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In many circumstances a telephone call can be completed through a con-
necting network in several ways. Hence, there naturally arise problems of
optimal routing, that is, of making the choices of routes so as to achieve
extrema of one or more measures of system performance, such as the loss
(probability of blocking) or the carried load.

As is customary in traffic theory, a Markov process is used to describe
network operation with complete information. The controlled system is de-
scribed by linear differential equations with the control functions (expressing
the routing method being used) among the coefficients. Restricting attention
to asymptotic behavior leads to a problem of maximizing a bilinear form
subject to a linear equality constraint whose matrix is itself constrained to
lie in a given convex set. An alternative approach first shows that minimiz-
ing the loss, and maximizing the fraction of events that are successful at-
tempts to place a call, are equivalent. This fact permits a dynamic program-
ming formulation, which, in turn, leads to a very large linear programming
problem. Two small examples are treated numerically by this method.

It is particularly important to try to verbalize, and then mechanize, the
optimal routing strategies. In this endeavor, the linear programming formu-
lation is of limited usefulness. Therefore, in the latter half of the work we
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have attempted to use the special combinatorial structure imposed by the
telephonic origins of the problem to shed light on the character of the optimal
strategies. In particular, we show that for connecting networks with suitable
combinatorial properties, the optimal route choices can be very simply de-
scribed. Some of the results obtained were suggested by, and verify, conjec-
tures from the practical lore of telephone routing.

The problem of routing calls falls into two parts: Which attempted calls
should be accepted in which states? What route should an accepted call use?
The first problem is very hard, and only sample numerical answers for small
networks are obtained. We solve the second problem analytically for a large
class of cases by appeal to combinatorial structure in the network. These
cases can be described roughly as those in which the relative merit of states
(as far as blocking is concerned) is consistent or continuous; i.e., if a state
x is "better" than another y, then the neighbors of x are in the same sense
"better" than the corresponding neighbors of y. An abundance of examples
indicates that these cases are numerous and so warrant attention. In a net-
work with this kind of combinatorial property, a policy which rejects no
unblocked calls and minimizes the number of additional calls that are blocked
by completing an attempted call differs from an optimal policy only in that
the latter may reject some calls.

I. INTRODUCTION

A telephone connecting network invariably provides many paths on
which a particular telephone call can be completed. One of the operational
problems faced by the control unit of a telephone system is then to as-
sign to each accepted and completable call a path and, in particular, to
choose these assigned paths in the best way. This is the problem of opti-
mal routing of telephone calls. Thus, in the theory of telephone traffic
there naturally arise mathematical problems of optimal routing, that is,
of making choices of routes in probabilistic models for operating net-
works so as to achieve extrema of well-defined measures of system per-
formance, such as the probability of blocking (loss).

Unfortunately, it is not unfair to state that the voluminous probabilis-
tic theory of telephone traffic, now some sixty years old, still has rather
little to say about how routes for calls should be chosen. We are speaking
here of the mathematical theory of traffic. Naturally, a wealth of useful
information about routing has accumulated over the years from experi-
ence in the telephone field; recently it has been buttressed and extended
by many simulation studies. This information, nevertheless, still lies
largely outside the province of the existing theory of telephone traffic.

It is the aim of this work to formulate, study, and (in part) solve a
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general class of optimal routing problems for telephone networks. The
formulation of these problems is undertaken insofar as possible within
the classical dynamical theory of telephone traffic initiated by A. K.
Erlang, that is, in terms of Markov processes based on the assumptions
of (i) negative exponential distributions for mutually independent hold-
ing -times, and (ii) randomly originating traffic. To these assumptions it
added a description of how attempted calls are accepted and assigned
routes.

We conclude this introduction with a brief summary of the entire
paper. A complete summary appears later (Section IX) after concepts
for formulating the problem have been discussed. As is customary in
telephone traffic theory, we use a Markov process to describe the opera-
tion of the connecting network under study. The Kolmogorov equations
for this process then constitute a set of linear differential equations de-
scribing the controlled system; in these the control functions expressing
the routing method being used appear among the coefficients. It is nat-
ural to restrict attention to asymptotic behavior; this leads to a problem
of maximizing a bilinear (or linear fractional) form subject to linear
constraints; this problem is equivalent to a linear programming problem.
An alternative approach first shows that minimizing the probability of
loss, and maximizing the fraction of events that are successful call at-
tempts, are equivalent. This fact permits a classical dynamic program-
ming approach. The remainder of the paper attempts to use this ap-
proach to establish relations between combinatorial properties of the
network and the policy(ies) optimal for given criteria of performance.
In particular, it is shown that for connecting networks having certain
"monotone" properties, optimal policies for minimizing loss correspond
closely to the heuristic advice, "Prefer those states in which as few calls
are blocked as possible".

II. INFORMATION FOR ROUTING DECISIONS

The problem of choosing "good" routes for information flow in a com-
munications network is vastly complicated by the difficult questions
surrounding the collection, updating, and relevance of information
(about the state of the system) on the basis of which routing decisions
are to be made. Thus, one of the items to be chosen in designing a rout-
ing scheme is the information on which the routing is to be based. In-
deed there is a whole spectrum of possible choices for this information,
from no information at all (except what is unwittingly discovered in
making call attempts), to full knowledge of the state of the connecting
network. Clearly, a practical compromise between total ignorance and a
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very expensive, complex scheme based on many data must usually be
made.

Our considerations in this work will be limited to the case of perfect
information, in which the microscopic state of the connecting network is
assumed known and available for making routing decisions. This case is,
of course, very far from realistic: few existing or envisaged systems utilize
even a small fraction of this possible information for routing. Indeed,
much of it is likely to be of very little relevance. Nevertheless, it is im-
portant to know what would be good routing if we could implement it
and could afford it, so the full information case to be considered here
forms at worst a limiting situation for which some theory is available,
and a natural starting point for investigation.

III. ACCEPTANCE OR REJECTION OF UNBLOCKED CALLS

In the present discussion of the involved problem of routing calls, one
of the difficulties that arises deserves special mention. This difficulty is
the problem of deciding whether to accept or reject attempted calls
which are not blocked.

At first sight, it might seem that no unblocked call attempt should
ever be rejected. The natural argument for this view is that the whole
point of a telephone system is to complete calls, and that by rejecting
an attempt that could have been completed, the system only lowers its
performance. Sensible as this argument sounds, it is unacceptable be-
cause it turns out that whether rejection of an unblocked call improves
or lowers performance depends on the index of performance, on the dis-
tribution of traffic among the sources, on the "community of interest"
aspects of the system, etc. If the probability of blocking is used as an
index, the "bad" effect of adding a particular call in a given state of the
system may be so great and so lasting that it is better to reject the call,
and improve the chance of completing many later calls.

To put the matter another way, the problem of routing with full in-
formation seems at first to boil down to the question: "Which of the
paths available for call c in state x should be used?" This form of the
problem overlooks the possibility that perhaps the best thing to do when
the state is x and c is attempted is not to complete c at all, but to reject
it! In other words, it assumes that, naturally, c will be put up in state
x if it is attempted in x and is not blocked. This assumption has always
been made in previous applications of the model we use.',2

Conceivably, then, it is better to reject a call c that is not blocked in a
state x. Thus the problem of routing should be phrased: "Should a call
c, free and not blocked in state x, be completed, and if so, by which
route?"
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It turns out that answering the first part of the question, as to which
calls should be completed in which states, is often the hardest part of the
problem. Examples can be given in which it is fairly easy to solve the
route selection part of the problem, but for which the question of whether
a call should go in or not is not settled. That this question has substantial
practical import is apparent from the simulation studies carried out by
J. H. Weber,' which clearly show how in trunking networks prohibition
of circuitous routes (and thus rejection of certain unblocked calls) can
improve system performance.

J. H. Weber' has also remarked that the problem of deciding whether
an unblocked call should be refused is closely related to the distinction
between trunking networks, used in toll systems to interconnect towns
and cities, and central office networks, used to interconnect trunks and
customers' lines at a single location. An important combinatorial differ-
ence between the two types of networks depends on whether all calls
use the same number of links. This is usually the case in central office
networks, but rarely true in trunk networks. One result suggested by
this distinction would be that a call should always be put up when all
calls use the same number of links, but that circuitous routes might be
profitably disallowed otherwise.

It appears then that network structure bears on the problem of what
calls to accept. However, examples can be given which show that even
when there is almost no network structure, other factors such as the dis-
tribution of traffic and the "community of interest" can make rejection
of some calls part of an optimal policy.

For example, if two lines calling at rates Al , X2 , respectively, compete
for one trunk, the probability of blocking is

2)tiA2

Al + A2 + 2X1X2

if no unblocked call is rejected. If the calls of the line calling at rate Al
are always rejected, the probability of blocking (with rejected calls in-
cluded among the blocked) is

XIX?. + Al

Al + A2 + X1X2

(We have assumed that all calls have unit mean holding -time.) It fol-
lows here that if

A2' > Al + A2 + A1X2

then it is better to reject all Xi calls than to put them all in! This exam-
ple, although somewhat unrealistic, illustrates how the distribution of



1378 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

traffic affects the rejection problem, even in the absence of network struc-
ture.

For an example involving the "community of interest", consider two
disjoint sets of (n + 1) lines communicating over one trunk, with the
quirk that each set has a distinguished line which only attempts calls to
the distinguished line in the other set, while the other n lines of one set
only attempt calls to the n nondistinguished lines of the other set. Let
c be the call consisting of the two distinguished lines talking to each
other. If c is always rejected, the probability of blocking is

1 + Xn2(n - 1)2
n2 + Xn2 (71 1) 2

where we have assumed that lines which call each other do so at rate X,
and holding -times have unit mean. If c is always accepted when it is not
blocked, then the probability of blocking is

2xn2 xn2(n - 1)2

2Xn2 -I- 1 + n2 + Xn2(n - 1)2 

From these formulas it follows that it is better to reject c entirely if n is
large enough, or if X is large enough, while if X is small enough it is better
always to accept c.

IV. STATES, EVENTS, AND ASSIGNMENTS

The elements of the mathematical model to be used for our study of
routing separate naturally into combinatorial ones and probabilistic.
The former arise from the structure of the connecting network and from
the ways in which calls can be put up in it; the latter represent assump-
tions about the random traffic the network is to carry. The combinatorial
and structural aspects are discussed in this section; terminology and
notation for them are introduced. The probabilistic aspects are con-
sidered in a later section.

A connecting network v is a quadruple v = (G,/,U,S), where G is a
graph depicting network structure, I is the set of nodes of G which are
inlets, St is the set of nodes of G that are outlets, and S is the set of per-
mitted states. Variables x,y,z at the end of the alphabet denote states,
while u and v (respectively) denote a typical inlet and a typical outlet.
A state x can be thought of as a set of disjoint chains on G, each chain
joining I to O. Not every such set of chains represents a state: sets with
wastefully circuitous chains may be excluded from S. It is possible that
I = 0, that I fl SZ = 0 = null set, or that some intermediate condition
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obtain, depending on the "community of interest" aspects of the net-
work v.

The set S of states is partially ordered by inclusion , where x < y
means that state x can be obtained from state y by removing zero or
more calls. If x and y satisfy the same assignment of inlets to outlets,
i.e., are such that all and only those inlets u E I are connected in x
to outlets v E S2 which are connected to the same v in y (though possi-
bly by different routes), then we say that x and y are equivalent, written
x t-, y.

The set S of states determines another set 8 of events, either hangups
(terminations of calls), successes (successful call attempts), or blocked
or rejected calls (unsuccessful call attempts). The occurrence of an event
in a state may lead to a new state obtained by adding or removing a call
in progress, or it may, if it is a blocked call or one that is rejected, lead
to no change of state. Not every event can occur in every state: naturally,
only those calls can hang up in a state which are in progress in that state,
and only those inlet -outlet pairs can ask for a connection between them
in a state that are idle in that state. The notation e is used for a (general)
event, h for a hangup, and c for an attempted call. If e can occur in x we
write e E x. A call c E x is blocked in a state x if there is no y E S which
covers x in the sense of the partial ordering < and in which c is in prog-
ress. For h E x, x - h is the state obtained from x by performing the
hangup h.

We denote by A. the set of states that are immediately above x in the
partial ordering , and by B. the set of those that are immediately
below. Thus,

A. = { states accessible from x by adding a call}

B. = { states accessible from x by a hangup}

For an event e E x, the set Aex is to consist of those states y x to which
the network might pass upon the occurrence of e in x. Thus, if e is a
blocked call, Aex = {0} ; also

UAhx=Bx
hex

UAex = A..
cEx

c not blocked in x

The number of calls in progress in state x is denoted by I x j. The
number of call attempts c E x which are not blocked in x is denoted by
s (x), for "successes in x." The functions j I and s () defined on S play
important roles in the stochastic process to be used for studying routing.
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It can be seen, further, that the set S of states is not merely partially
ordered by , but also forms a semilattice, or a partially ordered system
with intersections, with x n y defined to be the state consisting of those
calls and their respective routes which are common to both x and y.
(See G. Birkhoff,5 p. 18, ex. 1 and footnote 6.)

An assignment is a specification of what inlets should be connected to
what outlets. The set A of assignments can be represented as the set of
all fixed -point -free correspondences from I to O. The set A is partially
ordered by inclusion, and there is a natural map -y (  ): S ---+ A which
takes each state x E S into the assignment it realizes; the map -y ( ) is
a semilattice homomorphism of S into A, since

x > y implies y (x) (y),

7(x n y) y(x) n (y).

V. ROUTING MATRICES

It will be assumed throughout this work that attempted calls to busy
terminals are rejected, and have no effect on the state of the network;
similarly, blocked attempts to call an idle terminal are refused, with no
change of state. Attempts to place a call are completed instantly with
some choice of route, or are rejected, in accordance with some policy of
routing.

Two mathematical descriptions of how routes are assigned to calls
will be used. The first, the routing matrix, is convenient for writing the
Kolmogorov equations for the Markov processes representing network
operation. The second, called a policy, affords a convenient notation for
the actual determination of optimal routing methods for various net-
works to be described in detail later. Either description is a rule or
doctrine for routing.

A routing matrix R = (rxy),x,y E S, has the following properties: for
each x E S, let Ilz be the partition of Az induced by the equivalence
relation ti of "having the same calls up," or satisfying the same assign-
ment of inlets to outlets; then for each Y E IIx , r, for y E Y is a possi-
bly improper probability distribution over Y, (that is, it may not sum
to unity over Y),

rxx = s (x) - E rzy
YE Ax

and rzy = 0 in all other cases.
The interpretation of the routing matrix R is to be this: any Y E H.

represents all the ways in which a particular call c not blocked in x
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(between an inlet idle in x and an outlet idle in x) could be completed
when the network is in state x; for y E Y, r is the chance that if this
call c is attempted in x, it will be completed by being routed through the
network so as to take the system to state y. That is, we assume that if
c is attempted in x, then with probability

1- E (1)
YE Acz

it is rejected (even though it is not blocked), and with probability r,
it is completed by being assigned the route which would change the
state x to y, for y E Acz . The possibly improper distribution of proba-
bility {rxy , y E Y} indicates how the calling rate X due to c is to be
spread over the possible ways of putting up the call c, while the improper
part (1) is just the chance that it is rejected outright.

This description of routing matrices is a generalization of that used
in Refs. 1 and 2 in that it permits, in the nonvanishing of (1), the rejec-
tion of unblocked calls forbidden in the cited references.

Thus, a routing matrix R is any function on 82 with rxy 0, rx = 0
unless y E Az or y = x, and such that

rxx = s(x) - E
iiEAx

and

E rZy 1,
YE Acx

for all c E x not blocked in x. A routing matrix corresponds to a fixed
rule if r, = 0 or 1 for x y; otherwise it corresponds to a randomized
rule. The convex set of all possible routing matrices is denoted by C.

A policy is a function so: 8 X S-* S such that c,h E x imply

(c,x) E Acz U {x}

co (h,x) = x - h.

It is apparent that a policy is equivalent to a fixed rule; the circumstance
that 90 is defined also for hangups h is useful in the sequel. Varia-
bles icy', are used to denote policies.

The routing rules and doctrines that might be considered here are of
course more numerous by far than those we have introduced above.
In particular, time -dependent rules and history -dependent rules are
natural generalizations. However, since we will be considering only time -
invariant traffic and ergodic Markov processes as representations of
operating networks, such generalizations add little of significance.
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An important point, however, is that the routing methods here con-
sidered are based on a complete knowledge of the state of the system,
i.e., we postulate that we are in the case of "perfect information." This
postulate is grossly unrealistic for present day electromechanical tele-
phone systems; for an electronic system with a very large and very
cheap memory, it becomes realistic: the state of the network can ac-
tually be stored and the routing rule in use represented by a giant trans-
lator. Such a procedure overcomes the obvious impracticality of deter-
mining the state by examination of the actual network, and is actually
used in the Bell System's No. 1 BSS (Electronic Switching System)!

The routing matrices R used in Refs. 1 and 2 had the property that
if a call is not blocked in a state, then it is completed in some way; only
blocked attempts or attempts to busy terminals are rejected. Thus none
of these rules for routing resembles the methods that are at present
likely to be used in practice. However, since C contains rules that reject
certain calls in certain states, even though these calls are not blocked, it
turns out that a large class of routing rules which do mirror what might
happen in practice is included in C.

Some of the simplest routing rules are not based on any knowledge
about the current state of the network. Given a call c that has been
attempted, they provide a list of routes to be tried in order; the first
route found available is used for the call. The list may include all possi-
ble routes for c, or only some of them. It is easy to construct a routing
matrix to represent such a rule. Let ri , r2 , , rn be the routes to be
tried for a call c. For each state x in which c can occur, let r, = 1 if
use of the first ri that is available in x takes the system from x to y,
and let r = 0 for all other y E Ace . If no route for c that is available
in x is among r1 , - , rn , then c is rejected in x even though it may not
be blocked, simply because the "sieve" for finding routes is too coarse.

It was assumed in the previous paragraph that no information about
the state was used. If it is known, e.g., in which element A of a parti-
tion II of S the state currently is, a similar rule can be represented by a
class of lists (of routes to be tried in order), one for each A E II. The
same kind of construction then yields the appropriate R. Here the A
such that xt E A is acting as the "information state."

Thus, many R from C which reject certain calls in certain states de-
scribe a rule which closely resembles what is done in practice, e.g., in
the translator of the Bell System No. 4A crossbar switching system.

VI. PROBABILISTIC ASSUMPTIONS AND STOCHASTIC PROCESSES

A Markov stochastic process xi taking values on S is used as a mathe-
matical description of an operating connecting network subject to random
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traffic. It is assumed that this operation is in accordance with one of the
routing matrices R of Section V. The rest of the process 2c, is based on
two simple probabilistic assumptions:

(i) Holding -times of calls are mutually independent variates, each
with the negative exponential distribution of unit mean.

(ii) If u is an inlet idle in state x, and v 5 u is any outlet, there is a
(conditional) probability

Xh o(h), X > 0

that u attempt a call to v in (t,t h) if x, = x, as h 0.

The choice of unit mean for the holding -times merely means that the
mean holding -time is being used as the unit of time, so that only the
traffic parameter X needs to be specified.

It is convenient to collect these assumptions and the chosen routing
matrix R into one transition rate matrix Q = (qxy) characteristic of xg :

this matrix is given by

1

Nrxy

if y E Bx

if y E Az
qxy =

.r I - X[s( .r) - rxx]

0

if y = x
otherwise.

(2)

In terms of the transition rate matrix Q, it is possible to define an ergodic
stationary Markov stochastic process {x, , t real} taking values on S.
The matrix P (t) of transition probabilities

P,i(t) = Pr{xe = y I xo = x}

satisfies the equations of Kolmogorov

dt
P(t) = QP(t) = P(t)Q, Q(0) = I,

and is given formally by the formula

P (t) = exp tQ.

Since the zero state (the state with no calls in progress) is accessible
from any state in a finite number of steps with positive probability, the
process has only one ergodic class, and there exists a unique nonnega-
tive row -vector

p = , x E
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such that as t co

P(t)

and p satisfies the "statistical equilibrium" or stationarity condition
p'Q = 0, which can be written out in full in the simple form

[I x I Xs(x) - Xr.z]pi = E Py + A E po.y. x E S.
YEAz YEBz

It is possible that a confusion arises in the mind of the reader as to
whether we are talking about central office connecting networks or large
trunk networks such as the toll system. For in telephone traffic theory
these two areas of application are often described by different models:
a "finite -source" model like the present one, in which the conditions of
the inlets and outlets form a significant part of the state of the system,
is commonly used for the former; an "infinite source" model, with groups
of customer's lines reduced to Poisson sources of traffic, is frequently
used for the latter. The reason for this difference is that it has simply
turned out to be sufficient, in the toll case, to restrict attention to the
trunking network as the object of principal interest, and to use the sim-
pler Poisson description of sources.

In principle, of course, the model to be used here serves to describe
either area listed above, although in the toll case it naturally demands
use of a very large number of states. Thus, in the sequel we make no at-
tempt to distinguish the toll case from the central office case. This view-
point is justified by the fact that the results to be obtained are robust
under passage from finite- to infinite -source models, or they can be re-
formulated and reproved in the infinite -source context.

VII. FORMULATION OF THE ROUTING PROBLEM

The most common figure of merit used by telephone traffic engineers
for evaluating connecting networks is the probability of blocking, the
fraction of call attempts that are blocked. It is natural, therefore, to use
this quantity as the objective function in our optimization problem of
routing. It has been shown2 for the process xt to be studied here that if
no unblocked call is rejected the probability of blocking (in the mnemonic
form PrIb11) is given in terms of the stationary state probability vector
p by the formula

E pxQx

Priblj - xEs
z_, p.a.
rES

p'3

P'a
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where
13x = number of idle inlet -outlet pairs that are blocked in state x,
as = number of idle inlet -outlet pairs in state x.
By the same methods it follows that for a process xt defined in terms

of an R E C the fraction of attempted calls which are not completed
(are "lost"), be it because they were blocked or simply rejected, is
given by

7(0 + r)
p' a

where r = frx. , x E SI is the diagonal of the routing matrix R.
We can now replace the informal problem of minimizing, by suitable

routing, the fraction of call attempts that are lost by a precise problem
of mathematical programming, as follows: Choose R E C so as to achieve

min 7163 +
p'a

subject to p'Q = 0, p'1 = 1, and p > 0. (The '1' in 'Of is the vector
with all components 1.) Of the constraints, the first is the equilibrium
condition on p, the second states that the components of p sum to one,
and the third says that p is nonnegative. It is understood, of course,
that Q is to be related to R by (2) or, what is the same, by

Q = H XR - diag (I x I + Xs (x) 2Xrzz) = Q (R)

where H = (11.0 is the "hangup matrix" such that h, = 1 or 0 ac-
cording as y E Bs or not.

Several authors have formulated routing problems for communica-
tions systems. Many of these problems have dealt with systems of the
store -and -forward type, in which information is alternately stored at
and transmitted from a node in the network without setting up a "con-
tinuous path" from source to destination. Such formulations are inap-
plicable to telephone systems. A possible exception, though, is that'
of R. Kalaba and M. Juncosa which, for a given amount of traffic be-
tween each specified source and destination, and a given network having
capacity constraints, attempts to find continuous routes that are best
in the sense of maximizing the delivered traffic by solving a linear pro-
gramming problem.

In its possible application to telephony, this model envisions a given
traffic pattern (i.e., a description of who wants to talk to whom) to be
satisfied at a particular moment, and tries to find a way of routing as
much of this traffic as possible through the network. In our terminology,
a traffic pattern is an assignment a ( ), and satisfying it means finding
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an x E S such that -y (x) = a. The amount of traffic carried is simply
the number I x I of calls in progress. Of course, it is not always possible
to satisfy an assignment. Thus, Kalaba's and Juncosa's formulation
translates into our setup as follows: Given an assignment a ( ) either
find x E S with -y (x) = a, or else if a (  ) is unrealizable, find x E S
which realizes as much of a ( ) as possible, i.e., such that (x) < a and

x I is a maximum. This can be rephrased as follows: If a (  ) is given,
form the cone

K = K (a) = : ,

and within -y-1 (K) pick a state x that is maximal in that I a,I > I y
for each y E (K).

It is to be emphasized that this problem is markedly different from
our form of the routing problem. The former is purely combinatorial in
character. There is no parameter such as the traffic X per inlet -outlet
pair, so the problem involves no probability, and can have nothing to
do with the "grade of service" as customarily employed by telephone
engineers. Furthermore, the whole formulation overlooks the fact that
in present systems call completions must be made without disturbing
calls already in progress.

VIII. PRINCIPLES OF ROUTING

It is important to distinguish methods of routing from principles of
routing. A method of routing is a specific way of accepting or rejecting
attempted calls and choosing routes in a particular system, e.g., that
implicit in the translator of the Bell System No. 4A crossbar switching
system. A principle of routing is a kind of general prescription of what
constitutes* "good" or "optimal" routing; it is the backbone of many
routing methods that might be based on it.

A principle of routing is particularly useful if it has two properties :

(i) It is relatively simple and intuitive to state.
(ii) There is a substantial class of systems for which it describes

the (or part of the) optimal routing method.

In our mathematical setting a method of routing corresponds roughly
to a rule R E C. We shall see that the "best" rule R E C can be ob-
tained by solving a linear programming problem. Now if it should hap-
pen that for an interesting class of networks the solutions of these linear
programs had some common characteristic, some combinatorial property

* Or, more usually, of what someone's intuition tells him constitutes.
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of the sets of states of the networks that served as an alternate descrip-
tion of the linear program solution, then this characteristic or property
could be abstracted into a genuine principle of routing.

Alternatively, one could formulate as conjectures some intuitive prin-
ciples of routing, and then try to determine for what classes of networks
(if any!) these principles did, in fact, describe the optimum routing
methods. This second approach will be followed in the present work; the
rest of this section is devoted to a discussion of some a priori reasonable
candidates for "good" routing rules. All of these candidates are expres-
sions of one and the same idea, namely, that one routing rule is better
than another if it avoids more "bad" states, where a "bad" state x is
one for which 13x is high. This idea is not just an attractive first approxi-
mation to "good" or even optimal routing; it leads at once to conjectures
for which our results later in the paper provide strong support in precise
ways.

In spite of the lack of general theoretical knowledge about routing,
traffic engineers have developed various conjectures and intuitive ideas
about what might constitute "good" methods for choosing routes. These
conjectures are a natural starting place for any rigorous approach to
routing, because the formulation of precise theoretical models in which
routing can be studied at once raises the question, "Which of these
methods, conjectured to be good, can be proved to be optimal in some
theoretical model?" Since many of these methods are relatively simple
to describe, and hence to mechanize, established answers to this question
would have immediate practical applications. Some of these conjectures
will now be discussed.

It is apparent that in a telephone system, putting up a new call can
only increase the number of idle pairs that are already blocked. Another
way of saying this is that in giving service, i.e., in realizing an attempted
call in a connecting network, one is possibly denying service to certain
inlets and outlets presently idle, who might attempt a call in the very
immediate future. This observation has given rise to a number of routing
rules (for systems with blocked attempts refused) of great intuitive
appeal, which can be described collectively by the admonition: To de-
crease (minimize?) the probability of blocking, put in new calls in such
a way as to minimize the additional congestion resulting from the new
calls.

It is illuminating to discuss particular forms of this advice. One form
is this: Route new calls through the most heavily loaded part of the net-
work that will accept them. Another is: Put in a given new call so as to
minimize the chance that the next attempt to place a call be blocked.
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Or: Avoid blocking states, that is, prefer states in which fewer idle
pairs are blocked.

For all the intuitive appeal possessed by these rules, rather little is
known about them. Nevertheless, they provide conjectures that will be
examined in the precise setting of our theoretical model to yield, we hope,
the beginnings of a mathematical theory of optimal routing. Let us see
what these rules enjoin in terms of our model. If we put up a call c so as
to take the system to a state y, the chance that the next event is a blocked
call attempt is

I3y

y + XaY 
Suppose that we just left state x, so that y E Acx . This probability will
be smallest if y was chosen according to the "maximum s(  )" policy,
that is,

s(y) = max s(z),
zEA.,

i.e., if we prefer states in which fewer idle pairs are blocked. Thus, in our
model the second two forms of the above advice coincide.

Another conjecture arises out of consideration of gradings in which
calls overflowing certain primary routes are pooled and offered to over-
flow circuits. Here a natural expectation is that one should always "fill
the holes in the multiple," meaning by this that a primary route should
be used whenever possible, so that the overflow is left available to as
many lines as possible. It will be shown for certain examples that if calls
are accepted unless they are blocked, then this rule both describes the
optimum routing choices, and is equivalent to the "maximum s()"
policy of the previous paragraph.

IX. SUMMARY AND DISCUSSION

In Sections I to VII the problem of routing calls in a telephone net-
work has been formulated as a mathematical one within Erlang's basic
traffic theory. Some routing rules which are intuitively reasonable can-
didates for "good" or even optimal routing were described in Section
VIII.

Since the expansion of fp. , x E S} such that p'Q = 0, p > 0, is

known,L2 it is natural to start in Section X with a consideration of
Pr{ b1} for low traffic : X -> 0. We have

xi

xi!Px = po o(Xl x I), ADO,
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where rx is the number of strictly ascending (in ) paths from 0 to x
which are permitted by R. If x is a blocking state it contributes a term

pox 7..Rx

= 7)0 ± o(X1 I), 0P'aA P'a

to PH U} if no calls are rejected. It follows that for sufficiently low traffic
the policy that minimizes rx is optimal within the policies that reject no
calls. In a similar way, it can be shown that always refusing a call c
cannot be optimal for A sufficiently small, and that there is never any
point in rejecting a call attempt in a state x with

1 s 1 < min { Y 1: yE AS) Oy > 0}

for A small enough.
The nonlinear problem of choosing R to minimize Pr{bl} is reduced to

a linear programming problem in Section XI. This reduction substan-
tially facilitates obtaining numerical results, examples of which appear
later in this summary.

In an effort to identify optimal routing policies, attention now (Sec-
tion XII) shifts away from the formal linear programming approach to
the underlying Markov process. It is shown that minimizing Pr{ b/}, and
maximizing the fraction of events which are successful call attempts,
are equivalent; this fact leads to a direct dynamic programming ap-
proach, in which

and

min PHU}
R Ec

line n1 max E{ number of successful call attempts in n events}

(with the maximum in the second expression over all possible policies
for n events) are both achieved by essentially the same stationary policies.
The word 'essentially' hides the inherent nonuniqueness of optimal
policies due to symmetries in the network and to the possible presence
of transient states.

In Section XIII it is shown, following C. Derman, that minimum
blocking is achieved by a fixed rule.

The mathematical programming problems arising in this new approach
are again of the linear programming type, and are similar to those arising
in Section XI. Our principal interest, however, does not remain with
calculating numerical solutions, but shifts abruptly to the relationships
of these solutions to the combinatorial structure of the network. Thus,
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the second half of this paper consists less of suitable programming prob-
lems than of intuition and combinatorics applied to exhibit (in parte or
in toto) the solutions of these problems and their dependence on and origin
in network structure.

The attempt to discover and characterize optimal policies in a whole-
sale way by appeal to network combinatorics (rather than piecemeal by
numerical calculation) begins in Sections XIV and XV with considera-
tion of some simple examples; these lead to the introduction of some
"monotone" properties (of connecting networks) which impose the con-
dition that (roughly) the relative merit (as far as blocking is concerned)
of states is consistent or continuous, i.e., that if a state x is "better"
than another y, then the neighbors of x are in the same sense "better"
than the corresponding neighbors of y.

Consideration of these properties is justified by the facts that (i)
they appear in the examples, and (ii) they yield a series of closely knit
results (Theorems 7-15) that go far to bear out the heuristic guesses in
Section VIII about the nature of good routing. In particular, in a net-
work with one of the monotone properties, a policy which rejects no
unblocked calls and minimizes the number of additional calls that are
blocked by completing an attempted call differs from an optimal policy
only in that the latter may reject some calls. In other words, the "max
s()" policy is optimal to within rejection of calls.

Each monotone property gives rise to a corresponding isotony theorem
which gives a numerical expression to the relative merits of routes for
calls that are implicit in the purely combinatorial monotone property.
The relevance of these isotony theorems to optimal routing is explained
heuristically in Section XVI. The theory culminates, in Section XVIII,
with two optimal routing theorems based on the monotone properties.
When one of these properties obtains, these results completely answer
the question: Which route should be used for an accepted call when there
is a choice of routes? Determining the extent to which these combina-
torial properties occur in networks of interest appears to be the next
major problem in any continuation of the present study.

It is to be stressed that the monotone properties we introduce serve
only to identify the route that a call should take if it is to be accepted;
they do not in any way help to decide which calls should be accepted.
Except for the low -traffic results of Section X, and the (obvious and
easily proved) fact that in a nonblocking network no call should be re-
jected, the problem of acceptance or rejection of calls remains an enigma.
Some light on it is shed by the numerical results that immediately follow
this summary.
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The paper concludes in Appendix A with the remark that if the per-
formance index is modified so as to put greater emphasis on "early
blocked attempts", i.e., ones occurring soon after the system is started,
then no calls should be rejected. The result is proved in detail for this
index: the expected number of events until the first blocked attempt.
Such a criterion corresponds to trying to avoid the undesirable event, the
blocked call, as long as possible.

We turn now to numerical results obtained by solving the linear pro-
gramming formulation of Section XI for two simple networks. The first
is the three -stage Clos network with 2 X 2 switches depicted in Figs. 1
and 2, and already considered as an illustration of routing in Refs. 1
and 2. The second is a 6 -line to 4 -trunk concentrator in which each line
has access to 2 trunks; it is shown in Figs. 3 and 4. In this second case,
the probabilistic model was modified to make X > 0 the calling -rate per
idle line, rather than that per idle inlet -outlet pair.

In each example, both the minimal probability of blocking, and the
probability of blocking under random routing, were calculated for several
values of X by use of the LP90 program. To be more precise, two linear
programming problems were solved for each example; the first deter-
mined the optimal policy, the second determined the optimal policy
among those policies which assigned random routes to accepted calls.

Several important qualitative features of the optimal routing policy
were the same in both examples and are described together in the follow-
ing list:

(i) The optimal policy rejected no calls.
(ii) The routes assigned by the optimal policy coincided with those

that keep s(  ) as large as possible.
(iii) The optimal policy was the same for all values of the traffic

parameter X examined.
(iv) The improvement over random routing brought about by optimal

routing decreases as the traffic X increases.

= 2 X 2 SWITCH

Fig. 1- 3 -stage Clos network with 2 X 2 switches.
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E

0  0
Ii

,1

Fig. 2 - States of 3 -stage Clos network of Fig. 1.

Under the constraint that accepted calls be routed at random the op-
timal policy was again to accept all unblocked attempted calls.

Results for the Clos network are given in Fig. 5 and Table I. It is ap-
parent that for low X optimum routing gives a loss that is easily an order
of magnitude less than that due to random routing. At high values of
X the difference all but disappears. This behavior is explained in part by
the fact that there is no blocking in the "upper" states of Fig. 2; when
X is very large the system spends all its time in these states; when X is
low, however, the occasion for a choice between states 2 and 4 often
arises and a correct choice makes a significant difference. (At very low
values of X the difference will again decrease because only state 1 will
ever be visited with any frequency.)

Results for the concentrator are shown in Fig. 6 and Table II. They
include a numerical comparison with hand -calculated loss figures from
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unpublished work of S. P. Lloyd dated circa 1953. At that time Lloyd
studied this particular concentrator model, correctly guessed the optimal
policy, proved its optimality for low X, and calculated the loss for some
values of X. This example exhibits the behavior, conjectured in Ref. 2,
p. 275, that a good (here, optimal) policy make certain "bad" states
transient states. The state numbered 9 is such a transient state under the
optimal policy found numerically by the linear programming method.

The present study of routing in telephone networks has suggested a
number of conclusions and conjectures:

(i) The problem of optimal routing of calls in telephone connecting
networks (with full information) can be formulated and solved
with Erlang's classical theory of traffic. In this endeavor, the
contrasting techniques of machine calculation and combinatorial
analysis can be employed either as alternative methods or as
complementary approaches.

(ii) The problem separates into two parts, that of deciding which
calls to accept, and that of choosing routes for accepted calls.
Analytically, the first part appears to be much harder than the
second, which frequently has a simple intuitive solution closely
related to the structure of the network.

(iii) Posed within Erlang's theory, the routing problem can be reduced
to a (usually very large) linear programming problem and at-
tacked numerically, or studied in terms of Markov decision proc-
esses and dynamic programming.

(iv) In an apparently wide class of connecting networks, certain
natural monotone properties and some isotonies based on them

LINES -

TRUNKS

x

x x

x

x

x

x

x

X X

Fig. 3 -6 -to -4, 2 access concentrator.
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EDGES = LINES
VERTICES = TRUNKS

ARROW POINTS TO
TRUNK IN USE

Fig. 4 - States of 6 -to -4, 2 access concentrator.

are the key to choosing optimal routes for accepted calls. The re-
sulting optimal policies are remarkably easy to describe and to
instrument; they agree fully with some of the conjectures de-
veloped over years of practical experience in telephony; they are
even robust under changes of performance index. Naturally,
each example studied here involves a very small network. Never-
theless, the fact that the monotone properties turned up in each
of a substantial number of small networks of diverse structure
suggests that they are also present in larger ones. Whether this is
so is a topic for future research. In any case, the examples we
offer indicate that the theory of routing here developed applies
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equally well to central office networks and to various gradings
and concentrators.

(v) In the interesting area of low traffic, optimal routing can be as
much as an order of magnitude better than random routing;
with high traffic the advantage decreases rapidly. In all the ex-
amples studied, the optimal routing policy was independent of
the traffic A; this suggests that in most cases the optimal policy
is basically a combinatorial feature of the network alone, and is
probably optimal in many probabilistic models of network opera-
tion.

(vi) There are situations in which attempted calls should be rejected
even though they are not blocked. Simple examples of this
phenomenon all seem to be rather unnatural; but J. H. Weber'
has discovered it numerically in trunking networks, and has sug-
gested4 that it is associated with unequal lengths of paths for
calls. The examples we studied numerically in the present work
did not show it; but they had the property that all paths for calls
were of the same length. We conjecture that there is a large class
of "regular, well-behaved, normal, etc." networks in which no
optimal policy rejects an unblocked call, and that in general oc-
casions on which such calls should be rejected are rare. Even if
they occur in practical central office networks, these occasions

0.1
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a 0.002

0.001

0.005

0.0002

0.0001
0.005 0.01 0.02 0.05 0 I 0.2

RANDOM

0.5 1

A

5 10 20 50 100

Fig. 5- Pr NI for Clos 3 -stage network with 2 X 2 switches.
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TABLE I - PROBABILITY OF BLOCKING FOR CLOS 3 -STAGE 2 X 2
NETWORK FOR OPTIMAL AND RANDOM ROUTING

x

Pr(b1)

Optimal Random

0.01 0.00000181 0.00018319
0.05 0.00015926 0.00334468
0.1 0.00087324 0.00960844
0.2 0.00376107 0.02259477
0.5 0.01593861 0.04807122
1.0 0.03146853 0.06360424
2.0 0.04381783 0.06670098
3.0 0.04584041 0.06206897
5.0 0.04233249 0.05152606

10.0 0.03115608 0.03463135
30.0 0.01405820 0.01459520
50.0 0.00901346 0.00922144

100.0 0.00475109 0.00480733

0.6
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0.08
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0 05

0_ 0.04
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0.008

0.006
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0.1

R ANDOM
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0.2 03 04 0 6 0.8

X

2 3 4

Fig. 6 - Pr WI for 6 -to -4, 2 access concentrator for random and optimal routing.
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TABLE II - PROBABILITY OF BLOCKING FOR 6-T0-4, 2 ACCESS
CONCENTRATOR FOR OPTIMAL AND RANDOM ROUTING

Optimal
Random

(S.P. Lloyd) (Author)

0.1 0.0049 0.00536231 0.00864729

0.2 0.02093718 0.02972292

0.4 0.0716 0.07170622 0.08856109

0.7 0.1628
1.0 0.2478 0.23154056 0.24943320

2.0 0.4498 0.44971622 0.46141067

probably should be taken seriously (by a company committed to
giving service) only if they are demonstrably associated with
large amounts of congestion or a near -breakdown in operation.
Hence, finding optimal policies to within rejection of calls may be
considered a "practical" solution of the routing problem originally
posed.

X. SOME COMPARISON THEOREMS FOR LOW TRAFFIC

There are two ways in which a theoretical analysis can substantially
further progress in the problem of routing: (i) by means of local compari-
son theorems that establish that one method of routing is better than
another, and (ii) by means of global optimality theorems that exhibit (in
part or overall) one or more optimal policies which actually achieve the
best possible value of the performance index in use. In this section, we
prove some comparison theorems which are valid asymptotically as the
traffic parameter approaches zero. At first, we restrict the analysis of the
present section to the case1.2 in which no unblocked call is rejected if it is
attempted, so that we avoid the difficult question of deciding whether
an attempted call that is not blocked should be completed or rejected.

For a first glimmer of insight, we shall examine the formula

Pr{bl} = -P'13 , Q = Q(R), R a fixed rule
13'«

valid when no unblocked call is rejected, in the very common situation
in which there is an integer greater than zero, n say, such that there is
no blocking in states with fewer than n calls in progress, and there are
states with n calls in progress in which some calls are blocked. In this
case it is known1.2 that
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PS = Po -,E r.Or o(X"),

n xk k-1
p/ a = Po E -7 H a;o(X"),

k=0 10! j=0

(3)

as A -> 0, wherel''

x = number of paths on S ascending from 0 to x and permitted by R
(Rixl)ox

= the 0,x entry of the J x -th power of R, (4)

and

= number of idle inlet -outlet pairs in a state having j calls in
progress.

(We recall that for the important cases of one- or two-sided networks
= als1 = ai for all x with I x I = j.) It follows from (3) that for

small A the leading term is critical: the blocking will depend principally
on how easy it is to reach a blocking state from the zero state, with this
"ease" measured by the number

E ?..ox = (R.0)0Izi=

= the number of ways in which a blocked call can arise with-
out having any hangups, starting at zero.

If the matrix R is not fixed, but allows some random choices of route,
then this quantity can still be viewed as the "expected number of ways
in which a blocked call can arise without having any hangups, starting
at zero." It is apparent that this number is given by fo , where the
numbers {fz , I x I < n} are defined by the nonlinear recurrence

fix JxI = n
= E min f, x I < n.

E. yEAcx
c not blocked in x

Indeed we have the result:

Lemma 1:

E rzi3x > fo for R E C
1.1=.

Proof: Let R be given and let
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dz =
I xl = n

E x x I <n.
yf Az

We prove the stronger result that dx . It is clear that

do = E rx13. , = x for I x I = n.
izi=n

If (1 .-__:fyforlyI=k+1,thenforlxI= k
(Ix = E rzyd E rrf

ye Az yeA2

c idle in x
c not blocked in x

mi = f
yeAcy

(5)

We shall say that R E C puts x E Son an ascending path to a state
z if and only if 3yo, , Yizi with yo = 0, IIr = i, Yizi = z, and rYiYi+1 =
1 for i = 0, , I z I - 1, and x > 0 is among yi , , yki . Let D
be the subset of all fixed rules R E C such that if I z I = n, and if R
puts x,y with y E Az on an ascending path to z, then r2, = 1 only if,
with c = 7(y - x),

h = min f.,
we Acx

The numbers {fx , I x I < n} are the key to optimal routing for low values
of X, or to put it more picturesquely, they are the key to staying as far
away as possible from the blocking states in { x: I x I = n}, which are
the ones that provide the leading term in PHU} as X 0. We have

Theorem 1: Let R E D and R* E C - D. Then for all X small enough

Pribl1R < Pr{bl}R* .

Proof: Let dz* be defined in terms of R* according to (5) used in Lemma
1. Since R* D, there exist x,y,c, and E > 0, such that

y E A. , ry (y - x) = c, rxi,* = 1

fy nEliAncx fz -F E, (6)

and a maximal chain 0 = yo , yi , Y2 , , yi.1 = a. ascending
in such that

ryiyi+1

Now, using d*

* = 1. i = 0, - , .r - 1.
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= E rzz*clz*
zEAx

= E + fU
Az-(y)

fx + E,

the last inequality a consequence of d* f and the definition of f. Simi-
larly, if d,,,* > f then

dvti = E 41+1*
Ay,-(yi±i)

>

Since yo = 0, we have clo* > ,fo
Setting a = Jo , a* = do*, and

b = E aj ,
k=0 it7 ! j=0

we have the asymptotic forms

a + e
=

a*
pr {b/}n. =

with e,S,E*,5* all o (1) as X -* 0, and a < a*. Since b increases as X - 0

(a - a* - E*)b < a*(3 ab* e*6 - e6*

for all X small enough. This is equivalent to

ab eb ca* + Ea* < a*b E*b a*6 e*6,

a. + a* + c*
b ± 6 b ± 6*

and proves the theorem.
Low traffic analyses of the kind just employed can also shed some

light on the problem of rejecting or accepting unblocked calls. For ex-
ample, if a call c is always refused in every state, then

rxx>= 1

and
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Pr{bl} = (0 r) > 1 + 110
p'a - p'a

->1 as X -O.
ao

However, if no unblocked call is rejected, then Pr{bl} -> 0 as X -> 0.
Thus, always refusing c cannot be optimal if X is sufficiently small.

For another example, suppose as before that

n= min II Y I /y > 0} > 0,
YES

and let c be a call which is refused by R in some state x with I x I < n.
It is easy to see that for the rule R

o(Xlxl)
PHU} [Ti

ao + o(X)

On the other hand, if the rule R1 refuses no unblocked calls,

Pr I blj = n!Xn E n,m0, + 0(xn)

ao o(X)

where the superscript 1 indicates that R1 supplants R in (4). For X
small enough, then

x,., xn
r

lxl! > n! "
and RI is better than R. Thus, there is never any point in refusing an
unblocked call attempt made in a state x whose norm or dimension is
less than the minimum norm achieved by the blocking states, if X is
small enough.

XI. REDUCTIONS TO LINEAR PROGRAMMING PROBLEMS

Our effort to choose, with full information about the state of the net-
work, routes for new calls so as to minimize the probability of blocking
has led, upon the assumption of a simple probabilistic description for the
traffic, to this problem of mathematical programming: To minimize

P1(13 r)
p'a

subject to p >= 0, p'l = 1, = 0, Q = Q(R), R E C.

(7)
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It is relatively easy to see that this problem can be formulated as one
that has a bilinear (or linear fractional) objective function, and linear
constraints. We change variables to U = (uzy) and ucx defined by

Uzi/ = pzrzy x,y E S, y E A.

uex = px E Vzy c E x, Acx i 0,
VEAcz

UXX =

c not

Conversely, we introduce

e E. UCX 
blocked in

p in terms of U by setting

-,x E Uyx if s(x) = 0,

Px =

!XI Y E B.

uzz + E Uxy
YE Az if s(x) > 0.

s(x)

If c is a call which can be completed in state x, then A, 0, and

X : Uxy
YE Acz

is the equilibrium rate at which c is completed in state x, and

Xucz = Xp. - X E u,,
YEAcx

is the equilibrium rate at which c is rejected in state x.
The transformation of variables from p to { U,ucx} necessitates adding

additional constraints if a sensible problem is to result. Evidently, for
c E x not blocked in x

p. = uc. E Uxy
YEAcx

The left-hand side does not depend on c. For different c E x not blocked
in x all these formally different ways of calculating pz must agree, and
it is, therefore, necessary to impose the additional constraint that

c,c E ti (44,. - x) = 7{y: y = z - x for z E Acx} implies

ucz+ E u. =uc,z+ E
yEA.. yEAc,x

The condition pi Q = 0 then gives the condition, for s (x) > 0,

Ill X u,) + E u, = E E yz) + X E
s(x) yEAx yEA. YEAx ZEAy YE Br
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to be satisfied by U. Naturally, the condition U 0 is imposed. We
define R in terms of U by

rxN=Szcrt

0

11.11,

unless

if

y E Az or !I = .r,

y E Az ,+ E
A.

(x) - E r.y if y = x.
YEAz

The normalization condition p'l = 1, finally, amounts ill terms of U to

(ur. E ux)E E E
E Ax = 1.

8(x)=0 IXI y E (x)>0 S(X)

In terms of U the objective function is

x E q! E u,,,x E (uxx + E u,) + Uxx
8(x)=0 ix] y,.11, (x)>0 S(x) YE Az

E E uz + E , (uzz + E uzy)
a(z)1) IXI yEBx es(x)>0 S(x) YEAx

a, ax

It is possible to describe linear programming problems which are
equivalent to our nonlinear problem of optimal routing. Two ways of
reducing (7) to a linear programming problem will now be discussed.
The first is due to A. Charnes and W. W. Cooper.8 Let q = tp, where
the scalar t > 0 is to be chosen so that q'a = a, with a > 0 a specified
real number. Consider now the "adjoined" linear programming problem
of finding q,t,r minimizing q (13 r), subject to q,t >= 0, q 1 - t = 0,
q'Q = 0, q a = a, Q = Q(R), r = r (R) = frz,, x E SI, R E C. (The
argument just described shows that the constraints are linear.)

