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Digital computer simulation of communication systems is accomplished
readily by means of the system -oriented programming language called
BLODIB (for BLOck Diagram, Compiler, B). The language is designed
for programming sampled -data systems which may be represented either in
block diagram form or in the mathematical representation of the z -transform
calculus. Contained within the language are 40 basic "building" blocks
from which an entire communication system can be built. In addition,
new blocks may be defined as consisting of complex configurations of basic
blocks. The structure of BLODIB allows convenient specification of system
parameters as well as permitting these parameters to be varied in order to
study changes in system performance. The use of BLODIB is demonstrated
by its application in the simulation of a voice -coding (vocoder) system.

I. INTRODUCTION

The study of complex communications systems by digital computer
simulation is facilitated by use of the Block Diagram Compiler,
BLODIB.1 The source language accepted by the compiler is oriented
towards communication system engineers and analysts who are already
adept at handling block diagrams (or transfer functions) of complete
systems. BLODIB is easily learned even by persons who have had little
or no previous programming experience. The language of the compiler
was designed specifically for simulating a wide variety of sampled -data
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system problems as well as simulating sampled -data approximations to
continuous (analog) systems. The capabilities of BLODIB make possi-
ble the simulation of systems which were impossible for the old BLODI2
compiler to handle. In particular, simulation of voice -communication
and speech bandwidth compression systems such as vocoders, are ac-
complished more easily. The digital computer simulation of these sys-
tems was pioneered at Bell Telephone Laboratories using the original
BLODI language." While such systems were programmed in a few
weeks time with a minimum of difficulty, it is now possible to program
the same systems in about one day.

II. NEED FOR SIMULATION

The fantastic growth of the demand for information handling and
processing makes it absolutely essential that our conununication systems
be as efficient as technically possible. This means that all forms of infor-
mation exchange including speech communications should be encoded
in such a way as to assure the most efficient use of a communication or
data channel. The complexity of terminal equipment associated with
such coding systems is such that a great deal of design, testing, and
redesign must take place before these systems can be used on a regular
basis. The testing and debugging (including redesign where necessary )
of such equipment requires many costly man-hours. Much of this cost
may be reduced or even avoided if the entire system is first evaluated by
simulation on the digital computer. This technique provides the flexi-
bility for systematically optimizing system design. The advantage of
using a digital computer as a system simulator lies principally in the ease
with which system parameters can be changed. Hence, many designs may
be tested before choosing the one that would be built for the actual
system. It is just this technique that is now being applied to the design
and evaluation of voice -communication systems.

III. PREREQUISITES FOR COMPUTER SIMULATION

Three prerequisites must be completed in order to accomplish a
digital computer simulation of a voice -communication system. The first
is the determination of an appropriate sampled -data (or digital) repre-
sentation for the system to be studied; the second is the preparation and
compilation of a BLODIB computer program which causes the computer
to perform the same operations as would be performed by the actual
system; and the third prerequisite is the digitalization of real speech for
processing by the computer.
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These prerequisites will now be treated with respect to a specific voice -
communication system for bandwidth compression. This system is more
commonly known as a vocoder (an acronym for voice -coder). The vo-
coder, invented over 35 years ago by Homer Dudley' at Bell Telephone
Laboratories, codes voices or speech -signals for transmission over a
communication channel. Parameters describing the speech are trans-
mitted to a receiver where they are used to synthesize a replica of the
original speech sounds. Bandwidth compression is achieved because the
bandwidth required to transmit these parameters is considerably less
than that required to transmit the original speech sounds. It is helpful
at this point to give a brief review of vocoder operation before describing
how the above prerequisites for simulation are accomplished.

Fig. 1 shows a functional block diagram of a spectrum channel vocoder
and in itself can be used as an aid in the writing of the simulation pro-
gram. The vocoder consists of two main parts: an analyzer for extracting
that information which must be transmitted, and a synthesizer for
reconstituting the original speech signal.

The analyzer portion of the vocoder consists of two basic parts: a
short -time frequency spectrum analyzer and an excitation detector. The
spectrum analyzer consists of a number of bandpass filters for separating
contiguous bands of frequencies. The output of each analyzing filter is
rectified and then smoothed by low-pass filters. The outputs of the
smoothing filters are low -frequency signals which represent the short -
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time spectral energy in each of the analyzed bands. These signals repre-
sent the slowly varying characteristics of a speech signal. Physically,
they are just the average energy of the signals from the bandpass filters.

The output of the excitation detector (be it conventional pitch de-
tector with voiced -unvoiced decision or a narrow band of the input
speech) is transmitted by a suitable frequency or time multiplexing
method along with the slowly varying spectrum signals. This informa-
tion is used by the synthesizer portion of the vocoder to regenerate the
input speech.

Synthesis is accomplished by amplitude modulating the frequency
harmonics of a locally generated excitation signally the corresponding
low -frequency signals. The harmonics of the excitation function are ob-
tained from a set of filters (not shown in Fig. 1) similar to those used
for analyzing the input speech signal. The modulated signals are then
band limited in order to remove spurious sidebands introduced by the
modulation process. The combined output of these filters is a replica of
the input speech. Hence, wideband speech is synthesized from a set of
low -frequency signals having a relatively narrow over-all bandwidth.
This, then, is the complex communication system for which a suitable
sampled -data representation is sought.

IV. SAMPLED -DATA REPRESENTATION OF A CONTINUOUS SYSTEM

In order that a suitable linear time -invariant sampled -data representa-
tion be found for the vocoder shown in Fig. 1, it is necessary that the
transfer functions be known for the various blocks in the system. The
representation of these transfer functions may be in either the time
domain (a relation between the input time signal and the output time
signal) or the frequency domain (a relation between the frequency
spectrums of the input and output signals). For example, the various
bandpass and low-pass filters are first represented by their frequency
domain transfer functions in the form

where

Co =
ak =
ft =

K

co II (s - ak)
H(s) L=1 (1)

(s - 130

constant,
complex zeros of H (s),
complex poles of H (s),

1=1
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K = degree of numerator,
L = degree of denominator, and
s = complex Laplace transform variable.

Conversion of this type of function to an appropriate sampled -data form
is accomplished by applying either the z -transform or bilinear z -trans-
formation" to the above transfer function.

The resulting z -transfer function is then written as a partial fraction
expansion in the form,

JC(z) =

where

AIz-1 + /tom
77,1 B2,z-2 + 1 (2)

, Aons , B2 Bi,,, are constants,
z 1 = exp (-sT) = the unit delay operator, and
T = unit sampling interval.

Each term of the above expansion is then represented in block dia-
gram form as shown in Fig. 2 (a). Fig. 2 (b) shows the realization of the
complete transfer function. This technique is used to realize all of the
linear transfer functions in the system. (Incidentally, the design and
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Fig. 2- Block diagram representation for a partial fraction expansion of a
sampled -data transfer function.
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BLODIB realization of such functions is readily carried out by digital
computer. The output from such a design program is illustrated in the
following section.

The function performed by the rectifier is

rout (t) = I rin (t)
I

(3)

The sampled -data representation of this function in the time domain
is simply

rout (nT) = I rin(nT) I . (4)

The "chopper -modulators" perform the function

?flout = min, (t)  sgn (mi, (t) ) (5)

which is realized by

mint (nT) = mine (nT)  sgn (min, (nT) ) (6)

Similarly, appropriate sampled -data representations were made for
the excitation detector and generator. This, then, completes the first
prerequisite for computer simulation. Next follows the presentation of a
BLODIB computer program using the above information.

V. THE BLODIB PROGRAMMING LANGUAGE

As stated earlier, the BLODIB' programming language is system
oriented in that it allows a direct representation of a communication
system block diagram. More specifically, the language is a verbal de-
scription of the various blocks in the diagram and information concern-
ing how the blocks are interconnected. In addition, BLODIB makes
possible the "construction" or definition of new types of blocks (using
facilities called MACROS or SUPERS) from the basic types available.
(Special boxes not in the basic set of 40 may also be introduced by
supplying an external algorithm coded as a FAP subroutine or as a
FORTRAN function. However, this technique will not be discussed
further here.)

The use of the MACRO facility as well as the simplicity of BLODIB
coding can be demonstrated easily with respect to the realization of the
filter transfer functions. Fig. 3 shows the actual BLODIB configuration
for the basic terms required in the partial fraction expansion given by
(2). Since this "term" or function is required many times, it will be
defined as a new type - ADB - and thereafter used as a basic building
block. Coding in BLODIB requires giving each block a name (chosen by



BLODII3

Fig. 3 - BLODIB representation for the transfer function
(z) = (Airl + 110)/(B2z' + B,z1 + 1)
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the programmer); designating the type of block from the list of basic
types, specifying any parameters associated with the block; and finally,
listing the names of other blocks to which the output should be con-
nected. Thus, the actual coding for Fig. 3 is given in Table I. The first
line of coding defines ADB as a SUPER which may have up to 4 inputs
(Il, 12 etc.) and has 4 parameters Al, AO, B2, Bl. The boxes MIP and
MOT are required input/output boxes for SUPERS. The term END
designates the end to the coding for ADB. The order of appearance of
the boxes within the SUPER is immaterial since the compiler builds
internally a connection matrix from which the blocks are ordered to
produce an efficient program.

The partial fraction expansion terms in the various filter transfer
functions are then realized using this definition for ADB. Since all of
the filters, bandpass and low-pass, are used in several places, these

TABLE I - BLODIB CODING FOR THE TRANSFER FUNCTION
3C(z) = Ao)/(B2Z-2 + Biz -1 + 1)

ADB MACRO Il, 12, 13, 14, Al, AO, B2, B1
IN MIP 1, DFF
DFF SUB AOAMP, DELI
DELI DEL 1, B1AMP, A1AMP, DEL2
DEL2 DEL 1, B2AMP
B1AMP AMP Bl ADD
B2AMP AMP B2 ADD/2
ADD ADR DFF/2
AOAMP AMP AO SUM
A1AMP AMP Al SUM/2
SUM ADR OUT
OUT MOT

END
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too are coded as SUPERS. Hence, wherever a filter is required, it can
be referenced as a single block. In this way, a complete set of filter
blocks is built up quickly from the basic BLODIB language.

Figs. 4 and 5 show, respectively, the frequency and time response of
one of the bandpass filters required in the simulation. (These graphs
along with the BLODIB programming required for simulation were
produced by a special computer program for determining sampled -data
filter transfer functions. The block diagram for this filter is shown in
Fig. 6. Table II presents the actual BLODIB coding.
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Fig. 5 - Time response for a vocoder-channel bandpass filter.

Having determined the representation for the various filters, the next
step required is that of coding each of the 15 channels in the vocoder.
From Fig. 1, it is seen that each channel (omitting multiplexing and
transmission) consists of a bandpass filter, a full -wave rectifier, a low-
pass filter, a "chopper" modulator, and another bandpass filter. In
addition, a third bandpass filter is used between the output of the excita-
tion generator and the modulator. A block diagram for one of these
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Fig. 6 - BLODIB representation for a vocoder-channel bandpass filter.

channels is shown in Fig. 7 along with the BLODIB coding necessary
for simulation. The power of BLODIB with its "SUPER" capability
is now readily apparent. Not only is the actual coding for each channel
simplified, but any or all of the filters may be changed (by substitution
of different SUPERS) without the necessity for recoding the entire
system.

Completion of the above second prerequisite is usually all that is re-
quired in the programming of an entire system. However, two other
features of BLODIB which also are used advantageously will be dis-
cussed briefly. These are the modular programming feature called
SSUBR and the subroutine feature called SUBR. The SSUBR feature
allows a block of BLODIB coding (similar to that contained within a
SUPER) to be used as an external "module" to a main BLODIB
program. However, unlike SUPERS which must be specified and com-
piled within the main program, SSUBRs are coded and compiled sepa-
rately. These programs are then loaded as subroutines for use by the
main program.

For example, the MOD (chopper) box shown in Fig. 7 was coded as
an SSUBR and used in conjunction with the main vocoder program.
This allowed different modulator configurations to be tested by simply
"plugging" them into the program deck at run time. Multiplexing sys-
tems also were tested by using different external SSUBRs.

The SUBR feature permits coding an entire simulation so that it can
be controlled by a main or "executive" program. (Such a program may be
coded in FORTRAN or FAP.) This permits changing system parameters
or using intermediate analysis programs as an integral part of the
simulation.

At present, the simulated vocoder consists of a main FORTRAN
program which supplies external parameters and provides the calling
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TABLE 2 - BLODIB CODING FOR A VOCODER-CHANNEL
BANDPASS FILTER

CHA MACRO Il, 12, 13, 14
IN MIP 1, CHAI
CHAI AMP 1., -4, CHA01, CHA02, CHA03, CHAO4
CHAO1 ADB 4

-448.005981
74.456865

114.566368
-189.968182

CHA05/2
CHAO2 ADB 4

276.439266
193.008114
113.922181

-184.224327
CHA05/3

CHAO3 ADB 4
187.295624

-112.815660
118.592467

-198.106075
CHA05/4

CHAO4 ADB 4
-11.099112

-154.649326
117.119220

-180.637222
CHA06/2

CHAOS ADR CHAO6
CHAO6 ADR MOT
MOT MOT

END

sequences for the following BLODIB subroutines (SUBRs): an input
routine which allows either the conventional mode or the voice -excited
vocoder mode to be used; the main vocoder program; and, the output
routine. The main vocoder program uses BLODIB SSUBRs for the
excitation detector and generator and for the multiplexing and trans-
mission networks. Fig. 8 shows how the various programs are inter-
connected. Variation of parameter or network configuration is accom-
plished by changing either parameters within a given block or changing
the block completely. In this manner, optimization of system perform-
ance was achieved by optimizing the appropriate "modules" in the
simulation. Hence, the programming of a complete vocoder system is
achieved in an extraordinarily short amount of time using BLODIB.

Having completed the first two important prerequisites for simulation
- namely sampled -data representation of the vocoder and its transla-
tion into the BLODIB programming language - there remains only
the final step of preparing input speech data to be processed by the com-
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Fig. 7 - BLODIB representation and coding for a complete vocoder channel.

puter. This is accomplished by an analog-digital translator as indicated
in Fig. 9. The translator, which can sample prerecorded input speech
at rates up to 20 kcps, quantizes the input speech signal to one of 4096
levels (including sign). The sampled -and -quantized data is recorded at
800 bits/inch on standard digital magnetic tape in a format used by the
BLODIB input/output routines. Running time on the IBM 7094m°d II

for typical vocoder simulations is about 100 times real time (i.e., 1

second of speech requires 100 seconds for processing). The results from
the simulation programs are similarly recorded on digital tape and then
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READ A. PRINT DATA CONCERNING
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CONTROL DATA FLOW

INPUT SUBR VOCDR SUBR OUTPUT SUBR
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Fig. 8 - Flow diagram for vocoder simulation program.
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played back through the data translator. Of course, digital input tapes
can be used over and over again, thereby removing this third prerequisite
from succeeding simulations.

Thus far, BLODIB computer simulations have indicated: what filter
designs yield good synthesized speech, what type of multiplexing and
transmission systems might be satisfactorily used on the spectrum chan-
nel signals, how many spectrum channels are required, etc. As a result of
these findings, improvement of system performance has been accom-
plished in a relatively short time and without the inherent delay and
cost of building complex equipment.

VI. SUMMARY

Digital computer simulation of communication systems has been
simplified and made more flexible by use of the BLODIB programming
language.

Three prerequisites to actual simulation have been presented. They
are 

(i) the finding of an appropriate sampled -data representation for
the particular communication system,

(ii) the preparation of a BLODIB computer program for the above
sampled -data representation, and

(iii) the preparation of input signals for processing by the program.
Details with respect to the BLODIB programming of the second step

above were illustrated by their applications in the simulation of a
vocoder system. Hence, new and complex communication systems can
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be evaluated, optimized, and redesigned quickly and efficiently before
final construction in hardware.
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The Capacity of the Band -Limited
Gaussian Channel

By A. D. WYNER
(Manuscript received December 27, 1965)

Shannon's celebrated formula W ln(1 Po/N0W) for the capacity of
a time -continuous communication channel with bandwidth W cps, average
signal power P. , and additive Gaussian noise with flat spectral density
N. has never been justified by a coding theorem (and "converse"). Such a
theorem is necessary to establish W ln(1 PO/NOW) as the supremum of
those transmission rates at which one may communicate over this channel
with arbitrarily high reliability as the coding and decoding delay becomes
large.

In this paper, a number of physically consistent models for this time -
continuous channel are proposed. For each model the capacity is established
as W ln(1 PO/NOW) by means of a coding theorem and converse.

I. INTRODUCTION

As an idealized model for the time -continuous Gaussian channel (with
bandwidth W cycles per second, two-sided noise spectral density N0/2,
and average power P0), Shannon''' employed the mathematical time -
discrete channel which passes 2W real numbers x per second, with the
average of x2 restricted to be P. . Each input x is perturbed by an inde-
pendent "noise" random variable which is Gaussian with mean zero
and variance N.W. If by "channel capacity" we mean the maximum
rate at which a channel is capable of transmitting information with
arbitrarily small error probability as the coding and decoding delay
becomes large, then the capacity of this time -discrete channel is given
by the celebrated formula W log2 (1 + Po/NoW) bits per second (or
W In (1 P0/NoW) nats per second).

In order to show that the capacity is given by this formula, it is
necessary to prove a coding theorem (showing the possibility of achiev-
ing "error -free" communication at any rate less than W log2 (1 +
Po/NoW)), and a "converse" (showing the impossibility of achieving
"error -free" coding at a rate exceeding this quantity). For this - purely
mathematical - channel these theorems have been proved, and there
is no question as to the meaning and validity of the capacity formula.

359
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The way in which Shannon arrived at this time -discrete model for a
"physical" time -continuous channel is described in detail in Section II.
It will suffice to remark here that there remain questions as to the relation
of this time -discrete model (and the resulting capacity formula) to a
physically meaningful time -continuous channel. These difficulties center
on the fact that the inputs and outputs of the time -continuous channel
are band -limited signals which are not physically realizable. As we shall
see in Section II, such assumptions lead to a number of anomalies and
absurdities.

Our purpose in this paper is to find physically consistant mathe-
matical models for the time -continuous band -limited Gaussian channel,
and to establish their capacity by means of a coding theorem and con-
verse. Schematically our results are of the following form:

Let a (T,W,P0) be a class of functions which are "approximately
band -limited to W cycles per second and approximately time -limited to
T seconds", and which have "average power" Po . The channel inputs
must be members of a. The noise is additive, stationary, and Gaussian
with flat two-sided spectral density No/2 in the band 0 -W cycles per
second (or "approximately" given as above). Then the channel capacity,
defined as the maximum rate for which arbitrarily high reliability is
possible (using signals from a) as T becomes large, is given
mately" by W log2 (1 + Po/NoW). The term "approximately" used
here will, of course, be given a precise meaning below.

In Section II, Shannon's model and results are discussed, and in Sec-
tion III our models and results are stated completely and discussed.
Our proofs follow in Sections IV and V. A glossary is included at the
end of the paper.

II. THE SHANNON MODEL

2.1 The Time -Discrete Channel

In order to fix ideas as well as to review some results which will be
required subsequently, let us consider the following class of (time -dis-
crete) channels: Every T seconds the input to the channel is a sequence
of n = [aT] real numbers x = (x1 ,x2 , , xn), where a (0 < a ._ co )

is a fixed parameter. Further, the input sequence must satisfy the
"energy" constraint

n

E(x) = E xk2 s PT, (1)
Ic=-1

where P > 0 is another fixed parameter, and where E (x) is, as indicated,
the sum of the squares of the components of x.
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The channel output is also a real n -sequence y = (.71 ,y2 ; ; Yn),
where

Yk = Xk k = 1,2, , n, (2)

and the noise digits zk (k = 1,2, , n) are independent, normally
distributed random variables with mean zero and variance N.

Let us assume that this channel is to be used in the communication
system of Fig. 1. The output of the message source is a sequence of
independent and equally likely binary digits which appear at the input
of the coder at the rate of Rb digits (bits) per second. Every T seconds
the coder input is one of M = 2RE'T binary sequences, each sequence
being equally likely. Let us number the possible messages as 1,2, , M.
The coder contains a mapping of the message set 11,2, , /1/1 to a
set (called a code) of M real n -sequences ,x2 , , xm) (called
code words) satisfying (1). If message i(i = 1,2, , M) is the coder
input, then the coder output (and hence channel input) is the code
word xi . Since it takes T seconds to transmit a code word, the system
can process information continuously without a "backup" at the coder
input. The transmission rate is Rb bits per second or R = (ln )Rb
nats per second.

It is the task of the receiver (or decoder) to examine the received
sequence y, and determine which of the M code words was actually
transmitted. Thus, we may think of the decoder as a rule which assigns
to each possible received sequence y, a code word xi . Let us denote by
Pei the probability that the decoder chooses the wrong code word given
that xi was transmitted. The over-all error probability is then

Pe = 1- Pe- . (3)
M i=1

A transmission rate R (nats per second) is said to be permissible if
for every A > 0 one can find a T sufficiently large and a code with
parameter T with M = [eRT] code words and Pe < A. With such a code,
the system could process Rb = R/ln 2 bits per second. We define the
channel capacity C as the supremum of permissible rates. For the channel
under discussion the channel capacity is given by the celebrated formula

MESSAGE
SOURCE CODER

iz
XL

CHANNEL
Xl+Z

Fig. 1. - Time -discrete channel.

RECEIVER
i.
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C = = -c! ln (1 + -aiTrP .
2

(4)

In order to establish C as the capacity, one must prove two theorems.
The first ("direct half") states that any R < C is a permissible rate;
that is, there exist codes with vanishingly small Pe as T co . The
second theorem ("weak converse") states that no R > C is a permissi-
ible rate; that is, for any sequence of codes with rate R > C, Pe is
bounded away from zero. This has been done for the present channel
for the case of a finite a by Shannon.1'2'3 Let us observe that if we let a
00 in (4), we have Ca P/2N. The fact that Coo = P/2N has been
established by Ash.4 The reader is referred to Ash [Ref. 5, Chapter 8]
for a complete discussion of the above. The significance of the channel
capacity then, is that it is the maximum rate for which arbitrarily high
reliability is possible using signals in a certain class (i.e., those which
satisfy (1)) with sufficiently long delay T.

2.2 Application to the Band -Limited Gaussian Channel

Shannon1.2 has applied the above results to the communication system
of Fig. 2. As above, the message source emits binary digits at the rate of
Rb per second, and after T seconds, one of M = 2Rb r possible messages
appears at the coder input. Corresponding to the ith message (i = 1,2,

, M) the coder output is the function

xi(t) = xika(t - k/2W), (5a)
1c=1

where (5 (t) is the unit impulse, n = [2WT], and the {xik}k-in satisfy

E x1k2 S 2WPOT, i = 1,2, , M. (5b)
k=1

As for the time -discrete channel, the coder must contain a set of M real
n -sequences. The channel input s; (t) is the result of passing si (t) through
an ideal low-pass filter with transfer function

MESSAGE
SOURCE

H (w) =

CODER
x L(t)

1

2W
0

H(o)

2rIV,
Iwl > 27rW,

SL(t).

z (t)

CHANNEL

(6 )

y(t) = six+ mt.)

RECEIVER

Fig. 2 - Shannon's time -continuous band -limited channel.
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rsin 2rW(t - k/2W)1
k=1 L 2rW (t - k/2W) j 

Thus, it takes T seconds to generate the filter input, and the system can
process information at a rate of R = 2)Rb vats per second without
a "backup" at the coder input. Let us also remark that although the
signal si (1) is generated in T seconds, due to the physical unrealizability
of H(w), si(t) is nonzero almost everywhere on (- co ,00 ). This leads to
a fundamental difficulty which we shall discuss later.

Let s (t) be the input to the channel due to a repeated application of
the coding process (every T seconds). Then s(t) is bandlimited to W
cycles per second, and

(7)

1 r" 2
limit -m s (t)dt . (8)
To -.0 -T0/2

Inequality (8) follows from (5b) and the orthogonality of

sin 27W (t - k/2W) ad sin 27W (t - k'/2W)
2rW (t - k/2W) n 2rW (t - k'12W)

(- 00 < k < < 00) on the infinite interval (- 00,00 ). Thus, the
channel input is a bandlimited signal with "average power" not exceed-
ing Po .

Again turning our attention to Fig. 2, the channel output is a function
y (t) = s (t) z(t), where z (1) is a sample from a Gaussian random
process with spectral density

{N0/2 lwl -.5._ 27W,N(w) = (9a)
0 iwl > 27W.

The corresponding autocorrelation function of the noise is

sin 2.7WTR(T) = 6[z(t)z(t (9b)
27Wr

where 6 denotes expectation.
Again it is the function of the receiver (or decoder) to examine y (1)

and determine what the input information was. Let us consider the
signal si(t) (7), which was generated during the interval [0,7]. The
coefficients {xik}k-in are the values of si(t) at the "sampling instants"
t = k/2W, k = 1,2, , n. Since the noise is also bandlimited, the
received signal y (1) is bandlimited and may be completely characterized
by its values at the sampling instants yk = y(k/2W), k =
0, ±1, ±2, . Clearly

yk = Xik Zk k = 1,2, , n, (10)
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where zk = z(k/2W) is the value of the noise z(t) at the sampling in-
stant t = k/2W. Since si(k/2W) = 0, for k < 1 and k > n, the only
useful samples of y are {yk} k=in. Further it follows directly from (9b)
that the zk are independent, normally distributed random variables
with mean zero and variance NoW. Thus, it suffices to consider the
input and output as n -sequences xi = (x11 , x12 , , xin) and y =
(yi , , yn) (n = 2WT) related by (10). Let us remark here, that the
code words corresponding to previous and successive intervals will
not cause any interference with the code word corresponding to the
interval [0,T], since these other code words are zero at the sampling
instants.

