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The effects of transmission delay upon the performance of a three -party
teleconference were investigated using a problem -oriented task. The tele-
conference was simulated in the laboratory using 4 -wire telephone sets
interconnected to form a three -party conference network without echo sources
or echo control devices. The two experimental conditions were characterized
by (a) a network whose three legs provided transmission delays of 600 -

milliseconds, 300 -milliseconds and no delay, and (b) a network each of
whose three legs provided no transmission delay. It was found that: (i)
time to complete the experimental task was 28 percent greater in the delay
condition than in the no -delay condition, (ii) the error rate was less in the
delay condition than in the no -delay condition, (iii) time -per -trial decreased
with successive trials in both delay conditions; time -per -trial was less in
the no -delay condition than in the delay condition, and (iv) no chairman-
ship pattern developed as a result of time delay in the network. Moreover,
not one of the subjects reported having observed the existence of delay in
the voice path. There were, however, more complaints of "talking together"
in the delay condition.

I. INTRODUCTION

Two technological developments have recently entered the field of
international communication. The first is the advent of the communi-

* This paper is drawn from the author's thesis which has been accepted by the
University of Pennsylvania in partial fulfillment of the requirements for the de-
gree of Master of Science.
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cation satellite. The second is the now widespread ability to establish
teleconferences (telephone conference calls).* Relatively little is di-
rectly known about either of these by itself, let alone how they may
interact. This paper represents an attempt to systematically experi-
ment with time -delayed communication in the context of conference
telephony. The research examines the influence of the delay factor
upon human teleconferencing performance on a given task and also
explores the development of group structure in a network having several
time delays.

In the present connection, the significant factor resulting from
the use of a satellite is the relatively large amount of time delay intro-
duced into the signal transmission. Riesz and Klemmer', in a study
of delayed conversation between two people, found that round-trip
delays less than 600 -milliseconds do not degrade the acceptability of
the circuit. Mitchell' and Emling and Mitchell3 have given the signifi-
cant parameters of time delay for various types of satellites. Low
orbit satellites (with a typical round-trip time delay of 100 milliseconds)
and medium orbit satellites (with 190 milliseconds) should cause little
trouble because of time delay. Hence, this paper investigates the effects
on teleconferences resulting from signal delays introduced by a syn-
chronous satellite (with a total round-trip time delay of 540 milli-
seconds).

We consider first the effects of time delay on the communication
process. In a study of the length of reference phrases used in a conver-
sation between two people to describe ambiguous figures over tele-
phone circuits, Krauss and Weinheimer4' 5 found that the length of
reference phrases decreased on each successive occasion the figure was
mentioned, eventually reaching a lower limit of one word. In a related
but yet unpublished study, they found that when the circuit was
degraded by the introduction of voice -operated devices, the mean
number of words to describe the ambiguous figure was higher on the
first occasion and decreased at a slower rate than when the telephone
circuit was of standard quality.

Viewed collectively, these findings tend to indicate that a degraded
circuit disrupts the communication process and that learning (evi-
denced by the decreasing length of reference phrases on successive
references) is greatly slowed down. Hence, one might expect that time
delay in a teleconference network could also degrade the communica-
tion and slow down the learning process.

* In the context of this paper, a teleconference is a conference among at least
three people using standard telephone sets.
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In their study of naturally occurring conversations between two
people, Riesz and Klemmeri found that subjects did not find round-
trip delays of 600 and 1200 milliseconds objectionable. The criterion
used to measure "objectionality" in that circuit was the number of
times each of the subjects rejected the delayed circuit for a normal
one. Riesz and Klemmer chose to deal with naturally occurring speech
since other studies have shown that the subtle conversational diffi-
culties produced by delay do not often occur in structured conversa-
tions.

As long as one person does all the talking, it is impossible to detect
the presence of even very large delays. The natural speech simply
arrives a few seconds late. Likewise, the presence of delay will be
unnoticed in highly structured conversation, where it is agreed before-
hand that one person will not begin talking until the other has stopped.
There are simply longer pauses between talk spurts.

Delay plays an increasingly significant role in a nonstructured
conversation. When the communication involves elements of informa-
tion exchange, persuasion, or negotiation, the quality of the communi-
cation channel becomes more critical. For instance, in such teleconfer-
enced conversations it is sometimes necessary to cut a person off for
questioning or voicing objection. Consider a time -delayed conversation
between two people, A and B where t is the one-way delay of the
circuit. When A cuts into B's speech, he is heard by B t seconds later
at which time B stops talking (assuming B has zero reaction time). A,
however, continues to hear B for another t seconds. Hence, for period
2t (the round-trip time delay of the circuit) both people are talking
simultaneously. If there are more than two people in the conference
and some (or all) of them are talking simultaneously, disorder may
result.

An alternative to the naturally occurring speech technique in evalu-
ating a communication system is the use of a problem solving task.
The advantage of using a specified task over the naturally occurring
speech technique is that the nature of the communication can be more
closely controlled. Conceivably, naturally occurring speech could range
from idle chit-chat to high-level negotiations with the characteristics
of the conversation varying greatly even within a given class of tele-
conference. Consequently, it is desirable to test the teleconference
facility using a task that simulates the pertinent characteristics of
anticipated conferences.

We next turn to the aspects of group behavior which apply to tele-
conferences. Here a number of parameters are of importance such as
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nature of conference, size of group, network configuration, and whether
or not a chairman is designated. The nature of the communication will
be the most important factor governing the proceedings of the confer-
ence. A large conference in which one member gives instructions or
information to all others will certainly be quite different from a con-
ference in which three of four heads of state attempt to negotiate a
settlement to an impending crisis. Consequently, it is difficult to inves-
tigate teleconferences without first defining the nature (information
exchange, lecture, problem solving, persuasion, negotiation, etc.) of
the conference.

The size of the group is a particularly significant parameter in
teleconferences. It is of even greater importance than in face-to-face
conferences because of the greater difficulty in identifying participants
due to the lack of nonverbal cues (Sinaiko°). A group size of three
is the simplest form of teleconference possible. Here, the possibility of
a deadlock is minimized since the minority is an isolated single person.

The third important parameter is the network configuration. Bave-
las et a17 have found that two basic configurations are of importance:
one having a common circuit and one having a central control. Com-
mon circuit networks are those in which all participants can hear when
any one of them talks. Central control networks are those over which
all parties transmit to a single station which in turn can relay the
message to all others. Note that the central control network lends
itself naturally to strong chairmanship; while the chairman in a com-
mon circuit network must depend on rules and protocol to maintain
order.

In a study on teleconferencing, Heise and Miller8 found that an
information collection task (completing a list of words; each subject
having part of the list) was performed most rapidly using a common
circuit network while a task requiring assembly plus coordination was
performed most rapidly using a central control network with a chair-
man in charge. They also found that the differences between networks
become more pronounced as "noise" is introduced into the communica-
tion channel. As "noise" they used white noise.

Sinaiko° found that in one teleconference, the chairman did not
add to the effectiveness of the meeting because he had no means of
enforcing his decisions. He found also that when using four conferees
and acceptable circuits it was not difficult to consistently identify each
voice. In a large teleconference of 12 participants in which the issue of
chairmanship was deliberately left vague, a chairman did seem to
emerge. When the conferees were asked whether a chairman emerged
they generally agreed that the man who volunteered to call the roll
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during the first few minutes of the conference was regarded as the
chairman.

In a time -delayed multiparty teleconference in which a chairman
has not been designated, it is of interest to determine whether or not
any one position in the network would be favored for the emergence of
a chairman. Consider the network depicted in Fig. 1 to be used in the
present study. The three positions A, B, C are separated from a central
point (telephone company conference operator) by one-way delays of
600, 0, and 300 milliseconds, respectively. The psychologically relevant
factor here is the round-trip delay between any two given persons in
the network.

One might anticipate (Bavelas9 and Guetzkow and Simon10) that the
person occupying the position of "relative centrality" would most
likely emerge as chairman. The central position is that position which
is closer than any other position to all other positions. Hence, using
time delay as a measure of distance, this theory predicts that B will
emerge as chairman. It is felt, however, that the delays depicted in the
figure are insufficient to overshadow those personality factors which
are thought to determine the normal development of group structure.

II. PURPOSE

An experiment was run to investigate the subjective reaction to large
time delays (experienced in synchronous satellite communication) in a
three -party teleconference. The network simulated a teleconference
whose three legs consisted of one satellite link, two satellite links, and
no satellite link, respectively. Each satellite link had a one-way delay
of 300 -milliseconds. The two experimental conditions were specified
by:

(a) Delay condition -a network, Fig. 1, in which one leg is delayed

O
0 ms
DELAY

CONFERENCE
OPERATOR

300 MS 600 MS
DELAY DELAY

Fig. 1- Network configuration.
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600 milliseconds, another is delayed 300 milliseconds, and the third is
undelayed.

(b) No -delay condition -a network in which each of the three
legs is undelayed.
All other parameters remained the same between experimental con-
ditions. No attempt was made to simulate echo or the effect of echo
suppressors even though they would be expected to play an important
role in actual satellite communication.

The two experimental conditions were tested using a task which
required the subjects to communicate over the teleconference network
about ambiguous figures (in the sense that they do not evoke a com-
mon reference phrase) . Such ambiguous figures have been used pre-
viously by Krauss and Weinheimer to test circuit quality in circuits
containing voice switching devices and in circuits containing delay. Sub-
jects were faced with the task of describing the figures appearing on each
of their stimulus cards and identifying the figures which were common
to all three of them. There were 22 such trials.

With respect to the above defined task and the two experimental
conditions it was hypothesized that:

(i) Time -on -task will be greater in the delay condition than in the
no -delay condition.

(ii) There will be no difference in accuracy on task between the
delay and the no -delay condition.

(iii) Time -per -trial will decrease with successive trials in both
delay conditions. For each trial, time -per -trial will be greater in the
delay condition than in the no -delay condition.

(iv) No one position in the network is likely to emerge as a seat for
a chairman in the delay condition.

III. METHOD

3.1 Procedure

Upon arrival at the laboratory, subjects were introduced to each
other. They were then given verbal instructions by the experimenter.
Essentially they were told that they were to participate in a conference
call as though each one of them were in a different country and that
their voices would be transmitted to one another over simulated
satellite circuits. They were told that the purpose of the study was to
determine the effects of satellites on telephone communication. Sub-

j ects were not told whether or not their network contained delay.
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After receiving instructions, subjects entered individual rooms and
picked up telephones they found there. They were asked by the experi-
menter over the telephone to give their name, room number, and a
listing of letters that were associated with the task. All subjects could
hear the questions and answers. This was to identify the names with
the voices and to give the subjects a "feel" for the circuit.

Subjects then began their task. If there were any misunderstandings,
they were assisted by the experimenter. This rarely happened beyond
the first minute of the task. After completing the task, subjects were
individually interviewed by the experimenter and were then told not
to discuss the details of the task with their friends since they might
also be used as subjects later.

Experimental sessions lasted about 30 minutes and were spaced 45
minutes apart. Each group participated in only one delay condition.

3.2 Experimental Task

The three subjects, each in an acoustically isolated room, talked
together over seemingly normal telephone sets. Before them on a
table was a set of 22 cards each numbered, and mounted in a desk
calendar holder. The holder kept the cards in order and presented
only one card at a time.

Before entering their rooms, the subjects were told that on each
card of their set were stamped five nondescript figures. They were
told that two of those figures appeared on all of the cards while the
other three figures appeared only on their own cards. Fig. 2 shows
a sample stimulus card. By describing the figures to each other, they
were to find out which were the two figures held in common. After
agreeing on the first figure on card 1, each subject read the letter under
it. They next located the second figure on that card, and each read the
letter under it. They were then told to turn to card 2 and continue.

The two common figures were selected at random (using a table
of random numbers) from a set of 11 figures. Any given figure ap-
peared as a common figure twice in cards 1 through 11 and twice in
cards 12 through 22. No figure was a common figure on both of two
adjacent cards. The common figures were placed at random positions
on the cards. Common figures appeared an equal number of times in
each position on the cards of each set. The noncommon figures were
selected from the remaining nine figures and placed randomly on the
cards. The total number of appearances of all figures were equal for
each set of cards.
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M

Yo?

s

N 0

Fig. 2 - Sample stimulus card.

3.3 Apparatus

The experiment was run in the Customer Services Appraisal Labo-
ratory of Bell Telephone Laboratories at Holmdel, New Jersey. The
laboratory consists of five acoustically isolated rooms designed for
psychological testing.

The network configuration for the experiment is given in Fig. 3.
When the experiment was run in the no -delay condition, the delay units
were physically removed from the circuit. The network employed 4 -wire
circuits providing isolation between receive and transmit paths. This
was necessary to prevent echo and to interface with the magnetic disc
delay units (Echo Vox Sr.) which are one-way devices. The delay units
were calibrated for 600 -milliseconds delay and 300 -milliseconds delay,
respectively.

Because of the need for 4 -wire circuitry, the standard 500 -tele-
phone set was modified as in Fig. 4. Artificial sidetone was provided
and loss and circuit noise were adjusted to values representative of
standard telephone circuits.

The conference bridge was a standard 4 -wire 6 -branch bridge pro-
viding 19.5 dB net loss. Only four of the branches were used in the
circuit - three for the participants and one for the monitor. The am-
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Fig. 3 - Experimental configuration.
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plifiers at the bridge were adjusted to provide unity gain through the
bridge in all directions.

3.4 Participants

The 36 subjects were employees of Bell Laboratories and were fe-
male clerks with roughly the same job classification. Their ages
ranged from 18 through 25. All had at least a high school education.
The subjects were unacquainted with the experimenter at the outset
of the study and were volunteers recruited by members of the Ap-
praisal Laboratory. Most of the subjects were at least vaguely ac-
quainted with the other members of their experimental group.

3.5 Scoring

All measurements were made from the recorded tapes of the ses-
sions. In all but one or two instances, the experimenter was able to
identify the person talking from the tape. The tapes were first played
to make an overall time measurement, to determine which participant
spoke first, to determine which participant offered her letter first, to
determine which of the two common figures were found first, to detect
any errors, and to become familiar with the progress of the session.
The tape was then replayed to obtain time -per -figure measurements.
In addition, a questionnaire provided subjective data.

IV. RESULTS

Table I presents the overall time each group spent on the experi-
mental task. The average time to complete the task in the no -delay
condition was 13.43 minutes while in the delay condition 17.23 min-
utes. A t -test was applied to these data to determine whether or not
transmission delay had an effect on time to complete the task. The t -
test (t10 = 3.81, p < 0.01) indicated that time -on -task was signifi-
cantly greater in the delay condition.

Hypothesis (ii) postulated there would be no difference in accuracy
on the experimental task between the delay and the no -delay condi-
tion. Accuracy was measured by noting every occurrence of an incor-
rect identification of a figure made by an individual. For any given
figure, at most two errors could be made since the person describing tile
figure always correctly identified it by reciting the letter appearing un-

-der that figure. The data on accuracy are summarized in Table I.
It was possible for the individuals in any one group to make a total

of 88 errors on the task. Note that the greatest number of errors
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TABLE I - TIME -ON -TASK AND TOTAL ERRORS MADE BY INDIVIDUALS
FOR EACH GROUP

Group
No -Delay

Time -on -Task (min.) Errors

1 15.37 3

2 14.47 0

3 13.74 6

4 11.97 4

5 14.01 0

6 11.30 0

Average: 13.48 Total: 13

Delay

7 17.43 0

8 18.58 0

9 16.72 1

10 15.07 1

11 20.02 0

12 15.58 0

Average: 17.23 Total: 2

(made by Group 3) is 7 percent of this maximum. Of a possible total
of 528 errors among all six groups in each experimental condition, 13
errors (2.5 percent of total possible) were made in the no -delay con-
dition while two errors (0.4 percent of total possible) were made in
the delay condition. A Poisson distribution test on these data indi-
cates that the no -delay error rate is significantly (0.01 level) greater
than the delay error rate (see Ref. 11).

Hypothesis (iii) stated that time -per -trial would decrease with suc-
cessive trials in both delay conditions and that for each trial, time -
per -trial would be greater in the delay condition than in the no -delay
condition. The time measurements per trial are an average of the
times for identfying the two figures on each of the 22 stimulus cards.
Fig. 5 presents the time -per -trial averaged over the six groups in each
circuit condition plotted on a log scale.

A 2 -factor (22 trials x 2 circuit conditions) analysis of variance
under a logarithmic transformation of the data was carried out. The
logarithmic transformation was employed to reduce heterogeneity of
variance and because an exponential -shaped function was found. The
logarithms of time -per -trial and trial number fit a least squares linear
regression model with 0.9 correlation coefficient.

As can be seen from Fig. 5, the time -per -trial decreases on successive
trials for both circuit conditions. The analysis of variance showed
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Fig. 5 - Average time -per -trial (log scale) vs trial number (grouped 2 trials
per data point).

that the difference in trial times was significant (F21, 21 = 30.8, p <
0.001). Fig. 5 also shows that delay times are greater than no -delay
times. The analysis of variance confirms this difference (F1, 21 =
27.5, p < 0.001) .

The sharp rise in Fig. 5 on the third trial is the result of the initial
appearance of one ambiguous figure which all groups found exception-
ally difficult to locate. Note that the curves begin to decrease much
less after the eighth trial. By this time the subjects had converged on a
single reference phrase for each figure. The twelfth trial marks the
beginning of a random repetition of the first 11 trials. At this point the
subjects have seen each of the 11 figures twice and now encounter
them for the third time.

Hypothesis (iv) stated that no one position in the network is favored
to emerge as a seat for a chairman in the delay condition. The hy-
pothesis was tested using measurements of who was the first individ-
ual to begin describing a figure for each figure on the set of stimulus
cards. This means of judging chairmanship was chosen because, to a
rough approximation, chairmanship is determined by leadership which
connotes the first to act. Also, during the interview the subjects gen-
erally stated that their criterion for judging chairmanship was based
on who was the first person to speak up. For each group the number
of times the subject in each position was first to describe a figure was
noted. There were a total of 44 (the number of common figures on
each set of stimulus cards) first responses for each group.
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An analysis was carried out to test, on the basis of frequency of first
responses, whether a chairman actually emerged in each of the 12
groups. Under the null hypothesis the probability of obtaining a
chairman was assumed to be one-third. A chi -squared test was used to
test the significance of the difference between the observed frequency
and hypothesized frequency of one third. Table II presents the results
of the chi -squared test (x2 with 2 df, p < 0.05) indicating the position
of the chairman in each of the 12 groups. From Table II the chi -
squared test indicates that no chairmanship patterns are apparent in
either circuit condition.

In addition, an analysis of variance of the data on number of first
responses according to position in the circuit was made for the delay
condition. The test resulted in failure to reject the null hypothesis at
the 0.05 level that all positions in the network are equally likely for
seating a chairman (F1,10 = 4.77 ns).

A questionnaire consisting of five questions administered at the con-
clusion of the experiment provided qualitative data. To the first ques-
tion, "Did you have any difficulty in understanding the other parties
in the conversation?", all subjects in both delay conditions answered
"NO". But in response to this question, five subjects in the delay
condition added that members of their group often were talking at the
same time. Only one subject in the no -delay condition complained of
talking together.

TABLE II - INDICATED CHAIRMAN FOR EACH EXPERIMENTAL GROUP

Group
No -Delay

Chi-Squareda Questionnaireb

1 C C
2 A None
3 B B
4 B B
5 None C
6 A

Delay

7 C None
8 C None
9 None A

10 B C
11 B
12 C C

a Chairman indicated by x2 -test on first person to respond measurements.
b Chairman indicated by majority decision rule on questionnaire responses.
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The responses to question 2, "Did you find that a conference chair-
man seemed to emerge during the conversation?", are summarized in
Table II. If at least two subjects of each group said that the same
person was chairman, then that person is designated chairman of the
group; otherwise no chairman is indicated.

To question 3, "Did you notice any difference between this circuit
and the one you normally use here at the Labs?", 10 of the 18 people
in the no -delay condition responded "NO". The remaining eight sub-
jects who answered "YES" responded that the circuit was either
"fuzzier", "clearer", or "farther" than their normal circuit. In the de-
lay condition all but four subjects responded "YES" to this question.
They commented that the circuit was either "fuzzier", "clearer",
"nearer", or "farther" than their normal circuit. Of the 18 subjects in
the delay condition, three in Position A, four in Position B, and one in
Position C reported having observed a faint echo. The inadvertent
echo was due to insufficient attenuation at the conference bridge.

To question 4, "Were you able to identify the other parties from
their voices in the conversation?", all subjects in both circuit condi-
tions responded "YES".

To question 5, "Do you have any other comments?", eight persons
in each circuit condition responded "That was fun", indicating per-
haps that delay can be as much fun as no -delay.

V. DISCUSSION

As was hypothesized, the overall time to complete the experimental
task was greater with time delay in the network. The average value
of 17.23 minutes for the delayed circuit is 28 percent greater than the
average value of 13.48 minutes for the nondelayed circuit. These over-
all average time values are composed of the 22 individual trial time
measurements. As was cited in the previous section, these trial times
and the trial numbers, both under a logarithmic transformation, were
found to fit a straight line with rather high correlation, thus substanti-
ating the exponential shaped function. The existence of the exponen-
tial function would tend to indicate an underlying model that is mul-
tiplicative rather than additive. What is meant by this is that any
difference in no -delay and delay times would be properly expressed as
a ratio rather than an additive difference. During any given trial the
control of the circuit (as evidenced by the person talking) transferred
many times among the three subjects. It is this behavior which is
thought to be the cause of the multiplicative relationship between de-
lay and no -delay trial times.
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Although no quantitative data were collected on the components of
trial time measurements, the experimenter observed a greater redun-
dancy in communication with the presence of delay. More time was
spent in giving descriptions and feeding back confirming information
than in the no -delay case. There were also more questions asked of the
person describing the figure. Descriptions did not seem to be any longer
- there were simply more of them. In addition to greater redundancy,
more time was spent in pauses and attempts to speak in the delay case
than in the no -delay case. In answer to the first question on the
questionnaire, five times as many subjects found difficulty because of
talking together in the delay condition than in the no -delay condition.

The increased time -on -task in the delay condition may be thought
of as a compensation for the greater difficulties encountered with the
delayed network. The data on errors indicate that the increased
amount of time -on -task experienced with the delayed circuit induced
more reliable communication. The error rate of 2.5 percent for the no -
delay network is significantly greater than 0.4 percent for the delayed
network.

As hypothesized, the time -per -trial decreased with successive trials
for each circuit condition. These time measurements include total
elapsed time to select a figure, describe it, entertain all questions and
comments, agree that the common figure has been located, and finally
read off the letters that appear under the figure on the respective stim-
ulus cards. The decreasing time -per -trial was observed to be a result of
decreasing length of reference phrases for the figures as well as agree-
ment among all three participants on a single reference phrase for each
figure. A typical sequence of phrases for the ambiguous figure appear-
ing above the letter 0 on the sample stimulus card (Fig. 2) is
". . . looks like three Vs connected in the middle with a triangle in the
center," ". . three Vs with the triangle in the center," ".. . three Vs."

It is clear from Fig. 5 and supported by the analysis that for each
trial, trial times are less under the no -delay condition than the delay
condition. Furthermore, Fig. 5 indicates that no -delay trial times
drop sooner to a lower level than delay trial times. This graph would
tend to indicate, as thought earlier, that learning is impaired by the
introduction of time delay into the circuit. This, however, cannot be
supported on the basis of data obtained in the present study.

As hypothesized, the delayed circuit imposed no tendency for chair-
manship patterns to develop.

Finally, a noteworthy result of the experiment (from the question-
naire responses) was the fact that not one of the participants reported
having observed the presence of a time -delayed circuit. Some com-
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plained of increased "talking together" but this led no one to guess the
underlying reason.

The results obtained here were based upon 4 -wire circuits without
echo sources or echo control devices. The possibility of echo and speech
mutilation due to echo -suppressor action in commercial 2 -wire circuits
could add degradation beyond that encountered in this experiment.
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Mutual Synchronization of Geograph-
ically Separated Oscillators

By A. GERSHO and B. J. KARAFIN

(Manuscript received July 27, 1966)

A control scheme for synchronizing the frequencies of geographically
separated oscillators connected by communication links consists of averag-
ing the phases received at each station from remote oscillators, comparing
the result with the local phase, and applying the filtered error signal as a
correction to the local oscillator frequency. The system was studied by V. E.
Bene§ who found a sufficient condition for the stability of the system using
advanced mathematical techniques. In this paper, the stability condition
is derived (for a slightly more general control scheme) using only the transfer
function concept of linear systems and some properties of determinants.
A practical difficulty regarding the final frequency of the oscillators is
discussed and a modification of the control scheme is shown to alleviate the
difficulty. Also examined are the questions of sensitivity to parameter
changes, the effect of jitter noise on the performance of the system, and the
effect of failure of an oscillator or transmission link.

I. INTRODUCTION

Consider a network of N geographically separated stations that are
connected by directed communication links. A local clock, or oscillator,
is situated at each station. The problem of synchronizing the frequencies
of the oscillators is of considerable practical interest for continental
pulse code modulation (PCM) systems.

The local oscillators have frequencies which may be altered in pro-
portion to a control signal. In the absence of external control, each
oscillator operates at a different frequency. The network is "connected"
in the sense that from any station to any other station there is either a
direct transmission link or an indirect path via one or more intermedi-
ate stations. A fixed time delay is associated with each transmission
link.

In an important but unpublished paper, V. E. Bend' has examined
a linear control scheme in which each station receives the phases of

1689
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neighboring stations, i.e., those stations connected to it by direct trans-
mission links. The phases are averaged and compared with the local
phase; the error is filtered and applied as a correction to the frequency
of the oscillator. Similar schemes were also proposed by Runyon.2
Bend has proved that under suitable conditions the system is stable,
i.e., the oscillators asymptotically settle to a common frequency and the
phase differences have finite asymptotic values. He also finds explicit
formulae for the final frequency and asymptotic phase differences.
To obtain these results, he resorted to the mathematical techniques of
renewal theory and Tauberian theory. By assuming the stability of the
system, as proved by Bend, A. J. Goldstein' has rederived the expres-
sions for final frequency and phase differences in a more direct manner.
Bonomi, La Marche, and Varaiya4 improved the treatment of the
stability problem and suggested some avenues of approach for the
study of transient response. In each case, the authors relied on the
mathematical theory of Markoff chains and stochastic matrices.

M. Karnaugh5 has formulated a more realistic and more sophisti-
cated nonlinear control model. Broad stability conditions for this
model are not yet known; however, certain special cases resemble the
Bend model.

In this paper, the stability conditions and the expression for final
frequency for a slightly more general version of the Bend model are
derived in a simple manner using only the transfer function concept of
linear systems and elementary properties of determinants. This approach
permits a clearer intuitive understanding and should be readily corn-
prehensible to the non -mathematician. The sensitivity of the system
to parameter changes is also examined and certain questions regarding
the final frequency of the oscillators are clarified.

In Section II we give a formulation of the problem and obtain the
basic equations describing the system. In Section III certain crucial
properties of the matrix of averaging coefficients are derived which
result from the topological constraint that the network is connected.
Stability is proved in Section IV and an expression for the final fre-
quency is obtained. Section V considers some practical questions with
regard to how the final frequency is related to the free -running fre-
quencies of the oscillators. Section VI examines the questions of sensi-
tivity to parameter changes, the effect of failure of an oscillator or
transmission link, and the effect of jitter noise.

II. FORMULATION

Let fi be the frequency of the ith oscillator in the absence of external
control, and r i(t) the control signal applied to the ith oscillator at time t.
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If pi(t) denotes the total cyclical phase of the ith oscillator, then the
actual frequency at time t is given by

Mt) = fi + ri(t) (1)

where the dot denotes the time derivative.
The control scheme at the ith oscillator is shown in Fig. 1. The

Phases of all neighboring stations are transmitted to the ith station.
The transmission delay associated with the path from station j to
station i is denoted as Ti; . Each phase received at station i is compared
with the local phase; the differences are weighted with the nonnegative
averaging coefficients ai; and summed. The weighted sum of phase

P1 (t +

p2 (t -r12)

PN (t- TiN)

aLl

a12

PL(t)

SUMMING
AMPLI FIER

FILTER

H L(S)
rut) VARIABLE

FREQUENCY
OSCILLATOR

SIN pL(t)

INTEGRATOR DISCRIMINATOR

S
SIN -1dt

Fig. 1- Station i of the phase averaging control system.

differences is applied to the filter with transfer function H i(s), and the
filter output is the frequency correction term ri(t). Thus, we have

ri(t) = hi(t) * aii[pi(t - - pi(t)l, (2)

where hi(t) is the impulse response of the filter at the ith station and the
asterisk denotes convolution.

We assume the filters have three simple properties: (i) causality,
i.e., the response at any instant does not depend on the future of the
input, (ii) stability, in the sense that a bounded input always produces
a bounded output, and (iii) positive dc gain, i.e.,

H i(0) = Ai > 0. (3)

Without loss in generality we may assume that the averaging coeffi-
cients sum to unity, i.e.,

Ecci; = 1. (4)
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Clearly a scaling of all the coefficients ai3 for fixed i is equivalent to a
change in gain factor of the ith filter.

If there is no direct transmission path from the jth to the ith station,
then the coefficient ai; is presumed to be zero. Thus, the N X N ma-
trix, A, whose ijth element is , contains all the topological informa-
tion about the network of communication links. In order that mutual
synchronization be possible, it is certainly necessary that the network be
connected so that from any station to any other station there is either
a direct or indirect transmission path. The resulting properties of the
averaging matrix A imposed by this topological constraint play a
vital role in the proof of stability for the system.

In agreement with the Bena model we consider the starting condi-
tions where the oscillators are assumed to have been free -running
for an indefinitely long time prior to t = 0, and at t = 0 the control
signals ri are connected to the oscillators. Thus, we have

pi(t) = fit ± pi(0), t < 0 (5)

where pi(0) is the phase at t = 0, and from (1), (2), and (4), the fre-
quency of the ith oscillator when the controls are operating is

pi(t) = hi(t) E aii[pi(t - Ti;) - pi(t)] , t 0. (6)

Equations (5) and (6) for i = 1, 2, , N completely characterize
the behavior of the system under the particular starting conditions of
interest. Taking the ordinary Laplace transform of (6), we obtain

sPi = Hi E aiiP; - HiPi --s-1 pi(0) Qi, (7)
a

where

di; = ai; exp (-8711),

Qi(s) = Hi(s) E ai; f pi(t) exp ( - st) dt,
-rii

and Pi(s) is the Laplace transform of pi(t). The term Qi(s) is the con-
tribution to the ith oscillator frequency after t = 0 due to the contents
of the transmission links at t = 0. Using (5), Qi(s) can be evaluated
explicitly, but for our purposes it is sufficient to note that

sQi(s) 0 as s 0. (8)

The transformed equations (7) can, in principle, be solved for the
phases pi(t) for t > 0. The desired stability information can be obtained
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directly from these equations. We shall, however, obtain this informa-
tion in a somewhat indirect but more profitable way by defining an
associated linear time -invariant system with N inputs and N outputs.

Consider the same control arrangement for the N interconnected
oscillators. Instead of the former starting conditions, suppose the con-
trol paths have always been connected and that each oscillator can be
activated by an arbitrary frequency "input" as shown in Fig. 2. Then
the actual frequency of the ith oscillator at time t is the sum of the
basic frequency input vi(t) and the correction component rift) leaving
the filter. The phases pi(t) are considered the "outputs" of the linear
system. When vi(t) === 0 for each i, the system is at rest and all outputs
pi(t) are identically zero.

The importance of the associated linear system is that any desired
starting conditions in the physical model can be treated by an equiva-
lent set of inputs to the linear system. To clarify this, note that the
system of Fig. 2 is characterized by the equations

73j(t) = hi(t) * E Ti;) - pi(t)] vi(t), - CO < t< °O. (9)

Formally taking the exponential (two-sided Laplace) transform of (9)
we obtain

sPi = Hi E di; - HiPi + Vi, (1.0)

where Pi(s) and Vi(s) are, respectively, the exponential transforms of
pi(t) and vi(t). Equation (10) implicitly characterize the associated
linear system whose inputs are vi(t) and outputs pi(t) as long as vi(t)
has an exponential transform. Comparing (7) and (10) we see that the
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Fig. 2-Model of station i of the associated linear system.



