz

Fig. 4 - Series connection of two voltage -controlled resistors.

a series connection of voltage -controlled two -poles is not necessarily voltage -
controlled.

To assume that each two -pole is one-to-one is not enough to cause both
arbitrary parallel connections and arbitrary series connections to be
one-to-one. Indeed, the well known characterization of continuous func-
tions of bounded variation" implies that any voltage -controlled resistor
characteristic, i (t) = 61 (v (1) ,t), that is continuous and of bounded variation
in v can be obtained by connecting in parallel two one-to-one resistors whose
characteristics are continuous and strictly monotonic. (One resistor is mono-
tonically increasing and the other is monotonically decreasing.) A dual
statement holds for current -controlled resistors.

In fact, there are combined series and parallel connections of one-
to-one two -poles that are neither voltage -controlled nor current -con-
trolled. Refer to Fig. 4, which shows the series connection of 9, and g2 .
Fig. 5 shows how a voltage -controlled characteristic such as g, may be
obtained by connecting in parallel two one-to-one resistors. Putting the
two resistors of characteristic g, and g2 in series, we obtain (see Fig. 4 )
the characteristic g3 , which is neither voltage -controlled nor current -
controlled.

A (possibly time -varying) flux -controlled inductor is a voltage -controlled
two -pole and, dually, a (possibly time -varying) charge -controlled capacitor
is a current -controlled two -pole. If the inductor is flux -controlled, the cur-
rent i is a function of the flux yo: i = (go (t),t). If v ( ) is the voltage
applied to the inductor and coo is the flux through it at the initial time
to , then by Lenz's law
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hence,

(p(t) = f v(t')dt' (Po

(0

i(t) = r (f v(t')dt' (po , t) for all t.
to

2.3 Examples of One -To -One Two -Poles

We present here a set of sufficient conditions under which some ele-
mentary parallel or series connections of circuit elements constitute a
two -pole which is either current -controlled, voltage -controlled or one-to-
one. As the reader expects, quite specific assumptions will have to be

CHARACTERISTIC OF
FIRST ONE -TO -ONE
RESISTOR

V
CHARACTERISTIC OF
PARALLEL COMBINATION

CHARACTERISTIC OF
SECOND ONE-TO-ONE
RESISTOR

Fig. 5- Parallel connection of two one-to-one resistors.

made on the characteristics of the elements in order for the circuit to be
a one-to-one two -pole.

The elements that we are going to consider are capacitors, resistors
and inductors. Let us rank order these elements together with voltage
sources and current sources in the following way: E,C,R,L,J. We shall
say that a resistor is higher in rank than an inductor or a current source
but lower in rank than a capacitor or a voltage source.

Until the end of this section, to simplify the discussion and without
loss of generality, elements are assumed to be time -invariant.

Theorem: Consider the following circuits: the parallel RC, the parallel
RL, the parallel LC and the parallel RLC circuit.

(A) If (a) the highest -ranked element is current -controlled (charge -
controlled in the case of the capacitor),

(b) all other elements are voltage -controlled (flux -controlled in the case
of the inductor), and
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(c) the characteristics of all elements satisfy a Lipschitz condition ac-
cording to Table I,

then the parallel circuit is current -controlled.
(B) If, in addition (d) the highest ranked element is one-to-one,

then each parallel circuit is one-to-one.

Proof: We shall consider only the RLC circuit, since the proofs of the
simpler cases follow in a similar way.

First let us prove that (a), (b), and (c) imply that the circuit is cur-
rent -controlled. Let i8 be the source current. Then with the usual nota-
tion

= + (v) +
or, equivalently, using the fact that the capacitor is charge -controlled

(4 = -OA)) - r(co)
= (q)

(1)

(2)

By assumption (c) D, r and g satisfy Lipschitz conditions. Since the
composite of two Lipschitzian functions is Lipschitzian, g(93( )) is
also Lipschitzian; therefore the system (1), (2) has a unique solution
for each initial state and each current source. In this case the state is
(q,v). Thus the RLC is current -controlled.

Second we prove that (a), (b), (c), (d) imply that the RLC circuit
is one-to-one. It is immediate that these assumptions imply that the
RLC circuit is voltage -controlled. It remains to show that it is one-to-one.

Call qi ( ), cot (  ), and v1( ) the charge, flux and voltage resulting
from the initial state (qo , coo) at time to and the input current i, . The
functions qi (  ) and vi ( ) are the corresponding solutions of (1) and (2);

(t) = 01(0 = D(0 (t)). We have to show that, starting from the same
initial state (qo , ceo) at time to , the input current resulting from the ap-
plied voltage v1 is precisely i, .

Let q2 , v2 and i2 be the resulting charge, flux and input current. It is
immediate that v1(t) = (1) = (q2 (t)) . Since cot (to) = vo , we have

TABLE I

Circuit Highest -Ranked Element Characteristics That Satisfy
Lipschitz Conditions

RL
RC
LC
RLC

C
C
C

61(i), r(w)
D(q), 9(v)
D(q), r(w)
D(q), 9(v), r(w)
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SO2 = (Pi . Since the capacitor is one-to-one, q2 is uniquely defined by the
relation above in terms of v, , hence q2 = . Finally, by Kirchhoff's
current law

i2 = 42 + (v2) + r (p2)

= qi + g (D (40) + (sot).

The last expression is precisely 7:8 by (1). Therefore i2 = i8 . This con-
cludes the proof that the parallel RLC circuit is a one-to-one two -pole.
The dual case is covered by the following

Theorem: Consider the following circuits: the series RL, the series RC,
the series LC and the series RLC circuit.

(A) If
(a) the lowest -ranked element is voltage -controlled (flux -controlled for

inductor),
(b) all other elements are current -controlled (charge -controlled for

capacitors), and
(c) the characteristics of all elements satisfy Lipschitz conditions ac-

cording to Table II,
then the series circuit is voltage -controlled.

(B) If in addition (d) the lowest -ranked element is one-to-one,
then each series circuit is one-to-one.

The proof is similar to that of the previous theorem and is therefore
omitted.

III. REDUCTION OF THE NETWORK

Throughout the article we consider networks consisting of nonlinear
time -varying resistors, capacitors, inductors (without mutual induct-
ance) and independent sources. We shall label by at the network under
consideration. Usually, we consider each element and each source as
constituting a branch of at. We denote by E,C,R,L,J the set of branches
of at which are voltage sources, capacitors, resistors, inductors and cur -

TABLE II

Circuit Lowest -Ranked Element Characteristics That Satisfy
Lipschitz Conditions

RL
RC
LC
RLC

L

L
L

(R. (i)
J(q), g(v)

(q) ,
(q), (R(i), r (i0)
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rent sources, respectively. In our discussion, certain networks derived
from at will play an important role. In order to refer to them conveni-
ently, let us define the following notations: Let "A" be a subset of the
set of branches of M. Let us define'

91,E to be the network derived from at by removing all branches ex-
cept the ones which are members of A,

91(A) to be the network derived from 9Z, by replacing branches of set A
by a short circuit, and

91(A)* to be the network derived from 91, by removing the branches of
set A .

We shall use these notations as well as combinations of them. For ex-
ample, 91(E)c is the network derived from 91 by first replacing branches
of set E (the voltage sources) by short circuits and then removing all
elements which do not belong to set C. Similarly, 01(E)cJ)* is the network
derived from 91 by shorting all voltage sources and removing all current
sources.

S*91 is defined to be the network derived from 9t by separating it into
the maximum number of separable subnetworks.

Throughout the article we assume that, first, for any cut set of current
sources only, the source currents satisfy Kirchoff's current law, and,
second, for any loop of voltage sources only, the source voltages satisfy
Kirchoff's voltage law.

