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In contrast to inherently broadband media, such as radio, TE01 wave -
guide, or guided coherent light, the attenuation of a coaxial cable increases
rapidly with frequency. Thus, while for broadband media broadband trans-
mission schemes (FM or PCM, for example) decrease the power required
for a given channel capacity, they would seem to be ill-suited to coaxial cable.

Idealized comparisons are made among digital systems which transmit
pulses of various numbers of amplitudes or levels. These show multilevel
digital pulse transmission or analog transmission to have greater channel
capacity (in the sense of information theory) than digital pulse transmis-
sion. Practical difficulties or cost of instrumentation may, in particular in-
stances, dictate the use of single-sideband frequency -division multiplex for
efficient voice transmission or binary pulse transmission for efficient digital
transmission. Multilevel pulse transmission is a possible alternative if
problems of instrumentation can be overcome.

I. INTRODUCTION

In the very early days of information theory, it was proposed that
broadband signals might be sent over a narrow -band medium by using
more power. Most media (such as radio) are inherently broadband, and
it has turned out that for broadband media the advantage lies in the
other direction. Broadband modulation systems, such as FM or PCM
transmitted by means of binary pulses, increase the signal-to-noise ratio
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for a given power and help to guard against distortion and interference.
Indeed, there are strong arguments for the advantage of broadband
modulation systems for any broadband medium, including radio, TE01
waveguide and guided optical transmission. With the rising importance
of digital transmission, there are of course very strong arguments for
digital forms of modulation, such as binary pulse. transmission.

Coaxial cable (and other transmission lines) are unique in that the
attenuation arises extremely rapidly with increasing frequency. Quali-
tatively, this suggests that broadband modulation systems may be
unsuited to coaxial cable. What do the numbers show?

The purpose of this paper is to illustrate strong effects, not to make
exhaustive comparisons or optimizations or to take the practical mat-
ters of details of circuit use and limitations of circuit art into account.
To this end, a simple, particular case will be considered -a system
using standard -1-inch coaxial cable, with a repeater spacing of two
miles. Over most of the useful frequency range the received power P2
will be related to the transmitted power Pi by*

P2 = P1 exp [-(f/0.30 X 106)i].

Here is the frequency in hertz. An average transmitter output power of
a tenth of a watt will be assumed, and a repeater noise power density of
1.67 X 10-19 watts/hertz, corresponding to a receiver noise temperature
of 12,100°K and a noise figure of 16.2 dB. The calculations would equally
apply for a tenth the average power and a tenth the noise.

II. COMPARISONS FOR PERFECT INSTRUMENTATION

In this section we will compare channel capacities, in the sense of in-
formation theory, for various signal spectra and, in the case of digital
transmission, for various encodings. It is assumed that there is no degra-
dation due to imperfect amplification, imperfect regeneration, imperfect
equalization or imperfect timing. The pulse rate of digital pulse systems
is taken as 2B, where B is a sharply limited bandwidth.

As a standard of comparison we will use the channel capacity for the
best possible frequency distribution of transmitter power density. This
results in a frequency distribution of signal-to-noise ratio which seems
unsuited to any useful analog signal, multiplex voice or video. Further,
we do not know a practical digital encoding which will realize or even
closely approximate this ideal channel capacity.

* This assumes that the loss is due to skin resistance in the conductors. If this
is so, there is an unavoidable nonlinear phase lag of (4) (f/0.30 X 10°) I radians,
which amounts to 13 radians or 740 degrees at 200 MHz.
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We will also consider the rate or channel capacity for binary and multi-
level digital pulse transmission with regeneration and for analog trans-
mission with a flat signal-to-noise ratio. Details are given in Appendices
A through D.

In Fig. 1, rate or channel capacity in megabits/second is plotted
against bandwidth B in megahertz. The cross is the optimal channel
capacity; the dashed line indicates this rate (1581 megabits/second).

The optimal power density is nearly constant over the band, so that
the received power is concentrated at low frequencies for which the cable
attenuation is low. If we make the transmitted power density increase
with frequency so that the received power density and the signal-to-noise
ratio at the receiver are constant, the transmitter power is mostly used
at high frequencies where the attenuation of the cable is high. This
causes a degradation of performance.

The upper solid curve of Fig. 1 applies to this case of constant signal-
to-noise at the receiver. This curve shows the channel capacity, subject
to this restriction of signal, as a function of bandwidth B. The channel
capacity is given by the formula

R = B log2 (1 (S/N)). (1)

The maximum capacity is about 989 megabits/second at a bandwidth of

transmitter power distribution, because the power has been concentrated
at high frequencies where the attenuation of the cable is large.

We cannot transmit a digitalized signal with the rate given by the
upper curve of Fig. 1 because we don't know any practical means of en-
coding which will give a bit rate very close to the channel capacity. In
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practice, we can transmit digital pulses - either binary or multilevel.
The lower curve of Fig. 1 is for pulse transmission with an error rate of
one error per repeater in 1012 Nyquist intervals (one error in 108 for
10,000 repeaters). The optimum rate is about 701 megabits/second at
a band width of 60 megahertz. This would call for 52 levels, an im-
practically large number. The performance for 2, 4, and 16 levels is
indicated on the curve.

One can do a little better with pulse transmission by equalizing dif-
ferently (see Appendix E).

One can compare these bit rates with the channel capacity for analog
transmission in an unquantized transmission system. This is done in
Appendix D. Equalization for flat signal-to-noise is assumed. A 4000 -
mile system with 2000 repeaters is assumed, so that the signal-to-noise
ratio is only 1/2000 that for a single two-mile link. The bandwidth is
taken as 20 MHz - about that of the L4 system, which transmits voice
channels by single-sideband frequency -division multiplex.' The channel
capacity is found to be 286 megabits/second.

It is of some interest to ask what the ideal bit rate would be for digital
pulse transmission over such a 4000 -mile analog system, with one error
in 108. This is also computed in Appendix D; the bit rate is found to be
216 megabits/second and the optimum number of levels 42, which is of
course impractically large.

These various results are displayed in Table I. We should remember
that there is little received power in the upper part of the "148 -mega-
hertz" band of the optimal system.

We see that an analog system with a 20 -megahertz bandwidth has a
somewhat greater channel capacity than a binary digital system, but a
smaller channel capacity than a digital system with four or more levels.
As we might expect, the ideal bit rate for multilevel quantized trans-
mission over the analog system is less than the ideal bit rate for binary
digital transmission with regeneration. However, the difference is small.

TABLE I

System Number of Levels Bandwidth (MHz) Rate or Channel Capacity
(Mb/s)

Optimal 148 1581
Digital 2 129 258
Digital 4 111 444
Digital 16 82 656
Digital 52 60 701
Analog 20 286
Digital on Analog 42 20 216
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III. SOME PRACTICAL CONSIDERATIONS

All the comparisons in Section II are made in terms of average power.
This is chiefly because Shannon's simple formula for channel capacity2

R = B log2 (1 + (S/N))

holds only for average signal power (and additive Gaussian noise). In
practice, the limitation on transmitter power is more likely to be a limi-
tation on peak power than a limitation on average power. I do not believe
that a comparison based on peak power would give results substantially
different from those of Section II.

The comparisons of Section II are made assuming perfect instrumenta-
tion. An actual analog system will be inferior to an ideal system chiefly
because of nonlinearity. An actual digital system can be inferior to an
ideal system because of imperfect equalization in amplitude and phase,
imperfect level control, imperfect timing, and imperfect regeneration.

In present practice, well -instrumented analog systems (such as L4)
come closer to ideal performance than well -instrumented digital systems.
There are good reasons for this. In digital transmission, equalization,
level control, and recovery of timing are not easy. They are usually im-
perfect and sometimes substantially impair performance. Moreover, the
complexity of a regenerative repeater increases as the number of levels
is increased. Thus, in practice the comparison of digital and an analog
system will be less favorable to digital than the comparison for ideal in-
strumentation, which is given in Table I.

Nonetheless, comparisons of various coaxial cable systems are not
easy. For a given repeater spacing an analog system appears to be some-
what better than a binary digital system for speech transmission, but if
we have to transmit digital signals over it the analog system will be con-
siderably inferior to a binary digital system for this purpose. A multi-
level digital system might be very considerably superior to either an
analog system or a binary digital system for either speech or data trans-
mission.

D. G. Holloway3 and E. D. Sunde (in unpublished work') have pointed
out the advantages of multilevel digital transmission.
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APPENDIX A

Optimum Regenerative System

Raisbeck5 found the optimal power distribution and channel capacity
(in the sense of information theory2) for a channel for which the average
output power density p'(f) is related to the average input power density
p(f) by

PV) = p(f) exp [ (filo)ii (2 )

and in which the white noise power density at the output is N. He found
that

p(f) = k -N exp [(f/f0)i], f c B

P(I) = 0, f >>= B

He defines the parameter u as

(3 )

u = k/N. (4 )

The total power Po , the channel capacity C, which is the maximum
possible value of the bit rate R for the power and the medium, and the
bandwidth utilized in transmission, B, are given by

Po = Nfo(u 1n2 u - 2u In u 2u - 2) (5 )

C = fo(-1 log2 e) 1n3 u (6)

B = foin2 u. (7)

The transmitter power density p(f) in watts per cycle is

p(f) = N{u exp [WOW (8)

This is nearly constant over most of the band, and falls rapidly to zero
at the top of the band.

We will assume

Po = 0.1 watt

fo = 0.30 X 106

N = 1.67 X 10-19

Po/Nfo = 2 X 1012.

The value of N chosen corresponds to a noise temperature of 12,100
degrees Kelvin, or to a noise figure of about 16.2 dB.
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For these figures,

u = 4.435 X 109

C = 1581 X 106 bits/second

B = 148.0 X 106.

APPENDIX B

Constant Signal -to -Noise Ratio at the Receiver

We assume that for a transmitted power P. of frequency f the received
power P1 is

Pl = P. exp [ - (f/f0) A] (9 )

Suppose that we deliberately make the received power density constant
with frequency. To do this we must make the transmitted power density
Po(f)

Po exp [(f/fo)1]P°(f) = 2folexp [(B/M1][(B/f0)4 - 1] + 1] ( 10)

Here P. is the total transmitted power and B is the highest frequency
at which power is transmitted - the bandwidth.

If the receiver noise power density has a constant value N, the signal-
to-noise ratio (S/N) at the receiver will be

P.(S/N) - (11)2Nfo exp [(B/f0)1][B/f0)i - 11 + 1

APPENDIX C

The Penalty for Digital Pulse Transmission

The bit rates computed in Appendices A and B are the limiting rates
for the specified average power and noise densities. To approach them
closely in digital transmission would require elaborate, error -correcting
encoding. Suppose that instead of this we simply transmit digital pulses,
with a signal-to-noise ratio great enough to insure a very low error rate,
and without resorting to error correction.

Let us first consider binary transmission in which the pulse voltage is
± V/2, where V is the voltage difference between levels. If V/2 is the
peak pulse voltage of a sin x/x pulse, the average signal power is V2/4.
If the ratio of this average signal power to the average power of Gauss-
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ian noise is 50, there will be an error rate of one in 1012 for one repeater
or 1 in 108 for 10,000 repeaters; this seems a reasonable rate.

For multilevel pulse transmission we say that the error rate will be
nearly constant if we keep the ratio of the square of the level spacing,
V2, to the mean square noise voltage constant. This is nearly true for
the number of errors in level when the error rate is low. The corre-
sponding number of errors in the binary stream depends on how multi-
level -to -binary encoding is done. For a Gray code an error of one level
in the multilevel code will cause an error of only one bit in the correspond-
ing binary code.

In computing the average power in the multilevel case we will assume
that all levels are equally likely. Then for the same level spacing V the
ratio of P. , the power for n levels to 1112 the power for two levels, is

(1)n/P2) = -- 1)/3. (12 )

The ratio of average signal power to average noise power, (S/N), will
be

(S/N) = 50(Pn/P2).

The rate r in bits per Nyquist interval will be

r = log2 n bits/Nyquist interval.

(13 )

(14)

The theoretical limiting rate for a flat signal-to-noise ratio is, in bits per
Nyquist interval,'

c = (1) log2 (1 + (S/N)) bits/Nyquist interval. (15 )

In Table II, (S/N), r, c and (c - r) are given for several values of n.

TABLE II

n (S/N) r c c - r

2 50 1 2.83 1.83

3 133.3 1.59 3.54 1.95
4 250 2 3.98 1.98
8 1050 3 5.01 2.01

16 4250 4 6.03 2.03

For larger values of n, (c - r) is 2.03.
Thus, for a flat signal-to-noise ratio, the penalty for using digital pulse

instead of optimum encoding is about two bits per Nyquist interval. If
the bandwidth is B, this means a reduction of rate below optimum of
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about

4B bits/second.

The penalty for using digital pulse transmission is a shade less than this
for binary, and a shade more for large numbers of levels.

The lowest curve in Fig. 1 shows the rate for digital pulse transmission
as a function of frequency. The curve is, of course, meaningful only for
integer values of n - it has been drawn as a continuous curve merely
for sake of appearance. This digital pulse transmission curve falls below
the middle curve (ideal rate for flat signal to noise) because of the digital
pulse transmission penalty.

The maximum rate for multilevel digital pulse transmission is about
700 bits/second for a bandwidth of 60 MHz. This requires a number of
levels (52) which seems impractically large. Rates and bandwidths for
various numbers of levels are given in Table III.

APPENDIX D

Binary Digital Transmission Compared with a 20 -Megahertz Channel

It is of some interest to try to compare binary digital pulse transmis-
sion with a 20 -MHz analog channel (the approximate bandwidth of
L4).1

According to (11) of Appendix B, for (P/Nfo) = 2 X 1012, the signal-
to-noise ratio of a 20 -megahertz channel is 3.96 X 107. This is, however,
for one two-mile link. If we do not use a regenerative system, noise will
accumulate. For a 4000 -mile system the noise will be 2000 times as great
and the signal-to-noise ratio will be 1.98 X 104. The corresponding chan-
nel capacity will be 286 megabits/second. This is slightly larger than the
258 -megabit rate for binary digital transmission for the same value of
(P/Nfo).

The conclusion must be that for the repeater spacing, attenuation,
power and noise assumed, for transmission of analog signals, the cost of
going to the large bandwidth needed for binary transmission, together

TABLE III

n, number of levels B, bandwidth (MHz) Mb/s

2
4

16
52

129
111

82
60

258
444
656
701
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with the digital pulse transmission penalty, a little more than outweighs
the accumulation of noise in a nonregenerative system. As an example, for
voice transmission, single-sideband frequency -division transmission will
give more voice channels than binary digital transmission for the same
repeater spacing.

It is of interest to compute the ideal rate at which we could transmit
multilevel digital pulses over this analog system with an error of one in
108. For binary transmission and an error rate of one in 108 the required
signal-to-noise ratio is 32. The signal-to-noise ratio for the 4000 -mile,
20 -MHz analog system is 1.98 X 104, or 620 times as great. According to
(12) of Appendix C, this should allow the number of levels n to be
n = 42, and log2 42 = 5.4. Hence, for a 20 -MHz bandwidth the ideal
transmission rate is (2) (20) (5.4) = 216 megabits/second.

Transmission of 42 levels is impractical; transmission of 16 levels
might be practical, and for 40 million pulses a second this would mean
160 megabits/second.

APPENDIX E

Optimum. Power Density for Digital Pulse Transmission

A channel so equalized as to give a flat signal-to-noise ratio in the re-
ceived pulse train is not quite optimum for digital pulse transmission.
The optimum power distribution is that which will give the greatest sig-
nal-to-noise ratio when the received signal is finally equalized to give a
flat transmission band of some width B. It can be shown that if the ratio
of received power P1 to transmitted power Pa is

P1 = Po exp [- (f/f0)4], (16)

the optimum transmitter power density p(f) is

Po exp Rf 4fo)1
P(f) = (17)

8f,{exp [(B/4f0)1][(B/4/0)1 - 1] 1 )

At the receiver, equalization of the signal for flat overall frequency re-
sponse will result in a noise density which rises with frequency. The over-
all signal-to-noise ratio S/N will be

po(B/4h)
(S/N) = 16Nfo exp [(B/4f0)1][(B/4f0)1 - 1] + 1)2. (18)
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Design of an Electro-Optic Polarization
Switch for a High -Capacity High -Speed

Digital Light Deflection System
BY S. K. KURTZ

(Manuscript received April 26, 1966)

Modulator requirements for an active electro-optic polarization switch
to operate in a digital light deflector (DLD) are derived. It is shown that a
simple capacity -speed product of the form (capacity)1 X (address rate)
(constant) X (driver power) can be derived for both linear and biased
quadratic electro-optic modulator materials. The usefulness of this relation
is demonstrated by applying it to a biased quadratic electro-optic material
(KTN) and two linear electro-optic materials (LiNb03 and ZnTe).

The results indicate that KTN will operate a DLD at a rate of 106
random addresses/ sec and a capacity of 106 addresses with a reactive power of
2.6 watts, a bias voltage of 1200 volts, and a driver voltage of 42 volts, pro-
vided,

(i) fluctuations in the Curie temperature and ambient operating tem-
perature are held to less than 0.01°C,

(ii) some form of ac bias is used to circumvent space charge effects, and
(iii) strain and defect free material meeting these requirements can be

grown to a size of at least 1 X 1 X 2 cm.
A linear electro-optic material such as ZnTe with a reduced half -wave
voltage (unity aspect ratio) in the 2 to 3 -kV range (2.5 kV at 6000 A) will
provide 3.6 X 106 addresses at a rate of 106 addresses/sec with a reactive
driver power of 10 watts, delivered at a drive voltage of 1250 volts.

Experimental results obtained using KTN as a high-speed pulsed light
modulator are also presented.

I. INTRODUCTION

In this paper we examine the design of a high-speed optical polariza-
tion switch utilizing the electro-optic properties of certain crystalline
solids. Primary emphasis has been placed on potassium tantalate-nio-
bate, but linear eleetro-optic materials are also considered. The design

1209
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equations are applied to a switch for a 106 addresses/sec digital light
deflector (DLD) described by Nelson' and Tabor.2

In Section II a derivation of the capacity -speed equation is given.
Sections III and IV discuss the reactive power limitations due to heating
of a KTN modulator, and typical operating characteristics for a high-
speed modulator are tabulated. Section V discusses additional limitations
on the capacity -speed product of KTN due to composition inhomoge-
neities and ambient temperature fluctuations. Space charge effects and
ac biasing are treated in Section VI. In Section VII the advantages of a
rectangular aperture are considered and a comparison is made of the
capacity speed product of KTN with those of the linear electro-optic
materials ZnTe and LiNb03 . Finally, in Section VIII some experimental
results are presented for pulse modulation of light using KTN.

II. DERIVATION OF THE CAPACITY -SPEED RELATION

A polarization switch in the DLD performs the function of "rotating"
the plane of polarization of a light beam rapidly through 90°. The plane
of polarization thus selected determines whether the beam traverses a
Wollaston prism' as an ordinary or extraordinary ray (i.e., determines
in which direction it is deflected). This is illustrated in Fig. 1 for one
module (deflection unit) of the DLD. It is well known that such a 90°
change in the direction of polarization of a light beam is produced by
inserting a half -wave plate into a linearly polarized light beam with the
preferred axes of the plate at a 45° angle with respect to the direction of
polarization of the incoming light beam.

By substituting a crystal whose refractive indices can be varied
electro-optically in place of the half -wave plate, we have an electrically
variable phase retardation "plate." The desired "rotation" of 90° is
achieved by applying an electric field to the crystal of the correct magni-
tude to produce a half -wave of phase retardation between the ordinary
and extraordinary ray. This is illustrated in Fig. 2. It is obvious that for
a given aperture A the total length of the DLD must be restricted for
some upper limit in order to prevent the optical beam from "walking
off" the aperture with consequent loss of intensity in the outermost
positions of the beam. This, in turn, places an upper limit on the length
of the individual modulation and deflection elements.

As originally described by Nelson' the DLD consists of an X deflec-
tion bank and an orthogonal Y deflection bank in series. Each bank
consists of n modular units of varying length in , each module containing
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Fig. 1- Operation of polarization switch in one deflection module of a DLD
system.

an active polarization switch (modulator) and a passive birefringent
deflector. The deflector thickness is predetermined to give a transverse
linear displacement of the beam by distances which increase as multiples
of 2, e.g., 2°t, 2hto , 22to , 22to 2"to . An improved version of the DLD
described by Tabor2 utilizes Wollaston prisms which give angular rather
than linear transverse displacements. The thickness of the prisms is
predetermined to give angular displacements ±2°O,, , ±2% , ±22O. ,

±2300. ±2"0 , resulting in a total of 2' = ft angular positions in
each dimension. In order that each of these angular positions be re-
solvable the basic angular unit of deflection 20,g is chosen to be somewhat
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Fig. 2- Retardation of plane of polarization by half -wave plate.
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greater than the diffraction angle OD

X
OD = d

(1)

where d is the width of the aperture.
It is convenient to define fl = (20o/OD) > 1. Assuming that the DLD

consists of 2n modules of equal* length /, , we order the modules serially
in terms of increasing angular deflection.

Oiz Oly 02x 02y ,  , °Tiz (2)

This ordering minimizes walk -off since it puts the largest deflections
closest to the exit part of the assembly. For this configuration the maxi-
mum cumulative walk -off (displacement at the exit part transverse to
the axis of the DLD) is given by,

3

2
Ax = 2V 134,0 DR (3)

131,0 DR
Ay = / (4)

where the linear capacity R is defined as

2' = R. (5)

The deviation of (3) and (4) is given in Appendix A.
If we restrict the loss of intensity in the extreme positions to be less

than 20 percent (i.e., Ax, Ay < 0.14d) then from (3) and (4) we obtain
the following restriction on the length to aperture ratio for the modula-
tor,

/ 3

A =
20(AR [1

C
lm

1)] (6)

where A = d2 and /,.
The next step in the derivation is to show that for both linear trans-

verse electro-optic materials and biased quadratic electro-optic materials
the reactive power is proportional to the cross-sectional area divided by
the modulator length.

When an electric field is applied along a crystallographic {1001 axis
the principal refractive indices of KTN become"

* While in principal the prism length varies as 2", in practice each prism unit
is the same length, being made up of an optically isotropic support section and
a thin birefringent section which varies in the prescribed fashion.
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n3
no n - 2 gor2

n3 -r) 2
ne n - -2 gnrz

n3An = no - ne = -2 - gi2)Pz2

( 7 )

(8)

where Pz is the induced lattice polarization in the {100} direction pro-
duced by the electric field. Here n is the isotropic refractive index in
zero field and the gii are the quadratic electro-optic coefficients. The
phase retardation can thus be expressed as

27
A0c0= aP21 (9)

where a = n3/2 (gn - gig ), 1 is the length of the KTN crystal in the
light direction, and the z subscript on P has been dropped for simplifica-
tion. From (9) the polarization required to give the first half -wave of
phase retardation (Aio = r) is

X 4P' (2a/) (10)

The quadratic dependence of phase retardation on lattice polariza-
tion leads to a successively closer spacing of half -wave points (Aco = m7r,
m a positive integer) as shown in Fig. 3. If we define the dielectric per-
mittivity at a bias polarization P = Pb as

E) =P b

eb =
P

(a P
(11)

then the incremental voltage AV,th which will produce a change in re-
tardation of one half -wave at this bias point Pb can be written

AV b 4a(1(p;-bi ) (12)

For a material which exhibits a linear transverse electro-optic effect5'6'7
the induced birefringence can be expressed,

VAn = n3
d

(13)

where V is the voltage applied perpendicular to the light path, d is the
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Fig. 3 - Light transmitted by KTN polarization switch as function of applied
voltage.

electrode separation, and r is a function of the linear electro-optic co-
efficient (s) determined by the orientation of the crystallographic axes
relative to the electric field and light directions.' The half -wave voltage
VT and reduced half -wave voltage v,. (for unity aspect ratio) can thus
be defined from (13) as,

d(
= vAV, = w (0

2n3r /
(14)

The reactive power delivered by the RF driver can be expressed* as

(bd)v,
= 1C(A-1702v, (15)

where
2

EV,

= 2 '
(16)

for linear transverse electro-optic materials, and

( X )2
4aPb

(17)/
for biased quadratic electro-optic materials. An expression for a similar
to (16) but valid for biased quadratic electro-optic materials is given in

* This is the case of a pulse train of the form 1,1,1,1,1, . A more complete
discussion of the power is given in Appendix D.
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Section VII (66). Substitution of (15) (b = d) into (6) yields the desired
capacity -speed product for a square aperture modulator.

(18)

where

A= 3

20afIX [1 1. - 1\1
1.

and a is given in (16) and (17) for the linear transverse and biased
quadratic cases, respectively, and we have assumed the term (n + 1)/R
is small compared to unity (for n = 10, R = 1024). The total capacity
is of course R2 and not R. The capacity -speed product is easily general-
ized to rectangular aperture (see Appendix B) with the results

(Rxik, )1v, (19)

where

1

(20)
5.21//3./32,X [1 + imi:

Let us consider the implications of the capacity -speed relation for a
system with a square aperture. If the dielectric constant and reduced
half -wave voltage of a linear electro-optic material are fixed constants,
and the address rate vr is also fixed by the application to be made of the
DLD, then the total capacity R.R varies directly as the square of power
available to drive the modulator. Conversely, if the capacity is fixed, the
address rate varies linearly with the available power. The constant of
proportionality A can be calculated for a given electro-optic material and
hence the capacity -speed product becomes an important design equation
for determining which materials can meet the capacity -speed product
required in a specific application of the DLD. It also provides a signifi-
cant comparison between linear and biased quadratic electro-optic
performance. The remaining sections of this paper are concerned with
evaluating the optimum capacity -speed product which can be obtained
using KTN, and comparing this with the capacity -speed product ob-
tainable using known linear transverse electro-optic materials. It is
clear from the form of the capacity -speed product that the question
which must be answered in both cases is: What are the limitations on
the power with which the modulator can be driven?
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III. DRIVER POWER LIMITATIONS FOR KTN

The purpose of a bias polarization Pb is to reduce the half -wave
voltage VT required to produce the 90° rotation of the light polarization.
This is evident if we compare the unbiased half -wave voltage,

[(2Xcy ;11 (do) (21)

with the biased half -wave voltage in (12), and substitute PT from (10)
to obtain the following relation between biased and unbiased half -wave
voltage,

(P,
Virb =

l
-b) V . (22)

The biased half -wave voltage therefore, decreases as the inverse of the
bias polarization. It is helpful conceptually to express the bias polariza-
tion Pb in terms of the equivalent number of half -waves of retardation
m it produces. Since the phase retardation (see (9)) varies as the square
of polarization we can write

Pb = P (23)

hence,
1

Vb V, . (24)- 2v m
The introduction of a bias polarization Pb can thus be used to reduce

the drive voltage needed for the switch. Because of saturation effects
in the induced polarization it is necessary at this point to differentiate
between the low field permittivity e and the small signal permittivity
eb about the bias point Pb . Saturation behavior of KTN is describable
in terms of the Devonshire free energy formalism.' Writing the free
energy, as,

we obtain,

E

G- (T -T 2o p±E_p4+r 6

2e0C 4 6

aG (T - To) Ep3

aP e0C

Some useful relations which follow from (25) and (26) are given in
Appendix C.

A plot of (26) illustrating saturation effects along with some experi-
mentally measured points is shown in Fig. 4. In Fig. 5 we have plotted

(25)

(26)
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a typical low field dielectric constant K = 00 versus temperature curve.
Fig. 6 shows a plot of the saturation parameter as a function of com-
position for KTN. Fig. 7 shows an analogous plot of the phase transition
temperature To for KTN. Using the information given above we can
continue the discussion of biasing and derive conditions for optimizing
the bias polarization.
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we see that as the bias polarization is increased, the incremental half -
wave voltage has a minimum at,

Pb = (V Po[1 /1 ± -5 (TT, - T° )11 (28)
15 4 To

where Po is the spontaneous polarization at T, (see (77)) and T, - To
is the difference between the transition temperature and Curie tempera-
ture (see (78)). This minimum in incremental half -wave voltage is not
necessarily the desired optimum bias point, since it does not correspond
to minimum reactive power. The average power dissipated in the sample
6',1 assuming it is driven by a square wave of repetitive frequency 1 yr ,

zero -to -peak amplitude OV,rb and rise time ,---, (1/5v,.) is

(rCb(ATTb)2vr)
7 (29)

where -y is approximately 1.2. This expression is derived in Appendix C.
Each half cycle of the drive voltage is capable of rotating the plane of
polarization by 90°. This is done so that there will be no dc component
in the drive signal. The necessity of this restriction is discussed in Sec-
tion VI.

The reactive power defined in the manner of (15) is given by

6), = (:)(72,Tr)

Substitution of this result in (18)

(Pa (30)

-speed product,gives a capacity

(R.Ry)iv, <(2-(1-77r A)6'd (31)

where A is given by,

3A - (32)
20afX [1 ±/,

1

and

a = -
2eb

( X
2

(33)-
4aPb)

If the upper limit on the dissipated power (Pd is independent of bias
polarization then the capacity -speed product has its maximum as a
function of bias polarization at

(34)
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The reason we have derived an expression for the capacity -speed product
in terms of the dissipated power is that the primary limitation on the
reactive driver power for a KTN polarization modulator can be directly
related to heating caused by power dissipation within the modulator.
Since we are dealing with pulse modulation the drive signal contains
frequency components substantially higher than the pulse repetition
rate v, . The Fourier series expansion of a square wave contains all odd
harmonics of the fundamental (v,./2). In order to obtain an adequate
rise time, the system driver plus modulator should encompass as many
harmonics as possible (see (92) ). If the Fourier series is terminated on
the third or fifth harmonic the waveform will be that shown in Fig. 8.
This places a restriction on the driver impedance if a flat response is
desired. If we assume that the 3 -dB power point occurs at a frequency
vu (which we take to be an odd integer multiple of vr) then the generator
impedance is given by

1

271-yuCb.