1694 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1966

phase responses of the physical model with the corresponding starting
conditions will be the outputs of the associated linear system for t > 0
if we select the inputs to be

Vi(s) = pi(0) Qi(s) (11)

In the time domain, these inputs are

vi(t) = fiu(t) pi(0)6(1) qi(t), (12)

where qi(t) is the response of the filter Hi(s) to a time -limited input
which begins at time t = -max Tii and ending at t = 0, S(t) is the unit
impulse function and u(t) is the unit step function. From (8) and the
final value theorem it follows that qi(t) 0 as t c o . It is important
to note that the phase responses to the inputs (12) will be the same
as the phase responses of the physical model only for t > 0. For t < 0
the responses of the associated linear system do not correspond to the
physical model.

Equation (10) may be expressed in the form

1
Pi = Oi(s) diJP;s +H) Vi' (13)

i=1

where

13i(s) =
Hi(s) (14)

s + H, (s)

The simplified model of the linear system, corresponding to (13), is
shown in Fig. 3 where 13,(s) is the transfer function of the feedback
configuration as shown. Thus, the operation of the ith station is to
average the incoming phases, apply the average to the filter Pi(s),

81,

P,(t-TL1 )
a L 2

P2( t -71.2)

81N
pN(t-TLN)

(t)

H L(s)

SL(s) = Hi./(s+HL)

S + H L(s)

P

Fig. 3.- Simplified model of station i for the associated linear system.
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and finally add a filtered input component to produce the phase response
pi(t). We shall see in Section IV that the condition for stability of the
system is simply that the filter Pi(s) have a gain less than unity for
sinusoidal inputs.

Equations (13) for i = 1, 2, , N can be formally solved for the
phase responses with the help of matrix notation. Let B(s) he the
N X N matrix whose ijth component is

Ms) = $.(s) ass

and let C(s) be the diagonal N X N matrix whose iith element is

cis(s)
s H7(s)

Note that for s = 0 we have cii(0) = 1/Ai and B(0) = A, where Ai
is the dc gain of Hi(s) and A is the averaging matrix, both defined
earlier. Let P(s) and V(s) be the N component column matrices whose
ith elements are, respectively, P1(s) and Vi(s). Then (13) becomes

1

or

where

[I - .13] P = CV (15)

P = KV,

K(s) = [I - B(s)]-' C(s)

(16)

(17)

is the matrix transfer function of the linear system. Thus, each element
Ku(s) of K(s) is the scalar transfer function relating the output pi(t)
to the input vi(t) when all other inputs are zero. In Section IV we shall
determine certain key properties of the singularities of Ku(s). In order
to examine the behavior of I - B(s) in the neighborhood of s = 0,
certain important properties of the averaging matrix A will be needed.
In the next section these properties are derived.

III. PROPERTIES OF THE AVERAGING MATRIX

As a result of (4), the averaging matrix A has row sums equal to
one. From the requirement that the network be connected, certain
restrictions are placed on which combinations of elements of A may be
zero. These two characteristics of A imply certain essential properties
of the matrix I -A where I is the identity matrix.
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Theorem 1: If A is the averaging matrix of a connected network of N sta-
tions then the matrix I -A has rank N - 1.

Proof: Since the equation

(I - A)x = 0 (18)

is satisfied by any vector x with all components equal, the matrix I -A
is singular and must, therefore, have rank less than N. Suppose that its

 rank is less than N - 1. Then (18) has at least two nontrivial solutions
that are linearly independent. Therefore, there exists a nontrivial solu-
tion, u, whose components are not all equal. Now let w be the solution
vector with each component equal to the negative of the smallest
component of u. Then y = u w is a nontrivial solution of (18) with
all components non -negative and at least one component equal to
zero. Let a = , i2 , , ik} be the set of indices for which yi = 0
and 63 = , ik+2, , iN 1 the set of indices for which yi is positive.
Since y satisfies (18) we have

yi - E ai,y, = 0 i = 1,2,  ,N

and so

E aifyi = 0, for i c a.
ice

But this is only possible if

cti; = 0, i E et, and j e 63,

which implies that there is no transmission path from any station with
identifying index in 63 to any station with identifying index in a. Con-
sequently, the network of N stations is not connected, which is a con-
tradiction. Therefore, I -A must have rank N - 1.

Theorem 2: If A is the averaging matrix of a connected network, the co-
factors of all the elements in any given row of I -A are equal and posi-
tive. Specifically, if 111 if is the cofactor of the ijth element of I - A, then

mv = mik > o

fori,j,k = 1, 2, , N.

Proof: Since I -A has rank N - 1, the solutions of

(I - A)y = 0
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satisfy6

=Mir,i = 1,2, N.
Yk 111 ik

But the only solutions y are those with all components equal. There-
fore,

= Mo all i,j,k. (19)

Let R(e) = I - eA and let /1/q(e) be the cofactor of the ijth element
of R(e). For 0 < e < 1, each principal minor of R(e) is the determinant
of a diagonally dominated matrix (see Appendix), so that

111 ii(e) 00 0<e<1.
Since Mii(0) = 1, it follows by continuity that Mii(1) > 0. Hence,
from (19)

= 111 tL > 0 all (20)

Now (I - A)', where the prime denotes the transpose, must also
have rank N - 1. Thus, solutions of

(I - A)' z = 0 (21)

satisfy

z; Mii
= i = 1,2,  ,N. (22)

Zk 111 ki

Equations (20) and (22) imply that the nonzero components of z must
have the same sign. Suppose a solution z of (21) has at least one com-
ponent zero and nonzero components positive. Then the same argument
used in Theorem 1 leads to the conclusion that the network is discon-
nected, which is a contradiction. Therefore, there is a solution z with all
components positive and consequently (22) implies that all cofactors
Mu are positive, which completes the proof.

IV. ANALYSIS

With the help of the preceding results, we are now in a position to
prove stability and determine the expression for final frequency. These
results will be obtained under the assumption that fli(s), for each i,
satisfies the condition

fli(.1,0) < 1, co 5 0. (23)
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In Appendix B we show, with the help of the Nyquist criterion, that
condition (23) implies the stronger condition

I fli(s) I < 1 for s in at, (24)

where R is the right half and imaginary axis of the s plane excluding the
point s = 0.

In Section II we saw that the associated linear system is characterized
by the matrix transfer function K(s) given by

K(s) = [I - B(s)]-1 C(s). (25)

Now, since Ni = Hi/(s + Hi), it follows from (24) that

cii(s) = 1/(s + H1)

has no singularities in R. Furthermore, under condition (24) the matrix
I - B(s) is diagonally dominated (see Appendix A) for all s in (R.
Thus, the determinant I I - B(s)I is nonzero for all s in (R, and so we
conclude that each component transfer function Ku(s) is analytic in
the region R.

At s = 0, the matrix I - B(s) reduces to I -A which is singular
according to Theorem 1. Thus, the determinant I I - B(s)I has a
zero at s = 0. To show that it is only a simple zero we find an asymptotic
expression* for the determinant in the neighborhood of s = 0. In the
matrix I - B(s), we replace the elements bii(s) by their asymptotic
expressions

bii(s) a11[1 - (Ti;
1 s], s 0
Ai

where we have used the relations exp (-Sr) ST and Hi/(s+ Hi)
1 - s/Xi . Without changing the value of the determinant, we may

replace the first column by the sum of all the columns. The first column
then becomes

where

s (T, + S ( 1) (Tn
X1 X2 Xn

Ti = E aijTjj
j=1

(26)

is an average of the transmission delays of links arriving at the ith

* The technique for finding the asymptotic expression is due to A. J. Goldstein.
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station. Now we expand the determinant about the first column and
obtain

11 - B(S) I S Ti mil, s - 0, (27)
i=i Xi

where MG is the cofactor of the ijth element of I - B(0), as defined
in Section III.

Since Ma is positive (from Theorem 2), it follows from (27) that
I I - B(s) I has only a simple zero at s = 0. But c1i(0) = 1/Xi is finite,
so that from (25) we conclude that each Ku(s) has a simple pole at
s = 0. Using (25) and the asymptotic expression (27) it follows that

Ku(s) s 0, (28)

where

-y; =
Ta +

X-i
) 11111

Note that -y; is positive and independent of i because Mii = Mu > 0,
according to Theorem 2. Thus, letting

111;1/X;
d; =

11/X1

we have

di

1 + E ridix,

with 0 <d, < 1 and E d.; 1.

We have, therefore, shown that each transfer function Kii(s) is
analytic in the right half and on the imaginary axis of the s plane ex-
cept at s = 0 where it has a simple pole with positive residue inde-
pendent of i. The impulse response kii(t), associated with Ko(s), will,
therefore, consist of exponentially decaying sinusoids and a step function
of height 7; .

To determine the stability of the original model under the particular
starting conditions, we examine the asymptotic behavior of the phase
responses of the associated linear system when subjected to the inputs
given by (11). From (16), we have

Pi(s) = E 1

[-s p+ ,(0) + Qi(s)1 . (31)

(29)

(30)
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From the known properties of Kii(s), it follows that the phase response
pi(t) for t > 0 will be the sum of terms decaying exponentially to zero
plus a term of the form ft + ni where f and ni are obtained by the residue
theorem according to

and

f = lim ePi(s)
8-0

n
d

lirn [s2 Pi(s)].
ds

The final frequency f of the ith oscillator is, therefore, given by

f = E (32)
i=i

which is independent of i. Thus, we have proved stability of the system
since the frequency of each oscillator has been shown to asymptotically
approach the common frequency f and the phase differences clearly
approach finite values. From (30) the expression for the final frequency
can be written as

cliff

f =
ridiXi

(33)

which, with the help of (29), shows the dependence of f on the delays
Ti;and the dc gains Xi .

V. REMARKS ON THE FINAL FREQUENCY

From the results of the preceding section it is clear that the final
frequency can be below even the lowest oscillator free -running fre-
quency. In fact, it is evident from (33) that the final frequency is a
monotonically decreasing frunction of the system gain -delay products.
Thus, the controls may bring the system to a frequency outside its
practical operating range.

The final frequency reduction is a consequence of the fact that the
frequency control of each station varies directly with the differences of
total phase. The interstation delays introduce phase lags which drive
down the frequency of each station. This point is made somewhat
clearer by considering a system in which all the oscillators have the
same frequency f and the same initial phase. When the controls are
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applied at t = 0 an average phase "error" (-fri) is applied to the con-
trol path of each oscillator i. This "error" causes a simultaneous re-
duction in the oscillator frequencies from which the system never
completely recovers.

As a conceptual solution to this difficulty, suppose the system of Fig.
1 is modified so that the local phase at the output of the integrator is
passed through a delay line before being compared with the incoming
phases. This local delay at station i is chosen equal to ri the average
delay of links terminating at station i, as defined in (26).

In the previous model, the error signal was determined by a com-
parison of the local phase at the present time with the remote phases
of earlier times. In this modified system, however, the comparison is
made between phases which on the average occur at the same time.
Thus, the undesired component of the error signal due to interstation
delays is eliminated.

Using an argument which parallels the development of Sections II,
III, and IV, it may readily be shown that the final frequency for the
modified system is given by

I = E dji 
1

(34)

In contrast with the original system, it is evident that the final fre-
quency of the modified system is always an average of the free -running
frequencies.

The Bene§ formulation (Fig. 1) may be viewed as a simplified ab-
straction of the more complex practical systems that have been pro-
posed.2.5 Both the Bene§ formulation and the modified system contain
a total phase comparator which is an impractical element. Karnaugh5
has shown that an important linear subclass of the more realistic class of
systems he has proposed obey equations of the same form (6) as in the
Bene§ model. This more realistic formulation also fits the linear system
model with modified frequency "inputs" that depend in a different
manner on the initial conditions. It is, therefore, subject to the stability
condition (23).

Moreover, it has a different final frequency which approaches an
average of the free -running frequencies as the interstation delays become
large.

In short, the Bene§ formulation was sufficient to provide the im-
portant stability criterion, but neglected factors affecting the final
frequency. The linear system model developed here is general enough
to be applicable to both the Beneg formulation and a linear subclass of
the more realistic Karnaugh formulation.
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VI. SENSITIVITY AND RELATED QUESTIONS

Suppose that the system has been operating in a synchronized steady-
state condition for a long time, and at some instant, say t = to , a sudden
change is made in one or more parameters of the system. The subse-
quent phase responses are determined by considering the new associated
linear system subjected to suitable inputs equivalent to the pertinent
starting conditions. These inputs will have exactly the same form
as (11) but now the term Qi(s) will be evaluated using the past history
of the phases given by

pi(t) = f8t t < to ,

where f8 is the synchronous frequency prior to the parameter change.
If the stability condition (23) is satisfied for the new system and if the
parameter change does not reduce any Ai or au to zero, the new system
will also be stable. Consequently, after t = to the frequencies of the
oscillators will asymptotically resynchronize to the new final frequency
determined by (33) or (34) using the changed parameter values. From
these arguments we can also deduce that the effect of a slowly time -
varying parameter on the system operation is to cause a corresponding
slowly varying synchronous frequency. By "slow" time variations we
mean that the time for a noticeable change in a parameter value to
occur is much longer than the time constants associated with the tran-
sient response of each Ku(s).

By similar arguments, it is easily seen that failure of a transmission
link will lead to resynchronization if the remaining network is still
connected. Also, in the case of oscillator failure, the remaining N - 1
oscillators will resynchronize to a new frequency if the resulting network
of N - 1 stations is still connected after removal of all transmission
links entering or leaving the inoperative station. In each case, the final
frequency can be computed from (33) or (34) using the appropriate
parameter values. To prove these results, the nonzero averaging weights
pan be resealed so that A has row sums unity; the filter gains Ai are
assumed to be correspondingly resealed. The characterizing equations
for the new system then has the required form and so resynchronization
will occur.

The effect of independent jitter noise on the frequency of each oscil-
lator may be considered by including a noise term ni(t) in each "input"
vi(t). By superposition, the effect of noise can be considered separately.
Thus, each phase response pi(t) will consist of the response in the
absence of noise plus a noise component whose power density spectrum
is
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E Kiw(jw) I2 svm,
=1

where Sp(co) is the power density spectrum of n,(t). Consequently, if
the input noise jitter has zero mean and finite variance the output
noise components will also have zero mean and finite variance. We
conclude, therefore, that in the presence of noise jitter each oscillator
will asymptotically have a common frequency with a random perturba-
tion. The perturbations will be correlated but, in general, will not be
identical. Furthermore, small jitter noise implies proportionately small
perturbations.

VII. CONCLUDING REMARKS

We have seen that the transfer function approach has permitted a
simple treatment of a rather complicated control system. Further
studies regarding transient response or bounds on the size of perturba-
tions due to jitter noise can be made for particular topological configura-
tions by determining more information about the transfer functions
K;;(8) with the help of (25). The linear system approach together with
the added generality of having different filters at each station has
made it possible to consider the effect of parameter changes or oscillator
failure on the behavior of the system.
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APPENDIX A

A square matrix A is said to be diagonally dominated when for each
row the sum of the magnitudes of the off -diagonal elements is less than
the magnitude of the diagonal element, i.e.,

each i.

Theorem: If A is diagonally dominated it is nonsingular.

Proof: Suppose the contrary. Then there exists a nontrivial solution
(xi) satisfying

E aijx; = 0 each 1.
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Let r be one of the indices for which I xi is a maximum. Then

arrx, = -E arkXk
kr

so that

I an. I I xr I kE
Ikr

which is a contradiction. Hence, the theorem is proved.

APPENDIX B

On the Boundedness of 0,(s)

Theorem: If 91(s) is bounded by unity on the jw axis then it is bounded
by unity in the entire right -half plane.

Proof: Since

Hi(s)/s#` (s) - 1 + Hi(s)/s'
the condition I 19(jcv) I < 1 is equivalent to

A < I 1 ± A exp

where

A exp (iv) = Hi(jw)/jw.

But (35) is equivalent to

(35)

A cos co >

so that the locus of H(jw)/jw, as co increases from - 00 to 00, cannot
encircle the point -1. Hence, by the Nyquist stability criterion, Ms)
is analytic in the right -half plane. Furthermore, th(00) = 0. Thus,
it follows that I #i(s) I < 1 in the right -half plane according to the
maximum modulus theorem.
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A Model for the Organic Synchronization
of Communications Systems

By M. KARNAUGH

(Manuscript received August 16, 1966)

Organic synchronization is a method for the mutual synchronization of a
set of geographically separated clocks. It is applicable to pulse code modula-
tion (PCM) communications networks and to other systems which have
similar requirements for synchronism.

After a brief review and history of the problem, a model for organic
synchronization is developed. A control -independent study of possible
equilibrium solutions is then carried out. A special class of controls is shown
to provide asymptotic stability in the limiting case of zero delays. This
result leads heuristically to the synthesis of a broad class of nonlinear con-
trols. With these controls, the systems are represented by families of non-
linear differential functionalequations. This model provides a basis for
the simulation of organic synchronization. Broad conditions which are
mathematically sufficient for the stability of the nonlinear systems are not
yet known. The final frequencies of a linear subclass of organic systems,
known to be stable, are examined.

I. INTRODUCTION

The timing of the switching actions at each switching center of a pulse
code modulated (PCM) communications system is governed by a device
called the "local clock." It may consist of a cyclic counter driven by an
oscillator. Each cycle of the counter is then one clock cycle.

In a geographically widespread PCM system, the local clocks may be
either autonomous or synchronized. This choice should be made with
the best possible knowledge of the available technology, as well as con-
sideration of its functional and economic consequences. The choice is
clearly a rather basic one, and it may have long term effects upon the
evolution of the system.

The time -multiplexed PCM signals arriving at any locality may have
arbitrary, and usually scattered, points of origin. Some of them require

1705
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decoding into a common analog form. In particular, they may be voice
signals. A homogeneous, time -multiplexed set of such signals is easily
decoded by a common digital -to -analog converter, provided that the
transmitted samples have been generated synchronously. A nonsyn-
chronous alternative is to insert extra digits into the signals in order to
permit multiplex transmission. Additional equipment is needed to re-
move these digits and smooth the timing of the demultiplexed samples
before or after decoding them.

This paper is only one of a number of studies of system synchroniza-
tion, and it does not provide a complete solution to the problems touched
upon. After a very brief review of some past work in this field, I shall go
back to fundamentals to derive a model for organic synchronization.
Following this, the sections entitled "Equilibrium Points", "Reduced
System Equations", "Controls: Qualitative Discussion", and "System
with Zero Delays" provide background for the synthesis of a family of
controls which is introduced under the heading, "A Family of Realizable
Organic Systems".

The question of the final frequencies of certain linear organic systems
is then taken up. Finally, some remarks are made to clarify the stability
problem.

II. HISTORY

The synchronization of PCM networks has long been a subject of
interest. The question of synchronizing switching centers, in addition to
the transmission links, arose in 1956, when the PCM telephone switch-
ing experiment, later named Essex,' was planned.

The term "organic synchronization", which seems to have been in-
troduced by V. E. Bend,' will be used herein for systems fitting the
model to be derived in later sections. The systems treated by Beneg,
excepting a certain minor idealization, form a subclass of these systems.
This same subclass of systems is discussed in a patent' by J. P. Runyon.

Beneg2 has demonstrated asymptotic stability for his systems, which
are linear, under quite interesting conditions. He has also given formulas
for the asymptotic system frequency and for the asymptotic relative
phases of the oscillators. A. J. Goldstein.' has given simplified derivations
of these formulas.

An alternative mutual synchronization method, called "frequency
averaging", has been treated by Beneg and Goldstein.' Frequency
averaging systems, while stable, lack a frequency determining element.
Each oscillator puts out the average of the frequencies received from its
neighbors, and the system frequency will wander in the presence of



ORGANIC SYNCHRONIZATION 1707

noise. Because of this feature, it does not seem to be very practical,
unless it is combined with other techniques.

The transmission of a synchronizing signal from a master oscillator
to all other oscillators, which are locked to this signal, is perhaps the
simplest approach to synchronization. However, such a system is vul-
nerable to failure of the master oscillator or failure of a transmission
link. Means for mitigating this weakness have been proposed by G. P.
Darwin and R. C. Prim.6 They equip the system with automatic means
to reorganize itself in the event of a failure. Unfortunately, this adds
considerable complexity to the basically simple method.

Further discussion will be limited to organic systems for synchroniza-
tion.

B. J. Karafin7 has carried out some digital computer simulations of
organic synchronization of small systems. A. Gersho and B. J. Karafin8
have simplified the proof of asymptotic stability for Bend' systems.
C. J. Candy and M. Karnaugh9 have studied organic systems of up to
four switching centers by means of an analog simulator. M. B. Brilliant
has also studied linear organic systems"' and has computed transient
responses of certain large linear systems."

Linear systems with zero delays have also been studied at the Univer-
sity of Tokyo by T. Saito, H. Fujisaki and H. Inose.12

III. THE SYNCHRONIZED NETWORK

Consider a set of N > 2 geographically separated pulse code switch-
ing centers, interconnected by directed pulse transmission links, as
illustrated in Fig. 1 for the case N = 4.

All possible links need not be physically provided. The cases of great-
est interest are those in which there is a directed path from any center

CENTER

Fig. 1- A sample network.
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to any other center, possibly by way of some intermediate centers.
Systems with this property will be called "connected systems".

A connected system of N centers must have at least N links, because
at least one link must terminate at each center. When the centers are
connected in a unidirectional loop, there are exactly N links The maxi-
mum possible number of links, assuming no duplications, is realized
when every ordered pair (i,j) of distinct centers is connected by a link
to i from j. This number is N(N - 1). The correspondence between the
ordered pair (i,j) and the direction to i from j is a convention which will
be followed consistently.

An important component at each center is the local clock which de-
termines the timing of all switching actions at that center. The messages
from all other centers arrive in the form of framed pulse codes. These are
pulse codes divided into sequences containing equal numbers of digits
by means of periodically introduced framing digits. In order for the pulse
codes to be correctly processed, a correct phase relationship must exist
between the arriving framed code and the local clock.

The desired phase relations are realized by providing a certain amount
of buffer storage for each incoming link." Such equipment is illustrated
in Fig. 2. The arriving digits are stored in a cyclically addressed discrete
memory. They are read out of the memory under control of the local
clock and of a circuit which monitors the appearances of the framing
digits, so as to be correctly phased.

RECEIVED
SIGNAL

TIMING
EXTRACTOR

COUNTER WRITE
I SELECTOR

INPUT
REGISTERS

2

3

4

MEMORY

OUTPUT
REGISTERS

WRITE
SELECTOR

FRAMING
CONTROL
SYSTEM

FROM
LOCAL
CLOCK

DELAYED
SIGNAL

Fig. 2 - Buffer memory.
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Other forms of buffer memory which incorporate variable delay lines
have also been proposed. These may be acceptable and less costly in
some cases.

Under favorable conditions, the arriving signals can be correctly
phased by means of the buffers. However, unless the oscillator frequencies
are properly controlled, their phase differences will wander beyond any
bound. Then, some of the buffer stores will fill up or be emptied, causing
erroneous codes to appear at their outputs. It is the primary object of
the controls to avoid such malfunctions. The system will be considered
to be operating synchronously when no information is being lost in this
fashion.

I shall adopt the point of view that it is desired to keep the buffer
memories just half full, in which case the system would not be unduly
vulnerable to transient disturbances. Controls will be sought which tend
to inhibit large deviations from the desired condition. We shall see that
these deviations cannot, in general, be reduced to zero. The oscillator
control signals will be derived from them.

It should be noted that the transmission delays between centers are
variable over some small fractions of their center values. These delays
will depend upon the environmental conditions of the propagating media
and on message -induced jitter at pulse repeaters." The buffer memories
must mop up the delay variations as well as the effects of phase wander
of the oscillators.

IV. NOTATION

The single subscripts i, j, le, , refer to the various centers and to
the oscillators located at these centers. Their range is the integers, 1, 2,

, N. When one of them appears in a statement or equation with no
other qualification, the statement or equation holds over the whole
range.

It has already been pointed out that the ordered pair (j,i) designates
the link to center j from center i. When a statement or equation con-
tains a pair of subscripts with no other qualification, it holds for all
pairs (j,i) which designate existing links.

The set of all existing links will be called R. Thus, (j ,i) E R means
there is a link to j from i in the system.

Similarly, Ri is the set of links terminating (i.e., receiving) at center
i, and Si is the set of links originating (i.e., sending) at center i. Thus,

N N

R= U Ri = U Si =
1=1
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Let M be the number of links in the system. We have seen that

N M N (N - 1).
System controls will be supposed in effect for t > 0. Prior history of

the system provides the initial condition. Statements about functions of
t with no other qualification will hold for t > 0.

Occasionally, vectors will be used having N singly subscripted com-
ponents or else M doubly subscripted components. For example, the
delay vector I has the M components rii , (j,i) e R. It will be clear
which vector space is meant in each case.

V. PHASE, FREQUENCY, AND DELAY

The local clocks will emit coherent signals. That is, for time intervals
which are very long compared to one period of the clock, the output will
be approximately periodic. Under these conditions, many formally
different definitions of instantaneous frequency will be in good numerical
agreement. I shall simply postulate the existence of such continuous
functions, fi(t).

Phases of the oscillators are defined to be

pi(t) = pi(0) f f2(s)ds (1)

in cycles, and

fi = pi'. (2)

The principal value of the phase is

co, = pi modulo 1 (3)

and has the range 0 < coi < 1.
The initial condition for the phases will be

pi(0) = vi(0). (4)

The values, coi (0), are observables of the physical system. In fact, the
switching actions at center i are timed according to vi(t).

If there is a transmission link to center j from center i, the signals
transmitted therein will be subject to a time delay rii (0. If a pulse is
launched from center i at a time ti and received at center j at time 12 ,

then the delay is defined to be

T;; (t2) = t2- 11 (5)

Analogously, the phase of the signal received at time t by center j
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from center i is defined to be

pii(t) = 7)1[t - rii(t)]. (6)

It should be recognized that the principal phase of a timing wave
recovered from the received pulse code would, in practice, only approxi-
mate v).ii (t). Errors of a few percent of one pulse period are common in
pulse repeaters!' This corresponds to a fraction of one percent of a typi-
cal frame period.

The frequency of the received signal is obtained by differentiation of
(6).

f At) = [1 - (t)].fi[t - rii(t)]. (7)

This equation displays the Doppler shift of frequency caused by varia-
tion of r .

The clock frequency at the ith center may be represented in the
idealized form

fi(t) = F Ei gi(t) n, (t). (8)

F is the mean center frequency of all clocks in the system, averaged
over the time during which the system is observed. Ei is the incremental
center frequency of the ith clock, also time averaged. By definition,

Ei = 0.
i=1

(9)

The time function gi(t) is the contribution of the system controls,
while In (t) is a random noise with zero mean. There will be a symmetrical
bound on gi(t),

gi(t) I G, (10)

which is supposed to be larger than the other frequency deviations. This
is necessary if the controls are to bring all oscillators to the same average
frequency. Under realistic conditions of operation,

t+11F

G> max I Ei + max 0- (Ff ni(s)ds)
t>0

where str( ) is the standard deviation .

VI. FUNCTION OF THE BUFFER MEMORY

The principal phase of the signal arriving at center j from center i
will usually not agree with that of the oscillator at j. The purpose of
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the buffer memory in this link is to delay the signal by an additional
time, du (t), so that

g;(0 = cou[t - du (0].

In view of (6), this can be written

(PAO =

where

(12)

(13)

= t - clii(t) - rii[t - du (0]. (14)

Taking the right-hand derivative of (13), and because this derivative
of the principal phase is always equal to the derivative of the phase, we
get

Mt) [1 - cl.d(1)].[1 - riii[t - clii(t)]) (t11), (15)

where physical considerations make it clear that

, I Till << 1.

Equation (15) implies the dependence of clii on fa: ,h, and ru
Matters can be simplified by shifting attention from the delays in the

buffer memories to the numbers of frames, i.e., clock cycles, they con-
tain. The number of cycles in the (j,i) buffer at time t is:

yji(t) = Pii(t) - Pi* - clii(t)] (16)

and

y (t) = f ji(t) - [1 - cl,d(t)]..fii[t - dji(t)].

Using (7) and (15), this can be put in the form

= fai(t) - fi(t), (17)

which equates the rate of accumulation of cycles to the rate of arrival
minus the rate of removal. In terms of the oscillator frequencies,

yui = [1 - Tu'(t)].fi[t - Tji (t)] - Mt). (18)

Suppose the (i,i) buffer has a capacity of 2D1 cycles. The normalized
state of this buffer is defined to be

xu(t) = Du-1[yu(t) - Du], (19)

which is the fractional deviation of its contents from half its capacity.
In terms of this variable, (18) becomes

xu'(t) = DU -141 - Tu'(t)].fi[t - - Du-1.L(t). (20)
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This equation explicitly relates the derivative of the buffer memory
state variable, x(t), to the delays and clock frequencies in the system.

I have remarked that the frequencies should be controlled so as to
prevent any buffer memory from emptying or filling For example, if
buffer (j,i) is nearly empty, then we desire fi > f j until the situation is
sufficiently corrected. On the other hand, if the (j,i) buffer is nearly
full, then the inequality is reversed. However, things are complicated by
the fact that all buffers associated with the ith center, that is, those in
links of the set Ri U Si, are affected by a change in fi .

The system is said to malfunction whenever

max I xii(t) I > 1,
(i,i)eR

that is, whenever the buffer memory state vector leaves the "unit cube".
Defining the nonnegative scalar,

= max I xii I, (21)
(i,i).R

we see that the system is in a permitted buffer state when

r. (x) 1. (22 )

VII. EQUILIBRIUM POINTS

Suppose the system is so controlled that an equilibrium solution to
the system equations is possible. That is, in the absence of disturbances,

(t) = 0 for t__>_0

and there exists a constant f such that

fi(t) =f for t>0, i = 1, 2,  , N.

If the system, in or near this state, is disturbed by a change in the net-
work configuration, noise in the oscillators, or changes in some of the
delays, then variations in the state of the buffer memories will result.
To minimize the chance of malfunction under such disturbances, it seems
reasonable to seek an equilibrium in which the buffer state is, in some
sense, near x = 0. That is, the buffers are nearly half full.

I shall begin along these lines by seeking the set of equilibrium points
which can be reached from arbitrary initial conditions and under any
controls whatever. The situation of asymptotic equilibrium to be con-
sidered is as follows.

(i) (t) = 0 for I > 0.
(ii) rii(t) = 7.g0) > 0 for t >= 0, (j,i) e R.
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(iii) Ern fi(t) = f for i = 1, 2, , N.

(iv) lim [pi (t) - p(t)j = .41 for i = 1, 2,  , N,

where

p(t) = pi(t), I -4, <
A.

Let x = lim x(t). The locus of attainable points x will be examined

under the above conditions.
With the delay vector ti assumed to be constant, (20) has the sim-

ple form,

Therefore,

xj: = - - D1[1 -11(t).

GO

xii = xii(0) f xi: (t)dt

= xii(0) 1' [fi(t - rii) - LOA&

The integral may be evaluated, using (1) and the conditions (iii) and
(iv) of asymptotic stability. The result is,

= - q1 - r B ,

where

(23)

Bii = x1i(0) Din 1[p1(0) - (24)

is a constant which depends upon the initial condition. Equations (23)
express the set of buffer memory equilibrium states attainable from a
given initial condition in terms of the asymptotic phase differences and
the asymptotic system frequency. This set depends upon the initial
condition through the parameters, B,

It is shown in Appendix A that the set of phase differences

(qi - I (j,i) e R}

contains exactly (N - 1) linearly independent elements. There are M
components of the asymptotic buffer state vector x, with M > N.
Therefore, if f were an unconstrained real variable, we see that, as a
function of the phase differences and f, x would range over an N -di-
mensional linear manifold of its M -dimensional space.



ORGANIC SYNCHRONIZATION 1715

However, the system frequency f must he near F, the average center
frequency of the clocks. More specifically,

F± max Ei-G<f<F+ min Ei+G.

This inequality requires that the bound on the magnitude of the fre-
quency control be large enough to reduce the highest frequency below
the system frequency and to raise the lowest frequency above the system
frequency. Thus, all clocks can be brought to a common frequency, even
in the presence of noise. Nevertheless, G << F in cases of practical in-
terest.

In a typical application, G = 10-6 F, so the domain of allowed values
of f is a very narrow interval. It may be said that the range of x is a
neighborhood of an (N - 1) -dimensional linear manifold. The distance
of this manifold from the origin is determined by the initial condition.