Without loss of generality/ we consider networks that are connected
and nonseparable. This assumption does not exclude the possibility
that Diumj). be both unconnected and/or separable. In the following we
shall prove that without a loss of generality we can restrict the discussion
to a network 91 such that Di(E)Go is both connected and nonseparable.
The proof consists of an algorithm which changes the configuration and
reduces ut into a network ge which has the following properties:

(i) at' consists of connected subgraphs, Uti', such that for each one of
them, gri(Ex j). is connected and nonseparable.

(ii) For all branches of 91 and gt,' which are not sources, any set of
branch currents and voltages is a solution of at if and only if it is also a
solution of M.' (when the latter is driven by the corresponding sources).

(iii) Current sources of 91' are linearly related to the current sources
of 91. The same is true for voltage sources.

The step-by-step reduction of the network 97. to 91.' is done as follows.
(1) From each loop which consists of voltage sources only, remove one

voltage source.
(2) In each cut set which consists of current sources only, replace

one of the current sources by a short circuit.



172 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1965

The resulting network is connected; it has a tree which includes all the
voltage sources as tree branches and all the current sources as links.

(3) Each current source J whose fundamental loop includes more
that one tree branch is removed from the network and is replaced by a
set of current sources identical to J, each one placed in parallel with a
tree branch of the fundamental loop.

(4) All current sources that are in parallel with voltage sources are
removed.

(5) Any parallel connection of current sources is replaced by one
equivalent current source.

(6) Consider each fundamental cut set defined by a voltage source.
For each one of them insert in every link a voltage source equal to that
which is in the tree branch and, finally, short circuit the tree branch
voltage source.

(7) In each link, replace any series connection of voltage sources by
one equivalent voltage source.

(8) Separate the network into the maximum number of connected,
nonseparable subgraphs.

The resulting network is called 91'. Property (ii) follows from the fact
that all the steps of the above algorithm do not change the source con-
tribution to any of the fundamental loop equations or the cut set equa-
tions. Property (i) follows from the fact that all current sources are links
of 9/,' and all voltage sources are in a link. Property (iii) follows from
steps (5) and (7 ). Finally, observe that S*91(E)(J). is identical with
ge(E)(J).

It is well known that the state of the network is completely determined
by all the voltages, fluxes, charges, and currents in the branches of the
network. In the case of linear networks it is well known that certain
proper subsets of these variables may be chosen as the state. For special
classes of nonlinear RLC networks similar subsets will be indicated in
the sequel.

We call a solution of an RLC network any set of voltages and currents
of resistors, charges and voltages of capacitors, fluxes and currents of
inductors which satisfy the Kirchhoff's laws and the branch characteris-
tics. A network 91 is said to be determinate if for any value of the initial
state so , given at any initial time to , and for any value of the sources
E(), J(), there exists one and only one solution for I > to on some
nonvanishing interval [to , ta).

In the following section we shall describe a broad class of nonlinear
RLC networks which are determinate.
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IV. ONE -ELEMENT -KIND NETWORK

The purpose of this section is to establish a set of sufficient conditions
under which a nonlinear (possibly time -varying) resistor network driven
by a set of independent current, sources and voltage sources has, for all
possible inputs, one and only one set of branch voltages and branch
currents that satisfy Kirchhoff's laws. Conditions under which the
solution satisfies a Lipschitz condition with respect to the sources are
also given.

The analysis of nonlinear resistor networks is almost identical with
that of nonlinear capacitor networks or nonlinear inductor networks.
Since the nonlinear resistors are the most flexible elements, we shall
develop our analysis in terms of resistor networks.

Let us start by making three preliminary remarks:
(i) Given a resistor network together with an arbitrary distribution

of current sources, it is always legitimate to assume that there are no
cut sets of current sources only. (Dually, that there are no loops of volt-
age sources only.)

(ii) Any voltage source in series with a resistor may always be ab-
sorbed into a suitably redefined branch characteristic. Refer to Fig. 6,
where vi and v2 are the node voltages of nodes 1 and 2 referred to the
same datum. Let the current through the resistor be given by its charac-
teristic g (v,t); since g (v,t) = g (v1 - v2 - e,t) and since e () is a known
function of time, we may introduce a new branch characteristic g12(, )
specified at each instant of time by

g12 (vi - v2,1) L g (vi - v2 - e (t),t).

In other words, the voltage source e has been absorbed into the time de-
pendence of g12 . A similar reasoning applies to a current -controlled re-
sistor in series with a voltage source.

The dual case can be taken care of in the same manner: in this case,
a current source which is in parallel with either a voltage -controlled or a
current -controlled resistor can be absorbed into the branch.

Thus, without loss of generality, a network of nonlinear resistors and
sources can be thought of as a network of nonlinear time -varying resist-

vio + - (2)v2

V

Fig. 6 - Voltage source in series with resistor.
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ors with the understanding that the sources have been absorbed in the
branch characteristics.

(iii) Thus when, as in Theorems I and II below, we consider a net-
work of nonlinear time -varying resistors, we include the case of a net-
work made up of time -varying resistors and of independent sources.
There is no loss of generality in considering only connected networks,
since it amounts to considering successively each separate part of an
unconnected network.

We turn now to the statement of the main theorems.

Theorem I (Existence and Uniqueness): Consider a connected nonsepara-
ble network at of nonlinear (possibly time -varying) resistors. In case the
resistor joining node a to node 13 is voltage -controlled, its characteristic is
defined by the function g p( ,) such that g ap(va(t) - v p (t) ,t) is the cur-
rent flowing through it at time t from node a to node i3; here va and V p are
the node -to -datum voltages of nodes a and /3. Similarly, if this resistor is
current -controlled, its characteristic is defined by the function r ( , ) ) such
that rap(iap(t),t) is the voltage difference between node a and node 13 at
time t; here iap is the current through the resistor measured positively if it
flows from a to 13.

If
(a) there exists a tree 3 such that all its tree branches are current -con-

trolled and all its links are voltage -controlled,
(b) for all a,13, all t and all x in (- 00 , 00 )

g ap(x,t) = -g (- x,t) if (a,#) is a link
rap(x,t) = -r a/3( -x,t) if (a,13) is a tree branch

(c) for all links and all t, g a p( ,t) is a monotonically (not necessarily
strictly) increasing continuous function defined on (- 00 ,00), and for all
tree branches and all t, r ap( ,t) is a monotonically (not necessarily strictly)
increasing continuous function defined on (- 00 ,00).

Then,
for all current -sources i8 connected between any pair of nodes and for

all voltage sources ea connected in series with network branches there exists
one and only one set of branch voltages and branch currents that satisfy the
Krichhoff laws and the branch characteristics.

The conclusion of Theorem I can also be stated as follows: any net-
work e, formed from at by inserting any set of voltage sources in series
with any branch and any set of current sources between any node pair,
is determinate.

Assumption (b) is a consequence of the physical meaning of the func-



NONLINEAR RLC NETWORKS 175

tions g and r and of the sign conventions: from a physical point of view
they do not restrict the nonlinear resistors in any way. The two corol-
laries that follow are special cases of Theorem I. Corollary I is an ex-
tension of Theorems 2 and 3 of Duffin,3 and is implied by his 1948 pa-
per.' Such an extension has been pointed out by I.W. Sandberg!'

Corollary 1: Consider a connected network of nonlinear voltage -con-
trolled (possibly time -varying) resistors.

If
(a) for all branches and all t, gatj(,t) is a monotonically (not neces-

sarily strictly) increasing, continuous function defined on (- co , 00 ), and
(b) there exists a tree 3 such that all its branches have gas's which are,

for all t, monotonically increasing one-to-one mappings of (- 00,00 )
onto (- 00,00 ),

then the conclusion of Theorem I holds.

Proof: The conclusion follows directly from Theorem I since the tree
branches have gas's that are, for all t, monotonically increasing one-to-
one mappings of (- 00, co) onto (- 00,00 ), hence the tree branches are
also current -controlled resistors satisfying assumption (c) of Theorem
I

Corollary 2: Consider a connected network of nonlinear, current -con-
trolled (possibly time -varying) resistors.

