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Thas arlicle is a survey-lype discussion of the Bell System’s No. 1 Elec-
tronic Switching System for central office use and No. 101 Electronic
Switching System for business use. For both systems il presents background
history and descriptions of the major subsystems and components. It also
covers recent manufacture, installation and commercial service of these
lwo systems.

I. INTRODUCTION

Two Electronic Switching Systems have heen developed by Bell
Telephone Laboratories for general application in the Bell System; both
are now in quantity manufacture by the Western Electric Company.
One of these, known as No. 1 ESS, is designed for local central offices,
and is the commercial suceessor to the Morris Electronic Central Office.
Its system organization is also potentially suitable for tandem and toll
applications. The other system, called No. 101 ESS, is designed to
provide electronic private branch exchange services in conjunction with
existing electromechanical central offices. It brings to the business
community modern PBX and Centrext features which can be provided
economically with this new type of system.

* Originally written for the German Bundespost and published in their 1964
Yearbook of Telecommunieations, this article has been updated and is published
here by permission for readers of the B.S.T.J.

t The prineipal features of Centrex are direct inward dialing to extensions,
identified outward dialing, and certain switchboard attendant features.
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The electronic private branch exchange was the first of the two to be
placed in commereial service. On November 30, 1963, the Southern Bell
Telephone Company initiated Centrex service to about 100 extensions
at the Brown Engineering Company, Cape Kennedy, Florida. Two
weeks later service began at the Chrysler Corporation’s office, also
located at Cape Kennedy. During 1964 and early 1965 No. 101 ESS
installations were completed for service at such widely separated loca-
tions as New York City, Chicago, Cleveland, Los Angeles, and Wash-
ington, D. C.

In 1963 installation by the Western Electric Company of the first
commercial No. 1 ESS central office began in a new building at Suc-
casunna, New Jersey, for the New Jersey Bell Telephone Company.
After undergoing an extensive series of tests, that system was cut over to
commercial service on May 30, 1965. It now serves both residence and
business telephone users in that community. Additional No. 1 ESS
central offices are being installed and tested in Baltimore, New York
City, Norfolk, and Washington, D). C., as well as in several locations to
serve military customers; the latter provide four-wire switching of lines
and trunks as contrasted to two-wire switching for the commercial
offices.

This article surveys the work leading to these two developments and
describes the production designs which are inaugurating a new era in
switching for the Bell System.

1I. EARLY WORK

For many years engineers have been intrigued by the idea of applying
electronies to switching. As the switching art and digital technology
developed, these ideas and speculations became more definitive. With
the very high speed operation of electronic components, it was believed
that the principal advantages of common control would be enhanced in
that very large offices could be controlled with a single common control
without the complications of multiple marker usage. At Bell Telephone
Laboratories these ideas led to a formalized attack on the problem,
beginning shortly after the close of World War II. The aim of the work
was to explore various approaches to the electronic switching problem
with the ultimate objective of improving service, reducing costs, and
providing greater flexibility while maintaining the high reliability of
electromechanical switching.

The early work produced many innovations, and several laboratory
switching systemswere constructed to explore the basic concepts. Among
them was a space-division system employing reed-diode switching
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matrices with “end-marking” under control of multi-element gas tubes.
This system, known as ECASS' (Electronically Controlled Automatic
Switching System), was brought to a laboratory demonstration level
in 1947, In 1948 exploratory work was carried out on a single highway
time-division system using vacuum tube gates and quartz delay lines
for memory. This was followed in 1949 with DIAD? (Drum Information
Assembler and Dispatcher). This was a system having a large memory
in common control and a space division reed-diode ‘“‘end-marked”
network.

Research on these systems brought valuable insight to both network
and common control aspects of electronic switching and provided a firm
technical foundation for later work. However, it also pointed up the
desirability of new devices for both logic and memory if electronic
switching were to become a serious challenge to the highly developed
electrq;nechanical systems.

In the early 1950’s the transistor (invented at Bell Laboratories in
1948) had reached the stage of development where it could be seriously
considered for commercial application. This, together with economical
bulk memories based upon the cathode ray and barrier grid tubes, sug-
gested the possibility of developing a commercial electronic switching
system. Work on such a system, initiated in 1954, led to a field trial of
an electronic central office at Morris, Illinois.

Because of the historical significance of the Morris trial and its impact
on subsequent development work, it seems appropriate to present some
of the results obtained.

III. THE MORRIS TRIAL

3.1 The Morris System

A view of the installation in the Morris central office is shown in Fig.
1. Although the system has been previously deseribed,” a brief review of
its design will provide useful background.

Fig. 2 is a block diagram of the Morris electronic switching system.*
Lines and trunks were terminated on a space-division switching matrix
having gas tube crosspoints. In this installation the matrix was equipped
for 604 customer lines. “End-marking” of the network was under con-
trol of a high-speed, stored program, common control system. Because
the gas tube crosspoints in the switching network could not carry high-
level standard ringing current, each customer was provided with a
low-current tone ringer station set. The common control equipment
consisted of a central control logic unit associated with barrier grid
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Fig. 1 — Electronie central office trial installation at Morris, Illinois.
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stores for temporary memory and a flying spot store for program and
translation storage.

The flying spot store was a 2.25 million bit high-speed, random access,
semipermanent memory that used a cathode ray tube, a complex optical
system, and photographic plates on which program or translation infor-
mation was placed in the form of a pattern of transparent or opaque
spots. Photomultiplier tubes detected the light transmitted through
these spots to determine the “1” or “0” condition of the information
bit. An ingenious electronic servo system maintained beam position and
light intensity with such accuracy that adjacent bits eould be placed
on 7-mil centers. The 2.25 million bits of program and translation in-
formation were stored on four 10 inch X 12% inch glass photographic
plates. Cycle time of the store was 2.5 microseconds.

The temporary or ‘“seratch pad” memory consisted of two barrier
grid tube stores, which provided a memory capacity of 32,768 bits.
This memory was also operated on a 2.5 microsecond cycle time.

The semiconductors, transistors, and diodes used in this system were
the diffused germanium variety that were available in 1957. In order to
insure continuous operation of these devices, the equipment cabinets
were air conditioned. In addition, the gas tube switching network re-
quired control of ambient temperature within narrow limits for reliable
operation. Air conditioning was also required for the two memories
because of their high level of heat dissipation.

In spite of the special precautions taken to insure component relia-
bility, it was known at the outset that failures would occur more fre-
quently than could be tolerated for the service continuity required in a
switching system. Accordingly, all of the common control equipment
and portions of the electronic scanner and signal distributor were pro-
vided in duplicate, and arrangements were made to switch automatically
from one set of equipment to the other in the event of a malfunction.
Also, programs were included in memory to provide automatic fault
recognition and diagnosis of the unit in trouble.® Since air conditioning
was an essential part of the design, this too was provided in duplicate.

The system was installed in the central office in Morris, Illinois, early
in 1960, and part-time telephone service was given to a small number of
customers beginning in June of that year.® Full-time service began in
November of 1960 and continued through January of 1962, at which
time the trial was terminated. The number of customers and stations
served during the trial is shown in Fig. 3.

In addition to the usual telephone service, customers were supplied
with one or more special features. One of the most popular of these was
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Fig. 3 — Morris ECO — customers and stations.

“gbbreviated dialing” by which a two-digit code could be used to reach
a seven-digit telephone number. Only four abbreviated codes were made
available in the trial. In spite of this limited repertoire, on some lines
as many as 50 per cent of all originations were made using this feature.
On the average more than 15 per cent of all originations from lines
equipped with this service made use of abbreviated dialing.

Another popular feature was “code calling” which in effect provided
an intercom in homes equipped with more than one telephone. Dialing
a special code and hanging up initiated a coded ring-back to call a
particular member of the household to the nearest extension. Cessation
of ring indicated to the calling party that the called party had answered.

Three methods were provided to permit the telephone user to have
his incoming calls directed to another telephone. One method permitted
the routing of calls to a specific preselected alternate number in the
Morris office if the user dialed a special code before leaving his phone.
When he returned, he dialed another code to cancel the reroute. Another
method required the user to call the telephone company business office
to indicate the number to which calls should be routed, the time for
service to start, and the time for it to be discontinued. This was a use-
ful feature for people who expected to be out of town for extended
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periods and wanted to have their ealls answered at another telephone.
In the third method the user could initiate the transfer to any number
in the central office by dialing a special code and the number to which
he wished the calls to be routed. The service could be cancelled by
dialing another special code.

3.2 Trial Results

Performance of the Morris electronic switching system was measured
in several ways. One way was through service observing on selected lines
and record keeping on calls in which irregularities oceurred. In the early
months of the trial, irregularities were much too frequent, but a marked
improvement was achieved in February, 1961, as indicated in Fig. 4.
A somewhat similar measure of performance, with similar results, was
obtained through customer reports, as indicated in Fig. 5.

The marked improvement in February, 1961, was due almost entirely
to the introduction of improved programming methods which have had
a marked influence on programming philosophy for the commercial
design. This improved programming concept was called “guard and
defensive” programming. It provided a means of insuring that informa-
tion being processed within the system did, in fact, agree with reality.
Tor example, information concerning the busy or idle state of a custom-
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Fig. 4 — Morris ECO — service irregularities.
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Fig. 5 — Morris ECO — customer reports.

NUMBER OF REPORTS PER WEEK PER 100 STATIONS
>

er’s line, which is stored in the temporary store, was checked by a guard
program every four seconds to determine whether that state agreed with
other information concerning that line located elsewhere in the common
control equipment. The affect of this important programming change is
evident when shown against the background of customer complaints
in Fig. 6.

Fig. 6 also shows the period during which improved diagnostic pro-
grams for automatic maintenance were installed in the system. The small
vertical lines on the Figure indicate dates on which major changes in the
program contained in the flying spot store were made. Because of the
duplication of the common control equipment, such changes could be
readily installed without interrupting customer service. With the faeili-
ties provided for processing new photographic plates, the entire program
could be changed in about 45 minutes.

In order to aid the maintenance personnel in locating equipment
faults, a maintenance dictionary was prepared and became available
during the last half of the trial, as indicated in Fig. 6. Whenever a fault
oceurred in the system, diagnostic routines in the program analyzed the
situation and provided a print-out on a teletypewriter associated with
the central office equipment. The print-out could then be used as an
entry point in the maintenance dictionary to determine which plug-in
electronic package required replacement. In most cases in the highly
complex central control equipment, the diagnostic print-out and dic-
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Fig. 6 — Morris ECO — program changes.

tionary could isolate the fault to a single plug-in package. In a relatively
small number of fault conditions, a group of several packages might be
indicated as the possible source of trouble.

Another measure of system performance is contained in the record of
electronic package failures, shown in Fig. 7. It will be noted that the
largest number of electronic packages in the system were semiconductor
logic packages and that the failure rates for these were very low. As
might be anticipated, packages containing relatively high power semi-
conductors failed at a somewhat greater rate, while electron tube and
gas tube failures were highest of all.

Although the failure rates dropped off during the course of the trial,
the shape of this trend as seen in Fig. 7 is markedly different from that
of the service irregularities and customer reports discussed earlier. Tt is
believed that this difference is due to the guard and defensive program-
ming. The difference gives rise to the concept of ‘“‘dependability’” as
a service measure while reserving the term ‘“‘reliability” as a measure of
component performance.

The component failures for the semiconductor logic packages as a
function of time are shown in Fig. 8. The marked difference between the
failures in the first half and last half of the trial can probably be attrib-
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uted to less human intervention in system operation as well as to the
weeding out of marginal units. The failure rate for the first and last
5,000 hours of system operation is compared in the so-called “fit rate”
shown on the right-hand side of the Figure. One fit corresponds to one
failure on 10? hours of operation.

3.3 I'mpact on System Design

The Morris trial provided important background for the development
of No. 1 ESS. In particular, it demonstrated the feasibility of providing
dependable service with stored program control which has major ad-
vantages in manufacture, maintenance, and flexibility of office adminis-
tration. The practicability of providing automatic diagnostic programs
to assist the maintenance personnel was confirmed. Special programming
strategies of guard and defensive programming were evolved to greatly
increase system dependability.

The trial also indicated that a major effort should be made to elimi-
nate electron tubes and to remove the requirement for expensive air
conditioning equipment. Furthermore, the experience suggested an
improvement in the method used for switching between duplicate
system equipment so that calls which were in the process of being set
up would not be mutilated during the switching interval.

As a result of experience with Morris, the hardware design of No. 1
1988 differs markedly from that used in the trial, although the basic
philosophy of stored program control remains the same. A deseription
of this commereial successor to Morris is contained in the next section,

IV. NO. 1 ESS

4.1 Design Considerations

Any switching system intended for general Bell System application
throughout the United States must cover a broad range in office size
and traffic capability and must provide for orderly office growth. An
analysis of the Bell System lines in service as of 1960 indicated that 75
per cent of the lines terminated in central office buildings containing
over 7500 lines. Fifty per cent were in buildings serving over 19,000
lines and 25 per cent terminated in buildings serving over 32,000 lines.
On the other hand, 75 per cent of the central office buildings served less
than 3000 lines if one includes community dial offices. An effort was
made in the design of No. 1 ESS to provide a configuration with suffi-
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cient growth potential to cover a wide range of needs throughout the
Bell System.

The stored program control concept demonstrated in the Morris
trial was selected for implementation. In fact, it was concluded that the
flexibility of stored program control, made possible by high-speed elec-
tronics, is more important for switching systems of the future than is
the use of electronies per se. The method is adaptable to the wide range
in size and growth and simplifies the introduction of changes in operat-
ing methods or service features after installation by changing program
rather than office wiring. From the factory point of view, the stored
program concept permits uniform production with a minimum of wired
options; it also should result in less installation effort both initially and
for office growth.

To replace the Morris gas-tube switching matrix, a search was under-
taken for a suitable metallic crosspoint having control compatibility
with high-speed electronics. This was considered desirable for two prinei-
pal reasons. First, it would avoid the need for special telephone instru-
ments required at Morris and second, it would simplify testing of lines
and trunks. To meet this need for an electronically controlled metallic
crosspoint, the ferreed was invented, about which more will be said
later.

Eeconomic considerations made it desirable to avoid air conditioning,
This was made possible by (1) the advent of silicon epitaxial semiconduc-
tor devices, which will withstand higher ambient temperatures than
the germanium devices used in Morris, (2) the development of new types
of random access memory, to be deseribed later, and (3) the ferreed
development already mentioned.

The various considerations of Bell System requirements and the
experience gained from Morris led to the design of a system which will
gerve the needs of offices varying in size from a few thousand lines to a
maximum of 65,000 lines. The lower limit is determined strietly by
economics because of the relatively fixed and rather substantial cost of
the common control portion of the system. The upper limit in number
of lines to be handled is determined largely by traffic considerations,
the speed of the common control, and configuration of the switching
network. In high-traffic offices, such as might be found in metropolitan
New York, the maximum number of lines to be served by a single switch-
ing system will be substantially lower than the 65,000 maximum men-
tioned above, largely because of common control speed limitations.
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4.2 System Organization

The organization of No. 1 ESS is very similar to that of the Morris
system, as indicated by the block diagram shown in Fig. 9. It consists
of an eight-stage space-division switching network utilizing ferreed
crosspoints. A central control logic unit interprets instructions contained
in the semipermanent memory and carries out the various operations
required in handling the telephone traffic. Temporary memory used in
conjunction with central control provides call processing registers and
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Fig. 9 — No. 1 Electronie Switching System organization.

other “seratch pad” type memory needed in central control operations.
Input to this high-speed information processing complex is obtained via
scanners which examine the state of lines and trunks on a time-shared
basis. When it is addressed by central control, the scanner will examine
the state of a particular group of lines and place into the temporary
memory information concerning the “on-hook” or “off-hook” state of
these lines. Normally lines are scanned at 200-millisecond intervals for
detection of originations. Upon detection of an origination, the rate is
increased to give a scanning interval of 10 milliseconds. This shorter in-
terval is required to count dial pulses or to detect the outputs of re-
ceivers used to convert TOUCH-TONE#* calling signals to de signals.
The signal distributor provides a means for converting the short

* Reg. U.S. Pat. Off.
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electronic pulses from central control to appropriate signals on trunks
to distant offices. Thus for low-speed outpulsing, central control may
request the distributor to close a relay contact, and then the central
control will continue to perform many additional logic operations on
other calls. Several tens of milliseconds later, at the appropriate time,
another order to the distributor would call for opening the relay contact.
By this means, the stored program control can perform many complex
funetions in trunk cireuits, thereby minimizing the types and complexity
of trunk circuits now found in electromechanical switching offices.

A second output from eentral control provides for closing the appro-
priate crosspoints in the switching network, while a third provides
information to an administration ecenter. The latter contains the teletype-
writer for machine maintenance and a magnetic tape recorder for auto-
matic message accounting information.

4.3 Design for Dependability

A more detailed block diagram of No. 1 ESS is shown in Fig. 10.
Incoming lines and trunks enter the system at the protector blocks shown
at the top of the Figure and thence are connected through a main
distributing frame to appropriate portions of the switching network.
Electronic control for these network frames is provided over a periph-
eral unit bus from duplicated central control units. Similar bus
arrangements are used for interconnecting program stores and call stores
to central control.

This bussing arrangement is another innovation in No. 1 ESS. It
permits switching among duplicated common control equipment at
electronic speeds. The improved method protects calls that are being
processed at the time a switch is made and provides a convenient means
for electronically organizing a working system from random combina-
tions of duplicate units; either central control may associate itself with
any program store or call store while other units may be in a trouble
condition.

In carrying out call processing operations, both of the central controls
and their normally associated program stores and call stores simul-
" taneously process the information for the complete call. Interconnections
between duplicated portions of the system provide for cross-checking of
information. If a mismatch occurs at any point, a fault recognition
program is called into play to determine whether the mismatch is due to
an error (which does not repeat) or to a true fault. If a fault has occurred
in the on-line system, the duplicate equipment immediately takes over
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the call processing operations. In its spare time central control carries
out a diagnostic routine on the faulty unit. The results of this diagnosis
are printed out on a teletypewriter for use by the maintenance man.

In the following seetions the design and functions of the major por-
tions deseribed above will be covered in somewhat more detail.

4.4 Swilching Network

A schematic representation of the eight-stage switching network is
shown in Fig. 11. Line link networks, consisting of line switch frames
(LSF’s) and junctor switch frames (JSF’s), contain four switching
stages; the remaining four stages are contained in trunk link networks
consisting of junctor switch frames and trunk switch frames (TSE’s).
Wire junctors are used between line link and trunk link networks for
line-to-trunk interconnections, and between appearances on the trunk
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Fig. 11 — Over-all network plan showing line link networks, trunk link net-
works and typical connections.
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link networks for tandem switching. Line-to-line switching is accom-
plished through a junector eircuit which includes the necessary trans-
mission apparatus and facilities for supervising the individual lines.
Because of the wide variety of offices which this electronic switching
system is intended to serve, the line link networks are arranged to cover
various concentration ratios from 2:1 up to 8:1.

A line switch frame for 4:1 concentration is shown in Fig. 12. The
double bay of equipment at the left contains the switehing, supervisory
and electronic control equipment for interconnecting 512 lines to 128
junctors, A supplementary line switch frame on the right increases
this switching capacity to 1024 lines. In this configuration the electronic
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Fig. 12— No. 1 ESS line switch frames.
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network control serves both the basic and supplementary line switch
frames.

A number of wire spring relays can be seen on each of these frames.
These are used for setting up steering cireuits for crosspoint control in
the ferreed switches contained in the rectangular cases seen in this
Figure. Driving current to operate the ferreed crosspoints is obtained
from a solid-state pulser employing a high-power silicon triode. This
pulser is located near the bottom of the bay containing the control
electronies.

To set up a connection, central control, through the switching frame
electronics, orders the establishment of a pulsing path to the appro-
priate crosspoints. The erosspoints are then closed by applying a high-
current pulse through the established network control path.

At the top of the bays in a matrix configuration are “ferrods’ which
provide line supervision. Both the ferreeds and ferrods were
invented especially for No. 1 ESS and are described further below.

4.5 The Ferreed’

Each of the rectangular ferreed switches shown in the photograph
contains an 8 X 8 array of ferreed crosspoints, as shown in Fig. 13.

Fig. 13 — No. 1 ESS ferreed switch assembly.
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Each crosspoint consists of a pair of dry reed glass-encapsulated switches
molded into a small subassembly and inserted with two remendur
plates into a solenoid consisting of two control windings as shown by the
exploded view in Fig. 14. When a high-current pulse is transmitted
simultaneously in the appropriate direetion through the two solenoid
windings, the remendur plates are poled to produce a north-south
magnetie field from top to bottom. Remendur, being a square loop ma-
terial, remains magnetized after removal of the pulse, causes closure of
the reed contacts, and holds them closed without further expenditure
of power. Operate current from the pulser flows through appropriate
interconnections on the wire spring relays to a given column and row of
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Fig. 14 — Two-wire ferreed erosspoint,
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the 8 X 8 ferreed switch unit, thus operating the crosspoint at the
intersection of that column and row.

The two windings of the control solenoid are arranged so that a pulse
of current through only one of the windings will produce magnetization
of the remendur platesin a north-south/south-north distribution about
the magnetic shunt plate shown in the diagram. The opposing magnetic
fields of the two halves of the remendur plates thus permit the contact
to open. This arrangement, together with the matrix interconnection in
the 8 X 8 array, produces a crosspoint configuration of the ‘“‘destruc-
tive mark” type. There is no need to release a connection upon comple-
tion of a call since the half select current on a subsequent network
connection will cause the release of the crosspoint if it is no longer re-
quired in the new connection. A network map indicating the closed or
open state of the erosspoints is recorded in the temporary memory
described later. Thus there is no need for a sleeve lead to be provided in
the network as in electromechanical switching systems.

An early model of a machine developed by Western Electric Company
for automatically winding the solenoids for the ferreed crosspoints is
shown in Fig. 15. Here the entire shunt plate containing the molded
assemblies for the erosspoints is oscillated in such a way as to wind four
solenoids simultaneously. In the foreground are a two-wire and four-wire
ferreed switch assembly before the ecrosspoints and remendur plates
have been inserted.

A second type of ferreed is also required to act as a cut-off relay for
ferrod sensors used for line supervision. This design, shown schematically
in Fig. 16, may be operated or released by reversing the direction of
current through the control winding. When energized in one direction,
the remendur rod in the control winding is poled in a direction to aid the
magnetic field from a permanent magnet. This causes closure of the
reed contact. A pulse of current in the opposite direction switches the
remendur field to oppose the permanent magnet to release the contact.
The use of this device in connection with line supervision is described
below.

4.6 The Ferrod

Line supervision is obtained by means of ferrods mentioned earlier.
Several varieties of this deviece are illustrated in Fig. 17. Each of these
assemblies contains two ferrods, one at either end of the assembly in a
molded wire arrangement that is well adapted to mechanized manu-
facture using wire spring relay manufacturing techniques. The devices
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Fig. 15 — Ferreed switch automatic winding machine.
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previously seen in the line switch frames mounted in a matrix configura-
tion were the ends of a number of these dual ferrod assemblies.

A schematic diagram of this simple and reliable device is shown in
Fig. 18(top). It consists of a rectangular ferrite stick surrounded by
solenoid eontrol windings connected in series with the customer’s tele-
phone line and talking battery. In the center of the ferrite stick are two
holes through which two small coupling loops are inserted. In the ab-
sence of line current, i.e., when the customer is “on-hook,” the ferrite
stick is unsaturated and good coupling exists between the two single
loop windings. Thus a 4-microsecond interrogating pulse transmitted
from the scanner to the loop will produce a corresponding pulse in the
read-out loop. When the customer goes “off-hook,” the resulting cur-
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" Fig. 18 — Top: ferrod in customer's line circuit; bottom: typical response of
errods.
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rent through the control windings saturates the ferrite stick, with the
result that very little coupling exists between the interrogating and
read-out loops. Thus it can be seen how this device provides a means for
sensing the state of a customer’s line at speeds compatible with elec-
tronic data processing.

The ferrod control windings are connected to the customer’s line via
a cut-off ferreed deseribed above. When a service request is detected,
an appropriate dial tone connection is set up through the switching
network and supervision is transferred to a junctor or trunk circuit.
The cut-off ferreed disconnects the ferrod associated with that customer’s
line to remove any transmission impairment which might otherwise be
incurred. The cut-off ferreeds are mounted in a 1 X 8 ferreed switch
assembly and may be seen adjacent to the 8 X 8 ferreed switches in
Fig. 12.

Ferrods are used not only for customer line supervision but also at
various other places throughout the system where high-speed sensing
of direct current states is required. The sensitivities needed in these
various applications eall for three ferrod types, as indicated by the
response curves shown in Fig. 18(bottom).

4.7 Seanner

Interrogate pulses for the ferrods are obtained from an electronic
scanner of 1024 points. The ferrods are arranged in 64 rows of 16 ferrods
per row, and the scanner selects one row of 16 ferrods simultaneously
when requested to do so by central control. This is accomplished by the
arrangement shown schematically in Fig. 19. Half microsecond pulses
from the central control address bus are stretched to 4 microseconds
and through a ferrite core matrix drive the appropriate row of 16 fer-
rods. Separate output amplifiers from the ferrod read-out loops supply
central control with the “0” or “1” state of the corresponding ferrods
through separate output amplifiers.

Fig. 19 also shows some of the features included to sense any malfunc-
tion in the scanning processes. One of these shown to the right and
labeled ASW check is an “all seems well” pulse. This pulse indicates to
central control that a particular row, and only that row, of ferrods was
indeed interrogated. Another check feature is shown at the bottom left
of the diagram in which a pulse is returned to central control to verify
the fact that an “enable” pulse for the seanner was in fact received.
Morris experience played a strong role in suggesting these provisions,
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Fig. 19 — Funetional diagram of a 1024 point scanner,

1.8 Trunk Clircuils

Earlier it was mentioned that stored program control permits a major
simplification in trunk cireuits. Through this type of operation, it has
been possible to reduce drastically the number of different types of
trunk cireuits required and to provide many of them on a plug-in basis
with standardized factory wired frames for the receptacles. Compart-
ments for plugging in the trunk eircuits are shown in the universal
trunk frame illustrated in Fig. 20. Each compartment accepts a trunk
package containing two trunk circuits of a type indicated schematically
in Fig. 21. From the notes on the diagram, the reader will observe the
wide variety of ecircuit configurations made possible with program
control. Other trunk circuits of this same general type are provided to
meet special needs for interconnection with existing electromechanical
offices. Some of these incorporate special networks to improve return
loss.

A miscellaneous variety of trunk or service eircuits are also required
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Fig. 20 — Universal trunk frame.

to provide such functions as dial tone, ring, audible ring, TOUCH-TONE
receivers, and the like. These are mounted in a miscellaneous trunk
frame as required and are permanently wired at the factory.

4.9 Central Control

Central control is the heart of the high-speed information processing
common control equipment. It is a high-speed semiconductor logic
machine designed to interpret instructions contained in the program
store and to carry out the appropriate logical operations contained in
each instruction. A photograph of one of the two central controls used
in the system is shown in Fig. 22. Each central control is made up of
approximately 2300 circuit packages containing approximately 14,000
transistors and 45,000 diodes. Typical plug-in packages and the nest
into which they are plugged are shown in Fig. 23. Considerable develop-
ment effort was devoted to the design of a highly reliable conneetor which
could be manufactured at low cost. This was essential in view of the
large number of plug-in packages used in the system.
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Fig. 23 — No. 1 ESS logic packages and nest.

Central control is word-organized to receive 44-bit instructions from
the program store and to process information with the aid of the call
store on a 24-bit word basis. Its cyele time is 5.5 microseconds.

A considerably simplified block diagram of eentral control is shown
in Fig. 24. No attempt will he made here to describe this diagram. In-
stead, the types of actions the central control isdesigned to perform will
be outlined briefly. The organization differs from that of a general
purpose computer since the functions required in a telephone switching
office are primarily logical rather than arithmetic operations.

A special program language with appropriate symbolic codes was
evolved to optimize the performance of the system in processing infor-
mation for telephone switching type operations. Each word in the
program store shown at the top of the diagram is identified by a specific
address designated in binary code. The program word located at that
address contains an operation order, information as to where the data
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Tig. 24 — No. 1 ESS central control — simplified block diagram.

to be processed may be found in memory, and various other symbols
which may request such operations as masking a portion of a word,
complementing the' word to be processed, or performing the logical
union or product with another word. Various types of operation codes
are included in the programming language. The class of operation code,
an example of the symbology used, and the meaning of that symbology
for several types of operation are shown in Fig. 25. The logic design of
central control provides for interpreting these types of instructions and
for earrying out the specified operation.

A frequently used order related to the “shift” order shown in the
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CLASS EXAMPLE MEANING g#??;&
MOVE MK MEMORY TO ACCUMULATOR (K) 28
ADD AWK ADD WORD TO K 1
SUBTRACT SBR SUBTRACT BUFFER FROM REGISTER 10
COMPARE CMK COMPARE MEMORY WITH K 5
PMK PRODUCT OF MEMORY WITH K ("AND")

LOGICAL HuUwx UNION OF WORD WITH REG (“OR") 24
H SHIFT

TRANSFER TKAZ TRANSFER IF K IS ZERO 26
(TZRFZ TRANSFER IF K IS ZERO, IF NOT 12

FIND FIRST ONE AND ZERO IT AND

COMBINED | SAVE BIT POSITION IN F REGISTER

\amx ROTATE K, MOVE MEMORY TO X REGISTER 66

Fig. 25 — Example of operation codes.

figure is called “rotate.” This is similar to a shift order except that the
bits of a word which might be shifted off the right-hand end of the
register are saved by bringing them back to the left end of the register.
For example, this instruction may be used to determine the “right-most
one” in a binary word. Suppose that the bits of this word represent the
busy (“0”) or idle (*“1”) state of a group of trunks. The single order to
determine the “right-most ‘1’’’ would immediately locate the first idle
trunk. '

In addition to logic cireuitry to earry out operations of the types
deseribed above, central control includes a number of features provided
for automatic maintenance purposes. These are listed in Table I.

4.10 Program Slore

In Morris the program store was the flying spot store as already noted.
For the commercial system, it was deemed desirable to eliminate elec-
tron tubes wherever possible, both from a reliability point of view and
to simplify power supply arrangements. Fortunately, the twistor
memory,} invented at Bell Laboratories, appeared on the scene early
enough for this purpose.

An over-all view of the program store incorporating sixteen twistor
modules together with access and read-out electronics is shown in Fig.
926. This store, of which at least two are provided in each office, provides
a memory capacity of about 5.8 million bits organized into 131,000
words of 44 bits each. Any word in the store may be randomly accessed



968  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUG. 1965

TaBLE I — CeNTrAL ContrROL MAINTENANCE FAcCILITIES

1. Internally and externally generated maintenance interrupts.

2. Il&fiormation in eall store encoded with a parity bit checking both data and
a ress.

. Information in program store stored in Hamming code, the parity bit checking
both address and data; can correct single errors, detect double errors in data,
ean detect single and double errors in address.

. Program and eall store reread facilities.

. Round trip check of central pulse distributor enables output to peripheral
units.

. An internal check signal (“‘all seems well”’) is generated in program stores,
call stores, and scanners; absence is detected by central control.

. Synchronizing signal on all store communications.

. Word matching Eetwean central controls of selected and selectable internal
central control points:

a. all call store communications normally matched,
b. program store replies matched after a transfer,
¢. selected matching of busses, program store address register, and key de-
coder and sequence circuit outputs.
9. Error counters.
10. Emergency action circuit.
11. Off -line operation possible for selected system configurations.

[

W~ & o

by request from central control. The 44 bits in each word consist of 37
information bits, a 6-bit Hamming code for single error correction-
double error detection, and a final over-all parity bit. The error detec-
tion and correction code is computed across not only the word of in-
formation to be read out of memory but also its address.

The vertical slots which may be seen in the twistor modules ave de-
signed to receive aluminum cards such as that shown in Fig. 27. Each
of the cards has 64 columns of vicalloy spots arranged in 45 rows.
Forty-four rows are used to store the 44 bits of a program word. The
45th bit, together with a row of elongated magnets shown on the upper
edge of the card, serve to condition the magnetic properties of the
twistor wire as the card is inserted. One hundred twenty-eight cards are
used in each of the twistor modules, thus providing a storage capacity
of 8196 44-bit words per module.

Of the 16 modules in the program store, 13 are allotted to progran
and the remaining 3 to translation information. Approximately half
of the program is devoted to telephone call processing and administra-
tive operations, and half is devoted to fault recogniticn and diagnostic
programs designed to ensure dependability and simplify office main-
tenance.

The modules devoted to translation eontain such information as line-
to-directory number translation, class of service marks, trunk transla-
tion, abbreviated dialing lists, and the like. Approximately 16 types of
translation information are used, and class of service designations are
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Fig. 27 — Magnet card for twistor store.

practically limitless within the capacity of the store. On the average,
approximately three words of program store are required per line. Thus,
the three modules provide translation for an office of about 8,000 lines.
For larger offices, additional program stores would be required to provide
additional translation capacity.

An understanding of the operation of the twistor may be obtained
with the aid of Tig. 28. Forty-four pairs of copper read-out wires (of
which four pairs are shown in the diagram) run adjacent to the vicalloy
spots on the magnet card; each pair forms a balanced transmission line
feeding a sensing amplifier. At each word position a single-turn coupling
loop is disposed at right angles to the 44 pairs of twistor wires. A pulse
can be driven through this loop by switching a ferrite core accessed by
appropriate X and ¥ currents. One wire of each of the 44 pairs is sur-
rounded by a spiral of permalloy tape. The vicalloy spots on the magnet
card are located at the intersections of the twistor wire and the single-
turn interrogating loop. In the absence of a magnet at that intersection,
an access pulse in the interrogating loop switches the permalloy twistor
wire and produces an output at the end of that wire. However, a perma-
nent magnet at that intersection will prevent the permalloy tape from
switching, with the result that substantially no output is obtained. Thus,
the viealloy spots on the magnet cards can be used to define the “0’s”
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Fig. 28 — Principles of permanent magnet twistor.

and “1’s” of a 44-bit word by either magnetizing or demagnetizing the
tiny viealloy magnetic material.

The 44 pairs of twistor wires are encapsulated in a plastic tape which
is cemented in a continuous run to the vertical supporting members of
the twistor module. This may be understood more clearly from Fig. 29,
which shows an early version of a machine designed by Western Electric
for fabricating twistor modules. A rear view of a completed module
showing the access core matrix is shown in Fig. 30.

4.11 Memory Card Writer

It should be evident that either the program or translation informa-
tion can be modified by simply changing the pattern of magnetic spots
on the removable magnet cards. This permits a great deal of flexibility
in office administration, not only in modifying translation but also in
providing new service features. For these types of changes, no hardware
or wiring modifieations are required and service changes ean be made in
a minimum of time.

Changes in the magnetic bit pattern can be made with the aid of a
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Fig. 20 — Twistor module assembly operation in Western Electric Company
plant.

memory card writer, shown in Fig. 31. All of the cards in one twistor
module are removed by a motorized program store card loader shown
mounted vertically on the card writer. The card writer is arranged to
withdraw one card at a time from this card loader and pass a 44-bit
writing head across its surface. The card is then automatically replaced
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Fig. 30 — Twistor module access matrix.

in the loader, and the unit is indexed upward to place the next card into
position for withdrawal.

The appropriate information for the 44 bits on the writing head can
be obtained from a tape reader for initial magnetization of the cards at
the factory, or from the call store via central control in an operating
office. In the latter case, information is inserted into the switching sys-
tem via the maintenance teletypewriter into a “recent change’ space in
the call store. Before this space is completely full, the temporary trans-
lation information ean be automatically transferred to the twistor
memory in the program store via the card writer as outlined above.

By arranging to use the call store as a temporary repository for change
information, it is possible to respond very rapidly to customer requests
for a change of service. For example, a remote teletypewriter can be
provided to a service order clerk who can type information (such as
abbreviated dialing lists) directly into the system. Service can be acti-
vated as soon as the service order clerk has finished typing the informa-
tion. In processing telephone calls, central control examines the “recent
change” space of the call store before referring to the program store
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Fig. 31 — No. 1 ESS twistor memory card writer.
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translation tables. It is expected that clearing of the “recent change”
space and transferring the information to the program store will be
required no more than once a week, even in a fairly active office.

4,12 Call Store

Reasons similar to those given for replacing the Morris flying spot
store with the twistor store led also to replacement of the Morris barrier
grid store by a solid-state temporary memory. For this purpose the
ferrite sheet was chosen as the memory element.

A single ferrite sheet is shown in Fig. 32. This sheet contains an array
of 256 holes on a 16 X 16 grid, each of which acts as an individual
ferrite core. The difficult threading operation common to a ferrite core
matrix is largely overcome by the technique of plating one of the leads
in a continuous path through the holes in the ferrite sheet. A number of
these sheets can then be stacked to provide the memory capacity re-
quired and the additional wiring added in a relatively simple operation.
This is indicated schematically in Fig. 33, and a completed memory
module having capacity of 2,048 words of 24 bits each is shown in Fig. 34.

d b o

o b ol D o B B e

LLLEE L s

\
~SHEET THICKNESS
=30MILS

Fig. 32 — Ferrite sheet for No.1 ESS temporary memory.
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Fig. 33 — Access wiring for ferrite sheet memory.

As indicated in the caption for this figure, four such modules are used
in each call store. They are mounted behind the blank panel shown in
the photograph of a call store, illustrated in Fig. 35. The electronic
packages associated with call store operation may also be seen in this
photograph.

The number of eall stores required in & particular office varies with
size and traffic but will never be less than two for the smallest office
because of the duplication requirement.

4.13 Master Conlrol Center

The interface between man and machine in No. 1 ESS is the master
control center, two portions of which are shown in Figs. 36 and 37.
The alarm and display section on the right-hand panel of Fig. 36 indi-
cates which of the duplicated common control units are currently in
charge of the office as well as the condition of the off-line units. As already
noted, switching between these units is normally made under automatic
control of the system. However, push buttons provide for manual inter-
vention. On the test panel at the left are various keys and lamp indica-
tions from which line-load control can be exercised under unusual traffic
conditions. Facilities are also provided for performing certain system

tests.
The main interface with the machine is the teletypewriter shown in
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Fig. 34 — The No. 1 ESS ferrite sheet module has a capability of 2048 words of
24 bits each or a total of 49,152 bits. Four such modules are used in each call store.

Fig. 37. It can be used by the operating personnel to request the machine
to perform a variety of functions and is also used to print out messages
which the machine wishes to give to the maintenance man. Examples of
the former are the use of the teletypewriter to update translation infor-
mation or to insert special service changes such as customer abbreviated
dialing lists. The teletypewriter may also be used to request a print-out
of traffic data or to perform certain maintenance test sequences.
Under normal circumstances, it is anticipated that No. 1 ESS offices
will be unattended. Provisions are therefore made for operation with
remote teletypewriters. One might be provided for the service order
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Tig. 35 — No. 1 ESS call store.
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Fig. 37 — No. 1 ESS master control center — TTY and AMA recording.



ELECTRONIC SWITCHING 981

clerk while another could be located in an attended office where a
maintenance man would have access to maintenance information gen-
erated at the unattended office.

Next to the teletypewriter in Fig. 37 are two magnetic tape recorders
used to record information for automatic message accounting. These
are ‘“‘write only” recorders and operate only when sufficient information
has been accumulated in the call store to justify recorder operation.
Information on the magnetic tape is recorded in blocks and in a format
suitable for processing in a centralized message accounting center. Two
recorders are provided for redundancy as well as to permit tape changes
without interrupting recording operation.

The remaining portion of the administration center is the twistor
magnet card writer, deseribed earlier in connection with Fig. 31.

4.14 Size and Power Requiremenis

In the design of No. 1 ESS, the height of frames was limited to 7 feet
rather than the 11-foot, 6-inch height generally found in electromechani-
cal offices. This height cases the maintenance problem and also permits
installation in conventional eciling-height buildings. In spite of the
reduced frame height, the floor space requirements are less than one-
half the floor space required for an equivalent No. 5 erossbar office.

No. 1 ESS derives its power from +24-volt and —48-volt storage
battery plants continuously charged from commereial power with diesel
engine generator back-up. Circuits are designed to operate over the full
discharge range of the batteries, and there is no requirement for end-
cells or counter-cells. A standard ringing generator is used with pro-
grammed selection of ringing phase to provide immediate ring on
customer lines.

Various tones required in the system, such as dial tone, audible ring,
high and low tones, re-order tone and the like, are supplied by solid-
state oscillators with electromechanical interruption at the appropriate
rates. These tones are made available to the system from a balanced
terminated impedance to avoid transmission impairment during tone
application.

4.15 Programming

The collection of equipment frames comprising a No. 1 ESS office
cannot process a single telephone call without the program which defines
the myriad steps required to carry out the appropriate system operations.
As already noted, this program for a typical office will contain 100,000



082 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUG. 1965

or more 44-bit words for telephone operating and maintenance routines
and perhaps 30,000 words of translation information. The problem of
writing this program is a major one indeed and occupies the time of a
large staff of engineers and programmers.

A major part of the programming activity is devoted to defining the
various features which the office is intended to provide. A second por-
tion of the problem is to convert this design information into the sym-
bolic language developed for No. 1 ESS and to process the resulting
symbolic program into a form suitable for use by the memory card
writer. A third and important activity is the testing of these programs
on the actual No. 1 ESS to locate and correct errors which may oceur
during the first two steps.

To simplify and expedite the conversion of symbolic programs into
binary information on a magnetic tape for the card writer, a special
compiler program has been written. This compiler, known as PROCESS
II1,* is designed for use with an IBM 7094 scientific computer. It
converts symbolic information (punched onto cards) into binary words
to which the compiler automatically assigns absolute memory addresses
for use in the twistor store. The compiler also supplies a binary tape
which ean be run with a simulation program in the general-purpose
computer for initial program “debugging.” A schematic representation
of the flow of information in this process is given in Fig. 38.