In cases of practical interest r11G << 1, so that

Pi (0) - pi (- rii) rid + pi (0) - p:(0)

In such cases, (23) has the approximation

xii x1i(0) - qi pi(0) - pi (o)] (25)

From this it is clear that xii xii(0) if qi - 4; equals pi (0) - pi (0).
Therefore, an asymptotic state vector x which is, in some sense, small is
attainable when the initial state vector x(0) is small in the same sense.

VIII. REDUCED SYSTEM EQUATIONS

The trajectory of the buffer memory state vector is of central im-
portance to this work. However, the system controls operate directly
upon the clock frequencies. For this reason, it will be convenient to shift
attention from the M equations (20) to an N -dimensional vector equa-
tion for the frequencies. This equation, and its component equations,
will be called the "reduced" system equations because N 5 M.

I shall proceed under the assumptions of no frequency noise and con-
stant delays;

n(I) = 0 (26)

(t) = ti(0). (27)

Then, (20) can be integrated to the form

(t) = Dirlpi(t - rii) - IMO] Bii, (28)
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where, as before, B;1 depends upon the initial condition and is defined
by (24).

Now a simple change of variables is made.

q3 (t) = p1(t) - ft. (29)

In vector notation, this is,

q(t) = p (t) -ft 1N, (30)

where 1N is an N -dimensional column vector with unit coordinates.
If the system is asymptotically stable at the frequency f, then q' (t)

will go asymptotically to zero. Therefore, given any controls, it will be of
interest to see whether this condition is realized for any value of f in
the allowed domain.

Substitution of (29) in (28) gives

x3 (t) = - -1j) - (I) - if] B .

In view of (2), (8), (26), and (30),

q' (t) (F - f)1N E g (/ ),

(31)

(32)

where g (1) is the increment to the clock frequencies under system con-
trol. In particular, let

g (t) = r{ t,x(. )}. (33)

Each component of r must have a realizable dependence upon the buffer
memory state vector trajectory. The problem of control synthesis is
precisely the problem of finding a suitable form for r.

The reduced system equations are the differential -functional equa-
tions,

q' (t) = (F - f)1N E rf t,x[q ( ), f, (34)

with x defined by (31). The parameter, B, which depends upon the
initialization of the system, enters (34) as a parameter in the controls.
It is, therefore, not surprising that the system's trajectory and its final
state, if any, depend upon its initialization. B is not entirely arbitrary.
This can be seen by applying the condition for phase agreement, (12)
at t = 0. Some manipulation of (16), (6), (12), (19), and (24) shows that

B1. = D311.1( - 1,

where K;1 is an integer, and

Kji =J7i(0)P)(0)

(35)
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Given the initial phases, the initial condition can be changed only by
integral changes in the numbers of cycles y(0) stored in the buffer mem-
ories.

IX. CONTROLS: QUALITATIVE DISCUSSION

Loosely speaking, it is desired to control the system so as to keep the
buffer memory state vector small, in some appropriate sense. More
specifically, the vector should be kept away from the faces of the unit
cube.

These qualitative considerations will be made more concrete by de-
fining a class of real valued functions r(x) of the buffer memory state
vector, which will be called "penalty functions". Each such function
will have the following properties:

(i) r (0) = 0.
(ii) r(-x) = r(x).
(iii) r (x) has a continuous gradient Vr (x).
(iv) r (x) is strictly convex; that is, for any two distinct vectors

xi , x2 and any real number X in the open interval (0, 1),

r[Xxl + (1 - X)x2] < Xr (xi) + (1 - X)r (x2)

For any x such that(v)

I x I = 1, lim =0.
r(sx)

These functions will have a unique minimum at the origin and will go
to infinity uniformly on all rays from the origin. When properly chosen,
their convex surfaces of constant value may closely approximate the
cube surfaces having equal values of max I xiii. This latter quantity,

R

however, does not have a continuous gradient.
The attainable equilibrium points have been shown to lie in a neigh-

borhood of an (N - 1 ) -d im en si o n al linear manifold. The infimum of the
values of r (x) over this set is realized at a unique point in its closure.
This point is either the origin or else the point of tangency with a surface
of constant r. After selecting a suitable penalty function, controls will
be sought which bring the buffer state vector near this point.

In attempting to reach this objective, a subclass of penalty functions
having the simple form

r(x) = U(Xij)
ft

( 3 6 )
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will be employed. The function u ( ) must have the properties, (i)
through (v), of a penalty function on a one-dimensional real space. A
simple example of such a function is

(x) = x2", n = 1, 2, .

Fig. 3 illustrates the surfaces,

roc, === max (x12 , x21) = 1

2i22 + x2142 = 1
r2 212 + x214 = 1
r3 = X126 -I- X216 = 1 

The last three are penalty functions of the type defined in (36), for a
system having just two links.

X. SYSTEM WITH ZERO DELAYS

The family of systems under consideration will have widely varying
nonnegative delays for the transmission links. In many cases of interest,
the product of maximum loop delay and control bandwidth may be very
small compared to unity. In such cases, the extrapolation to zero delays

121

M12

Fig. 3 - Curves of unit value.
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may be a useful and illuminating exercise. One such system will be
treated here as a step toward the synthesis of a family of controls.

In the zero delay case, let the controls r be simply a function of x.
This results in a system of ordinary, autonomous differential equations.

q' (I) = (F - f)1N E r (x)

in which x is now defined by

xii(t) = Milqi(t) - q,(1)] .13 ji .

(37)

(38)

The synthesis of r (x) will be based upon a penalty function which
takes the form given in (36). One of the desired properties of the system
(37) is that it come to rest near the attainable minimum of r (x). It is
therefore reasonable to try controls which have a component along the
negative gradient of r (x).

Let Vqr (x) be the column vector whose ith component is

[Var(x)]i = a- r(x) (39)
aq

and let A be any N X N positive definite matrix. The controls to be
considered here are of the form

(x) = -A Vqr (x). (40)

Thus, we are assured that*

[- V'gr (x)]TT(x) > 0 (41)

with equality if and only if Vqr (x) = 0.
Make the linear change of variables,

w(t) = ATici(t). (42)

Then, the system equations are

(t) = A-1[ (F - f)1N E] - V'Qr (x). (43)

The inverse of a positive definite matrix is also positive definite.
Therefore,

and it is possible to choose f such that

1NTA-1[ f)1N

* The superscript T will indicate the transpose of a vector or matrix.

(44)
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It is easy to verify that

1NTV,r (x) = 0 (45)

in the zero delay system. Having chosen f to satisfy (44), we find that
the trajectory of w must lie in a linear manifold which is orthogonal to
1N . It will now be shown that the system exhibits global asymptotic
stability when w is restricted to this linear manifold. That is, from any
starting point in the manifold, the system will ultimately come to rest
at a unique point in the manifold.

Consider the following function:
_wTA T A -1(F' - f)1N E] r (x). (46)

Because of some of the properties of r (x) and the connectedness of the
systems under study, it can be shown that L (w) has a unique minimum
in every linear manifold orthogonal to IN . Also, Vic.L(w) is zero only at
this minimum. The proofs are given in Appendix B.

The time rate of change of L (w) is

(w) = [w'(t)]TV,,L (w).

But

V,/, (w) = -AT A1(17 - f)1N E] A TV'gr (x)

= -.11rw'(t).

Therefore,

(47)

L(w) = -[w' (t)]TiVw'(t) = -[w'(/)]TAw1(t). (48)

In view of the hypothesis that A is positive definite,

:L(w) -6 0,

with equality if and only if w' (t) = 0. When this occurs,

-ATw' (t) (w) = 0

and the system is at the minimum of L (w). Thus, L (w) is a Liapunov
function for the system15'" and the system is globally asymptotically
stable in the restricted sense mentioned above.

Inasmuch as

q'(t) = Aw' (t),

(t) = 0 implies q' (t) = 0 and the system of (37) and (40) is also
globally asymptotically stable in the linear manifold of its motion.

It is apparent from the definition (30) of q (t) that the system has
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the common frequency f when q (t) = 0. The Liapunov function

L (w) = (q) = -qTA-1[(f - .f)1, EJ r[x (q)]

has its minimum at the equilibrium point, Quin, where

Og(q,nin) = -A -1[(F - f)1 El + Mx( = 0.
The equilibrium point is seen to be offset from that point at which

Ve = 0 when the mistuning E of the clocks does not vanish. This should
not be surprising, because the controls must compensate for the fre-
quency differences.

Suppose the (N - 1) -dimensional subspace orthogonal to IN is in-
variant under AT'. Then the requirement (44) reduces to f = F, and
the system frequency is the average of the clock center frequencies. It
can be shown that when the matrix A has the above property, its column
sums are all equal. In particular, if a diagonal matrix has this property,
it is the identity matrix, multiplied by a positive scalar.

In this section, I have considered global asymptotic stability, rather
than trajectories within the unit cube. Attainment of a suitably bounded
trajectory will depend upon the A matrix and the initialization of the
system.

XI. A FAMILY OF REALIZABLE ORGANIC SYSTEMS

In the last section, the controls

r(x) = -A Vgr(x) = -A vg U(Xii)

were shown to stabilize the system of (37) with zero delays. A family of
controls will now be synthesized so as to be realizable and practical for
systems having positive delay.

Equations (38) show that

a ,- = D;,-1(aik - jk)11/ (xii) (49)
aqk

using the Kronecker S notation. Thus, when the matrix A is diagonal,
the controls for the clock at center i depend only upon the buffer memory
states in links terminating at center i or originating at center i. This is a
very desirable simplification, and there seems to be no merit in employ-
ing more complicated forms. A more general type of control having this
property is

rk(x) = E aki-u'(ski) - E b AU' (X jk),
Sk Sk

(50)
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where the signs have been chosen to agree with the earlier model when
ak,,b,k are positive. The development is quite heuristic at this point,
because a proof of stability for the system having the controls (50) with
arbitrary positive coefficients is lacking.

The final model is based upon a modified form of the controls (50).
(i) To achieve realizability, a delay At j must be imposed on the

argument of a control signal from the (j,k)th buffer memory to
center k.

(ii) The controlled frequency deviations must be limited. For this
purpose, I introduce the limiter function p() such that

p(x) = x, Ix! <1
=1, x > 1

= -1, x < -1.
(iii) For the purpose of reducing system bandwidth, a filter with

impulse h (t) and unit dc response may be employed. Let *
indicate convolution.

ri{t,x(  )} = Gp OW* aifu'[xii(t)]

- - (51)

The complete system equations are

(t) = (F - f)1N E r{t,x()} n(t) (52)

xii(t) = - Tii(t)] - Mt) - -r,i(t)f} Bji (53)

Bii = x3i(0) Dirlfp,(0) - pi[-r,i(0)}. (54)

Equations (53) and (54) have been obtained by integration of (20).
The definition of the delay Ai; in (51) will depend upon the manner

of transmission of the control signal. When the state is transmitted
to center i via link (i,j),

Dii = &At) = di, (t) riAt - di,(t)]. (55)

This form is particularly awkward because the buffer memory delay,
di; (t), is not one of the canonical variables. However, it can be very
closely approximated as follows:

di; (t) DiAxii (t) 1]F. (56)

A simpler but cruder approximation is

di,(t) Di,F. (57)
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In the special case of (51), for which b1 = 0, this complication does
not arise.

XII. COMPARISON WITH THE SYSTEMS OF BENEg

V. E. Bene§2 has analyzed a class of linear systems having delays and
filters. In my notation, these systems obey the equations

p1(t) = F Gh(t)* E - Ti,)
Ri (58)

- pi(t)] + ni(t).
He considers the delays to be fixed, the systems to be connected systems,
and adds the constraints

di; > 0 for (i,j) E Ri

E = 1.
Ri

Then, assuming the noise n (t) to be bounded and to go asymptotically
to zero, he finds a sufficient condition for global asymptotic stability.
This asymptotic stability is defined by

lim pi' (t) = f, i

lim [pa (t) - pN (0] I < 00 , i = 1, 2, , (N - 1).

Bene§ sufficient condition is that

G > 0

GH(iw)
GH(tico)

H (s) is the Laplace transform of the filters' impulse response, h(t);
w is real radian frequency, i is the imaginary unit, and it is assumed that
H(0) = 1, as before.

This condition is stricter than that needed to stabilize an ordinary
phase controlled oscillator, but it is not too difficult to satisfy. It is also
quite remarkable in its independence of the system graph and its delays.

Bene§ also gives formulas for the final system frequency and phase
differences. These have been rederived more simply by Goldstein,4 using
the final value theorem.

A very direct approach to the final values is to insert them in (58),
replacing the convolution with Gh (t) by multiplication with G.

< 1 for all w X 0.
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Let

and note that

lim pi' t) = f
t 00

lira [pi (t) - pN = Pi
I00

lira [pi(t - rif) - pi(t)] =
I oo

Making the appropriate changes in (58),

f = F + Ei + G E - Pi - rd.].
Ri

Because pp, = 0 by definition, we now have a set of N linear equations
in the N variables f, 731, , 23N_i . Using the notation,

Ti
Ri

for an average of the delays in the links to the ith center, the equations
assume the simpler form,

(1 + Gri)f Gpi -G > = F + E..

Ri
(59)

They have been shown by Goldstein to give the following solution for f

F + bizf - (60)
1 G E biri 

Here bi , i = 1, 2, , N, depends only upon the averaging coefficients,
di; , (i,j) e 1?, and

bi 0

Ibi = 1.

A glance at (60) shows that the final system frequency is monotone
decreasing with the product of the de gain, G, and an average of all
delays in the system. This effect has caused some dismay, but it results
from an unrealistic model.

Let us go back to the family of organic systems defined by (51)
through (54) and (29). These will be specialized in such a way as to
obtain a class of linear systems analogous to that of Bend. The follow-
ing steps must be taken.

(i) Eliminate the limiter, p ( ), from the controls, (51).
(ii) Let u (xi j)= so u' (xi;) = xi; .
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(iii) Use the phase variables,

pi(t) = qi(t) + ft.

(iv) Set bii = 0, for all (j,i), in (51).
(v) Make the identification

and impose the constraint,

E di; = 1.
Ri

(vi) Assume the delays to be constant.
With these changes,

pi' (t) = F Ei Gh(t)* E (-wpm - - pi(t)]
Hi

G E cliApi,x,;(o) + pi(0) - p,(- rii)] + ni(t).
Hi

This set of system equations differs from those of Bend, (58), only in
the addition of a term which is constant in time, but which depends
upon the initial condition. It may be considered to be a modification of
the mistuning, Ei in the treatment of the stability problem. Therefore,
the proof given by Bend of global asymptotic stability under his suffi-
cient condition also applies to (61).

Now let us derive the equations for final values. In doing this, note
that the jth oscillator has the natural frequency, F Ei for t < 0,
while its frequency has the final value f. Therefore,

Pi(-Tif) = MO) - rii(F1 E1)

lim [pi (t - ri,) - Mt)] = - rd.

(61)

Now, proceeding as before, (61) leads to

f = F Ei G E dia (Pi - Pi - ri,f)

G E CtiADi,xi,(0) p,(0) - p,(0) Ti;' (F F3)]
Ri

Putting this in a form analogous to (59),

(1 + Gri)f Gpi -G E do; = (1 + Gri) F Ei
Ri

G E aiArix; + Dozi;(0) + pi( 0) - pi(0)1.
Ri

(62)
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The solution for f, analogous to (60), is

G E
f = F E ci,E, + R

1 G bir

where the coefficients c are averaging coefficients defined by

bitiii
ci; ,L

kofiii
R

(63)

(64)

and the coefficients b are the same as before.
The first two terms on the right of (63) give an average of the in-

dividual clock frequencies. The last term depends on the initial condi-
tion, but it goes to zero as the system delays become large. Thus, the
behavior indicated by (60) does not really occur in our model for organic
systems.

XIII. SOME REMARKS ON THE STABILITY PROBLEM

The mathematical problem of stability is not yet satisfactorily solved
for general organic systems. Two special families of organic systems are
now known to be globally asymptotically stable. These are certain non-
linear systems with zero delays and certain linear systems with delays
and filters. These very special cases nourish the hope that broader
sufficient conditions for stability can be found.

The present section will be devoted to redefinition of the stability
problem and a discussion of some necessary conditions for stability.

We have seen that the system will malfunction whenever the M -di-
mensional buffer state vector x(t) leaves the unit cube. This leads to the
following practical definition of stability.

Definition: For any positive e, trajectory x (1) is c -stable if

max I xi (t) I E for 0 t < co.

Definition: A trajectory is stable if there is an E < 1 for which it is e -
stable.

The trajectory of an undisturbed organic system will depend upon the
system parameters and the initial condition. Therefore, the domain of
system stability must be defined in a space having the following coordi-
nates, which appear in (51) through (54). G, h(- ), a, b, u ( ) , A, D,
x (0 ), E, ti and p (t) for t S 0. The initialization of the filter states must
also be defined.
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Several necessary conditions should be kept in mind when testing for
stability. First, the asymptotic frequency of the system must lie within
the controllable range,

F Ei -G  f F Ei G, i= 1, 2,  , N.
Second, the limit points of the buffer state trajectory must lie within
the unit cube. Third, the system must be "connected," in some sense.

The connectedness of the systems deserves further discussion. I have
required that the organic systems must be connected in the following
sense: that there must exist a directed transmission path from each
center to every other center. Bend has used the same condition. On the
other hand, the stability of the special nonlinear systems which I have
treated depends upon a weaker condition. Namely, that the nonoriented
graph having a branch corresponding to each link must be connected.
This condition is used in Appendix B, which is essential to the proof.

An important difference between the systems treated here and those
of Bend, is that the former have the additional control coefficients,
bi; 0 for (i. j) e R. Thus, the state xi; (t) of a particular buffer may
exert a control over the frequency of the sending center, j, as well as
over the receiving center, i.

Intuition suggests a necessary condition for stability based upon the
control coefficients, ai; , NJ, which appear in the family of equations,
(51). Inasmuch as negative coefficients tend to make the systems un-
stable, these are assumed to be either positive or zero.

Consider a "control graph" with nodes numbered 1, 2,  , N. Let a
directed branch exist from node j to node i if and only if ai; > 0.
This condition permits the frequency at center i to be influenced by its
phase relative to that at center j. Then a necessary condition for system
stability is that the control graph shall have a node from which directed
paths exist to all other nodes.

Under this "weak" condition, some parts of the system may simply be
"slaves" of another part of the system. The "strong" condition that
there exist a directed path from each node to each other node precludes
this possibility. However, it should be understood that the condition
satisfied by the control graph need not be satisfied by the graph whose
branches correspond to transmission links. This is the case because each
link may give rise to two oppositely directed branches of the control
graph. On the other hand, a connected system may lack stability when
too few of the control coefficients are positive.

A simple example is provided by the system shown in Fig. 4. The
digital transmission links appear in the "system graph" Fig. 4 (a). When



1728 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1986

T2I

TI2

(a)

(C)

T23

(b)

(d)

Fig. 4 -A system graph and three control graphs. (a) system graph ; (b) in-
adequately connected control graph; (c) weakly connected control graph; (d)
strongly connected control graph.

the only positive coefficients are an , a23 , the control graph of Fig. 4 (b)
results. This fails to satisfy even the weak condition. It is clear that no
means exists for bringing centers 1 and 3 to a common frequency. The
control graph in Fig. 4 (c) results when an , an , b23 are the positive
coefficients. It must be assumed that a separate means for transmitting
the narrow band signal, b23 , to center 3 exists. This control graph satis-
fies the weak condition. If the system is stable, center 3 will be a slave
to the rest of the system. It will have no influence upon the frequency
trajectories of centers 1 and 2. If an , a21, a23 , b23 are the positive co-
efficients, then the control graph of Fig. 4 (d) results. This one obeys the
strong condition. When the control graph is the same as the system
graph, Fig. 4(a), it is weakly connected. In this case, if the system is
stable, center 3 determines the common frequency.

XIV. SUMMARY

A class of systems for the mutual synchronization of spatially sepa-
rated oscillators has been synthesized and a mathematical model for
these systems has been presented. The model may be said to be physi-
cally realizable in that real systems can be built whose function will
very closely approximate the behavior of the model. While no such sys-
tem hardware has been presented here, a simple hardware analog has
been built.'

These systems, called "organic synchronization systems," have a
possible application to continental or worldwide PCM communications.

A re-examination of the systems treated by Bene6 in the light of the
newly derived organic model indicates that

(i) his stability proof does apply to a particular class of linearized
organic systems, and
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(ii) that his formula for the final system frequency must be modified;
the suitably modified formula no longer displays a monotone de-
creasing final frequency with increasing system delays.

APPENDIX A

Asymptotic Phase Differences

The set of all differences of the form, (qi - q;), can have at most
(N - 1) linearly independent elements. To verify this, consider the
(N - 1) elements

(4N - 4N-1), (1/ v-i - 4N-2), , (42 - 0.1)

Suppose i > j. Then

- FL) = - + - + + (4J -F1 - 43.)

while

(qi 41) = 4)
Hence, any other element of the set of differences can be represented as
a linear combination of the selected (N - 1) elements.

When the directed graph, which corresponds to the synchronizing net-
work, is connected the set of differences

(4i - 4i) I (j,i) E R)

has at least (N - 1) linearly independent elements. Actually, only the
weak, i.e., nonoriented, sense of connectedness of necessary for the proof.

Theorem: Let G be a directed graph with N vertices such that the correspond-
ing nonoriented graph is connected. Associate the N independent real
variables, qi, 42, , -4, one to one with the correspondingly indexed
vertices. Associate the difference (qi - qi) with the edge from vertex i to
vertex j, for each edge in G. Let T be any complete tree of G.

Then, there is a set of (N - 1) linearly independent differences asso-
ciated with edges of T.

Proof: We shall proceed by induction. The theorem clearly is true when
N = 2.

Suppose the theorem to be true for N = L - 1. Now consider G to
have L vertices. Since it is connected, it contains a complete tree T,
which will have L - 1 edges, but all L vertices. It follows that not all
vertices can have more than one edge of T incident on them. Let vertex
j be an end vertex. Then, only one of the differences associated with the
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edges of r contains qi . It follows that this difference, say ±(qi - q;),
is linearly independent of the remaining (L - 2) differences. But if
vertex j and the edge incident on it are removed from T, a tree having
(L - 1) vertices remains. By hypothesis, this contains (L - 2) edges
whose associated differences are linearly independent. Hence, there are
(L - 1) linearly independent differences associated with the edges of
T, and the proof is complete.

Corollary: The differences are unchanged when the average of the q's is
subtracted from each of them. Therefore, the theorem applies even when
the N real variables are constrained to have zero sum.

APPENDIX B

Properties of L(w)

Certain preliminaries concerning convex functions will be necessary
here. While they are familiar to mathematicians, other readers may find
the following review helpful.

All sets to be considered here are subsets of finite dimensional real
linear spaces. All functions will be defined on such sets.

Definition 1: A set of points X is convex if every point of the set

Xx2 + (1 - X)xi:x1 , x2 E X and 0 < X < 1)

is also a point of X.

Definition 2: A real valued function f () defined on a convex set X is a
convex function on X if

f[xx2 + (1 - )014] -5 kf (x2) + (1 - X)f (xi) (65)

whenever xi, x2 e X and 0 X 1.

A convex function f () is strictly convex if the equality in (65) im-
plies that X = 0 or X = 1 or xi = x2 .

Theorem 1: If two convex functions are defined on the same convex set,
their sum is a convex function on that set. If one of the functions is strictly
convex, then the sum is strictly convex.

Theorem 2: If f () is a convex function on a convex set X, and if a > 0,
then of (.) is a convex function on X. If f () is strictly convex, and if
a > 0, then of () is strictly convex.

Theorem 3: If c is a fixed vector in an n -dimensional space, and x is a
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variable vector in the same space, and d is a real number, then (CT x d)
is a convex function on the entire space.

Theorem 4: Let f () be a convex function on an n -dimensional space.
Then the sets of points

{x:f(x) 5 c/}, {x:f(x) <

are convex subsets of the space for every real number, d.
The above theorems are elementary consequences of the definitions,

1 and 2.

Theorem 5: Let f () be a differentiable convex function defined on a convex
set X. Let xi , x2 be distinct points of X. Then the directional derivative,
(d/dX) fiXx2 + (1 - A )xiI, is an increasing function of A in (0,1).

Proof: Select any Ao > 0, 6 > 0 such that Ao < 1. Let

xo = X0x2 -I- - X0)xl. , y = X2 xi 

Then

(X 0 ± 5)x2 + (1 - X0 - 5)xi = xo ±

Now select an E such that E > 0 and Ao E < 1 and apply (65)
twice as follows:

fixo 630 =f [
5

6 (xo ± Sy ± ey) ± 6 ± e Rol± e

6 ± f (s xo Sy ± ey) 6 ± f (xo)

6

f (xo + ry) 6 + Ef(xo ± 6Y + EY) + 5 + f (X0).

Adding these inequalities and rearranging terms,

f(xo + 5y + ey) -f (x0 + Sy) >= f (xo + Ey) -f (xo).

Dividing both members bye and taking the limits as E -> 0 yields the
desired result,

dXf[Xx2
(1 - A )3ri]

x0+6
-d f[Xx2 + (1 - A) xii

xo
.

dX

Corollary: If f () is strictly convex on the convex set X, and if x1, x2
are distinct points of X, then (d/dX) f[Xx2 + (1 - X)xi] is a strictly
increasing function of A in (0,1).
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Proof: Suppose that the equality holds in Theorem 5. If the directional
derivative is nondecreasing in [Ao , (Ao b)] and takes equal values at
the end points, then it must be constant on this interval. It follows that
f () varies linearly on the line segment from

x = X0x2 + (1 - Ao)x1 to x = (A0 + 8)x2 + - Ao - Oxi
This contradicts the hypothesis that f () is strictly convex on X, and
the proof is complete.

Theorem 6: Let f () be a strictly convex differentiable function defined on a
convex set D. Let C be a closed and bounded convex set in the interior of D.

Then,
(i) f () assumes its minimum value over C at a unique point of C,

f () has a vanishing gradient at no more than one point of C, and
f () assumes its minimum value over C at an interior point of C
if and only if the gradient of f () vanishes at that point.

Proof:
(i) The hypotheses imply that f () is a continuous function and

that C is a compact set. It follows that f ( ) assumes its minimum
value over C, fmin , at some point of C. Now suppose that
xl , x2 are distinct points of C such that

f (xi) = f (x2) = finin .

Then the strict convexity off () implies that

4.(xi x2)
2

This is a contradiction of the hypothesis that finin is the least
value of f () over C.

(ii) Suppose the gradient of f vanishes at two distinct points of
C, x1 and x2 . Consider the directional derivative of f () along
(x2 - xi). By hypothesis, this derivative vanishes at x1. Be-
cause f ( ) is strictly convex, it is a strictly increasing function
of position along (x2 - xi). Therefore, it is greater than zero
at x2 , which contradicts the hypothesis that the gradient
vanishes at x2 .

(iii) Suppose f (x0) = fmin and xo is an interior point of C. All points
in a neighborhood of xo are in C. If the gradient of f () does not
vanish at xo , then there are points in this neighborhood, along
the negative gradient from xo , at which f () assumes smaller
values. This contradicts the hypothesis that fmin is the least
value off () in C.
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Now suppose that the gradient of f() vanishes at xo , an in-
terior point of C. Let x1 be any other point of C and consider
the directional derivative of f() along (xi - xo). This vanishes
at xo by hypothesis. The strict convexity of f() implies that it
is strictly increasing from xo to x1 . Therefore, f(xi) > f(x0) and
f() has its minimum over C at xo

This completes the proof.
In considering the properties of L (w), an additional result will be

needed concerning the penalty function r ( ). Its properties are num-
bered (i) through (v). Note that the convergence in (v) was not as-
sumed to be uniform over the unit sphere. This property will now be
deduced.

Because r () is a strictly convex function on the M -dimensional
vector space, it is also strictly convex on any subspace. In particular,
r (sx1) is a strictly convex function of s for any x1 on the unit sphere.

Then, for any real number P, however large,

e (s,x1) = r (sx1) - sP

is a strictly convex function of s. Let E8 be the set of vectors, x, on the
unit sphere for which

e (s,x) 0.

For any fixed s, E, is a closed subset of the unit sphere because e (s,x)
is continuous. It follows that E8 is a compact set.

The corollary to Theorem 5 tells us that along any ray from the ori-
gin, i.e., for s going from zero to infinity, the derivative of e(s,x1) is
strictly monotone increasing. From this it can be seen that xi 4 E80
implies that x1 E8 for s > so . Therefore, the sets E. decrease as s
increases from zero to infinity.

The intersection of a class of compact, decreasing, nonempty sets is
nonempty. Therefore, if

nE8 = 0,
8=0

it is clear that there exists an so such that E, = 0 for s > so . In this
case,

r (sx) > sP for all s so(P)

independent of x on the unit sphere.
On the other hand, if

n E, 5 0,
e=o
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then there exists a unit vector x1 , such that

r (sxi) < sP for all s in (0, .

This contradicts hypothesis (v) concerning the penalty functions.
Thus, we have seen that r (sx)/s goes to infinity with s uniformly for

all x on the unit sphere.
Now consider the function L(w), defined by (46), with w restricted

to an (N - 1) -dimensional linear manifold orthogonal to IN . Let

w = v alN

where a is a real number and v is restricted to the (N - 1) -dimensional
linear subspace orthogonal to 1N .

In view of (38) and (42), L (w) can be put in the form,

L(w) = L(v) = c7'  v d r (KAv b ). (66)

Here, c is a fixed N -dimensional vector, d is a scalar constant, and b
is a fixed M -dimensional vector, with M > N. The fixed N X N matrix
A is positive definite. It can be seen from the discussion in Appendix A
and (38) that the fixed M X N matrix K is of rank (N - 1) for con-
nected systems. Its null space is spanned by IN .

Using the convexity of r ( ),

r (1KAv) < zr (-b) ir (KAv b )

r(KAv b) > 2r (-}KAv) - r(-b).

Using this in (66),

L(w) = L(v) > 2r(2KAv) crv d - ( -b).

The right-hand member is dominated by its first term as v I becomes
large, uniformly over the subspace orthogonal to IN . Therefore, we
can find a sphere of sufficiently large radius so that

L(v) > L(0)

for all v on its surface. Then the minimum value of L (v) over this
sphere is not assumed on the boundary.

Now it will be shown that L (v) is a strictly convex function of v
on the subspace orthogonal to IN . Let

x1 = KAvi b

x2 = KAv2 + b.

The properties of K and A are such that vi v2 implies x1 x2 . This
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permits us to apply the strict convexity condition,

r[KAXv2 + KA (1 - X)v

= r[Xx2 + (1 - X)xi] < Xr (x2) + (1 - X)r (xi)

= Xr (KAv2 + (1 - X )r (KAvi b).

This is sufficient to establish the strict convexity of L(v)
Inasmuch as the strictly convex function L (v) takes on its minimum

value over every large sphere at an interior point, its gradient vanishes
uniquely at that point.

The above statement applies to the restriction of L ((v) to an (N - 1) -
dimensional space. However, we know that w' (1) vanishes along 1N .
Equation (47) then shows that

(w) = - (t)

vanishes along a direction which is not orthogonal to 1N . It follows that
the unrestricted gradient of L (w) vanishes at a unique point of every
linear manifold orthogonal to 1N .
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The Determination of Frequency in.
Systems of Mutually Synchronized

Oscillators

By M. B. BRILLIANT

(Manuscript received September 7, 1966)

The synchronization of large systems of geographically separated oscilla-
tors is of considerable practical interest for pulse code modulation (PCM)
switching. This study examines the factors that determine the frequency at
which such a system operates, considering both the procedure by which it is
set up and the topology of system. interconnections. A necessary and suffi-
cient connectivity condition is established.

I. INTRODUCTION

The synchronization of large systems of geographically separated
oscillators is of considerable practical interest for pulse code modulation
(PCM) switching. Synchronization could be achieved by establishing a
single master oscillator, with every other cscillator slaved either di-
rectly to the master or to another oscillator that is slaved directly or
indirectly to the master. However, the system would then be vulnerable
to failure of a single link or a single oscillator. An alternative called
"mutual synchronization" would permit the oscillators to determine the
system frequency jointly and to exchange synchronization information
over redundant paths. However, the complexity of the system raises
questions concerning the factors that determine the system frequency
as well as system stability and dynamic response.