Theorem 2: For any a > 0, if q,t,r is a solution of the "adjoined" linear
problem, then p = q/t is a solution of (7).

Proof: It is necessary to show first that indeed t > 0. Suppose (1,0,r is a
solution. Then q'l = 0 and q 0 imply q = 0, so that q a = 0; but
q'a = a > 0. Hence, t > 0.

If i/Q = 0 and Q = Q(R), we use rp to mean the vector {rz, , x E 8).
Now suppose that there is a solution p of (7) for which

p'(13

'a
rp) (7'03 + r) r) (8)

P
12,,a a

Now 1//a > 0, because for any R E C the corresponding value of Po
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(0 = zero state, with no calls up) is > 0, and ao > 0. Hence, there is a
0 > 0 such that pia = Oa. Consider q = I = . Then

017/0/ = Fa = a

and -4 ,t satisfy 0, = 0, 4'1 - t = 0. But,

rp) 19V (0 rp) (0 + r) _ C/3 r)
Pia 0-ipia 4'a a

Hence, (8) implies 4' (i3 + rp) > r), because a > 0. This contra-
dicts the optimality of q,t,r for the "adjoined" problem.

A cognate reduction to a linear programming problem can be ob-
tained from a lemma of C. Derman,9 included for completeness:

Lemma 2: The nonlinear function

c x9(.r) = -
d'x

can be minimized subject to x 0, Ax = b, by solving a linear program-
ming problem if (i) Ax = 0, x > 0 imply x = 0 and (ii) x > 0, Ax = b
imply d'x > 0.

Proof: Conditions (i) and (ii) imply that the transformation

d'x
1

\d x,

is one-to-one between Ix >= 0, Ax = and z satisfying z > 0, d'z = 1.
and Bz = 0, where

z =

B = (Ab).

Under the transformation g(x) becomes a linear function. It can be
verified that (i) and (ii) of Derman's lemma apply to the routing prob-
lem (7).

XII. REFORMULATION AS A MARKOV DECISION PROCESS

In Section VII the problem of optimal routing was cast as that of
minimizing the probability of blocking, a bilinear or linear fractional
functional of the equilibrium probability vector p, subject to linear con-
straints. In Section XI it was shown how this problem could be reduced
to a linear programming problem which, however, is at best only sug-
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gestive in identifying optimal policies. We shall now state an elementary
probabilistic result which implies that minimizing the probability of
blocking, and maximizing the fraction of events that are successful at-
tempts, are equivalent. This fact permits a direct dynamic programming
approach through Markov decision processes, and again leads to a linear
programming problem, with the difference, though, that it actually
enables us to study optimal policies for many cases, to be described.

Theorem 3: Let p be an equilibrium probability vector for a process xe
resulting from use of some rule R E C. Let

m = E Ixipz = average number of calls in progress
1E8

then both

and

1 - - 1

1 + X P' (0 +
m.

Fraction of events that =
are successful attempts 2 + X Pi (/(3

in

Proof: For the first formula with s = Is (x), x E SI

(0 r) (0 r)PrIbl) - p'a - p'($+r)
and Xp' (s - r) = m, since the average rate of successes must equal that
of hangups, in equilibrium, and a = s.

The second quantity is

average rate of successes Xp' (s - r)
average rate of events m Xpia 2m Xp'((3 r)

An immediate consequence is:

Theorem 4: Maximizing the fraction of events that are successful attempts
is equivalent to minimizing the probability of blocking.

The value of the preceding observations is that we can now reformu-
late the routing problem as an effort to maximize

1lim - E{ number of successful attempts in n events),
n
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the asymptotic rate of successful attempts when time is counted dis-
cretely, by events.

Since only events are at issue, and the epochs at which they occur are
irrelevant, we can discard the continuous parameter Markov process
{ xt , t real) in favor of a Markov chain { x , n an integer}, with a transi-
tion matrix A = (a,) = A (R) given by

[ I x I + Xazia =

X (Or x = y,

1 y E ,

Nr.r, y E Az ,

0 otherwise.

The stationary vector q satisfying q = A is related to p by

qzPr = (constant)
x Xozz

Then
n-1

E{number of successful attempts in n events) = E A'v
i-0

where A = A (R) and v = v (R) given by

Xs(x) - Xrxrvz -
I x I + X«.

(9)
= chance that first event to occur

starting in x is a successful call.

Thus, the problem of optimal routing can be cast in the form of the
Markov decision processes studied by e.g., R. Bellmani° and R. Howard:"
For R E C and A = A (R) = (a) given by

( x I + Acxx)azy -

the minimum

X (13x r..) x = y,

1 y E B. ,

Xrry y E Az ,

0 otherwise,
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min PHU} = min p'(1 + r)
REC REc p'a

subject to p'Q = 0, p > 0, pal = 1 is achieved by the R which maxi-
mizes the scalar p such that

'11
= lim -E A'v v= v(R), A= A(R), R E C

n i-o

with v given by (9).
The results of Hellman in Ref. 10 were derived under the strong posi-

tivity condition ax >= d > 0 on the matrices A; this condition is of
course not met in our routing problem, since many ax necessarily vanish.
However, since our matrices have only one ergodic set it is still possible
to obtain results like Bellman's provided only that a little care is taken
with the transient states.

Lemma 3: Let p be the scalar defined by
n-1

pl = ?MU Urn .! E A'v, (10)
REC n -.co n i-o

let R+ achieve the maximum in (10), and let g be the vector determined" up
to a multiple of (the vector) 1 by the equation

p1 g = v(r) + A (e)g.
Let R* achieve the maximum in

max {v(R) + A (R)g}
REC

Let F be the transient set of states relative to A (R*). Then the restriction
of g to S -F satisfies the nonlinear equation

p g. = max {v.(R) E axi,(R)giii, x E S - F, (11)
REc

and the right-hand side of (11) depends in fact only on

{g , y E S - F} .

Further, there is a fixed routing matrix R**, agreeing with R* on (S - F)2,
and a vector g* agreeing with g on S - F, such that R** achieves the max-
imum in

pl g* = max {v(R) + A (R)gl.
EEC

Proof: If the nonlinear equation given does not hold for some x E S - F.
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there exists a vector ?. with ?' 0, ?->= 0 such that on S -F

p gx = max fvz(R) E asv(R)g,),
REC

= vz(R*) E azy(R*)gy

Let us restrict all vectors to the I S - Fl components present in S - F,
and the matrix A (R*) to (S - F)2. Then, dropping dependence on R*

p1+?-±g=v+Ag.
There exists an integer k such that Ak > 0 strictly. Left -multiply by
Ak and note that Al = 1 to obtain

p1 Ak(?. g) = Akv Ak+lg.

Since Ak is a positive matrix, and 0, ?' >= 0, there exists a scalar E
such that Ail- > el, so that

(p c)1 Akg 5 Akv Ak+lg.

Iterating this inequality n times we obtain
k -l -n-1

72(p ± e)i Akg < E A iv + Ak+ng.

For n large enough this contradicts the maximal character of p. To find
R** and g*, consider the equation

gz* = -p + max {vx(R) E a.y(R)gy* E axy(R)go, x E F.
REc YEP YES -F

This represents the expected best possiblefortune of a gambler who
starts broke in state x E F, plays by choosing a matrix R paying an
amount p to play, receiving vz(R) if he plays R in state x, and ending
the game with a final payoff of gy if the system leaves F for the first time
by going into y E S - F; i.e., if he passes through xix2  xny playing
R1R2  Rn (with Ri in xi), going out to y E S -F from xn , then he
receives (or owes)

-np E vzi(R,) gi,.

It is apparent that {gx*, x E F} exist; R** on F2 U (F X S - F) is de-
termined by the property that it achieves the maximum above, and on
(S - F) X F it is zero.

Lemma 4: Let p be the scalar defined by the condition
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. 1 n-1pl = max lim - E yvv,
REc n

(12)

and let the vector g be a solution of the nonlinear inequality

p1 g < max iv (R) + A(R)g}. (13)
REC

if R* E C achieves the maximum on the right of (13), then it also achieves
that on the right of (12).

Proof: R* and g are related by

pi g v (R*) + A (R*)g ,

whence, left -multiplying by A' = Ai (R*) and summing on j from 0 to
(n - 1),

n-1 n-1
npi + E Alg E E A'g

p=, i=o j=1

n-i.
pl - -E A'v < o(1) A = A(R*), v = v(R*).

n i=0

This implies that R* achieves the maximum in (12).

XIII. OPTIMALITY OF FIXED RULES

If a routing matrix has any entries other than integers, its use intro-
duces a certain amount of additional randomness into the operation of
the network, over and above that due to the random traffic, and may be
said to represent a "mixed" strategy. It is a natural intuition that since
minimizing the probability of loss is a game played against nature, rather
than against an intelligent adversary, there can be no real gain from this
additional randomization, i.e., that a fixed rule can be found that is as
good as any "mixed strategy". To this effect we formulate

Theorem 5: A fixed rule R achieves

min Pi° r)
p' a

subject to R E C, /IQ = 0, P/1 = 1, P > 0, Q = Q (R).

This theorem is a consequence of the next two results, which, though
they are adapted from work of C. Denim,' are included here for com-
pleteness.

Lemma 5: Let E( ): C Els1 be an affine map of C into I S I - dimen-
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sional Euclidean space, i.e., one such that for real scalars al , a2 0 with

a1 + a2 = 1, and R1, R2 E C,

(aiR1 a2R2 ) = (R1) -I- a2 (R2),

and let E be continuous. Then,

min q'

subject to q 0, g/1 = 1, q/ A = q, A = A (R), = (R) is achieved by
a fixed rule R.

Proof: For R E C and A = A (R), = (R) set,

1 "-Iv(R) = limE A.
n->ao n i-o

By a known Markov chain limit theorem,12 v (R) is well-defined. For
E (0,1) let.

co

V(R,0 = E
j=0

It is clear that for each E (0,1), and each starting state x, there exists
an R. E C

Vz(R, , 12) = min Vz(R,µ).
REC

Then

Vz(R,,A) = min fx(R) + E axy(Rwy(R,i., 01.
REC yEs

The right-hand side is an affine functional of R and so assumes a mini-
mum at an extreme point of C, i.e., at a fixed rule R. Thus, we can con-
sider that Rz is a fixed rule. Since the fixed rules form a finite class,
there exists a sequence II. 1 and a fixed rule R* such that

R.. = R* n = 1,2, .

By a well-known Abelian theorem,13 for R E C

lim (1 - pt)V (R, u) = v(R)

and also
v(R) > lim (1 - )17 )

> lim (1 - V (R* u)

> v (R*).

Thus, R* is optimal.
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Theorem 6: Let r ,n: C Els1 be affine maps of C into J S J - dimensional
Euclidean space, and let and n be continuous, with n (R) > 0 for R E C.
Then

b=
qn

subject to q > 0, q A = q, q'l = 1, A = A (R), = (R), and n = n (R)
is achieved by a fixed rule.

Proof: Let b(R) be the value of q't/q'n for a given choice R, with q
determined by the constraints q > 0, q A = q, q 1 = 1. There exist
R1, R2, E C such that

lim b(Rn) = b.

For n fixed, let t (  ) in Lemma 5 be given by

= -b(Rn)n
Then in the notation of Lemma 5, v (Rn) = 0. By Lemma 5 there exists
a fixed rule Rn* such that

v (Rn*) G v (R)

0,

that is, since q n 0,

b (Rn*) C b (Rn).

Since there is a finite number of fixed rules, there is a subsequence
n1 , n2 , and a fixed rule R* such that Rni* = R*, i = 1, 2, .

Then R* is optimal.

XIV. TRYING TO GET CLOSER TO THE OPTIMAL ROUTING RULES

It is particularly important to try to verbalize, and eventually to
mechanize, routing strategies that are optimal, near -optimal, or by some
yardstick just "good". In this endeavor, the fact that the original routing
problem (7) can be formulated and solved numerically as a linear pro-
gramming problem, while interesting theoretically and perhaps reassur-
ing, is nevertheless of limited usefulness. For this reason we have
attempted to take advantage of some of the special properties of the
problem that are due to its telephonic origins, and to describe at least
parts of optimal policies in terms of the combinatorial properties of the
connecting network upon which they ultimately depend.
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In the second half of this paper we introduce some additional notions
and assumptions of a combinatorial nature. With their aid we are able to
exhibit parts of some actual optimal routing rules. The problem of finding
out something concrete about optimal policies has been so difficult that
we have quite frankly started with (and so far restricted attention to)
cases which can be treated by what T. M. Burford has called "domina-
tion" arguments, which depend on or establish isotony5 properties for
certain networks having suitable monotone structures. The word 'mono-
tone' is used loosely here: more specifically, the networks are to have the
property that the relative merit of states is consistent or continuous, i.e.,
that if one state x is "better" than an equivalent state y, then the neigh-
bors of x are in the same sense "better" than the corresponding neigh-
bors of y.

Although some of the combinatorial properties (on which the results
to be given are based) are strong, we believe that these properties and
the optimal policies (or partial policies) they lead to have a definite
relevance to the practical aspects of optimal routing, if only because
they bear out some of the intuitive conjectures offered in Section VIII.
Our results show not only that these conjectures are "in the right ball-
park," but also the t in many instances they describe optimal policies.

We start our discussion with four simple examples; once the ideas in-
volved are understood, the principles behind them can be abstracted,
and general theorems proved.

It has been shown (Section XII) that minimizing the probability of
blocking is equivalent to maximizing the fraction of events that are
successful attempts, where an event is either a hangup, a blocked at-
tempt, or a successful one. This maximal fraction is the limit, as n be-
comes large, of

1- Ex(n),

where
Ex(n) = expected number of successful calls in n events, if the net-

work starts in state x and an optimal policy is followed. t
We shall base our approach on the vectors E(n).

First example: Consider the overflow system or grading shown in Figs. 7
and 8. There are two groups of lines, each of two lines; the first has ac-
cess to both trunks to the destination, but the second has access to the
second trunk only. The possible states of this system (reduced under the

t Here an optimal policy is one for which the expected number of successful
calls in n steps is a maximum.
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LINE GROUP I

LINE GROUP 2

TRUNKS

'I 2\

Fig. 7 - Asymmetric grading.

= CROSSPOINT

equivalence relation induced by permuting lines within a line group)
form the partially ordered system of Fig. 8. There is only one situation
which demands a choice between alternative routes for a call; it arises
when a call from line group 1 is accepted with no calls in progress. The
two alternatives are indicated in Fig. 8 by the notation "ch": one is to
put the call on trunk 1, leaving no lines blocked, the other is to put it on
trunk 2, leaving 2 lines blocked.

What circumstances make one choice of a route better than another?
In the present instance it is clear that use of trunk 1 for a group 1 call in
state 0 leaves the "high access" trunk 2 free to serve group 2. Thus, at
first glance a route whose use blocked the smallest possible number of
additional calls (over and above those that are already blocked) seems to
be best. It is natural to expect that in state 0 a new call from group 1
should be routed on trunk 1 and not on trunk 2. Indeed, it can be shown
that if such a call should be accepted then it should be placed on trunk 1.
(For small A it should always be accepted, as was proved in Section X.)
Thus, a policy which routes a group 1 call on trunk 1 in state 0 can differ

(I- I)(I- 2) (I -I)(2-2)

THIS NOTATION INDICATES A
H CHOISE 15 POSSIBLE BETWEEN

TWO DIFFERENT WAYS OF PUTTING
UP A PARTICULAR CALL

(1-2): A CALL FROM GROUP 1 IS ON
TRUNK 2

Fig. 8 - States of the grading of Fig. 7.
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from an optimal policy only in that it might accept some calls which the
other rejected, and vice versa.

Rather than proving the result stated above, we shall discuss other
examples, involving different kinds of network: it will turn out that
similar circumstances arise. Indeed, we shall claim that the particular
circumstance on which the result is based is no isolated happenstance,
but a phenomenon common enough to be relevant to the theory of rout-
ing. All examples discussed here, as well as many others, will be covered
by a general result (Theorem 14) proved later.

Second example: Referring to Fig. 2, which shows the reduced state di-
agram of the three -stage Clos network of Fig. 1, we observe that only in
the state numered 4 are there any blocked calls. State 4 realizes the same
assignment of inlets to outlets as state 2, which has no blocked calls. The
difference between the two is that in state 2 all the traffic passes through
one middle switch, leaving the other entirely free for any call that may
arise. This difference illustrates the intuitive rule that one should always
put a call through the most heavily loaded part of the network that will
still accept it. This example was discussed in Refs. 1, 2 where it was shown
(rather laboriously) that if no calls are rejected, then preferring state 2
to state 4 in state 1 is optimal. This result will be an instance of Theorem
14.

Third example: It is to be expected that in some instances a choice of
route for a call is immaterial. The concentrating switch depicted in Figs.
9 and 10 is a simple example of this phenomenon. It is intuitively ob-
vious that, because of the symmetries of the network, it makes no differ-
ence which of the two trunks a call could use when the system is empty
is assigned to it. This insensitivity of performance to routing choices
can actually be deduced from Theorem 7.

TRUNKS

2

LINE GROUP I -

LINE GROUP 2 -

3

Fig. 9 - Symmetric grading.
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(I -1)(I-3)(2- 2) (1-1)(2-2)(2-3)

(1-1)(2-3) (1-1)(1-3) (1-3)(2-2) (2-2)(2-3) (1-1)(2-2)

1-1 1-3 2-2 2-3

Fig. 10- States of the grading of Fig. 9.
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Fourth example: Figs. 11 and 12 show the structure and (reduced) state
diagram for another simple Clos network made of 3 X 3 inlet and outlet
switches, and 2 X 2 middle switches. Again, from scrutiny of the state
diagram we guess that optimal routing will result if no empty middle
switches are used when partially filled ones are available. The notations
`13' in Fig. 12, intended to suggest that the states to the left of the B's
are "better" than those on the right, constitute an expression of the cor-
responding policy, and are explained in the next paragraphs.

2 x2

Fig. 11 -3 -stage Clos network with 3 x 3 outer switches.
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Fig. 12 - States of 3 -stage Clos network of Fig. 11.

To abstract the essential features of the preceding examples into a
general theorem, we start with the observation that in choosing to enter
a state x rather than another y in putting up a call we have always to
choose between equivalent states (x y, in the sense of Section III), in
which the same events e can occur. In particular, the same new calls c
can arise. If it now happens that every new call blocked in x is also blocked
in y, let us regard this as prima facie evidence that x is somehow "better"
than y, and define a relation B 82 by the condition

xBy if and only if x ti y and

c E x, c blocked in x imply c blocked in y.

The relation B is a partial ordering.
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In the first example considered above, (1-1)B (1-2), and B obtains
between no other distinct states; in the second, 2B4, and again B ob-
tains between no other distinct states.

Let us now suppose (for a general network with state set 8) that the
network is run according to a policy and ask what happens to B under
0. That is, more specifically, we look at states x,y such that xBy, and we
consider, for events e that are either hangups or new calls blocked in
neither x nor y, whether or not

p(e,x)BBP(e,y)

If e occurs and cp is used for decisions, then the system moves from x
to cp (e,x) and from y to co (e,y) If (I, (e,x)Bco (e,Y) for all e E x that are
either hangups or new calls blocked in neither x nor y, whenever xBy,
we say that co preserves B. Formally,

ep preserves B if and only if xBy implies io(e,x)Bco (e,y) for
e E x which are either hangups or new calls
blocked in neither x nor y.

In the first example (Fig. 8) there are no new calls c which can be
put up in both (1-1) and (1-2), and there is one hangup (say h) which
can occur in both. Thus, the set of events to be considered is just {M.

Clearly, co (h,1-1) = cp (h,1-2) = 0 state for any p. Since B is reflexive,
we conclude that in this case every co preserves B.

In the second example, a similar situation arises. There are two
events to be considered: one is a new call completable in both 2 and 4
leading to state 6, the other is a hangup leading to 1. Again

cp (e,2) = ep (e,4)

for all io and both events e to be considered, and again any co preserves
B.

As noted, routing has no effect in the third example. However, the
relation B is defined. It can be verified that any co preserves B, and that
in this case B is a symmetric relation, as it should be, since if routing
is to have no effect, then x can only be "just as good" as y if y is "just
as good" as x. These facts can be used to prove that routing has no
effect in this example.

The fourth example, finally, shows the relation B in action. The
notations

x,y states

in Fig. 12 show the irreflexive part of B. (Obviously xBx for all x E S,
and this part of B is not shown in Fig. 12.) The reader is invited to
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verify that the policy 40 of using a partly -filled middle switch whenever
possible does indeed preserve B in this example.

The property of a policy co, that it preserves B, is to be viewed as a
kind of isotony of cp:

xBy implies co (e,x)Rio (e,y), for suitable e.

(See G. Birkhoff,' p. 3.) It can also be viewed as a kind of continuity,
for after all if we think of the set of neighbors N,, of y as the states in

Ny = Ai, U ,

then the property says that if xBy then also zBw where z is a neighbor
of x and w a neighbor of y such that z ti w. In other words it states
that if xBy then also

(N. X N,,) (1 B,

i.e., if it holds between x and y then it also holds between equivalent
neighbors of x and y.

Note that if cp preserves B, xBy, and co rejects in x a call c not blocked
in y, then it also rejects it in y.

For co a policy, let
Ex(n,co) = expected number of successful attempts in n events,

if the network starts in state x and policy 9 is
followed.

The isotonic property that 40 preserve B has the useful feature that it
implies an isotony among the numbers

{Ex (n,40), n > 1, x E S} .

This is the content of the next result.

Theorem 7: (First Isotony Theorem): If yo preserves B, then xBy implies

E.(n,v) E = 1, 2,

Proof: xBy, c E x, (c,y) y imply yo (c,x) x. Hence,

E 1 5 E 1,
cEz c El/

(c.x)=x (eII)=11

and Ex(1,(p) E,, (1,c0). As a hypothesis of induction assume that xBy
implies

Ez(n,,p) Ey (n,co)

for some n 1. We have
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Ex(n + 1,4o) = E
!Xi

,

A +
E9(.,.)(71,0)

cEzACity

rp (c.r)Oz

X Ex(n 40) E 1+ 1 E Ex_h(n0p).
'xi + xax .E. IXI Xax h Ex

(c,x)=x

Since co preserves B, it must be true that xBy implies

(c,x)Rp (c,y)

(x - h)B (y - h),

whence

Ec(c,x) (n,(p) E.,(c,y)(n(p)

(n,c0) E y _h (11.,c0) 

Therefore,

X

Ex(n 1),(p) E
cEY Xau

y, (c,y)x

+
A

Xay

{1 + ET(c,v)(n,s0)1

Ey(n,v) E
E

(c,Y)-11

1
E Ey_h(n,(p)

+ xay yEh

E,(n IA0).

The power and utility of the relation B are further illustrated by the
following comparison theorem for policies. The partial ordering B on S
induces a natural partial ordering B of the policies according to the
definition

e E x, x E S imply co(e,x)Thge,x)

for e a hangup or a call not blocked in x. We note that 0.130 implies that
co and embody the same rejection policy.

Theorem 8: If co.134/, and one of cook preserves B, then xBy implies

Ex(n,,,o) Ex(nok), n = 1, 2,

Proof: yo and 4 have the same rejection policy, so E E(1,#),
and the theorem holds for n = 1. Assume as a hypothesis of induction
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that xBy implies Ex (n,,,o) > Ey(n,11/) for a given value of n > 1. We
have, with pei = Pr { e occurs in x},

Ey(n + 1,0 = Ey( 1,) + E peyEy,(e,v)(n,99).
eEy

But e E y implies (p(e,y)Bili (e,y), and so by the induction hypothesis

Eke,0(n,(P) Ei,(e,y)(noi).

However,

Ey(n 14) = Ev(1,) E P.Eve,y)(n,0
eEv

Ey(n + 1,(p).

Let now xBy, and suppose that go preserves B. The isotony theorem
then implies

Ez(n, + 1, yo) Er, (n + 1, (p)

 Ey(n ± 1, tfr)

If, instead, preserves B, then

(n ± 1, 0)  Ey (n ± 1, tk)

and a repetition of the first part of the argument above with x instead of
y gives

Ex(n + 1, (p) Er(n + 1, ibt)

E (n + 1, IP).

XV. SECOND INTUITIVE APPROACH

In an effort to develop a more general theory than the one that was
begun in the previous two sections, we now make a fresh start at under-
standing the structure of "good" routing; again, we begin with a special
case:

Fifth example: We choose the overflow system or grading depicted in
Fig. 13. There are two groups of lines, one of two lines, the other of three
lines. Each has access to one primary trunk to which the other does not
have access, and they share a single common overflow trunk. The possible
states of this system form the partially ordered system shown in Fig. 14.
Alternative ways of putting up particular calls are marked with "ch",
for "choice".

After inspecting the system and its state diagram, intuition tells us
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TRUNKS

2

x x
LINE GROUP 1 -

LINE GROUP 2

x x

x

x

x x

Fig. 13 - Second asymmetric grading.

that, as a first guess, calls should use the primary trunks whenever they
can, so as to leave the overflow open as much as possible. Let us, on this
basis, formulate some preferences for certain routes.

Clearly, in state 0 a call from group 1 should go on trunk 1, so in state
0 we prefer state (1-1) to (1-3); similarly we prefer (2-2) to (2-3). The
same principle should apply if certain calls are already in progress.
Thus, in state (2-2) we prefer (1-1) (2-2) over (1-3) (2-2), and in state
(1-1) we prefer (1-1) (2-2) to (1-1) (2-3).

If taken seriously and followed, the preferences listed above define a

(1-0(1-3) (1-3)(2-2)

TWO CALLS
BLOCKED

zi --(1-1)(2 -2)(2-3)

ONE CALL
-7 BLOCKED

(1-1)(2-2) (1-1)(2-3) (2-2)(2-3)

ALL OTHER STATES HAVE
NO CALLS BLOCKED

Fig. 14 - States of the grading of Fig. 13.
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policy for putting in calls. We shall show that this policy differs from the
optimal policy only in that the latter may reject some calls, while the
former accepts all unblocked calls. To do this write xPy if state x is
preferred to state y. Thus, the relation P is defined by the conditions

(1-1) P (1-3)

(2-2) P (2-3)

(1-1) (2-2) P (1-3) (2-2)

(1-1) (2-2) P (1-1) (2-3).

We let
E (n) = expected number of successful call attempts in n

events, if the system starts in state x and an optimal
policy is used.

It must be explained here that by "use of an optimal policy" over n
steps we mean simply that we use a policy which will maximize the
average number of successful attempts among those n events; the policies
that achieve this may, for all we know at this point, be different for
different n.

A slight departure from the probabilistic model of Section VI is
necessary here: we assume that an idle line generates calls to the trunk
destination at a rate A > 0, instead of assuming that an idle inlet -outlet
pair generates calls at A. Also, we let ax be the number of idle lines in
x, rather that than that of idle inlet-outlet pairs, and s (x) that of
idle lines that are not blocked.

Theorem 9: If xPy, then

Ex (n) > E (n) n = 1, 2, 3, .

Proof:

E.(1) - As(x)
x' Xa.'

and xPy implies s (s) s(y), so the theorem is true for n = 1. Assume
that the theorem holds for some n > 1. There are four cases, correspond-
ing to the four conditions defining P. We shall give the argument for
the case where

x = (1-1) (2-2)

y = (1-3) (2-2),

and (as we know) xPy; the others are similar.
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Now apparently

1
Ea_1x2-2)(n + 1) -

2 + 3X
{ E(2_2)(n ) Ea -n (n)1

2 + 3X max 1E0. -1)(2-2)(n), 1 -1- E(I-1)(1-3)(2_2)(n)

2 +
2X

3X
max {E(14)(2 -2)(n), 1 -1- Eci-1)(2-2)(2-3)(n)1

and

1
Ea -3)(2-2)(n + 1) - .no...3)(n)1

2 + 3X

X

2 3X
mnx Ea -3)(2-2) ), + E(1-1) (1-3) (2-2) ( n )+

2X

2 + 3X E(1-3)(2-2) (n).

By the induction hypothesis,

(n) E(1-3) (n)

E(1-1)(2-2) (n) E(1-3) (2-2) (n);

hence,

Ex(n + 1) E(n + 1)
for the given x and y.

The point is that each event that can occur leads to a "worse" state
in y than it does in x. Thus, the hangup of the group 1 call leads both
to the state 2-2, a standoff; hangup of the group 2 call takes x into (1-1)
and y into (1-3), and (1-1)P (1-3); one of the possible new calls leads
both x and y to the state (1-1) (1-3) (2-2), another standoff; the other
two possible new calls are blocked in y but not in x, so that by the
induction hypothesis, rejecting one of them and staying in x is at least
as good as having one of these blocked calls make an attempt in y.

We conclude from Theorem 9 that in an optimal policy the calls
which are not rejected are put on the primary trunks if these are avail-
able, and on the overflow only if the primary trunk appropriate to the
call is already busy. This result is entirely in agreement with our original
intuition.

Another example of the same kind is shown in Figs. 15 and 16: the
intuitive preferences shown in Fig. 16 by 'P' are optimal to within
rejection of unblocked calls.
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LINES - 2

\3

TRUNKS

2 3

Fig. 15 - Third asymmetric grading.

We now formalize the principles behind the intuitions that led to
Theorem 9.

Let P be a relation on S, i.e., a subset of 82. We may as well put our
cards on the table and indicate that P is to be interpreted as a relation
of "preference", with xPy meaning "x is preferred to y". If 12 is a func-
tion, and X, Y are sets, the (customary) notation

.x y

means that µ takes X into Y in a one -one manner, while

,u: X Y

means that the wimage of X is contained in y.
We say that P has the strong monotone property if xPy implies

(i)lxi 11/1
(ii)311.4: B. 4-4 By such that z E B. implies zPia

(iii) 3v: A, --> Az such that

v(Acy) Acz for c E y,

z E A implies vzPz.

Let us denote by F. the set of all calls which are free or idle in x, i.e.

F. = {c: c is idle in x} = {-y - x): y E A.}

= {c: c = { (u,v)} C I X S2 with u,v both idle in xl.

We say that a relation P on S has the weak monotone property if xPy
implies

(i)lxi_lid
(ii)312: B. By and z E B. implies zPiAz

(iii) 3v: F ---> F. and c E Fi, , z E Ac

imply 3w E A(yox with wPz. (15)

(14)
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To get the weak monotone property from the strong, define v on
Fy by

v'Y - ) = 7 (vz - x), z E Ay ;

then z E Ac, implies vz E As, and

vc = ,y (vz - x);

thus,

vz E A 0,0x and vzPz.

Keeping in mind the interpretation that `xPy' means that x is in
some sense better than y, we see that: condition (i) restricts P to hold
only between states of the same norm or dimension, because we are
interested only in choosing between states with the same number of
calls in progress; condition (ii) says roughly that to every hangup lead-
ing out of state y there corresponds a hangup in x leading to a state
which is at least as "good" (as the one reached by the hangup in y);
condition (iii) says that for any way of completing a new call c in y
there is a way of completing the same call c in x which leads to at last
as "good" a state (as the one reached by completing that call in y).

It is easily seen that P has one of the monotone properties if and only
if xPy implies that P holds between "corresponding respective" neigh -

(1 -1)(2 - 2)(3-3)

(NI) B (I -I) B (1-2) B (1-3)
(2-2) (2-3) (2 -3) (2-2)

- 1) B (1-2)
(3 -3) (3-3)

Fig. 16 - States of the grading of Fig. 15.

(2 - 2)
(3 - 3)
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hors of x and y. Thus, the monotone properties are similar to the prop-
erty of a policy so that it preserve B. The principal differences are that
here no policy is at issue, and that the meaning of "corresponding neigh-
bor" is weaker than in the definition of preservation. The relationships
to the relation B are further clarified in the following remarks.

If P has the weak monotone property, then xPy implies s (x) > s (y).
If P has the strong monotone property, then xPy implies that every
c E x blocked in x is blocked in y. Further, since we are primarily inter-
ested in comparing equivalent states (i.e., x and y such that x ti y), it is
natural to restrict attention to preference relations P which are subsets
of P It can then be verified that if P has either monotone
property, and holds only between equivalent states (P ), then
PCB.

A "preference" relation should impose at least a partial ordering
among the objects for which it is defined, and so it is by nature transi-
tive. The question then arises whether the relations P that have the
(strong or weak) monotone property are reflexive and transitive. It is
obvious that if P has the monotone property then so does I U P where
I is the identity relation. Now, as is known, every relation P can be ex-
tended uniquely to its transitive closure P, the smallest transitive rela-
tion containing P. We shall now prove:

Theorem 10: If P C 82 has the weak monotone property, then so does its
transitive closure P.

Proof: Clearly P = I' U P2 U P3 U , where the powers represent
relative, not Cartesian, products. It is obvious that xPy implies I x I =
y I, so P has property (i) of (14). Next let xPy, so that there exist

, z2 ' , zn E S such that z1 = x, z,, = y and

Thus, there exist maps ui , 122 ,

z E Bzi implies

Hence, z E Bz implies

i = 1, , n - 1.

, with ui : Bz, 4-* Bzi÷, such that

zPuiz.

ZP,U1Z

MZ.13122U1Z

An -211n -3  " AlZPAn -114n -2  Ai;
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zP II 1.1;)z.

Thus,

has the property that Bx H By and z E Bx implies zP Az. Hence, P
has property (ii). Finally, there exist maps Y1, , v.A. with Vn-i
F+, F zi such that c E zi+1 , z E Acz, implies w E A (vic) zi
with wPz. Let

n-1
= Yi .

i=i

Hence, for each c E Fy E Acy there exist w_,. , , wn E S and
c_1  cn_isuch that

ci = Pici+1 , wi E Acizi = 1, , n - 1.

It is apparent that ci = Pc, w1 C- A (,,,,)z and wiPw , so that P has property

The following result is now immediate:

Theorem 11: lf P has the weak monotone property, and I is the identity
relation, then

(I U P)

is a partial ordering relation with the weak monotone property.
Any relation with the weak monotone property can be extended to be

a partial ordering P that has the weak monotone property. Since is an
equivalence relation between states, and P is a partial ordering, it fol-
lows that P fl ,---, is also a partial ordering.

Theorem 12: (Second Isotony Theorem): If P S2 has the weak mono-
tone property, then

xPy implies Ex (n)EE (n), n = 1, 2, .

Proof: Property (15) (iii) implies that s (x) > s (y) whenever xPy.
Now

E,(1) - Xs(x)
Xaz'
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Since it is assumed that a. = «Ix' we have, by (15) (i),

xPy implies Ex (1)Ey (1).

As an hypothesis of induction assume that xPy implies Ex(n) > Ey (n).
We have

Ex(n + 1) - 1 E max {Ex(n), g(c,x) + max Ez(n)1
lx1 Xax cEr zEAcz

X E Ez_h(n),
ix' + xoix hEx

and a similar expression for E (n + 1). If now xPy, then Ix' = lyi
by (15) (i), and also

Ex-h(n) Egx-h) (n)

by (15) (ii) and the hypothesis of induction. Similarly,

Ex(n) Ey(n).
lxi Acer

X0y

ly1+ Xay

For c not blocked in y, and z E , xPy implies that there exists w E

A(00x with wPz, by (15) By the hypothesis of induction, this
implies that

Eto(n) >= Ez(n).

Since z E A was arbitrary, we find

g (vc,x) + max Etv(n) g(c,y) + max Ez(n).
zEAtoA(re)z

It follows that xPy implies E. (n + 1) > Ey (n + 1).

XVI. RELEVANCE OF THE ISOTONY THEOREMS TO OPTIMAL POLICIES

Let c E x be a call that is not blocked in state x, so that A cx 0. If
the hypotheses of one of the isotony theorems obtain, then it may be pos-
sible to single out some of the states y E Acx as providing ways of complet-
ing c in x which are at least as good as certain others. Specifically, the
sort of comparison we can make is this: If y,z E A. and yBz or yPz, then
y is at least as good as z in the sense that

E (n) > Ez(n), n = 1, 2,

Suppose now that there is at least one y E A. such that yBz for all
z E A.. It then follows that such a y is always at least as good a choice
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as any other state of Acx , in the above sense. A similar result follows if
there is a y E Acx with yPz for all z E Acx . In such situations a policy that
routes c so as to take the system from x to y can differ (so far as x and c
are concerned) from an optimal policy only in the respect that an optimal
policy might reject c in x. This is the sense in which the isotony theorems
can provide the part of the solution of the routing problem which has to
do with choosing routes for accepted calls. Two theorems to this effect
appear in Section XVIII after an aside about equivalence of decisions
and nonuniqueness of optimal policies.

XVII. EQUIVALENCE OF DECISIONS AND NONUNIQUENESS OF OPTIMAL
POLICIES

It is natural to expect that there are often several optimal policies, in
the sense that, for some c and x with c E x and Ac. 0, there are two
choices of a route for c in x which are in some sense distinct routes and
yet are both equally "good". For example, in most traffic models for a
graded or progressive multiple it often does not make any difference
which trunk in a group is used for a call: the possible states resulting
from use of one of the trunks in the group are all distinct, yet all are
equally "good", being "equivalent" under permutations of trunks within
the group. It is intuitively clear that such a nonuniqueness of optimal
policies is due in large part to symmetries in the network under study,
or more generally, to the presence of various equivalences of states (and
hence of routing decisions) under certain groups of permutations of
terminals.t Since some of these equivalences appear in a later proof, we
digress a little for an account of them, first heuristic, then formal.

As we have seen, one of the principal tools in the description of optimal
policies is a combinatorial partial ordering, such as B or P, which implies
an ordering in terms of performance. The discussion to follow is based on
a general partial ordering R, which the reader can assume is contained
in

U A,2
,Ex

and which he can interpret as B or P, if he wishes. t
Let then R be a partial ordering of S and let Y be a subset of S. Cued

by the remarks of Section XVI, we want to use R to compare states; in

It should be noted that the word 'group' is used in this paragraph in two tech-
nical senses, the first from traffic theory, referring to a set of trunks, the second
from the theory of groups.

$ This use of `R' is peculiar to this section, and should not be confused with R
as a routing matrix.
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particular we wish to talk about elements y E Y such that yRz for all
z E Y. It would be satisfyingly simple if at this point we could introduce
the notation

sup Y
R

for that element of Y which bears R to every other element of Y. Un-
fortunately this is usually impossible, because there may be several or
many such "suprema" of Y. In this situation the usual mathematical
trick to use is to pass to suitable equivalence classes. Use of this pro-
cedure is further justified by the fortunate fact that, in the case of several
interesting choices of R and Y, there are several senses in which these
maximal elements turn out to be equivalent. What is more, there is a
natural equivalence based only on R, such that sup Y can, if it exists, be

R

defined in the "quotient" set of the equivalence, i.e., in the image of the
semilattice homomorphism that takes each state into the equivalence
class to which it belongs.

If R = P and P has the monotone property, then all the P-suprema of
Aer are equivalent in this very important sense: If yi , , y, is an
enumeration of all the y E Aer that are best in the sense that yPz for all
z E A,. , then

yiPyi , 1 5 i, j < m

and the second isotony theorem gives

Ey, (n) = Ey (n) n = 1, 2, , (16)

so that as far as performance is concerned, yi , , y, are all "equiva-
lent". In many cases, this fact is based on an underlying equivalence of a
combinatorial nature, much stronger than (16) : e.g., in a trunk group
the different states attainable by different choices of a trunk for a call are
equivalent in the sense that given any two there is a renaming or per-
mutation of the trunks which carries one into the other.

The isotony theorems provide ways of translating a combinatorial
comparison of states such as

xBy, or xPy

into a numerical comparison of the relative merit or value of starting in
each state, x or y. In such a setting it is natural to call x and y "equiva-
lent" if the comparison holds both ways, i.e., if, when interpreting
`xBy' as a (rather strong) precise form of 'x is better than y', we have
both
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xBy and yBx.

Lemma 6: Given two states y,z there exists at most one pair c,x such that both

y,z E Aix .

Proof: If y,z E 21.ez then x = y fl z in the sense of the semi -lattice of states.
Thus, x is unique. If now

y,z E Ac. n Acts

then c = (y - x), = -y (y - x), so c = c.
The foregoing observations are the motivation for the ensuing de-

velopment. With the partial ordering R we associate the natural equiva-
lence relation =R defined by

z -==R y if and only zRy and yRz and 3.A.c. y,z e Acx .

The subscript R will usually be dropped as long as it is contextually
clear what R is being used to define ----. Along with = we introduce the
semilattice homomorphism

r (  ): S { equivalence classes of -=} = S/= -

defined by T (V) = Z: z x} .

The image T (S), i.e., the "quotient" set is partially ordered by the
relation R defined by

T (X)RT (y) if and only u,v u E T(x) and v E T (y) and uRv.

This is the natural homomorphic "contraction" of R to It can be
verified that if T (X)RT (y) and T (y)RT (X), then T (X) = T (y) strictly.

If now Y contained in S is such that there exists a yE Y with yRz for
every z E Y, we use the notation

sup Y (17)
R

for 7 (y). It is clear that in the "quotient" space, an element maximal
with respect to R is unique if it exists at all. Strictly speaking the notation

sup TY
TR

would be better, since it indicates that the supremum operation only
makes sense after the homomorphism. However, (17) will be used, with
the reminder that it is a set, not a state, and the convention that use
of (17) implies the assumed existence of maximal elements.

With the notation (17) we can prove the following natural relation-
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ship between the strong monotone property and the notion of preserva-
tion of B.

Theorem 13: Let

sup Ae,r for e = c
w(e,x)

= x - h for e=h
and suppose that so preserves B. Then B has the strong monotone property.

Proof: xBy implies x y and hence IxI = ly I, so B has property (14),
(i). If xBy, define for z E B2

= - z),y).

Then, since co preserves B

co (y - z),x)Bc0(7 (x - z),y),

and B has property (14) (ii). With xBy still, let

v: Ay -> Ar

be given by vz = co (c,x) for z E Ac,,. Then, since go (c,y)Bw for w E Acy,

co (c,x)Bco (c,y)

B;

so that B has property (14)

XVIII. OPTIMAL ROUTING THEOREMS

This final section contains precise statements showing just how the
combinatorial properties introduced in Sections XIV and XV answer
the question: "Which route should an accepted call use? "

Two policies co and 4 will be termed equivalent with respect to rejections,
written co ,---, if they both reject the same calls in the same states, i.e.,
if q) (c,x) = x when and only when ik (c,x) = x for c E x.

Theorem 14: if cp preserves B, and if c E x implies

ca(c,x) E sup Acr
B

whenever 1p (c,x) x, then

Er(n,,,o) > Er (n,tfr) n = 1, 2, .

for any Ik cp.
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Proof: Ex (1,(p) = Ex (4) by direct calculation. Assume as a hypothesis
of induction that Ex (1,(p) > Ex (n,0) for x E S. We have

Ex(" + 1,(P) = E , {1 + Eigc,x)(n,c0))
rEx X I -1- Aaz

(c,x)Xx

1
Ez(n,c0)

lx1+xax c Ex
fp (c.X)=X

1
2_, Ez_4(n,c0),

x I Xaz hE.

and a similar expression for Ex (n1,0). If now v(c,x) x, then
go(c,x)By for every y E A. ; in particular, 0(x,x) x because co
and so 4/(c,x) E A. , whence

co (c,x)Bik (c,x).

The first isotony theorem and the induction hypothesis now give

Evcc,x)(?1,<P) Evc,z)(n,i0)

E4,(c,x)(no().

It follows that

Ex (n 1,co) Er (n 1,0)

Corollary: If preserves B, and

v(c,x) E sup A.
B

for c E x not blocked in x, then cp is optimal within the class of policies that
reject no unblocked calls.

Theorem 15: 1f P has the weak monotone property, and

sup A.
P

exists for each c E x not blocked in x, then there exists an optimal policy R
such that c E x, y E A. imply either x is R -transient or else

rx = 0 /Mess y E sup Acr .

Proof: Let p be the scalar such that

1 "pi = max lim - E A'y
REc n-.00 n i=1

{v = A(R),
A = A(R).
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We first use an argument of R. Bellman'° to show that the vector se-
quence

E (n) - np1 =g (n)

is bounded in n.

By Lemma 3, there is a vector g* which satisfies

g* pl = max Iv (R) + A (R)g*}
REC

Choose K >0 so that

g* - K1 g(1) g* ± K1 .

Assume, as an induction hypothesis, that

g* - K1 g (n) g* Kl.

We have

g (n 1) = -p1 + max Iv (R) + A (R)g (n)} .

REc

Hence,

-p1 - K1 + max {v (R) + A (R)g*} < g (n + 1)

- p1 + K1 + max Iv (R) + A (R)g*1

g* - K1 g (n 1) g* K1.

Let now

g = lim sup g (n),
n-00

taken componentwise. Let Rn achieve the maximum in.

max { v (R) + A (R)g (n)} .

REC

Given E > 0, there exists no such that n > no implies

gx(n) gz E

for all a; E S. Thus,

v(Rn) + A (Rn)g (n) = v (Rn) + A (Rn)g + A (Rn)fg (n) - 0

v (Rn) + A (Rn)g E

max lv (R) + A (R )g} + E.
R E C
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Hence, since E > 0 was arbitrary,

g p1 5 max (v(R) + A (R)g} . (18)
RE c

Let R* achieve the maximum on the right above. By Lemma 3, R* is
optimal. Let F be the set of transient states relative to R*. The argu-
ment used in Lemma 4 shows that equality must obtain in (18) on
S - F, i.e.,

gz p = max{vx(R) + E ary(R)gy} , xES - F.
REc YES -17

This is equivalent to

x P = max{gz, 1 + max gz}
cEx I x Xax cEArz

c not blocked in x

+ i3.g. +I x I + Xaz 1 1
,x9. --s, xES - F.

Now the second isotony theorem implies that if xPy, then

Ex (n)Ey(n), n .-_. 1

> >

9. gy 

Thus, if c E x is not blocked in x

max gz
z E Aex

is achieved by each and any y E sup A..
P

Let R be any routing matrix such that for y E Ac.

1

0 if y E S - F,

1 only if 1 + gy gz and
rzy =

y E siaup Ac.

Then R achieves the maximum in (18), and so is optimal; it is clear that
it also has the property claimed in the theorem.
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APPENDIX

Expected Number of Events to the First Blocked Call

The purpose of this appendix is to demonstrate that if the index of
performance is changed to one which attaches greater importance (than
does Pr { b/}) to blocked calls occurring soon after the system is started,
then no unblocked call should ever be rejected. This result can be ob-
tained for various indices of performance; we obtain it for the expected
number of events occurring until the first blocked call. This choice of
index of performance has a natural heuristic justification: it corresponds
to trying to put off the undesirable event (a blocked call) as long as possible.
(Time is being measured here in discrete units, by counting events.)

As before we use (p and 1,/, for policies, but here we limit them to rejection
policies, or policies for the acceptance or rejection of unblocked calls.
We may think of as a binary function of c,x with c E x and c not
blocked in x, and interpret co(c,x) = 1 as acceptance, and co(c,x) = 0 as
rejection. A general routing policy, such as described by a fixed routing
matrix R, will be said to be within co if it accepts and/or rejects the same
calls in the same states.

We first introduce the quantities

Ex (co) = Expected number of events until the first blocked or
rejected call under a routing policy optimal within the
rejection policy co, starting in x. t

These satisfy the equations

max E y(,p)
X

Ex(v)
xi + Xs(x)
x + xax x + xa. .Ex

c not blocked in z IIEAcz
(c,x) = 1

1 E Ei_h(v).
I x + xa. hE.

Our object will be to pick the best rejection policy, i.e., to choose g so
as to achieve

max E. ((p).

We next define, for each fixed routing matrix R

Ex (R) = Expected number of events until the first blocked or
rejected call, starting in x and using the policy R.

t The word 'optimal' here refers, naturally, to the fact that the (not necessarily
stationary) policy followed makes the expected number of events to the first call
(rather than Pribll , or some other index) a maximum.
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For fixed 40, let R* = R* ((p) = (r zy* ) be a routing matrix with the prop-
erty

r xy

if c E x such that y E A
and E (49) = max E z (s,),

zEdcz

(c,x) = 1,

0 otherwise.

It is clear that at least one such R* exists, that it is within co, and that it
defines a stationary policy for which

E (R* ) = E (v)

We now partially order all rejection policies thus:

L- 4 if and only if 49 (c,x) > ,y (c,x) for c E x not blocked in x.

Let 61 be the set of rejection policies. The principal result is that E () is
isotone on the partial ordering of R, expressed in

Theorem 16: co 4' implies E (v) > E (0).

Proof: For I S I -vectors v define the transformations T , E a by

ax c

1
(T 0

X I

+)x = max vy
X Xax h Ex

E Vr-h
Es YE Acz(c.x)1

c not blocked in x

With
x I + Xs( x)

bx -
X Xa.

the equation for E (v) becomes

E(49) = T E ((p)

It is evident that if v 0 and 49 > 0, then

To

Furthermore, each T , 61, is a monotone transformation in that

v > w implies T T,w.

Hence, v >= w > 0, co 4' imply

b To > b Tow.