The program supplied with each central office must uniquely define
both the service features to be provided by that office and a programmed
definition of the hardware available in that office. In the latter category,
for example, would be a programming statement of the number of
originating registers in call store, number and types of trunks available
to the office, network concentration ratio, etc. However, the prepara-
tion of a complete specialized program for each Central Office would be
impractical. Fortunately, many of the operating and maintenance char-
acteristics are common to a large class of offices, and only a small part
of the program need be produced uniquely for each office. The common
portion of the program has been called the generic program. This in-
cludes the maintenance program suitable for all offices of the class and
the operating program, which includes all service features and operating
characteristics anticipated for offices of that class. A small portion of the
program, called a “parameter table” is specially prepared to meet the
operating company requirements for the individual office. With the use
of general-purpose computers to mechanize the conversion of operating

* PROgram for Compiling ESS.
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Fig. 38 — No. 1 ESS program information processing.

company requirements into specific office programs, it is possible to
generate the twistor information for each office in a very short time.
Speeial programs are also provided for the twistor memory to serve
as both a laboratory tool and by Western Electric Company installation
crews. These are called “X-ray programs.” When inserted in the program
store, they are used to exercise the No. 1 ESS circuits to insure that all
installation interconnections have been properly made and to locate any
troubles which may have occurred as a result of shipping damage.

V. PROGRESS IN PRODUCTION

During the development of No. 1 ESS, close liaison was maintained
with engineers of the Western Electric Company to take advantage of
their produetion experience in the initial designs. This close collabora-
tion resulted in apparatus and equipment designs compatible with
high-volume, low-cost manufacture. It also permitted Western Electric
to develop special production machines during the development interval.
As a result, production systems were available at a much earlier date
than would have been possible otherwise.

The Western Electric Company’s plant at Columbus, Ohio, produced
the first No. 1 ESS during 1962 to serve as a test model at Bell Tele-
phone Laboratories, Holmdel, New Jersey. The frames for the first
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commercial office at Succasunna, New Jersey, were produced in 1963
and by the end of 1964 some 1470 frames had been shipped by Columbus
for installation at nine more central office locations. Five of these were
equipped with four-wire switching networks to serve military users.

The production rate at Columbus will increase rapidly during 1965,
and deliveries will also be made from Western’s Hawthorne Works in
Chicago to meet the rapidly growing demand for this new system.
Within the next eight years the combined output of the two Western
Electric plants is expected to reach a level of 3,000,000 lines per year.

Several views of early manufacturing operations at Columbus are
shown in Figs. 39, 40, and 41.

VI. NO. 101 Egg?.10.11.12

6.1 Design Considerations

No. 1 ESS will provide modern switching services not only to residence
telephones but also to the business community. However, it will be
many years before the existing electromechanical switching plant will
be superseded by this new central office system. In the meantime, it

Fig. 39 — Western Electric Company manufacturing operations: monorail
area — frame testing.
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Fig. 40 — Western Electric Company manufacturing operations: monorail
aren — frame assembly and wiring.

_Fig. 41 — Western Electric Company manufacturing operations: unit surface
wiring.
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seemed appropriate to provide business customers with the new serv-
ices, made economically attractive with electronics, by supplementing
the standard electromechanical central office equipment. No. 101 ESS
was designed to fill this need.

An analysis of PBX customers being served by the Bell System indi-
cated that some 80 per cent of existing electromechanical PBX’s serve
less than 200 extensions. As an initial offering, it was therefore decided
to develop the system in this size range. It was also decided that the
attractive features of stored program control already discussed in con-
nection with No. 1 ESS should be provided with the PBX design.

It turns out, however, that stored program control systems are
currently economical only in large sizes — much larger than the 200-line
capacity envisioned for initial service. This led to a concept in which a
stored program group control located in the central office would serve a
number of outlying PBX switch units on the business customers’ prem-
ises. This is the concept used in No. 101 ESS. It has the further advantage
that most of the maintenance and administration activity for the several
PBX’s can be performed in the central office, thus reducing servicing
costs.

In No. 101 ESS, switching at the customer’s premises is performed by
the use of a time-division switching network. One of the considerations
which led to the choice of time division for this application was a desire
to minimize floor space requirements at the customer location. A second
consideration was that a time-division switch operates silently and can
be installed in any available space without considering acoustic noise
interference to customer activities. To minimize installation time on the
customer’s premises, the switching unit is contained in a single eabinet
provided with plug-in connectors.

6.2 System Organization

Fig. 42 illustrates the system plan chosen on the basis of the considera-
tions outlined above. A group control unit of the stored program variety
is located in the central office building near the electromechanical central
office with which it is to be associated. Central office trunks and control
data links interconnect this group control to outlying time-division
switch units located on the premises of a number of business customers.
In this system the group control is designed to handle a maximum of
3200 extensions divided among as many as thirty-two switch units. The
maximum capacity of each switeh unit in this first offering is 200 lines
although larger switch units are under development. By sharing the
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control among a number of business customers, the advantages of
stored program flexibility can be obtained economically.

The trunks shown on Fig. 42 between the switch unit and central
office provide access between the PBX and the Bell System network for
outgoing and incoming ealls. Conneetions shown between those trunks
and the control unit are for trunk seizure and control only, and do not
provide a voice-frequency transmission path.

The data links shown between the switeh unit and control unit are of
two types. One is a 4-wire, two-way data link for interchange of digital
control information, and the second provides a transmission path for
dialed or TOUCH-TONE digits. The data links are ordinary voice-
frequency pairs and provide for a data transmission rate of about 750
bits per second. There is no technical limit to the distance between
switch units and control unit.
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A simplified block diagram of an individual switch unit is shown in
Tig. 43. All extensions and trunks to the central office are multipled
through electronic gates to two time-division highways or busses. Each
of these busses is equipped with its own memory and control to provide
system redundancy. The use of two busses doubles the number of time
slots available to the customers, provides redundancy in the case of
bus failure, and makes possible a very convenient means for establishing
conference calls.

6.3 Group Control

A photograph of the group control unit is shown in Fig. 44. The four
center bays in this equipment line-up contain two stored program call
processing units which are essentially mirror images of each other. The
system program is contained in the twistor memory module mounted
in the lower portion of the frames. A third twistor memory module in
one of the frames stores line information, abbreviated dialing lists, class
of service marks, and the like. This store is not duplicated since ita
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failure would only deny certain special services. A triplicated system
clock is located adjacent to the line information store in the next frame.

To the right of the call processor are two bays of input/output equip-
ment which provide buffering between the outlying switch units and the
high-speed call processing equipment. These bays also include data
transmission equipment to convert data messages to an appropriate
form for storage in a ferrite sheet buffer store. At the far right, and in
other bays not shown in this picture, are various trunk eircuit interfaces
with the electromechanical office as well as TOUCH-TONE and dial
pulse receivers.

The bays at the far left, including the teletypewriter, provide for
system maintenance in a manner analogous to that of No. 1 ESS. The
frame mounted on top of the line-up houses special equipment for labora-
tory test and is not a part of a normal system.

6.4 Swilch Unait

A photograph of one 200-line switch unit with thedoors open is shown
in Fig. 45. Part of the electronics is mounted on swinging gates, which
provide access to individual line packages inserted in a matrix behind
them. Equipment on these gates consists of the duplicated memory and
control units as well as certain equipment associated with attendant
console operation. Also included are transfer relays used to connect
certain office telephones to ecentral office trunks in the event of failure of
commercial power at the customer location. The power supplies, which
operate from local commercial power, may be seen at the bottom of the
cabinet and are of the solid-state variety.

Individual customer line ecircuits are mounted on plug-in packages
behind the swinging gates and provide access to the factory-wired time-
division busses. Growth in the number of extensions on a particular
switch unit may be easily accommodated by supplying additional plug-in
line packages and the appropriate telephone instrument and inter-
connecting line.

A simplified schematic of a typical line package is shown in Fig. 46.
A pair of pnpn diodes provide the time-division gates for each of the
two busses. These are connected through a low-pass filter to an input
transformer from the station line. Appropriate circuitry is provided for
scanning lines for service requests, and a high-power pnpn triode is used
for applying ringing current to a standard telephone ringer by-passing
the time-division switch.

Sampling of speech on the telephone lines by the time-division switches
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Fig. 45 — No. 101 ESS switch unit.

is carried out at a rate of 12.5 kilocyeles per second. The duration of the
gated signal is approximately 2 microseconds with a total guard interval
of 1.2 microseconds. Thus each bus can provide 25 independent time
slots in the 80 microseconds between samples of a particular line. The
two busses provide 50 time slots for the maximum 200-line capacity of
the switch unit. This provides considerably more traffic-handling capac-
ity than is normally encountered in PBXs of this size.

Transmission loss through a pair of line packages is a combination of
loss in the line transformer, the low-pass filter, and the resonant transfer
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operation. The total insertion loss in this system is approximately 1.5
db, of which most is allocated to the line transformer and filter for
economic reasons. Similar reasons dictated the choice of a 12.5 ke
sampling rate to reduce low-pass filter cost.

As noted above, the telephone instruments themselves utilize standard
20-cycle ringers. However, the telephone instruments may be of either
the rotary dial variety or TOUCH-TONE calling variety, and both
types may be connected to a single line if desired. TOUCH-TONE
signals are transmitted through the time-division switch to a digit trunk
to the group control unit at the central office, where they are detected
and registered in memory at that location. For rotary dial telephones,
the de dial pulses are converted to transients which pass through the
time-division switch and control a burst of tone over the digit trunk to
the control unit. Digit receivers in the central office are designed to
distinguish between TOUCH-TONE calling signals and the tone repre-
senting de dial pulses.

The memory in the switch unit is of the circulating type and employs
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ferrite cores. When set by an appropriate message from the control unit
for interconnecting two customers, that connection remains established
until a new order is received from the control unit.

A photograph of the 200-line switch unit mounted in a reception area
with an attendant and TOUCH-TONE calling console is shown in Fig.
47. As noted earlier, larger switch units are under development. These
will be supplied to serve up to 340, 800, or 3000 extensions,

6.5 Ield Trial

To gain field experience with this system, a trial was conducted of a
prototype at New Brunswick, New Jersey, during 1963. The group
control unit was located in the New Jersey Bell Telephone office in that
city, and switch units were provided for two business customers a few
miles away. A third switch unit, located in Bell Telephone Laboratories
at Holmdel, New Jersey, about 30 miles from New Brunswick, was con-
nected to the control unit via N-carrier transmission circuits. The trial
was carried out over the period from March, 1963, to the end of Decem-
ber, 1963. Equipment used in the trial was essentially identical to the
production system now being manufactured by Western Electric Com-
pany at its Hawthorne plant in Chicago.

Fig. 47 — No. 101 ESS 200-line switch unit and attendant’s console.
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Some of the features incorporated in the system for this trial are
worthy of note. The user is first struck by the speed of response. Pro-
visions for immediate ring make the system very attractive to the busi-
ness customer, even though the time saving may be only a few seconds.

The features most used by our customers in the trial were add-on
conference or dial transfer. To establish a conference after two parties
were connected required only that one of them momentarily flash his
switchhook and dial or key the number of a third conferee. A total of
four conferees, one of which could be on an outside trunk, was possible
in the trial. The limitation was imposed primarily for transmission
reasons, since all customers are effectively connected in parallel. Dial
transfer was done in the same way as establishing a conference except
that the transferring party would simply hang up after adding the third
party.

Another feature, called compressed dialing, was also very popular.
Seven- or ten-digit outside numbers could be called by dialing three
digits. The identification is made by appropriate magnetic patterns in
the twistor module of the line information store in the group control.
When the three digits are dialed by the customer, the call processor
performs the necessary translation and outpulses the appropriate digits
to the distant office. One of the trial customers had a repertoire of 89
compressed numbers with which he could reach all of his sales and
service offices throughout the United States as well as a number of
suppliers with which he frequently conducted business. This list of
numbers is common to a switch unit and can be reached from any ex-
tension on that switch unit.

For intra-PBX calling, another service provided abbreviated dialing
in which a 1X code could be used to reach six frequently called exten-
sions. Such numbers were provided as a separate list for each telephone
extension. In spite of the fact that this code merely reduces the dialing
from three digits to two digits, only the second digit had to be remem-
bered and not the full extension number. This may account for its very
high usage during the trial.

Only six codes were provided for abbreviated dialing, since the codes
17, 18, 19, and 10 were reserved for other purposes. Code 17 was used
for reroute. As deseribed in connection with the Morris Trial, this code
permitted an extension user to route his incoming calls to another
extension at which he might be reached when away from his desk. After
receiving dial tone and dialing the code 17, the extension user dialed the
number of the phone to which he wished his calls to be routed. The
system acknowledged the receipt of this information by returning a
special tone. Thereafter, all calls to that extension would reach the one
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designated. When the user returned to his office, he restored service
by again dialing the 17 code and receiving the special acknowledgment
tone.

The code 18 was used for dial hold. This permitted holding an incom-
ing eall without the necessity of providing special buttons on the tele-
phone instrument and key equipment normally required in existing
PBX’s. If the customer wished to hold a call, he would flash his switch-
hook, dial 18 to hold the incoming eall, and then dial the number of a
person with whom he wished to consult. Transfer back and forth be-
tween the two parties could be accomplished by a switchhook flash and
dialing of the 18 code. If in this process a held party should be forgotten
by the original caller, the originating phone was rung back following
his disconnect to remind him of this fact. This dial hold feature is
attractive in that it does not require a multibutton telephone set, special
key equipment and extra wiring as with electromechanical systems.

Code 19 provided a dial pick-up service. In a group office equipped
with a number of telephones, it is frequently convenient to provide an
arrangement whereby any telephone can pickup any other one in the
room. By placing the appropriate pattern of magnetic spots in the line
information store, a group of phones may be designated as a pick-up
group. When any phone in that group rings, it may be picked up from
any other phone by dialing the code 19. Here again, savings result from
the use of standard telephone instruments without special key equipment
and extra line connections.

The code 10 was used to provide trunk answering from any station
when no attendant was present at the console. Tor example, a night
watchman, upon hearing a ring of a special night service bell, could
answer the incoming eall from the nearest telephone by simply dialing
the code 10.

The trial also provided for Direct Inward Dialing to extensions with-
out going through the attendant and Direct Outward Dialing with
Automatic Number Identification to distant offices. In the latter case,
restrictions could be placed on various lines to prevent direct out-
dialing, restrict out-dialing to a specified local area, or provide full
aceess to the Bell System network. The ability to administer this type
of restriction at the central office by appropriately magnetizing the
twistor cards is another example of stored program convenience.

6.6 Production and Installation Progress

Production of No. 101 ESS has been under way at Western Electric’s
Hawthorne plant in Chicago since 1963. At the beginning of this article,
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reference was made to the cut-over of the first system at Brown Engineer-
ing and Chrysler Corporation in Cape Kennedy, Florida. The group
control unit to serve these customers is located in Southern Bell Tele-
phone Company’s office at Cocoa Beach, Florida, where it is associated
with a No. 5 crossbar switching office. Four businesses in that area are
now (early 1965) being served by that group control. Since the major
installation interval for No. 101 ESS is associated with the group con-
trol, additional switeh units can be added on very short notice and with
only a few hours’ installation time if the necessary transmission circuits
are available.

The second group control produced by Hawthorne was installed for
the New York Telephone Company in their Fifty-sixth Street office in
Manhattan. It is serving telephone extensions from a switch unit located
in the A.T.&T. Co. exhibit at the New York World’s Fair. A second
switeh unit controlled from New York is serving a group of extensions
in the New York Telephone Company’s headquarters, and a third
provides service to about 180 extensions at Bell Telephone Laboratories,
Holmdel.

As noted in the Introduction, installations of group control units
have also been completed in Chicago, Cleveland, Los Angeles, and
Washington, D. C.

VII. SUMMARY

This article has presented a survey of progress being made by the Bell
System in introducing electronic switching into the telephone plant and
has described two systems developed by Bell Telephone Laboratories
for this purpose. Present orders indicate that electronic switching is
being favorably received by the operating telephone companies, and
customer reactions to the new services have been very encouraging. As
production capacity builds up, it can be expected that more and more
customers throughout the United States will find these new features
available to enhance the value of their telephone service.
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Core Materials for Magnetic Latching
Wire Spring Relays

By T. G. GRAU and A. K. SPIEGLER
(Manuseript received July 15, 1964)

The magnetic characteristies of medium carbon steels were examined fo
determine whether these sleels can be used as core materials for magnetic
latching wire spring relays. The analysis of the data show that steels with
a carbon content ranging from 0.35 per cent to 0.50 per cent, heat treated
to a Rockwell hardness ranging from 30 to 45 points on the “C” scale, are
satisfactory core materials. The analysis further shows that the relays are
latched more securely if the carbon content of the steel used for the core is
high, and that the hardness in the above-mentioned range has very litile ef-
fect on the latching characteristics.

I. INTRODUCTION

In telephone switching circuits it is often necessary to hold a relay
operated for a long period of time. An example of such a case is a relay
which remains operated during a telephone conversation. In order to
hold a conventional relay operated for a long period of time, it is usually
locked electrically through one of its own make contacts. This method
of latching requires that a continuous current be supplied to the relay
coil. In the past, relays with mechanical locking features or auxiliary
permanent magnets also have been used. These relays, however, fre-
quently require two electromagnets, one to operate the relay and acti-
vate the locking mechanism and the other to deactivate the locking
mechanism and allow the relay to release. A relay which requires a
mechanical locking mechanism, since it needs two electromagnets, is
equivalent to two relays and is therefore uneconomical.

The latehing force, which holds the magnetic latching relay operated,
depends upon the residual magnetic induetion and coercive foree of the
magnetic materials used in the structure of the electromagnet. The
magnetic latehing relay is operated by a short current pulse. After the
removal of the pulse the relay remains operated. A current pulse of

999
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opposite polarity to, and lower magnitude than, that of the operate
pulse will release the relay. Once released, the relay will remain in that
state until another operate pulse is supplied.

It is apparent that this type of relay is particularly useful when power
is at a premium. Once the relay is operated, no more power is required
to hold it in that state. Moreover, the latching relay has another useful
feature: memory. It “remembers” the command “operate’ or the com-
mand “release” and remains in one of these states until ordered into
the other state.

Earlier studies have shown that high carbon steels can be used to ob-
tain the magnetic characteristics needed in the magnetic structure of
latching relays. An example is the hold magnet of the magnetic latching
crossbar switch.! High carbon steels, however, are not suitable for the
magnetic structures of wire spring relays because the geometry of this
structure would make its manufacture very difficult and expensive.
Therefore, a study was started to determine whether medium carbon
steels could be used.

[I. REQUIREMENTS

The magnetic latching relay has two basic requirements. (1) When
the relay is in its released state it must operate upon the application of
an operate current pulse and remain in the.operated state after the pulse
is removed and until a release pulse is applied. (2) When the relay is in
its operated state it must release upon the application of a release cur-
rent pulse and remain in the released state after the pulse is removed
and until an operate pulse is applied.

As shown by these two requirements, the relay must have two stable
states. No outside influence shall falsely operate or release the relay. In
general, relays are mounted on frames on which mechanical vibrations
oceur. The two states, therefore, have to be such that they will not be
influenced by mechanical vibrations occurring on these frames. The
latching force holding the relay operated has to be large enough to hold
the relay operated and to withstand the vibrations on the frame. Also,
after the relay has been released, the magnetic structure must be in a
magnetic state such that the mechanical bacl tension can securely hold
the relay in its released state. Induced electrical noise in the coil must
also be considered since it could change the magnetic state of the core
and release the relay when it is latched.

To the basic requirements discussed, two more requirements were
added: (3) The magnetic latching relay shall be of the wire spring type.
(4) The magnetic latching relay shall use the same mechanical pile-up as
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the conventional wire spring relay and it shall be possible to manu-
facture the magnetic parts with the same tools that produce the mag-
netic parts of the conventional wire spring relay.

The third requirement was added because of the consistently good
and reliable performance of wire spring relays. The fourth requirement
was added to hold the cost of manufacture to a minimum. The last two
requirements show that it was necessary to select a magnetic material
which, when used as the magnetic structure of the wire spring relay,
will satisfy the first two requirements.

In a magnetic latching relay the parameters which will determine the
latching force and the security of the latched state are the residual in-
duetion and the coercive force of the materials used in the magnetic
parts. Both parameters wi'l effect the suitability of a material for this
application. Fig. 1 shows typical demagnetizing hysteresis loops for two
different materials. Materials (1) and (2) have residual inductions B,
and B,; and coercive forces H. and H,.s, respectively. If an air gap is
introduced in the magnetic cireuit, the flux density will be reduced to
the points B, and B., called the remanent induction. Points B, and B,
are determined by the line given by

Hey Hea
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Fig. 1 — Generalized demagnetization curve.
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Bﬂ &= HMlM/la (1)

where: B, = magnetic induction in the air gap

[, = length of the air gap

Hy = field strength in the magnetic material
length of the magnet.

Iae

Equation (1) provides only an approximation for the change in resid-
ual induction that occurs in a closed magnetic eircuit when an air gap
is introduced into the eircuit. However, it does indicate these changes.

The latching force is directly proportional to the square of the rema-
nent induction. As shown in Fig. 1, material (2) has a higher residual
induction than material (1). However, when an air gap is introduced in
the magnetic circuit, the remanent induction B, of material (2) is lower
than B;, because H.. is smaller than H; . Therefore, the latching force
that can be obtained from material (2) will be smaller than the one that
can be obtained from material (1) for the particular air gap shown.

The third and fourth requirements dictate the geometry of the mag-
netic circuit. Therefore, to obtain a magnetic latching wire spring relay
it is necessary to find a material which has values of residual induction
and coercive force suitable for the magnetic circuit of the presently
manufaetured wire spring relay.

111, MAGNETIC CAPABILITY

Since the geometry of the magnetic structure is fixed by the fourth
requirement of the last section, it is necessary to caleulate values for
the maximum latching force that can be obtained. Fig. 2 shows the
individual parts of the magnetie structure of a wire spring relay.

The maximum mechanical load which must be held operated will de-
termine the minimum latching foree, which in turn determines the mini-
mum remanent magnetic induetion or remanent flux. The relation be-

MAGNETIC STRUCTURE CORE WITH COIL ARMATURE WITH HINGE

Fig. 2 — Parts of the wire spring relay magnetic strueture.
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tween the latching force F' and the remanent flux ¢4 is given by:

2
1
F=_% (—H) k 2
8r A¢ \980 @
where:
F = latching force in grams
ve = remanent flux through the air gap
A, = effective pole face area at the air gap
k = constant correcting for the nonperpendicularity of ¢4 be-

tween the mating areas.

The maximum remanent flux ¢ through the air gap is determined by
the flux saturation level of the armature. If the semipermanent magnet
core has a remanent magnetic induetion which is large enough to keep
the armature saturated, the maximum ¢z and, therefore, the maximum
latching force will be obtained. The attainment of this state will depend
on the values of the residual induction and coercive force of the core
material.

If we assume that the remanent flux of the core is large enough to
keep the armature saturated, an estimate for the maximum latching
force can be obtained. The armature is made of 1 per cent silicon steel
and has a cross-sectional area of 0.346 cm? The nominal value for the
operating flux density of the armature is 15,000 gauss; the calculated
flux of the armature is, therefore, 5190 maxwells. As shown in Fig. 2,
the armature has a dome with an area of 0.712 em® When the relay is
latched, the largest part of ¢ will go through the dome of the armature;
therefore, A in equation (2) can be set equal to the dome area. The
estimated value of k is about 0.8. Substituting the calculated flux of the
armature, the dome area, and the constant k into equation (2), we ob-
tain the force at the dome as 1315 grams. This force is shown in Fig, 3

O T \L = | ”/\._/\?7
[ T 1

Fe

ke —— 1.128 ———>1
Fo
e ihes]

Fig. 3 — Magnetic and mechanical forces.
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as F'p . As shown in this figure, we also have a force on each side leg to
take into account. The flux through each side leg is half of the flux ¢q
through the dome, and the geometrical area of each side leg is 1.25 cm?
Using these values and again a constant of 0.8 in equation (2), we ob-
tain a force of 168 grams at each side leg. This force is shown as Fg in
Fig. 3. The force F¢ in this figure represents the mechanical load, which
is opposite to the latching force. Taking the moments about point A
with the dimensions given in Tig. 3, we find that the maximum load
F¢ which can be held in equilibrium by the latching forces Fp and Fpg
is 1120 grams. This is well above the maximum mechanical load of the
relay, which is in the neighborhood of 580 grams. Therefore, based on
the assumption that the remanent flux is large enough to produce a
flux of 5190 maxwells, the latching force will be about twice as large as
the maximum mechanical load. This means that the structure is capable
of latching the maximum number of contacts, or 24.

The residual magnetic induction of the core will now be examined to
see if it could be large enough to keep the armature saturated when the
relay is latched. If we neglect all leakage flux, then the remanent mag-
netie induction of the core has to be only large enough so as to saturate
the armature. Assuming no leakage flux, we have

Pa = Pc
(3)
pc = Bede = o4
where:
¢4 = saturation flux of the armature
¢c = remanent flux of the core

B; = remanent magnetic induction of the core
A, = smallest cross-sectional area of the core.

As mentioned previously, the saturation flux ¢, of the armature is
5190 maxwells. The core cross-sectional area A. is 0.533 cm?® Using
these values in equation (3), we obtain a remanent magnetic induction
of 9737 gauss for B¢ . This value for B, corresponds to a value which is
lower than either of the values B, or B,: in Fig. 1.

Since the core has to be manufactured with tools presently used to
manufacture the cores of conventional relays, only medium carbon
steels can be considered. The residual induction of these steels is about
13,000 gauss. This corresponds to points such as B, or B,; in Fig. 1.
Since air gaps and leakage flux are present in the magnetic circuit of
the relay, the operating flux level will be lower, as previously discussed
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and illustrated in Fig. 1. However, only 9737 gauss are required for the
operating flux density of the armature. If the coercive force of the core
material is large enough, it is very likely that an operating flux density
of 5190 maxwells of the armature can be maintained when the relay is
latched.

So far we have only looked at the maximum obtainable latching force.
This was necessary in order to see if medium carbon steels should be
considered. As shown, the latching forece that can be obtained is about
twice as large as the maximum mechanical load. However, a relay can
be considered securely latched if the latching force exceeds the mechani-
cal load by 50 per cent. Since the maximum mechanical load is 580
grams, a latching force of 770 grams minimum is needed. Using equation
(2) with a latehing force, F, of 770 grams, we obtain 4727 maxwells for
flux ¢o . The remanent flux of the magnetic circuit has to be larger be-
cause the leakage flux was not taken into account. For the magnetic
circuit under consideration, the estimated leakage flux is approximately
15 per cent of the flux through the core.

Therefore, to obtain a latching force of 770 grams minimum, the
remanent flux of the core should be at least 5500 maxwells when the
relay is operated.

In the above discussion, it was assumed that the coercive force of
medium ecarbon steel is large enough so that the required remanent
flux ean be obtained. Since no exaet relationship exists between mag-
netie induction and coercive force, an experimental study is necessary
to see if values for these characteristics can be obtained with medium
carbon steels so that these steels can be used as core materials for lateh-
ing relays.

IV. STEEL STUDY

At this point in the development of the latehing wire spring relay,
the minimum remanent magnetie induction needed is 5500 maxwells
for a full complement of contacts. The coercive force is not known, but
some considerations such as the need for a securely latched relay and
the need for a reasonably high de release current with a maximum con-
tact load seem to dictate a rather high coercive force in the magnetic
structure. The only further restriction for the core material stems from
an economic consideration; i.e., the steel must be commercially available
and it must be soft enough to be used in present punch press tools.

A steel investigation was made to find a particular steel which should
be used for the relay core and to determine how this steel should be heat
treated to obtain the necessary magnetic properties. Four grades of
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steel containing different amounts of carbon ranging from 0.25 per cent
to 0.50 per cent were obtained. The steels were commercial grades of
C-1025, C-1035, C-1040 and C-1050. Results of an analysis of each type
of steel are shown in Table I.

General-purpose wire spring relay cores and ring samples were made
from the four lots of steel. The relay cores and ring samples in each
steel group were divided into five subgroups and were heat treated to
obtain different values of hardness on the Rockwell “C” scale ranging
from 25 points to 45 points in 5-point steps. The C-1025 steel required
a water quench to obtain the necessary hardness; this makes it unfit for
a material for relay cores because it results in severe core leg twisting
and misalignment. Therefore, the C-1025 steel was eliminated from the
steel study.

The magnetic characteristics of the ring samples were measured with
a Cioffi recording fluxmeter. The resulting measured values of coercive
force and residual magnetic induction correspond to such points as
H, and B, in Fig. 1 and form the raw data which was then analyzed.

Fach of these magnetic characteristics was then plotted as the de-
pendent variable against the ring sample hardness as the independent
variable. The plots of the residual flux versus hardness and the coercive
force versus hardness can be approximated by a straight line for a limited
range of hardness. This can be done with reasonable accuracy if the
“true’” long-range curve has a slowly changing first derivative over the
hardness range. The straight-line approximations of the data of the
coercive force, as fitted by the least squares technique, are plotted in
Fig. 4(a). The equations for the coercive force of the steels are shown
in Table II.

The results are somewhat erratic, although they lead to the expected
curve.? The cause of such erratic results is partly due to the impurities
in the steel samples and partly due to variations in the heat treatment.

It should be pointed out that these results represent only one group
of data points and that another group could lead to slightly different
equations. However, these equations serve to illustrate the trends present
in this range of steels.

TaBLE I — PERCENTAGE OF ELEMENTS PRESENT

Type of Steel | € s \ P ' Mn Mo si Cr v Ni
C-1025 0.24 [ 0.028 | 0.024 | 0.39 0.02 | 0.002 |<0.03 | <0.02/<0.02
C-1035 0.38 | 0.024 | 0.024 | 0.83 0.04 | 0.258 0.07 | <0.02| 0.06
C-1040 0.42 | 0.023 | 0.016 | 0.79 0.02 | 0.207 0.10 | <0.02] 0.04
C-1050 0.49 | 0.019 | 0.018 | 0.79 0.02 | 0.172 0.08 | <0.02] 0.03
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Fig. 4 — Magnetic characteristies of ring samples.

These coercive force curves show three important characteristies: (1)
the coercive foree increases slightly as the hardness increases, (2) the
slopes of the lines are very small and are identical within experimental
error, and (3) the lines are displaced from one another in such a manner
that a definite trend is evident; i.e., the coercive force increases as the
carbon content of the steel increases,

Straight-line approximations as obtained with the least squares tech-

TasLE 1I — EquarioNs ror CoErRcIVE ForceE

Steel Type Equations

C-1035 H., = 1116 4+ (0.0268)X
C-1040 H.. = 11.87 + (0.0266).X
C-1050 H: = 1285 + (0.0305)X

where: H.; = the coercive force in oersteds, i = 1, 2, 3 depending on the type of
steel, and X = the hardness in points on the Rockwell “C” scale and in the
range of 24 points to 44 points.
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nique were found from the data for the residual magnetic induetion of
the ring samples. The results of this analysis are plotted in Fig. 4(b)
and the equations for these curves are given in Table III.

These three curves show that within experimental error the residual
flux: (1) decreases as the hardness increases, (2) varies slowly with hard-
ness, and (3) has about the same magnitude for the three different steel
groups.

Another analysis of these data was tried. The second method was to
fit a ecurve of the form, H.; = ax + aaX + @;2X? to the data by solving
three equations for the constants a;o, @i, and a:s (where 7 = 1, 2, 3
for the different steels). Results of this analysis are shown in I'ig. 5(a).
The same trends that were observed in Fig. 4(a) also ean be seen in this
figure. This analysis of the residual magnetic induction data was tried,
but it produced about the same results as that of the linear analysis.
The method was to fit a eurve of the form R, = a; + aaX + a;:X® to
the data by solving three simultaneous equations for the constants
@i, i1, and as (where 7 = 1, 2, 3 for the different types of steel). The
results of this analysis are plotted in Fig. 5(b).

The test results of the coercive force and residual induction for the
ring samples show that in the hardness range hetween 24 and 44 points
on the Rockwell “C” scale, variations in the coercive force between
steels seem to be larger than variations in the residual induction. Also
since all of the values for the residual flux fall in a relatively narrow
band (between 13.98 K gauss and 15.0 K gauss), all of the three steels
considered here should provide latching forees with very similar magni-
tudes. Therefore, latching relays should have cores manufactured from
materials which provide the largest possible eoercive force.

With these preliminary results, relay cores were manufactured from
the three grades of medium carbon steel: C-1035, C-1040 and C-1050.
Relays were assembled from these cores and the magnetic character-
istics of the relays were then measured. Again, a straight-line approxi-
mation of the data for the coercive force and the remanent magnetic

TasLe 111 — EquatioNs ror REsipual MaaNmTIc INDUCTION

Steel Type | Equations

C-1035 R, = 15.74 — (0.039)X
C-1040 Rs = 16.30 — (0.053)X
C-1050 Ry = 14.76 — (0.0079)X

where: R; = the residual flux in gauss, 1 = 1, 2, 3 depending on the type of steel,
and X = the hardness in points on the Rockwell “C’’ scale in the range of 24
points to 44 points.
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Fig. 5 — Magnetic characteristics of ring samples (cont.).

flux was used. The results for the coercive force are plotted in Fig. 6(a)
and the results for the remanent magnetic flux are plotted in Fig. 6(b).
Table IV gives the equations of the curves for these two figures.

Examination of coercive foree and remanent flux versus hardness
shows that for any small range of hardness, say five points on the Rock-
well “C” scale, the remanent flux varies less than 8 per cent between
the different samples. That is, the value of remanent flux, while it is a
function of the earbon content of the steel, is insensitive to large varia-
tions of the carbon content. Since the value of the ultimate latching
force depends on the amount of remanent flux which can be established
in the magnetic circuit of the relay, this result means that the latching
force will be insensitive to minor earbon variations in a particular steel.
This is an important result for the economical mass production of a
latehing relay.

Variations in coercive force which are larger than variations of the
remanent flux within the same hardness range are observed between
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Fig. 6 — Magnetic characteristics of relay samples.

the different steel groups. However, the ability to maintain the level of
the latching force once it has been established, and not the magnitude
of the force itself, is affected by changes in coercive force. Therefore,
large variations of this parameter can be tolerated in manufacturing
situations provided that enough margin of force has been designed into

TasLe IV — Equations ror Coercive ForceE AND REmanenT FLux

Steel Type Equations for Coercive Force Equations for Remanent Flux
C-1035 H, = 110.9 4+ (0.040) X o= T7.23 — (0.043)X
C-1040 Hs: = 111.4 + (0.060)X wo = 6.99 — (0.034)X
C-1050 H; = 122.5 4 (0.050)X ps = 6.48 — (0.028)X

where: H; = coercive force in ampere-turns, X = the hardness in points on the
Rockwell ““C’"" scale in the range of 24 points to 44 points, ¢; = remanent flux in
kilo-maxwells, and ¢ = 1, 2, 3 depending on type of steel.
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the latched relay. Since the stability of the latching foree is principally
a function of the coercive force and varies directly as the coercive force,
it is reasonable to attempt to heat treat the core to produce a high coer-
cive force. Furthermore, any increase in coercive force which can be
obtained by increasing the carbon content of the core material should
be pursued.

From theoretical calculations a minimum value of remanent flux was
found to be 5500 maxwells. Since this value is below all predicted values
of remanent flux for the three group of relays, plotted in Fig. 6(b), more
amphasis should be placed on choosing a steel to give the maximum
security of the latehing force and obtaining the best core hardness. Since
steels which have carbon percentages above 0.50 per cent are difficult
to machine on a mass production basis, this percentage of carbon repre-
sents a maximum allowable value. Therefore, Fig. 6(a) shows that the
best steel for magnetic latehing wire spring relays based on the magnetic
characteristies is the C-1050 steel. The carbon content of this steel is
0.5 per cent, 40.05 per cent, —0.02 per cent.

Until now, the remanent flux and the coercive force have been treated
as separate and distinet quantities which vary with the carbon content
and with the hardness of the steel. In the magnetic circuit of the relay,
these parameters each influence the dynamic characteristics in such a
manner that measurements of the latching force ean show the validity
of the choice of the core material. Results of a straight-line approxima-
tion of the data for the latching force versus hardness are shown in Fig.
7, and the associated equations are given in Table V.

Several conclusions can be drawn from Fig. 7: (1) Within the group
of steels that were tested, the best core material is the C-1050 steel as
indicated previously. (2) Since theoretical calculations, based on the
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Fig. 7 — Total latching force of relay samples.
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TasLe V— Equarions ror LatcHING FoRrcE

Steel Type Equations

C-1035 F, = 1499 — (13.46)X
C-1040 F, = 1407 — (7.95)X
C-1050 Fs = 1297 — (3.96)X

where: F; = the total latching force in grams, X = the sample hardness in points
on the Rockwell “C”" seale in the range of 24 points to 44 points, and 7 = 1, 2,
3 depending on type of steel.

assumption that the armature would be saturated, produced a force of
1120 grams, it appears that the C-1050 and the C-1040 groups are pro-
ducing saturation in the armature. (3) Since it appears that there is
armature saturation in the two groups, the latching force to latch the
full complement of 24 contacts has been obtained.

The optimum hardness is determined from curves showing the mag-
netic characteristics of the sample relays —i.e., Figs. 6(a) and (b). It
was calculated that a remanent flux of 5500 maxwells should be a mini-
mum value (this allows a 50 per cent operated load margin). Using 5500
maxwells as a lower bound in Fig. 6(b) and considering an experimental
error of -£2 per eent, the highest value of hardness would be 40 points
on the Rockwell “C” scale. Allowing a manufacturing variation of 42.5
points, the hardness to be specified in manufacture is Rockwell “C”
37.5 £ 2.5. With this hardness, the relays should have a total latching
force greater than 770 grams and they should have good margin with
this force.

V. RELAY STUDY

Latching relays, after being operated and latched, can be falsely
released by extraneous effects such as random electrical noise induced in
coil leads and mounting plate vibrations, if these effects are severe
enough. To obtain release parameters in the form of load versus release
ampere-turns for different steels, relays having known loads were
operated, latched magnetically and released by applying a reverse cur-
rent to the coil. Fig. 8 shows the results of this test. Two important
conclusions ean be drawn: (1) The C-1050 steel again is the best steel
for the magnetic latching application, and (2) The slope at any point
along the curve is very steep. A steep slope indicates that the relay
should be capable of accepting various values of loads and still release
correctly.

Referring to Fig. 8, a third conclusion can be drawn: the release am-
pere-turns for the C-1050 steel is larger than 70 NI with a 600-gram
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Fig. 8 — Release with a known load for relay samples.

load. The significance of the load value of 600 grams is that this repre-
sents a higher value of operated contact load than the maximum operated
load (580 grams). A release ampere-turn value of 70 NI represents a
large amount of power in a relay coil; i.e., this amount of power is
much larger than the expected power which a random electrical pulse
could provide by stray coupling to the relay coil. (The coil represents a
high impedance for this type of energy transfer.) Therefore, there is
adequate latching force so that induced random noise pulses should not
release the relay from its latched state.

The test relays were studied to determine de operate parameters.
The resulting curves, pull versus ampere-turns at constant gaps, are
shown in Fig. 9 for the C-1050 steel. Similar curves for conventional
relays usually display a linear region which has a slope of 2. This region
corresponds to a fairly linear section of the magnetization curve below
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Fig. 9 — Constant-gap pull curves for relay samples made from C-1050 steel.

the knee and above the region of easy magnetization (toe to instep). It
is this linear portion of the magnetization curve that produces the linear
section of the pull versus ampere-turns on a log-log plot. In higher
carbon steels that have been magnetically hardened, the magnetization
curve is characterized by the absence of a linear section. For this reason
and due to armature saturation, Fig. 9 has no linear section.

The de operate current for a magnetic latching relay must be found
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from the constant gap curves, shown in Fig. 9. The use of these curves
assumes: (1) The relay has received enough power from the last release
pulse so that the core can be considered in the demagnetized state. (2)
The critical load point is found from values of load for the conventional
wire spring relay. (3) The minimum operate saturation current will be
exceeded.

At this point it is helpful to define the operate flux direction as the
positive flux direction and the release flux direction as the negative flux
direction.

It is not absolutely necessary for the release pulse to return the core
to its zero flux state; however, the pulse must return the core close to
that state and must not allow the core to return to a negative flux state.
If the core is left in such a state, the operate current will be higher than
the current which is found from the pull curves. The operate current
which is found from the pull curves represents a current value which is
useful only as a readjust current for the relay. However, correct dynamic
operation of the relay requires that the operate current supply: (1)
sufficient magneto motive force to saturate the magnetic structure, and
(2) the saturation flux for a minimum pulse time of at least 15 per cent
longer than the operate time of the relay.

Therefore, the minimum dynamic operate current is a current capable
of saturating the structure, and higher operate currents can be used to
obtain faster operate times. A further requirement for operating the
relay is that the current shall not reverse when the current to the coil
is turned off.

A contact protection network used across the coil forms an L-R-C
circuit. If the protection network is not chosen correctly, oscillations
will result (the under-damped case). Then, if the amplitude and period
are large enough, the relay will unlatch because of the current reversal.

The de release eurrent is obtained from a load versus release ampere-
turns curve. Again, this ewrrent is useful only as a relay readjust current
beeause there is no assurance that the core will return to its zero flux
state after the release pulse is turned off.

A N.T. current, meaning “No Ilux” current, is specified for magnetic
latching relays. This value of current, when used to release the relay
from its lateched state, returns the core very close to its neutral magnetie
state.

VI. CONCLUSION

The data presented show that C-1050 steel, heat treated to a hardness
of 37.5 & 2.5 points on the Rockwell “C” seale is a satisfactory material
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for the core of a magnetic latching wire spring relay. It was the best
choice of the medium carbon steels investigated. Satisfactory latching
forces can be obtained with medium earbon steels ranging from C-1035
to C-1050; however, as the earbon content increases, more secure latch-
ing is obtained.