If
(a) for all branches and all t, rat3( ,t) is a monotonically (not neces-

sarily strictly) increasing, continuous function defined on (- cc , co ), and
(b) there exists a tree 3 such that its links have roa's which are, for

all t, monotonically increasing one-to-one mappings of (- 00,00 ) onto
(- 00 ,00 ), then the conclusion of Theorem I holds.

We consider now the extension of the Thevenin and Norton equiva-
lent circuits to nonlinear resistive networks. If we pick an arbitrary node
pair of such a network 91, we may regard these nodes as the terminals
of a two -terminal network: we shall call the characteristic of this two -
terminal network the input characteristic of 91. at these two nodes. Dually,
if we pick a branch and insert two terminals in series with it, we obtain a
two -terminal network: we shall call the characteristic of this two -ter-
minal network the branch -input characteristic of N.

Theorem II (Thevenin and Norton equivalent circuits): Consider a net-
work 91 satisfying the requirements of Theorem I together with the same
kind of source distribution.
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Then
(a) the input characteristic of Di at any node pair is that of a current -

controlled resistor whose characteristic is a continuous, monotonically in-
creasing function defined on (- 00 , 00 ). This characteristic may be repre-
sented by the Thevenin equivalent circuit of Fig. 7 (a): a series combination
of a voltage source and a monotonically increasing current -controlled re-
sistor whose characteristic passes through the origin.

(b) The branch -input characteristic of at at any branch is that of a volt-
age -controlled resistor whose characteristic is a continuous, monotonically
increasing function defined on (- 00 , co ). This characteristic may be repre-
sented by the Norton equivalent circuit of Fig. 7 (b): a parallel combination
of a current source and a monotonically increasing voltage -controlled resistor
whose characteristic passes through the origin.

Let us consider some special cases of Theorem II.

Corollary 3: Consider a connected network of nonlinear (possibly time -
varying) resistors satisfying assumptions (a), (b) and (c) of Theorem I.

(a) If, in addition, the characteristics of the tree branches of 3 are
strictly increasing, then the input characteristic at any node pair is
that of a strictly increasing current -controlled resistor. If the character-
istics of all tree branches of 3 are continuous, monotonically increasing,
one-to-one mappings of ( -co , cc ) onto (- oo cc ) then so is the input
characteristic at any node pair.

(b) If the characteristics of the links of the tree 3 are strictly increas-
ing, then the branch -input characteristic is that of a strictly increasing
voltage -controlled resistor. If the characteristics of all links of 3 are
continuous, monotonically increasing, one-to-one mappings of (- co , co )

onto (- co , co ), then so is any branch -input characteristic.

Proof of Theorems I and II: The proof of these two theorems is divided

e5

r(o), o

(a)

g (0)= o

(b)

Fig. 7 - (a) Thevenin equivalent circuit: series combination of voltage source
and a monotonically increasing current -controlled resistor whose characteristic
passes through the origin. (b) Norton equivalent circuit: parallel combination of
current source and monotonically increasing voltage -controlled resistor whose
characteristic passes through the origin.
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into two parts: in part one, we show that if Theorem I holds for a k -node
network then Theorem II is true for a k -node network. In part two, we
use this implication to prove Theorem I by induction.

The statement of the theorem allows time -varying resistors (and
hence includes independent sources) ; however, in order to have as sim-
ple a notation as possible, we write down the proof as if all resistors were
time -invariant.

Part One: We show that, for any integer k > 2, if Theorem I holds for
a k -node network then the input characteristic at any node' pair is that
of the Thevenin equivalent circuit specified in Theorem II (a). Let us
connect the node pair under consideration to a current source i, (see

Fig. 8); this current source is viewed as an additional link, since it is a
voltage -controlled resistor. By assumption, to each i8 there is one and
only one set of branch currents and voltages that satisfy Kirchhoff's

Fig. 8 - Node pair connected to current source.

laws and the branch characteristics. Consider two distinct values of i8 ,

namely, i8 and i,81. Let the corresponding branch variables be v,i and
v . For each current-controlled branch define a number ? (which de-
pends on i and 1') by the relation

v-v A Av = r - r (i') A t (i - i') = PAi.

Since all the current -controlled branches are monotonically increasing,
P > 0. (If Di = 0, P may be taken to be any nonnegative number.)
Similarly, we define a 0 for each voltage -controlled resistor; again g > 0.
The set of Av's and Ai's together with Av. and Ai, may be considered as
a set of branch voltages and branch currents together with the source
voltage and source current of a linear resistive network which is obtained
by replacing each current -controlled resistor by a linear resistor of re-
sistance ?, each voltage -controlled resistor by a linear resistor of con-
ductance g and the current source by a current source Di,. Since the
Av's and Ai's satisfy Kirchhoff's laws, Tellegen's theorem12 holds,

Ay,  Ai, = E AvAi

where the sum is over all resistive branches.



178 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1965

Since all branches have monotonically increasing characteristics, this is
a sum of nonnegative terms and AvsZvia > 0. In other words, Ai, > 0
implies that Av8 > 0: that is, the Thevenin equivalent circuit has a cur-
rent -controlled monotonically increasing characteristic. The continuity
of the characteristic follows from the following considerations: irrespec-
tive of the values of the it's and "g's, the fact that assumption (c) of
Theorem I requires them to be nonnegative implies that the current
transfer ratio from the current source to any branch has a magnitude no
larger than unity ;11 hence Ais -) 0 implies Ai -> 0 for all branches. Since
the tree branches have continuous characteristics, it follows that, for
them, Ov -) 0 and, by Kirchhoff's voltage law, the same holds for the
links. Hence Ais --) 0 implies Avs -4 0, i.e., the current -controlled charac-
teristic of the Th(venin equivalent circuit is continuous. The proof of
part (b) of Theorem II follows exactly the dual of the above argument.

Part Two: Let us prove Theorem I for a two -node network (see Fig.
9). Let us plot on the (v,i) plane of Fig. 10 the characteristics of the cur-
rent -controlled tree branch and that of the voltage -controlled link, tak-
ing into account the sign conventions defined on Fig. 9. By assumption,
the functions g and r are both continuous and have (- 00, co ) as do-
mains; therefore their representative curves intersect at least at one
point (v,i). We assert that it is the only one: indeed, suppose there were
a second one, (v',i' ); then the monotonicity of r and y imply, respectively

(v' - v) (i' - i) >= 0 and (v' - v) (i' - i) < 0.
Hence

(v - v) (i1 - i) = 0.
Suppose v = v; then since g is a function

i = g(-v) = g(-v') =
Similarly, if = i, the fact that r is a function implies v = v. Hence for
all possible sources, there is one and only one set of branch voltages and
currents that satisfies Kirchhoff's laws and the branch characteristics.

-L=g (v)

Fig. 9 - Two -node network.

r(L)
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(v, L)

Fig. 10 - Characteristics of current -controlled tree branch and of voltage -
controlled link as function of the tree branch current and voltage.

Thus Theorem I is established for a two -node network. The next step in
the proof of Theorem I is to show that if it is true for an n -node network
it is true for an (n + 1) -node network. Consider the n -node network
shown in Fig. 11. We shall build out this network into an (n + 1) -node
network.