For 4 z 4', then, consider the rectangular parallelopiped

={v: 0 v E (co)} .
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For v E 63 we have

E (co) = b T (go) b T,,v,

so that To : 63. It is obvious that 63 is closed and that To is continu-
ous. Hence, by Brouwer's fixed point theorem there is a v E (S) satisfying

v = b To.

We next show that v is actually the unique solution of this equation,
so that v = E(0) E (o). Introduce the norm II v II = max vx . The

E

case in which the network under study is nonblocking and IP rejects no
calls is trivial. Assume then that there exists a state x and a call c E x
such that either c is blocked in x or c is not blocked in x and is rejected
by IP. This implies that the "matrix" part of To is strictly substochastic,
and hence that for some n

II II < 1.

Thus, v = E (0).
It is an immediate consequence of Theorem 16 that if g,* (c,x) = 1 for

c E x not blocked in x, then

E ((p*) = max E (so).
+vE61
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Random Tropospheric Angle Errors in
Microwave Observations of the

Early Bird Satellite

By J. H. W. UNGER
(Manuscript received June 16, 1966)

A simplified analytical model of tropospheric random variations in angle
measurements is described. This model is used to predict the minimum and
maximum power density spectra between which the tropospheric random
angle errors of observations on the Early Bird satellite are expected to lie.

The apparent angular position of the Early Bird satellite was then meas-
ured at microwave frequencies with the large horn -reflector antenna at the
AT &T station near Andover, Maine. Random variations in the azimuth
and elevation angles have been observed and recorded. The analysis of these
records results in a description of the observed random angle variations by
their power density spectra.

A comparison of the predicted power density spectra from the model with
the observed spectra is made. It is concluded that the observed random angle
variations are indeed caused by random tropospheric refraction.

The feasibility of acquiring data on atmospheric propagation effects,
particularly tropospheric angle errors, with the aid of geo-stationary satellites
is therefore also demonstrated.

I. INTRODUCTION

1.1 Objective of this Paper

The performance of earth -based radar and optical systems is ulti-
mately limited by temporal and spatial random variations in the refrac-
tive index of the tropospheric propagation medium. It is the objective
of this paper to present a method for predicting random tropospheric
angle errors in such systems, and to compare a prediction with micro-
wave observations made on the Early Bird satellite.

1439
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1.2 Problem Approach

The scintillation or twinkling of the stars which is experienced in ob-
servations through the earth's troposphere is a. familiar effect of the
random variations in the refractive index of this propagation medium.
Astronomers have known for a long time that the troposphere actually
causes variations in at least four characteristics of the received star light,
namely: (i) the intensity, (ii) the spectral distribution of the intensity,
(iii) the shape of the telescopic diffraction image, and (iv) the apparent
angular position of the star. Scientific studies' of these effects seem to
concentrate mainly on the intensity scintillations. The random varia-
tions in the other characteristics, especially in the apparent angular posi-
tions of stars, are treated in much less detail.

However, in those radar and optical systems which are used to measure
the position (and its time derivatives) of both distant and near objects
(such as aerospace vehicles) the random tropospheric angle variations
assume great importance. For the analysis and synthesis of these sys-
tems, it is valuable to accumulate the knowledge on the random tropo-
spheric errors in form of a sufficiently general model.

Such an analytical model of tropospheric random errors in the position
measurements and their time derivatives in radar and optical systems
has been developed. Among other capabilities this model also permits
the prediction of the random tropospheric angle variations for specified
sets of tracking situations and system parameters. The prediction is
made in terms of minimum and maximum power density spectra (PDS)
between which the observed spectra are expected to lie.

The choice of PDS for the characterization of the random errors is
necessary because the relation between errors at two points in this sys-
tem is usually a function of the error frequency (f). The resulting PDS
further permit (i) subsequent studies of the effects of frequency de-
pendent data processing operations (smoothing, calculation of deriva-
tives, prediction, etc.). (ii) detailed comparison with errors from other
sources, and (iii) application of the optimization methods described by
H. W. Bode, C. E. Shannon, and S. Darlington.' Values for the more
familiar variance (6,2) or standard deviation (er) of these random errors
at the output of these processes may then be obtained with a straight-
forward integration of the output PDS (see Section 1.4 below).

Within the model, the predicted PDS of the random tropospheric
angle errors are analytically calculated by operating with certain model
functions on a model power density spectrum which is given in the range
coordinate. This range model PDS represents the pooled data on tropo-
spheric random refraction. It is based upon observations of random
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variations in the tropospheric refractive index, and in range and phase
measurements mainly made at the National Bureau of Standards.4,5.6.7

The successful launch of the Communications Satellite Corporation's
Early Bird Satellite on April 6, 1965, and its subsequent stabilization in
an almost perfect geo-stationary orbit, provided an opportunity to test
the model. For this purpose, azimuth and elevation angle measurements
on the microwave beacon of the Early Bird satellite were made with the
large horn -reflector antenna at the American Telephone and Telegraph
(AT &T) Station near Andover, Maine. Most of this ground equipment
was previously described in detail.9,10,11,12,13,14,15 A brief description of the
Early Bird satellite may be found in Ref. 16.

The resulting angle error measurements are particularly valuable for
comparison with the theoretical model since they are obtained under two
unique conditions provided by a geo-stationary satellite as a target.
First, the propagation path goes through the entire atmosphere so that
the observed angle errors include possible effects of high altitude turbu-
lence, which are impossible to obtain with Earth based targets. Second,
the angular tracking rates are negligible relative to the effective wind in
the troposphere with which the refractive index anomalies pass through
the propagation path.

Thus, the analysis of the angle error measurements and the prediction
of the expected random angle errors for the geo-stationary satellite are
considerably simplified compared to the analysis and prediction for the
more frequent aerospace targets (aircraft, missiles, low satellites) which
have large apparent angular velocities and motion disturbed by forces
unknown in the necessary detail. The effects of temporal random varia-
tions of the refractive index in the Earth's atmosphere on the angle
measurements, integrated along the line -of -sight between a ground an-
tenna and a geo-stationary satellite should be observable in an almost
pure form.

1.3 Scope of this Paper

In this paper, a simplified version of the model of random tropospheric
errors is first described, which permits the calculation of the predicted
minimum and maximum PDS of the tropospheric angle errors for track-
ing tasks involving one almost stationary point target and a single ob-
server (single -site radar).

Next, the presented model is used to calculate the numerical values of
the predicted PDS of random tropospheric angle errors for the specific
tracking situation of the Early Bird observations.

The methods and specific circumstances of data acquisition for one
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twenty minute period of observations of the Early Bird satellite from the
AT &T ground station near Andover, Maine are then described. Another
section is concerned with data processing and analysis; it includes the
time series of observed azimuth and elevation angles, the calculations of
their power density spectra and confidence limits, and estimates of the
manual chart reading error and of the effects of thermal receiver noise.

Finally, a comparison is made between the PDS of random tropo-
spheric angle errors predicted with the model and the PDS of the ob-
served random angle variations.

1.4 Scaling of Power Density Spectra

In this paper, the random variations of the observed azimuth and ele-
vation angles will be described by their power density spectra (PDS).
The numerical computation of the PDS from the time series of data is
made by the indirect method described by Blackman and Tukey.17
However, the scaling of the PDS in this paper deviates from that of
Blackman and Tukey by defining the variance 0-2 of the random error as

62 = Pfildf (1)

Thus, the PDS PIA is valid only for positive frequencies, f > 0. The
power spectral density is

d(cr
(2)2)dfPlf1 =

of the variance contribution d(0) to the random error, per unit frequency
bandwidth, df, at the frequency, f.

II. PREDICTION OF RANDOM TROPOSPHERIC ANGLE ERRORS

2.1 Model Concept

The analytical model of random tropospheric errors in radar and op-
tical systems which has been developed permits the calculation of the
power density spectra, and variances of range, phase, range difference,
and angle errors, and their time derivatives from a basic pool of model
data with the aid of certain model functions. This general model ac-
commodates many different sets of system parameters, and is flexible
enough to allow modification for its continuing improvement based upon
the analysis of additional data.

During the development of the model the usual lack of sufficient data,
and the non-stationarity of the tropospheric refractivity field soon made
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themselves felt. It was realized therefore, that only an approximate
model of the real troposphere could readily be constructed, which neces-
sarily would yield approximate predictions. However, it was found that
this approximate model was good enough to allow the useful prediction
of tropospheric errors in several interesting cases of tracking system
analysis and synthesis.

In the following part of this paper a simplified version of the general
model of random tropospheric errors is described, which is limited to the
prediction of the power density spectra of the random tropospheric errors
in the angle measurements made by a single -site radar (or radio tracker)
on an (almost) stationary target.

The particular coordinate of radar measurements selected for the col-
lective description of the pool of basic model data is the slant -range
coordinate. In this approach, all available observations of random tropo-
spheric errors are first normalized to certain model conditions, and trans-
formed into the slant -range coordinate. An analytical power density
spectrum (PDS) at the lower limit of these normalized and transformed
observations is then defined as the model PDS in range, P.Ifj, where f
is the (error-) frequency.

The derivation of the PDS for the random tropospheric angle errors,
and for other than the model conditions, is then achieved by processing
the range model PDS, Pm{f}, with certain power gain functions, called
the model functions. These model functions depend on such parameters
of the tracking situation as the antenna diameter, slant -range and eleva-
tion angle of the target, weather, and wind.

It may be noted particularly, that in this simplified version of the
model it is not necessary to do any explicit processing in the space do-
main. Based upon the assumption of an isotropic, and frozen turbulence
field of refractive index anomalies in the troposphere, all processing is
confined to the frequency {f} -domain.

The entire model also can be used in an inversion of the computational
flow to yield, from new observations, additional information on the basic
range model PDS, Pfliffl , and on the model functions.

2.2 Assumptions and Limitations

The simplified analytical model of tropospheric random errors in radar
and optical systems is subject to a number of assumptions and limita-
tions:

(i) The model is intended to yield tropospheric errors in tracking
tasks where one point target is directly observed within the local horizon
along a line -of -sight (LOS) by a single observer.
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(ii) It is assumed that the random errors are small, thus the model
functions are linear in the sense of being independent of the magnitude
of the errors,

This assumption is justified by the finding that the random errors in
the observed quantities (range, angles) have relative magnitudes of only
one part in 105, or so.

(iii) It is assumed that the random errors are stationary during the
calculation, or observation of one PDS. The spatial and temporal non-
stationarities of the random tropospheric errors are only considered by
the introduction of the "global" weather functions. Local anomalies, as
well as diurnal and seasonal variations of the tropospheric random errors
thus are not separated here. It is believed that more detailed knowledge
in this respect is better obtained by direct measurements under the
particular local circumstances of actual tracking situations.

(iv) It is assumed that the random errors due to the tropospheric
anomalies can be treated as if they were caused by the motion of a locally
isotropic field of "frozen" turbulence through the line -of -sight with an
effective wind speed (u) normal to the LOS.

(v) The wavelength (X) of the transmitted electromagnetic waves is
assumed to be small, say X < 10 [cm], in order to avoid basic theoretical
difficulties which are manageable only if X << 1, where 1 is the characteris-
tic length of the tropospheric anomalies.' ,2 This assumption is also im-
portant in order to avoid the effects of random propagation through the
ionosphere.

(vi) The size of the antenna system is small with respect to the diame-
ter of the earth (flat earth assumption).

(vii) The size of the antenna system is small enough to avoid the lack
of correlation between the refractivity anomalies at large distances on
the surface of the earth.

2.3 Model Functions

2.3.1 Model Power Density Spectrum in Range, 13,,,In

The conditions to which the available data4'5'6'7 on random tropo-
spheric range, phase, and refractive index variations are normalized are:

(i) effective tropospheric path length = Lm = 15 [km];
(ii) effective wind speed normal to LOS = um = 1 [m/sec];
(iii) surface refractivity = N. = 106 (n, - 1) = 313, this value is

the U.S. average,8 and n, is the equivalent refractive index;
(iv) known effects of variations of the surface refractivity are not

corrected during data acquisition.
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After transformation to the selected range coordinate the model power
density spectrum, P.{ IL is then derived as an analytical approximation
to the lower limit of all observations.

The derived model PDS in range consists of five branches, which are
linear in a log (power density) versus log (frequency) plot, namely:

9.6 X leo f+2 [m2/Hz]

for 0 < f < 2.5 X 10-8 [Hz]

1.5 X 10-3/4 [m2/Hz]
for 2.5 X 10-8 < f < 1.0 X 10-5 [Hz]

4.7 X 10-11 T2'5 [m2/Hz]Pia = (3)for 1.0 X 10-5 f 1.0 X 10-3 [Hz]

1.5 X 10-12 f-3 [m2/Hz]
for 1.0 X 10-3 < f 1.0 X 10+2 [Hz]

1.5 X 10-61-6 [in2/Hz]
for 1.0 X 10+2 f co [Hz]

where the frequency f is to be inserted in hertz. This PDS is plotted
in Fig. 1.

2.3.2 Angle Scale Function, Se

The PDS of random tropospheric angle (a) errors for a single antenna
radar are obtained from the range model PDS by operating on Pmffl
with the angle scale function, S. . The derivation of this function is
based upon the fact that refractivity anomalies of characteristic length
1, or of wavenumber K, which drift through the LOS with the effective
wind speed um cause random error components of frequency

f = u,/1 = icum/27. (4)

To simplify the analysis the circular antenna aperture of diameter d
is now approximated by an interferometer system of equal angle ac-
curacy and baseline length

B = 0.626 d (5)

which lies in the plane of the angle being measured. The angle measure-
ment is thought to be indirectly obtained by a range -difference (or phase -
difference) measurement across the effective baseline length B. The
tropospheric refractivity anomalies disturb this range -difference measure-
ment to an amount that depends on the characteristic length land on the
antenna diameter d.
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Fig. 1 - Model power density spectrum, P,{f}, of tropospheric random errors
in the range coordinate versus error -frequency, f, in a log -log plot. Pni{f} is valid
for the model conditions in Section 2.3.1. The tropospheric anomalies have the
characteristic length 1.

It is found that for relatively short characteristic lengths

1 <li=2d
which cause the high error frequencies

f >= .11 = um/li = 0.5 u,n/ d

(6)

(7)

the random range errors due to these anomalies at the two ends of the ef-
fective baseline length B are practically uncorrelated with each other.
Thus, they cause a power density of the random error in the range -differ-
ence measurement that is twice as large as that of the random error in a
single range measurement. Analytically, this finding may be expressed
with the aid of a range -difference scale function

ISAR = 2 for f = 0.5 u,/ d. (8)

The tropospheric refractivity anomalies with characteristic lengths
larger than the critical length 11, namely

1 = 2d (9)
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cause the lower error frequencies

f fl = 11,./11 = 0.5 um/d.

1447

(10)

In this frequency region, the induced random range errors at the two
ends of the effective baseline B are more and more correlated as the char-
acteristic length is increased. It is found that with respect to the range -
difference errors across B the antenna behaves like a high pass filter with
break frequency fl . Analytically, the resulting reduction in the power
density of the low frequency random range -difference errors may be ex-
pressed by another branch of the range -difference scale function, namely

SAR = 2 WO for f S fi = 0.5 um/d. (11)

The multiplication of the range model PDS, Pniffl, with the two
branches of SAR in their respective frequency regions would result in a
PDS for the random tropospheric range -difference errors across the base-
line B under model conditions.'

The last step in the derivation of the desired angle scale functions is
based upon the assumption of small angular deviations relative to the
axis of the antenna system. Then the angle error a is simply related to the
range -difference error OR and the effective baseline length B by

a = AR/B. (12)

In terms of power densities, this relation permits the calculation of the
angle scale function Sa from the range -difference scale function SA', and
B, in general, as

Sa = &R/B2. (13)

The combination of (5), (8), (11), and (13) finally yields the angle
scale functions in two branches, namely

Sa = 20 (f/u,)2 for 0

Sa = 5/d2 for fi f

The breakfrequency of the angle scale function is

(14)

fi = 0.5 um/d, (15)

where um = 1 [m/sec] is the model wind speed taken normal to the LOS
and in the plane of the angle measurement, and d is the diameter of the
circular antenna aperture.
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2.3.3 Aperture Smoothing Function, cl3a

The spatial smoothing on tropospheric random error components that
are due to refractivity anomalies of small characteristic length (1 << d)
is another function of the antenna diameter, d. Here the combined effects
of several small refractivity anomalies tend to cancel across the antenna
aperture, hence the antenna acts like a low-pass filter in the error -fre-
quency {f} -domain. A simplified aperture smoothing function which
analytically represents this effect is

4a= 1 for 0< f f2

where

1' (16)
(Da = (12/1)2 for 12

12 = 2 um/d (17)

is the breakfrequency for aperture smoothing in angle measurements.

2.3.4 Effective Path Length Function, A

From theories of propagation through a uniformly turbulent random
medium, as for example given by Chernov,1 it is known that the vari-
ance of phase, range and related errors is proportional to the path length.
This proportionality holds in both the near -field and the far -field regions
of the "scattering" refractivity anomalies of a given characteristic length,
1. Therefore, it is possible to account for an effective tropospheric path
length, L, which is different from the model path length L,,, by multi-
plying the power density with the effective path length function

A = L/L, for 0 < f < 00. (18)

The required effective tropospheric path length, L, may be calculated
by integrating over the geometrical length differentials along the LOS,
which are weighted with the square of the local average refractivity at
the height of each layer of the atmosphere. The necessary data on the
variation of the refractivity with height have been taken from Bean and
Thayer.' If the height of the target is h2 > 10 [km] above the surface of
the Earth, and the apparent elevation angle is E. > 3°, the effective
tropospheric path length becomes

L = Lo/sin Ea , (19)

where

L = (L)2 (6.61 - 0.01N8)[km]
° N,1 (20)
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is the effective height of the troposphere for surface refractivities

250 N, 450,

and N. is the model surface refractivity.
In this case, which is relevant to many radar and optical tracking

tasks, one thus has the effective path length function as

(N./N.)2
A = ' (6.61 - 0.01N8)[km] for 0 < f co. (21)

L. sin E.

2.3.5 Weather Functions, TV

As stated in paragraph 2.3.1 the model power density spectrum,
Pmffl , is defined as the lower limit of the available observations normal-
ized to the model conditions. Essentially all (say 99 percent) normalized
observations exhibit larger errors than given by P.. Consequently, all
PDS directly derived from P{A for other coordinates and tracking
situations also would only give the expected minimum errors. Since it is
frequently desired to state more about the expected distribution of the
derived PDS above the expected minimum level we have introduced cer-
tain power gain functions, called weather functions, TV, . These are de-
fined as the maximum weather function Wmax{f} which covers the maxi-
mum errors previously observed, and the median weather function
Wined{ f}. On a "global" basis (actually only embracing all circumstances
of previous observations entered into the model data), it is expected that
50 percent of the measured PDS will lie above and below the PDS pre-
dicted with Wmedifj , and essentially all (say 99 percent) of the measured
PDS will lie below the PDS predicted with W...{f} .

The maximum weather function derived from available observations4'
5,6,7 is

6 for 0 f 1.00 X 10-5 [Hz]

1.89 X 10+81+1.5
for 1.00 X 10-5 < f < 2.23 X 10-5 [Hz]

Wilinxtfl = 20 for 2.23 X 10-5 < f < 1.00 X 10-3 [Hz]

6.32 X 10+2.1+0'5
for 1.00 X 10-3 f 1.00 X 10-i [Hz]

200 for 1.00 X 10 f < ciD [Hz]

where f is in hertz.
The median weather function is taken as

(22)
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wrnedifl = (w...{f})°.5. (23)

Both functions are plotted in Fig. 2. Note that Wmin = 1 by definition.

2.3.6 Affective Wind Functions, U

The purpose of the effective wind functions, U, is to introduce other
magnitudes of effective wind speed, u. um , into the model. The deriva-
tion of these effective wind functions rests upon the assumption that an
isotropic, frozen turbulence field of refractivity anomalies exists in the
troposphere which moves through the LOS with a constant effective
wind speed component, ua , normal to the LOS and in the plane of the
angle coordinate a. With this assumption, a given anomaly causes an
angle error of a magnitude that is independent of ua , and of a frequency

to3

tot
C4 -

to

1

-8 -7 -6 -5 -4 -3 -2
LOGto(f/HZD

q= MAX 200

q = MED
14.1

0 2

Fig. 2 - Maximum and median weather functions, Wmax{f) and Wmod
respectively, versus decadic logarithm of the error frequency, f.

3

that is proportional to ua . It was found that a PDS that is given in
{f,u,,,} -space as a sum of branches of the form

Pa' = Po' (f/f0)7 for 1.77i, T1 C f C fm,ma. (24)

is transformed into an equivalent PDS in fLual-space by the relations

for

P a"{f,v = Up  13:{f,uni}

Urfm,min = fa,min f fa,max = Uf .fm,maxj

where the effective wind function for the transformation of the power
density is

(25)

Up = (umiva),1-1 (26)

and the effective wind function for the transformation of the frequency
regions
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Uf = Haium. (27)

In these relations the fa,min and fa,max are the limits of the frequency
region in which Pa" is valid after the transformation to {f,ua} -space.

In the special case of small angular velocity of the LOS, the equivalent
wind due to the angular rate is negligible compared to the natural winds
in the atmosphere. The effective wind speed is then simply

Ha = wa (28)

where wa is that component of the natural wind which is normal to the
LOS and in the plane of the angle a. In this plane of the angle a, the
atmospheric refractivity anomalies, on the average, appear to move
through the LOS with the speed wa .

The calculation of the effective wind speed for azimuth (a --+ A)
angle errors depends on the geometrical relations between the LOS and
the natural average wind vector, iv, Fig. 3. If A is the azimuth angle of
the LOS, and 5 is the azimuth of the wind vector, their difference

f3= -A (29)

can be used to calculate the effective wind speed for azimuth angle er-
rors

HA = Iw,,I = I iv I -I sin 13 I.

With the horizontal LOS component (see Fig. 3)

wi = 'eh I cos 13

(30)

(31)

the effective wind speed for elevation errors similarly becomes, Fig. 4,

or

uE = 1w51= Iwi HsinE.I

HE = I iv I I cos  sin Ea I.

(32)

(33)

Only the magnitudes of the effective wind speeds are of interest in this
special case of small angular velocity of the LOS, and a single -site radar.

2.4 Computation of the Predicted PDS

In the prediction of the PDS of random tropospheric angle errors for a
particular tracking situation numerical values are inserted for all inde-
pendent parameters in the model functions given above. The range model
PDS, P,,,{ f}, is then multiplied by the model functions, within the limits
of the stated frequency regions, in the following sequence: angle scale
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NORTH

OBSERVER

Fig. 3 - Horizontal projection of LOS, wind vector iv, and azimuth angle A;

function, aperture smoothing function, effective path length function,
weather function, and effective wind functions.

For the tracking situation of the Early Bird observations on May 7,
1965 the numerical values for the parameters and model functions are
given in the Appendix. The operation of these models functions on the
range model PDS, Pni{f), resulted in four PDS, namely a predicted mini-
mum spectrum and a predicted maximum spectrum for each of the two
angle coordinates azimuth and elevation. The resulting PDS PA,Min)
PA,max and PE,min 7 PE,max are plotted over the interesting frequency
range in Figs. 12, and 13.

III. OBSERVATIONS OF RANDOM TROPOSPHERIC ANGLE ERRORS ON THE
EARLY BIRD SATELLITE

3.1 Data Acquisition

3.1.1 Method and Equipment

For the acquisition of the data on random angle variations in azimuth
and elevation, the apparent position of the microwave beacon (frequency
about 4000 MHz) of the Early Bird satellite was measured with the horn

OBSERVER
Kcym4n9;;97.-x.x.x.x.m.7.;.:9:9;.,

TARGET

Fig. 4 - Projection of wind vector into vertical plane through LOS with
apparent elevation angle E. .
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antenna (aperture diameter d = 67.7 ft) and its associated equipment.
During these measurements the communications carrier of the satellite
was switched off; this resulted in an increase in beacon signal strength
to such a level that the thermal receiver noise in the obtained angle
measurements was negligible compared to the desired tropospheric
random errors.

The signal flow through the major pieces of equipment which were
used is illustrated in Fig. 5. After acquisition of the Early Bird satellite
beacon in the main beam (beamwidth 0 = 0.225 deg) of the horn an-
tenna, the antenna control was turned over to the vernier autotrack
system, and the servo loop opened by switching off the hydraulic drive
motors. The antenna was now fixed in an orientation indicated by the
digital display of the azimuth (A) and elevation (E) angles given in
degrees, and derived from digital data pickoff units, which have a pre-
cision of encoding" of 0.00275[deg].

The satellite now appeared to drift through the fixed horn antenna
beam in an irregular motion, which was partially due to motion in its
true position (orbit), but also due to the refractive index variations in
the intervening atmospheric propagation medium, and possibly other
disturbances. The apparent angular position of the satellite relative to
the electrical axis of the horn antenna on the ground was determined by
the autotrack system which contains angle error sensing and processing
equipment. The azimuth and elevation error signals, AA { t} and AE{ t}
from the autotrack system were passed through low-pass recording filters
before recording either by oscilloscope and camera, or by analog strip
chart recorder.

The photographic pictures of the oscilloscope display giving AA vs
AE were only used for inspection. The strip chart recordings giving the
AA t} , AE{ t} time series, however, were used for the more detailed analy-
sis of the data, as described later.

3.1.2 Propagation Path and Mean Satellite Motion

During the measurements the propagation path pointed from the horn
antenna near Andover, Maine, to the Early Bird satellite approximately
at an azimuth angle A ft:di 128.5° (southeast), and an elevation angle
E ti 24.5°. The slant range between ground antenna and satellite was
about 24,300 [statute miles] 39,100 [km]. The terrain surrounding the
Earth Station may be described as a shallow bowl of perhaps 10 -miles
diameter surrounded by hills of up to about 3.5 [deg] elevation.

The mean apparent satellite motion with respect to the azimuth and
elevation angles given above consisted of (i) a small linear drift with an
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Fig. 5 - Flow diagram of data acquisition.

azimuth component of Al = -2.08 X 10--3 [deg/hr], and an elevation
component of El = -1.22 X 10-3 [deg/hr], plus (ii) a diurnal elliptical
motion with peak -to -peak amplitudes of A = 0.266 [deg] in azimuth and

= 0.245 [deg] in elevation. The net result of these components appears
at the Earth Station as a slow motion of the satellite along a helical path
seen under an oblique angle. This picture of the mean apparent satellite
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motion was obtained by plotting the hourly azimuth and elevation angles
from the digital display for a few days before the analyzed random angle
error data were recorded. The random azimuth and elevation angle er-
rors, 6.21. and AE, which are subjects of this paper are superimposed on
this mean apparent motion.

3.1.3 Date and Time of Observations

The random angle error data recorded on strip charts, and analyzed
in this paper were taken on May 7, 1965 between about 23 hr: 38 min
EDT and 23 hr: 59 min EDT.

3.1.4 Weather Conditions

Weather data at the horn antenna of the Andover Earth Station were
not taken. However, the weather data may be estimated from those
taken at a private station in nearby Rumford, Me. This estimation yields
the following data:'8 Cloud cover 9/10, wind South 19 [statute miles/
hr], dry bulb temperature 41.8 [°F], dew point 35 [°F], and pressure
28.5 [inches] = 965.0 [millibars].

3.1.5 Recording Filters

The low-pass recording filters mentioned in Section 3.1.1 above were
simple two -section RC filters. Since the source impedances feeding these
filters are small, and the load impedances connected to their outputs are
large compared to the resistances in the RC sections of the filters, their
inverse power gain is

F G_1 1 ± ((ai)2 ((uT)2 + 7).

In this equation, F is the ratio of input power to output power,
T = RC is the time constant of one filter section, and co = 27rf, where f
is the frequency.

The power density of the random angle errors before the filters may
then be obtained by multiplying the power density of the recorded
random angle errors with the inverse power gain F. The filters which
were used in these observations allowed a choice between two cutoff
frequencies. The results of numerical calculations of the inverse power
gains versus frequency for the "LOW", and "HIGH" filters are plotted
in Fig. 6.

3.1.6 Calibration

The sensitivities of the recorded error voltages (after the recording
filters) to errors in the azimuth and elevation angles with respect to the
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Fig. 6 - Inverse power gain, F of recording filter versus frequency, f. FI
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electrical axis of the horn antenna were obtained by direct calibration
on the Early Bird satellite. For this purpose, the antenna servo system
was disabled, and manual angle offsets were then inserted and their
effects on the strip chart records were measured.

3.1.7 Oscilloscope Displays

Photographs of oscilloscope displays of the random elevation error
(SE) versus the simultaneously occurring random azimuth error (.6,21)
were also made.

The photo tracing in Fig. 7 was obtained at 22:30 EDT May 7, 1965
while the recording filters were in the "HIGH" range, and the exposure
time was five seconds. It is obvious that in this sample of the higher fre-
quency errors the peak -to -peak azimuth variations (about 40 micro -
radians) are considerably larger than those of the elevation errors (20
microradians).

The photo tracing in Fig. 8 was taken at 22:38 EDT on the same date
with the recording filters in the "LOW" range. The exposure time was
two minutes. In this sample of the lower frequency errors the peak -to -
peak azimuth variations (12 microradians) are slightly smaller than the
elevation variations (18 microradians).

As mentioned before, these photos were only used for inspection and
not for numerical analysis.
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Fig. 7 - Tracing of oscilloscope photograph of random elevation error (AB)
versus random azimuth error (AA). Time is the parameter. Recording filters in
"HIGH" range. Exposure time: five seconds.

3.2 Data Processing and Analysis

3.2.1 General Methods and Equipment

The data on azimuth (AA) and elevation angles (AE) versus time were
recorded on a strip chart recorder with the recording filters in the "LOW"
range. The time series of azimuth and elevation angles were manually
digitized at two second intervals.

After the manual digitizing process the time series of azimuth and
elevation variations were punched into cards for subsequent processing
on the 7094 digital computer.

3.2.2 Time Series of Observed Angle Variations

The time series of the azimuth (AA) and elevation (SE) angle varia-
tions are shown in Figs. 9 and 10, respectively.

The total observation time was somewhat above twenty minutes.
This observation time was limited by the mean apparent drift of the
satellite in the fixed antenna beam. This drift resulted in the recording
traces going off scale after a certain time.

A total of 720 azimuth data points, and 666 elevation data points were
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Fig. 8 - Tracing of oscilloscope photograph of random elevation error (.E)
versus random azimuth error (6,A). Time is the parameter. Recording filters in
"LOW" range. Exposure time: two minutes.

recorded. Due to the systematic drift the elevation record went off the
recording scale sooner than the azimuth record.

3.2.3 Power Density Spectra of Observed Angle Variations

The random variations of the observed azimuth and elevation angles
will also be described by their power density spectra (PDS) for compari-
son with the predictions. The numerical computation of the PDS from
the time series of data is made on a digital computer by the indirect
method described by Blackman and Tukey." It proceeded in the follow-
ing steps: calculation and removal of the mean, and of the linear trend
in the series; tapering the first 5 percent (start) and the last 5 percent
(end) of the time series with a cosine function; computation of the auto -
correlation function versus number r of 0 M time lags each of
duration of the sampling period At; computation of the Fourier transform
of the autocorrelation function by a cosine series resulting in a raw power
spectrum and subsequent smoothing of the raw spectrum by sliding,
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Fig. 9 - Time series of observed azimuth angles, AA, versus time, t.

weighted averages of values for three neighboring frequency steps with
weights 0.25, 0.50, and 0.25.

The computer program actually calculates a quantity X'{f}, called
"power spectrum", which is related to the usual power density spectrum
P'{f} by the equation

where

Plf) = x'ffliatf, (34)

Of = fN/M = 1/ (2  At  /1/) (35)

and
fN = Nyquist frequency
M = maximum number of lags in autocorrelation
At = sampling period.
In this equation, the primed quantities indicate that they still refer to

the data at the output side of the recording filter. In order to obtain the
desired power density spectrum at the input of the recording filter,
P'{ f} must be multiplied by the inverse power gain of the filter, FYI,
yielding

P{f} = 2  At  A/  Fill  X'{f} . (36)

Additional smoothing of the power density spectrum is used at the
higher error -frequencies, since many cycles of these angle error compo-
nents have been observed. This is clone with a filter of approximately
constant relative bandwidth, j3 = b/f = 0.231, at the expense of absolute
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frequency resolution. This point will be illuminated again in Section
3.2.4.

The data on azimuth and elevation angle variations given in Section
3.2.2 were analyzed with the methods just described. It was found that
the mean linear trends during these observations were in azimuth
+8.1 X 10-8 [rad/sec], and in elevation -1.7 X 10-7 [rad/sec]. Even at
a distance of 10 [km] along the line -of -sight the magnitude of these angu-
lar rates amount to beam sweeping speeds of less than 0.002 [m/sec],
which are indeed negligible compared to natural wind speeds in the
troposphere.

The power density spectra of the observed azimuth and elevation
variations at the input of the recording filters, PA{f} and PEW, which
result from these calculations are plotted in Figs. 12 and 13, respectively.
Other spectra also plotted in these figures are explained below.

3.2.4 Confidence Limits for Power Density Spectra

In computing confidence limits for the power density spectra it is
necessary to distinguish between two error -frequency regions: the low -
frequency region in which the absolute analyzing bandwidth of the PDS
calculation

b = (M  At)-i (37)
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is constant, and the high -frequency region in which the relative analyz-
ing bandwidth

(3 = b/f (38)

is constant.
In the low -frequency region, with constant absolute analyzing band-

width, b, the number of degrees of freedom in the PDS estimate is ap-
proximately

k = 2N/M (39)

where N is the number of data points observed.
In the high -frequency region, with constant relative analyzing band-

width, $, the number of degrees of freedom is frequency dependent ac-
cording to

k = 2,3fN  At. (40)

The confidence limits for the calculated PDS of the observations can
now be given, the lower limit being

Pal = Pf.fl/Kiffi (41)

and the upper limit

= K2W  P{ f} (42)

where Pin is the calculated PDS, and K1,2{ f} are the confidence factors.
For a confidence level of p = 95 percent the upper confidence factor

is approximately

2.77 1.30
K2 = 1 -I- N/k - 1 k - 1' (43)

the total confidence factor (here only used as an intermediate to obtain
K1)

2.40
K21 = :1111 ii0g10 (vk 1) , (44)

and the lower confidence factor

K1 = K21/K2, (45)

where k is the number of degrees of freedom given above. For k 5 the
stated analytical approximations for the confidence factors have less
than 10 percent error.

The resulting numerical values for the upper (K2) and lower (K1)
confidence factors are plotted in Fig. 11. The results of calculating the
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upper confidence limits (P,- A2 y P$2), and the lower confidence limits
(PAi , PEI) for the azimuth (PA) and elevation (PE) spectra are plotted
in Figs. 12 and 13.

3.2.5 Chart Reading Error

The errors which are introduced into the data by the manual reading
of strip chart records (digitizing) are of the same type as quantization
errors. The variance due to a given quantization step size (q) is known
to bell

(7,2 q2/12. (46)

If it is now assumed that the quantization noise, which causes this
variance, is sharply bandlimited white noise of constant power density
(P,'), and with a cutoff frequency equal to the folding frequency of the
digitized time series (fN), then one also has the variance as

I N

Qq
2 = f P, df = P,' fN. (47)

Consequently, the noise power density due to the manual chart reading
is

pg, /fN q2. (48)

As before, this primed power density is taken at the output side of the
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low-pass recording filter. In order to obtain the power density spectrum
of the chart reading error referred to the input of the recording filter, it
is necessary to multiply ID,' with the inverse power gain Fa} of the filter,
see Section 3.1.5, which yields here for the azimuth coordinate

PeAlf1 = P4.4' = Fi{f} .q42  At/6 (49)

and for elevation
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13,Eff) =  Pq; = riff} TR2  M/6. (50)

The effective quantization step size for azimuth was qA 1.2 micro -
radians, and for elevation qE 0.88 microradians, the difference being
due to different scale factors in the two channels. The sampling period
as stated before was At = 2 seconds. The resulting PDS of the manual
digitizing process, P qA and P qE , are also plotted in Figs. 12 and 13.
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3.2.6 Thermal Angle Errors

During observations of the tropospheric random angle errors it is
important to keep angle errors due to thermal receiver noise at a com-
paratively low level. The variance of thermal angle errors may be ob-
tained" as

20th =
6,2 1+ Ns )

8 (y.8)2 BT

which can be reduced for S/N >> 1 to

nth = 8Br (S/N) '

2

where

(51)

(52)

= antenna beamwidth
S/N = input signal-to-noise power ratio

B = receiver bandwidth
T = post -detection integration time.

In order to derive the power density (Pth ) of the white thermal noise
spectrum it is first recognized that the variance of the thermal angle er-
ror is also

2 P thdf
(71h =

1 + (.17,02

where

(53)

fe = 1/2T (54)

is the cut-off frequency of the post -detection low-pass filter. Equation
(53) may be integrated with the substitution x = f/fc df = fcdx giving

or

ute = pa.Larc tan CUM 10

7r
Qtly =

2
/-Jc*th 

(55)

(56)

Combining (52), (54), and (56) then yields the desired density of the
thermal angle noise as
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Pth 2rB (S/N)

02

(57)

independent of the frequency f.
During the observations on May 7, 1965, which are analyzed in this

report, the measured signal-to-noise ratio was (S/N)' = 23 [dB] =
200[1] while the communications carrier of the Early Bird satellite was
switched off. (This ratio was (S/N)' = 13 [dB] = 20 [1] due to a weaker
beacon signal when the carrier was on.) The primed signal-to-noise
ratios stated here are referred to a 3 -kHz bandwidth. The effective noise
bandwidth, however, is considerably lower due to the employment of a
phase -locked tracking loop quite like the one described in Ref. 15. From
Fig. 12 in that reference it is seen that the noise bandwidth for

(S/N)' = 23 [dB] is B = 390 [Hz],

which further results in an effective signal-to-noise ratio

S/N = 200 X (3,000/390) = 1,538 [1].

Since the antenna beamwidth was 0 = 0.225° = 3.94 X 10-3 [rad] the
desired power density of the thermal receiver noise with (57) here be-
comes Psh = 4.1 X 10-12 [rad2/Hz] while the communications carrier is
switched off, and the beacon signal is strong. This thermal noise level in
the angle measurements was low enough to permit observation of the
random tropospheric angle variations up to frequencies of a few 0.1 [Hz],
see Figs. 12 and 13.

IV. COMPARISON BETWEEN PREDICTED AND OBSERVED ANGLE ERRORS

The comparison between predicted, and observed power density spec-
tra of random tropospheric angle variations may now be made with the
aid of Figs. 12 and 13 into which all relevant spectra have been entered.
The observed spectra (PA , PE) resulted from the analysis of random
angle error data taken on the Andover Horn to Early Bird path on May 7,
1965 between about 23 hr:38 min EDT, and 23 hr:59 min EDT. An
inspection of Figs. 12 and 13 shows that the PDS of the observations
cover about two decades of frequency, namely

2.50 X 10-3 [Hz] 6 f '6 0.25 [Hz].

The comparison of the observed PDS (PA ; PH) with their respective
predicted PDS (PA,min PA,max ; PE,min , PE,max) yields almost identical
results for the two angle oocrdinates azimuth (A) and elevation (E).
In particular it is found that the PDS of the observed random angle
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variations (PA ; PE), within their respective 95 percent confidence
limits (PA' , PA2 ; P El P R2) , lie almost exactly on the predicted minimum
power spectra (PA ,min ; PE,tnin) for random tropospheric angle errors.

Thus, the observed PDS match the predicted PDS quite well in the
shape of their frequency dependence. The low level of the observed PDS
relative to the predicted range of PDS is thought to be due to the "good
tracking weather" at the An clover, Maine site and at the particular time
of observation (a quiet night). It must be remembered here that the
prediction is based mainly upon the NBS range and phase measure-
ments4'5'" which were obtained in Hawaii and Colorado. Whether the
low level of the random tropospheric errors observed in Maine is a perma-
nent property of the site, or a chance occurrence can be decided by the
analysis of additional observations.

It is also possible to compare the observed PDS of the azimuth errors
with that of the elevation errors. It is found that the azimuth errors
here have a higher level at frequencies f > 0.1 Hz than the elevation
errors; this is an effect of the higher azimuth wind speed component
(VA = 6.7 m/sec versus uE = 2.2 m/sec). Even larger differences between
the azimuth and elevation random errors are expected when their ef-
fective wind speed components differ by larger amounts. Such wind
speed differences may be caused by either peculiar orientation of the
natural wind vector relative to the line -of -sight, or also by differences in
angular tracking rates.

Near the high -frequency end of the covered band the observed PDS
deviate significantly in shape from the predictions. This deviation is
particularly evident in the steep increase of the observed elevation PDS
above f = 0.15 [Hz]. This increase is identified as an effect of quantization
errors in the manual digitizing of the analog strip chart records. The
transformation of these digitizing errors to the input side of the record-
ing filters results in the steeply rising PDS (Po , Po?) for these fre-
quencies.

In the frequency band of the observations the angle errors due to
thermal receiver noise have a PDS (Pth ) which is negligible compared to
that of the tropospheric angle errors, provided the communications
carrier in the Early Bird satellite is turned off.

It is also possible to integrate the predicted PDS of the random tropo-
spheric angle errors over the entire error frequency band, and then to
take the square root to obtain the standard deviation

= (10' PdfY .



1468 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

When these integrals are calculated for the predicted minimum and
maximum PDS, it is found that the standard deviations of the random
tropospheric angle errors are expected to lie between and. ti 10 [micro -

radians] 2 [seconds of arc] and crmax 65 [microradians] ti 13 [sec-
onds of arc]. This range of values compares quite well with Kennedy and
Rosson's estimate that the tropospheric angle errors lie between 20 to 50
microradians."

The standard deviation of the expected tropospheric angle fluctuations
versus baseline length was previously calculated from NBS data on re-
fractivity and range variations by D. K. Barton!' For the equivalent
baseline length of the Andover horn antenna of about forty feet, Barton's
graph shows a standard deviation of perhaps seventy microradians, a
value slightly above our predicted maximum.

Some astronomical observations of random fluctuations in angular
star positions, as quoted by Tatarski,2 show standard deviations of one
half to one second of arc. These observations have been made under con-
ditions quite different from those for which our predictions are valid,
namely with visible light, in clear weather, with smaller apertures, and
probably only over a small fraction of the entire error frequency band.
Therefore, it is not too surprising to find that these astronomical measure-
ments lie below our minimum prediction.

Within the limitations of the analyzed observations, and of the de-
scribed model it is concluded that the observed random angle variations
are essentially due to random variations of the refractive index field in
the troposphere. The feasibility of acquiring additional data on tropo-
spheric angle errors with the Andover horn antenna on geo-stationary
satellites of the Early Bird type therefore was also demonstrated. These
data may now be obtained on a routine basis with available and operat-
ing equipment.

The comparison of the observations given in this paper with the pre-
diction of random tropospheric angle errors gives some confidence in the
described analytical model. Additional observations of random tropo-
spheric angle errors were made with radar and optical equipment over
other propagation paths. The comparison of these observations with the
relevant predictions from the analytical model (not reported here) are
also satisfactory, and have further strengthened the confidence in the
model.

V. SUMMARY

Earth -based radar and optical systems which are used to measure the
position (and its time derivatives) of both distant and near objects are
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ultimately limited in accuracy by random angle variations caused by
fluctuations of the tropospheric refractive index. For the analysis and
synthesis of these systems an analytical model of the random tropo-
spheric errors has been developed.

With this model, the predicted minimum and maximum power density
spectra (PDS) between which observed PDS of tropospheric errors are
expected to lie can be analytically calculated. The calculation is per-
formed by operating with certain model functions, which depend on the
tracking system parameters, on a model PDS (Pm) given in the range
coordinate. P. has been derived from observations of random variations
in the tropospheric refractive index, and in range and phase measure-
ments made mainly at the National Bureau of Standards.

A simplified analytical model of random tropospheric angle errors is
described here, which is applicable to a tracking situation involving one
(almost stationary) target and a single observer. This model is also used
to predict the minimum and maximum PDS of the random tropospheric
azimuth and elevation angle errors for microwave observations of the
Early Bird geo-stationary communication satellite with the large horn -
reflector antenna at the AT &T ground station near Andover, Maine.

The general method of data acquisition, Fig. 5, and the specific cir-
cumstances of some actual observations on the Early Bird satellite with
the Andover horn are then described. Microwave azimuth and elevation
angle measurements for an observation time of about twenty minutes
were taken on May 7, 1965, while the Early Bird satellite appeared at
an elevation angle of about 24.5 degrees.

The analysis of the obtained time series of azimuth and elevation
angles results in power density spectra (PA and PB) and associated
confidence limits which represent the observed random angle variations,
see also Figs. 12 and 13. The effect of manual chart reading errors on the
observed PDS was also studied. It was shown to consist of a steep in-
crease in the PDS at the high frequency end. The effect of thermal
receiver noise on the observed random angle variations was kept at a
negligible level.

The comparison of the predicted PDS of the random tropospheric
angle errors for the Early Bird observations with the observed PDS leads
to the conclusion that the observed random angle variations are indeed
caused by the troposphere. In particular it is found that the PDS of the
azimuth and elevation observations (PA and PB in Figs. 12 and 13),
within their respective confidence limits (PAl P A2 ; Pln PRO) lie almost
exactly on the predicted minimum power density spectra (P4, min ;
PR, min) for random tropospheric angle errors.
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The feasibility of acquiring additional data on tropospheric propaga-
tion effects, especially random angle errors, with the Andover horn
antenna on geo-stationary satellites of the Early Bird type, therefore,
was also demonstrated.
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APPENDIX

Numerical Calculation of Predicted PDS

The parameters of the tracking situation during the Early Bird observa-
tions on May 7, 1965, which permit the prediction of the tropospheric
angle PDS with the described model are:

transmission frequency = ft = 4137.86 [MHz]
antenna diameter = d = 67.7 [ft] = 20.6 [m]
beamwidth = B = 0.225 [deg]
apparent elevation angle = Ea rt:3 24.5 [deg]
azimuth angle = A tr:,' 128.5 [deg]
altitude of horn antenna = h1 = 900 [ft] = 274 [m]
altitude of satellite = h2 22,200 [st. mi.] 35,700 [km]
slant -range = R12 ft:, 24,300 [st. mi.] 39,100 [km]
wind vector: I 'et) I = 19 [st. mi/hr]; S = 0°
surface refractivity = N, = 301
With these parameters the model functions for this tracking situation

are calculated as follows.
Breakfrequency of the angle scale function, (15) :

fl = 2.43 X 10-2 [Hz].

Angle scale function, (14) :

S = 20 (f/Hz )2(1/m2] for 0 < f < 2.43 X 10-2 [Hz]

S = 1.18 X 10-2 [1/m2] for 2.43 X 10-2 [Hz] 5 f .5 co .

Breakfrequency for aperture smoothing, (17) :
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f2 = 9.71 X 10-2 [Hz].

Aperture smoothing function, (16):

(13 = 1 for 0 f < 9.71 X 10-2 [Hz]

cbc, = 9.43 X 10-3 (f /Hz) -2 for 9.71 X 10-2[Hz] S f 00.

Effective tropospheric path length, (19) and (20):

L = 8.02 [km].

Effective path length function, (18) :

A = 0.534 for 0< f< 0.
Weather functions:

minimum : 1 I mj n = 1 (by definition of P.)

maximum: Wmax as per (22).

Effective wind speed, azimuth, (30):

uA = 14.9 [st. mi/hr] = 6.7 [m/sec].

Effective wind speed, elevation, (33):

uF = 4.9 [st. mi/hr] = 2.2 [m/sec].

Effective wind function for transformation of the power density, azi-
muth, (26):

UPA = 0.1497-N.

Effective wind function for transformation of the frequency regions,
azimuth, (27):

U14 = 6.7.

Effective wind function for transformation of the power density, ele-
vation, (26):

Up]] = 0.4557-'4.

Effective wind function for transformation of the frequency regions,
elevation, (27) :

Ufg = 2.2.