Magnetic latching wire spring relays presently manufactured are
shown in Fig. 10. The cores of these relays are made with C-1050 steel,
heat treated to a Roekwell “C” 37.5 + 2.5 hardness. These latching
relays are used in the No. 1 ESS system. Because of the characteristics
of magnetic latching relays, it is anticipated that the demand for them
will inerease in the future.
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A Precise Measurement of the Gain of
a Large Horn-Reflector Antenna

By D. C. HOGG and R. W. WILSON
(Manuseript received March 24, 1965)

The gain of a horn-reflector antenna with an aperture area of about
400 square feet has been measured with a probable error of 2 per cent at a
Jrequency of 4080 me. Errors and fluctuations normally introduced into
gain measurements by lerrain and other enviromment were obviated by
mounting the source on a helicopler which maintained a position aboul
2500 fi. above ground at a distance of one mile from the antenna under test.
It is concluded that high precision can be obtained in measurement of gain
of large antennas using such methods.

I. INTRODUCTION

The gains of horn-reflector antennas have been measured many times
in the past at Bell Telephone Laboratories, usually with the result
that the effective area is about 1.5 db below full area. In other words,
the measured aperture efficiencies run between seventy and seventy-
five per cent.*

Traditionally, such gain measurements employ a source located in the
Fraunhoffer region of the antenna to be measured. The field radiated
by the source is then sampled at the antenna by taking “height runs”
with a standard (or reference) horn. A thorough job involves several
height runs at various lateral positions to examine the field over the
entire area occupied by the aperture of the antenna. Inevitably, due to
the presence of the ground and other environment, variations exist in
the field that illuminate the antenna under test. If the measurement is
made over the flat ground of an antenna test range, it is possible to
apply corrections to the measured gain. However, when large, high-
gain antennas are involved, it is difficult to find a sufficiently long range
over flat ground. Antenna sites are often surrounded by terrain covered
with vegetation, and the radiation from the source located on a tower

* A precise measurement of a horn-reflector antenna recently was made else-
where.!
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a mile or so away, being in part scattered from such environment, re-
sults in a spatially rough and time-varying field at the antenna under
test. The time-varying effect is usually more evident in the relatively
small reference (standard) horn because its beamwidth is much larger
than that of the antenna under test.

Many of these objectionable features are overcome if the source can
be located at an elevation angle of about 20°. Thus, neither the main
lobe of the reference horn nor that of the antenna under test intercept
the environment, and the measurement proceeds under more or less
“free-space” conditions as it must do if one wishes to evaluate the
absolute gain with confidence.

For the measurement to be discussed here, a source mounted on a
helicopter was used to measure the gain of the 20-foot horn reflector®
on Crawford Hill, Holmdel, N. J., at the frequency 4080 me. The prin-
ciple reason for making this measurement was to provide a reliable
value of the effective area which could be used, in turn, for absolute
measurement of the flux of extra terrestrial radio sources. Once the flux
is known such sources can be used as radiators of known power for
evaluating the effective areas of other large antennas at four kme.

The measurement has resulted in a determination of the gain to
within a probable error of 2 per cent. The measured gains for trans-
verse and longitudinal polarization (the principal polarizations of the
antenna) are 47.73 and 47.57 db while the calculated full area gain,
assuming uniform amplitude and phase over the aperture, is 49.27 db
at 4080 me. Thus, the measured gains are 1.54 and 1.70 db below full
area gain for transverse and longitudinal polarization, respectively.

1I. DESCRIPTION OF THE METHOD

A block diagram of the equipment used in the measurement is shown
in Fig. 1. The 4080-mec source shown schematically in the figure was
flown on a helicopter. Two observers, with the aid of a TV camera
mounted and boresighted along the beam of the horn-reflector antenna,
accurately tracked the source antenna. A reference (standard) horn
mounted on the horn reflector, was of course, also automatically beamed
toward the source. When the tracking was precise (within +.05°), the
receiver was switched from the horn reflector to the reference horn
and the difference in the received levels was read on an output meter.
When this result was combined with the measured constants of the
system, the gain of the horn-reflector relative to that of the standard
horn was obtained.

The 4080-me signal source consisted of a battery operated crystal
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controlled 1 mw transmitter in the cab of the helicopter connected by a
length of waveguide to a special low-back-lobe radiator suspended in
front of the aireraft. The surface of the helicopter nearest the radiator
was covered with hair flex absorber so that any backward radiation from
the source antenna would not be reflected to interfere with the forward
radiation; this effect would result in a ripple in the pattern of the source

40B0 MC/SEC SOURCE

SOURCE ANTENNA

LN

REFERENCE TELEVISION
HORN- HORN CAMERA

%EW\? I

PARAMETRIC AMPLIFIER

t

CONVERTER ‘

i

1. F PREAMPLIFIER |

i

I. E ATTENUATOR I

] B | TELEVISION ANTENNA

MONITOR DRIVE
GAIN SET

-

L

Fig. 1 — Block diagram of measuring system.

horn. The source “horn” consisted of an open ended waveguide near the
apex of a pyramidal wooden horn lined with absorbent material and
covered on the outside with a fine mesh brass screen. This “lossy horn”
was moved along the waveguide to a position which produced the flat-
test pattern over the central portion of the main beam.* In a test
(before installation on the aireraft), four by four-foot sheets of metal
placed anywhere behind the lossy horn arrangement were found to
produce total changes of only 0.2 db in its gain.

*A hehcoiter can not maintain an absolutely steady orientation; thus it is
necessary to have an essentially flat source pattern.
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The reference horn attached to the horn-reflector antenna was a
(nominally) 20-db gain pyramidal horn; its performance is desecribed in
detail in Ref. 3. The reference horn was connected by a long run of
waveguide to a waveguide switch inside the cab and could be mounted
to receive either of the two polarizations used for the measurement.
The output of the horn reflector was also connected to the waveguide
switch through appropriate waveguide including a 31-db directional
coupler used as an attenuator. The output of the switch was connected
to the receiver by cable. The loss of the various waveguide runs was
obtained by measuring the VSWR with a short circuit at the end of the
line; the attenuation of the directional coupler was measured carefully
by several substitution methods.

The receiver used a 2-stage parametric amplifier for its front end
which provided a signal to noise ratio of more than 20 db. The paramp
was followed by a converter and IF amplifier which fed through an IF
attenuator into a measuring set. One 3-db step of this IF attenuator
was carefully calibrated with precision attenuators. By switching in
this attenuator at the same time that the input to the receiver was
switched from the horn reflector to the reference horn, the signal level
at the gain set remained essentially constant, and the difference could
be read on the expanded scale of an output meter to within 0.01 db;
it was recorded as the nearest tenth db.

I11. RESULTS

The distributions of measured level differences between the signals
received by the horn-reflector and the reference horn are shown in
Fig. 2 for both planes of polarization. A measurement with a higher
level for the horn reflector is plotted with a positive abscissa, £. The
meaning of the terms ‘“‘transverse polarization” and ‘longitudinal
polarization” is given in Fig. 3.

The medians of both distributions have been found as well as the
range which has a 99 per cent chance of including the true value. These
results are given in Table I.

To convert the numbers in Table I to the corresponding gains of the
horn reflector we need the following additional constants of the system,
givenin decibels in Table II. (For an explanation of the last two columns,
see the next section, which discusses aceuracy and corrections.) From
the equation:

Gun = GRH + LHE + LD(.’ = Lm? = Lul' + R - CSNR + CN?
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Fig. 2 — Distribution of measured data.

where all quantities are in db and R is the median value given in Table
I, the measured gain of the horn-reflector is obtained:

Longitudinal Pol. Ggr = 47.57 db
Transverse Pol. Gur = 47.73 db

IV. ACCURACY OF RESULTS AND CORRECTIONS

The known sources of error in the gain measurement are listed in
Table IIT along with the corresponding maximum error for each.

The first three errors are lumped together in this list because their
combined effect gives the seatter in the observed data (Fig. 3). The maxi-
mum error given in Table III is the average of the deviations of the 99

per cent confidence limits from their corresponding median as given in
Table 1.
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Fig. 3 — Directions of the two planes of polarization for a horn-reflector an-
tenna.

The gain measurements were made with the helicopter at a slant
range of about 5000 feet or 3 D?/A, D being the aperture dimension.
The unusual shape and illumination of the aperture of the 20-foot horn-
reflector make the usual ealculations of the effect of phase error inap-
plicable, so the gain reduction at this range was calculated using formu-
las similar to those used in Ref. 2. This reduction amounts to 0.037 db in
longitudinal polarization and 0.036 db in transverse. These corrections
have been entered as Cyp in the caleulation of gain above, and the un-
certainty in the values due to changes in distance of the helicopter,
and phase errors in the antenna is shown in Table IIIL.

During the gain measurement the signal to noise ratio when the re-
ceiver was switched to the horn reflector was about 20 db. In this con-
dition the noise of the parametric amplifier (=1.7 db noise figure in-
cluding the input cable) was increased by the noise from the room
temperature load (300°K) in the 31-db directional eoupler (Fig. 1) used
to approximately equalize the received signal levels. When switched to

TasLe I
9997, Confidence Limits
Polarization Mlgzgv.l::];:l:gts Median
Upper Lower
Longitudinal 107 0.00 db +0.092 db —0.078 db

Transverse 145 +0.129 db +0.206 db -40.040 db
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TasLe 11

LF. At-
Trans. | Direc- | Trans. |tenuation 5 Correc-
Gain | Line & | tional | Line & se Medla.ln tion for | Near
f‘il £ Switch | Coupler | Switch | While Leve Change | Field
Q.28 Loss | in Horn Loss |Switched | Differ- lin'Signal | Correc-

Polarization gurn Horn Refl Rei. to Ref- ence | o Noise tion
. :ﬁg Refl. Line Horn erence R Ratio Cnr
( Lug Lpe Lrn Horn (db) Csnr (db)

(db) (db) (db) {'c‘lrb}; (db)

3.00 | 0.00 0.04 | 0.04

Longitudinal 20.11 | 0.11 | 31.10
3.00 | 0.129 | 0.04 | 0.04

Transverse 20.11 | 0.15 | 31.10

[=X=
-3 =1
(=241

the reference horn, however, the noise added to that of the parametric
amplifier was only 120°K, rather than 300°K, since that horn looks
toward the cool sky. In addition the signal from the reference horn was
about 3 db stronger than the signal from the horn reflector. These con-
siderations result in a 0.04 db correction to the measured gain (C'syg)
with an uncertainty as listed in Table IIIL.

The directional coupler used to equalize the signals from the two
antennas was measured at Bell Telephone Laboratories by the Calibra-
tion Service of the National Bureau of Standards and by Weinschel
Engineering Co. The results were 31.17 & 0.1 db, 35.10 = 0.3 db, and
35.04 = 0.03 db respectively. In all cases the ranges given are “limit of
error”’. The mean of 31.10 will be used with a limit error of +2 per cent.

Line and switch losses (Lyr and Lgzyz) were obtained by measuring
the standing wave ratio with a short circuit at the end of the line. The
uncertainty quoted in Table IIT allows for errors in the calibration of the
ITF attenuator used in making the SWR measurements and random
errors in the measurement.

Tasue III

Maximum Error Source of Error

1.99% Reading Meter )
Re-orientation of source during measurement
Inaccurate pointing of the horn-reflector

1.0% Unecertainty in near field correetion
1.09%, Signal to noise ratio uncertainty
Uncertainty in the attenuation of components
2.0% Directional Coupler
0.7% Line and switch losses
0.5% IF attenuator
0.7% Uncertainty in gain of reference horn
2.8% Mismatch of parametric amplifier
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The IF attenuator has been compared with standard attenuators
and the error listed in Table ITI is the uncertainty in the standards.

The measurement of the gain of the reference horn is discussed in
Ref. 3. The pertinent error is made up of two parts: random errors and
the error in a standard attenuator. This same attenuator was used in
the Bell Telephone Laboratories measurement of the 31-db directional
coupler. Therefore a correlation between the error in the standard
horn measurement and the error in the Bell Telephone Laboratories
value of the attenuation of the directional coupler used in the horn-
reflector gain measurement is expected. The correlation, however,
is in the sense of reducing the total error, so by treating the errors as
random we are being conservative.

The question of correlation of errors might be asked in relation to all
of our attenuation measurements since, except for the directional
coupler, they are based entirely on Bell Laboratories attenuation stand-
ards which may have common origins of error of which the present
authors are unaware. We therefore show in Table IV the effect of a
1 per cent error in attenuation scale for each of the terms involved in
measurement of the gain of the horn reflector. However, it is not sug-
gested that such large errors exist. What is shown in the table is meas-
ured gain minus true gain and the error assumed is in the sense that a
standard attenuator labeled 20 db would actually have 20.2-db attenua-
tion. It is seen from the table that the errors tend to cancel and it is
acceptable to treat them as independent.

The last source of error shown in Table IIT is an unknown interaction
of the mismatch of the reference horn with the input impedance of the
receiver. The magnitude of this effect was not realized until after the
measurement had been made and it was not possible to correet for it
precisely. The maximum error of 2.8 per cent is derived from measure-
ments made on the parametric amplifier just prior to the antenna gain
measurement, taking into consideration the impedance of its connection
to the switch and the impedance of the reference horn. The match of the
components in the horn-reflector line was good enough that no signifi-
cant uncertainty was introduced by them.

Taking the square root of the sum of the squares of all but the last
error in Table III, one obtains a total (99 per cent confidence) limit

TasLe IV

Transmission Lines Directional Coupler IF Atten. Reference Horn

—.013 —0.31 ‘ +0.03 +0.05




ANTENNA MEASUREMENT 1027

error of 3.3 per cent. Adding 2.8 per cent for the mismatch error we have
a total (maximum) unecertainty in the gain of 6.1 per cent which cor-
responds to a probable error of about 2 per cent.

V. COMPARISON OF THE MEASUREMENT WITH THEORY AND EVALUATION
OF SPILLOVER LOSS

The gain of the horn-reflector antenna at 4080 me, when calculated
by the method discussed in Ref. 2, results in gains of 48.16 db and 48.23
db for longitudinal and transverse polarization respectively. This
calculation assumes that the dominant mode in the feed waveguide is
preserved in the horn and is based on the projection of that mode into
the aperture plane, i.e. the gain degradation due to spillover (signifi-
cant only in longitudinal polarization) is neglected.

The caleulated gain values can be corrected for the loss of energy
in the spillover lobe (discussed in Ref. 2). Consider the equation for
conservation of energy in an antenna pattern. If G(6,¢) is the gain of
the antenna in the direction specified by the angles 8, and dQ is the

differential of solid angle:
fj Goe) d2 = 1

sphere

Sinee the main-lobe region of the antenna pattern is distinet from the
spillover region for horn-reflector antennas, this integral can be broken
mmto two parts:

ff Goy) d2 = 1 — f G (0,0) d2

main-lobe spillover
region region

Because of the geometry of the antenna, the shape of the pattern in
the region of the main lobe is essentially undisturbed by the presence
of spillover, so the maximum gain will be reduced by the factor

1 — ff G(0,0) d2

In order to make this correction to the ealculated gain, the antenna
pattern (longitudinal polarization) was measured in the spillover re-
gion. A source was mounted on a tower about 2 miles away (=6D*/\)
and the antenna was swept in azimuth at constant elevations. Ten
unequally spaced scans were made covering 35° in elevation. On each
scan the response was averaged over a degree or two and a contour
map was drawn from the scans (Fig. 4). The lower elevation scans were
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checked for reflections from the environment into the main beam
by inverting the antenna (which orients the main beam in a different
direction) and repeating the scan through the same section of the
spillover region; no significant difference was found.

The contour map was then divided into elevation zones and integrated
with a planimeter. The resultant value of the integral over the full
spillover lobe was 5.4 per cent of total power; this corresponds to a 0.23-
db deerease in gain in longitudinal polarization.*

These results are summarized in Table V.

VI, REMARKS

A method of measuring the gain of a moderately large antenna
(dimension ~80)\) at 4 ge, using a source mounted on a helicopter in
order to minimize environmental effects, has proven aceurate to within

TapLe V
Longitudinal Transverse
Full area gain 49.27 49.27
Computed gain 48.23 48.16
Spillover correetion 0.23 0.00
Theoretical gain 48.00 48.16
Measured gain 47 .57 47.73
Difference 0.43 0.43

a probable error of 2 per cent (=0.09 db) and, with knowledge gained
from this experience, could now be repeated with a probable error of
about 1 per cent. The method would, however, be expected to prove
somewhat less accurate for much larger antennas due to the increased
altitude required and resultant instability of the aircraft under such
conditions. Specifically, the gain of the 20-foot horn-reflector antenna
has been found to be 1.70 and 1.54 db below full area gain (efficiencies
68 and 70 per cent) for longitudinal and transverse polarizations re-
speetively. Reeent measurements on radio sources (Ref. 4) have re-
sulted in a value of 0.21 db for the difference in gain for the two polariza-
tions; this compares favorably with the 0.16 db obtained using the
aircraft-borne source.
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* In transverse polarization the spillover lobe is found to be negligible.
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A General Statistical Determination of
Transmission Characteristics Applied
to L Multiplex

By H. G. SUYDERHOUD
(Manuseript received October 29, 1964)

There is a growing demand for modern communicalion systems capable
of transmitting high-speed dala signals over Bell System facilities designed
primarily to provide telephone service. Much of this data fraffic can be
handled within telephone channels in the swilched network. Somewhat
higher dala rates are feasible on private lines by selection of facilities and
special treatment of the voice-grade circuits. The need for still higher dala
bit rates requires bandwidths equivalent to many message channels, e.g., the
12-channel group, the 60-channel supergroup, and the 600-channel master-
group.

Presentation of basic measured data to statistically characterize trans-
mission in the broader bands in terms of frequency domain specifications s
the object of this paper. Data reduction is covered in delail. Characteristics
of buill-up connections are predicted from knowledge of the characteristics
of subunits, including inherent variability. Such variability 1s a basic
limitation on the degree of equalization that can be achieved with a small sel
of fived networks.

I. INTRODUCTION

The demand for new services offered by the Bell System is increasing
rapidly. Many of the services have performance requirements that are
more critical than those of voice message telephone. They include data
services over voice-band private lines and several types of DATA-
PHONE service over the switched network, and wideband data services
over groups (48-ke wide) and supergroups (240-ke wide) provided by
L-multiplexed carrier facilities of the L-earrier plant. Services covering
even wider bandwidths are under development. They are more critical
in that they tolerate considerably less impairment from a number of
sources. Two such impairments are amplitude and envelope delay

1031
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distortion that are present in the L-type terminals which provide our
long-haul facilities. Equalization of the terminals carrying these services
seems the obvious solution for reducing distortion to tolerable limits.

Equalization in the frequency domain is the process of designing net-
works which introduce distortions of equal magnitude but in the op-
posite sense to those of the system characteristic to be equalized. The
suceess of such equalization hinges critically on the precise statistical
knowledge of existing characteristics actually encountered in the plant
and is limited by their variability.

Data acquision on transmission of a network as vast and complex as
the L carrier plant can be accomplished only by having a judiciously
chosen sampling plan. The plan discussed here consists of dividing the
plant into representative subunits; many combinations of types of sub-
units in tandem make up a complete transmission system. Data have
been obtained by way of aceurate measurements of loss and envelope
delay of a random sample of each category of subunits. A general
method for processing and statistically determining transmission char-
acteristics from the measurements is discussed. The method includes
the problem of synthesizing the over-all system characteristic in sta-
tistical terms from separate knowledge of subunit characteristics, given
any system make-up. However, the statistics of system make-up would
require another study of comparable complexity.

The subunits chosen are back-to-back group, supergroup, and master-
group modems* and interconnecting equipment of the LMX 1 carrier
plant. Examples are shown of both predicted and measured multiple-
link characteristies of a complex system make-up.

Comparable work is planned on data acquisition and statistical pres-
entation for the newly designed, transistorized LMX 2 carrier terminals.!
The methods deseribed in this paper are therefore believed to be of
general usage for presentation of transmission characteristics.

II. BASIC DATA AND THE METHOD OF ANALYSIS

2.1 Transmission Characteristics

Transmission through any equipment unit can be characterized in
general terms by its frequency transfer funetion in complex form:
H(w) = exp {a(w) — jB(w)]
with « representing amplitude and 8 phase.

* The word “modem”’ stands for modulator/demodulator and is used here for
e?uipment being interconnected at modulated frequencies; thus, input and output
of a modem are at identical frequencies.
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For the purpose of this study we are concerned with accurate knowl-
edge of « in the frequency band of interest. For measurements at like
level points or measurements corrected to such points, « is ideally equal
to 0. This value is arbitrarily assigned to some reference frequency,
generally near the center of the band. The amplitude characteristic of
interest is then given in terms of deviation from 0 for all other fre-
quencies. Such deviations are expressed in db, with 0 db at the reference
frequency.

For distortionless transmission, 8 should be a linear function of angular
frequency w. In other words, we are concerned with accurate knowledge
of dB/dw versus frequency. dB/dw is called envelope delay, and the fre-
quency at which there is minimum envelope delay is generally used as
reference. The time units of envelope delay are typically microseconds
or milliseconds. Test sets measure envelope delay over a finile frequency
difference Af, and results are not precisely d8/dw; but the error is negligi-
ble for low-order distortion.

2.2 Data Acquisition

The quantities amplitude and envelope delay should be known con-
tinuously over the frequency bandwidth to be transmitted. For practical
reasons, however, one needs only to measure at discrete intervals such
that the aetual variation between measurement points is of the same
order of magnitude as measurement accuracy. From previous experience
with or knowledge of the physies of the equipment, the necessary num-
ber and frequency spacing of measurements can be determined. Fre-
quency spacing for group modems was 5 ke, for supergroup modems 20
ke,* and for mastergroup modems 100 ke.

Equipment of a certain type, such as group, supergroup, or master-
group equipment of the L-carrier terminal, will not exhibit identical
transmission characteristics at each installation. Manufacturing toler-
ances and cabling between the actual equipment and access points are
the main contributors to variability. The measurements have shown,
however, that this variability is substantially less than that of the
quantity of interest to be estimated. In statistical terms, we may assume
the coefficient of variation ¢,/u to be < 1, where g, is the standard
deviation of the quantity of interest, p.

Basic data are thus comprised of a representative sample of charac-
teristics of like equipments measured point by point at successive fre-
quencies. In general, we need to make n measurements for each quantity

* Except for supergroups 1 and 3, where ripples at the band edges proved of
generally higher order and intervals smaller than 20 ke where measured.
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(loss or envelope delay) across the frequency band of interest and repeat
them on a number of like equipments, &, to be determined by the de-
sired degree of statistical accuracy. For instance, supergroup modem
characteristics have been measured at 20-ke intervals, if variability was
low enough to allow that wide a spacing. Thus, for the 240-ke band, n
would generally be 12, and k was selected to equal 10.*

Since the quantity of interest for each type of equipment is the amount
of distortion relative to some frequency in the band of interest, all
measurements at other frequencies are normalized in terms of deviation
from the value at that frequency. For amplitude, the normalizing fre-
quency is usually the lineup or maintenance frequency. For envelope
delay, it is usually the frequeney of minimum envelope delay.

Measurement accuracy has an important bearing on the results and
should be an order of magnitude better than the quantity to be meas-
ured. Equally important is the fact that the measurement error is ran-
dom with zero mean, so that it will not bias the outcome of the experi-
ments. By using laboratory-type equipment and exercising care during
measurement and calibration procedures, we can usually fulfill these
requirements. For the data reported here, a frequency accuracy of 1
part in 10° was ensured. Loss measurements were accurate to within
0.03 db, and for envelope delay measurements the accuracy was =1
microsecond.

2.3 Dala Reduction

The statistician R. A. Fisher wrote that the object of statistical meth-
ods is the reduction of data.t In the problem at hand, some 15,000 meas-
urements were taken to represent only 20 pairs of characteristics on
amplitude and envelope delay distortion.

For each type of equipment (subunit), the quantity of interest (loss
or envelope delay) was measured at a number of selected frequencies.
The average and standard deviation at each frequency was then com-
puted. The data, when suitably corrected for the mean, are assumed
normal with x4 = 0. The validity was proven by plotting the residuals
on probability paper, an example of which is shown in Section V.

Where possible, data were pooled to obtain a more precise estimate of
the standard deviations. For instance, 5 group modems are numbered

* A sample of 10 generally is not regarded to yield high accuracy, but as will be
explained later, an estimate of the standard deviation in this case was obtained
on a “pooled”’ basis, inereasing its accuracy by about a factor 3.

t R. A. Fisher, On the Mathematical Foundations of Theoretical Statistics, Phil.
Trans. Royal Soc., April 1922,
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1 through 5. The average loss at some frequency of a sample of each
numbered group in general differs from that of another numbered group.
However, the variability within each sample proves the same, which al-
lows pooling the estimates of the variance. In the case of supergroups,
10 separate estimates could be pooled at each frequency. Since the data
were taken in such a methodical and even manner, the “gamma-plot
routine’” was used to ensure the validity of pooling.? This routine com-
pares an ordered sample of variances obtained from the (normal) data
with a mathematically expected set of values. If they are plotted against
each other on linear coordinates, one expects a more or less straight line
for a good fit of the assumption of equality. The word “gamma” is re-
lated to the function of that name because equal-sample variances for
Gaussian data are distributed as

{32(?1, _ 1)}[(n—1uzlﬂ

f(&n)ds’ = e -
) n — 1 _Z(n 1)/2 1
I‘( ) (1)

2

co[-4(e) - v]efre0)

which is a gamma density function for the variable {[(n — 1)s%/a?},
also known as a x? variate with n — 1 degrees of freedom. In (1), s? is
the sample variance and n the sample size. An example of the use of the
“gamma-plot routine” in relation with this distribution is illustrated in
Section V.

Cross products of sets of data at any two frequencies were computed
for any subunit to obtain the sample covariance between the sets. As
will be shown in Section 2.4, covariance computations are essential for
unambiguous interpretations of presented graphs.

2.4 Statistical Characterization

Having acquired the data on amplitude and envelope delay and having
performed calculations to reduce them to a few significant numbers,
we are now in a position to statistically characterize transmission of the
equipment subunits under study.

Over the bandwidth of interest, we have the average loss or envelope
delay at a number of frequencies. A smooth curve connecting these
points represents the regression of the quantity of interest on frequency,
or to express this another way, the curves shown are “least squared”
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estimates of loss or envelope delay versus frequency. This curve is the
“most likely” characteristic to be encountered and should be used as
basic data for trend equalization. However, the degree of variability
caleulated from the standard deviation indicates the residual variation
to be expected after fixed trend equalization.

This variability is expressed in terms of population percentile. Using
standard tables, limits are caleulated within which a certain percentage
of all probable curves is expected to fall for a certain degree of confidence.
The coherence of the loss measurements and their limits will now be
discussed.

Consider Fig. 1, which shows an average amplitude characteristic of
a supergroup modem of the L carrier. Measurements were made at 20-ke
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Fig. 1 — Example of average supergroup amplitude characteristic (solid line)
and 99 per cent population limits (0.95 confidence).

intervals, and at each measurement frequency the average loss and 99
per cent population limits are indicated. The essential idea here is that
the curve connecting the average loss points is representative of the
general shape of the characteristic. To clarify this point statistically, one
should consider sets (z;, x;) of pairs of data at two test frequencies, f;
and f; for any numbered supergroup. Any such set may be considered a
sample of a bivariate normal distribution whose general density function
is

7(xs, ;) dede __ dvdy; 1
J\¥y, T;)dr;al; = ZWU{Ujm exp m

[(essY - ol mdmmi , (m=e)],

(2)

where
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) cov (.’E,- ) :L'_-,')

~ A/var (z;) var (z;)’

(3)

the correlation coefficient of the variates z; and x;. For uncorrelated
variates pli-? = 0, and for perfect correlation p'#:? = 1. The general
form of this distribution is a bell-shaped surface, more oblong as p be-
comes closer to &1 (see Iig. 2). The probability of the variates lying
in some specified area is given by the volume integral of f(x;, ;) over
that area. Tables of the bivariate normal distribution are published in
Ref. 3.

The value of p can be estimated from the data at pairs of adjacent test
frequencies and at pairs successively further apart. A typical plot of 5,
an estimate of p, versus measurement interval is shown for supergroups
in Fig. 3(a) and for groups in Fig. 3(b).

This “s-function” illustrates very clearly two aspects of the graphs.
One is that adjacent test frequencies have high positive correlation. This
means that if loss at one frequency goes up, so does the loss in the range
of +20 ke (for supergroups) or 410 ke (for groups) about this fre-
quency. The other aspect is that losses at test frequencies more than
120 ke apart for supergroups and more than 20 ke apart for groups have
very little correlation. The “threshold” of signifiance taken from signifi-
cance tables of p (see Ref. 4), is given by the straight horizontal dotted
lines in Fig. 3(a) and (b).

We are now in a firm position to make the following statements about
the presented graphs: (a) each average curve is representative of the
universe of like curves, and (b) ripples of higher order than those shown
are unlikely. However, pivoting of the curve around the zero reference

Fig. 2 — General shape of bivariate normal distribution.
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Fig. 3(a) — Correlation coefficient as a function of measurement interval for
supergroups. . . .
ig. 3(b) — Correlation coefficient as a function of measurement interval for

groups.

loss point is as likely one way as it is the other. By using the tables of
the bivariate normal,? one can calculate the likelihood of deviations from
the average characteristic.

Although these points may seem intuitively obvious, they are not. For
instance, a variably poor impedance match across the band may cause
ripples over short-frequency intervals. Yet, an average of such curves
may still be smooth and have considerably less ripple. The p-function
of the type shown in Fig. 3 for such a case, however, would rapidly fall
off to statistically insignificant levels as the test frequency spread is
increased.
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2.5 I'mpedance Interactions

Tor accurate data, equipments were measured with laboratory-type
instruments having precisely known, constant impedances. Actually
these equipments are used for operation between less precisely known
and controlled impedances. Since the equipments under consideration
contain networks sensitive to the value of terminating impedances,
departure from design values of these impedances may have an effect
on the transmission characteristies.

Thus it may be that what was measured departs from the actual char-
acteristic of the equipment in operation. It is important therefore to have
knowledge of this departure, again in statistical form. Usually these
departures are small and more or less random. As such, they may be
incorporated in measurement errors.

Impedance interaction effects were determined by measuring ampli-
tude characteristics of a built-up tandem connection of equipments,
and then comparing it with a synthesized characteristic from appropriate
addition of those measured for individual equipments. The results shown
in Fig. 4 indicate a good match when the measurement accuracy is noted.
Only at the band edges are some departures noticeable, but for wide-
band equalization purposes these regions are in general precluded due
to excessive delay distortion.

1IT. MULTILINK PREDICTION

3.1 (leneral

The problem considered here is the synthesis of a transmission char-
acteristic of a circuit comprised of several subunits in tandem. The
individual characteristics of these subunits are known in terms discussed
in Section II. Again, the result would be in the form of an average and
expected variation for a given degree of confidence.

In general, transmission characteristics of subunits in tandem which
behave like independent variables are additive if expressed in db and if
their impedance levels are identical at the interfaces. Statistically this
means that the best estimate of the average characteristic of a sum of
subunits is the sum of the subunit averages. Thus if the estimated aver-
age of the quantity of interest for the 4th subunit at some frequency f
is fi; , then for n subunits in tandem

n= ;ﬁi-
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Fig. 4 — Typical example of added versus measured group characteristics.
Solid lines are measured.

Similarly, for the variances (o)

These expressions should be used with caution if junction loss distortion
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is appreciable. One may be forced in such cases to actually measure the
characteristic, or else appropriately enlarge &° to reflect the effect of
impedance interactions. For our purposes we showed in Section 2.4 that
impedance interactions resulted in negligible junction loss distortion.
The p-function as discussed in Section 2.4 for a composite characteris-
tic can be estimated from knowledge of subunit p-functions. The general
expression for estimating p for # subunits in tandem between two fre-
quencies, f; and f; , is
n ﬁl'“':)
Ali, ) _ I=1
= n

7

since we may assume the variance within subunits at a given frequency
to be equal. For instance, the estimation of values of p for a composite
group characteristic traversing supergroups would result in a weighted
average of p for groups and p for supergroups according to the above
expression. An example will be shown in Section 3.2 of a p-function so
derived.

3.2 Some Applications

A major portion of the long-distance communication facilities of the
Bell System is frequency multiplexed by L-carrier equipment at terminal
offices. The technique of frequency-multiplexing employs numerous
filters, although the number of different filter designs is relatively few.
For instance, to multiplex 600 channels only 27 different filter designs
are employed.®

To complete transmission from one terminal office to another, a
transmitting terminal is necessary at one end and a receiving terminal
at the other. To characterize transmission from the transmitting to the
receiving offices, one needs transmission characteristics of a transmitting
and receiving terminal only, interconnected back to back. The influ-
ence of the high-frequency medium, such as radio or coaxial cable, is
negligible compared with the terminal over the fraction of bandwidth
considered here. That is, a supergroup occupies a 240-ke band, and an
equalized coaxial cable has a maximum residual ripple of the order of
only 0.2 db per 240 ke."

Having gathered and statistically analyzed back-to-back terminal
characteristics, one is in a position to estimate the characteristics of
circuits consisting of a given number of links in tandem. Each inter-
connection may take place at basic group frequencies (60 to 108 ke),
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basic supergroup frequencies (312 to 552 ke), or basic mastergroup
frequencies (564 to 3088 ke). An appropriate connector is used for each
interconnection of incoming receiving to outgoing transmitting equip-
ment, and its transmission characteristic should be inecluded in the
overall prediction.

Fig. 5 shows the characteristic for an actual group circuit representing
a complex layout between New York City and Phoenix, Arizona. This

5
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Fig. 5 — New York City-Phoenix group circuit, 8 SG connectors, 4 GR con-
nectors.

group cireuit traversed 9 supergroup modems, 8 supergroup connectors,
5 group modems, and 4 group connectors to give a total of 26 subunits.
The measured characteristic* is indicated by the solid line, and it will be
observed that it falls within the expected limits indicated by the dashed
lines. Using the expression given in Section 3.1 for 3 and the data in
Fig. 3 (a) and (b), the p-funetion for this kind of a built-up connection was
calculated and is shown in Fig. 6.

Another important application of multilink prediction is that of esti-
mating group amplitude slopes. Slope is defined here as loss difference
between 63-kc and 103-ke points. From knowledge of the individual
characteristics of group and supergroup modems, it is possible to lay out

* Courtesy of the Long Lines Department of the American Telephone and
Telegraph Company.
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Fig. 6 — Correlation coefficient as function of measurement interval for com-
posite group characteristic of Fig. 5.

all “paths” that a basic group band might take in being transmitted
from office A to office B, given the number of links in between. For three
links interconnected at basic supergroup frequencies there are 5000*
equally probable paths, thus 5000 equally probable slopes. Not all the
slopes will have different values, but together they will constitute a
distribution of average slopes. If the variability within subunits is in-
cluded, two more distributions of extreme (positive and negative)
slopes can be numerically caleulated. These three distributions are derived
from composite modem characteristics of groups, supergroups, and
supergroup connectors and are shown in Fig. 7.

As a third example, consider the problem of lineup of system loss.
At present, L multiplex facilities in the Bell System use 92 ke for group
circuits, and 424 ke for supergroup circuits as the lineup frequencies.
Signals at these frequencies are permanently present for monitoring and
adjustment purposes and are called pilots. However, to clear the band
of interfering signals for wideband data transmission, the new standard
pilot frequencies will become 104.08 ke for the group and 315.92 ke for
the supergroup. The new pilot frequencies are thus located approxi-
mately 4 ke from the band edge. Maintaining the same system loss as the
old pilots at these new frequencies means a general increase of load de-
livered to the high-frequency medium. This comes about because loss at
new pilots in general is higher than at old pilots, a fact that could be de-

* In the first link, a set of five possible groups has a ‘‘choice’ of a set of ten

supergroups, and similarly ten choices in the second and third links, totaling
5 X 102
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termined accurately only from preecise knowledge of the amplitude char-
acteristics. On complex multilink ecircuits, the consequences of change
in system misalignment could be determined. This, in turn, has led to
work on the design of equalizers to overcome these difficulties, and also
has helped to establish requirements controlling the design of new multi-
plex equipment.

IV. EQUALIZATION

4.1 Introduction and Requirements

A “theory of equalization” is very concisely presented in Ref. 6 where
the two modes of frequency domain equalization, dynamic and fixed, are
considered in detail and a basic set of rules is postulated. Since we as-
sume time-varying distortion to be present only outside the terminals
under consideration, it is natural to assume also that dynamic equaliza-
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tion is likewise implemented. Therefore only fired equalization will be
considered briefly here.

As was explained in the previous sections, we deal here with charac-
teristics that vary from equipment to equipment, although the fre-
quency band is identical among like units. Equipments of a certain
category, such as groups or supergroups, are used interchangeably and
very often are operated in tandem. Yet the characteristics of, say, Group
No. 4 in Supergroup No. 9* between cities A and B are not exactly the
same as the same allocation between cities C and D. Moreover, this
particular group circuit may be operated in tandem with, say, Group No.
1 in Supergroup No. 3 interconnected by a group connector equipment
unit. Each of these have different distortions to be included in the
overall distortion of the particular group eireuit.

Thus, the question may be raised of how to equalize a varied plant on
a fized basis. The answer to a large degree hinges on the requirements for
allowable distortion after equalization. Moreover, the requirement for
residual distortion is highly dependent on the type of signal to be
transmitted. In addition, the choice of equalization depends on the
manner in which it is to be administered, to ease the burden of the
operating telephone companies.

This paper is not primarily concerned with what plan of equalization
should be used under given circumstances. However, the method of data
analyzation deseribed here is considered a basic tool to arrive at some
plan of equalization with fixed networks. The assessment of residual
variability and the method of correlating its limits over the frequency
band of interest will subsequently be used to determine the maximum
obtainable benefit in applying such networks. Work at Bell Laboratories
is in progress to formulate effective equalization plans based on data
gathered and analyzed in the way described here, to meet present day
service requirements.

V. CHARACTERISTICS OF PRESENT PLANT

5.1 Purpose

At present, L-multiplex facilities generally are used for long-distance
ecommunication transmission in the Bell System. In order to gain precise
knowledge of transmission characteristics, particularly to enable engi-
neering of wideband data communications, numerous point-by-point

* Group and supergroup numbers refer to their frequency allocation after
modulation or before demodulation; see also Ref. 5, p. 34.
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amplitude and envelope delay measurements have been made of L-
terminal equipment.

The data have been reduced and analyzed in the manner deseribed
and are presented in this section for future reference. As the plant grows
and new designs like LMX 2! are added, more data will be taken, simi-
larly processed, and analyzed to keep a running account of the trans-
mission facilities. The data presented here pertain to LMX 1 terminal
equipment.

5.2 Groups and the Group Connector

The basic group frequency band is from 60 to 108 ke. Groups num-
bered 1 to 5, each with different carrier frequencies, are assembled in a
group bank the output of which, transmitting, constitutes the basic
supergroup band. When looped back directly into a receiving group
bank, characteristics can he measured on a back-to-back basis for each
measured group.

Results of amplitude characteristics of 17 banks are shown in Figs.
8 to 12. Figure 13 shows a typical example of envelope delay for groups.
The sample of groups for which envelope delay was measured was rather
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Fig. 13 — Envelope delay distortion for back-to-back group circuits of the
MX 1.

small, and variability within numbered groups proved of the same order
of magnitude as variability between groups of a different number, and
thus no separate presentation was warranted. The method used for
precise checking of this statement is that of the Analysis of Variance
where “treatments’ are represented by numbered groups. At several
frequencies such an analysis was made and the above conclusion con-
firmed. Population limits are omitted on envelope delay curves because
the measurement variability proved to be comparable with equipment
variability.

At terminal offices receiving groups are often retransmitted without
demodulation to voice frequency. For such cases a group connector is
used to interconnect the output of one receiving group with the input
of a transmitting group. Very sharp cutoff accompanied by severe
delay distortion at the band edges is the main characteristic of a group
connector. The average and dispersion of nine such characteristies are
shown in Fig. 14. As was the case for group bank delay curves, this figure
shows no dispersion for the delay characteristics.

5.3 Supergroups and the Supergroup Connector

As was done for groups, the average of ten supergroup bank charac-
teristics is presented in Figs. 15 to 24. The basic supergroup frequency
band is from 312 to 552 ke, and in LMX 1 carrier systems there are ten
numbered supergroups, again each with a different carrier frequency.
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Tig. 14 — Average of nine characteristics of the group connector (L-L).

The envelope delay characteristics cannot all be lumped together as
was done for groups. Here, Supergroups No. 1 and 3 are markedly dif-
ferent from each other and from the remaining eight. Thus, Figs. 25 and
26 show the envelope delay for Supergroups No. 1 and 3, respectively.
Fig. 27 shows the characteristic for the combined measurements of
Supergroups No. 2 and 4 through 10.

Similarly, supergroups are also interconnected at terminal offices,
and a supergroup connector is used for this purpose. It is likewise char-
acterized by sharp edge cutoffs, as shown in Fig. 28.
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Fig. 16 — Typical modem amplitude-frequency characteristic of supergroup
No. 2.

The “gamma-plot routine” mentioned in Section 2.3 was successfully
applied to justify pooling of the sample loss variances for each num-
bered supergroup at each measurement frequency. The ten sample
variances at any test frequeney for each numbered supergroup multi-
plied by (n — 1)/¢* form by themsleves a sample of ten of the gamma
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No. 10.

-]
(=]

40

n
=]

N
o |

300 350 400 450 500 550 600
FREQUENCY IN KILOCYCLES PER SECOND

Fig. 25 — Envelope delay distortion for supergroup No. 1 of the LMX 1.
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distribution (1), under the assumption that they represent only one
variance, o If these ten points more or less fall on a straight line in the
gamma plot, the assumption is adopted. More precisely, if the differences
between the straight line values and the observations are less than, say,
the 95 per cent confidence intervals of the observations, the fit may be
considered good. Fig. 29 shows a typical example of the gamma plot
for variances at 400 ke.