A broad sufficient condition for the stability of mutually synchronized
systems was first established by Bend.' This condition has recently been
rederived by a different method, for a slightly more general system, by
Gersho and Karafin.2 The model used in both these studies was over-
simplified so that it gave a paradoxical result for the system frequency
at equilibrium. A model that corrected this oversimplification, by
considering the received signal phases observed at each oscillator station
at the initial moment when all oscillator controls are put into operation,
was first devised by Runyon.' A corrected model based on the same
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principle, but differing in detail, has recently been independently derived
by Karnaugh.4 In all these studies, it was assumed that the system was so
interconnected that every oscillator transmitted timing information
either directly or indirectly to every other oscillator. This condition has
been generally assumed to be necessary for mutual synchronization, and
has been proved sufficient by Gersho and Karafin.2

This paper will generalize the foregoing results in two ways that appear
to be significant for practical applications. In the first place, a mathe-
matical model will be described that allows the synchronized system to
be set up by less drastic methods than the simultaneous closure of all
control paths at t = 0. In the second place, a weaker connectivity condi-
tion, which is satisfied by systems in which only some of the oscillators
participate in frequency determination, will be proved necessary and
sufficient for synchronization.

The practical consequence of these generalizations is that a system
with a single master oscillator can be regarded as a special case within
the general class of mutually synchronized systems, and a locked oscilla-
tor synchronized to a remote source can be regarded as a special case of
an oscillator station in a mutual synchronization system. Between the
extremes of a system with no slaves and a system in which all stations
but one are slaves, a variety of hierarchical organizations may be en-
visioned. However, the description of particular configurations is beyond
the scope of this article. The model developed here also provides the
flexibility by which new stations can be added to an existing system, and
the system frequency can be adjusted after synchronism has been es-
tablished.

II. THE MATHEMATICAL MODEL

The system is assumed to consist of N oscillators, or "clocks," num-
bered i = 1, , N. Each oscillator has its own free -running frequency

, at which it would operate in the absence of a control input. Each
oscillator accepts a control input that causes its frequency to deviate from
the free -running frequency by an amount proportional to the control
input. For concreteness, the control input will be referred to as a voltage,
although it may, in practice, take other forms. Thus, the instantaneous
frequency of the ith oscillator, which will be expressed simply as the rate
of change of phase pii(t), will, in general, be different from the free -run-
ning frequency fi .

In applications to switched PCM networks, each oscillator controls
the timing of a digital signal which is assumed to be organized with a
fixed number of pulses per frame. It will be convenient to measure phase
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in frames of the digital signal, and frequency in frames per second. Each
station sends a digital signal, controlled by its local oscillator, to a num-
ber of other stations, and this signal conveys timing information. To
simplify the description, it will be assumed that all these signals are sent
in the same phase, and this will be taken to define the phase of the local
clock. However, the model could easily be adapted to the case in which
each signal is sent in some arbitrary but fixed phase with respect to the
local clock.

The transmission delay from the jth station to the ith will be desig-
nated as Ti; . Thus, the phase of the signal received at the ith station
from the jth is pj(t - Ti;). The phase is defined principally by a regular
pattern of framing pulses. The pulses between the framing pulses carry
information, and are therefore different in successive frames. Since
successive frames are distinguishable, the cyclic ambiguity inherent in
the measurement of the phase of sinusoidal signals is not inherent in
the digital case.

Thus it is possible to measure, at the ith station, the phase difference
pf(t - Ti;) - pi(t) between the received signal from the jth station and
the local clock. This phase difference will be called the "observed phase"
of the jth signal at the ith station. In the Ben& model, used also by
Gersho and Karafin,2 the control voltage at the oscillator consists only
of components proportional to the observed phases. However, as Gersho
and Karafin2 pointed out, if all the clocks are in phase all the observed
phases will be negative, and every clock will be made to run slower than
its free -running frequency. In the present model, a fixed reference phase
rii will be subtracted from each observed phase, this reference phase
preferably being equal to the phase difference one would expect to ob-
serve. If the observed phase of each signal is equal to the reference
phase, no control voltage is applied to the oscillator, which then runs at
its free -running frequency.

Historically,' the concept of mutual synchronization evolved in terms
of phase averaging. Thus, the observed phases of the received signals
were respectively multiplied by nonnegative averaging coefficients aii ,

E ai; = 1,
1=1

(1)

to form an average phase difference between the local clock and the
signals received from its neighbors. The average observed phase may
then be multiplied by a nonnegative factor Xi , having the dimensions of
inverse time, to determine the frequency displacement of the local clock.
This basic notation has been continued in subsequent studies and will



1740 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1966

be used here. Thus, in the present model, the system equations must be

pii(t) = E aii[pi(t - - pi(t) - rd,
(2)

i= 1, , N.

The reference phases can be absorbed into the free -running frequency
term by defining a reference frequency

Vi = fi - Xi E , i = 1, , N.

The system equations can now be written as

p1(t) = vi + Xi E aiApi(t - - pi(t)],
i-1

(3)

i = 1, , N. (4)

These equations have formally reverted to those of the Bend model,1,2
in which the reference phases do not appear. However, while the equa-
tions are the same, their application is different, since vi is not the free -
running frequency, but is normally greater than the free -running fre-
quency, because the reference phases ri; are normally negative. The
reference phases may, in fact, be identified with the initial -condition
terms of Runyon' and Karnaugh,4 so that (4) covers their models as
well as the Bene§ model.

The dynamic response of the system can be modified by using a filter
in each control system. Multiplication by Xi is then replaced by convolu-
tion with the impulse response hi(t) of a filter whose zero -frequency gain
is

hi(t)dt = Xi ,
0

i = 1, ,N. (5)

This has been done in all the referenced studies. Gersho and Karafin2
also added a variable term to vi , replacing it formally by vi(t), to repre-
sent the effects of transient disturbances. The system equations there-
fore become, in the most general form to be used here,

p1(t) = vi(t) hi(t) * - - pi(t)],
i=i (6)

= 1, , N.

where the asterisk (*) denotes convolution. Neither of these changes
affects the equilibrium frequency.

It has been assumed that the filter gains and averaging coefficients are
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all nonnegative,

Xi 0, (7)

ai; 0. (8)

The connectivity of the network depends on which of these coefficients
are zero. If the ith station does not receive from the jth, au is zero,
except when the ith station does not receive from any other station, in
which case (1) forbids all au to be zero and X must be zero, and the ao
are then arbitrary. It is understood that if the ith station in fact receives
a digital signal from the jth, but uses it only as a medium of communica-
tion and does not use its observed phase in controlling its clock, it will
be said that the ith station "does not receive from" the jth.

III. THE INITIATION OF SYNCHRONOUS OPERATION

Previous studies have assumed that the system is placed in synchro-
nous operation at t = 0 by simultaneously closing all the switches at each
station that connect the control voltages to the oscillators. It is assumed
that before t = 0 all oscillators are operating at their free -running fre-
quencies, and have been running for a sufficiently long time so that, in
spite of transmission delays, all stations are receiving signals on all links
by the time the switches are closed. Closure of each switch will, in general,
cause an immediate change of frequency at every station, and prediction
of the frequency at which the system finally will settle down would be a
matter of practical importance.

In practice it may be preferable to assemble the system in more lei-
surely fashion - one station at a time - checking for proper operation
after each station is connected before connecting the next one. One might,
for example, realize the reference phases ru as manually controlled bias
voltages. When a new station is to be connected into the system, the first
connection will be made at the new station, from one of the phase detec-
tors to the input of the clock control filter. This connection will syn-
chronize the new station with the system as a slave station, and adjust-
ment of the corresponding reference phase can be used to establish any
desired phase relation between it and the rest of the system. When each
subsequent connection is made from a phase detector to a clock control
filter, the associated reference phase is adjusted so as to null the voltage
across the switch at the moment when it is closed. There is then no dis-
continuous change in frequency at any time during the connection
process.

If the system were built up in this way, starting from one station as the
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initial system, and if there were no drifts in either free -running fre-
quencies or transmission delays, the final equilibrium frequency of the
system would be the free -running frequency of the first station. In this
case the equilibrium frequency could be predicted without any calcula-
tion. In any case, the system frequency can be deliberately changed after
initiation of synchronous operation by adjusting the bias voltages.

The equation for system frequency is still useful as a means of predict-
ing the effects of drifts in the free -running frequencies and the transmis-
sion delays. However, serious questions can in principle arise with regard
to the applicability of the general system equations (6). These equations
represent a system with invariant connectivity, represented by invariant
averaging coefficients ai; and gains Xi , while the actual system connectiv-
ity has been a function of time. Karnaugh4 and Gersho and Karafin2
have answered these questions for their models under the particular
initiation procedure they assumed. The answer will now be extended to
cover the present model for arbitrary initiation procedure.

I shall take the point of view that there is some specifiable moment to
at which the system has been completely assembled, so that the aq and
Xi are invariant for t > to , and that we need only to predict the future
behavior of the system, for specified disturbances in vi(t) and drifts in
Ti; , having full knowledge of the past behavior of the system. For the
purpose of this discussion, if the transmission delays Ti; are to be allowed
to change, they should be considered as having been written as TO).

The system equations (6) are actually integrodifferential equations,
since the convolution symbol (*) implies an integration. The initial
conditions on which the solution of this equation depends are the entire
history of the phase variables p i(t), to the extent that this history deter-
mines the state of the filters. The output of each filter for t > to can be
considered as the sum of two components: a transient term determined
by the state of the filter, which is in turn determined by the input for
t < to , and a term representing the response to inputs for t > to . The
transient terms can be calculated from the known filter inputs for t < to
and included in the vi(t) terms. Equations (6), with these terms included
in vi(t), with the filters considered quiescent at t = to , and with the
correct initial values of pi(to), will then give a correct description of the
behavior of the system for t > to

This argument is included here only to establish the validity of (6) in
principle. In practical calculations, estimates of the effects of transient
disturbances would normally assume an equilibrium state as the initial
condition.
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IV. EQUILIBRIUM STATES

Gersho and Karafin2 determined the equilibrium frequency of the
system as a limiting value derived by means of the final value theorem
for Laplace transforms. Karnaugh4 used a simpler method, claiming for
it only heuristic value. The following approach claims rigorous validity
for the simpler method.

The first step in the analysis of the system will be the determination
of its equilibrium states, without regard for whether they are stable or
unstable equilibria. These can be determined by assuming that the sys-
tem has been placed in some state, and that it will not change state
spontaneously; any state that satisfies these conditions is an equilibrium
state. We determine in this step whether the equilibrium state is unique.
The second step is to determine whether the system can respond to any
transient excitation with components that do not approach zero with
increasing time; this step determines the stability of the system. The
linearity of the system now implies that if the equilibrium state is unique,
and the transient response approaches zero, the system will always
approach the equilibrium state in the absence of a disturbance.

It will, in fact, be found that the equilibrium state is not unique,
because the system equations include the phases only in phase differ-
ence terms, and an arbitrary common constant can be added to every
phase variable without changing the phase differences. There is, there-
fore, a continuum of equilibrium states, all of which are equivalent for
practical purposes in that they have the same phase differences and the
same system frequency. Because of this equivalence, the system will be
considered stable if, after a transient disturbance, it approaches any
equilibrium state, not necessarily the one it occupied before the dis-
turbance. This requires only that the transient components of the phase
differences approach zero, while the transient components of the phases
may approach arbitrary limits.

This section will deal only with the first step: the identification, in-
cluding determination of conditions for existence, of equilibrium states.
The stability of the equilibrium states can be assured by the sufficient
condition studied by Gersho and Karafin,' their proof remains valid
under the weaker connectivity condition shown here to be necessary
and sufficient, the statement that at least one Mil is positive sufficing
to replace their statement that all Mil are positive.

The only equilibrium states to be considered here are those in which
all clock frequencies are constant at a common value; if they are con-



1744 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1966

stant, but at different values, synchronism has not been established. It
will also be required that the existence of such a state should not de-
pend on the values of the free -running frequencies; if it does, the system
is not self -synchronizing, but is synchronous only if the clocks are ad-
justed by means external to the system.

The instantaneous frequencies pi' (t) are, therefore, set equal to an
equilibrium frequency denoted simply by f. Then

pi(t) = ft + Pi , i = 1, , N. (9)

Equation (4), which suffices even in the most general linear case repre-
sented by (6) for the description of the steady state, becomes

f = vi + Xi E aii(P; - Pi -

or, in more symmetrical form,

where

N

E xioi; - ai))P7 = vi -f (1 XiT i)
a=1

N

Ti = E aijTij

= 1, , N, (10)

= 1, (11)

(12)

and Si; is the Kronecker delta, equal to unity for i = j and zero otherwise.
The set of equations (11) looks as though it could be solved for the Pi in
terms of arbitrary vi and f, but it cannot, because the matrix of coeffi-
cients on the left is singular. This will be stated and proved as a theorem.

Theorem I: Let L denote the diagonal matrix with diagonal elements
, let A denote the averaging matrix with elements ai; , and let I denote

the identity matrix. Then the matrix L(I - A), with elements Xi(oi; -
has rank less than its order N.

Proof: By (1), the sum of the elements in any row is zero. Therefore,
the sum of all columns is a column of zeros. Therefore the matrix is
singular and its rank is less than its order, Q.E.D.

It is advantageous at this point to choose one Pi arbitrarily as a refer-
ence for the others. With Pi as reference, we change to the phase difference
variables

= - Pi,
The equations (11) then become

j = 2, , N. (13)
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E xi(bi; - aiJ)Q; = -f ( i= 1, , N. (14)
j=2

If the terra in f is transposed to the left side, we get the set of N equations

f(1 + xiTi) + E - = vi, i = 1, , N, (1J)
j=2

which we expect to be able to solve for the N unknowns f and Q; , j =
2, , N, for arbitrary vi .

If we formally solve for f by determinants, and expand each deter-
minant in terms of the elements of the first column and their cofactors,
the result is

E bivi
-

N
i=i (16)

E bi(1 + xiri)

where bi is the cofactor (signed minor) of the element in the first column,
ith row, of the matrix L(I - A). The following theorem shows that the
arbitrary choice of P1 as the reference for phase differences, and the
definition of bi in terms of the first column, makes no difference in the
result.

Theorem II: Let Mi.; be the cofactor of the (i, j)th element of L(I - A);
then 111i; = Mik for all i, j, k, that is, all cofactors of elements in the same
row are equal, and hence 11 = bi for all i, j= =1, , N.

Proof: If the rank of L(I - A) is less than N - 1 then all Mq are
zero and the theorem is satisfied. If the rank is N - 1, the matrix equa-
tion L(I - A)x = 0, where x is an N element column matrix, has only
one independent solution. It is known from (1) that a solution exists in
which all components are equal, and this must now be true of any solu-
tion. It can also be shown that the cofactors of any single row of the
matrix L(I - A) must be a solution (see, for example, Guillemin6),
hence all cofactors of elements in a row must be equal, Mi.; = Mik ,
hence Mi; = Mil = bi , Q.E.D.

Since bi can now be defined without reference to any particular column,
the single -index notation is justified. Since we expect that increasing the
free -running frequency of any oscillator will never decrease the equilib-
rium frequency f, we should expect all the bi to be nonnegative. The fol-
lowing theorem verifies this expectation.
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Theorem III: The cofactors of elements of the matrix L(I - A) are
nonnegative, bi > 0, i = 1, , N.

Proof: If a matrix is diagonally dominated, i.e., if every diagonal
element is greater in magnitude than the sum of the magnitudes of all
other elements in the same row, it is easily shown (Appendix I, Gersho
and Karafin2) that it must be nonsingular. Consider the matrix L(I -
EA), 0 -.5_ e 1. The cofactors of its diagonal elements are continuous
functions of E. For e = 0 they are all unity, hence positive. For 0 < E < 1
the cofactors are the determinants of diagonally dominated submatrices,
hence nonzero, so that they cannot pass through zero, and must remain
positive. Hence, as E 1 they cannot approach negative limits. But as
e 1 they approach the values bi , hence bi > 0, Q.E.D.

The formal solution (16) is valid if and only if the matrix of coefficients
on the left side of (15) is nonsingular; that is, if and only if the denomina-
tor of (16) is nonzero. But, since bi , Xi , and Ti are all nonnegative, this is
equivalent to the condition that at least one bi be positive. The following
definitions and theorems relate this algebraic condition to the connectiv-
ity properties of the network.

Definition: The jth station is said to send to the ith, or equivalently,
the ith station is said to receive from the jth, if Xiaii is positive.

Definition: The jth station is said to send directly or indirectly to the
ith, or equivalently, the ith station is said to receive directly or indirectly
from the jth, if there exists a chain (ordered set) of stations such that the
first is station j, the second receives from j, each receives from the one
before, and the last is station i.

Theorem IV : If the kth station does not transmit directly or indirectly to
all other stations then bk = 0.

Proof: Let Akk be the submatrix formed by deleting the kth row and
column of L(I - A). Let Sk be the set of indices of all stations that do
not receive directly or indirectly from the kth. By hypothesis Sk is
nonempty ; choose i e Sk . By the definition of Sk Xictii is zero if j is not
in Sk , hence, from (1),

E xiai; = ,

,Sk

i e Sk . (17)

Let Bk be the square submatrix of Akk consisting of all elements whose
row and column indices are both in Sk . Then (17) shows that Bk can be
written in the form L'(I - A'), where A' is an averaging matrix satisfy-
ing (1). Hence, by Theorem I, Bk is singular, and the rows of Bk are
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linearly dependent. But since the ith row of Akk , for all i e Sk , is the ith
row of Bk augmented with zeros, the same linear dependence holds among
the rows of Akk . Hence, Akk is singular; hence its determinant, which is
bk , is zero, Q.E.D.

Theorem V: If b. is zero, then the kth station does not transmit directly
or indirectly to every other station.

Proof: Let Akk be defined as in the proof of Theorem IV. By hypothe-
sis, Akk is singular; hence there exists a column matrix x, with elements
xi not all zero, such that Akkx = 0, or equivalently

E = Xixi i k. (18)
iok

Let M be the magnitude of the xi having the largest magnitude. Let Sk
be defined now as the set of all indices i for which I xi = M; obviously
Sk is nonempty. Now (18) implies

i E Sk S.E = Xiilf (19)
iok

Now (1) and I xi I < M imply that this can be true only if Xiaik = 0 and
= M whenever Xiai; > 0. Hence, for all i e Sk. Xiai; = 0 except

when j e Sk , and thus the ith station cannot receive directly or indirectly
from the kth. Since Sk is nonempty, the kth station does not transmit
directly or indirectly to all stations, Q.E.D.

It follows from these theorems that the formal solution (16) is valid
for the set of equations (15) if and only if there is at least one station
that transmits directly or indirectly to all other stations.

If there is no such station, the matrix of coefficients on the left side of
(15) is singular, and the set of equations has either no solution or an
infinity of solutions, depending on the values of the vi . Since a solution
defines an equilibrium state in which all oscillators run at the same fre-
quency, this means that the oscillators will run at the same frequency
only if their free -running frequencies are appropriately adjusted; that is,
the system is not self -synchronizing.

If there is only one station that transmits directly or indirectly to all
others, that station is the master, setting the frequency for the whole
system. A single master receives from no other station, since any station
that transmitted to it would thereby transmit indirectly to all other
stations. Thus, a station can become a master simply by the loss of all
inputs from other stations. However, if two stations lose all their inputs,
the system fails to synchronize, since neither station sends directly or
indirectly to every other.
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If more than one station sends directly or indirectly to all others, these
stations are mutually synchronized, and jointly establish the system
frequency. Any station that does not send directly or indirectly to every
other station is in effect a slave station.

V. SUMMARY AND CONCLUSIONS

The process for initiation of synchronous operation described in Sec-
tion III is not necessarily recommended as the best possible. It is in-
tended as a constructive existence proof, showing that there exists a
method of setting up a synchronized system of geographically separated
clocks that will lead to a final frequency that can be determined in
advance. The second part of that section shows, in perhaps unnecessary
detail, that the behavior of a system, once it has been set up, can be
determined without considering how it was set up, so that it is not neces-
sary to specify the set-up procedure before studying its steady-state or
dynamic behavior.

Under these circumstances the equation for equilibrium frequency
developed in Section IV plays no part in the process of setting the system
in synchronism and adjusting it to run at the desired frequency. It
serves to identify the factors that affect the final frequency and indicate
the quantitative effect of each factor, and as such would appear to find
its greatest usefulness in the design and control of the configuration of
system interconnections.

The connectivity condition evolved in Section IV permits the inclusion
of single -master systems in the same general class as completely mutually
synchronized systems. It is suggested that these two types are in fact
opposite extremes of a more general class in which the most useful con-
figurations may have some intermediate hierarchical form.
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Intermodulation Noise in FM Systems
Due to Transmission Deviations and

AM / PM Conversion*
By T. G. CROSS

(Manuscript received August 2, 1966)

Two noise contributors in FM systems are: (i) intermodulation noise
due to transmission deviations; and (ii) intermodulation noise due to trans-
mission deviations and AM/PM conversion, designated AM/PM inter -
modulation noise. Expressions for the second- and third -order AM/PM
intermodulation noise are derived in terms of transmission medium coeffi-
cients and a continuous pre -emphasis characteristic, with the unpre-em-
phasized baseband signal being simulated by white Gaussian noise. These

expressions have been programmed on a digital computer and representative
noise responses and properties of AM/PM intermodulation noise were
obtained. General properties and characteristics for the two noise contribu-
tors are documented in parallel for comparative purposes. It was found that
AM / PM intermodulation noise can be a significant noise contributor in
FM systems.

I. INTRODUCTION

Intermodulation noise is produced whenever a phase modulated signal
is passed through a linear transmission medium whose amplitude and
phase characteristics are nonlinear functions of frequency. The output
signal from this medium is both envelope and phase modulated, with the
phase modulation being a distorted replica of the input phase function.
The envelope modulation and phase modulation functions are similar in
that both consist of first (linear), second-, third-, and higher -order func-
tions of the input phase function. They differ in that the coefficients of

the terms making up the two modulating functions are related in dif-
ferent ways to the transmission medium characteristic.

The distortion terms higher than first order, in the output phase
* Portions of this paper were presented at the 1966 IEEE International Com-

munications Conference in Philadelphia, Pa., June 16, 1966.
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modulating function, produce intermodulation noise. This source of
noise has been the subject of much work over the past ten to twenty
years. The envelope distortion terms directly produce no degrading
effects in linear systems. However, when the linear transmission medium
is followed by a device that converts envelope variations at its input to
phase variations at its output then a different noise -generating mech-
anism exists. This latter source of noise will be designated as "AM/PM
intermodulation noise" to distinguish it from the intermodulation noise
produced directly by transmission deviations.* The two phenomena are
illustrated in Fig. 1 which depicts the two-step process involved in the

v (t)
(w)

(t) /DEGREES volt)
INTERMODULATION

)
dB INTERMODULATION NOISE

NOISE DUE TO DUE TO TRANSMISSION
TRANSMISSION DEVIATIONS AND AM/PM
DEVIATIONS INTERMODULATION NOISE

[co, t +cp (t)]
v (t) = EXP

(t)= EXP a (t) Exp L[wct +To (t)]
[(act +To (t) + k a (t.)]v0 (t)= Exp al (t) EXPL

WHERE
7(0= PHASE MODULATING FUNCTION DUE TO MULTICHANNEL SIGNAL

ci:b(t) = q(t) + PHASE DISTORTION TERMS
k = 0.1516 K = PHASE MODULATION INDEX IN RADIANS DIVIDED BY

THE AMPLITUDE MODULATION INDEX

K =AM/PM CONVERSION CONSTANT MEASURED IN
DEGREES

ASSUMING a (t) «I dB
a1(t) a (t) IN GENERAL

Y (w)= TRANSMISSION MEDIUM WITH TRANSMISSION DEVIATIONS

Fig. 1- Model illustrating sources of intermodulation noise due to transmission
deviations and AM/PM conversion.

AM/PM intermodulation noise generation. The AM/PM converter
will be characterized by the constant K which has the dimension of
degrees/dB and can be interpreted as the peak phase change at the out-
put for a 1 -dB change in envelope at the input. In reality, this K may be
a function of a number of quantities, e.g., carrier drive power, frequency
(carrier and/or baseband), bias levels, or may even be complex. However,
many presently developed broadband radio systems use TWT amplifiers
as power output tubes which are often the major source of AM/PM
conversion within a radio repeater. These tubes, when driven at moder-

* Transmission deviations are defined as any deviation in the gain and phase
characteristics from the ideal characteristics of constant gain and linear phase for
all frequency components of the FM wave.
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ate, essentially constant input power level and biased from well controlled
sources, are adequately characterized for small envelope fluctuations by
a constant K degrees/dB."

Both noise phenomena are of prime interest in frequency modulated
systems. Intermodulation noise due to transmission deviations is of
interest because it is a recognized significant noise source. AM/PM
intermodulation noise is of interest because of the basic lack of knowledge
which has existed on this subject. Due to this deficiency, the AM/PM
phenomenon has become the underlying scapegoat for many system
problems that appear to be unexplainable using existing system knowl-
edge.

The purpose of this paper is two -fold: (i) to present the mathematical
development and ensuing solution for the problem of AM/PM inter -
modulation noise in FM systems; and (ii) to provide enough general
information about the two noise contributors considered in this paper
such that one can analyze a system's performance and/or set system
requirements with some degree of confidence without having to neces-
sarily utilize the associated digital computer programs.

The analysis to follow considers a linear transmission medium, with
generalized transmission deviations, followed by an AM/PM converting
device. The baseband signal is simulated by a Gaussian distributed band
of noise with flat power density spectrum which is pre -emphasized by a
continuous pre -emphasis function before the FM process. The end result
of the treatment is the signal-to-noise ratio for second- and third -order
AM/PM intermodulation noise. The mathematical framework for this
paper is derived from a recent paper which treated the subject of inter -
modulation noise due to an imperfect transmission medium.2 Certain
facets of that work will be included here for the sake of continuity.

II. THEORY FOR AM/PM INTERMODULATION NOISE

2.1 General Development

Consider the system model shown in Fig. 1 where an FM signal is put
into a linear transmission medium followed by an AM/PM converting
device. The transfer function of the transmission medium is

= exp [ -a(w) - if3(co)] (1)

and the impulse response is

g(x) = -1 Y(w) exp (iwx)dw.
2r

(2)
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The FM signal input to the transmission medium is

v(t) = exp fi[coct so(t)])

and the output signal is

vi(t) = exp [a(t)] exp ti[coet coo(t)]},

(3)

(4)

where coc is the carrier frequency and v(t) is the phase modulating signal.
Since Y(w) is a linear system, the input and output can be related by

vi(t) = v(t - x)g(x) dx. (5)

Substituting (3) and (4) in (5) gives

exp [a(t)] exp [400(t)] =
J

exp [40(t - x) - iw,x]g(x) dx. (6)

The output function, vo(t), was the subject of a previous paper' and will
not be considered further here. Our prime objective is to determine the
envelope variation in terms of its functional relationship to the phase
modulating signal, so(t). It follows from (6) that

a(t) = Re In f exp [iv(t - x) - iwcx]g(x) dx. (7)

It can be shown that2

M2i M3i // M4i ////
a(t) -ce(fe) - 27! 3! 4!

- + '

12, / 13r / /// X2r /2 15r 112

1- 2
- -6 co co - - -8 so -r (8)

lii /2 X3i /3 24r/4
-1-

4
co so - -6 SO 24

where the subscripts r and i denote the real and imaginary parts of the
corresponding coefficients, and the prime notation indicates the deriva-
tive with respect to time. The argument of the phase functions in (8)
is t - to where to is an arbitrary delay.2 The moments, m , in (8) are
related to the transmission medium by

( - 1)n [ d.
(mn -

Y (wc) d(icon
coc ± w) exp (icetd)] (9)

0=o

and the / and X coefficients are defined as follows:
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11=m4 2m1m3 - m22 + 2m12m2

1753

12 = M3 MiM2

13 1114 - M1723

15 M4 - m22

X2 = 9n2 - m12

X3 m3 - 3m1n2 2m13

X4 = m4 - 4m1m3 - 3m22 + 12 m12m2 - 6m14.

As an example, we have

= m4j - 2m2,m2i - 2mhim3, - 2m1i2m2i

since ml,. = 0 (Appendix I of Ref. 2).
For the following transmission medium

IT( co + coc) = [1 + gico g2w2 g32 g40)4

+ E u., COS (Paw + exp i[b2w2 b32 b4w4
J=1 ( 10)

+ E YJ sin (v.i.) + j")}
J-11

the moments mn given by (9) have been evaluated and expressed in
terms of the transmission deviations in Appendix I of Ref. 2.

For the analysis to follow, the transmission deviations in (10) are
limited to values typically encountered in broadband radio relay systems.
However, the ripple type transmission deviations must have ripple
periods greater than approximately twice the top baseband frequency.
These restrictions are dictated by the limited number of terms of a(t)
which are to be considered.

Referring once again to Fig. 1, we see that when the output signal from
Y(w) passes through the AM/PM converter the envelope perturbation
given by a(t) is converted into a phase perturbation, given by k a(t).
The k coefficient is related to K (degrees/dB) as follows: the envelope
distortion term expressed in dB is

20 log
exp [a( t)] dB = 8.686 a(t) dB

so the phase distortion, due to envelope perturbations, after AM/PM
conversion is
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We will let

8.686K a(t) degrees = 0.1516 K a(t) radians.

k = 0.1516 K radians.

Hence, the phase distortion function, due to envelope variations, after
the AM/PM converting device is

k a(t) radians, (11)

where a(t) is given by (8).
The analysis up to here has been perfectly general (except for the

assumption that the AM/PM process may be represented by a constant
factor). The terms in (8) consist of first- (linear), second-, third- and
higher -order functions of the input phase modulating signal, 0). The
linear terms produce baseband amplitude distortion which we shall not
concern ourselves with in this paper. Also, terms higher than third
order will not be considered. This is not an undue restriction because
the prime contributors of intermodulation type noise in broadband
systems are second- and third -order phase distortion terms. Therefore,
neglecting linear, fourth-, and higher -order terms in (8) gives*

13r X2r /2 _52: 1121

k a(t) k[-2':12 co'co" - co co - -2 co
8 i°

Using the relationships

in (12) gives

where

7 [11i /2 ,/ X3i /3
k -4 cc- co radians.

= 2/40"' "22co

= 3c0/2s0,,

(12)

k a(t) = 02(t) 03(t) = (Mt) radians, (13)

*It should be noted that additional second- and third -order terms exist which
are not shown in (8) nor included in (12). These additional terms are considered
to be negligible for the transmission deviation constraints previously mentioned.
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02(1) =
.).11. /2r d 13r d + , 1-14,1

2 4 dt 12 dt2 a LHIP"-
(14)

/4, = 413r - 315r  (15)

03(0 = k [-
6

X3i

12
d
rt

13
( 16)

c

In the Appendix it is shown that the second -order distortion, 02(0,
and the third -order distortion, 03(t), are uncorrelated. Hence, the total
AM/PM intermodulation noise power density spectrum, considering
only second- and third -order distortions, is the sum of the two individual
noise power density spectra.

2.2 Second -Order Noise Power Density Spectrum

In this section we will derive the equation for the second -order
AM/PM intermodulation noise power density spectrum. The time repre-
sentation for the second -order phase distortion due to AM/PAI conver-
sion was derived in the previous section and is

02(1) = k[--X2r
d 13r d2 1,/2 [14]

2 4 jt 12 dt2 - (17)

The terms in brackets are operators on their respective functions, so (17)
can be represented by the block diagram shown in Fig. 2,
where

and

1 , [13r

ko-') =L12w2--Jrj

yc'2(t)

99'12 (t)

GI (w)
x(t)

02(0

G (w)
y (t)

Fig. 2 - Second -order noise block diagram.

(18)



1756 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1966

(
) = - .

24 lot (19)

It can easily be shown, using the relationship for the cross -correlation of
linearly transformed random functions,' that the power density spectrum
of 02(t) is

802(w) = Gi(-w) Gi(w) 89,,2(w) Gi(-w) G2(w) S4,2,-2(co)
(20)

+ G2( -w) Gi(w) 4-2,,2(w) + G2( -w) G2(w) 4-2(0

where, for example, 4,2,,,2(w) is the cross -power density spectrum of
tp12 (1) and co"(t). As in Ref. 2, (20) can be expressed as

802(w) = 2 1 Wu)) 12 5.[R,ATA + 2 I G2(w) 12 g[R-2(7)]
(21)

2[G1(-03)G2(w) + G2( -w)G1(w)]

where Wu)) and G2(w) are given by (18) and (19), respectively, and V
stands for the Fourier transform.