Inequality (5b) and (10) permit us to apply the results for the time -
discrete Gaussian channel discussed above with parameters a = 2W,
P = 2WPo, and N = NoW. We conclude that this communication
system (in Fig. 2) is capable of processing information at any rate R
less than

Po
'

C = W In (1 + (11)
NoW

with vanishingly small error probability as T becomes large. Since the
channel inputs are bandlimited to W cycles per second, and by (8)
have average power not exceeding Po , it is generally believed that the
capacity (taken as the maximum "error -free rate") of a channel which
admits only bandlimited signals with average power Po is given by (11).
In fact, it has only been shown that it is possible to do at least as well
as C (using the system of Fig. 2), and no converse has been proven. This
is the first difficulty with the Shannon model which we shall attempt to
remedy.

Further, there are other difficulties inherent in the use of this model.
We are taking "capacity" to be a (maximum) transmission rate, but
what is the rate for the system of Fig. 2? We have said merely that the
coder can process information at a rate of R nats per second. However,
because of the physical unrealizability of H (co), we must discard all
temporal notions about the channel input s; (t) as well as the output
y (t). The notion of rate, therefore, has only a limited meaning. In fact,
since the received signal y (t) is an entire function, it is perfectly pre-
dictable for all time from observations over a finite interval. Thus the
receiver, by observing y (t) in a tiny interval, could extrapolate y (t)
for all time and obtain sample values at an arbitrarily high rate. This
anomaly is the second difficulty with the Shannon model.

It is the purpose of this paper to present a model for the time-con-



BA ND -LIMITED GAUSSIAN CHANNEL 365

tinuous band -limited Gaussian channel 'for which the capacity (defined
as the maximum "error -free rate") is given by (11). This will necessitate
proving a "direct half" and "converse" to a coding theorem. Further,
the model should avoid the second difficulty mentioned above. We shall
obtain results of the following form:

Let a(T,W,P0) be a class of functions which are "approximately
bandlimited to W cycles per second and approximately time -limited
to T seconds", and which have total "energy" not exceeding PoT.
The noise is taken to be stationary 4nd Gaussian with spectral density
given (or "approximately" given) by (9a). Then the channel capacity,
defined as the maximum rate for which arbitrarily high reliability is
possible (using signals from a) as T becomes large, is given "approxi-
mately" by W In (1 ± Po/NoW). The term "approximately" used
here will, of course, be given a precise meaning below.

III. SUMMARY OF RESULTS

We shall propose four models for the channel and find the capacity
of each. Each model is of the following form:

(i) Definition of a suitable class of allowable signal functions,
a which are "approximately
per second, approximately time -limited to T seconds", and with
total energy not exceeding PoT.

(ii) Definition of the noise - taken to be stationary additive Gaus-
sian noise with spectral density N (w), which is "approximately"
given by (9a).

We shall take W and Po to be fixed parameters. A code with parameter
T is a set of M functions (called code words) in a (T,W,P0). The transmis-
sion rate R is defined by R = (1/T) In M, so that M = eR T. A decoding
scheme is a mapping of the space of possible received signals (code word
plus a noise sample) onto the code. If code word i (i = 1, 2, , M)
is transmitted, we take Pei to be the conditional probability that the
decoder chooses a code word other than i, and hence makes an error.
Since all code words are equally likely to be transmitted, the over-all
error probability P. is given by (3), i.e.,

ME
M i=1

A transmission rate R is said to be permissible, if for every X > 0 one
can find a T sufficiently large and a code with M = [eRT] code words for
which P, < X. The channel capacity C is defined as the supremum of
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permissible rates. We shall find the capacity corresponding to a number
of different a(T,W,P0) and N (w). This will, as for the time -discrete
channel, necessitate proving two coding theorems -a "direct half"
and a "weak converse".

Before beginning the summary we shall need the following definitions.
Let s (t), - oo < t < oo , be a real -valued square -integrable function
and S (w) be its Fourier transform. Let the norm of s (t) be

11 s = [f s2(t)dti. (12)

The frequency and time "concentration" of s are

KB(s,27W) = -1 17 w I S(w) Mon 8112, (13a)0
d..,7r 271V

and
T/2

KD(S,T) = 82(t)d1/11 s 112, (13b)

respectively. Further, let DT be the "time -truncation" operator defined

DTs
s(t) l -5 T/2,

0 I t I > T/2. (14)

With these definitions in hand, we are able to state our results. In each
case we shall define the channel model and then give the channel ca-
pacity. Although there are some difficulties inherent in these models,
each model leads to a mathematical theorem which justifies Shannon's
capacity formula.

Model 1: To begin with, let us take for the set a of "allowable" inputs.
(T,W,Pc), the set of functions s (t) satisfying

s(t) = 0, I t I > T/2, (15a)

118112 < PoT, (15b)

KB (8,27W) >= 1 - n (0 < n < 1) . (15c)

Hence, our allowable signals are functions which are strictly time -limited
and approximately band -limited. As ?I -+ 0, the allowable signals become
more perfectly bandlimited. The noise spectrum is taken to be
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I col 2R -TV,N (w) = (16)
vN0/2 I 0) I > 27r TV,

where 0 < v < 1. As v 0, (16) is in some sense "approximately" the
same as (9a). The average noise power outside the band (I w I > 27W),
however, is infinite. In this case, Theorem 3 establishes

C = C = W ln (1 ± (1 - - (17)
NoW vN.

as the channel capacity. As n --) 0, the capacity approaches the classical
formula W In (1 + Po/NW).

The principal difficulty with this model is the assumption of infinite
average noise power, which is hardly a physically acceptable notion.
Further, there are mathematical difficulties inherent in a spectral
density given by (16) which implies a covariance containing an impulse
function. Often the assumption of a spectrum in (16) can be justified
by the fact that it can be approximated as closely as desired in the
frequency range of interest by a spectrum with finite power. However,
the following theorem, the proof of which is Appendix B, renders this
justification meaningless in this case.

Theorem 5: Let a (T,W,PO) be as in (15) and let the noise be additive and
Gaussian with spectral density N (w), where

.C3
N(codw< 00.

Then the capacity C = 00 regardless of how small t may be.
Intuitively, we may see that this is true by observing that, since the

above integral exists, N (w) must be arbitrarily small in some frequency
range. Hence, by placing some signal energy into this frequency range,
we can make the "signal-to-noise" ratio arbitrarily large, and therefore,
the permissible rate of transmission arbitrarily high.

Accordingly, we shall assume for the remaining models that the noise
is additive, Gaussian, with spectral density

I 5 2{N./2 co - 7W,N (w) = (18 )
0 I w I > 27W.

This corresponds more closely with the usual formulation of a band -
limited channel. It remains to find a suitable class of input signals,
a (T,W,P.). We consider some possibilities.

Model 2: This model defines a = a2 (T,W,PO) as the set of functions s(t)
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satisfying

no) = 0, I co I > 27rW , (19a)

s II2 5- PoT, (19b)

KD (s,T) 1 - n (0 < n < 1). (19c)

Thus, a2 is a set of strictly band -limited, approximately time -limited
functions. As n 0, the allowable signals become more perfectly time -
limited. With the noise as defined in (18), Theorem 2 establishes

C = C,, = W ln (1 ± (1 -n)No nNo (20)

as the channel capacity. Again, as n 0, C approaches the classical
formula W In [1 (Po/NoW)].

Model 2 is an intuitively plausible model for the band -limited channel,
and Theorem 2 which establishes its capacity is a mathematically rigor-
ous result which, in the limit, yields the desired capacity formula. There
are, however, two difficulties inherent in this formulation. The first
is that since the allowable signals s (t) are band -limited, it is not possible
to generate them in finite time. Thus the central idea of a transmission
rate has, at best, a limited meaning. The Shannon model (Fig. 2)
suffers from this difficulty (see Section II). The other problem with
this formulation is that if code words are transmitted sequentially,
we will have an interference problem (i.e., the tails of successive signals
will overlap), the resolution of which is not known at present. The
following two models contain neither of these difficulties.

Model 3: This model avoids the difficulties of Model 2 by letting the
code words be strictly time -limited and approximately band -limited.
However, as we have seen in Theorem 5, the definition of approximately
band -limited functions employed above (15) yields an infinite capacity.
Thus we seek an alternate way of characterizing "approximately"
band -limited or "slowly changing" functions. We proceed as follows.
Let x (t) be a function satisfying x (t) = 0, I t I > T/2, and II x 112 < 00.
If x = D2,1, where is a strictly bandlimited function and DT is defined
by (14), we may define a "frequency concentration" of x by

I2
KB'(x,2lrW) =

1112-
(21)

If we cannot express x as DTA we take KB' = 0. For example, if x(t)
or any of its derivatives has even a small discontinuity then we cannot
write x = DT1, so that KB' (x,27rW) = 0 and x is not approximately
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bandlimited in this sense. This is so no matter how large KB(x,27rW)
may be. Conversely, it is shown in Appendix C that for any function x

KB (s,27W) >= 1 - 2 4/1 KB' (x'27I-W) (22)
KB'(x,27W)

so that a KB' close to unity implies a KB close to unity. Thus, saying that
a function x has a KB' close to unity implies that x is "slowly changing"
and that KB is also close to unity.

We now choose that set a = a3 (T,W,P0) of allowable inputs as the
set of functions s (t) for which

s (t) = 0, 1 t I> T/2, (23a)

118112 5 P0T, (23b)

K (8,27W) > 1 - n (0 < n < 1). (23c)

Thus a3 is a set of strictly time -limited, and approximately band -limited
functions. In this case, Theorem 4 establishes

. )C = C,, = W ln (1 + Pw
1 -

P. (24)

as the channel capacity. Again C,, W In [1 + (P./NoW)] as n 0.

The significance of constraint (23c) is that it makes it impossible
for the communicator to make any use of the high -frequency components
which must of necessity be included in the signal (since it is time -
limited ). Model 3, therefore, provides a mathematically rigorous
theorem which does not involve any complications concerning physical
realizability, and yields the desired capacity.

Our final formulation is as follows:

Model 4: Let a = a4 (T,W,P0) be the set of strictly time -limited,
approximately band -limited functions s (t) which satisfy

s (1) = 0, 1 t I> T/2, (25a)

118112 5 P0T, (25b)

KB(8,27r-W) 1 - n. (25c)

Now Theorem 5 (stated above) tells us that if the noise were as in
(18), then the capacity is infinite. In actuality one could not be sure that
the noise was absolutely band -limited. In fact, whether or not the noise is
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strictly band -limited is not verifiable in the laboratory. It is reasonable,
therefore, to assume that the noise is given by 2(0 = Mt) 22(t),
where zi (t) is a sample from a Gaussian random process with spectral
density (18). For 22 (t) we require only that

T/2
z22(t)dt < vNoWT, (26)

where v > 0 is small. We place no other restrictions on the spectrum of
22 or on its probability structure. Since the expected value of the energy
of 21W in [-T/2,T/2] is NOWT, (26) implies that the energy of 2(0
is nearly all in zi (t) (v << 1). We shall assume that 22(t) may depend
on the code and decoding rule used, on the code word transmitted,
and the sample zi (t). We require our communication system to perform
well no matter what 22(0 may be.

Let us say that a code (satisfying (25)) and a decoding rule have
been chosen. Let us also assume that the rule for selecting 22(0 has
been chosen. Let P, (22) be the resulting error probability. Then define

Pe = max P 6(22), (27)
62

where the maximization in (27) is over all rules for choosing 22(0 -
with the code and decoding rule fixed. The channel capacity is the
supremum of those rates for which Pe may be made to vanish as T 00.

It can be shown (see Appendix D) that the capacity C is given by

C=C,,,=WIn.(1± N----+E(n,v) (28)
W)

where E (n,Y) 0 as n,v -> 0 provided v/77 > PO/NOW, the signal-to-
noise ratio. Since we may consider n and v to be limits on the accuracy
of our measuring equipment, the former on measuring the signal* and
the latter on measuring the noise, it is reasonable to assume, as we did
in (28), that 77 and v go to zero at the same rate.

An alternate and mathematically equivalent formulation of Model
4 is as follows: Let the signals s(t) be as in (25) and the noise 2(0 be
as in (18). Now in reality one could not expect the decoder to be
capable of infinitesimally accurate measurements. It is reasonable,
therefore, to assume that there is an inherent uncertainty in all measure-
ments made by the decoder, and to require that the communication
system perform well despite this uncertainty. Specifically, we require
that the decoding regions satisfy the following condition: If yl (1) is
decoded as si , and y2(t) is decoded as si(i j), then

* represents a limit on the measurement of the frequency component of
the signal outside the band.
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T/2

IT/2

In other words, if a received signal y (t) is close to the "border" between
decoding regions, we cannot, because of the uncertainty in the accuracy
of our measurements, be sure to which region y (t) belongs. Condition
(29) forces the decoder to give up on such a y (t) and to announce an
error. The capacity for this alternate model is also given by (28). Let
us remark that here v is again a measure of the accuracy of our measuring
instruments, this time at the decoder, so that again it is reasonable to
expect n and v to tend to zero at the same rate.

(yi(t) - y2(t))2 dt 2vAroWT. (29)

IV. PRELIMINARIES TO PROOFS

4.1 The Product of Time -Discrete Channels

The product or parallel combination of r time -discrete Gaussian chan-
nels is defined as follows. Every T seconds the input to the channel is
an r-tuple (x(1), x(2), , x(r)), where

x") = (xi"), x2"), , xn,")) (i = 1, 2, , r)

is a real ni-vector (ni = aiT, ai a fixed parameter). Each vector x")

satisfies the energy constraint

E[x")] = E [xV)12 < PiT, i = 1,2, , r, (30)
k=1

where the P i > 0 are fixed parameters. The channel output is also an
r-tuple (y(1) , , y(r)), where the y(') are ni-vectors given by

y(I) = x") z"), (31)

where the z") are ni-vectors whose coordinates are independent Gaus-
sian random variables with mean zero and variance Ni(i = 1, 2, , r).
Further, the {z"))'*i_i are statistically independent. Codes, permissible
rates of transmission,, and channel capacity are defined as in Section I.
The following is proved in Ref. 6.

Lemma A: The capacity C of the product of r time -discrete Gaussian
channels, with parameters (ai , Pi , N 1), i = 1, 2, , r, is given by
the sum of the capacities of the component channels:

C=E (-1-i 1n. (1 + Pi )
i=i 2 aiNi

(32)
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Equation (32) also holds when one or more of the ai = 00 . In this case
we read x In [1 + (c/x)] as c.

4.2 The Jointly -Constrained Product Channel

We define the jointly -constrained product of time -discrete channels
exactly as the ordinary product with constraint (30) replaced by con-
straints of the following form:

Type 1: Let r = 2 and N1 = N2 = N and instead of (30) we have

E(x) = E(x(1)) E(x(2)) PT. (33a)

If ai «2 we introduce an additional constraint on x(2)

E (x(2)) _5 (x) (33b)

where /1(0 < < 1) is another fixed parameter. In other words, we have
constrained the total energy of the two input vectors (33a), and intro-
duced another constraint on the second input vector x(2) requiring it
to have no more than ?I of the total energy (33b). If a2 < an , we replace
(33b) by a similar constraint on x(1).

Type 2: Let r = 3, N1 = N2 and N1 > N3 . Further, let a3 = 00.
Instead of (30) we require that x satisfy

E(x) = E(x(1)) E(x(2)) E(x(3)) 5. PT, (34a)

E(x(3)) < 11E(x). (34b)

This is a special case of type 1 when a2 = 0, N1 = N3 .

Type 3: Let r = 2, N1 = N2 = N, and a2 = 00. Instead of (30) require
x to satisfy

E(x(1)) < PT, (35a)

E (x(2) ) < nE (x) (35b)

We now ask what is the capacity C of these channels? The answer is
the following theorem which is proven in Appendix A.

Theorem 1: The capacity C of the jointly -constrained product channel as
defined above is

Type] (r = 2, Ni = N2 = N ) :

C = C1((1 - $)P) + C2(0/3), (36)

where
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13 = min (77" ,

a2

+ co)

and

(37a)

Ci(x) = in (1 +
a

i = 1,2. (37b)

Again when ai = 00, we interpret .r In [1 + (c/x)] = c. In particu-
lar, when a2 = 00 < co $ = il, so that (36) implies that we can
do no better than putting as much energy into Channel 2 as (33b)
will permit.

Type 2 (r = 3, Nl = N2 N3 , a3 = oo

C = «1In (1 + (1 -\ (al + a2)N1/

ln (1 + (1 -
P

(al + a2)N1 2N3

Type 3 (r = 2, N, = N2 = N, a2 = ):

C = -c! 2j ln aiN
) '41)

- ii)2N 

(38)

(39)

4.3 Prolate Spheroidal Wave Functions

The following material can be found in Ref. 7. Given any W,T > 0
we can find a countably infinite set of real functions called
prolate spheroidal wave functions (PSWF), and a set of real positive
numbers

1 > X1 > X2 > (40)

with the following properties:*
(i) The iii (t) are bandlimited to W cycles per second, orthonormal

on the real line, and complete in the space of bandlimited functions of
bandwidth W cycles per second.

(ii) The restrictions of the tki(t) to the interval [- T/2, T/2] are
orthogonal:

T/2

f-T/2
lki(01//5(t)dt =

=

0 i j.
(41)

* Note that the first PSWF is th(1). In Ref. 7, on the other hand, the first PSWF
is Po(t).
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The restrictions of the tki(t) are also complete in 22 [- T/2,T/2], the
space of square integrable functions on [-T/2,T/2].

(iii) For all t, the &i(t) satisfy the integral equation

sin 2irW(t-s) 7

Xilfr(

T/2

f
T/2

t) = O ir(t-s)i(s) as.-
(42)

Thus the Xi are the eigenvalues, and the Oi the eigenfunctions of the
integral equation (42). It follows immediately from (42) that the time -
limited functions DT#i (see (14)) have frequency concentration (see
(13a))

KB(D211,i , 2irW) = Xi , i = 1, 2, . (43)

It can be shown that the Xi and Ifri depend upon W and T only through
the product WT. Further,

(iv) For a fixed ö > 0:

X2WT(1-13) --4 1 as WT --3 co (44a)

and

X2WT(1+8) -> 0 as WT -- 00. (44b)

Thus roughly speaking, for large WT, approximately 2WT of the Xi
are approximately unity, and the remainder are approximately zero.

4.4 Karhunen-Loeve Expansion

Let z (t) be a Gaussian random process with spectral density N (w)
given by (18). Then, using the Karhunen-Loeve Theorem8, we may
write z (t) .as

T Tz(t) = te zok
2(t), - - < t<E - -2 ' (45)

where the IP k (t) are PSWF's, and the zk are independent random varia-
bles which are normally distributed with mean zero and variance No/2.
The sum in (45) converges to z (t) with probability 1 for every t.

If N(w) is given by (16), then we may formally represent z(t) by

z(t) = i z -Tic%P_rk) , --T < t < (46)
k=1 V A 2 - - 2

where the Xk are the eigenvalues of the PSWF's (40), and the zk are
independent normally distributed random variables with mean zero
and variance
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8(zk2) = 214(1 - v) +

Thus from (44) roughly speaking, for large WT, approximately 2WT
of the zk have variance N0/2, and the remainder variance vN0/2.

V. PROOFS OF THE THEOREMS

The general ideal of the proofs in this section is as follows. All the
time continuous input signals (i.e., members of a (T,W ,P0) can be writ-
ten in a Fourier series in PSWF's in which, roughly speaking, the first
2WT terms correspond to the part of the signal which is simultaneously
approximately confined to the frequency band I co I S 27W and to the
time interval I t I < T/2. The noise sample z(t) may also be written
in a Karhunen-Loeve expansion in PSWF's. The result is to reduce the
time -continuous channel into a jointly -constrained product of time -
discrete channel (discussed in Section 4.2). Channel 1 corresponds to the
first 2WT PSWF's so that the parameter al = 2W. Channel 2 corre-
sponds to the remaining PSWF's so that a2 = 00. The energy require-
ment on the time continuous signal s 2 PT yields a joint energy
constraint for the product channels (as in (33a) for example), and the
requirement that the energy outside the frequency band (or time -
interval) be small yields a second energy constraint on the input to
Channel 2 (as in (33b) for example). Application of Theorem 1 then
yields the desired theorems. In the remainder of this section we shall
make these ideas precise.

We begin by establishing the capacity of the channel defined by Model
2.

Theorem 2: Let the allowable signal set be a2 (T,W ,P.), the set of functions
8(t) satisfying

= 0, I w > 27-117, (47a)

II s II! P071, (47b)

KD(s,T) > 1 - n (0 < n < 1). (47c)

The noise is a sample from a Gaussian random process with spectral
tensity

N(w) = {N°/2 27W, (48 )
0 co I > 2wW.

Then the channel capacity is

C = C = W ln (1 ( 1 - NPoT°v) vri):, (49)
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Proof:
(i) Direct Half: Let R be given satisfying

R < W ln [1 (1 -n)NoWP° 1+ nNo*-P° (50)

Since the right member of (50) is continuous in n and W, we may find
a S > 0 and a > 0 sufficiently small so that

R <W(1 - 6) In [1 + (1 - n ± a) 15°
NoW(1 - (5)

No =

We see from (36) that C* is the capacity of a type 1 jointly constrained
product channel with parameters

P = Po , N = N0/2, = n - 0-, = 2W(1 - 3), a2 = co . (51)

We now show how to construct codes for the time -continuous "channel'
with rate R and with vanishingly small error probability (as T - co).
Let x = (x(1), x(2)) be an allowable input vector for the type 1 time -
discrete product channel with parameters given by (51). Then the
corresponding for the time -continuous channel is

2W (1-5)T= aiT 2T

s(t) E xk(1),h(t) + E Xk (2)
V/14-1-2W(1-3)T(t) (52)

k=1 k=1

where the ftiti ir=i' are the PSWF's (Section 4.3) with parameters
W and T. We first verify that signals of the form of (52) are allowable
inputs, i.e., belong to a2(T,W,P0) and satisfy (47). That the s(t) are
bandlimited and satisfy (47a), follows from the fact that the PSWF's
have this property (Section 4.3). Further, the energy of s(t) satisfies

air .2T

II s 112 = E [xk(1)]2 + E [xk(2)]2 = E(x) 5. PT, (53)
k=1 k=1

where use has been made of the orthonomality of the PSWF's on (- 00,
- 00 ) (Section 4.3 (1)), and the joint energy constraint on x (33a).
Thus s(t) satisfies (47b). Finally, from the orthogonality of the PSWF's
on [- T/2, T/2] (41), and the monotonicity of the Xk (40) we have

11(1 -DT)sii2
1 - Icp(s,T) -

11 s 112

(1 - xo[xku)]2 + E I.Xk

2W (1-8)T
cci (1 - X2WT(1-2)+k) r (2)12

k=1 E(x) k=1 E(x) 11

, E(x")) + E(xm)
5_ [1 - X2wra-a).1 E(x) E(x)

( 54 )
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Now since A2 WT(1-5) 1 as T 00 (44a), and E(x(1))/E(x) < 1,
with T sufficiently large we have

E(X) )
[1 - X2WT(1---b)] E Cr'(x) -

Since E(x(2)) must satisfy (33b) (with 7-1 = n - 0-), we have (with T
sufficiently large)

1 - KD(8,T) 0- - 0- = n, (55)

so that s (t) satisfies (47c). Thus s (t) belongs to a2 (T,W,P0) -
Now we may express the noise in a Karhunen-Loeve expansion as

at T co

Z(t) = E zkwk(t) + E zkmika,+,(t), (56)
k=1 k=1

where again the th are PSWF's and the I zk")115k<,,,i=1'2 are independent
normally distributed random variables with mean zero and variance

= No/2. The output signal y (t) = 8 (t) z(t) is

y(t) = E yi(1)k(/) + E yk(2),ka1Ti-k(t), (57)
k=1 k=1

where the yk") are obtainable by integration from the signal y(t).
Further,

yk") = xk(i) zk"), (58)

so that we conclude that our time -continuous channel with signals
constructed in this way is equivalent to the type 1 jointly -constrained
product channel with parameters (51) and capacity cc* (see Appendix
E). Since R < C*, we may therefore construct codes with rate R for
either channel with error probability Po 0 as T -+ oo . This is the direct
half of Theorem 2.

(ii) Weak Converse: Say we are given a sequence of codes for our
time -continuous channel with parameters {Ti}j-1', with code words
belonging to a2 (Ti , W, Po) (as defined in (47)), with error probability
P."), and rate

Po
R > TV ln (1 + (1 - n)

NoW -1- 71 No'
(59)

We shall show that P.") must be bounded away from zero so that the
capacity C (the maximum permissible rate) cannot exceed the right
member of (59).

Now as in the proof of the direct half we may (by (59)) find a B >
0 and a > 0 sufficiently small so that
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R> W (1 ± 3) 111[1 + 1
1

n- cr) N oW (P10 + 3)1

P° AC*.1 - No =

Again, as in the direct half, C* is the capacity of the type 1 jointly -
constrained product channel with parameters

P = P0 N = N0/2,

2W(1 + (5), cY2 = °0 

n- 1 -

(60)

(61)

Now if s (t) is a code word from the code with parameter Ti , (so

that s E a2 (Ti,W,Po)), we may write s (t) as a Fourier series in PSWF's
(due to the completeness of the PSWF's on the space of band -limited
functions) (Section 4.3),

2WTi(1+b)

s(t) = E 2,(1)4,k(t) + E Xk(2)tk4-21VTi(1+6)( t)
k=1 k=1

- 00 < t < .