Up to this point we have not set any upper limit on the power Pd

dissipated within the modulator crystal. The heating caused by this
dissipated power is not negligible. Even in the presence of large heat
sinks the finite thermal conductivity of the modulator crystal gives rise
to thermal gradients which affect the device performance because we are

V
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operating close to the Curie point. These thermal gradients form the
basic limitation on the intensity ratio which the modulator can maintain
between the two senses of polarization accepted by the Wollaston
prisms. Present estimates9 of the minimum required intensity ratio for
the DLD are around 20 dB.* This extinction ratio thus becomes an
important design parameter which we shall now introduce into the
analysis.

From (9) we can express the phase retardation .6,9 for two light rays
traveling along paths of slightly different temperature T and T dT,

where

&Igo
Aco(71 dT) = Aso(T) - dT

(96,co 4lralPb2

(36)

aT X(T - To).

For light polarized at 45° with respect to principal axes of the modulator
the transmission functions for the two orthogonal polarization states of
the Wollaston deflectors are,

= Io sine (-111°)
2

= Io cost (Ai) .

If we define A as

(37)

2ralPb2dT
A (38)X(T - To)

and take Av(T) = mlr where m is an even integer then it is readily seen
that the extinction ratio has changed from

Ii(T)
11(T)

to

L(T ± AT)
I 1(T + AT) -

In order to find A as a function of position across the aperture of the
modulator, we must solve the heat transfer equation. Assuming that

where A << 1. (39)

* A nonlinear optical absorber might reduce this to 10 dB.
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the power 6'd given in (29) is dissipated uniformly in the modulator
crystal the heat transfer equation can be written,

V  kVT = -(Pd (40)

where V = bdl is the volume of the modulator crystal, k is the thermal
conductivity and T = T (xyz) is the temperature function. If cooling is
provided primarily at two opposite faces of the modulator (40) reduces
to,

32T = -
axe kv

(41)

where x is directed along the cooling surface normal. The solution to
(41) is

(Pa d2

T = -x21710 + 21-ceT)

where T8 is the surface temperature and x varies from -d/2 to +d/2
if cooling is at the electroded faces. Putting this result in (38) and
integrating over the aperture bd we find

(Pd -
Xk( T. - To) (A) (1)

iraPb2 \d (43)

where O is the average extinction ratio over the aperture of the modula-
tor. Substitution of this result in (31) gives the capacity -speed product,

(RA)iv, {12V-30 aQk(a)(T, - To)eb\b
(44)

5,27#X2 [1 ±/, /)] j

This expression is independent of bias polarization and to first approxi-
mation independent of temperature. The latter statement rests on the
condition that at the operating point (T8 - To , Pb) dielectric saturation
is negligible, (i.e., Eb e = C/(T8 - To) where C is the Curie constant).
For unity aspect ratio (b/d) the capacity speed product is thus pri-
marily determined by material parameters such as thermal conductivity
k, electrical quality factor Q, Curie constant C, etc. The only adjustable
parameters are the extinction ratio (ii), wavelength X, and resolution
limit /3. In many instances these will be determined by the choice of
memory plane in a particular application. The short wavelength limit
of the modulator above is determined by the width of the forbidden
energy gap (in KTN 3.45 eV), which restricts use of KTN to wave -

(42)
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lengths longer than 4000 A. The advantage of using a rectangular aper-
ture is also evident from (44). For a specific operating speed the total
capacity increases linearly with the aspect ratio. Even a modest 3:1
ratio give a factor of 6 improvement in capacity. The optical image of
the source is of course distended by roughly the same ratio (b/d) but
for many applications this might not be a limitation.

An expression for the generator impedance Ro can be derived if we

let v. = 5
yr in (35) and substitute (12), (29), and (43),

iryX

d d2= 80V30 aQk(3)1 eb2(T. - To) 1())(1)
(45)

IV. APPLICATION OF THE DESIGN EQUATIONS TO A 106 ADDRESSES/SEC
DLD SYSTEM UTILIZING KTN MODULATORS

In order to obtain a better idea of the implications of the various
relations derived in the preceding sections it is necessary at this point to
substitute some of the physical constants. Taking the values of the
constants listed in Table I, we can evaluate the capacity -speed product
from (44),

(RxR,)4 vr - 1 d

7'950(3) (b)
addresses)1 +

MHz. (46)

The choice of = 4 is based on an extrapolated improvement of 2 in
the value of 8 obtained by Tabor9 in a DLD using passive modulators.

Taking an extinction ratio of 20 dB (0 = 0.01) and a speed of 10-6
sec/address we obtain from (46) the maximum capacity,

(b)
(R.R,)1 =

795
addresses. (47)

1 ± (/, - 1\ kd
lo, )

It is therefore, advantageous to make (L. - /)//, as small as possible.
The Wollaston prisms, plus support sections, plus clearance (i.e.,

TABLE I

Thermal conductivity k
Electrical quality factor Q
Electro-optic parameter a
Curie constant
Light wavelength
Resolution factor 13

50 mW/cm °C
1000 (at 1 MHz)
1.13 m'/coulomb' (at 5000 A)
1.400 XA 106
50
4



1224 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1966

1. - 1) can be conservatively set at a lower limit of 2 mm. Let us first
consider the case of a square aperture (i.e., b = d). For this case, (6 )
becomes

A - 3
4
- 1m10-3R (cm2 )

where

(48)

R. = Ry = R.
Taking /, = 1 cm (1 = 0.8 cm) we arrive at the modulator and DLD
characteristics shown in Table II. Increasing 4, beyond 1 cm (e.g., to
2 cm) would only increase the capacity by 20 percent. The operation
of a 106 bit/sec DLD system with a square aperture using KTN modu-
lators is thus limited to a capacity of about 0.5 X 106 addresses. How-
ever, several factors which have been neglected serve to further limit
this capacity. These factors are discussed in the next two sections, as is
the rectangular aperture which enables the capacity to be increased to
106 addresses.

V. EFFECTS OF COMPOSITIONAL INHOMOGENEITIES AND AMBIENT TEM-
PERATURE FLUCTUATIONS ON KTN MODULATOR PERFORMANCE

Compositional inhomogeneities occur during the growth of KTN
crystalsw which give rise to fluctuations in the Curie temperature
throughout the crystal. The exact nature of the inhomogeneities and
their elimination is beyond the scope of this paper. The relevant point
in this discussion is that Curie temperature variations do exist and should
be included in the modulator analysis. Examination of (38) shows that
we can extend the interpretation of dT as

dT = d(T - To) = dT (x,y) dT8 - dTo(x,y). (49)

TABLE II - PERFORMANCE CHARACTERISTICS OF DLD USING
KTN MODULATOR

Modulator dimensions

DLD capacity
DLD speed
Dissipated power
Reactive power
Generator impedance
Bias polarization
Bias voltage
Driver voltage
Number of half -waves bias
Capacitance of modulator

b = d = 0.92 cm
1 = 0.8 cm
0.4 X 106 addresses
10-6 seconds/address
9.7 mW
1.3 W
65Il
2 u coulombs/cm2
1500 V
51 V
15
1000 pF
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In the previous treatment of Sections III and IV we neglected dT8 and
dT0 . From (42) we can calculate dT (x = 0) for a dissipated power of
10 mW, a volume of 0.65 cm' and d = 0.92 cm corresponding to the
modulator discussed in Section IV, and find

dT = 0) = 0.03°C. (50)

The previous analysis is thus valid for dT8 and dTo much less than 0.03°C.
This corresponds to temperature regulation in the thousandths of a
degree region which is within capabilities of present technology but
requires some sophistication and cost.

Curie temperature variations occurring during growth are presently"
in the range 1°C to 10°C for samples several mm's on a side. To hold
variations of 0.01°C requires a control of the solid -solution to within
roughly 20 ppm of the 65/35 mixture. Let us for the sake of discussion
see what effect a constant variation 3 = ATs - AT0 of 0.01°C would
have on the derivation of (43). The result of this calculation is the
following equation,

21e0 r_ 5
d2 L 2

1

2
- 9532 + 120A (x(Ts - To))2}

. (51)
27raPb2/

For 5 0, P, of course reduces to the expression given in (43). For
0 the negative sign in the radical, combined with the requirement

that (Pd be a real positive quantity, indicates that there is a lower limit
to the quantity [(X (T8 - To)/27a1V1]. The previous analysis did not
place any limit on T8 - To and Pb ; and 1,,, could be made larger if A was
increased. The additional restriction coming from (51) leads to a modi-
fied capacity -speed product,

24(Nkeb(Pb21)[- -`).S + T2-1 {- 9552 + 120

(X( l'a - T 0)Y ( 1 \2 3,}41(1)

(R,R,)1P, < 27ra Vb21 jcij (52)
(/,,,

Remembering that /7 - ///, < 1 it can be shown that the capacity -speed
product has a maximum, as a function of Pb2/ at

pb21 (A)iX(Ta - To)
19 2ircu5

and goes to zero at,

(53)
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pb2i (A)4x(T8 -
2,7-a8

Putting the values X = 5000 A, (T8 - To) = 10°C, a = 1.13 m4/cou-
lomb2, and 6 = 0.01°C into (53) and (54) we find Rv, has a maximum at

(p. coulomb) 2
Pb2/ = 3.6 (55)

cm3

and zero at

Pb2l = 7
µ coulomb) 2

cm'

(54)

(56)

In the earlier calculation of Section III where (5 = 0 we arrived at
the values Pb = 2 µ coulombs/cm2 and 1 = 8 mm giving Pb2/ = 3.2
which is only slightly smaller than the optimum above. Using the
parameters in Table I and taking T. - To = 10°C we can write (52) as

2010Pb21 [ - -2 a
5 _ 1 { 616, }11- 9552 (pb2) 2

Cl + (1-1: 1)]

-b address -MHz.

(57)

Putting Pb2/ = 3.6 µ coulomb 2/cm3, A = 0.01 and 6 = 0.01°C, v,. = 1
MHz, and 1 = 8 mm into (57) we find the maximum capacity is 0.18 X
106 addresses. This is 35 percent lower linear capacity (418) than the
maximum linear capacity (635) obtained when 6 was assumed to be
negligible. It can in fact be shown that if Pb21 is chosen to satisfy (53)
then the capacity -speed products in (44) and (52) are related by a
constant multiplier,

5
(Rvr)wo = (RP,)5=0[(1. - 95 )1

456 A/456 = 0.656(Rvr)a=o . (58)- j
Thus, the primary effect of introducing compositional nonuniformities
and ambient temperature fluctuations has been to decrease the capacity -
speed product by 35 percent, and also to prescribe an optimum value
for Pb21 given by (53). It is interesting to note that for 1 > 2 mm the
value of Pb obtained in this fashion is substantially less than the value
required to minimize the power or drive voltage (see (28) and (34)).
Since Pb21 from (53) is proportional to 1/6 an increase in 6 beyond
0.01°C would reduce Pb21 to less than 3.6 µ coulombs2/cm3. A substantial
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increase in S beyond 0.01°C is not desirable, however, since l must be
greater than 2 mm to prevent the denominator in the capacity -speed
product from becoming large, and secondly Pb cannot be reduced much
below 2.0 eu coulombs/cm2 as the drive voltages become excessive. Thus,
it is clear that close temperature regulation to several hundredths of a
degree, and precise control of chemical composition to tens of ppm are
both essential. In the next section, an ac biasing scheme is discussed
which relaxes these requirements.

Table III lists the new operating characteristics for a square aperture
system which result from the modified design equations derived in this
section.

VI. SPACE CHARGE EFFECTS AND AC BIASING

In this section, we shall consider the adverse effects of finite electrical
conductivity in the presence of a de bias, and discuss the ac biasing
scheme proposed by Wartern for overcoming these effects. We shall also
consider the advantages of a rectangular aperture and the problems
associated with finding other materials than KTN for use as the active
electro-optic medium.

The static electrical conductivity of KTN in the vicinity of 300°K
falls in the range 10-" to 10-12 mhos/cm. This conduction has been
demonstrated to be extrinsic and due to holes having a very low trap
controlled mobility of 10-6 cm2/V sec. The filled acceptor level density
is less than 1013/cm3 and is peaked around 0.6 to 0.8 eV above the valence
band.

This small but finite conductivity gives rise to several types13 of non-
uniform electric polarization distribution within the sample when a dc
electric field is applied. The type of nonuniformity and the associated
time constant depend on the nature of the electrical contact (e.g., ohmic

TABLE III - PERFORMANCE CHARACTERISTICS OF DLD USING KTN
MODULATOR IFS = 0.01°C

Modulator dimensions

DLD capacity
DLD capacity -speed product
Dissipated power
Reactive power
Generator impedance
Bias polarization
DC bias voltage
Driver voltage
Number of half -waves bias
Capacitance of modulator

b = d = 0.75 cm
1 = 0.8 cm
0.18 X 106 addresses
0.42 X 109 sec -1
6.4 mW
0.86 W
43 0
2 µ coulombs/cm2
1200 V
42 V
15
1000 pF
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or blocking). In the case of blocking contacts" two phenomena occur
with different time constants. The first effect is the build-up of a space
charge in the vicinity of nonuniform conductivity and/or nonuniform
dielectric constant. It can be shown from Maxwells equations that the
time constant for this build-up is approximately given by the dielectric
relaxation time,

Tr = piceo (59)

where p is the average resistivity and K the average dielectric constant.
For a dielectric constant of 104 and a resistivity of 1012 Tr is of
the order of 103 seconds. The second effect is the formation of a depletion
layerm in the vicinity of the blocking (positive for p -type conduction)
electrode. The time constant for depletion layer formation is given by,

d( oo )L
rah

21.1eff V

where d (co) is the final depletion layer width

(60)

d(
/2e V

00 ) =
N Te

and L is the electrode separation, NT is the density of filled trapping
levels, and i.teff is the trap -controlled or "effective" mobility. For KTN
having a resistivity of 1012 ohm -cm this depletion layer buildup time is
between 103 and 104 seconds.

In the case of ohmic contactsm" space charge buildup can occur due to
nonuniformities in the conductivity, as in the case of blocking contacts,
or a space charge may also occur which is associated with operation in
range of space charge limited current flow. It can be shown that the
transition from ohmic current flow to space charge limited current flow
occurs when

V > 8 (NTe112 .9 \ (61)

The large dielectric constant of KTN causes this transition to occur at
much lower current levels than in other materials.

The nonuniformities in polarization caused by each of these effects
exceeds that which the system can tolerate by several orders of magni-
tude. While the possibility of a direct solution to the dc bias problem
cannot be ruled out, two alternatives exist which eliminate the need for
a dc bias. The first of these involves operation of the modulator in the
ferroelectric region"'" with the spontaneous polarization acting as the



AN ELECTRO-OPTIC POLARIZATION SWITCH 1229

bias polarization. The previous analysis of Sections II to V is applicable
to this case except that the dielectric constant no longer obeys a Curie -
Weiss law but varies in the fashion described by (82) in Appendix C.
The temperature dependence of the spontaneous polarization is also
different, which changes the derivation of (43).

A comparison of (80) and (81) shows that the dielectric constant
drops discontinuously to 1/4 of its peak value at the phase transition.
For KTN with a transition temperature of 10°C this means a drop from
36,000 to 9,000. Thereafter, it drops to below 2,000 within a temperature
range of less than 10°C. If one modifies the analysis of the preceding
sections to take these facts into account, one finds that ferroelectric
biasing further reduces the maximum capacity by a factor of at least 4.
The further assumption is made here that large samples will remain
single domain when operated within 5 to 10°C of the Curie point.

A second biasing scheme which does not appear to have this liability
has been proposed by P. J. Warter, Jr.12 The basic idea in Warter's
scheme is to use two modulator crystals in series (1 and 2). An ac
bias source provides separate current drives in quadrature to the two
sections, as indicated in Fig. 9 for one of the two modulators,

60 CPS INPUT

PULSED
SINUSOIDAL

GATE

it = io sin coot

= io cos wet.

-V

POWER
AMPLIFIER

FEEDBACK
POWER

AMPLIFIER

(62)

/- CRYSTAL
NO. I

Fig. 9 - Block diagram of driver circuit for modulator 1 in Warter's ac bias
scheme.
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The charge on the electrodes of the two samples produces an electric
polarization in the sections which varies as

Pl = Pa cos coot

P2 =Po sin coot
(63)

where Po = io/co.A, A being the electrode area. The phase retardation
through the two sections is the sum of retardations in each section and
hence,

a(p12 p22
C

27ra p02.
j 71/4-

(64)

with Po being the bias polarization. Since the bias signal on each section
contains no dc component the previously discussed conduction phenome-
non does not occur if the contacts are electrically blocking and the
period To 27 / coo is short compared to the dielectric relaxation period Tr .

In addition the use of a current drive rather than a voltage drive
insures a constant polarization along a path normal to the electrodes
(x direction) even if the temperature changes slightly. This also holds
for nonuniform temperature variations along the same path within the
sample. The electric fields adjust internally for regions of varying di-
electric constant such as to maintain uniform polarization along the x
direction. This relaxes the stringent requirements on ambient tempera-
ture control and chemical homogeneity. A detailed analysis of the limi-
tations of the ac bias is needed before any reliable statements can be
made as whether it will allow a significant increase in the capacity speed
products calculated in the previous sections. Such an analysis depends
critically on distortions in the drive signal from a pure sinusoidal be-
havior which are not known at present. It should be noted that each
modulator in this scheme must be the same length 1 as a single modulator
in the previous analysis, giving a reduction of 4 (see (20) ) in the capac-
ity R2 if the cross-sectional area A is held constant.

Another adverse optical effect which has been observed in dc biased
KTN polarization switches occurs when the diameter of the optical
beam (of several mW power) is reduced to around 0.2 mm. Under these
conditions a severe distortion of the optical transmission function from
its expected form (see (37) and Fig. 3) was observed as shown in Fig. 10.
If the light was switched on rapidly (in <0.1 sec.) the initial transmission
function was that shown in Fig. 3, but went over into that shown in
Fig. 10 after several seconds of illumination. If the light beam was moved
rapidly to a different region the same sequence was observed. A return
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to the original spot gave the pattern in Fig. 10 without any buildup time,
indicating that the cause of the refractive index distortion was still
present, and had not decayed after many seconds. Insertion of 30 dB of
optical attenuation in the input beam was found to completely eliminate
the occurrence of distortion. Further measurements" suggest that the
distortion is being produced by an internal bias field acting in opposition
to the applied field but nonuniformly distributed in the immediate
vicinity of the affected area. Since no distortion was observed in the
absence of a dc bias field one is tempted to postulate that the intense
light beam is generating some sort of charged centers or charge carriers
which drift under the influence of the external field and are then trapped
near the edge of beam. Chen" and Boyd" have made further optical
measurements of the distortion of the refractive index ellipsoid of KTN
in the vicinity of beam which indicate that the effect being described
here may be related to "optical damage" effects observed recently in
LiNb03 and LiTa03.

Since no satisfactory explanation of either effect is available at the
present time we shall conclude this discussion by noting that this prob-
lem is not one of concern for the DLD polarization switch since optical
levels will probably be somewhat less than 0.1 W/cm2, and for KTN the
ac bias scheme of Waters would circumvent the problem even at high
light levels.

fr
VOLTAGE

Fig. 10 - Light transmitted by optically "damaged" region of KTN polariza-
tion switch.
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VII. RECTANGULAR APERTURE AND COMPARISON OF LINEAR ELECTRO-

OPTIC MATERIALS WITH KTN

7.1 Rectangular Aperture

It was shown in Section II that the capacity speed product depended
primarily on the amount of power one can use to drive the modulator.
In Section III we showed that this power for KTN is limited by the
extinction requirements of the DLD. Holding the extinction constant
it was shown that one could increase this power hence the capacity -
speed product by using a rectangular aperture (i.e., b/d > 1). This
conclusion was unchanged when Curie temperature variations and am-
bient temperature fluctuations were included (see (52)). Let us consider
the improvement which a modest aspect ratio of 3:1 (= b/d) can make
in the capacity -speed product of the KTN modulator described in Sec-
tion V. Table IV lists the operating characteristics of a KTN nodulator
with b/d = 3. The capacity can therefore, be brought up to the megabit
region with only a modest 3/1 aspect ratio, while maintaining reasonable
driver requirements, well within the capabilities of transistor circuitry.

7.2 Comparison of Linear Electro-optic Materials with KTN

In Section II it was shown that the capacity -speed product for differ-
ent electro-optic modulator materials (e.g., A and B) being driven with
identical reactive powers differed only in the factor (see (20)).

TABLE IV - PERFORMANCE CHARACTERISTICS OF DLD USING KTN
AND RECTANGULAR APERTURE

Modulator dimensions

DLD capacity

R
DLD capacity -speed product
Dissipated power
Reactive power
Generator impedance
Bias polarization
de bias voltage
Driver voltage
Number of half -wave bias
Capacitance of modulator
Dielectric constant
Reduced biased half -wave voltage

b = 2.24 cm
d = 0.75 cm
1 = 0.8 cm
1.0 X 106 addresses
422
3700
1.0 X 109 sec-'
19 mW
2.6 W
15 12
2 coulombs/cm2
1200 V
42 V
15
3000 pF
14,000
45 V
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[(Rrl?)'prl, co3(1 + 1)B

«A( + - 11
jA

[(RxR,,) 43
(65)

Since we assumed that /, - ///, is small, the comparison of different
modulator materials reduces to a comparison of their a's. To facilitate
this comparison we put (17) for biased quadratic-electro-optic materials
in the form,

a = -Eb
k1

\ 2

2
(66)

where Av,,b = AV th(l/d) is the reduced half -wave voltage for the biased
material,

Av,rb - A 7-)X

'tar" b Eb
(67)

For the KTN modulator described in Table IV, a/eo has the value
1.4 X 107 (V )2. For a linear electro-optic material with a dielectric
constant of 10E0 , a reduced half -wave voltage of 1670 volts would be
required to give the same value of a as the biased KTN.

In the past the lowest reported' reduced half -wave voltage for a linear
transverse effect was 6200 volts for cuprous chloride. Recently both
lithium niobate2° and zinc telluride' have been shown to have reduced
half -wave voltages of less than 5 kV. Lithium niobate has the disadvan-
tages of a somewhat higher dielectric constant and an appreciable
natural birefringence which would tend to limit the angular aperture.
Zinc telluride has a relatively small optical band gap eV) and would
be restricted to use at wavelengths > 6000 A. Nevertheless, it is signifi-
cant that materials with a sufficiently large linear transverse electro-optic
effect and low dielectric constant do exist. Table V lists the capacity -
speed product and several other operating characteristics of a DLD
designed using LiNbO3 and ZnTe. One of the principal advantages is
relative insensitivity of these materials to temperature changes. This
means that larger reactive powers may be used if one can meet the drive
voltage requirements. The rectangular aperture again offers an advantage
by allowing a reduction in this drive voltage while maintaining a high
capacity. This fact has been used in deriving the numbers in Table V.
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TABLE V - COMPARISON OF KTN WITH LINEAR
ELECTRO-OPTIC MATERIALS

LiNbOs* ZnTe't KTN

Modulator dimensions b 2.64 cm 2.64 cm 2.24 cm
d 0.5 cm 0.5 cm 0.75 cm
1 1 cm 1 cm 0.8 cm

Reduced half -wave volt-
age v,

Dielectric constant

400 V

40

2500 V

10

45 V

14,000
Capacity -speed product 1.9 X 108 sec-' 1.9 X 10° sec-' 1.0 X 10° sec -1
Capacity 3.6 X 104 add. 3.6 X 106 add. 1.0 X 106 add.
Speed 10-6 sec/add. 10-6 sec/add. 10-6 sec/add.
Driver voltage 2000 V 1250 V 42 V
Reactive power 10 W 10 W 10 W 2.6 W
ale. 3.2 X 108 002 3.1 X 102 (V)2 1.4 X 102 (V)°
DC bias voltage 0 V 0 V 1200 V
Capacitance 19 pF 4.6 pF 3000 pF
Heating AT 0.04°C 0.4°C 0.02°C

*X = 5000 A, Q = 1000.
t X = 6000 A, Q ,--, 100.
$ X = 5000 A, Q = 1000, dc bias.

VIII. SOME EXPERIMENTAL RESULTS

Because of the large composition fluctuations in presently available
KTN mentioned in Section V the experiments described in this section
were carried out using much smaller samples than those needed for a 106
address DLD system. Samples were generally several mm on a side.
Pulse experiments were performed using the circuit shown in Fig. 11.
At slow sweep speeds, around 1 msec/cm, the expected modulation wave-
forms (see Fig. 12) were observed with 100 percent modulation occurring
when the pulse height equaled the dc incremental half -wave voltage.
For faster sweep speeds in the 1 gsec/cm range, a strong ringing of the

RUTHERFORD
B7B

PULSE
GENERATOR

He -Ne LASER POL

X = 6328 A

ELECTRON
MULTIPLIER
2N8428

PULSE
AMPLIFIER

-4 --I-
t . T

SHIELDED
SAMPLE

HOUSING

HIGH
VOLTAGE
SUPPLY

ANAL

PHOTO -
MULTIPLIER

EMI 7102
.....

TEKTRONIX
661

SAMPLING
SCOPE

Fig. 11- Experimental apparatus for unbiased pulse measurements.
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Fig. 12 - Very low frequen'y light modulation response.

light intensity following the leading and trailing edges of the pulse was
observed. The damping of these oscillations was small. Analysis with a
Rohde Schwartz receiver showed that a number of frequencies were
being superposed and that these corresponded approximately to the
low -order mechanical vibration modes21 of the sample. Typical responses
are shown in Figs. 13 and 14. In Figs. 14(a) and 14(b) the pulse width

(b)

(a)

20 _

1a SEC
TIME

Fig. 13 - Ringing in light modulation at intermediate pulse widths (several
/Awe).
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-).11/./sEc 14*- TIME ---3.

Fig. 14 - Interference effects induced by varying the pulse widths.

has been adjusted to give, respectively, constructive and destructive
interference. The dominant frequency excited is that corresponding to
the fundamental longitudinal thickness mode. A further study with sine
wave excitation revealed that in the unbiased case, resonant excitation
of this mode occurred at Pdrive = 1Pfundaments1 corresponding to electro-
strictive excitation. In the presence of a bias field, excitation occurred at
Vdrive = Pfundemental corresponding to piezoelectric excitation. An effective
(or induced) piezoelectric coefficient d33 can be calculated for a bias
polarization Pb from the relation

2812Ddu = [2Qn - Q12
( )1

PA,
sup si2D

where Sij are the elastic compliances measured at constant electric
displacement, and Q if are the electrostrictive constants.

It was found possible to partially damp these acoustic resonances by
two methods. In the first method, the sample and electrodes were im-
bedded in Armstrong epoxy but the faces through which the light passed
were left unobstructed. In the second technique cold -worked aluminum
was bonded to the electrodes. An example of the partially damped re-
sponse is shown in Fig. 15. An interesting feature clearly illustrated in
this figure is the initial primary or high -frequency electro-optic response
followed by the secondary or elasto-optically induced response having a
rise time characteristic of the acoustic travel time across the sample.
The clamping effect on the induced birefringence can be estimated from
the pulse data to be 25 ± 10 percent for the unbiased crystal. This is in
agreement with calculations based on thermodynamic arguments.' Both
clamping effects and acoustic damping have been neglected in the
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Fig. 15 - Partial damping of acoustic ringing by imbedding in epoxy.

previous sections. Clamping will raise the voltage and power require-
ments and thus further restrict the capacity. Acoustic damping may be
difficult to achieve in practice on large samples without introducing
strain. It may also have an adverse effect on the electrical Q in the
frequency region near the acoustic resonances. Electrical Q's of several
thousand (and up to 10,000) have been measured for KTN up to fre-
quencies of several MHz on undamped samples.

Pulse response has also been measured in the nano -second range at
100 per cent modulation levels. A typical sampling scope trace is shown
in Fig. 16. The modulation voltage pulse was delivered by a Huggins
nanosecond pulse generator. The signal was detected in an EMI 7102
photomultiplier terminated in the 50 ohm input impedance of a Tek-
tronix Model 660 Sampling scope. The sample was unbiased with a half -
wave voltage about 25 percent larger than the measured dc value.*

IX. CONCLUSIONS

An analysis of the modulator requirements for a high capacity -high
speed digital light deflection system has been carried out. A principal
result of this analysis is the derivation of a simple capacity -speed product

(RzRy)lv,. < AP,.

where A is essentially a constant characteristic of a given modulator
material, and Pr is the reactive power with which the modulator is

1' The triangular shape observed was identical to the input voltage waveform.
The triangularity was due to current limitations, the driver being unable to pro-
vide the current necessary for a sharp leading and trailing edge.
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Fig. 16 - Clamped electro-optic pulse modulation.

TIME -3.

driven. By examining the limitations on this reactive power one can
then compare the performance of different modulator materials in terms
of their respective capacity -speed products. For KTN the capacity -
speed product is limited to 1.25 X 109 sec -1 by the effects of internal
heating, assuming ambient temperature fluctuations are held to less
than 0.01°C, and compositional nonuniformities affecting the Curie
temperature are less than 20 ppm. Presently available KTN has com-
positional nonuniformities 100 to 1000 times greater than this. In addi-
tion further complications arise from the de bias in the form of space -
charge effects. An ac bias scheme proposed by Warter can be used to
eliminate space -charge effects. It is thus clear from the foregoing analysis
that the material requirements imposed on the KTN to achieve a
capacity -speed product of 109 sec -1 (i.e., 106 addresses at a 1 MHz
rate) are severe. It is therefore, important to look for other materials
where the requirements might not be as severe.

The capacity -speed product is very helpful in such a search since it
shows that a linear electro-optic material such as ZnTe with a dielectric
constant of 10 and a reduced half -wave voltage of less than 3 kV, has a
capacity -speed product of 2 X 109 sec -1 for 10 watts reactive power.
The capacity -speed products of all other known linear electro-optic
materials are less than 2 X 108 sec -1. On the basis of this study there are
at present* only two electro-optic materials which are potentially capable

* Note added in proof : Recent work of Denton, Chen, and Ballman (to be pub-
lished) on LiTa 03, xu = 43, v.- = 2700 V indicates that this material also has a
high -capacity speed product.
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of operating in a high -capacity high-speed DLD, namely: KTN and
ZnTe.
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APPENDIX A

Walk -Off Derivation

We assume modules of constant length /z consisting of a polarization
switch of length 1 and a Wollaston prism of length /, - 1. The length
of the Wollaston is assumed to be small compared to /, so that L. 1.