Let us first connect the tree branch between node n and node (n 1),
i.e., a current -controlled resistor. (There is no loss of generality in as-
suming that the numbering of the nodes is such that the branch (n,n 1)
is a tree branch.) It is obvious that, for this network, the existence and
uniqueness of the solution holds for all sources. Consequently, from part
one of the proof, the input characteristic at any two nodes of this par-
ticular (n 1) -node network has the equivalent circuits specified by
Theorem II. The next step is to add a link, say between node k and node
(n -I- 1). Since the input characteristic at the node pair (k ,n 1) is as
specified in Theorem II (a), the voltage and current in the link are
uniquely determined by the reasoning given for the case n = 2, and
consequently the distribution of voltages and currents in all branches of
the network is uniquely determined.

fl -NODE
NETWORK

r(1.1
(n+i)

Fig. 11 -N -node network built out to (n 1) -node network.
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The process of constructing the (n + 1 )-node network from the n -node
network can be carried out step by step, adding a link at a time. Thus
at the end of the process there is one and only one set of branch voltages
and currents in the (n + 1) -node network that satisfies Kirchhoff's
laws and the branch characteristics. Q.E.D.

For the purpose of solving the network differential equations of a gen-
eral nonlinear RLC network it is important to know, for the resistive
network case, under what conditions the function which maps the
sources, (E,J), into the branch voltages and currents, (v,i), satisfies a
Lipschitz condition. It is immediately clear that additional assumptions
are required: consider Fig. 12, which shows the characteristic of a cur-
rent -controlled resistor which fulfills the conditions of Theorem I. In
the neighborhood of the operating point A, this resistor may appear to
small signals either as an open circuit or a short circuit. Note that the
same statement would apply if the resistor were voltage -controlled. It is
obvious that under such conditions, the mapping (E,J) --+ (v,i) will not
satisfy a Lipschitz condition. As shown in the following theorem, only
weak additional assumptions are required.

Theorem III: Consider a connected network of nonlinear (possibly time -

varying) resistors which satisfies conditions (a), (b) and (c) of Theorem
I. If, in addition, the following Lipschitz conditions are satisfied: there is a
real -valued function h(R,t), defined and positive for R > 0 and all t, such
that

g s(x,t) - g 0(40 I h(R,t) I x -

.for all links of 3, for all x, x' in (- R,R) and all t and

Fig. 12 - Characteristic of current -controlled resistor fulfilling conditions of
Theorem I; note unbounded slope at point A.
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r a p(x,t) - r aft (s' ,t) I -5: h(R,t) I x- I

for all branches of 3, for all x,x' in (- R,R) and all t, then the mapping
which maps (E,J) into (v,i) satisfies a Lipschitz condition.*
Proof: Consider the effect of a change in the voltage sources E on the
branch voltages v and branch currents i. E is the vector whose ith com-
ponent is the output voltage ei of the source located in the ith branch.
In the present (n 1) node network there are at most n (n + 1)/2
branches, hence E has at most that many components. Suppose that the
change from E to E AE is obtained by changing ei to ei Aei suc-
cessively with i = 1, 2, . Call «03 the terminals of the first branch
and call N1 the remainder of the network (see Fig. 13 ). Since the input
characteristic of N1 is monotonically increasing, and since an increase of
the voltage across the nonlinear resistance R increases the current
through it or keeps it constant, the change in the input voltage of N1 ,

a

ft

N

Fig. 13 - Nonlinear resistor R and voltage source in one branch of (n + 1) -
node network; N, represents remainder of network.

&cow due to the change of ei to el + Ael is such that Aei Aval) I.
(The superscript 1 indicates that only the source voltage in the first
branch has been changed.) Call Avk(1) the corresponding change in the
kth branch voltage. We assert that

AvkwI< IAvas(1)l
I Ael i

For the particular change in the sources under consideration, we may
define, as in the proof of Theorem I, for each tree branch a suitable
and for each link a suitable 6. Observe now that Ael and the Avk(1) may
be interpreted as being the source voltage and the resulting branch volt-
age of a linear network which has the same configuration as the given
nonlinear network but in which each nonlinear resistor is replaced by

or 0 as required. By assumption (c) of Theorem I, all the ?'s and O's
are nonnegative, hence all the voltage transfer ratios I Avka)/Ael I of

* Incidentally, if the network JZ was derived from another network NA by
applying to DIA the algorithm of Section III, then the mapping (E,J) (v,i) is
one-to-one.
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the linear network cannot" exceed 1 and the inequality asserted above
follows. Thus, for all i's and k's,

.amk(i) I < I Aei I.

Let Avk be the change in the voltage across the kth branch when E be-
comes E E. Summing over i, using the triangle inequality, and de-
fining the norm of a vector as the sum of the magnitude of its components,
we get

IAv I II AEll

Since there are at most n (n +1)/2 branches, we get finally

IIovII<[n(n+1)/2]IIzEIIE

(3)

(4)

where Av is the change in the branch voltages corresponding to the
change of the voltage sources from E to E E. We next bound the
change in the branch currents. Applying (3) to a link and using the
Lipschitz condition we find that

oikI<lt(1>?,t)IIAEII (for all links)

and since there are at most n (n - 1)/2 links and the change in a tree
branch current is equal to the change in the sum of currents of the links
which belong to its fundamental cut set,

Aik I 5_ h (R,t)[n (n - 1)/2] II AE I
I

(for all branches).

Thus

II Ai II < h (R ,O[n2 (n2 - 1)/4] II AE (5)

The effect of a change in the current sources from J to J of is ob-
tained in a dual manner. Since the current transfer ratio may not exceed
unity" we get

and

I Aik I II LJ II

II Ai II < [n (n 1)/21

This implies

AvkI <h(R,t)IIAJII

and, by Kirchhoff's voltage law,

Ova I 5_ h (R ,t)n
I I of

(for all tree branches)

(for all branches).

(6)
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Finally

II Av II 5 h(R,t)[n2 (n + 1 )/2111 of (7)

Using the usual product topology" for both the product spaces of voltage
sources and current sources on the one hand and branch voltages and
branch currents on the other, and invoking (4) to (7), we conclude that
the mapping (E,J) -) (v,i) is Lipschitz.

V. NONLINEAR RLC NETWORKS

The previous section required all elements of the network to be of the
same kind and to have a monotonically increasing characteristic. In this
section both requirements are removed. In addition to independent
sources, the network consists of nonlinear (possibly time -varying)
resistors, capacitors and inductors and some of the elements are allowed
to have characteristics with negative slope.

As a first step let us make one remark. Theorems I, II, and III would
still hold if all resistors were montonically decreasing instead of mono-
tonically increasing. In the more complicated situation considered here
the same possible choice exists. For example, separable subnetworks of
91(E)c which contain more than one capacitor could just as well contain
monotonically decreasing capacitors. For simplicity, we shall assume
that all monotonic elements are increasing.

In order to state the following theorem we need two definitions. A
network (or subnetwork) is called a self -loop if it consists of a single
branch whose end -points are identified: it consists of one branch and
one node. A network (or subnetwork) is called an open branch if it con-
sists of a single branch whose end -points are not identified: it consists
of one branch and two nodes.

Theorem 1 V: Let 91, be a network of independent sources and nonlinear
(possibly time -varying) resistors, capacitors and inductors (without mutual
inductance) such that: capacitors of 9Z are either charge -controlled or mono-
tonically increasing voltage -controlled; resistors are either voltage-controlled

or current -controlled; inductors are either flux -controlled or monotonically
increasing current -controlled. It is further assumed that 9Z and 91(E)(J). are
nonseparable and connected. The network 91. is determinate if:

(1) The capacitor network S*ift(E)c satisfies the following requirements:
(a) Open branches of 84.91.(E)c are charge -controlled and contain all

charge -controlled capacitors which are not monotonically increasing.
(b) Each subnetwork of S*91(E)c which contains more than one element
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has a tree with monotonically increasing charge -controlled tree branches and
monotonically increasing voltage -controlled links.

(c) Self -loops of S*M(E)c are voltage -controlled.
(2) The resistive network S 97.*-(EC)R satisfies the following requirements:
(a) Open branches are current -controlled and contain all current -con-

trolled resistors which are not monotonically increasing.
(b) Each subnetwork which contains more than one element has a tree

with monotonically increasing current -controlled tree branches and mono-
tonically increasing voltage -controlled links.

