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This paper discusses the dynamics of high -field propagating domains
in bulk semiconductors such as gallium arsenide. First, the origin of a
high -field domain and its nucleation mechanism are discussed. Next,

viewed. Then, the "unequal" areas rule is derived to explain transient
domain behavior. Domain buildup or decay speeds are discussed in detail,
and conditions are presented under which two or more domains can exist
simultaneously. Finally, the above discussions are applied to explain the
high -field domain behavior in pulse circuits, variable frequency oscillators,
waveform generators, and domain bypassing schemes. Numerical examples
are also given to illustrate how fast these operations can be performed.

I. INTRODUCTION

In the past several years, it was found that several bulk semi-
conductors showed voltage -controlled differential negative resistance
over a certain range of applied electric field. The cause of this nega-
tive resistance is vastly different from one material to another. For
example, it is attributable to field dependent trapping effect in gold -

doped germanium, to phonon -electron interaction in CdS and to
inter -valley scattering mechanism in GaAs, InP, CdTe and ZnSe.
Regardless of the origin, however, the voltage -controlled differential
negative resistance effect nucleates a high field domain in the bulk.1
Once it is nucleated, the domain travels toward the anode with al -
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most constant velocity; e.g., 107 cm/sec for GaAs and 105 cm/sec for
CdS.2 As the domain is absorbed into the anode, another domain is
nucleated in the bulk and the whole process repeats again.

Although the detailed mechanism of the negative resistance is still

a subject of intense discussion, the high -field domain itself appears
to have a great significance in future electronics. The objective of this
paper is to clarify the dynamics of high -field propagating domains in
bulk semiconductors. Since the high field domain in GaAs is presently
best understood, we shall mostly concentrate on it. However, similar
discussions must be possible for the high field domains in other ma-
terials as well.

II. DOMAIN NUCLEATION

The inter -valley scattering effect in GaAs is explained as follows.3, 4
When electrons are accelerated to a certain drift velocity by an applied
electric field inside the bulk, they acquire enough energy to jump into
a different valley of the conduction band where the mobility is low
compared to the original valley and their drift velocity is reduced. As
the applied field increases, more and more electrons come into the low
mobility state and on the average the electron drift velocity v(E)
decreases. Thus, the material exhibits the differential negative resist-
ance effect as shown in Fig. 1 between E, and E. If the field is in-
creased further, the material shows positive resistance again since
most of the electrons are now in the low mobility state and the transi-
tion effect fades away. Suppose that we attach two electrodes at the
ends of the bulk and slowly increase the voltage between them until
the inside field reaches some point in the negative resistance range.
The field can stay there indefinitely if no disturbance is applied. How-

Ep Ev

Fig. 1- Electron velocity vs field inside GaAs.
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Fig. 2-Nucleation of a high -field domain.

ever, suppose a small spatial disturbance is given to the field due to
noise or clue to other transient effect as shown by the solid line in Fig.
2. Then, the electrons in the disturbed region become slower than
elsewhere. Hence, the electron density at the trailing edge of the
disturbance increases while the leading edge is depleted. This in-
creases the field in the region further and since the area under the
field curve should be equal to the applied voltage, the field outside the
region decreases slightly. Therefore, taking into account the motion of
electrons as a whole toward the anode, the field distribution should
look like one of the dotted lines in Fig. 2 sometime after the initial
disturbance is applied. When the disturbance is fully grown it is

called a high -field domain since the field there is higher than else-
where. On the other hand, suppose that the opposite type of disturb-
ance is initially given to the field as shown by the solid line in Fig. 3.
Then, a similar reasoning to the above leads to a conclusion that the
disturbance grows with time into a low field domain as illustrated by
the dotted lines in Fig. 3. These two disturbances are equally likely
to take place. However, if .we raise the field from zero to the value
just slightly above the threshold field, E, in Fig. 1, the first type of
disturbance grows but the second one does not since the disturbed
portion in the latter is mostly in the positive resistance range. There-
fore, under ordinary circumstances, the first one is expected to domi-
nate. If the applied voltage is instantaneously increased to a large
value and then gradually reduced, the second type will dominate.

Now since we saw that a small disturbance grew, let us consider
how fast it grows initially. To do so, we have to investigate two equa-
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Fig. 3 - Nucleation of a low -field domain.

tions governing the phenomenon. The first one is a one-dimensional
Poisson's equation

aE e-az = ; (n -n o) , (1)

where -e is the electron charge, n the electron density, and no the
donor density. The second equation is

ea= env(E) - eD an- -t ,
az

(2)

where J is the total current density, D the diffusion constant and c
the delectric constant of the material. The total current consists of
the conduction, diffusion and displacement currents. The positive di-
rection for J and E is taken to be from the anode to cathode and that
for v (E) from the cathode to anode. Suppose some disturbance is
given inside the bulk and assume that the effect on the electron den-
sity has not yet reached z1 and z2, where z1 is on the left and z2 on the
right-hand side of the disturbance. Then, from (1) we have

aE(z,) 0E(z2)
az az

Furthermore, J = J (zi) = J(22) gives

a
{E(zi) - E(z2) = en {v(E(z2)) - v(E(z,)) I I.

The initial condition is E(z1) - E(z2) = 0, hence E(z1) has to stay
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equal to E(z2). Let Eo be the field at z1. Then,

E0 = E(z1) = E(z2).
In terms of Eo, the current through the device is given by

N

.1 env(E0) E
ate

Substituting (1) and (3) into (2) , we have

aE
-at(E - E0) = e11" {v(E) - v(E) } D -y- - v(E) -oz

a

Integrating with respect to z from z, to z., , we obtain

(3)

Xi .

-d I (E - E0) dz = f `----'`' {v(E 0) - v(E)} dz. (4)
di Ez , zi

This equation holds even when the disturbance is large. However,
when it is small, using the relation

v(E) = v(E 0) -dv (E -
dE

(4) becomes

(5)

zo

dt 2

(en dv
dE z

f" (E - Eo) dz = - -2 f (E - Eo) dz. (6)
, ,

Since e is positive and dv/dE is negative in the negative resistance
range, the size of the disturbance

ai

increases with time. The time constant is given by

(en° dv
E dE/

The negative value means the growth instead of decay.

(7)

III. STEADY STATE DOMAIN5t

Next, let us consider the domain in the steady state. When a domain
travels with a constant speed without changing its shape, we call it

1' This section closely follows Ref. 5. However, it is included here for corn -
plot/ -less and continuity of discussion.
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in the steady state. Let vd be the velocity of the domain. Then, both
n and E must be functions of a single variable = z - vdt in the
steady state. Therefore, we have

aE dE aE dE an an.
az - dE ' at - vd (It ' az_ aE

Equation (1) becomes

dEe
d

=
e

(n - no). (8)
t

This shows that n = no whenever dE/de = 0 and vice versa. As a
result, n and E should look like Fig. 4(a) and (b), respectively. Note
that the maximum field is located at the neutral position. On the
other hand, (2) becomes

dntD = n(v - vd) - no(v. - vd), (9)

where vo is the electron velocity outside the domain and use is made
of J = enovo. Eliminating 6 from (8) and (9), we have

C

no

w
E,

D
do n(v - vd) - no(v. - vd)
dE

-e (n - no)

(a)

(b)

to t

Fig. 4 - Steady-state high -field domain.
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which is equivalent to

n - no do [v -nnn dE en0D
- vd - (v, Vd) (10)

Integrating (10) with respect to E and remembering that n = no when
E = E, where Eo is the field outside the domain, we get

, n
(- - In - - 1 = E [V vd - - - vd)1 dE.n enoD n

The integration on the right-hand side can be carried out over the
leading or trailing edge of the domain. However, when the upper
limit is set equal to the peak field Ed of the domain, the integral
should vanish in both cases since n = no at the peak point. However,
this is impossible unless v. = vd, since the integral of (v - vd) is the
same while the integral of the remaining term is different in the two
cases because n < no over the leading edge and n > no over the trail-
ing edge. It follows from this that the velocity of the steady-state
domain is equal to the electron velocity outside the domain. Further-
more, since

fEd Ed

(1) vd) dE = (v - v.) dE = 0
E°

E.

for a given v., Ea can be determined by equating two shaded areas in
Fig. 5. Thus, the relation vo vs Ed should look like the broken line in
Fig. 5. As the domain becomes larger, Ed increases from E, and vo
decreases from the peak velocity v. However, Ed cannot exceed Earn,
the field corresponding to the intersection between the broken line
and the solid line. This is because the equal areas rule cannot be satis-
fied beyond this point. When Ed reaches Ea, the outside field becomes
Eom and the velocity vo,.

The relation between n and E for a domain can be determined from

.En
nno eneD L.- - In - - 1 = (v - vo) dE. (11)

no o

With this known n vs E, the shape of the domain can be calculated
using the integral of (8), i.e.,

e r8 dE
= JE, n - no

where to indicates the position of Ed
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Edm

Fig. 5- The broken line shows the domain velocity vs peak field.

If the diffusion constant is small, the right-hand side of (11) becomes
large; hence, n >> no over most part of the trailing edge and n 0

over most part of the leading edge. As a result, the trailing edge becomes
considerably shorter than the leading edge.

The integral defined by

Vex = f (E - E.) dE
(lima n

is called the domain excess voltage.° This amount of voltage is neces-
sary to support the domain in addition to the voltage drop in the
hulk given by Eol, where 1 is the sample length. V, is a function of
Eo. When Eo is close to Ep, Ed is also close to Ei the domain is small
and V is small. As Eo decreases, Ed increases as we saw in Fig. 5 and
Ve increases. The highest field in the domain is limited by Earn. How-
ever, V, can increase without limit by increasing the domain width.
For E, below E0m, there is no steady-state domain. As a result, V,
as a function of E0 should look like the solid line in Fig. 6. The de-
tailed shape changes with n. In general, for a given En, 1-,.,,. decreases
with increasing doping.

Now, suppose we apply voltage V to a device with length 1. Let us
draw a straight line through (o, V) and (VP, o) in Fig. 6, as shown
by the broken line and let P be the intersection with the V curve.
Since V - 1.7, is exactly equal to E01 for P, the terminal voltage be-
comes 1' if a domain determined by P exists in the device. Suppose
somehow Ve,. becomes higher than the value given by P. Then, for
the steady state, E1 becomes smaller but not enough to compensate
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the increase in V0,,; hence, Vex has to decrease. Similarly, when Vo.
decreases, it has to return to P to satisfy the terminal voltage condi-
tion. Consequently, P represents the stable operating point. Thus,
Fig. 6 can conveniently be utilized to determine V. and E. of the
steady-state domain. Note that if the applied voltage is high, Vex is
correspondingly high and Eo becomes almost equal to E om. Then, the
current density enov (E0) becomes almost constant regardless of a
small variation in the applied voltage. Such a domain is called a
saturated domain.

When V// is slightly smaller than Ep but V is large, there exists
two intersections between the solid and broken lines in Fig. 6. In this
case, the field in the absence of a domain is smaller than Ep and no
domain will be nucleated. However, if a domain exists, it can continue
to travel without collapsing. Of these two intersections, only the one
which corresponds to the smaller Eo represents the stable operating
points. For the other intersection, if Ve, increases slightly, Eol de-
creases more than enough to compensate the increase in T70; hence,
V has to increase further until the stable operating point is reached.
Similarly, if Vex initially decreases, the domain will disappear. Sup-
pose that the broken line is momentarily raised up to launch a domain
by applying additional voltage to the terminal. As 'the additional
voltage decreases, the intersection moves down and reaches the stable
operating point without ambiguity. Epl is called the threshold voltage
since it is necessary to launch a domain.

E 0 M
Eo

EP

Fig. 6 - Domain excess voltage vs the outside field.
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IV. TRANSIENT BEHAVIOR OF DOMAINS

Now, suppose that we apply a certain voltage higher than Epl to a
device increasing from zero value. Since the field reaches the threshold
value E, first near the cathode because of high resistive layer or in -

homogeneity generally existing there, a disturbance grows into a high -
field domain near the cathode and travels toward the anode. As the

disturbance grows, the cathode current decreases until it reaches JxS
= enov (E o)S, where E, is determined from Fig. 6 and S is the cross-
sectional area of the device. This current is maintained until the
high -field domain reaches the anode. As the domain disappears into
the anode, the field E in the device and hence the current increases
to keep the terminal voltage constant. When the field near the cathode
reaches the threshold value again, another disturbance grows into a
high field domain and the whole process repeats. As a result, the
cathode current like that in Fig. 7 is obtained. The height of the peak
current is determined by enov (E p) S plus the displacement current due
to the rapid change in E. The displacement current initially increases
as V, increases. However, the peak current tends to saturate with
further increasing Vez. Also note that for a given Vex the longer sample
gives less displacement current. Similar displacement current exists
during the decrease of the current and it may show up as the overshoot
of decreasing current.

To get a high -field domain, some initial disturbance in the field dis-
tribution is necessary. This may well be due to noise, if the field is
increased very slowly. However, in most cases the following process
is considered to dominate. Suppose there is a region where the donor
density is slightly lower than elsewhere. For each value of the field
strength well outside the region, there is a corresponding steady state

t

Fig. 7 - Cathode current of bulk semiconductor oscillator.
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(a)

(b)
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Z

Fig. 8 - Origin of small disturbance in the field distribution.

field distribution. Except for some deviations near the ends of the
region, the inside field Ei should be related to the outside field E.
through

no,v(E,) = nv(E0),
where ni is the donor density in the region and noo outside the region.*
Therefore, the field should look like the solid lines in Fig. 8(b) or (c)
depending on whether it is in the positive or negative resistance range,
respectively. However, if we change the outside field quickly, from
the positive to negative range, since the displacement current has to
be approximately equal everywhere and since the inside change is
smaller than the outside, the inside field will overshoot the steady-
state value as shown by the broken line in Fig. 8(c). As a result, a
definite discrepancy from the steady-state value takes place which
grows into a high -field domain. In practice, there may be a number

*In this case, corresponding to (4), we have
z, z,

(E - E0) dz = f - {noc,v(E0) - nov(E)) dz,
di f r,

which is equivalent to

di .

z " enf,, (E - E.) dz f - {v(E.) - v(E))

where E. indicates the steady-state field. Since this is identical to (4) except
that E. is replaced by E., no major modification is required in our discussion
of growth rate if Vez is redefined by the integral on the left-hand side.
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of such nucleating sites. However, only one domain will be fully grown
since two steady-state domains cannot exist at a time as we shall
discuss shortly.

So far, we have studied the case where the terminal voltage is kept
constant. Next, let us consider the case with a constant current source.
When we gradually increase the current from zero, except in the
vicinity of the cathode, the electron velocity in the device follows the
v (E) vs E curve in Fig. 1 until it reaches v (Er). If we increase the
current further and if the sample does not burn out, E probably
jumps to a high value where v(E) is equal to v (Er) and then follows
the v (E) vs E curve as before. If we decrease the current, the electron
velocity follows the curve until it reaches v(E) and then E jumps to
a low value where v (E) = v(E). There is hysteresis. However, dur-
ing this process, the field is almost everywhere in the positive resist-
ance range and the device is stable. Now, suppose somehow a high -
field domain is already present. If the source happens to supply the
same current as the steady-state domain requires, it will continue to
travel. However, if the supply current is slightly different, say, larger
than the domain current, the electron density increases at the trailing
edge and decreases at the leading edge of the domain. As a result, Vex
increases. However, the larger the Vex is the smaller the steady-state
current becomes. Therefore, no steady state can be achieved. A simi-
lar argument holds for the case where the supply current is smaller
than the domain current. In this case, Vex decreases to zero. To consider
the same problem from a different angle, let us draw a line repre-
senting the constant current condition in Fig. 6. It becomes a vertical
line. The possible intersection with the V em curve gives an instable
operating point which we discussed before. Thus, with a constant cur-
rent source, a high -field domain is instable. The reason why two
steady-state domains cannot exist simultaneously in a device can be
seen in a similar manner. If one of them requires a larger current than
the other, Vex of the second one increases. As a result, the first one
quickly disappears and all the excess voltage is absorbed by the second
one requiring less current. We shall have more to say about this later.

Next, let us consider the situation where no high -field domain exists
but the field is in the negative resistance range over a certain length
of the device. Suppose a small disturbance exists inside the region. In
this case Eo is fixed but (6) still shows that the initial disturbance
grows with time with the time constant given by (7). As a result, the
terminal voltage should fluctuate considerably.

In many cases, it is desirable to estimate how quickly domains
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can grow or decay. The starting point is (4). If the diffusion constant
is small, the trailing edge is considerably shorter than the leading edge;
hence, the primary contribution to the integral comes from the leading
edge. Since n = 0 over the leading edge, we have

noef y'- {v(E,) - v(E))
fEd

{v(E) - v(E) } dE,
E.

where use is made of (1). Substituting the above results into (4) we
obtain

dVex
dt

rEd
Eo

iv(E.) - v(E) dE. (12)

For the steady state, dVex/dt = 0 and (12) reduces to the equal areas
rule discussed before. It is now obvious that if we draw a figure similar
to Fig. 5 and if the lower -right shaded area is larger or smaller than
the upper shaded area, the domain grows or decays, respectively. As
the difference becomes larger, the rate of change of the domain size
increases. It is also obvious why a domain is instable under a constant
current condition. Since Eo is fixed if Ed increases slightly from the
steady-state value, V,. increases and hence Ed further increases and
no steady state is reached.

When Ed - Eo is small, using (5), (12) becomes

ddt Vez
rEd dv).

E
dv

JE. d-12 = (- TE)1(Ed E0)2
(13)

However, if we assume that the leading edge w is depleted, by inte-
grating (1) twice, we have

1

(new
)2 in1 noe 2) nne 1 (14)1(Ed - Eo)2 =

2
-- e = le (

e
-2e Iv

Substituting (14) into (13), we obtain

d V ex dv)nne
dt dEl

which gives the same answer as (6). Therefore, provided that Ed
is calculated from V through (14) , the simple formula (12) is also
applicable for small disturbances whose electron density distribution
is quite different from the one assumed in the derivation.

Now suppose that there are two regions in a device where the donor
density is slightly lower than elsewhere. If the terminal voltage is in-
creased to a certain value to bring the field into the negative resist-
ance range, the field disturbances at these two regions start to grow
exponentially and at the same time the field Eo outside the disturbances
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decreases to compensate the increase of the field in the disturbances.
After a while the disturbances become large enough so that we can
call them domains. The domain from the larger nucleation site of the
two is larger than the other but both continue to grow until E o reaches
a point where the right-hand side of (12) becomes zero for the smaller
domain. Then, the smaller domain stops growing and starts to decay
because the larger one continues its growth. As a result, the smaller
domain will finally disappear and the one from the larger nucleation
site remains. However, suppose that the difference in size between
the nucleation sites is small. Then, when the smaller domain stops
growing, the right-hand side of (12) for the larger one is also small;
hence, some time elapses before the larger one absorbs the excess
voltage from the smaller one. If the larger domain is on the anode
side of the smaller one, it may reach the anode before the absorption is
completed. If this happens, the smaller domain starts to grow again
as the larger one disappears into the anode. As a result, if there are
several nucleation sites of comparable size in a device, one period is
not completed until the largest remaining domain becomes smaller
than the initial disturbance the largest nucleation site can give.

Summarizing the above discussion, we list some of the important
properties of a domain as follows:

(i) A high -field domain is nucleated when the field reaches the
negative resistance range from the lower side of the v vs E character-
istic.

(ii) With a constant voltage source, the domain reaches a steady
state. However, with a constant current source, no steady-state domain
is realized.

(iii) The steady-state domain velocity is equal to the electron drift
velocity outside the domain.

(iv) For a given terminal voltage, the domain excess voltage and
the outside field can be determined from Fig. 6.

(v) The transient behavior of a domain can be approximately
determined by (12).

In the above discussion, the diffusion constant was assumed to be
independent of the field. However, many theoretical studies indicate
that it is a function of E. In that case, the equal areas rule no longer
holds and the domain velocity may not be equal to the electron
velocity.* Furthermore, an inhomogeneity in the material may create

*If Dan/az is replaced by 8/az (Dn) in (2), (4) follows even when D is a
function of E. Therefore, (12) is considered to be a valid approximation as
long as the magnitude of D is small.
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an extremely high but localized field within the bulk which ionizes
deep donors or even generates hole -electron pairs. Then, the effective
no becomes larger and Vex lower. However, the following discussions
will not be affected.

V. PULSE CIRCUITS

Let us consider the I -V characteristic of a device with the possible
presence of a domain. Since for each I, the terminal voltage is equal
to Vex plus the voltage drop in the device, it should look like Fig. 9.
There is hysteresis, but otherwise the curve is very similar to the I -V
characteristic of a tunnel diode. Therefore, many pulse circuits devel-
oped in connection with tunnel diodes are also applicable with the
present devices; e.g., relaxation oscillator, monostable circuit and
pulse inverter. The main difference is that once a domain is launched,
it determines the device current rather than the external circuits and
after a while the domain disappears at the anode.

VI. VARIABLE FREQUENCY OSCILLATOR'

Suppose the device has the form of a trapezoid as shown in Fig. 10.
high -field domains are expected

properties to one in a uniform device. Therefore, assuming that the
relation between the domain excess voltage and the field immediately
outside the domain is given by Fig. 6, let us consider how to obtain
the outside field as a function of the domain position. First assume

V --.

Fig. 9- /-V characteristic of a uniform device.
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2E MILS

Fig. 10 - An example of trapezoidal oscillators.

that the outside field is Eo when the domain is located at z = e. The
conduction current is given by env (E0)S(e). Neglecting the diffusion
and displacement currents outside the domain, the field at arbitrary z
except the domain location can be determined from Fig. 1, utilizing

I = env(E)S0 = env(E)8(z).

Once the field is determined as a function of z, the area under it plus
V,,,,(Eo) gives the terminal voltage. Keeping this in mind, draw a
family of field curves with the terminal current as a parameter as
shown in Fig. 11. The highest field curve needed corresponds to
I = env(Er)S(0) and is called the threshold line and the area under
it the threshold voltage Vth. Calculate the area under each curve and
add Vea, for each point on the E - z plane to obtain the terminal
voltage V. From this, we obtain a family of constant terminal voltage
contours as shown in Fig. 12. Note that a straight line E = E. cor-
responds to V = co. Also note that there is no contour crossing the
vertical axis above a certain value E, which is determined as follows.
On the Vey vs Ea plane draw a curve representing the area between
the threshold line and various field curves as a function of the field at
the cathode. This curve intersects the E axis as well as the Vea, curve
at Ep. The other intersection with V., if any, gives E, as shown in
Fig. 13. Suppose we apply a certain terminal voltage slightly larger
than V th and a domain starts to form at the cathode. Then, the field
inside the device drops. But if it is higher than E, at the cathode, the
decrease of the area exceeds the corresponding V. hence, the domain
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Fig. 11 - Field curves in a tapered device.

further grows until it becomes E,. If the device length is sufficiently
short, E, may not exist depending on the shape of V vs Eo.

As the domain travels toward the anode, the field immediately out-
side the domain follows one of the constant voltage contours in Fig. 12.
When the contour intersects the threshold line, the field at the cathode
reaches the threshold value Ep and a new domain starts to nucleate.
Since the new domain in the narrow region grows according to the
unequal areas rule given by (12), the old one in the wider region
quickly decays and a new period begins. However, the cathode current
does not decrease as quickly as in a uniform device since the old do-
main tends to keep the cathode field up as it decays. Some contours
passing through the vicinity of E, may turn back before they cross
the threshold line. In such a case, at the turning point, the terminal

Z

Fig. 12 - Constant terminal voltage contours.
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EOM Ec Ep

Fig. 13 - Explanation for the method to obtain E..

voltage becomes insufficient to support the domain clue to the voltage
drop in the bulk. The domain quickly decays and the field rises to the
threshold line to start a new period as before. Note that the maximum
current at the end of a period is approximately env(E0S(0) regard-
less of the terminal voltage. In general, as the terminal voltage in-
creases, the turning point or the intersection is further away from the
cathode and the domain velocity becomes slower. As a result, the
period gets longer. This effect gives a voltage -controlled variable fre-
quency oscillation as shown in Fig. 14. If the straight line E = Eom
intersects the threshold line within the device, no matter how large
terminal voltage is (of course within a certain limit), the domain
cannot reach the anode. On the other hand, if the intersection is out-
side the device, the domain can reach the anode generating a pulse
similar to the one shown in Fig. 7 at the end of a period.

VII. CURRENT WAVEFORM GENERATORS8

For a saturated domain, the velocity is constant and the current
density at the domain is constant. If the cross-sectional area of the
device varies with the distance from the cathode, the cathode current
also varies as the domain moves along the sample since it is propor-
tional to the current density times the area. Provided that the vari-
ation of the cross section is gradual, the current waveform should
become an exact replica of the shape of the device excluding the
pulse corresponding to the domain disappearance at the anode. In
order to start the domain at or near the cathode, the field there should
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Fig. 14 - Variable frequency oscillation of a trapezoidal oscillator. The sup-
ply voltages are indicated on the left-hand side.
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Fig. 15 - Explanation for the sudden change in frequency observed in cer-
tain nonuniform devices.

reach E, before it does elsewhere. This limits the smallest cross-
sectional area we can make. In some cases because of the high resistiv-
ity layer at the cathode, this minimum can be about 80 percent of the
cathode cross section. In order to let the domain arrive at the anode,

field line should never be lower than E01, anywhere in
the device. This limits the largest cross-sectional area we can make.
However, letting the threshold line cross the E01, limit, the pulse due
to the domain disappearance at the anode can be eliminated. In some
waveform generators, the frequency of oscillation suddenly increases
as we decrease the terminal voltage. For instance, the constant termi-
nal voltage contours for the device shown in Fig. 15(a) should look
like Fig. 15 (b). Therefore, if the terminal voltage is reduced slightly,
the domain travels only halfway through and the frequency rises ap-
proximately one octave as shown in Fig. 16.

VIII. DOMAIN BYPASSING°

So far, we have considered the shaping of an active bulk region.
However, a similar effect can be obtained by changing the doping
density. In addition to this, there is an interesting method of getting
similar or more versatile functions by means of bypass circuits. To
explain the principle, let us consider the simplest case illustrated in
Fig. 17. There are two additional ohmic contacts attached to the ac-
tive bulk region. Let DI be the part between the cathode and the first
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Fig. 16 - Current waveforms observed with a device illustrated in Fig. 15.

contact, D2 between two contacts, and D3 the remainder. Let d indi-
cate the length of D2 and h the device thickness. If a saturated domain
is in D1, the cathode current is given by enov (E om)S. When the do-
main moves into D2 i the current becomes approximately enov (E ,)S
+ (V cx+E omd) /R, where R is the resistance of the interconnection
between the additional contacts. Finally, when the domain gets into
D3, the current returns to en ov (E o,)S again. Therefore, the cathode
current should look like Fig. 18(a). In addition to regular pulses,

D1 I D2 I D3

II

I

- d

Fig. 17- Domain bypassing scheme.



2256 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967

there are broad pulses corresponding to (17.7-FE0,d)/R. Now, suppose
the interconnection is open circuited, then the additional pulses dis-
appear as shown in Fig. 18 (b). Thus, we get a means of controlling the
waveform from the outside. The height of the additional pulses, how-
ever, cannot be made higher than the regular pulses. If we try to get
higher pulses by decreasing R, the field at the cathode reaches the
threshold value making a new domain nucleate there and the old one in
D2 disappear. The sharpness of the pulse edge is limited probably due
to the spreading resistance of the contacts. As the thickness h of the
bulk gets thinner, the definition is expected to improve.

There are many variations of the above scheme. By providing sev-
eral contacts and interconnecting them through appropriate networks,
various waveforms can be realized. Alternatively, contacting a rela-
tively large electrode through a high resistive layer on one side of
the active region and shaping the electrode, again produces various
waveforms. Another interesting possible application is a photosenser.
Suppose R is photosensitive. Then, the height of the additional pulses
varies with illumination. If many such photoelements are lined up
along a relatively long device, the domain provides automatic scan-
ning action. A solid-state videcon might be a possibility, if a two-
dimensional array of photoelements is made by placing many such
devices side by side and the domain in each device is triggered by the
pulse in the adjacent device.

1.5

1.0

a)

cr 0.5 .1-
w
a_
2

0

- 1.5
z
w
cc
IZ 1.0

U

0.5

(a) R = 23011

(b) R =co

I 1 1

10 20 30
TIME IN NANOSECONDS

40

Fig. 18 - Waveforms observed with a device illustrated in Fig. 17.
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IX. NUMERICAL EXAMPLES

The domain velocity for GaAs is approximately 107 cm/sec. If the
device length is 1 mm, 100 , or 10 p., the oscillation frequency is
about 100 MHz, 1 GHz, or 10 GHz, respectively. The terminal voltage
necessary to launch a domain in a uniform device is Epl. Since Ep is
approximately 3000 V/cm, 300 volts are required for 100 MHz sam-
ples, 30 volts for 1 GHz samples, and 3 volts for 10 GHz samples. The
current is given by env (E)S. If S = 0.3 x 0.3 mm2 and no = 5 x 1014/
cm3

I = env(E)S = 1.6 X 10-1° X 5 X 102° X 105 X 0.9 X 10-7 = 0.7A.
The peak current is about twice this value.

The domain thickness is a function of doping as well as Vex. For
simplicity, let us assume that the diffusion constant is small and
hence the thickness is approximately given by w. Then, as we calcu-
lated in (14),

w -=-
\12 V e xf

For Vet = 50 volts and n = 5 X 1014/cm2, since e 12.5 X 8.85 X
10-12 F/m

.\12 X 50 X 12.5 X 8.85 X 10-12
W = 1.6 X 10-19 X 5 X 102°

- 12 X 10-6m

or w = 12 11. For larger no, w becomes smaller.
The time constant of the initial growth of disturbances depends on

the value of Idv/dEj. There are many theories and experiments sug-
gesting various values ranging from 300 to 10,000 cm2/secV. This fact
alone may well indicate how little we know about GaAs. For the
moment, let us assume 3000 cm2/secV. Then,

- dv

12.5 X 8.85 X 10-'2
1.6 X 1(1' X 5 X 102° X 0.3 -45ps.

ene -7
dE

This is the time for a small disturbance to become about 2.7 times the
original size. If this rate continues, the size becomes 1000 times within
32 ps and more than 100,000 times within 50 ps. In comparison, the
time for a domain to disappear after its leading edge reaches the anode
is of the order of w/v. For a domain 12 p. long, it is of the order of
120 ps.
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If there is a region extending out a length b where the doping is
reduced a percent, the initial size of the disturbance can be shown
from Fig. 8 to be about 2Eba x 0.01. For 10 percent inhomogeneity
and b = 5 pt, we have

2 X 300,000 X 5 X 10-6 X 0.1 ------ 30 X 10-2 volts.

The corresponding (Ed-E) calculated through (14) is given by

V2:e 6.5 X 103 V/cm

when ne, = 5 x 1014/cm3. This is large and we have to use (12) for the
growth rate calculation. For simplicity, let us consider the fastest
possible growth. From the area consideration, Fig. 5 shows that the
fastest growth takes place when Eo is fixed at Er. Then, the integral in
(12) can be roughly approximated by (Ed-E) {v (Er) - v(Ei,)} pro-
vided that there is a broad and flat valley region. Since Eo = E,

Thus, (12) becomes

dV ex \I2nne
dt =

NI2nae T7e,

17z {v(EP) - v(ED) 1.

The solution is given by

Vex = {v(E9) - v(E.)12(1 c)2,

where c is a constant determined by the initial value of V.,. If V., is
small at t = 0, c can be neglected. For GaAs, v(Er) - v(E6) 107 cm/sec

and if n. = 5 X 1014/cma the above expression gives

= 3.6 X 1021(1 + c)2.

Since IT .x 0.3 volts at 0, c is approximately 9 ps. V. becomes
approximately 36 volts when td-- c = 100 ps or t = 91 ps. If the terminal
voltage increases slower than the above rate, E. decreases and the
growth of Vex closely follows the terminal voltage. On the other hand
if the terminal voltage increases faster, then E. has to increase to
accommodate the balance of the voltage since the growth rate of V.
is no longer able to follow the applied voltage.

Finally, suppose that a steady-state domain exists and the terminal
voltage is suddenly decreased so that E. is decreased by i3 percent.
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In this case, the right-hand side of (12) is approximated by

dig_o) .\12noe-0.010E0
dv(Eo)

X (E, ^-Eo) -0.010E0dE dE e

For Vs. = 50 V, no = 5 X 10"/cm3, dv(Eo)/dE =it-' 6000 cm2/Ar, =
10 percent and Bo = 1500 V/cm, we have

dVi = -0.1 X 150,000 X 0.6
cll

\12 X 5 X 102' X 1.6 X 10-19
X 12.5 X 8.85 X 10_12

50 -7.6 X 1010V/sec.
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A Millimeter Wave, Two -Pole, Circular -

Electric Mode, Channel -Dropping
Filter Structure

By R. D. STANDLEY

(Manuscript received May 19, 1967)

Interest in circular -electric mode channel -dropping filters has been
stimulated by recent advances in the repeater art. This paper presents the
theory and establishes design procedures for filters having two -pole maxi-
mally flat response functions. The basic structure uses mode -conversion
resonators, i.e., the resonating mode is the TE0, circular electric mode,
for three of the resonators. The rejection filter portion of the structure is
conventional in that two resonators separated by an odd multiple of /rig
radians realize the desired characteristic. The branching filter is novel
in that a rectangular waveguide is wrapped around a mode -conversion
resonator and coupled to the TE02 resonating mode via a multiplicity
of apertures. The rectangular guide is then resonated to permit realization
of the two -pole branching filter. The theory developed is an extension of
M arcatili's original work on mode -conversion resonators. The mode -con-
version resonator parameters are related to the elements of a lumped con-
stant prototype network thus extending the utility of mode -conversion
resonators.

Experimental results are presented on several filter models. The agree-
ment between theory and experiment is generally good. Four filters were
developed for use in an all solid-state repeater experiment with successful
results.

I. INTRODUCTION

The TE01 circular -electric mode in round waveguide has received
considerable attention due to its low -loss characteristic. The problem
of multiplexing in communication systems using this mode was first
approached by Marcatili.1 His scheme used low -loss, TE02 circular -
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electric mode resonators* to realize channel -dropping filters having
single -pole, maximally flat responses. Interest in channel -dropping
filters with multiple -pole responses was stimulated by recent advances
in the repeater art. An all solid-state repeater having a 51.7 GHz
carrier and operating at a bit rate of 306 megabits per second has been
constructed.2 The repeater performance is such that a 15 -mile repeater
spacing could be achieved using propagation in the TE01 circular -
electric mode in two-inch i.d. round guide. Since high bit rates imply
increased bandwidth, multiple -pole filters are required to maximize
usable channel capacity.

A design procedure has been developed for diplexers having a two -
pole, maximally flat amplitude response. Section II describes the
structure. Section III presents some preliminary considerations in-
volving arrays of such structures. Section IV outlines the design pro-
cedure. Experimental results are presented in Section V.

The major theoretical contribution of this work lies in relating the
parameters of the structure to the elements of a low-pass prototype
network. This extension of Marcatili's work makes it possible to
utilize mode -conversion resonators in multiple -pole filter structures.
The analysis is summarized in Appendix A.

The novelty in the physical structure lies primarily in the realiza-
tion of the branching filter. (See Fig. 1.) A mode conversion resonator

WRAPPED PORT
RESONATOR' 10

MODE CONVERSION RESONATORS
(REJECTION FILTERS )

PORT I
(INPUT) T Eg,

MODE
CONVERSION --
RESONATOR BRANCHING

FILTER
(SEE FIG.4

FOR DETAIL)

TEg, PORT 3

211+1
V RADIANS- 2

- 2
RADIANS

Fig. 1-Cross section view of two pole diplexer structure.

is coupled to a wrapped rectangular waveguide to permit realization of
a two -pole system. The rejection resonator portion of the structure is
conventional in that two resonators separated by an odd multiple of
7r/2 radians is utilized to realize the two -pole characteristic.

* Throughout this paper, the TE02 mode resonators will be referred to as
mode conversion resonators.
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II. TWO -POLE FILTER STRUCTURE AND PROTOTYPE EQUIVALENT CIRCUIT

Fig. 1 shows the physical structure and identifies the resonant ele-
ments. The input and output guides are above cutoff for the TEoi
mode and just below cutoff for the TE02 mode. The large guide sec-
tions are just above cutoff for the TE02 mode. The rectangular wave -
guide output is coupled to the mode -conversion resonator nearest the
input port via a wrapped rectangular waveguide.

A qualitative description of the behavior of the structure is ob-
tained as follows. First, consider an individual rejection resonator. A
signal incident in the TE01 mode is coupled to the TE02 mode via a
symmetrical diameter discontinuity. Since the input and output guides
are below cutoff for the TE02 mode, the power in that mode is trapped
in the large diameter region. Marcatili's analysis of the structure
shows that at resonance the transverse mid -plane of the resonator is
effectively a short circuit.' The center frequency and bandwidth are de-
pendent on the length of the resonator and the ratio of the input guide
to resonator guide diameters. The details of the relationship are given
by Marcatili.' Now, in the structure of Fig. 1, the mid -planes of
adjacent mode -conversion resonators are electrically separated by odd
multiples of r/2 radians. Hence, at resonance, the rej ection resonator
pair presents an open circuit at the mid -plane of the input mode-

conversion resonator. All of the incident TE01 mode power appears at
the rectangular waveguide output when the various coupling
coefficients are properly chosen.