(62)

Hence, to each code word s(t) for the time -continuous channel, there
corresponds a vector x = (x(1), x(2)) whose coordinates are the coeffi-
cients in the above Fourier series. We now show that x is an allowable
input to the type 1 jointly -constrained product channel with parameters
given by (61). From the orthonormality of the PS F's on (- co co )

we have from (62), II s 112 E(x). Since s (t) E a2 (T W, P0), we have
E (x) < PT i , so that x satisfies (33a). Further, from the orthogonality
of the PSWF's on [- T/2, T/2] and the monotonicity of the Xk we have

1 - KD(s,71) - (1 - Dri)s 112
s 112

[xku']2(1-xo [x,(2)]2(1 - xvvTi(i+o)÷k)
k=1 E(x) k=1 E(x) (64)

E( X) )
> [1 - X2W 4-0Ti (1] E(x)

With Ti sufficiently large (from 44b) we may put -2 W T (1+0 o, and
since 1 - KD (s,Ti) < n,

E(x(2))<
1

71 E(x) = flE(x), (65)- a
so that x(2) satisfies (33b).
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Finally, if we proceed as in the proof of the direct half of this theorem
and express the noise in a Karhunen-Loeve expansion in PSWF's,
we can conclude that for each code for this time -continuous channel
we can obtain a code for the time -discrete jointly -constrained product
channel with the same rate and error probability (see Appendix E).
Since the rate R exceeds the capacity of the latter channel we conclude
from the weak converse to Theorem 1 that the error probability is
bounded away from zero. This completes the proof.

The following theorems establish the capacity of the channels defined
by Models 1 and 3.

Theorem 3: (Model 1) Let the allowable signal set be al (T,W ,P0) the
set of functions s(t) satisfying

s(t) = 0,
I t l> T/2, (66a)

118112 < PAT, (66b)

K B(s,27W) > 1 - n (0 < n < 1). (66c)

The noise is a sample from a Gaussian random process with spectral density

No/2 I co I -5 2irW,
N(w) {pAr0/2 (v 1) I 0, I > 2irW. (67)

Then the channel capacity is

o )C = C N= W In (1 -I- (1 - n)
No

(68)
oPW '

Theorem 4: (Model 3) Let the allowable signal set be a3(T,W ,P0) the set
of functions s(t) satisfying

s(t) = 0, I t
i

>= T/2, (69a)

11 8 II 2 PAT, (69b)

KB' (s,27rW) > 1 - n (0 < n < 1), (69c)

where KB' is the frequency concentration defined by (21). The noise is as
in Theorem 2 (48). Then the channel capacity is

Po
.

C = = W In (1 P°
1

(70)
N oW N

Proofs of Theorems 3, 4: Since the proofs of Theorems 3 and 4 parallel
that of Theorem 2 (which was given in detail above) we shall confine
ourselves to a few remarks which will enable the interested reader to fill
in the details on his own.
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Theorem 3: In the direct half we consider, as in the proof of Theorem 2,
a jointly -constrained product channel. In this case it is a type -2 channel
with parameters

= 2W (1 -a), a2 = 0, a3= co, P = ,

vN (71)= -2 (1 - E), N 2 = 2°
'

= n - cr,

where E,15,0- > 0 are "small". In the present proof, this channel plays
the role that the type -1 channel played in the proof of the direct half
of Theorem 2. Since a2 = 0, we may write a channel input as x --
(x(1),x(3)). Corresponding to x we construct an input signal for our time -

continuous channel as
2W (1-45)=. a iT

= D (1) k(t)
oo

(3) 11/ W (1-6)T
Xk Xk (72)

k=1 VXk-1-2W (1-5)

where the are PSWF's, the Ak the associated eigenvalues (40), and
I) T the time -truncation operator (14). Equation (72) replaces (52)
in the proof of Theorem 2. It is easily verified that signals of the form
(72) belong to al (T, W, Po) as defined by (66). If we write the noise

expansion of (46) we can, as in Theorem 2, establish
lence of the time -discrete and time -continuous channels, and establish
the direct -half of Theorem 3. The weak converse is proved in a similar
manner, the jointly -constrained product channel employed here being
of type -2 with parameters

= 2W (1 - 5), al = 4W5, a3 = 00, P = Po ,

N
'

= N2 -
2 '

(73)
2

No
N3 = - E)

2 1

where again 6,E,a > 0 are "small".

Theorem 4: For the direct -half we consider a type -3 jointly -constrained
product channel with parameters

= 2W(1 - 5), al = co, P = , N= , n - cr. (74)

The signals are constructed from vectors x as in (72). For the converse
we use a type -3 channel with parameters
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Aral = 2W(1 + 3), a2= 00, P = P., N =o' il -1
cr.

1 (75)

APPENDIX A

Proof of Theorem 1

We shall give a proof of Theorem 1 for the type -1 jointly -constrained
product channel only. The proofs for types 2 and 3 are similar.

The proof as usual is in two parts.

A.1 Direct Half

We set P1 = (1 - (3)P, P2 = OP and consider codes for the ordinary
product channel (Section 4.1). If (30) is satisfied for all code words
with these values of P1 and P2 , then the joint constraint (33a) is also
satisfied. Further since $ I, (33b) is also satisfied. Hence the direct
half of Lemma A for the ordinary product channel implies that any
rate less than C1(P1) + C2 (P2) = C1 ( (1 - ()P ) + C2 (OP) is per-
missible, and the direct -half of Theorem 1 follows.

A.2 Converse

Let us define C* = CI ( (1 - $)P) + C2 (0P). We must show that
any rate R > C* is not permissible. Let us assume the contrary, i.e.;
for some R = C* + E (e > 0), there exists a sequence of numbers
I Tiii-i' where Ti -> 00 as i -> co , and a corresponding sequence of codes
for the jointly constrained product channel (satisfying (33a) and
(33b), with parameters ii and P); with the ith code (i = 1,2, )

having parameter T = Ti and eRTi code words, and error probability
P. = Pe(i) where Pe") -> 0 as i -> 00.

Since C1(x) is uniformly continuous on the closed interval [0,P],
let us choose an integer J. (sufficiently large) so that

Ci(x) - Ci (x -ill < E' 0 -. X V. (76)J. - -

We now partition the ith code (i = 1,2, ) into J. classes Si(j) (j =
1,2, , J.). A code word (x(1),x(2)) in the ith code will belong to the
jth class Si (j), according as the energy of its second component satisfies

(j - 1) CiPT 2
[x

(212 iipT,
1,2, , J.. (77)

Jo k=1 k Jo

Since x(2) satisfies (33b), each code word belongs to exactly one class.
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(To be precise, we assign code words for which the energy in x(2) is

zero to class Si (1 ).)
For each i(i = 1,2,  ), let Si* be the subcode of the ith code

(with parameter T = Ti) consisting of the class Si (j) (j = 1,2, , Jo)
containing the most members. Since Si* is the largest class in a partition
of a code with eRri code words into Jo classes, the number of code words
in Si* eRTvJ so that the corresponding transmission rate for Si* is

R* >= R - T, In. (78)

Further, since Si* is a subcode of the ith code (which has error proba-
bility Pe(')), the error probability of Si* is not more than Pe).

Since there are a finite number (Jo) of classes in the partition of the
ith code (i = 1,2,  ), there must be at least one jo (1 < jo < Jo)
such that for an infinite number of i, the largest partition Si* is the
joth partition Si (jo). Let (i1 , i2 , ) be the subsequence of i's for
which Si* = Si (j0). Thus the { Sit*} t.-17 are a sequence of codes with
rate R* satisfying (78 ), and error probability not more than P,("),
where Pe(it) -> 0 as t -> 00. Further, if a code word (x(1),x(2)) e Sit*,
it belongs to the class Si, (j0), so that from (77) the energy of the second
component satisfies

EE (x(2) ) E [sko)12 (79)
k=1 Jo

and from (77) and (33a), the energy of the first component satisfies
72,

E(x(i)) E [xku,12 [i u0 - PTig (80)
k=1 Jo

We conclude that { Si, *} is a sequence of codes which satisfy the
constraints for the ordinary product channel (30) with parameters

P1 = [1 - { (j° - 1)/Jo}',] P and P2 =(job/Jo) P.

Since the error probability for Sit*, Pe(it) 0 as t -> co , we conclude that
the rate R* is a permissible rate for the ordinary product channel. By
the converse half of Lemma A we have that R* does not exceed the
capacity of this product channel, i.e.,

R* 5_ C ((1 - - 1)
Jo

CI) C2 (T. P) , (81)

where Ci (x) (i = 1,2) is defined by (37b ). Applying (76) to (81) we

obtain
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R* Ci((i - (5)P) + C2(SP) + 2, (82)

where S = M/4. Now it follows immediately (by differentiation) from
the definition of CI (x) and C2 (x) that if a2 >= al , f (6) ACI((1 - 6)x) +
C2 (5s) is an increasing function for ö for 8 < «2/ (al + a2), and AS)
is a decreasing function of S for S > a2(al + a2). We conclude that since
5 = (joa.)i 5.
C1((1 - oP) + c2(SP) < (1((1 - '3)P) C2(0P) = C*, (83)

where /3 = min (4), a2/ (al a2) ) . Combining (78), (82) and (83),
we obtain

E
1

I? C* + In Jo . (84)Ti

If we let I 00, then Tit oc and have from (84)

R C*

But R = C* e, and the contradiction establishes the weak converse
to Theorem 1.

APPENDIX B

Proof of Theorem 5

Theorem 5: Let a (T,W,P0) be the set of all s(t) satisfying

(i) s(t) = 0, t I > T/2, (85a)

(ii) 11 811 2 c P0T, (85b)

(iii) Kn(s,271-W) 1 - n (0 < n < 1) . (85c)

Let the Gaussian noise be additive with spectral density N (w) where

icoN(0.)dco = 1V < co (86)

Then C,, = 00 (all n).

Proof: Let R > 0 and e > 0, and n(0 < n 1) be specified and fixed.
We shall construct a code satisfying (85) with i1I = eR7. code words
with error probability Pe

To begin with let us choose T sufficiently large so that
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1

-07R71

1 -
2 '

(87a)

(87b)

where Al is the first PSWF eigenvalue (40). With T fixed we now con-
struct the code.

Let us expand the noise in a series of PSWF's

z(t) = zk vxk'h(t)
2

- - 2 ' (88)
k=1

where
T/2 itk( t)

Zk =
T 12

z(t) x: dt, (89)

and the tzklk-,°° are Gaussian random variables with mean zero, but
not necessarily independent.

Now from (86) we have
T 12

8 z2(t)dt = NT, (90)
-T 12

where "8" denotes expectation. From the orthogonality of the PSWF's
(41) we have from (88)

T/2 co

NT = 8 z2(t)dt = E 8(zk2). (91)f
T 12 k=1

Thus we can find an integer K sufficiently large so that

8(zic+i2) 77P°16R'
= 1,2, , M. (92)

With K so chosen, let the ill code words be

si(t) = DT ,V/Pi' (1 -
2
91 +\ th(t)/712 17° r I 1 +x (t)i]

) AhTi V °A "" (93)

= 1,2,  ,M
Let us first verify that si(t), as given by (93), satisfies (85). Equa-

tion (85a) follows from the definition of DT (14). From the orthogonality
of PSWF's (41) we have

Si 112 (1 -1P0T-1-1P°T = PoT (94)
2 2
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so that (85b) is satisfied. Finally,

K.B(si , 27r V) -
H

PoT xi :_n?
(95)

P oT 2)

P oT (1 - -1) X PTXK±i
2

385

 1 -
where the next to last inequality follows from (87b). Thus si(t)e
a (T,W,P0). It remains to show that P6 < E.

We can write the received signal y (t) in a Fourier series in PSWF's

tpk(t)
y(t) = Si(t) z(t) = E (96)

k=1 Xk

where the yk are recoverable from y (t) by integration. Say that the
receiver disregards all the yk except YK+1 , YK+2 7 , YK+Af We may
write

YK±j =
P oT , j =

j 0
(97)

(j=1,2,...,M).
If YK+i is the maximum of the {YK-Fa} J=IM, the receiver decodes y(t)
as si(t). Thus if code word i is transmitted, the error probability is

Pei = Pr U [2K-Fj > ZK+i
72 P Orr]

MPr - ZK+ti > -715, P311.

Now z/c4.; - zir+i is Gaussian, with mean zero and variance

8( (zic-F; - zir+i)2) S [E(Z1C+:72)1 E(Z/C-Fi2

<nPc,
4R

(98)

(99)

where the last inequality follows from (92). Thus (98) becomes

Pe < M erf (- VTRT), (100)

where
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0° 1

erf (x) f .1/2 e'212dx-7r
is the cumulative error function. Since erf (-x) < e -s" (V2rx),
(100) yields with the help of (87a)

eRTe-RT 1

Pe
-V

(101)
4T-RT -V47RT

Thus the theorem is proven.

APPENDIX C

In this appendix we verify inequality (22)

V
K B(s,27TW) 1 - 2 1 - KB' (x,27rW) (102)

KB'(x,2,rW)

where KB is defined by (13a) and KB' by (21). Let f (t) be a function
with Fourier transform F (w), and define the operator B by

g = Bf, (103a)

where
it'

g(t) = F (w)ei`" do).
ZIT -2r W

(103b)

Thus Bf is the result of passing f through an ideal low-pass filter with
bandpass W cycles per second. Then

KR(f,271-W) -. (104)
II f 112

Say that x (t) = 0,
I I I

< T/2 and II x II 2 < 00. We assume that we
may write x = DT, where is bandlimited to W cycles per second.
(If we cannot then KB' (S ,27rW) = 0, and (102) follows immediately.)
Let us write

&(t) = x(t) y (t),

where y (t) = 0, I t I< T/2. Then

IIXII2 = II x112 + II YI12,

and from the definition of K

II xI
KB/(x,271-W) =

II 1; 112
.
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Hence, from (107) and (106),

II
2_ 1 - KB/(x,27T-W)

II x112 KB' (x,27rW)

Now, since is bandlimited, BS; = t and we have

11 112=II 1 3 112 = B x B 112 [ Bx -I- II By II ]2
(109)

[ Bx II Y11 ]2 = Bx 112 ± II Y112 ± 2 Bx 11 11 Y II

Combining (106) and (109) we have

II x112 + 11 Y112 = II&I12 11 Bx + 112 + 2 Bx II (110)

so that (from (104))

KB(x,27rW) = Bx 112 >2 1 2 Bx 11 Y II > 1 2 Y (111)
IIx - x112 - II II

Finally, from (108) and (111) we have

KB(x,271-W) > 1 - 2
/1 - KB (X

K (X ,27T -W)
(112)

(108)

This is inequality (102).

APPENDIX D

The Capacity of Model 4

To establish the capacity of the channel defined by Model 4 we must,
as always, prove a direct -half and converse. In this appendix we give
an outline of the proof of the direct -half, and a remark about the proof
of the converse.

D.1 Direct -Half

Let R < W ln [1 + (Po/NoW)] be given. We show here that for v
sufficiently small we may construct codes for Model 4 with rate R and
with vanishing error probability (as T co). By the continuity of the
"ln" function we may find a (I > 0, a > 0 sufficiently small so that

Poo. - a)R < (1 - (5) hi [1 (113)
N,,W(1 - j

We observe that C* is the capacity of a single time -discrete channel



388 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1966

(Section 2.1) with parameters

P = Po(1 - a), N = No/2, a = 2W (1 - (3). (114)

Since R < C*, we can find a code e = {xi}i_im for this time -discrete
channel (so that E(xi) < P0(1 - a)T) with M = eRT code words,
and with error probability given that xi is transmitted (i = 1,2, ,

M) (using the minimum distance decoder)

Poi = Pr U [dR(xi , y) > dE(x. ,y)]
it

= Pr U > dt7 = e-fiT-Fo(T)

L 2

(115)

where y is the received vector, dR (u,v) is the Euclidean distance be-
tween n -vectors u and v, di; = dE (xi , z" is the projection of the
noise vector z on the line passing through code words xi and x; , and

u = [E(u)]§ is the square root of the sum of the squares of the
components of u. The exponent # has been estimated by Shannon.'
Since II z"11 is a Gaussian random variable with mean zero and variance
N0/2 we may lower bound Pei by

Pr [H z" > Id]

where

di,

= erf /K) '

(j = 1,2, , M j i)

z 1
erf x = f v 2r e'212du

is the cumulative error function. Since for large x,

1

(-
2erf (-x) e-x12

71-x)

(116)

(115) and (116) yield for large T

d112 > 419NoT, i,j = 1,2, , M i j. (117)

From the code e, let us construct a new code e = fx41_1m, where

kJ = 1
(118)1-- a xi , = 1,2, , M.

Thus the members 2, of e satisfy

E(±i) < PoT (119)

Let us now assume that there are two noises in the channel, i.e.. the
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noise vector z = z1 z2 . The first noise z1 is the usual spherical Gaussian
noise (with variance N0/2), and the second z2 is an unknown n -vector
(n = aT = 2W (1 - 6)T) for which we require only

E(z2) < vN0W(1 - a)T = v 20 n. (120)

We place no other restrictions on the probability structure of z2 . The
vector z2 may depend on the code e, the code word transmitted and
the value of zi . The noise vector z1 corresponds to the noise function
z1(t) in Model 4, and the noise vector z2 corresponds to z2 (t) in Model 4.
If we use e on the time -discrete channel with this noise and use the
minimum distance decoder, we have an error probability given that
k, is transmitted

Pei = Pr U [42(iti , > dE0t; ,

where

= Pr U

di;= dE(2i , 2J) -

[II (z1 z2)i) II > 2

di;
(1 - a) 

Now since "
II

" is a norm

(zi z2)211 zi" II + II z21211 5 zi" + PN oW (1 - 6)71.

Thus the event

[ii (zi + z2) II >

[II > 2(1di a) - vN oW (1 - 6)7'1,

where "c" denotes set inclusion. Now we would like to say that the
right member of (123)

[II II > (1
d"a)2-

2
NAN oW (1 - 6)7] C[11 &if II > 12 (124)

If this is so, then Pei S Pet --> 0 as T 00. In fact (124) is satisfied if

(121)

(122)

di; di;
2 - 2(1 - a) VvN0W(1 - a)T,

or

(123)

(125)
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di; ( a
v V4NoW(1 - 5)T 1 - a).

Now from (117), di; > 1/413NoT so that if

(126)

P < /3 ( a \
(127)w(1 -8)1-a

(126) is satisfied. Hence Pee 0.
If we now make the same correspondence between the time -con-

tinuous channel and the time -discrete channel which was made in the
proof of Theorem 3, we deduce the existence of codes for Model 4
(with rate R < W In [1 + (Po/NoW)]1 with 0 as T - co (pro-
vided v is sufficiently small - the choice of P depending on W, P0/N. ,
and R). Note that this construction was done for any n. Thus we have
shown in effect that the capacity of Model 4 is

C = C, >= W In (1 + Now + ei(v),

where el (v) -+ 0 as v 0 independent of n.

D.2 Converse

(128)

The proof of the converse also parallels the proofs of the converse
halves of Theorems 2, 3, and 4. However, since the noise may depend
on the entire code and decoding scheme used (which is not the usual
assumption of information theory coding theorems), it is necessary to
go back and re -prove Theorem 1 (which in turn depends on Lemma
A) for this new situation. Although this task is not a terribly difficult
one it is rather tedious and we shall side step this chore here. It will
suffice to state the version of Lemma A which is required here and to
leave the rest of the proof to the interested reader.

Lemma A': Let us say that we are given time -discrete channel as defined
in Section I (with parameters a,P) where the noise vector is z = zi + z2
where z1 is the usual spherical Gaussian noise with variance N and z2
is an unknown vector for which require only

E (z2) 5_ ET. (129)

We place no other restriction on the probability structure of z2 . The noise
vector z2 may depend on the entire code and decoding scheme, the code word
transmitted and the value of zi . We define the error probability P. as we
did in (26) for Model 4 and do likewise for the capacity. Let C (a,P,N,E)
be the capacity of this channel.
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Now consider the product of r time -discrete channels as in Section 4.1
with parameters (at , , N1) i = 1,2, , r. Here too, we assume a
second noise vector

z2 = (z2"),z2(2), , z2(r)), (130)

which is unknown but must satisfy

E E(z2(i)) (131)
i=1

and as above may depend on the entire code and decoding scheme, the code
word transmitted, and the values of the spherical Gaussian noises.

Lemma A' states that the capacity C* of this channel satisfies

rC* < E C(ai P1,N1, yiE), (132a)
1-1

where

APPENDIX E

L-4 = 1. (132b)

Equivalence of Time -Discrete and Time -Continuous Models

In this appendix, we give some details on the validity of the equiva-
lence of the time -discrete and time -continuous channel models which is
the key to the proofs of our capacity theorems.

To begin with, let us consider the direct -half of our theorems. In these
proofs we deduce the existence of time -continuous coding and decoding
schemes from the existence of time -discrete coding and decoding schemes.
To be specific let us consider the proof of the direct half of Theorem 2.
We may omit the reference to the Karhunen-Loeve expansion (5.10)
and consider the received signal y (t) = sat) z(t). Now it follows
from Loeve (Ref. 9, p. 472, A) that

T/2 T/2

8
J-T/2

z2(t)dt =
J-T/2R(0)dt = NoWT < 00, (133)

so that with probability 1, z (t) and, therefore, y (t) is square -integrable.
It then follows that the integrals

1
T/2

yk(1) = ,\/)4 f-7,0 y(t)ikk(t)dt and

1 T/2
(2)

Yk y(t)lkatTd-k(i)dtA
V AaiT-1-k f-T/2

(134)
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(where t'k (t) and the Xk are the kth PSWF and eigenvalue, respectively)
exist for all k with probability 1. Further, it follows directly on sub-
stituting y(t) = si(t) z(t) into (134) that

co (0,

k = ik 2k = 1,2, (135)

where the zk(i) are independent normally distributed random variables
with mean zero and variance No/2. Thus, the decoder for the time -
continuous code may obtain the y k(i) from the y (t) and make use of the
decoding scheme for the time -discrete code and obtain the same error
probability. Hence, the direct -half of this and the subsequent theorems
is valid.

Let us now consider the converse half of our theorems. In each of
these proofs we assume that for a fixed rate R exceeding capacity, we
are given a sequence of codes for the time -continuous channel with error
probability P . We must show that Pe is bounded away from zero. To
do this we deduce the existence of a corresponding sequence of codes
with rate R and error probability Pe for a time -discrete channel with the
same capacity as the time -continuous channel. Since we can invoke a
converse for this time -discrete channel (Theorem 1), we then conclude
that Pe is bounded away from zero. We will now show how to make
this us refer specifically to the proof
of Theorem 2, the others following similarly.

Let fsi(t)) i=13I be the code for the time -continuous channel, and
x = (x(1),x(2)) be the corresponding input to the time -discrete (product)
channel. Further, we may write the noise signal z (t) and the received
signal y (t) in Fourier series in PSWF's where, as above, all the coordi-
nates are finite with probability 1. We then let z = (z(1),z(2)) and y =
(y(l) ,y(2) ) be the vectors whose coordinates are the coefficients in these
expansions. We can easily show that

y = x z, (136)

where the coordinates of z are independent random variables with mean
zero and variance N0/2. Thus, we have established the correspondence
of the time -continuous and time -discrete channels and codes. We must
now show that the time -continuous and time -discrete codes have the
same error probability. In other words, we mush show that there exists
a decoding scheme for the y which has the same error probability as the
decoding scheme for the continuous received signal y (1). We proceed
as follows:

Let ea be the usual (Kolmogorov) a -algebra on 221- P/2,P/2], i.e.,
63 is the a -algebra generated by the "intervals" of the form
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(t): J(t1) P1, y(t2) p2 , , y (t,, ) Lc- p,}.

Corresponding to the code for the time -continuous channel [Mt)}
we define M probability measures P1 , /32 , , Pm on 63 as follows.
If B E 63, then

P, (B) = Prob Rsi(t) z (t)) E 63], (137)

where the probability in (137) is computed for z a noise sample
function. A decoding -coding rule for this code is a set of M disjoint
Ai E 63 (i = 1,2, , M), called decoding regions. The error probability
given that si (t) is transmitted is

Pei = 1 - Pi(Ai). (138)

Now let 63 63 be the sub -a -algebra on 22[- T/2,T/2], consisting
of those sets determined by the coefficients of a representation of a
function in PSWF's. That is, if y (t) E £2 (- T/2,T/2), let

(1)
1 12

Yk = -AA; Y M44 t)dt and (2) 1 r"
Vijk LT 12Y(t)OaiT±Ic(t)dt.

Then 63 is the a -algebra generated by intervals of the form
(1) (1) (1) < (1) < (1)

(2) < (2) (2) (2) (2)1

1 = P1 = P2 , , Yin = pn f

A decoding rule for a time -discrete code with M code words is a set of
M disjoint Ai E (13 (i = 1,2, , M) (decoding regions), and the
error probability given that vector xi (xi is the representation of silt)
in PSWF's) is transmitted is

.Pei = 1 - Pi (Ai).

Kadota [Ref. 10, Appendix D] has shown that for each Ai E 63, there
exists a Ai E d3 such that

P(AiAAi) = 0,

where A denotes "symmetric difference". Thus, if { i=1M are the de-
coding regions for a time -continuous code we can find a set { Ai E 01}
of decoding regions for the corresponding time -discrete code such that
the error probabilities Pei = Pei.

We conclude that the error probability for the time -discrete code
equals the error probability for the time -continuous code, and the
converse is valid.
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GLOSSARY

The following symbols are used throughout the paper:

M = the number of members of a code.
T = time required to transmit a code word.
R = (1/T) In M = transmission rate in vats per second.
C = channel capacity = maximum "error free" rate.

Pei = probability that the receiver makes an incorrect decoding
decision when code word i is transmitted (i = 1,2, , M).

Pe = (1/M) Ei--1 Pei = over-all error probability.
& (X) = expected value of the random variable X.