Now, redefining the transfer functions given in (18) and (19) we can
write

Ice
802 (w) = 21 Gi(w) I2 g [R,,2(r)] + 21 G2(w) 12 5 [R,,,,2(r)] (22)

2[G1( -ce)G2(

where now

G1( w)

co) + G2( -w)Gi(w)1 5 [R0,9-2(7)]

l4
w (23)

1
G2 \ CO/\ = c,4r

24
(24)

Equation (22) is the second -order AM/PM intermodulation noise power
density spectrum weighted by the AM/PM conversion parameter. The
ability to pull the k out of the calculation provides great flexibility.

2.3 Third -Order Noise Power Density Spectrum

The time representation for the third -order phase distortion due to
AM/PM conversion is, from (16),

Oa(t) = k[- g-1 (25)
6 12 dt

which can be represented by the block diagram in Fig. 3 where
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q"3 (t)
G3 (0))

03 (t)

Fig. 3 - Third -order noise block diagram.

G3(w) = X4i i[1L12
(26)

It follows that the third -order AM/PM intermodulation noise power
density spectrum is

Sea (co) = I G3(w) 12 Ste3 (CO).

It can be shown that6

43(0.)) = 6 5[/?,,,,3(T)] ± 9/4,2(0) S,,(0)), (27)

which can be written
S,'3(w) = W[R,,3(T)] (28)

since 9 R,,2(0) S,,(0.,) is a scaled power density spectrum of the input FM
signal and hence can be neglected since it does not contribute to the
distortion.* Therefore,

So3(w) = 6 I G3(w) 12 [R,,3(r)] (29)

where G3(w) is given by (26). Redefining the transfer function we have

k2
So (co) = 6 I (73(w)

I2
g[R,p'3(T)]

where now

(30)

.G3(w) = [- co

6
i l

12
(31)

Hence, (30) gives the third -order AM/PM intermodulation noise power
density spectrum weighted by the AM/PM conversion parameter.

A quantity of interest in engineering problems is the signal-to-noise
ratio. Thus, we now characterize the simulated multichannel baseband
signal.

2.4 Pre -Emphasized Signal Power Density Spectrum

The basic block diagram arrangement for a typical signal transmission
path is shown in Fig. 4. The unpre-emphasized baseband signal is ob-

* This term causes baseband amplitude distortion instead of intermodulation
noise.
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PRE -
EMPHASIZED

BASEBAND BASEBAND FM
PRE -EMPHASIS

NETWORK
P (1,0)

FM
MODULATOR Y (o))

SIGNAL SIGNAL SIGNAL

cpt(t) Gr(t)

V(t)= COS [Clic + (1) (t)]

Fig. 4 - Typical signal transmission path.

tained from the frequency division multiplex terminals, directly or via a
transmission facility, and is pre -emphasized prior to being applied to a
FM modulator. The output of the FM modulator is consistent with v(t)
shown in Fig. 1. Assume that the unpre-emphasized baseband signal has
a Gaussian distribution and a flat power density spectrum, P. , between
-fb and fb , where fb is the top baseband frequency. The output power
density spectrum from the pre -emphasis network is

So' (w) = P.1 P(w) 12, I f I fb (32)

where P(w) is the transfer function of the pre -emphasis network. Letting

P(w) 12 = ao a2f2 a4f4 a6f6, III fb (33)

where the a's are real constants, we have

(w) = P0[ao a2f2 ad' ± ad.% III 5. fb (34)

It can easily be shown that2

- (221-0-) 2

2fb C/ 3 5 7
a2,42 a4fb4

, ( rad/sec )2/Hz
(35)

where a- = rms frequency deviation, in Hz, due to the baseband signal,
and fb is in Hz. Equation (34) gives the power density spectrum of the
pre -emphasized baseband signal in terms of the coefficients of a con-
tinuous pre -emphasis characteristic, and in terms of system parameters,
u and fb .

2.5 Signal -to -Noise Ratio

We are now in a position to express the signal-to-noise ratio for second -
and third -order AM/PM intermodulation noise. The expressions given
in (22) and (30) are for PM distortions so we convert them to FM dis-
tortions by multiplying by co2. Hence, the signal-to-noise ratios can be
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expressed as

2[)sv, (CO
(W) = 10 log10 log (2802(6.)12nd

order \k
(0)

882(w)

and

- 20 log k (36)

Sv' (w)

[10 log Si.
(w)

)1 = 10 log (2)2 S83 (w)
- 20 log k,

(37)
3rd order (k

where 8,,(w) is given by (34), 1/k2 802(w) is given by (22), and 1/k2
888(w) is given by (30). A digital computer program has been written
which will evaluate (36) and (37) for any values of the transmission
deviation coefficients, pre -emphasis coefficients, rms frequency deviation
due to the baseband signal, top baseband frequency, and AM/PM con-
version factor. The derivations of ff[R,,,2(T)], 5[R,/,2(T)],

and F[R,'3(r)] in a form applicable to a digital computer program are
given in Appendix II of Ref. 2.

III. NOISE PROPERTIES AND CHARACTERISTICS

The previous material provided the mathematical treatment of

AM/PM intermodulation noise. In this section we will document the
various properties of both AM/PM intermodulation noise and inter -
modulation noise due to transmission deviations.* Also, the charac-
teristics of these two noise phenomena will be explored by utilizing a
representative system model. Both noise contributors are treated in

parallel throughout the section for comparison purposes. The results
are presented in three discrete modes: (i) properties which are true in
general; (ii) properties which are approximately true; and (iii) charac-
teristics which are derived from a representative system model. The
theoretical treatment previously presented was for a transmission
medium given by (10). In this section we will confine our analysis to
the power series transmission deviations in (10). This is done for two
reasons: (i) the properties of the two noise phenomena can be concisely
documented for power series transmission deviations; and (ii) the gain
and phase ripple properties need more analysis as well as mathematical
treatment in order to fully characterize the effects of ripples in the
transmission medium.

* The information for this latter noise contributor was obtained from Ref. 2,
which gives it implicitly, as well as from the associated digital computer program.
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3.1 General Properties

Equation (8) of this paper and (23) of Ref. 2 have been expressed
in terms of the transmission deviations and tabulated as shown in Table
I. This table is an extension of Table 21-1 of Ref. 4.

TABLE I-AMPLITUDE AND PHASE MODULATION CAUSED
BY TRANSMISSION DEVIATIONS

Type of transmission
deviation

Resulting amplitude
modulation, a(1)

Resulting phase
modulation, coo(1) so(1)

Linear gain, pi
Parabolic gain, g2
Cubic gain, g3
Quartic gain, g4
Parabolic phase, b2

Cubic phase, b3
Quartic phase, b4
Interaction terms

glv + 34,, 'a

g '2 ig22V"_g3v/ti g3c,3

-4g4co'co"' - 3g49"2
b2c1/1 + 2b22co'v"' b22co"2

3b3v1io"
-bw"" 6b4(P'2i0"

g2b2h, 0
[2gib2]spic," gig3se/vm

-Thg2c013 [3gib3 4g2b2
- 29,12b2190v"

2ioll
g22

12 con

-3
goo -- 6gop'21p
-ib22gow b2i0

2b22co'2,"
bvp'3

-- 4b4(o'p" - 3b4v"2
-gibvP"' gig2,P'4P"

- 4(gib3 g2b2)cf/som
-3(gib3 + g2b2)ce2

(3fh gi2g2)(p,2q,"

Input signal = exp fi[coct co(t)]) ; output signal = exp [a(t)] exp fikoct co.(1)11;
transmission medium transfer function = Y(w w,) = [1 + gio) g2(.02 g,c03

g40.0] exp (i[b2(.02 b3(.03 + 4,0]1.
The argument of all the amplitude and phase functions is t.

The order of the noise produced by different transmission deviations
(e.g., gi , b2) are given in Table II for intermodulation noise due to
transmission deviations and for AM/PM intermodulation noise. Two
rules of thumb can be stated. For intermodulation noise due to trans-
mission deviations the rule is:

Even -order gain and delay transmission deviations cause odd -order noise.

TABLE II - ORDER OF NOISE

Transmission deviation
Intermodulation noise

Due to transmission deviations

Linear gain (g2):
Parabolic gain (g2):
Cubic gain (g3):
Quartic gain (g4):
Linear delay (b2):
Parabolic delay (b3):
Cubic delay (b4):

No noise
Third
Second
Third
*Second and third
Third
Second

Due to AM/PM conversion

*Second and third
Second
Third
Second
Second
Second
Third

* Indicates predominant component of the two possible.
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Odd -order gain and delay transmission deviations cause even -order noise.
For AM/PM intermodulation noise the rule is, for those transmission
deviations that cause significant relative noise (will become apparent
later),

Even -order gain and delay transmission deviations cause even -order noise.
Odd -order gain and delay transmission deviations cause odd -order noise.
The two types of intermodulation noise are related to the magnitude

of the transmission deviation coefficient by the relationships shown in
Table III. Once a noise response is obtained for a particular system and
transmission deviation coefficient value, then the system noise for any
other coefficient value typically encountered in transmission systems
can be easily predicted.

3.2 Approximate Properties

The variation in the top message channel noise, for both noise con-
tributors, with number of channels, assuming the peak frequency devia-
tion remains constant as the number of message channels increase, is
shown in Table IV for the different transmission deviations. These
approximate relationships yield results with an error of <1 dB for
smooth pre -emphasis functions typically used in broadband radio
systems.

The assumptions used were that the peak frequency deviation re-
mained constant, and that a typical frequency division multiplex plan
was used. The rms frequency deviation, due to the baseband signal,

TABLE III - VARIATION OF RELATIVE NOISE WITH TRANSMISSION
DEVIATION COEFFICIENT VALUE

Transmission deviation
Intermodulation noise

Due to transmission deviations Due to AM/PM conversion

Linear gain (0):

Parabolic gain (g2):

Cubic gain (0):
Quartic gain (0):
Linear delay (b2):

Parabolic delay (b3):
Cubic delay (b4):

No noise

40 log I g2' /g2 I

20 log I g3'/g3
20 log 1 gdg4 I
*20 log I b2'/b2 I , 40 log

b2'/b2
20 log b3'/b3I I

20 log b4'/b4

*40 log
g11/gi

log
mation

20 log
20 log
40 log

20 log I
20 log

I gdgi

Ig27g2I
error

g3 '/g3
g4'/g4
b2'/b2

b3'/b3
b4'/b4

I, 60 log

(approxi-
<I dB)

Where the prime (') notation depicts the terminal value and the unprimed
notation indicates the initial value.

* Indicates predominant component of the two possible.
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TABLE IV - VARIATION OF TOP CHANNEL NOISE WITH NUMBER OF
MESSAGE CHANNELS

Transmission deviation

Intermodulation noise

Due to transmission deviations Due to AM/PM
conversion

Linear gain (g1):
Parabolic gain (g2):

Cubic gain (g3):

Quartic gain (g4):

Linear delay (b2):

Parabolic delay (b3):

Cubic delay (b4):

No noise
Relative top channel noise increase

41 log N'/N
Relative top channel noise increase

c=.1. 39 log N'/N
Relative top channel noise increase

41 log N'/N
Relative top channel noise increase

21 log N'/N
Relative top channel noise increase

23 log N'/N
Relative top channel noise increase

58 log N'/N

20 log N'/N

'"=-1. 21 log N'/N

21 log N'/N

2=1, 57 log N'/N

58 log N'/N

39 log N'/N

-2,1 40 log N'/N

Where N' = increased number of channels; N = initial number of channels.

was allowed to change, accordingly, as the number of message channels
increased.

3.3 Noise Characteristics

3.3.1 Representative System Model

As a system model, we will use the following system parameters:
N = number of message channels = 1200
fb = top baseband frequency = 5.772 MHz

OF = peak frequency deviation = 4 MHz
a- = rms frequency deviation due to the multichannel baseband

signal = 0.771 MHz.
The pre -emphasis characteristic is shown in Fig. 5 and can be expressed
by

P(w) 12 = 0.9989 + 3.5839 X 10-i f2

-5.0245 X 103-3 + 3.894 X 10-5f6,

where f is in MHz.

3.3.2 Noise Response for the Individual Transmission Deviations

It is instructive to show the individual noise responses on a compara-
tive basis. This can be done by letting all gain transmission deviations
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Fig. 5 - Pre -emphasis characteristic.

have 1 -dB distortion, relative to the carrier, at 10 MHz away from the
carrier. Also, we let all delay transmission deviations have 1 nanosecond
(ns) distortion, relative to the carrier, at 10 MHz away from the. carrier.
This allows us to directly compare the noise contributions of the different
gain and phase transmission deviations, respectively, and also allows
for some sort of pseudo comparison between a 1 -dB gain distortion and
a 1-ns delay distortion. The intermodulation noise response, due to
transmission deviations, for the different transmission deviations are
shown in Fig. 6. Similarly, the AM/PM intermodulation noise responses
are shown in Fig. 7. Note that the responses in Fig. 7 are for k = 1.0
radian or a 6.6 degrees/dB AM/PM conversion device. For any other
value of k, say k1 , we raise or lower the responses according to 20 log
kJ. , as indicated by (36) and (37).

It is interesting to note that linear delay is an important contributor
to intermodulation noise, due to transmission deviations, but is not a
significant AM/PM intermodulation noise contributor. Also, we observe
that parabolic gain is a large relative contributor for AM/PM inter -
modulation noise but is a negligible relative contributor for intermodula-
tion noise due to transmission deviations. As a side point, we point out
that parabolic gain is also a significant source of baseband amplitude
distortion.

The phase transmission deviation noise responses in Figs. 6 and 7
are of particular interest because the values used in these two figures
are realistic even for an equalized system; this is not the case for the
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gain transmission deviation values used so one need not be unduly
alarmed at first inspection of the noise responses shown. However, the
gain deviation noise responses are of interest in order to determine
which types of gain deviations a particular noise source is most sensitive
to.

Comparison of Figs. 6 and 7 and Table II show that for all transmis-
sion deviations of significance, the order of the noise distortions are
different for the two noise phenomena. Coupling this with the results
of the Appendix shows that for a given transmission deviation, the two
noise responses are uncorrelated.

Of great significance and importance is the parabolic delay AM/PM
intermodulation noise response. We see from Fig. 7 that this particular
delay deviation is, by far, the largest contributor of AM/PM inter -
modulation noise compared to the other delay terms. The importance
of this finding lies in the fact that TWT amplifiers, when used as output
power tubes in broadband radio systems, are separated from transmitter
modulators (used to go from IF to RF) by band pass filters which may
possess large amounts of parabolic delay. Hence, we have large parabolic
delay distortion prior to an important AM/PM conversion device.
The noise impairment due to this typical system arrangement will be
examined in a later section.

Another point of interest is the noise response for linear gain. We
see that linear gain is not a significant AM/PM intermodulation noise
contributor. This is useful knowledge because in the past system require-
ments for linear gain have been set based on speculated AM/PM inter -
modulation noise impairments, as well as on derivable baseband ampli-
tude distortion due to linear gain and AM/PM conversion.

3.3.3 Effects of Interaction Terms

Referring back to Table I we note the row marked interaction terms.
By the form of the terms involved it is obvious why they are so named.
If one were to evaluate (22) and (30) in terms of the transmission devia-
tions explicitly, he would find that over 80 percent of the terms are
interaction terms. To examine the effects of these interaction terms we
compare the response we would get if we combined the curves shown
in Fig. 6, for example, on a power basis with the response we would
obtain by using all the transmission deviations at once, i.e., by taking
into account the interaction terms. There are a large number of possi-
bilities that could be examined, but to put the problem in perspective
the analysis considered only the cases shown in Table V. The results
for the two noise phenomena are shown in Figs. 8 and 9. The responses
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TABLE V - CASES CONSIDERED IN THE STUDY OF
INTERACTION EFFECTS

Case Conditions

1

2

3

4

5

6

7

9
10

Power addition
tions (all g's

Noise response
b's positive

Noise response
b's positive

Noise response
b's positive

Noise response
b's positive

Noise response
b's positive

Noise response
b's positive

Noise response
b's positive

Noise response
Noise response

of noise responses due to individual transmission devia-
and b's positive)
under the condition: gi negative and all other g's and

under the condition: g2 negative and all other g's and

under the condition: g3 negative and all other g's and

under the condition: g4 negative and all other g's and

under the condition: b2 negative and all other g's and

under the condition: b3 negative and all other g's and

under the condition: b4 negative and all other g's and

under
under

the condition: all g's and b's positive
the condition: all g's and b's negative

Where gl

g2

g3

g4

b2

b3

b4

= 1 dB at 10 MHz
= 1 dB at 10 MHz
= 1 dB at 10 MHz
= 1 dB at 10 MHz
= 1 ns at 10 MHz
= 1 ns at 10 MHz
= 1 ns at 10 MHz

* All the conditions take into account the effects of interaction terms except
for case 1.

shown in Fig. 8 are rewarding from a systems analysis standpoint be-
cause it indicates that the interaction components for intermodulation
noise, due to transmission deviations, do not significantly perturb
the noise response obtained by adding up the individual transmission
deviation noise responses on a power basis. Hence, for this noise source,
a system analyst could set requirements based on power addition of
the individual noise responses and be fairly confident that the actual
system noise response, due to transmission deviations, will be within
a dB of that response.

We see from Fig. 9 that the above desirable property does not hold
for AM/PM intermodulation noise. The responses shown in Fig. 9
deviate significant amounts from the power addition response (case 1)
by mere shifts of signs, the greatest departures occurring for parabolic
and quartic gain distortion which are, in their own right, the largest
relative noise contributors as evident from Fig. 7. The relative tendencies
indicated in Fig. 9 also occur when typical equalized repeater trans-
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mission deviation values are used. In fact, least squares approximations
on equalized repeaters, RF band pass filters, etc., yield values for para-
bolic and quartic gain which are either, or both, negative, i.e., a loss
with increasing frequency. Hence, even under practical situations one
cannot, in general, expect power addition of the individual transmission
deviation AM/PM intermodulation noise responses to yield representa-
tive AM/PM intermodulation noise performance.

3.3.4 Noise Response for a Representative Radio System Repeater

The results up to this point utilized representative system parameters,
but normalized values for the transmission deviations were used. Of
interest is the predicted noise response for a typical situation, i.e., making
use of values typically encountered in practice. We will now use the
representative gain and delay responses shown in Fig. 10 for an un-
equalized and equalized radio repeater. The predicted intermodulation
noise responses, due to transmission deviations, are shown in Fig. 11.
It is obvious that the equalization has greatly improved the system's
noise response.

To examine the AM/PM intermodulation noise we take note of the
previously mentioned fact that the TWT has a band pass filter (whose
gain and delay responses are given in Fig. 10) preceding it. The AM/PM
intermodulation noise due to the band pass filter and the TWT amplifier
(assuming 2.5 degrees/dB) is also shown in Fig. 11.
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8

We see from Fig. 11 that the AM/PM intermodulation noise in the
top channel is much larger than the intermodulation noise due to trans-
mission deviations for an equalized repeater. The repeater equalizer
is designed to correct for gain and delay shapes obtained from measure-
ments which do not recognize the AM/PM conversion phenomenon.
Hence, repeater equalizers based on such measurements, even though
effective for reducing intermodulation noise due to transmission devia-
tions, prove ineffective for AM/PM intermodulation noise which occurs
as indicated. In other words, the system has an AM/PM intermodula-
tion noise floor which is transparent to external gain and delay measure-
ments.

The transmission deviation of the band pass filter which is the major
noise contributor is the parabolic delay term. Hence, to reduce the
AM/PM intermodulation noise one must devise some method of cor-
recting for this transmission deviation. Two means of equalizing the
band pass filter are: (i) pre -equalization at IF prior to up -converting
in the transmitter modulator; and (ii) microwave equalization directly
before or after the bandpass filter. The first method may not yield
perfect correction because up -converters using varactor diodes possess
AM/PM conversion characteristics, in some cases 1 degree/dB. In
essence, it would effectively be like trading noise due to 2.5 degrees/dB
for noise due to 1.0 degrees/dB or an 8 -dB improvement in the ideal
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case, i.e., no compression in the up -converter and a perfect inverse
band pass filter characteristic. However, an improvement anywhere
near this value would greatly reduce the effects of AM/PM conversion.

IV. CONCLUSIONS

Two noise contributors in FM systems are: (i) intermodulation noise
due to transmission deviations; and (ii) intermodulation noise due to
transmission deviations and AM/PM conversion. This latter source
of noise is designated "AM/PM intermodulation noise" in this paper.
Analysis was carried out in order to predict the second- and third -order
AM/PM intermodulation noise for the transmission medium given in
(10) and a continuous pre -emphasis function. Flat Gaussian noise was
used to simulate the unpre-emphasized baseband signal so the results
are consistent with the laboratory system tests using "noise loadikg".
Expressions were derived which specify the signal-to-noise ratio in
terms of system parameters, transmission deviations, pre -emphasis
characteristics and AlVI/PM conversion parameter. The latter param-
eter, assumed to be a real constant, was separated from the body of the
calculations so that the resulting noise responses could be easily altered
for any value of AM/PM conversion.

The paper presented general noise properties and characteristics for
the two noise contributors. This material was presented in parallel,
for the two noise contributors, for comparison purposes. The order of
the noise component for different transmission deviations was given
so that one would know if a given transmission deviation causes second -
or third -order noise. The variation of the relative noise with transmission
deviation coefficient value was given so that a system analyst can deter-
mine the relative detriment to a system response that would result from
a change in a given transmission deviation. Another useful result was
the variation of top channel noise with number of message channels.
This would be of use in the case where one is interested in increasing a
system's message channel capacity.

Noise responses were given using a representative radio system model.
It was found when all gain transmission deviations had the same distor-
tion and when all delay transmission deviations had the same distortion
that: (i) for intermodulation noise due to transmission deviations the
cubic and quartic gain terms created the greatest top channel noise
due to gain transmission deviations, and that linear delay created the
greatest top channel noise due to delay transmission deviations; and
(ii) for AM/PM intermodulation noise the parabolic and quartic gain
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terms created the greatest top channel noise due to gain transmission
deviations, and that parabolic delay created the greatest top channel
noise due to delay transmission deviations. The effects of interaction
terms were examined. It was found that interaction terms do not signifi-
cantly perturb the noise response from that of the case of power addition
of the individual noise responses for intermodulation noise due to trans-
mission deviations. However, this desirable property did not hold for
AM/PM intermodulation noise which says that power addition of the
individual noise responses may be in gross error; in other words, inter-
action terms must be considered when evaluating AM/PM intermodula-
tion noise.

The intermodulation noise due to both noise contributors was pre-
dicted for a representative radio system repeater. It was observed that
the AM/PM intermodulation noise due to the band pass filter preceding
the TWT amplifier created more top channel noise than that due solely
to the equalized transmission characteristic, i.e., intermodulation noise
due to transmission deviations. Possible correction methods were given.

A point of interest, is that the two noise contributors considered in
this paper are correlated so that combining the two spectra together
assuming random addition, i.e., power addition, is not sufficient in
general. The significance of this correlation is presently being examined
and will be reported on in a later paper.
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APPENDIX

Uncorrelated Second- and Third -Order Distortions

We will show here that the second -order distortion, 02(t), and the
third -order distortion, 03(t), are uncorrelated. Consider

040 = 02(t) + 03(t). (38)

Now the autocorrelation function of OT(t) is

ROTH RO2 (T) Re3 (T) Rhea (T) Roo, (T) (39)
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where, e.g., Re293(r) is the cross -correlation function of 02(0 and 03(t).
Taking the Fourier transform of (39) gives

SeT(w) = 802(w) 803(w) Se203(w) So302(w).

From Fig. 2, we have

so it follows that

(40)

02(t) = x(t) y(t) (41)

Roo, (r) = Rxe, (r) /403 (7-) . (42)

Referring to Figs. 2 and 3 we have, using the relationship for the cross -
correlation of linearly transformed random functions,'

80503(w) = Gi( -co) G3(w) + G2( -co) G3(w)8,,,2,3(w). (43)

Now we can write

= g = if [ave (i0/2s0")] (44)

and

Sv"20,3(w) = if [R,,,2,0,3(7-)] = if [ave ( /f260/3)], (45)

where 5 stands for the Fourier Transform.
The phase modulating signal, co(t) represents the multichannel message

load and so for a large number of talkers io(t) is Gaussian with zero
mean.' It follows that derivatives of so(t) are Gaussian with zero mean.
It can be shown that'

ave [xi" x.rn] = 0, E ri odd (46)

where x1  x. are Gaussian random variables with zero mean, and
r1 r are any set of integers. Hence, letting

= co'

in (44), and letting

in (45) gives, using (46),

X2 = c01

Se203 (w) = 0.

-.011MMar.
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Similarly,

Seae,(w) = 0.

Hence, 02(t) and 03(t) are uncorrelated so

Sega') = Se,(co) 893(w).
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Synthesis of Band -Limited Orthogonal
Signals for Multichannel Data

Transmission

By ROBERT W. CHANG

(Manuscript received August 4, 1966)

This paper presents a principle of orthogonal multiplexing for trans-
mitting a number of data messages simultaneously through a linear band -
limited transmission medium at a maximum data rate without interchannel
and intersymbol interferences. A general method is given for synthesizing
an infinite number of classes of band -limited orthogonal time functions in
a limited frequency band. Stated in practical terms, the method permits the
synthesis of a large class of practical transmitting filter characteristics for
an arbitrarily given amplitude characteristic of the transmission medium.
Rectangular -shaped ideal filters are not required. The synthesis procedure
is convenient. Furthermore, the amplitude and the phase characteristics
of the transmitting filters can be synthesized independently. Adaptive correla-
tion reception can be used for data processing, since the received signals
remain orthogonal no matter what the phase distortion is in the transmission
medium. The system provides the same signal distance protection against
channel noises as if the signals of each channel were transmitted through
an independent medium and intersymbol interference in each channel were
eliminated by reducing data rate.

I. INTRODUCTION

In data transmission, it is common practice to operate a number of
AM data channels through a single band -limited transmission medium.
The system designer is faced with the problem of maximizing the overall
data rate, and minimizing interchannel and intersymbol interferences.
In certain applications, the channels may operate on equally spaced
center frequencies and transmit at the same data rate, and the signaling
intervals of different channels can be synchronized. For these applica-
tions, orthogonal multiplexing techniques can be considered. Several

1775
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orthogonal -multiplexed systems developed" in the past use special
sets of time -limited orthogonal signals. These signals have widely
spread frequency spectra (e.g., a sin a is spectrum). Consequently,
when these signals are transmitted through a band -limited transmission
medium at a data rate equivalent to that proposed in this paper, certain
portions of the signal spectrum will be cut off and interferences will
take place. For instance, the interferences because of band -limitation
have been computed' for a system using time -limited orthogonal sine
and cosine functions.

This paper shows that by using a new class of band -limited orthogonal
signals, the AM channels can transmit through a linear band -limited
transmission medium at a maximum possible data rate without inter -
channel and intersymbol interferences. A general method is given for
synthesizing an infinite number of classes of band -limited orthogonal
time functions in a limited frequency band. This method permits one to
synthesize a large class of transmitting filter characteristics for arbi-
trarily given amplitude and phase characteristics of the transmission
medium. The synthesis procedure is convenient. Furthermore, the
amplitude and the phase characteristics of the transmitting filters can
be synthesized independently, i.e., the amplitude characteristics need
not be altered when the phase characteristics are changed, and vice
versa. The system can be used to transmit not only binary digits (as
in Ref. 1) or m-ary digits (as in Ref. 2), but also real numbers, such as
time samples of analog information sources. As will be shown, the system
satisfies the following requirements.

(i) The transmitting filters have gradual cutoff amplitude charac-
teristics. Perpendicular cutoffs and linear phases are not required.

(ii) The data rate per channel is 218 bauds, * where 18 is the center
frequency difference between two adjacent channels. Overall data rate
of the system is [N AN + 1)] R. , where N is the total number of
channels and Rm.. , which equals two times the overall baseband band-
width, is the Nyquist rate for which unrealizable rectangular filters
with perpendicular cutoffs and linear phases are required. Thus, as N
increases, the overall data rate of the system approaches the theoretical
maximum rate R. , yet rectangular filtering is not required.

(iii) When transmitting filters are designed for an arbitrary given
amplitude characteristic of the transmission medium, the received
signals remain orthogonal for all phase characteristics of the transmission
medium. Thus, the system (orthogonal transmission plus adaptive

* The speed in bauds is equal to the number of signal digits transmitted in one
second.
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correlation reception) eliminates interchannel and intersymbol inter-
ferences for all phase characteristics of the transmission medium.

(iv) The distance in signal space between any two sets of received
signals is the same as if the signals of each AM channel were transmitted
through an independent medium and intersymbol interference in each
channel were eliminated by reducing data rate. The same distance
protection is therefore provided against channel noises (impulse and
Gaussian noise). For instance, for band -limited white Gaussian noise,
the receiver receives each of the overlapping signals with the same
probability of error as if only that signal were transmitted. The distances
in signal space are also independent of the phase characteristics of the
transmitting filters and the transmission medium.

(v) When signaling intervals of different channels are not syn-
chronized, at least half of the channels can transmit simultaneously
without interchannel or intersymbol interference.

II. ORTHOGONAL MULTIPLEXING USING BAND -LIMITED SIGNALS

Consider N AM data channels sharing a single linear transmission
medium which has an impulse response h(t) and a transfer function
H(f) exp [J7)(f)] (see Fig. 1).* H(f) and n(f) will be referred to, respec-
tively, as the amplitude and the phase characteristic of the transmission
medium.

Since this analysis treats only transmission media having linear
properties, the question of performance on real channels subject to such
impairments as nonlinear distortion and carrier frequency offset is not
considered here. Such considerations are subjects of studies beyond the
scope of the present paper.

In deriving the following results, it is not necessary to assume that
the transmitting filters and data processors operate in baseband. How-
ever, this assumption will be made since in practice signal shaping and
data processing are usually performed in baseband. Carrier modulation
and demodulation (included in the transmission medium) can be per-
formed by standard techniques and need not be specified here.

Consider a single channel first (say, the ith channel). Let bo , b1 ,

b2 , , be a sequence of m-ary (m > 2) signal digits or a sequence of
real numbers to be transmitted over the ith channel. As is well known,'
bo , b1 , b2 ,  can be assumed to be represented by impulses with
proportional heights. These impulses are applied to the ith transmitting
filter at the rate of one impulse every T seconds (data rate per channel

* J denotes the imaginary number while j is used as an index.
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Fig. 1- N data channels transmitting over one transmission medium.

equals 1/7' bauds). Let ai(t) be the impulse response of the ith trans-
mitting filter, then the ith transmitting filter transmits a sequence of
signals as

bo ai(t) bra& - T) b2cti(t - 2T) + .

The received signals at the output of the transmission medium are

boui(t) biui(t - T) brit& - 2T) + ,

where

ui(t) = h(t - T)ai(T) `7T.

These received signals overlap in time, but they are orthogonal if
00

L.ui(t)ui(t - kT) dt = 0, k = ±1, ±2, (1)

As is well known, orthogonal signals can be separated at the receiver
by correlation techniques;* hence, intersymbol interference in the ith
channel can be eliminated if (1) is satisfied.

Next consider interchannel interference. Let co , cl , c2 ,  be the
* Correlation reception and its adaptive feature will be briefly discussed in

Appendix C.
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m-ary signal digits or real numbers transmitted over the jth channel
which has impulse response aj(t). It has been assumed in Section I that
the channels transmit at the same data rate and that the signaling inter-
vals of different channels are synchronized, hence the jth transmitting
filter transmits a sequence of signals,

coai(t) cii(t - T) c2cti(t - 2T) + .

The received signals at the output of the transmission medium are

co  ui(t) + iz;(t - T) c2iti(t - 2T) + .

These received signals overlap with the received signals of the ith
channel, but they are mutually orthogonal (no interchannel interference)
if

Luicou,(t - kT) dt = 0, k = 0, ±1, ±2, . (2)

Thus, intersymbol and interchannel interferences can be simultane-
ously eliminated if the transmitting filters can be designed (i.e., if the
transmitted signals can be designed) such that (1) is satisfied for all i
and (2) is satisfied for all i and j (i j).