Further insight into the electrical behavior of the structure is ob-
tained by considering the prototype network shown in Fig. 2. The
prototype network consists of complementary admittances connected
in shunt. The elements of the network have been chosen to yield a
two -pole, maximally flat insertion loss response between ports 1 and 2
while maintaining a constant input admittance as a function of fre-

PORT I

Y1+ "2 I

90=1 OHMg = 0.707 FARADS
92,94=1.414 HENRIES

Fig. 2-Prototype network for a two -pole diplexer.

PORT 3
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quency.4.5 Total power transfer occurs at zero frequency, and half -
power transfer occurs at an input angular frequency of one radian per
second. The prototype network is converted to a network having total
power transfer at some frequency (00 through use of the angular fre-
quency mapping function

QLIW - CO 0

=
con

where

(1)

= angular frequency of the prototype network
w = angular frequency of the desired network

QL = cod(col - W2)
col , w2 = half power angular frequencies of the desired network.

The relationship between the prototype network parameters and
the parameters of the structure shown in Fig. 1 are discussed in de-
tail in Appendix A. For the purpose of obtaining a qualitative under-
standing of electrical behavior it is sufficient to state that the perform-
ance of the microwave structure will be identical to that of the fre-
quency mapped prototype network subject only to the approximations

III. PRELIMINARY CONSIDERATIONS

The general problem is to develop an array of channel -dropping
filters. The use of mode -conversion resonators results in several
fundamental performance limitations as described below.

First, consider the case where the input guides to all filters in the
array have the same diameter. Since the input guide must be below
cutoff for the TE02 mode at the highest significant frequency, the
diameter, b, of the input guide is restricted to

b < 7.016Xhr, (2)

where A.. is the free -space wavelength at the highest significant fre-
quency, f. At the same time, the TEoi mode at the lowest significant
frequency in the overall system must be passed requiring that

b > 3.832XL/7r, (3)

where AL is the free -space wavelength at the lowest significant fre-
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quency, fr,. Combining (2) and (3) gives 

Af < 0.8309fL , (4)

where Al is the bandwidth of the filter array.
The next case to be considered is that in which successive filters

have varying input guide diameters. This arrangement would permit
maximization of the intrinsic Q's of each of the resonators. (A short
taper is required to interconnect the filters.)

Now assume that the lowest frequency channel is to be dropped
first. For the first channel -dropping filter in the array to operate
properly, it must be terminated in a matched impedance throughout
its passband. Hence, the smallest diameter guide in the system must
be above cutoff to the TE0i-mode at the lowest significant frequency
to be dropped. This argument leads to the same restrictions on the
overall bandwidth of the array as given by (4).

If the highest frequency channel is the first to be dropped, then the
argument leading to (2) and (3) again applies resulting in the band-
width restriction (4).

In the case of varying input guide diameters, there are other limita-
tions on the array performance which are dependent on the order in
which the channels are dropped. If the highest frequency channel is
the first to be dropped, then the diameter discontinuities produce a
small residual return loss at out -of -band frequencies over and above
that produced by a conventional resonator. This is true of each suc-
cessive filter in the array. The effect can become cummulative for
certain filter -to -filter spacings. If the lowest frequency channel is the
first to be dropped, then the discontinuities cause conversion of
power from the incident TE0i-mode to the TE02-mode which can now
propagate. In addition, the bandwidth of the array is further restricted
by the possibility of TEN, resonances in the mode -conversion reso-
nators. This occurs when the input and output guides to a given reso-
nator are just below cutoff for the TE03-mode and the large diameter
region is just above the TEN -mode cutoff. The diameter discontinuity
again produces mode conversion with the TE03-mode power trapped
in the resonator. The ratio of the TE03 to TE02-mode cutoff frequencies
is

jsim .45

102

Hence, this problem occurs in the vicinity of 1.45 times the resonant
frequency of the first filter in the array.
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A more detailed analysis to select the optimum dropping order is
beyond the scope of this paper. In the following, it is assumed that the
above restrictions have been observed prior to establishing the design
for a given filter in the array.

IV. DESIGN PROCEDURE

The necessary design equations are derived in Appendix A. It is
possible to begin with those results and design the three mode -con-
version resonators as described by Marcatili. However, a sufficiently
accurate and more rapid approach is to use the data obtained by
C. N. Tanga° shown here as Fig. 3.* Equations (6) , (19) , and (20)
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Fig. 3-Design chart for TE00 - TE02° mode conversion resonators (from ref.
6).

are used to compute the required external Q's of the resonators. The
data shown in Fig. 3 are used to obtain a design scaled to a lower
frequency. Frequency scaling techniques are applied to convert the
design to the frequency of interest.

That portion of the structure of Fig. 1 consisting of the first mode-

* While the range of the parameter D is somewhat restricted, the data is
believed sufficient for most practical applications.
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conversion resonator and the wrapped resonator is defined as the
branching filter. See Fig. 4. The wrapped resonator of the branch-
ing filter is designed using equations (5) and (11). The addi-
tional requirement that the coupling apertures are to be separated by
one guide wavelength in the wrapped structure at resonance must
also be observed. This is controlled primarily by the width, ai, of the
wrapped resonator and the diameter of branching -filter mode-con-
version resonator established earlier. The thickness of the wall in
which the coupling apertures are placed is also significant.

The coupling aperture dimensions are determined by (18) and (16).
Finally, the magnitude of the normalized coupling reactance required
at the output of the wrapped resonator, (Xi/Ri) , is determined from
(10)

The lengths of the guide sections separating the mode-conversion
resonators is determined so as to provide an odd multiple of 90 electri-
cal degrees separation between resonators. The calculations required
are similar to those given by Marcatili for single -pole filters.' Experi-
mental work has shown that a minimum separation of 7 ir/2 radians
is required to avoid fringing field interaction.

Note that the two rejection resonators are not identical in that
their respective input -to -output guide diameter ratio must be different.
(See Appendix A.2). Three methods of realizing this result are possible:

(i) The resonator diameters can be made the same in which case
either a small step or taper is required in the diameters of the con-
necting lines. The small step case is indicated in Fig. 1 in exaggerated
form. In practice, the difference between the diameters b and b' is only
a few tenths of a percent.
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(ii) The input guide diameters can be made the same in which
case the resonator diameters are different.

(iii) Both input guide diameters and resonator diameters can be
different for the two.

V. EXPERIMENTAL RESULTS

The procedures outlined above were used to develop several channel -
dropping filters. All of the filters had the physical form of Fig. 1 with
six coupling apertures in the branching filter. The data of Fig. 3 was
used to compute the required dimensions of all mode conversion
resonators. In developing the filters, the first step was to construct
the branching and rejection filters separately. The measured char-
acteristics of the individual parts were then compared with theory
through use of the transfer coefficients of Appendix B. The first model
developed showed good correlation for the separate parts. However,
the complete filter characteristic was found to have less than the
theoretical bandwidth. Subsequent measurements indicated that the
separation between branching and rejection filters (4/ of Fig. 1) was
too small. This produced interaction between resonators which we be-
lieve produced the bandwidth discrepancy. It was found experi-
mentally that a minimum separation of 7 7r/2 radians was required to
inhibit this interaction.

Figs. 5 and 6 show the characteristics of two other filter models. The
theoretical and measured 3 dB bandwidths were, respectively, 1388
and 1210 mHz for the filter of Fig. 5 and 1130 and 1144 mHz for the
filter of Fig. 6.

The filter in Fig. 5 had resonator separations of

= 7r/2

5r/2.
Some interaction effects were noted between the rejection resonators.
The separation p" was increased to 7 r/2 for the filter of Fig. 6. Note
that the out -of -band return loss was much improved for the latter
arrangement.

The insertion loss of all filters tested was of the order of 0.5 dB at
mid -band.

The finite return loss observed at the circular waveguide input port
is believed to be due primarily to dimensional tolerance problems. For
example, the data of Fig. 3 indicates that a mode conversion resonator
having an input guide diameter of 0.493 inches and a cavity diameter
of 0.579 inches should have a 400 mHz bandwidth when resonant at



MILLIMETER WAVE FILTER STRUCTURE

20

cc

a. 16

(-101- rn
_J

O Z m
2

Z
cc cc w< 0 8
F- -J

z
cc L.) -

cr 4

0

cc 20

<
-J LI)

cr -1 16
(.9 1-1-1

Z
(r)^< (7)

uw120 w
_J

Z 0 8
0- cc0
CC Dwa 4

z
Z-

0
50.0 50.2 50.4 50.6 50.8 51.0 51.2 51.4 51.6 51.8 52.0 52.2 52.4 52.6 52.8

FREQUENCY IN GHz

2269

Fig. 5-Frequency response of experimental dropping filter (0' = 77r/2, tk" =57r/2).

51.7 GHz. A one mil decrease in the input guide diameter would result
in a 419 mHz bandwidth at 51.7 GHz. This rapid variation of electri-
cal characteristics with dimensions makes precision machining abso-
lutely necessary.

Another critical parameter was the width of the wrapped resonator.
The height of the wrapped resonator for the filters described was
0.074 inch. This resulted in a variation of resonant frequency of the
wrapped resonator of about 300 mHz per mil change in the resonator
width. Hence, extreme care was required in machining the branching
filter to obtain the desired resonant frequency.

Four filters with characteristics very nearly identical to those
shown in Fig. 6 were successfully incorporated into the circuitry of
the solid-state repeater described in the Introduction.=

VI. CONCLUSIONS

Marcatili's original work has been extended to permit realization of
two -pole channel -dropping filters using low -loss mode -conversion
resonators. The theory developed relates the mode -conversion resona-
tor parameters to those of a lumped constant prototype network. This
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step leads to a straightforward design procedure which permits rapid
determination of structural dimensions. The method can be readily
applied to multiple -pole structures once the exact form of the addi-
tional resonators required in the branching filter has been determined.
The latter might take the form of additional wrapped resonators or
additional resonators in the rectangular waveguide output.

The design procedure evolved has been shown to yield filters whose
characteristics compare well with theory. Dimensional tolerances have
been shown to be extremely important.
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APPENDIX A

Derivation of the Design Equations

A.1 Branching Filter

The branching filter consists of a TE01 - TE02 mode -conversion
resonator coupled to a wrapped rectangular waveguide resonator. The
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physical parameters of the latter are to be related to that portion of
the network of Fig. 2 consisting of the elements g0, g1, and g2. The
parameters of interest are the external Q's, Q of the two resonators
and the coefficient of coupling between them, k12. Using the notation
of Chapter 8, Ref. 4, there is obtained

= gogicofQ1, = wfQ (5)
-V2

= g2gocofQL = -V2 wc(2/, (6)

ki2 = -1 1
(7)04Q,Arii, coat,

where wf is the bandpass edge angular frequency of the prototype
network, and QL is the desired loaded Q of the diplexer. The subscripts
w and m refer to the wrapped resonator and the mode -conversion
resonator, respectively.

The next step is to derive the expressions for the external Q's and
coupling coefficient in terms of the physical parameters of the structure.

An analysis of Marcatili's results shows that

Qem QL (8)

where QL is given by Marcatili's Equation (70):
The external Q of the wrapped resonator, Qe, is obtained from the

defining equation

wo ax ,
2 awQ. - R,

where

(9)

coo = angular resonant frequency,
Xi = resonator reactance function, and
R, = coupled resistance.

The structure of Fig. 4(b) is used to evaluate X, and R, . The resulting
expressions when substituted in (9) yield

Zineo(Xg1o/X)2Q. - 4(X /R,) '
(to)

l

where

Zio = characteristic impedance of the wrapped guide,
Xgio = guide wavelength of the wrapped guide at resonance,
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Xi = reactance of the input iris,
R, = characteristic impedance of the input guide, and
00 = length of the wrapped structure in radians at resonance.

In general, 00 = Grp where p is the number of coupling apertures.
For loose coupling

Quo
2713(X 910/X)2- 2

where

c2 = 8(-X/RIZ10) (12)

is the power coupling coefficient between guides.
The coupling coefficient k12 is given in terms of the resonator param-

eters by

x12
k12 -

r:"Ci:72

where

X12 = coupling reactance,

-con dX ,
2 dce

-
- 2 do)

c.'0 01X2

= slope parameter of the first resonator, and

= slope parameter of the second resonator.

(13)

To evaluate 7c12 , requires calculation of X12 as it is related to the
physical structure. The slope parameters are known from the external
Q calculations. For loose coupling, X12 is related to the power coupling
coefficient between the TE02 waveguide and the TE,0 wrapped wave -
guide, I r,2I2, by,

)17;2
1112 12 97 7 (14)

where Z02 is the characteristic impedance of the TE02 waveguide.
If the coupling apertures are assumed sufficiently small so that the

electromagnetic field is essentially constant over the aperture, then
Bethe's small hole coupling theory can be applied to yield

18....2k2fy
Ag02

1 r12 12 - aid?' )1/4, 0
1112' (15)
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where

a = wrapped guide width,
b = wrapped guide height,
p = number of apertures,
k = 7.016,
G = 0.07075,
I? = radius of TE02 guide,

X,02 = TE02 guide wavelength,
X,lo = wrapped guide wavelength, and

= magnetic polarizability of the aperture.

The above assumes the apertures to be X010 apart in the wrapped
structure. The magnetic polarizability of the aperture is determined
from

M = - (2.73e A/X,,,)/1-
- (Xen/X) 1"

where

(16)

Mo = static polarizability of the aperture,
Xc. = cutoff wavelength of the dominant aperture mode,

t = aperture thickness, and
A = empirical constant.

Equation (16) permits use of Bethe's small hole theory for large aper-
tures.' Ref. 4 contains an excellent collection of data on M0 for various
types of apertures.

The above analysis when rearranged yields

/2Z02Z, n
k12 = I I -x2 cofQL 99

from which

(17)

R2 \flab )(s2 )./11 - i , (18)6pkG cokr, kn n Xyly2 002 ZIO ZO2

The latter then represents the relationship between the required
aperture dimensions and the characteristics of the filter.

i1.2 Rejection Filters

From Ref. 4, it is found that the loaded Q's of the rejection filters



2274 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967

must be

QL1 = / QL
QL2 = 2 "/ QL

(19)

(20)

where QL1 applies to the rejection filter nearest the branching filter.
The loaded Q's of the rejection filters in terms of the physical parameters
are given by Marcatili's Equation (139).1

APPENDIX B

Transfer Functions and Reflection Coefficients

The transfer coefficients and reflection coefficients, of the individual
diplexer networks are of interest since the experimental development
of a diplexer usually requires adjustments on the separate networks.
Figs. 7 and 8 show the individual networks with the ports of interest
identified. The analysis is straightforward yielding the following
results:

where

2

S" D

(1 - 2g1g2c0'2) jco'(g, -
Sbb -

1 -I- jg1w'
D

Sac -
2(1 - gig20/2)

D

2
Sbc =

(21)

(22)

(23)

(24)

D = (3 - 2gig2c0'2) j(g1 2g2)0/ (25)

Fig. 7 -Branching filter prototype.
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and

g3

Fig. 8- Rejection filter prototype.

2g3g40/2
Sde

2g3g4w'2) j(g., g Ow'

The above expressions were used in Section IV to compare theory
and experiment with an assumed frequency mapping function

WO W

(26)

(27)

Note that (27) represents a narrow bandwidth approximation to the
actual waveguide resonator frequency variation. The accuracy of the
result will probably be sufficient for filter bandwidths up to a few
percent. It should also be noted that Marcatili obtained good cor-
relation between theory and experiment using the approximate map-
ping function

co' = 2Q1(f fo)
fo

for filters having bandwidths of the order of one percent.' The latter
mapping function has been shown to yield good results in the fre-
quency range where

I 2(f - fo) I<<x0y
\X,702/

where A0 is the free space wavelength at frequency fo.
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Sheet Resistivity Measurements on
Rectangular Surfaces-General Solution for

Four Point Probe Conversion Factors

By M. A. LOGAN

(Manuscript received July 20, 1967)

Voltage -current ratios, measured using probes on the surface of a homo-
geneous conducting sheet, are converted to resistance per square by "con-
version factors". For rectangles, a closed form solution for these factors
is obtained by using the complex Jacobian sine -amplitude function

x + iy = sn [(u + iv), lc]

as a transformation.
After transformation, an insulated edge rectangle becomes a semi -

infinite sheet. Two conjugate current point images establish the boundary
condition. A double -sided rectangle becomes an infinite sheet directly,
needing no images.

New tables have been prepared for a pattern of probe center locations
uniformly distributed over the surface. The probe chosen for these tables
is a common arrangement having four equally spaced points on a line
parallel to the longer edge of the rectangle.

I. INTRODUCTION

Sheet resistivity measurements, made with probes on a bounded
surface, are converted to resistance per square by "conversion fac-
tors". These factors are a function of the geometry and relative
dimensions of the parts. For rectangular slices, tables of such factorsl. 2
are available for the special case of four equally spaced points sym-
metrically placed on a center line. These tables were computed by use
of convergent infinite series, derived for insulated edge and double -
sided sheets.

A general closed form solution has been developed for rectangles
with arbitrary point locations. The method is applicable to any other

2277
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surface shape which, through a conformal transformation, can be
converted into a semi -infinite plane. For a rectangle, the transforma-
tion is the complex Jacobian sine -amplitude function.

New tables have been computed for four equally -spaced probe
points in a line, but with the probe center at points distributed in a
uniform pattern over the rectangular surface. With these tables and
interpolation, determination of the sheet resistivity now can be made
anywhere on the rectangular surface, for either insulated -edge or
double -sided conduction. Of course, a new factor can be computed
directly for any point not tabulated, rather than calculated by inter-
polation. (The new tables begin on page 2292.)

The purpose of using the transformation is to change the boundary
of the actual slice to the X-axis of a semi -infinite plane, and the
points to equivalent locations in this semi -infinite sheet. Only two
mirror images are added when the slice has insulated edges; none
when double sided. This compares to the double infinity of images
needed for the former tables, even with the maximum possible sym-
metry assumed.

II. METHOD

A sketch of a rectangular slice having dimensions of a and d with
four arbitrarily located points is shown in Fig. 1. Without loss of
generality, this rectangle can be placed in a coordinate system with
the lower edge on the abscissa and the origin at the center of that
edge. With this choice and a linear normalization of dimensions to be
described later, the (w -plane) rectangle is transformed into a (z -plane)
semi -infinite sheet* of the same sheet resistivity by the complex sine -
amplitude function,

x iy = sn [(u ± iv) , k] (1)

After transformation, the rectangle occupies the entire upper semi -
infinite plane. The second part of Fig. 1 shows the locations of the
four transformed points. The perimeter of the rectangle becomes the
entire X-axis.

In order that the desirable logarithmic potential of a current source
in an infinite sheet' shall apply, it is necessary to complete the lower
half of the infinite plane with an attached conducting sheet of the
same sheet resistivity.

* Ref. 3, page 57, Example 3.
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Fig. 1-Complex sine -amplitude transformation of a rectangle.

2.1 Case .1: Insulated Edges
The first case described will be that of a transformed insulated edge

rectangle. The needed lower sheet may be connected, provided that
mirror current images for each real source or sink are included to
maintain the boundary condition. Fig. 2 shows the complete point
array. An outline for the computations to determine the conversion
factor will be given later.

2.2 Case 2: Double -Sided Conduction
The second case will be that of a double -sided or folded sheet. An

extra operation to the rectangle is performed before applying the same
transformation as used above. First cut three edges of the double -sided
rectangle, unfold and arrange in the coordinate system shown in Fig.
3. This places the upper surface exactly as the insulated edge sheet
had been placed in Fig. 1, but the unfolded connected under surface
extends the new single sheet into the like area below the abscissa.
Now when the sine -amplitude transformation is applied to this entire
surface, the rectangle in the upper half of the w -plane fills completely
the upper semi -infinite z -plane, as for the single -sided sheet, and the
lower rectangle now fills the lower semi -infinite plane. At the same
time, this reconnects the two surfaces along the X-axis, eliminating
the temporary effect of the cut. The four points again have been
transformed exactly as in the lower half of Fig. 1. However, as there
now is no boundary condition to fulfill, no images are necessary.
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L y
 P3
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Fig. 2 - Mirror images added with lower sheet to maintain insulated bound-
ary condition.

Thus, the formula will be even simpler than for the insulated edge case.
It is clear that this method can be applied to any surface which

can be transformed into a semi -infinite plane. For example, in Ref. 2,
this was done with a circle as a step in the proof that a double-sided
circular slice behaved exactly as if it were an infinite sheet. This
simple result does not apply to a double -sided rectangle because of the
singularities of the sn-function.

III. LOGARITHMIC POTENTIAL

As mentioned earlier, the method used for derivation of the con-
version factors is based on use of a conformal transformation leading

P4®

 P3

,P2

® Pi

W - PL ANE

UNFOLDED
UNDER

SURFACE

Fig. 3 - Cut and unfolded double sided conduction sheet.
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to an infinite sheet. In an infinite sheet, a current source gives rise to
the simple logarithmic potential

p,- = - in 7., (2)
7r

where io is the potential, I the current, ps the sheet resistivity, and r
the distance from the current source. For a sink, the sign is reversed. A
sketch of a surface with a current source P1 is drawn in Fig. 4. Two
points, P2 and P3, have been shown, representing the "voltage points"
of a four -point probe. A resistivity measuring set determines their
voltage difference. The voltage difference is

- (P3 = V = I P, 1-13
(3)Lir 7'12

There is a similar expression for each current source or sink. The
simple addition, one for each current source or sink is the solution
when summing the effects of any number of points. This is because
superposition applies.

IV. CONVERSION FACTOR

The potential difference between the two voltage points (P.) and P3)
due to all real and image current source points is:

, 1.13
,.,

1V + =
I p

(ln - -I- 111
-7-3 + ) (4)

27 l'i.., ri2

Z N/ \/ \
(P2 - 9' ,--- --- ----- \

% \
/ / ri2

p2

l 1 Pi + 1\

\ I 11 )9'3- Sr 0

Al

v= SP2 T.3 /

\
I /\ 1 I /

N V_-- P3

Fig. 4 -Logarithmic potential difference.

where each radius marked by a prime is the distance from an image
point to a voltage point.
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Likewise for all sinks:

I p. r24 /*4
V_ = In +2r r34 r34

(5)

4.1 Case 1: Insulated Edges
For a rectangle with insulated edges, there are two real current

points 1, 4 and two mirror image current points 1', 4'. Adding the two
equations above:

V = In
LT-

(ri3
24

ri2 \r12/r34 7)34

(6)

Rearranging

where

pa = (T) X C.F., (7)

C.F. = 27r (8)

In [(ri3)(/3)(24)(91
ri2 ri2 r34 r;.1

4.2 Case 2. Double -Sided Sheet
For a double -sided sheet, there are no images. Clearly the conversion

factor can be written directly from (8) above simply by omission of
the prime terms:

C.F. - 2r

In Lv,2)(7.--,..::)]

(9)

V. JACOBIAN ELLIPTIC FUNCTION, Sll W

A description for each of the steps needed for a determination of a
conversion factor for a rectangular surface, with arbitrary point loca-
tions, has been given. Involved is the use of the complex sine -ampli-
tude function, sn w. The next two sections with Appendices A, B, and
C, will briefly present all needed material for determination of this
function.

The more general but possibly more familiar Schwarz-Christoffel
transformation relates a semi -infinite plane and any polygon. The
relation is an integral expression between points in the w and z planes.
Equation (10) is the form for a rectangle3 shown in Fig. 1. In this form
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it may be considered as one of a transform pair, whose inverse is the
equivalent sine -amplitude function, sn w. The pair

dz
(10)

w = fo V(1 - z2)(1 - k2z2)

z = sn (w, k). (11)

The Schwarz-Christoffel transformation is a directly written ex-
pression which serves to identify the sine -amplitude function (11)
as a solution for the present problem.

Equation (11) is more convenient for computations to determine
where a transformed point from a rectangle in the w -plane appears in
the z -plane. This is the complex sine -amplitude function, which is
related to elliptic functions. Ref. 7 has charts of this function.

Tables are in Ref. 8. However, these are double entry tables since
the value of an elliptic function depends not only on the argument, but
also on the modulus k. Interpolation between tabulated values is
laborious and subject to error. Fortunately, the functions are repre-
sentated by rapidly converging series.

VI. ELLIPTIC FUNCTION PARAMETERS

There are five elliptic function parameters k, k', K, K', K'/K and
two auxiliary nomes q and q10, only one of which is independent. For
the coordinate choice of Fig. 5, the relation which can be identified
through similarity of the rectangles is

K' 2(yl
K V11

Starting with this, Appendix A defines the nomes and compiles a list
of rapidly converging series for the other parameters.

Appendix B tabulates the real sn, cn, and do functions, using the
very rapidly converging Theta series.5 Finally, Appendix C defines
the complex sine -amplitude function (11) , (38) in terms of the real
functions of Appendix B.6

VII. COM P UTAT ION -GEN ERAL CASE

(12)

A summary of the steps for the general case of arbitrary point
locations follows:

Step 1: Determine the elliptic function parameters using (20)
through (26) starting with the side length ratio a/d of the rectangle.
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ACTUAL RECTANGLAR
SHEET. TO NORMALIZE,

MULTIPLY ALL DIMENSIONS
BY THE FACTOR 2K/d

LK'
W=U+.1..V

PLANE

a K'
d 2K

-K

NORMALIZED
RECTANGLE

Fig. 5 - The initial linear transformation.

Step 2: Transform the points in the rectangle to their place in a
normalized rectangle, such as Fig. 5, by linear multiplication of all

dimensions with (2K/d).
Step 3: Compute the real elliptic functions of (31) through (36)

for each probe point.
Step 4: Transform each of the normalized probe point locations

with the complex sine -amplitude function, (38). When the rectangle
has insulated edges, add complex conjugate mirror image current
points, as in Fig. 2.

Step 5: Determine the distances from each current point to the
voltage points.

Step 6: Substitute in (8) when edges are insulated, or (9) when the
slice is two-sided for the conversion factor.

VIII. COMPUTATION-FOUR EQUALLY SPACED PROBE POINTS

New tables have been computed for a commonly used four -point in -

line probe, having equal point spacings. Fig. 6 shows the probe on the
rectangle. The dimensions necessary to determine a particular con-
version factor, are defined in the figure as a, b, c, d, s, and t. The letters
a and d represent the sides of the rectangle, and s the point spacing.
The slice thickness t is needed for double -sided conduction. With
double -sided conduction (d + t) and (a + t) are used for d and a, re-
spectively. There are two new dimensions, b and c. These relate the
center of the probe to the center of the rectangle.
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Fig. 6-General arrangement for the four point probe on a rectangular sheet.

A FORTRAN computer program has been written by S. G. Student,
Jr. The computer program and the tables use a dimensionless notation,
involving only ratios of these lengths. The notation is shown in Fig. 7
where thirty probe point centers chosen for the tables have been
plotted. The number of the center of the probe point location is the

c/d OR c/(d+t)

0 0.1 0.2 0.3 0.4 0.5

0.425+
26

+
27 28 29 30+

19 20 2+ 23 24
+ + + + + 0.3

TABLE
'3++ 1 +

15 16 17 18
+ + + - 0.2 b/a OR

b/(a+t)
7+ 8+

-r
9, 10+ 11+ 120.1

1 2 3 4 5 6
+ + + -F + 0

Fig. 7- Plot of the 30 locations selected for the probe center dimensionless
notation.
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same as that of the corresponding table. Hence this figure also serves
as an index for the tables.

The probe center locations have been located at the intersections of
b/a = 0, 0.1, 0.2, 0.3, and 0.4 with c/d = 0, 0.1, 0.2, 0.3, 0.4, and 0.5.
There is a restriction for relative point spacing d/s to keep the four
points on the sheet. An expression for this restriction is

a 3s
b

which may be rearranged to be

3(1)
\s/ = (a/d)[1. - 2(b/a)]

The tables are for probe center points shown only in one quarter. Be-
cause of symmetry, these tables apply to all quarters. That is, b can
be either above or below the horizontal center line and c can be either
right or left of the vertical center line.

The four -point locations before normalization arc

P, = c

P2 = C

Pa = c

(13)

(14)

P4 = C b 2s) 

For a given a/d, the elliptic parameters are computed for Step 1. The
rectangular coordinates of the above four points are normalized by
multiplication by (2K/d). The four normalized points then are

71i + illt]

U2 + iv2

u3 iva

u, + iv,

05USK

0 Sv <K'.
(15)

This completes Step 2. For Step 3, compute the real elliptic functions,
and with Step 4, determine the four real point locations in the semi-
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infinite upper half plane.

x1 + iYi = sn iv1], k)

x2 + iy2 = sn au, -1- iv2], k)

x3 + iy8 = sn + iv.], k)

x, iy, = sn ([144 + iv4], k).

The mirror images are the conjugates of the first and last lines:

x1 - iyi

x4 iy4

Then for Step 5 the distance equations are

r12 = (1 x2 - x 1 12 I Y2 -

r13 = (1 x3 - xl 12 + I y3 - 1/1 12)4

1.24 = (1 X4 X2 12 + 1 y4 Y2 12)1

1.34 = (1 X4 X9 12 I Y4 Y3 12)1

If the sheet is insulated then the image distances are

r32 = (I x2 - x1 12 + I //2 Yi

1.33 = (I x3 - xl 12 + I y3 + y, 12)4

(16)

(17)

(18)

(19)

7.24 = (I X4 - X2 12 + 1 1/4 + Y2 12)1

= (I x4 - X3 12 + I Y4 + Y3 12)1 

Finally, for Step 6, substitute these values in (8) and (9) for the
conversion factors.

IX. EDGE EFFECT

The solution for two-sided conduction does not include two effects
which actually are present. First, the equivalent flattened surface de-
fined by using (d+t) and (a+ t) for the outside dimensions includes,
at the four corners, small square pieces of size t by t, which actually
are not present. Second, under every edge there is a region of increased
conductivity because the diffused impurity entered through two sur-
faces. This extra diffusion causes the equivalent skin thickness both
to be increased and to be lower in bulk resistivity under the edge.
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Thus, there exists "frames" of lower resistivity surrounding the
surface being tested. It is believed the coefficients may be in error and
too low when points are close to an edge of a two-sided slice. This
effect has neither been evaluated nor included in the tables.

X. VERIFICATION

As described above, Table I has previously been determined from
infinite series obtained by use of image arrays.* There are some dis-
crepancies in the fourth and fifth significant figures. A few of the
earlier factors have been recalculated using the series method. For
each case the error was in the prior table.

From Tables I, VII, XIII, XIX, and XXV, some limiting double
sided cases may be determined by appropriate changes of the di-
mensionless parameters. For instance, consider an insulated edge
surface with the points on the vertical bisector. Now fold the sheet
on this line, placing the right side say, underneath. Note that because
of the original symmetry, at every point where the edges now come
together, the potentials before connection were identical. Therefore,
when connected to form a two-sided sheet, no change in current occurs,
and the V/I ratio at the four points is unaltered. Thus, the double -
sided sheet with the points on one edge made by folding, has the same
numerical conversion factors as the original single sheet with the
points in the center when the appropriate (a/d) and (d/s) parameters
are identified.

Two examples: b/a c/d d/s a/d C.F.
Single Sheet 0 0 3 1 2.4562

Double -Sided Sheet 0 0.5 1.5 2 2.4562

Single Sheet 0 0 3 2 2.7000

Double -Sided Sheet 0 0.5 1.5 4 2.7000

The same type of identification can be made for other values of b/a.
Some limiting insulated edge checks also can be made from Tables

I, VII, XIII, XIX, and XXV, through appropriate changes to the
dimensionless parameters but this time halving the conversion factor.
These new sheets are made by cutting the original sheet along the
vertical bisector. Because of vertical symmetry, no current crossed
this line before the cut and therefore the field pattern is unaffected
after the cut. As before (a/d) and (d/s) are doubled and halved, re-
spectively. However, now all the current flows in half the area. This

* The tables begin on page 2292.
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causes all potential differences to be
has not been affected, the conversion

doubled. As the sheet resistivity
factor therefore is just half.

Two examples: b/a c/d d/s a/ d C.F.
Single Sheet 0 0 5 1 3.5098 4- 2

Single Sheet 0 0.5 2.5 2 = 1.7549

Single Sheet 0.9 0 3 2 2.6647 ÷ 2
Single Sheet 0.2 0.5 1.5 4 = 1.3323

For an intermediate probe center location, a chart of the complex
sine -amplitude function for (a/d) = 1.2173, included with Ref. 7,
can be read to about three -figure accuracy. Several conversion factors
not given in these tables were verified this way.

Finally, when the two current points are on the top and bottom
edges of a slice, the double -sided conversion factor is twice that for
the insulated edge sheet. This is because exactly half the current
flows across the back when double sided.

APPENDIX A

Elliptical Function Parameters
The elliptic function parameters are related to the rectangle through

the identity

2U)*
(20)

This relation uniquely determines the other elliptic function coefficients.
It is convenient to define the nomes:

q = exp (-7r I-KA (21)

( -7r k -K,) (22)

Then the modulus:
(12 (112 tin(n+1)

L1 + 2(q q9 ± q"' .)

The complementary modulus:

k' = V 1 - k2
[1 - 2q 2q4 - 2q°  2(- 1)"q"' -1- 12

1 ± 2(q q's + q"' ± )

(2:3)

(24)
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The complete elliptic integral:

K=
J -

dt

t2)(1 -

= [1 + 2q + 2q4 2(1 + 2q"' +  12.

The complementary complete elliptic integral is

dt

Jo V (1 - t2)(1 - k" 12)

=1 [1 + 2q1 + 26'2 +  12

= In7rKqi = 2K(;) (26)

so that K' is the same function of the complementary modulus k' as
K is of k.

APPENDIX B

Real Elliptic Functions
The elliptic functions can be expressed in terms of certain auxiliary

functions called the Theta functions (Ref. 5, p. 471). The following
definitions and notations are chosen:

(25)

Then

K' =

00(u/2K , q) = 1 + 2 (-1)nqn1 cos 2n 71.1-1 (27)
2Kn=1

co r1/
2--k0,(u/2K, q) = 2q1 E (-1)n qn(n+1) sin (2n + 1) (28)

00

02(u/2K, q) = qn(n+" cos (2n + 1) 27i (29)

03(u/2K, q) = 1 + 2 E qnI cos 2n 21- (30)
.-1 2K

(u , k) - 1 01(u/2K, q)
sn

Vic 00(u/2K, q)
(31)
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en (u, k) = re 02(u/2K, q)
k 00(u/2K, q)

= - sn2 (u, k)

, 03(u/2K, q)
dii u, k) = 00(u/2K,

= - k2 sn2 (u, k).

(32)

(33)

For a complex variable a second set for v will be needed, obtained by
permuting the values of q and q1, k and k', and K and K', in (27)
through (30).

sn (v, k') - 1 0,(v/2K' , q1)
(34)

k' 00(v/2K , q1)

v2K' q1),cn (v, k') = 02(

k' o(k' , q1)

= 1/1 - sn2 (v, k') (35)

dn (v, k') = 02(v/2K' , q1)Vic
00(v/2K , q1)

= - (k' sn (v, k'))2. (36)

APPENDIX C

Complex Sine -Amplitude Elliptic Functions

For brevity we put°

s = sn (u, k) s, = sn (v, k')

c = cn (u, k) c, = cn (v, k') (37)

d = dn (u, k) d, = dn (v, k').
Note that the complementary modulus k', etc., go with the suffix 1.
Then

x iy = sn [(u + iv), k]
(38)

s d, is ds,
= k2s282,

A substitution, to avoid a negative sign in the denominator, has been
made in (38) from page 20 of Ref. 8.

(References are listed on page 2322.)