Starting from the input the modules are arranged in order of increasing
angular deflection, in x,y pairs; e.g., ±Oxii, ±0,1,, ±0x2,, ±02,, , etc.
Consider the transverse displacement of the beam at the output of the
x1',y1' modules. In the x' direction the beam is displaced by a distance

and in the y' direction it is undisplaced in the present approxima-
tion. The beam at this same point projected onto the x' -z plane (z is the
principal axis of the DLD) makes an angle Oxi, with respect to the z
axis, and projected onto the y' -z plane an angle Oyi, with respect to the
z axis. At the output of x2',y2' modules the corresponding displacements
and angles are respectively 5/Ari, t= (2/.)0.1, im0x2,),

2/mOvi, = 0 4- (21m)e/ill , 30.1.(= Or2,), and 30,,r( = 00,). Table
VI lists these displacements and the succeeding ones. In terms of the
diffraction OD = a/c/; ,

Ax' 13x/, 2-k- 2n
2

13x/,fix,

AY' /314 cX7-, .

APPENDIX II

(68)

(69)

Derivation of Capacity -Speed Product for Rectangular Aperture

Remembering that the modulator axes x,y (parallel respectively to the
d and b dimensions of the modulator) are rotated 45° with respect to
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TABLE VI - LINEAR DISPLACEMENT OF BEAM AT OUTPUT OF
iTH PAIR OF MODULES

Ax Ay

i = 1 Imes l' 0

2 2/m0.1,(1 2/.00,

3 2/,Oz1ia + 3 + 2/A141 + 3)

4 2/.8x1,(1 + 3 + 7 + 2/meyi,(1 + 3 + 7)

n-1 n-1
21,0.1, [ E - 1)

i=1
+ - 1) 2/m001 E - 1)

=.1

performing the indicated sums

Ax = 2/,e,i(1 2" -n -
Ay = 24,00(2. - n - 1).

For large n (n >> 1)

Ax 2/mOr12n(3)

Ay ti2/m002".

the deflection axes x',y', and taking b > d, we see from Fig. 17(a) that a
displacement of the beam Ax' (or Ay') produces a fractional loss of in-
tensity

a AA 1 (1 1)
- 71- Ax (or Ay )

Axi(or Ay') V -2-c/ (a±1) . (70)

The diffraction angles OD for the x' and y' deflections are given by
ODy' = Al2X/b and Ow = X/ -0.c/ as shown in Fig. 17(b). Combining
these expressions with (68) and (69) we obtain,

Ax, (Va)
b

tc 0.2 -0.d (71)

/ X \
AY' = /41m V/TC1) RY' :5. 0.2

A/24 (72)

for a fractional intensity loss of 20 percent. Combining (71) and (72)

giving
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we find

(Rx,R,)1
0.2 ( b(1

SWITCH

2d
1 b

1241

(73)
- V Oxfivx lm

Substituting for (Pr from (15) we obtain the desired result,

where

(74)

1 (71

[1 + 1m1n,
b (75)

5ce1/(3x,3X

\ A

\\45°

--AA

(a)

(b)

Fig. 17- Rectangular aperture: (a) beam displacement, (b) image plane.
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APPENDIX C

Dielectric Properties of KTN

From the Devonshire free energy expansion in (25) we can derive
expressions for several useful dielectric properties. The spontaneous
polarization P. is given by

2 [1
+

{1 (TO T )11 T < To (76)
3 4 Vic - Tol

where P.o is the spontaneous polarization at the phase transition T, , and
is given by

P80 = (77)

The difference between the Curie Weiss temperature T.
transition temperature T, in the Devonshire model is,

e-To = 3 e0C
16

(78)

The low field dielectric permittivity e above the phase transition obeys
a Curie -Weiss law,

CE0

T - To

- Ceo

urns -0 T, - To
0

T = T,
CE eo

lim 4(71c -

5=

T= T. + a
More generally below To , the permittivity can be written

e0C

and phase

(79)

(80)

(81)

ET<T,
16 20 (82)

(T, - To) 4[- - - - 72 - (To - T)
3 3 3



where

AN ELECTRO-OPTIC POLARIZATION SWITCH 1243

7 ± 3 (T° T
4 - To) 

The small signal permittivity at high fields is given by,

1) 1 + 36EPe 5c03b4 

APPENDIX D

Power Considerations

(83)

(84)

Consider the circuit shown in Fig. 18. The current in the RF driver
arm is given by

ii -
Cs
---ry iC0C8Rg +

:10.11i8C 8
{

CB B 1 + jaesRs + TX's/LB}

:,,WC8Vrf(1 ± As)
Qs

where Qs = °Cal?, and the following inequalities are satisfied,

Rs,(4LB >>,071, >> itg,

The instantaneous power delivered by the RF driver is,

coCsVrf2 COC V
2

CJCs VTT rf
2

2Q8
(Pinst(driver) - s

2Q8

rf cos 2wt - sin 2cot . (86)

JWC8Vrf

(85)

In the same manner, we can obtain the instantaneous power delivered
by the circuit to the modulator,

Fig. 18 - Equivalent circuit for biased operation.
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2

(Pinat(mod) =
vB

+ Winst(driver) ±
2 VB -Vri

Rs R8

Q8cos Wt - -2 sin cot) .

(87)

The term .17,32/R8 is supplied by the bias supply. It can be readily shown
that the last term is supplied by the de blocking capacitor and RF
blocking inductor. The dc blocking capacitor contributes a term
(VBV,f/R.) (cos wt - Q sin wt) and the RF blocking inductor a term
(VBV,//14) cos wt. Since Q8 is large the instantaneous power delivered
by the driver is to a good approximation given by,

COCs

2
Vrf2

Winst(driver) sin 2wt (88)

the dissipated power in the modulator ((6)inst(mod))time) from (87) is

C8V712 VB2o.)

(Pd - , (89)

Since the actual modulation waveform is nonsinusoidal, the analysis
must be extended to include a pulse -type waveform. In addition, since
we are driving a reactive load we need to characterize the driver power
requirements. The time average of the reactive power is zero. The peak
instantaneous power depends on the risetime of the voltage pulse.
Neither of these factors is a satisfactory measure of the required driver
power. A more realistic quantity from the point of view of the driver22
is the energy delivered to the modulator per address pulse times the
number of address pulses/second. From the foregoing analysis, (88),
the power defined in this fashion is given by

.3),.  (ICV,i2) Pt. , (90)

where vr = 2v (assuming that each half cycle represents an addressing
pulse). The dissipated power for the case of pulse modulation can be
obtained from a simple extension of the foregoing analysis. Expanding
the pulse waveform in a Fourier series,

v = -4 V , f E 1- sin mwtr m=1,3,5,  m

it is easily shown" that the power dissipated in the sample is given by

16 (c0C.V,12 Q8(w) )(Pa =
2Q8(w) ).-i,3, (mQ.(muoi '

(91)
70
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If the quality factor Q. is independent of frequency and the series is
terminated at m = 5, (91) reduces to (29) of the text. The rise time
of the pulse is approximately the rise time24 associated with the highest
frequency component mmaiw

0.45
Tr lee (92)

mmax P

It should be noted that the peak reactive power varies inversely with
Trise , and can be substantially larger than the reactive power defined in
(84) if the rise time is much shorter than the period of an address pulse.

The pulse amplitude has been equated to the half -wave voltage in
the linear electro-optic modulator and to the incremental half -wave
voltage in the biased quadratic modulator. This implies that an address-
ing pulse is needed for only one of the two polarization states of the
light beam (i.e., either the "0" or "1" state but not both).

An alternative scheme is to set the ambient state of the modulator
to a point midway between the two desired states (1 wave bias) in which
case each state requires an address pulse of one half the previous ampli-
tude. The average power required is thus cut by a factor of two. We have
not used this latter scheme since in the case of KTN it introduces a
possible de component into the voltage across the modulator. In the
case of the linear electro-optic materials the presently conceived20 driver
circuitry does not permit any increase in the available power using this
bias scheme.
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On the Optimality of the Regular
Simplex Code

By H. J. LANDAU and DAVID SLEPIAN

(Manuscript received May 25, 1966)

We prove here the long conjectured fact that the regular simplex is the code
of minimal error probability for transmission over the infinite -band Gaussian
channel. The code is actually optimal for a rather wide class of assumed
channel noises. We also establish the optimality of several other codes for
the band -limited Gaussian channel.

I. INTRODUCTION

Since its introduction by Shannon' and Kotenikov2 nearly 20 years
ago, the geometric representation of signals has played an important
role in communication theory. * By this scheme, a variety of physically
different time -continuous communication systems can all be reduced to
the same geometric model. The problem of finding optimal signals for
transmission then becomes a geometric one. This paper solves one such
problem.

In the model in question, signals to be transmitted are represented as
points, or vectors from the origin, in a suitable finite dimensional Euclid-
ean signal space 8 . The energy of any signal in 8 is proportional to the
length of its representative vector; the bandwidth of the communication
system is proportional to the dimension n of the signal space. Received
signals are also represented by vectors in 8 and the difference Z =
Y -X between a transmitted signal X and the corresponding received
signal Y is a vector random variable representative of the noise en-
countered during transmission. In a model commonly considered, the
probability density of Z depends only on its magnitude, i.e.,

P(zi, Z2 ) = f( I Z I )) (1)

* A detailed description of this viewpoint along with some references to the
intervening literature can be found in Chapters 4 and 5 of the recent book' by
Wozencraft and Jacobs.
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and f() is an integrable nonnegative monotone decreasing function of
its argument. We shall consider only this case in all that follows.

Suppose the transmitter has a list of 31 signals, X1 , X2 , Xm
from which it selects the successive signals to be transmitted. We sup-
pose these choices are made independently with equal probabilities and
that the code, or list of possible sent signals, is known to the receiver.
The receiver partitions 87, into M disjoint regions al , 612 , , atm
called decision regions. When the received signal lies in ai , the receiver
asserts that Xi was transmitted. With this scheme, the probability of
correct decoding is

Q = f f (I X - Xi r) dxi dx2  dx., (2)
:=1

where X = (x1 , x2 , , xn) is a generic point in 8.
With M and n given, how large can Q be made by proper choice of the

code and decision regions? For a given code it is well known (see Ref. 3,
Section 4.2, for example) that Q is maximized by choosing

= IX I I X - Xi I < I X -Xj, j (3)

i = 1, 2, , M. That is, the ith decision region consists of all points of
8 closer to Xi than to any other code word. Decision regions determined
by (3) are known as maximum -likelihood regions.

The maximization of Q over the code is more complicated. To obtain
a meaningful problem it is necessary to put some restriction on the
length of the code vectors, for without this, Q can be made arbitrarily
close to unity by choosing large enough vectors in distinct directions.
Several different energy restrictions have been studied in the literature
(see Ref. 4). Although optimal codes under these restrictions have not
been found in general for fixed M and n, much detail is known in the
Gaussian case

exp (-x2/2o2)f(x) = (4)
27 r cr 2

about the asymptotic form of Q for such optimal codes, as n -> co with
(1/n) log M -> R. These results are usually described in the channel
capacity and reliability formulae terms of information theory.3'4'5

In this paper we restrict our attention to the case in which all code
vectors are the same length. For convenience, we take

I Xi I = 1, i= 1, 2, , M. (5)

Such codes are called "equal energy codes".5 The code optimization
problem can then be stated as follows. Find M points , , , m
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on the unit sphere* in gn such that Q as given by (2) and (3) attains
its maximum value.

To our knowledge, the first investigation of particular codes from this
geometric point of view was carried out in 1948 by L. A. MacColl.' who
investigated codes corresponding to the vertices of the three regular
polytopes8 in n -space. These are the regular simplex for which M =
n 1, the hypercube for which M = 2" and the cross-polytope or
biorthogonal code for which M = 2n. MacColl wrote explicit expressions
for Q for these codes and evaluated them numerically for the Gaussian
case (4) for a variety of values of n and a. Gilbert9 continued this work
and made comparisons with a variety of other point configurations.
Balakrishnann established a new expression for Q in the Gaussian case,
which permitted him to show that the regular simplex code is locally
optimal (yields a larger Q than nearby equal energy codes with M =
n 1). Later " he showed that as a co and as a -> 0 the optimal
code of n 1 points approached the regular simplex. Webern used
Balakrishnan's form for Q to show that for n = 2 the (globally) optimal
code of M points, M = 3, 4, , is the regular M-gon. For n = 2, 3, ,

he also showed the biorthogonal code to be a local optimum among equal
energy codes with M = 2n, and described a family of locally optimal
codes for M = n 1, n ± 2, , 2n.

In this paper, we at last lay to rest the longstanding conjecture that
the regular simplex is optimal for M = n 1 in the Gaussian easel'
Specifically, we show that Q as given by (2)- (3) is greater for the regular
simplex than for any other equal energy code of M = n 1 points in

, n = 3, 4, 5, . This result is true for any monotone decreasing f.
The method of proof is based on a generalization to higher dimensions of
a theorem of Fejes-Tothn concerning expressions related to the form
(2) in 3 dimensions.t Our methods also establish that the optimal equal
energy codes with parameters M = 6, n = 3, and M = 12, n = 3 are,
respectively, the biorthogonal code and the code consisting of the mid-
points of the faces of the regular dodecahedron. We conclude with some
comments about the biorthogonal code and about the reliability of the
infinite -band Gaussian channel.

II. AN INEQUALITY FOR Q

For an equal energy code, the maximum -likelihood region ai given by
(3) can be determined as follows. Let Xi; denote the hyperplane that

* We shall hereafter use the caret ^ to denote unit vectors.
t It is incorrectly stated in Ref. 3, pp. 260, 364 that this result has been previ-

ously shown in the literature.
We are indebted to E. N. Gilbert for calling Fejes-TOth's work to our attention.
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bisects perpendicularly the line segment joining Xi to i; . This plane
passes through the origin and divides 8 into two half -spaces. We denote
by 9.4; the half -space containing Xi . It consists of all points of 8n closer
to ti than to ti . The region (Ri is the intersection of M-1 such half -
spaces,

Gli = n cuii.
i=1
i#,

It is, therefore, a convex region bounded by a certain number of hyper -
plane faces that pass through the origin -a kind of flat -sided cone with
vertex at the origin. We note that the various maximum -likelihood
regions, , 61.2; , atm , are disjoint and that together with their
boundaries they exhaust C .

Let us now call any convex region of 8 bounded by k n hyperplanes
through the origin a "flat -sided cone". We shall establish an upper bound
for Q as given by (2) when the M decision regions Citi are any set of
disjoint flat -sided cones (not necessarily maximum -likelihood regions of
any code) that together with their boundaries exhaust 8 . For our
purposes it suffices to consider only the case in which Xi lies in the in-
terior of Gti , i = 1, 2, , M.

We S the surface sphere center
origin. We denote by Ri the intersection of ai with S. The regions Ri
are "spherical polygons" that reticulate S into a map or net. We shall
evaluate Q by first integrating over this net on S and by then performing
a radial integration.

Let X be a generic point in 8 distant r from the origin (see Fig. 1)

Fig. 1- Reduction to unit sphere.

and let 31 be a unit vector in the direction of X, i.e., the terminus of
is the radial projection of the generic point onto S. Then

I -X 12 = 1 + r2 - 2r cos
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and

- 12 = 2 - 2 cos 7

so that

IXi-XI2 r)2 rIXi-XI2.

We can thus write f( I Xi -XI) = gr ( -X I) where for each fixed
r the function gr() is nonnegative and is monotone decreasing in its
argument. The expression (2) in these terms becomes

f 7..-iu(r) (6)

hf

U(r) = ml gr( I X2 -X Dds (7)

where ds is the differential surface- or (n - 1) -content of S at the
point X. Note that U >= 0. We proceed to find an upper bound for U.
By (6) this will provide the desired bound for Q.

Let the terminus of the unit vector Y determine a point P on S (see
Fig. 2). The set of all points X on S such X Y > cos cp >= 0 will be called
"the spherical cap of S of angle so about P". Now let 3C be a hyperplane
through the origin but not containing P that intersects this spherical
cap. That is 0 < ft Y < sin so where fl is the unit normal to 3C directed
positively toward the side on which P lies. 3C divides the spherical cap
into two parts. We denote by TV the part of the cap not containing P,
and we denote by w the content of TV.

In what follows, the function

hr(w) = ods (8)

will be of great importance to us. The notation suppresses the dependence
of h on so, the angle of the spherical cap, and points out that with the

Fig. 2 - Cap cut by hyperplane.
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geometry as described this integral is a function only of

w = f ds (9)

the content of W. We shall suppose co fixed in all that follows.
Two special properties of hr (w) are of particular concern. First, as

shown in Appendix B, this function is increasing and convex. That is, if
w2 > w1, then hr' (w2) > (wi) where hr' (w) = dhr/dw. This, of course,
implies that

E (wi) (E Piwi) (10)

where the pi are nonnegative weight factors summing to unity. Equality
holds only when the wi are all equal.

The second property of hr (w) is somewhat more complicated to state,
though in three dimensions it is intuitively obvious. Again let 3C be a
hyperplane through the origin but not through P that cuts off a piece W
of the spherical cap about P. Let 3C1, 3C2 , , 3C; be hyperplanes that
each contain the origin and P. We denote by V the portion of W lying
on the positive side of 3Ci , i = 1, 2, , j, and we denote the content of
V by v. It is established in Appendix C that

fy gr( I i - A I)ds hr(v),

where as before ir is the vector from the origin to P and X is a generic
point of V. Equality holds only if 3C is the sole hyperplane boundary of V
(i.e., if none of 3C1 , 3C2 , , 3C; form a part of the boundary of V).

With these two properties of hr (w) we can now establish the desired
inequality for U(r). We first "triangulate" each of the polygonal regions
Ri into "spherical pyramids" Rif having boundaries of Ri as bases and
Xi as a vertex. More accurately described, the regions Ri; are found as
follows. The flat -sided cone (ai is bounded by pieces of ki (say) hyper -
planes 3C1', , Jeki`z) through the origin. We denote by G3i; the portion
of 3C;(') that bounds 13ii . Now 133i; is itself bounded by a certain number
li; of (n - 2) -flats through the origin. Through each of these (n 2 )-flats
we pass a hyperplane 3Ck("), k = 1, 2, , li; , that contains Xi . These
hyperplanes, along with 63i; , determine a new flat -sided cone (Rif having
63i; as one face and the line containing Xi as a one-dimensional boundary.
The interiors of the ki flat -sided cones ail , , , (Rik, are disjoint.
Together with their boundaries they exhaust ai . The line through
is common to the boundaries of all ki of these flat -sided cones. The
spherical pyramid Rif is the intersection of eiti; with S.

We denote by Ci the spherical cap of S of angle so about Xi (see Fig. 3).
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Fig. 3 - Cap and triangulated decision region.
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Let Ti be the portion of Ci exterior to Ri and let Si be the portion of Ri
exterior to Ci . A typical term of the sum (7) can then be written

fRi - Pds = (f + f
i

gr(I - Dds.
T

Now Ti can be broken up into pieces Ti; corresponding to the spherical
pyramids Ri; . To accomplish this, we extend the sides of the pyramid
beyond its base. Thus, if (Rif is on the positive side of 3c,(1) and aCk(11) ,

k = 1, 2, , /i; , then Ti; is the part of the spherical cap on the nega-
tive side of aci(t) and the positive side of 5Ck('1), k = 1, 2, , /J.; . We
now have

ki
ff grds = f grds f grds - E grds. (12)

Ri Ci Si j=1 Tij

Some of the regions Si , Ti; can, of course, be void.
We now sum (12) over the M regions Ri . We write

k =1 E ki
z i=1

for the total number of (n - 2) -boundaries in the net on S. (Each
boundary of Ri is shared with one other spherical polygon.) There results

MU(r) = > f gr(I Xi - I)ds = M f -X Pds
i=1 Ri C1

ki

f gr.(' ki - - gr(l - ft)ds.
i=1 Si 1=1 j=1 7'ij

We next use (11) for the regions Ti; .

(13)

M ki

MU(r) M f - fiCI)ds E grds - E E hr(iii)
c1

fi
where ti; is the content of Ti; . The convexity (10) of h now gives
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MU(r) 5._ M f gr(I Xi -k Ns
c,

(14)
1

m ki
+ li f grds - 2kh,. (- E E to) .

i=1 Iii 2k i=1 j=1

Now denote by s, c, and si , respectively, the content of S, C i , and Si .
A division of S analogous to (13) (set g = 1 there) gives

M M ki

8 = Mc ± E si -E E to.
1 i=1 j=1

M ki
= Mc + s' -E E to

i-1 j-1

(15)

where we write s' = E si for the sum of the contents of all of the pieces
of the polygons Ri that fall outside their respective spherical caps. We
then have from (14) and (15)

2k
MU(r) .C. M f grds + 3i grds - 2kh,. (Mc - s + 8')

c, i=1
f,

= M i
Cl

grds - 2kh,.
Mc

c2k s) (16)

+ t grds - 2k f gr(It - ft 1) ds
i-i

fi
K

where K is the region (see Fig. 4) of the spherical cap about P that lies
between hyperplanes through the origin that cut from the cap regions of
content (Mc - s + s')/2k and (Mc - s)/2k. This latter quantity will
henceforth be assumed to be nonnegative. The normals to the two hyper -
planes and the vector Y from the origin to P are chosen coplanar.

Note now that the sum of the last two terms in (16) cannot be posi-
tive, for we have

Fig. 4 - The region K.
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E f - J)ds g,.(d) E f dr = gr(d)s' (17)
i=i ,Si

and

2k f -X Dds > gr(d)2k f ds = g,.(d)s' (18)

where d = 1/2 -2 cos p is the distance from the center of the cap to the
edge. Here we have used the fact that g,. is monotone decreasing. Equality
holds in (17) and (18) only when s' = 0.

In view of the above, the inequality in (16) can be continued by
omitting the last two terms there and we then obtain our desired in-
equality

MU(r) S M f -X 1)ds - 2khr (Mc2k (19)

where C is the spherical cap of angle co about the terminus of t and we
require Mc - s z 0. Retracing all the inequalities used to derive (19),
we see that the equality sign holds there if and only if s' = 0, all the
regions Ti; have equal content and each Ti; is a region cut off from the
spherical cap by a single hyperplane.

In closing this section we note one further fact. From the convexity of
hr(x) it follows that xlir(cx x) is monotone decreasing in x. For given M
and c, then, the right side of (19) is monotone increasing in k.

III. OPTIMALITY OF THE REGULAR SIMPLEX AND CERTAIN OTHER CODES

Let a code of M unit vectors in 8 have maximum -likelihood regions (Ri
that reticulate the surface of the unit sphere into a net having k (n - 2) -
dimensional boundaries. We designate such a code by the symbol
{n,M,k). For certain values of the parameters n, M and k, there may
exist codes for which a spherical cap angle so can be found such that the
conditions for equality hold in (19). We call such a code a symmetric
{n,M,k}. By choosing C so that (19) is an equality for such a symmetric
code, we see that the probability Q of no error for a symmetric {n,M,k}
is greater than the no -error probability of any nonsymmetric {n,M,k}.
Indeed, the concluding remark of Section II shows that the no -error
probability of a symmetric {n,M,k} is greater than the no -error proba-
bility of every {n,M,k'} if k' < k.

The regular simplex code consists of M = n + 1 unit vectors
X1 , t , , Rn+i in 8 with Xi X; = - (1/n), i j. The maximum -
likelihood region containing Xi is bounded by n hyperplanes. It is
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readily verified that the regular simplex is a symmetric {n, n 1,

n(n + 1)/2}. Now no code of n 1 unit vectors in 8 can have more
than k = n (n + 1)/2 (n -2) -boundaries in its maximum -likelihood net,
for, by the construction given in the first paragraph of Section II, each
maximum -likelihood region can be bounded by at most n hyperplanes.
The regular simplex code then must have a Q strictly greater than any
other equal energy code of n 1 vectors in 8 except possibly another
distinct symmetric {n, n 1, n (n + 1)/2}, should such exist. But this
latter eventuality cannot happen. That a symmetric {n, n + 1,
n(n 1)/2} must be the regular simplex can be seen as follows. Since
no at, for a code of M = n 1 points can have more than n hyperplane
boundaries, then to have k = n (n ± 1)/2, every ai must have exactly
n hyperplane boundaries. The n hyperplanes 3C1(1), 3e..('), acn(i) that
bound 6l1 bisect, respectively, the line segments from X1 to X2 , from t
to t , , from X1 to X+1. Since the code is assumed symmetric, these
hyperplanes must be equidistant from X1 . Thus, all the other code points
are equidistant from X1 . But a similar argument holds for each of the
other regions al2 y -- at -3 y , 6tn-F1 and so all distances between pairs of
code points are equal. But this property suffices to define the regular
simplex.

The optimality of two other codes in n = 3 dimensions can readily be
established by using (19). We note first that in 3 dimensions the condi-
tions for equality to hold in (19) are such that the maximum -likelihood
net on the sphere must be composed of congruent regular spherical
polygons. A symmetric {3,M,k} then must be the radial projection onto
the unit sphere of a regular three-dimensional polyhedron. The code
points are the centers of the faces of the polyhedron.

Consider now the code formed by the midpoints of the faces of a cube
of edge length 2. This is the three-dimensional biorthogonal code. The
maximum -likelihood net is given by the radial projection of the cube
edges onto the inscribed unit sphere. The code is a symmetric {3,6,12}.
There is no regular polyhedron with 6 faces other than the cube, so that
we will have shown the three-dimensional biorthogonal code to be opti-
mal if we establish that every {3,6,k} must have k 12. To see this latter
fact, note that for three-dimensional codes, at least three edges of the
maximum -likelihood net must meet at each vertex of the net (since each
Ri is convex). Thus 3v < 2k where v and k are, respectively, the total
number of vertices and edges for the net. Euler's formula (Ref. 8, p. 9 )
v - k M = 2 holds for the net, and so

k 3(M - 2). (20)
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For the case at hand M = 6, and (20) gives k < 12, so that the proof
is completed.

Analogous reasoning shows that the centers of the faces of the dodeca-
hedron give the best code with M = 12 points. The code is a symmetric
13,12,30) .

The regular octahedron in 83 gives rise to a symmetric {3,8,12} whose
code points are the vertices of a cube. This is not the optimal configura-
tion of 8 points in 83 . By rotating one face of the cube 45 degrees about
an axis perpendicular to the face and through its center, one obtains a
{3,8,16}. By translating this face slightly toward the opposite face of the
cube, and by slightly expanding both faces, one obtains a {3,8,16} with
minimum distance between code points strictly larger than the minimum
for the cubic arrangement of points. There are then noise functions
f (I zi) of (1) for which this new code has a larger Q than the cube -code.

It is not known whether the symmetric { 3,20,30 } obtained from the
regular icosahedron is an optimal code of 20 points.

IV. THE BIORTHOGONAL CODE

The biorthogonal code is a symmetric {2n,n,n(2n - 2) } . The 2n
code points can be taken as the points on the coordinate axes unit dis-
tance from the origin. Alternatively, the code points described
as the centers of the (n - 1) -dimensional bounding cells of the unit
n -cube. The radial projection of the cube onto the unit sphere with center
at the center of the hypercube gives the maximum -likelihood net of the
code.

We have seen that for n = 3 the biorthogonal code is optimal among
codes of M = 2n = 6 points. It is natural to suspect that for all n the
biorthogonal code is optimal among codes of 2n points in 8 . However,
the methods used in this paper, based as they are on (19), will not suffice
to settle this question, for, as will be shown below, when n 4, there
exist {2n,n,n (2n - 1)} codes; i.e., codes with a larger k value than the
biorthogonal code.

It might be thought that this encumbering dependence of (19) on k
could be avoided - that an inequality for Q independent of k could be
found which is attainable for optimal codes. The example already treated
of the octahedron shows, however, that this dependence on k is essential.

To construct a {2n,n,n (2n - 1)} for n > 5, choose 2n distinct real
numbers vi , v2 , , vs . The vectors of the code are given by

= (ai az P. , ce,vi2, , (21)

where
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ai
vi2n-2]-4 = 1, 2, , 2n

has been chosen so that Xi is a unit vector. The code is closely related to
the cyclic polytope described by Gale".

An important property of this code can be derived14 by considering the
polynomials

4

Fii(x) - pi)2(x - v;)2 = E Aii(P)XP
p=0

which are nonnegative. We define the (2n)2 n -vectors

(A ii(0) , A(1), Ai;(2), Aii(4), 0, , 0).

We then have
4

Bit. 1 = LYj E AiJ(P)p? = Fii(vo
p-=0

(22)

=

{0, / = i (23)
0, / = j
a15,>0, 1 i, 1 j

where the positivity of the aifi follows from the factored form (22) of
Fij(X).

To show that the points (21) determine a 2n,n,n(2n - 1)} we
note first that they span g, . Indeed every choice of n vectors Xi from
(21) yields an independent set, as can be seen by forming the determinant
whose rows are the components of the vectors. These determinants are
proportional to Vandermonde determinants and do not vanish. To show
that k = n (2n - 1) for the code, consider the maximum likelihood
region ati containing Xi . By the construction described in the first
paragraph of Section II, ai is the intersection of the half -spaces

Xi") (X) = - Xj) ?_ 0 j = 1, 2, , 2n; j i. (24)

We assert that each of the 2n - 1 hyperplanes x1"), j = 1,2, , 2n
with j i, is indeed an (n - 1) -dimensional boundary of 6i.i . It will
then follow that k = 12n (2n - 1) since there are 2n maximum likeli-
hood regions. That 3C;(z) is an (n - 1) -boundary of ai results from the
fact that there exists a point Xo contained in eiti that lies in 3C;(s) but not
in 3Ck(2), k = 1, 2, , 2n with k i and k j. From (23) we can
choose Xo = Bi; since

3C;(i) (Bii) = 0

aCk(i) (13i3) = aijk > 0, k k j.
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For n = 4, the configuration of eight points given by

1259

1t = v 2-,- (cos k 4,11 sink
4
7-: , cos k 2, sink, 1 k = 1,2,  ,8

is a 14,8,28). The proof is similar to that just given for the case n .-_. 5

with the role of the polynomial Fii(X) being replaced here by the expres-
sion

( X ) = [1 - cos (X - i 11 X [1 - cos (X - j 7:4)1 .
4

We omit the details.
We close this section by noting that although we cannot show that the

biorthogonal code has a largest Q value for codes of 2n points, it does
have largest nearest neighbor distance, 90° in angular terms. Indeed no
collection of more than n 1 vectors in & can have minimum angular
distance between points greater than 90°. For consider* Fig. 5. Without

+ -
.