(c) Self -loops are voltage -controlled and contain all voltage -controlled re-
sistors which are not monotonically increasing.

(3) The inductive network S*97-(EcR)L, satisfies the following require-
ments:

(a) Open branches are current -controlled.
(b) Each subnetwork which contains more than one element has a tree

with monotonically increasing current -controlled tree branches and mono-
tonically increasing flux -controlled branches.

(c) Self -loops are flux -controlled and contain all flux -controlled in-
ductors that are not monotonically increasing.

(4) In any finite interval, and for all time, the characteristics of the net-
work resistors, capacitors and inductors satisfy a Lipschitz condition with
respect to the following variables:

tree branches: capacitors, with respect to q
resistors and inductors, with respect to i

links: capacitors and resistors, with respect to v
inductors, with respect to cc.

Remarks: Note that nonmonotonic voltage -controlled capacitors and
current -controlled inductors were excluded from the discussion. Such
capacitors and inductors may be included in the discussion provided they
fall into the following trivial cases: each nonmonotonic voltage -con-
trolled capacitor is in parallel with a voltage source and each nonmono-
tonic current -controlled inductor is in series with a current source. In
such cases, at(R)(j) is separable unless contains one element only.

The above conditions insure the existence and uniqueness'' of the
solution on some nonvanishing interval [to , ta), where ta > to . The
length of this interval cannot be specified without further assumptions
on the Lipschitz constants h(R,t). This is the well known problem of
finite escape time. In particular, if for all branch characteristics the same
Lipschitz constant can be used and holds over the whole domain of the
characteristic, then the solution exists and is unique on [t0 , co) for all
regulated E's and J's.
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Proof of Theorem IV: Let us denote the voltages and charges of the ca-
pacitive branches by (ec , qc). Similarly, denote the voltages and cur-
rents of the resistive branches by (er , and fluxes and currents of in-
ductive branches by Go L , i L). Voltage sources and current sources will
denoted as usual by E and J.

We assert that conditions (2) and (4) of Theorem IV imply, first,
that the currents and the voltages of the resistive branches at time t,
(e,.(0,4(t)) are uniquely determined by the values, at the same time t,
of the capacitor voltages, the voltage sources, the inductor currents and
the current sources, (e, (t),E (t ),i L (t),J(t)); and, second, that the map-
pings

er(t) = fer(ec(t),E(t),4(t),J(0,0 (8)

ir(t) = fjr(ec(t),E(t),iL(t),J(t),t) (9)

satisfy Lipschitz conditions.
Given any set of capacitor voltages ec and inductor currents ILL such

that Kirchoff's voltage law is satisfied in each loop formed by capacitors
and voltage sources, and such that Kirchoff's current law is satisfied in
each cut set formed by inductors and current sources, let us replace each
capacitor with a voltage source whose voltage is equal to the voltage of
the replaced capacitor and replace each inductor with a current source
whose current is equal to the current of the replaced inductor. The net-
work consists now of resistors, current sources and voltage sources only.

Let us use the algorithm of Section III to change the configuration of
the sources and to separate the network into its separable parts. Let us
denote the resulting network by De and its sources by (ERJR).

The network 1R has three sets of subnetworks: (a) connected non -
separable subnetworks which contain sources and two or more resistive
branches, (b) subnetworks containing one resistive branch in parallel
with a voltage source, and (c) subnetworks containing one resistive
branch in parallel with a current source.

Consider the first set of subnetworks. Denote the branch voltages and
branch currents of these subnetworks by (eir)i , and their sources
by (EIR,J1R). From conditions (2) and (4) of Theorem IV it follows that
each subnetwork contains a tree whose resistive branches are mono-
tonically increasing current -controlled resistors and whose links are
monotonically increasing voltage -controlled resistors, and that all ele-
ments satisfy Lipschitz conditions. Therefore, from Theorems I and III
of Section IV it follows that (e ir)1 are uniquely denfied by (EIR,J1R)
and that the mapping (er(t),ir(t)) = f,. (E1 R (t) J IR OM) satisfies Lip-
schitz conditions.



186 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1965

The second set of networks corresponds to self -loops of S*Di(BoR . In
each subnetwork, the resistor is voltage -controlled, and hence the cur-
rent through it is uniquely determined in terms of the voltage source.
Since the characteristics satisfy a Lipschitz condition, the mapping from
space E2R (the voltage sources) to (e,- , it )2(the branch voltages and
currents in the subnetworks of the second set) satisfies Lipschitz condi-
tions.

Subnetworks of the third set correspond to open branches of S*9i(BoR
As each subnetwork contains only one resistor and a current source, the
requirement that the branch be current -controlled is enough to insure
uniqueness of (er , ir)3 , the branch voltages and currents of this set, in
terms of the corresponding sources J3R. From condition (4) it follows
that the mapping from J3 R to (er , ir)3 satisfies the Lipschitz condition.

The voltages of sources ER are linear combinations of the voltages E
and ec , and the currents JR are linear combinations of J and iL (see
Section IV). From this linearity property and from the properties of the
above relations between the voltages and currents of the resistive
branches and (ERJR ) it follows that (er (t ),L. (t)) are uniquely defined
by (e,(t),E (t),iL (t),J (t)) and that the mappings in (8) and (9) satisfy
Lipschitz conditions.

Let us now consider the capacitors of the network gt. Given any set of
resistor currents it and inductor currents iL such that Iiirchoff's current
law is satisfied in each cut set formed by resistors, inductors and current
sources, let us replace the inductive and resistive branches of l by
current sources with currents equal to the corresponding currents iL ,
it . The network consists now of sources and capacitors only. Let us use
the algorithm of Section III to change the configuration of the sources
and separate the network into its separable parts. The resulting network
is denoted by Ut o and its sources by E c, J C. We are going to establish an
analogy between 91 c and its sources by E c, J C. We are going to establish
analogy between NC and 9.0 and use the result just proved for MR to
deduce a similar result for at C.

91.° consists of the three sets of subnetworks which were described in
connections with MR . Consider the second set of subnetworks of 91c,
which consists of single capacitors in parallel with a voltage source.
Except for the trivial case where at consists only of a single capacitor in
parallel with a voltage source, this set is empty, for otherwise 97,(E)(,).
would be separable. Condition (1) implies that each subnetwork of the
first set has a tree, say Tc , whose tree branches are monotonically increas-
ing and charge -controlled, and whose links are monotonically increasing
and voltage -controlled. For each subnetwork of this set, with each funda-
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mental cut set of Tc defined by a capacitive tree branch, we assign a
variable qi equal to the sum of the charges on all the capacitors of that cut
set. For each subnetwork of the third set, we assign a qi equal to the
charge on the capacitor. q will denote the vector whose components are
the qi's.

The analogy between 91.c and MR is established in four steps:
(i) For atR, the Kirchhoff current law applied to the ith cut set as-

sociated with a resistive tree branch reads

JiR = E iki

where iki is the current in the kth branch of the ith cut set. The iki are
components of it . For Mc, we have by definition of qi ,

qi = E qki

where qki is the charge in the kth branch of the ith cut set. The qki are
components of q.

(ii) For both RR and Ttc, the Kirchhoff voltage law holds.
(iii) Condition (1) imposes requirements on the topology and ele-

ment characteristics of 91c which are entirely similar to those imposed on
91R by condition (2).

(iv) Finally, the elements of 97,R and at' satisfy analogous Lipschitz
conditions by condition (4).

Therefore, the variables (e, , q,) and (Ec,q) of 91c are analogous to
the variables (e ir) and (ER,JR) of 97.R.