Denote (MD exp [Ji.ii(f)] as the Fourier transform of ui(t). One can
rewrite (1) as

U;2(f) exp ( -.1211kT) df = 0

k = ±1, ±2,
i = 1, 2, , N,

and rewrite (2) as

EUi(f) exp [Jui(P]Ui(f) exp [-4,(i)]

 exp [-J2irfkT] df = 0

k = 0, ±1,
i,j = 1,2, ,1V

i j.

Let Ai(f) exp ['fad)] be the Fourier transform of at(t). The transfer
function of the transmission medium is H(f) exp [./n(f)]. Equation (3)
becomes

(3)

(4)
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or

flAi2(f)112(f) exp (-J2irfkT) df = 0

k = ±1, d2,

i = 1, 2, ,N,

0

Ai2(f)H2(f) cos 27rfkT df = 0

k = 1, 2, 3,
i = 1, 2, , N.

Equation (4) becomes

f Ai(f)Ai(i)112(f) exp Itnai(f) - cif( f) - 27rfkT]} df = 0

k = 0, ±1, E2,

i,j = 1,2,  ,N
j.

Writing (7) in real and imaginary parts and comparing parts for k =
1, 2, and k = -1, -2, , it is seen that (7) holds if and only if

(5)

(6)

0

and

0

where

Ai(f)Ai(f)H2(f) cos [ai(f) ai(f)]

(7)

cos 27rfkT df = 0, (8)

A.i(f).A;(f)H2(f) sin [ai(f) - ai(f)] sin 27rfkT df = 0, (9)

k = 0, 1,2,
i,j = 1,2,  ,N

i j.

It will be recalled that the transmitting filters and the data processors
operate in baseband. Let , i = 1, 2, , N, denote the equally spaced
baseband center frequencies of the N independent channels. One can
choose

(h + , (10)
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where h is any positive integer (including zero), and f8 is the difference
between center frequencies of two adjacent channels. Thus,

= A + (i - 1).f8 = (h Di;

Carrier modulation will translate the baseband signals to a given fre-
quency band for transmission.

Each AM data channel transmits at the data rate 2/8 bauds. Hence,

T = -1 seconds. (12)
2f,

For a given amplitude characteristic H(f) of the transmission medium,
band -limited transmitting filters can be designed (i.e., band -limited
transmitted signals can be designed) such that (6), (8), (9), and (12)
are simultaneously satisfied (no intersymbol and interchannel inter-
ference for a data rate of 2f8 bauds per channel). In addition, the five
requirements in Section I are also satisfied. A general method of design-
ing these transmitting filters is given in the following theorem.

Theorem: For a given H(f), let A i(r), i = 1, 2, , N, be shaped such that

Ai2(0112(f) = Qi(f) > 0, fi -f8 < f <
= 0, < - f > fi +L,

where C1 is an arbitrary constant and Qi(f) is a shaping function having
odd symmetries about fi (f8/2) and fi - (f./2), i.e.,

(13)

Qi[Qi + 2
+

=
-Q=

f,

= [('
-fS f/1

0 < f' < (14)

fa0 < f, < -2. (15)

Furthermore, the function [Ci Qi(f)]  [C1+1 + Qi+i(f)] is an even function
about fi (f./2), i.e.,

(fi fi)1[C (21+1 + .1)1
2

= (fi fT28- -f')1[61 i+1 ( 2 i+1 -j -
(16)

0 < <t-)

= 1, 2, , N - 1.
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Let the phase characteristic ai(f), i = 1, 2, , N, be shaped such that

ai(f) - ai+I(f) = yi(f), < f < f.
2 (17)

= 1,2,  ,N - 1,
where 7i(f) is an arbitrary phase function with odd symmetry about h

If A i(f) and ai(f) are shaped as in (18) through (17) and is set ac-
cording to (10), then (6), (8), (9), and (12) are simultaneously satisfied
(no intersymbol or interchannel interference for a data rate of 2f3 bauds per
channel). Furthermore, the five requirements in Section I are also satisfied.

The proof of this theorem will be broken down into two parts. The
first part [showing that (6), (8), (9), and (12) are simultaneously satis-
fied] will be given in Appendix A. The second part (showing that the
five requirements in Section I are satisfied) will be given in Section III
following a discussion of the various choices of the shaping functions
and transmitting filter characteristics.

III. TRANSMITTING FILTER CHARACTERISTICS

Consider first the shaping of the amplitude characteristics A i(f) of
the transmitting filters. Equations (13), (14), and (15) in the theorem
can be easily satisfied. Equation (16) can be satisfied in many ways.
For instance, a simple, practical way to satisfy (16) is stated in the fol-
lowing corollary.

Corollary 1: Under the simplifying condition that
(i) C i should be the same for all i

Qi(f), i = 1, 2, , N, should be identically shaped, i.e.,

Qi+d) = Qi(f - = 1, 2, , N - 1, (18)

(16) holds when Qi(f) is an even function about fi , i.e.,

Qi(fi f') = Qi(fi - 0 < f' < (19)

The proof of this corollary is straightforward and need not be given here.
Two examples are given for illustration purpose. The first example is
illustrated in Fig. 2 where Qi(f) is chosen to be

Qi(f) =
1
-2 cos 7

f -
y - < f < + i= 1, 2, , N.
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2

0

QL(f) Ak!(f) H2 (f)

2

f i--fs fi +f's fl-fs
0

ft+fs I's

AL (f) H (f)

ft, ft,+cs

Fig. 2 - First example of shaping the amplitude characteristic A i(f ) of the
transmitting filters.

This simple choice satisfies (14), (15), (18), and (19). Let Ci be z for all
i, then (14), (15), and (16) are all satisfied. From (13)

ANDI-12(f) = ci (24.1)

f -r
fa '

and

Ai(f)11(f) = cos rf
2f,

f' , f. < f < fi +fa

= 1, 2, , N.

This Ai(f)H(f) is similar to the amplitude characteristic of a standard
duobinary filter (except shift in center frequency). The second example
is illustrated in Fig. 3 where Qi(f) is chosen such that Ai(f)H(f) has a
shape similar to that of a multiple tuned circuit. It can be seen from
these two examples that there is a great deal of freedom in choosing

2

0

f L-fs

QL(f)

fL

Ai2(f) H2 (f)

0

f+fs fc fs

AL(f) H (f)

0

fl+fs figs ft. fi)-fs

Fig. 3 - Second example of shooing the amplitude characteristic ili(j) of the
transmitting filters.
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the shaping function Qi(f). Consequently, Ai(f)H(f) can be easily shaped
into various standard forms. Ai(f) would have the same shape as
Ai(f)H(f), if H(f) is flat in the frequency band fi -h to h f8 of the
ith channel. If H(f) is not flat in this individual band, Ai(f) can be ob-
tained from Ai(f)H(D/H(f), provided that H(f) 0 for any f in the
band.

It is also noted from the preceding that if Ci is chosen to be the same
for all i and if Qi(f),i = 1, 2, , N, are chosen to be identically shaped
(i.e., identical in shape except shifts in center frequencies), then
A i(f)H (f), i = 1, 2, , N, will also be identically shaped. Consequently,
Ai(f), i = 1, 2, , N, will be identically shaped if H(f) is flat or is
made flat. An advantage of having identically shaped filter characteristics
is that each filter can be realized by using an identical shaping filter plus
frequency translation.

H(f) can be made flat by using a single compensating network which
compensates the variation of H(f) over the entire band. As an alternative,
note that Ai(f) exists only from fi -f8 to fi f, . Hence, for the ith
receiver, the integration limits of (6), (8), and (9) can be changed to
fi -h and fi f, . Therefore, the signal at the ith receiver only has to
satisfy the theorem in the limited frequency band h -f, to fi 18 .

This permits one to design the transmitting filters for flat H(f) and then
compensate the variation of H(f) individually at the receivers, i.e., use
an individual network at the ith receiver to compensate only for the
variation of H(f) in the limited frequency band fi -f8 tO f. 

Finally, note that if the channels are narrow, each channel will usually
be approximately flat. In these cases, one may design the transmitting
filters for flat H(f) without using compensating networks. This design
should lead to only small distortion.

Consider next the shaping of the phase characteristics ai(f) of the
transmitting filters. It is only required in the theorem that (17) be
satisfied. However, if it is desired to have identically shaped transmitting
filter characteristics, one may consider a simple method such as that in
the following corollary.

Corollary 2: Under the simplifying condition that ai(f), i = 1, 2, , N,
be identically shaped, i.e.,

ai+I(f) = aiU - 10, i = 1, 2, , N - 1 (20)

(17) holds when
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- fi fi-ai( f) = kr' sco E cos nor'
2f, fs

f - fiE sin nr f'
( 2 1)

m = 1, 2, 3, 4, 5,

n = 2, 4, 6,

fi - < .f < +

where h is an arbitrary odd integer and the other coefficients (goo ; co. , m =
1, 2, 3, 4, 5, ; ik , n = 2, 4, 6, ) can all be chosen arbitrarily.

This corollary is proven in Appendix B. Note that if the index n in the
corollary were not required to be even, ai(f) would be completely arbi-
trary (a Fourier series with arbitrary coefficients). This shows that there
is a great deal of freedom in shaping ai(f) even if the additional constraint
of identical shaping is introduced (three -fourths of the Fourier coefficients
can be chosen arbitrarily). The linear term h7r[(f - fi)/2f8] is introduced
not only to give the term ±r/2 in (17), but also because a linear com-
ponent is usually present in filter phase characteristics. A simple example
is given
coefficients are all set to zero, except 412 and h is set to -1.

As can be seen in the theorem, the requirement on ai(f) is independent
of the requirements on A i(f). Hence, the amplitude and the phase char-
acteristics of the transmitting filters can be synthesized independently.
This gives even more freedom in designing the transmitting filters.

A simple set of Ai(f) and ai(f) is sketched in Fig. 5 for three adjacent
channels. This illustrates that the frequency spectrum of each channel
is limited and overlaps only with that of the adjacent channel. H(f) is
assumed flat and the transmitting filters are identically shaped. As
mentioned previously, these filters can be realized either by different
networks or simply by using identical shaping filters plus frequency
translations.

Now consider the five requirements in Section I. The first requirement
is satisfied since the transmitting filters designed are of standard forms
(see the examples in Figs. 2 and 3). Perpendicular cutoffs and linear
phase characteristics are not required.

As for the second requirement, it can be seen from Fig. 5(a) that the
overall baseband bandwidth of N channels is (N . Since data rate
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2

0

IT

fl-fs

irf-CL
2fs

r__

t f -f.
kis2 SIN 4v

a. (f)

ft* rs

Fig. 4- An example illustrating (21) (h = -1, II, 2 0, all other coefficients
set to zero for clarity).

N

a.

1-1 (f) (f) ai+i(f) (b)

Fig. 5- Example of transmitting filter characteristics for orthogonal multi-
plexing data transmission.
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per channel is 2f8 bauds, the overall data rate of N channels is 2f8Ar
bauds. Hence,

2N
overall data rate -

N 1
X overall baseband bandwidth

N
N1R max

where Rma. , which equals two times overall baseband bandwidth, is the
Nyquist rate for which unrealizable filters with perpendicular cutoffs
and linear phases are required. Thus, for moderate values of N, the
overall data rate of the orthogonal multiplexing data transmission
system is close to the Nyquist rate, yet rectangular filtering is not re-
quired. This satisfies requirement (ii).

Now consider the third requirement. As has been shown, the received
pulses are orthogonal if (6), (8), and (9) are simultaneously satisfied.
Note that the phase characteristic n(f) of the transmission medium does
not enter into these equations. Hence, the received signals will remain
orthogonal for all n(f), and adaptive correlation reception (see Appendix
C) can be used no matter what the phase distortion is in the transmission
medium. Also note that so far as each receiver is concerned, the phase
characteristics of the networks in each receiver (including the bandpass
filter at the input of each receiver) can be considered as part of n (f),
and hence has no effect on the orthogonality of the received signals.

In the case of the fourth requirement, let

bki, k = 0, 1, 2, ; i = 1, 2, , N,

and

k = 0, 1, 2, ; i 1, 2,  ,N
be two arbitrary distinct sets of m-ary signal digits or real numbers to be
transmitted by the N AM channels. The distance in signal space between
the two sets of received signals

E E 1)1,2  11J t - kT)
k

and

is

d =

E E ckiui(t - kT)
k

bkiuz(I - 4-7') -E E cktui(t - kT)T tit] .

i k
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In an ideal case where interchannel and intersymbol interferences are
eliminated by transmitting the signals of each channel through an inde-
pendent medium and slowing down data rate such that the received
signals in each channel do not overlap, the distance d can be written as

co

dideal = [E E
k f 00

(bki - cki)2u,2(t - kT)dtl.

In this study, the N channels transmit over the same transmission
medium at the maximum data rate T = 1/2f, . If the transmitting filters
were not properly designed, the distance d could be much less than
dideal and the system would be much more vulnerable to channel noises
(impulse and Gaussian noises). However, if the transmitting filters are
designed in accordance with the theorem in Section II, the received
signals will be orthogonal and d = dideal . Thus, the distance between
any two sets of received signals is preserved and the same distance pro-
tection is provided against channel noises. For instance, since d = dideal
it follows from maximum likelihood detection principle that for band-

limited white Gaussian noise and rn-ary transmission the receiver will
receive each of the overlapping signals with the same probability of error
as if only that signal is transmitted.

Note further that dideal can be written as

dideal = [E E (bki - eki)2 f Ai2(f)H2(f)dd
k

Thus, dideal is independent of the phase characteristics ai(f) of the trans-
mitting filters and the phase characteristic ,(f) of the transmission
medium. Since d = dideal , it follows that d is also independent of ai(f)
and n(f) and the same distance protection is provided against channel
noises for all ai(f) and n(f).

Finally, consider the fifth requirement. It is assumed in this paper that
signaling intervals of different channels are synchronized. However, it is
interesting to point out that the frequency spectra of alternate chan-
nels (for instance, i = 1,3,5,  ) do not overlap (see Fig. 5). Hence, if
one uses only the odd- or the even -numbered channels, one can transmit
without interchannel and intersymbol interferences and without syn-
chronization among signaling intervals of different channels.* The
overall data rate becomes 2 Rma. for all N. A very attractive feature is
obtained in that the transmitting filters may now have arbitrary phase

* For instance, signal digits are applied to the ith transmitting filter at 0, T,
2T, 3T, , while signal digits are applied to the (i 2)th transmitting filter at
r, T r, 2T + r, ST r, ' , where T is an unknown constant.
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characteristics ai(f). [This is because ai(f) is not involved in (6) and
intersymbol interference is eliminated for all ai(f) .1 Thus, only the ampli-
tude characteristics of the transmitting filters need to be designed as in
the theorem and the transmitting filters can be implemented very easily.

Another case of interest is where part of the channels are synchronized.
As a simple example, assume that there are five channels and that channel
1 is synchronized with channel 2; channel 4 is synchronized with channel
5; while channel 3 cannot be synchronized with other channels. If the
amplitude characteristics of the five channels plus the phase character-
istics of channels 1, 2, 4, and 5 are designed as in the theorem, one can
transmit simultaneously through channels, 1, 2, 4, and 5 or simultane-
ously through channels 1, 3, and 5 without interchannel or intersymbol
interferences. The overall data rate is then between iRma. and
(N / N 1)Rma. .

IV. CONCLUSION

This paper presents a principle of orthogonal multiplexing for trans-
mitting N(N 2) AM data channels simultaneously through a linear
band -limited transmission medium. The channels operate on equally
spaced center frequencies and transmit at the same data rate with
signaling intervals synchronized. Each channel can transmit binary
digits, m-ary digits, or real numbers. By limiting and stacking the fre-
quency spectrums of the channels in a proper manner, an overall data
rate of

2N
N 1

X overall baseband bandwidth bauds

is obtained which approaches the Nyquist rate when N is large. Inter -
channel and intersymbol interferences are eliminated by a new method
of synthesizing the transmitting filter characteristics (i.e., designing
band -limited orthogonal signals). The method permits one to synthesize
a large class of transmitting filter characteristics in a very convenient
manner. The amplitude and the phase characteristics can be synthesized
independently. The transmitting filter characteristics obtained are
practical in that

(i) The amplitude characteristics may have gradual rolloffs, and the
phase characteristics need not be linear.

(ii) The transmitting filters may be identically shaped and can be
realized simply by identical shaping filters plus frequency transla-
tions.
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It is noted that the principle presented in this paper uses band -limited
orthogonal signals as opposed to other orthogonal multiplexing schemes
using nonband-limited orthogonal signals. The chief advantage of using
band -limited signals is that (as mentioned in Section I) these signals can
be transmitted through a band -limited transmission medium at a maxi-
mum data rate without interchannel and intersymbol interferences.
Other advantages of using band -limited signals over methods using
nonband-limited signals are

(i) Permitting the use of a narrowband bandpass filter at the input
of each receiver (see Appendix C) to reject noises and signals
outside the band of interest. This is particularly important in
suppressing impulse noises and in preventing overloading the
front ends of the receivers.

(ii) Permitting unsynchronized operations at data rates between
iRma. and (N/N 1)Rma.

It has been shown that the received signals remain orthogonal for all
phase characteristics of the transmission medium; hence, adaptive cor-
relation reception can be used to separate the received signals no matter
what the phase distortion is in the transmission medium. These correla-
tors adapt not only to the phase distortions in the system (including
transmission medium, bandpass receiving filters, etc.), but also (see
Appendix C) to the phase difference between modulation and demodula-
tion carriers (easing synchronization requirements).
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APPENDIX A

In this appendix, it will be proven that if the transmitting filters
A1(f) exp [Jai(f)], i = 1, 2, , N, are shaped as in the theorem in
Section II and fi is set according to (10), then equations (6), (8), (9),
and (12) are simultaneously satisfied.

First consider (6). From (13)

fo Jfi t,

A;2(f)H2(f) cos 2rfleT df = [Ci Qi(p] cos 27rfkT df. (22)

Since T = 1/2f. , one has
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Ci cos anlkT df - CI' [sin f )krIT
2irkT

- sin 27r(fi f8)k71]

Ci
sin irk cos 27rfikT

irkT

= 0, k = 1, 2, 3,

i = 1, 2, 3,  ,N.
Since f = (h i - i) f8 , one has

27r (fi -f7.-;)1;7' = 27r( h i - 1)f,k 1

ffe

= (h i- 1)kir.
Hence, cos 27rfkT is an even function about h - (f8/2). This, together
with the fact that Qi(f) is an odd function about h - (18/2) [see (15)],
gives

(23)

f'
Q (f) cos 27rfkT df = 0, k = 1, 2, 3,

Is
f

i= 1,2, , N.

Similarly, one can show

Qi(f) cos 27rPoT df = 0, k = 1, 2, 3,
.1

i= 1,2, , N.

Substituting (23), (25), and (26) into (22) gives

0

Ai2(f)H2(f) cos 2irfkT df = 0, k = 1, 2, 3,

= 1, 2, 3, , N.

(24)

(25)

(26)

Thus, (6) is satisfied and intersymbol interference is eliminated.
Next consider interchannel interference and (8) and (9). From (13),

Ai(f)11(f) = 0, f < f= -f8 , f > ,

SO

AiWil-5(D112(0 = 0 for j = i ± 2, i ± 3, 1 ± 4, ,
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or

Ai(f)Ai(f)112(f)

f Ai(f)Ai(f)H2(f)

cos [ai(f) - ai(f ] cos 2irfkT df = 0

sin [ai(f) - ai(f)] sin 2irfkT df = 0

k = 0, 1, 2,

i = 1, 2, 3,  ,N

(27)

j = I ± 2, 1 ± 3, i ± 4, .

Equation (27) shows that (8) and (9) are satisfied for j = i ± 2, i f 3,
i ± 4, . It remains to show that (8) and (9) hold forj = i f 1. Con-
sider j = i + 1. It is seen from (13) that

A4n2li+1(f)112(.0 = [Ci Cli-1-1(.0]*; f < f <fi+ f
= 0, f < f > (28)

One can write from (17) and (28)

fm Ai(f)A;+1(f)H2(f) cos [ai(f) - aii-i(f)1 cos 27rfkT df

= [Ci Qi(f)14[Ci+1
ri

Qi+I(DP cos [±; 7i(f)]

cos 27rfkT cif

k = 0, 1,2,

1 = 1, 2, , N.

(29)

It is required in the theorem that

[Ci Qi(Dii[C41

be an even function about fi (fR/2). Furthermore, cos [±(7/2)
'WA and cos 2irfkT are, respectively, odd and even functions about

(f,/2). Hence, from (29)

JOB
Ai(f)Ai+1(f)/12(f) cos [ai(f) - ai+I(f)] cos 2.7rfkT df = 0

k = 0, 1, 2, - - (30)

= 1, 2, , N.
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Equation (30) shows that (8) is satisfied for j = i + 1. In a similar
manner, one can show that (8) holds for j = i - 1 and that (9) holds
for j = i f 1. These, together with (27), prove that (8) and (9) hold for
all k, i, and j.

APPENDIX B

Proof of Corollary 2

From (20) and (21)

= cei(f - fs)

= /Or f - f, - f
2f,

(co

- - fi
+ E (pm COS '111,7r

fs

+ E k sin 117f f (31)

= 1, 2, 3, 4, 5,

n = 2, 4, 6,

f < f <
For fi < f < f f8 , one has from (21) and (31)

harai(f) - ai+i(f) = [f - fi - (f - - fi)]
2f,

[ 1 - fi+ E cp, ,,os nor.
fs

- cos Mr f -
fs

[sin flirt fi
7L fa

- sin nod. fs - .12f8
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= 112-r E [ -2 sin - (m7 2f - 2f1 f8) sin mr1
2 2 2

-+-E on
[2 sin1 ( 2f - 2fi - f9)1

-2 cos -2 nor

= -Thr - 2 E soz Sin 1-1--r sin 17r(2f
2fi - 18)

2 218

/ = 1, 3, 5,
h = ±3, 

Since sin [/7(2f - 2fi - f8)/2f8] is an odd function about f (f8/2),
(32) is equivalent to (17) and corollary 2 is proven.

APPENDIX C

(32)

This appendix briefly describes a possible receiver structure for receiv-
ing the multichannel orthogonal signals.

The receiver of a single channel (say, the fifth channel) is shown in
Fig. 6(a). When viewed at point B toward the transmitter, the channels
have amplitude characteristics as shown in Fig. 6(b). The bandpass
filter at the input of the fifth receiver has a passband from fb -f8 to
fs ± 18 [Fig. 6(c)]. This filter serves the important purpose of rejecting
noises and signals outside the band of interest. Sharp impulse noises with
broad frequency spectra are greatly attenuated by this filter. Signals in
other channels are rejected to prevent overloading and cross modulation.

The product device translates the frequency spectra further toward
the origin so that the signal can be represented by a minimum number of
accurate time samples and the adaptive correlator can operate in digital
fashion. The transmitter can transmit a reference frequency f 8 or a known
multiple of 18 to the receivers for deriving the signals cos [27(i - ±
04 for the product devices. It is important to note that the transmitter
can lock this frequency f8 to the data rate 218 so that the arbitrary phase
angle 0i is time invariant and can be taken into account by adaptive cor-
relation. Furthermore, the receiver can also derive the sampling rate
218 from this reference frequency.

When observed at point D, the channels have amplitude characteristics
as shown in Fig. 6(d). Note that the fifth channel now has a center
frequency at 1.518 [satisfying (11)] and an undistorted amplitude char-
acteristic; hence, the signals in channel 5 remain orthogonal. The over-
lapping frequency spectra between channel 5 and channels 4 and 6
remain undistorted, and the phase differences a4(f) - a5(f) and a5(f) -
a6(f) are unchanged; therefore, the signals in channels 4 and 6 remain



ORTHOGONAL SIGNALS FOR DATA TRANSMISSION 1795

TRANSMISSION
MEDIUM

0 f,
(1.5 fs)

0

0 1.5f,

B BANDPASS
FILTER

LOWPASS
FILTER

COS[27(l-1)fst+ed,1=5

f5
(5.5 fs)

fs

D ADAPTIVE
CORRELATOR

Fig. 6 - Reception of the signals in channel 5.

of

 f

(a)

(b)

(C)

(d)

orthogonal to those in channel 5. Other channels produce no interference
since their spectra do not overlap with that of channel 5.

Let bou(t), biu(t - T), b2u(t - 2T),  be the signals in channel 5 at
point D, where bo , bl , b2 , are the information digits. These signals
can be represented by vectors of time samples as

bouo ,
b1tt1 , b2u2 ,

Since u(t), u(t - T),  differ only in time origin, it is only necessary to
learn uo for correlation purposes. The received signal at point D can be
written as

Ebflun v,

where 22 represents the sum of the signals in other channels. From discus-
sions in the preceding paragraph
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uk'uf = X k = j
= 0 k # j

ukv = O.
Thus, the adaptive correlator can learn the vector uo prior to data trans-
mission and then correlate the received signal with uk , k = 0, 1, 2,
to obtain the information digits bk , k = 0, 1, 2, .

In order to describe the operation more clearly we assume that the
signal at point D is fed to a delay line tapped at T/3 -second intervals
(signal at D is band -limited between 0 and 3f.). Assuming that u(t)
is essentially time -limited to mT seconds for all possible phase character-
istics of the transmission system, then 3m taps are sufficient. The ith
tap is connected to a gain control Gi . In the training period prior to data
transmission, the ith tap is also connected to a sampler si . In the training
period, the transmitter transmits a series of identical test pulses at t = 0,
1T 21T, . The integer 1 is chosen large enough such that the received
test pulses u(t), u(t - 1T), u(t - 21T),  do not overlap. The sampler
si samples at t = T, 1T T, 21T ± T, . The only requirement on T is
that u(t) should be approximately centered on the tapped delay line at
t = T. The output of si (without noise) is a series of samples each repre-
senting the ith time sample ui of u(t). Since noise is always present, these
samples are passed through a network (probably a simple RC circuit)
such that the output 2lii of this network is an estimate of ui 12i is in the
form of a voltage or current and hence can be used to set the gain control
Gi of the ith tap. Thus, at the end of the training period, the gain con-
trols of the successive taps are set according to the magnitudes of the
successive time samples of u(t).

During data transmission, the transmitter transmits the information
digits bo , b1 , b2 , sequentially at t = 0, T, 2T, . A sampler at
the receiver samples the sum of the outputs of all the tap gain controls at

= T, T T, 2T + T, to recover bo , b1 , b2 , . The time delay T
remains the same as in the training period. The data transmission oper-
ates in real time.
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Avalanche Region of IMPATT Diodes

By H. K. GUMMEL and D. L. SCHARFETTER
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The avalanche region of an IMPATT 111 Pact ionization Avalanche
Transit Time) diode under small signal conditions is characterized by the
fraction of the total alternating current that is carried by holes and electrons
in their respective drift spaces and by a residual impedance. The current
fractions are roughly in phase with the total current below, and nearly 180°
out of phase above a resonance frequency that is proportional to the square
root of direct current density.

This paper extends the calculations of Gilden and Hines for the current
fraction to include phase shifts in the avalanche region so that extended
avalanche regions can be considered. Realistic values (a 13 in Si) for the
ionization coefficients are used. Results of detailed numerical calculations
for the current fractions as a function of frequency and direct current den-
sity are presented.

For typical frequencies and current densities, the residual impedance is
negligible and hole and electron current fractions are equal. The avalanche
region at a given frequency and current density is then characterized by
one complex number and the admittance of a diode containing the avalanche
region and adjacent drift regions is easily calculated. Plots showing the
admittance as a function of frequency and current density for typical struc-
tures are given.

It is found that an optimal exponential growth rate of oscillations is ob-
tained when the current density is such that the resonance frequency is about
equal to one half the reciprocal transit time through the longest drift region.
If the assumption is made that conditions giving the largest small -signal
exponential growth rate give the best large -signal performance, an optimum
Read -diode design is obtained for which the avalanche region width is a
substantial fraction i) of the drift region width.

I. INTRODUCTION

This paper considers the avalanche region of IMPATT* diodes,' .2,3
especially of Read' -type diodes in which the avalanche region is localized.

* IMPact ionization Avalanche Transit Time.

1797
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Recent theoretical' and experimental5 results for the impedance of Read
diodes show considerable structure in the current and frequency depend-
ence. This paper attempts to enhance the understanding of the small -
signal negative resistance of IMPATT diodes by isolating the role of the
avalanche region. Using the calculated parameters by which the ava-
lanche region is characterized, the admittance for typical IMPATT
diodes is calculated and exponential growth rate for oscillations is stud-
ied. An application of the results to the design of Read diode oscillators
is made.

At a given angular frequency w and ac terminal current density
itot through the diode, the avalanche region can be characterized by
three complex numbers: Zr , Fh , F. defined below. In Fig. 1, to the
right of the avalanche region the small -signal particle current consists
of a plane wave of holes. If we assume a constant drift velocity, then
the magnitude is constant and the phase changes linearly with distance.
Let Ah be the complex amplitude, extrapolated to a phase reference
plane at xo in the avalanche region. Then we define the hole current
fraction F h

Fh = Ahlitot (1)

Similarly, we define the amplitude of the electron current density,
extrapolated to xo , to be A. and we define the electron current fraction
F.

F8 = A Witot (2)

DRIFTEND L( REGION
REGION - dL

xL

ELECTRONS

DRIFT
REGION - END

REGION
dR

AVALANCHE
- REGION -

xo

PHASE
REFERENCE

PLANE

HOLES

Fig. 1- Schematic of IMPATT diode.

R
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In the limit as the frequency goes to zero, all the current through the
device is particle current and Fh and F. are of equal magnitude. The
phase reference plane is chosen so that at low frequencies F,, and F
are of equal phase also. The phase reference plane is approximately
located at the point where the hole and electron currents are equal.

Assume for a moment that the avalanche region were infinitely thin.
From the fact that the total current equals the particle current plus
displacement current we find that the ac field per total ac current,
to the left of xo is

E 1 - ie/itot 1 - F, exp [ico(x - xo)/v.]- (3)
zcot, 'jaw icoe

where ie is the electron current density and ve the electron velocity.
The impedance, Z LO between x L and xo (see Fig. 1) is obtained by
integration of (3).

ZL0 =
1 [1

Fe
- exp (-icon), (4)

icoCL

where TL is the transit time between xo and XL

xo-xL
TL - (5)

ve

and CL is the geometric capacitance per unit area,

CL xo-XL
(6)

A corresponding expression obtains for ZoR the impedance between
x0 and xR

In deriving (4) it was assumed that the electron current is of the
form

ie = Fe exp [iw (x - x0)/vel (7)

This is true only outside of the avalanche region. The difference between
the actual and asymptotic hole and electron current densities gives rise
to an additional, residual impedance Zr . The total impedance, exclu-
sive of end -region resistances, is then

Ztot = Zr Z LO ZOR (8)

Typically, the residual impedance term is small in comparison to the
other terms. Also, for narrow structures and at sufficiently low fre-
quencies such that v/co is large compared to the width of the avalanche
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region, the hole and electron current fractions are equal in value and
will be denoted by F without subscript.

In Section II we consider, following Gilden and Hines,' the conse-
quences of a simplified model of the avalanche zone, as embodied in
Read's (13), (Ref. 1) and derive an expression for F from it

1F -
1 - (±)2 ( 9 )

Here the quantity f = wc/2lr, which we shall call the critical frequency,
is real, independent of operating frequency (0/27 and is proportional to
the square root of the dc current density.

Section III presents a treatment that is rigorous except for the
idealizing assumption that hole and electron velocities are constant
and equal in value. Numerical results for several structures are given
in Section IV, and it will be shown that for frequencies f and direct
current densities of interest F can be represented as

(if - B) AA\
(10)F= (if - A)(if - -B

where B is a zero on the real axis and is nearly independent of current
density and A and A are complex conjugate poles that traverse a para-
bolic path in the complex frequency plane as the current density is
changed.

In Section V a qualitative description of the change in negative
resistance characteristics is given as a transition is made from p-i-n
to p -n to "Read" diode. Admittance as function of frequency and cur-
rent density is shown for two specific structures. Values for the expo-
nential growth rate factor g (= - 1/2Q), maximized with respect to fre-
quency, are shown as a function of current density. It is found that an
optimal growth rate is obtained when the current density is such that
the resonance frequency is about equal to one half the reciprocal transit
time through the longest drift region.