In the program of the gamma plot, ¢* is an unknown constant. In
general, it may be taken to equal one. Then the slope of the line fitted
through the points would be an estimate of the pooled variance, 4% Or
vice versa, if another value than one is chosen and the slope of the
straight line equals one, that chosen value for ¢ would prove to be a
good estimate. In the example shown in Fig. 29, the value for ¢* inserted
was 0.053 which proved to be a good estimate.

5.4 Mastergroups and the Mastergroup Connector

Basic mastergroup frequencies are in the band from 564 to 3084 ke.
At present, the L-3 terminal combines three such mastergroups so they
oceupy line frequencies from 564 to 8284 ke.” Again, the three master-
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Fig. 20 — Typical gamma plot for supergroup variances at 400 ke.
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Fig. 30 — Typical modem amplitude-frequency characteristic of mastergroup
No. 1.

groups are assembled into a bank, and the average characteristics shown
in Figs. 30, 31, and 32 are taken of back-to-back transmitting and receiv-
ing mastergroups numbered 1, 2, and 3.

The mastergroup connector serves the same basic purpose as its group
and supergroup counterparts. As this connector is relatively new how-
ever, with no sample of significant size yet measured, a statistical charac-
terization has not yet been possible.

As was mentioned in Section 2.3, all the data have been assumed
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Fig. 31 — Typical modem amplitude-frequency characteristic of mastergroup
No. 2.
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normal. To justify this assumption, the sample distributions of residuals
have been plotted on probability paper.* An example is shown in Fig.
33 for mastergroups where residual loss at 2600 ke relative to 1000 ke
has been plotted in cumulative form. Similar plots have been made for
groups and supergroups with similar results.
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Capabilities of Bounded Discrepancy
Decoding

By A. D. WYNER
(Manuscript received February 23, 1965)

The following four channels are considered: (A) a class of discrete
memoryless channels with q inputs and outputs, (B) the time-discrete,
amplitude-continuous memoryless channel with additive Gaussian noise
and amplitude constraint, (C) the same as channel B bul wilh energy
instead of amplitude constraint, (D) a class of time-discrete, amplitude-
continuous memoryless channels with amplitude constraint and non-
Gaussian noise. For each channel the theoretical capabilities of ‘‘bounded
discrepancy decoding” are studied.

The “discrepancy” between lwo vectors is a distance or distance-like
quantity defined such that the optimal decoder is a “minimum discrepancy
decoder.” For example, for channel A the discrepancy is the Hamming
distance, and for channel B the discrepancy 1is the Euclidean distance.
Bounded discrepancy decoding 1s a nonoptimal decoding scheme in which
disjoint regions in the space of possible received veclors are constructed
about each code word, each region consisting of those vectors within a
fized discrepancy of that code word. For example, in channels A and B
the regions are spheres with centers at the code words and radius d/2 where
d is the minimum distance belween code words. If the received veclor is in
the region about code word 1, it is decoded as code word 1; otherwise the
decoder announces an error.

For all four classes of channels the following is shown to hold: There
eists a fized positive rate C'y below which it is possible (asymptotically in
n) to oblain exrponentially small error probabilily using bounded discrep-
ancy decoding. In many cases C'y is shown to be strictly less than the channel
capacily.
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I. INTRODUCTION

To fix ideas, let us consider first the special case of coding for the
binary symmetric channel. A code is defined as a set of M binary n-vectors
x= (2,2 ,...,2,) wherezy = 0or 1l (k= 1,2,...,n). The indi-
vidual vectors are called code words. The transmission rate R is defined
by M = 2"*. The Hamming distance between two binary n-vectors is
the number of positions in which they differ.

The code words are transmitted through a noisy channel. The re-
ceived vector y is a binary n-vector whose kth coordinate is

e = T + 2 (mod 2), h=1,2...,% (1)
where z: is the kth coordinate of the transmitted code vector, and the
z (b =1, 2 , ) are statistically independent random variables

which assume the value 1 with probablhty 2.(0 = po = %), and the

value 0 with probability 1 — p, . Thus p, is the probability that a given
bit is received in error. This channel is the ‘‘binary symmetric channel.”
It is assumed that each of the M code words is equally likely to be
transmitted, and it is the task of the decoder to examine the received
vector y and decide which code word was actually transmitted. We are
interested in two types of decoding.
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The first is termed minimum distance decoding or minimum discrepancy
decoding (MDD), and here the decoder selects that code word which
has the smallest Hamming distance from the received veector, and an-
nounees that word as the one which was transmitted. It is not hard to
show that MDD is optimum in the sense that it minimizes the average
probability of error for a given code. Let us denote by P.u the average
probability of error using MDD. The Fundamental Theorem of Infor-
mation Theory' states that for any rate R less than the channel capacity
C =1+ p.logap. + (1 — p,) log: (1 — p.), there exists a sequence of
n-dimensional codes (one for each n) with rate R such that P,y — 0,
as n — o, Further we may write P,y = 27" W) where E(R) > 0
when B < (. Estimates of the exponent £ (R) have been found.>**

In order to construct specific codes many workers (for example, see
Refs. 5 and 6) have considered codes in which the minimum Hamming
distance between code words is d. Such codes are capable of correcting
errors affecting e = (d — 1)/2 or fewer coordinates. Suppose that the
code under consideration has minimum distance d and that the decoder
corrects only errors corrupting e = (d — 1)/2 or fewer coordinates (and
announces an error if the received vector is not within Hamming dis-
tance e of some code word). We term this type of decoding bounded dis-
tance decading or bounded discrepancy decoding (BDD) and the resulting
error probability P.,.f Since BDD does not exploit the full error-
correcting potential of the code (an error may corrupt more than ¢ =
(d — 1)/2 coordinates and still be correctable using MDD) it is clear
that P.s = P,y . In this paper we shall study the theoretical capabilities
of BDD, and show quantitatively what is lost by using BDD instead
of MDD.

For the binary symmetric channel the following will be shown to
hold:

Theorem A: There exists a fived rate C'y (called the bounded distance
decoding channel capacity) below which it s possible (asymptotically in
n) to obtain exponentially small error probability using BDD. In other
words, for every B < Cy, there exists a sequence of n-dimensional codes
(one for each n) with rate R such that P.x = o nEsIte(n) 4ohere Ba(R) >
0if R < Cg). Further if R > Cy , P.g— lasn — =,

Although (' is not known exactly, it can be shown to satisfy

t The Peterson-Chien algorithm for decoding Bose-Chaudhuri-Hocquenghem
codes is an example of BDD. (S8ee Chien, R. T., Cyeling Decoding Procedures
for Bose-Chaudhuri-Hoequenghem Codes, IEEE Trans. on Information The-
ory, I1T-10, 1964, pp. 357-363).
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1_‘H(2pu)§CB§1-H(‘%_*Vl"'4=pn)) (2)

where H(p) = —plog:p — (1 — p) log: (1 — p), and p, is the bit error
probability of the binary symmetric channel. These upper and lower
bounds on (' are plotted vs p, in Fig. 1. It is clear that Cp is bounded
below the channel capacity C, the maximum ‘“‘error-free rate” obtain-
able using (optimum) MDD. The exponent Fz(R) can also be esti-
mated by upper and lower bounds.

In this paper we shall study a number of different channels (continu-
ous as well as discrete). For each channel we shall define a distance-
like function called the “discrepancy” which will be chosen so that
the optimum decoder is a “minimum discrepancy decoder.” (For the
binary symmetric channel the discrepancy is the Hamming distance,
and in most of the cases to be considered the discrepancy is a metrie.)
We then define a “bounded discrepancy decoder” and compare the
capabilities of BDD to those of optimal MDD. In all cases we will
deduce the existence of a “bounded distance decoding channel capacity”
(' for which Theorem A holds. In many of these cases we will show
that C5 is strictly less than the channel capacity.

A glossary of symbols is included at the end of the paper.

(0.546) 0.8

(0.408) 0.6

o)

(0.273) 0.4

(0.136) 0.2

i
| Tm=ea

0.4 0.5

Fig. 1 — Upper and lower bounds on Cp (2) (in bits) for binary symmetric
channel (solid lines). Thus Cjy lies in the shaded area. The channel capacity C
is the dotted line. The equivalent value of Cp corresponding to natural logarithms
is given in parenthesis.
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1I. SUMMARY OF RESULTS

We shall consider four classes of channels. In each case the input and

output are n-vectors X = (¥, 22, -+, @) and y = (, Y2, "+, Yn)
respectively, related by
yk=ﬂ'k+3k: k= 1, 2!"'”' (3)
The symbols xz , ¥ and the noise digits z, are as follows:
Channel A (Diserete Channel): The input digits 7 (k = 1,2, --- , n),
the output digits v (k = 1, 2, -+, n), and the noise digits z (k =
1,2, ---,n) are members of the finite alphabet of ¢ symbols, 0, 1, - - -,

g — 1. The addition in (3) is modulo ¢. The 2z are independent random
variables assuming the value 0 with probability 1 — p,, and the values
1,2,---,q — 1 with probability p./ (g — 1). Thus the channel trans-
mits each symbol correctly with probability 1 — p,, and makes an
error with probability p,, all errors being equally likely. The Hamming
distance dy(u,v) between two n-vectors u and v with entries from the
alphabet of ¢ symbols is the number of positions in which u and v differ.

Channel B (Gaussian Channel with Amplitude Constraint): The
digits xx, yu, 2 (k = 1,2, .-+, n) are real numbers. The input vector
x satisfies an amplitude constraint:

—A émk_£_+*4-s ,\2:1,2,--',‘?&. (4)

The noise digits zc (k = 1,2, ---, n) are independent (Gaussian random
variables with mean zero and variance N. The Euclidean distance be-
tween two veetors u and v is denoted by dg(u,v).

Channel € (Gaussian Channel with Energy Constraint): The digits
Tk, Yk s 2 (k = 1,2, - -+, n) are real numbers. The input vector x lies on
the surface of the n-dimensional hypersphere with center at the origin
and radius 4/nP. Thus

k;i e = nP. (5)

As in channel B, the noise digits z; (k = 1,2, -+, n) are independent
Gaussian random variables with mean zero and variance N. The signal
“energy” is »_xr = nP, and the expected noise “energy” is

E(Z Zkz) = Tl-N,
k

so that the signal-to-noise energy ratio is P/N. This quantity is also
the ratio of signal-to-noise ‘“‘average power.”
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Channel C is of course closely related to the bandlimited channel
with white Gaussian noise." Such an identification, however, must be
made with care, and we shall sidestep the issue here.

Channel D (Continuous Channel with Amplitude Constraint): The
vectors X, y and z are members of @, defined as the set of n-vectors
u= (w, U, **+, us) where the coordinates ux (k = 1,2, ---, n) are
real numbers satisfying

—A =wu £ A (6)

We shall assume that the symbols “4” and “=” when applied to
coordinates of vectors in @, denote addition and substraction modulo
24, with the result reduced into the interval [—A,4]. Equation (3) will
thus be rewritten as

Yo = T 4 2k, k=12 +--,n. 7)

The noise coordinates z, are assumed to be independent identically
distributed random variables with probability density function p ()
which satisfies:

(a) p(u) =0, |u| > A.
() pw) >0, |u| = 4.
(¢) p(w) is an even function of u. (8)
(d) p(u) is a continuous, strictly monotone decreasing function
of ufor0 = u = A.
(e) There exists an a > 0 such that for small » we may write

p(u) = pO)1 + 0@

Thus what we have done is to wrap the interval [—A,+ A] onto the
circumference of a circle, and assume that the noise perturbs each
coordinate along the eircumference a distance z; (—A < 2z, < A4). Such
a channel is reasonable for the case where the x; correspond to the
phase of a fixed waveform,f and also as an approximation to other
channels.

For each channel we define a code as a set of M n-vectors x satisfying
the above constraints. The transmission rate R is defined by R =
(1/n) In M7 so that M = e"® We assume that each of the M code words
is equally likely to be transmitted. It is the task of the decoder to exa-
mine the received vector y and to decide which code word was actually

t An example in which this model is applicable may be found in A. J. Viterbi,
“On a Class of Polyphase Codes for the Coherent Gaussian Channel,” IEEE
International Convention Record, part 7, 1965, pp. 209-213.

1 For the remainder of this paper all logarithms will be taken to the base e.
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transmitted. If P,; is the probability that the decoder makes an incor-
rect choice when code word 7 is transmitted (i = 1, 2, 3, -+, M), and
if each of the M code words is equally likely to be transmitted, then
the overall probability of a decoding error is

P, = (I/M)Z:Pei. (9)

The optimal decoder is defined as the decoding system which minimizes
P, for a given code.

As was done for the binary symmetric channel in Section I we shall
consider two types of decoding.

Channel A: The optimal decoder may be shown to be the one which
gelects that code word x which minimizes the Hamming distance,
dy (x,y) between x and the received vector y. Accordingly, we define
the “discrepancy” as the Hamming distance, and the optimal decoder
is the minimum discrepancy decoder (or minimum distance decoder) de-
noted by MDD. Let us denote by P. the probability of error (P.)

using MDD.
The channel capacity of Channel A is readily shown to be
C=C(p,)=hg—H(p) — pIn(g—1), (10)
where

H(p) = —plnp— (1 —p)n (1 — p). (1)
The Fundamental Theorem of Information Theory'” states that for

any R < C there exists a sequence of n-dimensional codes (one for each
n) such that P,y = g E@ M (where E(R) > 0 when B < C). Further

if R > C, P,y = 1 so0that C is the supremum of those rates for which
it is possible to obtain vanishingly small error probability using MDD.

The second type of decoding is described as follows: For the code
being used, let d be the minimum Hamming distance between pairs of
code words. About each of the M code words we construct a ‘‘sphere”
in the space of ¢" n-vectors, consisting of those vectors not more than
Hamming distance (d — 1)/2 from that code word. All these spheres
are disjoint. If the received vector is in the sphere about code word 7, it
is decoded as code word 1. If the received vector is in no sphere, then the
decoder announces an error. We term this type of decoding bounded
diserepancy decoding (BDD), and denote the resulting error probability
by P.s. (i.e., Py is the probability that the received vector is not in
the sphere about the transmitted code word.) Alternately, the bounded
discrepancy decoder corrects errors affecting up to e = (d — 1)/2
positions and no more. Clearly P.s = P.u .
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In connection with BDD we are interested in the quantity M (n,d),
the maximum number of code words in an #7-dimensional code with
minimum distance d. The corresponding transmission rate is E(n,d) =
(1/n) In M (n,d). The following bounds hold:

Ford/2n > (g — 1)/2q:

8
g
Mnd) = (q — 1) (12a)
f=\"3
=q

Ford/2n < (g — 1)/2q:
l el e g

i . < M(nd) = \[mam Ll ) (12b)
(") a-v 15 () e (@-)
where
B =d/2n, (12¢)
= @=Ll _ 2%
t—q—ﬁ[l 1/1 T ] (12d)
K@) = B/[1 — tBg/(q — 1)], (12e)

and where [x] denotes the largest integer not greater than x. The upper
bound (12a) and the first upper bound of (12b) are the well known
Plotkin bounds,”® and the lower bound of (12b) is the well known
Varshamov-Gilbert-Sacks bound as given in Ref. 8; the second upper
bound of (12b) is established in Section III.

Now let us let » and d become large while the ratio 8 = d/2n is held
fixed, and define B(8) = lim R(n,d) = lim R (n,28n). We obtain from

(12a): " "

R(@B)=0, B> (¢g—1)/2g (13a)
and from (12b):
Ing— H(28) —28In (g — 1) < R(8)

_ 28
- (1 e 1)].1] q, (13h)

Ing— H({B) — t81n (¢ — 1),

where H (p) is defined by (11). The second upper bound in (13b) is the
same as the Elias bound" which was obtained independently. Although
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the bounds of (12) and (13) are of interest in themselves, we make
use of them here to demonstrate the following:

Theorem A: There exists a fived rate C'y , called the “bounded discrepancy
decoding channel capacity,” such that for any rate R < Cy , there exists a
sequence of n-dimensional codes (one for each n) such that P.s = exp
[—nEa(R) + o(n)] (where Exg(R) > 0 for R < Cp). Further if B >
Cy, Pow % 1, so that ('y is the supremum of those rates for which it is
possible to obtain vanishingly small error probability using BDD.

For channel A we shall show

C@2p,) = Cp = Cltp,) < C(p,) = C, (14)

so that (', is strictly less than €' the “maximum error free” rate using
MDD.
Finally we can estimate F,(R) by

(1 =55 5) 7).

s ”
8 < Exs(R) = s .
o (2 , 'po) = Es(R) = (q = I[H(,g) + sln (g 1):| ) K
o o7, In g yPo |y

where s = s(R) is defined by

R=0CE)=Ing— H(s) — sln (g — 1), (1ha)
and
_ p _ (1 — p)
alpp,) = pln E' + (1 p) In (1—_?)5 (15b)

C'hannel B: Tor this channel it may be shown that the optimum de-
coder minimizes the Fuclidean distance dg(x,y) between the received
veetor y and the code word x. Accordingly, we define the diserepancy
as the Buclidean distance d g , so that the optimal decoder is the minimum
diserepancy decoder (MDD). Here too the channel capacity (' is the
maximum rate below which it is possible to obtain vanishingly small
P.x . An exact expression for (' is not known but it has been estimated
by upper and lower bounds by Shannon' and a method for computing
(' is outlined by Wolfowitz."" Bounded discrepancy decoding (BDD) is
defined exactly as for Channel A with the Euclidean distance used
instead of the Hamming distance.

Let M (n,d*) be the maximum number of points in an n-dimensional
code with minimum distance d, and let R (n,d*) = (1/2) In M (n,d*) be
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the corresponding transmission rate. We let n and d become large while
the ratio 8 d/2)/n = &/ (411) is held fixed, and define R(8) =
lim R (n,d’ ) = hm R (n46n). Let 8 = g/A*. The following estimate of

n—»00

R(B) is obtalned.

R.(B) = R(B) = Ru(8) (16)

where

0 fz3

¥ nra-2p, Llsp< 1 1)

gl =20, H2P<mF_y

(k = 3,4,5,---)
and
_ In2+An @)+ 1—-FIn@1—-45 =Ru

R.(8) = nlax{co(4ﬂ) - Ry, (18)

where C, (¢) is defined by

Co(k) = In 2AK,(£) — EN(E), (19)
and where A (£) is defined by
A A
f () e My = ¢ f R (7 (19a)
0 0
where
r(u) = o, (19b)
and

K (&)

[ e O Wy ] (19¢)

It is verified in Appendix A that for 0 < £/A4° < 1, there exists a
unique A (¢£) satisfying (19a). The first value of the lower bound R, is
dominant for 0.02 < § < 0.5, and the second R. for 0 < 3 < 0.02.

We make use of the estimate of B (8) (16) to establish Theorem A for

Channel B. Here we have

RL(N) = Cp = Ru(N). (20)
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For large values of A°/N,
Cs2 C —In2 + «(4%/N), (1)

where C is the channel capacity, the maximum ‘“‘error free” rate using
MDD, and e — 0 as A*°/N — . Thus for large values of the “signal-to-
noise ratio” A*/N, (' is within a constant of C, so that the ratio C'5/C' —
1 as A’/N — «. An estimate of E(R) is also obtained.

Channel C: As with Channel B, the optimal decoder is the decoder
which selects that code word x which has the smallest Euclidean distance
from the received vector y. Thus if y = (y1,%2, -+, ¥n), the decoder
announces that code word x which minimizes (with respect to x)

de(x)y) = k;l (me — yw)* = Zki a + Zk: ye — 2 ; Ty . (22)

Since 9, v = nP, dg(x,y) is minimized when > 2y is maximized.
k k

Hence optimal decoding is equivalent to selection of that code word x
which minimizes the angle a (x,y) between x and y, where

kz Trlk
[Z D yf]* '
T k

Thus if we define the discrepancy between x and y as the angle a(x,y),
the optimal decoder is the minimum discrepancy decoder (MDD). Let
us denote by P,y the error probability using MDD.

The channel capacity is ¢ = 3 In[l 4+ (P/N)], and is the maximum
rate below which it is possible to obtain vanishingly small P, . Further
for any R < C, there exists a sequence of n-dimensional codes such that
Py = ¢ "EOT0 Tstimates of E(R) are obtained in Refs. 11 and 12.

The bounded discrepancy decoder (and P.z) is defined exactly as for
Channels A and B but with the angle a(x,y) used instead of the Ham-
ming or the Euelidean distance.

In connection with BDD we consider M (n,0), the maximum number
of points in an n-dimensional code with minimum angle 6, and the
corresponding rate R(n,0) = (1/n) In M (n,0). The following bounds
hold for 8 < =/2:

. ()

n—1 n+ 2
*(*57)

cos a(xy) = (23)

0 —1
I: f sin" ¢ drp]
1]
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< M(n9) (24)

\/;P("_ l)sinnptan\b

< 2
= v
or (g) fo (sin @) " (cos ¢ — cos ¢)dp

where ¢ = sin™" /2 sin (6/2). The upper bound was obtained by
Rankin,” and the lower bound is obtained in Section V. If we let n
become large while @ is held fixed and let R(8) = lim R (n,8) we can

n—+x%0

obtain from (24)
—Insin 8 £ R(6) £ — In /2 sin (6/2). (25)

Inequalities (25) will be used to establish Theorem A for Channel C.
Here we have

C—ln2—-ilmh(1—-€*)=CssC—3ihn2 (26)

Estimates will also be obtained for the exponent Ex(R) and compari-
sons to the estimates of E(R) will be made.

Channel D: For this channel we shall find the optimal decoding
scheme by proeeding as follows. Define the function » (u) by

r(u) = lln@_ , —A=u=s+4 27
A pluw)
where p(u) is the noise probability density function which satisfies
assumptions (8), and X is a constant to be specified later. Equation (27)
is meaningful since by (8b), p(u) # 0. From (27) we see that

p(u) = p(0) exp [—M (u)] = K, exp [—Nr(u)], (28)

where K, = p(0). The n-fold joint probability density for the » inde-
pendent noise coordinates is

pain s, oy ) = [Ip(w) = K" exp [-A T r(w)l. (29)

Let us now consider the decoder. Suppose that the received vector is
y. It is not hard to show that the probability of incorrect decoding is
minimized when the decoder selects that code word x which maximizes
p (y|x), the conditional probability density of receiving y given that x
is transmitted. This quantity is
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p(Y|X) = paltn = 1,02 T2,y -~y Yn = Ta)
(30)

K. exp [—}\,; r(ye = )l

The subtraction of coordinates i = 2, in (30) is performed modulo 24
with the result reduced into the interval [—A,+A). Thus for a given y,
the optimal decoder selects that code word x which minimizes

"

do(xy) = 2 7 (e = ). (31)

k=1
The function d,(x,y) defined on €, X €, will be defined as the dis-
crepancy function, so that the optimal decoder is the minimum dis-
erepancy decoder (MDD). Denote the resulting error probability by
Py .
Let us remark at this point that the discrepaney has the following
properties:

(a) d,(x,y) = 0, with equality if and only if x = y.
(b) do(x,y) = do(y,%).

It is not necessarily a metric, however, since the triangle inequality
need not hold.

For any vector @ € @, , let the “region” S, (e,p) be the set of vectors
B € e, satisfying d,(e,3) < p. We say that a code has discrepancy p
if the regions S, (x,p) about all M code words x are disjoint.

We now describe another, though nonoptimum decoding technique.
Let p, be the largest number such that the code under consideration has
discrepancy p, . Hence the regions S,(x,p,) for all code words x are
disjoint. If the received vector y € S, (x,p,) for some code word x, then
it is decoded as x. If y belongs to no region, an error is announced. We
term this type of decoding bounded discrepancy decoding (BDD), and
denote the resulting error probability by P.s . Clearly Pz = P .

A case of special interest is that for which p (1) = K, exp (—Mu*). This
channel is similar to channel B when A is large (so that the effects of
wrapping the interval [—A,+A4] onto a circle are minimized]. In this
case r(u) = .

Suppose we are given a function r(u) defined on [—A,+A]. This
function defines a discrepancy which is appropriate for the class of
noise densities p(u) = K, exp [—Mr(w)]. Now a given member of the
class could be specified by the parameter X. (K, is then determined by
setting the total mass of p(u) equal to unity.) It is convenient instead
to specify a given member of the class by the parameter N defined by
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4 44
N = Elr(2)] = _[_A r(w)p (u)du = j;A r(uw) Ke ™ ™du.  (32)

That is, given the parameter N corresponding to a A = 0, and the func-
tion r(u), one can solve (32) for A and K, . Thus r(u) and N specify
the channel. For example if r(u) = %°, then N = E[] is the average
noise “power.” It is shown in Appendix H that the channel capacity,
the maximum “‘error free” rate using MDD is

¢ = C,(N) (33)

where the function C,(¢) is defined by (19) with the appropriate func-
tion 7 (u). It is shown in Appendix A, that C,(£) is well defined for

0<¢ g%j; r(u) du.

Let us now consider BDD. Two important quantities here are M (n,p)
the largest number of code points in an n-dimensional code with dis-
crepancy p, and the corresponding rate R (n,p) = (1/n) In M (n,p). We
let n and p become large while the ratio 8 = p/n is held fixed, and then
define B(8) = lim R (n,p) = lim R (n,8n). It is shown in Section VI that

Co(2n8) = R(B) = C.(8), (34)
where C,(£) is defined by (19), and g is defined by
n = sup r(ur - us) (35)

—A<ujug<tdA ?"(ul) + ?"(ug) '
The addition in (35), 1 + uz, is modulo 24, with the result reduced
into the interval [—A,-+A]. It is shown in Appendix B that 7 is finite.
The estimate (34) of R (8) is used to establish Theorem A for channel
D. Here Cp can be estimated by

Co(29N) = Cs = Co(N) = C. (36)

Tor the special case of the quadratic diserepancy r(u) = «’, the quan-
tity 3 = 2, so that the left-hand member of (36) is C (4N ). It will be
shown that in this ease C's is bounded above by C,(2N') so that

C.(4N) = Cp = C,(2N) < C,(N) = C. (37)

Hence in this case Cj is strictly less than C. Further, both the upper and
lower bounds of (37) will be refined for small values of the ‘“signal-to-
noise” ratio A*/N.

Tor large values of “signal-to-noise ratio” A*/N, (37) becomes
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1, 1 A° A® 1, 1 4° A
sl [Tgaity g 3 Sl £-ln—5 4+ = !
30 e N El(N)=(B=2]n1reN 62(N)’ )

where ¢, e, — 0 as A°/N — . It will follow that ' is within a con-
stant of C, so that the ratio C'5/C — 1 as A*/N — o,

III. CHANNEL A (DISCRETE CHANNEL):

3.1 Lower Bound on M (nd)

Our first task is to obtain the second upper bound on M (n,d) of
inequality (12b). We need the following lemmas:

Lemma 3.1: Let gy , g2, -+ -, g be real numbers. Then

,; g = %b (2 g™ (39)

Proof: From the Schwarz inequality

(Z 1-gk) < (E 12) (Z gk") =n ) g
k=1 k=1 k=1 k=1

Lemma 3.2: Given a code with minimum distance d, let x; = (xa, %0,
coe, Bi), @ o= 1,2, -+, m be any sel of m points from the code. Let z be
any n-vector and r; (1 = 1,2, ---, m) the Hamming distance dy (X, , Z)

from x; to z. Then

(ZL) _2(¢—Um (Z ) + 8= Do - g0 @

7 q n

Proof: Without loss of generality assume z = 0. Arrange the m code
words in an array

X = Tun,l12,y """y T1n

Xm = Tm sy Lm2 4 """y Tmn .

Denote by s (j = 0,1, ---, ¢ — 1; k = 1, 2, ---, n) the number of
times symbol j appears in column k. Then, since the code has minimum
distance d,

n g—1
(?) ds 2 de(x,x) =2 2 ysi(m — sp)

-~ lerligm k=1 j=0
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— 1 2
= 22 2 dmsp — 20 20 dsns

k3 k7

Now »_ 2 sjx = mn so that

E 3

(?n) d é m_'n = % Z Sm;z = 1 Z s,-;f. (41)
E 2% ;

2 2
Since sos = m — 2 S;, by Lemma 3.1,
i=0

; su’ S [E (m — 2 S;k):r %[mﬂ - ; 2 sl (42)

Also by Lemma 3.1,

n

> Z 2 e [ T sl (43)

“(g—1)n i>0

Observing that 2 2 s = Z r; , and substituting (42) and (43) into

k i>0 =1

(41), we obtain

(;*)dg-——*(nm—-z r)?
gy (T = m D= e (T

On dividing (44) by ng/2(qg — 1), the lemma follows.

(44)

Derivation of the Bound:

Let us assume that we have an n-dimensional code with minimum
distance d(d/2n < (¢ — 1)/2¢) with M = M (n,d) code points. Con-
sider the “sphere” of radius ¢(d/2) in the space of n-vectors about each
code point where

_q—l 2q £
=1 (- - ) a

and 8 = d/2n. (Since ¢ = 1, these spheres are not necessarily disjoint.)
To each point of the sphere at Hamming distance r from the center
assign weight w(r) = td/2 — r. The “mass” p of each sphere is there-

fore
[¢d/2] n
i=2 (B @-vr(%-) (46)
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If an m-vector z is simultaneously in the sphere about the m code

words X; , Xa , - - -, X. , then we assign a weight w, to z given by the sum
of its weights in each sphere, ie.,
m i I m -
Wy = Z Ld('f',') = :E_)i —_ Z Py (4f)
1=1 = =1
where r; = dy(x;,z). If z lies in no sphere w, = 0. Consequently, we
have
mass of all n-vectors = Z w, = Mnd) u. (48)

all n-veetors
z

We will bound M by finding a bound on 2, w, . Letting s = s, = w,/n,
(47) becomes

2 mid

2 = _— —s=mif — s (49)
n 2n
Substituting (49) into (40) we get
m'8 — 2miBs + s —2 (_qr_l—]) -mztﬂ
, (50)
+ 2 ((];I)' ms + 2 (q—_ 1), ”Lﬂ'fj — d(q‘;i).ﬁ)n é 0.
q q q
Rewriting (50)
0=+s <-m|:7 (i 1)5
b
i s
: (3 -1 _ 2;;3)].
q
Since by choice of ¢ (45),
8 )(q—l)t+2(q—1) 0,
q q
and
, g —1) g—1

21 2 — 923t >0 when g <= )
q 2q
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(51) can be satisfied only when

B A
= = K(8). 2
Ermg-n @ (#2)
Thus
i Wy = E s.n = K(B)ng". (53)
all n-vectors
Hence from (53), (48) and (46) we have
K i
M(nd) = [Ea » (B)ng ) (54)
% (1) @ -na-vr
where
= q— 1 (1 _ 1 — 2q8 K = B
q8 q— 1)’ ®) 1 —8q/(qg — 1)’

and 8 < (g — 1)/2¢.

3.2 Asymptotic Estimates of M (n,d) (13)

Equation (13a) and the first upper bound of (13b) follow directly
from (12a) and the first upper bound of (12b) by writing R (n,28n) =
(1/n) In M (n,28n) and letting n tend to infinity. The lower bound on
R(8) of (13b) follows from the lower bound on M (n,d) of (12b) and
the fact that (Ref. 8, Appendix A)

tn

im w3 (M) G- 10 = HO -t G-D. G

n-»o0 70 r=0

The second upper bound of (13b) follows from (54) and (55) and the
fact that

[tBn] /. [tBrn]l—1
> (”) (tii - 7-) q—1"= 2 (”) (g— D~  (56)
=0 i 2 r=0 ¥

In the important special case of binary codes (¢ = 2), the second
upper bound of (13b) is always sharper than the first upper bound. Thus
for ¢ = 2 we have for g < 1:

1—H@B8) <= RB)=1-—HE — /1= 4p). (57)

These upper and lower bounds converge at 8 = } yielding R(8) = 0,
B = % Inequality (57), is plotted in Fig. 2.
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0.7
0.6
0.5
_~HAMMING BOUND
0.4
R(M)
0.3
- _——PLOTKIN BOUND
~
~
~
[l o ~o
-~
‘-‘-\.‘
0 | | =]
0 o 0.2 0.3 0.4 0.5

Fig. 2 (Channel A) — Upper and lower bounds on E(8) for the binary sym-
metrie channel (57). The dotted lines are the best bounds given in Ref. 8.

3.3 Bounded Discrepancy Decoding Channel Capacity

When Shannon’s Fundamental Coding Theorem is applied to channel
A, one finds that for every R less than the channel capacity C = 1 —
H(p,) — p.1In (g — 1), there exists a sequence cf codes (one for each n)
with transmission rate R such that the error probability using MDD,

Py 2 0. Further R > C, Pox " 1. Thus the channel eapacity (' is the
supremum of those rates i for which it is possible (asymptotically in n)
to obtain vanishingly small error probability using (optimal) MDD. We
now ask what is the largest rate for which it is possible to obtain asymp-
totically vanishingly small error probability using BDD?

Let us suppose that for every n, an n-dimensional code is available
with d/2n = B. Using BDD we have error probability

P.s = Pr [number of errors = d/2 = #nl. (58)

Sinee the errors in each digit oceur independently with probability p, ,
we have by the weak law of large numbers that lim P,z = 0 or 1 according

n->o00

as 3 > p.or g < po.
If we define the bounded discrepancy decoding channel capacity, de-
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noted by Cp, as the supremum of the rates for which it is possible
(asymptotically in n) to obtain vanishingly small P.p, we have from
the foregoing that C» = R(p,). Making use of the second upper bound
on R (8) of (13b) and the fact that ¢ > 1 for 8 > 0, we have for p, > 0

s=R(p)=1—H(@p,) —tp,In (g— 1) =C(tp,) <C. (59)

Thus C' is bounded away from C.
In the binary ease (¢ = 2), we make use of (13b) or (57) to obtain

1—H@2p,) =Ca=1—HG - 3V1 — 4p.). (60)
Inequality (60) is plotted in Fig. 1.

3.4 Exponential Behavior of P.s

For a fixed R < C, denote by P,s" the smallest attainable value of
P.s . It was shown above that P.s* % 0. We shall now show that P.;" =
g mERBItM where By > 0 and obtain estimates of Eg(R).

Given an n and R, denote by 8, (R) the largest value of 8 attainable
for an n-dimensional code with transmission rate . With R held fixed,
let g(R) = lim B.(R). Then (R ) satisfies

n—>"

R.(B(R)) = R = Ru(B(R)), (61)

where R.(8) and Ry (8) are the upper and lower bounds of (13b). If we
define the parameter s = s(&) by

R=Ing— H(s) —sln (g — 1), (62)
we obtain from (61) and (13b)

g — I[H(S) + sln (g — 1):|

2 1
<g@® <{ * e (63)

{1-5%7)

Thus for any R there exists a code (for n sufficiently large) with
minimum distance d = B(R)-2n. With R fixed, this code minimizes

P,y . Thus from (58)

P,»" = Pr [no. of errors = n8(R)]

- > (Mwa-p (64)

r=[8(R)n]

[N ]
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Making use of the fact that (Ref. 8, Appendix A)

n

lim — lln e (f) p (1 — p)™" = alpp.), (65)

n-+0 n r=pn

where a(p,p,) = pIn (p/p.) + (1 — p) In [(1 — p)/ (1 — po)], we have
from (64):

Ey(R) = — lim (1/n) Ps* = a(B(R),p.). (66)

o0

Inequality (63) provides bounds on 3(R) and hence an estimate of
Es(R). Let us observe that for R = 0 (s = (g — 1)/g) the upper and
lower bounds on B(R) (63) converge yielding 3(R) = (¢ — 1)/2q so
that

Ey(0) = a (22‘71 , pa). (67)

Further since «(p, , p,) = 0, Ex(R) vanishes when B = R(p,) = C5 .

In the binary case, the second upper bound on g(R) (63) is always
sharper than the first, so that (66) yields

ﬁ(:‘g)‘1pn) é EH(R) = OE(S(] - 3); po)- (68)

Inequality (68) is plotted in Figs. 3(a) and 3(b) for p, = 5 X 10°°
and p, = 10" respectively. It can be seen from Fig. 3 (b) that for certain
values of R the upper bound on E,(R) is greater than the lower bound
on E(R) (the best exponent for MDD). Thus although E = E;
(since P,y = P.s), there is nothing to indicate that the strict inequality
always holds.

IV. CHANNEL B (GAUSSIAN CHANNEL WITH AMPLITUDE CONSTRAINT)

Our first task is to establish the bounds on R(8) given in Section II.
4.1 Lower Bound on E(8)

4.1.1 Bound for Large

It would not violate the code constraints if the coordinates of the
code words were further restricted to be 4=A. In this case the code is a
binary code and the Hamming distance dn(x,y) between two vectors
x and y is related to the Euclidean distance dg(x,y) by
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Fig. 3(a) (Channel A) — Upper and lower bounds on the exponent Ey(R) for
the case ¢ = 2 with p, = 0.05 (solid lines). Upper and lower hounds on E(R) are
in dotted lines.

Fig. 3(b) (Channel A) — Upper and lower bounds on the exponent Hgz(R)
for the case ¢ = 2 with p, = 107 (solid lines). Upper and lower bounds on E(R)
are in dotted lines.

du(xy) = de’ (x,y)/4A" (69)

Thus if a code (with coordinates restricted to ==A) has minimum
Hamming distance dy = d/4A4° the minimum Euclidean distance is d.
Thus § 2 g/A® = d/4A%n = du/n.

Now let Ra(n,dsz) be the maximum rate for which a binary n-dimen-
sional eode with minimum Hamming distance dy exists. We let n, and
drz become large while the ratio @ = dg/n is held fixed, and define
Rs(a) = lim Rs(n,an). In the light of the above R(8) = Rs(8). The
Gilbert bound (13b) (Ref. 8, p. 52) tells us that

Re(@) 22+ Almf+ (1 -Fn(1-B)for0=p =4
Thus we have

R@zm2+fmf+ Q-3 —p) =R,. (70)

4.1.2 Bound for Small 8

Consider a maximum size n-dimensional code with minimum distance
d, and with M = M (n,d’) code points X;, - -+, X . About each code
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point x, construet an open hypersphere in n-space of radius d. Let V,
denote the volume of the intersection of this sphere with the n-cube
[—A,+A]". Now the union of these 3/ spheres must cover the n-cube:
for if x, € [—A,+A]" is not contained in one of the spheres, d (x,, x,)
d for all », so that x, may be added to the code destroying maximality.
Thus

ME

V.= (24)". (71)

®
[}
LA

Now let S be the n-dimensional hypersphere of radius d with center at
the origin, and V., (d) the volume of S N [—A,+A]". It is not hard to
show that

17‘“§Vﬂ(d), g=1,2,...,M.

Consequently from (71)

M
MV.(d) = D V.= (24)",
=1

s0 that
M(nd®) = [(24)"/Va(d)]. (72)
Applying the result of Appendix C to (72) yields
R(B) = lim (1/n) In M (n,48n) = C.(48). (73)

Tt is shown in Appendix D that for small 3
R.(B) = Ru, (B) = 3 1In (A°/2meB) + €(B), (74)

where e(8) — 0as g — 0.
R.(8) is plotted in Figs. 4(a) and 4(b).

1.2 Upper Bound on R(B)

The approach used in this derivation is similar to Plotkin’s technique
for binary codes. We begin by obtaining the following:

Lemma 4.1: If n < d*/24° (3 = d°/44°n > ),

5 d 23
1 = << —
Mnd) < =

= . 5
P— 24 28— 1 (75)

Proof: Consider the maximum size n-dimensional code with minimum
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distance d with M = M (n,d*) code points X; , X, , -+ -, X . Let X, =
(@, T2y =+, Tyn). Then

(Nes 3 o) =5 % G oo

l<pr=M k=1 p<v
n 2
- ; {M > aat — (Z u) }
n M
=M Z E T

k=1 »=1

2

. 9
Since a,” £ A7,

M

5 ) d* < M*nA®,

M(M—1)‘§=(

from which
M (n,d*) (d* — 24°) £ d°,
and if n < d*/24%,

2 &
M(nd) = (76)

=@ — 24’

completing the proof.
Lemma 4.2: Let a be an integer not less than two. Then
M(nd) € aMn — 1,d° — (24/a)’].

Proof: Again consider the maximum size code with M (n,d) points.
Partition the code into « classes S;, Sa, - -+, S., where S; consists of
those code points X, = (¥, ¥, *++, &) such that

— A4+ (1—1) 24/a) £ au < —A +1 (24/a), 1=1,2, -+, a.

In other words we partition the interval [—A,+A] into « subintervals
of length 24 /e, and assign x, to class S; according as its first coordinate
2, 18 in the 7th subinterval. (To be precise we must close the last sub-
interval (i = a«) at both ends to make the & subintervals cover
[—4,+A4].)

Now delete the first coordinate from each point in the code. Each
class S; is now a code of length » — 1 with minimum distance not less

than
2 (ZA)”,
o
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20

(a)

Fig. 4(a) (Channel B) — Upper and lower bounds on R(g8) vs 3 (
Fig. 4(b) (Channel B} — Upper und lower hounds on R(8) vs 8 (

0.5

0.20

1085

sinee the first coordinates of two code words in class S; do not differ by

more than 24 /a.

Further some class S; has at least M (n,d")/a points, so that
Mn — 1,d — 24/a) = (1/a) M (n,d"),

and the lemma follows.
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Corollary: Let a < (da/2A)" be an integer. Then
Mnd') £ " Mn — a,d — a(24/a)’)]. (77)

Progf: Inequality (77) follows by repeated application of Lemma 4.2,
Since by hypothesis d* — a(24/a)’ > 0, the expression M[n — a, d* —
a (24 /)" is meaningful.