Remembering that Ec is linearly related to E, we conclude that the
voltages and charges of the capacitors at time t are uniquely determined
by the values, at the same time t, of the voltage sources E (t) and q (t),
and that the mapping

ec(t) = fec (E(t),q(t),t) (10)

qr(t) = fq(E(t),q(0,t) (11)

satisfies Lipschitz conditions.
Since qi in any fundamental cut set is equal to the sum of the capacitor

charges

dqi(t)
dt

where Jig (t) is the contribution of the current sources to the ith cut set.
As Jc is a linear combination of i iL , and J it follows that
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dtcl(t) = fq(if(t) ,iL(t),J(t)) (12)

where f, is linear and does not depend explicitly on time.
Let us now consider the inductors of the network M. Given any set of

resistor voltages e,. and capacitor voltages ee such that Kirchoff's voltage
law is satisfied in each loop formed by capacitors, resistors and voltage
sources, let us replace the capacitor and resistor branches of at with volt-
age sources equal to the corresponding voltages e er . The network now
consists of sources and inductors only. Let us again use the algorithm of
Section III to change the configuration of the sources and separate the
network into its separable parts. The resulting network is denoted by
MI' and its sources by EL,r. As in the case of the resistive network, we
are going to use the result previously proved for 91R to deduce a similar
result for at.L.

MI' consists of the three sets of subnetworks which were described in
connection with M.R. Consider the third set of subnetworks of MI', which
consists of single inductors in parallel with a current source. Except for
the trivial case where DI consists only of a single inductor in parallel with
a current source, this set is empty, for otherwise 9-C(B)(,). would be sepa-
rable. Condition (3) implies that each subnetwork of the first set has a
tree, say T L , whose tree branches are monotonically increasing and cur-
rent -controlled and whose links are monotonically increasing and flux -
controlled. For each subnetwork of the first set, with each fundamental
loop of TL defined by an inductive link, we assign a variable vi equal to
the sum of the fluxes of all the inductors of that loop. For each subnet-
work of the second set we assign a 9i equal to the flux of the inductor.
te will denote the vector whose components are the coi's.

The analogy between 9i.L and De is established in four steps:
(i) For 91! the Kirchhoff voltage law applied to the ith loop associ-

ated with a resistive link reads
x-z, eki

k

where eki is the voltage across the kth branch of the ith loop. The ex;
are components of er . For gt.L we have by definition of ioi ,

soi = E cOki

where vki is the flux in the kth branch of the ith loop. The cOki are com-
ponents of (0/, .

(ii) For both ge and az.L the Kirchhoff current law holds.
(iii) Condition (3) imposes requirements on the topology and ele-
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ment characteristics of OIL which are entirely similar to those imposed
on NI' by condition (2).

(iv) Finally, the elements of De and NI' satisfy analogous Lipschitz
conditions by condition (4).

Therefore, the variables ((oL , iL) and (,,TL) of NZ' are analogous to
the variables (e ir) and (ER,JR).

As JL is linearly related to J, we conclude that fluxes and currents of
the inductors at time t are uniquely determined by the values, at the
same time t, of (v(t),J(t) ), and that the mappings

L.(1) = f(v(t),J(0,0 (13)

4(1) = fit (v(t),J(t),t) (14)

satisfy Lipschitz conditions.
Since in each loop is equal to the sum of the fluxes in the loop, it

follows from the Kirchhoff voltage law that

pi(t) = E (t)

where EiR(t) is the contribution of the voltage sources in the ith loop.
As EL is a linear combination of ec , er , and E, it follows that

aico(t) = f,(ec(t), er(t),E(t)) (15)

where f, is linear and does not depend explicitly on time.
Any solution of the network requires that (8), (9), (10), (11), (12),

(13), (14) and (15) be satisfied simultaneously. It is shown in the follow-
ing that these equations determine a unique solution.

In (12) and (15) substitute values of e0 , e it and IL from (10), (11),
(9) and (14). The results are

at q = fg[fir(ff, ( E,q,t (0, J, ),J,t ), fiL (to, DWI (16)

dc-i-t

= f,[f(E,q,t),f(f(E,q,t),E,f,:,(v,J,t ), J,t ),E1. (17)

Since the right-hand sides of (16) and (17) are compositions of func-
tions satisfying Lipschitz conditions, these equations may be rewritten
as

dt
q(t) = F,(E(t),q(t),(0(t),J(t),t) (18)
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cTi v(t) = F(E(t),q(t),(0(t),J(t),t) (19)

where F, and F, satisfy Lipschitz conditions in q and co. Therefore, for
any E() and J(  ) that are regulated functions of time" and for any
initial values of (c) and q, the differential equations (18) and (19) deter-
mine uniquely ce() and q(), and the solutions are continuous functions
of time." In terms of E(  ), J(  ), (0(  ) and q(), equations (8), (9), (10),
(11), (13) and (14) determine uniquely the currents and voltages of the
resistive branches, the voltages and charges of the capacitive branches,
and the fluxes and currents of the inductive branches. Therefore the
network Jt is determinate. (Incidentally, the proof shows that the state
of the network may be represented by (q, (0).)

It is worth indicating an immediate consequence of (18) and (19) and
the other circuit relations.

Corollary: If the conditions of Theorem IV are satisfied, E and J are
continuous functions of time, and all elements depend continuously on
time, then e, (lc , er , 1T , 9/, , iL are continuous functions of time; in
other words, jump phenomena' are excluded.

Corollary: Let the network 91 consist of independent sources, nonlinear
(possibly time -dependent) monotonically increasing one-to-one re-
sistors, capacitors and inductors. If the characteristics of all elements
Lipschitz conditions as described in condition (4) of Theorem IV, the
network 91 is determinate.

Corollary: If branches of a network al consist of : (a) voltage sources,
current sources; (b) one-to-one monotonically increasing resistors,
capacitors, and inductors whose characteristics satisfy condition (4) of
Theorem IV; (c) one-to-one two -poles of the types described by the
theorems of Section II and which satisfy conditions (a), (b), (c) and
(d) of these theorems: then network DT is determinate.

Given a physical circuit or device, it may happen that a particular
model of the circuit does not satisfy the conditions of Theorem IV. For
example, this model at' might be such that S*9-e(E)c includes a parallel
connection of two charge -controlled capacitors, D1 (q) and D2 (q), with
only DI monotonically increasing. Under these conditions, it may happen
that the current through the parallel combination does not determine
uniquely the voltage across it. If, however, the model is changed (call it

) and a resistor (or inductor) is inserted in series with D2 then
S*01,"(E)c now includes an open branch D2 condition (1) of Theorem
IV is no longer violated, and at" is determinate. Obviously, this idea
may be used in the case of inductors and resistors.
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Finally, let us conclude this section by a discussion which draws at-
tention to some consequences of the conditions of Theorem IV. Some of
the properties considered here will he used in the next section for writing
in detail the network equations.

Let at be a network which satisfies the conditions of Theorem IV. De-
note by r,ri_i , g the sets of resistors which are current -controlled (but
not voltage -controlled), one-to-one, and voltage -controlled (and not cur-
rent -controlled), respectively. Similarly, denote respectively by d,c/i_i , c

the charge -controlled (and not voltage -controlled), one-to-one, and volt-
age -controlled capacitors, and by , r the current-controlled (and
not flux -controlled ), one-to-one, and flux -controlled inductors.

Let us carry out the following operations:
(a) choose a forest of atE
(b) choose a forest of DI(E)d
(c) choose a forest of aF.....(Ed>di _1

(d) choose a forest of
(e) choose a forest of a F-(Edd _ ir)ri-1
(f) choose a forest of 91(Edd1-1771-1)1
(g) choose a forest O. f -(Eddi_irri-i Ori_i 

Since the conditions of Theorem IV are satisfied by Di, it follows that
the union of these forests forms a tree of 97, which we denote by T. The con-
struction of this tree is an extension of Bryant's procedure.'