%Pk ,Xk = kth prolate spheroidal wave function (PSWF) and eigen-
value respectively (k = 1,2, ).

The following symbols are used in connection with time -discrete or
time -continuous channels:

Time -Discrete Channels:

x,y,z = input, output, and noise vectors, respectively.
n = aT = dimension of above vectors, so that a is the rate at

which the channel passes real numbers.
E (x) = sum of the squares of the coordinates of the vector x.

P = parameter constraining E (x) (x is channel input).
N = variance of the normally distributed noise.
r = number of components in the product (or parallel

combination) of channels.
y('), z = input, output, and noise vectors, respectively for the

ith component of a product of channels (i = 1,2, , r).
, ai, Pi, Ni= parameters n,a,P,N, respectively, for the ith compo-

nent of a product of channels (i = 1,2, , r).
= parameter constraining the relative values of E (x"))

in the product of channels.

Time -Continuous Channels:

s (t ),y (t ),z (t) = input, output, and noise signals, respectively.
S (w) = Fourier transform of s (t).

+00

II 8112 = f s2(t)dt = "energy" of s(t).

27rif

Ka(s,2irW) =
f-2TIV

I S(w) 12 do / s II2

= (energy) concentration in frequency band O -W cps.
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TI2

K D(s, T) = f s2(t)dt/
I I

s 112 = (energy) concentration in time
TI2

interval [- ( T/2), ( T/2)].

KB'(8,271-117) = an alternate measure of frequency concentration
defined by (21).

DT = operator which truncates a signal outside the time
interval [ - (T/2), (T/2)] (see (14)).

£2 [- T/2, T/2] = the space of square integrable functions defined on
[- T/2,T/2].

W = bandwidth of channel.
P. = average "power" of input signals.
No = one-sided spectral density of noise z(t).

a = ai(T,W,P0) = set of allowable channel input signals
(for Model i, i = 1,2,3,4). These signals are approxi-
mately time -limited to T secs, approximately band -
limited to W cps, and have energy not exceeding PoT

n = parameter which measures the extent to which signals
in a are not strictly time or bandlimited.

v = parameter which measures the extent to which the
noise spectral density is not zero for I w j > 27W.
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An Insertion Loss, Phase and Delay
Measuring Set for Characterizing

Transistors and Two -Port
Networks Between

0.25 and 4.2 gc
By D. LEED

(Manuscript received November 29, 1965)

A new insertion loss, phase and delay measurement tool has been devel-
oped for characterizing gigacycle bandwidth transistors and general two -
port networks on a small signal basis over a frequency range from 0.25 to

gc. Maximum inaccuracies are 0.1 db, 0.6 degree (over a 40-db loss
range), and 0.5 nanosecond (over a 20-db loss range). Above 2.0 gc, the
errors may double.

The particular parameters selected for measurement are closely related
to the scattering coefficients of the device under test, evaluated with respect
to a 50 -ohm impedance level. When measuring transistors, measurement
data are corrected for the residuals of jig and bias fixtures. Transformation
from the measured parameters to other sets (e.g., h, y, or z matrices) is
routine.

In order to minimize "instrument zero -line" and eliminate errors from
circuit drift, a rapid sampling technique sequentially compares the unknown
with a high frequency reference. Measurement accuracy is held substantially
independent of test signal frequency by heterodyning the measurement
information to a fixed IF, where detection is performed by "IF substitu-
tion", using adjustable standards of loss, phase, and delay. Substantial
use of automatic control circuitry contributes to an easy and facile interface
between machine and operator.

This paper discusses the operation and design of the test set and its use
as a tool in characterizing transistors.

I. INTRODUCTION

A new measuring instrument has been developed for making inser-
tion loss, phase, and envelope delay measurements between 0.25 and

397
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4.2 gc. The development was stimulated by measurement requirements
growing out of recent advances in gigacycle transistor technology and
semiconductor amplification for high bit rate PCM systems. The new in-
strument extends to 4.2 gc many of the operational features embodied
in lower frequency instruments previously reported!'"

This new test set is intended for characterizing transistors and general
two -port networks, either passive or active, in a coaxial mode between
50 -ohm terminations. By use of appropriate transducers, measurement
may be extended to noncoaxially terminated unknowns. Of particular
interest is the measurement of transistors using a special jig designed
to provide a smooth electrical transition between the coaxial geometry
of the test set ports and the pig tail lead geometry of the transistor.
Waveguide networks are measured with the help of well -matched coax-
to-waveguide transducers.

Since the need for reliable transistor characterization over the UHF
band was an especially strong stimulus to the development of the meas-
urement set, Section II deals with the transistor measurement problem
and how it was solved. This section discusses the merits of the selected
plan of measurement, the design of the required jigs and fixtures, the
abstraction of transistor parameters from the measurement data, and
examples of the results obtained.

Section III deals with the performance of the test set and the basic
principles of measurement which are employed.

Sections IV and V describe the measurement circuit in progressively
finer detail, starting from a block diagram description. Design questions
are discussed, together with approaches used in solution. The goals
which motivated the design are summarized.

Among the prime goals was measurement of transistors under "small -
signal" excitation. The instrument design was to promote a congenial
interface between operator and machine, the aim being to simpify
the measurement procedure. This serves both to speed up measure-
ments and reduce operator error.

Validation of accuracy and estimates of the residual inaccuracy are
covered in Section VI.

Equipment design features of particular interest are noted in Section
VII.

II. TRANSISTOR CHARACTERIZATION

Transistor characterization with the new test set makes use of the
following basic data:

(i) Insertion loss and phase of the transistor between nominal 50-
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ohm generator and load terminations for both the forward and
reverse direction of transmission.

(ii) Insertion loss and phase which result when first the input
terminals and then the output terminals of the transistor are
bridged across the transmission path formed by connecting the
50 -ohm generator directly to the 50 -ohm load. During these
bridging measurements, the terminal pair not connected to the
bridging plane is terminated with 50 ohms.

These four measurement parameters lead naturally to an "exterior"
characterization of the transistor in terms of its scattering (s) param-
eters. Data under (i) produce directly 82' and s12'; measurements
under (ii) relate to 811 and 822 through elementary bilinear transforma-
tions. The scattering parameters can be routinely transformed to any
of the other usual 2 terminal -pair descriptions (h's, y's, or z's) or, with
more work, interior descriptions (e.g., equivalent circuits) may be
deduced from the measurement data.

At high frequencies, this method of measurement has several ad-
vantages over techniques which attempt to measure directly the h, y,
or z parameters. The direct measurement of these parameters calls for
the projection of ac shorts and opens to the ports of the transistor
through the arms of an intervening jig. It is difficult to reflect these
singular values of impedance to the transistor terminals because of
the impedance distortions introduced by the parasite residuals of the
jig paths and dc biasing arrangements. Moreover, the necessity for
using resonant lines to achieve the shorts or opens makes for a high
degree of frequency sensitivity and may cause the transistor to oscillate.
All of these difficulties are overcome by measuring the transistor between
resistive impedances of moderate (and realizable) magnitude. At an
impedance level of 50 ohms, stray reactances that would ordinarily
make the realization of very large or very small impedances impractica-
ble up to 4000 mc can be compensated so that they produce only modest
reflections.

In the previously reported work on transistor measurements up to
250 mc,' much effort was expended to develop very low reflection jigs
and biasing apparatus. In the case of UHF measurements, where devel-
opment problems are more severe, it has proved fruitful to pursue an
alternative course. Only a modest effort was expended on the design
of jigs and biasing fixtures, but these devices were carefully charac-
terized in a series of intensive measurements, and an analytic program
was worked out to correct the transistor measurement data for im-
pedance and transmission defects of the measurement hardware.
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This approach was attractive for a number of reasons. First, the
difficulties of developing jigs and bias fixtures having reflection coeffi-
cients under 0.02 up to 3000 me appeared extremely formidable when
compared with the labor of characterizing this hardware and accounting
analytically for its defects. Secondly, there is little advantage to be
gained in synthesizing a totally reflection -free environment since, even
under ideal conditions, the computational work in transforming the
measurement data to other characterization sets is sufficiently laborious
to warrant the use of a digital computer. It is straightforward to include
in the computer program the compensation for the transmission and
impedance defects of all auxiliary test devices. And finally, since the
measurement set views the transistor through the comparatively long
path contributed by the biasing fixtures and jigs, corrections for path
length must be introduced even in the absence of reflection. The "trans-
former" effect of the jig paths during the bridging measurements, for
example, alters the apparent impedance of the transistor as sensed by
the test set, and must be accounted for.

2.1 Transistor Jig and Bias Fixture

The jig for mounting the transistor under test was designed to adapt
between the coaxial measurement ports of the test set and the pig tail
lead geometry of "TO -18" encapsulated transistors. The objective
was to bring a 50 -ohm measurement plane right up to the base of the
transistor header. In view of the plan to account analytically for hard-
ware defects, a modest reflection target of 0.1 was set up for purity of
the nominal 50 -ohm termination looking toward source or load from
the base plane of the header over the frequency range from 0.25 to 3.0
gc. The transistor lead wires were not to be bent during insertion into
the jig, and the jig was designed to allow the metal case of the transistor
to be firmly grounded.

The basic principle in achieving a smooth transition consists of form-
ing 50 -ohm coax lines around the transistor lead wires inserted into the
jig. Fig. 1 shows the actual jig worked out using this principle. Each
of the two cylindrical holes in the top of the jig forms a 50 -ohm trans-
mission line with one of the terminal wires of the transistor. The lead
wires penetrate a brief distance before plugging into a short metal
cylinder which functions as the inner conductor segment of a larger
bore, 50 -ohm line. The cylinder is drilled with a long hole for storing
up to z inch of lead wire. Discontinuity capacitance caused by the
diameter difference between the two sections of 50 -ohm line has been
compensated by an appropriate setback of the step in the inner conduc-
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Fig. 1- Transistor test jig for UHF measurements.

tors.4 Conically tapered inner and outer conductors below the head
piece of the jig slowly bring up the coaxial diameters to match those of
a "Dezifix B" fitting. The tapered inner conductor is joined to the short
segment of hollow inner conductor by means of a thin electroplated
copper skin.

Dc biasing currents and voltage must be introduced to the transistor
through the two coaxial paths of the jig. This is accomplished with the
aid of biasing fixtures connected to the Dezifix ports. Each biasing fix-
ture consists of a section of 50 -ohm transmission line having an inner
conductor interrupted with a series capacitor. Dc activating signals are
fed in through a high -impedance tap connected to the segment of inner
conductor adjacent to the jig. The construction of the bias fixture is
suggested in Fig. 2.

Characterization measurements reported in Section 2.4 indicate a
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yield information for computation of scattering parameters AS21 and Si. of tran-
sistor; (b) analytical model.

net reflection of less than 0.12 for the path between the small bore
(transistor) port of the jig and the output port of the biasing fixture.
This applies up to 2.5 gc.

The photo in Fig. 3 shows the jig -bias fixture assembly. Clamping
plates for grounding the low -potential transistor lead are visible in the
photo.

2.2 Transistor Measurement

It was noted previously that a minimum of two transmission measure-
ments and two bridging measurements completely characterize the
unknown being tested. For the most precise work it is actually necessary
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Fig. 3 - Jig and bias unit showing clamp mechanism for joining low potential
lead of transistor to measurement plane.

to make additional "calibrating" measurements in order to take account
of the electrical length of the jig and to compensate for the small but
significant reflections presented at the coaxial test ports of the measur-
ing set. The following procedure is required.

(i) The insertion loss and phase in both directions of transmission
is measured, as suggested in Fig. 2. The measured losses and
phases apply to the tandem connection of transistor, jig, and
bias units. To obtain the transistor's loss and phase, the con-
tributions of the jig and bias units must subsequently be sub-
tracted out.

Next, the bridging measurements are made; the details are
shown in Fig. 4. Several consecutive steps are involved, as noted
below.

(ii) The input impedance of the transistor, as viewed through the
input bias unit and jig path is connected to one of the ports of a
coaxial "trombone". The other port of the trombone bridges
the nominal 50 -ohm transmission path in the test set. By "play-
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ing" the trombone, a point is quickly found at which the indi-
cated insertion loss is maximum. The loss and phase at this point
are recorded; the line is now left undisturbed during the subse-
quent step (iii).

The purpose of the adjustable line is to overcome potentially
adverse effects due to the transformation of the transistor input
impedance by the electrical length of the input bias unit and
jig path. With the physical lengths actually involved, quarter -
wave inversion of small impedances to high may occur at fre-
quencies as low as 300 mc. High impedances, if directly connected
to the bridging junction in the 50 -ohm transmission path,
produce only small insertion losses and, as a result, accuracy
suffers. The interposition of the adjustable line circumvents
this difficulty since a length may always be found which reinverts
high impedances back to low.

(iii) A known interrelation exists' between the impedance, Z, con-
nected to the test set measurement plane at the accessible port
of the line stretcher (Fig. 4), and the insertion ratio, Cc', which
this connection produces:

_0 A ± BZ
e - (1)

1 CZ 

The A, B, and C are constants which depend only on the line
stretcher and the test set network behind it. At each frequency
of measurement, the three constants may be evaluated by
measuring loss and phase for three known values of Z. By com-
bining the three calibrating measurements with the initial
measurement on the unknown, the impedance of the unknown
may be evaluated. As may be seen in Fig. 4, the calibrating
measurements are made by observing the loss and phase caused
by connecting in succession a coaxial short, a coaxial open, and
a matched termination to the test measurement plane.

(iv) Steps (ii) and (iii) are repeated with the jig turned around to
present the output impedance of the transistor to the test set.

To avoid inaccuracies, the standard reflections must be known with
exactness, and they must be attached to the test set in precisely the
plane occupied by the unknown in step (i). The required coincidence
between all measurement planes has been assured through the use of
the connector type (Dezifix B) in which electrical and physical junction
planes are identical.

The 50 -ohm standard exhibits a reflection smaller than 0.01 up to
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4000 Inc. The short-circuit standard is realized with a simple shorting
plate and the open circuit is a 90° long section of shorted 50 -ohm line
of precisely controlled length and transverse dimensions. During the
calibrating measurement with the open circuit, the test signal frequency
is set to the appropriate nominal with an accuracy of at least 0.1 per
cent.

2.3 Reduction of Measurement Data to Transistor Parameters

All of the measurements in Section 2.2 are made with respect to termi-
nal planes remote from the transistor. Hence, in order to obtain the
contribution of the transistor parameters, it is necessary to subtract
out the contribution of the path through the jig and bias fixtures.

If, as indicated in Figs. 2 and 4, the circuit properties of the jig paths
and the transistor are expressed individually in terms of their transmis-
sion, or "cascade wave" matrices,' then the over-all matrix, T, between
the ports of the aggregate unknown is

T = T2TT Tly (2)

where the matrices T2, TT, and T1 refer, respectively, to the output
jig path, transistor, and input jig path.

T is defined from the measurements outlined in Section 2.2. T1 and
T2 are known from the characterization work discussed in Section 2.4.
Hence, TT is completely defined in terms of known matrices, and may
be deduced from (2) by the elementary inversion

TT = T2' T Tr'. (3)

TT may be converted to any of the other characterization sets, e.g.,
s, h, y, or z parameters.

The actual processing of data involves the following operations, all
of which are run on a digital computer.

(i) Using relationships developed in previous work,' the scattering
coefficients, Su and 322 , of the aggregate unknown are computed
from the bridging measurement data of steps (ii), and (iv)
in Section 2.2. The impedance reference for the S matrix is 50
ohms.

(ii) From the transmission data for the aggregate unknown in step
(i) of Section 2.2, it is possible to compute directly 821 and s12 .1
The program includes a necessary correction for the residue of
mistermination caused by the fact that the test set reflection
coefficients, pa and PL, are not zero. These reflections have
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been measured at a large number of frequencies in the 0.25 -
4.2-gc range, and are known.

(iii) The complete scattering set,

821 S22

obtained from (i) and (ii) above is transformed to the corre-
sponding matrix, T.

(iv) T is inserted into (3) together with the known characterizations
T2 and T1 and the coefficients of the wave matrix of the transistor,
TT are computed.

(v) TT from step (iv) is transformed to other matrix sets.
A typical end result of this process of measurement and data reduc-

tion is illustrated in Fig. 5. The figure shows examples of two of the
frequency characteristics of a UHF transistor derived from the measure-
ment and data assimilation routines just outlined.

2.4 Characterization of Jig and Bias Units

Serious errors occur in the value of the deduced transistor parameters
if the values taken for the matrices T1 and T2 do not faithfully represent
the actual networks. Hence, considerable care was exercised in the
measurement program for obtaining their characterizations.

Since T1 and T2 represent networks having very small losses, they
were conveniently characterized by a variant of the "Weissfloch" tech-

- - nique.-This-procedure is based on the well-known transformer law
2

812
Pin = 811 + Pt (4)1 - S22 PL

relating the reflection looking into a passive two port to its scattering
parameters and load side reflection. For example, to determine T1 at
one of the assigned frequencies, reflection coefficient measurements
were made at the large bore port on the bias unit with known reflection
standards inserted into the small bore port of the jig. Three such meas-
urements, using three different small bore standards, are sufficient to
define T1 . The sign indeterminancy in 812 is resolved on the basis of
consistency with the electrical length as estimated from the physical
dimensions of the actual model.

An example of a small bore reflection standard used in these measure-
ments is shown in Fig. 6. The standard consists of a Teflon filled 50 -ohm
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coax line of very small, but also very carefully controlled interior dimen-
sions, shorted at the far end.

The physical parameters were in sufficient control to define the angle
of the reflection coefficient standards with an accuracy of about one
degree up to 3000 mc. The round trip ohmic loss, and its variation with
frequency, were included in the evaluation of the precise reflection
magnitudes.
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Fig. 6 - Example of one of the 0.054" bore coaxial reflection standards used in
characterization of transistor jig and bias fixture.

A very precise slotted line was used for measuring the values of pin in
(4). The line was initially checked for accuracy using the "sliding null"
technique. 6

2.5 Accuracy of Transistor Characterization

The two chief sources of transistor characterization error are the
residual inaccuracies in the characterization of the jig and bias fixture
paths and test set errors in measuring loss and phase. The error con-
tributions from both of these sources depend heavily on the charac-
teristics of the transistor, hence a categorical "error statement", in
the usual sense, is not possible. Nonetheless, studies have been made
which show that loss and phase measurement errors of 0.1 db and 0.6
degree (the maximum expected) may, in the worst conceivable case,
produce errors of 0.8 db or 4 degrees in the determination of the s
parameters of a transistor having the characteristics displayed in Fig. 5.
The error from the estimated defect in the characterization of the jigs
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and bias units may, in the worst case, contribute 0.5 db and 3 degree
uncertainty in deduced transistor parameters.

Pessimistic assumptions were involved in these worst case analyses.
Based on data smoothness and on a number of self -consistency checks,
it appears that substantially all deduced parameters are accurate to at
least 0.5 db and 3 degrees up to 2.5 gc, with the majority of measure-
ments considerably better than this.

III. MEASUREMENT PRINCIPLES9 AND PERFORMANCE OF THE TEST SET

3.1 Principle of Loss and Phase Measurement

The basic quantities measured are insertion loss, phase shift, and
envelope delay. Fig. 7 shows the principle of the loss and phase measure-
ment; the operation for loss and phase is similar to that of the previous
VHF measuring set.' The technique is that of "IF substitution".

Vibrating relays si and s2 sequentially interpose the unknown and a
coaxial strap between a nominal 50 -ohm source and load. The inter-
change is made 71 times per second. The signal (Ea or Ex.) emerging from
s2 passes to a receiver where it is shifted down in frequency to a constant

REFERENCE

Ca)

(b)

(C)

CON-
VERTER

CON-
VERTER

I L
--I- SELF -TRACKING

RECEIVER

AMPLITUDE
AND

PHASE
DIFFERENCE
DETECTOR

Fig. 7- (a) Basic insertion loss and phase measuring arrangement embodying
rapid comparison and frequency translation to fixed IF, (b) impedance measure-
ment by bridging, (c) inversion of high impedances by adjustable transformer.
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IF. A second pair of relays inserted in tandem with the output of the
receiver switches an adjustable loss standard in synchronism with sl
and s2. The operator adjusts the loss standard so that the detector,
which is capable of recognizing when the two sequentially applied inputs
are of equal amplitude, delivers a null indication to a loss display meter.
At the null point, the attenuator loss equals that of the unknown since
the receiver is highly linear.

The difference of phase angle between E, and Ez is the insertion phase
of the unknown. This is measured in a manner exactly analogous to
loss, using, this time, an adjustable phase shifter as the null -balanced
standard.

3.2 Principle of Delay Measurement

Delay is measured by observing the phase shift experienced by a
modulation envelope in its transit through the unknown.' The basic
arrangement, which is illustrated in Fig. 8, employs a relatively simple
AM modulator to generate the delay test signal. It is not necessary for
the modulation envelope to be low in harmonic content. As in the previ-
ous case of loss and phase measurement, a pair of RF comparison
switches sequentially completes measurement paths through the un-
known and the standard at a 72 -cps rate. The envelope delay data is
contained in the phase difference between the fundamental components
of the modulation envelopes borne by the signals E, and Ez appearing
sequentially at the input to the self -tracking receiver.

By conversion in the receiver, the modulation envelopes are super -
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t t t
-F5 +
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5011
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RONOUS
PHASE
DIFFER-
ENCE

DETECTOR

Fig. 8 - Principle of delay measurement showing reduction of three -tone en-
velope spectrum to twin -tone before demodulation.
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imposed on the intermediate frequency, Fi , which is held rigidly con-
stant by automatic frequency control of the beating oscillator. The
tight control of the IF makes it possible to depart, at this point, from
the usually employed arrangements which pass the IF output from
the receiver directly to an envelope demodulator. Instead, advantage
is taken of the constancy of the IF to eliminate all but two tones of the
modulation spectrum, preliminary to detection. A steep -sided bandpass
filter, interposed between the receiver and the demodulator, strips
away all tones except the IF carrier and the upper modulation sideband.
Since only two input tones are applied to the demodulator, the phase of
the beat frequency product is totally independent of the amplitudes
of the beating signals. In the conventional arrangement in which a
stripping filter is absent, the phase of the baseband signal depends on
the relative amplitudes and phases of all of the tones present in the RF
spectrum. Hence, significant delay errors may result when the unknown
exhibits loss and phase distortion across the frequency interval spanned
by the array of side tones.

Of almost equal importance is the reduction in the size of delay meas-
uring "aperture" accompanying the use of the stripping filter. Reducing
the width of the modulation spectrum by a factor of two before de-
modulation serves to improve the ability to resolve finer -grained envelope
delay detail by about the same factor.

The delay information is contained in the phase difference, 08 - Ox ,
between the sequentially appearing signals out of the demodulator.
This phase difference is detected in the manner previously described
in Section 3.1.

The unknown's envelope delay, T, is closely given by

08 Ox
T

A
seconds,

where the angle difference in the numerator and the modulation envelope
rate in the denominator are both expressed in radians. By following
through the frequency transpositions in Fig. 8, it is clear that the fre-
quency at which T applies may reasonably be taken to be the mean be-
tween the RF carrier and the adjacent lower side band. A is equal to
(27) (5.55)106 radians per second in the present set, hence, an
increment of 0.5 nanosecond in the unknown's delay gives rise to one
degree of envelope phase shift.

3.3 Measurement Accuracy and Ranges

Signal Source: 0.25 to 4.2 gc in four bands; ±1 per cent scale calibra-
tion accuracy. The sources may be set to specific frequencies with a
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tolerance of about 5 parts in 104 using high accuracy commercial
counters for frequency measurement. Band changes are made auto-
matically.
Insertion Loss Range: 50-db loss to 10-db gain. (Gains exceeding 10 db
may be measured by preceding the unknown with a loss pad.) Accu-
racy: ±0.1 db from 10-db gain to 40-db loss; ±0.3 db from 40-db
to 50-db loss. The accuracies just cited apply up to 2.0 gc. Above
2.0 gc the errors may increase by a factor of two.
Insertion Phase Range: 360 degrees. Accuracy: ±0.6 degree between
10-db gain and 40-db loss up to 2.0 gc; ±1.0 degree between 40-db
and 50-db loss. Above 2.0 gc the errors may increase by a factor of two.
Delay Measurement (Limited to measurement on linear networks
between 10-db gain and 20-db loss) Range: 180 nanoseconds. Ac-
curacy : ±0.5 nanosecond up to 4 gc. Aperture width: 5.55 mc.
Source and Load Terminations for Coaxial Unknowns: Nominal 50
ohms; reflection coefficient magnitudes of source and load decay from
0.01 at 1.0 gc to 0.1 at 4.2 gc. Errors due to the residue of mistermina-
tion have been treated in earlier work," and are summarized in Sec-
tion 6.1.
Source Power Applied to Unknown: Excitation level is automatically
varied in accordance with unknown's loss so as to keep the input
power at the lowest possible level consistent with satisfying signal-
to-noise ratio requirements at the loss and phase detectors in the
test set.

Down to losses of 19.9 db, the available source power is kept
below -40 dbm. The power increases to -30 dbm for losses between
20 db and 29.9 db, to -20 dbm between 30 db and 39.9 db and to
-10 dbm between 40 db and 50 db.

IV. OVER-ALL CIRCUIT DESIGN

4.1 Objectives

Experience has amply established that the development of compo-
nents and devices for new communication systems entails a large volume
of measurement. In view of this, it would be most unwise to achieve a
high degree of measurement accuracy at the expense of awkward and
laborious measurement procedures. Hence, in the present case, the aim
has been to design for a facile interface between operator and machine
without undue sacrifice of measurement accuracy.