2292 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967

TABLE I -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

cld = O.

a/d = 1.200

b/a = 0

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75

1.4787
1.7197

0.9994
1.2468
1.4893
1.7239

2.00 1.8978 1 9454 1.9475

2.50 2.2244 2.3342 2 3532 2.3541

3.00 2.4662 2.6298 2.6897 2.7000 2.7(105

4.00 3.1134 3.1927 3.2197 3.2244 3.2246

5.00 3.5098 3.5563 3.5721 3 5749 3.5760

7.50 4.0089 4.0282 4.0347 4.0358 4.0358

10.00 4.2208 4.2314 4.2350 4.2356 4.2356

15.00 4.3878 4.3925 4.3940 4.3943 4.3943

20.00 4.4498 4.4534 4.4533 4.4534 4.4534

40.00 4.5114 4.5120 4.5123 4.5123 4.5123

co 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d +t a +t
1.000

c/(d + 1) =

a +t
1.200

0. b/(a +

a +t
1.500

= 0

a +t
= 2.000

a +t
= 4.000

S
=

d +t
=

d +t
=

d +t d +t d +t

1.00
1.25

1.9497
2.3549

1.50 2.9575 2.7010

1.75 3.1508 2.9887

2.00 3.7956 3.3381 3.2248

2.50 4.4488 3.8987 3.6409 3.5751

3.00 4.9123 4.3701 4.0231 3.8545 3.8109

4.00 4.6477 4.3823 4.2023 4.1123 4.0888

5.00 4.5791 4.4183 4.3068 4.2505 4.2357

7.50 4.5415 4.4735 4.4254 4.4008 4.3943

10.00 4.5353 4.4976 4.4708 4.4571 4.4534

15.00 4.5329 4.5164 4.5045 4.4985 4.4969

20.00 4.5325 4.5233 4.5166 4.5132 4.5123

40.00 4.5324 4.5301 4.5284 4.5276 4.5273

co 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE II -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

rid = 0.100 b/a =0

a/d = 1.200 a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25

0.9970
1.2407

1.50 1.4566 1.4779
1.75 1.69:35 1.7062
2.00 1.8529 1.9143 1.9233

2.50 2.1637 3.2801 2.3124 2.3182
3.00 2.3911 2.5601 2.6:306 2.6525 2.6568
4.00 3.0388 3.1222 3.1600 3.1732 3 1761
5.00 3.4414 3.4938 3.5186 3.5278 3.5298
7.50 3.9638 3.9876 3.9995 4.0041 4.0051

10.00 4.1913 4.2050 4.2119 4.2146 4.2153
15.00 4.3731 4.3793 4.3825 4.3838 4.3841
20.00 4.4411 4.4447 4.4465 4.4472 4.4474
40.00 4.5091 4.5100 4.5105 4.5107 4.5107

00 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d t a -1-t
1.000

c/(d -Ft) =

a + l
1.200

0.100 b/(a 0

a +
1.500

= 0

a +t
2.000

a +t
S

=
d +1 d +t

=
r1 +t

=
d +t

= 4.000
d +t

1.00 1.9493
1.25 2.3548
1.50 2.9132 2.7009
1.75 3.1216 2.9887
2.00 3.7058 3.3173 3.2247

2.50 4.3275 3.8442 3.6286 3.5751
3.00 4.7822 4.2873 3.9864 3.8463 3.8109
4.00 4.5750 4.3364 4.1823 4.1079 4.0848
5.00 4.5327 4.3891 4.2942 4.2477 4.2357
7.50 4.5209 4.4606 4.4198 4.3996 4.3943

10.00 4.5237 4.4903 4.4677 4.4564 4.4534
15.00 4.5278 4.5132 4.5032 4.4982 4.4969
20.00 4.5296 4.5215 4.5158 4.5130 4.5123
40.00 4.5316 5.5296 4.5282 4.5275 4.5273
m 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE III -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/8 a/d = 1.000

c/d = 0.200 b/a = 0

aid = 1.200 a/d = 1.500 aid = 2.000 a/d = 4.000

1.00
1.25

0.9905
1.2243

1.50 1.3971 1.4466

1.75 1.6229 1.6565
2.00 1.7297 1.8285 1.8539

2.50 1.9913 2.1294 2.1947 2.2119

3.00 2.1964 2.3604 2.4601 2.5096 2.5227

4.00 2.8111 2.9100 2.9757 3.0090 3.0179

5.00 3.2254 3.2962 3.3444 3.3689 3.3754

7.50 3.8117 3.8496 3.8758 3.8891 3.8926

10.00 4.0882 4.1116 4.1277 4.1359 4.1381

15.00 4.3202 4.3314 4.3392 4.3431 4.3441

20.00 4.4098 4.4163 4.4208 4.4231 4.4237

40.00 4.5009 4.5026 4.5037 4.5043 4.5045
. 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d+t a+t
c/(d + t) =

a + t
1.200

0.200 b / (a + t) = 0

a t a + t
1.500 2.000

a +t
4.000

S
= 1.000d+t =d+t =

d + t
=

d + t
=

d +t

1.00 1.9482

1.25 2.3544

1.50 2.7943 2.7007

1.75 3.0440 2.9885

2.00 3.4595 3.2622 3.2246

2.50 3.9827 3.6963 3.5963 3.5750

3.00 4.3928 4.0532 3.8872 3.8248 3.8109

4.00 4.3589 4.2077 4.1282 4.0962 4.0888

5.00 4.3951 4.3075 4.2600 4.2403 4.2356

7.50 4.4601 4.4247 4.4048 4.3964 4.3943

10.00 4.4895 4.4702 4.4593 4.4546 4.4534

15.00 4.5126 4.5042 4.4994 4.4974 4.4969

20.00 4.5211 4.5164 4.5138 4.5126 4.5123

40.00 4.5295 4.5284 4.5277 4.5274 4.5273
e 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE IV -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.30(1

aid = 1.200

b /a = 0

a /d = 1.500 aid = 2.000 a Id = 4.000

1.00
1.25

0.9823
1.2027

1.50 1.3201 1.4040
1.75 1.5299 1.5868
2.00 1.5640 1.7110 1.7534

2.50 1.7446 1.9197 2.0193 2.0470
3.00 1.8930 2.0691 2.2046 2.2797 2.3002
4.00 2.4394 2.5629 2.6564 2.7067 2.7203
5.00 2.8395 2.9345 3.0053 3.0428 3.0528

7.50 3.4871 3.5438 3.5852 3.6067 3.6124
10.00 3.8453 3.8825 3.9094 3.9233 3.9270
15.00 4.1837 4.2027 4.2163 4.2234 4.2252
20.00 4.3258 4.3371 4.3452 4.3494 4.3505
40.00 4.4779 4.4809 4.4830 4.4841 4.4844

co 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d +1 a -ft
1.000

ci (d -f t) =

a +I
1.200

0.300 b/(a + t) = 0

a +1 a + t
1.500 - 2.000

a t

4.000
S

=
d + 1

= =
d +1 d -Ft

=
d +1

1.00
1.25

1.9469
2.3538

1.50 2.6402 2.7004
1.75 2.9453 2 9883
2.00 3.1281 3.1929 3.2245

2.50 3.4892 3.5019 3.5558 3.5749
3.00 3.7860 3.7237 3.7579 3.7979 3.8108
4.00 4.0283 4.0290 4.0583 4.0817 4.0887
5.00 4.1864 4.1949 4.2160 4.2312 4.2356
7.50 4.3685 4.3753 4.3855 4.3924 4.3943

10.00 4.4382 4.4426 4.4485 4.4523 4.4534
15.00 4.4899 4.4920 4.4946 4.4964 4.4969
20.00 4.5083 4.5096 4.5111 4.5120 4.5123
40.00 4.5263 4.5266 4.5270 4.5273 4.5273

4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE V - FOUR POINT PROBE CON VERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

dIS ald = 1.000

c/d = 0.400 b/a = 0

a/d = 1.200 a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25

0.9754
1.1841

1.50 1.2542 1.3657

1.75 1.4485 1.5217

2.00 1.4153 1.6026 1.6552

2.50 1.5066 1.7206 1.8386 1.8708

3.00 1.5715 1.7774 1.9336 2.0171 2.0395

4.00 2.0054 2.1399 2.2375 2.2882 2.3016

5.00 2.3020 2.3998 2.4695 2.5052 2.5146

7.50 2.8301 2.8871 2.9269 2.9471 2.9524

10.00 3.2128 3.2521 3.2793 3.2930 3.2966

15.00 3.7128 3.7353 3.7508 3.7586 3.7607

20.00 3.9938 4.0082 4.0181 4.0231 4.0244

40.00 4.3709 3.3752 4.3781 4.3796 4.3800
co 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d -Ft a -Ft
1.000

c/(d + t) =

a -I- t
1.200

0.400 b/(a -I- t) = 0

a +1 a +1
1.500 2.000

a +t
4.000

S
=

d +t
=

d +
=

d +1
=

d +t
=

d +1

1.00
1.25

1.9458
2.3534

1.50 2.5085 2.7001

1.75 2.8631 2.9882

2.00 2.8307 3.1356 3.2244

2.50 3.0133 3.3337 3.5225 3.5749

3.00 3.1430 3.4163 3.6475 3.7759 3.8108

4.00 3.6924 3.8660 3.9990 4.0698 4.0887

5.00 3.9774 4 0930 4.1788 4.2237 4.2356

7.50 4.2778 4.3309 4.3693 4.3891 4.3943

10.00 4.3876 4.4177 4.4394 4.4505 4.4534

15 00 4.4675 4.4810 4.4906 4.4956 4.4969

20.00 4.4958 4.5034 4.5088 4.5116 4.5123

40.00 4.5232 4.5251 4.5264 4.5271 4.5273
on 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE VI FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.500 b/a = 0

a/d = 1.200 aid = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25

0.9727
1.1766

1.50 1.2281 1.3500
1.75 1.4155 1.4941
2.00 1.3539 1.5567 1.6122

2.50 1.4025 1.6333 1.7549 1.7874
3.00 1.4201 1.6434 1.8019 1.8837 1.9054
4.00 1.7716 1.8994 1.9878 2.0326 2.0444
5.00 1.9429 2.0256 2.0821 2.1104 2.1178
7.50 2.1192 2.1564 2.1814 2.1939 2.1972

10.00 2.1828 2.2038 2.2179 2.2249 2.2267
15.00 2.2289 2.2382 2.2445 2.2476 2.2484
20.00 2.2452 2.2504 2.2540 2.2557 2.2562
40.00 2.2609 2.2622 2.2631 2 2635 2.2637

00 2.2662 2.2662 2.2662 2.2662 2.2662

Double Sided Sheet

d +1 a +1
1.000

c/(d +1) =

a +1
1.200

0.500 b/(a 4- 1)

a +1
1.500

= 0

a +t
2.000

a +
=

d
=

d +1
=

d + 1
=d+1 = 4.000

d +

1.00
1.25

1.9454
2.3532

1.50 2.4562 2.7000
1.75 2.8311 2.9881
2.00 2.7078 3.1134 3.2244

2.50 2.8050 3.2666 3.5098 3.5749
3.00 2.8403 3.2868 3.6038 3.7674 3.8108
4.00 3.5432 3.7987 3.9757 4.0652 4.0887
5.00 3.8859 4.0511 4.1641 4.2208 4.2356
7.50 4.2385 4.3127 4.3629 4.3878 4.3043

10.00 4.3657 4.4076 4.4358 4.4498 4.4534
15.00 4.4578 4.4765 4.4890 4.4952 4.4968
20 00 4.4903 4.5009 4.5079 4.5114 4.5123
40.00 4.5218 4.5245 4.5262 4.5271 4.5273

00 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE VII -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S aid = 1.000

c/d = 0.

aid = 1.200

b/a = 0.100

1.500 aid = 2.000 aid = two

1.00
1.25
1.50
1.75

0.9993
1.2467
1.4893
1.7239

2.00 1.9341 1.9475

2.50 2.2859 2.3487 2.3541
3.00 2.6639 2.6976 2.7005
4.00 3.0068 3.1482 3.2082 3.2233 3.2246
5 00 3.4487 3.5305 3.5654 3.5742 3.5750
7.50 3.9840 4.0176 4.0319 4.0355 4.0358

10.00 4.2072 4.2256 4.2335 4.2355 4.2356
15.00 4.3818 4.3899 4.3934 4.3942 4.3943
20.00 4.4464 4.4510 4.4529 4.4534 4.4534
40.00 4.5106 4.5117 4.5122 4.5123 4.5123

co 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d+t a -Ft
1.000

c/ (d + t) = 0.

a + t
1.200

b / (a + t) =

a + t
- 1.500

0.100

a + t
= 2.000

a+ t
4.000

S
=

d + t
=

d + t d +t d +t
=

d +t

1.00
1.25
1.50
1.75

1.9609
2.3594
2.7034
2.9903

2.00 3.4342 3.2259

2.50 4.0306 3.6978 3.5757
3.00 4.1124 3.8925 3.8113
4.00 4.7200 4.4504 4.2513 4.1330 4.0890
5.00 4.6254 4.4616 4.3378 4.26:35 4.2358
7.50 4.5621 4.4926 4.4390 4.4065 4.3944

10.00 4.5468 4.5083 4.4754 4.4603 4.4535
15.00 4.5:381 4.5211 4.5079 4 4999 4.4969
20.00 4.5354 4.5259 4.5185 4.5140 4.5123
40.00 4.5331 4.5307 4.5289 4.5277 4.5273

co 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE VIII -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

dIS a/d = 1.000

c/d = 0.100

a/d = 1.200

b/a = 0.100

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75

0.9964
1.2405
1.4778
1.7061

2.00 1.8996 1.9232

2.50 2.2323 2.3047 2.3181
3.00 2.6030 2.6473 2.6568
4.00 2.9402 3.0792 3.1459 3.1701 3.1760
5.00 3.3844 3.4678 3.5095 3.5256 3.5298
7.50 3.9400 3.9762 3.9952 4.0030 4.0051

10.00 4.1780 4.1985 4.2094 4.2140 4.2153
15.00 4.3672 4.3764 4.3814 4.3835 4.3741
20.00 4.4378 4.4430 4.4458 4.4471 4.4474
40.00 4.5083 4.5096 4.5103 4.5106 4.5107

co 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

c / (d + t) = 0.100 b/(a + t) = 0.100

d 1-1 a +t
1.000

a +t a t
1.500

a +t
2.000

t
= 1.200 = 4.000

S
=

d
=

d + t
=

d + t+ d + t

1.00
1.25
1.50
1.75

1.9584
2.3584
2.7029
2.9899

2.00 3.4003 3.2256

2.50 3.9670 3.6766 3.5756
3.00 4.0671 3.8780 3.8112
4.00 4.6529 4.4024 4.2253 4.1250 4.0890
5.00 4.5813 4.4302 4.3211 4.2584 4.2358
7.50 4.5420 4.4784 4.4315 4.4043 4.3944

10.00 4.5354 4.5003 4.4742 4.4590 4.4535
15.00 4.5330 4.5175 4.5060 4.4993 4.4969
20.00 4.5325 4.5239 4.5175 4.5137 4.5123
40.00 4.5324 4.5302 4.5286 4.5277 4.5273

w 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE IX -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.200

a/d = 1.200

b/a = 0.100

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75

0.9885
1.2235
1.4461
1.6562

2.00 1.8043 1.8537

2.50 2.0797 2.1788 2.2117

3.00 2.4261 2.4976 2.5226

4.00 2.7315 2.8679 2.9541 3.0010 3.0178

5.00 3.1765 3.2675 3.3288 3.3630 3.3753

7.50 3.7885 3.8348 3.8674 3.8859 3.8926

10.00 4.0744 4.1026 4.1226 4.1340 4.1381

15.00 4.3138 4.3271 4.3367 4.3422 4.3441

20.00 4.4061 4.4138 4.4193 4.4225 4.4236

40.00 4.4999 4.5019 4.5033 4.5042 4.5045

co 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d +1 a + t

c/(d + t) = 0.200

a + t
= 1.200

d + t

b/(a +

a + t
= 1.500

d +1

= 0.100

a + t
= 2.000

d + t

a + t
= 4.000

S
= 1.000

d + t d + t

1.00 1.9518

1.25 2.3558

1.50 2.7014

1.75 2.9890

2.00 3.3059 3.2250

2.50 3.7832 3.6188 3.5752

3.00 3.9378 3.8389 3.8110

4.00 4.4425 4.2593 4.1522 4.1035 4.0888

5.00 4.4431 4.3373 4.2743 4.2448 4.2357

7.50 4.4790 4.4366 4.4107 4.3983 4.3943

10.00 4.4997 4.4767 4.4625 4.4556 4.4534

15.00 4.5170 4.5070 4.5008 4.4978 4.4969

20.00 4.5236 4.5180 4.5145 4.5129 4.5123

40.00 4.5301 4.5287 4.5279 4.5275 4.5273

CO 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE X - FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulnted Edge Sheet

d/S a/d = 1.000

c/d = 0.300

a/d = 1.200

b/a = 0.100

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75

0.9786
1.2012
1.4031
1.5863

2.00 1.6736 1.7530

2.50 1.8593 1.9946 2.0467
3.00 2.1594 2.2613 2.3000
4.00 2.3720 2.5147 2.6260 2.6945 2.7201
5.00 2.7913 2.8983 2.9825 3.0337 3.0527
7.50 3.4592 3.5226 3.5720 3.6016 3.6124

10.00 3.8270 3.8687 3.9008 3.9200 3.9270
15.00 4.1744 4.1957 4.2120 4.2217 4.2252
20.00 4.3203 4.3329 4.3426 4.3484 4.3505
40.00 4.4764 4.4798 4.4824 4.4839 4.4844

co 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d+t a+t
c/(d + t) = 0.300

a+t
1.200

b/(a + t) =

a+t
= 1.500

0.100

a+t
2.000

a+t
4.000

S
= 1.000d+t =

d + t d+ t =
d +t =d+ t

1.00
1.25
1.50
1.75

1.9435
2.3525
2.6996
2.9878

2.00 3.1760 3.2242

2.50 3.5083 3.5422 3.5747
3.00 3.7510 3.7879 3.8107
4.00 4.0782 4.0364 4.0499 4.0759 4.0887
5.00 4.2066 4.1950 4.2096 4.2274 4.2356
7.50 4.3730 4.3736 4.3823 4.3907 .4.3943

10.00 4.4400 4.4413 4.4466 4.4514 4.4534
15.00 4.4904 4.4913 4.4938 4.4959 4.4968
20.00 4.5086 4.5092 4.5106 4.5118 4.5123
40.00 4.5264 4.5265 4.5269 4.5272 4.5273

a 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XI -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.400

a/d = 1.200

b/a = 0.100

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75

0.9703
1.1820
1.3646
1.5209

2.00 1.5537 1.6547

2.50 1.6423 1.8091 1.8705

3.00 1.8792 1.9966 2.0393

4.00 1.9280 2.0841 2.2048 2.2759 2.3015

5.00 2.2469 2.3605 2.4465 2.4966 2.5145

7.50 2.7986 2.8648 2.9140 2.9423 2.9523

10.00 3.1911 3.2368 3.2705 3.2898 3.2966

15.00 3.7005 3.7267 3.7458 3.7568 3.7606

20.00 3.9858 4.0027 4.0150 4.0219 4.0244

40.00 4.3686 4.3736 4.3772 4.3792 4.3800
co 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d +t a +t

c/(d +0 = 0.400

a +t
1.200

b/(a +0 =

a +t
1.500

0.100

a +t
2.000

a +t
4.000

S
=1.000

d +t
=

d +I
=

d +t
=

d +t
=

d +t

1.00
1.25
1.50
1.75

1.9367
2.3498
2.6982
2.9869

2.00 3.0566 3.2235

2.50 3.2235 3.4755 3.5744

3.00 3.5696 3.7444 3.8104

4.00 3.6212 3.7988 3.9552 4.0526 4.0885

5.00 3.9241 4.0485 4.1508 4.2129 4.2355

7.50 4.2518 4.3106 4.3569 4.3843 4.3943

10.00 4.3726 4.4063 4.4324 4.4478 4.4534

15.00 4.4607 4.4759 4.4875 4.4944 4.4968

20.00 4.4919 4.5005 4.5071 4.5109 4.5123

40.00 4.5222 4.5244 4.5260 4.5270 4.5273
. 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XII -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S aid = 1.000

cld = 0.500

a/d = 1.200

b/a = 0.100

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75

0.9670
1.1744
1.3488
1.4933

2.00 1.5034 1.6116

2.50 1.5453 1.7243 1.7871
3.00 1.7453 1.8636 1.9052
4.00 1.6839 1.8439 1.9578 2.0218 2.0442
5.00 1.8899 1.9912 2.0633 2.1036 2.1177
7.50 2.0966 2.1415 2.1733 2.1909 2.1971

10.00 2.1702 2.1955 2.2133 2.2232 2.2267
15.00 2.2233 2.2346 2.2425 2.2469 2.2484
20.00 2.2420 2.2484 2.2528 2.2553 2.2561
40.00 2.2601 2.2617 2.2628 2.2634 2.2637

oo 2.2662 2.2662 2.2662 2.2662 2.2662

Double Sided Sheet

d -Ft a +I
c/(d + t) = 0.500

a +t
1.200

b/(a +0 =

a +t
1.500

0.100

a t

2.000
a + t

4.000
S

= 1.000
d -Pt

=
d + t

=
d

=
d +t

=
d +t

1.00
1.25
1.50
1.75

1.9341
2.3487
2.6976
2.9866

2.00 3.0068 3.2233

2.50 3.0906 3.4487 3.5742
3.00 3.4906 3.7271 3.8103
4.00 3.3679 3.6877 3.9157 4.0435 4.0885
5.00 3.7797 3.9824 4.1266 4.2072 4.2355
7.50 4.1931 4.2830 4.3465 4.3818 4.3942

10.00 4.3405 3.3910 4.4266 4.4464 4.4534
15.00 4.4467 4.4692 4.4850 4.4938 4.4968
20.00 4.4841 4.4967 4.5056 4.5106 4.5123
40.00 4.5203 4.5234 4.5257 4.5269 4.5273

co 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XIII -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.

a/d = 1.200

b/a = 0.200

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25 1.2451

1.50 1.4889

1.75 1.7237

2.00 1.9475

2.50 2.2874 2.3541

3.00 2.6647 2.7005

4.00 3.1175 3.2086 3.2246

5.00 3.1345 3.3772 3.5128 3.5656 3.5750

7.50 3.8589 3.9553 4.0103 4.0320 4.0358

10.00 4.1388 4.1915 4.2216 4.2335 4.2356

15.00 4.3520 4.3750 4.3882 4.3934 4.3943

20.00 4.4297 4.4426 4.4500 4.4529 4.4534

40.00 4.5064 4.5096 4.5114 4.5122 4.5123

00 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d +t a +t

c/(d + t) = 0.

a +1
1.200

b/(a + t) =

a +
1.500

0.200

a +t
2.000

a +e
4.000

S
= 1.000

d + t
=

d +t
=

d + t
=

d +1
=

d + t

1.00
1.25 2.4187

1.50 2.7359

1.75 3.0111

2.00 3.2405

2.50 3.9559 3.5843

3.00 4.0662 3.8170

4.00 4.4278 4.2278 4.0921

5.00 4.7608 4.5990 4.4499 4.3234 4.2377

7.50 4.6225 4.5536 4.4885 4.4329 4.3952

10.00 4.5809 4.5426 4.5062 4.4750 4.4539

15.00 4.5532 4.5364 4.5202 4.5064 4.4971

20.00 4.5440 4.5345 4.5255 4.5177 4.5124

40.00 4.5352 4.5329 4.5306 4.5287 4.5274

00 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XIV - FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S aid = 1.000

c/d = 0.100

a/d = 1.200

b/a = 0.200

a/d = 1.500 aid = 2.000 a/d = 4.000

1.00
1.25 1.2362
1.50 1.4756
1.75 1.7047
2.00 1.9222

2.50 2.2374 2.3174
3.00 2.6069 2.6562
4.00 3.0539 3.1484 3.1757
5.00 3.0884 3.3212 3.4534 3.5113 3.5295
7.50 3.8212 3.9148 3.9704 3.9962 4.0050

10.00 4.1126 4.1642 4.1953 4.2100 4.2152
15.00 4.3385 4.3612 4.3750 4.3816 4.3840
20.00 4.4217 4.4345 4.4422 4.4460 4.4474
40.00 4.5043 4.5075 4.5094 4.5104 4.5107

co 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

c / (d + = 0.100 b/(a 0 = 0.200

d e

S

a +
= 1.000

d +
a +

1.200
a +

= 1.500
d t

a t
2.000

a + t
=

d -}- t
=

d +t
= 1.000

d + t

1.00
1.25 2.4074
1.50 2.7294
1.75 3.0068
2.00 3.2375

2.50 3.9067 3.5825
3.00 4.0296 3.8158
4.00 4.3898 4.2062 4.0915
5.00 4.7307 4.5683 4.4239 4.3093 4.2373
7.50 4.6071 4.5384 4.4762 4.4265 4.3951

10.00 4.5718 4.5337 4.4992 4.4714 4.4538
15.00 4.5491 4.5323 4.5171 4.5048 4.4970
20.00 4.5416 4.5322 4.5237 4.5168 4.5124
40.00 4.5346 4.5323 4.5302 4.5284 4.5274

co 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XV - FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/8 a/d = 1.000

c/d = 0.200

a/d = 1.200

b/a = 0.200

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25 1.2121

1.50 1.4396

1.75 1.6517

2.00 1.8503

2.50 2.0931 2.2094

3.00 2.4367 2.5209

4.00 2.8538 2.9614 3.0166

5.00 2.9283 3.1329 3.2598 3.3342 3.3745

7.50 3.6832 3.7711 3.8316 3.8704 3.8921

10.00 4.0140 4.0647 4.1007 4.1244 4.1378

15.00 4.2861 4.3094 4.3263 4.3376 4.3440

20.00 4.3903 4.4036 4.4133 4.4198 4.4236

40.00 4.4959 4.4993 4.5018 4.5035 4.5044

. 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d t a +t

c/(d -I- t) = 0.200

a +t
1.200

b/(a + t) = 0.200

a +t a +t
1.500 2.000

a +t
4.000

8
= 1.000

d t

=
d -1-t

=
d +t

=
d +t

=
d +e

1.00
1.25 2.3768

1.50 2.7121

1.75 2.9957

2.00 3.2296

2.50 3.7584 3.5779

3.00 3.9223 3.8128

4.00 4.2683 4.1442 4.0898

5.00 4.6181 4.4612 4.3420 4.2693 4.2363

7.50 4.5493 4.4861 4.4382 4.4086 4.3946

10.00 4.5377 4.5034 4.4774 4.4613 4.4536

15.00 4.5334 4.5186 4.5073 4.5003 4.4969

20.00 4.5327 4.5244 4.5182 4.5142 4.5123

40.00 4.5324 4.5303 4.5288 4.5278 4.5273

. 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XVI -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.300

a/d = 1.200

b/a = 0.200

a/d = 1.500 a/d s 2.000 a/d = 4.000

1.00
1.25 1.1809
1.50 1.3916
1.75 1.5786
2.00 1.7473

2.50 1.8795 2.0430
3.00 2.1753 2.2973
4.00 2.5060 2.6369 2.7183
5.00 2.5907 2.7616 2.8926 2.9907 3.0514
7.50 3.3551 3.4443 3.5196 3.5768 3.6116

10.00 3.7602 3.8176 3.8668 3.9040 3.9265
15.00 4.1405 4.1697 4.1947 4.2136 4.2250
20.00 4.3001 4.3175 4.3324 4.3436 4.3503
40.00 4.4711 4.4757 4.4796 4.4826 4.4844

co 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d +t
8

a -{-t
1.000

c/(d + 1) = 0.300

a +t
1.200

b/(a + t) =

a + t
1.500

0.200

a +t
2.000

a +1
4.000=

d + t
=

d
= =

d +t
=

d +t

1.00
1.25 2.3364
1.50 2.6901
1.75 2.9816
2.00 3.2197

2.50 3.5218 3.5721
3.00 3.7603 3.8089
4.00 4.0533 4.0551 4.0877
5.00 4.3434 4.2388 4.2024 4.2130 4.2350
7.50 4.4122 4.3821 4.3757 4.3838 4.3940

10.00 4.4580 4.4441 4.4422 4.4474 4.4533
15.00 4.4972 4.4920 4.4917 4.4942 4.4968
20.00 4.5122 4.5094 4.5094 4.5108 4.5123
40.00 4.5272 4.5266 4.5266 4.5270 4.5273

co 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XVII - FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S ald = 1.000

c/d = 0.400

aid = 1.200

b/a = 0.200

a/d = 1.500 a/d = 2.000 aid = 4.000

1.00
1.25 1.1542

1.50 1.3494

1.75 1.5111

2.00 1.6477

2.50 1.6645 1.8662

3.00 1.8960 2.0363

4.00 2.0700 2.2156 2.2997

5.00 2.0458 2.2102 2.3514 2.4543 2.5133

7.50 2.6821 2.7787 2.8602 2.9185 2.9516

10.00 3.1105 3.1777 3.2338 3.2736 3.2961

15.00 3.6540 3.6929 3.7250 3.7476 3.7604

20.00 3.9559 3.9810 4.0016 4.0161 4.0242

40.00 4.3597 4.3671 4.3732 4.3775 4.3799

00 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Shoot

d +t a +t

c/(d + t) = 0.400

a + t
1.200

b/(a

a + t
= 1.500

d +I

I) = 0.200

a t

2.000
a -F

4.000
S

= 1.000
d +t

=
d +t d t

=
d t

1.00
1.25 2.3014

1.50 2.6718

1.75 2.9701

2.00 3.2117

2.50 3.2608 3.5674

3.00 3.5961 3.8058

4.00 3.7889 3.9704 4.0860

5.00 3.7970 3.9021 4.0414 4.1606 4.2339

7.50 4.1715 4.2390 4.3073 4.3613 4.3936

10.00 4.3241 4.3650 4.4044 4.4349 4.4530

15.00 4.4382 4.4572 4.4750 4.4886 4.4967

20.00 4.4791 4.4900 4.5000 4.5077 4.5122

40.00 4.5190 4.5217 4.5242 4.5262 4.5273

w 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XVIII -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

2309

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.500

aid = 1.200

b/a = 0.200

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25 1.1437
1.50 1.3323
1.75 1.4828
2.00 1.6043

2.50 1.5672 1.7828
3.00 1.7614 1.9023
4.00 1.8259 1.9673 2.0427
5.00 1.6678 1.8474 1.9815 2.0694 2.1168
7.50 2.0041 2.0801 2.1378 2.1760 2.1967

10.00 2.1191 2.1613 2.1935 2.2149 2.2265
15.00 2.2009 2.2195 2.2337 2.2432 2.2483
20.00 2.2294 2.2399 2.2479 2.2532 2.2561
40.00 2.2570 2.2596 2.2616 2.2629 2.2636

00 2.2662 2.2662 2.2662 2.2662 2.2662

Double Sided Sheet

d t a -I- t
= 1.000

c/(d + 0 = 0.500

a t
= 1.200

b/(a

a I

t) = 0.200

a +t a t

S d t d -f- t
= 1.500

d t
= 2.000

d + t
= 4.000

d +t

1.00
1.25 2.2874
1.50 2.6647
1.75 2.9656
2.00 3.2086

2.50 3.1345 3.5656
3.00 3.5229 3.8046
4.00 3.6519 3.9345 4.0854
5.00 3.3357 3.6948 3.9629 4.1388 4.2335
7.50 4.0083 4.1601 4.2756 4.3520 4.3934

10.00 4.2382 4.3227 4.3870 4.4297 4.4529
15.00 4.4017 4.4390 4.4675 4.4864 4.4966
20.00 4.4589 4.4798 4.4958 4.5064 4.5122
40.00 4.5140 4.5192 4.5232 4.5259 4.5273

00 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XIX -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.

a/d = 1.200

b/a = 0.300

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75
2.00 1.9342

2.50 2.3488

3.00 2.6976

4.00 3.0207 3.2233

5.00 3.1364 3.4573 3.5742

7.50 3.3137 3.6363 3.8599 3.9877 4.0355

10.00 3.8480 4.0185 4.1394 4.2092 4.2355

15.00 4.2264 4.2998 4.3523 4.3828 4.3942

20.00 4.3597 4.4006 4.4299 4.4470 4.4534

40.00 4.4890 4.4992 4.5065 4.5107 4.5123
co 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d +t

S

a --t

c/(d + t) = 0.

a +t
1.200

b /(a + t) =

a + t
1.500

0.300

a + t
2.000

a + t
4.000= 1.000

d t
=

d +t
=

d + t
=d+t =d+t

1.00
1.25
1.50
1.75
2.00 3.4160

2.50 3.6878

3.00 3.8860
4.00 4.5183 4.1295
5.00 4.6857 4.5081 4.2613
7.50 4.7125 4.6570 4.5933 4.5144 4.4056

10.00 4.6317 4.6009 4.5651 4.5208 4.4597

15.00 4.5759 4.5623 4.5464 4.5267 4.4996

20.00 4.5567 4.5491 4.5402 4.5291 4.5139

40.00 4.5384 4.5365 4.5343 4.5315 4.5277
00 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XX -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.100

a/d = 1.200

b/a = 0.300

a/d = 1.500 aid = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75
2.00 1.9007

2.50 2.3055
3.00 2.6478
4.00 2.9618 3.1705
5.00 3.0931 3.3997 3.5259
7.50 3.2943 3.6086 3.8240 3.9476 4.0031

10.00 3.8317 3.9977 4.1143 4.1825 4.2141
15.00 4.2170 4.2885 4.3393 4.3693 4.3835
20.00 4.3539 4.3938 4.4222 4.4390 4.4471
40.00 4.4875 4.4973 4.5044 4.5086 4.5106

c 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d+t a+t
1.000

c/(d + t) = 0.100

a +t
1.200

b/(a

a +t
1.500

t) = 0.300

a + t
2.000

a +t
4.000

S
=

d ± t
=

d + t
=

d + t
=

d +t
=

d +t

1.00
1.25
1.50
1.75
2.00 3.3858

2.50 3.6685
3.00 3.8728
4.00 4.4810 4.1222
5.00 4.6662 4.4813 4.2566
7.50 4.7137 4.6520 4.5820 4.5013 4.4035

10.00 4.6317 4.5974 4.5582 4.5131 4.4586
15.00 4.5757 4.5605 4.5432 4.5233 4.4991
20.00 4.5566 4.5481 4.5383 4.5271 4.5136
40.00 4.5384 4.5363 4.5338 4.5310 4.5276

co 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XXI - FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.200

aid = 1.200

b,'a = 0.300

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75
2.00 1.8077

2.50 2.1812

3.00 2.4995

4.00 2.7720 3.0022

5.00 2.9396 3.2080 3.3639

7.50 3.2150 3.4999 3.6905 3.8065 3.8864

10.00 3.7634 3.9138 4.0187 4.0857 4.1343

15.00 4.1766 4.2418 4.2884 4.3192 4.3423

20.00 4.3289 4.3654 4.3917 4.4093 4.4226

40.00 4.4806 4.4897 4.4963 4.5007 4.5042
co 4.5324 4.5324 4.5324 4.5324 4.5324

Double

d +1 a +1

c/(d + 0 = 0.200

a +t
1.200

b,i(a + 1) =

a +t
1.500

0.300

a +t
= 2.000

a + t
= 4.000

S
= 1.000

d t

=
d +t

=
d +t d + t d +t

1.00
1.25
1.50
1.75
2.00 3.3004

2.50 3.6157

3.00 3.8369

4.00 4.3519 4.1024

5.00 4.5820 4.3905 4.2441

7.50 4.7042 4.6211 4.5352 4.4576 4.3980

10.00 4.6230 4.5771 4.5301 4.4879 4.4555

15.00 4.5707 4.5506 4.5301 4.5119 4.4978

20.00 4.5535 4.5423 4.5309 4.5207 4.5128

40.00 4.5376 4.5348 4.5319 4.5294 4.5275
co 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XXII -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

dIS a/d = 1.000

c/d = 0.300

a/d = 1.200

bla = 0.300

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75
2.00 1.6792

2.50 1.9984
3.00 2.2641
4.00 2.4283 2.6964
5.00 2.6075 2.8365 3.0351
7.50 2.9833 3.2084 3.3665 3.4872 3.6024

10.00 3.5491 3.6726 3.7679 3.8456 3.9205
15.00 4.0408 4.0979 4.1446 4.1840 4.2220
20.00 4.2420 4.2751 4.3026 4.3260 4.3485
40.00 4.4560 4.4645 4.4718 4.4779 4.4839

4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d +t a + t
= 1.000

d +t

c/(d +t) = 0.300

a + t
= 1.200

b/(a

a + t
1.500

t) = 0.300

a +t a +
S d +t =

+ t
= 2.000

d +1
= 4.000

d +1

1.00
1.25
1.50
1.75
2.00 3.1805

2.50 3.5449
3.00 3.7897
4.00 4.0884 4.0769
5.00 4.3423 4.2144 4.2280
7.50 4.6078 4.4946 4.4119 4.3770 4.3909

10.00 4.5564 4.4985 4.4579 4.4423 4.4515
15.00 4.5371 4.5133 4.4972 4.4915 4.4960
20.00 4.5339 4.5209 4.5122 4.5092 4.5118
40.00 4.5325 4.5293 4.5272 4.5265 4.5272
. 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE X_XIII -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.400

a/d = 1.200

b/a = 0.300

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75
2.00 1.5604

2.50 1.8134

3.00 1.9996
4.00 1.9827 2.2778

5.00 2.0607 2.2895 2.4979

7.50 2.3738 2.5410 2.6924 2.8250 2.9430

10.00 2.8994 3.0123 3.1180 3.2096 3.2903

15.00 3.5308 3.5969 3.6585 3.7112 3.7570

20.00 3.8758 3.9189 3.9588 3.9928 4.0221

40.00 4.3356 4.3486 4.3606 4.3706 4.3793
. 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d t a t

1.000

c/(d t) = 0.400

a ±
= 1.200

d + t

b/(a + t) =

a +t
1.500

0.300

a
2.000

a +t
4.000

S
=

d +t
=

d +t
=

d +t
=

d +t

1.00
1.25
1.50
1.75
2.00 3.0681

2.50 3.4825

3.00 3.7491

4.00 3.6999 4.0553

5.00 3.8172 3.9776 4.2145

7.50 4.1431 4.1234 4.1814 4.2771 4.3851

10.00 4.2733 4.2859 4.3298 4.3871 4.4482

15.00 4.4063 4.4183 4.4409 4.4673 4.4946

20.00 4.4595 4.4674 4.4806 4.4956 4.5110

40.00 4.5137 4.5159 4.5194 4.5231 4.5270
. 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XXIV -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S aid = 1.000

c/d = 0.500

ald = 1.200

b/a = 0.300

(01 = 1.500 (01 = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75
2.00 1.5103

2.50 1.7287
3.00 1.8665
4.00 1.7316 2.0234
5.00 1.6789 1.9240 2.1046
7.50 1.6878 1.8696 2.0106 2.1132 2.1914

10.00 1.9485 2.0459 2.1230 2.1798 2.2235
15.00 2.1268 2.1689 2.2027 2.2277 2.2470
20.00 2.1880 2.2116 2.2305 1.2445 2.2553
40.00 2.2467 2.2526 2.2573 2.2607 2.2635

so 2.2662 2.2662 2.2662 2.2662 2.2662

Double Sided Sheet

d +t a + t
1.000

c/(d + t) = 0.500

a + t
1.200

b/(a + t) =

a + t
= 1.500

0.300

a -I- t
2.000

a +t
= 4.000

S
=

d +t
=

d +t d +t d +t d +t

1.00
1.25
1.50
1.75
2.00 3.0207

2.50 3.4573
3.00 3.7330
4.00 3.4632 4.0468
5.00 3.3578 3.8480 4.2092
7.50 3.3755 3.7392 4.0211 4.2264 4.3828