This can he proved in the following way: From the conditions of
Theorem IV it follows that the union of the forests chosen by (b) and
(c) [by (d) and (e), by (f) and (g)] are forests of 9t (E) [01(EC)R and

91(BC R) L respectively]. Let us add the network's resistors to 91-(EC R) L 
This is done by splitting nodes and adding the new branches between
them. Consider a node which was split, say, to three nodes and a resistor
subnetwork connected between these nodes, It is clear that the subtree of
this resistive subnetwork completes the forest of srt-(ECR)L for a forest of
the 9-1,(Ec)RL . We can use the same argument to show that by adding the
capacitors and voltage sources we get a forest of the network which in-
cludes all branches but the current sources. However, the current sources
do not form any cut set and therefore are links of this forest. Thus T,
the union of these forests, is a tree of 9t.

From the construction of the tree, the conditions of Theorem IV, and
the above discussion it follows that T contains all current and charge -con-
trolled elements which are not one-to-one, and all voltage and flux -controlled
elements which are not one-to-one are links of this tree.

Consider the fundamental cut set of OT, defined by an element of set d,
a charge -controlled capacitor whose characteristic is not monotonically
increasing. By assumption, this capacitor is an open branch of S*91(mc ;
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this cut set may not contain capacitors or voltage sources and therefore
consists solely of resistors, inductors and current sources. Similar proper-
ties exist for fundamental loops defined by the various links. One can ex-
hibit these properties by making a table in which links and tree branches
are partitioned according to the types of their elements and properties
of their characteristics; for each link and branch the table specifies the
type of elements that are allowed to be in the corresponding loop or cut
set. As the table is complicated, it is omitted and only some of the more
interesting properties are listed below. Here we are going to make use of
the rank -order of the elements, ECRLJ, defined in Section II:

(i) Tree branches with characteristics which are not monotonically
increasing are the highest ranked elements in their own fundamental cut
set. Thus, for example, a charged -controlled nonmonotonically increas-
ing capacitor has a fundamental cut set which may include links which
are resistors, inductors and current sources but no other capacitors.

(ii) Links with characteristics which are not monotonically increasing
are the lowest ranked elements in their own fundamental loop. Thus, a
fundamental loop defined by a nonmonotonically increasing resistor
may have only capacitors or voltage sources in its tree branches.

VI. EQUATIONS FOR RLC NETWORKS

The purpose of this section is to write explicitly the equations of a
nonlinear RLC circuit. of the type considered in the previous section.
Another purpose is to exhibit the similarities and differences between
the equations that describe linear networks and those that describe the
nonlinear networks under consideration.

To simplify the exposition consider the resistive network of Fig. 14.
Call Ti the tree formed by the branches 1,2,3, and the voltage source E.
If the network were linear, the fundamental cut set equations would
read

Fig. 14 - Resistive network.
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mei g4 (e1 e2 - e3 - E) = .11

Mei e2 - e3 - E) g2e2 - g5(-e2 e3) = J 1 (20)

e2 - e3 - E) g3e3 g5 (- e2 e3) = 0

where ei is the voltage across the ith branch and gi is the conductance
of this branch. In the well known matrix form, the equations become

t 0 0 0
° 1

0 0 0 -
1 1 0 (12 0 0 0 [() 1 0 0
0 1 0 1 1 0 0 g3 0 0 0 0 1 0
0 0 1 -1 1 0 0 0 g4 0 1 1 -1 -1

_0 0 0 0 g5 0 -1 1 0

or, more generally,

e
Ar(R),RGRAI T(leE),1?[Ei + i-tT(R),L(J).1 =

e3e

E

= [,111 (21)

(22)

where e, E and J are column vectors whose components are the tree

[eibranch voltages, e2 , the voltage sources, [E], and the current sources,
e3

[.1], of the network; GR is the branch admittance matrix. The A's are
appropriate submatrices of the fundamental cut set matrix Q. The first
subscript of A denotes the rows and the second subscript denotes the
columns of Q whose intersection forms the submatrix. Thus A-T(RB),L(R)
is a submatrix formed by the intersection of rows corresponding to
resistive and voltage source tree branches and columns corresponding
to resistive links; A-T(R),It is formed by the intersection of rows corre-
sponding to resistive tree branches and columns corresponding to re-
sistive branches. A T(R),,, is defined similarly. The prime over a matrix
indicates transposition. Now, let the resistors become monotonically in-
creasing one-to-one nonlinear resistors. Without loss of generality we
can assume these new resistors to be time invariant. Let gi ( ), g2 (  ))
g3 (  )1 -64 ( ) and ti -5 (  ) be their characteristics.

The cut set equations are:

Mei) + Mei + e2 - e3 - E) = Ji

Mei + e2 - e3 - E) + #2(e2) - 05 (e3 - e2) = .11 (23)

-Mei + e2 - e3 - E) + 05 (ea- e2) + g3 (e3)= 0

where, for example, gi (e1) is now the value of the function gi evaluated
at ei .

The similarity between (20) and (23) suggests a shorthand notation
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for writing the equations of nonlinear networks. By the product A*x
(where A is a diagonal matrix whose elements are functions ai () and

x is a column vector whose components are x1 , x2 , , x.), we denote
the column vector whose ith component is a1 (xi), that is, the ith di-
agonal element of A evaluated at the ith component of x. With this
symbolic notation the equations of the network of Fig. 14 can be written
(for the nonlinear case) in a form analogous to (22).

AT(R),RGR* (A' T(RB),R[El) T(R),L(J)J = 0

where G1 is the diagonal matrix whose elements are the characteristics
gl , gz , , #5 and the * operation must be interpreted as indicated
above. G,, will be referred to the branch characteristic matrix. With this
symbolic notation, cut set matrices, loop matrices and branch resistance
matrices may be used to writing equations of nonlinear networks in the
same way as for linear networks.

Let us now assume that the elements of the tree Ti of the network of
Fig. 14 are monotonically increasing current -controlled but not voltage -
controlled and the links are monotonically increasing voltage -controlled
but not current -controlled. Since the tree branches are not voltage -
controlled, the equations cannot be written in the form of (22). Let
fl ( ), f2( ) and f3(  ) represent the characteristics of the tree branches
and i1 , i2 and i3 be the currents of the corresponding tree branches. In
terms of the tree branch voltages and currents the cut set equations
become:

(Mei e2 - e3 - E) = Ji

i2 (14 (e1 e2 e3 - E) - 75 (e3 - e2) = .11 (24)

/3 - Mei + e2 - e3 - E) -65(e2 - e3) = 0.

The other set of equations is

el = (i1)

e2 = f2 (i2 ) (25)

e3 = t3 (i3)

or symbolically

eT(R)
1T(R) T(R),L(R)G L(R)* (Ai T(RE),L(R)[ E 1) + T(R),L(J)j = 0. (26)

eT(R) = RT(R)*iT(R) (27)

where iT(R) , er(R) , E and J are the tree currents and voltages, and vol-
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tage and current sources respectively. G and R are the link and branch
characteristic matrices, and in our example

GL(n) =9o4
051

0
RT(R)

(RI 0 0
0 612 0 .

0 0 (R3

The A's are appropriate submatrices of the fundamental cut set matrix
Q. The first subscript denotes the rows and the second subscript denotes
the columns of Q whose intersection forms the submatrix. Thus

T(RE),L(R) is a submatrix formed from the intersection of rows cor-
responding to resistive and voltage source tree branches and columns
corresponding to resistive links. A-T(R),L(R) and A_T(R), L(J) are defined
similarly. A comparison of (26), (27) and (22) shows that in the case of
current -controlled tree branches and voltage -controlled links which are
not one-to-one, we need both ir(h) and eT(R) for a straightforward writ-
ing of the cut set equations and the branch characteristic equations.
Either iT(R) or eT(R) can be eliminated from the equations. The resulting
equations are:

6(1) + A T(R),L(R)GI,(R)* ( A' 1( lel ) L(le)

Or

[R T( u)*inie
E

+ T(R), L(J)J = 0

ev ir) + R T(1,9* A T (R) . L(10G Lue)* A' 7' ( le E) . L( 1,9

[eT(B)1)}{E (28)

(29)

RT(R)* (AT(R),/,(J)J = 0.