The operation with these model functions on the range model PDS
Pm(f) results in the following four predicted PDS of tropospheric random
angle errors.
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Minimum PDS in azimuth:

P A,min =

7.57 X 10445 (f/Hz)+4 [rad2/Hz]
for 0 :5- f 5 1.68 X 10-7 [Hz]

3.55 X 10-4 (f/Hz)+1 [rad2/Hz]
for 1.68 X 10-7 :5_ f 5 6.70 X 10-5 [Hz]

1.95 X 10-13 (f/Hz)-" [rad2/Hz]
for 6.70 X 10-5 < f < 6.70 X 10-3 [Hz]

1.60 X 10-41 (f/Hz)-1 [rad2/Hz]
for 6.70 X 10-3 . f -. 1.63 X 10-4 [Hz]

4.25 X 10-13 (f/Hz)-3 [rad2/Hz]
for 1.63 X 10-4 _5 f ._ 6.51 X 10-1 [Hz]

1.81 X 10-'3 (f/Hz)-5 [rad2/Hz]
for 6.51 X 10-1 < f 5_ 6.70 X 10+2 [Hz]

5.47 X 10-5 (f/Hz)-3 [rad2/Hz]
for 6.70 X 10+2 -5 f < 00 [Hz]

Maximum PDS in azimuth:

PA,max =

4.54 X 10.447 (f/Hz)+4 [rad2/Hz]
for 0 < f -5. 1.68 X 10-7 [Hz]

2.13 X 10-3 (f/Hz)+1 [rad2/Hz]
for 1.68 X 10-7 _,.. f _5 1.49 X 10-4[Hz]

3.90 X 10-9 (f/Hz)-" [rad2/Hz]
for 1.49 X 10-4

1.03 X 10-4° (f/Hz)--2.5 [rad2/Hz]
for 1.63 X 10-1 < f 5_ 6.51 X 10-1 [Hz]

4.38 X 10-11 (f/Hz)-4.5 [rad2/Hz]
for 6.51 X 10-4 < f _. 6.70 X 10-1 [Hz]

3.61 X 10-11 (f/Hz)-5 [rad2/Hz]
for 6.70 X 10-1 -. f -. 6.70 X 10+2 [Hz]

1.09 X 10-2 (f/Hz)-3 [rad2/Hz]
for 6.70 X 10+2 .'.- f < co [Hz]

f.... 1.63 X 10-4 [Hz]
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Minimum PDS in elevation:

PE,rnin =

2.01 X 10+19 (f/Hz) +4 [rad2/Hz]
for 0 f 5.50 X 10-3 [Hz]

3.31 X 10-3 (f/Hz)+1 [rad2/Hz]
for 5.50 X 10-3 < f < 2.20 X 10-5 [Hz]

3.41 X 10-16 (f/Hz)-°.5 [rad2/Hz]
for 2.20 X le 5 f 5 2.20 X 10-3 [Hz]

1.60 X 10_11(f/Hz)-1 [rad2/Hz]
for 2.20 X 10-3 <f 5.35 X 10-2 [Hz]

4.57 X 10-14 (f/Hz)-3 [rad2/Hz]
for 5.35 X 10-2 < f 5 2.14 X 10-1 [Hz]

2.09 X 10-15 (f/Hz)-5 [rad2/Hz]
for 2.14 X 10-1 < f < 2.20 X 10+2 [Hz]

2.22 X 10 (f/Hz)-3 [rad2/Hz]
for 2.20 X 10+2 < f < co [Hz]

Maximum PDS in elevation:

1.21 X 10+20 (f/Hz)+4 [rad2/Hz]
for 0 5 f < 5.50 X 10-3 [Hz]

PR, x

1.99 X 10-2 (f/Hz)+1 [rad2/Hz]
for 5.50 X 10

6.81 X 10-9 (f/Hz)-°.5 [rad2/Hz]
for 4.91 X 10-6

1.95 X 10-11 (f/Hz)-2.5 [rad2/Hz]
for 5.35 X 10-2

8.91 X 10-13 (f/Hz)-4.5 [rad2/Hz]
for 2.14 X 10-1

4.17 X 10-13 (f/Hz)-5 [rad2/Hz]
for 2.20 X 10-1

4.43 X 10-6 (f/Hz)-3 [rad2/Hz]
for 2.20 X 10+2

 f < 4.91 X 10-5 [Hz]

f 5_ 5.35 X 10-2 [Hz]

f 2.14 X 10-1 [Hz]

 f 5 2.20 X 10-1 [Hz]

 f 5 2.20 X 10+2 [Hz]

f 5 c [Hz]
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On the Sensitivity of Channel Capacity
for the Gaussian Bandlimited Channel

By I. W. SANDBERG

(Manuscript received June 24, 1966)

It is a classic result of Shannon that binary digits can be communicated
with arbitrarily small error probability at any rate less than

W loge (1 + P-) (bits/ sec)

over a channel with bandwidth TV and additive Gaussian noise of average
power N, using signals of average power at most P. However, in Shannon's
proof it is assumed that the input to the receiver is the sum of a linear
combination of the bandlimited functions

(p0(t - k/2W) -A sin 27rW(t - k/2W)
2rW(t - k/2W)

-00 < t < 00
k = 1,2,

(which are of course of doubly infinite duration) and a sample function
from an exactly bandlimited Gaussian random process. The fact that
coo (k/2W) = 0 for all integers k 0 plays a key role in that it implies
the total absence of intersymbol interference.

As a result of these assumptions, there have been some objections to the
Shannon model in connection with the notion of rate, the fact that the re-
ceived signals are entire functions (which are predictable for all time from
a knowledge of their values on any interval of nonzero length) and the fact
that it is not clear whether the performance of the model is critically depend-
ent on the assumptions that lead to the absence of intersymbol interference.

Since Shannon's model and his associated ingenious arguments are
widely known and are of great interest, from the point of view of the system
theorist, it is important to be able to prove an "insensitivity theorem" to the
effect that if the model is modified to the extent that: (i) goo (t) is replaced
by an approximating function co (t) with the property that the signals are of
average power at most P where P is approximately P, and cc (t) = 0 for
t < t, for some negative number t, , and (ii) the noise is approximately

1475
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bandlimited with bandwidth TV, then, subject to some reasonable qualifica-
tions, it is possible to transmit information, with arbitrarily high relia-
bility, at any rate less than

W log2 (1 + g.)

We prove such a theorem in this paper. In fact, we show that if the noise
has integrable power spectral density S (w) for which

0 < inf E S(w +
co<21rIV p=-.0

and

A= 2W sup j s(, + 47,w p) < 00
(0<27rW 1)=-°°

(these are very weak assumptions), then any rate

R < W log2 (1 ±

is permissible if y e (0,1) such that [with the understanding that co (0) = 1]
0 0

E co(k/2W) I < (1 - 74)
k=-.0

kX0
N#2WP y

where # is an important positive number that depends on R, (St fry), P,
and W.

Observe that if S (w) is the ideal spectral density defined by

8(w) =
2W

co I :$_. 271-W

= 0, I co j > 2T -W

then N = N.

I. INTRODUCTION

It is a classic result' of Shannon that binary digits can be cornmuni-
cated with arbitrarily small error probability at any rate less than

W log2 (1 P) (bits/sec) (1)

over a channel with bandwidth W and additive Gaussian noise of
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average power N, using signals of average power at most P. There are,
however, some unrealistic assumptions in Shannon's argument. In
particular, there have been some objections2,3.4 to the Shannon model
in connection with, for example, the notion of rate and the fact that the
received signals are entire functions (which are predictable for all time
from a knowledge of their values on any interval of nonzero length).

The purpose of this paper is to focus attention on Shannon's assump-
tions' and show that they can be modified so that the end result is a
quite detailed and informative statement concerned with a much more
realistic model* of a communication system.

II. REVIEW OF SHANNON'S ARGUMENT

2.1 The Capacity of the Time -Discrete Gaussian Channel

Shannon's result for the bandlimited time -continuous channel follows
directly from a result concerned with the following type of time -discrete
channel.

The channel receives one of 111 equally likely inputs (i.e., code words)

every T seconds. Each input is a real n -vector X
A=

(xi , x2 , , x.)
which satisfies

I X 12 5 PT

where 1 X I denotes the Euclidean norm of X and p is a positive con-
stant independent of X. It is assumed that there exists a positive con-
stant ,u, independent of T, such that n = 2/1T (with the understanding
that we consider only values of T for which 2I.LT is an integer).

The channel output (i.e., the receiver input) corresponding to the in-
put X is the n -vector X + Z, in which the components of the "noise
vector" Z are independent. Gaussian random variables with mean zero
and variance 77. In its attempt to determine which of the 211 known code
words was transmitted, the receiver may make an error, and we shall
denote by pei the probability that an error is made given that code word
i is transmitted.

It is assumed that the channel is used to transmit information in the
following manner. Let a message source produce independent and equally
likely binary digits at the rate R digits per second. Every 71 seconds,f
one of 2R T possible sequences is produced. We set M = 2RT and we repre-
sent each of the binary sequences by a particular code word.

* Some different results concerning the significance of the Shannon bound (1)
are proved in Ref. 4. In particular, there, for certain models, converse proposi-
tions are established.

t We consider only values of T for which RT is an integer.
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We say that a rate R is permissible if for each e > 0 there exists a T

and a corresponding code such that

max Pei < E.

It has been proven that the channel capacity C, the least upper bound
of permissible rates, is given by

C = µ log2 (1 .4) (bits/sec).

It has also been proven that for R < C there exists a positive number
= l3 (n,pu,R) such that for each T > 0 there exists a code with the

property that

max Pei = exp [-ST o (T)].
ti

2.2 The Time -Continuous Bandlimited Channel

In order to use the ideas and results outlined above in his study of the
time -continuous bandlimited channel, Shannon considers the model
shown in Fig. 1, with the understanding that H represents an ideal
low-pass filter with cut-off frequency W, and z () denotes a sample
function of a bandlimited Gaussian random process with mean zero and
power spectral density

S(w)
2W '

I co I < 27rW

=0, 'col> 2rW,
where N is a positive constant. Clearly the average power of z () is N.

As in the time -discrete case, the message source produces R binary
digits per second, so that every T seconds one of M = 2RT possible
sequences is produced. Consider the ith such sequence. The coder and
signal generator associates with this sequence a particular n -vector

MESSAGE
SOURCE

CODER AND
SIGNAL

GENERATOR

P
u() v( )

CHANNEL

Fig. 1 - Model of a Communication System.

RECEIVER
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,X A
= kx1 , x2 , "

:C73 where n = 2117T, and a corresponding signal

sin 2irW(t - k/2W)u(t) 00,0o )

k-1 271-W(1 - k/2W)

which is transmitted. This process is repeated every T seconds. It is
assumed that

X 12 < 2117/)71

for each code word, so that, for each signal, as can readily be verified,

LuoNt , P. (2)

Insofar as a physical interpretation of (2) is concerned, the object
on the left is the total energy of u (  ) divided by the length of the
interval [(4W)-', (4W)-' + T] which, considering only the instants
t = k/2W, contains all of the samples of u ( ) that can be made nonzero.
If (2) holds, then Shannon says that u (  ) has average power at most P.

The received signal due to the noise and only the ith sequence is
u ( ) z ( ), since the response of H to u (  ) is u (  ). The value of this
signal at the instant t = k/2W is

xk z (k/2W) for k = 1, 2, , n

in which the z (k/2W) are independent* Gaussian random variables
with mean zero and variance N. These sample values are the same as
those that would have been obtained if we had not ignored the effect
at the receiver of transmitted signals due to previous and subsequent
sequences, since the values of such signals at t = k/2W vanish for
k = 1, 2, , n.

Thus, on the basis of the channel capacity result of the previous sec-
tion, we see that our continuous channel can process information, with
arbitrarily high reliability, at any rate less than the capacity of the time -
discrete channel with parameters µ = W, p = 2WP, and t = N, that
is, at any rate R less than

IV lobe (1 +--)
N

2.3 Discussion

The argument of the last section is based on the assumptions that the
input to the receiver is the sum of a linear combination of the band-

* The autocorrelation function of the noise vanishes for T = k/2W, k 0.
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limited functions

vo(t - k/2W)
A sin 27W (t - k/2W)

271-W(t - k/2W) '

-00 < t < OD

k = 1,2, .. .
(which are of course of doubly infinite duration) and a sample function
from an exactly bandlimited Gaussian random process. The fact that
coo (k/2W) = 0 for all integers k # 0 plays a key role in that it implies
the total absence of intersymbol interference.

As a result of these assumptions, there have been some objections
to the Shannon model in connection with the notion of rate,* the fact
that the received signals are entire functions (which are predictable for
all time from a knowledge of their values on any interval on nonzero
length), and the fact that it is not clear whether or not the performance
of the model is critically dependent on the assumptions that lead to the
absence of intersymbol interference.

Since Shannon's model and his associated ingenious arguments are
widely known and are of great interest, from the point of view of the
system theorist, it is important to be able to prove an "insensitivity
theorem" to the effect that if the model is modified to the extent that:
(i) vo(t) is replaced by an approximating function v(t) with the property
that the signals are of average power at most P where P is approximately
P, and o(t) = 0 for t < t, for some negative number t, , and (ii) the
noise is approximately bandlimited with bandwidth W, then, subject
to some reasonable qualifications, it is possible to transmit information,
with arbitrarily high reliability, at any rate less than

W log2(1 + -P).

A quite explicit theorem of this type is stated in the next section.

III. THE MORE REALISTIC MODEL

We now consider the system of Fig. 1 to be an approximation to the
Shannon model described in Section 2.2.

Here we assume that z(  ) is a sample function from a Gaussian ran-
dom process with zero mean and integrable power spectral density
S(w) with the property that

sup E S(w + 47rWp)
co <2w W

* Shannon himself has indicate& that care must be taken in the physical in-
terpretation of the result of Section 2.2. However, he does not discuss the effect of
intersymbol interference or the effect of the departure of the noise spectrum
from the ideal spectrum.
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is finite. From the engineering viewpoint, this finiteness condition is a
very weak assumption; it is certainly satisfied if there exists a constant
K > 0 such that S (w) K (1 + 2)-1 for all real w.

We again suppose that the message source produces one of M = 2" 7,

equally likely binary sequences every T seconds. We assume that there
is a first such sequence and that the coder assigns the code word
(xi , x2 , , x,,) to it. After T seconds, the second sequence is assigned
the code word (x7,+1 , Xn+2 , X2n ), and so on. The integer n is equal
to 2WT.

The transmitted signal (i.e., the input to the channel) is assumed to
be given by

n 2n

u(t) = xogt - k/2W) .60(t_ki2c+ .
k=n+1

in which tfr () is a real -valued function of t defined on (- 00 , 0o) such
that there exists a negative constant 4 with the property that 1p (t) = 0
for t < 4 . It is evident that each of the signal components (i.e., each
sum) is associated with a particular code word, that is, with a particular
input sequence to the coder. We note that the first signal component
"begins" at t = 4 (2W)-1, the second at 4 + (2W)-1 T, and so on.

The operator H in Fig. 1 is assumed here to be causal, linear, and
time -invariant. Thus, the output of H is

n 2n

V(t) = E xkv(t - k/2W) E xkso(t - k/2W) +
k=1 k=n+1

in which o () is the response of H to 11/(). Since H is causal, there
exists a negative constant 4 such that 40 (t) = 0 for t < t, .

We assume that co (0) = 1 and that go ( ) belongs to L2 (i.e., is square
integrable). We think of cc (t) as being close to

cco(t)O4.
sin 2T -Wt

2irWt

in the sense that both II - yoo II (II II denotes the L2 norm) and
CO ,X)

kEI v(k/2w) - vo(k/2w) I = kE cock/2w) I
00k)

are small. Of course this requires that -4 be sufficiently large.*
* We may certainly take the view that g) and H are approximations to the

ideal signal Apo and the ideal bandlimiting filter, respectively. However, the spe-
cific nature of these approximations is not pertinent to our development. Observe,
in fact, that it makes sense for us to assume here that H is an approximation to
the ideal bandlimiting filter, but that ,,G() is an impulse -like function. The re-
sponse r() of H to ,,G(-) is what we wish to focus attention on.
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It is assumed also that

E (xk+17D2 < 2WPT
k=1

for j = 0, 1, 2, , so t hat the "average power"

1

T

71

E xk±inc,[t - (k jn)I2W]
k=1

2

dt

of the jth component of v (  ) is bounded from above by P , in

which 0 as li co - coo
11

--> O.

The receiver, which is assumed to be in possession of the code, samples
the signal v (  ) z () at the instants t = k/2W, k = 1, 2, , to
obtain in succession the "received n -vectors"

Y1 = (vi v2 vn) -I- (z1 , Z2 , , zn)

,
1 2 (vn+1 Vn+2 , . V2n) (Zn +1 , Zn+2 Z271

in which vk = v (k/2W) and z = z (k/2W). These vectors are used as
inputs to a minimum distance decoder. Thus, for example, if

I - Xi I < min I - X; I,

in which Xi} denotes the set of code words, then Yl is decoded as
Xi . We denote by pet; the maximum probability, over all possible
sequences of input code words with the jth code word Xi , that 17; is
not decoded as Xi . We let

sup per; 

Our result (which is proved in the next section) is

Theorem: Concerning the system described above, let

and

OD

0 < inf E s(w + 47rWp)
05co<21TV p=-00

A. 2W sup E S(w + 4irWp).
Oc.).<2,W
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'YP
R < W log2 (1 + .7) (bits / sec)

is permissible (in the sense of Section 2.1 with pei as defined above) pro-
vided that 7 e (0,1) such that

E I ca(k /2W) I < (1 - (2:p13 7)1
k=-00

IcA)

where 3 = f3[(N h), 2W P , W, R] is the number introduced in Section 2.1.

Remarks: Observe that if S (w) is the ideal power spectral density de-
fined by

S(w) =
2W

, I co I 6 27rW

=0, IwI>27rW
then = N. The condition that

CO

0 < inf E s(c..)+ 47rwp)
w<27W p=-oo

is certainly satisfied if S(w) is a reasonable approximation to the ideal
spectrum.

If S(w) is nonincreasing for w > 0, then for p = 1, 2, ,

1
47Wp

sup S(w47rWp) S(w)dw
os,,,<2,rw zirvir f4,rwp-2,,w

and

1
-4,rw(p-l)

sup S(w- 47rWp)
1-

S(w)dw.
osw<2,rw 27rW 471Vp+22-1V

Thus, for S (w) nonincreasing for w 0, we have the bound

N 2W sup E s(w+ 47rWp) + -1 S(w)dw.
0 < co<27TV 22=-1 r f,rw

The exponent has been estimated by Shannon.'
The basic idea of the proof of the theorem is, roughly speaking, to

(i) treat as an additional "noise source" the departure of the samples of
v ( ) from the corresponding samples in the case of zero intersymbol-
interference (Sublemma 1 of Section IV provides an estimate of this
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departure), and (ii) to obtain a lower bound on the channel capacity
of the more -realistic model by comparing its error probability per-
formance with that of a model possessing zero intersymbol-interference
and independent Gaussian noise samples (this is done in the proof of
Sublemma 2 of Section IV).

IV. PROOF OF THE THEOREM

4.1 The Discrete Channel

Consider first a discrete channel with memory that receives one of M
equally likely inputs (i.e., code words) every T seconds. As in Section
2.1, each input is a real n -vector X which satisfies I X 12< pT , n is

equal to 21.477, and each input represents a particular sequence of RT
binary digits. Let (xi , x2 , , xn) denote the first code word, (xn-1-1 ,
Xn+2 , ' , x2n) the second code word, and so on.

At time I = (j - 1) T, the receiver receives the n -vector

17; I y[1. (j - 1 )n],y[2 (j - 1)n], , e[n]]

in which

y(p) = Tixkv(P - k) z(13), p = 1,2,

where here co ( ) is a function defined on the integers so that co (0) = 1
and

C 0

E I c,(k) <

and each z (p) is a Gaussian random variable with zero mean. For each j,
let

and

where

Z; {41 + (j - 1)n], z[2 (j - 1)n], , zUnli

Vi
A

{vAl (j - 1)n], v[2 (j - 1)n], ,
v[jn]}.

v(P) = E xmo(p - k).
k=1

Then IT; = Z, .
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We assume that the receiver attempts to determine the jth code
word V by minimum distance decoding as in Section III. Let pei denote
the error probability associated with the transmission of code word i,
as defined in Section III. In Section 4.3 we prove the following result,
which we shall exploit here, concerning this channel.

Lemma: Let Z , as defined above, possess the property that [with 6 the
expectation operator and ( , ) denoting the usual inner product of n -
vectors] there exist constants E and n such that for every real n -vector U of
unit length:

0< E g I (U,Zj)12 n

uniformly in j and n. Let y e (0,1) . Then any rate

R < u loge (1 + 12-

2µn

is permissible (in the sense of Section 2.1) provided that

I co(k) I < (1 - )
,

(111)
k=-co P7
k#0

where 13 = 13[(nh), p, R] is the number introduced in Section 2.1.

4.2 Completion of the Proof of the Theorem

6 1 (U ,Z ;) 12 = FiE UkUlZ[ki-(i-1)n]Z[1+(i-1)n]
k,1

= E ukuiR[(/ - k) /2w]
k,1

for any real n -vector U, in which

R(T) = -1 S(co)eiwrdr.
27J

Thus,
co

L7 k,1 f-co

s(w)eiw(i-k)12Wche1
8 I (U,Zi) 12 = ---ci E ukui

1
0. n 2

27r f--00 k=1
= - E uke-i"I2w S(w)dc.0

= 1
f2r1V+47rWp

27r p=-00 L 2r1V-Hr Wp k=1

1
r2IrW

= 2ir L2TIV
-iwic/2W

uke
k=1

Euke cok I2W
2

S(Cc)dO)

2 03

E8(c,, + 471-Wp)dco.
p=-00
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It follows at once that
1 27rW n 2

6 1 (U,Z;) 12 -*- sup E s(, 47rWp) n-+ zr f-27r W
uke-iwkl2WC16),

(16.,<27rW

and that

2

2rW
8 I (U,Z,) 1 inf E S(w + 47rWp) -

05(o<2r W p=-co 27T

1

f-2r W

Since

we have

1
271-W

47rW L2rW k=1

-icuk I2W
uke

00

x-, 2u e-icuk 1211'1 dw.
k

k=1

2

C/W= 1U12 ,

6 I ( U,Z;) 12 < 2W sup 2 s(c, + 47rWp)
0co<2rW p=-°

00

8 I (U,Z;) 12 > 2W inf E s(, + 47rWp)
w<27r W 23=-.0

for I U I = 1, independent of j and n. Thus, we may view the time
continuous system of Section III as a discrete -time communication
system of the type described at the outset of this section with IA = W,
p = 2WP,

and

CO

E = 2W inf E S(w + 47rWp),
05co<27rW 73=-0.

n = 2W sup E S(. + 47rWp).
0 _..co<27rIV

This proves the theorem.

4.3 Proof of the Lemma

With xk as defined in Section 4.1, let

,Vi A
= IX[1+(j-1)7) X[2 -1-(5-1)n) , , .in]

Sublemma 1:

I --17 j 12 2PT co(k)
k=-00
k0



Proof:

I V ; -
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V;12
p=1±(1-1)

=_.

p=1-i-(j-1) n

xkio(p - k) - xp
k=1

00

E xko(p -
k=-oo

2

*2

in which xk = 0 fork < 1 , (0) = 0, and0(k) = ) for k 0. There-
fore,

IT',- 12 = E E x(p-orp(k) 12)

and, by the Schwarz inequality,

I 12 E x(p-k) 12.1c(/,) o(k) 1

E o(k) E x(p_k) 12 E cp(k) 1.

Since

we have

E 1 x(p-k) 12 2PT,

(
1
vi - Pi 12 < 20' E 1 gam 1k---.0

A-,()

00

which is the assertion of Sublen-una 1.
Therefore, with V, and Z; as defined in Section 4.1, we have

171 = f; Ei zi

in which

1E;12 2pT (E co(k))2.
\k00

This fact when combined with the following result* proves the lemma.

Sublemma 2: Consider a time -discrete channel of the type described in
Section 2.1. Replace Z by the n -vector (E Q) in which E is a fixed vector
and the components of Q are Gaussian random variables with zero mean
with the property that there exist constants e and n such that for every real
n -vector U of unit length:

0 < ,Q)12 n

* See Ref. 3, Appendix D, for a result related to Sublemma 2.
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uniformly in n. Let y e (0,1). Then any rate

R < µ loge (1 + 21P107)

is permissible (in, the sense of Section 2.1) provided that

E12 < 6T

for all T > 0, in which

6 < 2(1 - 74)2 13.

where f3 = Q (n/ -y, p, R) is the number introduced in Section 2.1.

Proof: Let To e (0, co) . Consider the time -discrete channel of Section 2.1
with noise vector Z, but with i replaced with (1/7)n. Here for

R < 1.1 loge (1 + 2.2?-107)

and T To , there exists a code such that Xi X for i j,
and the error probability (using minimum distance decoding) given
that the ith code word was transmitted

APei = Pr U {1Xi+ Z -
jai

is at most exp [- j3 T + 0 (T)] independent of i, where

= 13[(n/7), PI R]

and 0 (T ) / T -> 0 as T -> 00 . For this code, the error probability (using
minimum distance decoding) for the channel described in Sublemma 2 is

pei
A= Pr U {IXi - E F Q - Xil 1E ± Qi}

Ji

Let Et:; = I Xi - X 1, and let Ui; denote the unit -length vector
(Xi - . Then it can easily be shown that

Xi --1--E-1-Q-X;1_5.1E+QI
if and only if

Q) - - (Ui5, E),
in which ( , ) denotes the usual inner product of n -vectors. Thus,

pei = Pr U (Ui; Q) - Zci, - (U i1 , E)}
jai



SENSITIVITY OF CHANNEL CAPACITY

and similarly,

fie, = Pr U (Ui; , Z) 7_5 -
iii

Consider (3). Let the n -vector P =4- (pi , p2 ,
general point in Euclidean n -space 8 , and let ea,;
half -space of 8 throughout which (U15, P) 5 .

Then

1489

(3)

, pn) represent a
denote the closed
Let 61, = U

ioi

-n/2
Pei = (2/1")-n12 (71) f exp [- -1 zk21 dzi dz.

2 n i=i

Similarly, let Si; denote the closed half -space throughout which

(U15, P) (Ui; ,E)]71,

and let
A6i = aii .

lei

Then, since

pc, = Pr U (U11 , 7-1(2) -Rau + (U15 E)17-11,
ioi

we have, with A the covariance matrix of the random variables { q17-1},

pe, = (270-n/2 (det f exp [-WA1Q]dqi dqn.
si

Let us assume that

+ (U15, E)17-1 (4)

for all j i. Then si; c , 8i g 61, , and hence

pc, :5(2i) -nit (det A)-1 exp [-IVA1Q]dqi dq.

Let Q = EY, where Z is the orthogonal matrix such that 74-1A-1,7:

= diag X21,
xn1,

) with the understanding that X1 and X.
denote the smallest and largest eigenvalues of A, respectively. Then

pa -5: (27)-ni2(XiX2 X.)-1 f
1 -1 2

exp [- Xk ykidyi dYn
1c=1

in which 61.: denotes the inverse image of (}11 under the transformation
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represented by E. Similarly,

Pei = 27)-n/2 (n)-'12 exp [- E Yk2] dy1 dy..
7 2 71 k=1

Since, by assumption,

E 6 &I(U,Q)i2 5 n

for every real n -vector U of unit length and every positive integer n,
it follows that X1 e7-1 and X. < 777-'. We note that for 0 < X; < n7-1:

XJ-1 exp [ - j-iyi2

provided that yi > 0/-y. Thus,

7

1 7exp - - 1
Yi2

<

2
(270-72/2(xix2 An) f exp [ - - Xk Yk dy1  4.

2 k=1

\ -n/2 lt1
< 27) -n12 V) exp [- - E yk21 dy1 dy.

7 z n k=1

5 fici

in which e denotes the hypercube in 8n defined by the inequalities:
73;2 71/y for j = 1, 2, , n.

Therefore,

pee
f f

(63t' -e)

fiei (27r)-n/2(XIX2 X.)-1 f exp - 5 Xk-1
yk2

dyi  4. 
k=1

However,

[ 1(27)-"/2(XIX2 X.)-1 f eXp - i- A xk-lyk2 dy1 - dy,,
e

,

in which

n/7

= (27)-1Xk-1 tlY
k=i -n/7

rn,

1 7 2

= (27r) (
e -n/ eXp E

(- -y dy.
^i
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Thus,

Pei < fiei rn < exp [-OT + 0(T)] (5)

Since r < 1, the right -side of (5) approaches zero as T co . Therefore,
to complete the proof of Sublemma 2, it suffices to show that there
exist values of To such that (4) is satisfied (for all j i) for all T > To .

We note first that (4) is satisfied if

- (Ui; , E) (1 - -yi)cii (6)

for all j i. Since - (U1; , E) 5 J E I, (6) is satisfied if

IEl 5 (1 - (7)

for all j
A

We now estimate the numbers Cij . We have,4 with a = (-y/n),

exp [- OT + 0(T)] PH( UihZ)

= (270-1 e-ix2dx,

for any i and any j i, since the variance of (U1; , Z) is nfry. There-
fore,

-a
exp [-MT 0(T)] (27r)1 f Ciz2dx = (271-)-4 f

co a2/2

e-v(2y)-4dy. (8)

Let 6 > 0 be a constant, and let a (6) denote the smallest nonnegative
number such that

(2y)-1 > e-4 for all y > a (8).

Then

exp + 0(T)] > (270-1 exp [ - ( 1 + )y]dy
a2/2

(27)1(1 + exp [-I (1 + 6)a2]

for a2 > 2a (s), from which it follows at once that

a2 2 (1 ± 8)-10T - 2(1 + 8)-1{1n [(277-)1(1 (5)] ± (T)}

for a2 > 2a (6). Since exp [-$T + 0 (T)] 0 as T co , we see from
(8) that for each a (8) > 0, there exists a constant Ts > 0 such that
a2 > 2a (a) for all T >= T 6 . Thus, for each 8 > 0 there exists a T a c (0, co )
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such that
2

6) -1 -y -1770T

(9)
- 8(1 + 6) -1 -y -177{1n [(27r)4(1 (5)] + 0(T)}

for all T > TO .
Inequality (7) is therefore satisfied for all T To if To > T6 and

I Ers 2(1 - -y1)2(1 + 6)-17-1nOT
(10)- 2(1 - 74)2(1 + 5)-17-1nfin [(2r)1(1 + 6)] + 0(T)i

for all T > To . By assumption: I E 12 < zff for all T > 0, in which

< 2(1 -71)2710.
Choose 5 > 0 so that

< 2(1 - 74)2 (1 6)-17-177,3,

and then let To c [T 2 , co) be so large that

t9 2(1 - 74)2(1 6)-1-y-1770

- 2(1 - y4)2(1 + (5)-17-107-11n [(27r)1(1 6)] + 0(T)}

for all T To . Then (10) is satisfied for all T To . This completes
the proof of Sublemma 2.

V. FINAL REMARKS

The writer is indebted to D. Hamming and L. A. Shepp for discus-
sions concerning this work, and to J. Savage, D. Slepian, and A. Wyner
for commenting on the draft.
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Phase Vocoder

By J. L. FLANAGAN and R. M. GOLDEN
(Manuscript received July 18, 1966)

A vocoder technique is described in which speech signals are represented
by their short -time phase and amplitude spectra. A complete transmission
system utilizing this approach is simulated on a digital computer. The en-
coding method leads to an economy in transmission bandwidth and to a
means for time compression and expansion of speech signals.

I. INTRODUCTION

Analysis -synthesis methods for speech transmission aim at efficient
encoding of voice signals. A customary approach is to represent sepa-
rately the important features of vocal excitation and tract transmis-
sion.' The well-known channel vocoder of Dudley' derives signals which
fall into this dichotomy. The tract transmission is described by values
of the short -time amplitude spectrum measured at discrete frequencies,
and the excitation is described in terms of the fundamental frequency
of the voice and the voiced -unvoiced character of the signal. Efforts to
solve the long-standing problem of good -quality synthesis from such
representations have centered on adequate analysis and specification of
the excitation data.

One advance in surmounting the difficulties connected with pitch and
voiced -unvoiced extraction is the voice -excited vocoder (VEV).3 This
device relys on transmission of an unprocessed subband of the original
speech to carry the excitation information. The spectral envelope infor-
mation is transmitted as in the channel vocoder by a number of slowly -
varying signals. Through accurate preservation of excitation details, a
transmission of improved quality and modest bandsaving is achieved.

The present paper proposes another technique for encoding speech to
achieve comparable bandsaving and acceptable voice quality. In addi-
tion, the technique provides a convenient means for compression and
expansion of the time dimension. The method specifies the speech signal
in terms of its short -time amplitude and phase spectra. For this reason,
it is called phase vocoder. Like the VEV, the phase vocoder does not

1493
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require the pitch tracking and voiced -unvoiced switching inherent in
conventional channel vocoders. Elimination of these decision -making
processes and the transmission of excitation information by phase -
derivative signals contribute to improved quality in the synthesized
signal.

II. PRINCIPLES

If a speech signal f(t) is passed through a parallel bank of contiguous
band-pass filters and then recombined, the signal is not substantially
degraded. The operation is illustrated in Fig. 1, where BPI- -BPN

represent the contiguous filters. The filters are assumed to have rela-
tively flat amplitude and linear phase characteristics in their pass bands.
The output of the nth filter is fn(t), and the original signal is approxi-
mated as

f(t) n(t)

Let the impulse response of the nth filter be

gn(t) = h(t) cos cont,

(1)

(2)

where the envelope function h(t) is normally the impulse response of a
physically -realizable low-pass filter. Then the output of the nth filter is
the convolution of f(t) with gn(t),

fn(t) = f f(X)h(t - X) cos [con(t - X)]c/X

= Re [exp (jcont) f f (X)h(t - X) exp ( -jr.onX)dX1 .

(3)

The latter integral is a short -time Fourier transform of the input
signal f (t), evaluated at radian frequency wn . It is the Fourier transform
of that part of fit) which is "viewed" through the sliding time aperture

f ft) fn(t)

Fig. 1 - Filtering of speech by contiguous band-pass filters.
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h(t). If we denote the complex value of this transform as F(con , t), its
magnitude is the short -time amplitude spectrum I F(con , t) I, and its
angle is the short -time phase spectrum cp(con , t). Then

fn(t) = Re[exp (jcont)F(con ,

or

jn(t) = I F(con , I cos [cont c(wn t)}. (4)

Each fn(t) may, therefore, be described as the simultaneous amplitude
and phase modulation of a carrier (cos wet) by the short -time amplitude
and phase spectra of f(t), both evaluated at frequency con .

Experience with channel vocoders shows that the magnitude functions
I F(0). , I may be band -limited to around 20 to 30 Hz without sub-
stantial loss of perceptually -significant detail. The phase functions
cp(con , t), however, are generally not bounded; hence they are unsuitable
as transmission parameters. Their time derivatives o(con , t), on the
other hand, are more well-behaved, and we speculate that they may be
band -limited and used to advantage in transmission. To within an addi-
tive constant, the phase functions can be recovered from the integrated
(accumulated) values of the derivatives. One practical approximation
to fn(t) is, therefore,

1,z(t) = I 17 (con , t) I cos [cent riO(cOn , 01, (5)

where

egc07,,t) = f gcon,t)dt.
0

The expectation is that loss of the additive phase constant will not be
unduly deleterious.

Reconstruction of the original signal is accomplished by summing the
outputs of n oscillators modulated in phase and amplitude. The oscilla-
tors are set to the nominal frequencies con , and they are simultaneously
phase and amplitude modulated from band -limited versions of tgcon ,
and I

F(o.) , t) I. The synthesis operations are diagrammed in Fig. 2.
These analysis -synthesis operations may be viewed in an intuitively

appealing way. The conventional channel vocoder separates vocal ex-
citation and spectral envelope functions. The spectral envelope functions
of the conventional vocoder are the same as those described here by

F(con , t) I. The excitation information, however, is contained in a
signal which specifies voice pitch and voiced -unvoiced (buzz -hiss) ex-
citation. In the phase vocoder when the number of channels is reasonably
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cos [ cunt + ip" ( co

t
99. (ton,t)dt

I
j(wn,t) (wn

fn (t)

Fig. 2 - Speech synthesis based on the short -time amplitude and phase -deriva-
tive spectra.

large, the information about excitation is conveyed primarily by the
0(con , t) signals. * In the present technique, and if good quality and
natural transmission are requisites, the indications are that the 0(0.4, , t)
signals may require about the same channel capacity as the spectrum -
envelope information. This preliminary impression seems not unreason-
able in view of our experience with voice quality in vocoders.

III. COMPUTER SIMULATION

We have simulated a complete phase vocoder analyzer and synthesizer
on an IBM 7094 computer. The program, written in the BLODI-B
language,4,5 provides for the processing of any digitalized input speech
signal. Flexibility built into the program permits examination of a num-
ber of design parameters such as number of channels, width of analyzing
pass bands, band center frequencies, and band limitation of the phase
and amplitude signals.

In the analyzer, the amplitude and phase spectra are computed by
forming the real and imaginary parts of the complex spectrum

F (con , t) = a(con , t) - jb(ah, , t),

where

a(con , t) =

and

.fot,h(t_x) cos codtdX

b (con , t) = f (X) h (t - X) sin XdX. (6)

* At the other extreme, with a small number of broad analyzing channels, the
amplitude signals contain more information about the excitation, while the
phase signals tend to contain more information about the spectral shape. Qualita-
tively, therefore, the number of channels determines the relative amounts of
excitation and spectral information carried by the amplitude and phase signals.
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Then,

and
F(wn t) I = (a2 b2)1

= (ab - ba)
a2 b2

The computer, of course, must deal with sampled -data equivalents of
these quantities. Transforming the real and imaginary parts of (6) into
discrete form for programming yields

fri

a(con, mT) = T A/T)[cos conIT]h(mT - 1T)

m

(7)

(8)

b(con,nT) = T E f(IT)[sin con1T]h(mT - 1T),

where T is the sampling interval. In the present simulation, T = 10-4
sec. From these equations, the difference values are computed as

and

Da = a[wn , (m 1)71] - a[con ,mT]

= b[co , (m ± 1)71 - b[on , mT]. (9)

The magnitude function and phase derivative in discrete form, are
computed from (8) and (9) as,

I F[o , mT] I = (a2 b2)4

1 (boa - aib)
-T [con 'mT] = (10)

T a2 b2

Fig. 3 shows a block diagram of a single analyzer channel as realized
in BLODI-B. Since this block of coding is required for each channel, it is
defined as a new block type and thereafter used as though it were a
single block. A parameter associated with the block determines the
center frequency for each channel. The time -window analyzing filter,
labeled h(lT), is itself a special block and can be changed simply by
the substitution of a different block of coding.'

In the present simulation, a sixth -order Bessel filter is used for the
h(lT) window. Its amplitude, phase, and delay responses are plotted
in Figs. 4(a), (b), and (c), respectively. Its impulse and step responses
are given in Figs. 4(d) and (e). The present simulation uses 30 channels
(N = 30) and co = 27rn(100) rad/sec. The equivalent pass bands of the



1498 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966
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h

SQUARE

2

a2+ b2

DIVIDE

VT W n ,1:0]

b2

LOW-PASS
FILTER

SI N (anti

Ab

DIFF.

SQUARE

a b

SQUARE
ROOT

I F(con

= 0, I , 2 ,

Fig. 3 - Programmed operations for extracting I I e (con , t) I and 96 (con t).

analyzing filters overlap at their 6 dB down points and a total spectrum
range of 50 to 3050 Hz is analyzed.

Programmed low-pass filtering of any desired form may be applied to
the amplitude and phase difference signals as defined by Fig. 3. Simula-
tion of the whole system is completed by the synthesis operations for
each channel performed according to

.-f,j(mT) = I F(co , mT) cos (00177
1-0 T

6,60(con ,1T))

Adding the outputs of the n individual channels, according to (1), pro-
duces the synthesized speech signal.

IV. TYPICAL RESULTS

As part of the present simulation, identical (programmed) low-pass
filters were applied to the , 1T) I and (1/T)Ocp(co , 1T) signals
delivered by the coding block shown in Fig. 3. These low-pass filters are
similar to the h(lT) filters except they are fourth -order Bessel designs.
Their response characteristics are shown in Fig. 5. The cut-off frequency
is 25 Hz, and the response is -7.6 dB clown at this frequency. This
filtering is applied to the amplitude and phase signals of all 30 channels
in the present simulation. The total bandwidth occupancy of the system
is therefore 1500 Hz, or a band reduction of 2:1.
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After band -limitation, the phase and amplitude signals are used to
synthesize an output according to (11). The result of processing a com-
plete sentence through the programmed system is shown by the sound
spectrograms in Fig. 6. * Since the signal band covered by the analysis
and synthesis is 50 to 3050, the phase-vocoded result is seen to cut off at
3050 Hz. In this example, the system is connected in a "back-to-back"
configuration, and the band -limited channel signals are not multiplexed.

Comparison of original and synthesized spectrograms reveals that
formant details are well preserved and pitch and voiced -unvoiced fea-
tures are retained to perceptually significant accuracy. The quality of
the resulting signal considerably surpasses that usually associated with
conventional channel vocoders.

V. MULTIPLEXING FOR TRANSMISSION

Besides conventional multiplexing methods for transmitting the band -
limited phase and amplitude channel signals (that is, space -frequency or
time -division multiplex), the coding technique suggests several other
possibilities for transmission in a practicable communication system.
As an example, suppose a limited -bandwidth analog channel is the
available communication link. One advantageous procedure then is
simply to divide (or scale down) all of the phase -derivative signals by
some number, say 2 if the available channel has only one-half the con-
ventional voice bandwidth. A synthetic signal of one-half the original
bandwidth is then produced by modulating carriers of con/2 by the
0/2 and I F signals. The synthetic analog signal now may be trans-
mitted over the half -bandwidth channel.

At the receiver, restoration to the original bandwidth is accomplished
by a second sequence of analysis and synthesis operations; namely,
amplitude and phase analysis of the half -band signal, multiplication of
the phase -derivative signals by a factor of 2, and modulation of con
carriers by the restored c'on and reanalyzed I F,, I signals. This "self -
multiplexing" transmission is illustrated in Fig. 7. Spectrograms of the
input signal, the half -band frequency divided signal, and the reanalyzed
and resynthesized output are shown. It is clear that two trips through
the process introduces measurable degradation, but the intelligibility
and quality, particularly for high-pitched voices, remains reasonably
good.

In effect, the greatest number q by which the co and cb's may be
* The input speech signal is band limited to 4000 Hz. It is sampled at 10,000 Hz

and quantized to 12 bits. It is called into the program from a digital recording
prepared previously.
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divided is determined by how distinct the side -bands about each con/q
remain, and by how well each cp,z/q and Fn I may be retrieved from
them. * Practically, the greatest number appears to be about 2 or 3 if
transmission of acceptable quality is to be realized.

VI. COMPRESSION AND EXPANSION OF THE TIME SCALE

As mentioned above, a synthetic frequency -divided signal may be
produced through division of [cont f ondt] by some number q. This
signal may be essentially restored to its original spectral position by a
time speed-up of q. Such a speed-up can be accomplished by recording
at one speed and replaying q -times faster. The result is that the time
scale is compressed and the message, although spectrally correct, lasts
1/qth as long as the original. An example of a 2:1 frequency division
and time speed-up is shown by the sound spectrograms in Fig. 8. This
feature of the phase vocoder is completely parallel to the time -com-
pression feature of the "harmonic compressor" reported earlier.' How-
ever, the techniques for analysis and synthesis in the two cases are
basically different, and the phase vocoder allows compression by non -
integer factors.

Time -scale expansion is likewise possible by the frequency multipli-
cation q[cot f ondt]; that is, by recording the frequency-multipied
synthetic signal and then replaying it at a speed q -times slower. An
example of time -expanded speech is shown by the spectrograms in Fig.
9. The expansion feature provides an interesting "auditory microscope"
for directing attention to the spectral properties of specific elements of
Speech sounds - such as rapidly articulated consonants. In both com-
pression and expansion of the time scale, a perceptual limit exists, of
course, to how greatly the time scale may be altered and still have the
signal sound like human speech.

An attractive feature of the phase vocoder is that the operations for
expansion and compression of the time and frequency scales can be
realized by simple scaling of the phase -derivative spectrum. Since the
frequency division and multiplication factors can be non -integers, and
can be varied with time, the phase vocoder provides an attractive tool
for studying non -uniform alterations of the time scale.'

* More precisely, the maximum divisor is determined by how closely

1/q ,;0dt

represents
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VII. FURTHER REMARKS ABOUT BAND OCCUPANCY

The possibilities of frequency division imply that the I F. I and on
signals are, in practical effect, band -limited. As described previously,
modest bandwidth reduction of the order of 2:1 can be accomplished by
a simple scaling of all the co signals by 1. (Overt low-pass filtering of
the on signals is not required.) Also, low-pass filtering the analyzed sig-
nals to a total band occupancy of one-half the original bandwidth re-
sults in relatively good speech quality upon synthesis (Fig. 6). If, how-
ever, some further trade between band saving and speech quality is
desired, the control signals may be low -passed more severely, with
concomitant loss in quality. The impairment resulting from low -passing
the on signals is a comb -filtering, reverberant effect in the reconstituted
signals. Qualitatively, low-pass filtering of the on signals apparently
restricts the rate at which pitch changes can be duplicated, and "nar-
rows" the sidebands produced about each con -carrier at the synthesizer.

The discussion connected with (4) has pointed out that each band-
pass signal in the phase vocoder may be considered as the simultaneous
amplitude and phase modulation:

fn(t) = I FI cos (wnt + son),

where I F. I and limited, real -valued functions of Wn
and time. Practically, the bandwidth of fn(t) is confined to 2W, where
W is the cut-off frequency of the low-pass time aperture h(t). This fact
does not, however, suggest in an explicit way the band occupancy of
the signals I F. I and ion . The experimental results of the present study
indicate that each of the latter, at least for practical purposes, can be
limited to around W/2 or less, but analytical treatment leading to ex-
planation is difficult. Even the inverse problem, that is, calculation of
the band occupancy of a simultaneously amplitude and phase modulated
carrier, can only be bounded loosely.' To apply these bounds requires a
precise description of the I F I and on signals. Although these param-
eters can be measured for a given speech signal, a general mathematical
specification is not presently available. It is easy to indicate the diffi-
culties involved. Consider the usual model of voiced speech sounds;
that is, a periodic pulse source, whose frequency (pitch) may change
with time, supplying excitation to a linear, passive, time -variable net-
work. Variation of the network transmission represents the spectral
changes both in the vocal sound source and the vocal tract transmission.
For an analysis in terms of narrow pass -bands (large N), the On signals
depend primarily upon voice pitch. The I F. I signals, on the other hand,
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depend both upon source spectrum and vocal transmission at any given
instant.

VIII. CONSIDERATIONS FOR DIGITAL TRANSMISSION

Applications of the phase vocoder technique to digital transmission
are of course obvious. Given an acceptable band -limitation of the I F
and on signals, each may be sampled at its Nyquist rate, or higher, and
quantized to an accuracy that is perceptually sufficient. At this writing,
optimum parameters for sampling and quantizing the control signals
have not been studied in detail. Based upon past experience, however,
a nonuniform distribution of the pass bandwidths of the analyzing
filters would appear advantageous. For example, center frequencies and
bandwidths chosen according to the Koenig scale, the mel (pitch) scale,
or the auditory critical -band function should yield dividends.*

All of these bandwidth tapers are characterized by widths which
monotonically increase with frequency. In such cases, the low-pass
filtering applied to the amplitude signals would have cut-off frequencies
also increasing monotonically with frequency. On the other hand, the
low-pass filters applied to the phase signals might have cut offs which
decrease with frequency. As a result, sampling rates would increase with

for amplitude signals and diminish for phase signals. In addition,
quantization levels for all signals might be made more coarse (less nu-
merous) with increasing channel frequency. This is indicated because
the ability of the ear to perceive frequency and amplitude changes in
the higher end of a complex spectrum is, in general, less acute than for
the lower part.

Although detailed study is yet to be made of optimum digital for-
mats, experience in this area with related vocoder devices suggests that
transmission at bit rates somewhat less than ten kilobits/sec should be
possible without impairment due to digitalization. This rate is several
times less than that normally associated with comparable quality PCM
encodings of the speech waveform. Besides the questions of design opti-
mization and data format for digital transmission, the trade which may
be effected between signal quality and total bit rate is also a subject for
further investigation.

IX. CONCLUDING COMMENTS

Because the phase vocoder produces phase derivative signals, it pro-
* Preliminary tests along these lines indicate that a phase vocoder with as

few as eight non -uniform channels is capable of relatively good transmission
(J. J. Kalsalik, unpublished work).
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vides a particularly convenient means for multiplying or dividing the
frequency spectrum of a broadband signal. By the same token, it is a
convenient method for compressing or expanding the time scale of a
signal. Frequency division of speech appears to hold potential as a com-
munication aid for persons with hearing deficient in the high frequencies.
Time compression shows promise for auditory "speed-reading" by
persons with impaired sight.

Psychoacoustic and physiological studies show that the human ear
makes a type of short -time spectral analysis of acoustic signals. This
analysis occurs at an early level in the auditory processing; in fact, at a
preneural level. It is also clear that the auditory system utilizes informa-
tion corresponding to smoothed values of the short -time amplitude and
phase spectra. The phase vocoder aims to turn these facts to advantage
by describing speech signals in terms of band -limited values of the short -
time amplitude and phase -derivative spectra. Indications are that band -
limited spectral samples, occupying a bandwidth on the order of one
half that of the original signal, preserve perceptually -significant features
of the signal. Further band conservation can be realized, but at the
expense of signal quality. As in many other transmission systems, a
continuum of band conservation (or bit rate) versus signal quality exists,
and one may choose the point of operation to suit requirements.
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Theory of Error Rates for Digital FM
By J. E. MAZO and J. SALZ

(Manuscript received June 29, 1966)

A general theory is presented for evaluating the error performance of a
digital FM system in the presence of additive noise. The digital system con-
sidered is a conventional one employing a voltage -controlled oscillator as the
modulator and a limiter -discriminator followed by a low-pass filter as the
demodulator. Because of the nonlinear nature of the demodulation process,
no adequate analytical techniques have been available to provide a satisfac-
tory treatment. Adopting the notion of "clicks" used by S. 0. Rice to study
threshold effects in analog FM systems, we have succeeded in evolving a
theory capable of predicting performance for a wide range of applications.
While our theory reinforces some previously derived results for binary and
for narrow -band systems, the results obtained here are not confined to these
situations. In particular, the inefficiency of the FM discriminator as a de-
tector for a large number of orthogonal signals is quantitatively evaluated, as
well as the role of the post -detection filter. Some qualitative aspects of the
error -causing mechanisms discussed in the paper are general, but quantita-
tive results are confined to additive Gaussian noise and large signal-to-
noise ratios.