O -
O 0 +

O 0 0 -

Fig. 5 - Table of component signs.

loss of generality the positive xraxis of a rectangular coordinate system
can be chosen to lie along the first vector. The first column of the figure
shows the sign of the components of this vector. The coordinate axes can
be oriented so that X2 lies in the x1 - x2 plane and the direction of the
xraxis can be chosen so that the x2 -component of X2 is positive. The
second column of Fig. 5 shows the sign of the components of X2 . The first
component must be negative since if the minimum distance is to be
greater than 90° we must have XiX2 < 0. Continuing in this manner we
are forced to choose the components of the Xi , X2 ; , +1 as shown.
But now it is impossible to find an (n 2)nd vector having a negative
scalar product with these n 1 vectors, for if the nonzero components
of X+2 are all negative, it has a positive scalar product with X.+1,
whereas if the first positive component of X+2 is the jth, Xitn+2 is
positive.

* This elegant proof was suggested by J. H. van Lint.



1260 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1966

V. THE INFINITE -BAND GAUSSIAN CHANNEL

When M = n 1 and f(x) is given by (4), the model discussed here
describes the transmission of M equally likely signals si(t), i = 1, 2, ,

n 1, of duration T in white Gaussian noise of spectral power density
N/2. Here the signals are constrained by

fsi2(t)dt = PT.
0

When these signaLs are transmitted, the probability of no error using the
best possible detection scheme is given by (2), where the Ai must be
chosen so that

T

itet = PT si(t)si(t)dt,
o

the R i are the maximum -likelihood regions (3), and

2 Na = 2PT

See Ref. 3, Sections 4.2 and 4.3 or Ref. 15 for a more detailed description
of the correspondence between the geometric model and the physical one.

Our result that the simplex code is optimal means that in communicat-
ing in infinite -band white Gaussian noise by means of M equally likely
equal -energy signals of duration T (no bandwidth restrictions imposed)
the error probability is minimized by choosing signals with normalized
cross -correlation

T

PT Jo si(Osi(odt =
1

- 1' i j (25)

this being the value of tiii for the regular simplex.
The error probability with a best set of signals of form (25) is readily

determined to be

P, = 1 -f dx f(x)43m-1 + -10. ,VMM 3.) , (26)

where f(x) is the Gaussian density (4) andel, the cumulative

c1)(y) = ilf(x)dx.

When the transmission rate
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R
log M

T

is kept constant, along with N and P, (26) becomes for large T (and
hence large M)

where

Pc = exp [-E(R)s' o (T)],

C - R,
E(R) =

(VC! - 1/M2,

R C /4

R > C/4

(27)

(28)

and C = P/N is the capacity of the channel. That the minimal asymp-
totic error probability for this channel must have the form (27)-(28)
was first proved by Wyner.'5

APPENDIX A

A Lemma

The following lemma will be useful in establishing the main results of
Appendices B and C.

Lemma: Let wi(x) and w2(x) be integrable functions that satisfy

Wi(X)dX = f W2(X)C1X.
a a

Further, suppose there exists an , a b, such that

w2 (x) wl (x),

w2 (x) wl (x),

a < x

x b.

Then, if m (x) is a nonnegative monotone increasing function,

(29)

(30)

m(x)wi(x)dx > f M(X)W2(X)dX. (31)
a a

If m (x) is a nonnegative monotone decreasing function,

fb
b

m(x)wi(x)dx < f m(x)w2(x)dx.
a a

Equality holds in (31) and (32) only if wi(x) = W2(x) for almost all x.

Proof: If m (s) is nonnegative and monotone increasing, then

(32)
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fb

in(X)[W1(X) w2(x)]dx
a

= fz m(x)[wi(x) - w2(x)]dx + fb m(x)[wi(x) - w2(x)]dx
a

ex'

> m(x') [W1(X) w2(x)]dx m(x') [W1(X) w2(x)]dx

= M(X')[f Wi(X)dX -f W2(X)dd = 0.
a

If m(x) is nonnegative and monotone decreasing, the steps are the same
with the inequalities reversed.

APPENDIX B

Convexity of hr(w)

Let x1 , x2 , , xn be the rectangular coordinates of a point in 8n .
The surface S of the unit sphere centered at the origin can be given
parametrically by

x1 = cos 01

xz = sin 01 cos 02

= sill 01 sin 02 sin 0;_i cos 0;

(33)

s_1 = sin 01 sin 02 sin 60_2 COS 0-1

Sn = sin 01 sin 02 sin 0,2 sin 0,1

0 < Oi < 7r, a = 1, 2, , n -2
0 < On_i < 27r

and the element of surface content is

ds = sins -2 01 sins -3 02 sin 0n-2 del del  den -1 (34)

We shall only be concerned with the case n 3.

The spherical cap of angle v about P, the end point of

= (1, 0, 0, , 0),

is given by 01 < v. A hyperplane aC that intersects this spherical cap is
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x2 = x1 tan a with 0 <= a < go and the intersection of 3C with the spherical
cap is from (33)

cos 02 = tan a cot 01

We then have from the definition (8)

hr(w) = f dOi f d02 sins -2 01 sinn-3 82 gr(V2 - 2 cos 01)
a

7f2,rd03 dOn-2
0 0 0

(10 _1 8111n-4 03 sin On -2

where v = arccos (tan a cot 01) and µ = - v if n = 3 but u = 0 if n 4.
In either event, we can write

f
hr(W) = ka f dB' f d02 sinn-2 sinn-1 02 gr(V2 - 2 cos 91) (35)

a

while for the content of the piece of the cap cut off by 3C we have
y

W = kn f dot d02 sins -2 01 sinn-3 02
a 0

with k > 0 and independent of a.
Straightforward differentiation of (35) yields

dh
= Ica sec2 a (MI sin 01 cos 01

da a

[1 - sec2 a cos2 01](n-4)12 gr(V2 - 2 cos 00.

Now introduce

and

X = cos` 101 a = cos2cp , b = cos2 a

(36)

(x) = greV2 -

We have 0 < a < b < 1. Note that (x) > 0 is monotone increasing in
x. In these terms

and

dtv

da

dh ka fb xl(n-4)/2= - 1 6(x)
da 2b a

rb r (n-4)12

dx 1 - '12
b

- k - an - 2
(n-2)/2
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Combining these results we find

dh,.(w) dh / da
rb

dw (dw / da)
lb(x) (x)dx > 0, (37)

where

lb ( x ) =

Note that

1-b

2b (1 - 12

n - 2

lb ( x )dx = 1.

a x b. (38)

(39)

When n > 4, the convexity of hr (w) can be established from (37)-
(39) as follows. Consider two different w values, say w2 > wi with cor-
responding parameters b2 = cos' a2 and b1 = cost al . We have

1 b2 > > a.

From (38) one readily finds that there is a unique real root x' for which
/b, (x') = /b, (x'), a < s' < bi . For a x < x' we have 4, (x) > lb, (.0
If we now define lb (x) = 0 for x > b, we can also write lb, (x) > lb, (x)
for x >= x. From (39) we have

b2

lb,(x)dx = f (X)dX.
a a

The conditions of the lemma of Appendix A hold and we conclude from
(37) that

W2 >
dh,.

>
(w2) ditr(wi.)

dw dw

which is the desired convexity.
When n = 4, (38) becomes lb (x) = (b - a)-' for a < x < b. As be-

fore, we define /b(x) = 0 for x > b. It is readily seen that the lemma
again applies with x' chosen as b1. Convexity is then established in this
case as well.

For n = 3, (37) and (38) give
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dlir(w) o(x)dx
dw Ja 2Vb - aVb - x

(x)= - 2-Vb - 2-0 - a
b _

a

b b

+f - a
X

do (x)
a a
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on integrating by parts. However, since 6 is increasing in x, it follows
that the last integral is increasing in b and hence also in w. The convexity
proof is thus completed.

APPENDIX C

Proof of Equation (11)

We shall be concerned here with two different regions, V and W, cut
off from the spherical cap of angle (p about the point P which we take as
the terminus of the unit vector Y in 8. (see Fig. 6). The region V is the
intersection of the spherical cap with a convex cone V having the origin
as a vertex. It is assumed that V does not contain P. We denote by Q a
point of V closest to P. The second region, W, is cut off from the cap by
a single hyperplane through the origin but not through P. is chosen
so that W and V have the same content, w and v, respectively, and for
purposes of our proof we restrict the normal to £ to lie in the 2 -plane
through the origin, P and Q. We wish to show that

/v -X pds > rw = f -X 1)ds (40)

with equality holding only if V is cut off from the cap by a single hyper-

plane. Here, as in (11), gr is nonnegative and monotone decreasing and
X is a generic unit vector in 8 . In the applications made of (40) in the
main text, V is specialized to a type of flat -sided cone.

Fig. 6 - Regions involved in proof of (11).
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Let us again adopt the spherical coordinates (33) with the pole
P of the cap located on the xraxis so that Y = (1,0,0, , 0). We sup-
pose the axes are oriented so that Q lies in the x1 -x2 plane. Then from
(33) and (34)

where

Iv = f dOig (V2 - 2 cos 01) v(01)

v(01) = 5 11n_201 f d02 f d8_1 sins -3 02 sin On -1

Bv(01)

is the (n - 2) -dimensional content of the intersection B v(01) of V with
the hyperplane x1 = cos 01 . Similarly,

Iw =
0

deigr(V2 - 2 cos 01) w(01) (43)

where w (01) is the (n - 2) -dimensional content of the intersection B w (01)
of W with the hyperplane x1 = cos 01 . By hypothesis we have

v = f d00(01) = w = &WOO. (44)

(41)

(42)

Since g,. (V2 - 2 cos 01) is a nonnegative monotone decreasing function
of 01, all the hypotheses of the lemma of Appendix A will hold if we can
show the existence of a co such that

v(01) >,_- w (00 , 0 01 co'

w (01) v(01), co' go.
(45)

The conclusion (32) of the lemma then is (40).
Our goal now, therefore, is to show that v (0) and w (0) cross only once

as indicated in (45). Let a = L POQ. If Q* is the nearest point in W to
P and # = L POQ*, then # > a. For 0 < 0 < a, both v(0) and w (0)
are zero. For a < 0 < #, v (0) > w (0) = 0. From (44) it then follows
that there is a first point in (0,co) where w (0) crosses up through v(0),
that is, where v (0) = w (0) and w' (0) > v' (0) where the prime denotes
differentiation with respect to 8. If there were a second crossing, at that
point we would have w' < v'. We prove that there is only one crossing
by demonstrating that

dw ( ) dv(81)
v(01) = w (01)

(101

for 0 co.

(46)
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Let w be such that v (w) = w (w), 0 < w cp. Consider now the spheri-
cal pyramid 1'v having Q as vertex and as base the set B,, (w) defined
below (42). r, is the set of all points of the form

= 01,2 +

o, 0, fC(1 = OQ, kg E 3,(w)

where, in order for (47) to be a unit vector, we have the additional re-
striction

On = 1 = + ,72 +20,3Lta.

(47)

(48)

Note that since ei) is convex and since Q and Bv(w) are contained in 1.),
it follows from (47) that r, is contained in V and S, hence ry is con-
tained also in V.

Now let ii(01) denote the (n - 2) -dimensional content of the inter-
section of r, with the hyperplane xl = cos 01 , where a < 01 co. We
have

0(w) = v(w)

7.7(w - 6) v(w -

where this last follows from the fact that r is contained in V. One has
then

v(w) - v(w - 5) v(w) - 0(w - 5)

so that

(49)

dv(01) <I dv(01)
(50)

c/01 oi=w = ael e,=4,

Consider next the spherical pyramid r w (Q) having Q as vertex and
as base the set B w (w) defined below (43). We denote by ii)(01) the
(n - 2) -dimensional content of the intersection of rw with the hyper-
plane x1 = cos 01 . As before, let Q* be the nearest point in W to P. We
denote by e (0k) the (n - 2) -dimensional content of the intersection
of the spherical pyramid rw(Q*) with the hyperplane x1 = cos 611 .

Since Q* is contained in rw (Q), r w (Q*) is also contained in r w (Q) and
we have

(w)tv = 20* (0))

Cu, - 5) (w - 5).

From this it follows that

(51)
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chi)(61) < dip* (el)

del el f = del

However, since Q* lies in the hyperplane,
_*w

for all co, hence

deb ( 01 )

(w) = w (co )

dw(01)

(52)

(53)
dOielm = del 81=ca

In the remaining paragraphs of this appendix we shall show that

v( w) = w( w)
di) B1)

-
diTv(01)

01-(0
(54)d(

del

which will establish (46) and complete our proof, for the hypothesis
of (46) follows from that of (54) by (49), (51), and (52) and the con-
clusion of (46) follows from the conclusion of (54) by (50) and (53).

Let the spherical coordinates of a point X in r y be denoted by the
angles (goi , , con_i) (see Fig. 7). We employ the angles (Oi , , 0.-1)
to describe a point XB in Bv(61). The content V(A) of the intersection

GO of ry with the hyperplane xi = cos ,u, a < µ < co is given by

ii(µ) = sinn-2µ 42 sin" dio3 sinn-4 io3 f
J

(55)
J(1.1)

Fig. 7-The mapping from X to XB.
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The relationships (47)-(48), however, serve to define a one -one trans-
formation between the coordinates (µ, (P2 ,   , gon-1) of a point in J (A)
and the coordinates (w, 02 , , On_i) of a point in Bv(w), so that 0 (µ)
can be expressed as an integration over Bv(w) as well. Taking compo-
nents of (47), we find successively

COS µ = COS a + n cos w

sinµ cos Cpl = sin a + 77 sin w cos 02

Sinµ sin (p2 COS <pg = 77 sin co sin 02 cos 93

sin Ai sin 1,02 sin (p cos (pi = 77 sin co sin c02 sin 405_,. cos (p i (56)

sitsµ sin cp2 sin con -2 sin v-1

= n sin co sin 4o2 sin con -2 sin 40.-1

j= 3, 4, , n - 1.
Dividing the nth equation by the (n - 1)st yields son_i = On_i . Dividing
the (n - 1)st equation by the (n - 2)nd then yields vn_2 =
Proceeding in this manner, one finds co; = Of j = 3, 4, , n - 1.
The first two equations of (56) can be solved for and 77. By substituting
these expressions into (48) which now reads

2 + n2 + 207 (cos a cos w + sin a sin w cos 02) = 1, (57)

we obtain a single relationship connecting (p2 and 02 which we suppose
solved in the form

(P2 = co2 (62 , ) 

Equation (55) now becomes in the new variables

(58)

= sin" -2 f de2 .34,i2 sin" so2 d03 sinn-2 03 f de
del
Bv(w) (59)

= sinn-2 co dO2G(02 ,µ)h(02)

with

G(02, - [sin 7.4.1n-2 42
c/02

[sin co2T-3
(60)

sin cid Lsin 02

and
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h(02) = sinn-3 02 f des sin"-4
03 f d0,1,

Bv(w)

where if n = 3 this latter expression is to be interpreted as unity. It is
convenient now to define h (02) to be zero if 02 is not the second angle
coordinate of a point in Bv(w). In this notation, then, we have for
n z 4

(61)

di)(11) n-2 f do, aG(02 , 12) h(02) (62)= stn co

dit4 11-6, am 1g,

v(w) = Sinn -2 Cil (102)/(02).
foT

(63)

If n = 3, the lower limits of integration here should be replaced by -7.
It will be shown later that (3G/oil 1,, is a nonnegative monotone de-
creasing function of 02 

We next seek to determine the nature of the set Bv(co) of given con-
tent 0 (co) that will maximize (62). We note first from (61) that for n > 4

h(02) -5 0(02) (64)

where 0- (02) is the surface content of a sphere of radius sin 02 in 8n-2
since a is given by the integrals of (61) with the integration variables
running through their maximum allowable range. Now let B* (CO) be the
set of points defined by 01 = w, 0 <= 02 < 02 where 021 is given by

021

0 (co) = sinn-2 w d020- (02).
0

For B* (co) we have

h* (02) = {0(°2)'

so that

We also have

0 02 02'

02 < 02

0(co) = sinn-2 w f dO2h*(02).

h* (02) h (02),

h* (02) < h (02),

from (64) and (65).

0 02 02

02 < 02 < 7

(65)

(66)

(67 )
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The hypotheses of the lemma of Appendix A are thus met from (63),
(66), (67), and the monotonicity of aG/aA. We conclude that among
sets of equal content, diVd,u IIL=W is a maximum for the set B* (w). The
set B w (w), however, coincides with B* (w). Equation (54) then follows
for n >= 4. The modification necessary to treat the case n = 3 is trivial.

There remains only the demonstration that is nonnegative
monotone decreasing in 02 . Equation (57) and the first two equations
of (56) are identical with the equations that would hold for the three
3 -vectors OQ, X and i8 of Fig. 7 constrained to satisfy (47). The rela-
tionship (58) between got and 02 can most easily be written down by con-
sulting this figure. The condition that the three points be coplanar with
the origin is

x y z

XQ Y Q ZQ

xB yB Z B

= 0 (68)

where

x = sin /.1. cos c02 y = sin /I sin cot z = cos

x(2 = sin a yQ = 0 ZQ = cos a (69)

x8 = sin w cos 02 y8 = sin w sin 02 z8 = cos w

which serves to determine (58). Routine implicit differentiation of (68)
and (69) and evaluation atµ = co, (302 = 02 yields

42
We;

thp2

aµ

a 42
am (102

= 1

sin a sin 02
sin w(cos a sin co - sin a cos co cos 02)

sin a[cos a sin w cos 02 - sin a cos co]
- sin w[cos a sin w - sin a cos w cos 02]2

(70)

(71)

(72)

The denominators of (71) and (72) are positive since w > a implies
tan co cot a > 1 > cos 02 which is the same as

cos a sin w > sin a cos w cos 02

The numerator of (72) is nonnegative for points itB of interest to us
since we are concerned only with points in the portion of the cap cut off
by the hyperplane that passes through Q and through the origin 0 and
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has its normal lying in the plane POQ; i.e., points for which x2 > xi tan a.
For points in this region on the sphere and in the hyperplane xi = cos w
this inequality is

or

sin co cos 02 > cos CO tan a

cos a sin w cos 02 - sin a cos w > 0.

Now from (60) and (70)

aG
co

cos oi _a dio, 1 cos 02 &p2

ap[s-c,, sin ail d02 A=c.,Sill 02 ag P'o

Using (71) and (72), it is readily seen that this expression is nonnegative
and monotone decreasing in 02 .
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On the Use and Performance of Error-

Voiding and Error -Marking Codes

By E. 0. ELLIOTT

(Manuscript received May 25, 1966)

In contrast to payroll or inventory data, which must reach the recipient
in its entirety, there is another class of data that includes radar -tracking
data, remote -sensory data or control data, etc., for which the requirement of
completeness is not so stringent. Error control for this class of data may be
accomplished by forward -acting error -correcting codes which void or mark
any detected errors that they do not correct. In order to evaluate these error -
voiding methods, the error rates for such codes are estimated in this paper
using the error statistics of the Alexander-Gryb-Nast study.

A class of 18 (about 50 percent redundant) cyclic codes capable of
correcting from one to five errors and having block lengths from 15 to 47
bits is examined. Only bounded -distance decoding is evaluated, but each
code is assigned each possible decoding radius up to the maximum per-
missible radius determined by the capability of the code. Since interleaving
generally reduces error rates, the error rates for this class of codes are esti-
mated for interleaving constants from 50 to 300 in steps of 50.

It is concluded that:
(i) If voids are permissible (at a rate of about 10-4) then low undetected -

error rates may be achieved by a code capable of correcting many errors but
used to correct only two or three errors. Such a code might be about 50 per-
cent redundant and have a block length between 25 and 50 bits.

(ii) It is impractical to obtain low void rates. If voids are not tolerable,
then retransmission is required to obtain low error rates.

(iii) Interleaving is more effective with codes correcting three (or more)
errors than with those correcting only single or double errors.

I. INTRODUCTION

In contrast to payroll or inventory data, which must reach the recipient
in its entirety, there is another class of data that includes radar -tracking

1273
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data, remote -sensory data or control data, etc., for which the require-
ment of completeness is not so stringent. The distinction between these
two classes of data is fundamental in the classification of customer re-
quirements in data transmission and the selection of appropriate error -
control methods.

If the complete data message is required at the receiving station
then error control must either be carried out by error detection and
retransmission or by forward -acting error correction. Of these two
methods the former is the more economical to achieve low error rates.
However, if completeness of the transmitted message is not essential
and receipt of say 99.9 percent would be satisfactory, then very in-
expensive error -voiding techniques may be employed to achieve the
desired low error rates. With these techniques an error -detecting code
is used to detect and then void (or mark) all detectable errors. If lower
void rates are desired some error correction may be introduced and the
remaining error -detection capability of the code used to void or mark
errors. In order to evaluate these error -voiding methods, the error rates
for such codes are estimated in this paper using the error statistics of
the Alexander-Gryb-Nast study.'

Data for which completeness is an important requirement would
include payrolls, inventories, orders, sales and banking records, etc.
Since accuracy is a very important factor for this type of data, an
automatic retransmission error -control system would probably be re-
quired. However, one can imagine cases in which manual retransmission
would suffice. Errors could be marked or voided by the error -detecting
code and when errors are so indicated in a message the recipient could
initiate steps to obtain the missing data. This might be tolerable in
some situations if only a small fraction of the messages required this
special handling.

At the other extreme are messages which need not be received in their
entirety to be effective. Among these we might list radar tracking data,
remote sensory data, and remote control data. Again detected errors
would be marked or voided. In some cases, the discarded data might be
restored by some extrapolation or interpolation with neighboring blocks
of the presumed error -free data. In other cases, it might suffice to operate
with just the nonvoided blocks of data. For these procedures to work it
is of course necessary that the void rate be low enough. The void rate
itself however is not the sole factor determining the feasibility of the
system. The time distribution of voids may also be very important.
For example, with radar -tracking data a void rate of 10-4 (words/word)
might be tolerable in itself but if it were realized on a channel on which
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the voids tended to occur in runs or bunches it might not be tolerable
since the tracking system cannot operate if too long a stretch of data
is missing. This paper is concerned only with void rates and does not
treat the time distribution of voids.

The splitting of a code's function to achieve both error correction
and detection is accomplished by noting the distance of the received
word from the nearest code word. If this distance is less than or equal
to a given number which is called the employed correction radius then
the received word is decoded as that nearest code word, otherwise it is
not decoded and a detected error is announced. This is the method of
bounded -distance decoding. Although there are other methods of com-
bining error correction and detection, this one is considered here because
several practical decoding algorithms conform to it.

The codes are also evaluated over a range of degrees of interleaving,
because, if a given code is interleaved on a burst channel its performance
improves. Interleaving may be thought of as though it were accom-
plished by reading the encoded data into a rectangular array row by
row and then sending it on line column by column. The length of a row
is the block length of the code. The number of rows is the interleaving
constant t; two adjacent bits of an originally encoded block would be
sent on line with t - 1 other bits between them.

This memorandum examines the effect that block length, redundancy,
correction radius, and interleaving have on undetected error rates and
void rates over the switched telephone network. Specifically, a class of
18 cyclic codes with block lengths ranging from 15 to 47 bits is examined.
Among these are codes capable of correcting from one to five errors.
Although a variety of redundancies is represented, codes with about 50
percent redundancy predominate. Using data from the Alexander-Gryb-
Nast study, the error rates for this class of codes are estimated for each
permissible correction radius with no interleaving and with interleaving
with constants from 50 to 300 in steps of 50. A number of practical
means for implementing many of these error -control systems are avail-
able. For this reason, the present investigation aims at giving a useful
qualitative insight into the role of bounded -distance decoding for error
control on the switched telephone network.

For a more complete understanding of error control, it would be
necessary to consider alternative methods of decoding such as burst
decoding, threshold decoding, etc. Also error statistics for other channels
and modes of communication should be considered. This awaits further
development of analytical techniques and the availability of additional
error data.
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II. ESTIMATING ERROR RATES FOR BOUNDED -DISTANCE DECODING

A group code is commonly specified by the pair (n,k) where n is the
block length of the code and k is the number of information bits in a
code word. When bounded -distance decoding is employed, the correction
radius a is added to this pair and the code is specified by the triplet
(n,k,a). Of course, a is less than or equal to the maximum error -correcting
capability e of the code. Thus, if x is the transmitted word and y is the
received word then if y is at distance less than or equal to a from some
code word z, y is decoded as z. If z x then an undetected error results,
and if y is not within distance a from any code word a detected error re-
sults. To estimate the probabilities PE and PD of these two events (unde-
tected error and detected error) the method of Ref. 2 is employed as it
was in Ref. 3 to study permutation decoding which is a special case of
bounded distance decoding.

Because of the perfect distance symmetries between the words of a
group code, the probabilities PE and PD do not depend on which code
word is transmitted. Therefore, to calculate PE and PD and simplify
matters we assume the all zero word 0 is transmitted. Let Ca(m) be
the total number of words of weight m which are at a distance less than
or equal to a from some code word. As in Ref. 2 let P(m,n) be the total
probability that m errors occur in a transmitted block of n bits so that

n)
P(m,n)/m is an approximation to the probability that a particular

pattern of m errors occur. Then, assuming 0 is transmitted we see that,
as an approximation,

ca(m) Prn)
m=a+1 (1)

Similarly, if Da(m) is the total number of words of weight m at a distance
greater than a from any code word then

P(m,n)
PD Da(m) .

m=a+1 n ( 2 ))

Clearly Da(m) = (71') - Ca(m) and now the problem is to obtain Ca(m).

In Ref. 3 a formula is given for C(m,j), the number of words of weight
m which are at a distance j (j < e) from some code word, and since

Ca(m) = E7=o C(nixi)
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the desired numbers are thus obtainable. Unfortunately, the formula in
Ref. 3 involves a summation with terms of alternating sign which re-
quires triple precision programming to obtain satisfactory accuracy
on the computer. As a consequence of this requirement, the following
alternate and more direct formula for C(m,j) was derived. With it,
double precision FORTRAN programming suffices.

C(m,j) = E w(m + 2i - j) (m ± 2i - j) (71 m - 2i ± j) (3)
i=o i j -

where w(r) represents the number of code words of weight r. It is ob-
tained from simple combinatorial considerations as follows.

Suppose x is a code word of weight r and y is a word of weight m and
let i be the number of bit positions in which x is 1 and y is 0, and 1 be
the number of bit positions in which x is 0 and y is 1. Let j = i + 1
so j is the distance between x and y. Then m = (r - i) + 1 = r j - 2i
and i = (r + j - m)/2. The total number of possible y's of weight m
is then given by

(1) tn-7)

Considering that each code word of weight m + 2i - j (= r) there-
fore has

rrt+ 2i - j n.-m-2i+i

distinct words of weight m at distance j (j 5 e) from it and clearly
m-jm-kj, i.e., 0 (3) then follows.

III. ERROR RATES FOR A SAMPLE COLLECTION OF CODES

Cyclic codes or shortened cyclic codes have received a great deal of
attention in the field of error control because of the ease in their imple-
mentation. For this reason a collection of 18 cyclic codes for which the
spectral functions w(r) were readily available was chosen for this study.
Most of these codes and spectra are given in Ref. 3. Those which were
not in Ref. 3 were included so that a wider range of redundancies would
be represented. The codes are listed in Table I which gives their block
length n, dimension k, minimum distance d, and maximum error -
correcting capability e.

Using (1) and (2) and the P(m,n) values from the Alexander-Gryb-
Nast study, the probabilities PE and PD were estimated for each of these
codes. Samples of the results are shown in Figs. 1, 2, and 3.
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TABLE I-LIST OF CYCLIC CODES

n k d e

15 11 3 1

15 10 4 1

15 7 5 2

15 6 6 2

15 5 7 3

15 4 8 3
15 2 10 4

17 9 5 2

17 8 6 2

21 12 5 2

21 11 6 2
23 12 7 3

23 11 8 3

31 21 5 2

31 20 6 2

31 16 7 3

31 15 8 3

47 24 11 5

Fig. 1 shows the effect which the correction radius has on error rates
for two of the codes. The undetected error rate is noted to decrease
about one order of magnitude for each unit decrease in correction radius.
Also, the detected error rate, which is about 10-4, is rather insensitive
to the correction radius.

In Fig. 2 the undetected error rate is plotted as a function of the
efficiency of a 15 -bit code. Each order of magnitude improvement in the
error rate requires an increase of three redundant bits (which is 20 per-
cent of the block length). An examination of the error rates for the codes
with block length 31 (not shown here) reveals that the same change of
three redundant bits is required to achieve an order of magnitude im-
provement with this longer block length code.

Error rates of double -error -correcting codes of about 50 percent
redundancy are presented in Fig. 3 as a function of block length. Again
the detected error rate is not a very sensitive parameter while the un-
detected error rate ranges over many orders of magnitude. Quite ac-
ceptable error rates are attainable with block lengths not much greater
than 25 bits.

IV. THE EFFECT OF INTERLEAVING ON ERROR RATES

Through interleaving (with constant t), the bits of a code word are
separated when transmitted on line so each pair of adjacent bits have
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Fig. 1 -- Error rates vs correction radius (no interleaving).

t - 1 bits from other code words between them. The effect of this is to
decrease the error vulnerability dependence between the bits of a code
word so that the interleaved channel is less of a burst channel and more
like a memoryless channel. To examine the effect interleaving has on
error control with random error -correcting codes, the P t(m,n) probabili-
ties were approximated for interleaving constants t = 50, 100, 150, 200,
250, and 300, and the error rates for the 18 codes were estimated as in
the previous section. To approximate the P,(m,n) values first the error
autocorrelation function at(k) of the interleaved channels is obtained
from a smoothed version of the autocorrelation function a(s) of the
Alexander-Gryb-Nast data through the relation
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Fig. 3 - Error rates of double error -correcting In, [(n + 1 )/2]1 codes.
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a t (s) = a (t  s).