10.00 3.8970 4.0917 4.2460 4.3597 4.4469
15.00 4.2535 4.3379 4.4054 4.4554 4.4940
20.00 4.3761 4.4232 4.4610 4.4890 4.5107
40.00 4.4934 4.5051 4.5145 4.5214 4.5269

so 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XXV - FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.

a/d = 1.200

b/a = 0.400

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75
2.00

2.50
3.00
4.00 3.0207

5.00 3.4573

7.50 3.3139 3.9877

10.00 3.3588 3.8481 4.2092

15.00 3.3790 3.7411 4.0217 4.2264 4.3828

20.00 3.8996 4.0929 4.2463 4.3597 4.4469

40.00 4.3769 4.4235 4.4611 4.4890 4.5107

. 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d +t a +t
1.000

c/(d +t) = 0.

a +t

b / (a + t) =

a +t
1 500

0.400

a + t
2.000

a +t
4.000

S
=

d + t
= 1.200

d +t
=

d t

=
d t

=
d +1

1.00
1.25
1.50
1.75
2.00

2.50
3.00
4.00 4.5179

5.00 4.5079

7.50 4.6912 4.5143

10.00 4.6490 4.6204 4.5207

15.00 4.5981 4.5915 4.5838 4.5711 4.5267

20.00 4.5692 4.5655 4.5612 4.5540 4.5291

40.00 4.5415 4.5406 4.5396 4.5377 4.5315

ca 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XXVI- FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

dIS a/d = 1.000

c/d = 0.100

a/d = 1.200

b/a = 0.400

a/d = 1.500 a(<1 = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75
2.00

2.50
3.00
4.00 2.9619
5.00 3.3997
7.50 3.2950 3.9477

10.00 3.3505 3.8323 4.1826
15.00 3.3769 3.7375 4.0159 4.2173 4.3693
20.00 3.8979 4.0904 4.2426 4.3541 4.4390
40.00 4.3763 4.4228 4.4600 4.4875 4.5086
w 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d + t a + t
= 1.000

c 1(d + t) = 0.100

a +
1.200

b/(a + t) =

a +
1.500

0.400

a +t a +t
S d +t

=
d +t

=
d +t = 2.000

d +1
= .1.000

d +t

1.00
1.25
1.50
1.75
2.00

2.50
3.00
4.00 4.4807
5.00 4.4812
7.50 4.6949 4.5012

10.00 4.6576 4.6218 4.5131
15.00 4.6050 4.5972 4.5874 4.5714 4.5232
20.00 4.5731 4.5687 4.5632 4.5542 4.5271
40.00 4.5425 4.5414 4.5401 4.5378 4.5310

0O 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XXVII - FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.200

a/d = 1.200

b/a = 0.400

a/d = 1.500 a/d = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75
2.00

2.50
3.00
4.00 2.7720

5.00 3.2081

7.50 3.2172 3.8065

10.00 3.3128 3.7650 4.0857

15.00 3.3662 3.7202 3.9890 4.1775 4.3192

20.00 3.8895 4.0783 4.2250 4.3293 4.4093

40.00 4.3736 4.4191 4.4550 4.4807 4.5008

00 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d +1 a +t
1.000

c/(d + 1) = 0.200

a +t

b/(a + t) =

a +t
1.500

0.400

a +t
2.000

a +t
= 4.000

S
=

d +t
= 1.200

d +t
=

d +t
=

d +t d t

1.00
1.25
1.50
1.75
2.00

2.50
3.00
4.00 4.3517

5.00 4.3904

7.50 4.6922 4.4575

10.00 4.6800 4.6167 4.4879

15.00 4.6288 4.6151 4.5962 4.5680 4.5119

20.00 4.5863 4.5786 4.5679 4.5520 4.5207

40.00 4.5458 4.5438 4.5412 4.5371 4.5294

00 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE XXVIII -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

2319

Insulated Edge Sheet

d/S ald = 1.000

c/d = 0.300

a/d = 1.200

bla = 0.400

a /d = 1.500 a /d = 2.000 a/d = 1.000

1.00
1.25
1.50
1.75
2.00

2.50
3.00
4.00 2.4284
5.00 2.8366
7.50 2.9868 3.4873

10.00 3.1754 3.5519 3.8456
15.00 3.3173 3.6457 3.8834 4.0423 4.1840
20.00 3.8497 4.0240 4.1538 4.2429 4.3260
40.00 4.3599 4.4019 4.4338 4.4561 4.4780

co 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d+t a +t
= 1.000

c/(d + t) = 0.300

a +t
= 1.200

b/(a + t) =

a +
0.400

a +l a +t
S d d +t

= 1.500
t

= 2.000d+t = 4.000d+t

1.00
1.25
1.50
1.75
2.00

2.50
3.00
4.00 4.0885
5.00 4.2144
7.50 4.6047 4.3770

10.00 4.6784 4.5547 4.4423
15.00 4.6732 4.6360 4.5890 4.5364 4.4915
20.00 4.6099 4.5888 4.5625 4.5334 4.5092
40.00 4.5513 4.5460 4.5395 4.5323 4.5265

co 4.5324 4.5324 4.5324 4.5324 4.5324
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TABLE =IX -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

Insulated Edge Sheet

d/S a/d = 1.000

c/d = 0.400

= 1.200

b/a = 0.100

a/el = 1.500 = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75
2.00

2.50
3.00
4.00 1.9828

5.00 2.2896

7.50 2.3770 2.8250

10.00 2.6425 2.9019 3.2097

15.00 2.9967 3.2263 3.3934 3.5325 3.7112

20.00 3.5598 3.6860 3.7872 3.8768 3.9928

40.00 4.2459 4.2797 4.3089 4.3358 4.3706
m 4.5324 4.5324 4.5324 4.5324 4.5324

Double Sided Sheet

d +t a + t

c / (d + 1) = 0.400

a + t
1.200

b/(a

a +
1.500

t) = 0.400

a +
= 2.000

a +
= 4.000

8
= 1.000

d+ t
=

d + t
=

d + t d t d +

1.00
1.25
1.50
1.75
2.00

2.50
3.00
4.00 3.7000

5.00 3.9777

7.50 4.1463 4.2771

10.00 4.3750 4.2751 4.3871

15.00 4.6073 4.5018 4.4276 4.4071 4.4673

20.00 4.5562 4.5026 4.4671 4.4598 4.4956

40.00 4.5338 4.5219 4.5146 4.5137 4.5232

c 4.5324 4.5324 4.5324 4.5324 4.5324
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TA13LE XXX -FOUR POINT PROBE CONVERSION
FACTORS FOR RECTANGLES

intiulated Edge Sheet

d/S aid = 1.000

eld = 0.500

(01 = 1.200

b /a = 0.400

a,/d = 1.500 aid = 2.000 a/d = 4.000

1.00
1.25
1.50
1.75
2.00

2.50
3.00
4.00 1.7317
5.00 1.9240
7.50 1.6895 2.1132

10.00 1.6914 1.9498 2.1799
15.00 1.6921 1.8751 2.0188 2.1274 2.2277
20.00 1.9518 2.0496 2.1282 2.1884 2.2445
40.00 2.1891 2.2127 2.2319 2.2467 2.2608

co 2.2662 2.2662 2.2662 2.2662 2.2662

Double Sided Sheet

d + t a -1- t
1.000

c /(d + t) = 0.500 b/(a + 0 =

a +t a + t
1.200 = 1.500

0.400

a + t
=2.000

a + t
d + t

=
d t d +t d +t d + t

1.00
1.25
1.50
1.75
2.00

2.50
3.00
4.00 3.4634
5.00 3.8481
7.50 3.3790 4.2264

10.00 3.3829 3.8996 4.3597
15.00 3.3842 3.7502 4.0376 4.2548 4.4554
20.00 3.9035 4.0992 4.2564 4.3767 4.4890
40.00 4.3781 4.4254 4.4639 4.4935 4.5215
w 4.5324 4.5324 4.5324 4.5324 4.5324
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Scaling Laws for Large Shields
in Quasi -Stationary Magnetic Fields

By G. KRONACHER
(Manuscript received August 10, 1967)

The application of the classical scaling laws of electro-magnetic fields
to the design of a scaled -down model of, say, a building -sized shield is
often difficult, even when using the simplifications permissible with a
quasi -stationary magnetic field. The reasons are that (i) the scaled wall
thickness often becomes impractically thin and (ii) the required scaling
of frequency sometimes reduces the ratio of intrinsic wave -length in air
to the enclosure length such that the quasi -stationary field theory no longer
applies.

In the case of a completely closed shield these limitations can be cir-
cumvented by having a model with two distinct geometric scaling factors,
one for the wall thickness and one for the overall dimensions. The modified
scaling laws governing this type of model are derived.

I. INTRODUCTION

Protection of electronic equipment against electromagnetic inter-
ference is often achieved by providing a metallic enclosure. Large
electronic complexes, such as radar installations and data processing
centers may be protected by covering the entire building with a metal-
lic shield. (Some penetrations into this enclosure are usually required
for the purpose of air -vents, cable -inlets, access tunnels etc.) The
performance of the enclosure is measured by the shielding effective-
ness, which is the ratio of the field strength at an exterior location
where the field is undisturbed by the shield to the field strength at a
point inside the enclosure.

A first approximation of the shielding effectiveness can be ob-
tained analytically.1 In this case, (i) constant permeability is as-
sumed, and (ii) the actual shape of the enclosure is replaced by a
geometrically simpler shape, such as an infinite cylindrical shell or a
spherical shell.

2323
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The evaluation of the shielding effectiveness by testing is, for eco-
nomical reasons, best conducted on scaled down models of the en-
closure. The following discussion concerns itself with the constraints
on the scaling -factors for distance, time, conductivity, etc., necessary
to produce a model either having the same shielding effectiveness as
the original, full-scale enclosure or having one of known relation to it.
It will be seen that full compliance with the ideal constraints on
scaling -factors is rarely possible. However, useful results can be ob-
tained with partial compliance, especially in the case of large en-
closures.

II. IDEAL CONSTRAINTS ON SCALING FACTORS

An ideal, scaled model is a replica of the original configuration with
each physical parameter scaled up or down by a fixed ratio. To each
point in space and time of the original exists a corresponding point in
the model. The ratio of any distance, time, field strength, etc. of the
original to its counterpart in the model is called a scaling -factor. If
one identifies any parameter or variable of the original with the index
"1" and of the model with the index "2" one can write the scaling -
factors for distance, time, electric and magnetic field strength, per-
meability (instantaneous ratio of magnetic flux density to magnetic
field strength), dielectric constant, conductivity as 12/1, , 12/t, , E2/E, ,

H2/H1 122/111 (2/e, , cr,/a, . (For instance, 1 represents the distance
between two arbitrarily selected points of the original, full -scaled
enclosure, whereas, /2 represents the distance between the correspond-
ing points of the model.) Were these scaling -factors selected arbitrarily,
the model would not be physically realizable because the electromagnetic
field of the model would not satisfy Maxwell's equations. These equa-
tions when formulated for the original and for the model contain the
constraints required to make the model physically realizable. They
also interrelate the scaling -factors for electric and magnetic field
strengths. The results* are expressed by (1), (2), and (3)

(E) (HI) N) (tAi)

\E2,1 \H21\iii \12/  \At/
/:  cr2  112 Pi  at '111

'2 ti

/:  e,  /22 121

- 62.

(1)

(2)

(3)

* For the mathematical derivation see either Appendix A or Ref. 2, p. 488.
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Introducing the angular frequency, w, one obtains the following scaling
constraints for CW fields:

1220)262122 = 1(,) 0- (4)

/2/02222142 = 121(.021E1111 (5)

HI. INTERPRETATION OF THE MATHEMATICAL RESULTS

First, it should be pointed out that the derivation of (2) and (3) is
not based on a field -strength -independent permeability or dielectric
constant. Consequently, model tests of ferromagnetic shields of vari-
able permeability will give correct answers, provided the model uses
the same steel as the original, is tested at the field strength encoun-
tered in the original and satisfies (2) and (3).

Second, the shielding effectiveness, n, of geometrically similar models
changes from model to model only if the expressions (2) and (3)
change. In other words, the shielding effectiveness of geometrically
similar models is a function of these two dimensionless quantities
only, i.e.,

= 1[(-12±''A) (12 A)1 (6)

Here, / might be the length of the enclosure, t, the pulse duration,
etc.

The physical meaning of (4) and (5) becomes clearer if we intro-
duce the skin depth,* 8, of a conductor of constant permeability and
the intrinsic wavelength in a pure dielectric, AE:

6 =
120'

27r
X, = z=_-

0.) V EA

Substituting these values into (4) and (5) one obtains

12 /,-=
62 61

10 =

* Here (27ra) is equal to the intrinsic wavelength in metal, X.
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In other words, the skin depth of the shield material as well as the
intrinsic wavelength of the surrounding space have to be scaled by the
same ratio as the linear dimensions of the model.

It can now be seen that it usually is not feasible to produce a model
which satisfies both (2) and (3). For instance, after the scaling fac-
tor (12/11) has been selected, (2) and (3) can be satisfied only if two
other parameters, such as conductivity, o, and time, t, are properly
scaled. Unfortunately, the only scaling factor which usually can be
suitably controlled is that of time (duration of an applied pulse,
period of an applied ac field). Consequently, only one of the scaling
requirements, either (2) or (3) can be readily satisfied. Therefore
one has to be content with imperfect models which will be discussed
next.

IV. SEVERAL TYPES OF IMPERFECT MODELS

4.1 The Geometrically Perfect Model in a Quasi-Stationary Magnetic Field

A model shall be considered geometrically perfect if all of its
dimensions, the overall dimensions such as width, height, and length
as well as the thickness of the shield and the size of its openings are
scaled by the same factor.

The quasi -stationary magnetic field is a well known simplifying
concept which is applicable whenever the linear dimensions of the
configuration are small compared to the intrinsic wavelength of the
dielectric medium. It is the magnetic field one obtains mathematically
if one assumes the time derivatives of the electric displacement, aiat
(E), to be zero.

In this case, as shown in Appendix A, one obtains only one con-
straint equation for the scaling factors, namely that expressed by
either (2), (4) , or (9).

In order to obtain an idea of the error caused by this simplification,
one may look at a geometrically simple shield, such as a spherical
shell, for which analytical solutions are available.' According to a
graph given in Ref. 1, the magnetic shielding effectiveness at the cen-
ter of a spherical shell, if calculated on the basis of a quasi -stationary
field, is in error by less than 2.6 dB for a wavelength to diameter
ratio of 2.8 or higher. The electric shielding effectiveness (electric
field outside of the shielded space to that inside) is equal to the mag-
netic shielding effectiveness at this wave length to diameter ratio and
increases rapidly for higher ratios.
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Unfortunately, there are two serious shortcomings to this type of
model. First, the wall -thickness of the scaled -down enclosure often
becomes impractically thin. For instance the original enclosure may
have been built with 0.010 -inch thick copper. Assuming a geometric
scaling factor of 0.1 the model would have to be built of 0.001 -inch
thick copper. Second, (assuming identical cr, and E for model and
original) due to the scaling of frequency, as called for by (4), the
ratio of the intrinsic wavelength in air to the length of the model
becomes proportional to the geometric scaling factor, (/.//i). This
is a simple consequence of (4) and (8). Sometimes, this ratio decreases
for the model to the point where the quasi -stationary field theory no
longer applies.

As shall be shown next, both of these shortcomings can be circum-
vented in the case of large enclosures without openings by using two
geometric scaling -factors, one for the overall dimensions and one for
the wall thickness.

4.2 Models with Two Geometric Scaling -Factors, One for the Overall
Dimensions and One for the Wall -Thickness of the Enclosure in Quasi -
Stationary Magnetic Fields

In the following, models of large enclosures without openings will
be considered. The scaling factor for the overall dimensions is des-
ignated as (L2/Li) and that for the wall thickness as (d2/d1). (The
wall thickness does not have to be uniform). Assuming the wall thick-
ness to be very small compared to the overall dimensions of the en-
closure, the spaces internal and external to the enclosure of the model
remain geometrically similar to those of the original.

With this in mind, it will be shown that the internal and external
magnetic fields of this type of model, individually, are substantially
similar to those of the original if the ratio of shield thickness to skin -

depth remains unchanged.
The validity of this statement rests on two simplifying assumptions:

namely (i) that, the external magnetic field is almost identical to that
outside of an enclosure of infinite conductivity (the field component
normal to the surface is negligible compared to the tangential one),
and (ii) that within the shield (see Fig. 1) the rates of change of the
tangential magnetic and electric field strength in the direction normal
to the surface (811,/ay) and (aEr/oy) are much larger than the rate
of change of the field strengths normal to the surface in the tangential
direction (aHdaz) and (aE/ax); i.e., (91//az << aliday and aEdas
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Fig. 1- Local coordinates of the field in the shield.

OE,/ay. (The field changes rapidly across the shield but only gradually
in the tangential directions.)

From assumption (ii) it follows that the tangential magnetic field -
strength at some point D on the outside of the shield, Ha:), is deter-
mined by the tangential electric and magnetic field strengths, Hz,0
and Ez.,0 , at the opposing point "0" on the inside surface of the en-
closure. Specifically, is governed by the following differential equa-
tions:

oEx = as

a alts
-at(,L11.) =

and by the following boundary conditions:

At y = 0: Hz = Hz,0 ; = Ex.()

(12)

(13)

In the case of a sufficiently large enclosure, the boundary condi-
tions can be simplified. Specifically, Appendix B shows that the ef-

fect of H,,, a on Hz,D can be neglected if the following inequalities are
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satisfied:*

V§.2.(.4), aav
D d >

v2,-"
(14)

2 av < d < (15)d 

(µ,) o is the average relative permeability of the shield,t and 8, is
the skin -depth based on (\P-r) av The equivalent diameter, D, is four
times the cross section of the enclosure divided by its circumference,
measured in a plane which is normal to the field and which bisects
the enclosure. (For simplicity, one may use for D the smallest major
dimension of the enclosure.)

If the above inequalities are satisfied the boundary conditions
simplify to

y = 0: Hz = 0; Ex = Ex, . (16)

Now, let us put the following question: Provided the internal elec-
tric and magnetic fields of model and original are similar to each
other, under which condition will the external magnetic fields be
similar, too? According to assumption (i) the only conditions are (i)

outside surface of the shield of the model and of the original are
similar to each other and (ii) that, of course, the applied external
fields are similar to each other. With the internal fields being assumed
similar to each other, condition (i) is satisfied if the field distributions
across the shields are similar, too. In consideration of the simplified
field equations (11) and (12) this is the case if, (i) the general scaling
equation (2) is satisfied with respect to the y-coordinate (see Fig. 1),
i.e., if

d:02AL2 di. al  AI (17)t
t2 tl

and (ii) if scaling equation (1) is valid for the boundary values Hz.o
and L,0 (using the shield parameters, d and Pshield) For the special

* Note, that, for d > 6.,/ 0, if inequality (14) is satisfied, inequality (15) will
be satisfied too and for d < Say/ V2, if inequality (15) is satisfied, inequality (14)
will be satisfied too.

t If the shield is several skin depths thick, (AO., is the permeability near the
inside surface of the enclosure.

For field -strength independent A the expression Vt/ow is proportional to the
skin -depth, 8, and (17) becomes d2/62 = di/al.
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case of a large enclosure for which inequalities (14) and (15) are
valid, it was shown that 11,j0 may be assumed equal to zero without
substantial effect on the external field. However, with Hz,0 being zero,
scaling equation (1) as applied to the boundary values is

automatically satisfied since the term (1/1/H.') becomes (0/0). Con-
sequently, internal and external fields of the model and the original
are individually similar to each other if (17) and inequalities (14)
and (15) are satisfied.

The relation between the shielding effectiveness of model and orig-
inal is obtained by using (1). Specifically, (Hz,D,1)/(Hz,D,2) and
(E0,1)/(E,,0,2) are related to each other as follows:

Ez,0,2Hs, D d2. t1µ2 (18)
d1 t2µ1

Applying, again, (1) to the internal air field one obtains

Ex,0,2 Hz,0,1 L2.11 (19)
Hz,0,2 1,112.

From (18) and (19) one obtains

111.0.2 Hz,D ,1 d2. L,  FA2 (20)
111,0,1 d1 L2.121

Since the ratio is proportional to the shielding effective-
ness one obtains the following relation between the shielding effec-
tiveness of model and original:

n
(L,.d2AL2)

L2.c/1.-121

Note, that (21) is valid only if the similarity requirement for con-
ductors, as expressed by (17), is satisfied, and if the quasi -stationary
field theory is applicable (wavelength in air larger than the linear
dimensions of the enclosure). If the scaling factor for the overall di-
mensions (L2/L1) is chosen so that the similarity requirement for air
is also satisfied [see (3)] it appears that the restriction to quasi -
stationary fields can be dropped. Strictly speaking, this is not so.
First, at half wavelengths close to or less than the dimensions of the
enclosure, the internal field will no longer be approximately uniform,
as this was assumed in Appendix B. This assumption was necessary
to show that, for large enclosures, the tangential magnetic field
component at the inside surface of the shield is of negligible effect on

712 (21)
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the magnetic field at the outside surface. However, the higher the
frequency the less important becomes the assumption of an approxi-
mately uniform magnetic field.

Second, the ratio of magnetic to electric field strength in air along
the outside surface of the shield will not satisfy the scaling require-
ment (1). This latter imperfection, however, will be of minor con-
sequence if the characteristic wave -impedance in the shield is low
compared to that of the waves in the external space. In this case,
almost complete reflection occurs at the outside wall of the shield,
which means that the effect of the tangential electric field strength
on the external field is negligible.

All things considered, it is advisable to satisfy for relatively short
wavelengths the similarity requirement for air [see (3) ].

Appendix C illustrates, with the aid of a numerical example, the
above derived scaling laws.

4.3 Shielding Effectiveness of an Enclosure with Uniform Wall
In Section 4.2 it was shown that the fields internal and external to

a model of an enclosure without openings are practically similar to
those of the original if the wall of the model is such that the ratio
of external tangential magnetic field strength to internal tangential
electric field -strength is similar to that of the original. For CW fields,
this requirement is satisfied if the inequalities (14) and (15) are
satisfied, the shield is uniform along its tangential coordinates (how-
ever, it may be nonuniform along the normal coordinate such as in
the case of laminated metals) and the permeability and conductivity
are constant (field strength independent). Specifically, in the case for
which the shield is uniform throughout (including along the normal
coordinate), the ratio between tangential magnetic and electric field
strength can be given in closed analytical form. According to Ap-
pendix D, the external tangential magnetic field strength, Ha), is
related to the internal tangential electric field strength, E,.0, (see Fig.
1) as follows:

=[(sinh Vicomcd2)1E.,0 (22)
V jwila

According to the law of induction, Exo is proportional to some rep-
resentative internal magnetic field strength, Hi, to its angular fre-
quency, (0, to a representative linear dimension, L, of the shielded
space and to its permeability, p.0 (assuming air). Consequently, one
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obtains for

H z, D = C(CrL 12°) (N/ if.01.10-d2)  H (23)
v

in whichwhich C is a constant independent of the scaling factors. The
ratio of H z,D to the internal field strength, Hi, is proportional to the
shielding effectiveness, n. Consequently,

2

n = KNIW  II°  142- s inh ( Vjoii.tad2) (24)l
in which K is a constant, independent of the scaling factors. It de-
pends only on the geometry of the shielded space, on that of the ap-
plied field and on the reference points for external and internal field
strengths. K is obtained by measuring 77 on a model of known param-
eters (6)2, L2, 0'2, etc.). Note that, in general, (i.e., if the scaling equa-
tion (17) is not satisfied), the scaling factor for 77, i.e., (n2/11), is fre-
quency dependent. Therefore, the response of the model to a pulsed
field is not similar to the response of the original.

For the case that the thickness, d, is large compared to the skin
depth, S, one can write (24) in the form

K\cocri.4
n L2 exp jcopo-d2 , d >> (25)

2 ji2

For the case in which d is small compared to 8, one can write

K(0.)  ilocr  d  L), d < S. (26)

In the latter case (n2/71) is frequency independent. Therefore, the
model can be used to evaluate the effect of pulsed fields as well as
CW fields.

V. SUMMARY

The shielding effectiveness of the scaled model of a metallic en-
closure is identical to that of the original if (i) the ratio of the wave-
length in air to some specified linear dimension (say, the length of
the enclosure) remains unchanged, and (ii) the ratio of the skin
depth of the shielding material to some specified linear dimension
remains unchanged. In the case of nonlinear, ferro-magnetic mate-
rials, instead of the second requirement, the expression of length2x
frequency x conductivity x permeability has to be the same for model
and original. Given a certain scaling factor for the length the above
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requirements could be met by properly selecting two other scaling
factors, say, those for time and conductivity. Usually, however, only
the scaling factor for time can be readily controlled. Consequently,
one has to be content with imperfect models which, however, will
yield good results over given ranges of frequency.

If one is concerned with the magnetic shielding effectiveness only,
the first requirement may be waived, provided the intrinsic wave-
length in air is large compared to the linear dimensions of the model.
For enclosures of building size this applies to frequencies up to sev-
eral magacycles. Unfortunately, there are two shortcomings to this
type of model: (i) The shield thickness of the scaled -down model
often becomes impractically thin, and (ii) due to the necessary scal-
ing of frequency, the ratio of the intrinsic wavelength in air to the
length of the model sometimes decreases to the point where the quasi-
stationary field -theory becomes invalid. If the enclosure is free of
openings one can use a model with one scaling factor for the overall
dimensions and another one for the thickness of the shield, provided
the scaling factor for time is selected such that the ratio of skin
depth to wall thickness remains unchanged. In this case, a simple
formula relates the shielding effectiveness of the original to that of
the model. If the enclosure is free of openings, of uniform thickness
and of a material of constant permeability (nonferromagnetic metal)
and if the applied magnetic field varies sinusoidally with time the
dependence of the shielding effectiveness on scaling factors can be
established analytically. Consequently, no constraints are put on the
selection of the scaling factors of the model.
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APPENDIX A

Derivation of the General Scaling Constraints for Electromagnetic
Models

Maxwell's Equations if applied to the original configuration can
be written in integral form as follows.

E1 dl, = --
at' fr p,  H,  ds, (27)
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H, di, = E, ds 23--- if E dsI
(28)

A

(a1 is a closed path in the original, or model "1". Al is an area bounded
by al. The symbol ds1 represents a surface element of A1.) Using the
corresponding closed path in the model as well as corresponding length,
area and time increments and introducing the scaling factors, Max-
well's equations for the model read as follows:

12E2 E d/
ai 1 1

12H2 H,dl1
/,  H, a,

1:  ti  IA2  H2 a ff
t2  µlat1 Al  HldsI

/: cr2 E2 rrjjicriEcds,orlEi A,

(29)

/:  ti  2 'E2 a fr
at

Ei  Ei  ds, (30)
t2. e, E1 1

From (27) and (29) one obtains

E2. Hi (2 )N)(E2).
EiH2

From (28), (30), and (31) one obtains

(1 g  ti  0.2. A2) if
cr,  E, ds,\  t2 aui A

+ (1_ 1: 2 .112) fi EI ds, = 0. (32)
 t:  el i.ti at' JA,

In general, the ratio (f IA, al. El  d81)/(a/at1 HA, El -El  ds,) is a func-
tion of time. It then follows that (32) can be satisfied only if each of

its terms in parenthesis is zero, which leads to the following two scaling
equations:

 0'2.122 /21  al Ai
t2 ti

/22  2  1,42
2

 et. Ai
t2 tl

In the case of a quasi -stationary magnetic field which assumes the term
a(EE)/at to be negligible only (33) is needed to satisfy (32).

(31)

* See Ref. 2, p. 488.

(33)*

(34)
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APPENDIX B

Conditions Under Which the Effect of the Magnetic Field Intensity at
the Inside Surface on that at the Outside Surface is Negligible

Equations (11) and (12) of Section 4.2 can be readily integrated
for the special case of constant permeability, The result of this
integration with E and H being sinusoidal time functions is

Hs, = ,0 ,cr  sinh ( NI -27-i  d) H z  cosh \ 5
(35)

V-2-j d).

For d > 6 the sinh-term is of the same order of magnitude as
the cosh -term. Consequently, the effect of H,0 on H,D is negligible if

E.,0
V icoAa

a
>> I H:.° I; d >52 (36)

For -Vd < S the sinh-term and the cosh -term shall be approximated
by the first terms of their Taylor -series. One obtains

H,,D ^ Er,o cri -d- H:,0.1 (37)

In this case, the effect of H,,0 on H ,,D is negligible if

Ex.°. VYjd
icoi2a

>> 111.0 d < a,
V 2

(38)

If, as in the case of iron, the permeability is variable it appears reason-
able to replace in inequalities (36) and (38) the permeability 1.1 by an
average permeability ,u, and the skin depth S by an average skin
depth, (5.., , which is equal to V2/w  A.,  Cr*. The conditions for making
the effect of H,0 on H,D negligible become then

Viaway 0'

6.,» H,,0 I; d >

E1.0 ,  V -2j d
i W ilav  a aliv

» 1-1:,0 I; d< (39)
V-2

The order of magnitude of (E,,0/1-12,0) for an enclosure of regular

* In the case that Say is small compared to d, as this is usual with iron shields one
best uses for Aav the average permeability of that part of the shield that is within a
distance bay from its inside -surface. This is based on the thought that if H, is prac-
tically independent of H,0 at y = of,/ V2 it will remain so for larger values of,
y, regardless of the permeabilities at larger values of y.
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shape can be evaluated. The average magnetic field strength normal
to the area A0 (see Fig. 2) which passes through point 0 and is normal
to the direction of the internal flux will be called Hav,0. The average
electric field strength tangential to the line of length, /0, which is
formed by the intersection of plane A0 and the inside surface of the
shield will be called Env,0. 1-10,,0 and Env,0 are interrelated as follows:

 W  AO  Ao  Hay.o =  /0 . (40)

If one assumes that the ratio Hz,o/Ex,0 is of the same order of mag-
nitude as H,o/E.,,0 one obtains for the order of magnitude of

(Ez../H, .0)order o f magni tude
C4  AO  Ao

/0
(41)

If one calls 4 (A0//0) the equivalent diameter D, recalls the expres-
sion for S and introduces the average relative permeability ( ) av

one obtains from expressions (39) and (41)

-/ 2 .(Air)., Say
1; d >

D

Fig. 2. - Local coordinates at two points of the enclosure.

(42)
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and

2 
d

(Ar)- 6,2,v
<<

(5v
1; d < (43) D

If one selects as reference point, point B of Fig. (2) one obtains a
relationship as given by (40) between the normal internal magnetic
field strength and the tangential, internal electric field strength.
Since, with respect to area AB, the direction of the magnetic field is
predominantly normal the tangential magnetic field component is
less than the normal one. Consequently, as before, the effect of the
tangential internal magnetic field strength on the external one is
negligible if the inequalities (42) and (43) are satisfied with, D,
being the equivalent diameter of the area AB, [For symmetry rea-
sons the tangential flux -density approaches zero as the center -line is
approached. Consequently, its effect is negligible in this area (small
D) regardless of inequalities (42) and (43).]

APPENDIX C

Numerical Example for the Scaling Laws of a Model of Two Distinct
Geometrical Scaling Factors

The shielding effectiveness of an enclosure to a magnetic field pulse
shall be evaluated by testing a scaled down model. The size of the
enclosure is 15 m x15 m x 15 m. Its material is sheet steel of thick-
ness d = 0.00317 m(0.125 inch), of average relative permeability
(ttr)av = 500 and of conductivity a = 1 x 107 mho/m. The peak excur-
sion of the applied magnetic pulse is 10 oersted and its significant
frequency content is within a band from 1 x 104 to 5 x 106 Hz.* (The
corresponding range of the intrinsic wavelength in air is from 30,000
to 60 m.)

Tentatively the scaling factor for the overall dimensions, L2/L1
is selected as 0.1. Since the minimum intrinsic wavelength in air is
only four times the length of the enclosure it is advisable to satisfy
(3) (keeping the ratio of intrinsic wavelength to length of the model
unchanged). Accordingly, the time scaling factor (t2/t1) becomes 0.1.
According to (17) the thickness scaling factor (d2/d1) becomes V-0-3. =
0.316. The shielding effectiveness of the original, ni , according to (21),

*It is assumed that the frequency content of the pulse below 104 cps is so
small that it will not cause any damage even though the shielding effectiveness
of a large enclosure approaches unity at very low frequencies.
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becomes

ni = (old X 0.316.n2

Because of the high intensity of the applied pulse the iron -shield
will be driven into saturation near its outer surface. Consequently,
the model enclosure must be built of the same steel as the original
and the peak intensity of the magnetic pulse applied to the model
must be equal to that acting on the original.

Finally, one has to test whether the inequalities (14) and (15) are
satisfied. Based on a frequency of 1 x 105 Hz (the lowest significant
frequency applied to the model) the average skin -depth is

2
o"")2 =(271- X 100,000) X (47rX 10 -7X 500) X (1 X 10 7)

= 2.3 X 10-5m.
With the smallest overall dimension, D, being 1.5 m one obtains for
the expression of inequality (14)

1/ -*2 X (.4).,.- Oav 112 X 2 X 500 X 2.3 X 10' - 0.022.
D 1.5

One can readily verify that inequality (14) is satisfied for the
original as well.

APPENDIX D

Integration of the Differential Equations (11) and (12) of the Field in
the Shield for Constant p, and a

For a CW field, (11) and (12) read as follows:

Eliminating Ex, one obtains

d211,
jowcrl - = 0.

The general solution of this equation is

H. = C1 exp (+1/Mia + C2 exP (- N/T-0120* y)

(44)

(45)

(46)

(47)
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With the boundary conditions given by (16) one obtains,

=
(cr. !_j_.'fL)).sinh (1/TcotTa-d)
V' iolur

LIST OF SYMBOLS
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(48)

C = constant factor.
d = thickness of shield.
E = electric field strength.
H = magnetic field strength
j =

K = proportionality factor.
1, L = distance proportional to the size of the model.

= time proportional to a specified time interval of the applied
electromagnetic field (for instance duration of a pulse).

6 = skin depth 1/2/coAcr.
e = dielectric constant.

= permeability (usually of the shield).
iuo = permeability of vacuum, (47r X 10-7 Henry/in).

= relative permeability
0- = conductivity.

= angular frequency.
A, = intrinsic wavelength in dielectric 27/co e -A.

A, = intrinsic wavelength in conductor 27 V27C01.40-.
7.7 = shielding effectiveness.

= magnetic flux.
(L2/L,) = linear scaling factor of overall shield dimensions.
(d2/d,) = scaling factor of shield thickness.
(12/11) = linear geometric scaling factor if (L2/L,) = (d2/d,).
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Optimal Routing in Connecting Networks
Over Finite Time Intervals

By V. E. BENEg
(Manuscript received May 31, 1967)

A telephone connecting network is given, and with full information
at all times about its state, routing policies are sought which minimize
the expected number of attempted calls denied service in some finite interval.
In this paper, the search is pursued as a mathematical problem in the con-
text of a standard traffic model in terms of optimal control theory and dy-
namic programming. Certain combinatorial properties of the network, earlier
found to be the key to minimizing the loss, also turn out to be relevant
here: they lead to policies which differ from optimal policies only in
accepting all unblocked call attempts, and provide a "practical"
solution of the problem posed. In many cases, the policies found vindicate
heuristic policies earlier conjectured to be optimal.

I. INTRODUCTION AND SUMMARY

We study the problem of optimally routing calls in a telephone
connecting network during a finite time interval [0, t] over which the
traffic intensity need not be constant. The present work reports on
extensions of earlier results' on routing in telephone networks with
constant traffic intensity; the principal novelty lies in the fact that
whereas previously we minimized the probability of blocking* here
we seek to minimize simply the expected total number of call attempts
denied service in a given fixed time interval [0, t] on which the traffic
intensity may vary.

A traffic model, the same as that used in Ref. 1, is described (Sec-
tions II to IV), and the problem is formulated mathematically in the
manner of optimal control theory (Section V). The associated Hamilton-
Jacobi equation is written and it is noted that this equation has a
solution constructible in terms of functions satisfying nonlinear integral

* Defined asymptotically as the stochastic limit, as t becomes large, of the
fraction of attempted calls blocked or rejected in [0, t].

2341
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equations derived from the principle of optimality, (Section VI). An
isotony theorem, based on the same combinatorial properties as were
used in Ref. 1 to minimize the loss fraction, then exposes the optimal
policies to within rejection of unblocked attempted calls. That is,
policies are arrived at which differ from optimal policies only in that
the latter might reject some unblocked calls at some times (Sections
VII and VIII); these policies are the same as those that were arrived
at in minimizing the loss.

II. STATES, EVENTS, AND ASSIGNMENTS

The mathematical model of Ref. 1 will be used. The elements of
this model separate naturally into combinatorial ones and probabilistic.
The former arise from the structure of the connecting network and
from the ways in which calls can be put up in it; the latter represent
assumptions about the random traffic the network is to carry. The
combinatorial and structural aspects are discussed in this section;
terminology and notation for them are introduced. The probabilistic
aspects are considered in a later section.

A connecting network v is a quadruple v = (G, I, ft, S), where G
is a graph depicting network structure, I is the set of nodes of G which
are inlets, St is the set of nodes of G that are outlets, and S is the set
of permitted states. Variables x, y, z at the end of the alphabet denote
states, while u and v (respectively) denote a typical inlet and a typical
outlet. A state x can be thought of as a set of disjoint chains on G, each
chain joining I to O. Not every such set of chains represents a state :
sets with wastefully circuitous chains may be excluded from S. It is
possible that I = SI, that I n Sl = 0 = null set, or that some inter-
mediate condition obtain, depending on the "community of interest"
aspects of the network v.