I. INTRODUCTION

Theoretical investigations of FM receivers with analog input signals
date back to J. R. Carson and T. C. Fry,' and to M. G. Crosby.2 These
investigators and others that followed thern3'4'5 were primarily concerned
with the signal-to-noise (S/N) transfer attainable in FM receivers and
the determination of threshold effects. Recently S. 0. Rice,6 and previ-
ously J. Cohn,' attacked the threshold problem in FM receivers from a
fresh point of view by using the notion of "clicks." It has been observed
that when the noise at the input of an FM receiver is increased beyond
some value, the receiver "breaks," that is, for a given (S/N) at the in-
put, a much poorer (S/N) at the output is measured than would be pre-
dicted from a linearized analysis of the receiver. Before the breaking
point, clicks are heard in the output of an audio receiver. As the input

1511
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noise is further increased, the clicks merge into a sputtering sound.
Rice's approach is to relate this breaking point with the expected num-
ber of clicks per second at the output due to the added noise at the in-
put.

While in analog application the criterion of (S/N) transfer is satisfac-
tory, in digital data transmission it does not by itself furnish an adequate
performance criterion. Usually performance is judged in terms of error
rates which cannot be predicted from the (S/N) transfer for nonlinear
receivers. The error rate clearly depends on the statistical distribution of
the output noise. In good systems, the errors are very infrequent and are
associated with rare peak noise conditions. The statistical structure of
the occurrence of infrequent noise peaks and the manner in which they
cause errors in FM receivers is the main subject of this paper. Some
previous investigations of these effects have been carried out. For ex-
ample, Bennett and Sal' have analyzed binary FM systems, including
the effects of distortion. They derived formulas for the error rate without
including the post -detection filter in their model. Since the error rates
that they obtained for a well -designed binary system were close to the
optimum obtainable for any receiver, they were able to conclude that the
neglect of this filter was justified. Formulas are also available9," for the
probability distribution function of the instantaneous frequency of sig-
nal plus noise at the input to the post -detection filter for N-ary FM, but
these equations are not very useful in predicting the performance of a
practical FM system since the task of relating this distribution to the
distribution at the output of the post -detection filter is apparently
untractable. In a recent paper, Salzu considered a multilevel FM narrow -
band digital communications system where he included the post -detec-
tion filter in his analysis. However, the results assume that the post -de-
tection filter did not perform significant selective processing of the
detected signal.

In this paper, we shall develop a general theory from which the per-
formance of FM receivers with arbitrary processing gain may be pre-
dicted. We shall view the conventional FM receiver, described in Section
II, as a device for detecting digital signals and examine its properties in
detail. In Section III, after approximating the post -detection filter by an
ideal integrator, we show how clicks enter the problem. * Our assumptions
and the ensuing mathematical model of the stochastic output are also
stated there. The following section supplies the considerable amount of

* Cohn, Ref. (7), has also mentioned the application of the concept of clicks to
explain errors in digital FM. Further, D. Schilling of Brooklyn Polytechnic Insti-
tute has called to the authors' attention that he is also investigating the relation-
ship between clicks and error rates in FM.
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mathematical detail needed to quantitatively substantiate the work of
Sections V through VII. In particular, the notion of clicks will be used to
explain the poor performance (compared to ideal) of this receiver to de-
tect a large number of orthogonal signals. This phenomenon has also been
mentioned by Wozencraft and Jacobs.12 Another result of the present
paper is to establish conditions under which the previous analyses reli-
ably predict the performance of actual FM systems. The work of Refs. 8
and 11 will be supported and it will be shown that for multilevel wide -
band systems the post -detection filter cannot be ignored. Finally, in Sec-
tion VIII a discussion is given to suggest circumstances under which suc-
cessive clicks will not be independent and an instructive example is
given showing how this renders ineffective the additional selective filter-
ing possible at the input when the frequencies are very widely spaced.

II. THE DIGITAL FM SYSTEM

A digital FM signal is readily produced by changing the frequency of an
oscillator in response to a digital baseband signal. The voltage or current
at the output of such an oscillator may be represented as

= A cos [cost f s(t')dt' ± 0] , (1)

where A is a real amplitude, we the angular center frequency of the oscil-
lator, and 0 is an initial phase angle. The digital information -bearing
signal s(t) is taken to be a piece -wise constant function of time represent-
able as a random time series of the form

=

s(t) = 0,, E a,,g(t - nT), (2)
71=0

where fan , n = 0, 1, } is a sequence of independent and identically
distributed integer valued stochastic variables representing the data.
For example, one might have a = ±1 with equal probability for binary
systems. The function g(t) is a rectangular pulse of unit amplitude and T
seconds duration and cod is a proportionality constant relating frequency
displacement to baseband signal voltage or current. The spectral proper-
ties of this FM wave have been extensively analyzed in Refs. 13 and 14.

Transmission and reception of the FM wave is accomplished as follows.
The wave S(t) is first processed by a transmitting filter, channel noise is
added, and the result is processed again by a receiving filter assumed to
be the inverse of the transmitting one. The signal is then detected via
the limiter -discriminator and filtered at baseband before being synchro-
nously sampled at t = nT (using independent timing information) to de-
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TRANSMITTING
FILTER F

S(t)

RECEIVING
FILTER F DISCRIMINATOR

LIMITER

n (t)

SYNCHRONOUS
SAMPLER

POST - DETECTION
FILTER

Fig. 1 - Block diagram of a digital FM receiver.

DATA
OUT

termine sequentially the values of a } . We have illustrated these opera-
tions in block diagram form in Fig. 1. A detailed description of the blocks
shown is given in Ref. 15. We shall state here in mathematical terms the
assumed operation of the limiter -discriminator. Let the input to the
limiter be written in terms of in -phase and quadrature components as

x' (t) cos coct - (t) sin wet R(t) cos [wet + co(t)], (31

where

and

R(t) = V[e(t)]2 + [V(1)]2

ca(t) = y'(t)/x'(t).

Then the output of the discriminator is taken to be

x'(t)V(t) - y'(t)±'(t)
di [e(0]2 + [V(0]2

where the dots denote differentiation with respect to time. The post -

detection filter acts upon the quantity (6).

(4)

III. FORMULATION OF THE PROBLEM AND A MATHEMATICAL MODEL

(5)

(6)

We approximate the low-pass filter as an ideal integrator whose im-
pulse response is unity for T' seconds and zero afterward. The duration
T' is taken equal to the signaling time T and so no intersymbol interfer-
ence occurs at the sampling times for a wave described by (1) and (2).
The results obtained with this particular choice of filter should be repre-
sentative of the results one would obtain with any low-pass filter of simi-
lar bandwidth.

The sampled output q' of the discriminator low-pass filter output is
given by (7)

fr x'(t)9i(t) - y' (t)±' (t)
dt.q = Jo x'2(t)y"(t) (7)
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The in -phase and quadrature components occurring in (7) are now not
those of the pure FM wave (1), but have the analogous components of
zero mean noise added in as well. One may, by use of arotating coordinate
system, equally consider

q = q - ancodT =
for X ( t ) /

x2(t)t
yy2((ti))± ( t )

where y(t) is now a zero mean quadrature noise process, while x(t) is an
in -phase noise process with mean A, the amplitude of the noise -free re-
ceived FM wave. We now proceed formally with (8), defining a quantity

r(t) = y(t)/x(t).

Equation (8) is then rewritten as a path integral
r (T) dr(t)

q =
fr(0) 1 + 7.(t) fdAP(t).

In (10) we have written drp = d(tan-1 y/x), but of course we do not mean
that is evaluated using some fixed branch of tan-' y/x since this would
give so as a single valued function of y and x and would not allow for the
fact that as we circle once about the origin in the xy-plane o increases by
27. The noise processes y(t) and x(t) wander about the xy-plane (see
Fig. 2), usually staying close to their mean values but occasionally tak-
ing large excursions and encircling the origin. Each infinitesimal portion
of the path contributes an amount dio volts to the output and all these
small amounts from all the small portions of the path must be added to-
gether to form the total contribution q. It is easy to see that q depends on
the path taken, not just on its endpoints. A simple mathematical reason
for this is that the transformation (9) is undefined whenever x(t) = 0.
Further, the paths taken in the xy-plane are random, and q is therefore,
a random variable with some probability density related to the statistics

(8)

(9)

(10)

Fig. 2 -A possible path in the xy-plane traced by the noise from t = 0 to t = T.
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of r(t). Unfortunately, this probability density is not determined solely
by the elementary statistics of r(t). As will be seen, in addition to the
elementary statistics of r(t) the distribution of its singularities on the time
axis enters the picture. The singularities of r(t) are determined by the
zero -crossings of x(t). Thus, the behavior of FM receivers is intimately
related to the structure of the zero crossings of the added noise.'"

To see how to handle the situation, visualize the following hypotheti-
cal state of affairs. Suppose for 0 ._.t.Twe have that y(t) > 0, and
that x(t) is positive for a while, decreases once through zero at t = to ,

and then remains negative. A possible plot of r(t) versus t over the time
interval is then shown in Fig. 3. For this particular path one has

r(7) drdr dr r(T) drq = (11)j:(0) 1 + r2 L 1 r2 L. 1 r2 fro, r2

In (11) the straightforward interpretation of the integrals is meant.
Evaluating the infinite integral one obtains for this path

q = 7 + tan -1 r(T) - r(0),

where tan-' x means the principal value inverse tangent function,
tan-' x I < 7r/2. In general, one has the result that

q = tan-' r(T) - tan-' r(0) + n(T)7, (12)

where tan-' x again has the principal value interpretation and n(T) is
an integer (which may be positive, negative, or zero) which is related to
the number of times x(t) vanishes in the interal T and to the sign of y(t)
when x(t) vanishes. For large signal-to-noise ratios it is clear that if
x(t) vanishes by going to zero from the positive side that it will almost
immediately be followed by another vanishing of x(t) in the other direc-
tion. If y(t) has not changed, the contribution of the "return trip" to
n(T) will cancel the contribution from the previous crossing of the y-axis.
On the other hand, if y(t) does change sign so as to cause an encircling
of the origin then the contribution to n(t) will be the same as the previous
crossing. The net contribution to n(T) of a number of paths is shown in
Fig. 4. The paths which have An = ±2 are immediately recognized as
the "clicks" discussed by Rice.' The "clicks" are not the only contribu-
tion to n(T) however. There is also a contribution because of the fact
that at t = 0, when our process begins, we may be in the middle of a
large noise fluctuation and be over in the left -half plane. Immediately
afterwards, at t = 0+, we will experience a contribution of ±1 to n(T);
a similar situation may prevail at time t = T, when a possibility exists of
stopping the process immediately after we have crossed over to the left -
half plane. We will show later that for large signal-to-noise ratios, these
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to T
1

t

Fig. 3 -A possible sample function of r(1).

end -effects may be neglected because they occur with a probability that
is asymptotically negligible compared with the probability of a click.

An important fact to observe before proceeding with the analysis is
that q can be decomposed into the sum of three random variables. The
first two random variables appearing in (12) are continuous and bounded.
Their probability densities are related to the elementary statistics of
x(t) and y(t). The third random variable is a discrete one, whose proba-
bilities are determined from the probabilities of zero -crossings of x(t)
and y(t).

The remarks made thus far about the effect of noise on FM reception
have been general; no assumptions have been made about the statistical
nature of the additive disturbance. In order to obtain quantitative re-
sults some definite assumptions are necessary. For the remainder of the

An=o

An= -2

Fig. 4 - Net changes An in n(T) caused by some typical paths in the xy-plane.
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paper we shall set ourselves the task of studying the structure of the
probability distribution of q when the input noise statistics are those of a
Gaussian process having a symmetric spectral density about the carrier.
From these distributions we determine the error rates as a function of the
pertinent system parameters.

No attempt will be made in this paper to derive an exact probability
density for the random variable q. This is not a mathematically tractable
problem since it requires knowledge of the probability distribution of
zero -crossings of random processes. This by itself has been an area of
investigation for many years without too much success. The probability
distribution of the zero -crossings of most elementary random processes
is not currently known.

In order to permit an analysis of the model two assumptions are made,
both of which we feel are quite reasonable. These two assumptions taken
together state that the three random variables that determine q via
(12) are all independent. We separate this statement into two assump-
tions because their individual justification stems from two different
physical arguments, one having to do with bandwidth and the other
with signal-to-noise ratio. The first assumption states that tan -1 r(T)
and tan -1 r(0) are independent. For a flat Gaussian noise input this will
be a good approximation if T > 1/W, where W is the input noise band-
width. Since T is also the signaling interval, and the correlation func-
tion of the input noise has its first zero at t ti 1/W, the motivation for
this assumption is clear. The second assumption, somewhat harder to
justify, states that n(T) is independent of the previous two random varia-
bles, and the clicks, which comprise n(T), are independent from one
another. This is clearly an assumption expressing an intuitive feeling
that the clicks occur rarely and of sufficiently short duration. In general,
they will be rare if the signal-to-noise ratio is large, and short if the
bandwidth satisfies W 1/T as required above.

These two assumptions plus the identification of crossings of the nega-
tive x-axis by the moving point in the xy-plane (as calculated by Rice)
with the occurrence of a click shall constitute our working model of the
output noise. An indication of how this model must be modified if the
input noise spectrum is not relatively flat is given in Section VIII.

IV. THE BASIC DISTRIBUTIONS

Let y be a Guassian variable of zero mean, variance 0-2, and x be another
independent Gaussian variable of mean A, variance 0-2.* Then the den-

* Recall that even though our x(t) and y (t) are not independent processes be-
cause the noise spectrum will not be symmetrical about (cot a,cod) , they are inde-
pendent variables.
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sity 73(0) where tan sP = y/x and has the full range of 27r is well known
and is given by Bennett,"

75(0 - exp ( -p) /1 cos so exp ( - p sin2 si5)
2w

 [1 erf (N/ p cos 01,
(13)

where p = A2/20.
One fact which is implicitly contained in (13) is the probability PL

of finding the signal point in the left half of the xy-plane. However, an
easier way to obtain PL is as follows:PL\/A

= Pr(x < 0) = erfc (14)
" 2

(-
Vp)

Equation (14) will be of use in the arguments used to discard the "end
effects" at t = 0 and / = T spoken of earlier. Equation (13) also im-
mediately yields the probability density p(o) for co = tan-' (y/x),
-r/2 < co < 7r/2. Indeed, we have

P(v) = P(v) P(90 r)
(15)exp ( - p) + p

7r-

cos co exp ( -p sin2 erf (14 cos (p)

for I co I 7r/2.
Suppose of and cot are two independent angles which have the density

(15), and define an angle 4 = col - st< 7r. It will be of interest for
us to determine the probability Pc that exceeds some angle cP > 0,
i.e., we would like to determine

=

f( tr12)-0
(10.2 j.

7/2

C/SC1P (V1)7) (0.2) , > 0. (16)
-T/2 102÷V;

In general, one is unable to perform these integrations exactly, but since
discussion has already been limited to the large S/N region, little will be
lost if we make use of this in simplifying the evaluation of (16). The
asymptotic evaluation is carried out in detail in the Appendix; we
distinguish three cases:*

Case I; 0 < it) < w/2:

1 cot (co/2) exp [ - 2p sin2 (i0/2)]
1/Kr cosA/o Vp

* In (17) the symbol is used to denote asymptotic equality; this has also
been used in (14). Also (17a) and (17c) do not, hold if gets too close to the end
points of the appropriate interval. As a rough rule, should not be closer than
1// radians to the end points.

(17a)
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Case II; co = 7/2:

Case III; co > 7/2:

Po ^" (i) exp (-p).

R.
2r.V.Tr pV p- sin if) cos2 rp

exp [-p(1 cos2 co)]

The most important characteristic of the result (17) is the dependence
of the exponent on angle, since for large p the nonexponential factors
are relatively slowly varying.

We should remark that for very small angles (15) is well approximated
by the Gaussian curve

9((p) = exp ( -fx,02) (18)

of zero mean and variance 1/2p. The difference angle cn would, for very
small P, be well approximated by the difference of two independent
Gaussian variables, each having the density (18). The quantity Pc,
calculated on this basis agrees (asymptotically) with the small angle
approximation of (17a).

The final item that we discuss in this section is the density of n(T),
or rather we discuss the density of that part of n(T) that arises from the
clicks (An = ±2), ignoring An = ±1 contributions. For this we need
only take over some ideas and formulas from Rice.' We have that
(ignoring An = ±1)

in(T) = 2irN(T), (19)

where N(T) is the number of clicks that occur in time T. Following Rice,
we assume that all clicks are independent and that those tending to in-
crease (decrease) go by 27 form a Poisson process with rate of occurrence
N+(N_). In general, with a modulated signal, N+ and N_ are not equal.
The probability density p(z) of z = N(T) is then given by

p(z) = exp [- (N± N_)T] E - k) (N-1/2
N_ (20)
 I k (271 N -F1V -) ;

as may be shown by forming the discrete convolution of the densities
of the positive and negative clicks. In (20) 6() is the Dirac delta func-
tion and /k(A) is the modified Bessel function of integer order k, be-
having for smallµ as18
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ik

ix(A) (-j±)-0 2 I k ! '

also

(21)

Lk(z) = /k(z).

The type of modulation that we are concerned with is when the in-
stantaneous frequency deviates by cod from the carrier* for a time T,
T being the signaling and processing interval. For this situation Rice
gives for the average rates N+ and N_ when the noise at the receiver
input is Gaussian

N+ = /INA' + fa' [1 - erf V P /7.2]
(22)

and

wheret

-fd exi) (-p){1 - erf (fAfp/i)i)

N_ = N+ fd exp (-p), (23)

r = (1/270(610-)

0-2 = var x = var y

ir2 = var ti = var (24)

Under the assumption that Id is positive we have asymptotically

1N+, 4v 7r
1

[-p(1 f d2 /7.2)]

+  1._

N-- N+ f d exp (25)

Thus, we see that for large p an ever greater majority of clicks occur in
the negative direction (fa > 0) and for our purposes of computing error
rate the clicks in the positive direction may be neglected; i.e., we shall use

for fd > 0. (26)

N_ fa exp (-p)J
* We trust that no confusion will arise between r introduced in (24) and r (t)

introduced in (9).
t The case Wd = 0 corresponds to no modulation. Also, for ease of writing, we no

longer explicitly consider the factor an .
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For fa < 0 the situation is reversed of course. We note that the effect of
the clicks on a modulated carrier is to tend to make the measured fre-
quencies appear closer to the carrier frequency than the transmitted
frequencies. That is, confining oneself for the moment to only errors
caused by clicks, frequencies transmitted higher (lower) than the carrier
will be measured to be at that frequency or a lower (higher) one, when
the noise is small.

Since we shall use approximation (26), the distribution (20) for
z = N(T) may be replaced by the simpler Poisson one, where the proba-
bility of getting exactly N (negative) clicks in time T is given by*

exp ( -N_T)(N_T)N(T)p[N(T)] - (27)
[N(T)]!

Also the probability of getting M or more clicks is, for large signal-to-
noise ratios, approximately the probability of getting exactly M clicks.

V. DISTRIBUTION OF OUTPUT AND PROBABILITY OF ERROR

Equations (14), (17), (26), and (27) provide the information required
to calculate the distribution of q, (12). In principle we simply convolve
the continuous density of [tan -1 r(T) - tan -1 r(0)] with the discrete
density of n(T)7. In Fig. 5, we have given a qualitative sketch of the
result, neglecting end effects. This picture is intended to show that the
density consists of a central lobe about the transmitted frequency ex-
tending to ±7 on each side, which is the density of [tan-' r(T) -
tan-' r(0)j, plus identically shaped lobes displaced by integral multiples
of 27 toward lower frequencies (assuming fa > 0). These displaced lobes
are weighted by the probability of getting the appropriate number of
clicks to effect the displacement. Thus, the lobe occupying the space
-2n7 ± 7 is weighted by the probability of getting exactly n clicks in
time T. For n = 0 the weighting is essentially one, for large S/N. There
are, strictly speaking, similar lobes and weightings on the opposite side
as well, but these weights are, for large S/N, negligible compared to the
corresponding lobe we have drawn. That is to say, the first lobe on the
right (not shown in Fig. 5) has small probability compared to the first
lobe on the left, but has a large probability compared to the second lobe
on the left. Nevertheless, we have neglected to include it because we will
generally be concerned with probabilities like Pr[ q -f dT I > co], and
thus corresponding weights are important. We dwell on this point be-

* We confine ourselves to fa > 0. Exactly analogous consideration apply to fa <
0. The case fa = 0 occurs if an odd number of frequencies are allowed.
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Fig. 5 - Qualitative sketch of density of q' (neglecting end effects) for fa > 0.
The dashed lines are for reference in the text.

cause it is conceivable that for some practical or conceptual application
the neglect would not be justified.

The discussion given above is still not quite correct; it is modified
when we include end effects. The principle correction that inclusion of
end effects will cause is to add two more side lobes, one over the interval
[-271-,0] and the other over the interval [0,24 The weightings of these
lobes certainly should not exceed the estimate given in (14), and this
will be enough to exclude them for our purposes.

We now apply our results to some typical calculations. Consider the
case of narrow band* FM (defined by Af dT < 7), where one has J
equally spaced frequencies of separation Ofd crowded into a bandwidth
W. The probability of error for any one of the frequencies]' (not situated
at the ends) is the area outside of the interval bounded by lines L2 and
L3 in Fig. 5. If L2 and L3 are defined by I q I = co then the probability
of error for such a frequency is, from (17a),

1 cot ca/2 exp [-2p sin' W2)]
Pe = - (28)

V27 1/cos

where, if one assumes that the bandwidth W = JWd , one would take

rWT- (29)

Our requirement that gal < IT implies J > 2 for the narrow -band
formula to be applicable (assuming WT = 1). Note sine (o/2) is less
than 1, and thus the exponent in (28) is exp [-kp], where k < 1. Now
the contribution of the clicks to Pe is essentially the area AL of the
first side lobe which is by (26) and (27)

A L = faT exp (-p). (30)

* Note the special sense in which the term is uesd here.
f The Pe for a frequency at the end is one-half the expression (28).
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But expression (30) is, asymptotically, exponentially small compared to
(28). Likewise, the area due to the side lobes caused by end effects is
exponentially small, and the probability of error for narrow -band FM
is given by (28). The result that the clicks do not asymptotically con-
tribute to errors in narrow -band multilevel FM lends justification to a
previous evaluation of this type system by Salz," who considered the
special narrow -band system with WT = 1. It is both interesting and
gratifying that this result is in agreement with the result given in Ref.
11. In a later paper, Salz and Ko1119 report on experimental results which
agree with the earlier theoretical results.

Next, consider the asymptotic evaluation of P. for the case of orthog-
onal signals; this case corresponds to (Acod)T = 7, and we assume that
the thresholds are spaced midway between the frequencies. Thus, (for a
frequency not on the edges) we have that the error probability is given
by the area outside of that bounded between the lines L1 and L4 . The
contribution from the major lobe is, from (17b),

exp (-p).

In addition, the area of the first side lobe is asymptotically comparable
to this and is

fdT exp (-p)

beingbeing weakly dependent on the frequency sent. In fact, for the nth signal
(J = 2n) we have for orthogonal signals that

fdT =72
2

n = 1,2,...E -
2

The average error rate is then, for orthogonal signals (J of them, J
even, and equally spaced signals and thresholds),

P. = (1) exp [-p] (1)(J/2 + 1) exp (-p). (31)

Equation (31) is indeed a surprising result. The first term of (31) is the
probability of confusing the transmitted frequency with one of its
nearest neighbors. The second term is the (average) probability of con-
fusing it with its second nearest neighbor closest to the carrier. This is
because the area from (-7) to (-37/2) is, by application of (17b),
negligible compared to the area from (-37/2) to (-57r/2). Thus, it
states that for the multilevel scheme considered here (a not unreason-
able one) one is less likely to confuse a transmitted frequency with its
nearest neighbors than one is to confuse it with a particular one of its
second nearest neighbors. We see from (31) that the error rate from the
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continuous part of the output is comparable to the error rate caused by
clicks.

As a final remark about the orthogonal system we see comparing
(31) and (14) why end effects are neglected again.

For a final example, consider the wide -band situation where the signals
are loosely packed in the band; i.e., (Awd)T > 7. Now no errors will be
caused by the continuous part of the output; only clicks will cause errors.
If the frequencies are widely spaced a single click may not cause an error;
several clicks during the time interval T may be required. Thus, suppose
that the frequencies are spaced so that the phase differences of nearest
neighbors is (Awd)T = 2nir, n being any positive integer. The probability
of error will then be the probability of getting n (or more) clicks in time
T, which from (26) and (27) behaves as

(Linn exp (-71P) > (n/2)" exp ( -np)
n! = n! (32)

exp ( -np).

The coefficient in (32) is at least as bad as for the orthogonal case, but
the important item is the exponent. Superficially at least it appears that
we have gained in performance by spacing the frequencies widely, since
the exponential has changed from e -P from the minimum orthogonal
case (AwdT = 7r) to C". One must realize, however, that one is talking
about different p's here. The bandwidth for the case under consideration
is essentially 2n times the minimum orthogonal one and therefore, for
the same signal power, the nominal value of p has decreased 2n, and one
has in fact not gained a factor of n in the exponent. In addition to the
bandwidth penalty, error performance has actually suffered too.

VI. COMPARISON WITH OPTIMUM

One can demonstrate how the FM discriminator compares with the
optimum detector when used to detect orthogonal signals; i.e., when.
AcodT = 7r. It is known that when optimum detection is used for any
orthogonal set of signals, the (exponential part of the) error rate behaves
as exp [-E/N0], where E is the signal energy (assumed common to all
J levels) and No/2 is the (two-sided) spectral density of the noise. If we
let S denote the average signal power, write E = ST, and estimate the
total bandwidth TV for large J by ITT = /(2T), we see that the ideal
exponent becomes exp [-Jp/2]. However, we had seen that, regardless
of the number of levels, the discriminator error rate for AwaT = r be-
haves as exp [-p]. Thus, we have lost a factor of J in the error exponent
by substituting discriminator detection for matched filter detection.
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An important conclusion may immediately be drawn concerning the
performance of conventional FM receivers or detectors of orthogonal
signals. Our results show that the receiver is indeed inferior in perform-
ance when compared with the optimum. This fact has been stated by
Wozencraft and Jacobs" and the reasons are clear from our analysis. The
FM receiver admits too much noise at its front-end which cannot be
cleaned by the post -detection filter because of the nonlinear anomalies,
namely the clicks. As a matter of fact, the amount of noise grows in
direct proportion to the number of orthogonal signals, hence the inferior
exponent. * The optimum detector is a bank of matched filters. The noise
power at the output of each filter does not grow with the number of
signals; it is a fixed constant determined by the bandwidth of the filter,
which roughly needs be no broader than the symbol rate, 1/71.

This poor performance of conventional FM receivers when used to
detect data might be remedied by employing an FM with feedback
system such as described in Refs. 20 and 21. The physical argument to
support this contention is often stated as follows. In the absence of the
feedback loop, the IF filter must be wide enough to pass the total swing
of the incoming signal. However, since the feedback loop tracks the in-
coming frequency, this IF filter, whose width determines the noise vari-
ance, could be narrowed and less noise would be admitted.

This possibility of making use of FM with feedback to improve the
error rate in digital systems has been suggested by Wozencraft and
Jacobs.12 Unfortunately a mathematical treatment of this difficult
problem does not exist at present.

VII. EFFECT OF POST -DETECTION FILTER

In the previous sections we have discussed in detail the performance
of an FM discriminator followed by a low-pass filter. The low-pass filter
was approximated by an ideal integrator whose integration time was
taken to be equal to the duration of an individual signaling interval.
Formulas sufficient to evaluate the performance of multilevel FM with-
out the post -detection filter have recently been developed by Mazo and
Salz ;" comparison of the results of the present paper with Ref. 10 will
show the influence of filtering.

* Actually, these qualitative conclusions may be arrived at by the Gaussian
approximation to the output noise. The reason why this works is apparent from
(31) which gives P, for orthogonal signals. The first term of (31) is not due to clicks
but arises from the continuous part of the output noise. This is the part that the
Gaussian approximation would tend to duplicate. The second term of (31) is due
to clicks and has the same behavior with regard to p. Even if one could keep p
constant as the number of levels J increased, the factor of J in the click contribu-
tion to (31) would still degrade performance.
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Suppose that the angular frequency lk is sent and we ask for the proba-
bility that the observed output is less than z, where (4, - z) > 0. It is
shown in Ref. 10 that the probability P is essentially given by* (for
large p)

P exi) [ - p ( -z)2 (33)
z2 0.2/(721

Consider the situation for orthogonal signals, or in fact for any signal
set where the frequency spacing between the individual frequencies is
fixed. One expects the ratio &2/o.2 to increase as the square of the total
input bandwidth, hence as J2, the square of the number of levels. Thus,
for a large number of orthogonal levels the post -detection filter does
very well in improving the error performance, changing the error rate
fromf (roughly) exp (- p/J2) to exp ( -p). One would certainly expect
something like this to be true since, for a large number of levels, the noise
bandwidth before the post -detection filter is much greater than the
signal bandwidth at that point.

Another qualitative effect of the post -detection filter may be noted.
From (33) we see that the distribution of output noise without the post -
detection filter depends on the frequency sent, because of the factor
(z2 + 6.2/0.2) in the exponent; the "spread" of the probability density
will be roughly twice as great at the ends of the band than at the center,
and thus without a post -detection filter one would not choose the fre-
quencies to be equally spaced. We have seen that there is no such de-
pendence of the error rate exponent on the transmitted frequency when
the post -detection filter is present.

VIII. AN APPARENT PARADOX

At this point we have basically concluded our discussion of error rates
in digital FM, based in part upon the theory of "clicks" in FM receivers.
In particular, we have seen in Section VI that even when frequencies
were widely spaced so that wdT is many multiples of 27 the error per-
formance did not improve. The reason was noted to be that although the
distance between frequencies increased, the noise admitted to the system
increased by a corresponding factor. The latter is predicated on the
assumption that the input bandpass filter is essentially a flat filter up
to some cutoff frequency determined by the signal spectrum. It may be
possible, however, to shape the front-end filter so that increasing the
frequency separation does not cause a proportionate increase in the

* Equation (33) represents only the exponential part of P. Also (33) is true [see
Ref. 10] only if (1,t - z)2/[z2 d.2/,72] < 1.

t Set - z)2 (pp, (42/o.2) J2(Of)2.
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noise power admitted. We know that the power spectrum of the trans-
mitted signal will have peaks at the transmitted frequencies of width of
the order (1/T). Suppose we have a notch filter then, with transmittance
peaks at the possible frequencies of the appropriate width. The input
noise power will be constant and therefore by choosing a large enough
separation one can force the probability of error to be arbitrarily small,
contradicting optimality considerations for reception of signals against
a white Gaussian noise background.

Before giving what we feel is the correct answer to the stated paradox,
we wish to explore some other considerations which, on the surface,
might resolve the paradox without changing the basic assumptions of the
model. One might first object that our argument was too heuristic; is
the noise power really constant as the frequency separation increases?
To answer this we have performed the following calculations. We have
chosen transmitting and receiving filters so that the FM signal is strictly
undistorted and then optimized the filters to minimize the variance of
the noise admitted. This procedure is discussed in Ref. 11, and the results
depend on the power spectrum of the noise. We then specialize to a
binary system and, using (48) of Ref. 13 for the spectral density of a
binary FSK wave train, calculate the noise admitted. The result shows
that while the noise admitted does, in fact, increase as the frequency
separation increases, it does so only logarithmically with the separation.
Thus, the error probability still will decrease to an arbitrarily small
value as the separation increases and from this point of view the question
is still unresolved.

A second consideration is the following. The probability of error that
we have calculated was based on asymptotic approximations to formulas
given in Ref. 6. The results depended only on the amplitude of the re-
ceived FM wave and the average noise power o2 at the input to the
limiter -discriminator; if one allows transmitting and receiving filters
the more relevant parameters are the average signal power on the line,
Paine and 6-2. However, the exact formulas of Rice also involve the
quantity 6-2 which is the average power in the derivative of the noise at
the input to the limiter -discriminator (after the receiving filter).* Let
S(w) be the signal spectral density and F(w) the transmittance of the
receiving filter. Further, let us insist that the signal at the input to the
limiter -discriminator be exactly the FSK wave described,t so the trans-
mitting filter is the inverse of the receiving filter. We then have for a
white noise background of N4

* Rice, Ref. 6, uses the parameter 7' = (1/27) (v/a-).
t We emphasize that continuous phase at frequency transition is demanded, but

nothing more.
t It is for such a noise background that the optimum results are known.
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=
27rNo

F ( w) 12 (10.) (34a)

= 2r
No

w2 1 F(w) 12 dw (34b)

Pline f' 8(w)
2

dw (34c)
217r -.1 F(w) 1

When one realizes that the spectrum of an FSK wave decreases at
infinity like the fourth power of the frequency," (34b) and (34c) imply
that 6-2 and the line power Plane cannot both be finite. Thus, suppose &2
is finite. The convergence of the integral in (34b) implies that 1 F(w) 12

must decrease at least like 1/2+e, e > 0. The integral for Plane will,
for large w, look like

f 3+,
(.1.) (10.)

O.)

which diverges. Likewise, the assumption of finite line power implies 6'2
is infinite. An infinite 62 certainly violates the conditions under which
the asymptotic results of Rice's formulas hold. In particular, these
formulae show that an infinite if2 corresponds to an infinite average
number of clicks per second (assuming such a language is still possible)
and the FM discriminator will not work, in the strict sense. On the other
hand, if we choose the evil of infinite line power then perfect performance
is not surprising.

While the above theorem about (7,6-, istrue from a mathematicalPinepoint

of view, it is almost irrelevant from an engineering point of view
because it involves discussions of infinitely large frequencies, and does
not really eliminate the paradox at all. We need merely precede the
limiter -discriminator with a flat filter with a cutoff so high that the
signal is almost undistorted. Since real discriminators work, this is not
an unreasonable thing to assume. Now Cr is finite, and although we may
have to go to extremely large S/N ratios, the paradox is as entrenched as
ever.

The resolution of the problem lies in a reinterpretation of Rice's
calculation of the average number of crossings of the negative x-axis.
We had assumed each crossing corresponds to an encirclement of the
origin which is independent of all past and future encirclements. This is
reasonable when the receiving filter is essentially flat across the whole
received spectrum and the correlation time out of the receiving filter is
small (---,1/W). However, if the input noise spectrum is chopped into a
few slits or notches, correlations in the noise being processed in the de-
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tector will persist for a longer time and multiple encirclements of the
origin can occur with essentially the same probability that one would
normally associate with a single large excursion close to the origin.

To make our arguments more precise we consider a binary situation
at almost zero rate, i.e., we have very narrow filters F1 and F2 about the
frequencies (coc -I- wd) and (coc - cod), respectively. The bandwidth of
these individual filters is of order 1/T. The noise out of F1 and F2 can
be written as

n1(t) = nix(t) cos (Wc Wil)t ni,,(t) sin (we + cod)/

n2(t) = n2z(t) cos (coc - wd)t - n2,,(t) sin (coc - cod)t,

where nix(t), etc., are independent baseband noise currents. If we assume
that the frequency (w, + cod) is being transmitted with amplitude A,
then in a "coordinate system" following that frequency we have

x = A ± X

y= 17,

where

X = n]. + n2. cos 2Wdt n2 sin 2codt

Y = my n2 cos 2Wdt - n2x sin 2codt.

A typical portion of the path that the noise traces out in the xy plane
can be calculated from (36) and (37) and is shown in Fig. 6. Neglecting
the time variations of nix(t), etc., which vary on a time scale comparable

(35)

(36)

R = 1/(n2x) 2 + (n202
ANGULAR VELOCITY= 2 Wd

ANGULAR VELOCITY= 2 wd

A

(37)

Fig. 6 - Small portions of some noise trajectories when receiving filter has two
transmittance peaks.
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to T, we see the path is a circle centered at (A - nix -n1), of radius
1Vn2z2 n2y2, and counter -clockwise angular velocity of (200. If cr?
and 0.22 denote the average noise powers out of F1 and F2 respectively,
then the probability P that the circle is appropriately situated with a
large enough radius to encircle the origin is given exactly by

2

P = 2fd exp ( -p), (38)0.12 + 0.22

where p = A2/2(o-12 + 0.22). For the case of a symmetrical spectrum
about the carrier (a? = (38) is comparable to (26). However, our
circle is rotating with frequency 2fd and will have a constant radius for
about T seconds; thus, it will complete 2fdT revolutions in time T. As
the frequencies are spread and notched filters are used the noise indeed
does not increase proportionally, but the number of multiple encircle-
ments of the origin that a click will make does increase as the separation.
Thus, the filter shaping under discussion will affect the statistical struc-
ture of the clicks, preventing a violation of optimality.

Note added in Proof. A discussion of the click contribution to the error
rate has been given very recently by J. Klapper in the RCA Review,
June, 1966.

APPENDIX

A syniptotic Behavior of P,

We wish to record here an outline* of the details of the evaluation of
(16) for large S/N so as to obtain the results given in (17). If we set

p(x) = 1exp (-p) e cos x exp (-p sine x)

erf p cos x),

then according to (16) the required probability is written as

1(r/2) cy-F,p)
P, = dy dxp(y)p(x).

If we define the distribution function

(39)

(40)

f
E

P(a) = p(y)dy (41)
0./2)

* We do not explain the techniques used here for the asymptotic evaluation of
integrals. The interested reader may wish to consult the subjects "saddle point
method," "Laplace's method," "Watson's lemma" in Ref. 22.
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Our evaluation will be based upon approximating the functions P(y)
and p(y) when p is large. In particular, from (39) we see

p(y)
2P cos y exp ( -p sm y),r

provided y is not close to ±7/2. Integrating (43) yields

P(y) Ned Vp (V -p- sin y)],

(43)

(44)

which will be a good approximation for large p except when y is near
-7/2. These exceptional points will receive special consideration.

As a first example consider the case when co < n-/2. The integrand for
(42) is shown symbolically in Fig. 7. Consider the contribution first from
negative y. This is from (42), (43), and (44)

1 f dy[erf - erf (V p sin
- 12)
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and perform and integration by parts, (40) becomes

P = P(y)p(y 40)4 (42)

y )] A/ r cos (y co)

 exp [-p sine (y cc)].

Next, approximate erf Vp by unity to obtain

(45)

Fig. 7 - Symbolic representation of the factors in the integrand of (42) drawn
for co < 7r/2.
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7,1

10 dy erfc p- sin I y ) 0-2 cos (y cc)
-(r/2) (46)

exp [-p sin2 (y co)]

and use the asymptotic expansion

1
erfc x exp ( -x2). (47)

rx

The resultant integrand has a saddle point at y = -c0/2, and a routine
saddle point evaluation will yield (17a) of the text. It is easy to verify
that the error made by replacing erf -Vp by unity in (45) creates an
asymptotically small error. Likewise the neglect of positive y is asymptot-
ically small for

(T/2)-t0 (r/2)-yo
1

dliP(Y)P(Y ± co) dyp(y + so) -6 - co] (;)

 exp ( -p)
f(T/2)-co

dy
(48)

 cos (y cO) eXP [- p sin2 (y (io)]

exp [-p sin2 cc]ti
21/irp sin co

by Laplace's method. For co < r/2 we have

2 sin2 (co/2) < sing co

which proves our point. The addition of the term (1/r) exp (-p) in
(48) provides a strict upper bound to p(y co) and thus takes care of
special considerations at the right end of p(y + co). At the left end point
of the range of integration, (-7/2), p(y + co) is still well approximated.
The function P(y) is, however, approximately

P(y)
exp ( -p)

2
y

r
2

r 7
(49)

L

Using (49) it is easy to obtain an estimate of the contribution of the
left end point behaving as exp (-p) and this is asymptotically small.
This ends our discussion for cc < 7/2.

We give a somewhat more condensed outline for co = 7/2. The contri-
bution of the middle of the range of integration is again approximated
by (46) with cc = 7/2. Using (47) and (46) immediately evaluates to

[exp (-p)]/4.
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Next, consider the error made at the right end point. Equation (43)
holds to within a strip of order 1/Vp from 0, after which p(y cc)

behaves like [exp (-p)]/7. Therefore, the error behaves like

1 exp (-P) 1

*VP

which is asymptotically small.
The left end point error is bounded by

y)
- sin y exp ( -p cos2y)dy

exp (-p)
J r 2

exp ( -p) r
7 Vrrp

which is again asymptotically small.
Our final case is co > 7/2, and this time end point contributions will

not be small. The reason is that if one examines the integral representing
the contribution from the middle of the range of integration, i.e.,

1
(r/2)-9

P sinlYi - erfc -/P] P cos (y co)
2 L(r 12)

-V-dy[erfc(50)
X exp [-p sine (y co)],

it is exponentially dominated by contributions near the end points. But
in (50) our approximation to P(y) vanishes faster than the correct P(y)
at y = - r/2, and our approximation to p(y w) vanishes at y =
(7/2 - co) while the true p(y co) does not. This implies that the asymp-
totic evaluation of (50) will be asymptotically smaller than the correct
contributions from the ends of the interval. The contribution from the
right end is

1 f(T/2)-' (-p)
2(../2) dy [erf -4 - erf -Vp sin I y I] exP

exp [ -p (1 + cos2 c0)]
4r Ntr p Vp sin w cos2 Sp

(51)

The lower limit of integration (51) is immaterial, as will be the upper
limit in (52). For the contribution from the left end we have

e -p f(ir /2)- dy y] ite cos (y co) exp [ -p sin2 (y
7 J--(ir/2) 2

exp -p (1 + cos2 (p)]
4r p VP sin so cos2 w 

The sum of (52) and (51) yields (17c) of the text.

(52)
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FM system is represented by a band of gaussian random noise with flat
power -density spectrum. The noise due to imperfect transmission me-
dium can be calculated at any frequency in the baseband. In many
cases, only the second- and third -order noise is significant in broadband
microwave radio systems. Hence, the analysis carried out in this paper
considers only the second- and third -order distortion terms. Extension
to a higher -order distortion becomes unmanageable. A digital computer
program concerning the intermodulation noise has been written. A
typical problem can be solved at a very low cost. This analysis and the
digital computer program are of aid in the design of microwave radio
systems. With a slight modification, the calculation of noise due to
AM -to -PM conversion caused by transmission deviation can also be
accomplished. An optimum design of the pre -emphasis network may be
achieved by using the computer programs through an iterative approach.
Several examples are given for illustration.

II. DESCRIPTION OF SYSTEM

A portion of an FM system can be represented by the block diagram
shown in Fig. 1. An FM baseband signal, col (t) = dioi(t)/dt, is fed into
a pre -emphasis network. The output of the pre -emphasis network is
the pre -emphasized signal co' (0. This signal passes through an FM
modulator to yield the FM wave, cos [wet + co (0] where co, is the angular
carrier frequency. When this FIVI wave goes through an imperfect
transmission medium, the output is distorted and becomes V (t) cos
[wit + 400(0]. Let the transfer function of the transmission medium be

Y(w) = exp [-a(f) - OM],

where w = 27rf. Its impulse response is

BASEBAND
SIGNAL
;pi (t)

g(t) = Y(w) exp (iwt) df.

PRE- EMPHASIZED
BASEBAND SIGNAL

(t)

PRE -EMPHASIS
NETWORK

DB

FM WAVE
COS [wet p(t)]

FM
MODULATOR

DISTORTED FM WAVE
V (t, ) COS [We t To(t)]

TRANSMISSION
MEDIUM

Fig. 1- Block diagram of a portion of an FM system.
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Using the complex notation, the input and output of the transmission
medium can be written, respectively, as

vi (t) = exp [icoct (t)] (3)

and

vo (t) = V (t) exp [iact icoo (0], (4)

where V(t) is taken to be positive and vo(t) is determined to within
2nir, n is an integer.

The output and input of the transmission medium are related by the
convolution integral

vo(t) = f .vi(t - x) g(x) dx. (5)

From (3), (4), and (5)

V(t) exp [i(po(t)] = f exP [ico (t - - iwcx] g(x) dx. (6)

Let

V (t) = exp [a (0]. (7)

Then

a(t) = Re In f exp [iyo(t - x) - iwcx] g(x) dx (8)

vo(t) = Im In f exp [ico(t - x) - iwcx] g(x) dx. (9)

The AM distortion term expressed in dB is 20 X 0.4343 a(t) and the
PM distortion term expressed in radians (or degrees) is coo (t) - (t).

Assume that the transmission medium passes only frequencies in
the neighborhood of the carrier frequency, ±fc ± b, with b/fe << 1.
Thus, to a high degree of approximation, we have

exp ( -icoex) g(x) ti y(co. w) exp (iwx) df. (10)

Let

k(x) -
Y(0),)

exp ( g(x).

Substituting (1) and (11) into (8) and (9) we obtain
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a(t) = -a(fc) + Re In f exp [iy,(t - x)] k(x) dx (12)

00

coo(t) = Im In exp [igo(t - x)] k(x) dx. (13)

The quantity k(x) may be regarded as the normalized envelope func-
tion of the impulse response g(x). We shall discuss now the logarithm
of the integral in (12) and (13) in detail.

III. DERIVATION OF DISTORTION TERMS

Let

exp [4(t - x)] = M (t,x). (14)

A delay td is often introduced in order to improve the degree of approxi-
mation of various series with the first few terms. Then M(t,x) can be
expanded about x = td as

M(t,x) = M(t,td) (x
! ax1

- Id) [ a m(t'x)1

(x - td)2 a2
M(t,x)

2! ax2

One choice of td is

td = Re f xk(x) dx =
1 rd13(f)1

2r L df jf-fo

+ 
(15)

(16)

Using (14) and (15), the integral in (12) and (13) can thus be expressed
as

nL exp [ico(t - x)] k(x)dx = E 'Ll'72 -a M(t,x) (17)',on! axn

where mn is the nth moment of k (x) defined as
00

mn = f (x - td)n k(x)dx, mo = 1 (18)

or equivalently,

inn -
(-1)n [ do + co) exp &cad)]
Y(wc) d(zw)n ..=o

(19)

The series (17) is equivalent to the Carson -Fry series with delay td .
It may not converge in certain cases. However, when the characteristic



NOISE IN FM SYSTEMS 1541

of a transmission medium can be truly represented by a polynomial,
from (19), the higher moments become zero and the series reduces to a
polynomial. The logarithm of (17) can be written as

In f exp[i,o(t - x)] k(x)dx = iv(t - td)

where

In [1 + (-1)nmn F n(t - ta) ,
n=1 n!

Fn(t - td) = (-1)n exp [-ico(t - td)] [y -v°1 M(t,x)] .

Using Taylor's series expression, we have*
ao

2

In (1 + ) x x (a2
1-1 a12)

(20)

3

+ X I
- ka3 3a1a2 2a2)
3!

x (a4 - 4a1a3 -
4

-r
4!

3a224 12«12a2 - 6a1.4) + .-
With x = -1 and a (t) = mF(t - td), substituting the above series
into (20), after considerable algebra, one obtains an asymptotic series
which has been written by S. 0. Rice in an unpublished work as

In f exp [i(p(t - x)1k(x)dx = i[so - ,, M3

11 g° 2! 3! (P

f

TI 46'm -  + XW

- 4 ( m4 - 2m1n3 - m22

2mi2m2)(p12,10" +

[ 1 X2S012 + 2 (M3

- M1M2)(PIVII EM4
m

- M1M3)40 go - j (m4
2 //2

- M2 )i0 ± it X4404 + 17

(21)

* Notice that this is not the approximation In (1 y) y which can be a poor
approximation and yet has been quite widely used in FM work.
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where co stands for co (t - td) and Xn's are the semi -invariants which
are related to the moments by

A2 = - M12

A3 = m3 - 39721M2 2m13

A4 = 4m1m3 3m22 12m12m2 6m14.

Taking the real and imaginary parts of (21) and substituting the result
into (12) and (13) gives, respectively,

m21 tt M3i /// M4i //t/
a(t) = - a(fe) - -2! co +

3!
co - 4co + 

A3i /3 lli /2 // X2r /2 12r /

- -TV +I" -V°
13r 1 M /sr t/2 A4r /4--"6

/ m2r 1/ m3r /// M4r ////
VOW = -13(fc) + St) - MirS° -F 2! 3!4°4T cP -

A3r /3 11r /2 // A2i /2 / // /31 / ///
--2-

,

(/) (/) cc
/3i /12 , A41 /4 ,- co 1- 24 co 1-

(22)

(23)

where the subscripts r and i denote the real and imaginary parts of the
corresponding coefficients and

11 = m4 - 2m1m3 - m22 + 2m12m2,

/2 =

/3 =

/3 =

m3 MiM2

m4

m4

- inen3
2- M2 

From (22) and (23), amplitude and phase distortions are divided into
linear, second- and third -order terms and are shown in Table I. The
terms -a (f c) and -13(fc) in (22) and (23) do not appear in Table I.
This is due to the fact that they are constants and introduce only con-
stant amounts of amplitude and phase distortions.