A number of features were introduced to minimize the amount of
operator labor required to make measurements. Automatic control
circuitry has been liberally employed to tune oscillators, to set levels
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and operating points of detectors, and to stabilize and render insensitive
to test signal frequency the deflection sensitivity on the display meters.
A considerable circuit complexity results from this high degree of
automatic operation, but this is not obvious to the operator who benefits
from the simplified measuring procedure. Where feasible, machine
logic and mechanism have been substituted for operator decision and
motor activity.

One of the most vital objectives was to provide a measuring facility
with the capability to comprehensively characterize either passive or
active linear two -ports. This was accomplished by the inclusion of
bridging loss in addition to the insertion loss measurement features.

Transistors were to be characterized under light excitation conditions,
in order to permit study of small signal parameter variation with shift
of de operating point. In the majority of measurements, less than 0.1
microwatt of power is absorbed by the transistor.

Measurement range, accuracy, and resolution were to be essentially
independent of test signal frequency.

Solid-state design was to be used in all possible instances.

4.2 Over-all Circuit Operation - Loss Measurement

To achieve accuracy substantially independent of test signal fre-
quency over the 4 octave range between 0.25 and 4.2 gc, it is necessary
to heterodyne the measurement information to a fixed intermediate
frequency where detection may be performed with the aid of precisely
calibrated loss and phase shift standards. In addition, to minimize
"instrument zero -line" and to eliminate error from drifts of phase shift
and level within the set, it is desirable to sequentially compare the
unknown with a high -frequency reference.' The rapid comparison and
heterodyne design aspects of the test set were noted in the previous
discussion of Figs. 7 and 8. A more complete development of these
features is now presented in Fig. 9.

Referring to Fig. 9, loss may be measured with the instrument set
up either in the basic phase or delay modes. Assuming selection of the
phase mode, the AM modulator preceding the vibrating RF comparison
switches is heavily de biased for small transmission loss. Mode switches
S3 ; S4 S , and S7 , program the instrument for phase or delay
measurements. These switches are shown in the operating position for
phase measurements.

A self -tracking double -conversion receiver translates the measure-
ment information to a first IF of 60 mc, followed by a second conversion
to 1.11 mc. Insertion loss is then detected with the aid of a differential
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"sample and hold" detector involving the rectifier CRi , the vibrating
switches S8 and S9 and the storage capacitors Cx and C.. The relays
within the detector and those around the calibrated loss standard
vibrate in phase synchronism with the 71 -cycle rate of the RF com-
parison relays, Si and S2 . A null on the loss meter indicates when the
attenuation standard, at 1.11 mc, has been adjusted for loss equality
with the unknown. The measuring procedure is that of "IF substitution"
and yields answers which are valid, for small losses, within the degree
of linearity of the tracking receiver and for large losses, within limitations
of noise performance.

Approximately equal detection sensitivity for various values of un-
known loss is attained automatically by ganging common path attenua-
tion, LA and LB , to the loss standard in such a way that the level of
signals applied to the loss detector, at the null balance point, is main-
tained approximately constant.

In measuring at the higher losses, a greater portion of the common -
path attenuation is assigned to the attenuator section located at inter-
mediate frequency. Although this does have the somewhat undesirable
effect of increasing the signal drive on transistors when measuring at
high loss, it prevents the input level to the first converter from dropping
dangerously close to noise. The way in which the pattern of attenuation
is worked out assures sufficient signal for an S/N ratio of at least 25 db
at the detection point during 50-db loss measurements. Error due to
noise, under these conditions, is less than 0.05 db.8

The operation of the attenuators LA and LB does not completely
insure constant level operation at the loss detector because of the residual
frequency characteristic of the converters and the natural droop in loss
of the test set cables with increasing frequency. These effects are pre-
vented from altering the detection sensitivity by the presence of an
over-all AGC circuit preceding the input to the loss detector.

A significant feature of this AGC circuit is the use of the steering
diodes CR2 and CR3 across the storage capacitors for the purpose of
rendering the AGC responsive only to the larger of the two stored
signals. The resultant AGC action maintains the larger signal stiffly
at some standardized level. This arrangement provides both for a con-
stant deflection factor at the loss meter and a symmetrical calibration.

When making gain measurements, the loss standard is inserted in
series with the unknown, by transposing it from the S to the X Channel.
Necessary changes in common attenuation ganging are made at the
same time.
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4.3 Over-all Circuit Operation - Phase Measurement

Phase measurement, like the loss measurement, is performed by the
technique of IF substitution. The essential IF measurement apparatus,
as seen in Fig. 9, consists of the calibrated phase standard, the switches
to introduce it sequentially in synchronism with the other comparison
relays of the test set, and a "sum and difference" phase discriminator
feeding the sample and hold circuitry. The capacitors in the sample and
hold circuit store the output voltages obtained from the discriminator
during the successive dwell periods of the comparison relays. When
the two stored voltages are equal, as indicated by a null on the phase
meter, the phase shift through the calibrated standard equals the inser-
tion phase of the device under test, since the phase of the common
path circuitry makes no contribution whatsoever to the phase meter
indication.

The null balancing procedure using the phase standard assures only
that the phase difference between the two inputs to the phase detector
is the same for both dwell states of the comparison relays. Unless some
special circuit provision is made, the absolute phase difference between
the detector inputs could, at the null point, range over wide limits

of frequency sensitive asymmetry between the two transmission
paths energized from the test signal source. Moreover, the two halves
of the receiver, though nominally similar, fail to track perfectly with
respect to conversion phase. Hence, in order to fix the operating point
and make the provision of a calibrated meter possible, an APC loop
was necessary to regulate the value of the common path phase shifter,
(pc , (see Fig. 9) so as to maintain the inputs to the detector in a state
of phase quadrature during the period of S path closure. The ninety
degree phase difference represents center of range on the transducer
characteristic of a sum and difference type of detector.

In addition to operating point control, which is an absolute necessity
for the viability of the scale calibration, it is most desirable to main-
tain constant scale factor. To achieve this, the signal amplitudes applied
to the phase detector must be held at fixed values, independent of either
the test signal frequency or the dwell state of the comparison relays.
This poses no particular problem in the reference path since the opera-
tion of the comparison relays around the phase standard does not result
in level shifts. An elementary AGC in the receiver is sufficient to remove
any reference level variation traceable to frequency characteristic of
converters or frequency dependence of signal source amplitudes.
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On the other hand, the other input to the phase detector may fluctuate
in amplitude at the 71 -cycle comparison rate, depending upon the loss
standard setting. It is clear that the AGC circuit introduced in the phase
detector to wipe out this cyclic level difference must not introduce
spurious phase changes in the course of leveling. By the use of a system
of gain control, which is relatively free of reactance shifts with control
voltage, the level to phase conversion has been held to 0.1 degree for
10-db input level changes.

4.4 Over-all Circuit Operation - Delay Measurement

The elements in dashed outline in Fig. 9 are automatically switched
in when the operator selects the delay mode of measurement. The
operation closely follows the simplified description given previously in
Section 3.2.

A balanced converter, excited from a 6.66-mc local oscillator source,
is introduced beyond the square -law demodulator to translate the 5.55-
mc envelope signal to the 1.11 -me IF. There is no question of frequency
incoherence between the IF signal emanating from this converter and
the signal of the same nominal frequency emitted at the reference path
output of the receiver (Fig. 9), since the 6.66 -me local oscillator tone
is formed by modulating the 1.11 -me reference in the receiver with the
5.55 me producing the AM modulation envelope.

Delay detection is performed with the same measurement apparatus
used for phase.

During delay measurement the loss standard is shifted to the 60 -me
IF. This prevents any delay error from residual level -to -phase conversion
in the square -law detector, since the initial operation of loss balancing
equalizes the levels at the input to the detector during the two dwell
states of the comparison relays. This would, of course, be only an illusory
advantage if the delay through the loss standard varied with the loss
setting.

In the course of delay measurements, the over-all AGC for control
of loss meter scale factor is transferred to a 60 -me amplifier preceding
the square -law demodulator.

4.5 Principal Features of the Measurement System

The measurement circuit combines features of rapid comparison and
null balancing of standards with heterodyne detection. The advantages
inherent in such measurement arrangements have been noted previ-
ously.'
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Briefly, the comparison of s with x is so rapid that the measurement
results are unaffected by slow wanders of source level, drifts of conver-
sion gain or phase in the receiver, or by drifts of operating point and
sensitivity in the loss and phase detector. This arrangement also obviates
error from residual dependence of source level or receiver characteristics
on frequency, since the source, receiver, and detector are common to
the channels being compared. To prevent errors in the comparison of
the unknown with the standard, the transmission paths through the
comparison switches must be well matched to the nominal termination
level, and the crosstalk from the open to the transmitting path must be
small.

It is most desirable that the two paths through the switches transmit
equally. This is not mandatory from an accuracy viewpoint, since, by
paying the penalty of added labor and inconvenience, an initial "zero
run" may be taken to acquire the asymmetry data on the comparison
switches. Small "zero -line" residues prove to be inescapable.

The heterodyne technique has several conspicuous advantages. First
of all, locating the loss and phase standards at the intermediate fre-
quency avoids the problem of developing broadband standards.

Thermal noise power is reduced before detection by 2-kc wide crystal
filters, thereby reducing measurement error due to system noise.

Loss of the device under test may be made up by single frequency
gain at the IF.

And finally, the heterodyne system introduces the advantages of
selective detection. It provides immunity from errors due to harmonics
and stray signals in the output of the unknown.

While the attributes just listed are basic, certain other design features
are quite important from the standpoint of conserving operator effort
and expediting measurement. In particular, the self -tracking property
of the receiver not only relieves the operator of the burden of adjusting
local oscillators, but also permits the use of a narrow (2-kc wide) final
IF by virtue of the tuning precision inherent in the automatic control.

The provision of calibrated loss, phase and delay scales in combina-
tion with slow scan of the signal frequency is useful in network adjust-
ments, e.g., tuning for maximum or minimum responses or estimating
limits of response variation over given frequency bands.

V. SUBSYSTEMS OF THE MEASUREMENT SET

The "front end" apparatus in Fig. 9 must span the 0.25- to 4.2-gc
range of measurement frequency. This includes the signal and first local
oscillator sources and such transmission components as the microwave
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converters, hybrids, isolators, and AM modulators. None of this appara-
tus can be designed to cover the full frequency range without considera-
ble sacrifice in important performance attributes. Hence, the test signal
range has been subdivided into 4 bands of octave width, with separate
front end apparatus provided for by each band. This represents no
complication from the standpoint of the operator, since a system of
remotely operated coaxial relays automatically switches the front end
apparatus when passing from one band to another.

The test set circuits beyond the output of the first converters (Fig.
9) are common to all four bands.

Four signal sources cover the 0.25- to 4.2-gc range. Butterfly -type
oscillators are used below 1.0 gc; klystron sources are used between
1.0 and 4.2 gc. Source oscillators with sliding contact mechanisms for
changing frequency were avoided in order to guard against the occur-
rence of transient level or frequency "hits" on the AFC circuitry in the
receiver.

The RF and IF comparison switching, sampling, and storage in this
set, while unusually extensive in terms of numbers of relays required,
is quite conventional and follows the design principles elucidated in
previous work.' With the exception of the two comparison relays operat-
ing at the test signal frequency, all of the 7i -cycle relays use mercury
wetted contacts in order to realize the advantages of low contact re-
sistance, transmission symmetry in the two dwell states and long life.
Many of the relays are compound, i.e., complexes of several relays are
formed for the purpose of achieving low crosstalk by shorting the
nominally open transmission path. Both coaxial and noncoaxial contact
designs are employed according to need.

The RF comparison at the 71 -cycle rate is performed with a pair of
solenoid -operated coaxial relays. These relays have dry contacts, but
the contact pressure is very great and a wiping action occurs during
the "make" phase. Leakage through the nominally "open" path is 44
db down on transmission through the closed path at 4.2 gc. Since witch-
ing is done at both input and output, error from this cause is less than
0.1 db at 40-db loss level.

With the exception of the signal and first local oscillators, all of the
circuitry is solid state.

5.1 Remote Tuning of Signal Sources

Good practice in high -loss measurements calls for tight shielding of
the signal sources in order to prevent any leakage of source power to
susceptible low-level points in the test circuit. Hence, in the present
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instance, all four test signal sources are housed in an RF tight cabinet
together with associated leveling, control, and coaxial relay band -change
circuitry.

The sources are remotely tuned by the use of the tachometer stabi-
lized 60 -cycle servo loop shown in Fig. 10. The tach feedback is adjusted
to dynamically damp the loop rather heavily in order to limit the maxi-
mum rate of test signal frequency change to 100 me per second. This
represents the maximum rate of change of source frequency which the
AFC circuitry in the receiver was designed to follow. The dead zone
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around the servo null is sufficiently narrow to permit remote frequency
settability to about 5 parts in 104.

The transmit synchro is automatically switched to the appropriate
receiver synchro when changing between bands. The servo amplifier
is also shared among all four bands.

Either motor scan or point -by -point tuning is possible. As seen from
Fig. 10, the mechanism for accomplishing this consists of an arrangement
of electric clutches and differential to permit the operator to turn the
frequency calibration drum dial either by hand or by an adjustable speed
motor.

5.2 Self -Tracking Receiver

The receiver must faithfully transpose measurement data to 1.11 mc
in the case of phase measurement and to 60 mc in the case of delay
measurement. In Fig. 11, showing a block diagram of the receiver, the
following aspects of design must be considered.

(i) The linear dynamic range, i.e., the range for applied signals
bounded by receiver compression at one end and receiver noise
at the other.

(ii) Suppression of crosstalk and pick up between the two similar
halves of the receiver.

(iii) Execution of an AFC circuit capable of holding the second IF
centered within the nominal 2-kc receiver bandwidth in the
presence of signal frequency scan up to rates of 100 mc/second.

5.21 Conversion to First IF

To be compatible with accuracy objectives, the first converter must
have a linear dynamic range of at least 40 db over which errors due
either to compression or to noise must be smaller than 0.03 db. It was
possible to meet this requirement using coaxial, balanced mixers cover-
ing octave bandwidths. The particular mixers employed have about
8-db conversion loss and 10-db noise figure. An integrally mounted 60-
mc preamplifier of 20-mc bandwidth provides 25 db of gain.

Referring now to Fig. 11, potentially harmful leakage paths may be
identified starting from the test signal frequency input to the first con-
verter in one path and terminating in the local oscillator port of the
converter in the other path. Test signal which is transmitted over these
leakage paths beats with the local oscillator tones to produce traces of
spurious 60 mc. In order to avoid the generation of such signals, which
may produce errors when measuring at the highest loss levels, the
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coupling between signal frequency and local oscillator terminals of the
converters should be small, the transmission paths from the LO source
to the converters must exhibit a high ratio of forward to reverse trans-
mission and the conversion efficiency for local and signal oscillator tone
applied to a common input of either converter must be low.

All of these factors have been controlled such that errors from signal
frequency crosstalk between the two halves of the receiver are held to
less than 0.2 db even when measuring at 50-db loss levels.

The isolators in Fig. 11 present high reverse loss over only the octave
for which they are optimized. Consequently, in the case of the two bands
above 1.0 gc, it is necessary to introduce bandpass filters in the local
oscillator paths for the purpose of suppressing interpa th transmission
of higher order modulation products emitted at the local oscillator ports
of the converters.

The unilateralization of the LO paths for the two bands below 1.0 gc
is provided by transistorized buffer amplifiers having a 40-db ratio of
reverse loss to forward gain. Each amplifier design covers an octave.
The high reverse loss is obtained by cascading two grounded -emitter
stages. Measurements show that this is the preferred connection to
obtain maximum reverse loss in the 0.25- to 1.0-gc region.

5.22 Conversion To Second IF

Since the second converter is fed directly from the output of the first,
it must meet similar requirements on dynamic range. These require-
ments, which are noted in Section 5.21, are met without difficulty by
the use of ring modulators. Unwanted transmission of 60-mc power
between the two converters is prevented by transistor buffer amplifiers
inserted in the second local oscillator transmission paths. Direct path
loss between the LO ports of the second converters is greater than 100
db for 60-mc signals and sufficient at other frequencies to block the
transmission of any disturbing tones created by higher -order modulation.

5.23 Automatic Frequency Control of Local Oscillators

The heterodyne technique of phase and delay measurement calls for
a first IF to serve as a subcarrier for the AM modulation envelope and
a second IF of considerably lower frequency for operation of the null
balance standards. In view of the decision to narrow the receiver band-
width to 2 kc, it would be quite impractical to consider manual tuning
of the local oscillators. Moreover, such a course would have been in
conflict with the objective of simplifying measurement procedure.
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Tight control of the IF is advantageous for several reasons. It permits
narrow IF bandwidths, thereby enhancing S/N before detection. The
absence of IF flutter permits a great reduction in the tolerance imposed
on phase tracking between opposing tuned amplifiers in the 60-mc and
1 -me channels of the set. And lastly, it eliminates any measurement
errors from the residual frequency sensitivity of the phase standard
calibration.

To achieve the desired precision in control of the intermediate fre-
quencies, the system of frequency and phase discriminators shown in
Fig. 11 senses the error of the second IF and delivers a corrective voltage
that actuates two modes of control. The first of these is an electro-
mechanical servo which achieves a coarse correction by motor -tuning
the frequency of the first LO for minimum IF error. This is supplemented
by an all electronic frequency control acting around the second local
oscillator. With a hold in range of ±10 me and a very crisp response
rate, the electronic loop eliminates the residue of static and dynamic
errors left by the operation of the mechanical loop.

Butterfly oscillators serve as first LO sources up to 1.0 gc. Klystron
oscillators are used between 1.0 and 4.2 gc. The second LO is a voltage -
controlled oscillator (VCO) of special design.

The combined use of frequency and phase sensitive transducers endows
the control circuit with certain useful attributes which are not present
when one or the other of the transducers is used alone.10 Frequency
discriminator control, for example, tolerates static frequency error but
polarizes the LO's with respect to sideband of operation. Control by
sum and difference phase detector eliminates static error but permits
stable, closed loop operation with the LO's in either an upper or lower
sidetone relation to the signal frequencies. The combination of the two
retains the zero -error property of the phase control and the polarizing
property of the frequency control. It is extremely important to establish
particular LO sideband sense, since the sign of the measured insertion
phase shift depends on the sideband polarity.

It has also been demonstrated that the introduction of frequency
discriminator control extends the pull -in range of the loop.

Another feature of interest is the use of rate feedback from the remote
tuning servos around the RF test signal sources shown in Fig. 10. This
is instrumented by inserting the output of the tachometer generator
from the remote tuning loop in series with the tachometer attached to
the first LO servo motor. Since the tachometer polarities are connected
in series opposition, the control effect is to induce the first LO motor to
maintain a rate correspondence with the speed of the motor which tunes
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the signal oscillator. This is beneficial in reducing the dynamic stress
on the AFC circuit during periods of signal frequency scan.

The dynamical attributes of the servo are essentially those of a con-
ventional, second -order regulator circuit employing tachometer stabiliza-
tion.'

The design of the electronic control loop may be investigated in
some greater detail with the aid of Fig. 12, which presents a simplified
analytic picture of the operation. For purpose of first -order analysis, a
simple time delay factor, T, accounts for the loop phase contributed
by the "Q" of resonant circuits in the discriminator. In the actual
circuit, this approximation is valid for loop frequencies up to about 50
kc. The collapse of the approximation above this frequency is not really
significant, since gain crossover occurs at approximately 40 kc.

The asymptote structures in Fig. 12 show the dominant elements
of the design. The essential idea, of course, is that the loop gain must
be brought to zero before the parasitic corners in the transducer charac-
teristics cause oscillation. At the lower loop frequencies, the magnitude
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asymptote of the aggregate frequency and phase sensitive transducer
crudely approximates that of a "leading" corner. An upturn of the
phase curve in the vicinity of the break may be advantageously used
to obtain help on phase margin at gain cross -over. Parasitic corners
above the low -frequency break, combined with the assumption of
constant time delay in the frequency discriminator response, cause a
fairly rapid crossover of the phase.

The loop shaping is done with a cascade of three lag -lead networks
whose characteristic combines with that of the error transducer to
produce an 11 db per octave over-all gain slope at crossover.

The realized loop gain and phase were measured by the procedure
of applying a sinusoidal stress and observing the error residue. A pro-
cedure of this sort is necessary since a phase sensitive loop may not be
opened without destroying its operation. The results, which are plotted
in Fig. 13, show satisfactory agreement with the computed characteris-
tics.

It is of interest to observe that for a given value of the discriminator
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delay time, T, increasing the magnitude of the transducer gain, Iff
increases the phase up -lift in the vicinity of the low -frequency corner
in the over-all characteristic of the two discriminators. Also, small
values of T permit the design of wider band loops. T and K1 are not
independently disposable in the actual circuit, since both are related
to the network Q's.

The actual transducer parameters used in the loop are:

Kf = 0.35 (10)-6 volt sec/radian
T = 2.9 (10)-s sec

= 4/r volts/radian
Ko = 107r rad/volt sec (VCO sensitivity)

The VCO is a varactor-tuned oscillator, shown schematically in Fig.
14. The operation is based on negative resistance at the base of the
oscillating transistor, Q1 . The impedance presented at the base, which
is approximately the product of hf  and the emitter circuit impedance,
contains a negative resistance term due to the capacitative emitter load
and the phase angle of kr, in the vicinity of 60 mc. Oscillation is sup-
ported at a frequency determined partly by the capacitance in the
emitter circuit but principally by L1 in shunt with the capacitance
provided by the back -biased varactors. The combination R1 - C3 limits
the oscillation amplitude through self -bias. A predistortion network
linearizes the frequency deviation characteristic. This is desirable from
the standpoint of maintaining the incremental loop gain of the AFC
circuit independent of operating point. Q2 provides amplification and
load buffering for the oscillator.

An automatically executed program for resynching the AFC loop is
initiated on test set turn -on or when passing from one test signal band
to another.

AFC
ERROR

VOLTAGE

C3

DIODE
PREDISTORTION

NETWORK

1 I
61.11MC

+6DBM

Fig. 14-5 mc/volt VCO with 61.11 -me center frequency. Predistortion network
linearizes VCO control characteristic.
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5.3 Phase Standard

The design targets for the phase standard call for a range of 360 de-
grees, a calibration accuracy of 0.1 degree maintained for long periods,
freedom from warmup drift or calibration shift with ambient temperature
and an output level independent of the phase shifter setting.

In view of the temperature dependence of critical transistor param-
eters, it was found desirable to make use of the rapid switching technique
shown in Fig. 15. Transmission is alternated between a fixed phase
path and the variable phase path at the 71 -cycle repetition rate used
universally in the test set. Since the switching rate is sufficiently rapid,
drift of the common path amplifier characteristics is eliminated as a
source of calibration error. In order to realize the maximum cancellation
of drift, the input and output impedances of the fixed phase networks
have been designed to approximate those of the opposing variable phase
networks. This makes for symmetry of interaction between the ampli-
fiers and the networks. Measurement of the advantage gained from the
use of the switching technique shows that potential error clue to amplifier
drift has been reduced from approximately 0.4° per degree change of
ambient to 0.05°.

The prime element of the phase standard is a continuously variable

1.1IMC
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INCREMENTAL
PHASE -

SHIFTER
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SHIFT
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PHASE -SHIFTER
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LI IMC

Fig. 15-Block diagram of phase standard showing use of rapid switching to
prevent calibration drift due to shift of amplifier parameters with temperature or
age.
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four -quadrant sine condenser of high quality and permanence. The
linearity error is removed by use of an earlier noted technique.' A cam,
whose profile is shaped to match the error curve, rotates with the con-
denser shaft. A follower arm resting on the cam periphery then adjusts
an incremental phase shifter to compensate for the non -linearity error.

In addition to phase, the calibrated dials also bear delay scales (in
different color than that used for phase); the conversion between delay
and phase is on the basis of the equivalence between 0.5 nanosecond
of delay and one degree of phase at the 1.11 -me IF. The dials may be
slipped for setting up dummy "zeros".

The active circuitry in the common path follows standard design.

5.4 Loss Standard

The loss standard operates at 1.11 mc in the phase mode of measure-
ment and at GO mc in the delay mode. A calibration accuracy of 0.03
db is sought for loss differences up to 30 db. In addition, change of loss
setting should not alter the insertion phase of the standard when measur-
ing loss, or the insertion delay when delay is being measured, since phase
and delay changes of the standards are indistinguishable from changes
of the parameters of the device under test.

A decade attenuator of the dissipative type employing metal -film
resistors performs satisfactorily in all respects. The loss standard con-
sists of four such attenuators connected in tandem, spanning a total
range of 49.99 db in 0.01-db steps.

Each of the decades is made up of a sequence of a pads mounted
around a turret switch. The individual pads are semi -coaxial in design
and this endows the loss standard with the bandwidth required for the
dual operation at 1.11- mc and GO mc. At the 1.11 -me level, phase shift
is constant to 0.1 degree for any setting of the standard. The envelope
delay at GO mc changes less than 0.2 nanoseconds up to changes of 20
db in loss setting.

5.5 Loss and Phase Detection

The essentials of the loss detector operation, as illustrated in Fig. 9,
have been discussed previously.

A crucial aspect of the operation of the loss detector relates to the
timing of sampling relays, S8 and S9 which establish the charging
paths to the storage capacitors, C. and C. . In connecting C. and C.
during the sample periods, it is necessary to allow for the physical
impossibility of perfectly synchronizing all the relays in the measuring
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set with respect to instant of contact transfer and uniformity of dwell
time. Moreover, short time transients are initiated at the change of state
from x to s and vice versa. For these reasons, S8 and S9 are timed so as
to delay the start of the sampling intervals until transients set up by the
operation of preceding relays have decayed.