Then the interleaved channels are assumed to have the property that
the lengths of the error -free gaps before and after an error are inde-
pendently distributed - i.e., the errors form a renewal process. (This
seems to be a reasonable assumption since interleaving breaks down
the memory in the error process. Its accuracy will be discussed below.)
From the autocorrelation functions at(s) the gap -length distributions
P t(s) may then be calculated by the relations between them which are
given in Ref. 4, and finally the Pt(m,n) values are obtained from the
P t(s) by the recursive methods of Ref. 4.

The undetected error rates of some codes used for forward acting
error correction only are shown in Fig. 4 as a function of the interleaving
constant t. There it is seen that interleaving is most effective on codes
correcting four and five errors and is of only modest value on the codes
correcting two or three errors. In fact, for the (31, 21) code it would

10-4

10-5

10-6

PE

10-

10-8

109

(31,21,2)

(31,16,3)

(47,24,5)

(154)

0-10

0 50 100 150 200 250 300

INTERLEAVING CONSTANT, t

Fig. 4 - Error rate vs interleaving constant.
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appear that the error rate increases in the range t = 1 - 50. This may
result from the fact that the mathematical methods for obtaining
I3 t(m ,n) were different for t = 1 and t = 50 since the renewal assumption
was not made in the case of no interleaving (t = 1). The renewal assump-
tion would appear to be more appropriate the larger the interleaving
constant t becomes so our estimates of error rates would be more accurate
for the larger values of t.

The conclusion to be drawn from Fig. 4 is that it takes a powerful
code interleaved extensively to provide a low error rate. The price, in
redundancy, interleaving or decoding complexity, paid to do this is
high and it would take special circumstances to justify it.

In Fig. 5, block -error rates are plotted against block length to further
show the effect of interleaving. The relationship between error rates and
block length is linear and the slope is determined by the amount of
interleaving. The equivalent memoryless channel is also shown for
comparison. It appears that a very considerable amount of interleaving
would be required to approach the memoryless channel.

Although it is not shown here, the detected error rates for codes
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correcting several errors decrease a, few orders of magnitude as the
interleaving increases over the range considered here.

We have considered only random error -correcting codes. In Ref. 5, a
burst -correcting code was studied at two levels of interleaving as part
of an error -control experiment.

V. CONCLUSIONS

Bounded -distance decoding has been examined as a means of utilizing
codes to do both error -correction and detection on the switched telephone
network with existing data sets. Data containing detected errors would
be either voided or marked.

If voids in the received data are permissible (at a rate of about 10-i)
then low undetected -error rates may be achieved by a code capable of
correcting many errors but used to correct only two or three errors.
Such a code might be about 50 percent redundant and have a block
length between 25 and 50 bits.

The void rate is rather insensitive to correction radius, block length,
and to a lesser extent, interleaving. It decreases with increasing correc-
tion radius, increases with increasing block length and decreases with
increasing interleaving (for multi -error -correcting codes).

Interleaving is more effective with codes correcting three (or more)
errors than those correcting only single or double errors.

If voids are not tolerable then retransmission is indicated as the
means to obtain low error rates. A powerful interleaved and highly
redundant error -correcting code is required to obtain low error rates.
It would probably be called for in only very special cases.

Further work should be undertaken to investigate other methods of
decoding codes, such as threshold or burst decoding, in order to gain
a more complete insight in the realm of practical error control systems.
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Duration of Fades Associated with
Radar Clutter

By A. J. RAINAL

(Manuscript received June 2, 1966)

The fluctuating envelope of the pulse -to -pulse radar echoes from a range
cell consisting of a stationary target along with many independent, randomly
moving scatterers is assumed to behave like a stationary Rayleigh process.
In radar terminology this fluctuating or fading envelope of the pulse -to -
pulse radar echoes is called signal plus clutter. The envelope of the pulse -to -
pulse radar echoes may fade below some critical threshold level for a dura-
tion such that the performance of the radar becomes unsatisfactory. Theoret-
ical approximations for the probability densities of both the duration of fades
and the interval between fades of the underlying Rayleigh process are pre-
sented in graphs for various threshold levels and various signal -to -clutter
power ratios. The corresponding exact results are at present unknown. The
results of this paper apply to all other fields of science and technology for
which a stationary Rayleigh process characterizes a fading phenomenon.

I. INTRODUCTION

Consider a pulsed radar system "viewing" a range cell consisting of a
stationary target along with many independent, randomly moving
scatterers as shown in Fig. 1. Each received echo consists of the vector
sum of all the elementary echoes originating from within the range cell.
The contributions from the randomly moving scatterers arrive at the
radar receiver with random phases. As a result, each received echo will
consist of a steady signal, from the stationary target, plus a Gaussian
perturbation. Accordingly, samples of the envelope of the pulse -to -pulse
radar echoes can be considered as samples of an underlying Rayleigh
process. Thus, the effect of the randomly moving scatterers is to cause
the envelope of the pulse -to -pulse radar echoes to fluctuate or fade in an
irregular manner. The envelope of the pulse -to -pulse radar echoes may
fade below some critical threshold level for a duration such that the
performance of the radar becomes unsatisfactory.

1285
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RANGE --
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0

PULSED
RADAR

_0_

TIME

Ro = RANGE
= AZIMUTH BEAM WIDTH

To = PULSE DURATION
Co = SPEED OF LIGHT

= STATIONARY RADAR TARGET

= RANDOMLY MOVING SCATTERERS
AVERAGE SIGNAL POWERa =
AVERAGE CLUTTER POWER

PULSE -TO -PULSE
RADAR ECHOES

Fig. 1 -A model for studying the duration of fades associated with signal
plus clutter. R(t,a) represents the envelope of the pulse -to -pulse radar echoes
from the range cell. At the level R, cb and 0 0 represent the duration of a fade
and the interval between fades, respectively.

In radar terminology the fluctuating or fading envelope of these pulse -
to -pulse radar echoes is called signal plus clutter. Classical discussions
of signal plus clutter were given by H. Goldstein and A. J. F. Siegert
and can be found in Refs. 1 and 2. A well-known example of signal plus
clutter is the envelope of the pulse -to -pulse radar echoes from a target
surrounded by a great deal of "chaff". Some other examples may be the
envelope of the pulse -to -pulse radar echoes from the aurora, the iono-
sphere, the sea, the ground, meterological precipitation, and a hyper-
sonic object during reentry of the earths atmosphere.

A natural assumption for studying the duration of fades associated
with signal plus clutter is that the random process underlying the fading
is a Rayleigh process. However, only a few theoretical results are avail-
able concerning the duration of fades associated with Rayleigh processes.
Thus, one is often unable to determine how well a Rayleigh process
actually characterizes the duration of fades observed experimentally.

The purpose of this paper is to present some additional theoretical
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results which characterize approximately the duration of fades one would
expect when the random process underlying the fading is indeed a Ray-
leigh process. We shall assume that the envelope of the pulse -to -pulse
radar echoes behaves like the Rayleigh process R(t,a) sketched in Fig. 1.
R(t,a) represents the envelope of a stationary random process consist-
ing of a sinusoidal signal of amplitude V2a and frequency f 0 plus a
Gaussian process of unit variance having a narrowband power spectral
density Wa - fo) which is symmetrical about f 0 . We assume that the
radar pulse repetition frequency is several times greater than the band-
width of the Rayleigh process R(t,a) in order that an adequate number
of radar echoes are used to form R(t,a). Also, we shall assume that the
variance of the receiver noise is negligible in comparison with the vari-
ance of the clutter.

Using notation consistent with Refs. 3, 4, and 5 we shall present
theoretical approximations for the following probability functions for
arbitrary signal -to -clutter power ratio "a":

(i) 13- (r,R,a), the probability density of the duration of a fade of
the Rayleigh process below the level R.
Pi (r,R,a), the probability density of the interval between fades
of the Rayleigh process below the level R.

(r,R,a), the probability that the duration of a fade of the
Rayleigh process below the level R lasts longer than T.

(iv) Fi(r,R,a), the probability that the interval between fades of the
Rayleigh process below the level R lasts longer than T.

The model considered in this paper also has application in the study
of the duration of fades in radio transmission. In fact Rice.' led the way
by analyzing the duration of fades in radio transmission assuming that
the underlying random process was R(t,0).

II. INTEGRAL EQUATIONS AND EXPECTATIONS

Let us define the following auxiliary probability functions for arbi-
trary level R and arbitrary signal -to -clutter power ratio "a":

(i) (T,R,a) dr, the conditional probability that an upward level -
crossing occurs between t r and t r dr given a downward
level -crossing at t.
[U (r,R,a) - Q(r,R,a)] dr, the conditional probability that an
upward level -crossing occurs between t r and t r dr
given an upward level -crossing at t.
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Explicit expressions for these auxiliary probability functions were
presented in Ref. 5.

Approximate theoretical results for Po- (r,R,a) and P1(r,R,a) are
given by the following integral equations:

Po (T,R,a) = (2 (r,R,a) - Po (r,R,a) * [U (T,R,a) -Q (T,R,a)] (1)

Pi(r,R,a) [U (T,R,a) - 2 (T,R,a)1
(2)

- Pi(r,R,a) * [U (T,R,a) -Q (T,R,a)]

where * denotes the convolution operator, that is,

f *g = f f(t)9(r - t)dt.

Equations (1) and (2) were derived in Ref. 3 by applying McFadden's'
"quasi -independence" idea to the Rayleigh process R (t,a). Also, by
definition we have that

T

Po- (r,R,a) = 1 - Po- (r,R,a)dr (3)

and

Fi(T,R,a) = 1 -f Pi(r,R,a)dr. (4)
0

The exact expectations E0 (r,R,a) and Ei (T,R,a) associated with the
respective densities Po- (T,R,a) and P1(r,R,a) can be computed from
the following equations:

E0 (T,R,a) = Pr{R(t,a) < R}
NR

(R2n /coa
z 71!)1F1 (n i; 2n + 1; -2R1/2a) (5)

n=1

V(13/27) RiF1(1; 1; -2RA/2a)

1 exp [(R - V2a)2/2]Ei(T,R,a) = =
NR

1/(13/27r) (1; 1; -2RA/2a)

where

(6)

= (27r)2 f Wb(f - fo)(f - io)2 df
0

Wb(f -10) = narrowband power spectral density of the Gaussian
process involved in the definition of R (t,a)
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average signal powera -
average clutter power

1Fi(a,0;x) = the confluent hypergeometric function

4.« a(a ± 1) X2
0 0(0 ± 1) 2!

Pr { = probability of the event inside the brace
NR = average number of upward (or downward) crossings of

the level R per second.

Equations (5) and (6) were developed in Ref. 4, and they follow directly
from some well-known results reported by Rice and Bennett. Each
1F1 function appearing in (5) and (6) can be expressed in terms of a
Bessel function of imaginary argument.

Thus, with the aid of a digital computer one can compute theoretical
approximations for the probability functions of interest in this paper
along with the exact theoretical expectations given by (5) and (6).

III. RESULTS FOR A GAUSSIAN A UTOCORRELATION FUNCTION

In order to define the Rayleigh process R (t,a) underlying the fading
phenomenon we need to specify both Wb(f - fo) and the signal -to -
clutter ratio "a". The normalized autocorrelation function m(r) asso-
ciated with Wb (f - fo) is given by

m(7) = f Wb(f - fo) cos 27(f - fo)rdf. (7)
0

Thus, m (r), rather than Wb(f - fo), can be used to define the Rayleigh
process R (t,a) underlying the fading phenomenon. Notice that f3 appear-
ing in (5) and (6) is merely -m" (0). The primes denote differentiations
with respect to r.

Ref. 1 points out that it is convenient to measure the normalized
autocorrelation function of the fluctuating low frequency power P (t) =
R2 (t,a) and denotes this normalized autocorrelation function by p (P,T).
In explicit terms p(P,r) is defined as

El[P(t r) - EP(t)][P(t) - EP(t)])
p(P,r) Var P(t)

EP(t r)P(t) - E2P(t)
Var P(t)

where

(8)
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E = Expectation

V ar = Variance.

Refs. 1 and 2 relate m (T) and p(P,T) as follows:

m(T) = Vat -I- (1 + 2a)p(P,T) - a. (9)

Ref. 1 also points out that the appropriate value of "a" can be estimated
by measuring the probability density of P (t) and comparing the result
with the theoretical probability density of P (t). Thus, (9) indicates
that the Rayleigh process R (t,a) underlying the fading phenomenon can
also be defined from measurements of the normalized autocorrelation
function p(P,T) and the value of "a."

For purposes of computation we shall take Wb(f - f.) and m (T) as
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Fig. 2 - Po--(ub , ko , a) is the probability density of the duration of a fade of
the Rayleigh process below the normalized level ko . The autocorrelation function
of the Gaussian process involved in the definition of the Rayleigh process is m(T)
and the signal -to -clutter power ratio equals "a."
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Fig. 3 - Pi(ub , ko , a) is the probability density of the interval between fades
of the Rayleigh process below the normalized level ko . The autocorrelation func-
tion of the Gaussian process involved in the definition of the Rayleigh process is
m(r) and the signal -to -clutter power ratio equals "a."

follows:

and

1 r_c f .4)2] (10)lVb(f = 0.bv2-.7r exp
20-0

[ - (27rabT)21
m(T) = exp

2

This particular choice tends to characterize the radar clutter fluctua-
tions observed experimentally."" From (11) we see that it is convenient
to define normalized time as ub = 27rabr

For the experimenter it is convenient to normalize the threshold level
with respect to the average value, ER (t,a), of the Rayleigh process. We
shall consider three such normalized levels k.

1ko = 1,
7r
- , /- ( 12)ER(t,a)"V 27r

The expectation ER (t,a) was derived by Rice9 and is given by
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ER(t,a) = 1

2 2 '
1; -a) ( 13)

When a = 0 we have that R = Or 12) , 1, 1. These latter two values
of R were also considered by Rice' for the case a = 0.

Figs. 2 through 10 present the computed results for a = 0, 1, 4, and
ko = 1, A/Trr, 1/V27. The numerical evaluation of (T,R,a) and
U -,R,a) -Q (T,R,a) was carried out by using Simpson's rule. Integral
equations (1) and (2) were solved numerically by using the trapezoidal
rule. All results are plotted with respect to normalized time ub . The cor-
responding experimental results for ko = 1 and a = 0, 1, 4 were presented
in Ref. 4, and they agree well with the approximate theoretical results
presented in Figs. 2, 3, and 4.
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m(r) and the signal -to -clutter power ratio equals "a".
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Fig. 7 - Fo--(ub , ko , a) is the probability that the duration of a fade of the
Rayleigh process below the normalized level ko lasts longer than ub . Fi(ub , ko , a)
is the probability that the interval between fades of the Rayleigh process below
the normalized level ko lasts longer than ub 

For deep fades and large signal -to -clutter power ratio "a", one would
expect Po- (7,R,a) to approach a Rayleigh probability density. For as
"a" gets large the Rayleigh process R (t,a) tends to behave much like a
Gaussian process, see (3.6) of Rice,' and the durations of deep fades of
Gaussian processes are known to be characterized by a Rayleigh proba-
bility density!'" Figs. 8 and 10 show that this is, approximately, the
case when k,, = 1/V27r and a = 4. Thus, for ko 1/1/27,- and a 4 we

have the following approximate results:
2

Po- (T,R,a) =
2 El ro e x P [)14 ( (14)

and
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2

F0-(T,R,a) = -exp[_ T

4 E-) (15)

The value of Eo- appearing in (14) and (15) is given by (5) with
R = koER(t,a).

Equations (14) and (15) are useful approximations when ko is small
and "a" is large for an arbitrary normalized autocorrelation function
m (r) such that m''' (0+) = 0, although we have been treating the re-
strictive Gaussian autocorrelation function defined by (11). The condi-
tion m/// (0+) = 0 leads to Q-(0+,R,a) = 0, and thus the approximation
given by (14) is exact at T = 0+. As a partial check on this gener-
alization we also verified that (14) and (15) begin to be useful approxi-
mations when ko = 1/V27r, a = 4 for the normalized autocorrelation
functions
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Fig. 8 - Po-(ub , ko , a) is the probability density of the duration of a fade of
the Rayleigh process below the normalized level ko . The autocorrelation func-
tion of the Gaussian process involved in the definition of the Rayleigh process is
m(T) and the signal -to -clutter power ratio equals "a."
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and

M(T) =[1 (021 T I + (W32T) 21 exp (-c021T I). (17)

Equation (16) corresponds to an ideal bandpass power spectral density

Wb(1 - fo) given by

(2f,)-1 for fo - f < f.
TVb(f - fo) =

0 otherwise.
(18)

Equation (17) corresponds to a power spectral density 1171,(f - f.)
given by

where
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Fig. 9 - P, (ub , ko , a) is the probability density of the interval between fades
of the Rayleigh process below the normalized level ko . The autocorrelation func-
tion of the Gaussian process involved in the definition of the Rayleigh process is
m(T) and the signal -to -clutter power ratio equals "a".
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Fig. 10 - Fo-(ub , ko , a) is the probability that the duration of a fade of the
Rayleigh process below the normalized level ko lasts longer than ub . Fi(ub , ko , a)
is the probability that the interval between fades of the Rayleigh process below
the normalized level ko lasts longer than ub 

For a given m (T) with ra'" (0+) = 0 along with a > 4, ko = 1, the
duration of fades and the interval between fades of the Rayleigh process
R (t,a) behave as if they were generated at the mean value level of a
Gaussian process having a normalized autocorrelation function of m (T).
For example, compare Po- (ub , ko , 4) of Fig. 2 with the experimental
points plotted in Fig. 2 of Ref. 3. Also compare Pi (ub , ko , 4) of Fig. 3
with the experimental points plotted in Fig. 3 of Ref. 3.

IV. CONCLUSIONS

Assuming that the random process underlying a fading phenomenon
is a stationary Rayleigh process, one can compute useful theoretical
approximations for the probability functions which characterize the
duration of fades and the interval between fades. The corresponding
exact results are at present unknown.
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For deep fades and large signal -to -clutter power ratio the duration of
fades is characterized, approximately, by a Rayleigh probability density.

For large signal -to -clutter power ratio the duration of fades and the
interval between fades of the Rayleigh process below the mean value
level behave as if they were generated at the mean value level of a
certain Gaussian process.

The results of this paper apply to all fields of science and technology
for which a stationary Rayleigh process characterizes a fading phe-
nomenon.
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A Geometric Interpretation of Diagnostic
Data from a Digital Machine: Based on a
Study of the Morris, Illinois Electronic

Central Office

By J. B. KRUSKAL and R. E. HART
(Manuscript received June 7, 1966)

Using the diagnostic data collected for the Morris Central Control mal-
function dictionary, we devise a natural concept of "distances" between
malfunctions. Ten thousand malfunctions were placed as points in six-

dimensional space in such a way that the Euclidean interpoint distances
approximately equaled the diagnostic "distances". The remarkable fact that
this is possible has many implications.

By finding circuit characteristics common to a cluster of neighboring
malfunctions, we are able to associate these characteristics with the region
of the six -dimensional space which holds these malfunctions. By this means,
we characterize various regions of space according to functional troubles.
This suggests a technique for locating malfunctions and also suggests some
longer -range possibilities.
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I. INTRODUCTION

To identify a malfunction is always difficult. The great size, com-
plexity, and speed of modern digital machines render this difficulty
severe. An age-old method is to observe the symptoms and deduce their
cause. For larger machines, this is exceedingly impractical.

A familiar aid is the use of tests. The record of tests passed and tests
failed provides many more clues to the trouble. However, even the use

1299
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of tests does not avoid time consuming analysis by a highly trained
expert, which is slow and expensive.

One very successful and ingenious approach to alleviating this diffi-
culty (proposed by Werner Ulrich) is to make a large dictionary listing
many malfunctions with corresponding test results. For each of many
known malfunctions, we obtain a pattern of 0's and l's which indicate
the test results. For example:

Test Number 1 2 3 4 5 6 7 8

Result 0 0 1 0 1 1 0 0 .

A 0 indicates a correct result and a 1 an incorrect result. These patterns
are then arranged in some systematic order. Together with each pattern
we include identification of the malfunction. When we wish to find a
malfunction, we simply locate the pattern of test results in the diction-
ary. If a sufficiently comprehensive set of tests is used and a sufficiently
comprehensive set of known malfunctions is included, such a dictionary
can achieve a high degree of success. We note that to collect the test
patterns for the dictionary, the only practical procedure may be actually
to insert the malfunctions in a real model of the machine.

Not all malfunctions can be found by using such a dictionary. Some
conceivable malfunctions will not be listed in the dictionary, and other
malfunctions produce different test results on different occasions (in-
consistent results). However, it is not necessary to use a dictionary only
for exact pattern matching. If a malfunction produces different patterns
on different occasions, we may expect these different patterns to be
"similar" to each other and, indeed, this has been found to be true of the
data from the Morris, Illinois electronic central office. Broadly speaking,
we feel that patterns are similar if they differ in only a few places. We
call the number of places in which two patterns differ the "Hamming
distance" between the patterns. This is a rough measure of dissimilarity
between patterns.

However, some tests are more important than others. Therefore, we
have refined the idea of Hamming distance by weighting the various
tests and using weighted Hamming distance (WHD). We have found
that the WHD between two patterns is a good and meaningful measure
of dissimilarity between the malfunctions which yield those patterns.

"Distances" suggest a geometric model. Is it possible, for example,
to represent each malfunction by a point in a plane, in such a way that
the (ordinary Euclidean) distance between two malfunctions is approxi-
mately equal to the WHD between the corresponding patterns? If
true, it would be tremendously significant. For it would mean that the
patterns and hence the malfunctions somehow form a two-dimensional
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set, that each malfunction can be represented by two coordinates in a
way that contains the information in the patterns.

It would be equally significant if we could represent the malfunctions
by points, not in the two-dimensional plane, but rather in three-dimen-
sional space, or even by points in n -dimensional space, as long as n is
reasonably small.

In fact, the Morris data can be represented by such a geometric model.
For these data, six dimensions were found to be appropriate. In six
dimensions the typical deviation for our data between WHD and Eu-
clidean distance (ED) is reasonably small (about 7 percent).

We emphasize the fact that the small number of dimensions is not
something that would happen with just any data, nor could it happen
by chance. Random data might have fitted into 100 dimensions by
chance. But the smaller the number of dimensions needed, the more
significant the result. Six dimensions are remarkably few to represent
10,000 patterns of 657 bits each.

It should also be understood that the number 6 is approximate, and
that 5 or 7 are also reasonable values. Fewer dimensions can be used
at the cost of larger deviations between WHD and ED, while more
dimensions can be used to further reduce these deviations. However,
the value 6 was chosen by following the principle of parsimony, which
recommends that data be represented by as few numbers as are needed
to fit the data satisfactorily.

Not only the malfunctions have a geometrical interpretation (as
points in six -dimensional space): it appears that a test can be represented
as a "hyperplane" (that is, a flat cut of all space) that separates the
malfunctions that fail from the malfunctions that pass the test.

A convincing demonstration of the meaningfulness of the geometric
interpretation of malfunctions as points in space lies in the way mal-
functions with some common characteristic cluster together in space.
For example, malfunctions internal to a single register may cluster
together in a small region; malfunctions which often affect the logical
state of a single lead may cluster together; and malfunctions which
affect the common function of a group of related operations may cluster
together. In this paper, we discuss several such clusters of malfunctions
in the Morris data. It is not easy to predict in advance how the malfunc-
tions will cluster together, but by examining the geometric model we may
observe which characteristics describe clusters of malfunctions. It
should be obvious that since closeness in the geometric model is based
on WHD, malfunctions which cluster together are those which affect
the functioning of the machine in similar ways.

It should be noted that to predict how a particular malfunction affects
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the functioning of the machine is exceedingly difficult. Thus, while two
malfunctions in the same circuit might be thought to have similar effects,
and in many cases do, it also happens that two malfunctions which
might be expected to react similarly turn out to be quite different.
Detailed analysis of such cases reveals unexpected facts about how the
machine reacts to malfunctions. Such analysis has given us new insights
into the nature of malfunctions.

The WHD has a definite utility in locating a malfunction if we are
not able to locate it by exact pattern match in the dictionary. For given
the pattern of the unknown malfunction, and some pattern in the dic-
tionary, we may judge the likelihood of the unknown malfunction being
the dictionary malfunction by the WHD between the two patterns.
The smaller the WHD, the greater the likelihood of the two malfunctions
being the same.

The utility of the geometric model lies partly in the fact that it gives
a more compact (or parsimonious) way of representing much of the
information which is contained in the patterns and WHD's. For exam-
ple, to provide a way of locating those patterns which lie within some
small WHD of the pattern of the unknown fault is very difficult without
the geometric model. But with the geometric model we can simply cut
(six -dimensional) space into cells, and list the faults within each cell;
this serves the same purpose.

Another potential utility of the geometric model is the possibility
that it may reveal some underlying truths about malfunctions. Since
each malfunction can be represented by six coordinates, it is natural to
ask whether each malfunction is characterized by the degree to which
it possesses each of six hypothetical underlying characteristics. If we
could find such underlying characteristics, there would surely be many
benefits. However, we have not isolated such characteristics.

II. BACKGROUND

2.1 The Electronic Central Office at Morris, Illinois

All the data and illustrations in this paper are associated with the
electronic central office which was in commercial use for over a year at
Morris, Illinois, between 1960 and 1962. A duplicate system was built
and tested during the same period at Whippany, New Jersey, and the
dictionary data we shall describe were actually collected on the Whip-
pany laboratory model. We shall give an extremely brief description of
these systems. We hope that readers already familiar with the system
will excuse the omissions and extreme simplification necessary in such a



INTERPRETATION OF DIAGNOSTIC DATA 1303

brief account. For a good general description of the system, see Ref. 1.
For more detail, see Refs. 2 and 3. The final report (Ref. 4) gives a good
account of the results of the whole experiment.

The electronic central office (ECO) contains the central control (CC),
the flying spot store (FSS), the barrier grid store (BGS), as well as the
subscriber lines, trunk circuits, the switching network itself, and other
important units. Our attention is focused on the CC, which controls
all the other units (see Fig. 1). The CC is a stored program machine.
One memory device for it is the FSS, which provides semipermanent
memory for the stored program and for large tables of "translation"
information. The other memory device is the BGS, which provides
changeable memory in which the CC records calls in progress, numbers
being dialed, etc. The CC communicates directly with the switching
network.

To assure continuous operation of the central office, certain subsystems
are provided in duplicate. At any given moment, one unit of each dupli-
cate pair of units has "active" (controlling) status, while the other unit
has either "standby" (ready to take control) or "out -of -service" (mal-
functioning) status. The system is so organized that either unit of a
duplicate pair can be made active, independently of the status of the
other pairs. To insure that the standby units will be ready to assume
active status when needed, they are continuously exercised. Even in
the absence of any malfunction, the roles of active and standby are
exchanged periodically.

To prevent machine malfunctions from propagating large amounts
of wrong information in the changeable memory, malfunctions must be
detected quickly and the processing of telephone traffic interrupted
until the faulty unit is taken out of service and replaced by its standby.
To achieve very rapid detection of machine malfunctions, the outputs

FSS
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CC BGS

SUBSCRIBER
LINES
AND

TRUNKS

CENTRAL CONTROL

SCANNER

BARRIER
GRID STORE

SIGNAL
DISTRIBUTOR

SWITCHING NETWORK TRUNK
CIRCUITS

Fig. 1- Simplified block diagram of the electronic switching system at Morris,
Illinois.
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of the active and standby units of each duplicate pair are continually
compared. In the case of units other than the CC, it is the CC which
does the comparing and which takes the proper action. This includes
checking to determine whether the trouble symptoms will recur, and if
so which unit is responsible (for example, one particular BGS or one
particular FSS). The CC then performs diagnostic tests on the unit and
reports the results to the maintenance craftsman for corrective action.

The treatment of malfunctions occurring in a CC is necessarily differ-
ent. Since the CC is the "doctor" who decides which unit has the mal-
function, trouble in the CC leads to a situation in which the "doctor"
must diagnose himself. This is a complex situation and one that re-
quires special precautions and handling. Briefly, the procedure is this.
Under normal circumstances, the two CC's are performing identical
operations at the same time. Through a limited number of inter-
connections between them, each CC receives the results of certain opera-
tions in the other CC. These are compared, by means of matching cir-
cuits in each CC, with its own results. In the event of a disagreement,
the active CC proceeds to check itself by programmed tests. These same
tests are run in the standby CC at the same time. If the active CC de-
cides that it is functioning correctly, then the match circuits are inter-
rogated to determine whether the standby CC had the same test results.
Ordinarily, when the active CC decides it is sick, it will turn control over
to the other CC. To guard against a CC which is so sick that it cannot
do this, a timer is provided in each CC which must be reset periodically.
If it is not reset, it will turn control of the system over to the other CC
regardless of any CC operations that may be going on at the time.

Once the malfunctioning CC has "out of service" status, the active CC
requests corrective action by the maintenance craftsman on the system
teletypewriter. The active CC then proceeds (in the free intervals be-
tween taking care of normal telephone traffic) to perform a diagnostic
program which provides information to help the maintenance crafts-
man locate the trouble.

2.2 The Diagnostic Program for the Central Control

Each CC consists of several thousand small pluggable circuit cards.
Each card contains an assembly of diodes, transistors, resistors, etc.
to form a digital "building block". One card may contain up to 5 AND
gates, or 5 OR gates, or one flip-flop, or up to two amplifiers, etc. Prac-
tically every malfunction which occurs during normal use is due either
to failure of a component on a card, or to a bad connection between a
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card and its connector. Thus, the primary problem of maintenance is to
isolate a malfunction to the card involved.