In Section VI we explore the consequences of the assumption that
best large signal performance is obtained for the same conditions that
yield largest small signal growth rate. This assumption in conjunction
with a constraint expressing drift -region output limitations leads to
Read -diode designs in which the width of the avalanche region is a
substantial fraction ) of the drift region.
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II. SIMPLIFIED MODEL

The current fraction F can be deduced' from the simplified theory
of Read.' His (13) for a thin avalanche region

2 alt= 10(fadx - 1) + (11)

states that the time derivative of the particle current density through
the avalanche region, /0 , equals the product of 10 and a field dependent
actor h(E)

Ti dIo

h(E) = 2 f adx - 1) (12)
ri

if the saturation current /8 can be neglected, as is usually the case.
Under dc conditions h (E) = 0. If i and e represent small signal ac
components at frequency w of particle current density and electric
field in the avalanche region, then

a hiwi = 10 ae. (13)

The total alternating current density itot equals the sum of particle
current density and displacement current density,

itot = icote (14)

or, with the definition

F = Witot (15)

1

itot "We

Division of (13) by itot and substitution of e from (16) yields

r=

with

1

1 gritj

( 16)

(17)

a h
ecocr it = 2711. er it = //

o (18)
a E/

Equations (17) and (18) predict a pole in the impedance or a zero
in the admittance at a critical frequency for it that is proportional to the
square root of the current density. Experimental measurements' and
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numerical calculations' have shown that in p -n diodes and p-i-n diodes
the admittance goes through a minimum, but not through zero, at
frequencies approximately proportional to the square root of current
density. This indicates that the simplified theory based on (11) is

roughly valid but not accurate in detail. In the next Section a treatment
is presented that does not make the assumptions inherent in (11) and
that is, therefore, applicable to wide as well as narrow avalanche re-
gions.

III. IMPROVED MODEL

In this section we give a more rigorous treatment of the avalanche
zone. The present treatment is facilitated greatly by the idealizing
assumption that hole and electron velocities are constant and equal in
value. If this assumption is not made the problem is still tractable and
a method of solution was obtained.9 However, it is felt that a somewhat
idealized treatment with the attendant reduction in complexity and,
hopefully, gain in physical insight, is worthwhile. This is especially the
case since experimental values for particle velocity vs electric field are
available only for prebreakdown fields. Though electron velocities in
silicon, the material of present greatest interest, can be extrapolated
reasonably well into the breakdown region, considerable uncertainty
prevails about hole velocities. However, since in silicon the electrons
ionize much more strongly (roughly a factor of 10 more) than holes, it
is felt that the results of calculations for the current fractions F are not
affected significantly by the choice of hole velocity. Thus, the assump-
tion that the hole velocity equals the electron velocity appears adequate.
The value of 107 cm/sec is used for the velocity v.

For the ionization coefficients a and 0 of holes and electrons as func-
tion of electric field E the expressions

a = 1.8 X 107 (cm -1) exp (-3.2 X 106 (V/cm)/E)

13 = 2.4 X 106 (cm -1) exp (-1.6 X 106 (V/cm)/E)

are used. The numerical values refer to silicon at room temperature
and are based on the work of Lee et al.'°

Let Ih and /, be the hole and electron current densities. Then the
continuity equations state

at
I h = -1h/ + alh gie

1 0
v

- = «Ih 13Ie
01

(19)

(20)
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where primes denote spatial derivatives. Here we assume that holes
move in the +x direction and electrons in the -x direction correspond-
ing to a positive electric field as in an n -p structure. We introduce the
total electric current associated with particle motion

/z = /c (21)

and the difference in currents

/A = ie ih (22)

Addition of (19) and (20) yields

1 a
v

a-th = In + ($ + a)lz + - «)/A (23)

From Poisson's equation

Ie = - veE' qvND, (24)

where E is the electric field and qND the net impurity space charge.
We shall now again consider small ac quantities at frequency w, de-
noted by lower case symbols, superimposed on de quantities and we
denote by itot the total ac current. From the continuity of total current
we obtain

itot = (25)

We define

k = iciily

and normalize the ac electric field to the total alternating current

VCZ =-e.
hot

Then (25) can be written

(26)

(27)

= 1 - kz. (28)
ztot

We introduce the derivative with respect to field of the last two terms
of (23)

H= -[1.2aE aE(0 + a) + I --a (0 - «)] (29)
ye

Then the small signal ac version of (23) is

-z" (ce + - k) (1 - kz) - (0 - a)z + Hz = 0 (30)
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or
[D2 k2 (0 a)k (0 - cx)D - Hlz = a B - k, (31)

where D is the spatial derivative operator, and where «, )3, and H are
evaluated for the average, or dc, field as a function of distance.

Equation (31) is a second -order differential equation for the complex
quantity z. We postulate that to the left of the avalanche zone all
particle current is electron current, i.e.,

= plane wave moving to left (32)

and that to the right of the avalanche zone all particle current is hole
current

iz = plane wave moving to right. (33)

We do not specify that the magnitude of the ac electron current on the
left equals that of the hole current on the right. Since we differ in this
point from previous treatments, some discussion may be warranted.

Holes and electrons are generated in pairs. One might, therefore,
be led to conclude that the magnitudes of hole and electron particle
currents must be equal. This is true for the dc or average currents but
not generally so for the ac currents. Consider that a periodic generation
rate g (x) is given. We allow g to be complex to represent the variation
in phase with distance. The continuity equations (19) and (20) for
the small signal case may be written

(k D)ih = g (34)

(k - D)i. = g. (35)

With g considered given, these are first -order differential equations for
ih and ie . With the boundary conditions (32) and (33) the solutions are

ih(x) = f g(s) exp [-k(x - 3)] ds (36)

.
ic(x) = J g(s) exp - s)] ds. (37)

Since k is purely imaginary and g is complex, it is seen that ih(sR) and
ie(xL) need not be the same. For narrow structures and at low fre-
quencies, the difference in magnitude is negligible. This, however, is
the result of the calculations and not imposed as a constraint.

We specify, then, that outside the avalanche region the particle
current consists of a plane wave moving to the left or right.
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iE = AR exp ( -kx)
scot

iE = AL exp (+kx).
itot

1805

right (38)

left (39)

The amplitudes A R and A L are as yet undetermined. By (28) the
electric field outside the avalanche region is

z = -1 [1 - AR exp (-kx)] right (40)

z = -k[1 - AL exp (+kx)]

and we obtain the boundary conditions

z = 1 - kz
= - (1 - kz)

left (41)

right (42)

left (43)

in accordance with (22) and (24).
These boundary conditions specify completely the solution of (31).

If the solution for z is carried over the entire depletion region, then the
integral over z gives the total impedance, exclusive of resistive losses
in the end regions. However, in order to isolate the role of the ava-
lanche region and to bring the impedance into the form (8) we proceed
as follows: If a solution for z has been obtained at some sufficiently
low frequency, then the magnitudes of AR and A L in (38) and (39)
are equal. A value xo exists at which the right hand side of (38) equals
the right hand side of (39); i.e., at which the asymptotic particle cur-
rents, extrapolated into the avalanche zone, are equal in phase as well

as magnitude. We call xo the phase reference point and define the
extrapolated particle currents at this point as the current fractions
Fa and Fh ;

Fh = AR exp (-kso)

Fe = A L exp (-kkx0)

We define the asymptotic particle current is ,

Fh exp [-k (x - xo)]
jaiitot =

Fe exP [+k (x - xo)]

X > xo

X < So

(44)

(45)

(46)

and the residual particle current ir as the difference between the actual
particle current itot(1 - kz) and the asymptotic particle current
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ar = 1 - kz - . (47)
itot itot

Note that by construction it vanishes outside the avalanche zone and
is thus independent of the dimensions of the drift zones, as are Fa and
Ph . We can now solve (47) for z,

[
. exp [-k(x - xo)]

z=1 i Z'
itot F, exp [-Ek(x - xon

X > x0

x < X0 .
(48)

The integral of z, multiplied by 1/ve = k/ (iwe) is the total impedance

Z = Zr X0 - XL -exp (iwrL)1
[1

(49)
iwe iCOTL

XR XO 1 -[y 1 - exp (iaTR)1
Ph

icoe iwrR

= Z1,0 ZOR (50)

with

1 f iZr = - dx.
itot

(51)

We shall use the symbol F without subscript to refer to either Fe or
Ph if their difference is negligible or the distinction unimportant.

IV. NUMERICAL RESULTS

This section contains numerical results for the following structures in
silicon:

D3 error function complement p -diffusion from a surface con-
centration of 1020 cm -3 into a 3 X 1016 cm -3 n -type substrate
with a junction depth of 3 microns.

D12 similar to D3, but with a 12 -micron junction depth.
L22 a linearly graded junction with a concentration gradient of

1022 impurities/cm'.
C0.1 Constant field avalanche zone (field = 5.71 X 105 volts/cm)

of 0.1 -micron width, surrounded by regions of sufficiently low
field that negligible avalanching takes place there.

C1 Similar to C0.1, but with 1 -micron width; field = 3.57 X 105
volts/cm.

C5 Similar to C0.1, but with 5 -micron width; field = 2.79 X 106
volts/cm.



IMPATT DIODES 1807

C10 Similar to C0.1, but with 10 -micron width; field = 2.52 X 105
volts/cm.

For each desired direct current density h , self -consistent values of
de electric field E, difference current density I, , ionization coefficients
a and j3, and derivative quantity H, (29), were computed as described
in Appendix A. Using these quantities, the differential equation (31),
subject to boundary conditions (42) and (43), was solved numerically
for k -values corresponding to frequencies of interest.

Figs. 2 and 3 show the results for the quantity 1 - 1/F = (- dis-
placement current/particle current) for direct current densities of 100
and 1000 amps/cm2. According to the simplified model of Section II,
1 - 1/F should have a real part varying as the square of frequency
and a vanishing imaginary part. As Figs. 2 and 3 show, the square
law is obeyed quite well at low frequencies and current densities. Only
for the wide structures and/or at high frequencies and current densities
does F deviate from the square law and do F, and Fh deviate from each
other appreciably. The frequency ferit at which (1 - 1/F)real is unity
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Fig. 2 - Real part of 1 - 1/F as function of frequency for various structures.
Current density 100 amps/cm2.
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Fig. 3 - Real part of 1 - 1/F as function of frequency for various structures.
Current density 1000 amps/cm2.

is in good agreement with values obtained from the simple theory of
Section II.

The absolute value of the imaginary part of 1 - 1/F at a current
density of 100 amp/cm' is plotted in Fig. 4 as a function of frequency f
for the various structures. The current dependence of the diffused diode
D3 is shown in Fig. 5; that for the other structures is similar. The
vertical line on each curve to the right of the maximum indicates the
frequency at which the real part goes to zero. At frequencies 15 to 25
percent higher, (1 - 1/F)imag goes through zero, being positive for
lower and negative for higher frequencies. Asymptotically, at low
frequencies (1 - 1/F)imag is proportional to +f and at higher frequen-
cies to The similarity of the curves is striking and suggests that a
fit with a few parameters ought to be possible. The most meaningful
expansion, and one working well here, is to consider F as an analytical
function of a complex frequency variable and to expand it in terms of
the poles and zeroes nearest the frequency domain of interest. At cur-
rent densities of interest and for frequencies f from zero to a few times
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f,rit , the numerical results can be represented well by two poles and a
zero;

(if - B) AAF = (52)
(if - A)(if - -B'

where - denotes the complex conjugate. A is the complex resonance
frequency

A = fa + . (53)

We denote

B = -f,
We utilize the following inequalities which hold for current densities of
interest:
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Fig. 4 - Imaginary part of 1 - 1/F as function of frequency for various struc-
tures. Current density 100 amps/cm'. The vertical bars indicate fait.
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Fig. 5 - Imaginary part of 1 - 1/F as a function of current density for diode
D3 at 100 and 1000 amps/cm'.

and we consider frequencies small compared to fc . Then the reciprocal
of (52) can be written

F 1 f,2 fr2 fcfr2)

2

if(1
/2

Equation (56) has the frequency dependence embodied in Figs. 2
through 5, i.e., the real part of 1 - 1/F changes as frequency squared
and the imaginary part is the difference of a linear and cubic term in
frequency. The low -frequency asymptote of the imaginary part is

(1 - 1/F) imag

with

(56)

(57)

= (58)1 + 2fafell,2 *

The frequency, ferit , at which the real part of 1/F vanishes equals
fr :
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fcrit =

and the frequency f= at which the imaginary part of 1/F vanishes is

f, = V.fr2 2fic 

(59)

(60)

Now let us consider the dependence of F on the direct current density
I. Three relations hold approximately for the curves of Figs. 2 through

5.
The critical frequency fora is proportional

to the square root of direct current density. (61)

The low -frequency, linear asymptote of (1 - 1/F) imag
is independent of current density. (62)

The ratio of the frequencies fcrit and fi at which
the real and imaginary parts of 1/F cross zero

is independent of current density. (63)

We show now that these relations lead to the following current
density dependences:

fa cx I (64)

fr ix .0 (65)

fc independent of I. (66)

Equation (65) follows directly from (59) and (61). Taking the ratio of
(60) and (59) and using (63) we find that

fafc/fr2 is independent of I. (67)

Use of (62), (57 ), (58), and (67) yields (66). Finally, from (65),
(66), and (67) we obtain (64). Thus, as long as the inequalities (54)
and (55) and relations (61) through (63) hold, the current density
dependence of F can be expressed as follows (see Fig. 6): With increas-
ing current density the poles A and A of F move through parabolas, starting
at the origin, while the zero at -f. is independent of current density. Where
Fe and Ph deviate from each other, the representation (52) is still usable.
The poles A and A are the same, but Fe and Fh have separate zeros at
-f, and -f ch .

The above discussion shows how the poles and zero can be obtained
from calculated results of F as a function of frequency and current den-
sity. In Appendix B a more direct way of obtaining the poles as solutions
of an eigen-value problem is presented. The results are shown in Fig. 6,
where the poles are plotted in the complex frequency plane with cur-
rent density varying along the curves. The zeroes are listed in the insert.
Only positive imaginary values are shown. Symmetry exists about the
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Fig. 6 - Locus of poles of F as function of current density in the complex
frequency plane. Note unequal scales of real and imaginary axes.

real axis. Note that the scales of real and imaginary axes differ by a
factor of 10.

V. NEGATIVE RESISTANCE AND MAXIMUM GROWTH FACTOR

In this section, we consider the interaction of the avalanche and drift
regions in causing negative resistance. The most important aspect of
the current fraction F is the rapid change of phase, with respect to total
current, from near zero below, to more than 180° above, the resonance
frequency. This behavior follows from (52) and is illustrated for struc-
ture D3 in Fig. 7 where the phase cop of F is shown for current densities
of 100 and 1000 A/cm2. At the higher current density the transition is
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more gradual. Likewise, for wider structures the transition is more
gradual than for narrower structures.

Let us consider a diode in which the hole drift region is negligible
and for which the residual impedance Zr is negligible so that the dom-
inant term in the impedance is

1 [i 1 - exp (
L

-icor/
iLLY T

Z LO = (68)

We want to explore under what conditions the small signal impedance
has a negative real part. This will occur when the quantity

F
1 - exp ( -icorL) FG (69)

2W TL

has a phase angle between 0 and 180°. coG , the negative of the phase of
G, is plotted in Fig. 8 as a function of frequency. We define as drift
frequency, fdri ft , the frequency at which the phase 900 is 90°,

V 1
fdr i ft = -

2 (xo - xL) 27-1,
(70)

The singularity at twice the drift frequency occurs where G goes to
zero and the phase is indeterminate. If the operating frequency is below
1/ri, we refer to the diode as operating in the r mode. The mode -

225°
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45°

0°
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06 1.0 2 4 6 8 10 20
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40 60 80 100

Fig. 7 - Phase of F for diode D3 at 100 and 1000 amps/cm2.
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designation for higher frequencies is given in Fig. 8. The condition on
the phases for negative resistance can now be stated

0 < q)p SOG < 180° (71)

and can easily be visualized if Figs. 7 and 8 are combined. This has been
done in Fig. 9 where a drift frequency of 60 GHz appropriate for the
depletion layer of diode D3 has been used. Starting with the 100 A/cm2
curve for 40F we see that negative resistance prevails over a wide
frequency range, as indicated by the shaded region. Near f = 2fdri ft

the magnitude of G is small, hence the negative resistance contribution
of PG is small and is likely to be outweighed by parasitic end resistance.
At frequencies beyond 2fdri ft negative resistance occurs in higher -order
modes. At frequencies much higher than ferit the phase sOp depends on
frequency in a complicated way and the present calculations lose ac-
curacy. As the current density is increased, the 401, curve moves to the
right with some softening of the transition. The lowest frequency at
which negative resistance sets in increases also, but a wide range of
negative resistance continues to exist. The behavior thus far described
is typical of a single -diffused p -n junction diode.

Next, consider a typical "Read" structure, i.e., one in which the
drift space is much wider than the avalanche region. We consider the
same avalanche zone as before but let the drift space be, say 8 microns
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with a drift frequency of 6.25 GHz, as shown in Fig. 10. We now see
that the frequency range for negative resistance in the 7 mode is much
narrower; at 1000 A/cm2 there is no it -mode negative resistance for this
structure.

Now let us consider structures with narrow drift regions. The extreme
case for which the drift regions coincide with the avalanche region
is represented by p-i-n diodes.' All three terms in (8) contribute, but
the conclusions reached from a study of Z a alone are qualitatively
correct. Negative resistance is obtained for a wide range of frequencies.
For a consideration of the low -frequency behavior we expand F to
first order in f

(ef. (57) and (58). With

(68) yields

Thus, if

F 1+if

G 1 IwT1 - rf
2 2fdrift

RLO =
1 (1 2fdri ft

4fdrift CL 'ea)

/drift < fa

(72)

(73)

(74)

(75)

negative resistance prevails from 7 mode frequencies down to dc.
The case of the uniform -field avalanching plasma has been discussed
by Misawa.8

For an interpretation of the frequency f8 consider the change in
electric field SE, per change in total current in the limit as the frequency
goes to zero, as shown in Fig. 11, for diode D3 at 100 A/cm2. The space
charge associated with the additional current causes SE to be roughly
hyperbolically shaped with the apex at the point where hole and electron
currents are equal. The placement of the SE curve with respect to zero
is such that reduction of ionization in the center where SE is negative is
compensated by an increase in the adjacent regions. Outside the ava-
lanche zone SE changes linearly. At points A and B, separated by dis-
tance dA B the asymptotes to SE outside the avalanche zone cross zero.
From a consideration of (28) through (32) it can be seen that 1/./. is
half the transit time between points A and B,
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Fig. 9 - Superposition of Figs. 8 and 9 appropriate for p -n junction case.
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Fig. 10 - Superposition of Figs. 8 and 9 appropriate for "Read" diode ease.
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( 76 )

If the avalanche zone is narrow compared to the drift region the integral
over 6E is positive and so is the dc incremental resistance.

For a p-i-n diode (C1 at 100 A/cm2) the incremental field 5E is as
shown in Fig. 12. The asymmetry results from the inequality of hole
and electron ionization coefficients. It is seen by inspection that the
integral over 45E is negative and also that the transit time between A
and B is less than 7r/2 times the transit time through the depletion
layer (this is the condition corresponding to (75) when both left and
right drift regions are considered), hence the resistance is negative.
It is to be noted, however, that if equal hole and ionization rates had
been used in this calculation, zero incremental de resistance would
have been obtained.

Up to this point we have considered the phase conditions for the oc-
currence of negative resistance. Now let us consider the actual resistance
or, more conveniently, the admittance Y. Fig. 13 shows plots of the
imaginary vs real part of Y, with frequency varying along each curve,
for diode D3, area = 10-4 cm2, at various current densities. Fig. 14
shows a corresponding plot for a Read structure R1 consisting of ava-
lanche region C1 (1 micron wide, constant field) and an adjacent
electron drift space 9 microns wide. The diode area is also taken as
10-4 cm2. The admittances in Figs. 13 and 14 are the reciprocal total
impedance, but differ insignificantly from what would have been ob-
tained with neglect of the residual impedance.

Now let us consider the quality factor Q or the related growth factor g,
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1= - 2Q
(77)

which has the following meaning: If a diode having negative resistance
is imbedded in a lossless circuit in which it oscillates at frequency f
co/27r, then the absolute values of voltage and current amplitudes vary
with time as exp (gcet). It is convenient to introduce the complex fre-
quency variable s

s = + (78)

From (4), (52), and (53) it can be inferred that under open -circuit
conditions the diode will oscillate at a value

S = A = fa + ifr

and, therefore, the open -circuit growth factor is

gopen = Mfr 

According to the current -dependence of Fig. 6, gopen is proportional to
the square root of the current density. Note that under open -circuit
conditions g depends on the avalanche structure only and is independent
of the drift regions. This is not the case under more general circuit
conditions.

If the admittance Y is an analytic function of frequency, as is physi-
cally reasonable and as we shall assume to be the case here, then the
admittance is defined also for complex frequencies. The largest growth
rate g (f) for reactive circuit imbedding at a given frequency f is that g
for which

1
Y[(g l)f] - 02r (g + i)fL (79)

if Y is capacitive; or

Y[(g i)f] + r (g i)fe = 0 (80)

if Y is inductive. Here L or C are chosen so as to resonate the imaginary
part of Y. The quantity g thus obtained is related to the quality factor
Q, as conventionally defined, by (77). So far, g is defined at a given
frequency f and current density. We define as ginax the maximum of g
(or maxima, where relative maxima exist) with respect to frequency
at a given current density. Finally, we define as g opt the maximum of
gmax with respect to current density. We define by/. the frequency (ies)
at which g. occurs. Figs. 15 and 16 show gmax and fina, as a function
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Fig. 15 - Maximum growth rate and open -circuit growth rate of diode D3.

of current density for diode D3 and Figs. 17 and 18 for diode Rl. Also
shown for comparison are fr and au open Included in Figs. 16 and 18 are
horizontal lines marked fdrift representing the drift frequency of the
longest (= electron) drift region. An important result contained in
Figs. 15 to 18 is that goo is obtained for current densities at which
the resonance frequency fr is about equal to the drift frequency and that

100

80

60

40

20

10

8

6

4

2

fDR1FT

fmAx

fr

4
6 8 103

2 4 6 8 104 2

CURRENT DENSITY IN A /CM 2

4 6 8
105

Fig. 16 - Frequency at which gm.. occurs and Jr for diode D3.
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Fig. 17- Maximum growth rate and open circuit growth rate for Read diode
R1.

fii,x at this current density is some 20 to 30 percent above fr . For
the diffused diode D3 the drift frequency is high 60 GHz) and there-
fore, gopt is obtained at a high current density, 3 X 104 amps/cm2.
This current density is so high that a substantial widening of the ava-
lanche region, with respect to its low -current -density configuration,
has taken place. As a consequence, fc now is no longer independent of
current density, but rather decreases with current density. Deviations
from the low -current -density relations are also seen in the break-
away from the line of slope 2 for gopen in Fig. 15.

For the Read diode R1 the largest gopt , occurring in the 7 mode, is
obtained at 200 amps/cm2. The values of gmax in the nr mode fall off
rapidly as the frequency approaches (n 1 )fdrift . For a Read -type
structure, i.e., one having a substantial drift space in which negligible
avalanche multiplication takes place, gopt is near 0.13 and is only
weakly dependent of the detailed structure of the avalanche region.
On the other hand, for diodes in which the avalanche region occupies
all of, or a substantial fraction of, the depletion region gopt is closely
related to the value of open and is larger than 0.13, as is the case for
D3.

VI. LARGE SIGNAL DESIGN CONSIDERATIONS FOR READ DIODES

In Section V we obtained the result that the optimum growth rate
under small -signal conditions occurs when fdrift sJ-, fr . This condition



IMPATT DIODES 1823

provides a relation between current density, drift region width and
avalanche region width (via ft). It is plausible to assume that the same
relation should be approximately satisfied for best large -signal perform-
ance. Preliminary large -signal results* have shown that a direct corre-
spondence between the large -signal and small -signal properties does not
exist and that, for example, large -signal self -sustained oscillation can be
obtained for frequency -current -density combinations for which the
small -signal resistance is positive. Nevertheless, as a point of departure
for a large -signal design we choose a structure in which avalanche region,
drift region, and current density are so related that gopt is obtained at

40
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fMAX,IT
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4 6 8 102 2 4 6 8 103 2

CURRENT DENSITY IN A /CM2

4
6 8104

Fig. 18 - Frequency at which gm.. occurs and fr for diode Rl.

the desired frequency under small signal conditions. This provides one
constraint.

Resonance frequency b as a function of current density for the various
structures is shown in Fig. 19. Suppose a 5-GHz operating frequency is
wanted. We would need a resonance frequency about 25 percent lower
or 4 GHz. Thus, structure Cl at 120 amps/cm2, or C5 at 400 amps/cm2,
etc. could be used. The drift region would be 12.5 microns wide.

Another constraint between average current density and frequency is
imposed by the output limitations of the drift space. The following
discussion applies to Read diodes having a constant -field drift region
only. As shown by Read,' under large -signal conditions the carrier cur-
rent through the drift region is carried in the form of charge pulses. If

* D. L. Scharfetter and H. K. Gummel, work in progress.
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f is the frequency of operation and I DC the average current density,
then the charge per pulse is

/DC
Q

This pulse causes a change in electric field of

I DCAE = .

(4)

(81)

(82)

Let Edrift be the field in the drift region at the onset of breakdown;
we shall use a value of 1.5 X 105 V/cm which is reasonable for silicon.
6.E must not be larger than approximately z Edrift . The factor of
takes into account that in the desired mode of operation the terminal
voltage reaches its minimum while the charge moves through the drift
region and that therefore an additional lowering of the drift field below
Edrift occurs. Thus, we have the condition

DC < leEdriftf (83)

This constraint is shown in Fig. 19 by the line of slope 1. Only the region
to the upper left is allowed. For a diode to have a large power capability
the highest feasible current density should be used. Thus, a design cor-
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responding to the circle appears most promising. The diode would operate
at a current density of 300 amps/cm2 and have an avalanche region 4
microns wide. Note that the avalanche region width would be about

of the drift region width. This is in contrast to Read's proposal that
the avalanche region should be very narrow in comparison to the drift
region. However, the design suggested here is based on a combination
of small -signal dynamics and large -signal output limitations and may
have to be modified when large -signal results become available.

APPENDIX A

This appendix describes the steps by which self -consistent dc solu-
tions for electric field E and difference current density It, are obtained
for a given terminal current density I. The electric field is the sum of
a component ED(x), related to the space charge of the impurities and a
component

E c(x) = (Ev/IE)z(x),

where z' = /A//z , related to the space charge of the mobile carriers.
(1) Select a point x1 in the avalanche region and assign a trial value

E1 for the electric field at this point. Conveniently, x1 may be the loca-
tion of the metallurgical junction, but the choice is not critical.

(ii) Choose a trial function for the difference current It, . A conveni-
ent, though crude, choice is

IA = /2 , x < x1 (84)

IA = -Is , x > xi (85)

(iii) Compute the electric field E

E(x) = El + 1 11A(8) + qND(s)ids. (86)
E xl v

Extend the integral up to boundary points xi, and xR to the left and
right of xi , i.e., to points where the field reaches the value required to
carry the current through the not swept-out semiconductor region:

E(xL) = /2/[11. J ND(xL) I I (87)

E(xR) = /z/Lup I ND(xR) J ]. (88)

Define

ED(x) = El + ND(s) ds (89)
E xi
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Use

zo(x) = f IA(s)/IE ds
xl

(90)

as trial function for z. The beginning of the next step, (iv), is redundant,
but is required for the iteration loop.

(iv) Set E(x) = ED(x) (ev/Iz)zo(x), and IP = Using these
values, evaluate a, 13, and H, (29).

(v) Solve

[D2 ± (13 - a) D - = a ± - Hzo (91)

for z with boundary conditions z' = -1 at left boundary and z = +1
at right boundary.

(vi) Make z the new trial solution zo
(vii) Repeat steps (iv) through (vi) until z and zo differ negligibly.

If the final field at xi differs appreciably from the trial field Ei the bound-
aries are incorrectly defined, and steps (i) and following should be re-
peated with the current value E(xi) as trial field Ei . This time use IA =
z'/2 instead of (84) and (85) as trial function for I in step (ii).

(viii) When the conditions of step (vii) are satisfied, i.e., when z zo

and E(xi) Ei , then E, Io = a, 13, and H are the desired self -
consistent dc quantities.

APPENDIX B

In this appendix we show how the complex resonance frequency
A = + if, at which the impedance goes to infinity can be obtained
directly from (31), rather than by curve fitting of results obtained at a
set of imaginary s -values s = 0 + if, or real frequencies. At resonance
the normalized field z goes to infinity and therefore the right-hand side
of (31) is negligible compared to the left-hand side, i.e., we have the
homogeneous equation

[D2 - k2 (a S)k ± (a - 13)D - II]z = O. (92)

Solutions of (92) with boundary conditions (42) and (43) exist only for
special values of k. The quantity k (k - a - 13) may be considered the
eigenvalue of (92). Of the possible k values we select the complex
conjugate pair of smallest absolute value. Let ko be the k with positive
imaginary part. Then

vko = 27r(f. if r) (93)

is the desired resonance frequency.
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Numerical values of k may be obtained as follows. The differential
equation (92) is replaced by a set of appropriate difference equations
for the values z. of z at a set of meshpoints. This set of equations may
be written in matrix form

M Z = 0, (94)

where Z is a vector having the zn for its elements. The matrix M, being
derived from a second -order differential equation, is a "tridiagonal
matrix", i.e., it has nonvanishing elements only on the main diagonal
and the two adjacent diagonals. Now k must be chosen so that the
determinant of M vanishes. If k1 and k2 are trial values and the cor-
responding values of the determinant are D1 and D2 then one may
choose as next trial value

D2(k2 - k1)k3 - (95)
D2 - DI

and thus iteratively approach the desired value of ko -
The frequency fc of the zero is chosen so that F has the proper phase

in the neighborhood of the resonance frequency. Let F be the current
fraction at the complex frequency sl = fQ + ifl , where fl is near f, ,
then

Fre.'
= -

Fimag
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Some Examples of Comparisons of
Connecting Networks

By V. E. BENES
(Manuscript received August 17, 1966)

In the theory of telephone traffic it is of interest to compare the performance
of connecting networks, as measured by the probability by blocking, when
they are subjected to the same traffic sources. The question arises whether
there are examples of pairs of networks, with the same number of cross -
points, whose respective graphs of loss as a function of offered load cross
each other. The existence of such examples would establish the principle
that some network configurations are inherently more efficient at some traffic
levels than at others, so that the "excellence" of a network is not necessarily
a purely combinatorial notion independent of offered traffic. Examples of
the above phenomenon are exhibited which do not involve only very small
networks.

I. INTRODUCTION

In the theory of telephone traffic it is of interest to compare the
performance of connecting networks, as measured by the probability
of blocking, when they are subjected to the same traffic sources. Natu-
rally, there are cases in which the result of this comparison is inde-
pendent of the calling rate X.' In this connection, H. 0. Pollak has raised
the question whether there are examples of pairs of networks, with the
same number of crosspoints, the first of which is better than the second
at one value of X, while the second is better than the first at another
value of X.

The existence of such examples would establish the principle that
some network configurations (in particular, some switch sizes) are
inherently more efficient at some traffic levels than at others, so that
the "excellence" of a network is not necessarily a purely combinatorial
notion independent of offered traffic. We shall exhibit examples of the
above phenomenon which are nontrivial in that they do not involve
only very small networks.

1829
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II. PRELIMINARIES

The notations and conventions of Refs. 2 and 3 will be used. We
shall need machinery for studying the probability of blocking at very
high values of the traffic X; this is provided by the natural expansion
of the equilibrium state probabilities in inverse powers of X :

Lemma: The state probabilities fpx , x e S) can be expanded in a power
series

00

pz = E dm(x)x-- (1)

valid for X real and sufficiently large. With w = max I x I , the coefficients
x E9

4,(x) have the property

dm(x) =0 for 0.5-m<w-lxi,
and the numbers d,o_ixi(x) satisfy

E do(x) = 1
1.1-.

s(y)dip-m(y) = E dw-izi(2), I Y I < w,
zeity

dw-lx1(X) k- 0.

(2)

(3)

(4)

Proof: px(X) is a rational function of X, and so has an expansion of the
form (1) if X is large enough. Substitution of (1) into the equilibrium
condition gives these equations for the coefficients d(): (No unblocked
call is rejected.)