The component circuitry involved in the phase detection process, as
illustrated in Fig. 16, consists of an AGC circuit to smooth level with-
out accompanying phase change, a sum and-difference discriminator
with associated sample and hold circuitry at the output, and an APC
loop preceding the reference input to the discriminator.

The AGC circuit in Fig. 16 introduces less than 0.1 -degree change of
phase in 1.11-mc transmission for a 10-db change of input level. Its
operation is based on the use of an emitter -coupled transistor pair, Qi
and Q2 for gain control. The signal input current, which is applied
to the common connection between the emitters, divides between Q1
and Q2 in accordance with the AGC error current feeding into the base
of Q2 . Since the external emitter circuits of Q1 and Q2 share a large de
impedance, changes of de operating point in Q2 induce exactly opposite
shifts of operating point in Qi . Hence, the ac impedance (for small
signals), seen looking into each of the emitters, shift in opposite direc-
tions with the result that the impedance presented to the signal input
remains essentially constant over a wide range of gain control. The
constancy of the load on the driving source is a prime factor in minimiz-
ing the level -to -phase conversion.

The grounded -base operation of Q1 and Q2 , in so far as ac signal effects
are concerned, is an additional aid in suppressing level -to -phase con-
version. In this configuration, the parasitic parameters of the transistor
shift least with operating point. Thus, by choosing a transistor of high
fa in relation to the operating frequency (1.11 mc), virtually all anom-
alous effects, including those ascribable to the phase angle of a, are
eliminated.

Another aspect of interest arising in the process of phase detection
concerns the operation of the APC loop. This loop is unusual with re-
spect to its ability to absorb indefinitely large amounts of stress, with-
out saturating. The operation is as follows: During the period when the
S path is closed throughout the test set, signals e, and er appear at the
inputs to the phase discriminator in Fig. 16. For an extended interval
during this period, the discriminator delivers charging current to ca-
pacitor C2 through sampling relay S2 . Capacitor C2 charges up to a de
voltage proportional to the deviation of the phase difference between
es and er from ninety degrees. As external conditions change in a way
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Fig. 16- Phase detection including AGC circuit with insignificant level -to -
phase conversion coefficient and APC circuit to fix operating point at phase dis-
criminator.

which tends to increase the magnitude of this deviation, the APC
connection through the voltage -sensitive phase shifters alters the phase
of er to sustain near-quadrature between the discriminator inputs.

Two kinds of controllable phase networks are present. A continuous
control, which makes use of permeability-current sensitivity to alter
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inductance values in a cascade of "bridge" type phase shifters can
introduce phase changes of up to 200 degrees of either sign. As these
limits are approached in the course of introducing corrections, the
voltage magnitude across capacitor C2 increases sufficiently to trip one
of the two Schmitt triggers. This occurs when the deviation from quad-
rature rises to 3 degrees. The particular trigger actuated depends di-
rectly on the sense of the loop stress, since this determines whether the
departure of the C2 voltage from null is positive or negative.

The firing of the Schmitt trigger precipitates the operation of relay
K1 , which serves to alter the phase of er by 180 degrees. This has the
effect of subtracting 180 degrees from the initially present stress, thereby
removing the cause of loop strain and permitting the voltage across
capacitor C2 to return nearly to zero. This operation can be accom-
plished repeatedly so that effectively the loop can absorb indefinitely
large amounts of stress. It is of interest that the operation of relay Kl
produces the stable effect just described only if another relay is employed
to momentarily short the voltage across capacitor C2 at the instant that
relay Ki changes dwell state. The erasure of "past history" establishes
propitious boundary conditions from which the loop executes a stable
operating point trajectory to the new state.

Both the step and continuous phase shifters are designed to alter
phase, but not level; hence, the operation of the APC loop does not in
any way alter the deflection sensitivity on the null meter,

VI. MEASUREMENT ACCURACY

Errors tend to be of two types. The first category includes errors
attributable to residual imperfections of the test set. These result from
such factors as calibration uncertainty of standards, the presence of
low residual crosstalks and pickups, the minor influence of harmonic
residues in various parts of the test set and small effects of noise. The
error estimates, previously cited in Section 3.3, cover the sources just
enumerated and apply equally to the measurement of transistors and
coaxial unknowns.

Further errors, however, arise in the measurement of coaxial unknowns
which depend upon interaction between the frequency characteristics
of the unknown and certain of the attributes of the test set. Included
here are errors due to the residual impedance misterminations around
the unknown and "aperture" error in delay measurement.

6.1 Mistermination Errors in Loss, Delay and Phase Measurements"

The source and load impedances facing the unknown in this test
set have finite return losses which drop to a minimum of 20 db at 4 gc.
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When the transmission characteristics of the unknown are measured
between these slightly imperfect impedances, the measured data is
somewhat different than one would obtain if measurements were made
between terminations of infinite return loss. The difference between
the actual measurement and those which would be obtained between
perfect impedances is the mistermination error.

An estimate has been made for the insertion loss, phase, and delay
error due to mistermination. The starting point for such an estimate
is the error, ef , in measurement of insertion ratio.' The magnitude of
insertion ratio is the insertion loss expressed as the corresponding nu-
merical ratio, and the angle of insertion ratio is insertion phase. The
value of El is given by

measured insertion ratio
El

insertion ratio between 50 impedances

1 - 822p7. - supo - pGpL(812s21 - 811822)
(5)

1 - pGpL

The s coefficients are the scattering parameters of the unknown, and
PL and pG are the reflection coefficients of source and load in the test
set. The impedance reference here is 50 ohms. If the reasonable as-
sumption is made that all of the reflection coefficients are small, i.e.,

su I7 822 I Po I and I PL I < 0.1, then of may be approximated by

Ef = 1 - SUPG 822PL PGPL(S12821 811822 - 1). (6)

If further, one deals with the worst case in which the round trip loss
through the unknown is 0 db, i.e., 1812821 I = 1, then the largest possible
error in loss or phase measurement would be closely equal to

s11PaI + I .922p L I + 2 I pGpL (7)

in nepers or radians.
Equation (6) is also useful in estimating upper bounds on delay meas-

urement error due to mistermination. When one recalls that the meas-
ured envelope delay is equal to the increment of insertion phase shift
across the 5.55 -me separation between RF carrier and adjacent sidetone
divided by the radian interval between these frequencies, it is then ap-
parent that the error in measuring insertion delay equals the difference
of the errors in insertion phase at the two frequencies divided by the
radian interval.

If the same assumptions with respect to reflection and transmission
magnitude are made which apply to (7), and if the angles of the quanti-
ties in (6) are disposed to produce the maximum, oppositely sensed
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errors in phase at the two frequencies defining the interval, then the
maximum possible error in delay for a network having small loss and
only modest reflections would be

2 I Silk; I+ I S22PIL

A
I+ 2 PGPL I seconds, (8)

where it is assumed that I S11 I, I S22 I, I PG I, and I pi,
I

are the same at
both frequencies. A is the radian frequency separation between the RF
tones bounding the interval.

For example, consider the application of (7) and (8) at 2.0 gc in the
present set where I pa I and I pi, I are approximately 0.03. Under these
circumstances, when measuring an unknown having I sly I and I 8221

equal to 0.1, (7) and (8) show that the error in loss, phase, and delay
measurement could approach 0.06 db, 0.4 degree, and 0.45 nanoseconds.
Measured at 4 gc, the network just considered could be erroneously
measured by as much as 0.3 db for loss, 2.3 degrees for phase, and 2.2
nanoseconds for delay in view of the increase in test set reflections to a
level of 0.1.

The previous equations define absolute upper bounds on measure-
ment error due to mistermination. More realistic error limits, particular
to a given situation, may be obtained by applying (5) directly, when the
requisite information is available. Advantage may also be taken of
constraints imposed on the s parameters by virtue of passivity con-
ditions in order to further bound mistermination errors."

6.2 Aperture Error in Delay Measurement

The test set applies an amplitude -modulated wave to the unknown
but only the carrier and one of the adjacent side tones ultimately beat
together, after downward frequency translation, to form detected
signal. The aperture errors are hence characteristic of those encountered
in "two-tone" measurement sets, rather than the larger errors produced
in a "three -tone" set.' The origin of the error is suggested in the Fig. 17.
The test set indicates the slope of the secant line connecting the phase
ordinates at (01 and w2 . When higher -order curvature exists between
(01 and (02 , the slope of the secant line no longer is the same as the slope
of the tangent, (30/0w, drawn at the mean frequency, (04 -I- (02)/2, where
the delay is considered to be evaluated.

If the phase curve of the unknown exhibits only algebraic variation
over the frequency range encompassed by the measurements, elementary
deductions are then possible with respect to errors in measurement of
delay distortion, i.e., in measurement of the variation of delay across
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Fig. 17 - "Aperture error" in envelope delay measurement.

the test frequency range. When the phase curve is expressible as the
polynominal

(I) = ao aico a2w2 + ancon, (9)

it may then be demonstrated that no error results in delay distortion
measurement for n :5_ 3. Hence, there is no aperture error when measur-
ing a linear or a parabolic delay shape, or an additive combination of
these shapes.

On the other hand, quite large errors can result in the measurement of
ripples of delay superimposed on algebraic shapes. If the period of the
ripple is Q and p is the separation between the two delay measuring
tones, then the indicated value of the amplitude of a delay sinuousity
having a peak -to -peak value, To , would be erroneously indicated by

Grp

= To

sin -
(10)

7rP

Q

The magnitude of the error may be appreciated from the fact that the
indicated value of To is in error by 7 per cent when the ratio of Q to p
equals 5.

6.3 Accuracy Validation

Broadband standards of loss, phase, and delay, operable between
0.25 and 4.2 gc and having sufficient accuracy for use as a checking
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standard, are not available. Hence, indirect techniques of validation
had to be resorted to.

As a first step, the insertion loss and phase of each of two coaxial
pads was measured at a large number of frequencies. The sum of these
measurements was then compared with the over-all measurement of
loss and phase through the tandem connection of the two pads. Study
of the equation for of in Section 6.1, as applied to the accuracy valida-
tion problem, shows that this comparison yields a valid measure of test
set error, provided that the test set and pad reflections are sufficiently
small. For the frequency range up to 2 gc, over which the test set ter-
minations are <0.03, the use of pad standards with reflections of 0.03
would permit accuracy determinations, by the method just outlined,
to a tolerance of 0.04 db and 0.25 degrees. Such pads are available,
and when the "bootstrap" experiment was made using a pair of nomi-
nal 20-db units, it was found that the sum of individual measurement
agreed with the over-all measurement to within 0.1 db and 0.3 degree
up to 2 gc. The agreement proved to be about the same for a pair of 10-
db pads.

Because of the increased reflection from both the test set and the pads
above 2 gc, less favorable results were obtained in this region. The
disagreement between arithmetic sum and measured sum cycled with
test frequency, and this strongly suggested that the cause lay with
reflection coefficient interactions. This was confirmed by building up
to a given value of tandem loss using different combinations of pad
values. The results varied with specific pad combinations even though
the electrical lengths of all the pads were about equal.

In similar tests to evaluate the delay measurement performance,
it was possible to correctly sum 2 cables of 20 nanosecond length to
within 0.4 nanoseconds up to 4 gc.

VII. EQUIPMENT DESIGN

The test set apparatus is distributed among four bays. One of these
bays provides a tightly shielded compartment for the test frequency
signal sources. The remaining three bays are united to form a three -
cabinet console. This arrangement is shown in Fig. 18.

The layout has been executed with operator convenience foremost
in mind. Just above table level in the right-hand bay of the console are
the programming knobs for selecting between loss or gain, and between
phase or delay modes of measurement. An extensive array of coaxial
switching automatically sets up the test set circuitry for measurement
in any of the desired modes, on command from the programming knobs.
Also occupying convenient locations in the right-hand bay are the
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calibrated measurement standards and the associated null meters.
The various scales on the meters are edge lit to unambiguously indicate
the particular scale in use. Automatic ranging circuitry transfers opera-
tion to the more coarsely calibrated scales whenever the prevailing loss,
gain, phase, or delay unbalances exceed the end limits of the most
sensitive scales.

The left-hand bay contains the controls for selecting test signal fre-
quency. The point -by -point and motor scan controls are visible in Fig.
18, just below, and to the left and right of the drum dial which bears
the frequency calibrations for all four test signal bands. Monitor meters
for indicating the power output of the sources and the de currents flow-
ing in the converter crystals are also provided in the left-hand bay.
These are of no interest to the operator, but do play an important
role in preventive maintenance. Each of the chassis modules is mounted
on slides, thus making in -situ maintenance feasible.

Resting on the table, and emerging from the center bay, are the flexi-
ble cables for connection of coaxially terminated unknowns. Each of
these cables is terminated in a 15-db impedance buffering pad. The
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center bay also houses the built-in transistor measurement facilities.
The jig and associated coaxial trombone mount on a retractable slide
which the operator pulls out when making transistor measurements.
Connections are made to the input and output test set cables through
Type N-Dezifix B coaxial adapters.
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Computing the Spectrum of a Binary
Group Code*

By M. M. BUCHNER, JR.

(Manuscript received December 10, 1965)

The weight distribution of the code vectors of a binary group code has
been referred to as the spectrum of the code. This paper presents a technique
for calculating the spectrum of such a code, the spectra of shortened codes
obtainable from the code, and what are defined as the level weight structures
of the code.

The method is conceptually straightforward and readily adaptable to
digital computers. It involves operations no more complex than the addition
of two (n - k)-tuples, the determination of the weight of certain (n - k)-
tuples, and the ordinary addition of certain integers. Its computational
complexities are independent of the code parameters. In principle, it may
be used for any binary group code, but it is particularly useful for codes in
which the number of parity check positions per code vector is rather small
although the number of information positions may be large.

I. INTRODUCTION

The need for reliable data transmission systems has prompted the
investigation of various coding techniques which attempt to detect
and/or correct transmission errors. Because of the relative ease with
which binary codes can be implemented, these codes have received
special attention. It is with certain properties of these codes that this
paper is concerned.

In general, the encoder receives a block of k binary symbols (called
a message) from a message source from which it determines (n - k)
binary parity check symbols (called an ending). The message symbols
and the ending symbols may be interleaved or transmitted sequentially
thus forming a block of length it (called a code vector). Because any

* The material presented in this paper formed Appendix II of the dissertation
"Coding for Numerical Data Transmission" submitted by the author to The Johns
Hopkins University in conformity with the requirements for the degree Doctor of
Philosophy.
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code in which these symbols are interleaved is equivalent' to a code in
which the message and ending are transmitted sequentially, attention
may be restricted to the latter situation.

The elements 0 and 1 form a field. Two vectors (or n-tuples) whose
components are these field elements may be added by adding modulo
2 the corresponding components of each vector. The symbol 0 will
be used to denote this addition of vectors.

The set of all possible n-tuples forms a vector space V. of dimension
n over the field of two elements. A subset V is said to form a group
code if the n-tuples in the subset form a group. Over the field of two
elements, a set of vectors that forms a group is a subspace of V.. There-
fore, the vectors of a group code form a subspace of Vn .

The weight of a vector u is the number of nonzero components in u
and is denoted by w[u]. The distance' between two code vectors u and
v is w[u 0 v]. Because the code vectors form a group, there exists a code
vector t = u ® v. The distance between u and v is thus equal to w[t].

Because of this relationship between code vector weights and distances
between code vectors, it is useful in evaluating the error detecting and/or
correcting capabilities of group codes to be able to determine the num-
ber of code vectors of each possible weight - i.e., from 0 to n. This
information has been called the spectrum of a code and can in principle
be obtained by calculating in detail each of the possible 21' code vectors
and then determining the weight of each of these code vectors. However,
this method is not computationally feasible for values of k which are
most often of interest.

MacWilliams' has determined a system of linear equations which
relate the set of integers that forms the spectrum of a given code to the
set of integers that forms the spectrum of its dual code. The method is
particularly effective for codes in which the dimension of the dual code
is relatively small so that the spectrum of the dual code is readily ob-
tained.

The method presented herein enables the direct computation of the
spectrum of a code without the actual formation of every code vector.
The technique also gives both the spectrum of each of the possible
shortened codes which may be obtained from the given code and the
level weight structures of the given code. The level weight structures
(which are defined later in this paper) have proved useful in the study
of the effectiveness of error -correcting codes for numerical data trans-
mission' and may indeed be of interest in other areas of code evaluation.

The method is conceptually quite simple, readily implemented on a
digital computer, and does not depend upon the solution of any equa-
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tions. In fact, the only operations involved are the component by com-
ponent modulo 2 addition of (n - k)-tuples, the determination of the
weight of certain (n - k)-tuples and the ordinary addition of certain
integers.

II. COMPUTATIONAL TECHNIQUE

Let k denote the dimension of the code space V and let E; (1 < j k)
denote the k basis vectors of V. Take ET; in the usual systematic form

Ei = efIC; (1)

where the message e; is the k-tuple with a 1 in position j and all other
positions 0 and C; is the (n - k)-tuple ending assigned to the message
e; . Note that if the code is specified by a parity check matrix' in the
form

H = (h1h2 hk1,,k) (2)

where hi (1 < i < k) is the column of H in the ith position and In_k
is the (n - k) X (n - k) identity matrix, then Ci is simply the trans-
pose of h; and Ei is readily obtainable.

The vectors El , E2 , , El generate a subspace of V of dimension 1
which we shall denote as Ti. rk is the code itself and r, is the set of
code vectors in which information positions 1 + 1, 1 + 2, , k are 0.
ro is defined as consisting exclusively of the all 0 code vector.

Let A/ = r/ - Ai , which is called the Nevel of the code, is the
set of code vectors in which information positions l + 1,1 + 2, , k

are 0 and information position 1 is 1. Any code vector in Al is the sum of
E1 and some vector in r/_, .

The basic idea is to form for ri an ending -weight matrix S(1). For
convenience we shall deviate from usual practice and number the rows
and columns of S(1) beginning with 0. The entry sa,0") in row a and
column # of 5( denotes the number of code vectors in r, of weight a
whose endings are the (n - k) -bit binary representation of # (denoted
by B ($)). There must be (n 1) rows in S(1) to allow for all possible
code vector weights and 2n -k columns to allow for all of the possible
(n - k) -bit endings. Therefore, S(0 is an (n + 1) X 2"-k matrix.

The utility of this technique lies in the ease with which 5") may be
obtained from SU-1). Suppose that 8'1-1) is known. The code vectors of
Al are formed by adding El to the code vectors of 1'1_1. However, the
special form of E1 makes this operation equivalent to placing a 1 in
information position l of each vector in r1_1 and, at the same time,
adding Ci to the ending of each code vector in r1.,.
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Any code vector of weight a in whose ending is B (3) becomes a
vector in Al with ending B 03) Cland of weight y where

7 = a + 1 + w[B (0) C) CI] - w[B (3)

For those values of a (0 ...C. a < n) and -y (0 < -y < n) for which (3)
may be satisfied,

(1) (1-1)
S (1-1)87,B-1[1104pm - ,B-1[B(fl)eci] ,O (4)

where ./3-1 (the inverse of B) is the operator such that /3-113[0].

In general, it is not possible to satisfy (3) for every y (0 n).
However, because all code vectors in 1"/_1 whose endings are B ((3) (i.e.,
the code vectors giving rise to the nonzero entries in column (3 of S(1-1))
become code vectors in Al of weight in the range 0 through n, all values
of a corresponding to nonzero entries in column 13 of 8(1-1) produce
values of -y such that 0 < y < n. For these values of 7, (4) may be
applied.

On the other hand, values of y which would require values of a outside
of the range 0 < a n in order to satisfy (3) are those values of 7 for
which it is impossible to have code vectors in of weight a whose end-
ings are B ). For these values of 7,

(1) (1-1)
s7,B-1[B(0)(Dcii - 0 7 ,B-1 [BOW/ ] (5)

The column numbers referred to in (4) and (5) are independent of
a. Furthermore, as a increases, (4) and (5) simply refer to different
elements in the same column. For this reason, these results may be
expressed as column operations thus leading to a conceptually simple
result.

Let So(1) denote column 3 in 8(Z). Define cr(j) to be a shifting operator
which, when applied to So(1) , shifts each element of Sp(i) by j positions
filling in any resulting blank positions with zeros. For example, if

0
1

(1) = 1

0
0

then

0

0

Cr(2)  So(1) = 0
1

1
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and

(-1)  Si)(1) =

1

0 .

0
0

In terms of cr(i), the relationships expressed in (3), (4), and (5) may be
conveniently expressed as

(1)
130

(t -I) , cw[B(P)oci]-w[B(o))+1) .(1-1). (6)szi-i[Bo
_

hocii - on -1[4m 1- a

Clearly all columns of S(1) are obtained by successively applying (6)
as a runs from 0 to 2n -k - 1.

It is important to notice the great simplicity of (6). In practice, it
involves shifting one column of 5(1-1) and then combining by simple
addition the elements of this column with those of another column of
S(1-1) to obtain a column of Sm. Determining the number of positions
that .9;i-1) should be shifted and the column with which Sp(1-1) should
be combined is extremely easy. In particular, the operations in (6) are
readily adapted to digital computer operations.

If S(0) is known, the remaining ending -weight matrices can be succes-
sively obtained. The only code vector in ro is the all 0 vector.
Therefore,

(o)
Soo = 1

and
(8.00) = 0

for all other values of a and 0.
Now that the method for constructing the ending -weight matrices

has been presented, the following will serve to indicate how the desired
information is extracted.

(i) Spectrum of the code: The total number of code vectors of
weight a in the code is

2n -k-1
E sco(k).
/3=0

(7)

The spectrum of the code is obtained from S(k) by using (7)
for each value of a (0 < a < n).

(ii) Spectra of shortened codes: Let k' denote the number of in-
formation positions in the shortened code - i.e., k - k' in-
formation positions are deleted. Assume that the deleted posi-
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tions are information positions k' + 1, k' + 2, , k. The
total number of code vectors of weight a in the shortened code is

2.- k- 1

E sc,,,(k'). (8)

The spectrum of the shortened code is obtained from 8(v) by
using (8) for each value of a (0 < a n - k k').

(iii) Level weight structure: The set of code vectors Az has been
referred to as the i-level code vectors and the weight distribution
of these code vectors as the /-level weight structure.' Note that
the Nevel weight structure is the difference between the spec-
trum of the shortened code consisting of l information positions
and the spectrum of the shortened code consisting of (1 - 1)
information positions.

Let ni,a denote the number of code vectors of weight a on
the Nevel. The number of code vectors of weight a in 111_1 is

k-1E
9=0

Similarly, the number of code vectors of weight a in r1 is

E scow.

It follows that

ni.. E sa.0(1) - E
/3=-0

III. CONCLUSIONS

(9)

The spectrum of any group code, the spectrum of any shortened code,
and all level weight structures are obtainable in a straightforward
manner by means of operations no more complex than the addition of
two (n - k)-tuples (to determine the columns to combine), the com-
putation of the weight of certain (n - k)-tuples, and the repeated
addition of integers two at a time (to actually combine the columns).
The number of computations does depend upon the parameters n and k
but the method has the advantage that the complexity cf the operations
is invariant. Because the number of computations and the number of
computer storage locations required for the ending -weight matrix are
sensitive to changes in (n - k) but rather insensitive to changes in k,
the method is most effective for codes in which (n - k) is moderate al-
though k may be quite large.
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As presented, the method treats each of the k ending -weight matrices
in a similar manner by determining all of the (n + 1)  2n -k entries of
each matrix. Computing time can be saved by realizing that the maxi-
mum possible weight of a vector in r, is 1 + n - k and, thus, that it is
only necessary to compute the first 1 n - k rows of SW because the
remaining rows contain zero entries exclusively. Additional programming
sophistications, including processing only those columns of S"-1) which
contain nonzero entries in obtaining SW (particularly for the smaller
values of 1) , improve the computing efficiency of the method.

This technique was originally developed for computing the level
weight structures of certain codes. Thus, if the level weight structures
and/or the spectra of the shortened codes are desired, this method offers
a straightforward and effective means of obtaining such information.
However, if all that is desired is the spectrum of the code, then under
some conditions the method developed by MacWilliams2 may be prefer-
able from a computing time point of view although the conceptual sim-
plicity of this method is still appealing. In any case, the relative ad-
vantages of the two methods should be considered before deciding which
to use for a specific application.

The method has been used successfully to compute the level weight
structures and the spectra of the (15,11), (31,26), and (63,57) Hamming
perfect single error -correcting codes. In each case the information was
obtained on an IBM 7094 digital computer in less than 0.01 hours.

IV. NUMERICAL EXAMPLE

The parity check matrix for a (7,4) Hamming code is

(
1 1 1 0 1 0 0

H = 1 1 0 1 0 1 0 .

1 0 1 1 0 0 1

The basis vectors for this code are

E1 = 1000 111

E2 = 0100 110

E3 = 0010 101

E4 = 0001 011

message ending.

The sets of code vectors referred to as 1'3 and A4 are listed in Table 1.
The appropriate values of a and 53 are given next to each vector.
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TABLE I

Ts a # A4 a /9

0000 000 0 0 0001 011 3 3

1000 111 4 7 1001 100 3 4
0100 110 3 6 0101 101 4 5

1100 001 3 1 1101 010 4 2
0010 101 3 5 0011 110 4 6
1010 010 3 2 1011 001 4 1

0110 011 4 3 0111 000 3 0
1110 100 4 4 1111 111 7 7

Tabulating this information yields S(3) and S(4).
0

0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 1 1 0 0 1 1 0

S(3):« 4 0 0 0 1 1 0 0 1 S(4):«
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0

0 1
0
2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 1 1 1 1 1 1 1 0
4 0 1 1 1 1 1 1 1

5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1

We now turn to use the method herein developed to obtain S(4)
from Sm. Specifically, we use (6) first with 0 = 0 and then successively
increase # until # = 7.