To aid the maintenance craftsman in this very difficult task, the CC is
provided with a large diagnostic program containing nearly a thousand
tests. A typical test consists of a short sequence of operations (performed
in parallel by both CC's). The matching circuits are turned on only at
certain critical points during the sequence. Since the active CC has
previously been found to be good, it is the standard by which we test
the standby CC. Therefore, any (unintended) mismatch of information
between CC's is assumed to be due to a malfunction in the standby CC.
Any test whose result in the standby CC matches that of the active CC
is recorded as passed, otherwise it is recorded as failed. A 0 denotes a
test passed, and a 1 denotes a test failed.

The diagnostic tests are divided into eight logical phases (A through
H). Within each phase the tests are numbered (in octal) from 0 to a
maximum (in some phases) of 177. Phases D and H each require more
than 177 tests and therefore, each is divided into two physical phases.
The additional phases in D and H are denoted DP and HP (for D
Partial and H Partial).

The tests of the diagnosis were organized as much as possible so that
phase A tests the most basic equipment and phase B tests the next
most basic equipment. The remaining phases test the remainder of the
CC. In normal operation, test failures during phases A or B cause all
the remaining phases to be omitted. However, it should be realized that
many malfunctions in the basic equipment exercised by phases A and
B do not cause test failures during phases A and B. Also many mal-
functions outside the basic equipment do cause test failures during phases
A and B.

Although the test results were actually presented on the system tele-
typewriter in a quite different manner, it is best for theoretical purposes
to visualize the test results from a single pass of the diagnostic program
as a long row of 0's and l's. The first digit represents the result of the
first test in phase A; the remaining digits represent the rest of the phase
A tests, followed by the phase B tests, etc. In this paper, we shall some-
times refer to the results of a single run-through of the diagnostic pro-
gram as "the test pattern" or "the pattern of test results".

2.3 The Central Control Maintenance Dictionary

The dictionary described here was constructed under the supervision
of S. H. Tsiang, and was completed prior to our use of the data in it.
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The whole dictionary project is very well described by Tsiang and Ul-
rich (Ref. 5).

The large size and complexity' of the CC made it necessary to find a
better technique than direct reasoning for using the diagnostic test
results to locate the malfunctioning circuit card. It was decided to make
a dictionary which shows the actual test results for a large number of
possible malfunctions that may occur in the system during normal use.
The only practical method of compiling such a dictionary was actually
to insert the malfunctions in an operating machine and perform the
diagnostic tests.

The dictionary was prepared on the Whippany Laboratories model,
which was a duplicate of the system at Morris, Illinois. Approximately
50,000 malfunctions were inserted in the CC including such troubles as
a shorted diode, an open diode, an open resistor, a flip-flop permanently
set or reset, etc. These malfunctions were introduced into every card
in the CC.

For each malfunction introduced, the results of the diagnostic tests
together with the identification of the malfunction were punched on
paper tape by the system. This information, which represents the raw
data from which the dictionary was constructed, was transferred to a
magnetic tape and sorted on an IBM 704 computer.

The data that we have just described can be visualized as a large
matrix with about 50,000 rows and nearly 1,000 columns. Each row
corresponds to a malfunction from which the test pattern was obtained.
Each column corresponds to a particular diagnostic test. An entry of 0,
for example, indicates that the malfunction on that row passed the diag-
nostic test for that column, while an entry of 1 indicates the malfunction
failed for that test.

To facilitate looking up a particular pattern of test results, it is neces-
sary that the rows of the matrix be sorted into some systematic order.
Basically, the dictionary consists of the sorted matrix (each row repre-
sented in a condensed form) with the malfunction identification per-
taining to each row. In many cases the same test pattern appeared in
more than one row, that is, different malfunctions produced the same
test pattern. In such cases the test pattern was listed only once for all
the rows, but with all the corresponding malfunctions, so that each test
pattern appeared only once in the dictionary. The dictionary, listing
about 30,000 malfunctions, required 1300 pages.

The dictionary just described is a good measure of the effectiveness
of the diagnostic tests. The diagnostic program was designed with two
basic objectives: (i) to contain tests sensitive to virtually every mal-
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function that might occur spontaneously in the CC and (ii) to produce
distinct test failure patterns that identify each malfunction and dis-
tinguish it from all others. The data collected yielded the startling fact
that the diagnostic programs fell quite short of the first objective. Of
the 50,000 malfunctions inserted, approximately 20,000 of them resulted
in the all 0's test pattern (all tests passing).

There are a variety of causes for these undetected malfunctions. Some
are due to components which serve only a protective purpose, so that
their malfunction is observable only in the presence of the trouble being
protected against. Others were due to auxiliary equipment which was
installed but was neither used, tested, nor covered by the diagnostic
programs. Other undetected malfunctions in the CC could have been
detected with more diagnostic program or more hardware. No doubt
other causes operated as well.

However, we view the problem of undetected malfunctions as a
solvable problem which is outside our scope of interest. We presume
that in other digital machines to which our ideas might apply, this
problem will have been solved. We restrict our attention to the 30,000
detected malfunctions.

The second objective was met fairly satisfactorily (for the detected
malfunctions). The extent to which it was met is measured by how many
circuit cards are listed in the dictionary for each pattern. The average
number was less than 3, which is quite satisfactory but a few patterns
had hundreds of associated circuit cards, which is unfortunate.

2.4 An Evaluation of the CC Dictionary

The CC dictionary was intended to be used by finding in the dictionary
the exact test failure pattern obtained in the field. The dictionary entry
indicates the list of circuit packages to replace. When this works, it is
an easy method of locating malfunctions. Unfortunately, two facts
complicate this technique. Many malfunctions yield different test pat-
terns on different occasions. Other malfunctions, though always yielding
the same test pattern in the field, yield a pattern that does not appear
in the dictionary.

The major reason that test patterns differ from one test run to the
next is that the test runs start with the machine in different configura-
tions. Most notably, various flip-flops may have different states. Al-
though the test program attempts to place the machine in a uniform
initial state before each test sequence, the malfunction may prevent
this being done. One reason that field test patterns may consistently
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differ from the dictionary pattern are the intermachine differences,
both in electrical parameter values due to manufacturing variability
and in logic due to the inevitable program and hardware modification
required for dictionary construction.

After the dictionary was prepared, many informal experiments were
performed to test its efficiency. Much practical knowledge was gained
as to the detailed manner in which test results might differ from the
dictionary test results for the same malfunction. This information was
partly formalized by S. H. Tsiang (in an unpublished memorandum)
who developed "empirical rules" for use with the dictionary. When
the test pattern was found in the dictionary but replacement of the
listed circuit cards failed to correct the malfunction, or when the pattern
was not found in the dictionary at all, these rules were used to alter the
pattern to a likely candidate. Use of these rules significantly improved
the use of the dictionary.

One formal experiment to evaluate the CC dictionary was performed
on the Morris, Illinois model by R. N. Breed and described in an un-
published memorandum. Approximately 600 faults were selected for
this evaluation. Malfunctions of various types were chosen in propor-
tion to their frequency of occurrence in certain failure records, and so as
to represent all parts of the CC. However, malfunctions known to pro-
duce no test failures were avoided.

Of the 600 malfunctions, 30 were eliminated (for unstated reasons)
at the time the data was collected, 47 more were eliminated from the
summary figures in the memorandum because they "probably could
have been found by diagnosis of some unit other than the central con-
trol". These 47 malfunctions would have belonged to the last two cate-
gories below. The remaining 523 malfunctions were divided into cate-
gories as shown:

47 % findable with perfect match to dictionary results,
13 % findable using the empirical rules,
21 % not findable because all the tests were passed,
19 % not findable, even with the aid of the empirical rules.

The third category is of interest to logic circuit designees and diagnos-
tic programmers. Our interest is primarily with the fourth and second
categories. Our methods offer real possibilities for identifying the mal-
functions responsible for otherwise mysterious test patterns, and for
more easily identifying malfunctions which would otherwise require the
use of complex empirical rules.
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III. DATA

3.1 The Data Used in our Study

Of the 30,000 malfunctions with test patterns not all 0, about 10,000
malfunctions failed one or more tests in phase A and/or phase B. When
the dictionary was originally prepared, it was observed that malfunc-
tions of this sort, besides consistently failing tests in phase A and/or B,
generally failed a great many tests in the other phases, and did so in an
inconsistent way. For this reason the CC dictionary suppresses the test
results of the other phases for this group of test patterns.

As we wished to reduce the scope of our study (to cut down computa-
tion time and cut down the bulk of printed results), we removed these
10,000 malfunctions (failing phase A and/or B) from the data.

However, we were eager to reduce the bulk of the data still further.
We realized that for test patterns with few test failures, our methods
offer less potential advantage than for patterns with many failures. This
is true for several reasons. The direct deductive method tends to work
well for test patterns with few test failures. Furthermore, so very many
other malfunctions yield test patterns within a very small WHD of the
observed pattern that it may not be practical to use the dictionary for
nonexact in the way we shall discuss.

We found that the patterns with 3 or less test failures constituted
abOut half of the remaining 20,000 malfunctions. Certain of our calcula-
tions would have been distorted by 2800 malfunctions which all gave
exactly the same pattern of 3 test failures (namely, phase H tests 100,
101, and 102). (These malfunctions caused the standby CC to "lock
up", that is, stopped its master -clock; the tests are part of a special
set of tests comprising the "CC lockup diagnosis.") To avoid this dis-
tortion and to reduce the data to a reasonable quantity, it seemed natural
to restrict ourselves to patterns with 4 or more test failures.

Thus, we finally used a matrix with 10,937 rows (malfunctions). As
we have eliminated test failures in phases A and B, the only columns
with l's in them can be those for phases C through H. Of these, just
657 columns actually contained l's.

A few facts about this matrix may be of interest. Fig. 2 shows graphi-
cally the number of rows with exactly k l's in them, as a function of k.
The few rows with the greatest number of l's in them have, respectively,
more than 511, exactly 466, 441, 325, 310, 252, and 247 l's in them.
Fig. 3 shows the number of columns with k l's in them as a function of
k. The few columns with the most l's in them have, respectively, 4335,
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Fig. 2 - Number of malfunctions which fail exactly k tests, that is, the number
of rows of the matrix with exactly k l's. For larger k, the data have been grouped.

2978, 2711, 2653, 2383, 1933, and 1744 l's in them. The column with
4335 in it corresponds to test HP 61; thus, this test was failed by
about 40 percent of the malfunctions in the matrix.

3.2 The Test Weights

We now restrict attention to the data we used in our study. It consists
of a matrix with 10,937 rows and 657 columns, whose entries are 0 or 1.
In the introduction we referred to weights wi which we associated with
the diagnostic tests, or in other words, with the columns of the matrix.
These weights are all positive, and the largest possible value is 1.
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Before describing the meaning of these weights and the formulas
used to obtain them, we shall mention a few facts about the weights
actually obtained from the data. Just one weight is greater than 0.999.
There are 35 weights greater than 0.95. The weights in the interval
from 0.25 up to 0.95 are very sparse, while below 0.25 the weights are
densely but erratically distributed. A graph of the density of weights
versus w is shown in Fig. 4. The brief table below summarizes the same
information.

Dividing points 0.05 0.10 0.15 0.20 0.25 0.95
Number of weights 272 73 119 72 34 52 35

The smallest weight is 0.0097.
The weights are intended to reflect the extent to which the information

given by the entries in one column of the matrix is independent of the
information given by other columns. Thus, a column which does not
at all resemble any of the other columns would have a full weight of 1,
while a column which is almost the same as a great many other columns
would have a very small weight.

For example, suppose 10 columns are identical. Then they all contain
the same information, so it is natural to give each one a weight of 1/10
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Fig. 3 - The number of tests which fail exactly k malfunctions, that is, the
number of columns of the matrix with exactly k l's in them. Curve has been
smoothed by grouping 10 or 50 values of k.



1312 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1966

120

8tn0
w

Ou. 60

w

40
z
11

1-
,-7) 2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

w

Fig. 4 - The density of test weights as a function of weight w. The vertical
scale is the number of tests in an interval of 0.01 on the w axis In some cases, the
curve has been smoothed over longer intervals.

to reduce the importance of that information to its proper value. How-
ever, it is not enough to consider columns which are exactly identical;
in our data there are a great many columns which are almost the same
and which must be taken into account.

Suppose we have a way to measure how much alike two columns are.
In particular, suppose 1,1; is the amount of likeness or similarity be-
tween columns i and j. We suppose that Li; lies between 0 and 1, with
Li; = 1 if the two columns are identical, and Lit = 0 if the two columns
are not at all alike. Of course Li; = . Then a natural formula for the
weights is

1 1

wi = T T

Lit .1-42  + Li, 667 E Li; 

For example, if columns 1 through 10 are identical to each other but
do not resemble the other columns at all, then the weight of each of
these columns is 1/10. (In more detail, consider say, column 7. Then
Lryj = 1 for 10 values of j, and L7; = 0 for all other values of j, so the
denominator is 10.)

As another example, suppose there are just three columns (instead
of 657) and that the values of Li; are those given below:
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3

1 2 3

1 1.0 0.5 0.1 

i 2 0.5 1.0 0.7

3 0.1 0.7 1.0

Then

W1 =
1 - 1

1.6
- 0.625,

1.0 + 0.5 + 0.1

W2 =
1 - 1

2.2
- 0.455,

0.5 + 1.0 + 0.7

1 1
W8 -

1.8
- 0.555.0.1 + 0.7 + 1.0

How shall we measure the likeness of columns? One practical answer,
which we used, is the square of the correlation coefficient between the
columns. For readers who are not familiar with this widely used statisti-
cal quantity, we tell a little about it. The correlation coefficient itself
lies between -1 and +1. It is +1 for two identical columns, -1 for
two columns which are exact opposites, and 0 if the l's are arranged
as if they had been sprinkled randomly and independently in the two
columns. The correlation coefficient has intermediate values in inter-
mediate situations. To be very concrete, suppose the matrix has 12
rows (so each column has 12 entries). Suppose one column has three l's
and the other column has four l's. Then the correlation coefficient de-
pends on the number of rows in which both columns have l's at the
same time. The following table gives the actual values.

Number of l's in common 0 1 2 3

Correlation coefficient -0.408 0 +0.408 +0.816
Likeness value +0.167 0 +0.167 +0.667

The formula for the correlation coefficient which applies to the present
circumstances involves

N = the number of rows in the matrix,
ni = the number of Fs in column i,
ni = the number of l's in column j,

ni; = the number of l's in common to columns i and j.
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Then we have

correlation coefficient between columns i and j

Nn;; - not;=
V ni(N - ni)  A/ n AN -'70 '

The suitability of this way of measuring likeness is established by its
successful application to this data. However, we may justify it in part
by appealing to intuition and numerical experimentation.

The correlation coefficient is +1 if and only if the two columns are
identical. It is clearly appropriate that the likeness should be 1 in this
case.

The correlation coefficient is -1 if and only if two columns are com-
plementary, that is, if one column has l's precisely where the other col-
umn has 0's. In this case, we may say that the two columns carry the
same information even though their entries are opposite. For this situa-
tion means that one test fails just when the other passes. Clearly if we
know this, it is enough to perform just one of the tests; we can predict
the result of the other. Thus, it is reasonable to assign a likeness of +1
to this situation, as our likeness measure does.

If the l's in the two columns appear as if they are independently lo-
cated (in the statistical sense), so that knowledge of the entry in one
column has no predictive power at all for the entry in the other column,
then it is reasonable to assign likeness 0. This situation occurs if and only
if

nu _ ni n;
N KT N'

also if and only if the correlation coefficient is 0. Thus, we assign likeness
0 in this case.

This pins down the value of our likeness value for two extreme situa-
tions and one intermediate situation. If we are considering the correla-
tion coefficient as the basis for measuring likeness, this still leaves many
possibilities. For example, the likeness can be the absolute value of the
correlation coefficient, the square of the correlation coefficient, any
positive power of the absolute value of the correlation coefficient, to
mention only a few possibilities. We experimented with various possi-
bilities including the absolute value, the square and three functions of
the correlation coefficient whose graphs are made up of straight-line
segments.

Some tests are so individualistic that they surely deserve weights of
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almost 1. On the other hand, there is a large cluster of perhaps 100
tests (that is, columns) which are so nearly alike that at least the most
typical of them deserve weights as small as 0.01. As the absolute value
formula yielded weights ranging from about 0.1 to 0.01, it was clearly
inappropriate. The reason was equally clear; the effect of statistical
fluctuations on the many small likenesses is cumulative and noncancel-
ling and leads to unduly large denominators. Since there appears to be
no way to arrange for cancellation, it is desirable to reduce the effect
of small likenesses.

Two of the segmented -straight-line functions did this very success-
fully, and yielded weights ranging from virtually 1 to slightly under
0.01. Then Colin Mallows pointed out that the squared correlation
coefficient lies very neatly between these two functions. When tried,
the square yielded very similar weights, with the smallest one even a
trifle smaller.

IV. GEOMETRY

4.1 Weighted Hamming Distance

Ordinary Hamming distance between two test patterns (two rows
in the matrix) is just the number of places in which they differ, in other
words, the number of tests for which they have different results. To
calculate this, we accumulate 1 for each position in which the test pat-
terns differ.

Weighted Hamming distance is similar except that instead of ac-
cumulating l's we accumulate the weight associated with that position.
For example, if two test patterns differ only in the results of tests 3, 5,
and 17, then the WHD (weighted Hamming distance) between them
is given by

WHD = W3 -F W5 ± 11)17

We note that this a true distance in the mathematical sense of the
word. In particular, WHD satisfies the triangle inequality: the WHD
between patterns 1 and 2, plus the WHD between patterns 2 and 3, is
always greater than or equal to the WHD between patterns 1 and 3.

We measure the dissimilarity between malfunctions by the WHD
between their test patterns. If two malfunctions yield test patterns
between which the WHD is small, we consider the malfunctions similar,
but if the WHD is large we consider them dissimilar. With this in mind,
let us consider the intuitive meaning of the test weights. Suppose that
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tests 1 through 100 are all very much like each other; that is, these
tests generally fail together or pass together. This means that a test
pattern will generally fail almost all or pass almost all these tests: it
is unlikely that a test pattern will fail approximately half these tests.
Thus, in comparing the dissimilarity of two test patterns with regard
to this group of tests, the main information we get is whether they are
the same or opposite. If we used ordinary Hamming distance, then test
patterns which are opposite would have a distance of at least 100 just
from these tests alone. Yet "same" or "opposite" on this group of tests
may be no more significant than same or opposite on a single test which
is an "individualist". By down -weighting like tests and using WHD,
we prevent large groups of like tests from swamping the information
contained in tests which are very "individualistic".

Now it is true that for test patterns which are the same for most of the
tests in this large group, the few tests in the group which yield different
results may be very significant. We view this as fine-grain information,
however, in contrast to the broadbrush information contained in the
group as a whole. We do not know of any practical way to have the
WHD based on a single set of weights reflect both kinds of information.

Nevertheless, there is a way within our general scheme to make use
of this fine-grain information, though it is not an idea which we have
actually attempted. The technique is this. We would collect together
some group of test patterns in our matrix which are fairly similar to
each other; for example, we might arbitrarily pick some test pattern as
the "center", then form the group of all test patterns in the matrix which
are within some fixed WHD of the center. Presumably we would arrange
things so as to get a group of several hundred test patterns. Using this
group of test patterns we would have a new data matrix (actually a
submatrix of the original, with all the columns but only a selected set of
rows). Using this submatrix we would calculate new weights, using the
same formulas but applying them to this new smaller matrix. We could
call these "local" weights as they apply only to this one local group of
test patterns when compared with each other.

These local weights could differ very greatly from the original "global"
test weights. The global weight of the test could be high or low, inde-
pendently of the local weight. Furthermore, the local weights for this
local group of test patterns might be entirely different from the local
weights we would derive from some other local group of test patterns.

Using the local WHD (based on local weights) to measure dissimilarity
between test patterns in some group is probably a good way to make use
of the fine-grain information.
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4.2 The Geometric Model

Once a meaningful concept of distance between test patterns exists
(such as WHD), it is natural to ask whether these distances can be
realized in a geometric model. For example, can we represent each pat-
tern by a single point in the plane, in such a way that the ordinary
Euclidean distance (ED) between the points is equal to the WHD be-
tween the corresponding patterns?

First, we remark that there is nothing inherent in the concept of
distance which will force this to happen. Thus, if this happens it tells us
something about the data. It tells us that in some sense or other the test
patterns form a two-dimensional set. What this means is not clear.
But, that it means something important is indicated by the tremendous
information compression which is achieved.

To understand this, let us suppose that we have 10,000 test patterns.
Between these test patterns there are

(10,000)(9,999)/2 = 50,000,000

WHD's. If we can represent each test pattern in the plane, that requires
two coordinates per pattern, so that we require 20,000 numbers to
represent the patterns. Since the ED's are of course computable from
these 20,000 coordinates (by the usual formula learned in high school),
and since the ED's equal the WHD's, we have compressed the informa-
tion from 50,000,000 numbers into 20,000 numbers. In other words,
from the 20,000 numbers required to represent the patterns, we can
recover by simple arithmetic all the 50,000,000 WHD's.

Any model which achieves such compression is bound to be useful,
for it permits us to handle information in a much more concentrated
manner. Beyond its direct utility, however, any model which achieves
such compression is trying to tell us something about the data.

(The classic example of this are the 20 years worth of extremely ac-
curate astronomical observations made by Tycho Brahe in the sixteenth
century. Kepler found a model consisting of his three famous laws from
which it was possible to explain these observations. Basically, his
model represented each planet's motion by an ellipse. Thus, using his
model it was possible to explain all of Tycho's observations of one planet
from 12 numbers -6 for the planet's motion and 6 for the earth's
motion. It is clear that the enormous compression of information in
itself was useful in this situation. It is also clear that the model was
trying to say something, however, even if it took Newton to hear it.)

Without trying to compare ourselves to Kepler, we feel that the in-
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formation compression of our model is a striking phenomenon which
demands investigation, and must produce something of value.

We do not get a representation by points in the plane, nor by points
in three-dimensional space, but only by points in six -dimensional space.
We can represent each pattern by six coordinates in such a way that the
ED's are approximately equal to the WHD's. This applies to not quite
all the 10,937 patterns in our matrix - there were three exceptions that
did not fit. (These three exceptions probably result from malfunctions
which in fact cause A or B phase test failures, but were not excluded
from our data due to some recording failure which dropped the A and B
phase results.)

We notice first that the compression of information goes down as
the number of dimensions goes up. For 10,000 patterns represented in 6
dimensions, the same 50,000,000 WHD's are recoverable not from 20,000
coordinates but from 60,000 coordinates. The compression is slightly
less.

We notice second that the value of the compression depends on how
good the approximation is. The more accurately the ED's represent the
WHD's, the more valuable the compression is. In our case the typical
difference between matching ED and WHD is about 7 percent. More
exactly,

VE (ED - WHD)2/E WHD2

is in the neighborhood of 7 percent. Though not striking, it seems en-
tirely adequate when matched with the compression we have.

A scatter diagram of WHD's against ED's is shown in Fig. 5. Each
point displays the WHD and ED between one pair of malfunctions.
The figure contains almost 5000 points, corresponding to all possible
pairs from among the list of 100 malfunctions referred to in the next
section, and is impressive testimony to how well the ED's match the
WHD's.

4.3 How to Compute the Geometric Model

In this section, we describe the necessary computation very briefly,
just enough to take the mystery out of it. Suppose then that we wish to
place 10,000 points in some space - we will use the plane to make it
easier to visualize, though exactly the same procedure works in three-
dimensional space or six -dimensional space. The information we have
consists of the approximately 50,000,000 WHD's between these points.

We start by placing the 10,000 points in the plane in any arbitrary
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SCATTER DIAGRAM
WITH 4950 POINTS.
EACH ONE REPRESENTS
A PAIR OF MALFUNCTIONS.
LIST OF 100 MALFUNCTIONS.
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Fig. 5 - Scatter diagram of weighted Hamming distance (WHD) against
Euclidean distance (ED). Each point represents one pair of malfunctions. All
pairs from among 100 malfunctions are displayed.

configuration, and pinning them down so that they cannot slide about.
Next, we buy 50,000,000 ideal springs. These springs are massless and
all have the same restoring force ratio (Young's modulus) - let us
suppose the common value is 1. However, the springs are all of different
lengths. In fact, each spring has a length equal to one of the WHD's.
Now we fasten each spring between the two appropriate points. Thus,
between points i and j we attach the spring whose unstretched length
is the WHD between patterns i and j. Of course it is necessary to stretch
or compress the springs, and we do so as required. Naturally these ideal
springs do not buckle when compressed, and furthermore several of these
springs can occupy the same space at the same time, so that we do not
need to worry about how they cross each other.

After all the springs are attached, we suddenly pull out all 10,000
pins, permitting the points to slide about (but only on the plane - we
do not permit them to fly up in the third dimension). If there is some
dissipative force, such as air resistance or friction, the springs and points
will eventually conic to rest. By the laws of physics, they will come to
rest at a minimum energy configuration, that is, a configuration at which
the potential energy stored in the springs is a minimum.
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What can we say about this configuration? The potential energy in
each spring, according to our assumptions, is (ED - WHD)2. The total
energy is the sum of all these. Thus, the final resting configuration is one
which minimizes this sum, or almost the same which minimizes

VE (ED - WHD)2/E WHD2.

Our computation is basically an imitation of the spring motion. We
also start with an arbitrary configuration. Then we figure the net force
on each point exerted by the springs, and move all the points where
they would be a short time later. We again figure the net forces, and
again move the points. After enough repetitions, the net forces reach 0,
and we know that we have reached the minimum energy configuration.

This is a good intuitive description of what we do, but we would not
like to leave the impression that our computation is in any way unrigor-
ous. In the language of numerical computation, we are seeking to mini-
mize the expression given above. To do so, we perform an iterative
process known as the method of gradients (or the method of steepest
descent). Thus, we start with an arbitrary configuration, and compute
the (negative) gradient, which is just the same thing in this case as the
net forces on all the points. We move a little in the direction of the
(negative) gradient - that is, just the motion along the force vectors.
Then we again calculate the gradient and again move. When the gradient
is zero, we have reached a minimum.

Of course, we cannot really perform this computation as described
on all 10,000 points at once. To perform one single movement would
require nearly 30 hours (on the IBM 7090), even if we could manage to
keep all the numbers required in the internal memory.

To get around this difficulty we hoisted ourselves by our own boot
straps. We started with 33 points, and performed the computation
exactly as described. Then we "pinned down" these 33 points, and in-
troduced 67 more points, and 33 X 67 "springs." During this computa-
tion only the 67 new points were allowed to move. Thus, we had 100
points located, though not quite perfectly. We then performed the origi-
nal computation on these 100 points, starting with the configuration we
had already achieved. This just moved the 100 points a little - it
was a "polishing" operation. We then picked a set of 20 from these 100
points, in such a way that these 20 are well spaced over the region of
space covered by the 100 points, with no pair of the 20 points too close
together. We "pinned down" these 20 points very firmly, and intro-
duced 20 X 10,000 "springs". During this computation only the 10,000
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new points were allowed to move. This located all 10,000 points, though
not quite perfectly. We simply tolerate this imperfection (though there
are practical ways to reduce it if it should seem intolerable).

The reason this computational scheme is practical is that when we pin
down the 20 points and introduce 10,000 new points, we can handle them
one by one. Thus, at any time we only need to deal with 20 fixed points,
one movable point, and 20 springs from the movable point to the fixed
points. After the one movable point comes to rest, we remove it before
introducing the next.

4.4 Why Six Dimensions?

As we have noted, we do not achieve perfect equality between the
ED's and WHD's. The typical difference is about 7 percent. Obviously
in seven dimensions we can reduce this figure while in five dimensions
it would be larger. The more dimensions, the better we can make the
ED's match the WHD's.

It would be possible to draw a curve of the typical error versus the
dimension. (We would put dimension on the horizontal scale and error
on the vertical scale.) We would then get a descending curve. On this
basis, the more dimensions the better. On the other hand, from the point
of view of information compression, the more dimensions the worse.
Thus, we wish to strike a balance.

The principle of parsimony advocates obtaining the highest compres-
sion possible while retaining "satisfactory fit". In other words, use as
few dimensions as possible with the typical error satisfactorily small.

Actually, we did not draw such a curve with the complete data. We
did draw such a curve, however, with a small sample of the data (using
a similar but more complicated model than the one we have described).
For this sample, we computed the typical error for 2, 4, 6, and 8 dimen-
sions. The typical error in 4 dimensions seemed too large, while in 6
dimensions it was tolerable. Going to 8 dimensions produced little reduc-
tion. Thus, we decided to use 6 dimensions.

Another reason for using 6 dimensions was the fact that when W.
Thomis used a different scheme for coordinatizing faults, he needed 6
coordinates, which seemed to point to 6 dimensionality also. It is clear
from this discussion, however, that 5 or 7 dimensions would also be
satisfactory, but 4 or 8 would probably not be. Though it is difficult to
say which is best, we see that 6 dimensions represents a reasonable com-
promise value for these data.
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4.5 Tests and Hyperplanes

The geometric model may have considerably more meaning than we
have indicated so far. It may be possible to represent tests as well as
malfunctions. We do not represent tests by points, however, but by
"hyperplanes".

In general, a hyperplane is an infinite flat cut which divides space into
two parts. In three-dimensional space a hyperplane is an ordinary flat
plane.

In two-dimensional space, that is, in the plane, a hyperplane is a
straight line. In one-dimensional space, that is, in the line, a hyperplane
consists of a single point. In n -dimensional space, a hyperplane is an
(n - 1) -dimensional flat subspace. (Hyperspace is an old-fashioned
name for a higher dimensional space, and the hyperplane is the analogue
in these spaces of the plane in three dimensions.)

In the following geometric discussion it would be well to have a mental
picture of either two or three-dimensional space. Each hyperplane is
then visualized as a line or a plane.

Thus, suppose we have space (actually six dimensional but visualized
as two or three-dimensional). In it are 10,000 points representing mal-
functions. Now pick some particular test. Every malfunction which fails
this test red; there are relatively few of them. Every malfunc-
tion which passes this test we color black; these are the majority of
malfunctions. How are the red points situated? Are they scattered among
the black ones?