The set S of states is partially ordered by inclusion where x < y
means that state x can be obtained from state y by removing zero
or more calls. If x and y satisfy the same assignment of inlets to outlets,
i.e., are such that all and only those inlets u E I are connected in x
to outlets v r f2 which are connected to the same v in y (though possibly
by different routes), then we say that x and y are equivalent, written
x y.

The set S of states determines another set C of events, either hangups
(terminations of calls), successes (successful call attempts), or blocked
or rejected calls (unsuccessful call attempts). The occurrence of an
event in a state may lead to a new state obtained by adding or removing
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a call in progress, or it may, if it is a blocked call or one that is rejected,
lead to no change of state. Not every event can occur in every state:
naturally, only those calls can hang up in a state which are in progress
in that state, and only those inlet -outlet pairs can ask for a connection
between them in a state that are idle in that state. The notation e
is used for a (general) event, h for a hangup, and c for an attempted
call. If e can occur in x we write e E x. A call c c x is blocked in a state
x if there is no y E S which covers x in the sense of the partial ordering
:5- and in which c is in progress. For h t x, x - h is the state obtained
from x by performing the hangup h.

We denote by Az the set of states that are immediately above x
in the partial ordering S, and by B. the set of those that are immediately
below. Thus,

A. = {states accessible from x by adding a call}

B. = { states accessible from x by a hangup}.

For an event e E x, the set Ae. is to consist of those states y x to
which the network might pass upon the occurrence of e in x. Thus,
if e is a blocked call, A,. = 0; also

UAhz = BS
htx

UAcx = Ax .

ctx
c not blocked in

The number of calls in progress in state x is denoted by Ixt . The
number of call attempts c E x which are not blocked in x is denoted
by s(x), for "successes in x." The functions 1.1 and s(  ) defined on
S play important roles in the stochastic process to be used for studying
routing. In addition, we use

13x = number of idle inlet -outlet pairs blocked in state x

ai = number of idle inlet -outlet pairs in state x,

and note that a = s.

It can be seen, further, that the set S of states is not merely partially
ordered by but also forms a semilattice, or a partially ordered
system with intersections, with x y defined to be the state consisting
of those calls and their respective routes which are common to both
x and y.

An assignment is a specification of what inlets should be connected
to what outlets. The set A of assignments can be represented as the
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set of all fixed -point -free correspondences from I to U. The set A is
partially ordered by inclusion, and there is a natural map -y():S-* A
which takes each state x E S into the assignment it realizes; the map -y()
is a semilattice homomorphism of S into A, since

x > y implies 7(x) 7(y),

7(x, (1 y) -y(x) n 7(y).

We denote by z the set of calls that are free or idle in x, i.e.,

Fz = {c:c is idle in x} = {y(y - x): y E Az},

where y - x is the state obtained from y by removing all the calls
of x < y.

III. PROBABILISTIC ASSUMPTIONS

A Markov stochastic process x, taking values on S is used as a
mathematical description of an operating connecting network subject
to random traffic. Specifically, the Markov process of Ref. 1 will be
used, with the modification that the calling -rate per idle inlet -outlet
pair can depend on time. This model can be paraphrased in the informal
terminology of "rates" by two simple assumptions:

(i) The hang-up rate per call in progress is unity.
(ii) The calling -rate between an inlet and a distinct outlet, both

idle at time u, is X(u) > 0.

The transition probabilities of x, will be described after a discussion
of system operation and routing.

IV. ROUTING POLICIES

It will be assumed here, as in Ref. 1, that attempted calls to busy
terminals are rejected, and have no effect on the state of the network;
similarly, blocked attempts to call an idle terminal are refused, with
no change of state. Attempts to place a call are completed instantly
with some choice of route, or are rejected, in accordance with some
routing policy.

A routing policy over [0, t] will be described by a measurable matrix -
valued function of time, denoted by R(u) (rz,(u)), x, y E S, 0 < u < t,
having the following properties and interpretation: for each x t S,
let IIs be the partition of Az induced by the relation ti of "having the
same calls up," or satisfying the same assignment of inlets to outlets;
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it can be seen that rIz consists of exactly the sets A ax for c c x, c not
blocked in x; for each u c [0, t], Y £ 1Tx , r (u) for y e Y is a possibly
improper probability distribution over Y, (that is, it may not sum
to unity over Y),

rzz(u) = s(x) - E rzy(U)
ytilz

and rzy(u) = 0 in all other cases.
The interpretation of the routing matrix R(u) is to be this: any

Y e IIx represents all the ways in which a particular call c (free and not
blocked in x) could be completed when the network is in state x; for
y c Y, rz(u) is the chance that if call c is attempted in state x at time
u, it will be completed by being routed through the network so as
to take the system to state y. That is, we assume that if c is attempted
in x at u, then with probability

1 - E r,(u) (1)
ytAes

it is rejected (even though it is not blocked), and with probability
rz,,(u) it is assigned the route which would change the state x to y,
for y c Acx . The possibly improper distribution of probability

Ir2.(u) , y £ Y1

indicates how the calling -rate X(u) due to c at time u is to be spread over
the possible ways of putting up the call c, while the improper part (1)
is just the chance that it is rejected outright.

It is to be noted that, as in Ref. 1, routing is carried out with perfect
information about the current state of the network. The problem of
optimal routing with only partial information is much more difficult
(than the problem to be considered here), and it is not taken up.

Alternatively, we may define the convex set C of all (routing) matrices
R = (r,) such that rzy > 0, = 0 unless y c A,. , and

E 7' 1,

for c e x not blocked in x,

rzz = s(x) - E rx,
socAr

and describe the routing policies as measurable functions on [0, t]

taking values in C.
A routing policy R() with r,(u) ==-- 0 or 1 is called a fixed policy.
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V. FORMULATION OF THE PROBLEM

For the purpose of defining a Markov stochastic process it is con-
venient and customary to collect the probabilistic and operational
assumptions made above in a time -dependent matrix Q() of transition
rates. Indeed, each routing policy R() determines such a matrix func-
tion, and so a process, according to the relationship Q = Q(R) given
in detail by

1, y e Bz

X (u)r ,(u) , y e Az

1.-I x I - X(u)[s(x) - rzz], y = x

0, otherwise.

If the routing policy R() is used, the transition probability matrix
P(u, t) = (p,(u, t)), with

pz(u, t) = Pr {x, = y I xu = x},

will develop according to the backward Kolmogorov equation

P(t, t) I, Q = Q(R)

au
P(u, t) = -Q(u)P(u, t), 0 < u _._. t.

In particular, if the system starts at 0 with an initial probability
distribution given by the column vector p(0), then its distribution p(u)
at time u is [p(0)'P(0, u)1', which satisfies the equation p(u) = Q(u)'p(u).
If the network is in state x at time u, the rate at which blocked or
rejected calls are being generated is X(u)[rrx(u) ± ft]. Thus, with
r(u) = r(R(u)) the vector function I rxx(u), x E SI, the total expected
number of calls denied service during [0, t] is just

D = D (p (0) , t) = f: p(u)' [r(u) + 13]X(u) du. (2)

We may, therefore, state our routing problem thus: Minimize D
subject to the conditions p(0) given, p(u) = Q(u)'p(u), Q = Q(R),
R(u) E C, for u E [0, 1].

Let us now view the I S I -dimensional probability vector p = p(u)
as a "state -variable" whose "motion" is governed by the linear dif-
ferential equation P(u) = Q(u)'p(u). The criterion D is linear in p(  )
and the matrix entries of the control R() appear as coefficients in
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the equation and in the criterion. The problem of minimizing D can be
approached and solved by the now classical methods of the theory
of optimal control.

VI. THE HAMILTON-JACOBI EQUATION

Let p, q be S j -dimensional vector variables, and introduce the
Hamiltonian function

H(p, u, q, R) = X(u)p'(13 r)

Z E + X(u) E rxq - (M/Orx -F x Dqx).
x v,B.y E A

Let H* be the minimum of H for 1? c C, i.e.,

H*(p, u, q) = min {X(u)p' H q X(u)p/R - E px[x(orx x
Rce

where H = (hz) is the "hangup matrix" such that hz, = 1 or 0 ac-
cording as y e By or not. The Hamilton-Jacobi equation associated
with the minimization of D above is just

au +11*(P, u,
av-ap =0, 0 5. u t, p O.

av

V(p , 0 .

It follows from a known theorem2 of the theory of optimal control
that if we can find a continuously differentiable solution V(p, u) of the
Hamilton-Jacobi equation (3), then a control policy R() = (rz,())
such that by components

R(u) -aV (p,u) = miii 1? (p, u), 0 u t
av

ap gyp

(3)

is optimal.
To find a solution of the Hamilton -Jacobi equation (3) let us con-

sider the problem of starting the connecting system at a time u < t,
and operating it until t so as to minimize the expected number of blocked
calls over ot, 0. We define, with t fixed, and u <

E=(u) = expected number of blocked calls in (u, t)
using an optimal policy, starting in state x.

To solve the problem we note that two possibilities arise: Either an
event occurs in (u, t), or else none does. In the latter case, the system
stays in its initial state x throughout (u, t), and no calls are blocked
during the interval. In the former case the first event e to occur does so
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at some time epoch r c (u, t) and can lead to one of the states in A x U
{x}. The minimum expected blocking to be suffered in the remaining
interval (r, t) is just

[1 + Ex(r), min Ev(r)} if e = c
yeArs

Ex-h(T) if e = h.

With

cz(u) = I x I + a xX(v) ,

CC(u) f cz(v) dv,
0

the probability density that the first event to occur does so at r, and
is e, equals

cx(T) exp -Cx(r) Cx(u)}

1

cz(T) '

X(T)

cz(T) '

e = h

e = c.

Hence, applying the "principle of optimality," we conclude that the
vector function E(u), 0 < u t, satisfies the equation

E=(u) = f exp - Cz(r) Cz(u))

 [ EE,(T) + a(r) E min f 1 Ex(r), min Ev(r)}] dr. (4)
yeBs crx yeAe

We now observe that if E() satisfies (4), then the scalar function
V (p, u) = p'E(u) satisfies the Hamilton -Jacobi equation. This is of
course not surprising since the equation for E() was obtained from the
optimality principle. To see it we differentiate (4) with respect to u,
obtaining

auzE (u) =(Is I + X(u)ax)Ex(u) - E Ey(u) - a(u)ax
yell:

- A(u) E min [1 ZOO, min Ey(u)}
rex yrA e

= [I x I + X(u)s(s)]Ex(u) - E Ey(u) - X(u)13.
yen:

- A(u) E min {1 E x (u) , min Ey(u) .

rex yrAe
e not blocked in x



ROUTING IN CONNECTING NETWORKS 2349

Now note that

E min + Ex(u), min E v(01
ccz ytAcx

not blocked in z

E min 1(1 - E r)[Ez(u) 1] rEv(u)
err RrC YtAcs ycAes

c not blocked in z

= E (1 - E r=) [E 3.(u) + 1] + E r E .(u) I
REG' ccx ytAr.. YtAcs

c not blocked in x

= [s(s) - E r,][EE(u) + 1] E rE ,,(01
Rye ytAs yEA.

= min Irxx[Ez(u) -I- 1] + E rz0E(0).
RrC yEA.

Therefore,

aTuEz(u) + min -(I x I X(u) [s(s) - rzxpEz(u)
RcC

+ E E0(u) X(u)[13. rxx] E r.Ey(u)1 = 0.
sitar etA.

Now with V = p'E and 8V/ap = E, r = r(R) = rxz , x E S}, p 0,

ay-au + inm 1X(u)pi(13 -1- r) - E pi(I x I -1- X(u)[s(x) - rxx])Ex(u)
RtC

+ E P.( :E] + 2./..rw)E.(u)) = 0.
viB. yeAg

This is the Hamilton-Jacobi equation. It follows that the minimum
of D is achieved by a fixed policy, as could be expected on intuitive
grounds.

VII. ISOTONY THEOREM

In Ref. 1 we introduced some combinatorial "monotone" properties
of the partial ordering (S, of states which (when present) provide
an intuitive and straightforward description of the routing choices
for accepted calls which minimize the loss probability. These properties
are also relevant to minimizing the criterion D of (2).

The properties in question can be paraphrased as follows: the relative
merit of states vis a, vis blocking is consistent or continuous, i.e., if
a state x is "better" than another y, then the neighbors of x in 5 are
in the same sense better than the corresponding neighbors of y. Spe-
cifically, we deal in detail only with the weakest property used in Ref. 1,
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and we say that a relation P on S has the weak monotone property
if xPy implies

(i) Ix!
(ii) 3 Bz 4-> B and z c Bz implies zPia,

(iii) 3 p: F, --> Fz and (a) CEF,zcA, imply 3 w c A ()z with wPz,
(b) c, c' E Fy PC = PC' imply c = c'.

We now prove the following isotony result:

Theorem: If P is a relation on S having the weak monotone property,
then xPy implies

av av
apz = aPy

Proof: Define recursively Ex(0, u) = 0,

Ez(1, u) = 13z[Cz(t) - Cz(u)] exp fCx(u) - Cx(t))

= Pr {first & only event in (u, t) is a blocked call I xu =

E z(n + 1, u) = ft exp C. (u) - Cx(r)

[ E E ,(n , 7-) xX(T)[E z(n , T) 1]
yEB.

x(T) E min 11 Ez(n, 7.), min E(n, 7)}1dT.
ccx veA ce

c not blocked in x

It follows easily that E(1, u) < E(u), and that E(n + 1, u) E(n, u).
Furthermore, standard methods' using the inequality

I min yi - min (y, e) I < max I ei I

'gig. Isis. 'sign

show that the functions Ez(n, ) converge monotonely as n 00 to
the unique solution of (3).

If now xPy, then it 5 13 , cz() = cy(), and so Ex(1, u) < E0(1, u).
Assume as a hypothesis of induction that xPy implies Ez(n, u) < E  (n, u),
0 < u < t. Then with /.4 and v as in the definition of the weak monotone
property

E0(n, u) < E(n, u) for z Bz

min 11 E z(n , u) , min E z(n , u)}
..A (,.).

min {1 E,(n, u), min E z(n, u))
seAe.
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E E,(n, u) 13,,X(u)[Ey(n, u) 1]
Zen,'

+ A(u) E min 11 + Ey(n,u), min Ez(n,u))
cc*/

e not blocked in y

E E z(n , u) 13 ,X(u) [E z(n , u) 11+ X(u)(0 - 0.0[E v(n , u) 1]
tell

- X (u) [E (n , u) 1] E 1
etz

efrnge
e not blocked in x

+ A(u) E min (1 + E z(n , u), min E z(n, u)) .

etx xeAce
e not blocked in z

It can be seen that with I X I the cardinality of a set X,

13 -164 fc ex:cf mg v, c not blocked in x I,

whence E z(n + 1, u) < E v(n +1, u). Since av/ap= E and E(n,u) T E (u),
the theorem follows.

VIII. THE NATURE OF THE OPTIMAL POLICIES

Where it is applicable, the isotony theorem allows us to infer the
optimal routes for accepted calls. Its relevance to the optimal policies
for networks for which there is a relation P with the weak monotone
property is this: Let c c x be a call that is not blocked in state x, so
that A,. 0, and suppose that there is at least one y E A,. such that
yPz for every z E A,.. It follows from the isotony theorem that at any
time u, such a y is at least as good a way of routing c (if c is attempted
at u) as any other state of A  . The only action which might con-
ceivably be better in this situation than accepting c and routing it
so as to take the system to y is rejecting c altogether. Such a rejection
would be optimal if and only if

av av- ;

apr ap,,

for u's close to t, clearly, this is false. In these circumstances a policy
that routes c in x so as to take the system to y can differ (so far as x
and c are concerned) from an optimal policy only in the respect that
the latter might reject c in x.

In Ref. 1, the notation

sup A
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was used for the set

ly: z E Acz implies yPz1 Ac. ,

whenever this set was nonempty. The set sup A consists precisely
P

of the possible states to which an optimal policy takes the system
from state x if it accepts the attempted call c.

The preceding observations are summarized in the Corollary: If P
on S has the weak monotone property then there exists an optimal policy
R() such that c E x, y e A c.r.u(u) > 0, 0 < u < t imply

y E sup Ac= .
P

The theory of routing for minimal D constructed here can be de-
veloped in greater detail in the fashion of the optimal routing theorems
of Section XVIII of Ref. 1; however, the isotony theorem and corollary
embody the basic idea, and we shall leave the topic at this stage.
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Restoration of Photographs Blurred
by Image Motion

By DAVID SLEPIAN
(Manuscript received May 16, 1967)

The blurring of photographs by image motion during exposure is
studied by means of a simple model. Conditions under which it is possible
to recover the unblurred image are determined and some methods of res-
toration are described.

I. INTRODUCTION AND SUMMARY

This paper is concerned with the feasibility of restoring photographs
that have been blurred during exposure by relative motion between the
camera and the entire scene being photographed.* It is assumed that all
objects of the scene are at rest relative to each other. Several simple
mathematical models of this situation are investigated.

Section II treats the case of uniform translation between film and
image. During exposure an area, A, of the image crosses over the margins
onto the film. It is shown that unique restoration of the scene from
the blurred photograph is, in general, impossible without a priori
knowledge of certain portions of the undistorted image of area A.
An algorithm is given for the restoration when this a priori knowledge
is available, and a filtering technique is described that covers a case
of frequent interest,-the photographing of a small object viewed
against a uniform background.

The restoration techniques require knowledge of the translation
undergone. Section III describes a method of estimating this displace-
ment from the blurred photograph.

In Section IV more general image motions are considered. The case
of pure rotation has many features in common with that of pure transla-
tion. Estimation of the parameters of the motion, however, appears
to be more difficult in this case.

* This work was carried out at the Woods Hole 1966 Summer Study on Restora-
tion of Atmospherically degraded Images held by the National Academy of Sciences.
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II. IMAGE TRANSLATION

We are concerned here with photographs blurred because of a uniform
relative motion during exposure between the camera and the object
being photographed. For mathematical simplicity, in this section we
treat the problem as one-dimensional; the modifications necessary to
describe the more accurate two-dimensional model are evident.

Let g(x) denote the illuminance from a scene or object being photo-
graphed that would result along a line in the image plane of the camera
if there were no relative motion between the camera and the object.
We suppose g(x) defined for all values of x. The film occupies the interval

x < L. Imagine now that during the exposure time T the image
moves with constant velocity v along the image plane in the x -direction.
The total light energy (x) incident on a point x in this plane is

= C2

f
r

g(x - vt) di

izz_
g(y) dy,

(1)

where a = vT. In appropriate units, the density of the photograph is
then

f(x) = r[E(x)], I x I L, (2)

where r(E) is the response curve of the film. Our aim is to recover g,
or a portion of g, from a knowledge of f(x), f x J 5 L. If we assume
the film response is monotone and known, knowledge of (x) is equiv-
alent by (2) to knowledge of E(x) = r'[f(x)], I x I 5 L. For our pur-
poses, then, it suffices to assume (x) known, or equivalently, to assume
that the film response is linear. Accordingly, we henceforth consider
recovering the undistorted scene g(x) from the blurred photograph

f(x) = f g(y) dy, I x I L, (3)

where it is assumed that a is known. (The problem of estimating a
is treated in Section III.)

From (3) we obtain at once

f'(x) = g(x) - g(x -a)

or

g(s) = ay) g(x - a), I x I < L, (4)
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the basic recovery equation. If g(x) were known for -L - a < x < -L,
say

g(x) = co(x), -L - a x-L, (5)

then g could be determined at once from (4) across the entire film
interval. One has

g(x) = f'(x) + cp(x - a) -L x -L + a
g(x) = f'(x) + g(x - a)

= f ' (x) + f'(x - a) + so(x - 2a),

k -1

g(x) = E f'(x - ja) + co (x - ka),
-0

-L + (k - 1)a x - ka

= 1, 2, , K

g(x) = E f'(x- ja) + co[x - (K + 1)a],
-0

(6)

-L + Ka x L,

where K = [2L/a] is the largest integer not greater than 2L/a. Similarly,
if g(x) is known on any interval H of length a contained in the interval
I = (-L - a, L), (4) can be used to determine g first in the intervals
of length a adjacent to H and then successively to determine g through-
out I. More generally, if g is known on a set S of intervals in I whose
translates by various multiples of a form a set containing an interval
of length a in I, then g can be determined everywhere in I by repeated
application of (4). We call such a set S an admissible a priori set.

Two quite different cases of restoration are now evident: (i) g known
beforehand on an admissible a priori set; (ii) g not so known. In the
former case, exact restoration is possible in principle. In the latter
case, unique restoration is not possible. Indeed, a given blurred photo-
graph f could arise from infinitely many different scenes. For example,
if no a priori knowledge of g is available, choose g(x) = (p(x) for -L -
a < x < -L with co arbitrary. Use (6) then to determine g for -L
x LC. L. This scene g will give rise to a blurred photograph differing
from f by at most a constant. (By judicious choice of background,
and by moving the camera, it is possible to make the devil appear
as only a slightly -blurred saint!) Similar considerations show that if



2356 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967

g is not known beforehand on some admissible a priori set, its values
can be assigned arbitrarily on some set of points in I and determined
elsewhere to give a scene that could produce a given blurred photograph.
There seems to be little useful that can be said, in general, about
restoration of blurred photographs when g is not known on some
admissible a priori set.

A case of importance in practice where something of value can be
said concerns the restoration of a photograph of a small object moving
across a uniform background. We suppose the background corresponds
to photographic density zero and that the blurred object image is

smaller than the photograph. Specifically, assume that it is known
a priori that the unblurred object image g(x) would be nonzero only
in the interval xo < x < xo (p - 1)a, where xo -L, xo + pa Lc. L.
The blurred photograph then would have a density different from
zero only for -L < xo < x < xo + pa < L. We define f everywhere
by taking

f(x) 0, x < xo , x > + pa. (7)

We define g = 0 for x < xo and x > xo (p - 1)a. In this case, the
solution of form (6) becomes simply

P-1

g(x) = E f'(x - ja), x < xo + pa (8)
-0

g(x) = t f'(x - ja), xo + pa < x < x0 (p + 1)a
i - I

p+ n-1

g(x) = E f'(x - ja), (p n - 1)a < x < so + (p n)a

It = 1,2, . (9)

Because of our assumptions, the sums in (9) must give zero for n = 1,
2,  and x in the indicated ranges. They are in this sense nugatory.
Equation (8) gives g = 0 for x < xo because of (7). In the range of
interest xo < x < xo + pa, it gives a simple algorithm for obtaining
a true picture of the object.

Equation (8) can be instrumented in many ways. The derivative f'
of the blurred photo extended by (7) can be obtained as a transparency
by optical filtering techniques. The sum (8) then can be found by p-
tuple exposure of a film with the image of f' being translated by an
amount a by a mirror between each exposure.
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An alternate restoration method suggested by (8) sheds some light
on a filtering technique previously reported in the literature.' Let us
define for all x

p-

o(x) = E - ja) (10)
i=0

with f defined everywhere by (7).
For x < x0 + pa, g will coincide with g, but for x > x, + pa it gives

values different from g. From the Fourier representation

if follows that

f(x) = f et' le(X) dX

f'(x - ja) = dX

so that (10) can be written

0(4 = i dX eixxiXF(X) E e 1- Ota

-ca i=0

(1X eixxXF(X)
sin (Xpa/2) -icp-i)(x./2)
sin (Xa/2)

which shows that 0[x (p - 1)(a/2)] can be obtained from the extended
blurred photograph f by processing with a filter having transfer function

iX sin (Xpa/2)
37(X1 - sin (Xa/2)

A different filter for restoration in the present case can be derived
as follows. Recall our assumption that

g = 0 for x -L and x > L - a. (12)

Then

(x) = g(y) dyf-a

,h(x - y)g(y) dy

holds true for all x. Here

h(x) = , -a x 0

0, otherwise.

( 1 :3)
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Taking the Fourier transform of (13) yields

G(X) = re-""' X

sin (Xa/2)
F(X) (14)

which shows that g[x (a/2)] can be obtained from the extended
blurred photograph by processing with a filter having transfer function

XY = 7- sin (Xa/2)
(15)

as has been reported previously.'
The filter (15) has poles at the points X = 2n7r/a, n = 1, 2,

and hence cannot be realized in practice. Some ad hoc scheme for
assigning a finite value at these pole positions must be made. Just
what these modified filters do to picture quality is not easy to analyze.
The filter (15), could it be instrumented, would yield g, that is, a
picture with infinite white skirts. The filter (11), on the other hand,
has no poles and hence can be realized.* It restores g correctly in the
interval xo < x xo + pa where this quantity is different from zero.
It gives uninterpretable values for x > xo + pa and the value zero
for x < xo . It would appear that the infinities in (15) with their at-
tendant difficulties are due to insisting that the processed picture yield
the value zero over an infinite region where from a priori knowledge
one would accept no other value anyhow.

It is worth noting that if (12) is violated, then (13) does not hold
for all x and one cannot write (14). These edge effects have been over-
looked in past treatments of the problem based on (14).'

III. ESTIMATION OF MOTION PARAMETERS

The restoration technique of the preceding section presupposed
knowledge of the direction and amount of the image displacement
during exposure. We now consider how these quantities might be
determined from the blurred photograph itself.

We suppose the blurred photograph density to be given by
T

f(X, y) = f g(x - ut, y - vt) dt,
0

where g(x, y) is the image that would result if there were no motion.
Again to avoid edge effects we suppose g(x, y) defined everywhere

1111.SLs, (16)

* Because of the growing factor x, both (15) and (11) must ultimately be cut off
at some point beyond the largest spatial frequency of interest in the photographs.
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and different from zero only in the rectangle -L, < x :5_ L, - 717',
-L2 6 y 5 L2 - vT, so that defining f = 0 for I x I > L, , I y I > 112
we can write

7'

f(x, y) g(x ut, y - vt) di,
 0

-cc x y < °o (17)

Into (17) now introduce the Fourier representation

0(x, = cal G(E, n)ei(Ez"v1

There results

Yx, = for dt dE ice d or n)et [yr-ut)+,7(v-rt )1

.0 co

= f n)e- (t.+0)/2) sin (Ea + 71b)/2
-co ( a -I- nb)/2

on performing the t integration. Here

a = uT, b = vT.

(18)

Since (18) holds for all x and y, we see that the Fourier transform of f
is given by

F(E, n) Gr(e, 77)e-it(to+nb)/2, sin (Ea -I- nb)/2
(Ea nb)/2

(19)

As seen from (19) the transform of the blurred photograph is zero
on the family of parallel lines

Ea nb = 2nr n = ±1, ±2, .

These lines of zero density in /7 should provide a reasonable means
of estimating the parameters a and b. Due to noise, the curves of zeros
of F will not appear as straight lines. The job of fitting straight lines
to these curves of zeros should be greatly simplified however by the
knowledge that the lines are parallel and uniformly separated. Once
the fitted lines are drawn, value of a and b are readily found.

IV. MORE GENERAL MOTION

In the present model, the blurred photograph that results from the
general nondistance-distorting motion of a small object is
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Tf (x, y) = f dt g[(x - u) cos co - (y - v) sin ,

0

 (x, - sin ,p (y - v) cos 401 . (20)

Here g(x, y) is the illuminance that would result if the object were
at rest with respect to the film during the exposure, u and v are functions
of t giving, respectively, the x and y coordinates of the origin of a
coordinate system fixed with respect to the body, and go = (p(t) is

the angle that this second coordinate frame makes with respect to the
x-y frame. In the case of most immediate interest

U= xe fit

v = ye + fit (21)

so = wt.

One finds without difficulty that the Fourier transform of f and g
are related by

F(E, n) = f dt CituEf"1G[ cos go - n sin so, E sin co + n cos cp]. (22)

This equation appears somewhat simpler in polar coordinates. We write

= p cos 0

u = V cos a

and set

= p sin 0

v = V sin a

n) = P(P, 0) G(E, n) = 0(p, 0).

Then (22) becomes

1' (P, 0) = f dl C;PV"'"-a)0(P, 0 + so). (23)

Here V, a and io are functions of t.
Under these general conditions, I have been unable to find a practical

method for obtaining the undistorted scene g from f, either in the space
domain, or from the transform statements (22) and (23). Even in the
case of combined uniform translation and uniform rotation given by
(21) no method is as yet evident.

The case of pure uniform rotation, 'a = v = 0 can, however, be
treated and complements the case of pure translation (w = 0) already
discussed in Sections II and III. Working directly in the space domain,
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(20) becomes
.7'

f(x, y) = I dt gKx - x0) cos col - (y - y0) sin cot,
0

(x - xo) sin cot (y - yo) cos cot].

Introduce polar coordinates located at the center of rotation

x - xo = p cos 0

J - yo = p Sili 0

J(p, = f(x, #(p, 0) = g(p cos 0, p sin 0). (24)

We now have
r7'

= 0(0, 0 + col)
0

1
fe+"'- - d (1'(p , 0')

co 0

which is basically of the form (3) already treated. The basic restoration
equation is

0(p, 0) = (-5 PP/ + d(p, 0 + wT), (25)

where p is to be regarded as a parameter, # and .1 are periodic in 0
with period 21 and the equation holds for all values of 0.

If #(p, 0) is known a priori as a function of 0 along an arc of angular
extent wT radians, (25) can be used successively to determine g for
all 0. It is not hard to show that if # is not known a priori on a 0 set
of angular measure wT, unique restoration is impossible. Indeed, there
exists a scene with values assigned arbitrarily (except for an additive
constant) in a wedge of angle wT which, when rotated, will give rise
to any preassigned blurred photograph.

In the case of a blurred photograph of a rotating unknown object,
for example, if the center of rotation is within the body, unique restora-
tion is impossible in the neighborhood of this center. If restoration
is to be made, one must use some form of a priori knowledge to specify
# or an estimate of 9 in some angular interval of amount (...)T.

Restoration by means of the difference equation (25) presupposes
knowledge of co and [from (24)] the center of rotation xo , yo . We have
not found a simple way of estimating these parameters. Unlike the
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case of pure translation, the Fourier transform of the blurred picture,

PG) 0) = ip(r. cos 8-Ey. jin 0) di 0(p, 0 + o.d),
(I

does not seem to offer special clues. If the object has some straight
line edges, their initial and final positions may show clearly enough
in the blurred photograph to allow estimates of xo Yo and wT to be
made. For example, if ll and lf are the lines along the initial and final
positions of some edge of the body, the angle between 1, and lf is clearly
col'. Let 12 and 4 be lines along the initial and final position of some
other straight line feature of the object and let P be the intersection
of 1, with /2 and P' be the intersection of lf with lz . The center of rota-
tion 0 must lie on the perpendicular bisector of the segment PP', and
its position is chosen so that Z POP' = wT. It is likely that, in practice,
restoration with several different trial values of the parameters will
have to be made and the best result selected.
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Cathode Activity Measurement:
a Modification of the Dip Test

By D. W. MAURER
(Manuscript received August 17, 1965)

A method of cathode activity measurement which yields fundamental
cathode parameters has been developed. Basically, it is a modified dip test
and consists of plotting cathode current vs cathode temperature. A simple
geometric analysis of the data plot yields data that can be related from one
tube to another and to the cathode work function. Thus, experience gained
by this simple and rapid technique may be translated from one tube type
to another.

This technique can be used to obtain the work function as a function
of cathode temperature and a method is suggested for obtaining work
function as a function of current density.

I. INTRODUCTION

The activity measurement technique to be described, was developed
to fill the need for a standard technique to be used on a rather large
diode program. The requirements of an activity measurement for this
program which are common to any tube development, may be stated
briefly as follows:

(i) The measurement must cause a minimum disturbance to the
chemical equilibria existing in the tube, in other words not interrupt
the life processes.

(ii) The measurement should be rapid, to permit regular study of a
large number of tubes.

(iii) The parameter (s) measured should be related to some funda-
mental property of the cathode, independent of the tube.

(iv) The technique should not require complicated or specialized
electronics which are subject to break down or drift.

A review was made of the currently available techniques. All of them
suffer from one or more shortcomings when evaluated by the above

2363
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requirements. Child's law plots or perveance measurements are use-
ful but tend to substantially upset the tube equilibrium especially
when data are taken at higher cathode loading than the normal op-
erating point of the tube. The higher power invariably leads to deac-
tivation, especially in close spaced diodes. If data above the operating
point are taken with short (1 to 2 Asec.) pulses this problem is
eliminated but the process is very time consuming and involves com-
plex electronics. Use of single high -voltage pulses to obtain the cur-
rent at a fixed point in the Schottky region yields good information so
long as equipment is stable and capable of precise calibration. How-
ever, it gives no information on uniformity of emission or possible
changes in the shape of the Schottky line. The use of short pulses is
also difficult without elaborate precautions in the life rack to eliminate
stray capacitance and high voltage breakdown. Any of the above tech-
niques are inappropriate in gun -type tubes because of high -voltage
breakdown in the tubes and, in the case of traveling -wave tubes, be-
cause the beam current is limited by the magnetic field strength. Shot
noise measurements are useful and give information on uniformity as
well as activity, but require complicated equipment.

Dip testing as first described by Bodmeri would satisfy all the re-
quirements previously stated if the data taken could be related to
fundamental cathode parameters. That these techniques are effective
given good cathodes has been demonstrated. However, for the proposed
Bell Laboratories diode program, in which at least some of the
cathodes would be of poor activity, and probably of nonuniform
emission, this method did not appear suitable. The relationship to
basic cathode parameters had also not been shown. Another concur-
rent and independent piece of work on the dip technique was de-
scribed by Dominguez, Doolittle and Varadi.2 They have explained
the shape of the curve and used the data to follow the activation of
production tubes.

This paper will describe a modification of the dip technique which
is based on a method first used by A. J. Chicks in connection with the
life study of the Te/star® TWT in 1962. Instead of measuring the
usual dip in cathode current in a given time, he substituted a dynamic
recording of cathode current and temperature to facilitate the study
of the transition region between space charge and temperature limited
emission, i.e., the knee. Plotting the knee temperature during life, he
found it to be an accurate indication of cathode activity.

The technique has now been further improved and a simple and re-
liable method will be described to establish the knee even if the transi-



CATHODE ACTIVITY MEASUREMENT 2365

tion is poorly defined. An extensive diode program has been evaluated
with this technique and its utility is shown by following tube activity
on life. It will also be shown how data taken in this way can be used
to determine basic cathode parameters and to obtain measurements
of these under conditions not previously obtainable. Examples will
also be shown of its use in analyzing the effects of cathode tempera-
ture on work function.

II. THE TEST METHOD

In this section the experimental technique and the method of data
analysis will be discussed followed by an example of its use. Then
the details of several experimental problems will be discussed.

2.1 The Measurement Technique and Data Analysis

In the modification of the dip test developed here, an X -Y recorder
is used to plot cathode current vs cathode temperature when the
heater power is turned off. The experimental apparatus is shown in
Fig. 1. The cathode current of the tube on test is recorded on the Y-
axis of the X -Y recorder. The temperature, monitored by the infrared
pyrometer, is recorded on the X-axis. A typical curve obtained by
this technique is shown in Fig. 2. This consists of two regions: on the
right is the current vs temperature in the space -charge limited region
and on the left is the current vs temperature in the temperature
limited region. These two regions are separated by a knee. The round-
ness of the knee is caused by nonuniformities of emission and the
energy distribution of the electrons. The decrease in current with
temperature in the space -charge limited region is caused by changes
in spacing with cathode temperature and by a movement of the space-

IR PYRO-
METER HEAD

Y- AXI S

Fig. 1- Apparatus for III dip measurement.
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charge minimum in front of the cathode towards the cathode as the
temperature decreases. The decrease in current in the temperature
limited region depends on the work function and is exponential in
shape. Experimentally, the upper part of the exponential region can
be approximated by a straight line over a short range, as shown in
Fig. 2. This is extrapolated up to the initial current and is used to
define the knee. The temperature at the knee which is characterized
in this way (TIR) corresponds roughly to the temperature at which
the tube could be operated and just maintain space charge limited
operation at the operating current density. Higher values of TIR
derived from this plot imply lower activity and lower values, higher
activity.

2.2 A Life Plot
An example of the use of this technique to make a life plot is shown

in Fig. 3. This is a plot of data taken after activation on a set of six
diodes with experimental cathodes. The curve is the average of data
from six diodes. As the end of life approaches, (due in this case to
coating depletion), the dip temperature rises to approach the operat-
ing temperature, i.e., there is no space -charge limited region at the
operating temperature at the failure time.

2.3 Experimental Problems

A difficulty in the use of an infrared pyrometer to monitor tem-
peratures in tubes containing borosilicate glass (Kovar sealing glass)

0

0

0

z

-

TEMPERATURE
LIMITED
REGION

SPACE -CHARGE
REGION

To

CATHODE TEMPERATURE

Fig. 2 - Typical data obtained by the IR dip technique.
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Fig. 3 - Life plot of the average of six diodes operating at 850°B.

envelopes is that the glass has a relatively high infrared absorption.
Therefore, flaws and variations in thickness of the glass, etc., would
have relatively large effects on the temperature measured. To circum-
vent this problem the temperature of the cathode is adjusted with an
optical pyrometer. This technique allows the infrared pyrometer to be
calibrated each time the tube is read. That is, glass flaws, variations
in the thickness of the glass, etc., enter as correction terms to the
emissivity. To demonstrate that these factors would have no effect
on the dip temperature, this was measured with the infrared pyrometer
in these various situations:

(i) The infrared pyrometer at various angles to the axis of the tube
and at various distances from it.

(ii) The pyrometer sighted on the cathode base nickel or on the
molybdenum cathode heater sleeve.

(iii) The pyrometer sighted on the image of the cathode nickel in
a gold -backed mirror.

In all cases the dip temperatures were identical.