When j3 = 0, .13-1[B (0) CI C4] = 3. Thus, (6) reduces to

-0-
0

0

s3(4) s3(3) + (3) so(3) 0
1

+
0
0

LO

If r0-
0 0

0 0

1 1=
0 1

0 0

0 0
0_ LO_

which is indeed correct.
Now let # = 1. Then B -1[B (1) C) C4] = 2 so (6) yields

r0-0-'
0 0

FO-

0

0
(4)

82 = (3)
82

, (1) (3)
1- O. .Si =

1

0
+

0
0

Lo_

0 0

o 1=
1 1

0 0

0 0
0- LO -1
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The remaining columns of S(4) are obtained in a like manner as 13 in-
creases to 7.

The spectrum of the code is obtained by summing across the rows
of S(4). The spectrum of the shortened code resulting from the deletion
of the fourth information position is obtained by summing across the
rows of S(3). The 4 -level weight structure is the difference between these
spectra. This information is tabulated in Table II.

TABLE II

Weight Code Spectrum Shortened Code
Spectrum

4 -Level Weight
Structure

0 1 1 0
1 0 0 0
2 0 0 0
3 7 4 3
4 7 3 4
5 0 0 0
6 0 0 0
7 1 0 1

For an illustrative example, it was necessary to confine ourselves to
a code in which k is small. However, it should be realized that the true
utility of the method lies in the fact that it can, without modification
or additional complexity, be used for codes in which k is quite large.
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The Statistical Effects of Random
Variations in the Components of

a Beam Waveguide

By WILLIAM H. STEIER

(Manuscript received November 22, 1965)

The effects of variations in the components of a beam waveguide are con-
sidered. These variations statistically cause the Gaussian beam spot size
of the light propagating down the waveguide to grow and cause the beam
center to oscillate about the waveguide axis with ever-increasing amplitude.
Random variations in lens focal length and spacing and random lateral
lens displacements are considered. It is also shown how random variations
in focal length and spacing can be included in the published analyses for
short random bends in the waveguide axis.

When the number of lenses is large, it is shown that the beam displace-
ment and beam spot size both grow exponentially with distance.

As an example, a confocal waveguide with lenses spaced one meter apart
and built to somewhat optimistic tolerances will require a beam redirector
every 2.5 kilometers to prevent the beam oscillations from exceeding an rms
value of 2 millimeters.

I. INTRODUCTION

A long sequence of spaced lenses is of considerable interest for optical
communications. It is known that the diffraction losses in such an
optical beam waveguide can be kept very small for moderate size
lenses." This means that if a transmission line is made of identical
low -loss lenses, spaced identically along a straight line with each lens
centered on this straight line, there is a mode of propagation which is
low loss. However, if there are imperfections in the transmission line,
the light beam will begin to wander from the axis or the beam size will
grow and the beam will eventually strike the edge of the lens and be
lost. Since the diffraction loss of the beam in a perfect line can be kept
very small, it is the line imperfections, the line axis curvature, and the
scattering and absorption at each lens which will primarily determine the

451
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optical loss. Gas lenses have been considered for reducing the scattering
and absorption losses.'

Rowe4 and Hirano and Fukatsu5 have shown how the beam position
is affected by random lateral lens displacements. Berreman,6 Marcuse,7
and Unger" have considered correlated lateral lens displacements in the
form of bends. All of these analyses have assumed perfect lenses and
perfect spacing and have shown the growth of the beam displacement
due to lateral lens displacements only. It is the purpose of this paper to
show how the previously obtained results are altered when the lens
focal lengths and lens spacings have random variations.

In this paper, we shall consider the statistical effect of random varia-
tions in lens focal length and lens spacing and random lateral lens dis-
placements. We shall also consider random bends whose correlation
length is much smaller than the total line length. It is shown how the
various line imperfections couple to one another and cause the beam
deviation from the axis to grow. The growth of the spot size of a Gaus-
sian beam is also considered.

It is shown here that the random variations in f and L cause the rms
expected value of beam displacement and the rms expected value of the
beam spot size to grow exponentially with distance when the number of
lenses is large. For bends, the variations in f and L cause an exponential
increase in the average allowed bending radius of the guide when the
number of lenses is large. In contrast, when f and L are perfect these
effects grow more slowly with distance, and increase only as the square
root of the number of lenses.

We shall use geometric optics since it is known that in the paraxial
approximation the center of a Gaussian beam in a beam waveguide
behaves as a ray.9 The geometric optics analysis is extended to find the
behavior of the beam spot size by replacing the Gaussian beam by its
equivalent ray packet.'"

II. GENERAL PROBLEM FORMULATION

We shall consider the problem in two dimensions only for simplicity.
It has been shown that the three-dimensional problem can be split
into two independent two-dimensional problems.5 For aberration -free
lenses, the motion of the beam in one transverse dimension is dependent
only on the initial conditions and lens displacements in the same trans-
verse direction.

Consider the transmission line shown in Fig. 1. We define 7.. and r7,'
as the position and slope of the ray just to the right of the nth lens. The
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fn+t

L,
Fig. 1- Beam waveguide notation.

453

ray position and slope are measured with respect to a straight line
which is the nominal transmission line axis. The spacing between lenses
is labeled L. and the convergence of the lenses as C. where

C. = 1/fn

and fn is the focal length of the nth lens. The lateral distance between
the center of the nth lens and the reference line is s. . The displacement
sn is positive if the lens center is above the reference line.

Using this notation we can write

If we define

and

rn =

= + (1 C Ln)r ± C nsn .

-
1'n

R =
rni

Ln

Mn =
Cn 1 - LCni

V. =
0

Cnsn

we can write (1) and (2) in matrix form as

Rn = + V. . (3)

This relates the ray position and slope at then plane to the ray position
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and slope at the n - 1 plane. We shall be interested in the rms expected
value of the output beam displacement and hence in the square of the
output beam slope and position. We shall, therefore, square the matrix
(3 ). To do this, we take the Kronecker product' of each side of (3) with
itself.

R. X R. = (Mn X Mn) (Rn-1 X R.-1) + V. X V.
(4 )

(/11-Rn_1 ) X V. + V. X (M.R.-1.).

Now take the expected value of (4 )

(Rn X Rn) = ((31 X 111,.)(R-1 X Rn_i)) + (vn X v)

((11i.R._1) X Vn) + (V. X (111.R.-0)-
(5)

The expected value of a matrix is the matrix of the expected values.
We will now state our statistical assumptions. We assume small

variations about L and C

L = L(1 + 1.)

= C (1 + c.).

(1.) = (c.) = (s) = 0

(//k) = (c.ck) = 0 n k

(1.ck) = (1.sk) = (c.sk) = 0 all n

(c2) cre2

(12) = 0'1,2

(82) y2.

Hence, 1 , c., and s. are mutually independent random variables of
zero mean. There is no correlation between the variations in spacing,
the variations in focal length, and the variations in lateral displacement.
The variations in L and C are completely random with no correlation
between adjacent L's and adjacent C's. For the first sections of the
paper we shall consider the lateral lens displacements to also be com-
pletely random with no correlation between adjacent displacements.
In a later section it will be shown how correlation of the lens displace-
ments in the form of random bends in the waveguide axis can be included.
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III. A TRANSMISSION LINE WITH RANDOM LATERAL LENS DISPLACEMENTS

In this section we shall consider only random lateral lens displace-
ments. Hence, we impose the additional statistical restriction that

(sks.) = 0 n k.

The lateral displacement of any lens is unaffected by the lateral dis-
placements of any other lens.

If we repeatedly substitute (3) into the last two matrices of (5),
we see that they contain elements of the general form

(G (Lk , Lk+i ,  Ln C k C k+1 ,  Cn)Sk-Ort),

and

k n

(F (LI , L2 ,  Ln , C1, C2 ,  C n)ROSn)

where G( ) and F( ) are some functions. In view of the statistical
assumptions, these can be written as

(G (Lk ,  Ln C k C k+1 , ' C7))(Sk-lSri), k n

and

(F (Li , L2 ,  L , C1, C2 ,  C ))Ro(Sn)

which are zero since (sk_on) = 0 for k < n and (s) = 0. Hence, the
last two matrices of (5) are both zero.

When there is some correlation between lateral lens displacements,
i.e., a wavy transmission line axis, these two matrices ate not zero. It
is through these matrices that the correlation will enter.

Also, by using the above statistical assumptions Mn is independent of
R...4 and (M. X Mn) and (V X Vn) are not functions of n. Equation
(5) can, therefore, be written as

n-i
(R X Rn) = (M  X M.)"Ro x Ro E (31n x jin)k (Vn x V,,) (6)

k=0

where Ro is the matrix of the initial ray slope and position.
The Kronecker products in (6) are either 4 X 4 or 4 X 1 matrices.

These can be reduced to 3 X 3 and 3 X 1 matrices by combining the
two redundant terms." For clarity and ease of computation we shall
reduce the matrices and write them out explicitly below. We have
assumed here that 02 << 1 and cre2 << 1 .hence, we have neglected
az,2CrC2 compared to

0L2
or ac2.
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-(r.2)

(R. X R.) =

(r2)

-ro2

Ro X Ro = roro

ro

0

(V. X V.) = 0

1_C2(1 + Cr C2 )Y2

1 2L L2(1 + a 2)

(M. X M.) = -C 1 - 2LC L - L2C (1 + L2)

C2(1 + v c2) 2C + 2LC2 1 - 2LC L2C2

(1 + :) (1 + a L2 + a 02)

3.1 The Characteristic Roots of (M. X M.)

To evaluate (6) will require the raising of (M. X M.) to the kth
power. To do this it will be necessary to find the characteristic roots of
(M. X M.). The characteristic roots of (M. X M.) can be found from
the equation

(M. X M.) - /X = 0

where X is the characteristic root and I is the unity matrix. This leads to
the following cubic equation for X:

- X2[3 - 4LC L2C2 L2C2
c.2

-X [ -3 + 4LC - L2C2 L2C2 L2 c2),
I 1 = 0.

(7)

We assume in (7) that a L2 and o-02 are very small quantities, hence
terms of higher power than 2 in a L and o- c are neglected. Since 0 2
and a 02 are assumed very small it is reasonable to assume that the roots
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of (7) are very near the roots for the perfect transmission when az!
o- c2 =0. For the perfect transmission line, the roots are

X = 1, e2i0 , e
-2i0

where 6 = cos-' (1 - LC /2). We therefore write the three roots of (7)
as

Xi= 1+q1
e2i0

X3 = e -2i0 (1 + q3)

where

I ql I) 1 q2 1) I q3 I << l

For the case of LC 2, i.e., a nonconfocal system, (7) gives

(b._
4

- 2L
4 - LC (0 L2ac2)

If we define

then

-
q2 q3 - 4 -L

C
LC(al"2 crc2).

2La - 4 -
C
LC

(crL2
ac2)

Xi= 1 + a

X2= e2i° 1-2(

A3= C2i9 (1 - .

For the confocal case, LC = 2, the roots of (7) are

Xi = 1 + a

A2 = -1 +a

A3 = -1.

These two sets of solutions of (7) are valid so long as a << 1. This
means a- 02 < 1, L2 < 1, and LC is not near 4.
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3.2 Sylvesters Theorem

For raising the matrix (Mn X Mn) to the loth power, it is helpful to
use Sylvesters Theorem.12 If Al , A2 and A3 are the characteristic roots
of the matrix A then

Ak
(A - X2I)(A - A31-) k

(Al - X2) (X1 - A3) 1

(A - XiI)(A - A3I) k

(A2 - Al) (X2 X3)
A

(A - (A - A21)
A3

k

(A3 - X1) (X3 -

where I is the unity matrix.
In (6) we shall be interested in the case where n is a very large num-

ber, i.e., many lenses in the transmission line. The difference between
the matrix (Mn X Mn) and M X M where M is the perfect transmission
line matrix is very small (terms of the order of 0- c,2 and CT L2) . For the
nonconfocal case, it will therefore only be necessary to consider the
deviations from a perfect transmission line in Xik, A2k, and X3k. In the
coefficients of A1k, A2k, and X3k we can assume a L2 =Q c2 = 0.

Hence, for the nonconfocal case, we can write

(Mn X 1110k (m 112
e2io/) e-2iop

e(1 - em) (1 - e -2i°)

+ (AI X M - I)(M X M - e-2101)
e2i1c0e-kal2 (8)

(e2i° - 1) (e2"- e--2ie)

(M X M - I) (M X M - e2,e1)
e-2ikee-kni2.

(e2i° - 1)(e -2i° - e"e)

Here we have used 1, e21°, and e -2i19 for the roots of M X M and

Alk = (1 + a )k eka

k
A k = e2i1c0

(1 a 2ik0 -ka 12)
C.,

2

A
3k )k-2i1c0 (1 a e e-2ike -ka 12

2

In (6) we shall be interested in only the first element of (Rn X Rn)
which is (r2). To calculate this we will only need the first row of ele-
ments of (Mn X Mn)k. These can be found from (8). The 1,1 element for
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the nonconfocal case is

bll = eka [4
sin' 0 - 2LC cos 0

4 sin2 0

-2LC cos 0
(e2i0 1)2j sin 20

e-211:0 [ -2LC cos
e -2i0 1)( -2j sin 20)

e2i"e-kal2

After some simplification

b11 - 4
2

LC[elm
e-kai2 COS (2k - 1)0].-

Similarly, we can write b12 and b13 for the nonconfocal case as

b12
2L

LC
[ k -k /2

LC
(,V4 - LC-

4
ead-e sin 2k0 - cos 21,19)1

2L2 j ek. -b13 -e cos 2k0].-k"12
LC (4 - LC)

For the confocal case, LC = 2, we are close to a degenerate case
where two characteristic roots are close to being equal. If we retain
terms to no higher power than 2 in a2 and a e2 in (M. X M.)k we can
write

(M n X 111)k(M X M I)(M X M I) ka

4

((M. X M.) - (1 + a)i)((M. X 1!,) + I) (_1)ke_ki,
2a

((M. X M.) - (1 + a)I)((M. X M.) + (1 - a)I) (-1)k.
2a

We have retained the al? and o c2 in the coefficients of the last two terms
since 0z,2 and a. e2 appear in the denominators.

We again are interested only in the first row of (M. X Mn)k. For the
confocal case, the elements of the first row are

bll = eka

k2( -1) (o.c2e-ka 0.1,2)b12 = L [e"
a

L2 [ ka 2( -1)k (ac2e-k + 2)]b13 = -2 a
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3.3 Calculation of (r.2)

For the nonconfocal case using (6) and the values for the elements
in the first row of (Mn X M0)k, we can calculate (r02).

(r02) = 2 { e-(na/2) cos (2n - 1)0]702[ena

4 - LC

roLro'[eno4 - sin 2n0 - 2n6
Ce-(na/2) (4/

cos
LCL

L 7.02'2 [ens - C(na/2) cos 2n0]
LC

n-1
 Lcy2 X- k(ea - e-(ka/2) cos 21c0)} .

k=0

In the 3,1 position of (V0 X V.) we have neglected the a c2 as compared
to 1.

The summations can be evaluated as
n-1 na

ka eno - 1 e - 1E ti
k=0 1 a

n-1
-(ka/2)

e cos 21c0
k=0

1 - e-(a/2) cos 20 - e-(na/2) cos 2n0 CE(s+1)s/21 cos 2(n - 1)0
1 + e-a - 2e-a/2 cos 20

1 C(ns/2) sin (2n - 1)0
2 2 sin 0

We have used the facts that a << 1 and n >> 1.
The expected value of the square of the output beam position for the

nonconfocal case is therefore,

(rn2) -
4 -2 LC

{7.:ieno e-("12) cos (2n - 1)0]

 roLro' [ems e-(na/2) 4 -
LC

LC sin 2n0 - cos 2n0

+
12. {ena e-(na/2)

cos 2n0]LC

Lcy2[ena - 1 1 e-(na/2) sin (2n - 1)01
a 2 2 sin 0

(10)
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where

2La - 4 -
C
LC (cr 1,2 ± ac2).

For confocal spacing, LC = 2, the square of the expected value of
rn is

1)n(rn2) = ro22

e
na roLro/ [ ena 2( - na 012)1

a

2'2 r 2( -1)nLro
a (0-C

2

e'''2 + 012)12

2 --na
( -1 )nCrL21rena - 1 1 o -c 6

L a 2 a a

where, for LC = 2, a = 2 (0-2 + a c2).
It is of interest to consider how close to LC = 2 one must be to have

(11) hold rather than (10). If we retain terms to only the first power
in a, it can be shown that (11) is valid when

I LC - 2 1 < crL2 + a c2.

If

I LC - 2 1 > crL2 ± a:

then (10) holds. Since aL2 and a ,2 will be of the order of 10' we must
be very close to LC = 2 for (11) to hold.

If the lenses and spacing are perfect so that a = 0, the first three terms
of (10) and of (11) give the square of the output beam position due to
the input beam slope and position. The last term gives the increased
displacement due to random lateral lens displacements. Both parts
agree with Hirano and Fukatsu5 when a = 0.

The random errors in focal length and spacing cause an exponential
increase in the expected value of the square of the output beam dis-
placement. This can be seen more clearly for the case where n is very
large. If na > 2, then (10) and (11) reduce to the same result. In this
case,

(rn2)
2e.

4 - LCE 02 + roLro, +
L2ro] + 2LC

y2
[ena - 11. (12)

LC 4 - LC a

IV. TRANSMISSION LINE WITH RANDOM BENDS

We will now assume the axis of the beam waveguide is bent so that
there is some correlation between adjacent lateral lens displacements.
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As noted in Section III this correlation will appear in (5) in the last
two terms, ( (MR_.1) X Vn) and (V. X (M.R.-1)).

It is shown in the Appendix that these two terms to first order do
not contain 0-2 or a c2, i.e., they are not affected by the random varia-
tions in focal length and spacing. It is also shown that if the axis of the
guide is composed of a series of uncorrelated bends whose average bend
length is much smaller than the total length of the transmission line,
these two terms are not functions of n. This type of bending might
typically be the case for a very long transmission line laid to follow the
gentle bends of the terrain.

It was shown in Section III that to first order (Vn X Vn) also has
these properties, i.e., it is not a function of QL2, o- c2, or n. Because of this
similarity, the matrix ( (MRn_i) X V.) + (V. X (M.Rn_i)) can be
considered as an added part of (V X Vn) and can be carried through
the analysis in this manner. Hence, the random errors in focal length
and spacing affect the beam displacement due to short uncorrelated
bends in the same way they affected the beam displacement due to
random lens displacements.

From (10) or (11) for "a" small we can show how cL2 and a- c2 couple

to the random displacements by writing
ena

(rn2) = (rn2).=0 na

In this expression, (rn2)--0 is the expected value of the square of the
beam displacement due to random lens displacements when a = 0.
Because of the similarity pointed out above, the beam displacement
due to short random bends is also multiplied by (e"a - 1)/na to account
for the focal length and spacing errors. Let us assume a transmission
line axis is specified which fits the conditions, i.e., it is composed of a
series of uncorrelated bends whose bend length is much shorter than the
total line length. From this we can calculate (rn2) assuming L and C are
perfect. This has been done for some specific cases by Marcuse,7 Berre-
man,6 and Unger.8 To include random imperfections of L and C if a is
small we multiply this result by

ena - 1

na

This analysis does not hold if the correlation extends along the entire
line (for example a serpentine bend) or if the correlation extends over a
large portion of the line.
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V. STATISTICAL GROWTH OF BEAM SPOT SIZE

We have been concerned thus far with the behavior of light rays in an
imperfect transmission line. Our primary concern, however, is the
behavior of Gaussian light beams rather than light rays. It has previously
been shown that in the paraxial approximation the center of a Gaussian
light beam does behave like a ray.9 We can regard r and r' therefore,
as the position and slope of the center of a Gaussian beam at lens n and
ro and ro' as the initial conditions of the beam center. We lack infor-
mation on the effects of the transmission line imperfections on the size
of the beam.

Using the complex beam parameter law of Kogelnik13 it would be
possible to find the statistical growth of the spot size due to the line
imperfections. It will be simpler, however, to use Steier's ray packet
equivalent to the Gaussian beam." This approach conveniently uses
the already derived statistical behavior of the light rays to find the beam
size behavior.

Just to the right of a lens, the ray packet equivalent of the normal
Gaussian mode of the transmission line is

where

, L
ro = wo cos yo

k-wo
sin go

go has all values from 0 to 27r (13)
-2ro = - sin (p
kwo

wo = spot size at the beam waist =

2r
k

X

ri,(4 - Lary
Lk2C_I

X = wavelength.

If the path through the transmission line of each ray of the packet is
found then the behavior of the equivalent Gaussian mode through the
transmission line can be found. At any point in the transmission line,
the envelope or the distance between the extreme rays of the ray packet
is equal to twice the beam spot size and the curves which are perpendicu-
lar to the average ray slope are the beam phase fronts.

To find the effect of transmission line imperfections on the beam
spot size, let us launch the ray packet given by (13) into the trans-
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mission line. If we substitute the value for ro and ro' from (13) into (10)
for the nonconfocal case we find

- 1)0cos (2
c, 2

2we W° -(na/2) [cos 2(rn2) - 4 - LC
a

co n,
4

L

LC
e

(14)

- sin 1p sin (2n - 1)01

where co ranges from 0 to 27. We have not included the last term of (10)
since the lateral lens displacements have no effect on the growth of the
spot size.

The expected value of the square of the spot size at the nth lens,
(wn2), is given by the envelope of these rays. Taking the maximum value
of (14) as co goes from 0 to 27.

2

(Wn2 )
2W

4 - LC
c(na/2)).

The normal mode spot size at a lens, w, is given by

2

4w02w - 4 - LC 
Hence, for the nonconfocal case

(wn2) ,na e-(na/2)

w2

where

2
(15)

Ca -
4

2L
- LC (02 + aC2).

For the confocal case, LC = 2, we substitute from (13) into (11).
Taking the maximum value as cp ranges from 0 to 27.

(wn2\- ce2e-na

W2 2
e 0.6,2 +L (16)

If na is small so that

e"a c-ji 1 + na,

then for the nonconfocal case (15) becomes

(wn2) LC (0.1,2

w2 2(4 LC)
(17)
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and for the confocal case (16) becomes

(w.2) - 1 ± no -L2.w2 (18)

Equations (17) and (18) agree with the results of the perturbation
analysis of Hirano and Fukatsu.5

Hence, for na small, the random errors in C do not affect the spot
size in the confocal case. However, as pointed out in Section 3.3, LC
must be almost 2 for this to be true. If I LC - 2 I > QL2o- c2 the result
for a nonconfocal system should be used. Since 0 L2,a c210-4, this is
a very stringent requirement on LC. It is doubtful if LC can be held
close enough to 2 to gain this advantage in reduced spot size growth.

If no, > 2 then the nonconfocal and the confocal results are very
nearly the same and for both cases

2

(wn ) 1 na

w2 2e

VI. SUMMARY

The results derived here show statistically how imperfections in an
optical transmission line affect the output beam from the transmission
line. The imperfections cause the beam center to wander from the
transmission line axis and cause the beam size to grow. We have con-
sidered the errors in focal length and spacing to be random and the
lateral lens displacements to be random or with short correlation lengths.
For this case, statistically the size of the beam and the distance of the
beam center from the axis grow exponentially as the number of lenses
when there are many lenses.

For na > 2, and random lateral lens displacements, the results can be
summarized as follows. The beam center launched at ro , ro' has an rms
expected value of

11

LC12no) LCy2 eV(rn2) = 1V4 -2 LC [eno (r: a
1.

The beam spot size has an rms expected value of

na/2V<wn2) e

For random transmission line bends of short correlation length the
random variations in L and C increase the expected value of the square
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of the output beam displacement as

e" - 1 2(r.2) (rn )a=-0
na

where (r2).-0 is the value computed assuming no variations in L and C.
If a beam is launched into a straight line on axis with no slope its

position is not affected by random errors in f and L and only the size
of the beam is affected. This is obviously true since a ray through the
center of a lens does not bend no matter what the lens focal length.
If, however, the axis is curved or the lenses have random lateral dis-
placements, the beam begins to wander from the axis and is now affected
by the errors in f and L. This coupling is clearly shown in these results.

These calculations are pertinent when n is large. This is the case of a
transmission line with relatively closely spaced lenses which would be
able to control the light beam around gentle bends in the terrain.

As an example, let us consider a confocal beam waveguide with lenses
spaced every one meter and built to the following rms expected value
tolerances:
(i) focal length variations -1 per cent

(ii) spacing variations - much less than 1 per cent
(iii) random lateral lens displacements -2 X 10-2 mm.
These tolerances give

a = 2 X 10-4

y2 = 4 X 10-4° m2.

If we assume an rms output beam deviation of 2 millimeters is

acceptable, we can go approximately 3.5 kilometers (n = 3.5 X 103)
with the line described above. If the line is allowed to have gentle
circular bends of an average radius of curvature of 5 kilometers and
an average bend length' of 100 meters then the distance which can
be traveled before there is an rms beam deviation of 2 millimeters is
reduced to 2.5 kilometers (n = 2.5 X 103). This means a beam redirector
is required every 2.5 kilometers.

In the above example, the dominant Gaussian mode spot size at each
lens for the perfect line is 0.45 mm rad. Because of the line imperfections,
this grows to an rms expected value of 0.48 min rad at n = 2.5 X 103.
This spot size growth is insignificant compared to the beam deflection.
In general, unless LC is very small the spot size growth is not as im-
portant as the beam deflection growth for closely spaced lenses.

In calculating these numbers we have assumed the lenses are perfect
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and have neglected any aberrations. Additional work is required to
determine the effects of aberrations on these results.