There is reason to believe that in most cases the red points and the
black points may be separated by a hyperplane. That is, the red points
and the black points are not all mixed up. If space is two-dimensional,
this means that a straight line can be drawn with the red points on one
side and the black points on the other. If space is three dimensional,
then a plane exists with the red points all on one side and the black all
on the other.

In a sample from the Morris data involving 27 malfunctions and about
200 tests placed in 6 dimensions, we found this to be true. In some cases,
the hyperplane did not quite perfectly separate the two kinds of points;
a few points would be slightly on the wrong side, but the amount by
which the points were on the wrong side was extremely small.

We believe that most of the tests would be representable as hyper -
planes in the main body of data analyzed. If a few tests are not represent-
able, that would probably say something interesting about these tests.
Among other things, it might suggest reducing their weight.
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If we suppose that the tests can, in fact, be represented by hyperplanes,
then we can calculate the information compression of the model in a
different way. The original data consists of about

10,000 X 650 6,500,000

bits. To represent both the malfunctions and the tests in 6 dimensions
requires about

(10,000 + 650) X 6 = 64,000

numbers. From these numbers we can reconstruct the original data
(though not perfectly), for to find whether a particular bit is 0 or 1 we
merely need to check which side of some hyperplane some point lies on.
The imperfections result from the fact that the hyperplanes from some
tests do not perfectly separate the malfunctions which pass from those
which fail.

From this viewpoint, the information compression consists of repre-
senting 6,500,000 bits by 64,000 numbers. This viewpoint probably
provides a more meaningful measure than the simpler one presented
before.

4.6 Utility of the Geometric Model

There are several kinds of utility for the geometric model. One kind
is theoretical and long range. By examining the data in the model, we
hope to learn something about the structure of the data. It is basic
procedure in data analysis to look at the data with one's common sense
on the alert. Where the data can be represented in compact form, this is
much more useful.

Another utility of the geometric model is very immediate. To have the
malfunctions represented by coordinates simplifies the process of finding
nearby malfunctions. To illustrate this most clearly, let us suppose for
the moment that the malfunctions could be represented in two dimen-
sions instead of six. Imagine the malfunctions placed on a "map".
This would resemble a photograph of the starry night -sky. Now suppose
a new malfunction is to be identified. We would calculate its coordinates,
plot its position on the map, and look for the nearest few points. Suppose
on the other hand that we wished to find the nearest few points without
the aid of the representation in two dimensions. In principle this is easy
enough. It is only necessary to run through every malfunction in the
dictionary one by one, and compute its WHD from the unknown mal-
function, and finally pick out the smallest few WHD's. Computationally,
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however, this is very much more difficult than use of the map. We see
from this that the map very much simplifies the computation necessary
to pick out the nearest few malfunctions.

Unfortunately we cannot use the map in six dimensions. Other tech-
niques relying on the coordinates, however, are available. For example,
we can cut space up into small cells, and list the malfunctions which
occur in each cell. Then to find the nearest malfunctions to an unknown
one, we look in the same cell and the neighboring cells.

We may summarize this value of the geometric model as reducing the
computation required to select nearby malfunctions.

V. CLUSTERS

5.1 The Region Containing all Malfunctions

It will be helpful to know something about the "galaxy" of malfunc-
tions, that is, the region of 6 -dimensional space in which the 10,937
malfunctions lie. The "healthy machine" (no malfunction, or a malfunc-
tion which yields the test pattern of no failures) corresponds to a point
with coordinates approximately

1.0, 0.0, 0.7, 0.1, -0.8, 1.3.

Rounded off to the nearest integer, these are

1 0 1 0 -1 1.

This appears to be fairly near the edge of the "galaxy". The center of
the galaxy is approximately at

2 0 2 0 -1 1.

(By center, we mean the center of gravity, or average position.) If we
exclude seven outlying malfunctions from consideration, then the ex-
treme values of each coordinate are

minima -3 -9 -4 -8 -8 -4;
maxima 11 5 10 9 5 8.

Thus, the range of each coordinate is roughly 14. Of course, the mal-
functions are not at all evenly scattered. A tremendously heavy con-
centration exists near the "healthy machine". Other dense spots also
exist.

To further study the distribution of the malfunctions in six -dimen-
sional space, we split space up into cells of uniform size and shape. (We
avoided cubic cells because in six dimensions the corners of the cube
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"stick out" rather far. Instead, we used the so-called "Voronoi regions"
associated with the "body -centered cubic lattice". Each cell can be
thought of as a six -dimensional cube with the corners chopped off.)
There are 417 cells which contain malfunctions. Thus, the average "pop-
ulated" cell contains about 24 malfunctions. The cell containing the
healthy machine, however, contains 1883 malfunctions. Altogether three
cells contain more than a 1000 malfunctions each, while 162 cells contain
only a single malfunction each. The median number of malfunctions per
populated cell is 2.

The Euclidean distance of a malfunction from the healthy machine is
a measure of how severe the malfunction is. It is interesting to compare
this measure with the more primitive measure consisting simply of the
number of tests failed. In Fig. 6 there is a little circle for each cell.
The horizontal coordinate is the Euclidean distance of the cell center
from the healthy machine. The vertical coordinate is the average number
of tests failed for the malfunctions in the cell. The dense region displays
a definite relationship, even though the great scatter shows that it is a
loose one.

5.2 Clusters of Malfunctions

Suppose you had a map of a city, and a list of the people who live
there, together with various census information - address, income, na-
tional origin, age, education, etc. Suppose you wished to understand
the social structure of the city. One obvious approach would be to
identify different neighborhoods. You might find that one neighborhood
had mostly high income residents, another might contain people mostly
of one national origin, near a university you might find many people
with higher education, and so forth. You would be seeking to identify
clusters of people who live near each other and who share some common
characteristic.

We face exactly this situation. We have a six -dimensional "map",
and we have a list of malfunctions. About each malfunction we know
whether it is a diode, amplifier, or flip-flop trouble, etc. Also, we know
the specific nature of the trouble: what circuit it is in, how it operates
there, and so forth. It is natural to look for clusters of malfunctions
which are near each other in space (that is, which have similar test
patterns) and which share some circuit characteristic.

One reason for seeking clusters of malfunctions is to learn how mal-
functions affect the operation of the system. We may find that apparently
similar malfunctions (for example, flip-flops in a single register which
are stuck in the 1 position) do not form a cluster, that they produce
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very different test patterns. When we inquire into why this happens,
we learn something about the nature of the system (and of the diagnostic
test program). On the other hand, we may find that apparently rather
different malfunctions produce very similar results. For example, a
flip-flop stuck in the 1 position may yield very much the same test pat-
tern that the same flip-flop stuck in the 0 position does (or it may not
- we have observed both situations frequently). If these two malfunc-
tions are near each other, then we learn that the significant aspect of
these malfunctions is merely that this particular flip-flop is out of order,
and that the precise nature of its failure is not important.
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Of course, whether a malfunction is in a diode or in a resistor (say)
has no direct bearing on its position in space, because its position results
solely from the diagnostic test data, which, in turn, reflect its effect
on the overall operation of the machine.

A cluster generally occupies a region of space without sharp bound-
aries. The malfunctions of the cluster are heavily concentrated at the
center of the region, more lightly spread further out, and may sprinkle
themselves out to a considerable distance. Thus, the boundaries of the
region cannot be precisely located. It often makes sense to talk about
the center of the cluster, however, which means the point of high con-
centration.

In a city, different clusters of people may overlap. For this reason,
one neighborhood may contain, say, two nationality groups together
with a sprinkling of artists. In the same way, different clusters of mal-
functions often overlap, so the one small region may contain a mixture
of malfunctions from several clusters. Occasionally, a cluster may totally
dominate the region it occupies, so that practically every malfunction
in its region belongs to it.

In the most common case, when clusters overlap, there should be some
explainable reason. We discuss some cases of this sort.

Sometimes a very narrowly defined cluster may be a subcluster to a
more broadly defined one. For example, we might have a small cluster
of malfunctions whose common circuit characteristic is that they hold
a particular wire down to a low voltage (prevent the lead from carrying
the digit 1) under certain logical conditions (not necessarily identical
among the malfunctions of the cluster). If this wire is one of a related
group of wires, we may be dealing with a subcluster of a larger cluster
of similar malfunctions involving any wire in the group.

5.3 How Clusters are Found

We wish to emphasize that clusters are not to be found by following
preconceived notions as to which malfunctions resemble which other
malfunctions. Instead one must try to look at the data with an open
mind, or listen to what the data is trying to say.

Concretely, the procedure used was to examine a small region of
space which contains not too many malfunctions. (When the data was
still unfamiliar, we chose to examine regions with only 5 or 10 malfunc-
tions, though later when our procedures improved we could handle many
more.) We analyzed in detail the effects on the circuitry of every mal-
function in this region. We then asked ourselves what common element
there was to all or most of the malfunctions involved. If we found what
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appeared to be a common element, we then traced out by means of the
circuit diagrams all of the malfunctions which shared this common ele-
ment, and noted their locations. If we found these to lie in a single com-
pact region, we considered that we had indeed identified a cluster of
malfunctions. Of course the region involved would include the smaller
region from which we started. On the other hand, if we found the mal-
functions with these characteristics to lie in several distinct regions,
only one of which contained the original region, we knew that the mal-
functions formed not one but several clusters. In this case, it was neces-
sary to ask what characteristics differentiated the malfunctions in differ-
ent regions.

Having identified a cluster as above, we did not always rest content
with its description. We examined other malfunctions which lie in its
region and asked whether a broader definition of the common charac-
teristics would include some of these (without including malfunctions
in other regions). Thus, by a process of referring back and forth between
spatial locations and circuit effects, we arrived at brief meaningful de-
scriptions for clusters.

5.4 The Clusters We Found

We have identified and described 23 clusters. It would require too
much space to discuss them all, so we just illustrate our results briefly
by a few examples. (Although specific circuits are named to avoid
vagueness, readers unacquainted with the circuits of the CC should have
no difficulty following the discussion.) A few more clusters are described
in the appendix to illustrate some other aspects.

The 23 clusters each contain from 6 up to about 350 malfunctions. The
median number of malfunctions is 65, and the quartiles are 27 and 220.

One cluster of 58 malfunctions is associated with two intertwined
circuits which are called "Add 1 C" and "Add 1 D". (These circuits are
used to add 1 to the C and D addresses in an instruction.) In Fig. 7 we
show this cluster geometrically. As coordinates 3 and 6 vary most within
this particular cluster, we use them to display the 57 points.

In six dimensions, the center of this cluster is approximately at (14,
- 1, 2, 2, -1, 2). Extracting coordinates 3 and 6, we see that the center
of the displayed set of points should be at (2, 2), which indeed it is. In
the figure, we see that the points lie along a straight line of slope about
t. (Experienced statisticians will cover up the 3 or 4 most deviant points
to strengthen the visual impression, knowing that this aids the eye in
forming a more valid impression of the goodness of fit. This is because
the eye weights isolated points more heavily than points in a dense re-
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gion, whereas equal weight should be attached to all points.) In fact,
in six dimensions, the points lie more or less along a straight line. While
we do not know the significance of this, it tends to indicate that the
cluster has some internal structure.

The clusters are generally associated with "actions" rather than with
circuits. By this we mean that the malfunctions in a cluster are often
spread over many circuits which are considered as quite separate func-
tional components by the circuit designers. The malfunctions in the
cluster, however, always have their major disruptive effect on what
circuit designers would consider as a specific action. The cluster above
is unusual in this respect because it can be interpreted either way. The
following examples are more typical.

One action consists of reading one or two bits from the BGS (outside
the CC) and placing them in one or two flip-flops of the access register
(in the CC). A cluster of about 230 malfunctions is associated with this
action. The most typical malfunctions in this cluster cause the bits to be
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placed in extra flip-flops of the register, or to be placed in the wrong
flip-flops, or not to be placed in any flip-flops at all, under various condi-
tions. The malfunctions in this cluster are often in one circuit (the CD
memory), but occur in several other circuits as well.

Another action consists of reading one or two bits from the BGS
and making a decision which depends on their values. A different cluster
of about 220 malfunctions is associated with this action. The malfunc-
tions in this cluster are scattered over many circuits and are of diverse
types. Within this cluster we could pick out three subclusters, associated
with much more specific actions. One such action consists of reading a 0
from the physical BGS tube numbered 0; the associated cluster has about
33 malfunctions. Another action consists of placing a bit from the BGS
into a flip-flop (in the CC) called BGO, which holds it temporarily;
the associated cluster has about 27 malfunctions. Another action con-
sists of pulsing a lead called D06 from the D translator; the associated
cluster has about 23 malfunctions. (The reason that this subcluster
belongs in this cluster is too complex to explain here.)

VI. BY-PRODUCTS

6.1 The Main Reason for Inconsistent Diagnostic Patterns

During the cluster analysis we discovered several interesting by-
products. The most significant one is the main reason for inconsistent
diagnostic results.

It was discovered very early by those making the dictionary that the
same malfunction could produce quite different diagnostic results on
different occasions, that is, the diagnostic results are inconsistent from
one occasion to another. There is great variability among malfunctions
in this respect. Some are very badly inconsistent, and were never ob-
served to produce precisely the same diagnostic pattern twice. Other
malfunctions are very stable, and are never known to produce any in-
consistencies at all. Also, there is great variability among the diagnostic
tests. Some participate in many inconsistencies, others in none.

There has been much speculation as to the cause of these incon-
sistencies, and many possible explanations have been offered. However,
it has been difficult to decide which explanations actually are correct.

We analyzed large numbers of recorded inconsistencies in detail.
We believe that we have established the dominant reason for the actual
observed inconsistencies. It is the differences in the state of the CC at
the time the diagnostic test is performed. One source of such differences
is externally controlled flip-flops which signal the state of external
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circuits (for example, whether the ringing signal is on or off). Still
another source consists of flip-flops which the CC attempts to initialize
to a certain state before diagnosis but which are not actually initialized
due to the malfunction. Since diagnosis is interspersed with the normal
processing of telephone traffic, failure to initialize a flip-flop means that
its value at the start of the diagnostic sequence will vary in an unpredict-
able manner from one diagnostic run-through to another.

During construction of the dictionary, the CC had no telephone traffic
to process. Moreover, the dictionary making program was present. These
two factors, operating through the sources of inconsistency just men-
tioned, caused some fairly regular differences between the dictionary
patterns and the field test patterns. For example, during dictionary
construction many externally controlled flip-flops did not ever change
state because the corresponding circuits were not used.

These observations do not solve the program of how to handle in-
consistent diagnostic patterns, but they do perhaps provide a framework
within which it is easier to attack the problem.

6.2 Three Incidental Discoveries

We have suggested that browsing through the dictionary data can
reveal unexpected conclusions, if the browsing is facilitated by methods
which permit this enormous body of data to be examined incisively.
Our geometric model is one such method. We briefly mention three
easily describable discoveries by way of example.

One incidental discovery was that the relay point which simulated a
particular shorted diode in a particular AND gate (malfunction 24 in
package F52618) developed a high resistance during much of the time
that the dictionary data was being taken. Thus, the malfunction closely
resembled an open diode, rather than a closed diode.

A second discovery was an error in the test program by which the data
was developed. In particular, the three instructions which constitute
test HP 1 1 were misarranged.

A third discovery was that one of the (hardware) malfunction simula-
tors stepped through the malfunctions in the wrong order. This particu-
lar simulator could be substituted for any one of the current -supplying
OR gate cards. It had the capability of acting as a properly functioning
card, an unplugged card, or a card with either a shorted diode, an open
diode, or an open resistor on any one input lead.

For example, for card type F52626, which consists of 3 two -input gates
and has 6 input leads, Table I shows both the intended order and the
actual order in which the 19 malfunctions were stepped through.
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TABLE I

Input
lead

Nature of malfunction
Should have been

malfunction number
But was actually

malfunction number

unplugged card 1 1

shorted diode 2 4
1 open diode 3 2 or 3

open resistor 4 2 or 3

shorted diode 5 6

2 open diode 6 5 or 7

open resistor 7 5 or 7

shorted diode 8 10

3 open diode 9 8 or 9
open resistor 10 8 or 9

shorted diode 11 14

4 open diode 12 11 or 12

open resistor 13 11 or 12

shorted diode 14 18

5 open diode 15 13 or 15

open resistor 16 13 or 15

shorted diode 17 19

6 open diode 18 16 or 17

open resistor 19 16 or 17

6.3 "Forward" and "Backward" Acting Malfunctions

It seems worthwhile here to emphasize the important difference be-
tween "forward" and "backward" acting malfunctions. While this
distinction is not original with us, its importance was made abundantly
clear by the great complexity of test results for backward acting mal-
functions versus the relative simplicity for forward acting malfunctions.

Suppose information flows between circuits A, B, C, and X as shown:

A -÷ /\ c

X -- B.

Suppose circuit X has a malfunction. If this malfunction causes B to
misoperate, we say that the malfunction acts "forward"; if it causes A
or C to misoperate, we say that it acts "backward". For example, in
the Morris CC circuitry, an open diode in an AND gate was forward -
acting, as it only altered the output of the AND gate. However, a shorted
diode in an AND gate was often backward -acting (as well as forward -
acting) depending on the circuit configuration, as it could prevent the
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input lead voltage from rising, thereby preventing other branches of the
input lead from performing their intended functions.

It hardly seems possible to design a circuit which avoids forward -
acting malfunctions. For if the information which flows along normal
paths is wrong, the recipient circuit cannot be expected to act as in-
tended.

On the other hand, one might hope to build a circuit in which back-
ward -acting malfunctions are kept to a minimum. (Though, of course,
this feature might have to be balanced against other desirable features.)
Avoidance of backward -acting malfunctions would surely simplify the
diagnostic problem greatly, not only during normal maintenance, but
also during the process of debugging the first model of the machine.

VII. CONCLUSIONS

We list several conclusions which are surely true for the data described
in this paper, and which might well hold for similar diagnostic data from
other digital machines.

(i) If different diagnostic tests are weighted suitably, then the
weighted Hamming distance between test patterns is a meaningful
measure of dissimilarity between malfunctions.

(ii) It is possible to represent the malfunctions geometrically as
points in a space of low dimensions in such a way that the Euclidean
distances between the points approximate the weighted Hamming
distances between the corresponding patterns.

(iii) There may also be a geometric representation of the diagnostic
tests as hyperplanes (flat cuts) in the same low dimensional space, such
that each hyperplane separates most of the malfunctions which fail
from the malfunctions which pass the corresponding test.

(iv) Representation of diagnostic patterns as points in low dimen-
sional space offers immediate possibilities as a tool for locating mal-
functions.

(v) This representation and the concurrent representation of tests
as hyperplanes offer longer range possibilities for selecting good diag-
nostic tests, for eliminating redundant or useless tests, for improving
diagnostic procedures, and for generally studying the relationship of
malfunctions to diagnostic tests. The possible value of these representa-
tions results both from the data compression they yield and from their
possible validity as models of nature.

(vi) Studying the diagnostic results in detail, which is made much
easier by the techniques discussed in this paper, can reveal weaknesses
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in the diagnostic programs and in the malfunction -simulation hardware.
Such study also leads to insight and understanding which is not easily
acquired by other means.

APPENDIX

A.1 "Repeat Order" Cluster

There is a special circuit for repeating certain orders up to a maximum
of 32 times, with the address in the order being incremented by 1 each
time. In some cases, a second part of the instruction which specifies
a flip-flop in one of the access registers is also incremented by 1 each
time. The major use of this repeat facility is in writing or reading a whole
word between the BGS (which has single bit readout) and an access
register.

One cluster consists of about 200 malfunctions in the repeat counter,
which counts the repetitions. Stuck flip-flops in the counter, bad carries,
and bad input are typical.

The center of gravity of this cluster is about at

2, -1, 21, 1, -1, 1.

As this center is quite close to the center of the first cluster in Section
5.4, a great deal of overlapping might be expected. On examination
this turns out to be correct.

The intimate connection between these two clusters of malfunctions
is natural because both circuits involved are used only during repeat
orders. In fact, it might be more natural to treat the two clusters as a
single cluster of malfunctions whose common element is that they disturb
the functioning of repeat orders.

A.2 "Zero Flip -Flop Reading" Cluster

There are about 80 "miscellaneous flip-flops" which can be explicitly
read by the "read flip-flop" order. This cluster consists of 311 malfunc-
tions whose common characteristic is that when any flip-flop whose
value is 0 is read in this way, the answer is frequently 1.

The "read flip-flop" order operates through a large "flip-flop reading"
circuit which is shown in Fig. 8. The action of this circuit is to transfer
the value of the selected miscellaneous flip-flop into a control flip-flop
known as FF, and to use the value from there. There are about 230
so-called "isolation" diodes through which the various miscellaneous
flip-flop values are funnelled into FF. The circuit is so arranged that
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open -circuiting any one of these diodes causes trouble when reading a
0 value from any miscellaneous flip-flop (though a 1 value is read
correctly). For half these diodes, an open circuit causes the value read
to be the value left in FF from before. For the other half of these diodes,
an open circuit causes both the "set" and "reset" leads of FF to be
pulsed simultaneously; we do not know what effect this has, but we
believe that it usually leaves FF unchanged.

Besides open -circuited isolation diodes, removal of a package which
contains several of these diodes, or removal of a gate package which
feeds into these diodes, has the effect of causing a 0 value always to be
read as a 1. Malfunctions of this sort also belong to this cluster.

There are a variety of other malfunctions which belong to this cluster.
For example, there is an amplifier which feeds the "set" input to FF
during the "read flip-flop" operation. If its output is stuck in the high
voltage state, or if it is removed (which has almost identical circuit
results), or if the diode through which it feeds is open -circuited, we
should and do obtain malfunctions in the cluster. If the amplifier which
feeds the "reset" input to FF during "read flip-flop" operation is stuck
at low voltage output, we obtain a malfunction in the cluster. If the
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gating lead (called RFFT), which gates the "set" and "reset" impulses
into FF during "read flip-flop" operation, is prevented from operating
by a short-circuited diode just on those occasions when a 0 value is
being read, we again obtain a malfunction in the cluster.

A few of the malfunctions which belong to the cluster require deeper
explanations. For example, if the RFFT lead (referred to above) never
operates, because the amplifier feeding it is stuck at low voltage output,
we again obtain a malfunction in the cluster. The effect of this malfunc-
tion is that FF always retains its previous value during a "read flip-flop"
operation, regardless of whether the value being read is 0 or 1. It is not
immediately clear why this malfunction should give test patterns closely
resembling others in the cluster. However, by analyzing the diagnostic
test program, we find that FF (which is also used by other operations)
is most often left with a 1 in it upon entering the critical diagnostic
test operations. Thus, this malfunction most often causes errors in
reading the value 0.

This cluster has relatively sharp boundaries. Also, it is a "pure"
cluster, that is, all the malfunctions in the region of space it occupies
belong to it; other clusters do not overlap. The center of gravity of the
cluster is approximately at

21, 1, 1, 0, 2, 0.

The extreme values of the various coordinates are as shown:

minima 1, 0, 0, -2, 0, -1,
restricted minima 1, 0, 0, -1, 1, 0,

restricted maxima 4, 2, 2, 1, 2, 1,

maxima 6, 4, 2, 2, 3, 4.

By "restricted maxima" we mean the maximum values for the 291 most
centrally located of the 311 malfunctions; the other 20 are rather thinly
sprinkled.

No two malfunctions in this cluster have identical test patterns. This
may seem strange, for those package removals which cause a 0 value
always to be read as a 1 have identical circuit effects. Also, those isola-
tion -diode open -circuits that cause a 0 value to be read as whatever
was left in FF from before have identical circuit effects. Why should
the malfunctions within one of these groups produce diverse test pat-
terns?

In the case of the package removals, almost all the variations in the
test patterns result from reading flip-flops whose value is controlled
from outside the CC and varies from time to time. Some examples are
flip-flops RTA ("ringing tone active"), BSYT ("busy tone"), RNGS
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("ringing scan") and 10MSCK ("10 millisecond clock"). When the
value happens to be 1 the value is read correctly and the corresponding
diagnostic tests are passed; when the value is 0, it is read incorrectly,
and the contrary happens. Several of these flip-flops are read (in effect)
four times during the diagnostic program, and we are able to follow
any changes which take place. The slower changing ones like RTA
are indeed observed to change either not at all or only once during the
course of a single diagnostic run-through, while a faster changing one
like RNGS is sometimes observed to change more often.

In the case of the isolation -diode open -circuits whose effect is to
leave in FF its previous value, the test results are subject to the same
source of variability. However, they are also subject to the additional
variability of depending on the previous contents of FF. While this is
more often 1 than 0, it is 0 significantly often. Thus, a test which the
previous group fails may be passed by this group, and vice versa. All
the tests ever failed by this group, however, include all the tests ever
failed by the previous group, and more as well.

An interesting sidelight concerns the difference between even -num-
bered and odd -numbered tests. The diagnostic tests are conducted in
pairs, with nondiagnostic work intervening between pairs. For this
reason, each even -numbered test is entered from within the diagnostic
program; analysis reveals that in this case FF contains a 1 when the
individual test sequence is entered. As the relevant program was not
available, we were unable to determine the situation for odd -numbered
tests, but we infer indirectly that FF could have either value depending
on unknown circumstances. As a consequence, certain tests on different
flip-flops which are exactly similar to each other (including the fact
that the flip-flop normally has value 0 at the time) fail or pass depending
on whether the test is even or odd -numbered. There are several examples
of this sort.

The reader may suspect that our circuit analysis is incomplete, and
may suspect that the pattern differences for different malfunctions
actually reflect different circuit effects. Fortunately we have at least
three cases in which the same identical malfunction in this cluster was
diagnosed twice. The differences between the test patterns for the self-
same malfunction were quite as great as between test patterns for differ-
ent malfunctions of one type in the cluster.

A.3 Two Clusters Affecting the BGS Address Register

These two clusters give a useful insight into the process of cluster
analysis. It is probably true that they should be merged into one larger
cluster which includes them both.
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One consists of about 60 malfunctions affecting the EPO (execute
program order) gating pulse which comes through a transformer into
the BGS address circuit. This transformer serves only the BGS address
circuit and an associated circuit. Almost all the malfunctions in this
cluster are shorted diodes which short circuit this EPO lead. One or two
are malfunctions in the transformer which prevent the pulse from
appearing.

The second cluster consists of about 65 malfunctions which cause
one or both of the gating leads BSBGX or BSBGY to operate or fail
to operate. These leads are the leads which enable input to the X and
Y halves of the BGS address register.

The centers of these two clusters are approximately at

31, -1, 21, -1, -1, 11

and

4, -1, 2, -1, 0, 2.

Thus, they are fairly close together by comparison with the sizes of
the clusters, which suggests that the clusters may overlap a good deal.
Closer examination reveals that they do overlap a great deal.

This suggests that we do not have two distinct clusters but two types
of malfunctions in one cluster. The next natural step would be to specu-
late that the common element to both clusters is a serious input diffi-
culty to the BGS address register. To carry the analysis further we
would then examine the other malfunctions in the region of space which
these two clusters occupy, and see if many of them fit this new descrip-
tion. If so, we would systematically trace out (from the circuit diagrams)
all like malfunctions. If essentially all of them should lie in this same
region, then we would consider that we had arrived at a satisfactory
cluster.
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Comparison Between a Gas Lens and Its
Equivalent Thin Lens

By D. MARCUSE

(Manuscript received June 23, 1966)

Gas lenses can be replaced by equivalent thin lenses. This paper shows a
comparison between ray trajectories through 100 gas lenses and 100 equiva-
lent thin lenses. The agreement is good enough to warrant the use of equiva-
lent thin lenses for the study of the transmission properties of beam wave -
guides made of gas lenses.

I. INTRODUCTION

Gas lenses have been studied for their potential use as focusing ele-
ments in beam waveguides.1.2,3,4 Two earlier papers2.3 were concerned
with the study of the optical properties of a particular gas lens (see
Fig. 1) and came to the conclusion that certain types of gas lenses be-
have as optically thin lenses. The equivalent thin lens approximating the
optical properties of the gas lens is not flat but deformed to fit the shape
of the principal surface of the gas lens.

The definition of the equivalent thin lens is based on the optical
properties of the gas lens for input rays parallel to the optical axis. For
those rays the two lenses are optically equivalent by definition. This
equivalence need not necessarily hold true for arbitrary input rays. To
show that the equivalent lens can replace the gas lens for arbitrary in-
put rays is the purpose of this paper. For the purpose of optical wave -
guides a gas lens can be replaced by an equivalent thin lens if the ray
trajectories through many gas lenses coincide reasonably closely with
the ray trajectories through the equivalent thin lenses. A computer
simulated experiment was conducted to determine the ray trajectories
through 100 gas lenses and through 100 equivalent lenses and to compare
their results. It will be shown in this paper that the two ray trajectories
are very nearly the same. This result allows us to use the equivalent
thin lenses to study the light guidance properties of gas lenses. This re-
placement is particularly desirable to examine the wave optics properties

1339
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Fig. 1- Tubular gas lens. A cool gas is blown into a warm tube.

of gas lenses since it would be prohibitively complicated to solve the
problem of wave propagation through the actual gas lens.

II. RAY TRACING THROUGH GAS LENSES AND THIN LENSES

The details of determining the principal surface and focal length of a
gas lens are discussed in Ref. 3. Typical results of the principal surface
and the dependence of the focal length on ray position are shown in Figs.
2 and 3. Strictly speaking there are two principal surfaces. Since they
coincide rather closely, however, only one will be considered.

The equivalent thin lens is assumed to have the shape of the principal
surface of the gas lens, as shown in Fig. 2, and is assigned the focal length
f of the gas lens with its dependence on radius as shown in Fig. 3.

Ray tracing through the gas lens is accomplished by numerical inte-
gration of the ray equation. Since rays are being traced through 100 gas
lenses in succession, high accuracy is required. For that reason I used
the exact ray equation instead of the approximation which was sufficient
for the purpose of Ref. 3. The ray trajectory in the gas lens is obtained
by numerical integration of the ray equation. This trajectory, however,

a2

Fig. 2 - The principal surface of the tubular gas lens. The angles used for ray
tracing are indicated.
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a
r

Fig. 3 - Focal length dependence on radius for the tubular gas lens under
typical operating conditions.

cannot be used for comparison with the ray trajectory through the equiv-
alent lenses. To compare the two trajectories, the ray entering each gas
lens was extended in a straight line into the lens to find the point at
which it intercepted the principal surface. This point was used for com-
parison with the ray trajectory through the thin lenses.