I
x I dm-1(x)s(x)d.(x) = E cl._1(y) E cl.(Y)rv.

YeA. yea,

It follows at once that if 0 = zero state (with no calls up), then do(0) = 0,
and

s(x)do(x) = E do(y)rvx,
yeBx

so that do(x) = 0 unless x is maximal in the natural partial ordering
of states.

Thus, if x is not maximal then

cl,(x) = 0 for lx1<w-m
holds for m = 0. Assume that it holds for some m - 1 >= 0. For x not
maximal, s(x) > 0 and
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s(x)dm(x) = - I x I dm -1(x) > (1.-1(Y) E clin(Y)ry.
yeAz yeBz

If Ixl< w - m, then dm_1(x) = 0 and y e Az implies cLi(y) = 0, both
by the induction hypothesis. Thus, dm(x) is expressible as a constant
times dz,(0). But

8(0)d,(0) = E d= -1(y) = 0,

by the induction hypothesis.
If x is maximal with I x I < w - in, then

IxI dm(x) = E dm-Fi(Ory.,
lle B

But y e Bz implies I y I = I xi -r 1 < w - in - 1, and so dm+I(y) = 0.
(1) and (2) imply (3) and (4).

The formula

E do(x) = 1,
IxI=w

follows from

m O.

p. = E
m=w-IxIIV- IX

and Ex.s px = 1 by letting X 00 .

It follows from the lemma just proved that for sufficiently high values
of the traffic parameter X, the probability of blocking has the form

E iszdw_k(x)
Pr {M} - lx1=k ± o(1),w-k

E E
1.1>k i=w-1.1

00,

where k is the greatest integer such that some states with k calls in
progress have blocked calls (fly > 0). In particular, we see that

lim Pr{ bl

III. COMPARISONS

0 if k <w
=

if k = w.

The examples to be studied are the networks A and B in Figs. 1 and
2, respectively. Both are three -stage networks of the type due to C.
Clos,4 each with nr inlets (outlets). We show that there are values of
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m, n, and r such that (s) A and B have very nearly the same number
of crosspoints, and (ii) A has lower blocking than B at all sufficiently
low values of the traffic X, while B has lower blocking than A at all
sufficiently high values of X. The calculations forming this comparison
will be carried out in the traffic model of Chapter 8 of Ref. 2; familiarity
with this model is assumed.

In A, at least m calls must be in progress in order for there to be any
blocking. Hence,'

Pr{bl}A = 'Am o(Xm), X -> 0.

In B there is a least integer k > 0 such that

Pr{b1} B = cXk COI) X --> 0

with c > 0. We shall show that k < r 1, independently of the routing
used to run B. It has been shown' that the probability pr of a state in
the model of Ref. 2 is of the form

E 0/00-Fixii TT 1

(5)ittiYi-FX8(Y)'
where the sum is over paths w on GS, permitted by the routing rule
in use starting at 0 and ending at x, the product is along the pai,h, and
l(7r) is the path -length.

In B it takes r calls in progress to block a call. Choose an outer switch
on each side of B and consider a sequence of r attempted calls, each of
which is from one of these switches to the other, together with one

r x r

Fig. 1- Network A: 2mnr mr2 crosspoints.
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rxr n x n rxr

Fig. 2 - Network B: 2nr2 rn2 crosspoints.

more call c. The last call, c, will have to go on one of the r middle switches
each of which already has exactly one call. (Fig. 3, upper half.) If now
the other call on the switch carrying c hangs up (Fig. 3, lower half), we
will have reached a blocking state from 0 with positive probability
along a path 7 of length l(7r) = r ± 2. Since the blocking state reached
has r calls in progress, there is a contribution in formula (5) of the form

c > 0.

It follows that if m > r 1, then

Pr{131}A < Pr{bl}B

for all X sufficiently small.
Now take n > m, so that Lemma 1 gives

E O=de(x)
P111311,, - o(1)

E ardo(x)
l=nr

= 1+o(1), X -> co,

At the same time, it can be seen that in network B, 13x = 0 for I x >
nr - 2, so that

Pr{b1}B =

For I x I = nr,

E flxd2(X)
lx1=nr-2

2

E ax E di(x)x2--'
ixi>nr-2

o(1).
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ix! do(x) E dl(Y)ryz
yeBx

Thus,

nr = Ix! do(s) = E E di(y)rys = E di(y)s(y)
1=nr yES iYi=nr-1

= E Cy),
iy1==nr-1

and since oix = 0 for I x I = nr, and ay = s(y) = 1 for I y I = nr - 1.
E [3.42(z)

Pr { IA B = o(1) i=i-nr-2
azd2(x) + A E CY)

Ix 1=nr-2 hil=nr-1

The leading term is <1, and so for all A sufficiently large

Pr{bl}B < PribljA

rxr n x n rxr

111411r1PF'11n-in-1

rxr nxn

r
c

THIS CALL HANGS
UP, LEAVING

rxr
r

n r

Fig. 3 - Blocking state of A reached in r + 2 steps (only links in use in-
dicated).
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It remains to show that there are values of m, n, r such that n > m >
r 1 for which the number of crosspoints of A is very nearly equal to
that of B. Picking m = r + 2, the condition for equality is that

n = 2 + (4 + 2r + r2)1.

With [t] the integer part of t, we pick n as

2 + [(4 + 2r + 7.2)1] > 2 + (1 + 2r + 7.2)1 = r+ 3 > m.

With this choice of n A actually has more crosspoints than B and yet
gives higher blocking at large values of X than B does.

REFERENCES

1. Beneg, V. E., On Comparing Connecting Networks, to appear in J. Combina-
torial Theor.

2. Beneg, V. E., Mathematical Theory of Connecting Networks and Telephone
Traffic, Academic Press, New York, 1965.

3. Bena, V. E., Programming and Control Problems Arising from Optimal
Routing in Telephone Networks, abstract in SIAM J. Control, 4, February,
1966, pp. 6-18; B.S.T.J., 45, November, 1966, pp. 1373-1438.

4. See Chapter 3 of Ref. 2.
5. See Chapter 8 of Ref. 2.



.....iimmommisaLawariesauuirsimilAg. -
,i00111111ip,utl

AN1111%-14.3 :,141111-1111&_419111/MIIIIING, , ,



Contributors to This Issue

VACLAV E. BENE.A, A. B., 1950, Harvard College; M.A. and Ph.D.,
1953, Princeton University; Bell Telephone Laboratories, 1953-. Mr.
Bend has been engaged in mathematical research on stochastic proc-
esses, traffic theory, and servomechanisms. In 1959-60 he was visiting
lecturer in mathematics at Dartmouth College. He is the author of
General Stochastic Process in the Theory of Queues (Addison-Wesley,
1963), and of Mathematical Theory of Connecting Networks and Tele-
phone Traffic (Academic Press, 1965). Member, American Mathemati-
cal Society, Association for Symbolic Logic, Institute of Mathematical
Statistics, SIAM, Mind Association, Phi Beta Kappa.

MARTIN B. BRILLIANT, B.A., 1955, Washington and Jefferson College;
S.B., S.M., 1955, Sc.D., 1958, Massachusetts Institute of Technology;
Bell Telephone Laboratories, 1955 and 1966-. Mr. Brilliant has also
held positions with the Air Force Cambridge Research Center; Na-
tional Company, Inc.; Hazeltine Research Corporation; University
of Kansas; and Booz Allen Applied Research, Inc. At Bell Telephone
Laboratories, he worked in 1955 on a transistor pulse generator for the
Electronic Central Office. He is now concerned with systems engineer-
ing problems in the switching of time -multiplexed signals. Member,
Sigma Xi, IEEE, AAAS.

ROBERT W. CHANG, B.S.E.E., 1955, National Taiwan University;
M.S.E.E., 1960, North Carolina State College; Ph.D., 1965, Purdue
University; Bell Telephone Laboratories, 1965-. Mr. Chang has been
concerned with problems in data transmission and communication
theory. Member, Eta Kappa Nu, Sigma Xi, Phi Kappa Phi, IEEE.

THOMAS G. CROSS, B.S.E.E., 1963, California State Polytechnic Col-
lege; M.S.E.E., 1965, Northeastern University; Bell Telephone Lab-
oratories, 1963-. Mr. Cross has been involved in a group responsible
for the system analysis of the new TD -3 Long -Haul Radio System, and
is currently involved in system planning for microwave radio relay
systems.

1837



1838 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1966

A. GERSHO, B.S., 1960, Massachusetts Institute of Technology; M.S.,
1961, Ph.D., 1963, Cornell University; Bell Telephone Laboratories,
1963-. Dr. Gersho is now Assistant Professor of Electrical Engineer-
ing at the City College of the City University of New York. He has
been engaged in research in automatic and adaptive equalization for
digital communications, synchronization of remote clocks, and syn-
thesis of distributed networks.

HERMANN K. GUMMEL, Dipl. Phys., 1952, Philipps University (Mar-
burg, Germany) ; M.S., 1952, and Ph.D., 1957, Syracuse University;
Bell Telephone Laboratories, 1957-. Mr. Gummel's work has been
in semiconductor electronics. He presently supervises a group responsi-
ble for analysis of device performance. Member, American Physical
Society, Sigma Xi.

BARRY J. KARAFIN, B.S.E.E., 1961, University of Pennsylvania;
M.E.E., 1963, New York University; Bell Telephone Laboratories,
1961-. Mr. Karafin has been concerned with timing problems in digital
communication systems. He has also worked on computer languages
for use in engineering simulation studies. Currently, he is concerned
with problems of man -computer interaction in the development of
transmission systems. Member, ACM, Simulation Councils, Tau Beta
Pi.

MAURICE KARNAUGH, B.S., 1948, The City College of New York;
M.S., 1950, and Ph.D., 1952, Yale University; Bell Telephone Labora-
tories, 1952-1966. Mr. Karnaugh has engaged in research on the synthesis
of digital data systems, logic circuits, telephone switching networks,
and pulse code modulation techniques. As Head, Systems Research
Department, he has recently been concerned with special problems in
analog -to -digital conversion, system simulation, and nonlinear signal
processing. Member, IEEE, Sigma Xi, Phi Beta Kappa.

D. L. SCHARFETTER, B.S., 1960, M.S., 1961, and Ph.D., 1962, Carnegie
Institute of Technology; Bell Telephone Laboratories, 1962-. Mr.
Scharfetter has engaged in research on metal -semiconductor diodes,
junction diodes and transistors, and microwave diode oscillators. Mem-
ber, IEEE, Sigma Xi, Tau Beta Pi, Eta Kappa Nu, Pi Mu Epsilon.

ALLEN G. VARTABEDIAN, B.S.E. (Sci. Engr.) and B.S.E. (Math.), 1964,
University of Michigan; M.S.E., 1965, University of Pennsylvania;



CONTRIBUTORS TO THIS ISSUE 1839

Bell Telephone Laboratories, 1964-. Mr. Vartabedian has been en-
gaged in data switching studies in system engineering for the No. 1
ESS adapted for data features. Currently, he is involved in investigat-
ing input/output devices and algorithms used for communication be-
tween man and computing machines related to business information
systems. Member, Tau Beta Pi.





B.S.T.J. BRIEFS

Display of Holograms in White Light
By C. B. BURCKHARDT

(Manuscript received September 7, 1966)

This paper describes a new method for displaying holograms in white
light. The method gives reasonably good reconstructions although cer-
tain image defects are inherent in the method. It differs from previously
reported methods of white light reconstruction'. 2 in that the whole spec-
trum is used for reconstruction and therefore black and white reconstruc-
tions can be obtained. The method does not depend on the volume prop-
erties of the photographic emulsion.

The basic arrangement is shown in Fig. 1. The white light illuminates
a hologram which had been formed with a plane off -axis reference beam.3
Behind the hologram there is a Venetian blind structure which blocks
off the direct light but lets through the diffracted beam. The diffracted
beam is diffracted a second time at a plane transmission grating which
can be formed photographically with two plane beams. The angle be-
tween the two beams which form the plane grating has to be equal to
the mean angle between the subject beam and reference beam used to
form the hologram.

The reconstruction resulting from the configuration of Fig. 1 will now
be explained. Intuitively, one can say that there is a large color dispersion
at the first hologram because it can be considered a high spatial frequency
diffraction grating. Since the light is diffracted in the opposite direction
by the second grating this color dispersion is compensated. In order to
be more quantitative, assume that during the formation of the hologram
the subject beam A8 on the photographic plate is given by

A8 = a(x,y) exp (jc08x), (1)

where co, is the mean radian frequency of the subject beam and the
center of the spatial frequency spectrum of a(x,y) is at zero. Assume that
the reference beam R is given by

R = B exp -jcorx), (2)

where B is the amplitude and -co, is the radian frequency of the refer-
ence beam. The photographic plate will record the intensity3 and for the
virtual image term we obtain

1841
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HOLOGRAM -
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IMAGE I..

WHITE 'LIGHT
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OBSERVER

ss,

PLANE GRATING

Fig. 1- White light display of a hologram.

AsR* = a(x,y)B exp (j[o, + cor]x), (3)

where the star means complex conjugate.
The plane grating is formed by two plane wave beams which can be

expressed as G exp (jcesx) and G exp (-jcarx) and for the intensity xx*
on the plate we will obtain

xx* = 2G2 + G2 exp (jP. + wr]x) + G2 exP ( -iico. + W riX) . (4)

We now assume that the two plates are developed in such a way that
their amplitude transmittance is proportional to the intensity during
exposure. Since the hologram and the plane grating are spaced only a
short distance behind one another, to get the amplitude transmittance
corresponding to the virtual image we can multiply the amplitude trans-
mittance of the hologram, AaR*, with that of the plane grating xx*.
We are now interested in the term which is given by the product of (3)
with the last term of (4). This product,

a(x,y)BG2, (5)

is equal to the subject beam term, (1), translated to a center frequency of
zero. This term, therefore, represents the reconstruction of a virtual image
in the direction of the illuminating beam. It is possible to make a single
hologram where the virtual image term has the form of (5). One chooses
a subject beam as given in (1) and a reference beam B exp (308x), i.e.,
the reference beam has the same mean direction as the subject beam. This
is the on -axis hologram which has the well-known disadvantage that the
direct beam, the real image, and the virtual image fall onto each other.
The configuration of Fig. 1 does not have this disadvantage, with respect
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to the virtual image; it is, however, in a sense "equivalent" to the on -
axis hologram. Therefore, the following explanations will be in terms of
the equivalent on -axis hologram.

In the on -axis hologram each object point forms its own on -axis Fres-
nel zone plate on the photographic plate. Upon illumination each zone
plate forms a divergent spherical wavefront and therefore, a virtual
image point. Since the focal length of the zone plate is inversely propor-
tional to the wavelength of the illuminating light, the virtual image
points for the different colors are staggered in depth. It is important to
note that one does not perceive this difference in depth if one looks at the
virtual image point through the center of its zone plate and if the eye has
sufficient depth of field as is usually the case. For a particular point of
observation, a region of image points will be approximately "on -axis"
and this region will be in sharpest focus and have minimum color. As
the eye is moved different regions of image points will come into sharp-
est focus.

It is possible to use to advantage a spherically converging reference
and illuminating beam of the same curvature. A little thought will show
that by placing the eye at the focal point of the reference beam one can
look at all the virtual image points through the centers of their respective
zone plates. From this point one therefore sees an image which could be
called "quasi -achromatic". (This can also be shown by using imaging
formulas.4 They show that for the point mentioned, the ratio between
the eye -to -image -point distance and lateral image magnification is in-
dependent of wavelength.) If one moves the eye away from this point
the image starts to blur.

Experimentally, it was found that the best reconstructions were ob-
tained by using a slightly convergent reference beam and viewing the
reconstruction from a point in front of the focus of the reference beam.
This is probably so, because one then has more tolerance with respect to
movement of the eye.

It is, of course, possible to place the plane grating in front of the holo-
gram in the configuration of Fig. 1. Particularly bright reconstructions
are obtained by using the first diffracted order of a blazed reflection
grating for illuminating the hologram. The reconstruction can then be
easily viewed against a background of ordinary room light.

Fig. 2 shows a photograph of the virtual image of a white light re-
construction. The lens used to form a convergent reference and il-
luminating beam has a focal length of 48 cm and was placed 18 cm in
front of the hologram plate. The image -forming photographic lens was
placed at the focal point of the reference lens where the image is quasi-
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Fig. 2 - Photograph of the virtual image with the image -forming lens at the
quasi -achromatic point.

achromatic. The photographic lens had an aperture of 6.5 mm and a focal
length of 17 cm. The distance between subject and plate during the for-
mation of the hologram was 18 cm and the angle between the subject
beam and reference beam was 22°. The angle between the two plane
beams used to form the photographic grating was also 22°. The Venetian
blind structure is not visible in Fig. 2 because it was out of focus. A
zirconium arc lamp was used as white light source.

The author would like to acknowledge the very competent experimen-
tal assistance of E. T. Doherty.
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Approximation of the Error Probability in a Regenerative
Repeater with Quantized Feedback

By M. R. AARON and M. K. SIMON

(Manuscript received September 21, 1966)

I. INTRODUCTION

Recently, Zador' gave a clever functional iteration procedure for deter-
mining the error probability in a binary regenerative repeater with quan-
tized feedback. Unfortunately, quantitative results for the long pulse se-
quences of interest are difficult to come by due to the prohibitive amount
of computer time required to carry out the iterations. We have found a
simple approximate procedure that breaks the computational bottle-
neck in all cases of practical interest. The crux of our approach is the ap-
proximation of the functional iteration by a difference equation. For
clarity, we use only a few terms of a Taylor series in establishing the dif-
ference equation approximation. Afore terms can be used to obtain a
better approximation if needed.

JJ. RECAP OF ZADOR'S WORK

In Ref. 1, Zador shows that the kth iterate of the transformation
Uf (x) - denoted by Ukf(x) = uk--1[ up x\k )] - when evaluated at x = 0
yields the average bit error probability p(k), for the last bit in a random
sequence of k 1 bits processed by a regenerative repeater with quan-
tized feedback. The transformation Uf(x) is given by [Zador's (14)]

Uf(x) = pi(x)f(rx - a) ± p2(x)f(rx) p3(x)f(rx ± a) , (1)

where

pi(x) = p[N (- go - x)]
p2(x) = 1 - pi(x) - p3(x)
p3(x) = q[1 -N (go - x)]
f(x) = pi( x) p3(x) (2)

fr
N (x) - exp ( -y2/20-2) dy

0 < r < 1
a = -2gi .

In (2) above, r = exp (- 71/T c) = exp (-b) is the decrement of the
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simple RC low-pass filter in the feedback path of the regenerative re-
peater; T, is the time constant of this filter or equivalently the reciprocal
of the 3 -dB point on the high-pass filter in the transmission line preceding
the repeater. The quantity go is the peak value of pulse response of the
medium in response to the transmission of a +1, and gi < 0 is the value
of the isolated pulse response of the medium one time slot (T) away from
the peak. For convenience, we assume equally likely transmitted pulses,
p= q = -}.

III. APPROXIMATION

If we (i) substitute for p2(x) from (2) into (1), and (ii) expand f(rx ± a)
in a Taylor's Series about rx, and (iii) retain terms in the series through
a2 we get the approximation

Uf(x) = f(rx) + a df(y)
dy

When we note that

dnf(y)
dyn

then

[p3(x) - pi(x)]
y=TX

= 0 for n odd
y=0

a2 d2f ( y )
±

2 dye [p3(x) + /31(X)].
y=rx

(3)

P3(0) = pi(o) (4)

f(0) = p3(0) + p1(0) = p(o) = [1 - erfc (or°/01 ,

p(1) = P(0) [1 +
2
a2 d2f(Y)

y2 Y=01
(5)

Proceeding through the functional iteration defined by (3), retaining
terms involving a2 and lower, and using (4) we obtain the difference
equation

p(k) = p(k - 1) + p(0)Kr(2k-i), (6)

where Z = go/a- is the peak signal to rms noise ratio for an isolated pulse,
and

K =
Z 2

2Nigr T,) exP ( -1Z2). (7)
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Equation (6) is easily solved to give

Then

p(k) = p(0) [1 K E 7.2(i-1)1. (8)

Fun p(k) = p(0)[1 +
1 -K 7.2]

(9)

The bracketed term in (8) or (9) gives the enhancement of error proba-
bility due to errors made on all previous pulses.

To compare results obtained by application of (9) with those obtained
experimentally by R. D. Howson,2 we take b = f, go = exp (-1), and
gi = -go(1 - exp (--1)). Over a wide range of S/N ratios of interest,
analysis based upon (9) predicts about a 0.6 -dB S/N penalty of this
system over the ideal case of no low frequency cutoff. Agreement with
experiment is excellent. It should be noted that the enhancement term
in (9) is very close to unity and the S/N penalty is due essentially to
the reduction of the pulse peak by the low -frequency cut-off.

In a future paper we will show (i) how Zador's approach can be ex-
tended to a wider class of systems, and (ii) how the approximation given
herein can be used and improved when necessary, to arrive at meaning-
ful quantitative results.
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Application of Automatic Transversal Filters
to the Problem of Echo Suppression

By F. K. BECKER and H. R. RUDIN

(Manuscript received October 6, 1966)

Long -haul voice communication has long been subject to the problem
of returned echo. The advent of synchronous satellite communication
introduces increased delay as a degrading factor in the overall quality of
two-way conversation. This compounds the problem in that the echo
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Equation (6) is easily solved to give

k

p(k) = p(0) [1 K E 7.2c-1)1
j=1

(8)

Then

lim p(k) = p(0)[1
k -boo

+ (9)
1 741

The bracketed term in (8) or (9) gives the enhancement of error proba-
bility due to errors made on all previous pulses.

To compare results obtained by application of (9) with those obtained
experimentally by R. D. Howson,2 we take b = +, go = exp (-1), and
gi = -go(1 - exp (-4)). Over a wide range of S/N ratios of interest,
analysis based upon (9) predicts about a 0.6 -dB S/N penalty of this
system over the ideal case of no low frequency cutoff. Agreement with
experiment is excellent. It should be noted that the enhancement term
in (9) is very close to unity and the S/N penalty is due essentially to
the reduction of the pulse peak by the low -frequency cut-off.

In a future paper we will show (i) how Zador's approach can be ex-
tended to a wider class of systems, and (ii) how the approximation given

at meaning-
ful quantitative results.
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Application of Automatic Transversal Filters
to the Problem of Echo Suppression

By F. K. BECKER and H. R. RUDIN

(Manuscript received October 6, 1966)

Long -haul voice communication has long been subject to the problem
of returned echo. The advent of synchronous satellite communication
introduces increased delay as a degrading factor in the overall quality of
two-way conversation. This compounds the problem in that the echo
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must be further attenuated if its annoyance level is not to be increased
as the delay of the returned echo increases.

At the present, the problem of returned echo is alleviated by the in-
sertion of attenuation into the path of the weaker signal, i.e., the echo
path.' Given the larger delay inherent in synchronous satellite communi-
cation, a better technique is wanted. One attractive scheme is the use of
a transversal filter to synthesize a replica of the echo, which is then sub-
tracted from the actual echo so that the two signals cancel. An algorithm
which allows this synthesis to be carried out automatically was dis-
covered by B. F. Logan and the late J. L. Kelly, Jr.

A scheme for simulating echoes and the technique for suppressing them
are shown in block form in Fig. 1. The person using the handset at the left
of the figure would experience echo; no echo is simulated for the person
using the handset on the right. The echo, which would normally be
caused by an improperly balanced hybrid, was instead simulated using
various linear networks. A tape recorder simulated the long delay re -

TAPE
RECORDER
USED TO

SIMULATE
DELAY

ATT
I.... .1.

ATT

ATT

ATT

S (t)

n (t)

e (t)

ECHO
SIMU-

LATOR

PERFECT
HYBRID

T2

= SUMMER

ATT = ATTE NUATOR

T = DELAY LINE OF LENGTH T
C.C.= CROSS -CORRELATOR

Fig. 1- System for demonstration of automatic transversal echo suppressor.
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suiting from satellite transmission. The automatic transversal filter is
enclosed in dashed lines; its input is the delayed speech from T1 and its
function is the minimization of the echo delivered to R1. The signal from
T2 merely appears as noise, n(t), in this minimization procedure.

Mathematically, the transversal filter's function is the minimization
of the mean -squared value of the echo delivered to R1. This is achieved
through the approximation of e(t) by the sum of the weighted, delayed
versions of s(t). Thus, the canceler strives to minimize

co 2

.1" = [e(t) -E cis(t - jr)1 dt, (1)

where ci is the weighting (attentuator setting) associated with the jth
tap and r is the tap spacing, usually the reciprocal of twice the highest
frequency of interest.

The attenuator settings (which may be positive or negative) can be
calculated by partial differentiation of I by the various cis. Specifically,

a./ = -2 f [e(t) - c ps(t -j )1[s(t - kr)] dt. (2)
ack ao i-o

Note that the second equation states that the partial derivative of I
with respect to the tap gain ck is given by the cross -correlation of the
signal at the kth tap on the delay line with the signal delivered to R1.
The optimum settings for all the tap weighting coefficients occur when
all the partial derivatives are zero.

Assuming a reasonable spectrum for the signal s(t), it can be shown that
the integral I is a convex function of the tap gains. Given this fact, the
information contained in the various partial derivatives is sufficient to
point the way toward the unique minimum of I.

An experimental implementation of the echo canceler is built around
a general-purpose automatic equalizer intended for the reduction of
linear distortion in communication channels.2 The attenuators are digi-
tally -controlled, resistive ladder -networks. In the implementation, the
information obtained by cross -correlation is used to increase or decrease
the attenuator setting by a constant increment. The cross -correlation
coefficients are then recalculated and the attenuators again changed. The
attenuators are permitted to change their setting only when the s(t)
signal exceeds a threshold. The attenuators have infinite memory and so
retain their setting during long lapses in the speech originating at T1.
A simple RC low-pass filter provides a sufficient approximation to the
integration indicated in the second equation.
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The signal originating at T2 despite the fact that it may well be
several times the size of the echo, e(t), produces only small perturbations
in the attenuator settings. This is a result of the powerful cross -correla-
tion detection used to set the attenuators. In the experimental imple-
mentation described, a second speaker at T2 did not perceptibly degrade
echo suppression.

Another feature of the system is that it is inherently adaptive. If the
characteristics of the transmission channel should change, the scheme
automatically makes the necessary modifications as long as the speaker
level is above the threshold. This is true provided that the change in the
channel characteristics occurs at a very slow rate.

Early results from this implementation indicate that echo suppression
of some 20 dB is attainable. Further evaluation is necessary to accurately
predict behavior on real channels. The settling time for this experimental
echo canceller was in the order of two seconds. The settling time is de-
pendent on the echo -to -interfering -noise ratio.

An accompanying brief by A. J. Presti and M. M. Sondhi describes a
different implementation of an echo canceller based upon similar prin-
ciples.

There are a number of engineering problems which must be solved
before adaptive echo cancellation becomes a practical reality. One of
these is the long, distortion -free delay which the echo canceler must sup-
ply. The magnitude of this delay depends on the echo delay. Another
problem arises when there are several reflection points (hybrids) in the
echo path. A third problem is that the apparatus tracks a change in
echo path only if the change is slow and the signal threshold is exceeded.
Given the solution to these problems, however, the future of this tech-
nique of echo cancellation is a promising one.
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A Self -Adaptive Echo Canceller

By M. M. SONDHI and A. J. PRESTI

(Manuscript received October 14, 1966)

Conventional echo suppressors combat echoes generated at hybrid
junctions in long distance telephone connections by interrupting the
return path according to some decision scheme based upon the relative
levels of the outgoing and return signals. In this brief, a new device is
described for cancelling the echo without interrupting the return path. We
call this device an echo canceller to distinguish it from conventional echo
suppressors. It generates a replica of the echo (which is then subtracted
from the return signal) by synthesizing a linear approximation to the
echo transmission path. It is self -adapting in that it automatically tracks
variations in the echo path which may arise during a telephone conversa-
tion (e.g., connection or disconnection of extension phones, etc.).

A schematic of such a self -adapting echo canceller is shown in Fig. 1.
It is based upon an idea originally proposed by J. L. Kelly, Jr. and B. F.
Logan, and incorporates modifications which simplify and improve the
implementation and performance.

With reference to Fig. 1, let x(t) be the input speech signal and y(t)
the return signal. The return is the
result of convolving x(t) with the impulse response h(t) of the echo path)
and a noise n(t) (which may include a second speech signal). An estimate
.i(t) of z(t) is substracted from the return signal and the error signal
e(t) = y(t) - i(t) is continuously used to improve this estimate. The
signal (t) is given by a linear expansion with time varying coefficients,
g i(t). Thus,

i(t) = g i(t)xi(t),
i

where

(1)

xi(t) = wi(r)x(t - dr, (2)
0

and the wi(T) (i = 1, 2,  ) form a complete set of orthogonal functions.
The dynamic behavior of the system of Fig. 1 is then governed by the
set of equations

-d gilt) = KF[e(t)]x i(t) i = 1,  N. (3)
dt

Here K is a positive constant and the function F[e] is chosen to be an odd
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Fig. 1- Schematic of echo canceller.

and non -decreasing function of the error e. It can then be shown that if
h(t) can be well approximated by the expansion

h(t) hiwi(t), (4)

where the hi are constant or slowly varying, then gi(t) converges to
hi (i = 1,  N) in the limit as t 00 . That is, i(t) approaches z(t).
The quantity

N

(gi(t)-hi)2
i=1

converges monotonically to zero if n(t) ===. 0 and if the expansion given
by (4) is exact. However, convergence takes place even in the presence
of relatively large amounts of noise. The amount of noise that can be
tolerated decreases as the speed of convergence increases. The speed of
convergence depends upon the constant K, the choice of function F, and
the level and statistical properties of the signal x(t). The proof of con-
vergence, estimates of convergence rate, factors affecting choice of F,
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and the set wi(t) as well as results of computer simulations of such echo -
cancellers are the subject of a paper under preparation.

A prototype of such a system has been implemented. In this imple-
mentation the xi(t) are obtained from taps on a delay line so that
coi(t) = (5(1 - iT), where T is approximately 0.1 msec and N in (4) is
50. The function F has been chosen to be an infinite clipper. This allows
the multipliers Mu in Fig. 1 to he replaced by simple transistor switches.
The integrators also pose no particular problem and simple operational
amplifiers were found satisfactory. However, the multipliers M21 must
satisfy more stringent requirements. Their outputs gi(t)xi(t) must be
strictly proportional to the xi(t), while strict proportionality to the g i(t)
is of secondary importance. A four quadrant multiplier was designed
using current -controlled photo -resistors in a feedback circuit. This cir-
cuit exhibits a nonlinearity of less than 10 percent with respect to the
gi(t) and less than 0.5 percent with respect to the xi(t) over a 50 -dB
dynamic range.

During time intervals when the input x(t) is zero, there is no corrective
feedback and it is important that the gain settings gilt) be unaffected by
drift in the integrators. It is also desirable (though not absolutely essen-
tial) that the feedback path be opened when the noise n(t) (which, as
previously noted, may include a second speech signal) is considerably
larger than the echo. The box designated as speech detector in Fig. 1
achieves this dual objective. It disconnects the operational amplifiers
from the integrating capacitors whenever

( 1 x(t) I ) - 1 Y(t) 1
) <C

where e is a predetermined positive threshold and ( ) indicates time
averaging for about 0.5 sec.

Further details of the implementation will be described in a forthcom-
ing publication. The results of computer simulations and tests on the
prototype may be summarized as follows:

(i) The system converges in about 0.5 second for normal speech
levels. This convergence time increases to about 5 seconds for a speech
signal 20 dB lower.

(ii) When the echo canceller and the echo path were simulated on the
computer, cancellations of 60 dB and higher were easily achieved. How-

ever, in the case of echoes generated on laboratory simulated telephone
connections, the cancellation was about 20-25 dB on both the computer
simulation and the prototype.

(iii) The system converges in the presence of noise which is up to 8 or
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10 dB higher than the echo. After the system has converged, however,
even a much larger noise does not appreciably degrade the cancellation.

The implementation must be extensively tested in a variety of tele-
phone circuits before the merits of the proposed system can be fully
evaluated.

An accompanying brief by F. K. Becker and H. R. Rudin describes a
different instrumentation of an echo canceller based upon similar prin-
ciples.