IV. PRE-EMPHASIS CHARACTERISTIC

The multichannel baseband signal of an FM system is represented
by a band of random noise. Assuming that the bottom baseband fre-
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TABLE I - AMPLITUDE AND PHASE DISTORTIONS DUE TO
IMPERFECT TRANSMISSION MEDIUM

1543

Order of Distortion Amplitude Distortion a(t)

Linear

Second -order

Third -order

Linear

Second -order

Third -order

irt2i 'MU
- -2! + - + 

X2r 12, 13r 15r60,2 60/vti colcoll/

2 2 6 8

X3i
--6 sc13 + 4 soi2V"

Phase Distortion ,p0(1) - ip(1)

11/2r Mar mfr
7/iirio" - - -

2! 3! 4!

X2i /2i
6 6

16i-
2

S°2 -2 so's0" - sjso' - (P 2 +

X3r
--4so-6 <11' + 

quency is much smaller than the top baseband frequency, the power -
density spectrum of the baseband FM signal is expressed as

Sve (w) = PO, I.fI C fa ,

where fb is the top baseband frequency.
A pre -emphasis network is used in an FM system in order to optimize

the noise across the baseband. Let Z(w) be the transfer function of the
pre -emphasis network, we write

I Z(w) I 2 = ao
4 s,

a2f2 f I < fb

where the a's are real constants either given a priori or determined by
the least squares fitting from an actual curve. The power -density spec-
trum of the pre -emphasized baseband FM signal is

So (w) I Z (0)) I 2 (w)
(24)

= Po (ao a2f2 a4f4 + ast), If I < lb

In the case when the pre -emphasis coefficients ao , a2 , a4 , and a6
are determined by the least squares fitting from an actual curve, the
following weighting function of normalized scale has been found useful
for better approximations near the bottom channels
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W( Mb) = 10-(z/1°) EU. if b)-11

where Z is the difference of relative power (in dB) of top and bottom
channels of the given pre -emphasis characteristic.

The rms frequency deviation, a, due to noise loading can be expressed
as

(27r0-)2 = ave [co/2( f S,,(co) df.

Using (24), the relation between Po and a can be expressed as

2

Po - (rad/sec )2/Hz,
2f [ao

(27a)
(asfb6V1'
\ 7 LI

where the units of a and fb are Hz.

V. TRANSMISSION MEDIUM

Within the band of interest, fc ± b, let the gain and phase of the
transmission medium be, respectively,

exp [ -a (f fc)] = 1 + g2w2 g3c43 g4w4

N (25)
E uk cos (pkw + 0 k)
k=1

13(f fc) = b2w2 b3w3 b E vk sin (qkw Uk),
k=1

(26)

where the g's and b's represent coarse shape transmission deviation;
the u's and v's represent fine shape transmission deviation. It should be
emphasized that the fine shape transmission deviation is restricted to
be a slowly varying ripple characteristic, hence this analysis does not
apply to the noise due to single echo in general. The fine shape representa-
tion is useful when we study the effect on the noise of a given system
due to the shift of the carrier. Since a constant delay does not introduce
intermodulation noise, the linear term in w is not included in (26). The
transmission medium coefficients g, b, u, v, p, q, 19, and a in (25) and (26)
are either given directly or obtained approximately by a curve -fitting
computer program.

Substituting (26) into (16), we have
N

td = -E vkqk cos ak .
k=1
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From (19), we can evaluate various moments, hence, the coefficients
associated with the distortion terns in Table I in terms of transmission
medium coefficients, as given in Appendix A. In the following sections
we shall derive expressions for intermodulation noise calculation due to
second- and third -order distortion terms.

VI. NOISE POWER DUE TO SECOND -ORDER DISTORTION TERM

Since

,2
-it = 2i4",

(12 /2

dt2 = 2(P'`P"' 2(P"2'

the second -order PM distortion in Table I can be written approximately
as

1V2(t) = - 2x 2i + -4-u2i - - 2( d2 /2
11

c(lt
11' 131

dt2
(p + 31110,12,

where

(27)

- 3/5i

The second -order PM distortion term of (27) can be represented by the
block diagram shown in Fig. 2, where

(w)iii = (A/3Jc°' - 3/X2J) ± i(1/2Jc0),

112 (w) = .

The power -density spectrum of v2(1) isn

8,,2(w) = Hi(-(4)Hi(w)Sci2(0i) H1(-w)//2(w)S,,2,-2(w)

H2(-0.)1/1(co)S,-2,,2(w) + H2( -0.)1-12(6.)8,-2(0),

p.2

H (w)

H2(w)

9)2(t)

(28)

Fig. 2 - Block diagram representation of the second -order PM distortion term.
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where S, -2(w) and 84,2(w) are the power -density spectra of go'2 and

cc"2, respectively, and S,,2,-2(co) [or 4-2,,2(w)] is the cross -power -
density spectrum of go'2 and go"2 (or co"2 and 60'2). These quantities can be
derived as'2

8,p' 2 (CO) = 5[2/4,2 (T) R,,2(0)],

5c'2,0" 2 (0)) = a[2Rviv,,2 (T) (0)],

S,,, 2,, 2(w) = (r) 1?9, (0)R,, (0)],

,2(c.o) = if [2R,,,,2 (r)

where R,,(7-) and R, --(T) are the autocorrelation functions of co' and
so", respectively, and R,,,,,(7) [or R,,,,,,,(7)] is the cross -correlation func-
tion of go' and so (or go" and (,), and if stands for "the Fourier transform
of"

The Fourier transform of a constant function is a delta function at
zero frequency. In the situation of evaluating noise power in the base -
band, this quantity is not of interest. Also, it can be shown that

S co' 2,p" 2 (CO) = A Sy," 2,p' 2 (w).

Thus, (28) can be simplified as

S (W) = 2 I HI (o) 2a[R,,,2 (T)]
o,,,.2 (T)]+ 2 I H2 (0') I25[R,

2[Hi. ( )H2 (0J) + H2 ( 0.))//i (0))15[Rov,2 (T )]

The intermodulation noise to signal power ratio due to the second- order
distortion term expressed in dB is, therefore,

N2/S(dB) = 10 log [242 (w)/8,0' (w)].

VII. NOISE POWER DUE TO THIRD -ORDER DISTORTION TERM

Since

d f3 '2
-dt = 3so (go ,

(29)

(30)

the third -order PM distortion in Table I can be written approximately as

so3(t) = (1-X3,
-) co'3dt .

The above equation can be represented by the block diagram shown in
Fig. 3, where
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H3(w)
(t)

Fig. 3-Block diagram representation of the third -order PM distortion term.

H3 (0) = (tX3r -12.11rW )

The power -density spectrum of co, (t) is

S403 (W) = I I/3 (C° ) I 2413 (co),

where S,3(w) is the power -density spectrum of 4013 which can be derived
as12

S (w) = 6a[R,3 (7)] + 914,2 (0) S, (w).

In the above equation, the term 9R,2(0)S, (w) is merely a scaled power -
density spectrum of the input baseband FM signal, hence, it does not
contribute to the intermodulation noise and can be neglected in the
computation.

The intermodulation noise to signal power ratio due to the third -order
distortion term expressed in dB is, therefore,

N3/8(dB) = 10 log [(022,3 (w)/S,' (w)], (31)

where

2,3 (w) = 6 I H3 (CO ) 12ff[R,,3(r)]. (32)

In (29) and (32), the Fourier transforms of R,,2(T), R,,2(T), R co, 4,"2 (T)
and R,3(r) may be obtained by taking the convolutions in the frequency
domain. However, this requires numerical integration. For given pre -
emphasis characteristics and Po (or (7), these Fourier transforms can be
expressed in algebraic forms as shown in Appendix B. Hence, no nu-
merical integration is necessary. A digital computer program has been
written to calculate the second- and third -order intermodulation noise
due to second- and third -order distortion terms in dB. A typical problem
can be solved at a very low cost.

VIII. EXAMPLES

Several examples are considered in this paper. Calculated results are
compared with measured data when they are available. Expressions for
noise calculation are derived for simple cases. For more complicated
situations, the noise calculation is best carried out by using a digital
computer.
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8.1 Example 1

In this example, we wish to demonstrate how the intermodulation
noise across the baseband can be optimized using an appropriate pre -
emphasis network. To simplify the calculation, we assume that the
transmission characteristic consists of linear delay distortion (b2) only.
From Appendix A, we obtain

X2i = 2b2 hlr = 8b22

and all the other coefficients are equal to zero. Hence,

Hi(w) = b2 , H2(w) = 0, H3(w) = i3b220.).

In practical cases, the third -order distortion term [H3(w)] is negligible
(say, 50 dB less) compared with the second -order distortion term. From
(30) we write

N2 2b222 [R,,,,2(7" )](dB) = 10 log
S, (w)

For simplicity, we let

Sce(w) = P0(1 a2f2), III fb.

From Appendix B, we obtain

g[R,,2(7)] = Po2fbn(f),

where

n(f) = --3-0A2285 - 1A20 + (1A2 + 2)A2522

- (1 + A2)212 + (A22 + 3 A2 + 2)

A2 = a2fb2

= filb.
Since

consequently,

(27rv)2
Po -

2fb(1 +
3

\ 2

N2
( ) 4 ( b2fb2 )2 -51'-)

fb
°2n(f)

- (dB) = 10 log
S (1+ + Ad)A2
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Specifically, we let

b2 = 7.962 X 10-17 (linear delay of 1 nanosec/MHz)

lb = 1 MHz

= 1 MHz.

After several computer runs, the optimal choice of a2 is 7. The inter -
modulation noise with no pre -emphasis and with the optimal pre -empha-
sis are plotted in Fig. 4. The noise has been reduced to more than 5 dB
and is evenly distributed across the baseband by using the optimal pre -
emphasis network.

-40

-50

10

U

-60

21(f)
-70

-80

NO
PRE -EMPHASIS

OPT MAL
PRE -EMPHASIS

O 01 02 03 04 05 06 07 0.8 0.9 1.0

FREQUENCY, f, IN MEGAHERTZ

Fig. 4 - Intermodulation noise due to linear delay with and without pre -
emphasis.

8.2 Example 2

In this example, we use a typical radio system pre -emphasis charac-
teristic shown in Fig. 5. The top baseband frequency is fb = 5.772 MHz.
Since the given pre -emphasis characteristic is expressed as relative
power in dB versus baseband frequency, it is first converted to ratio
versus normalized baseband frequency, SZ = filb

The weighting function is

W() = M-(9.5/10)(12-1).

A least squares approximation program is used to obtain the approxi-
mating polynomial

ao a4!4 a6f6,
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where

ao = 0.99894166

a2 = 11.944252442

a4 = -5.5771705/A4

a6 = 1.4396088/fb6.

Consider a transmission characteristic consisting of a linear, a parabolic,
and a slowly varying sinusoidal delay as shown in Fig. 6. The expres-
sions for the noise due to second- and third -order distortion are too com-
plicated to write down. However, by using a digital computer, the
results are plotted in Fig. 7 for a = 0.771 MHz. Clearly, a better
pre -emphasis network should be used to optimize the noise across the
base -band for this particular transmission characteristic.

8.3 Example 3

As a final example, we consider a single pole IF filter with

17(0) + co.) =
1

1 + 2-t:w

where w is the 3 -dB half -bandwidth of the filter. Using a least squares
approximation with appropriate weighting function, the magnitude and
phase of Y(w wc) are expressed by

10

8

6

4

2

0
0.01 0.02 0.04 0.06 0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 10

FREQUENCY, f, IN MEGAHERTZ

Fig. 5.-Pre-emphasis characteristic of a typical radio system.
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8

6

4

2

0

2

-4
-5 -4 -3 -2 - 0 2

FREQUENCY, f - fc IN MEGAHERTZ

b2= 0.797 X10-16

b3 =0.847 X10-24
O'icir/5
q, = 2 X10-7
V1. 5 X10-3 y

3 4

Fig. 6-An arbitrary delay characteristic of a transmission medium.
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Fig. 7 - Intermodulation noise due to the delay distortion of Fig. 6.
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exp [-a(f fc)] N 1 + g2w2 g4(.04 = 1 + G2(f/w)2 G4(f/w)4

-.0(f fe) ry bico = Bi(f/w) B3(1/w)3,

where

G2 = g2(271 -W)2 = -0.4209, G4 = g4(2irw)4 = 0.08027

B1 = bi(27rw) = -0.9529, B3 = b3(2irw)3 = 0.1294.

The actual and approximated transmission characteristic are plotted in
Fig. 8. Since a constant delay does not introduce intermodulation noise,

1.0
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0.6

0.5
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tr)z
< 0.25
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Fig. 8 - Gain and phase characteristic of a single pole filter.
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b1 is not included for calculation. Using the expressions in Appendix A,
the coefficients associated with the second -order distortion term are

X2i = 0,121=0, l3~=0, = 0.

Hence,

Hi(w) = H2(w) = 0.

The noise contribution due to second -order distortion is, therefore, zero.
The coefficients associated with the third -order distortion term are

?tar = 61)3 , llr = 24g4 - 4g22.

Assuming no pre -emphasis, that is, a2 = a4 = as = 0, from Appendix
B, we have

a[R,,,(T)] = P03A2a03(3 - p2), I Sl I

where

Using the relation

= Mb 

271-o- )2Po -
2fb ao '

the intermodulation noise to signal power ratio due to the third -order
distortion term can be derived from (31) as

(dB) = 10 log (04 (b)61.-22 (3)2) [B32 + (-fv)2
2)1(2G4 -22 A w

Forfb = 1 MHz and w = 1.25 MHz, N3/ S (dB) is calculated at f = 0.084,
0.36, and 1 MHz as a function of (0/fb). The dotted lines in Fig. 9 repre-
sent the calculated value (2/N3) while the solid curves represent the
measured data taken by W. F. Bodtmann.13 The discrepancy between
the measured and calculated values can be attributed to several reasons:
(i) The power -density spectrum of the multichannel baseband signal
used in the experiment was not perfectly rectangular, (ii) During the
measurement, a non -ideal limiter was used which caused some AM -to -
PM conversion, (iii) The actual transmission characteristic was approxi-
mated by few parameters in a limited region, and (iv) the formulas (30)
and (31) derived in this paper involved approximations. Nevertheless,
the measured and calculated results are close enough to show the utility
of the analysis even for cases beyond the application for which it was
originally intended.
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20

Fig. 9 - Measured and calculated intermodulation noise due to the single
pole filter.

IX. DISTORTION DUE TO AM-TO-PM CONVERSION

Let K be the AM -PM conversion factor of a device expressed in de-
grees/dB, then the phase distortion due to AM -PM conversion is

Phase Distortion due to AM -PM Conversion = 20 X 0.4343K a(t)

= 8.686K a(t) degrees,

where a(t) is given by (22).
Similarly,

Frequency Distortion due to AM -PM Conversion -
8.686
2ir

( t)

= 1.382 K -d
t

a(t) Hz.

In Table I, the second- and third -order terms of amplitude distortion
cause intermodulation noise while the linear term causes video roll -off
or enhancement. Using the same approach discussed previously in this
paper, noise calculation due to AM -to -PM conversion which is caused
by transmission deviation can also be accomplished.
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APPENDIX A

Coefficients Associated with the Distortion Terms

The moments defined in (19) can be expressed as

mo = 1

=
A

where

A"A)

m3 (B"+3"11) +i(-A"'
A A

(_3.13112

+
4A' B''' 6A"B"

A A + A

A = 1 + E uk cos Ok
k=1

A' = gi E ukpk sin Ok
k=1

N

A" = 2g2 - E ukpk2 cos ek
k=1

Ain = 6g3 E ukpk3 sin Ok
k=1

N
A" = 24g4 E ukpk4 cos Ok

k=1
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N

B" = 2b2 - E vkqk2 sin
k=1

N

0.1c

B"' = 6b3 -E vkqk3 cos 0k
k=1

N

B" = 24b4 + E vkqk4 sm (rk
Ic=1

The coefficients associated with the second -order distortion are

X2i = -B"

A'" A'A"
/2i = -

A ' A2

km 3A 'Bm 6A ''./3" 3A '2B"
A A A2

14i = B''''
12A"B" - 12 A'2B"

A A2

The coefficients associated with the third -order distortion are

X3r = BM

A'''' A"2 A' A''' A'2A"
lir = -2B"2 ± - 2 + 2

A A2 A2 A3 .

APPENDIX B

Fourier Transforms of R,,2(r), R, ,,,-2(r), R, -2(r) and 14,3(r)

The Fourier transforms of R, -2(r), R4,,,,,2(r), R,"2(r) and R,,3(r) can
be derived in a straightforward manner. However, considerable amount
of algebra has been involved during the derivation. Without writing out
the details here we merely present the final results.

[R,i2er)] = Po2fb{Dl(f - 2fb) + 2D1(f) + D1(f + 2fb)

- D2(f - 2fb) + 2D2(f) - D2(f + 2fb)

+ 2D3(f - 2fb) - 2D3(f + 2fb)}

5[R,,3(r)] = Po3fb2{3E1(f - fb) + E1(f - 3fb) + E1(f + 3fb)

+ 3E1(f + fb) + 3E4(f - fb) -3E4(f - 3fb)

- 3E4(f + 3fb) + 3E4(f + fb) + 3E3(f - fb)
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+ 3E3(f - 3fb)

- 3E3(f + 3fb) - 3E3(f fb) 3E2(f - fb)

- E2(f - 3fb) E2(f 3fb) - 3E2(f + fb)1

g[R,,,,,2(7)] = 472/302fb3{ Ji(f - 2fb) 2J1(f) 2fb) - J2(f- 2fb)

2J2(f) - J2(f 2fb) - 2J3(f - 2fb) 2J3(f 2fb))

ff[R-2(7)] = 1674 PefelKi(f - 2fb) 2K1(f) Ki(f 2fb)

- K2(f - 2fb) 2K2(f) - K2(f 2fb) 2K3(f - 2fb)

- 2K3(f

where

D1(f) =

D2( f) =
n=i

Da(f) =

Ei(f) =
7t,8

( 1)n cl1n (f )2n-1 sgnf
2(2n - 1) ! \fa/

( - 1)n du f 2"
2(2n - 1)1 (fb) sgn f

1).+1 ( f )2n f
2(2n) fb

-1) n eIn sgn f
(

(n2n-12(2n - 1)1 \fbi

E2(f) (_1).+1 e2n (fyn
sgnf2(2n) ! fb

E3(f) = 1) n+1 2(21)! (02n sgn f
10

E4(f) = ( - 1)n 2( 2ne411 1) ! (0 2n 1
sgnf

J1(f) =
n=i 1)" 2(2nill 1) (024 I sgn f

J2(f) = -1y 2(2n
3

2n
1) !

(fbf)On 1 sgnfw=2 -
J3(f) = ( -1 ) n+1 4'7'01 Gib/

2 n
sgnf

K1(f)
8

= - 1)" kin
2(2n - 1) sgnf
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if \ 2n-1

lK2(f) = ( 1 \
k2n

in 2(2n - 1) ! Vb) sgn f

/).4-1 (f )2n
2(2n) ! fb

sgn f.

The coefficients in the above equations are given as

d12 = C12, d13 = 2C1C2 , d14 = C22 + 2C1C3

d15 = 2c2c3 , d16 = c32

d21 C42, d22 = 2C4C5 d23 = C52 ± 2C4C6

d24 = 2c4c7 2c5c6 , d25 = C62 + 2C5C7

d26 = 2C6C7 d27 = C72

d31 = C1C4 d32 = C1C5 C2C4 d33 = C1C6 C2C6 C3C4

d34 = C1C7 C2C6 C3C5 = c2c7 c3c6 , d36 = C3C7

= C13, 14 = 3c12c2 , e15 = 3c1c22 312c3

C16 = 6C1C2C3 + C23, 17 = 3c1c32 3c22c3 , els = 3c2c32

= C33, 21 = C43, 22 = 342c5

23 = 3c4c62 3C42C6 24 = 3c42c7 6c4c5c6 c53

e25 = 3c4c62 6c4c5c7 3c52c6 , 26 = 6c4c6c7 3c5c82 3c5207

27 = 3C4C72 6C5C6C7 c63, 28 = 3c6c72 3c62c7

29 = 3c6c72, 210 = C73, 32 = C12C4

33 = 2C1C2C4 e12c5 , 34 = C22C4 2C1C3C4 2C1C2C5 C12C6

P P,35 = 2%4,3,4 C22C5 2C1C3C5 2C1C2C6 Cl2C7

36 = Oct 2c2c3c5 c22c6 2c1c3c6 2c1c2c7

= C32C5 2C2C3C6 C22C7 2C1C3C7

v38 = ,32u6 2C2C3C7 39 = c32c7 , 42 = c1c42

e43 = 2c1c4c6 C2C42, 44 = c1c52 2c1c4c6 2c2c4c6 c3c42

45 = 2c1c4c7 2c1c6c6 c2c52 2c3c4e5 2c2c4c6

e46 = c1c62 2c1c607 2c2c4c7 2c2c6c6 + c3c52 2c3c4c6

47 = 2c1c6c7 c2c62 + 2c2c5c7 + 2c3c4c7 + 2c3c5c6
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e48 = C1C72 2C2C6C7 C3C62 2C3C6C7

e49 = C2C72 2c3c6c7 , 6410 = C3C72

= c42, j12 = 2c4(c5 - 2c1)

i13 = (c5 - 2C1)2

/14 = 2C4(C7 6C3)

2c4(c6 4c2)

2(c5 - 2C1) (C6 - 4c2)

315 = (c6 4C2)2 2(c5 - 2c1) (C7 6C3)

/18 = 2(c6 4c2) (c7 - 6c3), 317 = (c7 - 6c3)2

/22 = (C1 + C4)2, /23 = 2(C1 + C4) (C2 + 3C6)

/24 = (C2 + 3C6)2 2(ci + c4) (c3 5c6)

j25 = 14c7(ci c4) 2(c2 3c5) (c3 5c6)

326 = (c3 + 5C6)2 14c7(c2 3c5), /27 = 14c7(c3 5c6)

328 = 49C72, 331 = C4(C1 C4)

/32 = C4(C2 3c5) (ci. + C4) (c5 2C1)

133 = CI(C3 5C6) (C2 3c5) (c5 - 2c1) (ci c4) (c6 4c2)

/34 = 7c4c7 (c5 - 2c1) (c3 5c6) (c6 - 4c2) (c2 3c5)

(C7 - 6c3) (c1 c4)

335 = 7c7(c5 - 2c1) (c3 5c6) (C6 - 4C2) + (C2 + 3C5) (c7 - 6C3)

/36 = 7C7(C6 4C2) (C3 5C6) (C7 - 6C3), /37 = 7C7(C7 6c3)

k12 = (ci 2c4)2, k13 = -2(c1 2c4) (6c1 - c2 - 6c5)

ki4 = (6c1 - c2 - 6c5)2 - 2(ci 2c4) (20c2 - c3 - 10c6)

k15 = 2(6c1 - c2 - 6c5) (20c2 - c3 - 10c6) - 2(ci 2c4) (42c3 - 14c7)

/on = (20c2 - c3 - 10c6)2 2(6ci - c2 - 6c5) (42c3 - 14c7)

k17 = 2(20c2 - c3 - 10(.6) (42c3 - 14c7), k18 = (42c3 - 14c7)2

k21 = C42, k22 = 2C4 (4C1 - C6 + 2C4)

k23 = (4ci - c5 2c4)2 - 2C4(8C2 12c5 - C6)

k24 = 2(4ci - c5 + 2c4) (8c2 12c5 - c6) - 2c4(12c3 - c7\)

k25 = (8c2 12c5 - c6)2 - 112c4c7 2(4ci - c5 2c4) (12c3 30c6 - c7)
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k26 1124 (44 - C5 2c4) 2(8c2 12c5 - c6) (12c3 30c6 - c7)

k27 = (12c3 30c6 - C7)2 112c7(8c2 + 12c5 - c6)

k28 = 1 124 (1 2C3 30c6 - c7), k29 = (564)2

k31 = c4(c1 2c4)

k32 = (C1 2c4) (4c1 - c5 2C4) - C4 (6C1 - C2 - 64)

k33 = (C1 2c4) (8c2 12c5 - C6) + (6c1 - c2 - 6c5) (4c1 - C5 + 2C4)

- C4 (20C2 - C3 - 10c6)

!c34 = - (ci 2c4) (12c3 30c6 - c7) (6c1 - c2 - 6C5) (8c2 + 12c5 - c6)

(2Oc2 - c3 - 10c6) (4c1 - c5 + 2c4) - c4(42c3 - 14c7)

k35 = -56c7(ci 2c4) (6ci - c2 - 6c5) (12c3 30c6 - c7)

(20c2 - C3 - 10c6) (8c2 12c5 - c6)

(42c3 - 14c7) (4c3 - c5 2c4)

= 564 (64 - C2 - 64) + (204 - C3 - 10c6) (12c3 30c6 - c7)

(42c3 - 14c7) (8c2 12c5 - c6)

k37 = 564 (20C2 - C3 - 10c6) + (42C3 14C7) (12C3 30c6 - c7)

k38 = 56c7(42c3 - 14c7),

where

c1 = 2(a2f52 2a4fb4 3asfb6)

C2 = -24(a4fb4 5a6.46), c3 = 720a6fb6

C4 = ao a2,42 a4fo4 asfo6

c5 = -2(a2f52 6a4fb4 + 15449

c6 = 24(a4fb4 15a6.46), C7 = -720a6,46.
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Bounds for Certain
Multiprocessing Anomalies

By R. L. GRAHAM

(Manuscript received July 11, 1966)

It is known that in multiprocessing systems composed of many identical
processing units operating in parallel, certain timing anomalies may
occur; e.g., an increase in the number of processing units can cause an
increase in the total length of time needed to process a fixed set of tasks.
In this paper, precise bounds are derived for several anomalies of this type.

I. INTRODUCTION

In recent years there has been increased interest in the study of the
potential advantages afforded by the use of a computer with many
processors in parallel. While it is generally true that a set of tasks may
be processed in less time by this type of multiprocessing, it has been
pointed out that certain anomalies'? may occur, even though the proces-
sors are used in a very "natural" way (e.g., it can happen that increasing
the number of processors can increase the time required to complete a
given set of tasks).

It is the purpose of this paper to derive precise bounds on the extent
to which these anomalies can affect the time required to process a set
of tasks, given certain rather natural rules for the operation of the
multiprocessing system.

1.1 Description of the System

Let us suppose that we are given n identical processing units P ,

1 i < n, and a set of tasks T = { T1, , T,,,} to be processed by
the P . We are also given a partial -order* -< on T and a function
T [0, co). Once a processor Pi begins a task T , it works without
interruption on T until completion of that task, taking altogether
µ(711) units of time. It is also required that if Ti < T; then T; cannot

* See Ref. 2.
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be started until Ti is completed. The Pi execute the T; in the following
way: We are given a linear ordering L: (Tk , Tk.) of T called a
task list (or priority list). In general, at any time t a Pi completes a
task, it immediately (and instantaneously) scans the list L (starting
from the beginning) until it comes to the first task T; which has not
yet begun to be executed. If all the predecessors of T, (i.e., those Ti < T;)
have been completed by time t then Pi begins working on T; . Otherwise
Pi proceeds to the next task T , in L which has not yet begun to be
executed, etc. If Pi proceeds through the entire list L without finding
a task to execute then Pi becomes idle (we shall also say that Pi is
working on an empty task). Pi remains idle until some other P; com-
pletes a task at which time Pi (and of course P;) immediately scans the
list L as before for possible tasks to execute. If two processors Pi and
P; , i < j, simultaneously attempt to begin the same task Tk , it will be
our convention to assign Tk to Pi , the processor with the smaller index.
The processors all start scanning L at time t = 0 and proceed in the
above -mentioned fashion until some time w, the least time for which
all the tasks have been completed.

It will be helpful here to consider several examples. We shall indicate
the partial -order < on T and the function IL by a directed graph G(<
In G( <,µ), the vertices will correspond to the T; and a directed edge
from Ti to T; will indicate that Ti < T; . Each vertex of G( <di) will
actually be labelled with the symbol Ti/A(71;), the µ(T;) indicating the
time necessary to execute T; . The activity of each Pi is conveniently
represented by a timing diagram 9 (also known as a Gantt diagram;
see Ref. 1). 9 will consist of n horizontal half-lines (labelled by the Pi)
in which each line is subdivided into segments* and labelled according
to the state of the corresponding processor.

Example 1: n= 3, L: (7'3, T1, T2 T4 T6 T 7 7

T1/4 772/3

714/5 7'3/1 7'5/3

G('<
T6/2 1'7/2 T8/3.

* We always consider the segments as being closed on the left and open on the
right.
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711 772 (PI
P1

4 3 2

9: P2
7'3 T5

1

5 1 3

P3
T6 T7 T8 402

2 2 3

The symbol indicates a processor is idle (i.e., working on the empty
task (pi) but not all the T; have been completed. The indexing of the co,
is arbitrary. Thus, for 9 we have w = 9.

Example 2: n = 4, L: (T1 , T2 , T3 , T4

T2/5

0( <

e 
.J

1

P.,

P4

T
4

SAl T:31 co5

5

,

f

SO7

4

402

1

1 2

T41

2

4

'P3 504

3

406

2

509

4
1

1

1

9
1 9

T5/4

T5

4

Solo

4

i011

4

5012

4

Here, w = 13. Note that in this example, w is independent of L. We
should also point out here that we are using the convention that when-
ever any T1 is completed, then all current empty tasks (pi are also termi-
nated. Processors still idle are then given "new" empty tasks to com-
plete (e.g., P4 in Example 2).
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Example 3: n= 3, L: (T1, T2 T3 T4 T5 , T6 T7)

0 J 

P1

P2

P3

G(<,µ):

T4

1
1

T2 T5

1 1

T3 Tg

1 1

T1/1 .

T2/1 . . T5/1

T3/1 . . T6/1

T4/1 . . T7/3

7'7

3

3

co2

3

= 5

Suppose we use a different list L' given by L': (T1, 7'2 , T3

T4 Tg TO. We then have

P1

cv P2

P3

7'3 7'5

1 1

7'2 714 716

1 1

T7

3

= 3

Hence, by simply using a different list L', we have shortened w by nearly
a factor of two. The significance of this and similar examples will be
brought out in the next section.
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We see that, in general, w is a function of the task list L, the "time"
function AL, the partial -order and the number of processors n (in
addition to the rules under which the Pi operate). In this note, we
investigate the factor by which co can increase if we simultaneously:

(i) Change* the task list L;
(ii) Decrease the function µ;

(iii) Relax the partial -order < ;
(iv) Change the number of processors from n to n'.

While it might first be expected that (ii), or (iv) (with n' > n)
would cause a decrease in w, easy counterexamplesf show that is not
always the case. In the next section we obtain an upper bound on the
factor by which co can increase because of (i), and (iv) (cf.

Theorem, p. 1571). This bound is just the expression 1 n - 1/n'. We
also show that this bound is the best possible in the sense that it cannot
be replaced by any smaller function of n and n'.

II. TIIE MAIN RESULTS

We begin this section by considering a special case of the general
problem. We include this here in order to acquaint the reader with the
basic ideas which will be used later. Suppose we are given a set of tasks
T = IT , , Tm and a directed graph G( <,µ) giving a partial -order
< and a time function tc on T. We execute these tasks twice, each time
using two identical processors Pi and P2 . The first time the tasks are
executed we use a task list L while the second time the tasks are exe-
cuted we use another task list L'. Suppose the corresponding finishing
times are w and w'. The question we consider now is this: How much
can the ratio w'/w vary? This is answered by the following

Proposition: 4 5 w< 4.

Proof: By the symmetry of w and w' it suffices to show that cl/co < 4.
The basic idea we shall use is a simple one. Consider the timing diagram

obtained when the tasks are executed using the list L. We want to
show that there is a chaint of tasks Tel < Tc2 < < T which
has the property that whenever a processor is idle (i.e., executing an
empty task (pi) then the other processor is executing one of the Tc, .

* By "change" we mean "possibly change", etc.
t As far as the author is aware, these facts were first pointed out by Richards.3

i.e., a linearly -ordered subset using the partial -order < .
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To define the To, we proceed as follows. First, let Th be defined to
be the task which has the latest finishing time in 9 (if there is more
than one such task then we choose the task which is executed by the
higher -indexed processor). Let q>t, be the empty task which has the
latest finishing time of all those empty tasks which finish at a time not later
than the starting time of T1, . By the construction of 9, there must be a
task T. which has the same finishing time as cogi . Define T;2 to be T. T.
In general, suppose we have defined Tik for some k > 2. To define Thc+i ,
let vi, be the empty task which has the latest finishing time of all those
empty tasks coi which finish at a time not later than the starting time
of Tik . (If there are no such coi then we are done, i.e., Tak+, is not de-
fined.) By hypothesis, there must be a task T. which has the same
finishing time as coik+, and which has a starting time not later than the
starting time of co,,,, . Define TA+, to be T . We continue this algo-
rithm for as long as possible, say, until we have defined Th, , Tir .

We first note that since no processor works on one empty task vi
while the other processor works on more than one task, then at any time
a processor is executing an empty task, cci , the other processor is executing
one of the T k. We next claim that TA+,< T., for 1 < k < r. Suppose
this is not the case. If to denotes the time at which a processor Pi started
executing co,k+, then by the hypothesis concerning the operation of the
processors, Pi should not have been idle (i.e., working on go,k+,) since
at least one task, namely T jk , was eligible to be executed at that time.
Thus, the timing diagram 9 is not valid and we have a contradiction.
Hence, we must have TA+, < T J, for 1 < k < r. By defining Tck
Ti, for 1 < k < r, the first assertion is proved. It follows at once
that if we let 1.4(coi) denote the length of time a processor spends executing
coi , then

E A(vi) -5 ii,(77.4).
viEG

(1)
le=1.

The proof of the proposition now follows directly. Let T,< Ti,
< Ti, be chosen (by the assertion just established) so that

8E A(sol) < Eih(Tik)) (2)
k=1

where the are taken from 9' (the timing diagram obtained when the
list L' is used). Note that w' can be written as:

= 2 E p.(Tk) + E µ(i/). (3)
TkET OvEg'
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From (2) and (3) we have

w' < z E A(Tk) + IL(cbil))
TkET k=1

Since the following inequalities hold:

> µ(L)
TkET

(.4) E
k=1

(where (6) follows from the fact that T1, < T1, < '

have from (4), (5), and (6)

3w
co' 1(2co (0) = -2

1569

(4)

(5)

(6)

< Tis), then we

and the proposition follows.
The following example shows that the upper bound of z cannot be

replaced by any smaller value.

Example 4: n = 2, L: (T1, T3 T2), L': (T1, T2 T3)

J
P

P.2

'eJ

P2

T1/1

G(< T2/1

T3/2

7'2

713

9

73
1

9

7', I col

9

w = 2

co' = 3

Therefore, co/co = and the upper bound of the proposition is achieved.



1570 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

Before stating the main theorem we introduce some notation. Let
T = T1, , T7n} be a set of tasks. Let G = G(<,µ) and G' = G' ( <' 211)
be two directed graphs for T with the partial -orders <, and the time
functions thu'. We say that G < G' if:

(i) At 5 11) i.e., m/(77i) t4(Ti) for all Ti E T.
(ii) i.e., T T implies Ti < Ti for all Ti Ti E T.

Finally, suppose we execute the tasks twice, one time using the graph
G, a task list L and n processors, the other time using the graph G', a
task list L' and n' processors. Let co and w' denote the respective finish-
ing times. We then have the

Theorem: If G' < G then

1
- 1

0.) n'

Proof: By a slight modification of the argument used in the proposition,
it follows that if 1 i < v, denote the empty tasks of g' then there
exists a chain of tasks Ti,Ti=<' <' Ti, of tasks in T with
the property that whenever a processor is idle then some other processor is
executing one of the T ik . From this we conclude

E (n' - t Tik). (7)
k=1

As before we note that

n TiET1A'Cr1E d(ri) + (n' - 1) t ik)
TiE

)
k=-1n'

where the inequality follows by (7). Since

and

w - E µ(l';)'_1 E iZ(715)
n TiET n TiET

IL(Tik) J E d(Tik)
k=1 k=1

(8)

(9)

(10)



MULTIPROCESSING ANOMALIES 1571

then by (8), (9), and (10) we conclude

Hence,

w' < -1 (nw (n' - 1)w) .

n'

n - 11 ±
n'

and the theorem is proved.
To show that this bound is best possible, we give several examples,

which show that the bound can be attained (to within e) by varying
any one of the four parameters L, <, or n.

Example 5: L is varied.

n = n', 1.1 = 1.1!, < = <
L =-- (T1, , 1'H-1. T2n-1 y Tn , Tn+1 ' T2n-2)

L' = (T1 , Yrn , Tn4-1 y y Ten ,
T2

, T3 Tn- 1 , T2n-1)

. T1/1

. T2/1

 Tn_i/ 1

G(< T

. - 1

1'2,-2/n - 1
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P1

P2

9

Pn-1

P,

P1

P2

P_1

P,,

T,,

T2

n - 1

Tn +1

1

Tn-11

1

n - 1

T2n -2
n - 1

2n-1

n

7711 72

1 1

T

r/i2n-1

n

n - 1

r-r2n -3 'On -2

= n

= 2n - 1

n - 1

2 n -2 San -1

n - 1 11
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(.0 1-= 2 - n'
which is the value of 1 + (n - 1)/n' when n = n'.

Example 6: p. is decreased.

n = n', , < = <
L = L': (T1 , T2 , T3n)

r1

r'2

rn

rn+1

rn+2

T2

r2n+2

r3

(Ti) 1.1'(Ti)

2e

2e T2

G:

2r

2r 2e

1 1

1 1

n - 1 n -

n - 1 n - 1

n - 1 n - 1

Tn+i

T2n+2

T2n+3

T3,

T2n+l

(In G,
T2 < T. < T2n+1
for 1 < i < n

j 2n.)
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1
:

1
64

g

1-1

Cl

61

ti)
Cl

1-1

r-i

4.1
CI

1
::

1
E -4

1-4 A
E-4

CCI' E:

 
CD
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CV

3

c 1-1

-e-

I

ri

N."-

64 CO 64 CO

6

a:: a:
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Thus,

co' 2n - 1 + E
n + 2E

which is arbitrarily close to 2 - (1/n) for E sufficiently small. We
should note the interesting fact that w' > 2n - 1 + E for any list L'
which may be used.

Example 7: -< is relaxed.

n =n', µ= < D <',
L = L': (T1 , T2 , , Tn (n-1)+0

G ( pi) : T /

G( ',A)

T in

. T2/1

. Tn (n-i) /1

 Tn (n-1)+1/1

. T (n-i)+2/n

T2/1

T3/1

T n (n-1)/ 1

T. c. -1)+1 / 1
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T

EM

N pp

(4,

3

VJ

cg

EM EM

-e-

TI

rl



P1

P2

Pa

Pn

Tn+1 T 2n+1   n (n-1)+1

E` 11 11

T2 T? n -,
0 6

I 1 I

1 m
i n (n-2)+3

n - E

Tn (n-1)+2

i

i I 11

T3 Tn+3

I I

1

Tn (n-2)+4

. . n 

(P2

I

i I i
1

1 ,
1

T2nT1

t - ...

1
1

Tn (n-1)-1.

n

(Pn-2

i

i

-

co' = 21

i

Tn T 2n i

I s

1.

In (n-1)

n

'Pn-1
1 -

1 n

n, - 1

C.71

00



MULTIPROCESSING ANOMALIES

Thus,

co' 2n - 1
w n

which is arbitrarily close to 2 - (1/n) for E sufficiently small.

Example 8: n is varied.

Case 1: n < n1, µ = , < =
L = : (T1 , T2 , '

G:

P1
Tn+1I Tn+2

E C 1

T2
P2

g: P3
T3 coi Tn+3

E 1

Tn
I

TenP
c c 1

71,,n,-n,±n±2/n

T.+2/1

Tn+3/1.

Tn,-n'-i-n+1/1

Tnns-n'+3
1

1579

n'
nn' Vzi-1

I

n'

Tnn'-n'+4
1

= n' 2

Tnn'-n'+n+1
1
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Pn 
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T1

T2
e

T 11+2

1

it - 1
T n +3

1

Tn4-1 T2n+2
1

ctO Tn+n14-1

1

Thus,

T' -2n '-i-n-1-12

Tr. '-2n
1

TTZ '-2n '+2n+2
1

T nn 4-n+1.1

1

(Pi

co2

n'

con +1

n'

Tnn ' ' +n -F2

co' = n' n - 1 ± E

co' n n - 1 +
co n' 2e

n'

which is arbitrarily close to 1 (n - 1/n') for e sufficiently small.

Case 2: n > n'. The construction in this case is similar to that of Case 1
and will not be presented.

We should note that in Example 8 we took L = L'. If it is of some
consolation to a possibly battered intuition, it should be noted that if
n < n', µ = ,u', and < = -<1 then for any L which is chosen, it is
possible to choose a suitable L' for which co' < co.

III. CONCLUDING REMARKS

It should be pointed out here that we have not considered models of
the multiprocessor system in which the priority list L is "dynamically
formed" (as opposed to the fixed lists we have used thus far). For ex-
ample, one seemingly quite reasonable way of doing this is as follows:
At any time a processor is free, it immediately begins to execute the
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"ready" task (i.e., one which has all its predecessors completed) which
currently heads the longest chain of unexecuted tasks (including itself).
Suppose by following this algorithm in choosing tasks, we have a finish-
ing time of co*. If we denote by wo the least possible finishing time
(minimized over all lists), then we would like to assert something about
the ratio co*/wo . It follows from what has been proved in this paper
that co*/(00 < 2 - (1/n), (where n is the number of processors) and
we would hope that, in fact, we could show ce/coc, is considerably closer
to 1 than this. Unfortunately, this is not possible since it can be shown
that the best possible bound on this ratio is given by

w* 2< 2 -
coo - n + 1

It is interesting to note, however, that in the case in which the partial -
order < on the tasks is empty, then this bound can be improved* to

co* 4 1

wo - 3 -
which, again, is best possible.

In conclusion, one might ask just how "typical" the examples are for
which w'/wo is close to the upper bound 2 - (1/n). While very little
work has been done on this aspect, empirical results (using computer
simulation (see Ref. 1)) indicate that examples in which co'/(00 1.1

are quite common.
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Phase and Amplitude Measurements of
Coherent Optical Wavefronts

By JOSEPH T. RUSCIO

(Manuscript received March 24, 1966)

A phase -locked laser loop has been used as an amplitude and phase meas-
uring device for coherent optical wavefronts. A relative phase resolution on
the order of one degree and an amplitude resolution accurate to one dB or
better were obtained. The system and measuring techniques used are de-
scribed, and the results obtained are illustrated by several examples.

I. INTRODUCTION

A laser phase -locked loop' consisting of two laser oscillators has been
used to measure the relative phase and amplitude of the wavefront of a
laser beam. A phase resolution on the order of one degree and an ampli-
tude accuracy better than one dB have been obtained. This system was
used to analyze the optical qualities of devices placed in the beam's
path by measuring their effect on the wavefront. The system and tech.
niques used along with the results obtained are described and illustrated
in this paper.

II. DESCRIPTION OF THE MODIFIED PHASE -LOCKED LASER LOOP

The phase -locked system is shown in Fig. 1. It consists of controlled
and uncontrolled optical oscillators which are single -frequency helium -
neon lasers operated at 6328A. Details of the oscillators' characteristics
are shown in Figs. 2 and 3. The beam waists and spot sizes are defined
and calculated in Appendix A. The two lasers used initially are shown in
Fig. 2; however, tube replacements required a different combination of
mirrors to maintain a single transverse mode, so the final measurements
were made with the lasers shown in Fig. 3. Results are identified with the
lasers used.

Prior to combining the two beams (Fig. 1) on the surface of the photo -
multiplier by means of a mirror and a beam splitter, the output beam of

1583
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Fig. 1- Phase -locked optical maser system.

the controlled laser, which will be referred to as the reference beam, is
collimated by a telescope.

III. THEORY OF OPERATION

The beam splitter in Fig. 1 provides two outputs: Port 1 to phase -lock
the system and Port 2 for making the phase and amplitude measure-
ments. The photomultipliers are square law detectors. Thus, if the field
at the photosensitive surface is

E = Ec cos cost E cos tout

where
Ec is the controlled oscillator field amplitude,
E the uncontrolled oscillator field amplitude,

and
coc , co the respective angular frequencies, then since Ec and E have

the same polarization, the resulting photocurrent is proportional to

E2 = lEc2 EcE cos (co, - (.0)t + 1E2 (1)
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which consists of a de term 1(E: + E.2) plus the difference frequency
term [EcE. cos (w, - cou)t].

In the original phase -lock loop,' the two lasers were locked at the same
frequency with a de error voltage proportional to their phase difference.
When the loop locks, the controlled laser tracks the frequency of the un-
controlled laser in a manner such that the instantaneous phase error a
remains smaller than 90° in absolute magnitude. A discussion of the phase
relationships in the loop is given in Appendix B.

To improve the measurement of phase and amplitude, the laser oscil-
lators were phase -locked at a fixed frequency difference of 2 MHz by using
an additional phase detector with a 2 -MHz crystal -controlled oscillator
as a reference. When the lasers are tuned so that their difference fre-
quency is 2 MHz, the 2 -MHz output from the photomultiplier is ampli-
fied and applied to the phase detector. The phase detector output is a
de error voltage proportional to the phase difference between the 2 -MHz
beatnote and 2 -MHz reference signal (Appendix B). This error voltage
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is fed back through a differential amplifier to a piezoelectric disc trans-
ducer. A mirror mounted on this transducer forms one end of the con-
trolled laser cavity. There is an additional transducer -mounted mirror
on the other end of the laser cavity; this is used for initial tuning (see
Figs. 2(b) and 3(b)). The error voltage causes the cavity length and
hence the frequency to change in a direction such that the phase error
is decreased. When the loop locks, the controlled laser tracks the fre-
quency of the uncontrolled laser in a manner such that the instantaneous
phase error between the two 2 -MHz signals remains less than 90°. The
loop tracks over a frequency range of ±50 MHz, based on a feedback
voltage of ±80 volts and a piezoelectric transducer having a sensitivity
of 0.6 MHz/volt. This means that the phase difference between the refer-
ence signal and the beatnote signal remains less than 90° in absolute
magnitude as long as the frequency of the uncontrolled laser does not
vary more than ±50 MHz.

IV. TECHNIQUE OF MEASUREMENT

Port 2 of the beam splitter provides an output which is utilized for
phase and amplitude measurements; this permits scanning the com-
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Fig. 4.- Beatnote (2 MHz) Lissajou; (a) 2 -MHz Beatnote, (b) lissajou pattern
indicating phase difference between two 2 -MHz signals, (c) zero phase shift be-
tween two 2 -MHz signals.

bined beams without interfering with the phase -locked loop. A circular
collection aperture of a few mils diameter is used to scan the superim-
posed wavefronts, selecting the "point" area detected by the photo -
multiplier. The phase of the 2 -MHz beatnote obtained from the photo -
multiplier is dependent on the position of the "point" area on the
wavefronts. Frequency selective circuits, including a 2 -MHz tuned cir-
cuit in the photomultiplier output and a crystal filter (2-1MIHz center
frequency, 4 -kHz bandwidth), assist in maintaining a signal-to-noise
ratio that is better than 40 dB. The result is a well-defined 2 -MHz signal
(Fig. 4(a)), which with the 2 -MHz reference can be used to produce
Lissajou patterns, as in Figs. 4(b) and 4(c), on an oscilloscope. By this
means relative phase measurements between the two beams are possible.
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Distortion of the pattern in Fig. 4(b) is due to limitations in the hori-
zontal amplifier of the oscilloscope. Measurement of the beatnote ampli-
tude as a function of the probe position from the beam axis is used to
determine the relative amplitude of the wavefronts. The techniques and
theory used for both phase and amplitude measurements will be de-
scribed.

V. PHASE MEASUREMENT

The phase measurement is based on the fact that each of the two
spherical wavefronts of radii R1 and R2 can be expressed approximately
as

= exp (jkd2/2R1) = exp (jc131),

where

4.1 = (kc/2/2R1),

d is the distance from the beam axis, and

k = 27r/X.

E2 = exp (jkd2/2R2) + 7 = exp (j1)2) + 7)

where

= (kd2/2R2)

and 7 is the phase difference between the two wavefronts on the axis.
Thus, the phase difference between the two wavefronts is given by

Act. = c132 - 431 + = (kd2/2) (1/R2 - 1/R1) + 7.
The telescope reduces the divergence of the reference beam so that its
radius of curvature, * R1, can be considered infinitely large, therefore,

(Di 0

and

6,43 (kd2/2R2) 'Y

From Fig. 5, it can be seen that if the phase shift as indicated by the
Lissajou patten is adjusted to be zero at the center of the beam (by means
of an auxiliary phase shifter), all measurements can be made relevative
to this reference and the relative phase shift becomes

043 crk-5 (kd2/2R2).