Derivation of the Bound

Let n, be the greatest integer satisfying

1 [ a (24 2]
m < 50 [d (n — no) (7) g (78)
where & = 2. Rearranging (78) we obtain
2 d
Ny < M l:a 24 2:\ =n [23&2 = 2:| (79)
¢ T -2 | TLe-21

Let us also assume as an additional constraint on « that o’ > 1/5,
so that [(28«° — 2)/(a® — 2)] > 0, and for sufficiently large n, n, = 1.
In fact for large n we may approximate n, by

Mo = M [Mil . (80)

o — 2

Now by choice of n, (78), 0 < 24%, < [d* — (n — n,) (24 /a)]. Hence
the Corollary to Lemma 4.2 applies with a = n — n, yielding

M(nd) £ " ™ Mn,,d" — (n — n,)(24/a")]. (81)
Alsoby (78), we may apply Lemma 4.1 to get

(ot = n 20 (24))

@ — (n — n) (%)2 (82)

A
= A\ = Q(e,d,n).
d — (n — n) (—) — 24%n,
o
Thus from (81) and (82) we have
Mmd) £ "™ Q(adn). (83)

Taking logarithms yields:
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2 N, il
Rind) Elhea I:l — TT:I + ’Eln Q(a,dyn). (84)

We now let n and d become large while holding the ratio § = d*/44™n
fixed. It is easy to show that

Ll @, 24v/Fan) 20, (85)

so that using (80) we obtain

R@)glna[l—%%ii2]=und[ “2:h1—2m,mm

at — 2 at — 2

where o is an arbitrary integer satisfying « = 2, and o > 1/8. Using
the choice of « indicated in Appendix E we obtain R (8) < Ry (8) where

Rﬂ(ﬁ) = I . 1 . 1
o g (In k) (1 — 2p) (=L >p= i@ (87)
(k=3,4,:).

Ry (8) is plotted in Figs. 4(a) and 4(b). For small values of B, a
1/4/f so we obtain

Ru(@) = —31n (B) + (), (88)
where ¢(3) — 0 as § — 0.

4.3 Bounded Discrepancy Decoding Channel Capacity

Suppose that for every n, an n-dimensional code is available with
d’/4n = B. Using BDD we have error probability

Py = Prid(xy) 2 d/2] = Pr[d*(xy) = Bnl. (89)

Since d’(x,y) = 2 z°, where the z are the (normally distributed)
=

noise components we have

Ps = Pr L; 2/ z ﬁ]. (90)

By the weak law of large numbers . z'/n tends in probability to
N(= E(z")). Thus lim P,z = 0 or 1 according as § > N or 8 < N.

n-sw

We define the bounded discrepancy decoding channel capacily de-
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noted by (' as the supremum of the rates for which it is possible (asymp-
totically in n) to obtain vanishingly small error probability using BDD.
From the foregoing we see that C'; = R(N). Making use of the bounds
on R(B) established above we have

R.(N) £ Ca = Ru(N), (91)

where R, and Ry are defined by (17) and (18) respectively. These
bounds on C' are plotted vs the “signal-to-noise ratio” A*/N in Fig. 5.
For large values of the ratio A*/N (91) becomes [using (74) and

(88)]

1, 1 A° A? 1, A® A®
glnz—ﬂﬁﬂ—q(ﬁ)éCnéilllﬁ+ez(ﬁ (92)

where ¢ , e — 0 as A°/N — .

The channel capacity is the “maximum error free rate” using MDD
(clearly € = C5). An exact expression for €' is not known, however for
large values of the ratio A*/N Shannon' has shown that

L1, 24° A ,
where ¢ — 0 as A*/N — o . Combining the left inequality of (92) with
(93) we obtain

C—In2+ e(A4*/N) £Cp = C (94)

| 2 5 10 20 50 100 200 500 1000

Fig. 5 (Channel B) — Upper and lower bounds on Cz vs A*/N.



BOUNDED DISCREPANCY DECODING 1089

where ¢ — 0 as A*/N — . Hence for large signal-to-noise ratio A*/N,
g differs from €' by no more than a constant. Alternately Cp/C — 1
as A*/N — =,

4.4 Exponential Behavior of P.p

For a fixed R < Cy, denote by P.;" the smallest attainable value of
P.y , the error probability using BDD. It was shown above that P L
0. In this section we shall show that P.," = exp [—nEs(R) + o(n)] and
obtain estimates of Es(R).

Giiven an n and R, denote by 8. (R) the largest value of 8 attainable
for a code of length n and with transmission rate R. With R held fixed,
let 8(R) = lim 8, (R). We can estimate 8(R) in terms of R by

R.(B(R)) £ R = Ru(B(R)), (95)

where R, and Ry are given (17) and (18) respectively. Inequalities
(95) result in upper and lower bounds on 8(R). Thus for any R there
exists a code (for n sufficiently large) with minimum ‘distance corre-
sponding to B(R) (e, d = 2 v/Bn). With R fixed, this code mini-
mizes P,p. If code word x is transmitted and y is received, the error
probability is [from (89)]

P.s* = Prld(xy) = B8(R)n]. (96)

This quantity depends only on the noise and not on x. It is shown in
Appendix F that

P.s" = exp [—nExz(R) + o(n)], (97a)
where
B(R) 2 l A® B(R) eB(R)
Ez(R) = SN A —§ ed(Ii’) =Sy —111 N (97b)

where 3(R) = B(R)/A*. The upper and lower bounds on 8(R) (95)
yield corresponding bounds on E5(R). These bounds are plotted in Fig. 6
for the case A*/N = 10.

V. CHANNEL C (GAUSSIAN CHANNEL WITH ENERGY CONSTRAINT)

5.1 Lower Bound on M (n,0)
The following bound is similar, though slightly sharper, than the
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[oX:]

Ep(R)

0.4

Fig. 6 (Channel B) Upper and lower bounds on the error exponent Eg(R)
vs R (for A?/N = 10).

lower bound on M (n,0) obtained by Shannon." The derivation used
here is based on a similar argument in Blachman."
Let

\onf2
n-am! n—1

8. (r) = I‘_(??'Tz_).r
2

be the surface area of a sphere in Kuclidean n-space of radius r, and
let A, (r,8) be the area of the n-dimensional spherical cap cut from a
sphere of radius r about the origin by a right circular cone of half
angle 6 with apex at the origin and axis the semi-infinite line connect-
ing the origin and the point (r,0,0, - - -). It is not hard to show that

(n — l)T(ﬂﬁluz n—1 fﬂ . (n—2)
A, (rg) = _——r (ﬂ 3 1) r ] sin o de.
2

Derivation of the Bound

For a given n and 6 consider the maximum size n-dimensional code
with minimum angle 8 between code points. This code has M (n,f)
code words. About each code point x, construct the spherical cap cut
from the surface of the sphere of radius 4/2P about the origin by the
right circular cone with half angle # and axis the semi-infinite line
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joining the origin and x. Thus the cap is the set of points y on the surface
of the sphere such that the angle a(x,y) < 6. Now the set of all such
caps (about each of the M code points) must cover the entire surface
of the sphere. This is so since if x, is a point on the surface of the sphere,
and X, is not on any cap then a(x,, x) = 8 for all code words x, so that
x, may be added to the code destroying the maximality. Since the area
of each of the M caps is A, (v/nP,0), we have

M-A,(\/nP,8) = S.(~/nP)

or

Sn('\/ﬁ) = n -
UCH By G V"

F(n ::* 2) (98)
[ fu B sin™ ™ ¢ d,p:l" ;

This result taken together with Rankin’s upper bound"” yields the
following estimate of M (n,0):

i} hr(n-l—l)
n — 1\/7rr(nzf- )

[ j; 0 sin" ¢ dqa]_l < M (n,f) (99)

n

\/w_I‘( ;l)sinxpta.nw

n ¥ s n—2 ’
21‘(— f (sin ¢) " (cos ¢ — cos B)de
2/

1A

where ¢ = sin~' 4/2sin (6/2).

52 Asymptotic Estimates of M (n,8)

For a given n and 6, M (n,8) is the number of points in & maximum
size n-dimensional code with minimum angle between code points 6.
Let the corresponding transmission rate be B (n,0) = (1/n) In M (n,8).
Now with @ held fixed, let n become large and let R(8) = lim & (n,8).

n-+x
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We shall obtain upper and lower bounds on R (6) from the behavior of
(99) for large n.
Taking logarithms of both sides of inequality (99) yields

n 41
t,oom -1, T\ 1, f".H 4
ﬁlnn—l\/r-i_-ﬁnrn—l—Z)_ﬂnnsm 2%

2

+ 1
. r(’"' ) (100)
< R(ng) = ;li In’nw'\/; + %In N _3_J

2 n
P(i)
1 ¥ .
— 17Lln f sin" " ¢ (cos ¢ — cos ¥)dy,
0

where ¢ = sin”' 4/2 sin (8/2).
It is shown in Appendix G that

In sin 6, (101a)

I

1 8
lim =In f sin" ¢ dp
0

n—=oo T

and that

In sin ¢, (101b)

v
lim 1 In f sin" ™ ¢ (cos ¢ — cos ¥)de
1]

nsw M
from which we obtain (by letting n — =),
—Insinf = R(®) < — In /2 sin (8/2). (101)
The bounds on R (#) are plotted in Fig. 7.

5.3 Bounded Discrepancy Decoding Channel Capacity

We now assume that a code with minimum angle 6 is employed and
a bounded discrepancy decoder is used. We may assume, without
loss of generality, that the transmitted word is x = (vnP0, -+, 0).
The received word y = (v/nP + 21, 22, -+, #) will be correctly
decoded if and only if a(x,y) < 6/2. Since

V1P (v/nP + 2)
\/ﬁ?( (vnP + 2)° + '; zkz)h

cos a(xy) =

we have
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2.5

20

0.5

o | | |
(o} 20 40 60 80 90
f IN DEGREES

Fig. 7 (Channel C) — Upper and lower bounds on R(8) vs 8 (101).

ot a = VAP A a _ VP (a/v)
(*ZN * ) (% Z Zkﬂ)

k>1

Hence the probability of error is

5 -
%Zi/\@ = cotg . (102)
(_ E Zki') )

n>1

P = Pr I:cof a = cot 6—)’] = Pr

Now assume that for each n we use a code with minimum angle 6.
We shall show that P,z % 0 or 1 according as cot (6/2) < +/P/N
or cot (/2) > +/P/N: Recalling that z: (k =1, --- , n) are independ-
ent normally distributed random variables with mean zero and variance
N we obtain

VP + a/+/n Frob, 4/P,

and

1 92
= Z 2 Prob.
n i>1
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Thus the ratio

‘”:—J“z‘/if _Prob. % . (103)
(5=)
UR=S!

If cot (6/2) < v/P/N, then /P/N — cot (8/2) = ¢ > 0 so that
from (102) and (103)

Pae) = Pr[1/§— ‘/(—I;er:z—/j/r > e]LO-
2k

n k>1

Similarly if cot (6/2) > v/P/N, Ps(e) = 1.

Hence we can obtain vanishingly small error probability by choosing
6 > 2 are cot /P/N or 8§ > 2arcsin (1 + P/N)™}. The bounded dis-
crepancy decoding channel capacity Cs is defined as the supremum of
rates for which it is possible to achieve P,z - 0, or equivalently the
largest rate for which 6 > 2 are sin [1 + (P/N)T % ie., Cs = R{2 arc
sin [1 + (P/N)]™. Since the channel capacity is C' = §In [1 4 (P/N)],
we may write [I + (P/N)* = ¢ ° hence Cy = R(2 arc sin ¢ °).
We estimate C'p from inequality (101):

—Insin 2sin e €) = Cp = —In4/2e¢". (104)

Using sin 24 = 2 sin 4 cos 4, the left member of (104) becomes —In
26 cos sin~' ¢ C. Since cos sin' ¢ ¢ = (1 — ¢ %)}, inequality (104)
becomes

C—lm2—-3ilm(Q—-¢)=CssC—-$ln2. (105)
Inequality (105) is plotted in Figs. 8(a) and 8(b). We see that Cep=0
forC £3ln2o0r P/N £1,and C5/C — 1 a8 P/N — .

54 Exponential Behavior of P.s

In this section we show that for a fixed rate R < Cjp, the smallest
attainable probability of error Ps* = exp [—nEs(R) + o(n)], and
obtain estimates of Ex(R). Given an n and R, denote by 6,(R) the
largest minimum angle attainable for an n-dimensional code with trans-
mission rate R. With R held fixed, let 8 (R) = lim 8, (R). From inequality

(101) "
—Insin 8(R) £ R £ —In /2 sin [0(R)/2],

from which
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P/N

o
0.346 0.50 | 2 5 10 20 50 100

; Fig. 8(a) (Channel C) — Upper and lower bounds on Cg vs € and P/N (solid
ines).
Fig. 8(b) (Channel C) — Upper and lower bounds on Cg/C vs C.

lsin'e¢® < 8(R)/2 € sin”!' (¢ "/4/2). (106)

Thus for every R there exists a code (for n sufficiently large) with
minimum angle 8 (R), where 6(R) is estimated by (106). For such a
code P.p is minimized. If code word x is transmitted and y received,
the error probability is

P," = Prla(xy) > 0(R)/2]. (107)

This quantity depends only on the noise (and not on x). Shannon
[Ref. 11, equation (4)] has obtained an expression for the asymptotic
behavior of (107), which shows that

P.s" = exp [-nEz(R) + o(n)] (108)
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where

p 1 /P ;
Ez(R) = 5V " 5 1/NG003§-—- lnGsm~2-
8 = 0(R) (109)
_ (/P st P ool
G—§(4/Ncos§+ Ncosz+4).
The bounds on 6(R) in (106) yield corresponding bounds on Es(R)
These bounds are plotted in Fig. 9.

As in the previous sections we begin by obtaining bounds on M (n,p),
crepancy p.

VI. CHANNEL D (CONTINUOUS CHANNEL WITH AMPLITUDE CONSTRAINT)
the maximum number of points in an n-dimensional code with dis-

n
0.8

\

\

0.6

\
\
hY
Eg(R)

10
Fig. 9 (Channel C) — Upper and lower bounds on the exponent Egx(E) vs R
for P/N = 4. Upper and lower bounds on E(R) are in dotted lines.
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6.1 Upper Bound on R(8)

We have defined S, (x,p) as the region consisting of those vectors
a £ @, for which d,(x,e) < p. Applying the Euclidean measure to
@, in the obvious way, we set V,(x,p) equal to the volume of S, (x,p).
Now consider a maximum size n-dimensional code with diserepancy p
consisting of M = M (n,p) points X;, X2, ---, Xy . Since the regions
S, (x;, p) about each of the M code points x; are disjoint,

M
> V.(xi, p) < volume of €, = (24)". (110)
=1

Since V,(x;, p) is independent of x; (due to the homogeneity of €,

brought about by wrapping the interval onto the circumference of a
circle) we set V, (x:, p) = Va(p), and (110) yields

M(np) £ (24)"/V.(p), (111)
thus
R(n,p) = 11n M(np) = lln (ﬁ)— (112)
n L Valp)
If we set p = Bn and let n — o« while 3 is held fixed we obtain
.1 (24)" :
R(B) = lim H111 Vo) = Ru(B). (113)

It is shown in Appendix C that R, (8) = C,(8) which establishes our
upper bound.

6.2 Lower Bound on R(3)

Again let us consider a maximum size code with discrepancy p and
M = M (n,p) code words. About each of the code words x; (7 = 1, 2,
-+« , M) consider the region S, (x;, 29p) where

= _rln 4 w)
T s i (u) F () (114)
M

We claim that the union of these regions |J S, (X:, 27p) contains @, .
i=1
First let us observe that by definition of 7,
r(u 4 us) £ lr(w) + 7(w)],
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so that for x,y,z € €, ,

d,(xy) = 2 r(ze —y) < n[z r(ze — &) + 2 rla — yk):]
=1 k k
= nd,(x,2) + "do(z;Y)- (115)
Now suppose there existed a vector x, € €, such that
M

X, ¢ ‘!:J_ISH (xi H 2779)- Then

d, (%, X:) Z 29p (116)

for each code word x; (1 = 1,2, --- , M). Let &« € S,.(x;, p) for some
code word x; so that d,(e,Xx;) < p, hence from (115) and (116) we have

do(%oy @) = (1/7)do(Xo, X:)
— do(x;i, @) > (1/7)(29p) — p = p.

We conclude from (117) that e« ¢ S.(%x,, p), so that S,(x,, p) N
S, (x;, p) is empty for all code words x;, and x, may be added to the
code destroying the maximality. Thus we conclude that

(117)

M
en : 'UISH (xia 27}P)' (118)
As in the previous section, let ¥, (29p) be the volume of S, (x;, 29p).
From (118) we have
volume of €, = (24)" = M-V ,.(29p),

or
(2A) n

Mlhp) B s 119
Again as in the previous section,
.1 (24)"
= —_ et T, —
R(B) = lim = In V(o) R.(B). (120)

It is shown in Appendix C that R.(8) = C,(278), establishing our
lower bound.

6.3 Bounded Discrepancy Decoding Channel Capacily
Suppose that for every n, an n-dimensional code is available with
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discrepancy p = @n (B fixed). Using bounded diserepancy decoding we
have error probability

Py = Prld.(xy) = p| = Prld.(xy) Z Bnl, (121)

where x is the transmitted word and y is the received vector. Since

n

d,(xy) = :;Z: r(z:), where the 2. are the statistically independent

=1
noise components, we have

n

P,y = Pr [; r(z)/n > ,B:I. (122)

k
n

By the weak law of large numbers, Y r(z:)/n tends in probability to

k=1

N(= E(r(z))). Thus lim P,; = 0 or 1 accordingas 8 < NorB > N.

We have defined the bounded discrepancy decoding channel capacity
denoted by Cj as the supremum of the rates for which it is possible
(asymptotically in n) to obtain vanishingly small error probability
using bounded discrepancy decoding. From the foregoing we see that
Cy = R(N). Making use of the bounds on R () established above we
have

C,29N) £ Cs = C,(N) = C, (123)

where (' is the channel capacity (the supremum of those rates for which
it is possible (asymptotically in n) to obtain vanishing small error
probability using (optimum) minimum discrepancy decoding). The
error exponent F(R) could be estimated exactly as for channel B in
Section IV.

Thus it is an open question whether C'p is strictly less than the channel
capacity. In the special case of the quadratic discrepancy where
r(u) = ’, ie., the case where p(u) = K, exp (—\u’), it is possible
to show that ('; < (. This is done in the following section.

6.4 The Quadralic Discrepaney

We now consider the case of the quadratic discrepancy where
r(u) = w°, which corresponds to a noise probability density funetion
pu) = K,exp (—Au*), and a discrepancy function

d.(xy) = Lz; (e — wi)’.

Note that the subtraction ax — wi is performed modulo 24 with the
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difference reduced into the interval [—A,A], but the squaring and
summing operations are ordinary arithmetic.
Let us first observe that

T(ul + ﬁﬂ) (‘ML + uz)ﬂ — UL Uz
'f(‘bh) + T(uz) - u12 + 'UJEE (u.z + ua’) '
) 2

Since for any two numbers u,’ and ", the algebraic mean (u," + u")/2
is not less than the geometric mean wus, ,

r(us + Us) < —
r(u) + r(ue) = iglm=a

Thus, since this value is achieved when wy = u £ A/2, n = 2. The
lower bound on R (8) (34) is therefore

R(g) = C.(48). (124)
6.4.1 Upper Bound on R(8)

Now we establish a new upper bound on R (8) for this special case.
First we need the following

Lemma: Let x, = (X, T2, *++ 5 Tm)y v = 1, 2, +++, m, be any m
points selected from a code with discrepancy p = pn. Let y be any n-vector
and letd, = do(x,,y),»=1,2, -+, m. Then

Ms

d, = 2(m — 1)p.

»=1

Proaf: First we show that for 1 £ u < » < m that
do(x, , X,) Z 4p. (125)
To show this consider the vector z € @, :

z=($-1-i-Iu1 To + Tz | Tt Tpn
2 2 2 ] b 2 .

The addition x,x + 2. is, as always, modulo 24. Clearly

do(X,,2) = do(%,2) = kZ: @n = ) _ do(x, X,) . (126)

4 4

Since the regions S.(x,, p) and S.(x,, p) are disjoint, do(x,, 2),
d,(x,,z) = p. Thus (126) yields d,(x,, x,) = 4p. We now continue
with the proof of the lemma.
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Without loss of generality take y = 0 so that d, = »_ 2’ . Since
k=1
du(xvyxu) ; 4P (‘LL < ]")"

(7;) 4p = . Y dE,x) = 22 (e~ )’

prEm k=1 p<y

1A

3 (e — @)’ (127)

a<r
= mE;xWE— ;(Zmyk_)z = mzd,.

The lemma follows on dividing through by m. We now obtain the
upper bound on R (3).

Consider again a maximum size n-dimensional code with discrepancy
p and with M = M (n,p) code words X;, X», -+, Xy . Consider the
regions S, (%, , 2p) about each of the code words x, (» = 1,2, .-+ , M).
These regions are not necessarily disjoint. At each point y in S, (x, , 2p)
define a density o (d):

A
™

e(d) = 20 — d, (128)

where d is the discrepancy d,(x, , y). The mass of each region is
w=[ c@av. (129)
d<2p

If a vector y € @, belongs simultaneously to the regions about the m
code points X; , Xa, - -, X, , We assign to y a density equal to the sum
of the densities contributed by each region; i.e.,

ay = i o(d,) = 2mp — 2 d, , (130)

»=1

where d, = d(x,, y). Thus we have
mass of €, = f aydV = M (n,p) - p. (131)
Cn

We will bound M (n,p) by finding an upper bound on the mass of @, .
By applying the above lemma to (130) we obtain
oy = 2mp — 2(m — 1)p = 2p. (132)
Thus

mass of €, £ (2p) (volume of @,) = 2p(24)". (133)
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Applying (133) to (131) yields

2p(24)"

Mnp) < (134)

Now,

w=[ Go-davz [ av=T.@-1 (35
d<2p

d<2p—1

where V,(2p — 1) is the volume of the region S,(x,2p — 1) (which
is independent of x). Applying (135) to (134) yields

28n(24)"
M(n,ﬁn) = m (136)
where p = fn. Applying the result of Appendix C to (136) yields
R@) = lim (1/2) In M (n,fn) = C,(28). (137)

n—+oo

This is our upper bound.

6.4.2 Refinements of Bounds for Large B/A*

The upper and lower bounds on R(8) obtained above are plotted
vs. 8/A* in Fig. 10. It can be seen that these bounds diverge for large

R(B)

0 0.05 /12 0.0 0i5 /6 0.20
B/A?

F1a. 10 (Channel D) — Upper and lower bounds on R(8) va /A2 for quadratic
discrepaney.
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values of g8/A*. We will now obtain new upper and lower bounds on
R(8) which in fact converge at 3/A* = }
6.4.21 Upper Bound

A new upper bound on R (8) will be obtained which will tell us that
R(B) = 0,8/A* > . Tirst we need the following:

Lemma: Let ay, as, -+, a. be a set of real numbers such that
—A=a; =4+4,5=1,2,---,m. Then
3 (a: - a;) £ A'm/4.
Igigi=m

Note that, as usual, the difference (a; -~ a;) is performed modulo 24
with the result reduced into the interval [—A,+A], and the squaring
and summing operations are ordinary arithmetic.

Proof: Let us wrap the interval [—A,+A] onto the circumference
of a cirele of radius A/x (so that the eircumference is 24 ). Denote by

d(a;, CL_,') = l(au‘ - aj)l:

the cirecumferential distance between a; and a;, and by de(a:, a;) the
Tuclidean distance between a; and a; (see Fig. 11). It is easy to see that

1 d.c (a,-, a,—)

A
dela:,a;) = 2;sm 5 (A/m) "

(138)

ai=(Ui»Vvi)
>

Al Al d-(ap,a1)
dE(aLsej) ¢ 5

\y/

aj=(ujvy)

Tig. 11 — Diagram illustrating proof of lemma.
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Since, for0 £ 2 < r/2,sinz = (2/m)z, (138) yields
dE (ai 3 a’J‘) = (2/7") dc(a'i ] a’j)' (139)

Now taking the origin to be the center of the circle, we may assign
Cartesian coordinates (u;, v;) to the point a;, where

ul + v = A%/7". (140)
Thus from (139) we have

2
> (e~ a)? = Y dias, a) £ Y de’(as,a5).  (141)
i< i< 4 =
Since dg’ (a:, a;) = (wi — u;)" + (v; — v;)%, we have

2

Y= a)’ =T Y {(w — )’ + (0 — v)°)

i 4 i<
2

-2 (S ) - (T - (o)

i (i)

(142)

Il

Hence the lemma.

Derivation of the Bound

Suppose we have a maximum size code with discrepancy p and
M = M(n,p) code words X, = (X1, T2, ** 5 Tm)y » = 1,2, -+, M.
We have shown [inequality (125)] that d(z,, x,) = 4p (u # »). Thus,
making use of the above lemma, we have

(Ag) 4p = Z do(%,, X,) = E Z (B = "v""')z
lspvs M k=1 pu<v

S ATME_ A'Mn

=1 4 4 ’

A

so that for 8 = p/n > A°/8,

= < =
M M(’n,,ﬂ) = 8p — Azn AT (143)
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Hence,

R(nyp) = TI%lx1}hf(n,p) =< %]Jl ﬂAz' (144)
= =
8

Letting n — = with 8 held fixed we obtain for 8/4* > %,
R(8) = lim R(n,8n) = 0. (145)

In a manner similar to that used in Section IV we can use (143)
to obtain the following bound on R (8) valid for 8/A4* < }:

R(B) £9 (In3)[1 — (88/4%). (146)

As is evident from Fig. 12, inequality (146) does not yield much im-
provement in our upper bound, hence the derivation is omitted.

6.4.2.2 Lower Bound

A new lower bound on R(8) will now be obtained. This bound is
always sharper than the previously obtained bound R(8) = C,(4N),
however the best improvement is for large 8/A°.

Suppose that we require that x; be one of the following m points on
the interval [—A,+ A], where m is an even integer:

0.20

Fig. 12 (Channel D) — Refined upper and lower bounds on R(8) vs B/A? for
quadratic discrepancy.
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0, d:%. 12(%),:&3 (%A), :I:(m > 2) (%),A. (147)

Such a code certainly satisfies the requirements set forth in Section II.
In the exactly the same manner that the previously derived lower
bound R(8) = C,(48) was obtained, we can show that

R(B) = Cn(48)
where
where A, (£) is defined by
; wle M = ¢ ; g (149a)
and K, () is
Kn(®) = [; PRl (149b)

where the %, are the m points of (147).
Since no value of m yields a uniformly strongest bound we write
R(8) = max C.(48). (150)

maeven

This new bound is plotted in Fig. 12. Let us observe that the lower bound
R(8) = (:(48), and the upper bound R(8) = 9 In 3[1 — (88/A%)]
agree when 8/A° = }. Thus C = 0 for 3/A" = %.

6.4.3 Estimation of Cp

We now obtain an estimate of Cs for the case of a quadratic dis-
crepancy function. As discussed above C5 = R(N). The bounds on
R(8) of (137), (146), (150) yield

C,(2N),
max C,,(4N) = Cy £ min 8N (151)
91n 3 ( ) ;

meven

Since the channel capacity C = C,(N) > C,(2N), the first upper bound
of (151) implies that C; is strietly less than the channel capacity C.
For large values of the “signal-to-noise” ratio A*/N, the left side of
(151) may be approximated by C,(4N ). We can make use of the asymp-
totic form of C,(¢) obtained in Appendix D:

Co(t) = 3 In (24°/meE) + (), (152)
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where e(¢) — 0 as £ — 0. Applying (152) to (151), we obtain

2 2 2 2
2AN+G1(‘§)§CB§% L +€2( ) (153)

where ¢ , e — 0 as A’/N — =. Further since the channel capacity C
is (for large A*/N)

2 2
C=CWM) =31 W%+(§) (154)

where ¢ — 0 as A°/N — =, (153) may be rewritten as
C -2+ &(d%/N) £Cr=C—3In2+ &(4"/N), (155)

where ¢ , ¢g— gas A’/N — o Thus for large values of A*/N (and hence
('), the bounded discrepancy channel capacity Cp differs by no more
than a constant (In 2) from the channel eapacity C. Thus the ratio
C5/C — 1as A’/N — =,

Let us remark at this point that the channel capacity of the Gaussian
channel with amplitude constraint has been shown by Shannon' to be
approximately C,(N) (for large A®/N), which is the same as the
capacity of the present channel. This fact lends plausibility to the
claim that the present channel is an approximation to the Gaussian
amplitude constrained channel for large values of A*/N.

APPENDIX A
In this appendix we show that for any function r{w) for which
r(u) — 0as u — 0, and for any £ satisfying
A
0<ts [ rwa (156)
A dy
there exists a unique A (£) which satisfies

A A
f P () OO gy = Ef O g (157)
0 0

For channel B we are interested in the case r(u) = u°, however for
channel D we need this proposition for arbitrary r (»). If we define the
funetion £(\) by

A
f r(w) e du
) = 0

A b
—X\
j‘ & r(uldu
0

A< oo, (158)

IIA
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it will suffice to show that

(a) £()) is strictly monotone decreasing,
® 10 = 1 [ rea,
() 11_52 Q) = 0.

If (a), (b) and (c) are true, £(\) is a one-to-one mapping of the half
line [0, ) onto the interval

(O’Fi f: r(u)du:l.

(a) To show that £(A\) is monotone decreasing, consider

(e RO ()
a ( f: - ’duy ’

by the Schwarz inequality,

(qu ""mhd”)g < (f: "Ee_hd“) (f: "'_Mdu) ) (160)

(the strict inequality holding). Thus d¢ (A\)/d\ < 0and (a) is established.

) £0) = f:r(u)du/f: i =Klj:r(u)du.

(¢) (due to H. O. Pollakt) since £(\) is monotone decreasing and
positive for A < o, we know that lim {(A\) = 8 2 0.1f 8 =0 (c) is

A0

established. Thus we assume the contrary, ie., 8 > 0. Since £(A) is
monotone decreasing we have £(\) = B, all A < . Thus for any A,

(159)

A
fo £\ d\ = BA. (161)

Now let us observe that £(\) may be written

EQN) = — ﬂ% (In fo ’ e‘“‘“’du). (162)

t An alternate proof was given to the author by L. A. Shepp.
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Substituting (162) into (161) we obtain
A A
f E(NdN = —In f ¢ ™du 4+ In A = BA. (163)
0 0
Or,
L [* s, —8A
= e du < e (164)
Ao
Dividing through by ¢ ** we have
A
_lf GHAB=r @ gy < (165)
A Jo

Now since 7 (u) — 0 as u — 0, choose é sufficiently small so that r(u) <
B/2 whenever 0 < u < é. Equation (165) now becomes

A
1 1 B0 g
A Jy

v

v

]
1_: f gHA—r) g, (166)
0

v

1 Aﬁfﬂfﬁ o O A
Ae udu. Ae .

Now (166) holds for all A < e, Thus we need only choose A large
enough so that

b sy

to deduce a contradiction. Thus (¢) follows.
APPENDIX B

Proaf That g 1s Finite
Define the function

r(ur + ua)
r{w) + r(ug)’

where —A = wy, ua £ +A4 and (uy, ) # (0,0), and the function
r(u) is given by (27). Note that the addition u; 4 u. is performed
modulo 24. We must show that u = sup g(u,, u2) is finite, or that
g (uy , u2) is bounded.

gl , ug) =

(167)
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By assumption (8d), r(u) is eontinuous, and by assumptions (8¢)
and (8d) r(u) > 0 when u # 0. Thus g(u, , u) is continuous over its
domain. If ¢ is unbounded, let (', w"™)%- be a sequence such that
g (™™ ) ~» ©. Then it is easy to see that (u," w'™) — (0,0).
Thus to show that 5 is finite we need only show that g is bounded in the

neighborhood of the origin.
Now let By = { (11, u2): 21 , u2 = 0}. We shall show that

n = sup glu,u) = sup gu, us). (168)
—Agujup=+4 (up,up)eRy
If (uy, us) ¢ Ry, then either u; and u. are both negative or u; and us
have opposite signs. In the first case g (w1, u2) = g(—w, —ua), where
(=u;, —us2) € Ri. In the second case say |u | = | u |, then by as-
sumption (8d) and (8¢) r(uy + %) = 7(w). Thus g(wy, uz) = r(w)/
[r(w) + r(us)] <1 = g(A4,0) where (4,0) € R, . Thus we need show
only that g is bounded in the neighborhood of the origin where
Uy, U = 0.
With u; and . sufficiently small, the addition w;, 4 s = w + .
Also by assumption (8e), we may write

r(u) = au® (1 + e(u)), (169)
wherea > 0, @ > 0, and e(u) — 0 as 4 — 0. Thus
g (us, uz)
- ﬂ(ul + ux)“(l + eu + uz)) (170)
a(u)*(1 + e(w)) + aus*(1 4 e(uz))
_ (w + ug)"l: 1+ e(w + us) iI
U™ + U™ * .
1+ e + uﬂé(ﬂ-l) + '--—-+—u2;,5(u2)
Now,
ulq uza
0= e’ Fror g =1, (171)
so that
gl ud = 8200y, ) (172)

where € (1 , us) — 0 as 1; , up — 0. Thus, since
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Us “
(wg + u2)® _ (1 + 51) < ool (173)
W + u” 1+ (ug/ur)* = Y

we conclude that ¢ is bounded in the neighborhood of the origin, and
therefore that 4 is finite.

Let us remark at this point that discrepancies r (1) do exist for which
n = w. For example, r(u) = exp (—1/4"). If we set u; = u, and let
u; — 0 we obtain

0

IIA

—1/(2u;)?

g, u)) = ———— — . (174)

gy

In this case, of course, r (u) does not satisfy (169) so that p (u) does not
satisfy (8e).

APPENDIX C

For channel B, let V, (p) be the volume of the intersection of a sphere
in Euclidean n-space of radius p and center at the origin with the cube
[—A4,A]". For channel D, V,(p) is the volume of S,(x,p) = volume of
S (0,p), where

S"(Olp) = {C! = (ﬂ'l y 2, Qg , a'n) € Cu I(ED(O,I!) = "E T(ak) < P}-
=1
In this appendix we evaluate
1, (k4
I'.”Es = In A E,. (175)

We shall find E, by solving an equivalent probability problem: Let

X,, X3, --- be a sequence of random variables uniformly distributed
onthe interval [— 4,4+ A). Let Y, = 3 r(X,). For channel B, r (u) = u’.
k=1

It is clear that

) _ Valp)
PrlY, <, = @A)’ (176)
hence
—lim (1/n) InPr[¥, < an] = E,. (177)

-+

We now make use of
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Chernoff’s Theorem'™: Let Zy, Z, --- be a sequence of independent
identically distributed random variables with moment generating

function E(exp (Z)) = M (t). Let P, = Pr |:Z Z; = an], where
=1
a = E(Z.-).Then

Linp, ™ lnm,
n

where m = min ¢ "M (t).
t<0
If we let Z, = r(X,;) where X, is the above random variable, then

Yr = Z Z.. Thus from (177) E. = —In m.
=1

The moment generating function of Z; is

M(l) = E[ez"t] _ i ['H e.-(:):dx
24 J-4 !

so that
A & 1 ] A riz)t
f(t) =e™M@) = -ﬂe_" [ e du, (178)
A
and
m = min f(1).
t=0

To minimize f(t), let us differentiate (178) with respect to :

df(i) — o | R, I:[+A . riz)t _ f+A rlz)t
g = 0=51¢ A?(,r)e dx aj e dz |,
so that
+4 +4
[ r(z)e™'dx = a [ e ' dx. (179)
A A
The solution of (179) for ¢ is t = — A(a) where A(£) is defined by

(19a). With ¢ so chosen

1 iaw e (x)\(a)
m = === ” { T
m = J(f) 5 [ . [ ,

so that
Inm = — In 24K,(a) + ax(a) (180)
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where K,(a) is defined by (19b). Thus
E,= —Inm = 1In 24K (a) — a\(a) = C,(a), (181)

where Cy(a) is defined by (19).

_— If we apply this result to (73) (channel B) with a = 48, we obtain
R., () = C,(48). If we apply this result to (113) and (120) (channel

D) with @ = 8 and 298 respectively, we obtain R,(8) = C,(8) and

R.(B) = C,(298) respectively. Finally, applying this result to (136)
(channel D with quadratic discrepancy) with a = 28 yields R(8) =<

C.(28).

APPENDIX D

Estimate of C,(¢) for Small £ with r(u) = u*

We first obtain an estimate of A (¢) for small £ and then show how this
estimate can be used to estimate C (§).
The quantity A (£) is defined by (19a):

A A
f e MOy =k f e MO gy, (182)
0 0

Observe that A (§) monotonically approaches infinity as § — 0. Chang-
ing the variable of integration in (182) we obtain

VN4 . Vana
[ a’e " Pdr = 2N f e e, (183)
(1] 0

Integrating the left integral by parts yields:

Vara Vx4 a2 IV 2
+ f e dr = 2\t f e dr. (184)
0 0

]

—x?[2

Rearranging terms we obtain

4

A= 5 (1 —u) (185)
where
) = VAR
Vira '
0

Since p(A) = 0 we have an upper bound on A:
A < 1/2¢ (187)
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To obtain a lower bound on A set

A= (1/28) — A (188)
From (185)
g fo e — Av/2xe ™ (189)
A
D(\)

It may be verified by differentiation that for A = 3/ (24*%) the numerator
N (M) is monotonically decreasing and the denomination D (\) is mono-
tonically increasing so that A is monotonically decreasing. With A =
3/(24%) we obtain by substitution into (189) A = 0.76/A” and by
substitution into (185), £ = 0.224". Thus for § < 0.224"

1 _p>1_076
homt gy = A B e (190)
Returning to (189), we may write
1 0.76
LT &—"5)
= D(3/2)
< A(L12)e g (191)
= 0.76
—A’,’?E
=1364% .
£l
Thus we have for ¢ £ 0.224%
1 1 2.70Ae“‘””]
A=——A=2 |1 - —|. 192
2k - 25[ g (192)
Since the quantity C,(£) is defined by
C,(£) = In 24K, (¢) — £ (§), (193)
where
A 9 -1
K, () = [ f ¢ *“’du] ; (194)
—A

we could then use the upper and lower bounds on A(¢) of (187) and
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(192) to obtain an estimate of C,(¢). However, this turns out to be a
very cumbersome procedure and we shall side-step this chore. Suffice
to observe that A (£) approaches 1/(2¢) very rapidly as ¢ approaches
zero so that for small £ we could take A to be 1/(2¢) and obtain
42
C.® = 3n 24 + o), (195)
wet

where €(£) » 0as £ — 0.
APPENDIX E

Completion of Derivation of Upper Bound on R(8) for Channel B
Inequality (86) expresses the fact that
R() < f(a)(1 — 28) (196)

where

2
o

ot — 2

and « is any integer satisfying e = 2, " > 1/8 (0 = 8 < %). To
obtain the tightest bound we seek to minimize f(a) subject to these
constraints. It may be verified by differentiation that f(«) is a mono-
tone increasing function for integer values of o for @ = 2. Thus to
minimize f(a) we choose & as the smallest integer satisfying o« = 2,
o' > 1/8. Thus we choose

a=2 when 3 =321,

Jla) = Ina (197)

and

1%

a = k when ;>5‘ (k= 3,4,5,---).

3
(& — 1) Tk
APPENDIX F

Estimate of Ez(R) for Channel B

Equation (96) expresses the fact that

P;* = Pr [Z 2’ > anjl, (198)

=1

where the z; are independent normally distributed random variables
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with mean zero and variance N, and @ = g(R) = A’3(R). We seek an
expression for Ez(R) = lim — (1/n) In P.s". We again make use of

a form of:
Chernoff’s Theorem'®: Let ¥y, ¥y, -- -, ¥, be independent and identi-
cally distributed random variables with moment generating function

Elexp (Yi)] = M (t). Let P, = Pr [E Y, = am:l, where e = E(Y;).
i=1
Then

lim (1/n)P, = In m,

n-—+ow

where
m = mine “M(t).
t=0
If we set ¥; = 2z then Ez = lim — (1/n) In P, = —In m. The

n—+w

moment generating function is

M(t) e #‘[4.«: ezzee-»ﬁ.rzzvdm — _1_..__ 1 < i
V2rN Lw (1—2N)'\' = 2n)"

It may be verified by differentiation that the quantity e M (¢) is
minimized at ¢t = (1/2N) — (1/2a) (which is positive if « > N ). Thus

C ox [_ 1_}_]M(L_i)
=P TGN T 2a 5N~ 2a)°

Setting a = A’4(R) and taking logarithms we obtain

; _ 1 B A 1 A,
_B®) 1, B[R)
2N 27 N °

APPENDIX G

Completion of Asymplotic Estimates for Channel C

]
1. Let I, = f sin" ¢ de. We must show that
0

E = lim L 1n 7, = In sin 6. This is (101a).

w00
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8
(a) I, = | sin"*8de = (8) sin® " 6, so that

|
S

— 2 } n .
n In sin 8 — In sin 4.

Inf# +

# AN
i sin" g de = sin"’ (B — ﬁ) ["‘_"":I , 50 that

n— 2

Lwr, 2
T

(b) I. =

v

o SI=

= Inf, = In sin ( — ?_) -+ 5 In ¢ — In sin 4. This completes
n n noon
the proof.

v
2. Let I, = f sin" " ¢ (cos ¢ — cos ¥)de. We must show that
0

E = lim %I" = In sin . Thisis (101b).

n»0

v
(@) I, = ‘/; sin” ™ @ (cos ¢ — cos ¥)de = sin" ™ Y[sin ¢ — ¢ cos ¢,

n

— 2 . . .
50 that% Inl, = In siny¢ + %ln [sin ¢ — ¢ cos ¢] e In sin ¢

n

v
(b) I, = f " sin" " @ (cos ¢ — cos ¥)de

n

s op—2 ’p
sin (lp o R)

A Y
Now I =f i (cos ¢ — cos y¥)de

%

'
f o (cos @ — cos y)dp (200)

14

=sinzp—sin(:p—%)—%eos¢

I o ¥ Y ¢
= gin ¢ — sin ¢ cos s -+ cos ¢ sin e cos Y.
Expanding sin (y/n) and cos (§/n) into power series in (¥/n) we ob-

tain

2 2
¥ = w[giné 40 (l)] = g—msm o1 + o(1)).

n?
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Thus

1 1. ¢ 1 n

ﬂ11:11 = ﬁlnj,;zsm'l"i',ﬁln 1+ o(1)) — 0.