Another difficulty in the use of an infrared pyrometer is that the
scale reading, and thus, the X axis of the plot, is not a linear function
of temperature and a conversion chart must be used to obtain the
temperature. Since most of our diodes are operated at one of three
temperatures we have alleviated this problem by making a plexiglass
ruler which has the three temperature scales for the X axis cor-
responding to each tube temperature. In this way, it is a simple proc-
ess to measure the knee temperature directly from the plots.
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Thermocouples may also be used to measure cathode temperature;
however, these are often unreliable over long periods of time. In
some cases thermocouples are not pratical and the cathode cannot
be directly viewed with a pyrometer. This is usually the case for a
traveling -wave tube in its magnetic circuit. In this case, we have
obtained a temperature vs tithe curve for a dip outside the circuits;
then a current vs time plot was taken in the circuit. The current-time
curve is analyzed in the same manner as current-temperature curves
to give a knee time. The temperature can then be obtained from the
temperature -time calibration. This calibration must be checked pe-
riodically due to changes in cathode support welds, heater resistance,
etc.

III. OTHER APPLICATIONS OF THE TEST METHOD

In this section the analysis of the data will be extended to show
how the information obtained from the dip plots is related to the
work function v. First, the method of obtaining p from the test data
will be described. Then the description of the method of obtaining it
as a function of temperature independently of the A constant will be
given. Finally, a method will be proposed for the determination of
work function as a function of current density.

3.1 Measurement of Work Function
In the temperature limited region shown in Fig. 2, the current

follows the well-known Richardson equation modified due to the
Schottky effect caused by the field on the cathode.* The equation for

the combination of the two effects is easily obtained by substitution:

where

lii
J = In A + (0.440: V)' -) T '

J = current density,
T = absolute temperature,
A = the Richardson Constant,
G = geometry factor,
V = voltage,
e = electronic charge,
k = Boltzman constant,

= work function.
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According to this equation, in the temperature limited region at con-
stant voltage, if the log of J/T2 is plotted against 1/T, a line should
be obtained whose slope is a combination of the work function and
the geometric factor. A calculation shows that the geometric term
should be negligible for planar diodes with respect to the work func-
tion term at the voltages used.* Under these conditions this equation
reduces to the Richardson equation. Originally, a series of dips were
taken at various tube voltages and the knee temperatures (Tilt on
Fig. 2) were used to make a Richardson plot. These plots were always
straight lines. This was taken as confirmation of the utility of the

--knee temperature as a significant measure of cathode activity.
Data have also been taken from a single clip curve below the knee

and fed into a computer to determine a least squares fit, calculate the
work function and plot the data. An example is shown in Fig. 4.
There is a very good fit to a straight. line. The slope corresponds to
a work function of 1.2 eV.

-6.50

-6.75

N
F- -7.00

0 -7.25

-7.50

-7.75
8.5 9.0 95 10.0

1/T
10.5

Fig. 4 - Richardson plot for tube 370.

11.0 115
X10-4

3.2 Work Function as a Function of Temperature

As as basis for discussion in this section and the following one
(Section 3.3) several points from the generally accepted hypothesis
of cathode operation are pertinent:

(i) The cathode is a semiconductor with mobile donors which mi-

* The term GV is the field at the cathode. For parallel. plane geometry, G =
1/D where D is the separation distance. Other geometric configurations may be
calculated appropriately, see Ref. 4. p. 30.
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grate under the influence of fields. The time constant for donor redis-

tribution is of the order of milliseconds.5
(ii) The lifetime of donors in the coating is much longer than their

transit time across the coating. Usually the lifetimes are of the order
of hours.5' 8 '7

(iii) The work function of the cathode is a slowly varying func-
tion of donor concentration at the surface down to a critical value,
whereupon it rises rapidly with further decrease in concentration.

The fact that donors redistribute themselves within milliseconds
under the influence of fields means that the work function measured
by the dip technique will not contain the effect of current density.
Therefore, measurements should be made at low current densities
where these effects are small; otherwise an average of the donor dis-
tribution will be obtained and the effect will be difficult to analyze.
On the other hand, the fact that donor loss is quite slow, means that
the total donor concentration (not the concentration gradient) within
the cathode will be essentially "frozen in" as the cathode cools and
the effect measured will be that of a cathode as it exists at the start-
ing temperature. Thus, with this technique, we can measure the work
function and the A constant independently at a given cathode tem-
perature. This point is important. The usual technique of getting the
temperature dependence of the work function is to measure J and T,
insert them into the Richardson equation and solve for r assuming
A = 120. This assumption is not a good one for oxide cathodes. The
A constant contains a term which is the "effective" emitter area, i.e.,
that area which is actually emitting electrons. It has been widely
demonstrated in the literature that oxide cathodes are composed of
an aggregate of small areas of high and low work function. Further-
more, measured A values for oxide cathodes determined by the con-
ventional plotting techniques mentioned above vary widely (10-3

to 2.8 x 104).8
The advantage of this technique in measuring work function is

demonstrated from data taken on two similar diodes. The work func-
tion of one was measured by the usual technique of taking Schottky
data at various cathode temperatures. A plot of these data is shown
in Fig. 5. Data from these curves were then replotted according to
the Richardson equation to give the plot shown in Fig. 6. This plot
has a straight line section with a slope which corresponds to a work
function of the order of 1.5 eV. The points deviating from this line at
the higher temperatures are characteristic of what is observed on
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Fig. 5 - Schottky plot of tube 246.

many cathodes and represent a changing cathode system in these
regions which results in an increasing work function and probably a
changing A value. The most likely explanation is that the donor
depletion at the higher temperature increases faster than the donor
production rate. This results in cathodes of higher work function at
the higher temperature. This was confirmed on another tube where
the work function by
The work function measured at an initial cathode temperature of
750° brightness was 1.5 eV in good agreement with the results of the
Schottky plot. However, the work function measured at 850° bright-
ness was 1.7 eV.
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Fig. 6 - Richardson plot of data from Fig. 5.
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This technique has been used to demonstrate electrolytic activation
in an experimental cathode which is described elsewhere.° In this
case the work function was measured for various cathode temperatures
using both do and 500 ittsec pulses. The results are shown in Fig. 7.
Notice that the values obtained by using de follow what might be
considered the normally expected pattern and are relatively con-
stant. The pulse values, however, are constant only up to about
750°B where they increase rapidly with further increase in tempera-
ture. The explanation for the pulse results is the same as for the plots
previously presented: The donor loss increases faster than donor
production. The do values remain constant because electrolysis is
contributing to the donor production, and therefore, 97 remains low in
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DC POWER
SUPPLY
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METER HEAD

IR PYRO-
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Fig. 8 - Apparatus for measurement of cp vs J.
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value. It may be expected that the de values would increase if the
temperature were taken higher.

The utility of this technique in measuring work function in an
operating temperature range where the work function of the cathode
is changing as a function of cathode operating temperature has been
demonstrated. The possibility of measuring work function independ-
ently of A at a set temperature in a region where r is changing as a
function of temperature was not recognized before. Thus, it is a new
tool for the investigation of the mechanism and operation of cathodes
in this region.

3.3 Proposed Measurement of Work Function as a function of Current
Density

If one wanted to observe the variation in work function with cur-
rent density, the following technique could be used. The apparatus is
shown in Fig. 8. Here, microsecond pulses are to be superimposed on
a dc operating level. The pulse current is to be used to make dip
measurements. In this way the temperature limited region well above
the operating current density can be monitored to define the work
function while the de operating current density is still in the space -
charge limited region. By this means, the point at which the work
function begins to rise rapidly with current density, i.e., the de cur-
rent density at which donor depletion at the surface becomes appreci-
able, can be determined. This limiting current density is a measure of
the minimum donor concentration required in the surface of the
cathode under given do conditions.

IV. CONCLUSIONS

The modified dip test described here yields data which can be re-
lated to a fundamental cathode parameter, namely the work function.
This permits quantitative studies of cathode activity throughout life.
The technique can further be used to determine information about
the concentration of the donors in the cathode. The method described
is of general practical utility; the data can be obtained rapidly and be
directly compared from one tube type to another.
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The CPC: A Medium Current Density,
High Reliability Cathode

By D. W. MAURER and C. M. PLEASS

(Manuscript received March 1, 1967)

The coated powder cathode is an inexpensive, reproducible emitter which
combines the virtues of various conventional cathode types, and is suited
to use in modern high -power, high -reliability electron tubes. It is best
considered as a modification of the classic oxide cathode in which each particle
of the emissive coating is covered with a thin layer of nickel. Inherent
advantages of this cathode over the oxide cathode include the ability to
sustain current densities up to 1 amp/ cm2 over long, calculable lifetimes,
increased flexibility in time and temperature during processing, and
improved coating adhesion. This paper describes the concept, fabrication
and mechanism of the cathode and presents data obtained from a diode
evaluation program.

I. INTRODUCTION

Modern requirements for high -power microwave tubes having very
high reliability have accentuated the demand for cathodes capable
of de or long pulse emission in the range 0.5 to 1.0 amps/cm2 over
lifetimes up to 50,000 hours. The best oxide cathodes available func-
tion only at the lower end of this range over relatively short lifetimes,
and in consequence metal matrix types are normally used. The most
widely used of these is the tungsten matrix, but this demands oper-
ating temperatures of the order of 1000°C,* and the reliability of the
tube then begins to depend on factors such as the integrity of the
cathode heater and its radiation shielding. Nickel matrix cathodes,
prepared from powder compacts of nickel and active oxides, and

* Throughout the remainder of this paper, °C will be used to mean degrees
Centigrade true temperature. The abbreviation °B will be used to mean degrees
Centigrade brightness on nickel as measured by optical pyrometer on the side
of the cathode button.

2375
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capable of operating at temperatures between the tungsten matrix
and oxide cathodes, are limited in high -reliability applications by
their shrinkage, residual gas context, and local inhomogeneities. The
conventional oxide cathode, with its low operating temperature and
"clean" structure, would normally be the best choice if it were pos-
sible to modify it in such a manner as to permit emission of the order
of 1 amp/cm' over lifetimes in excess of 20,000 hours.

The coated powder cathode (CPC) can be regarded as a modified
oxide cathode in which the active coating is prepared from particles
of conventional electron tube grade carbonates, each lightly coated
with nickel. The nickel normally constitutes only 1 to 3 percent by
weight of the carbonate. Its primary effects are to change the electrical
resistance, sintering behavior, and emissivity of the coating. The im-
proved performance of the coated powder cathode can be interpreted
in terms of these primary effects.

If an oxide cathode coating is permeated by metal forming electrical
contacts between the base and the vacuum interface, the field lines
along which electron donors drift during high current density operation
are modified. The major component of the field will become transverse
when the distance between metal "electrodes" in the coating becomes
substantially less than the coating thickness. The donors will then re-
main in the surface layers of the cathode coating, keeping the work
function low. This situation exists in metal matrix cathodes, where
relatively small particles of oxide are embedded in nickel or tungsten,
an analogy being one of metal tubes filled with oxide extending to the
surface. The donors in such systems would be expected to move toward
the metal -oxide boundary at the surface as current density is increased,
giving an oxide -vacuum surface having a nonuniform but essentially
constant concentration of donors. Despite the nonuniformity, the
average or effective work function remains low.

The CPC is constructed with a novel distribution of nickel in the
active coating, which achieves the surface donor retention mentioned
above with only 0.5-3.0 wt percent of metal.* This should be com-
pared to 70-80 wt percent metal normally required to provide a con-
ducting path through a conventional matrix cathode. In reducing the
amount of metal involved in the surface one approaches the lowest

* Normal oxide cathodes have resistances of the order of 1-10 n/cm2. Assum-
ing the bulk resistivity of nickel, the nickel coating of a CPC particle could in
theory be of the order of 10' cm thick to have a resistance comparable to the
activated oxide. Therefore, films of the order used (0.01 IL) should have sub-
stantial effects even if the resistivity of the film is substantially greater than
the bulk resistivity.
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practical work function-that of the classic oxide cathode. Thus, the
operating temperature of the CPC (700-800°C) is comparable to that
of the oxide cathode, and is essentially unaffected by the emission
level in the region studied. Operating temperature is, however, in-
fluenced by the vehicle employed, in proportion to the rate of poison-
ing reactions. Thus, a close -spaced diode normally requires a cathode
temperature of the order of 800°C, while a travelling -wave tube with
a slow wave structure and remote collector will operate in the 700-
750°C region.

The nickel film around each particle also inhibits the growth of
relatively inactive, large single crystals of (Ba, Sr)0 during high
temperature outgassing. In this respect, note that Eisensteinl has
shown (Ba, Sr) 0 crystallite growth in oxide cathodes to be relatively
rapid above 900°C and many workers have observed the degraded
high current density characteristics of oxide cathodes that experienced
appreciable time at temperatures above 900°C. This is consistent with
the suggestion2 that donor movement in single crystal material is very
fast, leading to deep donor depletion layers.

CP cathodes can be processed at temperatures as high as 1150°C
without detectable degradation in subsequent emission. This has
practical advantages in the reduction of time on the tube processing
station, and in the thorough degassing afforded the heater -cathode
assembly.

The inhibition of crystallite growth extends to the reprocessing of
an activated CPC which has been exposed to room atmospheres. Al-
though X-ray diffraction photographs taken before and after exposure
show that water and carbon dioxide are indeed reabsorbed, the coating
does not lift or "bloom," and if reprocessed by a conventional schedule
will normally reactivate. This implies that the mixture of barium and
strontium hydroxides and carbonates formed within each nickel shell
is largely retained within the shell during reprocessing, reducing the
tendency to form a glassy phase.

When sprayed onto a nickel base with a conventional nitrocellulose
binder, the CPC coating shows excellent adhesion, resisting a Scotch
Tape test. This appears to be related to the slight roughness of the
particle surface. This is visible in Fig. 1, which shows representative
photomicrographs of coated and uncoated powders. During breakdown
of the carbonate to oxide, the nickel film is split to allow the escape
of carbon dioxide, and at the same time, nickel -to -nickel sintering be-
gins. The latter is effective in increasing the adhesion to the base and
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Fig. 1-Electron micrographs of nickel coated and uncoated double carbonate
particles.
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the cohesion of the coating still further. The oxidation of the nickel
shell during carbonate breakdown is found to be very slight. In tubes
requiring ultra -smooth coatings (ultrafine powder), excessive cohesion
between particles can give rise to surface cracking known as "mud -
flatting" unless care is exercised during the processing. However,
through the particle size range normally used in oxide cathode tech-
nology, the integrity and adhesion of the processed coating is excellent.

The nickel network responsible for the improved performance of the
CPC is maintained during life by sublimation of nickel from the base
alloy into the coating. An equilibrium is attained, wherein nickel is
lost by evaporation from the surface of the coating, and replenished
from the base. Thus, a CPC coating, applied to a low vapor pressure
metal such as platinum, would slowly lose its metal network during
life, and transform into a simple oxide cathode. This transformation
has been observed, but has not been studied quantitatively. However,
many of the advantages of the CPC are gained by establishing nickel -
to -nickel contact between each particle prior to breakdown and activa-
tion, and use on substrates other than nickel to gain processing ad-
vantages is not unreasonable. Notice that the overall rate of nickel
sublimation from a CPC is identical to that of an oxide cathode
operating at the same temperature.

II. PREPARATION OF THE NICKEL COATED POWDER

A useful technique for the preparation of metal coated powders in-
volves the decomposition of a thermally unstable metal compound in
a "fluid bed." In conventional nickel coating, the powder is normally
maintained "fluidized" by the passage of hydrogen through a sintered
disc at the foot of a vertical tube containing the powder. Nickel
carbonyl, Ni (C0)4 , is introduced to the hydrogen stream and ther-
mally decomposed to nickel on contact with the heated powder. This
method is excellent for use with metal powders or insulating materials
of particle size >50 p. However, in the range 50 5 p, the agglom-
eration of insulating particles as a result of the accumulation of
static charge becomes increasingly serious, and it has previously been
considered impractical to coat each individual particle of an insulating
powder of particle size <5 P.3 Since most cathode powders are sub-
stantially <5 p., and the coating of individual particles was most
desirable, a new technique was required. This was found in a method
we choose to call "wet" fluid -bed coating. The powder is maintained
suspended in a suitable inert liquid and Ni (C0)4 introduced through
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a bubbler. This eliminates agglomeration, at the expense of an addi-
tional processing step-the removal of the liquid.

Since we are dealing with a cathode material where trace contami-
nation may poison the emission and cause tube failure, extreme care
in handling under ultraclean conditions is imperative. All vessels and
handling devices must be cleaned according to normal oxide cathode
preparation specifications, and all materials used must pass oxide
cathode specifications for impurity content. Once cleaned, vessels
must be protected from contamination prior to use.

The powders used in these experiments were coprecipitated from
nitrate solutions with ammonium carbonate and have been extensively
used for conventional cathode coatings. For the present study the "as
received" powders were reduced in particle size by ball milling to give
very smooth "high density" cathode coatings.* This procedure does
not improve emission, and is, therefore, only required where electrode
spacings require tight tolerances on coating uniformity and smooth-
ness. Where the particle size of commercially available carbonate is
appropriate for the tube requirement, "as received" powder may be
nickel -coated without any preconditioning.

Fig. 2 is a schematic of the nickel coating apparatus. The apparatus
is composed of a reaction vessel and a flow system. Hydrogen is the
carrier gas used during the reaction. Nitrogen is used for flushing to
keep the system free of contamination while on standby and to purge
the hydrogen at the termination of the reaction.

A modified 500 cc gas wash bottle is used as the reaction vessel. It is
modified to bring a gas entry tube down the wall inside the vessel to
within 1 inch of the bottom. The center of the vessel is then free for a
nickel stirring rod adapted to the vessel through a nickel taper fitting
in the ground glass joint at the top. The nickel taper is, in turn,
fitted to a rotary vacuum feed -through coupled to an electric motor.
All of the joints are vacuum tight and only nickel faces the inside of
the vessel, thus avoiding foreign contamination. The entire vessel is
immersed to just below the gas inlet tube in an oil bath and the con-
tents of the vessel brought to the reaction temperature of 110°C with
a hotplate. A suspension of the carbonate in amyl acetate is added
to the reaction vessel before sealing the system. A condenser is in-
stalled at the exhaust end of the reaction vessel to allow reflux of the
amyl acetate that vaporizes at. 110°C, thus keeping the solution level
constant.

* J'art icle size: 90 percent <1.6 ; coating density: approximately 2 g/cc.
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The Ni(CO)4 chamber is made of metal, with a gas inlet tube run-
ning to within 1/2 inch of the bottom, and an inlet port that can be
opened for filling and sealed during the reaction. A measured excess
of carbonyl is added before every reaction and the chamber emptied
and flushed with nitrogen at the completion of every run.

After the system is sealed and purged with nitrogen, a flow of hydrogen
is established, bypassing the carbonyl chamber, such that vigorous
bubbling occurs in the reaction chamber, and a hydrogen flame is
established at the exhaust. Some hydrogen is then diverted through
the carbonyl chamber and this proportion increased until the hydrogen
flame at the exhaust become luminous with green fringes, indicating
that excess carbonyl is being burned. Under these conditions of excess
carbonyl and constant bath temperatures, with a given system and
powder particle size distribution, the percent nickel deposited depends
on the reaction time. For our system and particle size distribution,
we achieved 2.5 ± 0.3 weight percent nickel in 31 hours, although
this is not a linear function of time (the reaction is autocatalytic).

The thickness of nickel on each particle will be constant under the
above conditions regardless of the particle size distribution. The per-
cent nickel in the lot, however, will vary with the particle size. Thus,
the operating parameters of a given system must be determined em-
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pirically. Note that since the powder used in the study described here
was very fine, values of approximately 1.0 wt percent Ni would cor-
respond to comparable Ni thickness on coarser, conventional powder.

During the coating reaction there is essentially no agglomeration
of the coated powder; however, pure nickel is deposited on some parts
of the reaction vessel and flakes off into the mix. To remove these
flakes the coated suspension is sieved, first through a 37 µ, sieve and
then through a 20 p, sieve. Concentrated nitrocellulose solution is then
added to bring the suspension to a condition suitable for spraying.
Spray mix prepared from nickel -coated powder has similar settling
characteristics to conventional oxide cathode mixes. If long shelf -life
precedes use, ultrasonic agitation should be used to resuspend prior to
transferring to spray equipment.

Fig. 3 shows the effect of nickel coating on the particle size of the
carbonate crystallites and indicates the change to be of the order of
10 to 15 percent of the initial size. This may be accounted for by
slight agglomeration rather than particle size growth. This conclusion
is supported by the many photomicrographic comparisons made be-
tween coated and uncoated double carbonates. (Fig. 1) It can be seen
that the coated powder has a rougher surface than the uncoated pow-
der. This roughness may account for the superior adhesion character-
istic of the coated powder.

Data shown in Table I indicate an analysis representative of a
CPC surface ready for activation compared with an analysis of the
as -received powder. No pick-up of undesirable elements should occur
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TABLE I-SPECTROGRAPHIC ANALYSIS OF BARIUM -STRONTIUM
CARBONATE BEFORE AND AFTER NICKEL COATING

Element
Before After

(as received) (Ni coating)

Barium
Strontium
Nickel
Calcium
Sodium
Copper
Silicon
Magnesium
Iron
Lead
Potassium
Manganese
Silver

Major Major
Major Major
0 . 00X Major low
0.X high 0. X high
0 . OX O. OX
O.00X 0.0X low
Not found Not found
O. 00X 0 . 00X
O.00X low O.00X
0.00X low O.00X
0.00X low O.00X
0 . 000X O. 000X
0.000X low 0. 000X low

Elements checked but not found: zinc, cadmium, indium, bismuth, antimony,
arsenic, tin, thallium, gallium, germanium, zirconium, cobalt, chromium, moly-
bdenum, vanadium, tungsten, lithium.
Note: Major = >5% Estimated

0. X, 0.0X, 0.00X, etc. = Concentration of Elements estimated to nearest
decimal place, e.g., 0.0X = 0.01 - 0.09% estimated.

as a consequence of the coating operation. Infrared spectrographic
analyses were made of the amyl acetate before and after the coating
process. No contamination or change in the amyl acetate absorption
spectrum was observed.

It is important to determine carbon introduced by the coating process,
since carbon activation of the cathode would result in premature loss
of oxide. Control analyses performed on nickel coated MgO of similar
particle size shows that the carbon introduced (corrected for intrinsic
carbon and absorbed amyl acetate) is of the order of 0.1-0.2 percent
by weight of powder. This carbon appears to be completely removed
during the breakdown of the carbonate to the oxide, probably through
the high temperature oxidation-reduction reaction C CO, 4=k 2C0
which favors the production of CO at temperatures above 800°C.
This view is supported by the fact that there is no immediate activation
in diodes, and that mass spectrometer analyses of platinum -based
cathodes show no CO tail after breakdown.

III. EMISSION AND LIFE TESTING

3.1 Cathode Preparation, Vehicle, Processing and Testing
The application of the coated powders to cathode bases used in the

study described was carried out by conventional spray techniques.
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Binder burnout4 was used throughout diode testing. However, this has
been found undesirable in processing large area cathodes coated with
powder of a conventional particle size, since the coating coherence
after binder burnout was minimal and did not allow good yields in
assembly. Cathode bases were preconditioned by a rigorous method
based on volatile acid cleanings and including a liquid honing of the
surface by calcium oxide. The base metal was high purity 0.1 weight
percent zirconium/nickel alloy (see Table II) unless otherwise stated.
This alloy is used to obtain long life, and is relatively inactive by
comparison to standard alloys such as 220 grade nickel.

The test diode is illustrated in Fig. 4. It features a 0.085 -inch
cathode in a ceramic insulator, mounted on a massive anode heat sink,
which includes a nickel button anode. The diode contained conven-
tional tube materials including Kovar, steel, molybdenum, copper,
nickel and ceramic. The final closure of the tube was done by heliarc
welding. Pieceparts and subassemblies were cleaned by rigorous
processing techniques and were atomizer clean.5' s Minimum grade:
3. These techniques were designed to eliminate activation or deactiva-
tion by extraneous variables and permit the study of deliberate
changes in processing or material variables with a minimum of
samples. The success of this can be estimated from the narrow spread
in activity of "identical" diodes (Section 3.2.5) and the fact that the
yield of tubes in the entire program was approximately 98 percent
seal -in.

Tubes were processed in groups of six on individual getter -ion pump
stations. Bakeout was for 16 hours at 425°C, at which point, the pres-
sure was normally in the 10--9 torr range. All tubes then passed through

TABLE 11-IMPURITY SPECIFICATION FOR HIGH PURITY
ZIRCONIUM -NICKEL CATHODE ALLOY

Element Percent max. Element Percent max.

Copper 0.005 Iron 0.005

Manganese 0.005 Carbon 0.003

Silicon 0.005 Sulphur 0.001

Titanium 0.005 Magnesium 0.005

Tungsten 0.005 Oxygen 0.001

Hydrogen 0.001 Nitrogen 0.001

Cobalt 0.005 Each Other Metal 0.005

All other impurities than those listed shall not exceed a total of 20
ppm and no individual impurity shall exceed 1 ppm.
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ANODE-__

CATHODE -

Fig. 4 - M-4059 diode.

a standard processing cycle which is described in Appendix A. They
were then placed on aging racks with the cathodes at 900°C and with
de voltage applied. After 16 hours at this condition, the cathode
temperature was lowered to 810°C and emission current adjusted to
0.3 amps/cm2. This was the predominant current density throughout
the diode program, and was based on past experience of adverse "diode
effects" observed in the diode used at higher loadings. In addition,
it represented a cathode design objective at the time.

The test method used for all of these tubes was the IR dip.7 This
is a modification of the clip test in which the cathode current -tempera-
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ture transient is plotted on an X- Y recorder when the heater power
is turned off. Cathode activity is given by the temperature of the
transition from space charge limited emission to temperature limited
emission. Unless otherwise noted, all measurements were made at 125
mA/cm2 rather than the operating level, to be assured of an activity
measurement in extreme cases where the emission is not space charge
limited at the operating level. With this analysis, high temperature
indicates low activity, and low temperature high activity.

3.2 Results of Diode Program
Except where noted, each of the curves of diode activity shown in

this section represent the average of six identical diodes. Since the
significance of the difference between two such curves is difficult to
assess without a knowledge of the spread in the data, the values of the
probability that there is a difference between two curves are shown at
significant points on the plots. The probability, P, is based on Student's
t -test.

3.2.1 Reproducibility
Fig. 5 shows the individual "IR dip" temperatures on a batch of six

diodes processed according to the standard technique (Appendix A).
The spread is rather wide early in life, and becomes much smaller
after about 1000 hours as the tubes "age in." This allows an estimate
of the spread inherent in the data to be illustrated in subsequent
figures.
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Fig. 5 - Typical spread in the data for six "identical" diodes.
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3.2.2 Reproducibility of Coating Batches
Fig. 6 shows the results of three groups each containing six diodes

processed by standard technique, sprayed from three independent
coating batches which were prepared in an "identical" manner. There
is approximately 35°C spread in temperature initially, but by 1000
hours this spread is completely insignificant. This indicates that while
there are some differences, perhaps in the small details of the process-
ing cycle, or in the trace amounts of impurities within the system,
these are lost after approximately 1000 hours.

3.2.3 Percent Nickel in the Coating
Fig. 7 shows the average dip temperatures for two groups of six

diodes each made from the same coating batch which had been
divided into two parts to permit different exposure times to nickel
carbonyl. Batch 15b has 7.26 percent by weight of nickel,* and batch
15a 2.58 percent. As nickel content is reduced, we approach the oxide
cathode which represents the lowest attainable work function in the
system, useful as such when the required current density causes no
appreciable donor depletion. Note that these measurements were
carried out at a life condition of 0.3A/cm2, where the detrimental
effect of excessive nickel coating is accentuated. At higher current
densities where donor depletion in the uncoated oxide is more signifi-
cant, the beneficial effect of nickel coating tends to dominate even if
nickel is applied in thicknesses substantially greater than the optimum.

* This cannot he considered a representative batch since it was deliberately
created with an excessive nickel content to produce a pronounced effect.
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3.2.4 The Effect of Cathode Coating Thickness

This effect is shown in Fig. 8 in which we have plotted the data
from cathodes coated with batch 15b which was discussed above.
One group is sprayed 2 -mils thick, the other 0.65 -mils thick. The
thicker spray coating yields a higher activity level. These effects may
be explained as follows. The thin coating would be of the order of
five particle diameters thick. The likelihood of a barium atom pro-
duced at the coating -base interface simply evaporating from a pore -
end is relatively high. However, in the thicker coating there is a

larger cross section for adsorption of the barium atom into the oxide
lattice. Hence, the donor concentration in the surface of the thicker
coating is likely to be higher than the concentration in the thinner
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coating, and the activity level higher in the former. One would expect
this effect to be less pronounced with coatings which have a lower
percentage nickel since there would he a higher probability of barium
adsorption in the latter case.

3.2.5 Coatings Applied by Electrophoresis
A technique for applying the nickel -coated carbonate to cathode

bases by electrophoresis was developed by M. Ranee using a nickel
nitrate activator. Diodes were made from six cathodes coated by this
technique. These were processed by the standard technique and the
results are shown in Fig. 9. These results are essentially the same as
those obtained by other coating techniques and demonstrate that the
nickel nitrate used as an activator in the electrophoresis process does
not have an appreciable deleterious effect on the emission. This ap-
proach could prove useful in cases in which spray coating proved
difficult, such as on very large radiused cathodes or filaments.

3.2.6 Dependence on the Base Alloy
Fig. 10 shows the results of two batches of six diodes based on two

different cathode alloys. One group is on the alloy, used throughout
the program, 0.1 percent zirconium/nickel the other is on a com-
mercial 8" which is essentially a magnesium/
nickel alloy. The latter alloy is quite active. As expected, the "RM No.
8" activity is higher than the zirconium/nickel activity early in life
since the former produces large initial amounts of reducing agent.
Eventually, after approximately 1000 hours, the tubes are completely
activated and give essentially the same result. Choice of base alloy
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Fig. 9 - Cathode coatings applied by electrophoresk
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would, therefore, normally be made on the basis of desired life, since
high initial activity is reflected in shortened lifetimes.

3.2.7 The Effect of Processing
Fig. 11 shows the results of three groups of six diodes each, pro-

cessed by different techniques. One set is processed by the standard
technique already described. Another group marked "matrix," was
processed according to a schedule originally developed for a nickel
matrix cathode which features activation at 1050°B for 20 minutes.
The detailed schedule is given in Appendix B. The third group marked
"standard and bake" used the standard processing up to the point at
which de voltage had been applied. The de voltage was turned off after
about one hour and the cathode temperature reduced to approximately
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750°B. The tubes were then replaced in the oven and baked at 425°C
for an additional 16 hours. The filaments were then turned off, the
getters flashed, and the tubes pinched off.

The matrix processing results in tubes of much higher activity than
either of the other processes; however, the rebake results in tubes of
higher activity than the standard processing. In the case of standard
plus bake, the substantial improvement in activity is attributed to
reduction in "diode effects" such as gas on the anode. A rebake after
the standard processing technique drives off a large amount of this
gas and results in cathodes of higher activity, though this effect
would not be so pronounced in an open structure. Matrix processing
also achieves this by heating the anode to much higher temperatures
than are encountered during the standard processing technique.
Whether the cathodes processed by the matrix technique are inherently
better than those processed by the standard technique other than be-
cause of diode effects is not clear. It is certainly evident that the
matrix technique has no great detrimental effect on the cathode
activity (as would be the case for an oxide cathode) and this con-
firms the function of the nickel network in inhibiting sintering. This
property is of considerable practical importance. The fact that high
temperatures are not detrimental means that temperature control
during processing is no longer critical. More importantly, high tem-
perature processing means more rapid outgassing of the cathode and
its environment and more rapid activation. Together, these advantages
can lead to greatly reduced processing and aging time.

3.2.8 Anode Power and Current Density
Fig. 12 shows the results of three groups of six diodes each at dif-

ferent anode powers and current densities. All diodes were processed
by standard technique and placed on life at 800°B. One group was
set at 0.3 amp/cm2 with 0.9 watts anode dissipation. A second group
was at 0.3 amp/cm2 and 1.8 watts anode dissipation. A third group
was set at 0.6 amp/cm2 and three watts anode dissipation. These anode
powers and current densities were achieved by varying the voltage and
the cathode -anode spacing. In the two groups operating at 0.3 amp/
cm2, the higher the anode power, the lower the activity. This is due
to outgassing of the anode and represents a "diode effect," as men-
tioned in the previous section. The third group, operating at twice the
current density and at higher anode power has the highest activity
level of all. This indicates that high current density per se is belle-



2392 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967

800

cc 750
D

cc 700
a_

2
Lu

650
a_

CC 600

550
a

0.3 AMP/CM2, 1.8W

0.3 AMP/CM3, 0.9W

0.6 AMP/CM2, 3W

I

P=95% I P>99%

P> 99%

I 1

8 102
TIME IN HOURS

8 103

Fig. 12 - The effect of anode power and current density.

4 8 40

ficial to CPC activity and in this case was apparently sufficient to
overcome even the effects of a higher power level on the anode. This
activity enhancement by higher current density is probably a result
of electrolytic activation. This effect will he discussed further in
Section 4.3.

3.2.9 The Effect of Breaking the Coated Carbonates
As discussed above, we postulate that a large proportion of the

barium atoms in the top layer of the cathode coating arrive there
by a process of diffusion through the pores of the intervening coating.
Upon arrival, they must contact an oxide particle to be useful as
donor precursors. A continuous nickel film surrounding these particles
would obstruct entry of the barium atoms into the oxide lattice and
make the effective donor production rate low. It is reasonable to sup-
pose that during the breakdown, (BaCO3 Ba0 + CO2) numerous
fractures occur in the nickel film originally placed on the carbonate
particles. These would be sites through which donor precursors could
enter the surface particles.

If the coated particles are fractured by milling, the area of exposed
oxide would be substantially larger and the number of Ba atoms
absorbed might be expected to be higher. At low current densities,
where donor depletion effects are insignificant, one would prefer the
extreme configuration-the classic oxide cathode. At intermediate
current densities, an optimum degree of fracture should be observed.
We have shown this at 0.3 amp/cm2 by ball milling the coated carbo-
nate particles for 20 to 40 hours to fracture them and increase the
exposed carbonate area. The results of these experiments are shown in



COATED POWDER CATHODE 2393

800

cr 750

w 700
Il

w
650

 600

550

I I

P =80-90%
I

P= 90-95%1P
I

III
I

= 9 -98%

I

NO
40
20

ROLLING
HRS ROLLING
HRS ROLLING

I

4 6 8 102 2 4 6 8 103
TIME IN HOURS
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Fig. 13. The 20 -hour rolling yields the highest activity level; the 40 -

hour rolling has caused some degradation. These rolled particles would
not be expected to have as good high current density properties since
the nickel network will be less complete.

3.2.10 The Effect of Using Double or Triple Carbonates
Fig. 14 shows the curves for two groups of six diodes prepared from

nickel -coated double and nickel -coated triple carbonates, respectively,
and processed by the standard technique. Both have the same amount
of nickel in the coating. Obviously, the triple carbonates give much
higher activity levels. Since one would expect the advantages due to
the presence of nickel films to be common to any active oxide configu-
ration, further experiments have been initiated.
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Fig. 14 - Comparison between double and triple carbonates.
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3.2.11 High Current Density Behavior
The test diode used showed significant "diode effects" at current

densities above approximately 0.5 amps/cm2, and these were pro-
nounced around 1 amp/cm2. These effects are difficult to analyze and
assign, and in proving the ability of the cathode to withstand current
drain up to 1 amp/cm2 it was necessary to rely on the IR dip
characterization previously described." The validity of this approach
can be illustrated by the following example. When cathodes were
operated at 810°C and 0.6 amps/cm2 in the diode, classic J2/3 vs V ac-
tivity plots entered the "knee" into temperature limited emission below
the operating voltage. However, IR dip temperatures remained con-
stant with time, and <700°C, implying that space -charge limited
operation at 0.6 amps/cm2 should be attained near 700°C in a "clean"
structure. When the cathode was used in a traveling -wave tube oper-
ating at 0.6 amps/cm2, the absence of anode effects allowed space -
charge limited operation at temperatures as low as 700°C, and life is
currently beyond 7000 hrs. with no sign of deterioration.

Fig. 15 illustrates the variation in IR dip temperature with time
for a group of six diodes operated at 810°C, all at identical anode
voltages, but with diode effects causing variations in available current
between 0.7 and 1.0 amps/cm2. Stability out to 25,000 hrs. is demon-
strated, with a 100°C margin between the operating temperature and
the maximum IR dip temperature observed.

IV. LIFE EXPECTANCY

This section describes evidence that the mechanism of operation and
the life limiting factors of the CPC are similar to those of an oxide
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<1-Cf

a_ 650

c
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Fig. 15 - The effect of current densities up to 1 amp/cm2.
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cathode operated in a low current density regime where donor deple-
tion effects are insignificant. Coating depletion and reducing agent
arrival rate are demonstrated to be life determining processes. The
theoretical basis for life prediction and its experimental verification
are also included.

4.1 Activation Mechanism
In the studies described here, the zirconium/nickel base alloy was

given an extensive wet hydrogen firing to reduce the initial zirconium
arrival rate at the coating base interface and to reduce the total carbon
content and hence its coating depletion effects (cf. Section 4.2). It is
presumed that the cathode activation, defined as the increase in
donors in the coating to a maximum level of cathode activity, involves
an equilibrium between (i) the production of donors by zirconium at a
relatively low and constant rate over the activation time, (ii) the pro-
duction of donors by carbon at a relatively high initial rate which
then falls off exponentially over a few hundred hours, and (iii) the
loss of donors or reducing agent by oxidation in the initially poor
environment which will improve with the arrival of reducing agents
and the consequent irreversible consumption of oxidizing agents.