* Calculations for the radii of curvature involved using the telescope are given
in Appendix C.
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Fig. 5 - Phase relationship between spherical and planar wavefronts.

Measurement of Acl) as a function of distance (d) from the beam axis
provides a means of determining R2

The experimental layout for measuring the relative phase between the
two beams is shown in Fig. 1. The movable collection aperture positioned
directly in front of the photomultiplier can be moved in 5 -mil increments
along the horizontal or vertical axis. Changes in phase with position is
plotted as shown in Figs. 6(a), (b) and 7(a), (b).
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The curves in Figs. 6(a) and (b) are for the laser shown in Fig. 2(a).
Measurement of the optical wavefront was made at a distance of 3 meters
from the apparent beam waist using a 0.015 -inch diameter collection
aperture. Similar data for the laser in Fig. 3(a) are shown in Figs. 7(a)
and (b) in which case the collection aperture diameter was 0.009 inch.
Theoretical curves indicate radii of curvature less than the measured
values for all cases. The radius of curvature at a distance z from the ap-
parent beam waist location is given bye

)2R = z (z 2 ,

where zo = irwo2/X, wo being the beam -waist radius, and X = 0.6328/2.
The disagreement between the theoretical and experimental values

has not been resolved. This problem remains under consideration as work
continues in this area.

VI. FIELD AMPLITUDE MEASUREMENTS

In a similar manner, observing the 2 -MHz beatnote amplitude as a
function of probe distance perpendicular to the beam axis provides a
means of determining the field amplitude distribution of the combined
beams. With the reference beam enlarged, in this case to 30 times its
initial size, the amplitude of the reference beam over the distance
scanned is relatively constant; therefore, the amplitude distribution
measured is, in fact, the relative amplitude of the signal beam. The ac-
curacy is governed by the variation in intensity of the reference beam
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over the area scanned as shown in Fig. 8. With a beam reference spot
size of 1 -inch diameter, scanning a distance of 0.2a (a = beam radius)
from the beam axis introduces an error of 0.4 dB in the relative measure-
ments.

Examples of the measured amplitude distribution as a function of
distance from the center of the beam are shown in Figs. 9(a), (b) and
10(a), (b). In Fig. 9(b), which applies to the laser shown in Fig. 2(a),
the theoretical Gaussian curve (exp (-r2/a2), a being the beam radius
where the field amplitude falls to lie, and r the distance from the beam
axis) agrees quite closely with the measured values. Figs. 10(a) and
(b) show amplitude distribution curves for the laser in Fig. 3(a); in
these an unexplained lack of symmetry appears.

VII. DETERMINATION OF PROPERTIES OF OPTICAL ELEMENTS

In addition to measuring the signal laser's optical wavefront, it was
also possible to determine the effects of putting a lens in the signal beam.
Results of this experiment are described.

To facilitate measurement of lenses, the signal beam was also colli-
mated so that now both beam wavefronts were planar. Under these
conditions, placing a glass lens in the signal laser beam produced a
phase -front at the collection aperture dependent on the focal length of
the lens. The experimental arrangement is shown in Fig. 11 and the
results of measurements on a 86.6 -cm focal length lens are shown in
Fig. 12. The measurements agree quite closely with the theoretical
values.
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VIII. POSSIBLE IMPROVEMENTS

In Fig. 11 it can be seen that the lens being tested is common to both
the phase -lock loop branch and the phase and amplitude measuring
system. To phase -lock the loop, the two beams must be made coincident
at the photomultiplier. A fixed device, such as glass lens, can be inserted
in the system, the beams aligned and the loop locked. However, if the
item under test introduces random variations which displace the beams
relative to each other, the phase -lock loop is affected and meaningful
measurements are not possible. To eliminate this problem, the setup
shown in Fig. 13 is preferable. Under these conditions, the phase -locked
loop is independent of the component under test and is therefore, not
affected by any instability introduced. This method may require lasers
with greater output powers because of the additional beam splitters re-
quired.
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The system as it stands is sensitive to acoustic noises and for accurate
phase measurements the laser must be maintained within a vault.'
Enclosure in the vault permits phase -lock to be maintained for periods
of 2 or 3 hours, with occasional tuning adjustments of the laser by means
of the transducer -mounted mirror. Under these conditions the phase -
lock is sufficiently stable to permit measurements without too much
difficulty; however, it would be desirable to have portable lasers that
could be used under less ideal conditions than a closed vault. Use of a
transducer with a higher resonant frequency and additional gain in the
feedback loop should increase the phase -lock stability.
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APPENDIX A

Calculation of Beam Waists and Spot Sizes

The following notations, some of which have already appeared, will
apply in the following development:
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w = spot radius, defined as the radius at which the field ampli-
tude falls to 1/e of its maximum value on the z-axis.

wo = beam waist, which is the minimum spot radius.
w1 , w2 = spot radii at their respective mirrors.
RI , R2 = radii of curvature of the two laser mirrors. One of the refer-

ences.' uses b1 and b2 as the notation for the radii of cur-
vature of the mirrors.

d = separation of two laser mirrors.
d1, d2 = distances to mirrorsoas shown in Figs. 2 and 3.

X = wavelength = 6328A.
The beam waist wo is given by the following':

wo2 = X Vd(R1 - d)(R2 - d)(Ri ± R2 - d)
v(Ri ± R2 - 2d)

(2)

Output spot sizes were calculated using4

(W1)2 R1 R2 - d
\w2/ R2 Ri - d

and
(11)0)2) =2

2
R1R2d

VI R1 ± R2 d 
Locations of the beam waists were obtained from4

and

- (dR2 - d)d1+ R2 - 2d

(dR1 = d)d2 - R1 + R2 - 2d 

To compute the apparent beam waist location, it is necessary to first
correct for the negative lens effect of the output mirror.5 The output
mirror acts like a negative lens transforming the phase front of the light
wave emerging from the mirror. A mirror with a radius of curvature
R and an index of refraction n transforms the phase front so that the
radius of curvature is R/n. In this case (Fig. 2(a)), R = 2 m, n = 1.46
(quartz) so that the new radius of curvature

R' = R/n = 2/1.46 = 1.37 m.

With this radius of curvature, using5

z - R'

1 + ' (7)
\rw22)
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the apparent beam waist appears to be at distance z = 23.8 cm from
the output mirror; this places the apparent beam waist 6 cm outside the
laser as shown in Fig. 2(a). Similar computations produce the apparent
beam waist location for the other lasers as indicated in their respective
figures. The radius of the apparent beam waist is obtained using the
value of R2/n rather than R2 in (2).

APPENDIX B

Phase Relationships of Phase -Locked Loop

It has been shown when the field at the photomultiplier is E =
E, cos wet Eu cos (out that the difference frequency term is EcE.
cos (co, - cou)t where we and co. are the respective angular frequencies of
the controlled and uncontrolled laser beams. To determine the phase
relationships in the dc system, the field amplitudes are omitted and the
angular frequencies and their phases are expressed as

cos [(wet + col) - (wut c02)] = cos [(we - wu)t (Pi - c021.

Let

(we - wu) = Ow and col - so2 = Aot

then the error signal from the photomultiplier is

cos (Aw  t Aso).

When the system is phase -locked, the frequency difference Au). t is equal
to zero, therefore,

cos (Awt co)A = cos 4.

This, in turn, can be written as sin (90° - Aso); the error signal for the
phase -lock laser loop. At phase -lock, this error voltage approaches zero
and Av, the phase difference, is equal to 90° ± a, where a is the instan-
taneous phase error of the loop. The output of the phase detector is
proportional to sin a and since a is small, sin a = a, the de error voltage
is proportional to the phase difference.

When the system was modified to permit the use of a 2 -MHz inter-
mediate frequency, an additional phase detector was utilized to develop
an error signal based on the output difference frequency term of the
photomultiplier and a 2 -MHz reference signal. Computations similar to
the above show that the output error voltage of the IF phase detector is
also proportional to the phase difference between the 2 -MHz beat
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frequency from the photomultiplier and the reference frequency of
2 -MHz.

APPENDIX C

Beam Transformation Using A Telescope

The location of the output beam waist after passing through a tele-
scope consisting of two lenses with focal lengths fi and f2 , spaced at a
distance d = f2 ± d, is as follows,2 where it is assumed the telescope
is adjusted so that the misadjustment Ad is approximately equal to zero.

2

= [ S1 - 11) j-; + 12]

where Si is the distance from the input beam waist to the first lens and
S2 is the distance to the output beam waist from the output lens. Since
we know S1, substitution of the values for the reference telescope

= 1 cm and f2 = 30 cm] gives us a value of 270 m for S2
The radius of curvature of the wavefront is2

)Rz = z[i z 2],

where zo = 7rwo2/X and z is the distance from the output beam waist to
the photomultiplier [in this case z = S2 - 3 m = 267 m]. Thus, R, is
determined to be approximately 2000 m which for our purpose is con-
sidered to be a planar phase front. Since there is a good possibility that
the lens arrangement is not well adjusted, it is wise to observe the out-
put beam of the telescope over an extended distance to insure that
there is no noticeable divergence or convergence of the beam diameter.
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State of the Art in GaP
Electroluminescent Junctions*

By M. GERSHENZON

(Manuscript received June 10, 1966)

Quantum efficiencies and brightness values for green and particularly
for red light emission from currently available GaP p -n junctions in
forward bias at room temperature are sufficiently high to merit con-
sideration in electroluminescence applications where the human eye is
the detector.

I. INTRODUCTION

Although the recombination radiation from forward -biased GaP
p -n junctions could be used for the same applications as the emission
from lower band -gap materials (e.g., in photon -coupled circuitry),
the GaP emission occurs mainly in the visible portion of the spectrum
and is thus more appropriate for applications where the human eye is
the detector. To obtain emission in the visible from a forward -biased
p -n junction, one needs a semiconductor with a band gap greater than
1.8 eV. The II-VI compounds that meet this requirement cannot be
made into simple p -n junctions (although some of their alloys can).
Hence, only GaP, BP and the various polytypes of SiC are considered.
(These are all indirect gap semiconductors so that stimulated emis-
sion is not normally expected.) Of these three, GaP (band gap 2.26
eV) is characterized by the simplest materials technology.

II. RADIATIVE RECOMBINATION MECHANISMS

Fig. 1 shows a typical room temperature forward -bias emission
spectrum from a diode prepared by Zn diffusion into an n -type crystal
containing Te and 0. Two emission bands appear in the visible, sepa-
rated both spectrally and spatially. A weak green band is generated

* Presented at the Seminar on Electroluminescence and Semiconductor Lasers
sponsored by the New York Section IEEE at Stevens Institute of Technology,
May 11, 1966.
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Fig. 1- Emission spectrum from a forward biased Zn-diffused diode at room
temperature.

close to the junction proper, while a much stronger red band seems to
originate on the p -side of the junction. Infrared emission seen in Fig. 1
will not be discussed.

2.1 The Red Emission

Mostly by comparison with photo -luminescence, it has been shown
that the red band is due to donor -acceptor pair recombination in-
volving shallow Zn acceptors and deep 0 donors.' External photo-
luminescence quantum efficiencies of up to 11 percent have been
reported at room temperature in p -type samples.2 Zn-O pair band re-
combination in a p -n junction is sketched in Fig. 2. On the p -side of
the junction the Zn level (NA 2 x 1018 cm -3) is about half full of
holes in thermal equilibrium. Injected minority carrier electrons are
captured efficiently by the ionized compensating 0 donors and, because
the 0 donor is relatively deep, the electrons remain trapped, with little
thermal ionization back to the conduction band, until they recombine
radiatively with holes on the Zn acceptors. This situation is identical
to the Zn-0 pair emission in photoluminescence and should lead to
high efficiencies. On the n -side of the junction, the 0 donors are always
filled with electrons. Injected minority carrier holes may be captured
by the empty Zn acceptors, but, because the Zn acceptor level is quite
shallow, they are thermally released back to the valence band, from
where they may find other means to recombine. In the space -charge
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Fig. 2 - The Zn-0 pair band mechanism in a forward -biased p -n junction.

layer, the 0 donors are below the electron quasi -Fermi level from the n -
side to deep into the depletion layer, and these donor states can be
populated by electrons. However, the Zn acceptors lie above the hole
quasi -Fermi level only very close to the p -side. It is only these ac-
ceptors that contain trapped holes. Hence, there is no region in the
space -charge layer that contains both trapped electrons and trapped
holes, and therefore, the Zn-O pair band should not be an efficient re-
combination mechanism in the depletion layer. Thus, we expect the
red Zn-O band to originate predominantly from the p -side, beyond the
space -charge layer.

2.2 The Green Emission

Among the many types of recombination leading to photolumines-
cence near the band edge at low temperatures there are (i) pair transi-
tions involving a shallow donor and a shallow acceptor (e.g., Te and
Zn) ,3, 4 and (ii) the "A" line and its phonon replicas due to exciton
recombination at an N atom substituting isoelectronically for a P
atom.5.° The green emission at low temperatures observed from junc-
tions prepared from such material can be identified as due to these
transitions by simply comparing electroluminescence and photolumi-
nescence spectra.? As the temperature of the diodes is increased, the
pair band becomes weaker and the "A" line grows at first but then
also diminishes in intensity and, at the same time, it broadens and
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merges with its phonon replicas. Above approximately 200°K, only a
broad green emission band remains. It is, therefore, not clear whether
the room temperature green band is due to isoelectronic N traps, or
to shallow pairs, or to some new mechanism. The possibility of simple
band -to -band recombination can be eliminated because the observed
efficiency is several orders of magnitude greater than the efficiency
(on the n -side, on the p -side, and in the space -charge layer) calcu-
lated using the band -to -band rate constant derived from a detailed -
balance analysis of the absorption edge.

III. INJECTION - RECOMBINATION KINETICS

3.1 Dominant Current

The current -voltage characteristics of Zn-diffused diodes can be ex-
plained quantitatively by assuming that there are several current
generating mechanisms, each of which dominates in a different range
of forward bias.' These mechanisms are summarized in Table I. We
assume that the current J can always be written as exp qV /nkT ,
where n will depend upon bias. At the lowest applied bias, surface leak-
age predominates and the effective n (at room temperature) is about

In the next bias range the dominant current is due to recombina-
tion at deep levels in the space -charge layer. Here n = 2, but with in-
creasing bias, preexponential terms (W is the junction width and VD
the built-in potential) cause the effective value of n to decrease. In the
next bias range, not observed in all diodes, recombination at a shallow
level in the space -charge layer dominates. Although n is nominally
equal to unity here, again pre -exponential terms perturb its value
somewhat. Here the effective n lies between one and two and slowly
decreases toward unity with increasing bias. Thus, in the space -charge
regime, n starts at two, and approaches one at high bias. Finally, at
the highest biases, simple injection beyond the depletion layer domi-
nates with n = 1. (Conductivity modulation which should set in at
even higher biases has so far not been observed.)

3.2 Red Emission

We have already noted that the red Zn-O emission seems to origi-
nate from the p -side of the junction. From near -field spatial distribu-
tions on a surface cleaved perpendicular to the junction plane it is
evident that the green emission, at least at high biases, is centered at
the junction itself, as defined by observations of the junction electro-
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TABLE I - DEPENDENCE OF CURRENT (J) AND OF Tin -0
PAIR BAND EMISSION (L) UPON BIAS (V) AND

THEIR COMPARISONS

Dominant Current, J
J a

qV
exp

tz7"

Surface Leakage

Space Charge Recombination Diffusion Current on n -Side

Deep Levels Shallow
Levels Linear Range Conductivity

Modulation

Ja exp i3V

# = q/4kT
n= 4

W qVJa

n 1

Ja exp qV
kT

n = 1 n = 2

-V exp 2kT

n <2

LaJ4 LaJ2 LaJ1 LaJi

1

nc = 1
L a exp kr

= 2
qVL a exp
2kT

n
=2inn + 1

Linear Range Diffusion Diffusion and
Drift

Conductivity
Modulation

Saturation

Light Emission from p -Side, L

L a exp qV
mkT

optic effect.' However, the red emission is not centered on the junction
but lies on the p -side. At high biases the emission closest to the junc-
tion saturates and the emission volume simultaneously expands deeper
into the p -side. This observation is inconsistent with n -side or space -
charge layer recombination.1 Thus, the red emission is generated on
the p -side beyond the space -charge layer, as expected from Fig. 2.
The spatial motion at high biases is due to the saturation of the recom-
bination centers on the p-side.8 The injected carriers, therefore, must
travel beyond the normal diffusion length in order to recombine. We
again assume that we can write the red light intensity L in the form
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exp qV/mkT. At low bias, with simple injection into the p -side and
recombination at Zn-O pairs, m = 1. However, in the saturation range
at high bias, with minority carrier transport limited by diffusion only,
m = 2.8

3.3 Green Emission

It is an experimental result that m is always equal to unity for the
green emission, independent of the bias.

3.4 Light versus Current

In Table I the J -V and L -V data (for the red band) are combined
to show the dependence of light intensity upon current. At low bias,
where surface leakage predominates, the light emission varies as ,,...), J4.
In the space -charge regime the relationship is quadratic, but it ap-
proaches linearity at high bias. At the highest biases, with saturation
on the p -side, and with the current due to injection beyond the space -
charge layer (hence, into the n -side), the relationship becomes sub -
linear. Thus, the quantum efficiency of the Zn-O red band increases
rapidly at first, then slowly levels off and finally decreases at the
highest biases, thus exhibiting a maximum in the linear range. For
the green emission m = 1 always. Hence, the quantum efficiency rises
rapidly, then slowly levels off and remains constant up to the highest
biases measured.

IV. DIODE STRUCTURES

The various types of GaP p -n junctions that have been reported in
the literature are summarized in Table II. The circled structures were
prepared expressly to exhibit the Zn-O red band. A typical in -diffused
diode is made by diffusing Zn into an n -type crystal containing Te
and 0. A typical out -diffused diode is made by heating a p -type crys-
tal doped with Zn, Te, and 0, so that some Zn diffuses out, leaving an
n -layer near the surface. Grown junctions may be prepared by floating-
zone,°,1° by vapor phase epitaxy1°,11 or by solution -growth epitaxy.12,13
For example, in the latter case one can grow (by "tipping") an n -type
Te-doped layer from solution onto a p -type seed containing Zn +
0.12 A typical alloyed diode is made by alloying a Sn ball onto a p-

type sample containing Zn + 0.14'15'16 Finally, surface structures may
be prepared by evaporating a metal on a cold p -type substrate con-
taining Zn, Te, and 0.16

The diffused structures and the grown junctions are simple p -n
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junctions, where injection is due to thermal activation over the normal
junction barrier.' In the surface diodes injection arises from tunneling
through a thin surface layer.16 Three injection mechanisms can occur
in parallel in the alloyed diodes.1° In the regions where Sn alloying
produces an n -type regrowth layer on the p -type substrate, a simple
p -n junction is formed. In regions where no n -type regrowth layer is
produced, the metal is in intimate contact with the p -type substrate.
This is a surface barrier junction which at forward bias can only ex-
tract majority carrier holes. Since it cannot inject minority carriers it
results in an excess nonradiative current component. In regions where
a thin layer of insulator (perhaps an oxide) separates the metal from
the substrate, it is also possible to inject minority carriers by tunnel-
ing.

V. RADIATIVE EFFICIENCIES

5.1 Quantum Efficiency

Table III summarizes the maximum reported external quantum effi-
ciencies of the red Zn-O band at room temperature in the five classes
of diodes described previously. Note that while the highest measured
efficiency, 1.5 percent, corresponds to an alloyed diode," the maximum
efficiencies observed in the other four classes are all within less than a
factor of ten of this value. The table also lists some "average" effi-
ciencies,12,14 which is the range obtainable with high yields with pres-
ent technology. The highest quantum efficiency reported for the green
emission is 0.015 percent,18 or 100 times less than the corresponding
figure for the red. Since the external quantum efficiencies for spon-
taneous emission in GaAs diodes at room temperature are usually one
to five percent, it is obvious that the red emission from GaP, only
slightly less efficient, might be useful in applications where spontane-

TABLE III - EXTERNAL QUANTUM EFFICIENCIES OF Zn-O
PAIR BAND IN GaP DIODES AT ROOM TEMPERATURE

Maximum
(%)

Average
(%)

Source

In -diffused Zn/Te + 0 0.2 BTL
Out -diffused Zn + Te + 0 0.7 BTL
Solution -grown Te/Zn + 0 0.75 0.3-0.5 IBM
Alloyed Sn/Zn -I- 0 1.5 Philips

0.01-0.1 SERL
Surface Au/Zn ± Te + 0 0.4 BTL
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ous GaAs emitters are considered, as in optoelectronic devices. How-
ever, the significant distinction is that the GaP emission lies in the
visible range.

5.2 Luminous Efficiency

By integrating the product of the emission spectrum of the Zn-O
red band and the visual acuity curve, it is found that one watt of
Zn-O red light is equivalent to 20 Lumens as far as the eye is con-
cerned. The GaP green emission corresponds to about 650 Lumens/
watt. (For comparison, the emission from GaPxAsi_x , where x cor-
responds to the maximum P concentration before the band structure
becomes indirect, is equivalent to approximately 100 Lumens/watt.)
Consider a typical diode, available with current technology, as sum-
marized in Table IV. It may operate at 20 mA with a dc bias of 2
volts emitting red light with an external quantum efficiency of 0.5 per-
cent. (Since the energy of the emitted photon is 1.77 eV, the power
efficiency is only slightly less than the quantum efficiency.) With a
junction area of 10-3 cm2 the current density is 20 amps/cm2, which is
close to the maximum in quantum efficiency. Table IV also notes the
output in normal power units as well as in luminous units. By assum-
ing that the light leaves the diode from only one surface in the active
junction area of 10-3 cm2, the predicted brightness is 3600 foot -Lam-
berts. (Although present measurements are about a factor of ten lower,
the discrepancy might be decreased by using large ratios of active
junction area to inactive surfaces, or by using special geometries
or index -of -refraction -matching glasses to increase the light output
from a given region.) The maximum reported efficiency for the green
emission is only 0.015 percent but the luminous equivalent of the

TABLE IV - TYPICAL LUMINOUS EFFICIENCY FOR THE
Zn-O RED BAND (20 LUMENS/WATT)

Typical diode: 20 mA
2V
0.5% external quantum efficiency
10-2 cm2 area

Output:

Brightness:

2 X 10-4 watts
4 X 10-2 Lumens
3 X 10-4 candles

4 lamberts
3600 foot -Lamberts
1200 candles/square foot
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green band is more than 30 times greater than that for the red band.
Thus, the brightness currently available from the best green diodes
are approximately equal to that available from current average red
diodes at biases where the red efficiency is a maximum. (At higher
biases the green emission of course will increase more rapidly than
the red emission.) For comparison, the brightness of the green emission
from a ZnS:Cu electroluminescent cell is about 1 foot -Lambert (at
60 Hz, and up to 10 foot -Lamberts at higher excitation frequencies,
but with significant deterioration during aging). Thus, with present
technology, the red emission from GaP diodes corresponds to much
higher brightness values than for standard ZnS EL cells, and this oc-
curs in the bias range corresponding to maximum efficiencies - 0.3 to
0.5 percent quantum efficiency. Similarly, the brightness of the GaP
green emission is also higher than that available from ZnS panels.

5.3 Efficiency Outlook

Since the quantum efficiency of the Zn-0 red band is as high as 11
percent in photoluminescence of p -type samples, it might be possible
to obtain similar electroluminescence efficiencies from p -side injection
in junctions. At low to moderate biases the dominant competing mech-
anism is due to space -charge recombination at deep levels. Thus, a
reduction of this current component could increase the red emission
efficiency. Since the room temperature green emission mechanism has
not been established, similar predictions for the green band cannot be
made. Finally, it is noted that a number of other deep pair combina-
tions exhibit donor -acceptor pair recombination in the orange and red
in photoluminescence at room temperature with efficiencies of several
percent.19,2° These may eventually provide useful recombination cen-
ters in GaP diodes.

VI. SUMMARY

Currently available p -n junctions in GaP emit in the red with an
external quantum efficiency (roughly equal to a power efficiency)
which exhibits a maximum (with bias) of 0.1 to 0.5 percent. The
brightness at this maximum is within a factor of 10 of 3600 foot -Lam-
berts, far greater than that from a normal ZnS EL cell. The best green
emitting diodes available correspond to a similar brightness value, but
the efficiency does not drop with increasing bias. Such diodes should
possess the normal advantages of semiconductor devices: low de
operating bias, small size, probably cheap to manufacture and hope-
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fully little deterioration with aging. Special diode geometries or the
use of index -of -refraction -matching glasses might be used to increase
the external quantum efficiency (although the red band falls in a re-
gion of low internal absorption, the green band, near the band edge,
does not) or to focus the emitted light, thereby increasing the apparent
brightness.
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Schottky Barrier Photodiodes with
Antireflection. Coating

By M. V. SCHNEIDER
(Manuscript received July 19, 1966)

Schottky barrier diodes can be used for fast and efficient photodetectors
if the incident light is coupled into the depletion layer of the diode and if
electron -hole pairs are created by the internal photoelectric effect in the
depletion layer. Fast response of the diode is achieved by designing a Schottky
barrier with a small RC product. High quantum efficiency is obtained by
coupling the light through a thin metal layer into the depletion region of
the diode and by using an antireflection coating on the metal layer for
matching the incident light beam.

Schottky barrier photodiodes have been made with thin semitransparent
gold layers on n -type epitaxial silicon and with zinc sulfide as an antire-
flection coating. A net quantum efficiency of 70 percent has been achieved
at the He-Ne laser wavelength of 6328 A. The pulse response of packaged
diodes with 0.5 -nanosecond wide pulses shows a symmetrical pulse shape
with only small distortion due to carrier diffusion and reactance in the
completed package.

The diode structure is suitable for detector arrays. It is also useful for
optical time domain reflectometry. The technique of coupling light through
metal layers can be extended to other optical devices which require efficient
transfer of radiation into a semiconductor through conducting electrodes.

I. DEFINITION OF THE SCHOTTKY BARRIER PHOTODIODE

A Schottky barrier is a rectifying metal -to -semiconductor contact with
certain properties which have been originally described by Schottky.1,2
The main feature of the Schottky harrier is that it has the properties
of an ideal step junction and that only majority carriers are involved
in the rectification process. Schottky barriers have been used for various
devices in the microwave region. A few examples are the Au -n -type
GaAs and the Au -n -type Si varactors described by Kahng and D'Asaro3.4
and the honeycomb millimeter diode by Irvin and Young.' The Schottky

1611
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barrier has not been used to any great extent for optical devices because
of the difficult problem of coupling optical radiation through the metal
contact into the semiconductor. The purpose of this paper is to present
a solution to this problem and to describe the properties of a completed
diode which will be defined as a Schottky barrier photodiode.

The Schottky barrier photodiode is a rectifying metal -to -semicon-
ductor contact in which electron -hole pairs are created in the semicon-
ductor by the internal photoelectric effect under incident illumination.
The separation of the pairs is accomplished by the built-in electric field
in the barrier or by an externally applied field across the barrier. The
separation of the carriers leads to a photocurrent in the external circuit
which may be amplified and detected. Internal amplification by ava-
lanche multiplication cannot be achieved in a Schottky barrier photo -
diode because of nonuniform field intensities at the boundary of the
metal -semiconductor interface.

II. STRUCTURE OF OPTICAL JUNCTION DETECTORS

Photodetectors with a high frequency response consist usually of a
semiconductor p -n junction or a semiconductor p-i-n structure. A sche-
matic drawing of such a detector is shown in Fig. 1. The incident radia-
tion is absorbed in the intrinsic 'layer which is sandwiched between a
p and an n -layer. Electron -hole pairs are created by the internal photo-
electric effect and are separated by an applied electric field across the
junction. Metal contacts are required on both sides of the structure in
order to apply the electric field and to collect the carriers. The contacts
on top of the p -layer shown in Fig. 1 are made in the form of stripes in
order to transmit the incident radiation between adjacent stripes into
the p-i-n region.

CONNECTED
CONTACT..
STRIPES `,

INCIDENT
WAVE EXTERNAL

CONTACT WIRE

p -LAYER

INTRINSIC
LAYER

Fig. 1 - p-i-n photodiode with contact stripes on p -layer.
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High quantum efficiency and fast response are achieved by proper
choice of the semiconductor material and the physical dimensions of
the layers including the contact stripes. Design criteria have been
discussed by Anderson,6 Lucovsky and Emmons,' and Riesz.8 Internal
multiplication with uniform and microplasma-free junctions with a
guard ring has been achieved by Anderson, McMullin, D'Asaro and
Goetzberger9 and by Melchior and Lynch."

A different approach is necessary for the case of a Schottky barrier
photodiode shown in Fig. 2. A semitransparent metal is deposited on
the surface of a semiconductor in order to create a surface barrier. The
light is matched into the barrier by an antireflection coating which is

ANTIREFLECTION
COATING

INCIDENT
OENXTTATTN AWLIRE

WAVE

THIN METAL _.-THERMOCOMPRESSION
FILM ,'. BOND

._-CONTACT DOT
% t- N

LAYER
OR

fl ON fl+ LAYER

Fig. 2 - Schottky barrier photodiode with antireflection coating on metal
film.

deposited on the semitransparent metal. A thick metal dot or a metal
ring with a contact wire serves as an external contact for applying the
dc back bias and for collecting carriers. The semiconductor material
and the applied back bias are chosen in such a way that most of the
carriers are created within the depletion layer. The net quantum effi-
ciency of the device is determined mainly by the transmission loss in
the metal film and by the quality of the antireflection coating. The
response time is determined by the transit time of the carriers through
the depletion layer and the RC product of the diode. Design criteria for
achieving a small RC product will be discussed later in this paper.

Coupling of the incident light beam into the Schottky barrier can
also be achieved by other means. Fig. 3 is a cross-sectional view of the
Sharpless photodiode.",i2 A point contact is formed on epitaxial mate-
rial and the light is focused into the Schottky barrier through an etched
dome in the semiconductor. An antireflection coating is not necessarily
required because the semiconductor surface does not present a serious
optical mismatch to the incident wave.
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Fig. 3 - Point contact Schottky barrier photodiode with etched dome in epi-
taxial semiconductor.

Another way to build a Schottky barrier photodiode is shown in Fig.
4. A thick metal coating is applied to the semiconducting material.
An array of slots or holes are etched into the metal. The holes are close
to resonance at the wavelength of the incident radiation, e.g., they are
approximately a quarter wavelength wide and are spaced approximately
a half wavelength apart. The thickness of the metal has to be much
smaller than a wavelength because the excited mode in the hole or the
slot is under cutoff. The remaining reactive part of the surface impedance

INCIDENT
WAVE

ANTI REFLECTION
COATING --

SUBSTRATE

EXTERNAL
LEAD

METAL FILM
WITH ARRAY
OF HOLES

Fig. 4 - Photodiode or photodetector with metallic surface reactance sheet
and antireflection coating.
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of this structure is compensated by a suitable antireflection coating.
This coating is only required for improving the final match of the device
because a reactance sheet can be designed with a high return loss without
any further matching elements.

Photodiodes of the type shown in Fig. 2 have been made on n -type
epitaxial silicon for maximum response at the 6328 A line of a He-Ne
gas laser. Gold has been used for formation of the Schottky barrier and
zinc sulfide for the antireflection coating. The results are discussed in
the following sections of this paper. Various technological improve-
ments in the technique of fabricating microarrays will have to be
achieved in order to fabricate the photodiode shown in Fig. 4.

III. TRANSMISSION OF LIGHT THROUGH METAL FILMS

Metal films are characterized by high reflectivity and low transmission
in the visible range of the spectrum. The transmission through the film
can be increased by reducing its thickness. The reflection can be de-
creased by a dielectric film acting as a quarter wave transformer on top
of the metal film. These two simple steps make it possible to transmit
light into an optical device which requires metal electrodes.

Optical constants of thin metal films are listed by Schopper," Heav-
ens,'4 and Mayer.15 The physical theory and measurements are described
by Parker Givens" and by Abeles.'7 A marked dependence of the optical
constants on film thickness is observed. Other parameters of importance
include the technique used in the deposition process, the substrate
temperature, deposition rate and surface properties of the substrate.
A typical example of steps taken in substrate preparation, purity of
materials and pressures observed in the vacuum chamber is described
by Bennett and Ashley" and a review on nucleation and film growth
as a function of various parameters is given in a paper by Behrndt."
What complicates matters for device applications is the fact that the
films may not be continuous and that the index of refraction depends
on the angle of incidence as described by Hay)

These difficulties do not prevent the fabrication of an antireflecting
metal -semiconductor surface. Fairly consistent results can be achieved
with gold evaporated from tungsten or molybdenum boats under high
vacuum or ultra -high vacuum conditions. The optical surface impedance
of the structure can be measured and from this one can determine a
unique dielectric constant and a unique thickness which will allow optical
matching at a specified wavelength. The steps in this procedure are
similar to matching microwave networks by using the Smith Chart.
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The reflectance and the transmittance which one can expect from a
thin gold film at X = 6328 A are shown in Fig. 5. Reflectance, transmit-
tance and loss are plotted as a function of film thickness for an unsup-
ported Au film with an index of refraction N = n -jk = 0.30 -j  3.0.
The only assumptions used in this plot are that one deals with normal
incidence and that this particular index of refraction is independent of
the film thickness. The index N = 0.30 - j 3.0 is an approximate
value for bulk gold obtained from measurements described by Parker
Givens." Other data for gold deposited under various conditions and
listed by Schopper" cover an approximate range of n = 0.30 ± 0.10
and k = 3.0 ± 1.0 at wavelengths in the range from 6000 A to 6600 A.

The exact thickness of a thin metal film is usually of secondary im-
portance for many device applications. What one needs to know for
devices described in this paper is reflectance, transmittance, and loss
for a specified surface resistance (sheet resistance) of the film. The
surface resistance of the film limits the frequency response of the device
because it will contribute to the resistive part of the device. The rela-
tionship between the surface resistance and the RC product will be
discussed later.

Fig. 6 is a plot of reflectance, transmittance and loss measured for
Au films at X = 6328 A for surface resistances in the 3 to 6 ohm/square
range. The Au films are deposited on fused quartz slides under the
following conditions:

(i) The substrates are cleaned ultrasonically in successive baths
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Fig. 5 - Transmittance, reflectance, and loss for thin metal film with N = 0.30
- j3.0.
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Fig. 6 - Transmittance, reflectance, and loss of evaporated gold films on fused
quartz substrates.

of a detergent, distilled water and alcohol. They are dried with
tank nitrogen and vapor degreased in isopropyl alcohol in the
apparatus described by Holland."

(ii) The substrate is transferred into a VE-400 (Vacuum Electronics,
Inc.) vacuum system which is pumped down to a pressure of
2.10-7 torr. Due to the location of the ionization gauge, which
is between the diffusion pump and the liquid nitrogen cold
trap, the pressure in the bell jar is an order of magnitude higher.

(iii) Gold is evaporated from a tungsten coil located 6 inches from
the substrate with estimated deposition rates in the range of 5
to 10 A/sec. The quartz substrate is not heated.

(iv) The de resistance of the film is continuously monitored during
evaporation with two silver contacts shown in Fig. 6. Additional
silver contacts are applied immediately after the gold evapora-
tion in order to sandwich the gold layer between two layers of
silver. This method insures minimum contact resistance between
the silver and the gold. All three layers (Ag, Au, Ag) are applied
consecutively without opening the vacuum system.

The thickness of the films is measured with a multiple beam inter-
ferometer; e.g., the film with a 5.7 ohm/square sheet resistance has a
thickness of 180 ± 15 A. This particular sheet resistance is approxi-
mately 4.5 times higher than that which one0 would obtain from the
resistivity p of bulk gold for a thickness of 180 A (p = 2.44 X 10-6 ohm
cm at room temperature). One of the reasons for this discrepancy is the
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fact that conduction in thin films depends upon the scattering from the
film boundaries. This means that bulk resistivities cannot be achieved
for thin films. Another effect of importance is that the film may be
discontinuous; that means the film consists of a number of islands with
partial bridging between adjacent islands as described by Chopra22
and Francombe and Sato." The optical properties of such a film can
be characterized by a complex index of refraction provided that the
average distance between neighbouring islands is a small fraction of the
optical wavelength.

The reflectance and transmittance curves shown in Fig. 5 are calcu-
lated for a metal film which is not supported by any substrate. Fig. 7
is a similar plot for a film supported by a substrate with an index of
refraction N = 3.75. This particular index corresponds approximately
to silicon with N = 3.75 - j 0.18 at X = 6328 A. Comparison with Fig.
5 shows that the reflectance for a specified film thickness is higher. The
loss in the metal film is lower because of the increased reflectance.
Reflectance, transmittance, and loss are the same for very thick films as
shown by the calculated points for d = 1000 A.

IV. OPTICAL MATCHING OF A METAL -SEMICONDUCTOR CONTACT

A metal -semiconductor contact can be optically matched at a speci-
fied wavelength if the reflection coefficient or the surface impedance is
known for that particular wavelength.
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Fig. 7 - Transmittance, reflectance, and loss of metal film on dielectric sub-
strate.
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The reflection coefficient r1 at the interface of two media in Fig. 8 is
given by

-- go

gi -I- go
(1)

The quantities gk (k = 0, 1) are generalized impedances or admittances
(immittances) of the two media and ,uk (k = 0, 1) is the permeability
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k
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Nk
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LAW
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E -WAVE
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wave reflected and transmitted from plain boundary.

of the medium. The immittance is directly related to the index of refrac-
tion of that particular medium. The transmission coefficient ti , is

tl
2go- (2)

go + go

Equations (1) and (2) are exactly identical with the equations used
for computing the voltage or current reflection coefficient and the trans-
mission coefficient for two adjacent RF transmission lines at different
impedance levels.

A sequence of plane parallel films can be treated by applying (1)
and (2) with a recursion formula which takes into account the phase
shift between two adjacent media. The exact procedure is derived by
Wolter.24 The result with a sequence of three media for the reflection
coefficient r2 and the transmission coefficient t2 is

(g2 - 9i) (9i ± go) exp (pidi)
 (g2 gi)(gi - go) exPr2 =

(g2 9i) (go + go) exP (m.di)
+ (92 - 91) (91 - go) exP

(3)
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t2 = (g2 + gi)(gi + go) exp (4)
+ (g2 - gi)(gi - go) exp

with the notation shown in Fig. 9. The quantities gk are again the im-
mitances of the media. The exponential term exp (±pidi) represents the
phase shift between the two adjacent boundaries shown in Fig. 9.

Equations (3) and (4) are valid if the impedance or admittance of
the center medium is complex; e.g., if it is a metal. A plane wave launched
in medium 2 will excite a hybrid wave in medium 1; that means planes
of equal phase and of equal amplitude will not coincide unless one deals
with normal incidence. A wave with parallel planes for equal phase and
equal amplitude can be propagated in an absorbing medium. Such a
wave, however, cannot be excited by a plane wave coupled into the
absorbing medium through a plane boundary at an oblique angle. This
property leads to an index of refraction which is a function of the angle
of incidence. Further details may be found in the original work by
Fry.25,26

The reflection coefficient r2 in (3) should be made as small as possible
for building devices with a high transmission into the substrate. This
cannot be achieved for a metal -semiconductor structure. It is possible,
however, to deposit an additional film on the metal and to compensate
the complex reflection coefficient by proper choice of the index of refrac-
tion and the thickness of this antireflection coating. The surface im-
pedance on top of medium 1 in Fig. 9 which represents the metal is

4gig2

Go= U -j  V 1 ± r2

with U being the real part and jV the complex part of the surface
impedance. Go can be matched to an impedance G2 by a dielectric layer
with a proper thickness D and a proper impedance G1 if

1 - r2

G12 = G2
{ V2U- G2 + U}

D = 27rX
G2

arc tan
(GI U -

V

02)
)

(5)

(6)

(7)

The notation is shown in Fig. 10. The quantity n is the index of refrac-
tion of the dielectric material. For an interface with a real surface
impedance Go = U, one obtains with V = 0 from (6) and (7)

Gh = VaG*2 (8)
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D = -1-A
n (9)

This is the well-known relationship for a quarter -wave transformer
connecting microwave transmission lines at different impedance levels.
The wavelength X is the vacuum wavelength.

A practical example is treated in Fig. 11. Reflection coefficients for
a Au -Si structure are plotted in the complex plane for a gold layer with
a thickness of 100 A and 200 A. The example refers to normal incidence
at a wavelength of X = 6328 A. It is assumed that the index of refrac-
tion is N1 = 0.28 - j.3.01 for gold and No = 3.72 - j0.18 for silicon.
The index of refraction and the thickness of the antireflection coating
are listed in Table I.

d,

IMPEDANCE G2

MEDIUM 0 ; /

ANTIREFLECTION
COATING

-SURFACE IMPEDANCE
I -r2

Go=
r2

Fig. 10 - Impedance matching with antireflection coating on medium No. 1.
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Fig. 11 - Surface impedance of gold -silicon Schottky barrier at X = 6328 A.

The loss in the gold film and the reflectance and the transmittance of
the complete structure is shown in Fig. 12 and Fig. 13. All three quan-
tities are plotted as a function of the thickness of the ffold film for two
fixed antireflection coatings with n = 2.30, D = 500 A and n = 3.30,
D = 240 X. Minimum reflectance is achieved as predicted in Table I.
All curves are obtained by applying (3) and (4) with a recursion formula
for one additional layer.

The conclusion from the results of Figs. 12 and 13 is that transmission
with low loss into the silicon substrate is feasible.

The reflectance achieved for three evaporation processes with zinc
sulfide deposited on a Au -Si surface barrier is shown in Fig. 14. Gold
layers with sheet resistances in the range of 6 ohm/square are first
evaporated on epitaxial silicon. Zinc sulfide is evaporated on the gold
layer. The return loss at A = 6328 A is continuously measured with an
optical reflectometer and a He-Ne laser as a signal source. The re-
flectometer is similar to the one described by Perry.27 The measured
return loss is calibrated in dB. The evaporation is continued after
reaching the first minimum in one case in order to show the periodicity
of the process. One concludes that an improvement of 8 dB to 9 dB in
return loss is possible with a single layer of zinc sulfide. The return
loss without the matching layer is 3 dB. The total return loss is therefore,
11 dB to 12 dB.

TABLE I

Thickness of Au Film Index n of Coating Thickness of Coating
in A

Thickness of Coating
in Terms of Phase Angle

100 A
2001.

2.28
3.33

510 A
242 A

66°
46°
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Fig. 12 - Reflectance, transmittance, and loss from Au -Si surface barrier with
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It is difficult to measure the transmittance or the loss in the metal
for a ZnS-Au-Si structure. Some indication may be obtained from the
measurement of the net quantum efficiency of the device if all the carriers
can be collected and if there is no internal multiplication. Another direct
method is to use the fact that the losses in the metal will increase its
temperature and change its resistance. The resistance changes could be
simulated by obtaining the same increase with a de current flowing in
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Fig. 13 - Reflectance, transmittance, and loss from Au -Si surface barrier with
240 A thick ZnS antireflection coating.
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Fig. 14 - Return loss from Si -Au surface barrier during deposition of antire-
flection ZnS layer.

the Au film. The same procedure is used for power detector calibrations
in the microwave frequency range.

The transmittance through Au-ZnS has been measured for a slightly
modified case shown in Fig. 15 using a 1 -mm thick quartz slide as a
substrate. A 5-ohm/square Au film is evaporated on the quartz. The
reflectance is 40 percent and the transmittance is 43 percent at 6328 A.

as shown in Fig. 6. Zinc sulfide is then evaporated on the Au. The return
loss and the transmission are continuously measured with a double
reflectometer at X = 6328 A mounted inside the vacuum system. The
double reflectometer records transmitted and reflected power simul-
taneously as shown by the coincidence of maxima and minima on the
time scale in Fig. 15. The calibration in dB is obtained with a set of
standard optical attenuators. The results from this experiment are

(i) The transmittance is improved by 2.5 dB. This means that 76
percent of the incident light is transmitted.

(ii) The reflectance is decreased by 10 dB which means that the
reflectance is reduced from 40 to 4 percent.
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(iii) The process is periodic which means the losses in the ZnS are
small.

(iv) The evaporation process can be interrupted at any time and
resumed later without changing the periodicity of the process
and the levels of the minima and the maxima.

V. DESIGN OF THE SCHOTTKY BARRIER PHOTODIODE

5.1 Optical Absorption and Carrier Generation in the Schottky Barrier

The absorption coefficient a of the semiconductor and the width of
the depletion layer w are important parameters for designing a Schottky
barrier photodiode. The reason for this is as follows. The photocurrent
through the depletion layer consists of two contributions. One is due to
the carriers created within the layer, the other is due to carriers gen-
erated in the adjacent bulk material which diffuse later into the junction.
Minority carriers which enter the junction by diffusion will be swept
across the junction by the applied external field. This diffusion current
may lead to delay distortion if the incident wave is pulsed or rf modu-
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lated. The diffusion current is small if most of the optical power is
absorbed within the depletion layer. This requires

( 10)

The upper limit for w is determined by the transit time which can be
tolerated for the carriers.

The absorption coefficient a of Ge and Si as a function of wavelength
is given in Fig. 16. The width of the depletion layer in a uniformly doped
material with a carrier concentration N under an applied external voltage
V is given by Kahng3,28 as
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Fig. 16 - Optical absorbtion coefficient of silicon and germanium at 300° K.
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where VD is the diffusion potential, e the dielectric constant and q the
electron charge. The diffusion potential is the potential difference of
the conduction band level between its value at the surface and its value
inside the bulk material. Diffusion potentials of various metal -semi-
conductor combinations can be obtained from data supplied by Cowley
and Sze.29 The diffusion potential in a Schottky barrier photodiode is
usually much smaller than the applied back bias V because of the re-
quirement w >> 1/a. With q = 1.60 X 10-'9 coulomb and e = 8.85 X
10-14 Er farad/cm one obtains

4/t, (VD + V)w = 1.05 X 107 micron. (12)

N is the doping level in carriers/cc and w is measured in Am or micron
(1 µin = 10-4 cm). The ratio of capacitance C to junction area A is

c E

=
EqN

2(vD+ v)*w

The width of the depletion layer for Ge and Si as a function of the
total voltage VD+ V is shown in Figs. 17 and 18. The breakdown limit
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Fig. 17 - Depletion layer width in n -type silicon as a function of potential
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refers to an abrupt junction in the bulk. It is desirable that the deple-
tion width satisfy (10). Moreover, for any particular application, the
thickness w should be no thinner than is necessary to achieve a cutoff
frequency which is twice the maximum operating frequency since the
maximum available power from a photodiode depends inversely upon
the square of the diode capacitance. It is not always possible to satisfy
these requirements because of transit time considerations or because of
material properties. The drift current for a specified depletion layer
width w is

JDrift = q0(1 - 6') (13)

where go is the incident photon flux at the front of the depletion layer
and q the electron change. One obtains e.g., for w = 2/a a value of 0.86
for the reduction factor 1 - exp (-aw). The total current will be larger
because 14 percent of the radiation will be absorbed beyond the deple-
tion layer in the bulk material and create diffusion current. The exact
amount of diffusion current under static condition may be found in a
paper by Gartner."



SCHOTTKY BARRIER PHOTODIODES 1629

5.2 Frequency Limitations of the Photodiode

The frequency limitations for Schottky barrier photodiodes are de-
termined by the transit time of the carriers through the depletion layer,
the sheet resistance of the metal film, the resistance of the bulk material
and the capacitance of the junction.

The transit time for a carrier depends on the type of carrier and the
location of its origin within the depletion layer. The carriers may reach
saturation velocities for sufficient high field intensities; e.g., 107 cm/sec
for electrons in silicon. The holes will move at lower velocities. One has
to remember, however, that holes are created predominantly in the high
field region in the vicinity of the metal and will travel only a short dis-
tance to the metal electrode. Electrons will have to travel over a much
longer distance and through a region of low field intensities as shown in
Fig. 19. The electron transit time Tel will thus be the predominant factor.
This transit time has been calculated by B. C. DeLoach" by assuming
that

(i) electrons reach the saturation velocity v, at the maximum field
in the junction, and

(ii) the transit of the carrier through the junction is completed when
it reaches the field E0 = kT, that means when it joins the free
carriers with an average energy kT (0.026 eV at 300°K) to the
right of the swept space charge.
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Fig. 19 - Pair creation under incident illumination with electric field intensity
E in depletion layer.
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The result for the electron transit time re/ is

w
ret =

V.
(14)

Typical values which may be achieved in a silicon surface barrier are
w = 5 microns and v8 = 107 cm/sec. This leads to an electron transit
time Tel = 5.10-11 sec. The corresponding cutoff frequency is fe = 1/Tei =
20 GHz.