Thus from (200) we have

Ly 1, ;“_zmsin(¢—f)+llnfi>msin.p.
n n n n

Thus £ = In sin y which completes the proof.

APPENDIX H

The Capacity of Channel D
The channel capacity is defined' by

€= max [H(y) — H(y | )], (201)
plz

where 2 is the input digit, y the output digit and H (y | ) the conditional
uncertainty of y given x. The maximization is performed over the input
distribution p (x). Since y = « + 2, H(y | ) = H (2) so that

+4
Hiylz) =HE = — [ p@ hpGdy,

independent of 7 (x). Now H (y) is maximized when the random varia-
ble y is uniformly distributed on [—A4,+A). Due to the symmetry of
the channel, this occurs when p(z) = 1/(24), —A =z = +4. In
this case

o 1
H(y) = —L o 0 5 dy = In 24,
Thus the channel capacity is
+4
¢ =124 +_[ p(u) In p(u)du. (202)
A

Writing p (u) = K, exp [—Ar(u)] we obtain

+4 44
C=In24 + In K, '[A p(u)du — )\»[4 r(uw)p () du (203)

= In 24K, — AN,
where N is defined by (32) or
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+4
N = f r(w) K,e ™™ du. (204)
—4
Also, since p(u) integrates to unity,
+4
1= f Ko du, (205)
4
we have
+4 44
f r(w)e™du = N _[ e qu, (206)
— A A

with N and r(u) specified, A may be found as the solution to (206).
With A so specified we may find K, from (205), thus

(' =In24K,(N) — NA(N),
where A (V) is the solution of (206) and K,(N) is the solution to (205).
This is the same as C' = C, (N') where C () is defined by (19).
GLOSSARY OF SYMBOLS
The following symbols are used throughout the paper:

n = dimension of input, output and noise vectors.

Xx= (¥, a2, -+ ,2,) = input vector or code word.
vy = (4,4, -, Yn) = output vector or received vector.
z= (21,2, " ,2,) = noise vector.

M = number of words in a code.

R = (1/n) In M = transmission rate.
P,; = probability that the receiver makes an incorrect decoding
decision when code word 7 is transmitted (z = 1,2, --- , M).

M
P, = (1/M) ¥ P. = over-all error probability.
1=1

MDD = minimum diserepancy decoding (always optimum for the
channels considered in this paper).
BDD = bounded discrepancy decoding.
P,y = error probability (P,) using MDD.
P,z = error probability using BDD.
C = channel capacity = “maximum error free rate” using MDD.
E(R) = the best attainable error exponent using MDD, (at rate R).
('s = bounded distance decoding channel capacity, or
“maximum error free rate’” using BDD.
Es(R) = the best attainable error exponent using BDD (at rate R).
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The following symbols are used in connection with specific channels:

Channel A
q = the number of symbols in the input, output and noise alpha-

Do

dn (u,V)

bets.

= the probability that the channel transmits a given symbol

correctly.

= the Hamming distance between two n-vectors u and v = the

number of positions in which u and v differ.

C(p,) = Ing — H(p,) — p.In (g — 1) = channel capacity of channel

H(p)
d

€

A with symbol error probability p, .

= —plnp— (1 — p)In (1 — p) = the entropy function.
= the minimum distance between code words.
= (d — 1)/2 = number of correctable errors in a code with

minimum Hamming distance d.

M (n,d) = maximum number of code words in an n-dimensional code

R(nd)
B
t

with minimum Hamming distance d.

(1/n)M (n,d) = rate corresponding to M (n,d).

d/2n, a ratio appearing in our bounds.

[(g — 1)/g8] 1 — /1 — [2¢/(q — 1)]8], another quantity
appearing in our bounds.

[#] = largest integer not exceeding .

R(B)
a(p,po)

8

limit R (n,28n), asymptotic form of B (n,d).

n—+o0

pIn (o/po) + (1 — p) In [(1 — p)/(1 — po)], & quantity
appearing in our error bounds.

parameter defined by R = Ing — H(s) — sln (g — 1) =
C(s)

Channel B

A = maximum amplitude of input coordinates.
N = variance of normally distributed noise coordinates.

de(uy) = 2, (u; — ;)" = Euclidean distance between the
i=1
n-vectors u and v.
the minimum distance between code words.

d =
M (n,d*) = maximum number of code words in an n-dimen-

sional code with minimum Euclidean distance d.
R(nd") = (1/n)In M (n,d") = rate corresponding to M (n,d).
B = d*/4n,f = B/A’, ratios appearing in our bounds.
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R(B) = !}_{11 R (n,48n), asymptotic form of R (n,d").

R.(8) and R, (8) = lower and upper bounds on R(8) given by (18)
and (19) respectively.

The function ,(£), 0 < & < A%/3, is defined as follows: A (£) is the
quantity defined by

A A
—X\ —\
f r(u)e MMy = Ef e O gy
0 0

where r (1) = ', and

K@) = [[ e—ate;:(u}du].

Co(t) = In2 AK,(§) — & (8).

Then

Channel C

P = (1/n) X the energy of a code word.
N = variance of the normally distributed noise coordinates.
dx(u,v) = the Buclidean distance between u and v.
a(u,v) = the angle between n-vectors u and v.
§ = the minimum angle between code words.
M (n,0) = maximum number of code words in an n-dimensional code
with minimum angle 8.
R(n,8) = (1/n) In M (n,8) = rate corresponding to M (n,f).

¢ = sin' v/2 sin (6/2), a quantity appearing in our bounds.
Channel D
@, = set of real n-vectors u = (uy,ua, - -+, u,) satisfying | | =
A.
4,~ = addition and subtraction modulo 24 (with result reduced

into the interval [—A,+A]).
p(u) = noise probability density funetion.
r(w) = (1/A) In [p0)/p(u)] (=4 = w = +A4), quantity related
to the discrepancy.
d,(u,v) = ; r(up = v) = discrepancy between n-vectors u and v
1
belonging to €, .
N = E(r(z)), a parameter associated with the noise density p (u).
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C,(t), defined exactly as for channel B but with the appropriate
r(u) used instead of u".

r(us + us)

8 1T "%  a quantity appearing in our bounds.
—asuy,upsa () + r(uz) 1 e ¢
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On the Reception of Binary Signals in
the Presence of a Small Random Delay*

By M. I. SCHWARTZ
(Manuseript received March 22, 1965)

Receiver design for a binary communication system which operates over
a linear channel with a random delay is considered. It is assumed that the
variance of the random delay 1s very small and that the rate of growth of its
moments ©s restricted. Under cerlain smoothness requirements on the re-
cetved signal an approximation to the test statistic, which is optimum in the
Neyman-Pearson sense, is derived for the case of gaussian receiver noise
with covariance R(r) = R(0)e™® '™ . It is found that the test statistic,
which in general is nonlinear, assumes the linear form of a crosscorrelator
when phase reversal signaling 1s employed.

The case where the noise is white and phase reversal signaling vs used is
investigated. The correlation waveform in this case 1s found to consist of the
expected value of the received signal plus a term dependent on the slope of
the signal when the delay s equal to its mean value.

I. INTRODUCTION AND SUMMARY

In any practical communication system the signal arrival time is
never exactly known. This results in a degradation of the average sys-
tem performance. It would be of considerable interest to determine the
receiver which minimizes the effect of this uncertainty on system error
performance. A special case of this problem will be considered here.

Helstrom! has studied the detection of signals of unknown arrival
time using the method of maximum likelihood with particular emphasis
on the radar problem. Brown and Palermo? consider system performance
in the presence of random delays with applications including least
squares filtering and sampling with time jitter. Balakrishnan® and other

* This work is based on a portion of a thesis entitled ‘“‘Binary Signal and Re-
ceiver Design for Linear Time Invariant Channels”. This thesis was accepted by
the faculty of the Graduate Division of the School of Engineering and Science of

New York University in partial fulfillment of the requirements for the degree of
Doctor of Engineering Science, Oct. 1964.
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researchers have also considered the problem of time jitter in sampling.
However, to the best of this authors knowledge, no optimum statistical
test, or approximation thereof, has been determined for detection in
the presence of a random delay.

In the subsequent analysis we investigate binary communication for
the case where the variance of the random delay is “very small.” It is
assumed that the transmitted signals and the channel impulse response
are such that the received signal satisfies appropriate smoothness con-
ditions, and that the statistics of the random delay & satisfy the relation
that E[ |8 — § ] = h*A*; where & is some constant, E denotes expecta-
tion, & 4 s and A’ is the variance of 8. The requirement on the random
delay will always be satisfied when § is restricted to a bounded interval.
Our model will also assume that intersymbol interference is negligible,
or equivalently, that we are dealing with a single transmission.

Under these assumptions an approximation is obtained for the test
statistic which is optimum, in the Neyman-Pearson sense, for the case
of gaussian receiver noise with exponential covariance. Generally the
test statistic involves a nonlinear operation. However, for the case of
phase reversal signals, only linear operations are required.

The form that the test statistic takes for ‘“white noise,” which is con-
sidered as a limit of the exponential covariance case, is obtained. It is
shown that for phase reversal signaling the optimum receiver is a cross-
correlator and that a portion of the correlation waveform is the expected
value of the received signal itself.

Fig. 1 depicts the communication system under consideration. A sig-
nal, s’ (t) (z = 1 or 2), which is non-zero only over an interval [0,7],
is transmitted through a channel. The channel consists of a random delay
§ and a linear time invariant filter whose output, =z (¢ — 8), is disturbed
by an additive noise source, n (¢). It is assumed that the variance of the
random delay, denoted by A?, is small. Furthermore, the noise, n (t), will

CHANNEL
BINARY 0 ‘ SMALL .
(L) (L(t- |
SIGNAL sitlit) | | rRanDOM xiht-8) ™\ yt)
_SOURCE | DELAY h(t) i RECEIVER
(L=10r2) | ] |

n(t) |

- _

Fig. 1 — Model of Binary Communications System with a Small Random Delay.
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be assumed to be a sample function of a stationary gaussian random proc-
ess with mean zero and covariance R(r) = R (O)e_IB =1 For this system
we seek the test statistic, based on an observation of the received signal
over a fixed interval of length equal to the duration of the transmitted
signal, which gives rise to the minimum error probability in the receiver
decision process.

II. DERIVATION OF THE TEST STATISTIC

It is known that in testing between two simple hypotheses a Neyman-
Pearson test will give rise to minimum error probability. Furthermore,
Grenander* has shown that in the “regular case” the desired test
statistic, which is a random variable called the likelihood function, /,
can be obtained as the limit of an N dimensional likelihood ratio. In the
subsequent development, in which it is assumed that we deal only with
the regular case, the receiver test statistic is obtained as the limit of
such an N-dimensional likelihood ratio.

The receiver input, ¥ (t), is given by

y@) = 290 — 8) +n(t), =12 (1)

where ¥ (t — ) is the portion of the mput resulting from sending the
signal s (t) when the random delay is 8, and n(¢) is the receiver noise.
The noise is assumed to be gaussian with covariance R () = R 0)e P!,
Using a theorem due to Belayev® the noise sample functions can be
shown to be almost surely continuous. Furthermore, almost all sample
functions can be expanded almost surely in a pointwise convergent series
in terms of the eigenfunctions of the noise covariance kernel. That is,

n(t) = };7m@ka), (2)

with
Emm) = 0'1'25;'?: y

where the ¢ satisfy the integral equation
i
Jmm=f dugs(WR(E — w), t<t<h 3)
to
and

ng = f‘l dt o, (£)n(t).
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Here toand #; & ¢ + T mark the beginning and end of the receiver proc-

oo

essing interval, »_ is used to denote ), the symbol E signifies mathe-
% k=1

1 j=k
6J'k= .
0 jEk

Since the {n:} are themselves gaussian and uncorrelated they are

statistically independent. Assuming that the noise has zero mean, the
joint density function of the first N coefficients, px , can be written as

avef 1V 1 e
pv(e, k=1, ---,N) £ J] 5r aexp T 202 4)

matical expectation, and

=1
where the n; are ordered corresponding to the relationship that

0’1>O'2>"'.

Now consider a formal expansion of the receiver input in terms of the
eigenfunctions of (3). One can write

y(t) ~ ; Y (1) = ; vl (t) + ; i (t)

I

wt [ a0y = [@a0&0 + 201

e

w® L [ae @ - »),

where by definition 7 At , t1]. Since the series Y nex () is almost surely
k

pointwise convergent to n (¢) we need only investigate the sense in which
> e (t) converges to x'” (t — §). With this in mind we digress to
k

consider some of the properties associated with the eigenfunctions of the
integral (3) with R(t — u) = R(0)e®' ™!, It is easy to show that in
this case the solutions of the integral equation are identical to those
which satisfy the following differential equations and boundary condi-
tions:

372 er(t) — 8o :k22R ) e(t) =0

d
Bew(t)) = 7 ¢ (@) | =ty (6)
d
.Biﬂk(fl) = = a w.-(f-) ]:;r, .
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The solutions of this system are proportional to

wn - (449)]
o= (5]

for k odd. Here v, satisfies the relation (8° + vi*) = 28R (0)/a:’.

The differential equation (6) and the associated boundary conditions
together form a Sturm-Liouville eigenvalue problem. The convergence
properties of expansions in terms of the resulting eigenfunctions, the
{¢r (1)} , are stronger than those generally associated with expansions in
terms of the eigenfunctions of the integral equation (3). An expansion
of an integrable function f(f) on the interval (fo, %) in terms of the
eigenfunctions of a Sturm-Liouville system, possesses the following
property :®

In every interval where f(¢) is continuous and of bounded variation,
the expansion converges uniformly and absolutely to f(¢). If at the ends
of the interval there are neighborhoods in whichf(¢) is of bounded varia-
tion then the series converges at these points to f(f.) and f(t,-).

It will be assumed that the transmitted signal s'” (¢) and k (¢) are such
that z'” (¢ — &) is continuous and of bounded variation. In fact to make
the suceeeding development valid we shall have to impose more stringent
requirements on s (t) and A (t). Under this assumption the expansion of
27 (t — 8) in terms of eigenfunctions of the integral equation (3) will
converge uniformly and absolutely to =P (1 — 8).

Returning to (5) we have established that }; yrer () converges point-

for k& even, and

wise to y(t) for almost all sample functions. That is y(t) = 2 yups(t),
k

almost surely.

Choosing the values of the {y:} set as the observable coordinates, the
likelihood funetion, [, can now be determined as the limit of the ratio
of two N-dimensional density functions evaluated at the sample values,
the y;,7 = 1, - -+ N. Here we have used the same symbol, y;, to repre-
sent the sample and the random variable itself.

Thus I can be written as

Il =1 ﬁ“)(yh Tty yN) (7)
Ne= ?-)(2)(?)‘13 Tty yN) ’
where 77 (1, - -+, yx) is the joint probability density function of the

first N members of the {y:} set.
Noting that 7 = ¥ 4 n and using the fact that the signal and
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noise components are statistically independent the joint probability
density of the first N of the y: can be written as a econvolution. Thus

PN('.)(.U:, "'s‘.lhv) = _[ _[ dz, - -, dZNi'm(Zl, RRPE )

-pw(y;.-—zk,k= 1,--',N) (8)
(g1, -y yw) = Ey@pw(ye — ¥ k=1, -+, N)
where
(2, -+ ,2zx) is the joint probability density function of the first

N of the ¢'” (8),
E, % denotes an expectation with respect to the random vector,

VO = 7 6) - e ).
Since the ¢, (5) are all functions of the random variable &, the aver-
aging process can be performed with respect to § instead of the v (5).
Thus

P, e un) = Bpelye — 07 @), k=1, .-, N). (9)
Using (4), (7) and (9), and cancelling common factors the likelihood
funetion, [, is given by

N (” (1]
sen{f 50800

= lim = ST (10)
(a)] (6)}
“ By exp {kz=: [ Yi —
N [1] (4)
g A i (8) [y (8)
Then (10) can be rewritten as
! = lim Ej exp {Qn"[6]} (11)

oo B exp {Qx@[3]}

At this point one may develop an integral form for Q»""[3]. The in-
tegral will suggest the form of lim @4“’[5] which will be required in the
N—=wx

subsequent development. Define

N (%)
qN(l') (t;a) = kzi ‘bkakfﬁ) Bi (t)
N
WWm=QWWMm (12)

yn (1) ,?:1 yuer ().
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Then using the orthonormality of the {¢ (1)} one has the relation -
o = [afmo - 200w, 0y

It also follows from (3), (12), and the orthonormality relations, that
qx"” (t;5) satisfies the integral equation

ax'? (1:8) = fd-u qn'” (u;8) R(0) exp (—B |t — ). (14)
I
The solution of the integral equation is

Thus (13) can be rewritten as

070 = [ arfuwtty - 242 | oo (& = ) a0

Let us return to the study of the likelihood function of (11).In general
it seems that the expectations appearing in (11) cannot be evaluated.
However it is possible to evaluate the required expectations when the
variance of the random delay 8 is very small. With this in mind we drop
the superseript and expand Qy(8) in a power series with remainder
around § = §

(6)

Qulol = Quldl + (6 — 5 QN + Qx"[6)

17
(5 —8)° )

s @b+ -9 0=6=1

+
where we have used the notation
2 {)
Q18] = 2 @ (®) lo=i -
Tt follows that exp {Qx[8]] can be expressed as,

exp {Qxl8]} = exp {Qu3]} exp {(5 — ) ax

(6 — 9)* (6—9)° .
+ T b + 1 Cﬁ(é)}

where

av 2 O] by 2 QY] ex(d) & QY5+ 805 — B)].
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On expanding the exponential in a powers series and averaging the
uniformly convergent series term by term with respect to & one obtains

Ey exp {@ul6]} = exp {@u 61 [1 +y d] (18)

where
din = By {[(s ~ B 4 B8, L B N(a):l}

The limit of the likelihood ratio of (10), I, can be expressed as

= d (1)
1 + Z kN )
N(Q} [S]} ( = kl (19)

(l L kgl k! )
Note that if for some number D (N)
| diw | < [D@)]* for all &,

then the infinite sums each converge since the series is majorized by
exp [D(N)]. It is observed that

|2+ 2 + 2 |" = [3 max | 2] [*
+

I = lim exp {Qv" 6] — Q
N—-+om

which implies
la+za+al 3 (lalf+ |2+ ]zl).

Using the definition of diy and the above inequality in conjunction with
the Schwarz inequality yields

|d,,~]§3"{|a~|"E|(6 8| + 2—” E](a—é)“l
en (8) [ Y —
+(E "3! -E]a—ar““)}.

Now we restrict our investigation to the class of random delays whose
probability distributions satisfy the relationship that for some number
h and all k,

Ei| (3 —8)"| = b, (21)

where A’ is the variance of the distribution. This condition will be satis-
fied by all probability distribution functions which take on the values
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zero and one in a bounded region of the real line. That is when the values
of 6 are essentially restricted to a bounded region.
For distributions which satisfy (21) one finds

a5 8 { o B 1 ente) 1),

However if Qy''[8] is bounded, E |ex(8) [*. = (E:N) * and
ld,l,,v] dllﬂylhh-'—'bylh)\‘i‘ Cy)hh;, Idky'é/lyk

hzk?\Ek +

where

et

Cn - sup Qv [3],
Ay 8 3(|an| I\ 4 | b | BN 4+ (&0)'HNY) .

Now it can be shown that under certain restrictions on the channel
and the class of transmitted signals the following limits exist almost
surely:

. A
lim ay £ a,
N-+x

lim by 2 b,

N-»o0

lim ey (8)

N-=wm

lim E | ex(8) |*
N

(22)

=2

c(6)

~2k
Cc

IA

for all k.

The convergence of lim D (diy/k!) can now be demonstrated. In
N—+w k=1

this and the subsequent development we will consider convergence in
the almost sure sense. Breaking the sum into a finite sum from £ equal 1
through m and a sum from m + 1 to = and taking magnitudes gives

lim Z diw _ E(Lt lim diy

N-w =1 k! = k! N30 kmpl kl

A 5 % N
where di = lim dpy . Sinee | diy | is less than or equal to some number

N-w®
K
Ay, then
oo k
Ay

= Now ot k!

. = dj;,-}v = (fk
lim Z == :; i

N—=> k=1

But lim Ay = A exists, thus for all N > N,

N->wx
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IA_AN|<E, [Anrr<rAi+€,
= |lim Zdw— L 3 ——-”A,+ E]k.

N-»0 k=1 k! k=1 ’ﬂl = k—m+1 ]ﬁ!

By choosing m sufficiently large the right hand side of the inequality
can be made less than any positive constant. Therefore

= =
i &% T &E )
For small A one makes the approximation
litn [1 s Z d"”] i dy g‘, (24)
N—+m

where terms involving A to powers greater than A\* have been neglected,
and

dk = lim dk}q’ .

N-soo
Using the definition of diy , which follows (18), we find
dy ~ (\*/21)b,
dz ~ ?\202.

Restoring the superscript notation and using (22) and (24), (19)
becomes

L~ exp [lim (Qx™[8] — Qx*B} ]
51 e (?\2/2)[(0(”)2 _ (a('.!))2 + b\’l) _ b(‘l)]} (25)

Equation (25) is the desired approximation for the likelihood fune-
tion for the case of small A,

III. STRUCTURE OF THE OPTIMUM RECEIVER

The structure of the approximation to the optimum receiver statistie,
the likelihood function, ean be determined from (25). The quantities
appearing there can all be expressed in terms of the received signal, y ()
and the noise-free filter outputs 2 (¢) and 2 (z), which are assumed to
be known. In the Appendix it is shown that almost surely
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; 1 , a(t — 8)
i 040 = s {f [v0 - 5]

Bt — 8) — a"(t— )] dt

= [.I" (th — 8) — B (to — 8)] l:y (ty) — :lt(fuz— 5)] (26)

+ [ (= &) + Bx(ty — B)]

-[:u(h) - “————:(!'2_ 5)]},

“==$2“”=:méan{ﬂ[”“)_waé_m]

A=B2" (= 8) + 2 (t— §)] dt
— [t — 8) + B’ (L — B [y(t) — 3a(ty — )] (27)
+ 7 (b — 8) — 82" (o — 8)] [y () — 3a(to — 3)]

+ 3’ (= &) + Bt — O] [ (b — B)]

— o't — 3) — Bxlte — D)) 2 (to — 5)]},

b= lim by = ",BR 0 {f ly() — a(t — 8]
8%t — 8) — 2"t — §)] dt
+ [B2" (ta = 8) — 2" (to — ) [y (ts) — 2 (to — 8))
+ [B2" (t — 8) + ...-’” (th— &) yt) —x(t, —5)] (28)

—ﬁmmW-af—yu—mwu—m
+ [ (ta — 8) — Ba’ (ty — 8)]a’ (t — )
— [ty — 8) 4+ B’ (tu — D))t — 3)} .

It is also found that ¢(§) is a piecewise continuous function of 4.

In obtaining these results it is assumed that the second derivative of
z(t) is continuous and that the quantity [—g%'(t — §) + 2" (¢t — 8)]
appearing in the integral in (27) is of bounded variation and continuous
except at a finite number of points. Similar assumptions are made on
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B (t — &) — 2" (t — §)] in the expression for b and a similar term in
the expression for ¢(8). One requires that the fifth derivative of x(t)
be of bounded variation and be continuous except at a finite number of
points. These assumptions allow Sturm-Liouville expansions of the
integrands involved in (27) and (28) which, using the orthonormality
of the {g:(t)}, yield the proof of (27) and (28). Thus a sufficient
condition for the validity of these results is that the second derivative of
z(t) be continuous and that the fifth derivative of x(¢) be of bounded
variation and continuous except at a finite number of points.

The desired test statistic, I, is obtained by substituting (26), (27) and
(28) in (25) with 2" (t), i = 1 or 2, replacing x(¢) in the appropriate
places. The resulting expression is nonlinear in y (¢) and rather lengthy
and will not be explicitly stated here. Observe however from (27) that
if phase reversal signaling is used, that is 2 () = —z"™ (1), the quan-
tity (@®)* — (a™)* will be linear in y (). Furthermore under this condi-
tion, to first order in A, In I will be linear in y (¢). Therefore for phase
reversal signaling the receiver correlates y(f) with a signal related to
¢(t — 8) and its derivatives evaluated at § = 4.

The “white noise case” will now be obtained as a limit of the exponen-
tial covariance case. Setting B (0) = No8/2 and letting 8 — « in the
expressions for @, @ and b one obtains

lnlN{%—rOLdt [y(t) — x(—t;—s)]x(t — §)

+%:? (—j;dt [y(t) - ”-’(t—g'fl] z (L — 3))2

-+ %(ﬂdtly(ﬂ —z(t—8la"({t—3d)

WP

In the above expression the notation { } =22 is used to indicate
that the expression in braces is evaluated with x(t) = 2® (¢) and the
result is subtracted from the result which obtains when z(t) = 2 (¢).
For phase reversal signalling, V@) = =2 (@) = 2(t), (29) becomes

(29)

Inl NA%j;dty(i) {:r(t —§) — gl:l\lru (@ — 8) sl
— 2ty — 8) 2'(t —8) — 2"( — S)]}.
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Let us examine the correlation waveform appearing inside the braces
in (30). The first term represents the receiver input when the random
delay is equal to its mean value, § = 8. If X is set equal to zero the re-
maining terms vanish and one obtains the standard result which is that
the receiver input should be correlated with the signal portion of the
input, z(¢t — §). The remaining terms inside the braces in (30) are the
perturbations introduced by the random delay.

Let us expand z(t — 8) in the Taylor series with remainder

z(t —8) = x(t—8) + (6 —5)[—2 (¢t —8)]
+ [(6 — 8)%/20 [ (t — 3] + R @ — 8.).
If "' (t — &) is continuous and the moments of & satisfy
E;| (6 — 8)°| = A",

then for small \, (¢ — 8) + (A\*/2)z”(t — &) is the principal part of
Esz(t — 8). Thus, part of the correlation waveform is essentially the ex-
pected value of the received signal. The other term in the correlation
waveform involves z’ (¢ — &), which is the slope of the received signal
when the delay is 5. The weight attached to it is proportional to the
difference in the squared values of the received signal at time #, and at
time #; when & = 8. As yet no physical significance has been found for
this term.

IV. CONCLUSIONS

An approximation has been obtained for a test statistic that minimizes
the error probability of a binary communication system which operates
over a linear channel, with a small random delay, in the presence of gauss-
ian noise of covariance R(0)e® '™ ! For the case of phase reversal sig-
naling, the statistic, which in general is nonlinear, is a linear functional
of the receiver input. Treating the “white noise” case as a limit of the
exponential covariance case, the test statistic is expressed as a cross-corre-
lation operation. The waveform with which the input is correlated is
related to the expected value of the received signal plus a term propor-
tional to the slope of the received signal when the delay is equal to its
mean value.
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APPENDIX

The Evaluation of Terms Arising in the Approximation to the Likelihood
Function

The convergence asserted in (22) will now be established and the
structure of the terms appearing in the likelihood funection, (25), will be
exhibited.

First let us note the following property associated with an expansion
in terms of the eigenfunctions of a Sturm-Liouville system.

Let g(t) be a piecewise continuous function which is of bounded varia-
tion and let z(¢) be a piecewise continuous function. If the sets {g:} and
{z:} are the expansion coefficients of g () and z(¢) in terms of the above
eigenfunctions, then

j;dt g(t)z() = 1;21 Or2k - (31)

This expression is obtained by noting that the series expansion of g(t)
converges uniformly except at a finite number of points.
One considers the following integral which is suggested by (16),

k0 & gps [afuo -2 2] (¢ - D) a0, @

where one requires that [8° — (8°/0¢*)]x(t — &) be of bounded variation
and piecewise continuous. Let

glt—3) £ (ﬁ”

g(t) can be expanded in a series in terms of the eigenfunctions of (6).
This series converges uniformly to g (¢) where g(¢) is continuous and to
Llg(uy) + g(u_)] at points where ¢ (¢) is not continuous. Thus

gt — @) = ; g (1) (34)

2

_ g?z);,;(g —8) =zt —08) —a"(t—s8). (33

where
g = _/;durpk(u)g(f- — &)
By integration by parts and utilizing (6) one can show that

ge = (8" + v + e (to)lz' (to — 8) — Br(te — 8)]

, (35)
— @e(tr)[z (b — 8) + Bx(ty — 8)],
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where
¥ is the kth expansion coefficient of 2 (¢ — &) in terms of the {¢: (1)}
set,
8 + v') = [26R(0)/a)],
i is the kth eigenfunction of (6).
Substituting the expansion for g(¢) in (32) and using (35) one finds

¥\ ¥
K(3) = ZﬁR(O) { B8R (0) Z (yk - E) —5

Ok

+ [2'(ty — 8) — Bax(to — 0)] g; (’!Jk - %) ox (to) (36)

— [t — &) + Bz(ty — 8)] i (yk = %) (Fk(tl)}-

k=1

Noting that ) ('1 “h‘> L2 - equals llm Q8] one finds
k=1

ggmm=ﬁw—wm‘”‘”%’mgxm—%ymo(m

26R(0)
[x' (b — 8) + B’C(h — 5)]
One now can proceed to evaluate a = Hln ax .

From the definitions following (17) and (10) one has

o = Q= 3 w 2 (3). (38)

=1

Consider

I(I(S)éj;dt [y(c) — gl - 5)] [(—B%'(t — &) + 2" (t— 8] (39)

&

Let us assume that [—pg% (¢ — 8) + 2" — 8)] is piecewise continu-

ous, [8°x(t — 8) — 2'' (¢ — &)] is continuous and that both are of bounded
variation. Define

- f,d‘ er(t) [—B%"(t — &) + 2" (t — 8)]. (40)

Then under these assumptions and using (33) and (34) one finds

ar = gi (8). (41)
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Applying (31) to K,(5) gives
K0 = 5 (1 - 42w 42)

k=1

Using (41), (42), (35) and (31) yields

i (yk —,,-‘:k(a))"b"’(a) _ K (8

k=1

28R (0)
. ! z(t — 8)
~ sgrpoy ¥ ( — 9 + pe (h — O] [y(t.l) - _2—_]
1 " ’ _ _ :L'(lu — 5) (43)
+ gm0y @ o= &) — p (6 — 9] [y(to) 2—]

— L[ (to — 8) — Balto — &)1 (b — 8)
+ 10— 8) + Bt — &))" (b — 8).

The left hand side of (43) evaluated at § = &is lim ax .

N-—+oo

Proceeding in a similar manner the lim by and lim cy(8) are ob-

N—>w© N—»00

tained.
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On the Accuracy of Loss Estimates

By A. DESCLOUX
(Manuseript received March 30, 1965)

In telephone traffic studies, the observed proportion of unsuccessful at-
templs over a given time interval is one of the measures commonly used to
evaluate the grade of service provided by trunk groups. This paper deals
with the derivation of an approximate formula for the variance of this
estimate when (1) call arrivals conslitule a Poisson process, (it) service
times are independent of each other and identically distributed according
to a megative exponential law, and (iii) calls placed when all trunks are
busy are either cancelled or sent via some alternale route (loss system).
Comparison of simulalion data with numerical values compuled by means
of this formula indicates thal the latter is accurale enough for practical
purposes.

The observed proportion of time during which all trunks are occupied is
also an estimate of the grade of service (defined as the probability thal a
call will be lost or overflow). It is shown here, that for relatively small loads,
this estimate has a smaller variance than the observed proportion of lost or
rerouted calls. However, as the load is increased, the inequalily beiween the
variances of these two estimales is reversed, the cross-over occurring in the
vicinity of the point where the load (in erlangs) is equal to the number of
trunks.

For a given observalion period, the proportion of time when all trunks are
busy can be either measured eractly or estvmated by “switch-counting.”
In the latter case, the group is scanned ai regular intervals and one ob-
serves, for each scan, whether all trunks are occupied or not. The average
number of scans which indicate that all trunks are busy is an estimate of
this proportion and s, a fortiori, an estimate of the probability of loss.
The effect of the scanning rate on the accuracy of this estimate is investi-
galed.

I. INTRODUCTION

In this paper, we shall consider the simplest type of loss systems,
namely full availability groups with Poisson inputs, negative exponential

1139
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service times, and cancellation or rerouting of calls finding all trunks
occupied. Under these assumptions, we shall obtain an approximate
expression for the variance of the measured call congestion, the latter
being defined here as the proportion of calls which either are lost or
overflow to some alternate group during a given time interval. In the
derivation of this expression, use is made of the classical formula for the
propagation of errors, whose computation requires the evaluation of
the first- and second-order moments of the joint distribution of the
number of offered and the number of overflow calls. Since the marginal
means and variances of this distribution are known (cf. Ref. 1), the
emphasis is placed here on the derivation of the covariance. Computed
values of the variance of the measured call congestion are shown to be
in good agreement with simulation results (cf. Figs. 1-5).* Charts
giving the variance of this ratio for group sizes up to 50 and offered
loads (in erlangs) per trunk of 0.1 to 10, are reproduced in Figs. 6-8.*

For a given observation period, the measured call congestion and the
observed proportion of time when all servers are busy — here called
measured time congestion — provide us with two estimates of the
probability that a call will either be lost or overflow to some alternate
route. Neither of these two estimates has a uniformly smaller variance
than the other. Actually, the following holds: for relatively small loads,
the measured time congestion has a smaller variance than the measured
call congestion. However, as the load is increased, the direction of the
inequality is reversed, the cross-over occurring in the vicinity of the
point where the load (in erlangs) is equal to the number of trunks. Thus,
the measured time congestion is not always a more efficient estimator
of the probability of loss than the measured call congestion (cf. Figs.
9 and 10).

(In what follows, the terms measured time congestion and measured
call congestion will always be abbreviated to time and call congestion,
respectively. These terms will refer throughout to measurements per-
formed over a given time interval.)

For a given observation period, time congestion can be either meas-
ured exactly or estimated by switchecounting. In the latter case, the
group is scanned at regular intervals and one observes, for each scan,
whether all trunks are busy or not. The proportion of scans which indi-
cate that all trunks are busy is an unbiased estimate of time congestion
and is, a fortiori, an estimate of the probability of loss. Clearly, the vari-
ance of this estimate increases as the scanning rate decreases. The loss
of accuracy due to scanning is depicted in Fig. 11.

* See illustrations placed later in this article.



ACCURACY OF LOSS ESTIMATES 1141

Under the present assumptions, loss probabilities can also be esti-
mated from carried loads measured either exactly or by scanning. For
offered loads (in erlangs) falling short of the number of trunks, simula-
tion has shown that such estimates have smaller variances than the
estimates mentioned earlier. This fact is illustrated in Fig. 12. The
effect of scanning on the accuracy of loss estimates based on load
measurements is sketehed in the same figure.

Finally, we note that estimates of loss probabilities based either on
observed call congestion or on carried load measurements are biased,
respectively, downwards and upwards. These biases are, however,
quite small and likely to be negligible in most situations of practical
interest.

II. THE COVARIANCE FUNCTION

Consider a group of ¢ trunks which operate in parallel and are fully
available to all requests. If a call is placed when a trunk is free, service
starts immediately; otherwise the request is either cancelled or routed
via some alternate group (loss system). Regarding the input and the
service durations, the following assumptions will be made:

() The time intervals between sucecessive service demands (whether
suceessful or not) are independent of each other and have a common
negative exponential distribution with mean equal to 1/a (Poisson
input).

(17) The service times are independent of each other and have a
common negative exponential distribution whose mean will be taken
throughout as the unit of time (a is therefore the offered load in erlangs).

The following notation will be used:

N (t) = number of busy trunks at time ¢,
R(t) = total number of requests offered during (0,¢),
S(t) = total number of unsuccessful requests during

(0,1),
Pnrs) = PrN{t) =n,R({) =1, S{¢) = s].
From the definition of P(-,-,-,-), it follows that:
P(tmrs) = 0forn > ¢, (t=0)
P(tnrs) = 0fors > r, (t=0)
P(On,rs) =0forr = 1.
Tt will be convenient to extend the definition of P(-,-,:,-) and to

adopt the convention:
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pansion of F; in powers of  and the summation on the right of (6)
is the coefficient of z° in that same expansion. Therefore

_ _ e+ Dralwy) — ayz-r.(wy)
Covd) =~ e Do) —weatoy) O

where the 7's and o’s are defined by

0

(1 = ) = 3 o (wy)a” ®)

-]

1—z
Ke® ™0 (1 — ) fu WtV PE gy = 3 (wy) 2" (9)
0

We note that if ¢, (-,a) and L, (- ) stand respectively for the Pois-
gon-Charlier and the Laguerre polynomials of degree n and parameter
a;i.e.,if (Ref. 2, pp. 34-35 and 101, and Ref. 3, p. 26)

n

en(tia) = a™@h) (-—1)“"(:‘)a‘t(t — 1) o (& — » + 1)

and
L (a)(t) — i (ﬂ, + a) (_t)'
" =0 n + v l»'! )
then:
e (1 — ) = zﬂ: e (the) [(ax)"/nl]
= fj (—1)" L7 (a)a”
and

an(wyy) = [(ay)"/n!] cala(y — 1) — w,ay]
= (=1)" L, =0 =¥~ " (gy).
[The relation between the ¢’s and Kosten’s ¢-functions (ef. Ref. 1) is

readily found. Indeed, by definition

]

ea(:—l) (1 — $)s _ Z sonzxn
0

so that

on(wyy) = eayﬂﬂnaty v w.]
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Tor later purposes we note that:

am+1(W,y) = 0'm+l(w + ]-ry) - o'm(w + lly)!

10
(m = 0) 15 v ') ( )
w—aly — Denw + 1y) = (m + Dom (w,y)
— ay-om(wy), (11)
(m=0,1,--)
Zﬂ an(wy) = oc(w + 1,y). (12)

These identities are immediate consequences of recurrence relations
known to hold for the corresponding Laguerre polynomials (cf. Ref. 2,
p. 98).

Substituting (7), (8) and (9) into (5) yields:

_ (e + 1)7'.:+l (w,y) - ayz-ru(w,y) -
(¢ + Doen(w,y) — ayz-ac(wy) Z O'n(‘wsy):n (13)

+ 2 ra(wy) "

We can now obtain the generating function, F(-,-,-), of the Laplace
transforms of the joint probabilities Pr [R(t) = r, S(t) = s], r,s = 0,
1, -+, by deleting from (12) all terms of degree higher than ¢ in x
and then setting 2 equal to 1. If we perform these operations and then
make use of (12), we find that:

Fy(wayz) =

(e + Dre(wyy) — ayz-7.(wy)
& T, l,‘
(C + 1)F‘-+|('ﬂ‘dl’ == a‘yz'gc(w!y) 7 (Iw + y)

+ ; 7 (W,3).

The moments of the joint distribution of R and S can now be obtained
by evaluating the derivatives of F (w,-,-) fory = z = 1.
Differentiating (7) with respect to z and making use of (11), we find

Fwyz) = —

(14)

@ _ ay-Te (T.U,'y)
9z | w—aly —1)
(15)
ay-o(wy) (e + Drea(wyy) — ay-r.(wy))
w — aly — DI oe(w + 1,y) '
In particular, for y = 1, we have the well-known result

or _ aly,.(a)

dz y=t=1 w?
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so that
ES(t) = at By (a) (16)

where E, .(a) is Erlang’s loss formula.
Taking the derivative of (15) with respect to y and then setting u
equal to 1, yields:

O'F _a a aa. (w) ]
Yz | ymrma Erc(w) [1 + w + woe(w + 1)
a d
-+ = -‘:"—I-l re(w,y) | y=1
) ; (17)
aa.(w
- m)— I:(C + 1) a—y Tetl (w,y)
d
- a @ Te (w)y) ]v=1
where

om(w) = on(w,1) and 7, (w) = 7. (w,1), (m=0,1,--).