To demonstrate this and to show that zirconium is the ultimate
activator during the life of the cathode, two cathodes were processed,
one on 0.1 percent zirconium nickel and the other on a "pure" nickel
similar in all impurity levels other than the omission of zirconium.
These were set to operate at 850°B to accentuate the effect. Both
alloys had 0.002 percent carbon. The results are shown in Fig. 16. The
"pure" nickel alloy was quite active initially but declined very rapidly.

900

w 850
3
cr

icf, BOO
a_

2

750

,ac. 700

650
a

Zr/NL

C/NL

6 8 102 4 6 8 103

TIME IN HOURS
6 8 104

Fig. 16 - The activation profile on zirconium nickel and "pure" nickel.
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It reached end -of -life at about the same point as the maximum in the
zirconium nickel curve. It is reasonable to assume that the particular
balance of the three factors mentioned above made carbon the domi-
nant activator initially; as this was exhausted the cathode began to
show signs of deactivation in both cases. During this period, oxidizing
agents were scavenged to a sufficient degree to allow the relatively low
zirconium arrival rate to build up the donor concentration beyond
200 hours-eventually completing the activation.

It should be emphasized that much faster activation can readily be
obtained by such techniques as reducing or omitting the wet hydrogen
prefiring of the cathode base. However, for maximum life in a system
limited by eventual coating depletion, excessive initial donor produc-
tion is undesirable. In such a case, the minimum donor production
rate consistent with the tube meeting operating specifications as it
leaves the processing station would normally he preferred.

4.2 Coating Depletion
If the arrival rate of reducing agent at the base remains above the

emission cut off rate9 for the operating current density for a sufficient
time, the life of the cathode will be limited by coating depletion.
Coating depletion is the result of several effects, some of which we
can only estimate:

(i) Reaction of the coating with the reducing agent in the base.
This can be calculated from the well-known diffusion equations. In-
cluded here must be the effect of prefiring on the zirconium and carbon
profiles and the depletion during the activation cycle.

(ii) Evaporation of the coating at the operating temperature. Ba0
is the only major active component of the coating which evaporates at
an appreciable rate. Since coprecipitated carbonates were used, the
oxides form mixed crystals, and the vapor pressure of the Ba0 will
be reduced. As an approximation we have assumed that the vapor
pressure of Ba0 will be proportional to the mole fraction of Ba0 in
the mixed crystal. Furthermore, to be conservative, we have not as-
sumed that the vapor pressure decreases because of the decreasing net
mole fraction of Ba0 as it evaporates. This is partially valid because
many individual crystallites are involved (i.e., a large surface area)
but the vapor pressure must decrease to some extent later in life.
Therefore, the results of these calculations must be considered some-
what pessimistic as life considerations. Fig. 17 shows the results of a
coating depletion calculation for cathodes given standard processing
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1.0g/cc, 0.6 mil thick.

and accelerated through life at 850°B. They were sprayed 1.0 g/cc,
0.6 -mil thick on cathodes based on an alloy which had 0.1 percent Zr
and 0.002 percent carbon. The curve marked "reaction" is the percent
depletion due to carbon and zirconium. The curve marked "evapora-
tion" is the corresponding percent depletion by evaporation. The
latter curve has a point marked "100 percent Ba0 depletion." This
assumes that the "reaction" proceeds at an equal rate for Ba0 and
Sr0 and the "100 percent Ba0 depletion" point is reached when the
sum of the "reaction" curve plus the evaporation curve equals the
total amount of BaO. From this point on, the cathode is assumed to
be pure SrO. Fig. 18 shows the IR dip temperatures for these six
diodes. It can be seen that the agreement between theory and experi-
ment is good.

Fig. 19 shows similar results on a set of diodes lifed at 800°B. The
uncertainty shown results from assuming the thickness to be 0.6
0.1 mils. This gives some indication of the expected errors. As mentioned
above, the calculation is somewhat pessimistic; therefore, the fact
that the diodes run somewhat longer than the calculation predicts is
not unexpected.

4.3 Electrolytic Donor Production
If the surface donor depletion under the influence of current in-

duced emf is inhibited by a nickel network in the coating, the effect
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Fig. 18-Coating depletion-comparison between theory and experiment at
850°B.

of electrolytic activation should be enhanced because donors will be

trapped in the surface layers. We have observed the effect of electro-
lytic activation several ways:

(i) By activity measurement on a set of eight diodes using the IR
dip technique with 5, 50, and 500 iisec pulses at 0.5 amp/cm2. The
duty cycle was maintained the same for each pulse length by varying
the pulse frequency. In this way, the anode power level remained
constant. The results are shown in Table III. The enhancement in
activity with longer pulses is caused by the increasing concentration of
donors induced in the coating by electrolysis.

(ii) With the IR dip technique, the work function, cp, may be deter -
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Fig. 19 - Coating depletion-comparison between theory and experiment at
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TABLE III-AVERAGE ACTIVITY MEASUREMENT ON EIGHT DIODES
AS A FUNCTION OF PULSE LENGTH FOR CONSTANT DUTY CYCLE

Pulse Length (psec) 5 50 500
IR dip Temperature, °C 725 681 672

mined as a function of temperature independent of the Richardson
constant A.7 When this is clone for de operation and for 500 -micro-
second pulse operation on a CPC cathode at 0.3 amp/cm2, the result
shown in Fig. 20 was obtained. As the temperature increases, the donor
concentration decreases because evaporation loss increases faster than
the production rate. Since electrolysis augments production more in
do operation than in pulse operation, r remains constant over this
temperature range for de operation whereas it increases for the pulse
operation.

(iii) By the apparent lowering of the emission cut-off rate as will
be discussed in the next section.

4.4 Emission Cut -Off Rate, ECOR
ECOR is defined as the minimum donor production rate from the

reactions of reducing agents in the base which is necessary to sustain
emission at a given level. This rate varies with current density be-
cause: (i) the number of donors required in the cathode surface is a
function of current density and temperature, and (ii) at current
densities above about 0.2 amp/cm2, electrolysis of the coating adds
to the donor concentration. Data shown by Kern9 for the ECOR of
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oxide cathodes indicates that it varies rapidly with current density.
His highest value is 1 x 10-8 ,u,moles/cm2/sec at 200 ma/cm2.

ECOR for the CPC at medium current densities would be expected
to be lower than for the oxide cathode because electrolysis will con-
tribute to the net concentration of donors in the surface. Experimental
results to date have established an upper limit on ECOR for coated
powder cathodes at current densities up to 1 amp/cm2 as 1.5 X 10-8
pmoles/cm2/sec confirming the stability of the CPC in this operating
range.

4.5 Typical Life Calculation

In Fig. 21 we have plotted, for a typical cathode configuration, the
barium production rate at 800°C as a result of zirconium diffusion in
micromoles/cm2/sec vs time in hours for a cathode alloy of 0.07 ±
0.01 percent zirconium, and for two different thicknesses of base metal.
The higher percent zirconium results in a higher barium production
rate. Thicker base metals yield the same barium production rates ex-
cept that the "knee" occurs further out in time. For the 0.1-inch thick
base the knee does not occur in the time interval shown. Since the
ECOR is less than 1.5 X 10-8 Amoles/cm2/sec a lower limit on the
lifetime set by this mechanism is of the order 100,000 hours for the
0.06 -inch thickness, and will increase with base thickness.

Coating depletion calculations have already been discussed. Fig. 22
shows the results of such a calculation on a typical cathode. The
cathode considered is based on a 100 mil thick 0.08 percent zirconium,
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Fig. 22 - Calculation of coating depletion at 800°C on 0.08% Zr, 0.001% C/Ni
0.1 inch thick, coating: 1.1g/cc, 1.5 mil thick.

0.001 percent C alloy, sprayed with coated double carbonate at 1.1
g/cc, 1.5 mil thick. The base alloy has been pretreated in wet H2 at
1050°C for 1/2 hour. The cathode is activated by the schedule; 800°B,
1 hour; 950°B, 6 minutes; 850°B, 17 hours, and operated at 800°C.
FolioWing the analysis described in Section 4.2, Ba0 is 100 percent
depleted after 40,000 hours. It should be emphasized that while opera-
tion at 800°C is reasonable for diodes, tubes such as TWT's with more
open structures can normally run at substantially lower temperatures,
thus improving life expectancy still further.

4.6 Life Prediction

The lifetime of a typical CP cathode operating at less than 1 amp/cm2
on a 0.10 inch thick 0.07 ± 0.01 percent zirconium/Ni at 800°C is
therefore limited not by ECOR, but by coating depletion, and in the
typical examples described, Ba0 would be 100 percent depleted in
>40,000 hours. The assumptions made in this prediction are supported
by: (i) The failure of groups of diodes, on schedule, (Figs. 18 and 19)
and (ii) 28 diodes currently on life, beyond 25,000 hours.

V. SUMMARY

Examination of the theory of operation of the oxide cathode sug-
gests that in order to improve the high current density properties of
oxide cathodes, the movement of donors under the influence of cur-
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rent -induced emf's should be inhibited. To do this a method of coating
each individual particle of carbonate powder with a thin nickel film
has been successfully developed. Carbonates coated in this manner
have been used to prepare cathodes by conventional techniques.

Extensive diode experiments made mainly at 0.3 amps/cm2 have
outlined the general character of such cathodes and the major factors
affecting their performance. Definitive comparisons of maximum per-
formance with other cathode types were in general not attempted
because diode effects were shown to obscure the interpretation of
deliberate variations in cathode parameters at high current densities.

It has been shown that the new coating can be prepared reproduci-
bly. The nickel film around each particle inhibits sintering of the
oxide, enhances the beneficial effects of electrolytic activation, and
allows operation of the cathode at temperatures in the range 700-
800°C over lifetimes which are essentially independent of the current
density up to 1 amp/cm2. The cathode has been demonstrated to
activate quickly and efficiently through high temperature processing
schedules. Faster outgassing of the structure is therefore possible, and
faster activation can be achieved. Direct substitution of CPC for
oxide cathodes in production sequences is practical, since conventional
activation schedules may also be used. In this case, the tolerance of
the cathode to accidental overheating is helpful.

Activation and life determining mechanisms operative in the CPC
have been defined as reducing agent diffusion and coating depletion,
with the latter determining end -of -life in most practical configura-
tions. Good agreement was obtained between theory and experiment
for coating depletion, and a lower limit on reducing agent arrival
rate of 1.5 x 10-8 p.moles/cm2/sec has been established for current
densities up to 1 amp/cm2. On this basis lifetimes of 40,000 to 50,000
hours are entirely feasible for CPC operating up to 1 amp/cm2.

The coated powder cathode, therefore, appears to combine many of
the advantages of the standard oxide cathode with those of the matrix
type. The system variables have been thoroughly explored, indicating
its utility, particularly in the operating range 0.2 to 1.0 amps/cm2,
where diode life tests have presently reached 25,000 hours.
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APPENDIX A

Standard Cathode Breakdown and Activation Schedule

(°B Represents Optical Pyrometer Measurement on Cathode Base)

1. Bake out 16 hours at 425°C.
2. Outgas the getter.
3. Outgas the heater by slowly raising the cathode temperature to

ca. 500°C keeping the pressure below 5 X 10-3 torr on the getter
ion pump.

4. Raise the cathode temperature as rapidly as possible to S00°B
keeping the pressure <5 X 10-3 torr.

5. Hold until P 5 10-7 torr.
6. Raise the cathode temperature rapidly to 950°B and hold for five

minutes then lower the temperature to 850°B.
7. Apply 25 Vdc and age ca. one hour.
8. Turn off anode voltage and heater voltage and flash getter. Pinch

off tube within 30 seconds after getter flash.

APPENDIX B

High Temperature Processing Schedule

(°B Represents Optical Pyrometer Measurement on Cathode Base)

1. Follow the standard schedule (Appendix A) through step 3.
2. Raise the cathode temperature as rapidly as possible to 850°B

keeping the pressure <5 X 10-3 torr on the getter ion pump.
3. Hold until P 5 10-7 torr.
4. Rise the cathode temperature rapidly to 1050°B and hold for 20

minutes.
5. Apply do voltage to the anode to draw 1 amp/cm2 (40 mA).
6. When the activity reaches 1 amp/cm2 (usually immediately) lower

the cathode temperature in 50° steps holding at each step until
1 amp/cm2 is attained. Continue until 850°B is reached.
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7. Turn off anode and heater voltage and flash getters. Pinch off the
tube within 30 seconds after the getter flash.

REFERENCES

1. Eisenstein, A., A Study of Oxide Cathodes by X -Ray Diffraction Methods,
J. Appl. Phys., 17, 1946, pp. 434-443.

2. Frost, H. B., Transient Changes in the Oxide Cathode, Thesis, MIT., 1954.
3. Goldberger, W. M. and Nack, H., Novel Uses of Fluidized Beds in Chemical

Processing, Battelle Technical Rev, 13, No. 11, 1964, pp. 3-9.
4. MacNair, D., A Method for Eliminating Binder Contamination from Oxide

Coated Cathodes, Advances in Electron Tube Technology, 2, 1962, pp.
173-178.

5. See Feder, D. 0. and Koontz, D. E., Detection, Removal and Control of
Organic Contaminants in the Production of Electron Devices, ASTM
Symposium on Electron Device Components and Materials, STP 246,
1958, pp. 40-63.

6. Bodmer, M. G., et al, Satellite Traveling -Wave Tube, B.S.T.J., 42, July 1963,
pp. 1703-1748.

7. Maurer, D. W, Cathode Activity Measurement: A Modification of the Dip
Test, B.S.T.J., this issue, pp. 2363-2374.

8. Hanes, M., private communication.
9. Kern, H. E, Emission and Life of Practical Oxide Cathodes as Limited by

Diffusion and Chemical Reaction Phenomena, Rep. 23rd Annual Conf.
Phys. Elec., 1963, pp. 106-113.



Contraction Maps and Equivalent
Linearization*

By J. M. HOLTZMAN
(Manuscript received July 26, 1967)

This study is primarily concerned with the question: If the method of
equivalent linearization indicates the existence of a periodic solution, is
there actually a periodic solution near the approximation of equivalent
linearization? To answer this question, we use a modification of the con-
traction mapping fixed point theorem. We discuss applications to differential
equations and difference -differential equations (with forcing functions).
Also, we show that our use of contraction maps is not applicable (without
modification) to autonomous systems because the mapping evaluated in
the neighborhood of a periodic solution to an autonomous system is not a
contraction in, a space of periodic functions.

I. INTRODUCTION

The method of equivalent linearization is a most valuable tech-
nique to investigate nonlinear phenomena, particularly nonlinear
oscillations. It has its roots in the method of Krylov and Bogoliubov
and is related to (or equivalent to, depending on the specific defini-
tions) the method of harmonic balance, Galerkin's method, and the
describing function method used by control engineers. The purpose
of the present study is to develop a new technique for investigating
the method of equivalent linearization.

We shall be primarily concerned with the following question: If
the method of equivalent linearization indicates the existence of a
periodic solution xo, is there actually a periodic solution near xo? To
answer this question we first introduce a convenient modification of
the contraction mapping fixed point theorem which is actually more
general than just applicable to the question posed above.t We apply

* Taken from a dissertation submitted to the Faculty of the Polytechnic In-
stitute of Brooklyn in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (System Science). 1967.

t Appendix A contains some reading suggestions for engineers interested in
this work but who are not familiar with the mathematics used.
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our approach to systems described by nonautonomous differential
equations. Then we show that there is no essential difficulty in also
handling difference -differential equations.

We shall try to clearly indicate what our method can and cannot do.
The discussion of autonomous systems is particularly important in
this regard. The relation of the present study to previous work is dis-
cussed in Section VIII.

II. THE METHOD OF EQUIVALENT LINEARIZATION*

Consider the following vector differential equation

t(t) = f(x(t), t) = A(t)x(t) n(1, x(t)), (1)

where

f(x, t) = f(x, t T) (2)

for all (x, t) of interest. This, of course, includes the case of f (x, t)
independent of t, i.e.,

f(x, t) = f(x). (3)

We shall be concerned with the situation that permits an equivalent
representation of (1) :

x = LN(x), (4)

where x now represents a vector function, L is a linear operator, and
N is a nonlinear operator (these terms will be made more precise
later). If it is assumed that LN(x) has the following Fourier series,

27r 2r
-TLN(x)(t) E (a, cos k -T t bk sin k t) (5)

A = 1

Then we define LN(x) as follows:

LN(x)(t) = a, cos "r t b, sin 2yr t. (6)

That is, L extracts the fundamental component of the Fourier series.
The method of equivalent linearization seeks a solution of the equation

x = LN(x). (7)

This study will be primarily concerned with the following problem:

* See Minorsky,1 p. 350, for a discussion of the relationship of the method of
equivalent linearization to the method of Krylov and Bogoliubov.
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Given an xo satisfying (7), is there an x* satisfying (4) and if there is,
how are xo, and x* related?

Note that (4) is a functional relation more general than (1) and
our method will be correspondingly applicable to a more general
problem.

The above discussion is now related to the method of describing
functions* as commonly used by control engineers. They are con-
cerned with the feedback loop shown in Fig. 1. The linear operator L

n H (w)

Fig. 1- Feedback Loop.

is represented in this case by a transfer function H(w) (see Kaplan'
for a definition and discussion of transfer functions) and the nonlinear
operator N is represented by a nonlinear function,

y = n(ei - x),
where e4 is an input function. The engineer replaces the nonlinear
function n by its describing function which is defined loosely as the
complex ratio of the fundamental component of the output to a
sinusoidal input. That is, ift

co 271)
n(A sin wt) = E a , sin hot b, cos laa =

then the describing function of n is

V aft + bi tan"' br

a,
A

Note that while the describing function may be dependent on both A
and w, it is still a relatively simple matter to replace n by its describ-

* For further discussion of the use of describing functions by engineers see
e.g., Truxe or Graham and McRuer.3 They give further references and historical
background. The describing function method is associated with the names of
Tustin, Goldfarb, Oppelt, Kochenberger, Dutilh, and Nichols and Kreezer. Also
see Minorsky,' Chap. 17 for a discussion of the work of Theodorchik and Bla-
quiere. The work of E. C. Johnson is discussed in Ref. 2.

t The constant term is assumed zero.
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ing function, then to consider it as a "linear" (or quasi -linear) op-
erator and then use standard techniques for linear systems. Of course,
such a procedure should be mathematically justified and, in fact, that
is the purpose of this study.

Before we embark on our investigation, it is well to review the argu-
ments used by engineers in their justification of the method. These
arguments seem to be plausible and they are suggestive of what may
be expected of a more rigorous investigation. If it is assumed that the
combination of n and H(w) operating on a sinusoidal function is pri-
marily fundamental (i.e., the harmonics are "small" compared to the
fundamental) then it would be expected that the describing function
method might not be too inaccurate. The harmonics will be small if
one or both of the following are satisfied:

(i) the nonlinearity n is "not too nonlinear"
(ii) the transfer function H(0.)) is low-pass, i.e., it attenuates har-

monics much more than the fundamental. (It is assumed that no sub -
harmonics arise).

We shall use Duffing's equation,

+ ay + by3 = f cos cot,

as a running example to illustrate the methods
here how this differential equation corresponds to a feedback control
problem and then make no further explicit reference to feedback sys-
tems. The appropriate feedback system is shown in Fig. 2.

The next section contains an approach to a problem much more
general than the problem of equivalent linearization posed in this
section. The remainder of the study will be primarily devoted to
adapting the more general approach to the specific problem of equi-
valent linearization.

It may be noted that we are not getting more abstract in the next
section just for the sake of abstraction. It should be clear to the reader

f cos co, t
H

b 3
n (y)

Fig. 2 - Feedback equivalent of Duffing's equation.
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that the method of equivalent linearization leads to an integro-differ-
ential equation rather than an ordinary differential equation because
Fourier coefficients are determined by integration (this is also pointed
out in Bass5, p. 898). We then cannot expect the theory of ordinary
differential equations to answer our questions and we are led quite
naturally to considering more general equations. In particular, the
theory of operator equations in a Banach space is shown to provide
the tools appropriate to the task. As an added bonus for the abstrac-
tion, we develop an approach which is applicable to problems unre-
lated to equivalent linearization.

III. THE USE OF THE CONTRACTION MAPPING FIXED POINT THEOREM WITH
DERIVATIVES IN A BANACH SPACE

Let X be a complete metric space (with metric d) containing the
the closed set c and let P map f into itself. P is a contraction map-
ping if

d(P(x), P(x')) < ad(x, x') (x, x' c S2) (8)

with a < 1. The contraction mapping theoremt states that if P is
a contraction mapping then there is a unique x* E St such that x* = P(x*),
i.e., x* is a fixed point of the operation P. x* is the limit of a sequence
x I where

x, = P(x) (9)

and x0 is any element of ft Furthermore,

d(x xo) d(P(xo), xo)d(x , xo) n = 1 , 2, . (10)1 -a 1 -a
In order to use the contraction mapping fixed point theorem it has
to be shown that some neighborhood of xo is mapped into itself and
that in this neighborhood the operation is contracting. Our approach
will be simultaneously to determine a set containing xo which is mapped
into itself along with the contraction constant a for the operation on
that set. This is possible because of relationship (10). The use of opera-
tor derivatives will be seen to be convenient. The method will result
in a relation in a for which it is desired to find solutions with a E [0, 1).

The following is proven in Kantorovich and Akilov6 (p. 661).

t See Kantorovich and p. 627.
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If X is a Banach space and P maps a convex closed subset a of X
into itself and if P has a derivative* at every point of 0, then

sup I I P' (x) = a < 1 (11)
..0

implies that P is a contraction on a (and thus, there is a unique fixed
point of P in a).

The object then is to find a neighborhood of x0 mapped into itself
and in which the norm of the derivative is less than one. The follow-
ing simple theorem is a help in this direction.
Theorem: Let B be a Banach space. F maps B into itself and xo c B.
It is assumed that

(i) F has a derivative at all x B
(ii) There is a nondecreasing function g such that if x E B, then

F'(x) H g(II x - II)

(iii) There is an a E [0, 1) such that

k
1

a)

where

k II F(x0) - xo II

Then there is a unique x* r E2 such that

x* = F(x*),

where

S2 = {x:xcB,11x -x.11

Proof: We will show that 11 F'(x) II a for all x e a and that F maps a
into itself and thus, there is a unique fixed point in a. If x e a, we have
from (ii)

F'(x) g(II X - X0 11)

qC,

< a.

* See Kantorovich and Akilov,e chap. XVII, for a general discussion of dif-
ferentiation in Banaeh spaces. For convenience, Appendix B of this study repeats
the definitions.
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F maps (2 into itself because if x E 0, then

I I F(x) - X 16 II F(x) - Rxo) II + II 17(4).,- xo II

6. a It - k

-a + k

1 -a
We further discuss the use of the contraction mapping theorem in

Ref. 7. This modification of the contraction map theorem is less gen-
eral than some other modifications but is simpler to apply when ap-
plicable.

IV. THE CHOICE OF BANACH SPACE

In order to use the result of the previous section, an appropriate
Banach space must be chosen. For most of our investigation it will
be found convenient to use the space of continuous periodic functions.
Another space worth considering is the space of periodic functions
square -integrable over a period. Before discussing the desirable char-
acteristics of this space, a restrictive factor will be mentioned. The
nonlinear operator of interest y = N (x) is often defined by the ordi-
nary function (satisfying the Caratheodory condition)

y(t) = n(t, x(t)). (12)

A necessary condition that this operation map L2(0, T) into L2(0, T)
is (see Krasnosel'skii,8 p. 27) that for some b > 0 and some a(t) E L2(0, T)

n(t, u) I s a(t) blui tEl[0, T] . (13)

It is thus seen that the allowable nonlinearities are quite restricted.
This is, in fact, the reason the present investigation will be carried out
in a space of continuous functions where the requirement that a
function map a continuous function into a continuous function is
much more convenient. It should be noted, however, that in some
cases one may focus attention on some subset of the Banach space
and less restrictive requirements on the nonlinearities might be im-
posed. Also, for many control engineering problems the nonlinearities
are Lipschitzian and the problems can be attacked in L2.

The attractive feature of L2 is that Fourier series results can be
fully utilized (in particular, Parseval's relation). More generally, L2



2412 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967

is a separable* Hilbert space with many useful properties and the
trigonometric functions are a complete orthogonal system in L2. The
norms can often be conveniently evaluated in terms of quantities as-
sociated with the "transfer function" or "frequency response". For
example, L may be defined by the set of complex numbers {. . . , L,,
L_1, Lo, L1, L2, . . .} (i.e., the transfer function evaluated at the fun-
damental and harmonic frequencies) .t A simple sufficient condition for
L to map L2 into itself is that

sup I LT, I < 00 .

The evaluation of II LN(so) -s,,I1 may be clone as follows:

LN(x0) - xo I I= II IS(x0) - LN(x0)

IIL-LII'IIN(xo)II

II I, = suP I L. I.

The last relationship is proven in Appendix B of Sandberg."
Despite the above mentioned attractive features of L2, we chose

to work in the space of continuous functions primarily because of the
first -mentioned restriction placed on the nonlinearities in L2. Also,
the sup norm (uniform norm) in the space of continuous functions
seems more appropriate in error analysis (the error between an ap-
proximation and an exact solution) than does the L2 norm. The sup
norm provides a bound on the magnitude of the error while the
norm gives the integral of the square of the error.

Section V will give the details of working in the space of continuous
periodic functions. First (in Section 5.1) an integral equation equi-
valent to the differential equation of interest will be derived. Then
in Section 5.2, the derivatives will be determined and finally in Sec-
tion 5.3, the quantity I I F (x0) - xo I I will be evaluated. Application of
the results will then be seen to be rather straightforward.

V. APPLICATION TO DIFFERENTIAL EQUATIONS

5.1 The Equivalent Integral Equation
Halanayll shows how to convert the quasi -linear differential equa-

tion

* It is, of course, assumed that the measure is Lebesgue. Then 1,2 is separable;
see Kolmogorov and Fomin,' Vol. II, p. 88.

t No confusion should arise because of the double use here of the symbol L.
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dx(t) = A(t)x(t) n(t, x(t))
dt

(14)

into an integral equation which is convenient for examination of pe-
riodic solutions. First, consider

dx(t)
A(t)x(t) + i(0,

dt
(15)

where A (t) and f (t) are both continuous and periodic of period T.
The following theorem is proven in Halanay,11 p. 223.

Theorem: A necessary and sufficient condition in order that, for any
periodic function, (t) of period T, system (15) admits periodic solu-
tions of period T is that the corresponding homogeneous system

dy(t) = A(t)y(t) (16)
dt

does not admit a non -trivial periodic solution of period T.
It is to be noted that if Y(t) is the principal fundamental solution

matrix for (16) then the existence of the inverse of [I - Y(T)]* is
equivalent to the non-existence of a non -trivial periodic solution (of
period T) to (16). Then the following proposition is proved in
Halanay,11 p. 225.

Proposition: If - Y (T)J-' exists, the unique periodic solution of
the system (15) can be put in the form

T

.r(t) = f G(t, s)f(s) ds, (17)

where

G(t, s) = 1Y (t)[I - Y(T)]-117-'(s),

Y(t T)[I - Y(T)]-11-`(s), 0 < t <s T.
(18)

Since this reformulation into an integral equation is quite important,
a sketch of the proof given in Halanayli will be given here. Solution
of (15) is

x(t) = Y(t)x(0) f Y(t)Y-1(s)f(s) ds.

*/ is the identity matrix.

(19)
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For periodicity,
7'

x(T) = x(0) = Y(T)x(0) f Y(T)Y-1(s)f(s) ds (20)
0

or
7'

Y(T)]x(0) = f Y(T)Y-1(s)f(s) ds. (21)
0

Since [I -Y (T)] is assumed invertible, we can solve for x(0) and get

S(t) = Y (t)[I - Y(T)]-1 f Y(T) Y-1 (s)f (s) ds
0

f0 Y (t) Y (s)f (s) ds . (22)

The form of G(t, s) given in the statement of the proposition results
from algebraic manipulation of (22).

Now suppose that

dx(t) = A(t)x(t) n(t, x(t)) (23)
dt

with A (t) and n(t, u) both being periodic of period T and [I - Y(T)]
invertible. It is assumed that n(t, x(t)) is continuous if x(t) is con-
tinuous. Then, from the previous discussion, if we can find a continu-
ous periodic x of period T satisfying

X(t) = f G(t, s)n(s, x(8)) ds, (24)*
0

we have a periodic solution of (23). (It is easily shown that such an
x satisfies (23) ; see Halanay,11 p. 237).

The problem is thus reduced to finding a continuous solution of a
nonlinear integral equation. We need only consider the interval [0, T]
because G(t, s) was constructed so that x(0) = x(T).

5.2 Computation of Derivatives

It is shown here how to evaluate the Frechet derivativet of the
* The nonlinear integral operation represented by the right hand of (24) is of

the form sometimes referred to as a Hammerstein operator which is a special case of
Uryson's operator defined by fcr K(t, s, x(s)) ds (see Krasnosel'skii,8 pp. 32, 46).

t The Frechet derivative is actually more than what is required. The Gateaux
derivative (which does not require uniform convergence) would suffice for much
of what follows. However, since the convergence is indeed uniform in most cases
of interest and since the uniformity is easy to demonstrate, we shall derive the
Frechet derivative. Furthermore, Frechet derivatives are needed in Section VI.
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mapping y = F(x) defined by
7'

y(t) = f G(t, s)n(s, x(8)) ds t c [0, T]. (25)
0

This operation is assumed to map into itself the Banach space of
real -valued n -vectors continuous on [0, T] with norm

II x II = max max I xi(t) I. (26)
te(0,T1

To determine the derivative of the operation y = F (x) it is con-
venient to express it as y = LN (x), where N (x) is defined by the
nonlinear function n(t, x(t)) and L is the linear integral operator.
Then F'(xo) = LN'(xo) (see Kantorovich and Akilov,6 p. 659). Thus,
consider the mapping y = N (x) defined by

y(t) = n(t, x(t))

11,(t, x(0)

(27)

n(t, x(t))
It is assumed that n(t, x(t)) is continuous whenever x(t) is continu-
ous on [0, 7]. For simplicity, the derivative will be determined for
the case of

nj(t, x(0) = 0 i = 1, 2, , n - 1
nn(t, x(0) = p(Oh(x,(0) r(t),

where p(t) and r(t) are continuous functions of t with period T and
h (u) is a twice continuously differentiable function of u. This special
case which covers our examples may arise, for example, when the
matrix differential equation is actually derived from a scalar differen-
tial equation. The more general case offers no other difficulties than
much more complicated notation (e.g., one must deal with matrices
of partial derivatives).

The derivative operation z = N' (x0)x is defined by

z(t) =

0

0

0

sp(t)hVol(0)x,(0,

(28)

(29)
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where

x0(t) = (x01(t), , xon(0)7, x(t) = (si(t),
(superscript T denotes transpose) and

h'(x01(t)) - h(u)du

To prove this, it must be shown that

that is,

lira max
p-00 tcIO,TI

l ilia N(x0
µx) -N (4)

µ-.41)

- P'(xo)x,

P(0(41(0 + Ax1(0) - P(1)1(x.1(t))

- p(t)hqx01(t))x1(t)

, X(t))7

(30)

(31)

= 0, (32)

with that convergence being uniform with respect to all x with Ilx II =
1. Since

p(t)h(x0,(t) + Axa(t)) P(t)h(xol(t)) (x,(t))x,(t) = I P(t) I

,(t))2
h(soi(t))+Axi(t)hV

(px2
oi(t)) + h"(x01(t)-1-- 0(t)Axi(t)) -1001(t))

= I p(t)

2

where

max
tr(0.71

- h'(41(0)x,(t)

I xi(() 12 I h"0:01(0 + oWAxi(t))

P(t) 1 max I h"(z)
1

0 < 0(t) < 1

(fort I 1 and II x II = 1),

(33)

Z= {z: z = w vov = t E [0, 71]; I v I S 1) (34)

the uniform convergence relationship is seen to be satisfied.
To summarize the result, the first derivative operation y = r(so)x
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is defined by

y(t) = f G(t, s)

0

ds. (35)

p(s)h' (x01(8))x1(s)

Loosely speaking, the derivatives of the integral operators are ob-
tained by differentiating under the integral.

5.3 Evaluation of 11 LN(x0) - x0
A bound on LN (x0) - .ro II is given here. The relationship

I I LN(x0) - xo II 6 II IN(x0) II + II xo II (36)

is too gross an estimate. The evaluation is simplified if the following
relation is used:

LN(xo) - x0 = - PN(x0). (37)*

Recall that the operation L suppresses all frequency terms except
the fundamental.

Consider the same system as in Section 5.2 and assume that

2r 2r
p(t)h(x,(t)) r(t) = E aK cos k -T t bK sin k -T t.

k=1.

and also, for simplicity, that A is a constant matrix. Then,

LN(xo) - xo

= max max
fo

5- E (I a,,I + I bK) max max
tri0,71

(38)

-TGat, s) E (aK cos k -Ts bK sin k s) ds
2r

k-2

137' I Gin(t, s) I ds. (39)

5.4 Example
Consider Duffing's equationt

g + ay = f cos cot (a > 0). (40)

Equivalent linearization indicates that

y = A cos cot (41)

* From this expression, it is seen that II LN(x0) -xo 'may be regarded as a
quantitative measure of characteristics (i) and (ii) mentioned in section II.

t Duffing's equation is discussed in great detail in Stoker." Also see Graham and
McRuer3 for a treatment of Duffing's equation as a feedback control problem.
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with

lb + (a - (2)A - f =0
is an approximate solution of the equation.

Letting

x1 = y

X2 = .4

the corresponding vector differential equation is

=
0 1

x
0

-a 0 f cos cot -

The fundamental solution matrix for

is

Y(t) =

G (t, s) is given by

G(t,

1

2 sin (
2

1

2 sin (

0 1

-a 0,

cos .V/, t

- Va sin V a

y

sin t

Ara

cos V a - t

- Tsin 1/a (2- t +s)
1

- cos \ra- id-s)

-sin V a (r-cd- t-s)

V a cos

(42)

(43)

(44)

(45)

(46)

(47)

(48)

cos Va t+s)

sin a (76-1- t+s)

1
- cos

1//a.

G+1_s)

(49)

Va

-sin Va (1:+t-s)
2

0 t <s<T.
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The integral operation of interest, y = F(x), is defined by
7'

0y(t) = G(t, s)[ ds. (50)
f cos ws - bx(s)

The approximate solution (obtained from harmonic balance) is xo,
i.e.,

[x,(01 [ A cos cot ]
= (51)

x02(0 -co.A sin cot

with w and A being related by (42).
From Section 5.3 we have that

I I

ILN(x0) - xi) T max max Gn(t,
I

bA3

48,st[0,71

I b.A2
TC ,

where

(52)

C = 1
max {1, 1 / (53)

2 Isin (-V.
2

The derivative operation z = F'(x0)x is given by (see Section 5.2)

Tz(t) =
J

G(t, s)[ 0
ds

0 -3 bx:,(s)x,(s)

= r r -G12(t, s)3b4,(s) 01x,(s)lds.
"° L-G22(t,

(54)
s)3b41(s) 0 x2(s)_

The norm of the derivative operation at an arbitrary point x (not
necessarily at xo as above) is evaluated as follows:

11Fqx)11
T

max max 1 G i2(t, s)3b4s) I ds
i=1.2 tc[0.71

.6 3 I b I CT( max I x1(t) I)2
1.10.71

3 I b I CT( max I x,,, (t) ± max
trI0, T1 trI0.T1

:31bIcY71(IA I+ Ilx- x)

I - x01(t) 1)2

(55)
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The above relation defines the nondecreasing function g such that

II F'(x) II <9(II x xo

to use the theorem of Section II, let

where

= {x: x - II 1 -a

lb A3I= CT
4

(see (52)).
If an a c [0, 1) can be found satisfying

[

C
I bit.' 11'

3 I b I CT I A I + 1 - a 1

<a

(56)

(57)

(58)

(59)

then there is an .r -K c St such that x* = F(x*), i.e., Duffing's equation
has a periodic solution in the neighborhood of the approximation obtained
by harmonic balance.

Rather than just solve the cubic relation (59) for particular numerical
values of a, b, f, and w (which is, of course, the thing to do if one is
given a particular equation of interest) we shall obtain some general
results. Consider a, f, and co fixed and f 0. Sincet for any a £ [0, 1)

CT 12
4lim 3 IbICT IA1+ = 0

1 a
(60)

it is seen that for b sufficiently small, there will be an a c [0, 1) satis-
fying (59) (and thus a periodic solution neighboring the approxima-
tion). Note that while the result has been stated as an asymptotic
result, it is possible to determine quantitatively what is meant by
"sufficiently small". This is in contrast to most asymptotic analyses
based on "small nonlinearities".

5.5 Special Cases

In many cases, it is not necessary to convert the differential equa-
tion into a vector integral equation. For example, let the system be

See Appendix C for details,
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described by the equation

aox(m)(t) aix`m-"(1) +  + a,x(t) = n(t, x(t)), (61)

where the a, . . . , a,,, arc constants, 774 t , x) is continuous in t when
x is continuous in t, and

n(t + 1', u) = n(t, u). (62)

A periodic solution to the differential equation will satisfy the follow-
ing integral equation

7'

X(t) = f IVT(t u)n(u, x(u)) du, (63)

where WT(t-u) is the appropriate convolution kernel (see Kaplan,4
chap. 4 for details). All the manipulations of previous sections will
be somewhat simplified as a result of not having to deal with matrices.
In particular, the example of Section 5.4 could be repeated with some
simplification. We omit the details because they exactly parallel the
previous case. We felt it would be more useful to work out the details
of the more complicated case. As the order of the differential equation
increases it clearly becomes more advantageous to avoid the use of
matrices.