The frequency response of a photodiode with a capacitance C per
unit area and a sheet resistance R8 has been calculated by Lucovsky
and Emmons.82 The cutoff frequency depends on the geometry of the
diode and in particular on the location of the ohmic contact. Three
types of contacts shown in Fig. 20 have been discussed by the authors.
The 3 -dB cutoff frequencies for the short circuited diodes are

3
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The dimensions a,b are defined in Fig. 20. The formulas have been
derived for a p -n photodiode with the p -layer as the conducting layer.
They remain fully valid if the player is replaced by a thin metal film
with a sheet resistance of R8 ohm/square. The cutoff frequency for the
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Fig. 20 - Contact shapes for ohmic contacts on thin metal film of Schottky
barrier photodiode.
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linear contact shown in Fig. 20 is independent of the dimension L be-
cause identical diodes connected in parallel will display the same fre-
quency response if they are operated under short circuit conditions.

All three types of contacts can be used for Schottky barrier photo -
diodes. Ring contacts will give the highest cutoff frequencies for a speci-
fied diode area and given material properties. The fabrication of dot
contacts is simpler because the ring contact has to be deposited by mask-
ing off the center area of the diode for the deposition of the contact ring.
Dot contacts can be evaporated through an ordinary metal mask with
an array of holes. This makes clot contacts particularly useful for photo -
diode arrays or for the fabrication of a large number of photodiodes on
a single wafer which can be sliced up later. It is convenient to set the
contact dot off center in order to facilitate the attachment of an external
connection without interfering with the incident light beam. This is
shown in Fig. 21. The large dots are semitransparent gold films on Si
with a diameter of 10 mils and a sheet resistance of 5 to 7 ohm/square.
The small contact dots have a diameter of 3 mils. The capacitance of
each diode for a substrate material with a resistivity of 2.7 ohm cm at
a back bias of 60 volt is 0.9 to 1.0 pF. The cutoff frequency cannot be
calculated from (17) for the dot contact because the contact in Fig. 21
is off centered. A good approximation is obtained by applying (15) for
the linear contact with b being the diameter of the semitransparent gold
film. The cutoff frequency obtained for this particular diode at the speci-
fied back bias of 60 volt is L = coc/27r = 22 GHz. This cutoff is of the
same order as the cutoff frequency obtained from transit time considera-
tions.

Fig. 21 - Array of Schottky barrier photodiodes on epitaxial silicon wafer
before deposition of antireflecting coating. The diameter of the large semitrans-
parent gold dots is 0.25 mm, the diameter of the small gold contact dots is 0.075
mm.
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VI. FABRICATION AND PACKAGING OF Si-AU-ZI1S PHOTODIODES

The combination of materials for Schottky barrier photodiodes de-
pends on the frequency range of the incident radiation and the metal-
lurgical properties of the metal -semiconductor system. Silicon and ger-
manium are both suitable for the visible range of the spectrum. Stable
Schottky barriers can be formed with a number of other metals, e.g.,
Ag, Al, Pt, and Ni. The eutectic temperatures of the various metal -
semiconductor combinations determine the maximum device tempera-
ture. The eutectic temperature of Au -Si is 370°C. The choice of the
matching coating is governed by the optical surface impedance of the
metal -semiconductor combination. A total optical return loss of 12 dB
can be achieved with ZnS which has a dielectric constant Er = 2.3. A
higher return loss may be desirable; however, the stability of ZnS and
the good adherence to the Au is an advantage compared to other di-
electric materials.

The surface preparation of the semiconductor substrate is relatively
simple. Epitaxial silicon wafers n on n+ with alloyed gold antimony
back contacts are rubbed with a clean cotton swab under methanol,
boiled in distilled water, etched in HF, washed in distilled deionized
water, washed in methanol and finally dried with nitrogen. The wafer
is covered with a molybdenum mask with an array of 10 -mil diameter
holes. Only of the wafer are covered by this mask. The remaining
of the wafer is later used for test purposes of the optical return loss dur-
ing the evaporation of the antireflection coating. The unit is transferred
into the vacuum system which is pumped down to a pressure of 2-3 X
10-7 torr measured at its pumping port. Gold is evaporated from a tung-
sten coil. The sheet resistance of the gold is measured on a 1 -mm quartz
slide which is located adjacent to the silicon wafer. The evaporation is
discontinued when the sheet resistance measured on the quartz slide
is in the range of 5 to 7 ohm/square. Separate measurements have shown
that the sheet resistance of the Au on the Si wafer is also in the 5 to 7
ohm/square range.

A second deposition of Au through a molybdenum mask with an array
of 3 -mil holes is made on the wafer. The 3 -mil Au dots are needed later
for contacting purposes. A photograph of the semitransparent Au dots
and the contacting 3 -mil dots is shown in Fig. 21. The second mask is
removed after the Au evaporation and the unit is mounted in a vacuum
system which is equipped with an optical reflectometer at X = 6328 A.
Zinc sulfide is evaporated on the wafer. The reflectance from the test
area on the wafer is measured continuously and the evaporation is
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stopped at the first maximum of the return loss. Typical results obtained
from the refiectometer recording are shown in Fig. 14.

The step of depositing 3 -mil Au contacts is repeated in order to facili-
tate thermocompression bonding to the contact area. The second mask
is mounted in exact registry with the first evaporation of contact dots.
This means that a ZnS layer is sandwiched between two identical con-
tact dots. This layer is shorted out after completion of the thermocom-
pression bonding process of a 1 -mil Au wire to the contact dot. Fig. 22
is a photograph of the wafer surface after completion of all evaporation
processes. The wafer surfaces shown in Figs. 21 and 22 are both illu-
minated from a standard tungsten lamp for obtaining the photographs.

A cross sectional view of the detector packaged into a modified type
N connector body is shown in Fig. 23 and a photograph of the completed
structure in Fig. 24. A metallized quartz washer is used for electrical
separation of the diode terminals. A bypass capacitor provides an RF
short between the outer conductor of the connector body and the ter-
minal which is connected to the metal side of the Schottky barrier.
Various parts of the package are identified in the figure caption.

VII. MEASUREMENT OF PULSE RESPONSE AND NET QUANTUM EFFICIENCY

The pulse response of packaged Schottky barrier photodiodes has
been examined by phase locking the TEMoo, modes of a 6328 A He-Ne
gas laser with an internal phase modulator. The laser output consists
of pulses with a half width of approximately 0.5 nanoseconds separated
by 11 nanoseconds. The average optical power is 0.3-0.4 milliwatt.

A typical pulse response obtained with a completed photodiode dis-

Fig. 22 - Array of Schottky barrier photodiodes on epitaxial silicon wafer
after deposition of the antireflecting coating. The dot dimensions are the same as
in Fig. 21.
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Fig. 23 - Cross-sectional view of diode package. (1. Silicon wafer. 2. Thin gold
film. 3. Thermocompression bond on gold contact. 4. Contact wire to quartz
washer. 5. Quartz washer, top and bottom are metallized. 6. Brass pin. 7. Brass
adapter ring. 8. Bypass button capacitor 1000 pF. 9. Inside metal connection of
button capacitor and external lead for applying de bias to photodiode. 10. External
metal connection of button capacitor. 11. Brass pin forming part of center con-
ductor of the connector. 12. Steel spring. 13. Teflon spacers. 14. Connector body.
15. Steel washer.)

Fig. 24 - Completed diode package showing connector body and external
lead wire for de bias.
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played on a Tektronix sampling oscilloscope Type 661 with a rise time
of 0.1 nsec is shown in Fig. 25. The diode is made on 2.7 -ohm cm epi-
taxial silicon with the 10 -mil diameter dots shown in Figs. 21 and 22.
The half width of the pulses is 0.45 nsec at a back bias of 50 volts. The
net quantum efficiency measured with an Eppley thermocouple 4952
as a reference is 70 percent. This efficiency is obtained by graphical
integration of the pulse shape shown in Fig. 25 and by assuming that
the diode acts like an ideal current source into the 50 -ohm broadband
load of the sampling oscilloscope.

A close inspection of the pulse shape shows that the leading edge is
slightly steeper than the trailing edge. The distortion in the trailing
edge is due to diffusion current and to case capacitance in the package.
The influence of the diffusion current can be examined by observing the
pulse shape for various back bias conditions. Fig. 26 is the pulse re-
sponse of the same diode at a back bias of 0, 4, 15, and 50 volt. A diffu-
sion tail is clearly visible at a back bias of 0 volt and 4 volt. The diffu-
sion tail is depressed at higher back bias because more carriers are created
within the depletion layer.

An important property required for many practical applications is a
uniform response of the photodiode over the entire area of the junction.

Fig. 25 - Pulse response of packaged diode at 50 -volt back bias into 50 -ohm
load obtained from phase locked modes of He-Ne gas laser. Horizontal scale 0.5
nsec/cm, vertical scale 20 mvolt/cm.
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Fig. 26 - Pulse response of Schottky barrier photodiode at 0 -volt, 4 -volt,
15 -volt, and 50 -volt back bias. Horizontal scale 1 nsec/cm, vertical scale 25 mvolt/
cm.

Fig. 27 - Pulse response for 9 points on the same photodiode obtained by linear
scanning of a focused laser beam over diode area by 0.025 -mm increments. Hori-
zontal scale 2 nsec/cm, vertical scale 25 mvolt/cm.
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Fig. 27 shows the pulse response of a Schottky barrier photodiode at
various locations of the diode. A laser beam is focused on the front sur-
face of the diode and is scanned across the diode. The pulse response is
measured on an axis at discrete points which are spaced 1 mil apart.
The peak variation is less than 3 percent over a total distance of 7 mils.
The reduced pulse response in the vicinity of the boundaries is due to
the fact that there is a small thickness change of the antireflection coat-
ing close to the boundary. This change of thickness is due to different
sticking coefficients and different surface mobilities of the zinc sulfide
on gold and on silicon during the evaporation process. One observes
therefore a reduced amplitude response with no degradation of the pulse
shape.

VIII. CONCLUSIONS

Schottky barrier photodiodes can be used for fast and efficient optical
detectors. The high efficiency is obtained because radiation can be
coupled through thin metal films with relatively low loss at optical fre-
quencies. The small reflectance of the diode is achieved by proper choice
of the matching layer. A diode with a fast response is obtained by design-
ing junctions with a small RC product. The problem is similar to build-
ing high cutoff Schottky barriers for microwave and millimeter wave
circuits. Additional limitations are due to transit time effects which
are common to all solid-state radiation detectors based on carrier gen-
eration.
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Topology of Thin Film RC Circuits
By F. W. SINDEN

(Manuscript received August 31, 1966)

Integrated RC circuits can be made by depositing exceedingly thin
metallic and dielectric films in suitable patterns on an insulating substrate.
Resistors are strips of conductor; capacitors are patches on which conducting,
dielectric, and conducting layers are superimposed. Since conductors can
cross at capacitor patches, RC networks need not be strictly planar to be
realizable in thin film.

Determining which RC circuits are realizable poses new problems in
topology which are remarkably simple to state but are as yet unsolved. The
results reported here are fragmentary, but they do cover some cases of small
order that may be of practical interest.

I. INTRODUCTION

Integrated RC circuits can be made by depositing exceedingly thin
metallic and dielectric films in suitable patterns on an insulating sub-
strate. A resistor is made by depositing a long, narrow strip of conductor
(usually in a zag-zag for compactness); a capacitor is made by super-
imposing conducting, dielectric, and conducting layers. Because the
dielectric is thin, the capacitance per unit area is high. Fig. 1 shows a
typical thin film pattern.

Ordinarily printed circuits are strictly planar; crossovers are made
only by leading one of the conductors entirely out of the plane of the
circuit. In the thin film technique, however, conductors can be separated
by thin insulating layers within the plane of the circuit. Thus, cross-
overs can be permitted provided a nonzero capacitance between the
crossing conductors is acceptable. If an RC circuit can be laid out so
that conductors cross only if the circuit requires a nonzero capacitance
between them, we will say the circuit is realizable in thin film or just
realizable.

An example of a realizable nonplanar circuit is shown in Fig. 2. In
this case, the schematic thin film layout brings out intrinsic symmetries
not displayed by the circuit diagram.

1639
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Fig. 1 - Thin film layout for a notch filter (courtesy W. H. Orr). Black region
is bottom conductor; shaded region is dielectric; white region is top conductor.

Finding feasible layouts, or even determining when they exist, leads
to unsolved problems in topology. The results presented here give
answers only in special cases. Moreover, these results concern only the
topological side of the problem; electrical equivalences are not taken into
account. It is assumed that the network is given topologically and that

(a) ( b)

Fig. 2 - (a) Nonplanar circuit ("twin -tee", Ref. 3, p. 309); (b) schematic
thin film layout for the circuit in (a).
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terminals to the outside are located in given fixed positions on the
periphery of the board.

II. SEPARATION OF THE RESISTIVE AND CAPACITIVE PARTS

Given an RC network N, let RN be the purely resistive network ob-
tained by replacing every capacitor by a direct connection. Clearly N
is not realizable in thin film unless RN is. RN is realizable only if its
graph (a vertex for each conductor, an edge for each resistor) is planar
under the restrictions imposed by the locations of the terminals to the
outside (see Fig. 3). This observation provides a first check: if RN is not
planar, there is no need to proceed further.

Each vertex in the graph of RN replaces a purely capacitive network.
In Fig. 3, for example, the vertex V in RN replaces the network shown
in Fig. 4.

One way to construct a realization of N is to construct realizations
for the individual vertex -networks, and then to fit these into the planar
layout of RN . Since the layout of RN may not be unique (there may be
more than one ordering of edges about a vertex) the conditions on the
vertex -networks may not be unique.

Another approach, discussed briefly in the final section, is to modify
algorithms for purely capacitive networks to take account of resistors.
In either case, one needs to study the purely capacitive networks first.

III. PURE C NETWORKS

A pure C network is a set of zero -resistance conductors c1, , cr
some pairs of which are connected by capacitors. The problem of finding
a feasible layout for such a network is the following:

For each conductor ci find a connected region Ri in the plane such that
(i) Ri and R; have common points if and only if ci and ci are con-

nected by a capacitor, and

N

1

RN

Fig. 3 - Nonplanar RC network N and reduced purely resistive network RN .
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VERTEX -NETWORK FOR VERTEX V REALIZATION

Fig. 4 - Capacitive network for vertex V of Fig. 3 and realization of this
network.

(ii) no point belongs to more than two regions.
Condition (ii) says that no more than two conductors (separated by

dielectric) may be superimposed. If, contrary to condition (ii), conduct-
ing and dielectric layers can be stacked up indefinitely, then every con-
nected C network has a feasible layout. (The network is connected if any
conductor can be reached from any other through a sequence of capaci-
tors.) This is not quite immediately obvious; a proof is given in Appendix
A.1.

Indefinite stacking offers other advantages as well.' Unfortunately it
also presents technical difficulties. To date most thin film circuits have
been limited to two conducting layers.

It does not change the problem to replace the connected regions Ri
by curves C1 of finite length, since a connected region can be nearly filled
by a curve of finite length, and a curve of finite length can be approxi-
mated by a narrow region. When convenient, the curves can have
branches, although this is not necessary, since a branch can be approxi-
mated by letting the curve double back. In some cases, a pair of curves,
whether branched or not, have to cross more than once (examples later).
Such multiple crossings will be permitted on the assumption that a
capacitance, if need be, can be distributed over several crossovers. Some-
times the curves are more convenient and sometimes the regions. I will
use both.

In addition to satisfying conditions (i) and (ii) the regions (or curves)
may have to satisfy constraints associated with the terminals to the
outside. More specifically, R1 , , R, may be required to lie within a
given region R and certain of the Ri may be required to contain specified
points P1 on the boundary of R. I will consider mainly the two extreme
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cases where (a) there are no such terminal constraints and (b) every
region Ri satisfies a terminal constraint.

IV. UNCONSTRAINED CASE

The problem is simply stated: It is specified which pairs of a set of
curves (or connected regions) in the plane cross and which pairs do not.
When are such specifications consistent?

To get a feeling for the problem, the reader may wish to try the ex-
amples in Fig. 5.

The crossings are conveniently specified by means of a graph G.
Associate a vertex with each curve, and let two vertices be joined by an
edge if and only if the corresponding curves are required to cross. If a
set of curves satisfying the crossing specifications exists, we will say
that the graph G is realizable.

If G is planar, then it is realizable. In a planar representation of G
one has merely to replace each vertex vi by a star -shaped region R
whose points extend out along the edges emanating from vi far enough
to overlap the points of neighboring regions.

The converse is not true; some nonplanar graphs are realizable. For
instance, any complete graph (nonplanar if the order is greater than
four) is realizable, for in this case every curve Ci crosses every other.
(Let the Ci be straight lines in general position; i.e., no two parallel, no
three through a point.)

(a) (b)

Fig. 5 - Examples of unconstrained case. With the exception of the dashed
curve, a pair of curves must cross if and only if they cross in the figure. The dashed
curve must make only the encircled crossings. One of these examples has a solution;
the other does not. Answers are given in Appendix A.2.
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Although nonrealizable is different from nonplanar there is a class
of nonrealizable graphs that is related to nonplanar graphs. If G is non -
planar, then the graph G* obtained by inserting a new vertex into each
edge of G is nonrealizable (see Fig. 6). If G* were realizable, one could
construct a planar representation of G as follows. In a realization of G*
let each of the curves Ci corresponding to an original vertex of G shrink
to a point in such a way that no new crossings are generated. This is
always possible. Since by assumption the remaining curves (correspond-
ing to edges of G) do not cross each other, the resulting figure is a planar
representation of G.

A theorem of Kuratowski2 states that any nonplanar graph can be
reduced to one of two minimal nonplanar graphs GI or 02 (Fig. 7) by
(i) deleting edges and (ii) combining adjacent vertices. f

G G*

Fig. 6 -G is nonplanar; G* is nonrealizable. On the right is a nonrealization of
G*; crossings marked with dots are required, no others are permitted.

The two operations (i) and (ii) clearly preserve planarity. Operation
(ii) also preserves realizability, but (i) does not. (If it did, all graphs
would be realizable, since any graph can be constructed by deleting edges
of a complete graph, which is realizable.) To preserve realizability it is
necessary to replace (i) by the weaker operation (i'): deleting vertices
(together with attached edges). To see that (i') and (ii) do indeed
preserve realizability one has only to interpret them as operations on the
curves Ci .

Using operations (i') and (ii) and Kuratowski's theorem we can
identify a class of nonrealizable graphs as follows.

Let G1* and 02* be the graphs obtained by inserting a new vertex

f G1 is the graph involved in the familiar problem of connecting three utilities
(e.g., the gas, water, and electric plants) to three houses without crossing lines.
Since G1 is nonplanar there is no solution. In Fig. 7 vertices 1, 3, and 5 can be taken
as the utilities and 2, 4, and 6 as the houses.
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G,

Fig. 7 - Kuratowski graphs.

G2
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into each edge of the Kuratowski graphs G1 and G2 . A graph is non -
realizable if it can be reduced to G1* or G2* by application of (i') and
(ii). G1* and G2* are themselves irreducible. In Appendix A.2 one of the
examples in Fig. 5 is shown to be reducible to G1*, hence nonrealizable.

The analogue of Kuratowski's theorem which would say that every
nonrealizable graph can be reduced to G1* or G2* is false. An example of
a nonrealizable graph that cannot be so reduced is given in Appendix
A.3.

V. CONSTRAINED CASE

In addition to satisfying the conditions (i) and (ii) in Section III,
the curves Ci (or the regions Ri) will now be required to lie within a
simply -connected region R (which we shall take to be a disk) and each
Ci will be required to contain a specified point Pi on the boundary of R.
(This covers the case where a single conductor is required to join two
or more separate terminals. One has only to require that the correspond-
ing curves cross each other; their union represents the conductor.)

Before proceeding further, the reader may wish to try the examples
in Fig. 8.

In passing, we observe that any constrained problem can be imbedded
in an unconstrained problem. The constraints can be simulated by
means of a ring structure containing 2r curves, where r is the number of
curves in the constrained problem. This is proved in connection with the
example discussed in Appendix A.3. Unfortunately, this observation is
of little use in the absence of more information about the unconstrained
case.

We will regard the vertices v1 , , vr of graph G as residing at the
terminal points P1 , , Pr . We will often make use of the complement
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P1

(a) (b)

Fig. 8 - Examples of constrained case. Curve C1 must contain point Pi and lie
otherwise within the circle. The dashed lines show the edges not in G, i.e., if Pi
and P1 are connected by a dashed line then curves C1 and C1 may not cross; other-
wise Ci and Ci must cross. One example has a solution, the other does not. Answers
in Appendix A.4.

0 of G, where G consists of all edges not in G. Edges in G will be shown
as solid lines, edges in G as dashed lines.

A subset of vertex points Pi, , , Pin such that it < i2 < < in
will be called a cycle if all the pairs

(Pi, , Pi2),(Pi, , P13), , (Pin, Pi1)
are joined by edges. A cycle will be called empty if no other pairs are
joined by edges. We will be primarily concerned with empty cycles in
the complementary graph G. (See Fig. 9)

Theorem 1: A necessary condition for a constrained graph G to be realizable
is that G contain no empty cycles of order four or more.

Proof: (i) If G is an empty cycle of order four, then G is not realizable.
This is easily verified by inspection. If, therefore, G contains an empty
cycle of order four, then 0 is not realizable.

(a) (b)

Fig. 9 - (a) Empty cycle in 0, (h) non -cycles. Dashed edges belong to 0;
edges not shown belong to G.
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(ii) Suppose the theorem is known to be true for cycles of order
4, , m - 1 and suppose, contrary to the theorem, that G contains
an empty cycle of order in and that. G is realizable. The realization of G
can be generated in the following way: let curve C1 grow continuously
out of point Pi until it reaches its full length, then let curve C2 grow
out of point P2 until it reaches its full length, and so on until all curves
are complete.

Let G(t) be the corresponding complementary graph at time t. At
the beginning, G(t) is the complete graph (no crossings); as the crossings
are generated one by one, edges are deleted from G(t). At some stage the
postulated empty cycle of order in, which is contained in the final form
of G, must have just one internal edge left. But this last internal edge
forms two empty cycles inside the final cycle, at least one of which
must be of order four or more (since in > 4) and less than order in.
Therefore, by the induction hypothesis, there can be no realization at
this intermediate stage. Contradiction.

For some time it appeared to me that the empty cycle condition was
not only necessary for the realizability of a constrained graph, but suffi-
cient as well. Recently, though, I found a counterexample of order eight.
This example is discussed in Appendix A.5.

Following are a number of results that help to identify and construct
special classes of realizable constrained graphs. Taken together these
seem to cover most cases of small order.

If no two edges of G cross, then clearly G is realizable. Less obvious
is a similar result for G:

Theorem 2: A sufficient condition for a constrained graph G to be realizable
is that G contain no empty cycles off order four or more and that no two edges
of G cross.

An example of such a G is the triangulated polygon of Fig. 8(b). This
example, typical of the genre, has a complicated solution with unavoida-
ble multiple crossings.
Theorem 2 is proved in Appendix B. A more general result, also proved
in Appendix B, is the following:

Theorem 3: (i) If (P1 , Pk) is an edge of G that crosses no other edges of G,
and if the subgraphs G' with vertices P1 , P2 , , Pk , and G" with vertices

Pk Pr P1 are both realizable, then G is realizable.
(ii) If (P1 , Pk) is an edge of G that crosses no other edges of 0, and if

subgraphs G' with vertices Pi , P2 , Pk , and G" with vertices Pk , ,

Pr , P1 are both realizable, then G is realizable.
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The following two theorems describe circumstances under which a
new curve Cr+1 can be added to an existing solution. In many cases
the entire solution can be generated by adding curves one at a time.

Theorem 4: Let G be a constrained graph with vertices P_ 1 ' r P r+1 
G is realizable if (i) the subgraph of G with vertices P1, , Pr is realizable,
and (ii) there do not exist three vertices P , P5 , Pk <j < k < r +1
such that P 7.±1P, and r+1.-P Pk are edges of G and P iPk and P T_FiP; are-
edges of G. (See Fig. 10.)

Though cumbersome to state, this theorem is usually easy to apply.
The following special cases are often useful by themselves. Let S be the
set of vertices joined to Pr+1 by edges of G. Special case 1: the vertices
of S are an adjacent string. Special case 2: every pair of vertices in S
is joined by an edge of G. Special case 2, for instance can solve examples
like 8(b) in which G is a triangulated polygon. One has only to add new
vertices one at a time in such a way that each additional vertex forms
one new triangle in G. The set S always has just two members.

Theorem 4 is proved in Appendix B. Though somewhat involved
when worked out in detail, the idea of the proof is simple. In the situa-
tion of Fig. 10 the curves Ci and Ck (emanating from Pi and Pk) form
a barrier which Cr+i cannot cross. This does not necessarily prevent
Cr+1 from intersecting C; , for it is possible that Ci could cross the barrier.
If, however, the barrier is not there, then Cr+1 can reach C; on its own
without Ci's help. If there are no barriers of the Fig. 10 type, then
Cr±i can reach all of the curves it is supposed to cross no matter how
these may have been drawn. Thus, the new curve Cr+i can be added
without disturbing the old ones.

Pr+1

Fig. 10 - Configuration forbidden by hypothesis of Theorem 4. Dashed lines
show edges of 0; solid lines show edges of G.
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The next theorem concerns an operation which I will call an adjacent
interchange. Given the circle R with the peripheral points P1, , Pr ,

let R' be a slightly smaller circle concentric to R with corresponding
peripheral points P1', , Pr'. Let the primed points have the same
order as the unprimed points except for one adjacent pair leiP P-
which is interchanged. The points P1, , Pr , can be joined, respec-
tively, to P1', , Pr' by curves C1 , Cr in such a way that only
C k and Ck+1 cross. (See Fig. 11.)

If the operation is repeated by means of a new circle R" inside R',
then the curves Ci are extended inward and one new crossing is gen-
erated. A sequence of such operations can be specified by giving the pair
of currently adjacent points that is to be interchanged.

Theorem 5 states the conditions under which all of the intersection
requirements of a curve can be satisfied by a sequence of adjacent
interchanges. These conditions involve cycles in G (not necessarily
empty) as defined just before Theorem 1. Note that the order of vertices
in a cycle of G is invariant under adjacent interchanges.

We will say that a member Pi of a cycle in G is active if it is joined to
some other member of the cycle by an edge of G.

Theorem 5: The intersection requirements of a curve Ci can be satisfied
entirely by a sequence of adjacent interchanges if and only if Pi is not an
active member of any cycle in G.

Theorems 4 and 5 tend to be complementary; where one fails, the
other often works. Fig. 8(b) is an example where Theorem 5 fails (every
vertex is an active member of several cycles) and Theorem 4 works.

Pi

Fig. 11 - An adjacent interchange.
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An example of the opposite kind is shown in Fig. 12. In this example
Theorem 4 fails (every vertex has the forbidden configuration) but
Theorem 5 works. The whole realization can be constructed by adjacent
interchanges.

A realizable example to which neither Theorem 4 nor Theorem 5
applies is given in Appendix A.6. This is the smallest such example I
have found (twelve vertices), but I doubt that it is really minimal.

VI. ORDER OF CROSSINGS

It is possible to obtain directly from the graph G information about
the order in which crossings must occur along a given curve Ci . This
information is contained in configurations I will call empty chains.

An empty chain is a subset of vertex points Pi Pi2 , , Pin in
cyclic order such that the pairs (.P-, Pi2), (Pi2 Pi3), ' ' ' (Pin-, , Pin)
are joined by edges of G and all other pairs are joined by edges of G.

An empty chain is just an empty cycle with a gap in it. Since the
empty cycle is nonrealizable, it is not surprising to find that the realiza-
tion of the empty chain, though not quite unique, is tightly determined.
(See Fig. 13.)

Theorem 6: Let P1, , P. be the vertices of an empty chain. Along
curve Ck the first crossings with C1 , , Ck-2 must occur in that order;
the first crossings with Ck+2 , , must occur in reverse order.

The proof is given in Appendix B.
Every empty chain of length four or more yields ordering informa-

tion. If, for instance, P1, P2 , P5 , P7 is an empty chain, then C1 must
cross C7 before it crosses C5 and C7 must cross C1 before C2 . Since most

Fig. 12 - No vertex is an active member of any cycle in 0, therefore, a realiza-
tion exists.
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examples of interest contain several such empty chains, this theorem
is very generally applicable. The example of Fig. 8(b), for instance,
contains six empty chains of order four and one of order five, which
together give complete information about first crossings.

Searching for empty chains is tedious to do by hand, but could easily
be done by machine.

A weakness of Theorem 6, evident in the example of Fig. 8(b), is
that it says nothing about multiple crossings. It is clear in many ex-
amples that multiple crossings are determined by G. A way of extracting
this information would be very useful.

VII. CONSTRUCTION OF SOLUTIONS - SUMMARY

The preceding results are not strong enough to define a guaranteed
procedure for constructing realizations of constrained graphs. They do,
however, seem to work in most cases of small order. To apply them one
can proceed as follows:

(i) Look for empty cycles in 0- of order four or more. If any exist,
G cannot be realized (Theorem 1).

(ii) Look for edges of G (or G) that do not cross other edges of G
(or G). Such edges, if internal, permit the graph to be broken
into two independent parts (Theorem 3).

(iii) Look for vertices that are free of the configuration shown in
Fig. 10. Such vertices can be temporarily deleted, since the
corresponding curves can be drawn in after the remaining curves
have been drawn (Theorem 4).

(iv) Look for vertices that are not active members of cycle in
G. These are typically on tree -like branches of G. The corre-
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sponding curves can be constructed either at the beginning or
the end by means of adjacent interchanges (Theorem 5).

(v) Find all the empty chains of order four or more and write down
all the ordering relations they imply. Try to locate each crossing
on both of its curves. This cannot always be done uniquely.

In a systematic procedure one could combine 1, 4, and 5 since these
all involve chains and cycles.

Chains and cycles in G seem to be important in this problem; they
certainly yield much information. But apparently they are not enough.
To set up necessary and sufficient conditions for realizability, some
other element is needed.

VIII. LOOSE ENDS

So far we have considered only completely constrained and completely
unconstrained graphs, corresponding to networks where none or all
of the conductors are connected to outside terminals. In general, of
course, one wants the intermediate case where only some of the con-
ductors are connected to outside terminals. This remains to be studied.

The preceding results can be used to construct realizations for the
pure C networks represented by the nodes of the resistive network RN
(See Section II.) Alternatively, one can generalize the pure C problem
as follows to take account of resistors a priori.

The graph G can be replaced by its associated matrix A, where
ai; = X (for "crossing") if conductors Ci and Ci are connected through
a capacitor (or a short circuit) and a,5 = 0 (for "no crossing") if Ci and
C1 are not so connected. To take account of resistors, we let ai; = T
if Ci is connected to C5 through a resistor but not through a capacitor.
This will mean topologically that Ci and C; must touch without crossing.

T and X can be defined more precisely as follows. Consider instead
of the curves Ci the regions Ri . We can assume that the R, are simply
connected. If ai; = T, then the part of Ri's boundary that lies inside
R; must be connected (i.e., a single piece). If c1,5 = X then the part of
Ri's boundary inside R; may (but need not) consist of several pieces.

A. J. Goldstein has observed that in constructing an algorithm, the
regions Ri have advantages over the curves Ci . (The ends of the curves
have an unnecessarily special character.) He suggests that an algorithm
might be constructed that would keep track of all of the pieces of the
boundaries of the Ri and take, so far as possible, only steps that are
topologically mandatory. Such an algorithm could easily take account
of both T and X connections. This idea has not been worked out in
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detail and we do not know how often one would be forced to take an
arbitrary step that might be wrong.

APPENDIX A

Examples and Answers

A.1 If indefinite stacking of conducting and dielectric layers is per-
mitted, then any connected G is realizable regardless of the positions
of the outside terminals. A universal realization can be constructed as
follows.

Since G is connected, there is a path in G that contains every vertex
at least once. In their order along this path let the vertices be v1 , , vn

Over a disk D, stack n layers of conductor separated by layers of di-
electric. Associate the conductors with the vertices of G according to
their order along the path. This is permissible since the conductors
have nonzero capacitances only with their neighbors in the stack. These
capacitances correspond to the edges in the path. An extension of any
conductor can be brought out of the stack radially in any direction.
Thus, any pair of conductors required to have a nonzero capacitance
can be brought out together and superimposed in an arbitrarily long

strip. Similarly, any conductor can be brought out in the appro-
priate direction to connect to an outside terminal.

Although this construction shows the existence of a topological
realization, it would hardly do as a practical layout in every case, even
if indefinite stacking were permitted. Some of the metrical difficulties
can be overcome by substituting an annulus for the disk D, but even
so, this construction should be regarded as an existence proof, not as a
practical solution.

A.2 Answers to the Examples in Fig. 5.

The example (a) of Fig. 5, constructed by R. L. Graham, was the
first nonrealizable example found. It turns out to be of the type dis-
cussed in the text. Its graph is shown in Fig. 14(a). By deleting vertices
and combining adjacent vertices it can be reduced to the graph shown
in Fig. 14(b), which is a Kurat.owski graph with a vertex inserted into
each edge. Therefore, the example is nonrealizable. (See discussion
subsequent to Fig. 5.)

Example (b) of Fig. 5 has the solution shown in Fig. 15.

A.3 Fig. 16(a) shows a nonrealizable graph which does not contain
either of the augmented Kuratowski graphs G1* or G2*. The outer ring
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(a) (b)

Fig. 14 - (a) Graph for example (a) of Fig. 5. (b) Reduced graph G.

(B and C vertices) simulates terminal constraints; the inner part (A
vertices) is a constrained graph (empty cycle of order 5) that is known
to be nonrealizable.

Proof: (i) The graph G of Fig. 16(a) cannot be reduced to G1* or G2*.
The operations (i') and (ii) always reduce the number of vertices. But
G already has the same number of vertices (fifteen) as G1* and G2*.
(ii) G is nonrealizable. Suppose a realization exists. In this realization
let C be the union of C -curves (Fig. 16(b)). No A -curve intersects C.
Therefore all A -curves must lie in the same mesh of C. Call the interior
of this mesh R. R is (or may be) partitioned into subregions by segments
of B -curves. We will show that all intersections between pairs of A -curves
lie within the same subregion of R.

The A -curves may be indexed so that in the cycle A1 , A 2 ; , A 6 , Al
each curve intersects only its neighbors. Let I be an intersection between

Fig. 15 - Solution to example (b) of Fig. 5. Both triangles can be drawn out-
side the hexagon.
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Fig. 16 - Nonrealizable graph which does not contain either of the augmented
Kuratowski graphs GI* or G2* and a partial realization.

Ai and A i±l(mod 6) and let J be an intersection between A; and A j+1(mod 6) .

There exist two distinct paths along A -curves joining I and J. One path
P1 traverses segments of A2+1 , A;+2 , , A; and the other path P2
traverses Ai, Ai_1, , A;44 (indices mod 5). (In case i = j, P1 tra-
verses Ai+i and P2 traverses Ai.) The sets of A -curves represented in
the two paths are disjoint. Since each B -curve can cross only one A -curve
and cannot cross any other B -curve it is not possible for a continuous
boundary made up of B -curves to cross both P1 and P2 . Therefore, I
and J cannot belong to different subregions.

Let R* be the subregion to which all A -intersections belong. The
boundary G of R* is made up of segments of B and C curves. (Every
B -curve is represented since every A -curve must intersect its correspond-
ing B -curve and could leave R* only at a point belonging to this curve.)
If b1 , b2 , , b5 are any points on G belonging to B1 , B2 , B5

respectively (indexed according to the BC cycle), then the points
bi , , b5 must lie in cyclic order around G. If not, it is possible to find
a subset of four out of cyclic order, say b1 , b3 , b2 , b4 . But b1 is joined
to b2 by a path lying within B1, C1, B2 and b3 is joined to b4 by a path
lying within B3 , C3 , B4 . These paths cannot cross, yet must be outside
R*. This is not possible under the postulated ordering b1 , b3 , b2 , b4 .
All other noncyclic orderings can be similarly ruled out.

The points at which the A -curves join G must, therefore, lie in the
order determined by the BC cycle and all intersections between A -curves
must lie within R*. But these are the conditions of a constrained case
known (Theorem 1) to be nonrealizable.
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A.4 Answers to Examples in Fig. 8

Example (a) of Fig. 8 has no solution (empty cycle); example (b)
has the solution shown in Fig. 17.

Fig. 17 - Solution to example in Fig. 8 (b). Curves Cg and Cg cross thrice.
Multiple crossings are unavoidable in this example.

A.5 Counterexample to the conjecture that all constrained graphs
free of empty cycles of order four or more are realizable. Fig. 18 shows
the graphs G and G for this example and a near -realization in which

crossing does not occur.
The lack of empty cycles of order four or more can be verified by

inspection; the nonrealizability can be shown as follows.
Consider curves 4 and 8, which do not cross. Since curve 2 crosses

both of these, there exists a path from vertex 4 to vertex 8 traversing
curves 4, 2, and 8. In case of multiple crossings, there may be more than
one such path. We will assume that the path is chosen so that the seg-
ment of curve 2 contained in it has no crossings with curves 4 and 8
except at its endpoints. Since this path is to serve as a barrier, we will
denote it by B2 .

There exists a similar path traversing curves 4, 6, and 8. We will call
this one Bg .

Since curves 2 and 6 do not cross, the barriers B2 and Bg can have no
points in common except along a single segment of curve 4 and a single
segment of curve 8. Thus, the barriers must be related to each other
in one of two ways shown in Fig. 19.

Curve 1 cannot cross B2 and curve 5 cannot cross Bg . Thus, the
barriers cannot be oriented as in case (a) of Fig. 19, for if they were
curve 1 could not cross curve 5. By a similar argument, case (b) is
eliminated by curves 3 and 7. Thus, neither case can occur; the example
is nonrealizable.
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Fig. 18 - Counterexample. 6- contains no empty cycles of order four or more,
yet G is not realizable.

(a)

Fig. 19 - Proof of counterexample.

(b)
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A.6 Fig. 20 shows the realization for an example to which neither
Theorem 4 nor Theorem 5 applies. The ordering information supplied
by Theorem 6 is very complete in this case. Only the order of curves 5
and 6 along curve 2 (and the symmetric counterparts) is unspecified.
Indeed this could not be specified since either order is feasible. The
order 6, 5 however, requires multiple crossings. The realization without
multiple crossings is unique.

to

Fig. 20 - Realization for an example to which neither Theorem 4 nor 5 applies.

APPENDIX B

Proofs of Theorems

Theorem 2: A sufficient condition for a constrained graph G to be realizable
is that G contain no empty cycles of order four or more and that no two
edges of G cross.

Proof: The following proof depends on Theorems 3 and 5 whose proofs
are independent.

The theorem is certainly true if G has three or fewer vertices. Suppose
it is known to be true if G has in or fewer vertices. Consider a graph G
with m_-1- 1 vertices. If G satisfies the hypotheses of the theorem, then
either G is an empty chain (see discussion preceding Theorem 6) or else
G has an internal edge. If G is an empty chain, then by Theorem 5 it is
realizable. If G has an internal edge then this edge separates G into two
parts as defined in Theorem 3. Each of these parts has m or fewer vertices
and is free of crossing edges and empty cycles of order four or more
(by hypothesis), hence by the induction assumption is realizable. By
Theorem 3, G is realizable.
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Theorem 3: If (P1 , Pk) is an edge of G (0) that crosses no other edge of G
COL and if the subgraphs G' with verticles P1, P2, , Pk and G" with
vertices Pk , , Pr , P1 are both realizable, then G is realizable.

Proof: The method of proof is proof by picture (Fig. 21). Case (a):
(P1, Pk) is an edge of G crossing no other edges of G. None of the curves
C2 , , Ck-.1 crosses any of the curves Ck+1; , Cr. Therefore,
except for C1 and Ck the realizations of G' and G" can be confined to
separate parts of the disk R. C1 and Ck can participate in both parts.
(See Fig. 21(a).) Case b: (P1, Pk) is an edge of G crossing no other edges
of G. Every one of the curves C2 , , Ck-1 crosses every one of the
curves Ck+1 , , Cr . The realizations of G' and G" can be confined to
the regions labelled with these letters in Fig. 21(b). The peripheral
terminals for these realizations can be connected to the terminals on
the periphery of the disk as shown in the figure. The connections to G'
can cross G"'s region since this can only generate allowable crossings.
The required crossings between curves of G' and curves of G" occur in
the center of the figure.

Pk

Fig. 21 - Proof of Theorem 3.

Theorem 4: Let G be a constrained graph with vertices P1 , ,Pr ) Pr+1 
G is realizable if (i) the subgraph of G with vertices P1 , , P r is realiza-
ble, and (ii) there do not exist three vertices P, , Pi 'Pk , i < j < k < 7. + 1
such that Pr+iPi and r+1.-P Pk are edges of G and PiPk and Pr+IP; are-

edges of G. (See Fig. 10.)

Proof: We suppose that a realization for the subgraph with vertices
PI , , Pr is at hand. It will be convenient to think of this realization
as made up of regions R1 , , R, instead of curves. To simplify the
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notation later on we will designate the disk R to which the realization
is confined by the indexed name Ro . We may assume that Ri intersects
the boundary of Ro only in the vertex Pi .

Let R* be that connected piece of Ro which contains P,..0 but is
exterior to the regions that R,.+1 may not intersect. R* is the set of points
that can be reached by Rf+i . We will show that the boundary of R*
contains all the vertices corresponding to regions Rr+i must intersect,
i.e., all vertices joined to P,.+1 by edges of G.

The boundary of R* can be partitioned into a sequence of segments
Si, , 2 where Si belongs to the boundary of Rk(i) and k(i)
k(i + 1). The segments Si and S. adjacent to Pr+1 belong to Ro , hence
k(1) = k(n) = 0. If k(i) = 0, 1 < i < n, then Si is that segment of
the boundary of the disk Ro which runs from Pk(i-1) to Pk(i+1) . (The
end cases i = 1 and i = n can be included by defining k(0) = k(n + 1) =
r + I.)

Now suppose P,.4.1 Pi is an edge of G (i.e., R,..4.1 must intersect Ri).
We will show that Pi belongs to the boundary of R*.

If j > k(i) , i = 1, , n, then Pi belongs to S. , hence to the boundary
of R*. If not, let i be the first index such that j < k(i + I). It is not
possible that k(i) = j because Ri as a region that intersects R,.+1 is
not involved in the boundary of R*. It is also not possible that 0 <
k(i) < j for this would violate hypothesis (ii). (Rk(i) intersects Rk(ii-i)
because segments of their boundaries are adjacent.) Therefore, k(i) = 0.
Hence, Si runs from Pk(i-1) to P k(i-I-1) . Since k(i - 1) < j < k(i + 1) ,

Si must contain Pi. Therefore, Pi is on the boundary of R*, which
was to be proved.

Theorem 5: The intersection requirements of a curve Ci can be satisfied
entirely by a sequence of adjacent interchanges if and only if Pi is not an
active member of any cycle in G.

Proof: If: A chain is a sequence of vertices Pi, , Pi, , , Pin in cyclic
order such that ( i.P-1 , P12), (Pi2 , Pi3), , (Pin....1 , Pin) are edges of
G. For the duration of this proof a chain must have at least three vertices.

Let the vertices be numbered in clockwise order and suppose P1 is
not an active member of any cycle in G. Let S be the set of vertices
joined to Pi by edges of G. We will show that by a sequence of adjacent
interchanges the members of S can be moved around the circle and
finally interchanged with P1.

S can be divided into three subsets:
(i) The clockwise set S, : Pk e S, if P1 is joined to Pk by a chain

whose intermediate members have indices between 1 and k.
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(ii) The counterclockwise set S : Pk E See if P1 is joined to Pk by a
chain whose intermediate members have indices greater than k.

(iii) The rest SR .
Sc and Scc must be disjoint because otherwise P1 would be an active
member of a cycle. Let P2 be that member of Sc with highest index. Pi
can be interchanged with all vertices with higher indices. Thus, it can
be moved clockwise around the circle past P1 . With Pi out of the way,
the member of Sc with next highest index can also be moved clockwise
past P1. The process can continue until all members of Sc have been
interchanged with P1 . Similarly, the members of S can be moved
counterclockwise past P1 . The members of SR can be moved either way.
Hence, every member of S can be interchanged with P1 , which was to
be proved.

Only if: Suppose P1 is an active member of a cycle. Then it is joined
to another member Pk by an edge of G. P1 cannot be brought adjacent
to Pk because the order of vertices in a cycle is invariant under adjacent
interchanges. Hence, P1 cannot be interchanged with Pk

Theorem 6: Let P1 , , P. be the vertices of an empty chain. Along
curve Ck the first crossings with C1 , , Ck_2 must occur in that order;
the first crossings with C k+2 , , C n must occur in reverse order.

Proof: It is only necessary to prove the first part of the statement (con-
cerning C1 , , Ck_2) since the second part follows from the first by
symmetry. The first part is trivially true if k 3. We assume then that
k > 3.

The region bounded by Ck_1 and Ck_3 encloses Ck_2 . (See Fig. 22.)
Since Ck cannot cross Ck_1 it must cross Ck_3 before it can cross Ck_2 

-4

k-2

Fig. 22 - Proof of Theorem 6.
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If k > 4, then there is a curve C. The region bounded by Ck_2
and Ck_4 encloses Ck-3 . Therefore, Ck must cross either Ck_2 or Ck_4
before it can cross Ck-3 . But by the previous argument it cannot cross
Ck_2 before Ck_..3 . Therefore, it must cross Ck_4 before C k-3 . Since this
argument can be iterated indefinitely, the theorem holds for arbitrary k.
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Realizability Conditions for the Impedance Function of
the Lossless Tapered Transmission Line

By P. L. ZADOR

(Manuscript received August 2, 1966)

In the study of tapered transmission lines or accoustical horns, an
unsolved problem of great practical interest is the determination of the
taper function (inductance or capacitance per unit length as a function
of distance; it is assumed that the product of these quantities is unity)
for the structure which will possess a prescribed driving point impedance
function. For the case where the structure may be modeled by a cascade
of sections of uniform transmission line segments, physical realizability
conditions and a synthesis procedure have been given by B. K. Kinari-
wala.' For the case of continuous taper no results of a general nature are
known.

In this note, we shall give an almost complete characterization of
driving point impedances for structures possessing once continuously
differentiable taper functions. Although the proof of the realizability
theorem will not be given here, the author wants to point out that the
sufficiency is, in fact, proved by a construction of the taper function.
However, this construction is too unwieldly to be of practical use.

The mathematical formulation of the problem is as follows.
Suppose that for all complex s y(x,$), 0 x < 1 is the solution of the

Horn equation

(c(x)y'(x,$))' = ec(x)y(x,$) (1)

satisfying the boundary condition

y(O,$) = V(0,$) = 7.8 *.

C 0()
If by driving point impedance we mean the function

sZ(s) = - y(l,$)
c (1) y' (1,$) '

then the following theorem is true.

Necessity: If c(x) is a positive real function continuously differentiable
on 0 x < 1 then

* Unit terminating resistance at zero is assumed.
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(i) Z(s) is a positive real function.
(ii) There exist entire functions of the exponential type* 1, Ni(s),

Di(s), i = 1, 2, such that
Ni(s) N2(s)(a) Z(s) - Di (s) + (8)

(b) N1D1 - N2D2 = e218,

(c) Nils) = N 1( 8) Di( - s) = Di(s)
N2(s) = -N2(-s), D2(8) = -D2(-s).

(iii) If for real 0)

f(w) = Re e-2"Z(ic4) or Re e-2" 1
Z (ico)

then the function f(w) has an asymptotic expansiont at ± 00 of the
following kind

f ( 1 ± cc; ± -coc6 -1- 0 (-ji)

(The constants of course may be different).

Sufficiency: In order that a complex function Z(s) be the driving point
impedance of the differential equation (1) for some continuously differen-
tiable positive taper function C(x) it is sufficient that

(i') Z(s) be positive real,
(ii') there exist complex functions Ni(s), Di(s), i = 1, 2 of the ex-

ponential type satisfying (2) (a), (b), (c), and
(iii') the function f(w) defined in (3) have asymptotic expansion at

infinity

f ( ) 1 + -a -b -c- d+ 0 ,,1

co4 (2)

Remarks: (i) It is conjectured that the existence of the two asymptotic
expansions are not independent, that is (J.), (ii), and one expansion
may be sufficient.

(ii) A similar result is probably valid for infinite transmission lines.
* The function h(s) is called exponential type 1 if e-i*M(r) remains bounded for

all r > 0 but for any l' < 1 e-1',M(r) grows to infinity. Here M(r) = max I h(s) I.
1815r

f This means that lim w2 (f (w) - 1) = a,
w -±co

lim
a

(f(w) - 1 - = b, etc.
w=±.0
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Substituting the words "functions of order unity" 2 for "functions of the
exponential type 1" should yield the correct theorem.

(iii) As a last conjecture we offer the following. Let f(w) be a positive
even function possessing the properties

(a) AO has an asymptotic expansion at infinity as in (a ).
(b) The Fourier transform of 1/f(w) - 1 vanishes outside the interval

(-2/, 2/).
Then there exists a unique taper function such that if Z(s) is the im-
pedance function of the associated differential equation (1) then

Re Z(ico)e-2" = 1
f (w) 
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