To determine the derivatives of r.(w,y) and 7.y (w,y) with respect
to y, consider the generating function

l—z
(= —1)— —)Ho— —1
Hway) = Ke" "™ (1 — z)*™" ’"f e R gy,
(1]

Differentiating this expression with respect to y and then setting y
equal to 1, we find that

o

d d m
E’l Hwzy) |y = ; (T’/ o (W) 2" |yt

a(z—1)
= Kfﬁ%i?uj (1 + wa)
and, therefore:
7 Lo = K Gy (1 + ). as)
(m=1,--).
Since
Kea"

Tm (’LU) =
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we obtain, upon taking (18) into account:
—a 42 —a_ o+l
e

SlERW SO = 2K ¢ 4 g0 gy

clw? clw?  aple)

where the notation £{f} is used to designate the Laplace transform of f.
Since FR(t) = at and ES(t) = at E1,.(a), we also have:
eﬂa°+' o(w + 2)
clw? a,,(w + 1)
where Cov [R(t),S (t)] stands for the covariance between R (¢) and S(7).
Fory = 1, m = ¢ and w replaced by w + 1, (11) reduces to
w4+ Doc(w+2) = (¢ + Doecpn(w + 1) — ace(w + 1),
and (20) can be rewritten as follows:
£{Cov [R(t), S()]}

£{Cov [R(1), S()]} = (20)

¢ (21)
=& cw*(w + 1)o.(w + 1) (e + Do (w+1) — aoelw+ 1]
Let w;,7 = 1, -+, ¢ be the ¢ roots of o.(w + 1). It is well known

that these roots are simple, smaller than —1 and at least one unit
apart. Then expanding (21) in partial fractions and making use of the
relation (¢ + 1)ocy1(0) — ae.(0) = 0, whichis (11) fory = 1, w = 0,
we find:

£{Cov [R(), S1)]}

_ K % H-ll:(c + l)ﬂ'n+1(1) - Gﬂ'c(l)
B c! w? a.(1)
yoetldom @+ (et Don() — ac(l)
w dw o (w4 1) |wo we,(1)
. oo (wi + 1)
ek ;w,ﬂu + wi) (w — w,) 11;1 (wi — w,-)]

and the covariance between R and S is, therefore, given by
Cov [R(t), S(1)]

e a™! [(C 4+ Do (1) — ao.(1)

=K° el oo(1)

-1

e+ Do (1) —ae, (1) (22)
a.(1)

tet D wrD

Oc l('w: -+ l)ew-’
+ (e + 1) sz(l _:w) H (w; — wJ)]
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To determine explicitly the derivative appearing in (22), let us con-
sider Cov [R(1),S(t)] for small values of {. Writing P (¢,r,s) for the
(equilibrium) probability that, during a time interval of length {, r
requests arrived and that, among these r requests, s of them found all
the trunks busy, we have (f small):

P{,00)=1—at+ o(t)

P(t1,0) = at[l — By c(a)] + o(t)
P(1,1) = at By .(a) + oft)
P(,0,s) = 0, (s=1)

Pty 0) = oft), (r>1)

and

0= Y sP(rs) < Z TP (tr,s) < E rsP (tr,8)

ra=2 T 8=2 r.8=2

< Z r‘! ehar (05) O(t).
re=3

Hence Cov [R(1),S(1)] = at Ey,.(a) + o(t). Letting ¢ tend to 0in (22),
we find that
ad Tl (’w -+ 1)
a'w O’c(w + 1) w=0

_ (¢ + Door (1) — ao,(1)

o.(1)

—(e+ 1! Z

e+ 1) —

Uchl('wl + 1)
w2(1 + wi) H (wi — w;)’

Substituting this expression in (22) yields

—a c+1 — i
Cov [R(W), S(®)] = K ¢ L |:(c+ 1)%‘:8)) as.(1) |

a 1(w, 1}
- (C+1) Z g(l _{_ﬂw') H (w1 — ‘l.U)

(22)

oo (w; + 1) ™" ]

+ (c+1)! szu RN T
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We shall now determine the constant term appearing in (22'). To this
end, we note that

relw +1) = 21T @ — w)

s =1

and, therefore

g (w + 1) = £Uc+l (1) _ 1 7e41(0)
w(l 4+ w)e.(w + 1) w a.(1) 14+ w o.(0)
4 c!zﬂ: 1 0c+1('wa' + 1)

=(w — w) wi(l 4+ wi) LI (wi — wj)
7=
Hence, for w = 0, we have:

L gﬂ,l(‘w.- + 1)
(c+ 1)! ; w1 4+ wi) [T (ws — w;)

VT

- Lo 1 eu(0) .
= (e +1) lim [w crj(l) Tixw cr:r(O) (23)

_ Uc+1(w + 1) :|
w(l + w)e(w 4 1)

= — (1.

Furthermore, forw = 1 4+ w;,y = land m = ¢, (11) yields:
(wi + Doe(wi + 2) = (¢ + L)oo (wi + 1). (24)

We also note that the ¢ roots of o.(w + 2) are w; — 1,74 =1, ---,
¢, so that

ou(w + 2) =(—1;-|1f1(w—w,-+1). (25)

Hence, combining (24) and (25), we have:

e+ Dloeaw: +1) _ vy, .
S

Using (23), (26) and the relations

K™ = ¢l aB .. (a)

(G + 1)0'c+1 (1) = Uc(l){c + 1+ aEl.c(a)l
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(22") can be simplified as follows:
Cov [R(), S(1)] = aE:.(a) [lc +1—all — E,@l}t+a

_gigg(l-'_ w;):'

Since, as pointed out above:

@7

max w; < —1
1<i=<ec

min |w; —w;| > 1
154, <e
i

we have:

1;(1+ ,-—w,) >0

=1 I

and

c w it 1 )
< <0
Z W1. 3921 ( wi — 'LUJ'

Hence we have the following inequalities [use is also made here of (23)]:
aF, (a){c + 1 — a[l — Ey(a)l}t
< Cov [R(t),S ()]
< aby.(a) [fc + 1 — a[l — Eic(a)l}t + a]

and, for large values of ¢(>0):

Cov [R(1),S(1)]

. (28)
= aB.(a) [jc + 1 — a[l — Ey.(a)l}t + a] + ole ).

11T, VARIANCE OF CALL CONGESTION

In the preceding section, exact and asymptotic formulas were obtained
for the covariance between the number of offered calls, E(f), and the
number of overflow calls, S(t), during a time interval of length ¢. These
expressions can now be combined with known formulas for the means
and variances of R(f) and S(¢) to obtain an approximate expression for
the variance of call congestion. Indeed, according to the classical formula
for the propagation of errors, we have:
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Var [S(t)/R(1)]
~ {1/ER () Var [S(t)] + {ES(t)/[ER(t)]'})* Var [R(t)]
— 2({ES(t)/[ER()]'} Cov [R(),S(t)]
= (1/at)’ Var [S(t)] + Eu. (a)/ (at)
— 2[E),.(a)/ (at)’] Cov [R(2),S ()]
< (1/at)® Var [S(t)]

(29)

where, assuming ¢ large:

Var [S(t)] ~ at Ey.(a) [1 +2s a%) a(i;—(q-llj-)l_)]w-u (50

and
Cov [R(1),S(#)] ~ at Ey.(a)lc + 1 — a + aFy.(a)]. (31)

We note that Var [S(¢)/R(t)] is, asymptotically, of the form Fk/¢,
where k depends only on a and c.

The exact and asymptotic expressions for Var [S(t)] were first de-
rived by Kosten, Manning and Garwood.' These formulas can be ob-
tained in a straightforward manner from the generating function (14)
with y set equal to 1. The asymptotic expression (30), however, is
rather involved and its use can be avoided as follows. Indeed, we note
that, under the present assumptions, the instants at which overflows
occur constitute a renewal process (i.e., the intervals between any
pair of consecutive overflows are independent of each other and have
the same distribution). Then using Smith’s extension of a result due to
Teller (cf. Ref. 4, pp. 296-298 and Ref. 5, pp. 30-33), we have:

Var [S(1)] ~ [u2(c) — w’(@©)lt/m’ () (32)

where p,(¢) is the nth moment of the interoverflow distribution of a
group of ¢ trunks.

The expression on the right-hand side of (32) is rather easy to com-
pute, since we have the following recurrence relations (cf. Ref. 6, p. 388)

apa(n) = 2ap’ (n) + npe(n — 1), n =12 ---) (33)
where u1 ' (¢) = aF,.(a). Hence

[(e/a) palc — 1) + m*(c)] "

Var [S(2)] ~ 3 00)
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The second moment us(¢c — 1) can be computed either by repeated use
of (33) or by means of the exp]jcit formula

e — 1) = Z 1)“ mle—1—n)
with
(c — 1) =1, c—1)a=(c — 1) —2) -+- (¢ — n),
(n=1).

We note that the renewal theorem used above can be applied as long
as the input to the system is recurrent, and the other assumptions made
here remain the same. In these more general cases, (32) still holds, but
the moments u;(c) and us(c) satisfy less simple recurrence relations.
Indeed, we have then:

#1(0)"Yc—1(1) - #1(0 - 1) =
and
pr(€)vea (1) — 2me)umle — 1) — yeud (1)] — palc — 1) =

where 7, (-) is the Laplace-Stieltjes transform of the interoverflow
distribution of a group of n trunks and ¥, (1) stands for the derivative
of yn(-)at 1.

The preceding relations follow immediately from Palm’s recurrences
(cf. Ref. 3, pp. 36-38, and Ref. 7, pp. 16-22):

Tn(s)[l - 'Yn—l(s) + 'Yﬂ—l(s + 1)] = 'Yn—l(s + 1): (n = 172: "')'

The standard deviation of the call congestion computed by means
of (29) and (31) to (33) is compared in Figs. 1-5 with simulation
results. As may be seen from these graphs, there is good agreement
between the theoretical and observed values.

On each one of these charts, two additional curves are also plotted,
namely :

() {Var [S)]}!/ER(t) as a function of the offered load.

This expression is an upper bound for the standard deviation of the
call congestion. However, unless the offered load is relatively small,
it considerably overestimates this standard deviation.

(#) {Fr..(@)[l — Ev.(@)]})/{ER(t)}* as a function of the offered
load.

This quantity, referred to as the binomial approximation, is a lower
bound for the standard deviation of the call congestion. This bound
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underestimates the latter to such an extent, however, that it is of little
if any value.

In view of the agreement between the observed and theoretical vari-
ances of the call congestion, the latter are graphed in TFigs. 6-8 for
¢ = 1(1)10(2) 20(5)50 and 0.1 = a/c = 10. These values pertain to the
case { = 20. The asymptotic variance of the call congestion for any
(sufficiently large) value of { may be obtained by multiplying the vari-
ances of Figs. 6-8 by 20/¢.

Simulation results have shown that (29) — with Var [S(¢)] and
Cov [R(t),8(t)] replaced by their respective asymptotic expressions —
give sufficiently accurate values of the variance of the call congestion
whenever the length of the observation period, ¢, is such that the ex-
pected number of offered calls, ER (), is about 40 or more. When ER ()
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Fig. 1 — Standard deviations of eall and time congestions, ¢ = 6, ¢ = 20.
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Tig. 6 — Variance of call congestion. Observation period = 20 holding times
¢ = 1(1)10.

falls below 40, (29) provides us with an upper bound which becomes
increasingly coarse as the expected number of offered calls decreases.

IV. RELATIVE ACCURACY OF LOSS ESTIMATES

Various measurements ean be used to estimate the probability of loss.
The principal ones are:

(7) The number of offered calls and the number of lost (or overflow)
calls. The ratio of the latter to the former (i.e., the call congestion) is an
asymptotically unbiased estimate of the probability of loss.

(73) The time congestion. This quantity, which is an unbiased estimate
of the probability of loss, may be either measured exactly or estimated
by scanning the trunks at regular intervals and observing, at each
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scan, how many trunks are busy. The proportion of seans which indicate
that all trunks are busy is also an unbiased estimate of the probability
of loss.

(#7i) The carried load (i.e., the average number of busy trunks) obtained
etther by continuous observation or by scanning at regular intervals. This
last measurement consists in observing, at regular intervals, the number
of busy trunks. The average of these numbers, for a given number of
seans, is an unbiased estimate of the carried load. If I stands for the
carried load measured either exactly or by scanning, then the demand
rate, 4, may be estimated hy means of the formula

c=12(2)20
t=20

_c=12
\ ,/ _ -4
Fd

N\
N

/]
N //// N
)

I~
\\‘

VARIANCE OF CALL CONGESTION
n

n

\‘\h

Ny
\\:\

5 I | | | | |
3 4 6 8 IE+0 2 4 6 8 IE+!

OFFERED LOAD IN ERLANGS PER TRUNK

— Variance of eall congestion. Observation period = 20 holding times
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Fig. 8 — Variance of call congestion. Observation period = 20 holding times
¢ = 25(5)50.

E, o(4) itself is an estimate of the probability of loss. This estimate has a
small positive bias which tends to zero as the length of the observation
period gets large.

Theoretical as well as observed (simulation) values of the standard
deviations of these estimates are plotted in Figs. 9-12. (For each load,
the simulation results given in Fig. 12 were computed from a single
run of 500 hours. The numerator and the denominator of each ratio
appearing in Figs. 9 and 10 were evaluated from a single 500-hour run
of simulated traffic.) These graphs reveal typical patterns, namely:

(i) When the offered load, in erlangs, falls short of the number of
trunks, the loss estimates based on continuous load measurements
have smaller standard deviations than both the call and the time
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Fig. 9 — Relative accuracy of grade of service estimates based on hourly
measurements of eall and time congestions — simulation results.

congestions. In the same range, the call congestion has a larger standard
deviation than the time congestion.

(i7) When the offered load exceeds the number of trunks, the con-
verse situation holds; i.e., the call congestion has a smaller standard
deviation than the time congestion, and the standard deviation of the

1.2
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Tig. 10 — Relative aceuracy of grade of service estimates based on hourly
measurements of call and time eongestions — simulation results (eont.).
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Fig. 11 — Standard deviation of the time congestion estimated by switch-
counting.

latter, in turn, is exceeded by the standard deviation of loss estimates
based on continuous carried load measurements.

The effect of scanning on the variances of the time congestion and of
the loss estimates based on carried load measurements is illustrated in
Tigs. 11 and 12.

Let us assume now that the length of the observation period is such
that (29) closely approximates Var [S(¢)/R(¢)]. Under these conditions,
the load beyond which the time congestion is less accurate (in terms
of its variance) than the call congestion is approximately equal to the
load a determined by the following equation:

1 + E.la) = 2B,.(a)le + 1 — a + aB.(a)l (34)
This condition is readily seen to be equivalent to the requirement
Var [S(t)/R(t)] = Var B(t) (35)

where B(¢) stands for the time congeéfiou in an observation period of
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length t. Equations (35), (29), and (31) together with the relations
(ef. Ref. 3 p. 131)

ES(t)
Var S(t) — ES(t)

atEB(t)
(af)® Var B(t)

Il

I

imply (34).

For given ¢, (34) has a unique positive root, r, which is smaller than
¢ except in the ease ¢ = 1 where the root is equal to 1. Computations
show that this root lies relatively close to ¢ (cf. Fig. 13).

Let B, (t) be the estimate of the time congestion obtained by switch-
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Fig. 12 — Relative accuracy of loss estimates based on call and time conges-
tions and on carried load measurements.
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Fig. 13 — Root of equation (34).

counting at the rate of n scans per observation period of length {. We shall
now derive an explicit formula for the variance of B, (t).

Let 7 be the interval separating consecutive scans, N (z) be the num-
ber of busy trunks at time %, and

1 if Nw) =c¢
X(“)‘{o if N(u) <e.

Then

Bn(t)

I

n! "Z X (ir)

and
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EB,(t) = E .(a)

Var B,() = n™* 3= 3 Cov [X(ir), X ()]
Now let
Pu) = PrNu)=c|NQO) = ¢l

The function P (- ), which is called the recovery funection of the proc-
ess N (), has the following expression (cf. Ref. 3, p. 85 and Ref. 8, p.
135):

P = B - 5 (1- 1)

=1 Wi A wj — Wi
where, as before, w;, 7 = 1, -+, ¢, are the ¢ roots of ¢.(w + 1). Since
Cov [X (u + v),X ()] = Ei.(a)P(u) — E..(a)
we have (cf. Ref. 8, pp. 136-138)

Var B, () = n* E,,.(a) ZZP(L'L—J[ ) — Bl (a)

=1 j=1
[ Ik]m T

= —n El.,(a)Z(n—lkl)Z
-H(l- ! ) (36)

=] Wy — Wy,
LBy (@) E {,w‘ .I;=I; (1 - W i 'wl')}

@ () ()

If we let n tend to infinity in this formula, we obtain, in the limit, the
variance of the time congestion, B (), for continuous observation (meas-
urement):

Var B(t) = 21"];(“) {E ﬁzH(l - 1 )

=1 [ — Wi,

1= w; — wy

This last formula was first obtained, in a slightly different form, by
Kosten, Manning and Garwood (cf. Ref. 1).
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Spectra of Digital FM

By R. R. ANDERSON and J. SALZ
(Manuseript received March 29, 1965)

Formulas are derived for the spectral density function of an ensemble of
continuous-phase, constant-envelope F M waves. The modulation signals are
random time series of the form D, a.g(t — nT), where g () 1s an arbitrary
pulse of finite duration rT, r Z 1. The a,’s are independent random vari-
ables possessing identical but otherwise arbitrary probalbility distribution.
The derived resulls are general and are presented in lerms of averages of
elementary functions. When the a,’s are discrete random variables, both con-
tinuous and discrete spectra are trealed, and conditions in terms of the
modulation parameters are given under which discrete spectral lines are pres-
ent. Several of our specialized formulas are applicable in the study of mul-
tilevel FM data transmission systems as well as in pulse frequency
modulation.

1. INTRODUCTION

Progress in analysis of multilevel frequency shift keying (FSK) has
lagged behind that of binary. Inherent difficulties associated with an
inerease in the number of levels are partly responsible, but activity also
has been inhibited by the general impression that multilevel FSK is in-
ferior to differential phase modulation with the same number of levels
operating in the same bandwidths.

Recent work, Ref. 1, has evolved design principles showing a possibil-
ity of substantial improvements in multilevel FM performance over
that formerly thought to be typical. Also there are many existing analog
channels, e.g., in mierowave radio relay, which operate by FM. Attempts
to send digital data efficiently over such channels force consideration of
the multilevel FSK problem.

An important item in the statistical deseription of an information-
bearing signal is the spectral density, which defines the average power
density of the signal as a function of frequency. In addition to furnish-
ing an estimate of bandwidth requirements, the spectral density is

1165



1166 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUG. 1065

critically important in optimization procedures for minimizing the effect
of channel noise subject to a constraint on mean total transmitting signal
power. Evaluation of mutual interference between channels also requires
knowledge of spectral distribution.

From the practical point of view the most interesting case of digital
FM is that in which the phase is continuous at the transitions, as may
be obtained at the output of a keyed oscillator. The memory thus intro-
duced makes the analysis far from trivial. So far as is known, the binary
case is the only continuous-phase 'SK problem hitherto covered in the
literature. The present paper gives a complete analytic solution for a
general set of parameters.

An interesting feature is the extent to which sharp spectral peaks oceur
near the diserete signaling frequencies. These peaks can, under certain
conditions, become delta functions indicating steady sine-wave com-
ponents. Such components make the design of optimum filters difficult
because the best results usually demand sharply tuned suppression of
the corresponding regions at the transmitter and complementary high
gain peaks at the receiver. Furthermore, the interference produced in
other channels by untreated peaked spectra can be inordinately severe.
One important result of the analysis is an establishment of conditions
on the frequency spacing relative to signaling rate such that spectral
peaking does not occur.

In this paper we derive compact formulas for the spectral density
function of an ensemble of continuous-phase, constant-envelope FM
waves. The frequency of the wave is switched every 7' seconds by a
known signal. The phase of the wave is so adjusted as to maintain con-
tinuity at the transitions. For example, when the baseband signal is a
rectangular pulse of 7' seconds in duration, the frequency of the wave
during each interval T may be one out of many different frequencies
picked at random. In general, the baseband signal is not time limited to
T seconds. This case will arise when the original time limited signal is
passed through a filter.

The random signal whose spectral density we wish to study has the
following standard representation:

S(t) = A cos {w,,t +md'§:anﬁ g(t' — aT)dl + 50} "
0=t =

where w, and wqg are arbitrary angular frequencies. The angle ¢ is a uni-
formly distributed random variable (r.v.) on [0,27] and the a.’s are in-
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dependent r.v.’s with arbitrary but identical probability distribution.
The symbol A is an arbitrary real amplitude.
The only restriction on the baseband signal g (¢) is that

0, everywhere else

@)

where r is an arbitrary positive integer. (We naturally require that g (2)
be integrable over this interval.) When the a,’s are binary r.v.’s and
g (t) is a rectangular pulse of T seconds duration, spectra and correlation
functions have recently been derived by Bennett and Rice, Ref. 2. Salz,
Ref. 3, extended Bennett's and Rice's results to include arbitrary a.’s
possessing arbitrary probability distributions.

In our treatment the distribution of the a,’s as well as g (t) is entirely
arbitrary. For instance when g (¢) is a rectangular pulse and the a,’s are
discrete r.v.’s, the wave (1) represents the ensemble of multilevel FM
waves. If the a,’s correspond to the samples of speech taken every T
seconds, we have pulse amplitude modulation via frequency shift key-
ing. Many other applications depending on the choice of the a,’s and
g (t) may be cited, and are covered in our results.

Our method of attack on the problem is direct. We calculate the seg-
mented Fourier transform of (1), obtain its magnitude squared, average
over all random variables, divide by the length of the segment, and then
evaluate the limit as the length increases without bound. After consider-
able amount of bookkeeping, we obtain general formulas. We then
specialize the formulas, and investigate some interesting representative
cases. The general formula for the continuous spectrum is given in (31).
Equation (40) is the general formula for the discrete as well as the con-
tinuous spectrum.

1I. GENERAL DEVELOPMENT

We found it easier to work with the complex representation of (1).
Therefore let

SO = 510 +20) 0sts @ (3)
where
. n=w t—nT
2(!) = g exp ‘i{wct =+ wa E a, ‘[ g(tl') dt:} ) (4)
n=0 nT

The symbol * denotes the complex conjugation.
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Choose a finite interval [0,NT]. Over this interval the Fourier trans-
form of z(¢) is

k=N—-1 (k4+1) T
ZWNT) = 3 fk () e'dl

=0 T

(5)

. k=N—1
=e" D, O
k=0
where
(k41)T n=o0 it—n T
Qr = j;r dt exp 1(w, — w)t [] exp z'{wda,. f . g(t’)dt'}. (6)

n==()

Set t — kT = y above to obtain

T n=o0
Qk — eikT(ug"'w) j; dy exp 'i(wc — w)y .;Il) P,‘_t (y) (7)
where
y—(n—k) T ; ;
Pui(y) = exp i{mda,.[ . g(t)dt}. (8)

Since g (¢) is time limited to »7', where r is a positive integer, it follows
that we can write P, x(y) for 0 = y = T, as;

rT
exp I:z'wda,, f g,(t’)dt’], 0=n=k—r
0

Lo L 9)
P,.(y) = exp I:'im,ga,. fo g(t)dt], E—r+1=n=k

1 n > k.

With this representation, we can take the product in (7) running
from n = 0 ton = k — r outside the integral sign since P, ;(y) in this
range of n does not depend on y. P, (y) depends on y only in the range
kE—r+4+1=n =k Making use of these facts, we write for ¢

n=k—r

Qr = ™™ exp f}{a, > an}F(v,ak_,H o) (10)
n=0
where

F (”:akar+l siee

n=k—r+1

ax)
f:r' . n=k . fv—-(n—k)f' ; d ;
= A [ H exp 3{wdan 5 gr(t) t}dy (11)
T ‘m=r
= »[o e” exp z'{zl p—rpmVIy — (m — 1) T]} dy,
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and
rT
Oy = wdfo gr(t) dt
V= we — @ (12)
£
V® = a [ oW
The segmented Fourier transform of the original signal (3) is

S@NT) = 5 (Z@NT) + Z@NT)]

- (13
11 y k=N—1 = k=N—1
ZQ[E'F Z Q.+ e Z Qux
= k=0 =0
where Z,(o,NT) is the Fourier Transform of Z* (w,N) given as
k=N—1 pk+1)T )
ZAw,NT) = Z 2*(De ™' dt
kT
' (1)
= Ae™" Qer -
k=0
and
(k1) T
Qo = _/ dt exp —i(w. + w)t
kT
(15)

n=90 t—nT
1 exp —i{wda,. f g(t’)dt’}.
n=0 —n T
The magnitude squared of S(w,NT) averaged with respect to the
I.v. ¢ is

k,s=N— k,a=N—1

<| S (“":NT)|2>W = i |: Z QkQ = + kzﬂ chQck :| (16)

The symbol {- ) denotes the averaging operator.
T'rom the definition of @, in (10) we obtain

QkQE* = e‘.Ty(k_a)F(yla'k—r+l e G,k)F*(V,GE,HL]_ e e ﬂfa)
n=k—r n=g—r
- exp 1 {a,[ E U — 2 a,,]} . (17)
n=0 n=0

We observe that Q..Q." equals Q.Q," with w, — w replaced by w, + w.
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It is thus sufficient to continue our calculation using only the first sum
in (16).

If we let the first term in (16) be W, (w) and the second term W_(w),
the desired power spectrum G (w) is by definition

G(w) = lim @/TN)(W (@) )a + (W-(w) )d} (18)
where the ensemble average is taken over the collection of r.v.’s a =
(ﬂu y @y ajv).

We now proceed to calculate the respective averages. From (16)
AE k,a=N—1
Wel@)ha =73 2 (@Q*)
k,s=0
=A:Re 2 (QkQ*)] 1
2 k,8 " 48 ( 9)
[k<a)
A2 k=N-—1
+ ‘Z‘ E (I Qk |2>a'
k=0

The symbol “Re[-]” denotes the real part.
To facilitate the evaluation of the averages, we rearrange the double
sums above in the following manner:

kia=N—1 §=N—2 k=N—1

2, (@ = X 2 Qs
(i) e

Il

20 {(Q-+1Ql*)a + (QI’+2Q8*)Q

a=

k=N—1
+ e 4+ <Ql+le*)a + E <QkQ'*>a}

k=a+4r41 (20)
a=N—-2 =l

Zﬂ <QF+IQF*>a + 8;(] (Qa+2Q!*>a

s=N—r—1

+ -+ a;ﬂ (Ql+rQa*)a

s=N—r—2 k=N—1

+ 2 2 Q).

=0 k=s+4r+1

Using the explicit representation of F and F* in 11, we obtain from 17
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(Q8+J'Qa*>n = fjr("’)s l1=j=r

= ﬂirv’;(F(V:ﬂaw—rH C @egg)

n=g—r+j
'F*(y)an—r+1 Tt ﬂ;) exp 7 {ﬂ.,. E a‘n})
a

n=g—r+41
= :T:uf f dde' wiy—y’)

m=r

. (exp Z{E=| a.+,;r+mV[y — (m = n)T]

(21)

{Er BorymV [J = (m = 1') T] + a, E an—r+n}

n=1

Using elementry manipulations we obtain

m—rf

1) = ™ [ [ gy T vy = m = 01

— = m—r+HT (22

- II civly — m — TN II CHVIY — (m — DT — a).

m=14r—j m=1

The function
Culs) = (6 = f ¢““dF (a) (23)

is the characteristic function of the r.v. a, and F(a) its probability
distribution.
We next calculate in the same manner as above

(QQ.*)s = €777 <F(.,,ak_,+l o 5t T i, = * L)

n=k—r
-exp ¢ {a, p ) a,,}>
n=s—r4 a

(24)
= 7% (F(vQp—rs1 -~ ar) )a <F*(v,a,._,.+1 et Q)

n=s

.expi{a, > a,,}> CF " ()

n=s—r-+1
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when
E>s+ 0.
When & = s we have
(1Q M = ( Frtucrss =+ @)[*)a - (25)
From the definition of F or F* in (11) we obtain explicitly

r T
<| F(V,ak._r-H . ak) l?)a — j; jl; dydyl ev’v(!}*w}
(26)

m=r

-:[;[1 CafVly — (m — 1)T) — VIy' — (m — »)T1},

{F(V,ﬂk-.-r+1 ) )a = f o Hr Ca{Vy — (m — ) T]}dy 27

m=1

and

(F*(v,te—rgr *** Q) EXP i{a, > a,,})ﬂ
n=ag—r+1
T m=r (28)
= f eI C*Vly — (m — 1) T] — a}dy.
V] m=1
We now observe that the various averages in (22)-(25) are independent
of the indices k and s and therefore when we divide (19) or (20) by N

and take the limit as N approaches inﬁnity we obtain

lim L1, @) = 4 (P @+ 4 Re (5109

n=a

+ (Fi(a) )a(F.(a) exp z’{ar 2 ) an}). (29)

n=g—r

im }_ E Z T o ()

] N =0 k=s+r+1
where we set Fi(a) = F(v,ay_,31 -+ - ax); fi(v) is defined in (22).

The limit in (26) can readily be evaluated provided | Cu(e,)| < 1.

This is the case when we have only continuous spectra. When | C, (a,)| =
1, the evaluation of the limit is more involved. But this latter is precisely
the case when discrete spectra appear, which we shall study in a forth-
coming section. For the moment we proceed to evaluate the limit when
the modulus of the characteristic function evaluated at «, is less than
unity.

§=N—1—2 k=N-—-1 }
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In this ease, from (29) we obtain

g=N—r—2 k=N-—1

h m l Z Z e"Tl’(ﬁ‘*a)C'ﬁk*sfr (ar)

N-—=+w N s=0 k=s+r+1
[=N—r—1

™ lim D, [Cular) exp (iT%) I (30)

N—=x =1
_ ()fTr(r+1)Ca(ar)
1 — eCylay)

Using the definition of the speetrum in (18) and applying the explicit
representation of the averages computed in (22)-(30), we obtain finally
the positive image spectrum

@) = ‘)Tf f dydy’ ¢

m

r

CafVly — (m — 07T — Viy' — (m — r)T))

1

m

A.’ j=r
4+ = (‘{Z (Equation 22
T =

(T (r-+1) T
E‘ £ Cu (ar) a,y(]:‘ry
1 — Eiq'"C,l(a,) Jo

(31)
+

m=r

IJ C.tVly — m — » T f dye

m=1

m=r

JI eax vy — (m — )T — a,ll-
el J

Although the final formula may appear rather complicated at first,
under close serutiny it will be observed that the formula is in a con-
venient form for numerieal caleulation by a digital computer. At most a
double integral on a finite dimensional plane needs to be evaluated. We
will later demonstrate, by using a few interesting examples, how the
numerical work can be carried out, and the results will be exhibited
graphically.

IIT. SINGULAR CASES

So far we have considered only continuous spectra. In order to arrive
at the result of (31) we had to sum the series in (30), and that series
converges only when the magnitude of the characteristie function evalu-
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ated at a, is less than unity. This turns out to be the requirement for
the speetrum to contain no lines.

Whenever the magnitude of the characteristic function, evaluated at
a, # 0, is unity we are no longer justified in using the results in (30)
since the series diverges. This behavior suggests the presence of discrete
spectral lines associated with periodicities in the original random process.
Mathematically, this result can only occur if the r.v.’s a are discrete
and have a definite relationship. The characteristic function of a con-
tinuous r.v. must satisfy | C.(s)| < | C.(0)] when s = 0. We proceed
to identify the conditions on the a, which give rise to a characteristic
function with unit modulus and therefore spectral lines.

Lotve, Ref. 4, shows that if | C.(s)| = 1 for s # 0, the form of C,(s)
must be

k=00

C.(s) = ;Puk exp (isay) (32)

where P,, = 0, Z';f:ff P,, = 1 and the random variables a, must satisfy
ar = (2n/s)k + b (33)

where b is an arbitrary constant.

Thusif | €y (a,)| = 1 the r.v.’s must be integral multiples of one another
plus an arbitrary constant common to each of them.

Using (33) in (32) we see that the characteristic function becomes
exp (zbs). We set (', = exp (ibs) and evaluate the following limit:

a=N—r—2 k=N—1
i1 — iy (e—s—
A= hm L - B i
N—+w N =0 k=a+4r+1

=N = i (34)
= ¢ "™ lim { e+ = 2 (L4 ne™
N—=w |[=1 I=1 f
where
= Tv 4+ ba,.
Let
= ! A exp iy
M) = ZUendl =y T (33)

[

z‘d_filn (1—Adexpsy), A<l

The limit of A; as A — 1 is the first sum in (34). Obviously this limit
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does not exist in the ordinary sense. However the ‘‘distribution’ limit,
denoted by lim”, Ref. 5, does exist. Barnard, Ref. 6, has shown that

lim™® In (1 — A exp 7y)
Ar1— (36)
= In|sin (v/2)| + In 2 + [(v/2) — R (y) — 27 M]

where M is an arbitrary integer, and

Ro(y) = 2 uly — 2mn) — ,.ZJ(_T — 2xn)

n=

Rn‘(‘}') = REX(‘Y = TI’)

I, =20
0, v < 0.

u(y)

He also proved that the right side of (36) constitutes a properly defined
generalized funetion or a distribution.
When (36) is differentiated with respect to v we obtain

] {lim In (I — A e z‘«f)}
d‘Y A+1"
(37)
cot %Y +1rEB(-y—21m)

where §(-) is the well known dirac delta-function.

The limit of the right hand sum in (34) approaches zero since this
sum is proportional to the derivative of the first sum divided by N.
Since the first sum is a generalized function or a distribution so is its
derivative. Consequently in the distribution sense the limit is zero.

When the characteristic function is of the form (32), which implies
that the r.v.’s satisfy (33), we observe that

Cd Vly + pT] — ar} = €™ Co{ Vly + pT]} (38)
] p = 7r — m.
Trom this we obtain
m=j m=j
II . Vly + pT] — el = ¢ 1] C*ly + pT (39)

m=1
Applying (38), (39) in (31), and replacing

e:"i!‘vc,tl (C[,-)
1 — e™Cq(ay)
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by (37), we obtain for the continuous as well as the diserete spectral
density

e A2 fT fr ! oiv(y—u')
G:(p) = a7 ). ), dydy e

p=r—1

I_l Cal Vly + pT1 — VIy' + pT1}

AE T . p=r—1 2
+ T Re{ f dye™ TI C.fVIy + pT} (40)
0 p=0
-[1 + e"‘"(fr Z 3(y — 2mrn) —%—k%cot 72-)]

j=2—

4 ;lfJ'r(U)}-

By recalling the definition of v in (34) we see that spectral lines occur
when

Tv + ba, = 2mn, (41)

or
(2mn/T) — b(e,/T)

v
and the minimum spacing Av between the lines are given by

Av = 27Af = —————2#(nT+ 1) - 2LTH = 1?

IV. SPECTAL CASES

In this section we select several special cases, believed to be of general
interest, and exhibit them graphically.

The first case we want to explore is that in which ¢ (¢) is a rectangular
pulse of unit height and the a,’s are discrete, that is, a frequency shift
keying system. For the binary case, the two frequencies are referred to
as mark and space frequency, and each is located wy from the carrier,
w, . For the multilevel case the frequency spacing is uniform. In reference
to our general formula (31), the following parameters apply:

r=1
V() = wit, a = wT.

When (42) is applied in (31) and after considerable manipulation we
obtain the specialized formula for the one sided continuous density

(42)
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2
G(w) = %&; {(IF(m — w, — ﬂmd‘z)a
exp (1T (w, — @) {(Flo — w. — wa))a
it Re[ 1 — ClaT) oxp (TCar — o)) ')
AF* (w0 — w. — awa) exp (iwaaT) )n}} y
where
T @ sin wT'/2
F(w) = 2— exp ( sz/Z) —W 3 (4:4:)
and
| CalwaT)| < 1.
Let
8= (w— w)T/27
(45)
v = (w— w. — aws)T/2,
and write (43) as
’ _ 24* T _iysiny [
Ge) = TME‘" |,
—oep /T iy 8D\ /T iy SIN Y kra
4+ 2 Re [e <2 ¢ i >n\2 ¢ Y ¢ >a} .
' | — e~ 278 (waT")
G _ L [ I’ ] .
o7 =3 T Be|y— RO DT (46)
where
e
. (47)
_ /Sl]:l Y —iy
Ig \ ‘Y [ >n.

For binary frequency shift keying, the frequeney deviation parameter,
k, may be defined as the ratio of frequency shift (the difference between
mark and space frequency) to the signaling frequency (the sum of the
number of marks and the number of spaces in one second ). That is,
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o O = B Gl (48)

2x/T T

The same definition holds for multilevels with frequency assignments
which make the frequency spacing uniform and equal to that for the
binary case. The frequencies nearest to the carrier are located at w, &
wa , the intermediate frequencies are at w. = (2n — 1)wa, and the ones
furthest from the carrier are at w, == (N — 1)wa, where N is the number
of levels. Thus, the frequency band of the power spectrum will increase
approximately with N for constant k. The frequency band oecupied
can be kept approximately the same by letting & decrease with V.

In this example, the random variables @, are discrete and may be
represented as

a, = 2n — (N + 1), n=12 --,N. (49)
The argument of F in (43) is
= (w — w — @) T/2 = (8 — a.k/2)m, (50)

and the equations in (47) become

I = _l i I:Sin T"]E
! N n=1 Yn
1 N N (51)
L=+ P —i(va + Ym Sm?"s—m“.
N 22, 2, 0P —i0rn + ) -
Since we can alternatively write
a = +=(2n — 1), n=12 +-,N/2
we have that
Co(weT) = Calkr) = 2 Pr(an) exp (iwsanT)
Nz .
- (I/N) 2 {eﬂcr(zn-—l] + e‘—“k*(Q'ﬂ*”] (52)
n=1
N2
= (2/N) 2 cos kx(2n — 1).
n=1
The complex terms from (46) are
g—n'(7u+-vm)
B = Re ["—‘1 —_C e—!rﬁ]
(53)

_ 08 (yn + vm) — Cacos (yu + ym — 278)
14+ C.2— 2C, cos 28
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We can now write the N-level normalized spectml density as

GE _ 1 Nl I:] sin’ Ty E sm ¥, SiN 'y,,.:|, (54)

AP Z Yo m=1 Yn Ym
where v, and B are given by (50) and (.)S).

Using several values of the two parameters — N, the number of levels
and k, the deviation — we have calculated numerically the spectral
densities from the relations given above, and plotted them against the
normalized frequency = (v — )T /27. On this scale, w; oceurs at
/2 for all values of N.

A large number of spectra are presented to indicate the way the
shape changes as the frequeney deviation varies. For binary FM, these
are given in Fig. 1. We point out that the spectra for the binary cases

0.80 0.80

\(:0,5 (@) (b)
0.64 — 0.64

0.6
’ Q.6

0.48 048
V'E.?/\\
032

(w-we)T
27

NORMALIZED FREQUENCY

Fig. 1 — Spectral density for 2-level FM.

0.95
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1.5
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i \-..____; o s
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are the same as those given by Bennett and Rice, op cif, except that the
origin of the frequency scale has been shifted from the lower (space)
frequency to midband.

The spectra for 4- and 8-level FM are given in Figs. 2 and 3, respec-
tively, The multilevel cases show considerable similarity to the binary
ones. For small values of k, the spectra are narrow and decrease smoothly
towards zero. In particular, Fig. 4 shows the spectra for & = 1/N, and
these three are nearly identical. As & increases towards unity the spec-
trum widens, and as predicted, there tends to be concentration of power
about the a priori chosen frequencies. This concentration is especially
marked in the range 1 — 1/2N < k < 1 +1/2N. Atk = 1, thereisa
spectral line at the frequency %, and its odd multiples. As k increases
from unity the concentration at ws is again broadened, and reduced
in intensity. We attempt to show these features in several plots as a
funetion of k.

Fig. 5 shows the decrease in spectral density at zero (mid-band) fre-
quency with increasing k. For higher level systems the zero-frequency
level is less for any value of k, but the decrease with I is slower.

The position of the spectral peaks, as a function of % for the 8-level
system is shown in Tig. 6. Other level systems show similar behavior.
For k = 1, the a priori chosen frequencies are (measured from the car-
rier) at =4=(2n — 1)/2, and the delta functions in the spectral density
occur at these same frequencies. For & < 1, the peaks of the spectral
density are no longer delta functions, and they occur nearer the carrier
than the chosen frequencies. They are further from the carrier for
B> 1.

An interesting phenomenon is observed for the cases where & is the
reciprocal of the number of levels. For these relations the principal por-
tion of the spectrum is confined to a relatively narrow band. These
curves have approximately the same shape as seen from the curves in
Fig. 4 and the following table:

No. of Spectral Density at Freq =

Levels k 0 .25 5 T35
2 0.500 0.810 0.500 0.090 0.00
4 0.250 0.750 0.470 0.117 0.011
8 0.125 0.735 0.430 0.124 0.013

The program was extended to calculate the power in the continuous
portion of the spectrum. For all values of N, and for k away from unity
this power is %, and for & = 1, this power is § — 1/2N. Thus the total
power in the spectral lines is 1/2N. Clearly the power in each line is 1/2N*
since they are assumed to have uniform likelihood of occurrence. It is
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Tig. 2 — Spectral density for 4-level FM.
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Fig. 3 — Spectral density for 8-level FM.
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Fig. 4 — Spectral density for &k = 1/No. of levels.

also very easy to show from (40) that this is the expected division of
power between the continuous spectrum and the discrete spectral lines.

We also thought it interesting to exhibit spectral shapes when the
a,’s have a gaussian probability distribution. This situation may arise
in pulse frequency modulation with baseband amplitude samples possess-
ing gaussian probability densities. In this case, the probability density
of the a,’s is

1 a?\ 1 (vy—B0)*]
P = e (- 53) = oo [ - U5 @

and the characteristie funection is

Ca(wsT) = exp [— (w"':a)-:' = exp (—24°),

where
Wi Te / 2,

=
Il

(56)

and

Yy = Br — ap/o.
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SPECTRAL DENSITY AT MIDBAND, G(0)/A2T
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%
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Fig. 5 — Spectral density at midband — Diserete multilevel case.

Equation (51) can be written as

1 = sin® y (y — Br)?
I, = Y j;m 7 exp [— 2%’ ]d‘Ys (57)

1 = 1 fw siny _,, . [_ (7—ﬁw)z:|d
2= Jgapl. 4 ¢ P T |

Using elementary reductions I, is written as

e [_ "lé(ﬁ?w)z} [ i (1 _ I_SJ) exp [_ 1 (ﬂz _ iﬂfﬂ 5 @®

2 2 2

BN
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.

Let
t = (xz/2) — 1y
L = 7:.?/ (59)
= + 1y
where
x=N2p y=78/V2u (60)
Then
I — 2(:1-.1:: By) n e " cos 221r8 -1 , (61)
T T
where
5

POSITION OF PEAK, NORMALIZED FREQUENCY

NORMALIZED DEVIATION, K

Fig. 6 — Position of spectral peaks — Discrete multilevel case.
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ty t
A=¢" Re (f et dt — f et dt)
0 0

iy & (62)
B = e“”’hn(f et dt —f e“*da).
0 (1}
In this same manner,
Iy = — f dz exp (—tﬁn—z = —-) f dy sin y g e
2 ¢
(63)
_ A —1iB
B x
and
2 2 a
= A"— B 2— 21,AB. (64)
X
Substituting (61) and (64) into (46) we obtain
@@ _ 1 - ~
T = 5 |:2(A:L By) + e cos2r8 — 1
(65)

-+

(4> — BY) (¢ — cos 278) + 2A4B cos 2«5]
cosh 22 — cos 278

In this ease the deviation is controlled by the parameter ¢ = w.To/2.
In Fig. 7 we display the spectra for several values of this parameter.
When g = 0, the spectrum is a delta function at 8 = 0 (midband). As
» increases the spectrum widens, approximately as p and the midband
value decreases approximately as u°, for small u, and as u~' for larger
values. We show these two trends in Figs, 8 and 9.