These numbers were calculated at LC = 2. If we make LC smaller
the effect of the random lens displacements becomes less but the effect
of correlated bends becomes larger.? At very small LC, the effect of
spot size growth' becomes important. If we increase LC the effect of
correlated bends is reduced' but the effect of random lens displacements
is increased. Clearly there is an optimum LC depending on line con-
struction tolerances and line laying tolerances. It appears this optimum
is near LC = 2 in a typical case.

Fig. 2 shows rms expected beam deviation as a function of n for a
confocal line. This clearly shows how the distance between redirectors
must be reduced as the errors in f and L become larger.
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APPENDIX

Analysis of Matrices for Bent Waveguide Axis

We are interested in the last two terms of (5) since they contain the
correlation between lateral lens displacements. These terms are

((M.R.-1) X Vn) + (Vn X (M.R.-1)).

For simplicity let us consider only ( (M.R._4 X V.), since the two
terms are very similar. By repeated substitution of

Rn = IlinRn_i + V n

into

(MRn_i) X V. ,

we find

(M.R.-1) X V. = (M.PiRo) X V. + t (M.PkVk-l) X Vn (19)
k=2

where

Pk = M n -1M n -2M n-3 ' M k-F1M k

If we take the expected value of (19), the first term on the right side
is zero since it is the product of independent terms and (Vn) = 0.

We must look at the individual elements of (M.Pk Vk-1) X V.. We
can write the matrix Pk as

Pk. (1,1) Pk (1,2)

Pk = .

Pk (2,1) Pk (2,2)

The pk contain Ln_i , Ln-2 ,
to the first power.

+ LnPk (2 ,2)Pk (1,1) + LnPk (2,1) Pk (1 ,2)

MnPk =

and

-C nPk(1,1) + Pk (2 ,1)

(M.PkVic-1) X V. =

" , Lk , and C._,. , Cn-2 ,

(1 - L.C.)

0

Pk (1 ,2)Cn + Pk (2,2)LnCn

_.-Pk(1,2)Cn2 + Pk (2,2) (Cn + LnCn2)._

, Ck but only

-C nP k (1,2) + Pk (2 ,2) (1 - LnCn)

Ck-iSk-lSn
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From this result we can write the last two terms in (5) as

((M.R.--i) X V.) + (V. X (11/.R.--1))
r 0

(Pk(1,2))C LC(pk(2,2))

(pk(1,2))C + LC(pk(2,2))

2C2(1 ac2)(L(pk(2,2)) - (Pk(1.2)))

+ 2(pk(2,2))C-

Since the pk contain the L's and C's only to the first power in each,
(pk) will contain only L and C and will not contain aL2 and 0-02. If we
neglect a c2 as compared to 1 (the same approximation is used in (V. X
V.)), then ((M.R._1) X V,) + (V. X (M.R._1)) does not contain

2 2
0 "L or C c 

We will now find under what conditions ((M.R.--i) X V,) + (V, X
(M.R.-.1)) is independent of n.

The n dependence of (20) is in the terms

and

Since

= E
k=2

=

E (Pk(1,2))(Sk-1 sn)
k=2

E (pk(2,2))(8k-1 Sn).
k=2

1

C(sk-1s.). (20)

L sin (n - k) 0
(pk(1,2)) sin 0

L2C sin (n - k) 0
(pk(2,2)) -

2 sin 0
+ L cos (n - k) 0.

And we can write

sin 0 ,
Tko.,2))(8k-1 sn) = (SiSn) sin (n - 2) 0

k=2

(s2s) sin (n - 3) 0  + (s_28) sin 0 + (sn_is) 0.
We will assume, as did Marcuse,' that

(sks) = f (n - k).
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The correlation depends on the distance between the lenses. We also
assume that

f (n - k) = 0 for n - k > N .

That is, the correlation length is finite and extends only N lenses away.
This means the waveguide axis is a series of random bends, the "average
length" of each bend is NL. Therefore, if n > N we can write

sin 0 ,
(pic(1 2))(sk-1 s,) = f(2) sin 0 f(3) sin 20

Li k=2

 f (N - 1) sin (N - 2)0 f (N) sin (N - 1 )0,

which is not a function of n. We can write a similar equation for

E (pk(2,2) )(Sk-1 Sn).
k=2

However, we must consider all n down to 1. For these small
n, ( (M.R.-i) X V,,) (V n X (ilifiRn_1)) will be a function of n. This
means that all bends contribute the same to the output beam displace-
ment except the initial bend which is within NL of the beginning of the
transmission line. However, if we assume that n > N (the average bend
length is much smaller than the length of the transmission line) the
contribution of this initial bend will be very small and can be neglected.

In summary, the conditions imposed on the transmission line axis
are that it is composed of a series of random bends whose average length
is NL. The average bend length is much smaller than the total length
of the line. We have neglected the effect of any bend within NL of the
beginning of the line. These are essentially the same conditions used by
1VIarcuse,7 Berreman,8 and Unger8 in their analyses of random bends of
the transmission line.

Under these conditions ( (M.R74-1) X V,,) and (V X (M.R.--1))
are independent of n.
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Signal -Noise Ratio Maximization Using
the Pontryagin Maximum Principle

By J. M. HOLTZMAN

(Manuscript received November 26, 1965)

The applicability of the Pontryagin maximum principle to signal -noise
ratio maximization is explored. Attention is focused on the reformulation of
the problem so that the maximum principle may be used. The basic aspect
of the reformulation is to cast the problem into the form of differential equa-
tions instead of integral equations.

Two problems are solved. The first, a variation of the matched filter
problem, could have been solved by other methods. However, the maximum
principle provided a very neat and systematic approach. The second problem,
signal design with both an energy and an amplitude constraint imposed on
the signal, is solved numerically. It appears to be intractable by other
methods. One of the advantages of the maximum principle formulation is
that, by working with differential equations rather than with integral equa-
tions, numerical techniques may be more easily used.

I. INTRODUCTION

The Pontryagin maximum principle may be considered to be a gen-
eralization of methods of calculus of variations that permits solution of
optimization problems with inequality contraints. During the last few
years, it has been extensively used to attack control theory problems. The
use of the principle to solve signal optimization problems is introduced
in Ref. 1. The maximum principle is briefly discussed in connection with
wave -form optimization in Ref. 2.

The purpose of this present paper is to develop techniques for the
application of the maximum principle, in particular to problems of signal -
noise ratio maximization. We shall show how the maximum principle
may be used to solve some problems with inequality constraints (e.g.,
the amplitude of a signal may be constrained to be less than or equal to
some maximum value) which were heretofore considered intractable.
We shall also show how a problem, solvable by other methods, may be

473
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very conveniently attacked with the formalism of the maximum princi-
ple.

It is interesting to note that the maximum principle is, in a sense,
more applicable to communication theory than to control theory for
which it was originally developed (this is also pointed out in Ref. 1).
The maximum principle yields a function of time to maximize a func-
tional subject to constraints and for prescribed initial conditions. The
answer to most communication theory problems is a function of time.
On the other hand, in control problems, the function of time for specific
initial conditions is called an "open loop" solution. What is actually
needed is the "closed loop" or "feedback" solution which is a function
of the present state. This is only indirectly determined using the maxi-
mum principle.

After introducing the maximum principle, we shall first solve a con-
strained matched filter problem and then a signal design problem. Atten-
tion will be focused on the reformulation of the problems so that the
maximum principle is applicable.

II. THE MAXIMUM PRINCIPLE

We shall briefly discuss the maximum principle. Our discussion is an
abstraction of some material in Ref. 3. Another excellent introduction
to the maximum principle, which is presently available, is the Introduc-
tion and Chapter I of Ref. 4. Consider a system whose state is described
by a vector x = (x1 , x2 , x,,) which satisfies the differential equation

= f (s,u,t) t E [to (1)

where u = (ul , , ur) is an r-dimensional control vector and f (x,u,t) =
(fi(x,u,t), f2(x,u,t), , yUy t ) ) is a given n -dimensional vector
valued function of x, u, and t. We require that

u e l t E [to , ti] (2)

where the set S1 is the set of admissible control vectors. Let F be the
class of all piecewise continuous functions* from [to , t1] into 9. If u is
a control function in the class F we denote the trajectory corresponding
to 4, by x (t;.,) which satisfies the following relations

±(t;4,) = f (x (t;.), u(t), t) a.e. t e [to , (3)

x (to ; = 0. (4)

* Corinthian script (e.g., u,.) is used to denote control functions. Small Eng-
lish letters (e.g., u(t), v(t)) denote values of functions at specific times. The
function u is the function whose value at time t is u(t).
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(There is no loss of generality in assuming zero initial conditions; a
transformation of coordinates may be used for nonzero initial condi-
tions.)

The optimization problem is as follows. Let {SI , ,s2 , , s,n} be a given
set of real numbers where 0 m < n - 1. We prescribe the final values
(at t = ti) of the first m coordinates of the state vector x to be

{81 82 Sna}

and we require the final value of xn to be maximum. The optimization
problem is formally stated as follows: we are given the set

S = {x: xi = si for i = 1,  ,m}

and we want to find a control function 4 in the class F such that

(i) x (ti ; e S

(ii) for all 4, e F such that

(5)

(6)

x (ti ; 4t) E S

the following relation holds:

(7)

xn (t1 ; .) 5_ xn (t1 ; 4). (8)

The control function 4 is called the optimal control function and x (t p)
is the optimal trajectory.

The Pontryagin maximum principle is a necessary condition that an
optimal control function must satisfy. To state the principle, we first
define the Hamiltonian, H (x,u,t,p),

H (x,u,t,p) = (f (x,u,t) I p) (9)

where p = (p' , , 12.) is an n-dimensional vector and (a I b) denotes
the scalar product of a and b.

2.1 Maximum Principle

If 4 is an optimal control function then there exists a nonidentically zero
continuous vector valued function p (t) such that

(i) H (x (t;4), v (t), t, p(t)) H(x(t;4), u, t, p(t))

for a.e t e [to , ti] and all u E g, (10)
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(ii) 73(t) = [of(x,v(t),t)y
.-_-..(,:,)  P(t)

(11)
ax

for a.e. t E [te , ti]

(superscript T denotes transpose),

(iii) MO = 0 i = m + 1, , n - 1, (12)

(iv) p. (4) 0. (13)

Relation (i) states that the Hamiltonian, evaluated along the optimal
trajectory, takes on its maximum value with v(t). Note that the
maximization is over u, with x (t;.2) and p (t) held fixed.

Relation (ii) may alternatively be expressed as follows:

i ralf(x,v(t))1 pi(t), i = 1, 2, , n. (14)
p=.1 L axi _lx -.0:4)

Relation (iii) states that the final value of an element of the vector
p (t) is zero if it corresponds to an element of the vector x (t) which is
left free at t = t1 .

Relation (iv) states that the nth element of p (t), which corresponds to
the element of x (t) which is being maximized at t = 11 , is nonnegative
at t = ti .

Verification that the maximum principle is satisfied is seen to be
equivalent to verification that a set of differential equations with mixed
boundary values is satisfied. Conditions on x (t;.2,) must be satisfied at
both to and ti and p (t) must satisfy conditions at ti . This boundary
value problem is not always solvable analytically but much progress
has been made in the numerical solution of such problems.

Communication theory problems are not usually stated in the form
just described with differential equations. So the first order of business
in applying the maximum principle to a communication theory problem
is to convert it into the appropriate form with differential equations.

III. A MATCHED FILTER PROBLEM

To illustrate the formalism involved, we first solve a variation of the
matched filter problem. The use of the maximum principle, in this case,
is actually equivalent to using the classical calculus of variations. The
basic matched filter problem is as follows (Ref. 5, p. 244). We have
signal, si(t), and noise, n(t), entering a linear filter and we wish to de-
sign the linear filter so that the output signal -noise ratio is maximized
at a specific time, ti . This problem can be trivially solved using the
maximum principle and by other methods. To make the problem a
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little more interesting, suppose that we also specify that the output to a
second signal input, s2(t), is to be equal to some real number, a. For
example, if we chose a = 0, we could be interested in detecting the
presence of s1(t) while discriminating against s2(t).

We assume white noise with correlation function

R. (t - u) = (t - u). (15)

Then the mean square noise at ti , o (ti), is (if we start the problem at
t = 0 and if we employ the usual formal operations with white noise)

ti
(72(to h2

0
( 16 )

where h (t) is the impulse response of the linear filter. The outputs due to
81(0 and s2(t) at t = ti are, respectively,

tl

= h( T) si(ti - r) dr
4)

(17)

Y2(ti) =ftlJ h(r) s2(ti - r) dr. (18)

The problem is then to choose h (1) to maximize

[Th.(012
(19)a2(ti)

while satisfying the relationship

Y2 (t1 = a. (20)

If we let

±1(t) = u(t)si(ti - 1), (21)

±2(t) = /4082(4 - t), (22)

t3 (t) = - Nut (t) , (23)

x1(0) = x2(0) = x3(0) = 0, (24)

and if we identify u (t) with h (t), then

xl (ti) = Y1 (ti (25)*

x2(11) = y2(ti), (26)

x3(11) = a2(ti). (27)

* Note that for t ti , xi(t) does not necessarily equal y1(t).
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An equivalent problem is to choose u (t) so as to maximize x3 (ti) sub-
ject to

xi(ti) = 1

x2 (ti) = a.

(28)

(29)

That is, we can minimize o2 (t1) with yl (t1) constrained since the signal -
noise ratio is not changed if h (t) is multiplied by a constant factor.

Now that we have recast the problem into differential equation form,

we can solve it using the maximum principle. Using (14) we see that,
since f is independent of a:.

PI (t) = constant = pi (30)

p2(t) = constant = p2 (31)

p3(t) = constant = 1 (32)

(we let p3(t) = 1 for convenience).*
The Hamiltonian, H, is

1-1 = pit/ (t)si (t1 - t) p2u (t)s2(t1 - - Nu2(t). (33)

Since there are no constraints on u (t), we maximize H by differentiating
and get

=
2N

[pisi(ti - p2s2(tl - t)]. (34)

To satisfy (28) and (29), we must have

1
ti

2
pNf [ - r) P2s2(ti. - 7)1 si(ti - r) dr = 1 (35)

2N

fII
[Pisi(ti - r) p2s2(ti - r)] s2(ti - r) dr = a. (36)

o

We can then solve for PI and p2 and get

2N(82 - a812) (37)
8182 - S122

2N(aSI - 812) (38)P2 -
8182 - 8122

* This involves an assumption of normality (in the sense of the classical calcu-
lus of variations).
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ei
/

= f s12(tl - r) dr
0

S2 =
J

822(11 - r) dr
0

ti
812 = S1(11 r) 82(t1 r) dr.

0

As a simple example, let

s1 (t) = 1 t E 0,111

82(t) = 1 t e [0,412]

0 t e (4/ 2,11].

(39)

(40)

(41)

(42)

(43)

We would then get

-u(t) = h(t) - 2(1
tl

a) 81(h-0+72
(2a - 1) 82(11 - t). (44)

IV. A SIGNAL DESIGN PROBLEM

The following problem is taken from the thesis by M. I. Schwartz
(Ref. 6). The system is depicted in Fig. 1. We have a signal passing
through a linear time -invariant filter, represented by impulse response
function h(t), after which the signal is corrupted by noise. The resultant
signal plus noise is processed by a correlation -type receiver. The object
is to maximize the signal -noise ratio at the output of the receiver at

= t1 by choosing forms for both s(t) and receiver function q(t). M. I.

CHANNEL

L J

n (t)

Fig. 1- Signal design problem.
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Schwartz solves this problem with an energy constraint on s(t). We will
show how to simultaneously handle an energy constraint and an ampli-
tude constraint on s(t). That is, we require that

and

s2(r) dr = 6 (45)

I s(t)
I

8. . (46)

To make the problem meaningful, we require that

(Smax)2t1

It may be easily shown that the problem is equivalent to the problem
with the equality of (45) replaced by

Again, we assume that the noise is white, i.e.,

R.(t - u) = No(t- u), (47)

and we further specify that h(t) has a rational Fourier transform with
just poles* for simplicity. The assumption of rational Fourier transform
facilitates recasting the problem into the differential equation form. Thus,

a[h(t)] - a
D(iw)

(48)

where a is a real number and D (its)) is a polynomial in ico. Letting

D (ico) = (iw)1 (ic.4)1-1 a2(ico)1-2 +  + (i4.0) + al , (49)

(i.e., we have an lth order differential equation in h(t)) and

= x (50)

x2 ---- :t (51)

Xi = X (52)

we can represent the effect of h (t) by the following set of first -order
differential equations

* If we also assumed zeros in the Fourier transform, we would solve for a de-
rivative of h(t).



6.

±2

x1_

xi(0) = x2(0) = = x1(0) = 0.

We have converted an lth order differential equation into 1 first -order
differential equations.
Let
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0 1 0 0 0

: 0 0 1 0 0 X2

+
0

: (53)

0 0 0 1

-a1 -al -1 -a,-2 . -al_ x1_ as_

xl

X2
* = (54)

and let B be the 1 X 1 matrix in (53). Then (53) may be more concisely
written

0

0
±* = B x* (55)

as

x*(0) = 0.

Now that we have put the effect of h (t) into differential equation form,
it remains to cast the signal -noise considerations into differential equa-
tions. Recall that the object is to maximize [80(4)12/o -2M subject to
(45) and (46) where

If we let

ti
80(0 = dt q(t) f du s(u) h(t - u) (56)

0 0

rt,
0-2(h) = N q2(t) dt. (57)

ii(t) = s2(t) (58)
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z2(t) = Nq2 (t) (59)

i3 (t) = x1(t)q(t) (z3 (ti)= so (t1)) (60)

z4 (t) = 223 (t)s,i(t)q(t) (z4(ti) = so2 (t1)) (61)*

21(0) = 22(0) = 23(0) = 24(0) = 0 (62)

control vector = u (t) = (s (t), q (t)),

then the optimization problem is to choose s(t), subject to relation
(46), and q(t) to maximize 24(0 (which equals so2(0) subject to
zi(ti) = & and 22(0 = 0-2. That is, we fix 0-2(0 at some arbitrary real
number and maximize so2(ti). Just as in the matched filter problem,
multiplying q(t) by a constant does not affect the signal -noise ratio.

Now our state vector is the (1 4- 4) -vector, (x*, zi , 22 1 Z3 , 24). Equa-
tion (14) will take the following form (p(t) is an (1 ± 4) -vector):

P(t) = -

- BT 0 0 q 223q

(/ X /) 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2xiq

0 0 0 0

p(t) (63)

(B is the 1 X l matrix in (53)).
The final conditions on p (t) are

p1(ti) = 0 (64)

p2(ti) = 0 (65)

= 0, (66)

pi -1-2(t2) unspecified (they correspond to 21(0 and 22(0 which
are fixed at t = t1)

* This differential equation is derived as follows:
dt (z:(1)) = 2z3(t)i3(t) = 2z3(t)xi(t)q(t)

z4(t1) = z3(t,) = sO(t1).
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p1+3 (t1) = 0

p1+4(ti) 0.

(67)

(68)

An example of the use of the maximum principle for this signal design
problem is given in the next section.

V. EXAMPLE OF SIGNAL DESIGN

We shall consider the case of

a5[h(t)] -
ico + a

. (69)

Following the method described in Section IV, the problem is first re-
cast into the following differential equation form

= - as (70)

= s2 (Zi (11 ) = 8) (71)

i2 = N (z2(11) = o-2 ) (72)

i3 = xq (z3 (ti) = so (t1) ) (73)

i4 = 2z3xq (z4 (t1) =
s02

(t1)) (74)

x(0) = z1(0) = z2(0) = z3(0) = z4(0) = 0. (75)

For this problem the necessary condition (maximum principle) for an
optimal solution is that there exists a nonzero vector function p =
(Th.(t), p2 (t), , p5 ) such that

H = (- ax + as) + pd. q2
A + p4.rq p52z3xq (76)

is maximized over the allowable s and q and such that

= apt -
P2 = 0

733 = 0

= - 2xq

= 0

(ti ) = 0

p4 (ti) = 0

p5(11) 0

- 2z3q (77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)
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(we can let p6 (ti) = 136(0 = 1 under a normality assumption).
The maximization of H leads to

where

c(t) - - [234(t) x(t) 2z3(t) x(t)1 (85)*
2p3N

s(t) = s*(t) if I s*(t) I < S. (86)

s*(t) Smax if I OW I > Smax, (87)
s*(t) I

s*(t) -P)1(t)a
"p2

To verify satisfaction of the maximum principle, it is necessary to
solve the differential equations (70) to (74) and (77) to (81) with
satisfaction of the above mentioned initial and final conditions and in
such a way that maximization of the Hamiltonian is satisfied.

The numerical method of satisfying the maximum principle is based
on iteration of the initial values of p -vector to successively improve the
final conditions. That is, we know the initial conditions of x, z1 , z2 ,

z3 , z4 (see (75)) and we wish to constrain the final values of z1
pi , and p4 :

z2 ,

z, (ti) = (88)

z2(ti ) = 0.2 (89)

(ti ) = 0 (90)

pa ) = 0. (91)

Suppose we guess at p (0) = (pi (0), p2(0), p3 (0), pa (0), 1) and inte-
grate the differential equations (70) to (74) and (77) and (81) and
evaluate the following error in final conditions

E = I zi(ti) - 8 I ± I z2 (t1) - o2 I + I pi (ti) I p4 (ti) I. (91) t

We wish to decrease E. To this end, let

(pi (0) ) new = (pi (0) )old Bpi (0) (92)

and re -integrate the differential equations. If E decreases, change
* Since 134 (t) 2i8(/) = 0, q(t) is proportional to x(t). Thus, we are equivalently

maximizing the signal energy into the receiver (see (73)) and then correlating
with x(t). This is consistent with (and, in fact, rederives) well-known properties
of matched filters.

t Actually, the second term is not required as u2 can be adjusted by changing
q(t) by a multiplicative factor (without changing the signal -noise ratio).
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p2(0). If E does not increase, try

(Pi (0 )new = (PI (0) )old - Opi(0).

Again see whether E has decreased. If it has, change p1(0) to (pi (0) )new
and change p2(0). If E has not decreased, retain (p1(0)).id and try
changing p2(0 ).

Thus, the method is to successively change p1 (0), p2(0), 193(0), p4(0)
to decrease E. When E becomes sufficiently small, the maximum prin-
ciple may be said to be satisfied. After we present some results, we will
discuss the method further.

5.1 Results

Two cases were run. They were for the following parameters:

tl = 1

= 1

N= 1
a = 1.

(As mentioned previously, 0-2 is determined by the scaling of q (t) .) The
difference between the two cases is that in the first, the amplitude con-
straint was not imposed and in the second, S. was set at 1.1. The first
case was already treated by other methods in Ref. 6. Our results for that
case were in agreement with those of Ref. 6. Fig. 2 shows q (t) for both
cases and Fig. 3 shows s(t). For the case of no amplitude constraint the
signal -noise ratio (1/s02(ti)/0-2) was 0.44 and the signal -noise ratio for
the amplitude constrained case was 0.43. One could (nonoptimally) im-
pose the amplitude constraint by scaling down the results for the ampli-
tude unconstrained case (and not use all the signal energy available).
That is, the peak amplitude of the signal in the first case is 1.27. The
entire signal (s (t) for t e [OA]) could be reduced by a factor of 1.1/1.27.
The signal -noise ratio would also be reduced by that factor (0.865).
Whether or not this signal -noise ratio reduction is significant is not
actually germane to this investigation. What is of consequence is the
fact that the optimum can be determined and any sub -optimum scheme
can be compared with it.

5.2 Comments on the Numerical Method

The basic method is similar to that of Ref. 7. In Ref. 7, the gradient
(relating changes in the error to changes in p (to)) is evaluated and used
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Fig. 2 - Optimum correlation waveforms.

10

to determine a steepest descent change in p (to). This was not done in
the present problem for two reasons. First of all, the evaluation of the
gradient (as done in Ref. 7) is not valid for the problem with inequality
constraints. Secondly, even if the gradient can be conveniently evalu-
ated, it still requires extra integrations and the problem of step size is
left unresolved. (This is not intended as criticism of the method of Ref.
7 which may be quite useful in many applications.) We decided to
frankly treat the problem as a systematic trial and error. Our method of
seeing how the error changes as pi (to) is changed to pi (to) + OPi (to)
may be loosely interpreted as evaluating aE/api (to)  &pi (to).

The numerical method may be considered to be semiautomatic. There
is little a priori information available as to the initial choices of the
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p i(to) and the Bpi (to). A few runs on the computer offer the optimizer
some insight as to appropriate choices. About 30 iterations were found
to be needed for convergence (approximately 0.01 hours of computer
time). No convergence proof is offered for this method. In fact, even
though it did not happen in the problem considered in this paper, it is
conceivable that aE/Opi (to) (assuming the derivative exists) can be so
large that the smallest api (to) that can be used by the computer would
result in a much too large change in E. There is also the possibility of
local minima of E (with E > 0). These problems (which may not even
occur; we are trying to anticipate the worst) could be presumably re-
solved by changing the metric defining E and by trying a wide range of
pi (to).* It may be noted that convergence proofs do not seem to be avail-

* More efficient methods of adjusting the p,(to) may be possible. See, for ex-
ample, Wilde, D. J., Optimum Seeking Methods, Prentice -Hall, 1962.
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able for competitive algorithms (e.g., steepest descent) for these op-
timization problems.

VI. CONCLUSION

The maximum principle has been used here to attack two signal -noise
ratio maximization problems. The first one (matched filter problem)
could have been solved without the maximum principle. However, the
maximum principle provided a very neat and systematic approach. The
second problem (with the amplitude constraint included) appears to be
unsolvable except by the maximum principle.* In this paper, it was as-
sumed that the noise is white. The handling of non-white noise merits
further attention, in particular, the conversion to differential equations
and the presence of impulses (see Ref. 5, Appendix 2). It should also be
noted that the maximum principle is not conceptually limited to time -
invariant problems.
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