Ray tracing through warped thin lenses has to be done with care since
it is easy to violate laws of nature. One might be tempted to use the usual
procedure for straight thin lenses and simply break each ray entering
the lens at a distance r from the optical axis by an angle [3, which is
independent of the input angle, according to

tan = - -; . ( 1)

It was pointed out in Ref. 5 that (1) violates Liouville's theorem of
statistical mechanics and that one has to use the equation

sin 71 = sin 72 F (r). (2)

The angle yl is formed between the input ray and the direction normal to
the lens surface and 72 is the angle between the normal direction and the
output ray, Fig. 2. To compute the ray trajectory through the thin lens
we have to determine the angle yi from the input angle al of the ray with
respect to the optical axis and the angle (5 of the lens normal with respect
to the optical axis,

= al - 5. (3)
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Then we determine 72 from (2) and obtain a2 from the equation

a2 = 72 + a.

The function F(r) in (2) is determined from the known focal length of
the lens. If al = 0, we obtain from (3) yi = - a. The angle a2 for an
input ray parallel to the optical axis is known from the focal length of
the lens

so that

tan a2' = - ;

72 = az - O.

The function F (r) is therefore, determined from

F (r) = sin 71' - sin 72. (5)

This complicated procedure does not lend itself easily to the formulation
of a difference equation to determine the ray trajectories. An analytical
solution for the ray trajectories through warped thin lenses cannot be
obtained as easily as for thin straight lenses.6 However, numerical ray
tracing with the help of an electronic computer is only slightly more in-
volved and time consuming as for thin straight lenses.

The results of ray tracings through gas lenses and equivalent thin
lenses are shown in Figs. 4 and 5. The solid curve is the gas lens ray
trajectory, the broken curve is the corresponding ray trajectory through
the equivalent thin lenses. The points entered in these curves are the
points of intersection of the (extended) rays with the principal surface
of the gas lens or with the equivalent thin lens. These points were con-
nected by straight lines. This procedure represents the ray trajectory
through the thin lenses exactly. For the gas lenses it gives the exact
ray trajectory only outside of the lenses. The two figures show the ray
trajectories only from lens 62 to 100, the agreement is better at the be-
ginning of the trajectory.

The two trajectories agree very well in Fig. 4. If the radius of the gas
lens tubes is assumed as a = 3 mm the ratio of lens spacing D to lens
radius a (D/a = 1200 for Fig. 4) corresponds to lenses spaced 3.6 m
apart. Fig. 5 was computed with a ration D/a = 330 so that with a = 3
mm the lens spacing would be D = 0.99 m. Even for lenses spaced that
close the concept of equivalent thin lenses works quite well.

These results show that the gas lenses can be replaced by equivalent
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Fig. 4 - Comparison of ray trajectories through gas lenses and equivalent
thin lenses. n = lens number, a = radius of gas lens, D = lens spacing, ft, = focal
length of rays close to the optical axis, L = length of gas lens. D/a = 1200, D/fo =
2.16, L/a = 50.

thin lenses. This replacement does not simplify the problem of ray trac-
ing or of tracing wave field through the gas lenses sufficiently to make it
accessible to an analytic treatment but it simplifies the numerical treat-
ment greatly and reduces the time of numerical calculations to an eco-
nomically acceptable level.

0.6
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I 1 I
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I I

1 I I I I I

70 72 74 76 78 80 82 84
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1 1 I I I I I
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Fig. 5 - Same as Fig. 4 with D/a = 330, Dilo = 2.74, L/a = 50.
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Deformation of Fields Propagating
Through Gas Lenses

By D. MARCUSE

(Manuscript received June 23, 1966)

The concept of a thin lens equivalent to a gas lens is used to calculate
distortions of off -axis Gaussian fields in beam waveguides composed of gas
lenses. A computational method for the numerical solution of this problem
based on the Kirchoff-Huygens diffraction integral is developed. It is shown
that off -axis Gaussian fields deform considerably as they travel through a
sequence of gas lenses. These deformations are substantial even though the
lens distortions may be small. If the light beam deforms it is hard, if not
impossible, to steer it back on -axis. This problem can be avoided if some
means of beam redirection are used to keep the field on -axis, thus preventing
the occurrence of significant beam deformation.

I. INTRODUCTION

Interest in optical communications has stimulated research to find a
suitable optical transmission medium. The beam waveguide first sug-
gested by Goubaui appears to be an efficient optical waveguide. It is
composed of lenses which periodically refocus the light beam, counter-
acting its tendency to spread apart by diffraction.

Gas lenses have been suggested as focusing elements of beam wave -
guides 2.3,4 Of the various types of gas lenses, the tubular gas lens, Fig.
1(a), has been studied in some detail.3.4 This gas lens can be represented
by an equivalent thin lens which is warped to fit the shape of the princi-
pal surface of the gas lens and which is given its focal length with the
proper dependence on its radius. It was shown in Ref. 5 that ray tra-
j ectories through 100 gas lenses coincide closely with ray trajectories
through the corresponding equivalent lenses. Replacing the complicated
gas lens with the equivalent thin lens simplifies considerably the study
of beam waveguides composed of gas lenses.

In this paper, we will make use of the equivalent thin lens concept to
investigate the propagation of wave fields through a beam waveguide of
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Fig. 1- (a) Schematic of the gas lens indicating the definition of principal sur-
face and focal length. (b) The equivalent warped, thin lenses representing the
gas lens beam waveguide.

gas lenses. The justification for replacing the gas lenses with equivalent
lenses comes from geometric optics.5 One might wonder if the argument
based on geometric optics can be carried over into wave optics. The
geometric optics description neglects diffraction effects. Inasmuch as
diffraction effects can be neglected as the field passes through the lens,
the geometric optics description should give the correct answer. Based
on this line of reasoning, one may expect the equivalent thin lens to be a
good approximation, as long as the gas lenses are short compared to their
spacing.

The wave optics properties of the beam waveguide composed of gas
lenses are obtained using a two-dimensional version of the scalar Kirch-
off-Huygens diffraction integral. The problem had to be limited to two



FIELD DEFORMATION THROUGH GAS LENSES 1347

dimensions to make it tractable for computer calculations. This simpli-
fication can be visualized as replacing the actual lenses by cylindrical
lenses.

We study how off -axis field distributions with a Gaussian intensity
profile propagate through the beam waveguide. Unfortunately there are
further limitations on the physical problem we can compute, imposed
by the limited size of the available computer memory. The calculations
are accelerated if as much of the integral kernel as possible can be stored
in the machine without having to recalculate it each time it is needed.
The IBM 7094 used for these calculations has 24,000 storage locations
available in its memory. Since we are dealing with a complex kernel,
100 integration points across the (linear) lens require 20,000 storage
locations. This means that we can use no more than 100 integration
points to compute our problem. This limits the ratio of lens aperture to
field extension across the lens which we can use. Either we use the full
lens aperture and launch a field which fills an appreciable part of it or
we use a very narrow field distribution and limit the aperture to a size
which allows us to approximate the narrow field reasonably well with
the 100 integration points at our disposal. This limitation forced me to
calculate the field distribution in the gas lens either at a much lower
frequency than that of the visible 6328A line of a He-Ne laser or to take
the actual laser frequency but use only a small fraction of the actual
lens aperture.

In spite of all these limitations imposed by computer economics, some
interesting results can still be obtained.

In a beam waveguide composed of ideal lenses no field distortion re-
sults as an off -axis Gaussian beam travels through the waveguide. In a
beam waveguide composed of gas lenses, off -axis Gaussian beams break
up into double humped shapes and deform so much that it is hard to
locate the initially well defined field distribution. This result is important
for beam waveguides using electronic control mechanisms to reposition a
beam when it has wandered away from the waveguide axis.6 If the beam
breaks up into several beams, repositioning becomes impossible. This
problem can be minimized by using two gas lenses back-to-back close
together. The resulting combined lens has far less principal plane distor-
tion as the individual lenses and leads to far less field distortion.

The field distortion observed in these simulated gas lenses can be
attributed in part to the distortion of the principal plane. A fictitious
lens with the same focal length aberration as the gas lens but an un-
distorted principal plane shows less field distortion. However, the focal
length aberration also contributes its share of field distortions.
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A large part of this paper is taken up with the description of the calcu-
lation procedure. This is justified since the development of a workable
and logical procedure is perhaps the main contribution of this work. The
reader who is interested only in the numerical results may skip over the
following two sections to the section entitled "Discussion of Numerical
Results."

II. THE TWO-DIMENSIONAL DIFFRACTION INTEGRAL

The Kirchoff-Huygens diffraction integral is a solution of the scalar
wave equation.

Axl, + /32* = O. (1)

As explained in the introduction, we are not interested here in the three-
dimensional case usually treated but in its two-dimensional counterpart.
The two-dimensional Kirchoff-Huygens integral is

4,(x,y) = .-
4

f {-a* .110(1) (Or) -Nli -8 1/0(1) Or)} dS. (2)
an

The integral is to be extended over a closed curve S, n indicates the di-
rection of the normal to the curve S which counts positive if it points
outward of the area enclosed by S. H(') is the Hankel function of zero
order and first kind. The variable r is the distance between the observa-
tion point x,y inside of S and the integration point E, n on S,

r = 1/(x - )2 ± (Y - 77)2 (3)

dS is the line element along the curve S. The constant (3 is related to the
wavelength X of the radiation field by

2r
/3 -X= . (4)

We are dealing with an optical radiation field. The observation point
x,y will always be far enough from the line S so that

Or >> 1.

It is, therefore, possible to replace the Hankel function by its approxima-
tion for large argument and write (2)

1 .7\
exp kiii f a* exp (Or) 1,..2_ (exP (i130)} dS. (5)

4'(x'Y) = VT370 is 157n 1/;: - On \ Vr I
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Equation (5) relates the values of the field *(t,n) on S to its values in-
side S. We want to use this expression to calculate the field at lens n 1

if the field at lens n is known. Our lenses are the equivalent thin lenses
of Fig. 1(b) which represent the gas lens of Fig. 1(a). The fields have to
be known over the surface of the lens which is not plane. We assume that
the lens is apertured by an opaque screen and follow the usual practice
of setting

*(t,n) = 0 and = = 0 (6)

on the screen. We use as the curve S the line formed by the lens surface.
the opaque screen which extends from - c,c) < n < 00, and close it by a
suitable curve at infinity. The following lens of the beam waveguide lies
thus inside S, Fig. 1 (b).

The Kirchoff-Huygens integral presents a problem. It requires us to
know not only on S but also a'/an. It is not sufficient, therefore, to
simply evaluate the integral (5) but also the integral which follows from
it by differentiation with respect to the normal m to the surface of the
next lens in the beam waveguide.

A substantial simplification results if instead of NI, we use a function (I)
defined by the equation

= (13e"*. (7)

This transformation serves the following purpose. The field propagating
in the beam waveguide can be expected to have phase fronts which are
not too different from that of plane waves. Since we collect the field over
the curved surface of the lenses we have a substantial phase variation
simply because the curved surface crosses many phase fronts of the al-
most plane wave. The transformation (7) displays explicitly the plane
wave part of the phase variation. The remaining phase variation left in
43 is much less rapid and therefore much easier to calculate. Substituting
(7) into (5) leads to an equation for 4. We also replace the phase con-
stant (3 by

with

f3 = 2rN -D
2

DX.N
= -DX.

(8)

(9)

N is the Fresnel number which is often used to characterize optical
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resonators and beam waveguides. D is the distance between lenses and
"a" the half -width of their apertures.

Replacing 4Y by cf. introduces the term exp [if3 (r - x)] under the
integral sign. We make use of the fact that x - E is almost as large as
r and write approximately

1 (Y -- 77) 1 -2 1 (Y - 7)17'-}- - X = ( 10)
2 x V t/ J

Using (7), (8), and (10) we can rewrite (5)

4,y+1 y) = exp (-7,;
a - c) (1)..(n)

2ND 4 -a an an

4/1 ± (92
+ co,(n)}

-V-r

 exp
DprN (y - 02 1 - 1{_ (y -

4 V - 71E)

2

The line element dS was expressed by

dS = 4/1 ± do (12)

where n = n() or t = (n) is the function describing the curved lens.
The function ioz,(n) is defined by

at'v(nn)(MO -
13 a

(13)

The subscripts v and v + 1 have been added to underscore the iterative
nature of the process.

The iterative equation for the calculation of gap+1 follows from (1),+1
by differentiation. Neglecting certain small terms under the integration
sign results in

A/ND . f° {1 (y - nY aX y - n ay
co

}
p-Fi(Y) 2a

exp 4 L . 2 V - ti am x - t am

1 (12
{ ) p(n) vp(n)}

dn

an an Arr

2D,(y 1

2

 exp izrN (Y n) fl dn.-n)L a xt 4 -\x ti

(14)
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The symbol m was used to designate the normal of the (v 1)th sur-
face y = y (x).

For reasons explained later, we also need the derivation of 4) in tan-
gential direction t. Defining

x = at
(15)

we get the integral expression for )6,14 by replacing a/am by a/at in
(14), it is unnecessary to write this expression down since it is exactly
the same as that for co±i except for the change just mentioned.

The three integrals for cf., (p, and x have a substantial part of their in-
tegrands in common. This similarity facilitates the machine calculations
of these integrals greatly.

The power flow through the lenses can be computed from the expres-
sion'

=
2

f f Im(4,9**)dS (16)
,

with w being the angular frequency of the radiation field and /m denoting
the imaginary part of the expression in parenthesis. Or replacing 1, by
43 and the line element by (12) we get with the help of (13)

a

2
a

(:3 } V AP 211= {Re (4),Apy*) - 1 ±rdny d0.
2

Equation (17) can be used to compute the power flow through the lenses
and observe power loss due to diffraction caused by the finite lens aper-
tures.

The reader who is familiar with the work of Fox and Lib might wonder
why the present case is so much harder to compute than the resonators
studied by these authors. Fox and Li used only one integral to describe
the field distribution over one mirror in terms of the field distribution
over the other, they did not calculate the integral for axli/an, simultane-
ously with that for 4. The reason for the success of the much simpler
theory in their case was the fact that the surfaces over which they had to
integrate were either perfectly flat or very nearly plane. The normal
derivatives occurring in (2) involve the cosines of angles e between the
normal to the surface of integration and the normal to the phase fronts
of the wave. As long as this angle is small

cos e ti 1

and the angle can be ignored. For the purpose of the normal derivative
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the wave can be treated as perfectly plane and the derivative can be
written as

an =
( 18)

However, the angle a between the direction normal to the surface of our
lenses and the optical axis is not small. If c is again the angle between
the normal to the phase front of the wave and the optical axis then
a + e is the angle entering the cosine. But even if e is small

cos (a + e) cos a - e sin a.

The departure of the phase front from a plane wave can no longer be
neglected but enters in first order. The expression (18) is no longer a
valid approximation and the whole calculation becomes much more
difficult.

III. FIELD TRANSMISSION THROUGH THE LENSES

So far we have considered the transmission of the field from the sur-
face of one lens to that of the next. However, the lenses have so far not
even entered the picture other than to force us to calculate the field over
the surface of the lens. The process of calculating the effect of the lens
on the field is also rather complicated. In the case of plane, thin lenses
it is sufficient to regard the lens simply as a phase transformer which
retards the phase of the field differently in different parts of the lens.
This simple picture is inapplicable in our case of curved lenses.

Liouville's theorem of statistical mechanics is the guide to the proper
description of a thin lens. I have shown in two earlier papers6'9 how rays
pass through thin lenses. The ray gets broken by the lens by an angle
which depends not only on the part of the lens which the ray intersects,
but also by the angle between the ray and the normal to the lens surface.
If 71 is this angle for the entering ray and 72 that for the ray leaving the
lens the dependence between these two angles is given by9

sin 72 = sin 71 F(Y). (19)

The function F (y) is determined by the lens. The focusing property of
the lens determines the angle 72' if 71' corresponds to a ray incident
parallel to the optical axis. 71/ and 72 are known from the desired focal
length of the lens and its shape. F(y) is determined by substituting
Y2 = 7: and 71 = 71 into (19 ).

These ray optics properties of the lens have to be used to determine its
influence on the field. The normal directions to the phase fronts coin-
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tide with the rays associated with the field, they have to be determined
from the derivatives of the field function. Let us assume that we split
the field function NI, into its magnitude G and phase angle $8

41 = G exp (i38)

or using 4) rather than 1,

(la = G exp [ii (d- - x)]. (20)

The function o (x,y) is the eikonal of geometric optics and satisfies the
eikonal equation of free space

v8J = 1.
We take the tangential derivative of 4)

(21)

84)

at -
[ (a

at - at
aG 1

( 22)
' at G1-

The term a8/at can be expressed in the following way

= = V/9
at at

as
at

cos (kt);

as/at is a unit vector in the tangential direction t, (kt) is the angle be-
tween the direction normal to the phase front of the wave and the
tangential direction. Using (21) and the property of the unit vector we
obtain

as = cos (o).
at

(23)

With the help of (15) and (23) we get from (22)

ax x aGcos (kt) = -
at 4) Q G at

The left-hand side of this equation is real by definition and so is G and
its derivatives. This means that the imaginary parts of the right-hand
side have to cancel each other and we obtain

cos (kt) = at - Re 4) . ( 24)at

Re designates the real part of the expression in parentheses. The deriva-
tive ax/at is known from the geometry of the lens, and x as well as 4)
have been computed from their integral expressions. The angle between
the rays associated with the field and the tangential direction t of the
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curve describing the lens shape is thus determined. The angle (kt) is
related to 71 , the angle between the ray and the normal to the lens sur-
face, by

'Yi =
2
-r - (kt)

so that

(25)

cos (kt) = sin y1.

The angle -y2 between output ray and lens normal is obtained from (19).
Indicating by a prime the angles and field quantities of the field after
leaving the lens we have

and from (23)

or

cos (kt)' = sin 72

= cos (kt)' dt (26)
ti

0t,= - t9. = [cos (k't) - cos (kt)] (c-rdxyy dy. (27)
a

The transformed field after it has passed the lens can now be calculated

= stiy+1 exp (iSAO.). (28)

Finally, we need to know the normal derivative 'v+1' of (13,,+1' before we
are ready for the next iteration step. Replacing derivatives with respect
to t by the normal derivatives with respect to m in (22) and multiplying
by i/f3 we obtain

rax ad- i aGi.
vp+1 = Lam - am G am

The derivative ad./at was equal to cos (kt), similarly we can write

am= cos (km).

(29)

(30)

The angle (km) is related to 7). by

(km) = 7r - -yl.

The reader might wonder why I bothered introducing the angle (kt)
and the derivative x since al,/am which is determined by 90 gives the
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angle 71 directly. However, 36/3m only determines cos 71 . The conver-
sion of cos 71 to sin 'y' leaves the sign of -yi ambiguous. No such ambiguity
arises if (ki) is computed.

The angle (km)' belonging to the output field can now easily be ob-
tained with the help of (19) and (24)

aby = cos (knt)' = -V 1 - sin272 
am

(31)

Substituting (31) into (29) written for the primed quantities we get.

, ax ,

13 G am

i 1 aG ,
v(pv-F,= am

- - cos (km -t-Y - - - , +1

or using (29) once more and keeping in mind (28)

cop+i = 40,±1 exp (7730.6) + [cos (km) - cos (km)'bov+i'. (32)

The transformed field quantities of (28) and (32) are certain to conform
with the requirements of ray optics. However, this is not quite sufficient
to satisfy all the wave optics requirements. Numerical results have shown
that the fields 4' and ,' substituted into the power formula (17) yield a
different number for the power flow than the one obtained from using
(17) with 4 and co. The fields 4' and co' after having passed the lens should
carry the same amount of power as the input fields. The transformation
procedure, outlined so far, takes into account the phase of the field and
the change in slope of the phase fronts in accordance with physical prin-
ciples but it does not account for any change in field amplitude which the
physics of the (lossless) lens might also require. In fact, the failure of

this transformation to obey conservation of energy points to a need to
readjust the field amplitudes. To correct the amplitudes of the field quan-
tities 4' and co' locally, I computed the ratio of the integrals of (17) taken
with the two fields. Letting I be the integrand of (17) calculated with
the use of 4) and co, and I' the corresponding value obtained using 4/ and
co', I calculated

R = 1:
I

and introduced

(33)

49" = Re

and (34)

(p" = .
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This last transformation does not affect the phase of the field or its slope
but adjusts the field amplitude so that using it" and co" the power is
conserved in the process of transmitting the field through the infinitely
thin and lossless lens. This last transformation does not transform away
diffraction losses, however, since those occur in passing the field from one
lens to the next.

This completes the description of the iteration procedure. It is sur-
prising how much the calculation is complicated by the simple fact that
the lenses are not plane but curved. One might regard the simplicity of
the plane lenses as a lucky break. The present procedure naturally is
more time consuming. To pass the field through 100 lenses of the lens
waveguide with plane lenses using the simple procedure of Fox and Li
takes 0.023 hours of 7094 computer time. The procedure described above
takes 0.13 hours for the same number of lenses or 5.65 times as long.
The present procedure is that much more involved.

IV. DISCUSSION OF NUMERICAL RESULTS

The calculation procedure described on the previous pages was used
to study the fate of an off -axis field distribution as it propagates through
the beam waveguide. In a beam waveguide composed of ideal, thin
lenses the field would suffer no distortions as it travels through the lenses
provided that its shape corresponds to a mode of this structure. A mode,
even if displaced from the axis, keeps its shape in a perfect beam wave -
guide. The center of gravity of such an off -axis mode follows the ray
trajectory of geometric optics. The field may look somewhat different as
it passes different lenses. But whenever its path brings it back to its
original position on the lens it assumes the original shape.

This property of ideal lens guides is no longer true for beam wave -
guides composed of distorting lenses. Now the original field distribution
is changed even if the field returns to its original position. These field
distortions are best displayed in a motion picture. However, in a paper
one has to limit oneself to the display of a few representative frames of
such a motion picture.

To launch the field into the waveguide I started with an ideal lens
whose focal length corresponded to twice the on -axis focal length of the
simulated gas lenses. This procedure was chosen since the modes of the
ideal beam waveguide have plane phase fronts right on the lens or in
other words after the field has traversed one-half of the lens. A plane
phase front and the flat starting lens allow us to take

i ac130
,po =fan
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so that coy is known initially and the field can get started. On all the
following lenses (Dv as well as its derivations are calculated.

Figs. 2(a) and 2(b) show the shape of the principal surface p and the
focal length f of the lens as functions of position y/a. The function p
as well as the focal length f are displayed normalized with respect to the
length L of the gas tube. The coordinate y is plotted normalized with
respect to the radius a of the tube. These curves correspond to a gas
lens operated with a gas velocity which minimizes the focal length at an
input gas temperature T. = 300°K, wall temperature of gas tube 355°K,
an index of refraction of n = 1 + 4.210-4 and a ratio* of L/a = 50.

We consider a beam waveguide composed of gas lenses of this type
spaced so that D /f. = 2, where D is the distance between adjacent
lenses and fo is the value of the focal length at y = 0. Into this beam
waveguide we launch a field with a Gaussian intensity profile whose
center of gravity is shifted off the optical axis as shown in Fig. 3(a).
This field distribution corresponds to a mode of the ideal confocal beam
waveguide which is shifted off -axis. The position and shape of this field
on the next two lenses is given in Figs. 3(b) and 3(c). Since the beam
waveguide is nearly confocal, the center of gravity of the field moves
like a ray in a confocal waveguide. No field distortion is yet discernible.
Jumping 100 lenses ahead in the beam waveguide we see in Figs. 4(a),
4(b), and 4(c) that the field begins to distort from its original shape.
After having traversed 150 lenses the field shows a distinct break-up
into two peaks, Fig. 5(a). The appearance of the field on two adjacent
lenses can be quite different, Fig. 5(b). Finally, we see the wave field on
the lenses 209 and 210 in Figs. 6(a) and 6(b). The distortion has changed
somewhat but is not basically different.

The field of Fig. 3(a) fills one-third of the gas lens between the points
where it carries more than exp (-2) of its peak power. If we assume a
tube with a = 0.317 cm (0.125 inch) a waveguide mode of that width
corresponds to a light wavelength of A = 4.60 X 10-4 cm which is 7.26
times as long as the wavelength of the 6328A line of the HeNe laser.

I mentioned in the introduction that the width of the field distribu-
tion with respect to the tube radius cannot be made arbitrarily narrow.
To consider fields which are similar to modes of the beam waveguide at

= 6.328 X 10-5 cm forces us to reduce the lens aperture. The ratio
of field extension and waveguide aperture is maintained if we reduce the
wavelength from A = 4.60 X 10-4 cm to A = 6.328 X 10-5 cm and
aperture the lens at a value of y/a = 0.371 of Figs. 3 through 6. Using
only that part of the waveguide between -0.371 < y/a < 0.371 and

* These values correspond to vo/V = 6.45 and C(L/a) = 0.192 with vo/V and
C(L/a) defined in Ref. 4.
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Fig. 2-(a) The principal surface p of the gas lens normalized with respect to
the tube length L as a function of y/a. (b) The focal length f of the gas lens
normalized with respect to the tube length L as a function of y/a.
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renormalizing the y-coordinate so that these boundaries again correspond
to -1 y/a 5 1 leads to the shape of principal surface and focal length
as shown in Figs. 7(a) and 7(b). This is still the same lens, with the
only difference that we expanded its center portion. The center portion
of the lens has far less distortion as the whole lens of Fig. 2. Figs. 3(a),

I,p12

2.5

2.0

(a)

n=0

1.0

05

0

2.5

20

15

1.0

0.5

0

2.5

2.0

15

14'12

1.0

0.5

0
-1.0 -08 -06 -04 -0.2 0 02

n =1

(b)

(C)

n=2

y/a
04 0.6 0.8 1.0

Fig. 3 - The Gaussian field distribution on the first three lenses represented
by Fig. 2. The power P carried by the field is P = 1.
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Fig. 4 - The distorted field after passing through 100 lenses P = 0.969.

3(b), and 3(c) show again the field distribution on the first three lenses
at the wavelength of A ---- 6.328 X 10-5 cm and the apertured lens.
After traversing 120 lenses this field suffered noticeable distortions
shown in Figs. 8(a) and 8(b), even though it "sees" now only the center
portion of the lens where the focal length depends only very little on y
and where the principal surface is much closer to a plane. The dotted
curves also shown in these and all remaining figures of field configurations
were obtained by maintaining the focal length of the equivalent gas
lens, but using a lens with a perfectly flat principal plane. The compari-
son between the solid and dotted curve shows that the field distortion
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can be attributed mainly to the distorted principal plane of this gas
lens. The change in width of the field distribution on adjacent lenses as
seen in Figs. 8(a) and 8(b) is caused by the departure of the beam wave -
guide from exact confocality. Figs. 9 and 10 show how bad the field
distortions get after 250 and about 400 lenses. Most surprising is the
fact that the field distortions of Figs. 8 through 10 are only slightly less
severe than those of Figs. 4 through 6, in spite of the substantial im-
provement of lens aberrations.

To study this point further I constructed a gas lens with even less
principal plane distortion by using two gas lenses back-to-back as shown
in Fig. 11. The center portion of the principal surface and focal length
curve is shown in Figs. 12(a) and 12(b). The expansion and renormaliza-
tion of these curves is the same as that of Figs. 7(a) and 7(b). The
principal surface of this lens, Fig. 11, approximates a plane even better
than Fig. 7(a) however, there is more focal length distortion apparent
in Fig. 12(b) than in Fig. 7(b). This lens distorts substantially less than
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Fig. 9 - Field distortion of the field in the apertured lens after traversing 250
lenses. Solid curve, P = 0.929. Dotted curve, P = 1.000.
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the simple lens of Fig. 1, as a comparison of Figs. 8 through 10 with
Figs. 13 through 15 indicates. However, even a lens with the charac-
teristics of those shown in Figs. 12(a) and 12(b) causes the field to break
up into the double -humped shape of Fig. 16 after traversing 295 lenses.

It is interesting to note the difference between the solid curve and the
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k L -
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Fig. 11 - Two gas lenses operated back-to-back minimize principal plane dis-
tortion.
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dotted curve of Figs. 13 through 15. Both curves show field distortions.
Those of the solid curves are caused by the combined action of principal
plane and focal length distortions, while those of the dotted curves are
due to focal length aberration only. It appears that the two distorting
influences cancel out to some extent since the solid curves of Figs. 13(b),
14(a), and 15(a) show less distortion than the corresponding dotted
curves.

Figs. 14(b) and 15(a) show that even the plane lens with only focal
length aberration (dotted curve) has the tendency to distort the field
into a multiply -humped shape. Theoretical work by E. A. J. Marcatili
and further computer simulations have established a periodicity in this
behavior. Plane lenses with focal length distortion cause an off -axis
field to break up into a double -humped shape which becomes perfectly
symmetrical after some distance. After twice this distance the field re-
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2.5

2.0

1.5

1.0

0.5

0

, \\/

/
n =295

I

/
/ %

1

1

/
/
/

1

1

1

/

/
/

1

1

\.,....^

_... /
/

/
/

N
N.

-10 -0 8 -0.6 -0.4 -0 2 0 0 2
y/a

04 06 08 10

Fig. 16 - The field assumes a double -humped appearance after 295 lenses.



1368 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1966

turns to its original shape, etc. No such periodicity seems to exist for
distortions caused by a warped principal plane. The periodicity of field
distortions caused by focal length aberrations gives a clue to the problem
of why so little lens distortion can lead to such serious field distortions.
In principle, the field always breaks up into a perfectly symmetric double -
humped shape if it is allowed to travel far enough in the beam waveguide.
The required distance depends on the amount of focal length aberration
but the final field distortion does not. Similarly, it is possible that
arbitrarily small distortions of the principal plane may always lead to
serious field distortions if given enough length of waveguide. It is still
surprising, however, that the slight aberration shown in Fig. 12(a) and
12(b) causes the field to become double humped after only 295 lenses.
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