The values of spectral density at 8 = 0, together with the asymptotes,
are shown in Fig. 8 Two estimates of the width are shown in Fig. 9.
TFrom the definition of the Gabor bandwidth, Ref. 7,

fu ) G(ﬁ)ﬁﬂdﬁT

[ c@as J '

We note that o¢ is very nearly equal to g/m. That is, the standard devia-
tion of the power spectrum is the same as the standard deviation of the
input times the normalized deviation frequency:

oo = o (wsT/27). (67)

Another estimate of the width of the power spectrum comes from the
value of B at which the density has fallen by e, namely

(66)
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Fig. 7 — Speetral density for gaussian distribution.

_ B GO
U’S*‘\/T—ra "

At high values of ¢, where the spectral density curves appear more
nearly gaussian, oz approaches g .

The gaussian case spectral density eurves were also integrated to ob-
tain the power. We obtain % in all eases, thus providing a check on our
work. It is interesting to note that even for u as low as 0.5, 98 per cent
of the power lies within 3¢ of midband.

(68)

V. SUMMARY OF CURVES

Spectra are presented for 2, 4, and 8 equally-spaced uniformly dis-
tributed frequencies and for normally distributed frequencies. The gen-
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eral trend of the curves, as a function of the frequency deviation, is
shown in Figs. 5, 6, 8, and 9. As expected, the band occupied by a sig-
nificant portion of the spectrum increases with the deviation.

IFor the discrete multilevel case, the frequency deviation parameter
is k = wsT/m. For k = 1/N the spectral density functions for different
N are nearly identical. They are relatively narrow and decrease smoothly
to zero. Line spectra occur at the a priori chosen frequencies when k
is an integer.

For the gaussian case the deviation parameter is u = ow,7'/2. For large
u, the shape of the spectral density approaches a gaussian eurve with a
standard deviation of cw,T/2w. For lower u, the curves are slightly
narrower with correspondingly longer tails. The maximum value for
each g, which oceurs at § = 0, approaches 14u* for small x and 2/mu for
large values.
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On the Decomposition of Lattice-
Periodic Functions

By R. L. GRAHAM

(Manuscript received March 31, 1965)

The problem of decomposing an arbitrary periodic function defined on
an n-dimensional cubic laltice into finite linear combinations of certain
primitive functions is considered. Generally, a primitive function is one
which periodically assumes only the values +1 and 0. Rather simple neces-
sary and sufficient conditions are derived for such a decomposition and
when a decomposition is possible, an algorithm is given which accom-
plishes it. These results have been used in recent generalizations of the Ewald
method.

I. INTRODUCTION

In a study of the classical problem of the calculation of the potential
due to an ionic crystal lattice, and in particular, generalizations of the
Ewald method (Ref. 1) along the lines of Nijboer and Dewette (Refs.
3,4), W.J. C. Grant (Ref. 2) proposed the following problem: Suppose
we say that an ionie erystal lattice is primitive if for a suitable choice of
origin there exist three vectors ¥, , & , 3 such that the charge at the
point 7, + naFe + naFs is just go(—1)""""" for some fixed g, and for
all triples of integers (n,, na, n3) and that the charge at all other points
is zero. (For example, the ordinary NaCl lattice is primitive with the
#; taken to be the unit coordinate vectors and go = 1.) The question is
then: Which erystal lattices can be decomposed into finite sums of
primitive lattices? Different primitive lattices in the decomposition may
have different origins and by the sum of two lattices we mean, of course,
the component-wise sum.

The object of this paper is threefold:

(i) The problem is extended to its natural n-dimensional analogue.

(77) Rather simple necessary and sufficient conditions are given for
the existence of the desired decomposition.

1191
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(#4z) When such a decomposition is possible, an algorithm is given
which accomplishes it.

II. PRELIMINARY IDEAS

In order to illustrate the basic ideas which will be used in the proofs
of the general (n-dimensional) theorem (see p. 1200), we begin by con-
sidering the following one-dimensional version.

Suppose we call a real-valued function f defined on the integers
primative if for some integers x and ¢ it is true that

_J=10)t i z=ar+c
/@) = {0 otherwise
for all integers a. The question then becomes: What is the set of all

those functions which ean be represented as real finite linear combina-
tions* of primitive functions? For example, the function g defined by:

0 if z=0 (mod4)

1 if z=1 (mod 4)

9(2) = 2 if z=2 (mod 4)
—3 if z=3 (mod 4)

may be decomposed into a linear combination of primitive functions
by: i

g(z) = —qi(2) + 2¢:(2) + gs(2)

where
_J(=1)* if z=2a
01(2) = {0 otherwise :
Cf(=1)" i z=2a+1
6:(2) = {0 otherwise ’
ga(z) = (—1)"

We can write this more graphically if we usc the notation
f: trr Qo A1, 02, 0t

to denote the faet that f(0) = ap,f(1) = a;, etc. We then have

* In this paper, linear combination will always mean finite linear combination.
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_gl:"'v_l: 0)1: 0:"'
gz oo, 0, 20,—2, ---
gy i -0, 1:_1117_1:”‘
g: ---, 0, 1,2—=3,---.
Similarly, if we start with
htooo-,1,3,—2,—1,—-32, -
then the desired decomposition is easily found to be:
h:---,10 0,—1, 00, ---
3hs: - -,03, 0, 0,—30,---
—2hg: -+,0,0,—2, 0, 02 ---
h: - ,1,3,—2,—1,—3,2, ---

In general, it is clear that any linear combination f of primitive func-
tions is periodic and that within a period the sum of the function values of
J must be zero. If a function has these latter two properties, we say that
the function has mean zero. It might at first be surmised that any fune-
tion with mean zero could be written as a linear combination of primi-
tive functions. However, aitempts to decompose the periodic function

g- - 11:_1:0,11_130) T

(the bar indicating a complete period) soon lead one to suspect that
this initial guess is incorrect. (In fact, ¢ cannot be decomposed into
primitive functions.)

One question which arises immediately is exactly which periods the
primitive components of a function f might have, if f itself has some
period p (where we say that f has period p if f(z + p) = f(2) for all
z). In the preceding example, while g has period 3, perhaps there is a
decomposition of g for which the primitive components have much
larger periods. (It will turn out, however, that this is not possible.)

To answer these questions, we first introduce some notation. If g is
a function defined on the mtegers,” then by g(z/r) we mean the func-
tion defined by:

2\ p B .
(z) g (—) if isan integer
gy\-) = r T
-
0 otherwise

* In general, in this paper all functions assume the value 0 on points with non-
integral coordinates.
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Let 7(z) denote the function which assumes the value 1 on all integers.
Thus, if the funetion f which we wish to decompose has period

p=2"(2m + 1),

then by forming the functionsi[(z — k)/ (@m + 1)]f(2),0 S k <2m + 1,
we have functions which “sample’” f at points separated by a distance
of 2m + 1. For example, if f is given by

f: ] ].,3,—6,3,—5,4,1,3,—6,3,—5,4, i

so that the period of fis 6 = 2-3 (where we will assume that f(0) = 1)
then we have

?‘_(Z;l)f(z):..-,o,3, 0,0,""5,0:--.

, (z — 2
1
Note that i[(z — &)/ (2m + 1)]f(z) also has period p and, in general,

1@ = 5 (525) .

The result toward which the remainder of this section will be devoted
can now be expressed simply in the following way: If f has period

p=2"(2m + 1)

then f can be expressed as a linear combination of primitive functions if
and only if for each k the function i[(z — k)/(2m + 1)]f(z) has mean
zero.

It follows from this, for example, that if p = 2° then f can be decom-
posed into primitive funetions if f has mean zero. On the other hand, if
f has an odd period p = 2m -+ 1, then each function ¢[(z — &)/ (2m + 1)]
has just one nonzero value per period so that f can be decomposed into
primitive function if it is identically zero.

We now give a series of lemmas, informal proofs and examples which
will indicate the ideas needed for the proof of the general theorem. An
outline of our plan of attack is to establish the following results:

If f is a linear combination of primitive functions then for
any & and for any r # 0, f[(z — k)/r] also is a linear combi-
nation of primitive funections. (1)

i(%)f(z):---,l,ﬂ, 0’3’ 0’0’.“

)f(z):"'sO:O:_ﬁ:O’ 0:4)"
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If f is a linear combination of primitive functions and f has
period p = 2°(2m + 1) then forall k, z[ (z — k)/ (2m 4 1)]f (z) @)
has mean zero.

If f has period 2 and mean zero then f is a linear combination 3)
of primitive funections.

Assuming we have established (1), (2) and (3), the proof of the
original assertion follows directly. One direction follows immediately
from (2). To show the other direction assume that for each &, #[(z — &)/
(2m + 1)]f(z) has mean zero. Notice that each funetion #[(z — £)/
(2m + 1)]f(z) is just an “expanded” copy of a function f;(z) which
has period 2° and mean zero (ie., 7[(z — k)/ (2m + 1)1f (z) = fil (z — k)/
(2m + 1)]). Hence, by (3), f(2) is a linear combination of primitive
functions and it then follows by (1) that this is also true of fi[ (z — %)/
(2m 4+ 1)]. Consequently

22—k k
flz) = kgoi(m)f(z) ka(2 +1)
is a linear combination of primitive functions and the proof is completed.
It remains to prove (1), (2) and (3).
The proof of (1) is straightforward. We first note that if f(2) is primi-
tive then f[(z — k)/r] is also primitive for any % and for any » = 0.
For by hypothesis there exist @ and ¢ such that

oy = {( n* if z—az—l—r

0 otherwise

On the other hand, by definition we have

(z _ k) fly) if z2=rm+k
f = .
| i 0 otherwise

f(z_k>: (=1)" if z=vr(ax+c) +k
r 0 otherwise

ﬁVAYHz a(rz) + (re + k)

Hence

0 otherwise

and so f[(z — k)/r] is primitive. The extension to linear combinations of
primitive functions follows at once and (1) is proved.

In order to prove (2) we first need an auxiliary result (a simplified
version of Lemma 2). This is: Suppose f has periods p = 2°(2m + 1)
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and p' = 2" (2m’ + 1). Then for any k, i[(z — &)/ (2m + 1)]f(z) has
mean zero iff i[(z — &)/ (2m’ + 1)]f(z) has mean zero. To prove this,
let us first assume that @’ = a and 2m + 1 divides 2m’ + 1. The sum

P il(z — k)/(2m + 1)]f (2) is exactly the sum of the f(z) for which
z— k=0 (mod2m + 1),and0 =z — %k = p — 1 (sincei[(z — k)/
(2m + 1)]f(2) has period p). There are 2° such values of z — k, namely,

z2—ked ={0,2m+ 1,22m + 1), ---, (2° — 1)(2m + 1)}.

Similarly the sum 22-0 i[(z — k)/(@m' + 1)]f(2) is exactly the sum of
the f(z) for which z — & = 0 (mod 2m’ + 1)and0 < z— k < p — 1.
Again there are 2 such values of z — k, namely,

z—keB=1{02m' +1,22m +1),---, (2" = 1)@2m" + 1)}.

All the elements of A and B are congruent to zero modulo 2m + 1
(since 2m -+ 1 divides o2m’ 4+ 1). Also since 2m + 1 and 2m’ + 1 are
odd then both sets A and B contain a complete residue system modulo 2°.
Hence modulo p, A and B are identical. Since f has period p then

p—1

S i(22k)r0 = Zre = Zre = 5 i () e

z=0

If we now assume that @ = a (instead of &’ = a) then it is not diffi-
cult to see that

s i(mt )10 - 2B () 1o

Thus Wha.t we have shown is that if f has periods p = 2°(2m + 1) and
p'=2"(2m + 1) whelepdlwdes p then i[(z — k)/(2m + 1)1f(z) has
mean zero iff [ (z — &)/ @m' + 1)] f (2) has mean zero. Since in general
a function which has periods ¢ and ¢’ also has period (g,¢) (the greatest
common divisor of ¢ and ¢'), then the initial assertion follows at once.
As a simple example consider the function f given by

.f: T 1:31_23_1)45211737_2:_114!2) e

This function has 6 = 2-3 as a period and 7(z/3)f(z) has mean zero
since

2 i/3)f () = J0) +/(3) =1 -1=0.

However we may also consider f as having a period of 12 = 2°-3 in
which case 7(z/3)f () has also mean zero since
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11

2, i(/3)f(2) = (0) +7() +1(6) +1(9) = 0.

z=

Finally, f has a period of 18 = 2-3% and 1(2/9)f (z) still has mean zero
since
17

2 i(/9f() =10) +50) = 0.

Our next step will be to prove (2) using the result just established.
We first show that if f is primitive and has period p = 2°(2m 4 1) then

il (2 T 1)j?'(z) =0 forall k. (4)

=0

To see this, we partition the integers into two-element subsets {u; , v,}
such that v; = u; + 2m + 1 for each 7. Since f is primitive there exist
integers x and ¢ such that

f(z)={( 1)* if Z=£1.L+C

0 otherwise
Since
wr = v (mod 2m + 1)
and v; — w; = 2m + 1 is odd then it follows that
flux +¢) = —f(vir +¢) foralld.
But

fux —k\ _ L fre—k ;
1(2m+l)_z(2m+l) for all 7 and k.

Consequently it follows from the fact that f has period p that

= o 2
; (9m T 1)]’(z) =0 forallk
and (4) is established.

To establish (2) assume that f has period p = 2°(2m 4 1) and is a
linear combination of primitive functions f;, 1 = ¢ = t. If f; has period
pi = 2%(2m; + 1) then by (4) we know that

pi—1 7 — k
E '1(2rn'—_'_—l)fx(2) =0 for 8.11 k.
z={ my

\
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Hence, if we choose ¢ = p1ps + -+ pip = 2 (2m’ 4 1) then by the sim-
plified version of Lemma 2, we have

¢,

=0 (2 ’+1

)f(a') =0 for 1=7{=t andallk

‘onsequently

g—1 2 —

Z; (2 ,_|_1) () =0
since by hypothesis f is a linear combination of the f; . But f has period
p so applying the Lemma 2 result again we find

p—1

Z (2 e l)f(z) =0
and (2) is proved.

We are left with (3) to prove. To do this we first establish the follow-
ing result: If h(z) is defined by h(z) = (—1)° then for a fixed n, the
2" — 1 functions A{(z — k)/27,0 = k < 2", 0 = r < n, are linearly
independent over the reals. This is easy to see since for a fixed r,
R (z — k)/2"] assigns a nonzero value only to those z such that z = k
(mod 2"). Hence for &k = 0,1, ,2" — 1, the h[(z — k)/2"] assume
NONZero va]ues on disjoint sets. On the other hand, A[(z — k) J2r ] assigns
different values to the points & and k + 2" while any Al (z — k')/2" ]asalgns
the same value to these points for »’ < r. Thus, & [(z — k)/2"]isnot a lin-
ear combination of other h[(z — k)/2°] for s < r. This establishes the in-
dependence of the h’s. Note that for0 = k < 2"and 0 = r < n, the fune-
tion h[(z — k)/2"] has period 2" and mean zero. By taking suitable
linear combinations of the 2" — 1 independent A[(z — k)/2"], we can
form funetions f which assume any desired values on the points 0, 1, 2,

-, 2" — 2. Of course, we must have

j@—1) = = T16).

Consequently the 2" — 1 functions A[(z — k)/2'] form a basis for the set
of all periodic functions with period 2" and mean zero. That is, any fune-
tion f with period 2" and mean zero can be written as a linear combina-
tion of primitive funections with period 2". This completes the proof of

3).
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To conclude this section we give an example which illustrates the ease
with which the primitive components of a funetion may be found. Con-
sider the funetion g given by:

¢ has period 8 and mean zero. The only component A[(z — &)/2"] which
can cause a difference in g(0) and g(4) is

h(z/4): ---,1,0,0,0,—1,000, --- .
Since « h(z/4) assigns the points 0 and 4 values which differ by 2a and
g(0) —g@#) =3

then by choosing &« = § we obtain the h(z/4) component of g. Perform-
ing similar caleulations for k[ (z — k)/4], k = 1, 2, 3, we obtain

0@ = g() _ih(g)_(wjl)h(z;l)
() -5 ()

given by

3
91(3): "'si: 2 ’

(which has period 4). We apply the same arguments to the decomposi-
tion of gy (z) into the h[(z — k)/2], k = 0,1, and find

w0 =0 = 30(5) - (G- (57)

given by

go(2): <o, — 575 T

H= | O
W GO

8 _
1

H= G
W= 02
H=| @
H=| 2
H= | L2

so that g.(z) = —%h(z). Consequently g has heen decomposed into
primitive functions. Graphically we have:
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i"(‘i)““’ i 0, o 0,—&, 0, 0, 0
rjl)h(zzl):---, 0,"‘2"1, 0, 0 o,—(”';l), 0, 0, =
_Eh(zdz): cee, 0, 0,_2’ 0, o, 0, 1_1’ 0 +ooe
4 4 1 4
gh(zzs) , 0 0 0 ’5’ 0, o, 0 -z,
e R s

glz) : -+, 1, 2, —5 ™, %, 1—m ;-, 0,

11I. THE GENERAL THEOREM

We are ready to proceed to the n-dimensional generalizations of the
results of Section II. The proofs given will use basically the same ideas
as before although the technical details become somewhat more formal
and involved. We begin with some definitions.

Let Z" denote the ring of n-tuples of integers with component-wise
addition and multiplication. That is, if a = (a1, +++,a,) and b =
(by, + -, ba) are elements of Z" then

a+b= (a+b, 0+ bn)

and
ab= (ab, 0 ba).

In general, unless otherwise noted, lower case Latin letters without sub-
seripts will denote elements of Z"; lower case letters with subseripts will
denote elements of Z, ie., integers. f ae Zand ¢ = (q1,q, -, qn)
e Z" then we define aq to be (agi, g, -, ags). The n-tuple (1,1,
-++,1) will be denoted by e. By a < b we mean a; < b;for1 =7 = n.

A function f: Z" — R (the real numbers) is said to be primative if
there exist a,z"”, ---, 2™ & Z" such that

¥ 2
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I’(_l)cx+-..+tn if 2z = Cl.lf(” + - _l_ (,‘ﬂ.l!(“) _I_ a

lO otherwise

flz) =

forall ze Z".
Let ¢ denote the real vector space generated by the set of all primitive
functions. Z"* will denote the subset of Z" consisting of those n-tuples

which have all positive coordinates. If m e Z "* then P, is defined by

Po=lzeZ": 0= 2 <m

an element of Z and also the n-tuple (0,0, ---,0).)
A funetion f: Z" — R is said to have period m if

flz + km) = f(z) forallz, keZ"

(ie.,0 = z; < m;for 1 =7 = n, where 0 will be used to designate both

If f has period m and
> @) =0

zePp

then f is said to have mean zero. Let &, denote the real vector space of
all functions of period m which have mean zero. Next, we define

fl(z — a)/b], b0,
by

f(z_a): fG) if z2=by+a
b 0 otherwise
Forae Z, o # 0, let E(a) and O(a) denote the “even part” and “odd
part” of a respectively. In other words, if a« = 25(2u + 1) for 8, u e Z
then E(a) = 2" and O(a) = 2u + 1. Form = (my, --- ,m,) & Z",
E (m) will denote the n-tuple (E(mi), --- , E(m,)) with O(m) defined
similarly.

Finally, for m € Z", let EE.* denote the real vector space generated by

{ o0 )) ftﬂ’g(m),an}

We note that if m = e = (1,1, ---,1) then §," = &, ; in general, we
always have ,," C F, .
We come now to the main result of the paper, This is the following:

the set of functions
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Theorem.
g NG, = 5"
forme 2™,
The proof of this theorem will proceed in a series of Lemmas parallel-
ing the steps taken in the preceding section.

Lemma 1. If g(z) € G then gl(z — a)/rle G foralla e Z" and r ¢ Z"™.

Proof. We first show that if f(z) is primitive then f[(z — a)/r] is primi-
tive. If we assume f(z) is primitive then by definition there exist
b, -+, 2™ & Z" such that

(_1)c1+---+cn if z= C]I(n + iy _|_ Cnm(n.‘l + b.

0 otherwise

f(z) = {
On the other hand

e & f) if z=ry+a
(=) |

0 otherwise

Therefore

(=t it g =™ 4+ -+ ea™ +b) +a
f(z - a)
0 otherwise
(—atte gt p=az®) 4 - Falte™) b+ e
0 otherwise
and henece, f[(z — a)/r] is primitive. By applying this result to a linear

combination of primitive functions, i.e., an element of G, the lemma fol-

lows.
Let 2,7: Z" — R be defined by

i(z) = 1, 7(2) = 222 -2, forall z= (21,22, -+ ,2.) € Z".

Lemma 2. Let e;m e Z™F, r = em and suppose f: Z" — R has period
m. Then for any a e Z"



LATTICE-PERIODIC FUNCTIONS 1203

% i (5n)@ = w3 i(5ml)se.

Proof. We first note that since

r=cm = E{)O(c)E(m)O(m)

E(e)E(m)0(e)0(m) = E(r)O(r)
then
E(r) = E(c)E(m) and O(r) = 0(c)O(m).

By definition

e (050() )) @) = 2,76

and
= i(Gns)ie - e
where
A=1{2:0=<2z=1k0()0(m)+a < O()m forsome k}
and
B =1[20=2z=1%k0(m)+ a <m forsome k}.

Hence, for each set, the values which & may assume are just a transla-
tion of Prew , there being «(E(m)) values in all. Since O(m) and
0(c)O(m) are odd (i.e., each component is odd), then A and B both
contain a complete residue system modulo E (m). Consequently, since all
the elements of 4 and B are congruent to @ modulo O (m) then modulo
E(m)O(m), A and B are identical. Sincem = E (m)0(m) and f has period
m then the sums 2 f(z) and Z f(z) are equal.

zed
We also note in general that for any s € Zn"

i (w10 = v 4 (557) 10

gince Pg. is the disjoint union of = (¥ (c)) copies of P, . Therefore we
have
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£ (o7) 70 = £ (o) 10

" e (O(cw( ))f ®
=2 m©) 3T i(ghgds) @

Po(c)m

W(E(C))Z (O( ))f(z)

and the lemma is proved.
We should note that as a corollary to this lemma we obtain:

i (z = a.) f(2) has mean zero iff
em
(5)

1 (z ; a) f(z) has mean zero.

We are now in a position to prove the important

Lemma 8. Suppose g € G has period p € Z"". Then for all a € Z",

Ez(ou)"@ -0

Proof. We first show that the above conclusion holds if we assume that
g = fis primitive with period ¢ = (@, @, + - - , @). In this case there exists
e, oo, 2™ e Z" such that

f( ) _ (_1)a1+-'-+ﬂ" ]._f 2 = ale]} + - + a,,.‘l:(") + ¢
0 otherwise '

To each w = (u, -+ ,u,) & Z" we can associate the unique point
v= (v, ,vn) e Z"suchthaty, = wy, & 0(g), v;: = w;for? > 1, where
the =+ sign is chosen so that Z" is decomposed into the union of disjoint
pairs {u,v}. It follows at once that

wr® 4 - 4 ue™ = 02 + - + 22 (mod O(q)).

Since

i Vi — i u; = +0(q)

=1 =1

is odd then
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™ + -+ + wz™ 4 ¢) = —fz® + - + v2z™ +e).
Also, note that for alla e Z"

; (u a4 4 ™ — ) _ (vl.'r:m + oo g™ — a)
O0(g) 0(q) '

Since f has period g then we must have

% (o) @ -0
as asserted.

We may now remove the restriction that f has period of the form
g= (a,a, +,a) = ae. If we assume f has an arbitrary period p & Z" P
then it is certamly true that f also has period = (p)e. By above we have

= o)1 -

Since p divides m(p)e then by (5) we see that

£ (5w ) -0 o

Finally, to prove the lemma assume that
t

g = Z a;f;
=1

where the a; are real and the f; are primitive. If f; has period " then
by (6) we have

D1 ((m))f_,(z) 0 for 1=j=t

pp(?)
If ¢ has period p and ¢ denotes pp® - - p“’p then by Lemma 2
PE?J(%)L-(Z) =0 for 1=j=t
q

Therefore

Z“(—()T_ﬁ) -5 13 (0( ))f’("')

so that applying Lemma 2 again we obtam

3 (0( ))9(2) =0

since ¢ has period p. This proves the lemma.
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The final lemma is an n-dimensional generalization of (3). Its proof,
however, is considerably more complicated.

Lemma 4. If m = 2% for some a & Z" then &,, C G.

Proof. Tt will be sufficient to show that there exist 2" — 1 functions
in ¢ which also belong to &,, and which are linearly independent over .
Let C* denote the & X k matrix of the form

1 1 1 I 1)
1 -1 1 1 ce 1
1 1 -1 1 1
C(k] —
1 1 1 -1 1
1 1 1 1 s —1
and let D® denote the k X & matrix of the form
0 0 0 ce 0 0 1
0 0 0 ce 0 1 1
0 0 0 1 1 1
le) —
b 1 1 1 1
In other words,
(1 for i =1
Cij =

g
ll —25“ for ’£> 1
and

0 if i+j=kh
i

(1 otherwise
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where §;; is the Kronecker é-funetion. Define B."” to be the » X » matrix

of the form
ylr—x+1)
B(")—-(O ¢ )for 12« =

& peD 0 =k=7

where 0 denotes the appropriate zero matrix. Let 7,," denote the point
of Z” formed from the Ath row of B,”. Finally, let /. denote the fune-
tion in G defined by

[(_l)"l+...+'l" if z= alrx.l(ﬂ + R + a’vr:.v{p)

lO otherwise '

710 =

We show first that the functions f,"”’, 1 £ k < », are linearly independ-
ent over E. To accomplish this it suffices to show that forany «, 1 = « =
», there are two points p and ¢ in Z” such that

17 = 17 (@)

while
ffm (JU) = frw (Q) for x <71 = 0

What we show in fact is that if | £,” () | = 1 then foa” (p) = 1 for
1 £ « < ». This may be proved by showing that if s e Z” is any Z-linear
combination of the r.,", 1 £ A £ », then s can be written as a Z-linear
combination of the r, 12", 1 £ A = v, such that the sum of the coeffi-
cients is divisible by 2. We proceed by induction on ». For » = 2 we

have
@ _ (1 1 @ _ (0 1
B ‘(1 —1)’ B ‘(1 0/"
Since
Tl.l(z) = 7'2.1(2) +- ?'2.2(2]
and

2 2 2,
.2” = r.z'?{) _ "'2.1“

™
then any Z-linear combination of the r,,'* can be written as a Z-linear
combination of the r.,® with the sum of the coefficients divisible by 2
and the assertion is true for this case. Now assume the hypothesis for »
and let



1208 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—-AUG. 1965

r+1
s (r+1)
§ = ) @
A=1

be a Z-linear combination of the r,,”*". There are two cases.

(i) Suppse x = 2. Note that B,”™ and B,.,"*" have the following
forms:

0
0
B = B,

0

11---10 0)
|

k— 1
0
0
B +1(l'+1) = B‘(V)

0

11---10 --- 0|
Wi i

K

We also note the important fact that Testox " has all zero components
except for the xth component which is 1. Thus we have
(»+1)

(»+1) (1)
rt.y+1 = r:+1,n+l - T:+l.v—: .

Now s can be written as
v
(r+1) (r+1)
§ = ;\Z [15NY + avxvn1 3
=1

By the induction hypothesis (since the r,\“"" differ from the r,,*,
1 = N = », only in an extra zero component) we can write

v
(v+1) (v+1)
E [OVPSY = E barepaa
A=1 =1
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where Y by is an even integer. Hence
A=1

¥
(r+1) < (»v+1) (v+1)
8 = Z blr:-{-l.?« + Ay i1 (':+].v+l = Teil—x )-
A=1

Here, s has been written as a Z-linear combination of the r """ with
the sum of the coefficients even and consequently this case is finished.
(ii) Suppose x = 1. We write B,""" and B,""" as

.

Bl(v+13 = Bl(')

Bz(ﬂ+1) - Bg(-)

We note that

. 41 _ (1) | (v+1)
1,041 = Tow + T2, .

As before, by the induction hypothesis we can write

1 4 »
(v+1) 1)
2. i = 2 baraa
r=1

A=1

v
where D by is even. Consequently we have
A=1



1210 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUG. 1965

.
- . D (»+1)
8 = )‘Z ary + @ypren

=1

5
}Z; barz.x(w” + a1 (7’2.»(”” + 7'2.7+l(’+”)
which expresses s as a Z-linear combination of the r,,""" with an even
coefficient sum. This completes the induction step and the proof of the
assertion that the f,"’, 1 < x < », are linearly independent over R.

A more careful examination of B, reveals the following:

(a) ?‘x.)urlm — 72 = (10, B2 RIS
forv — x4+ 1 A=v—1.

(b) Tl.l“‘) - Tt.l“’) (251.x+i\—1 3 262,x+)u71 y Ty 261-.:-{-)»—4)
for2 =Ax=v—Fk+1.

r—x

(C) er..\“) = (F — Kk — 2)71.1(” = (261.I1262,t: ] 267.:)-
A=2

I 1A

Since the linear combinations of the r,,” in (a), (b) and (¢) all have
the sum of coefficients an even integer then

F (@8, 2800, -, 28,0)) = £ (0)

for1 < A, x < ». Hence f,"” has period 2¢ = (2,2, --- , 2). Also we note
that the only points in Ps, © Z” at which £, is nonzero are just those
Z-linear combinations of the r,,” which have all coordinates 0 or 1. It
is not difficult to see that the only points of this type which may be gener-
ated are the 2% points of the form (¢;,cz2, -+, ei1,€0,€0, +++, Co)
where ¢; = 0 or 1. By a translation of f.*' by a we mean the function

fea” defined by
ft.am(z) = [z — a).
By letting the a range over the set of points
‘Al = {(0:0) ,O,dl,dz, adv—x):d)s = 0 or 1},
the 2~ translations f,.'”, a & 4., have the property that for each p e
Py, , exactly one of the f, .’ assumes a nonzero value at p. In fact, if we
define an inner product (fe.."’, fis"") for fe.” and fi" by

(oo 0™ = 2 fea” @WH" (D)

pePa,
then the inner product of any two distinet functions f, ", /s, a e A.,
beAy,1 =k, A = v, is zero. Since

(fl.ﬂ(‘.),fl.ﬂ(’)) = 2=
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then by introducing the “normalized” basis functions
.f:.d[“ = 2"‘12.[1.11“)

we see that theset of (1 + 2 + -+ 4+ 2-1) = 2* — 1 funections f, .,
ae A, 1 £« = v, are orthonormal. Thus, we have shown that F.. C G.
The extension of this teehnique to show that Fu., C G is quite similar
and will be omitted. The basic idea is simply to introduce the “expan-
sions” fean” of fo." defined by
Fean(2) = fea” (2/A) for x =22, ... 2°7

and then by taking suitable normalized translations of these functions,
obtain an orthonormal basis (in G) for Fu, . This shows that

Fm = Foap C 8

and the proof of the lemma is completed.
We are now ready to proceed to the proof of the

Theorem.
&
9 n ffm = s}m
forme Z"".

Proof:¢N g, c5."

Let f &£ G N &, . Since [ has period m then by Lemma 3, we have for all

aeZ"
le (o( )f() = e

Since

0= 2 oo

and each of the functions i[(z — a)/0(m)]f(z) can be written as
h[(z — a)/0(m)] for some h & Fgm then [ e F.  and this direction is
established.

GN G D B

We have already noted that F., * C F,. . It remains to show that §,* G.
By definition ., is the real vector space generated by the set

th[(z — a)/0(m)]: h e Fgwy,ae Z"} .
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By Lemma 4 we have
Fem) C© Frgmye © G-

Thus, if h € Frm then h & G. But by Lemma 1, h & G implies
hl(z — a)/O(m)] e G.

Therefore, since G contains a set of generators for &, * then §,,* < ¢.
This completes the proof of the theorem.

IV. CONCLUDING REMARKS

As a concluding example of the results of the preceding section, we
consider the decomposition of the function f generated by the charge dis-
tribution of the crystal structure of potassium tantalate, KTaO;. This
compound forms face-centered cubic erystals with a charge distribution
as shown in Fig. 1. That is, a +1 is situated at each vertex, a —2 at each
face-center and a +5 is located in the center of the cube. The periodic
function f defined by this distribution has period (2,2,2) and is shown in
Tig. 2 (which is the forward upper left octant of Fig. 1). We have

80 that the 7 basis funetions into which f will be decomposed are as shown
in Fig. 3.

+1 +1

1
+1 f +1
|
|
I
|

i
L B s -2

+1

+1 #1

Fig. 1 — Charge distribution of KTaO; .
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z

0 -2

+1 °
M
/
.’/

-

5 +5
o -2 x

Fig. 2— A period of the periodic funetion.

= | =4 0

213

0 0 0 0
° o 0 0 1 =1 (]
() o ¢] o +1 0 0 +1
(3) N ¢ (3) (3) © ° o
i lo,0.0) i 1,0.0) i o0 FE? 1,1,0)
=1 +1 0 (o] +1 +1
(6] ° =1 1 -1 1
0 5 + I o
+1 +1 ]
rtal.J(n.O.o) r(2:.‘](0,1.9) f"{33.)(0.0.0)

F1c. 3 — The seven basis functions.

+1-1=0

=1-1==2

-2+2+1=1

-2+ =-2—2_

p-t1-2+41=0

t2+2+H1=+5

+1-1=0

-1 =-2

Fig. 4 — Decomposition of the periodie function.



1214 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUG. 1965

The coefficient of fi, .00 is obviously (0 — (—2)) = 1, ete., so
that we obtain

()]
= hoow® — frann® — fLoin
¢ ({
+ 2fa10® = 2f010% = frooo®

Graphically, this equality is shown in Fig. 4.

The author gratefully acknowledges many enlightening discussions on
this subject with H. O. Pollak (whose ideas along the lines of generating
functions led to a short solution of the one-dimensional problem) and
W. J. C. Grant (who originated the problem).
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B.S.T.J. BRIEFS

Axis-Crossing Intervals of Rayleigh Processes
By A. J. RAINAL

(Manuseript received May 12, 1965)

I. INTRODUCTION

Let R(l,a) denote the envelope of a stationary random process con-
sisting of a sinusoidal signal of amplitude 4/2a and frequency fo plus
Gaussian noise of unit variance having a narrow-band power spectral
density which is symmetrical about fo. When @ = 0 Rice' presented
some theoretical results which are very useful for studying statistical
properties of the axis-crossing intervals of R({,0). The axis-crossing
points and the axis-crossing intervals of the Rayleigh process R(t,a) are
defined in Fig. 1. Some recent work concerning the axis-crossing in
tervals of R(t,a) was reported by Levin and Fomin?, Goryainov,® and
Rainal.*s The purpose of this brief is to present some theoretical results
when @ = 0. These results stem from a straightforward extension of
Rice’s analysis. The Rayleigh process R(f,a) occurs at the output of a
typical radio or radar receiver during the reception of a sinusoidal signal
immersed in Gaussian noise.

II. THEORETICAL RESULTS

Using a notation consistent with Refs. 4 and 5 we define the following
probability functions at an arbitrary level R of Fig. 1:

(1) Q(r,R,a)dr, the conditional probability that an upward axis-
crossing occurs between ¢ + = and { + 7 + dr given a downward axis-
crossing at £

(2) Q*(r,R,a)dr, the conditional probability that a downward axis-
crossing occurs between ¢ + r and ¢t + 7 + dr given an upward axis-
crossing aft {.

(3) [U(r,R,a) — Q(r,R,a)ldr, the conditional probability that an up-
ward axis-crossing oceurs between ¢ + 7 and { 4 = + dr given an upward
axis-crossing at t.

The reader should refer to Rice! for the definition of all notation
which is not defined in this note. When a = 0, Rice’s (86) becomes:

1219
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9i_AND ¢i. ARE AXIS-CROSSING INTERVALS

"‘{ 6 }*‘f’l-'Il-oz—T-—-¢z-——T—03—T-¢3-T—04—-{
ol ﬂ'ﬂ M VJ\’ '/\L
\M NV

| |
| l t—s l
0 l | | S |

AXIS-CROSSING POINTS

*—__IJ__T

Fig. 1—The level R defines the axis-crossing points and the axis-crossing
intervals of the Rayleigh process R(¢,a).

L]
Q (rRa) = — (ZFW) R I (RQ)
2T 27 0 L] (1)
f dB,f dﬂzf dR;f dRz’Rl’Rﬂ’p(R,Rl’,REI)R,GI ,00)
L] 0 —0 0

where: Ij () = Bessel function of imaginary argument
Rz[ﬂf 222 - M 23262]7*

8l

Y4 (R,R;,R;,R,& ) 92) =

.exp { - [A (R, + R,”) 4+ 24rR,R,) + 2DR, + 2ER, + m}

2M
A = My — M2 [(MMau(1 — m?)]  Q = +/2a
¢ = cos (61 — 62) s = sin (f — 62) r:ﬂi"1
.2‘4-22

D = [My? — Myc®(R[Myy — Masc][Mm'(c — m)]
+ Q[M1s — Myy)[M 238(M 22 sin 8y + M ose sin 8;)
— 08 0y(Mp? — M) ]}

E = [My? — Mo’ { —R[Mss — Masc|[Mm'(c — m)]
+ QM2 — My5)[M 238(M 25 8in 6, + M g5c sin 85)
+ cos 02(Mg® — Masc?) ]}

(Mo — Mo’ 2[Q* — QR(cos 6, + cos 85)]
My A Myu)[My? — Mas2e?|

=y
Il
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— M QRs[Mus — M)[Mas — Mascllsin 6, — sin 5]

— M aoP[M s — M2 sin® 6, + sin® 64]

— 2Mo(Qc|M s — M y5]* sin 6, sin 8,

+ 2R M4y — Mogc)[(Mas + Mase)(Mn + M) — Mys?]).

Equation (1) can be put in a form analogous to Rice’s (97) and (55):

- e RMyue™* I (RQ) [*" f T @
Q (nRya) = 5 Ve —m)2 ) I e J (rhk) dowds; (2)
where:
J (nhk) = L f d;t:f dy(e — h) (y — k)é
27!'8[ h k
L @+ — 2my _ . 1 — 'mji )
?= sy M ”‘[ Ma |’

f = [l —m' ]
CL M

a; = A1 — 7D — rE] as = A1 — »2]7[E — rD]
G = A1 — " 2rDE — D* — E?] + F; si= V1 — 2
We also find that:

J(rhk) = ;- exp
m

[_ (k* — 2rhk + h’)] _ he®
2(1 — ) 24/27

[-r()-20 -] @

+ (hk + ) K (r,hk)

where:

3 — 2 fz 122
P(l) — ‘\/2—‘1'. 2 e dl
K (r)h,k) = Karl® Pearson’s (d—) =2 fw dx fw dye’
v AN 28y Ju & ye-

Tor a recent table of K(rhk) see Ref. 7. Tor a recent discussion of
K(r,h,k) see the recent work of Gupta.® In these latter two references
K(r,h,k) is denoted by L(hkr).

Q*(7,R,a) is obtained from (1) by changing the signs of the =«’s in
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the limits of integration. We find that Q*(r,R,a) is equal to the right-
hand side of (2) with h,k replaced by —h,—k.

[U(r,R,a) — Q(7,R,a)] is obtained from (1) by changing the lower
limit of integration of R," to + «. We find that:
e*RM 0e®/? I71(RQ)
27276 (1 — m°)*

U(r,Ra) — Q(r,Ra) =
2 2 (4)
—[u fu e—(a.'unJl (?‘,h,k) dﬂldez

where:
Ji(rhk) = 2 f d.vf dy(x — h) (y — k)e'.
2mwsy I k

We find that J(r,h,k) and Ji(7,h,k) are related by:

(hk + 7)

;L= P®L ©)

h —k2/2
Jl (T,h,k) = J(? ,h,k) + ‘\/ﬂ e —
Equations (4) and (5) are the generalizations of (64) and (35) of Ref. 5.

ITI. STATISTICAL DEPENDENCE OF AXIS-CROSSING INTERVALS

By expanding m(r) as:

oL A LR
we find that as 7+ — 0 from the right:
My = 28byr — (ba* — Bbs + )7 + o(7?) (7)
My = Bbar® — 3(bs* — Bby + )7 + o(+%) (8)
My = pbar* — 3(bs* — Bbs + B%)7* + o(7%) (9)
My = —28bsr + (bs* — Bbs + B9)7* + o(+?) (10)
Mgy = 38bsr® 4+ (Bbs — b2 — B + o(r) (11)
My; = 38bsr® + 15(38bs — bs® — 38%)7% + o(rY). (12)

When by # 0 we find that:
My — My = —§8%y7* 4 o(r?) (13)
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My + My = 380 + o(r") (14)
Ma — My = 38by’ + o(s) (15)
M = 18bert + o). (16)

When by = 0 and bs # 0 we find that:
My — My = 8%s7% + o(v9) (17)
My + My = —thofbbs + 0(1"7) (18)
Ma — My = —gBbst’ + o(") (19)
o =B @ = b7+ o). (20)

When b; = b; = 0 we find that:

My — My = ;Q% (8bs + b7 + ol (21)
My + M = 70 @b + b7 + o) (22)
Mo — Moy = —o5(8bs + bs)7" + o(r") (23)
M = 358 — be)(Bbs + b7 + 0o(7®). (24)

As 7 — 0 we see that the terms of the quantities D, E, and F which
involve the sine wave amplitude Q are of higher order in r than the
terms which do not involve Q. This behavior as r — 0 is consistent
with a result reported by Levin and Fomin®. Thus, a theorem presented
in Ref. 5 also applies to the Rayleigh process R(t,a). That is: If E(,a)
is a Rayleigh process, defined in paragraph one, having a finite expected
number of axis-crossing points per unit time at any level E, then two
successive axis-crossing intervals at that level R are statistically depen-
dent.

The theorem implies that the successive axis-crossing points of the
Rayleigh process R(f,a) at any level B do not form a Markov point
process.
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Errata

A Note on a Signal Recovery Problem, by I. W. Sandberg, B.S.T.J.,
43, November 1964, pp. 3065-3067.

On page 3066, replace | f2(t) |* by | fa(2) |*, and replace $[w] = flw] — w
by ¥lw] = ¥[w] — w. On page 3067, replace max (c1, es) by (e + e2)’.
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