Fundamental loop equations can be written in a similar way using both
the voltages and currents of the links iL(R) and eL(R) . The equations are

( ' Lii
J
(11)1) ,

e Lue) + 1 1,( le) ,T( It)R T( R)* 1 L( kV) .7.( II) " -r- i L(ho ,T(E)E = 0

iL(R) = G L(R)*e L(R)

where the l's are appropriate submatrixes of the fundamental tie set
matrix B. Similarly to (26) and (27), either eL(R) or iL(R) can be elimi-
nated.

We now write the equations for a general RLC network (which satis-
fies the requirements of Theorem IV) by performing the following stepst

t Other systems of variables are possible. For example, one can choose charges
and fluxes as above and voltages of resistive links whose loop does not consist of
capacitors and voltage sources only.
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(i) A tree is chosen as explained in Section V.
(ii) Variables are chosen. We choose here the charges on the capaci-

tive tree branches, cif, , the currents of the resistive tree branches whose
fundamental cut set does not consist of inductors and current sources
only, iR , and the fluxes of the inductive links, for

The equations make use of the following characteristic branch ma-
trixes: C and D are diagonal matrixes whose elements are the charac-
teristics of voltage -controlled and charged -controlled capacitors, re-
spectively; G and R, those of voltage -controlled and current -controlled
resistors, respectively; L and r, those of current -controlled and flux -
controlled inductors, respectively. Without loss of generality we can
assume that the elements are time -invariant. The equations are

DT(C)*qD

dt{ AT(e),L(c)CL(e.)* AiT(cE),t(c)

(+ A 7' (r) . L(i)G L(7e)* A' T(CizE) , Mit) R T(R)*iR

E

Ave),L(L)FL(L)hor AT(e),/,(J)J = 0

(30)

(ik + A nil), L(MG L(w)* A' T(Cit E) , L(R) R T(FL)*i R

E (31)

Avie),L(L)ruL)*(or Avii),L(.4 = 0

{dt (01411,(L),TML T (L)* LW) , T(L)[r L(L)*(Q1)}

(-I- lh(L),T(RoRT(R,)* 1 L(LJ),T(R1) (32)

+ 1 L( L), 7( C)DT( C) *4:1D 1L ( L) , T( TOR T(TWkin

-I- 1 L ( L), T( R)E = 0

where R1 is the set of resistive tree branches whose fundamental cut set
contains inductive links and current sources only; and R is the set which
contains all other resistive branches.

The terms in the brackets in (30) and (32) are equal to our state
variables q and i of Section V. One can write the equations in terms of
these variables: the relations between qD and q and vr and 43 are given by
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( [D,,,,,*qD
4-

1)
qD A T(C) . L(c)C go* iifT(CE), L(C) E = q

(Or -F1L(L),r(L)Lr(L)*
[r L(L)*(0

L(1 -1),T(
1)

=

In summary, the equations of the RLC nonlinear network are written
in a way which is a generalization of the methods used in linear networks.
However, great care must be taken of the fact that some characteristics
are representable by functions which do not have inverses. This section
indicated a method for tackling the problem. In this section, the equa-
tions are written in terms of three sets of variables: qD , the charges on
the capacitive tree branches; ictL , the fluxes in the inductive links and
iR , the currents in the resistive tree branches whose fundamental cut
sets do not consist of only inductors and current sources. It is interest-
ing to note that (except for the trivial case where DI consists of a single
capacitor in parallel with a voltage source or a single inductor in parallel
with a current source) the dimension of the state vector (q,v) used
above is the same as in the linear case: [number of independent initial
conditions] = [number of reactive elements] - [number of independent
capacitor -only tie sets] - [number of independent inductor -only cut
sets].'''''
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B.S.T.J. BRIEFS

A Note on a Special Class of One -Sided Distribution Sums
By R. D. BARNARD

(Manuscript received October 9, 1964)

I. INTRODUCTION

Occasionally encountered in the calculation of power spectra are
limits of the form'

line 2: [1 + 1,1(n,N)]ei",
N-00 n=0

where
3f

F en,A0 = E a,,,(N)nm 111 < cc
m=0

a,,,(N) = o(1) (N cc) V?n

x E co , 00, i=
It is shown here that these limits exist as distributions, or generalized
functions,2,3,4 and have several simple and useful representations.
Specifically, we prove the following

Theorem:

Ilium) E [1 + F(n,N)]ei" = 1 r E - 271-n) i- cot
N- 2 77 =Op 2 2

= lim (D) [1 -
Re a>0

where lim(D) and o() denote respectively a distribution limit" and
the Dirac delta function.

II. ANALYSIS

Concerning notation, let Ce° represent the space of infinitely differ-
entiable scalar functions defined on the real line (- co , co); Ca , the
space of "rapidly decaying" test functions, viz., the linear vector space

Ca = ko E x jo(k)(x) 0( ix I -* 00)Nifi, k 0);
203
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and G, the space of generalized functions defined relative to the test
functions of C . Finally, let Fg signify the generalized Fourier trans-
form2,3 of g E G with

Fcp = f co(x)e-2'i"dx, E C, d

oo

The theorem under discussion is now established in terms of the
following three lemmas:

Lemma I:

lim(D) [1 [1 + F(n,N)]e'nx = lim(D) E einx h(x) E G.
/1=0 n=0

Proof: Inasmuch as Fh E G, then h E G and

lirn f a,(N) einx1p(x)dx = anz(N)] 11111E etnx p (MX
ooN [ n -0 =0N f n

= 0 Ym.

Hence,

lim(D) [am(N) E ei"x] = 0 vm,
N

N n =0

and
Af

lirn(D) E [1 + F(n,N)]eins = h(x) E Ea,(N) E nmein-1
N-003 n =0 m=0 N n =0

Lemma II:

Proof: Setting

u(y)

= h(x) {( -Om
CG

,=, clxm

[
N

lim(D) a,(N) E ei nr
N =0

h(x) = lim(D) [1 - CaeixJ-1.
Ro a>0

1,y > 0

0, y < 0

= h(x).
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ga(y) E e-anU - 11)
27r

90(Y) = lien ga = [E u (y -
and noting that

L. I go(y)60(y) I dy < 00

G2r

Vie E Cd
(1)

ga I 5 go Vy E ( - 00,00 ), V Re a > 0,

one obtains by means of Lebesgue's dominated convergence theorem°
the condition

g( y),p(y )dy = f go(y)9(y)dy Nigo E Cd . (2)

Consequently,

lim(D) g« = go , (3)

and

n 11 d (I))h(s) = E dF  -  go = P  -  hinga
n=0 .271- rly ' dy

00

lnll(D) EC
iiin(D)[1 - e-ae-1-1

a n

Lemma III:

1lim(D) [1 - -) + 7r E - 2irn) -i cot
2

Re a>0

Proof: From the definitions

Ca(x) .51- log [Ca sine -I- (1 -2 Can

da(x) = tan-1[ e sin x
1 - e -a cos d

fo(x) = r [E u(x - 2irn) - E u( -x - 27rn)1
n =0 n =1

it is found that
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I Ca I log

da

lim C« = [log
a

1I

-2 I

x
sin

2
G

lim da = [fo(s) -flE G

for all a E (0,1) and almost all x E (- 00,00). Therefore, as in (1), (2), and
(3),

and

lim(D) ca = log sin x-1
2

lim(D) da = fo(x) -
a 2

lim(D) [1 - e-aeirr = -d 11M(D) i log (1 - e'reix)]
a dx

= -dx lim(D) [x da(x) iCa(x)]
d a

= -1 + r E s(x - 2irn) -i cot
x

2 n 2 .2 
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