It may be noted that there is a finite Fourier transform Y(in(0)
(again see Kaplan,4 chap. 4) associated with the differential equa-
tion (61)

1Y(into) = a(inw), a, (64)

This Y(p), considered as a function of a complex variable p, evidently
can only have poles and cannot have finite zeros. In many electrical
engineering applications (e.g., control systems, networks) the relevant
transfer function has both poles and zeroes. In these cases, we would
start with the transfer function, rather than a differential equation of
the form (61), find the corresponding convolution integral and then
apply our method. For other applications it must, of course, he verified
that the appropriate conditions are satisfied.

5.6 Autonomous Systeme
The describing function method has been used by control engineers

primarily for the prediction of self -oscillations (i.e., with no forcing

t Since the actual oscillation of an autonomous system may have a different
period than that of the approximation, it is usually convenient to normalize the
time variable and have the period be a parameter.
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functions). It would seem at first glance that our approach should be

appropriate for analysis of this problem. Suppose the describing
function method indicates that there exists a non -trivial periodic

solution, x0, to the operator equation

xo = LN(x0). (65)

Usually, N(0) = 0, so that it is of interest to investigate whether
there is any non -trivial solution to the exact equation near xo. If our
method is successful, then we can guarantee that SI does not contain
the trivial solution (x = 0) if

1' (x0) xo <
xo (66)1 -a

since the fixed point x* satisfies

x* - xo II < I I
F(x0)

a
- xo I I

1 -
Unfortunately, an attempt to use the approach in the autonomous

case will be unsuccessful. The reason for the failure of our approach
is due to the nature of the fixed point: the mapping is not a contrac-
tion in a neighborhood of the fixed point.- The discussion below will
clarify this point.

Assume that the differential equation of interest is

t(t) = Ax(t) n(x(t)) (68)

with A a constant real valued matrix and n(x) is a real -valued func-
tion having continuous partial derivatives with respect to all of the
elements of the vector x. Suppose that there is a continuous periodic
x* of period T satisfying (68). Then x* satisfies the equivalent
integral equation:

7'

x*(t) = f G(t, s)n(x*(s)) ds.
0

The equation of first variation corresponding to (68) is

(67)

(69)

1/(0 = Ay(t) Y(0, (70)

where On/ax* is a matrix with entries ani/ax; evaluated along the

t Actually, this should not be surprising since if x(t) is a periodic solution, then
so is x(t e).
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trajectory defined by e (t) . As is easily shown (by differentiation;
see, e.g., Hochstadt,ls p. 251) the time derivative of x* (t) satisfies the
equation of first variation and thus the equivalent integral equation

7'

(t) = f G (I
ax*

±*(s) ds. (71)

Now consider the derivative operation y = LN' (x*)x associated with
the integral operation of (69). The derivative operation is defined by

y(t) = f G(t, s) -an x(8) ds.
ax*

(72)
0

= LNi(x*)e (73)

Ile I I I EN/(e) :i:* (74)

Since t* I I > 0, we must have that

I I LN'(x*) 1 (75)

We have shown above that j.;* satisfies this last equation or

Then

or LN cannot be a contraction in a neighborhood of x*. We leave open,
however, the possibility that the contraction mapping theorem might
be applicable in a subspace.

The above reasoning also shows that there would be difficulty asso-
ciated with using Newton's method for the problem. To seek a zero
of P(x), Newton's method uses the following iteration:

= .r - [P(xn)]-1(P(:r)) n = 0,1, . (76)

Letting

P(x) = x - F(x) (F(x) = LN (x)) , (77)

we are led to investigating the inveritibility of I - F' (x) where I is
the identity operator. Consider the operation

y = P'(x*)x = (I - F'(x*))x. (78)

If x = 0, then y = 0. But because F' (x*) is associated with the equa-
tion of first variation there is also a nonzero x (the time derivative
of e (t)) which results in y = 0. There is thus not a unique x satisfy-
ing y = 0 and P' (x*) is not invertible (see Kantorovich and Akilov,6
p. 168).
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5.7 Properties of the Fixed Point-Dependence on Parameters; Stability

The method of this investigation is to obtain a relation for a in terms
of parameters of the differential equations. If certain conditions are
satisfied and 0 < a < 1, then a represents a contraction constant.
If a is a contraction constant and, also, a depends continuously on a
parameter then for sufficiently small changes of that parameter a
will still be a contraction constant and a periodic solution is still guar-
anteed. Once again note that "sufficiently small" can be quantitatively
determined if one wishes to do that. As an illustration, in the Duffing

equation example, a depends continuously on b.
If our method indicates the existence of a periodic solution of period

T then there is no neighboring solution of period T (for a sufficiently
small neighborhood). This condition does not imply stability of the
periodic solution. With a perturbation of the initial conditions, stabil-
ity is concerned with closeness to (asymptotic stability is concerned
with the eventual approaching of) the original periodic solution. A
perturbation of the initial conditions of the period solution of period
T may result in a solution not of period T and thus, not even con-
sidered in the Banach space used.

A sufficient condition for the asymptotic stability of a periodic
solution (of period T) to a nonautonomous system is the asymptotic
stability of the null solution of the corresponding equation of first
variation (Hochstadt,13 p. 251). We are only able to show that the
equation of first variation may not have a (nontrivial) periodic solu-
tion of period T if the fixed point is a contraction. The nonexistence
of a periodic solution to the equation of first variation is (along with
a continuous differentiability requirement) a sufficient condition for
the continuous dependence of the periodic solution on a parameter.
This result is not identical to but is compatible with our initial com-
ments on the continuity of the contraction constant with respect to a
parameter.

5.8 Perturbation Analysis
A very common approach to nonlinear problems is to solve a linear

problem ignoring the nonlinearity and then to use a series expansion
or a perturbation about the linear solution (see, e.g., Hochstadt,13 Sec-
tions 6.5, 7.4). As useful as these procedures are, they usually suffer
from the defect of not providing adequate quantitative information
about the nonlinear solution, i.e., it may not he possible to determine
quantitatively what is meant by "sufficient small". Our use of
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the contraction mapping theorem may prove useful in this regard.
As an illustration, again consider Duffing's equation and assume

that x0 was obtained by ignoring the nonlinear term (by3). In this
case, x0 = F (x0) is defined by

7'

.r p,(/) = f (42(1, s)f cos cos ds.
0

(79)

Then arguments similar to (but simpler than) those of Section 5.4
show that if b is "small enough" there is a continuous periodic solu-
tion to (40) which is "close" to the linear approximation

tx0i(t) = f cos co
(80)a - co2

Note that "small enough" and "close" may be quantitatively eval-
uated.

VI. DIFFERENCE -DIFFERENTIAL EQUATIONS*

Our use of the contraction map fixed point therom is not limited
to ordinary differential equations or integral equations. As a further
example, consider the difference -differential equation represented by

x = LN(Dhx), (81)

where y = Dhx is defined by

y(t) = x(t - h). (82)

If the Banach space B of interest is the space of continuous periodic
functions, then

Hl)h11=1.
This follows easily from

II Dh II = sup HI Dhx x a B, li x II =

= sup Imax I x(t - it) I: x E B, max I x(t) I = 1).

Assume that N maps B into itself. If N is differentiable (i.e., has a
Frechet derivative) at xo then N(Dhx) has a derivative at x0 (Kan-
torovich and Akilov,6 p. 658) given by N'(Dhx0)Dh. Then LN(Dh)
has a derivative at x0 given by LN' (DhX0)th. The norm is easily

(83)

(84)

* An interesting discussion of the problems of oscillations in difference -dif-
ferential equations is given in Chap. 21 of Minorsky' Halanay" contains much
information (and references) on difference -differential equations.
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evaluated:

LN'(.1),,x0)D,,
I I I I L I I

II N'(Dhx0)
I

(85)

Conceptually, the introduction of the time delay offers no great dif-

ficulty as compared to the case without the time delay. However,

it will generally complicate the arithmetic involved in examples, in
particular, in obtaining the solution to xo = "S(4). This relative
lack of complication going from differential equations to difference -
differential equations is not typical. In existence, uniqueness, and
stability considerations one must consider initial function conditions
in difference -differential equations while the initial conditions for dif-
ferential equations are merely at one time (or perhaps boundary con-
ditions at several times).

To illustrate the above remarks, consider the following difference -

differential equation:

+ ay + by = f cos wt (86)

yh(t) = y(t - h) (87)

This is Duffing's equation but with the argument of the cubic term
retarded. The corresponding operator equation is

x = LN(x) = L[N,(Dhx) F], (88)

where y = N1(x) is defined by the cubic nonlinearity, L is the same
linear operator as in Section V, and

0F(t) =
f cos wt

It is clear that

(89)

II isqx0) II 5_ II L II II Ni(xo) II (90)

and that the analysis will be completely analogous to that of Section
V, except that the approximate solution, xo, will be different. Note
that the Banach space is the space of continuous periodic functions,
not the space of functions continuous on one period.

To obtain the equivalent linearization approximation let

y(t) = A cos cot B sin cot
(91)

= C sin (wt + 0) ,

where
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C = + B2

0 = tan (t).

(92)

Substitution of this function into (86) yields

-w2C sin (cot 0) aC sin (cot + 0) + in [cos colt sin (wt + 8)

- sin coh cos (cot + 0) + third harmonics] = f cos cot. (93)

The approximation is obtained by neglecting the third harmonics and
equating coefficients of cos cot and sin cot. It is interesting to compare the
equivalent linearization solution obtained for the difference -differential
equation with that obtained for the following differential equation
(Duffmg's equation with a damping term):

J ay + by3 = f cos cot. (94)

Substituting (91) into (94) yields

-c02C sin (cot + 0) kwC cos (cot + 0) aC sin (cot + 8)

lbC2 sin (cot + 0) + third harmonics = f cos cot. (95)

Comparing (93) and (95) it is seen that, as far as harmonic balance
is concerned, the effect of the lag is to introduce a damping term
with clamping coefficient k,

k = - (sin colt) 1C2b/co (96)

(Also, one other term is multiplied by cos coh).
For some parameter values, the equivalent damping is negative.

Because of the negative damping, it appears that the periodic solu-
tion is not asymptotically stable. We say "appears that" rather than
making a more definite statement for the following reason. While it
seems plausible that the stability properties of the solution of the
equation of equivalent linearization should carry over to the actual
solution, the mathematical proof does not seem so obvious.

VII. RELATION TO PREVIOUS WORK*

As mentioned previously, the method of equivalent linearization
has its roots in the method of Krylov and Boguliubov. For an ac-

* The literature on equivalent linearization is vast.. We shall thus discuss only
those references which seem most pertinent. Even in those cases, we shall discuss
only those aspects which are directly related to the present study. The reader
should consult these references for many other interesting ideas.
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count of the very important work of Krylov, Boguliubov, and Mitro-
polsky in this area, see Minorsky.1 Their work is primarily of the
asymptotic type, i.e., leading to statements of the form, "for suf-
ficiently small /I., there exists . . . ." We may view our approach as
using a fixed point theorem to be able to determine quantitatively
what is meant by "sufficiently small" for a somewhat different but

related problem.
Bass5 considers the justification of the method of equivalent lineari-

zation in the autonomous case. In view of our comments on the inap-
plicability of the contraction map fixed point theorem, it is of interest
to note that Bass uses a much more sophisticated fixed point theorem.
Much of his analysis is interesting and important but his final results
are unfortunately difficult to apply (as Bass himself points out).

Sandberg" considers the operator equation*,

x = LN(x f) (97)

and the equivalent linearization approximation

xo = LN(xo (98)

Sandberg's analysis is carried out in the space of periodic functions
square integrable over a period. He presents conditions under which
there exists a unique periodic
with the same period as well as an upper bound on the mean square
error in using equivalent linearization. He also gives conditions under
which sub -harmonics and self -sustained oscillations cannot occur.
Sandberg's method is to determine conditions that guarantee that
LNt is a contraction mapping in the whole space. As mentioned pre-
viously, we do not try to obtain a contraction mapping in the whole
space but only in a neighborhood of xo. We thus free ourselves from
Lipschitz type requirements. It may be noted that many nonlinearities
encountered in engineering are non -differentiable and Lipschitzian
(e.g., piecewise linear functions such as saturation -type nonlineari-
ties). For these, Sandberg's analysis is applicable while ours is not
because we have required differentiability. Thus, Sandberg's work
and ours complement each other in this regard. Also, Sandberg very
fruitfully uses Fourier transform results in his analysis of feedback
systems.

* This is the same notation as in Section II except that in Section II we did
not explicitly show the dependence on a forcing function. That is, y = N(x)
could be defined by y(t) = n(x(t)-1-f(t)) or by y(t) = n(x(t)) f(t).

t Actually, an operator related to LN.
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Cesari14 considers the real differential system

= g(x, t)

x = (x1 , , x) (99)

±; , , x , t) j = 1, , n.

(For the specific conditions imposed on the above functions see Ref.
14). If

xi(t) ai, E (ai, cos scot + bi. sin scot) (100)
.-1

and m is a positive integer the vector function Px = (P . .
, P 'ix

is defined by

171

Pix,(t) = a,, E (a1, cos scot b;, sin scot)
fi=1

j = 1, , n. (101)

The operation H (x) = (X1, . . , X,,) is defined by

-Ira = E - (-b; cos scot + cti, sin scot) j = 1, n. (102)
ant+1 sco

The operation F (x) is defined by

F(x) = H(I - P)g(x), (103)

where I is the identity map and

g(x) = (g1x, , gx)

gpv = g,[x(t), 1] (j = 1, , n).

Letting T = P + F, Cesari determines conditions for the existence
of fixed points of x = Tx. He uses both Banach's fixed point theorem
(contraction mapping theorem) and Schauder's fixed point theorem
(which does not give uniqueness but requires weaker conditions). He
then shows that if y is a fixed point, it satisfies

= gi(y(t), t) .P1(1 - giy). (105)

P;(9; - g,y) = 0, j = 1, , n (106)

7.1(t) = g(y(t), 1) (107)

(104)
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Cesari discusses the solution of (106) which may be reduced to deter-
mining a Galerkin approximation. Cesari worked in the space of

square integrable (periodic) functions and Knobloch15 adapted his
approach to the space of continuous functions.

While the above method has the use of truncations of Fourier
series in common with our approach, there seems to be a closer rela-
tionship between Urabe's approach and ours.

Urabe'° considers the real nonlinear periodic system

dx
= X(s'dt

where X (x, t) is periodic in t of period 27. If

x,(t) = ao 1/2 E an cos nt bn cos nt, (108)

a Galerkin approximation* of order m is obtained if one can deter-
mine the 2m + 1 coefficients ao, al, b1, . . , am, bn, that satisfies the
following equation:

1 f2r
X[xm(s), s] ds

dt 27r 0

m 2r
E {cos nt f X[x,(8), s] cos ns ds

2r
+ sin nt f X[x.(s), s] sin ns ds} (109)

0

Urabe considers the problem of determining whether there is an exact
periodic solution near an approximate (Galerkin) solution, xo. He
determines conditions under which an iteration starting at xo converges
to an exact periodic solution. His proof, while not explicitly mention-
ing a fixed point theorem, is closely related to the contraction mapping
fixed point theorem and uses the fact that a contracting iteration
sequence must stay within a certain sphere centered about the initial
point.]' Our approach is in the same spirit but we take a more general
viewpoint at the beginning. The basic theorem is derived in an arbi-

* The method of equivalent linearization is essentially a first -order Galerkin
approximation.

t It may be shown that Urabe's result (Proposition 3, p. 125 of Ref. 16) is
essentially equivalent to requiring that the operator derivative have norm less
than one (a contraction) in the appropriate sphere.



EQUIVALENT LINEARIZATION 2431

trary Banach space where derivatives of operators are fruitfully
used. The more general viewpoint is very simple conceptually and
also permitted the easy extension to difference -differential equations.
Urabe in Ref. 16, and also in Ref. 17 and 18, considers many aspects of
Galerkin's method for differential equations not touched on in our
study. Also, see his comments on Cesari's method on p. 121 of Ref. 16.

VIII. CONCLUDING REMARKS

The development of analytical methods (other than asymptotic
methods) for the equivalent linearization technique with autonomous
systems remains a very important area for investigation.* Whether a
modification of the contraction mapping theorem (perhaps using a
subspace) might be applied to this problem remains to be seen. In con-
nection with autonomous systems, a question perhaps more important
than the one we have considered (if equivalent linearization indicates
a periodic solution, does there actually exist one?) is the following: If
a non -trivial periodic solution exists, will the method of equivalent
linearization indicate it? A typical engineering use of the describing
function is to determine conditions under which no self -sustained oscil-
lations are predicted. The engineer would like these same conditions to
also imply that there are no oscillations in the original (exact) system.
Urabe" has shown that the existence of a periodic solution will (un-
der certain conditions) imply the existence of a Galerkin approxima-
tion of sufficiently high order. The equivalent linearization technique
is essentially a first -order Galerkin approximation and the first -order
approximation may not be high enough to indicate the existence of
a periodic solution according to a result of the type of Ref. 16. It
would be very useful to determine conditions that would answer the
question. This question is related to that rased by Aizerman's con-
jecture.

Leaving the problem of autonomous systems we find our adaptation
of the contraction mapping theorem to be quite convenient in ana-
lyzing equivalent linearization in forced systems. The calculations are
straightforward and require no difficult mathematical argument in
the execution of the basic idea. It is hoped that the method may prove
useful in justifying and refining approximations. ;

It should be clear that our approach is easily adapted to the dual-

* A theory of autonomous systems, due to Urabe, is outlined in Chap. 3 of
Halitnay.31
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input describing function approximation (see, e.g., Gibson," p. 402).*

The remarks in Section VI concerning difference -differential equations
apply in that case also. That is, the only essential difficulty is in ob-
taining the dual -input describing function solution (which has nothing
to do with our method of investigating the accuracy of such a solu-

tion). It should be noted that the dual -input describing function
method has been used primarily for two sinusoids with commensurate
frequencies (one an integral multiple of the other) and is actually
equivalent to a Galerkin approximation. When the ratio of the two
frequencies is irrational, we are in the realm of almost -periodic func-
tions where analysis can get much more complicated. Boyer has
presented an interesting approximate method of analysis (an account
of which is given in Gibson," p. 408ff.) for an input consisting of two
sinusoids with incommensurate frequencies but with one much larger
than the other. Analysis of this method would be of interest.
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APPENDIX A

Guide to Some Mathematical Background Reading for Engineers
The purpose of this appendix is to make reading suggestions to en-

gineers interested in this work but who are not familiar with the
mathematics used. The primary reference on functional analysis used
for this work is Kantorovich and Akilov.6 A more elementary intro-
duction is given in Kolmogorov and Fomin.°t Lucid introductions to
the theory of differential equations are given in Hochstadt" and
Struble.2° The theory of oscillations is extensively covered in Minor-

* The dual -input describing function was apparently first used by J. C. West,
J. L. Douce, and R. K. Livesly. In lief. 7 there is an example of the existence of
a subharmonic solution to Duffing's equation. This is actually an example of the
dual -input describing function.

t The reader should be cautioned that some of the terminology is not stand-
ardized among American and Russian writers. For example, Kantorovich and
Akilov do not require a compact set to be closed while most American authors
do. Also, a linear operator is necessarily bounded according to Kantorovich and
Akilov but not necessarily bounded according to most American writers (Kolmo-
gorov and Fomin's definition agrees with American writers on this point).
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skyi which also has a discussion on difference -differential equations.
Kaplan treats Fourier series and finite Fourier transforms on an ele-
mentary level.' Further information on Fourier series (but still on an
elementary level) can be found in Tolstov.21

APPENDIX B

Derivatives in a Banach Space

The following material is abstracted from Chap. XVII of Kantoro-
vich and Akilov.°

Let P map an open subset S2 of a Banach space X into a subset A
of another Banach space Y. Let xo c S2 and suppose that there exists
a linear* operation U mapping X into Y such that for every x c X

limP(xo tx) - P(x0 u(x). (110)

The linear operation U is said to be the derivative of the operation P
at the point xo. We write this

U = P'(xo). (111)

The derivative thus defined is the Gateaux or weak derivative and
differential.

If the convergence relationship of (110) is satisfied uniformly with
respect to all x e X with x 11 = 1, then the operation P is differentiable
at the point xo and the derivative P'(xo) is called the Frechet or strong
derivative.

APPENDIX C

To discuss the satisfaction of (59), let

Z = 31b1CT A ! 1 - a
CTbA'I

4

2

Consider a, f, and w fixed with f X 0 and let a r [0, 1). To show that

lirn Z = 0
b-.0

we must show that

lim 1 bA2 1 = 0
b

* Kantorovicli and Akilov° include boundedness in their definition of linear.
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since

2-
b 21±1

CT
I bA2 12

CT )2 IbA2 li
Z = 3CT IA 1 -a -1 k1 -a/ 16

From (42) we have that

bA2 = -43 (fit + (42 - a).

Also

lirn A = a - (02

so that

lim bA2 = 0.
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Power Density Spectrum of the Sum of
Two Correlated Intermodulation Noise

Contributors in FM Systems

By T. G. CROSS

(Manuscript received August 15, 1967)

In the recent literature, two noise contributors in FM systems have
been analyzed:(i) intermodulation noise due to transmission deviations,
and (ii) AM /PM intermodulation noise. Even though different, these
two contributors have the same property of being functions of the baseband
signal. Hence, one would expect them to be correlated to some degree.

In this paper, we derive the expression for the power density spectrum
for the sum of these two noise contributors. The resulting expression has
been programmed on a digital computer. It has been found that, under
certain conditions, the correlation can be quite significant. In fact, an
example using a representative FM radio relay system shows that the
correlation can result in greater than 4 dB error if the two contributors
are assumed to be uncorrelated.

I. INTRODUCTION

Two noise contributors in FM systems are: (1) intermodulation
noise due to transmission deviations, and (ii) AM/PM intermodula-
tion noise. The first noise contributor is generated when an FM
signal is passed through a linear transmission medium which has
transmission deviations. The second noise contributor is generated
when an FM signal is passed through such a medium which is fol-
lowed by an AM/PM conversion device. These two noise sources
are different, in general, but have in common the property that they
are a function of the baseband signal. Therefore, one would expect
that they are correlated to some degree. This would mean that com-
bining the two noise power density spectra together assuming random
addition (uncorrelated random variables), i.e., power addition, might
not be sufficient in general.

2437
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In this paper, we will derive the power density spectrum for the
sum of these two noise contributors. We will then examine the results,
with the help of a digital computer program, for the conditions under
which the two noise contributors are correlated. We will also present
an example using a representative FM radio relay system. However,
before considering the correlation problem, we will first briefly con-
sider the two noise contributors individually.

II. INTERMODULATION NOISE DUE TO TRANSMISSION DEVIATIONS

Intermodulation noise is produced in FM systems whenever the FM
signal is passed through a linear transmission medium which has
transmission deviations.* This situation is depicted in Fig. 1 where

eiN(t), cos [coc t +9) (t)] Y (w) OUT (t) V (t) cos [Wct 93, (t) +9)1(t)]

Fig. 1- Generation of intermodulation noise due to transmission deviations.

the transmission medium, Y((a), is represented by power series gain
and phase transmission deviations up to fourth order, or

Y(w coc) = [1 + gi. + g2w2 g32 git44]

 exp i[b2w2 b,c01]. (1)

where We =. carrier frequency in radians per second. The output
signal is phase modulated by the desired signal, f(t),as well as the
phase modulating distortion function rr(t). This distortion function
consists of first- (linear), second-, third- and higher -order functions
of the input phase modulating function (p(t). Because of their signifi-
cance in FM radio relay systems, we will concentrate on the second -
and third -order terms which will generate second- and third -order
intermodulation noise once the signal is demodulated. In other words,
we will let

<MO = co2(0 + (P3(1), (2)

where so2(t) and r3 (t) represent the second- and third -order intermodu-
lation noise components produced by the transmission deviations in
Y(6)). In Ref. 1, these components were derived and are given by

* Transmission deviations are defined as any deviation in the gain and phase
characteristics from the ideal characteristics of constant gain and linear phase
for all frequency components of the FM wave.
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(P2(0 = [-ix2i + 1/2i - + [ 24-tiiIp"2(0 (3)

so3(t) = [6X3, - itisa'3(0 (4)

with the prime (') notation depicting the derivative with respect to
time. The A. and / coefficients can be expressed in terms of the trans-
mission deviation coefficients of the transmission medium by the ap-
propriate equations in Ref. 1. Equations (2), (3), and (4) can be
represented as shown in Fig. 2 where

(w) = [2-/3,w2 iX21] + i[i/1- 2.0)] (5)

H2 (W)= 141 (6)

113(0)) = [iX3r] + i{-1-2/irco]. (7)

The autocorrelation function of soT(t) is given by

R4.,(7) = soT(t)sor(t + 7)

= [p2(t) + co3(0][s02(t + + so3(t + 7).1

= (P2(t)(P2(t + + c03(t)p3(t

+ 3(t)402(t + + 402(t)(103(t + 7)

= Rc.(r) R v.(r) + Rcs,,(T) + R ,2,3(7), (8)

where the bar notation depicts the time average of the function over
an infinite interval, and e.g., R,,(r) is the crosscorrelation of g'3(t)
and so2(t). In the Appendix of Ref. 2, it was shown that

R,,,,(T) = = 0 (9)

R,T(T) = R, 3(T) Rc,(T). (10)

SO

(FT (t)

Fig. 2 - Block diagram of total intermodulation noise due to transmission
deviations.
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Taking the Fourier Transform of (10) gives

T (co) = AS,p3(6)) Sv .(0)), (11)

where S,. (w) is the intermodulation noise power density spectrum due
to transmission deviations. We see from (11) that the second- and third -
order noise contributions are additive on a power basis since they are
not crosscorrelated. It can be shown that'

S(co) = 2 HA(w) 12 5.[R (T)] + 2 1 H2(w) 12 ff[R4,-(T)]

+ 2 [. - 1( - co) H 2 (co) + H 2 ( - co) 11 i(co)NR2v (r)]

+ 6 1 H3(w) 12 g[R3,p  (r)]

where 5. denotes the Fourier Transform.

(12)

III. AM/PM INTERMODULATION NOISE

We see in Fig. 1 that the output signal from the transmission me-
dium is both envelope and phase modulated. If the transmission
medium shown in Fig. 1 were followed by an AM/PM converter*, i.e.,
a device that converts envelope variations at its input to phase per-
turbations at its output, then the signal at the converter output will
possess an added phase modulating distortion function along with
that shown in Fig. 1. This situation is depicted in Fig. 3. The added

e,N (t) = cos [wct +9) (t)]--d Y (0))
eouT (t) AM/PM

CONVERTER -eouT(t)
K (DEGREES/dB)

eOUT (t)=N7(t) COS [cuct+9)(t)+ T(t) + 0T (t)]

Fig. 3 - Generation of AM/PM intermodulation noise.

distortion term, OT(t), is similar in format to APT (t) and analogously
we will concentrate on the second- and third -order AM/PM inter -
modulation noise components. That is,

OT(t) = 02(t) 03(1), (13)

where 92 (t) and 03(0 are the second- and third -order AM/PM inter -
modulation noise components. These components were derived in Ref.

* The characterization of the AM/PM converter is discussed on pp. 1750-51 in
Ref. 2.
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2 and are given by

1 dt

r

d

i'
2

02(1) = 2r d
-1- +12r- - '2(0 + 1-[' -2(0 (14)

03(t) = 11,0'3(t), (15)

where the A and 1 coefficients can be determined from Ref. 2, and k is
the AM/PM conversion parameter which is defined as the phase
modulation index in radians divided by the amplitude modulation
index. Equations (13), (14), and (15) can be represented as shown
in Fig. 4 where

Gi(w) = [k-12-/3,(2 - klX2r] i[k1/2,.w] (16)

G2(w) = kylctir (17)

G3(w) = [ ki-X3 i] i[kAli 1c4] . (18)

Since 02 (0 and 03 (0 are uncorrelated, we can write

R0 i.(r) = Ro,(T) Re,(T) (19)

or

Sor(o) = So, (w) SeaGo), (20)

where Se ,.(w) is the AM/PM intermodulation noise power density
spectrum. It can be shown that2

So r(w) = 2 I Gi(w) 12 ff[R2,,,(7)] + 2 I G2(w) 12 ff[R2i,-(7)]

2[Gi(-0)G2(0) G2(--(0)G1(c0)]5[R2co' (7)]

+ 6 I G3(co) 12 ff[V,,,,(T)]. (21)

V2(t)-tG, (w)

cp"2(t)--H G2 (CO

G3 (w)

B2 (t)

63(t)

9 (t)

Fig. 4 - Block diagram of total AM/PM intermodulation noise.
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IV. POWER DENSITY SPECTRUM OF THE SUM OF TWO NOISE CONTRIBUTORS

The previous two sections presented basic system models which were
used to describe the two noise sources under study. In this section,
we will treat the more general case whereby the signal to be demodu-
lated, after passing through a transmission system, will be given by

e(t) cc cos [wet + i0(t) + (PAO 02.(0
composite distortion

The power density spectrum for each noise contributor has been de-
rived in Refs. 1 and 2, as previously discussed. However, adding these
two spectra together on a power basis, i.e., assuming that they are
uncorrelated, may yield a result which is grossly in error. In order
to determine the degree to which rT(t) and OT(t) are correlated, we
must derive the crosscorrelation function and examine its effect.

To examine the effects of crosscorrelation we combine Figs. 2 and 4
as shown in Fig. 5. The autocorrelation function of the sum of the two
noise contributors, FT(t) and 0T(t),is

R,+0(7) = [(PT(t) OT(t)i[coT(t ± + OT(t (22)

= Rer(T) ROT(T) er(t)(pT(t goT(t)OT(t T).

The first two terms are given by (10) and (19), respectively. Sub-

9e(t) H, (w)

9/12 (t)-41 H2 (CO)

92'3(t) -H H3 (CO)

9'2 (t)

9,3(t)

(t)

(t)+0T (t)
GI (w)

99

(P'2(t)--ii
e2 (t)

BT (t)G2 (a))9,"2(t)

83 (t)
G3 4109/3(t)-.

Fig. 5-Block diagram of composite intermodulation noise.
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stituting (2) and (13) into (22) gives

Ro(r) = R,p,(T) + Re T(T) 92(t)co2(t T) 03(t)ip3(t T)

 02(0c03(t T) 03(t),p2(t v2(t)02(t r)

 co3(t)03(t T) ,p2( 03(t T) io3( 02(t T) (23)

which can be written

R , o(r) = R 7.(r) R 0 ?(r) R 0 s(r) R 3 3(r) + R 02, 3(r)

R 0 3, ,(r) R 20,(r) R so 3(r) R 3(r) R ,0 3(r) . (24)

Using the same approach as in the Appendix of Ref. 2, it can be
shown that

R03,3(r) = Ro,,,(r) = R,0,(r) = R,303(r) = 0 (25)

SO

R4,+e(7) = R 7.(7) + Re T(T) R .(T)

 R ,(T) R coo ,(T) R 3(T) . (26)

Hence,

80+0(co) = 2,7,(6)) + So r(w) So.,2(co)

 So,(w) S,202()) S4,.o.(0)). (27)

4.1 Consideration of Se.,s(w) and S,,o,(w)

To examine So, (w), the cross -power density spectrum of Mt) and
403(1), we reduce Fig. 5 to the block diagram shown in Fig. 6. Using
the relationship for the crosscomlation of linearly transformed random
functions, we have

S , 3(w) = G - co) H 3 (co) S (co) .

It can be shown that'
R  s(r) = 614 (r) 9R2 (0)R ,(r) .

(28)

(29)

The term 9R2,.(0) R,.(r) is merely a scaled power density spectrum
of the input baseband signal and hence can be neglected since it does
not contribute to the intermodulation noise distortion. Therefore,

So, , (w) = 603( -co)H 3(w)ff [fc,  (r)] . (30)

By inspection, we can write

, 0 3(co) = 6H3(--(.4)G3(c4)I5[R3,,,(r)]. (31)
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fp'3(t)--d G3(0)) 1-0. 83 (t)

Cp'3 (t) -01 H3 (0)) 1-0' 993(t)

Fig. 6-Third-order noise correlation.

4.2 Consideration of So,,,(w) and S,20,(co)

To examine Se,,,, (w), we reduce Fig. 5 to the block diagram shown
in Fig. 7. Now

Re,,,(T) = 02(t)c02(t + 7.)

= [x(t) y(t)][u(t v(t 7)]

= Rx.(r) R(r) Rx.(r) Ry.(T). (32)

Taking the Fourier Transform of (32) and referring to Fig. 7, we
can directly write

So,,,(w) = G,(-c01-1,(co) So, a(co) + G2 CO) 112 (CO S (W)

G co) II 2(co) S o (co) G 2( -(OH I (co) S o (co)

Now it can be shown that1,2

S - ,(w) = 25.[R2,,(T)] (34)

Sc' ,a(co) = 2[/?2,  (T)]

S  a ,  a(co) = 2[R2, , (7)] = S  a , a(w)

q''2(

2

q,2( t)

(t)

/I 2

Fig. 7 - Second -order noise correlation.

(33)

(35)

(36)
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neglecting the de components. Hence,

So,,(w) = 2G,( -0))H i(co)ffiR2v (T)] + 2G2(-0))1/2(0))ff[R2,  '(T)]

 2[G, (-0))H2(0)) G2(-011 i(w)]5[R2v ' P  'H] (37)

Similarly,

2,20,(w) = 2H1( -0))G1(co)ff [R2v (T)] + 2H2( -co)G2(co)ff (T)]

+ 2[1-12(-(0)Gi (co) + 111(-10)G2(w)15[R2s. s(7)] (38)

Substituting (12), (21), (30), (31), (37), and (38) in (27) gives

So(w) = 211 -TIM 12 + 1 G1(w) 12

 G -co) II i(co) + H1( -6-7)Gi(co) }ff[R2,,(T)]

+ 211 H2(co) 12 + I G2(w) 12 + G2( (0)112 (CO + H2( W) G2 (CO 51R2P

+ 2 (H1(-(0)112(w) H 2( co)111(0)) G1(-w)G2(w) G 2( w)G i(co)

 G,(-(0)H2(w) G2( -0))111(w) 112(-co)GM

+ I I i(- ce)G2(0))1ff[R2v  (7)] + 611 H3(w) 12 + 1 G3(0)) 12

+ G3( (4))1/3(co) H3(-(0)G8(c..))1ff[R3,,(T)]. (39)

This expression, (39), gives the baseband power density spectrum
for the sum of two intermodulation noise sources: (0 intermodula-
tion noise due to transmission deviations, and (ii) AM/PM inter-
modulation noise. The effect of the crosscorrelation relationship shows
up as cross products of the defining transfer functions for each noise
source as would be expected. The second and third order distortions
of the summed noise spectra are additive as was the case for the two
individual noise contributors.

4.3 Signal -To -Noise Ratio

The signal characterization is the same as in Refs. 1 and 2, or

Spi(0)) = P0[a0 a212 ct4i4 chi% I 1 I -5- lb (40)

= pre -emphasized multichannel baseband signal power
density spectrum at the input to an FM modulator.

The constant P0 is given by

(2 2

Po =
Irv)

(rad/sec)2/Hz, (41)

2fb(cto
a4f:,

3 5 7
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where a = rms frequency deviation, in Hertz, due to the multichannel
baseband signal; the a's are the pre -emphasis coefficients; and lb is
the top baseband frequency, in Hertz. Hence, the signal-to-noise
ratio is

S, -(w)10 log 0,2s,.,(co) (42)

where the signal and noise are defined by (40) and (39), respectively.

V. SOME BASIC TRENDS

The power density spectrum for the correlated sum given by (39)
does not readily lend itself to any generalized remarks as to the con-
ditions under which correlation exists and to what degree. In order
to derive some useful information on the subject, (39) was pro-
grammed on a digital computer. The computer input consisted of the
fundamental system parameters, e.g., peak frequency deviation, num-
ber of message channels in the baseband, etc., as well as the trans-
mission deviation values to be used for "AM/PM intermodulation
noise" and those to be used for "intermodulation noise due to trans-
mission deviations. Note that the transmission medium may be dif-
ferent for the two cases. For example, we could have the case where
the "AM/PM intermodulation noise" is created by a quartic gain
transmission deviation prior to an AM/PM converter, and the "inter -
modulation noise due to transmission deviations" is caused by a linear
delay distortion. The transmission functions for the two cases would be

No) + = exp ib2co2 , Am/pm(co coc) = 1 + g4c04. (43)

As a clarifying point, it should be remembered that the AM/PM
theory of Ref. 2, and associated computer program, are set up so that
we only obtain the "AM/PM intermodulation noise" due to quartic
gain, and not the "intermodulation noise due to transmission devia-
tions" caused by a quartic gain transmission deviation.

Both of the noise sources discussed in Sections II and III have
transfer functions associated of the basic form given in (1). Each
transfer function can have seven transmission deviations, so the prob-
lem of permuting all possible combinations to see which are correlated
becomes unreasonably cumbersome. However, a potentially useful test
is to evaluate the correlation between rT(t) and OT(t) when Y,r(w) and
YAmipm(0)) each have only one transmission deviation for each com-
puter run. There are 49 possible combinations, one of which is given



NOISE IN FM SYSTEMS 2447

by (43). Any results one obtains will depend on the inputs used, and
because of the format of (39), one cannot make one run using nor-
malized results and then scale all future runs according to some pre-
determined rules. For that reason, the results to be given can only
be used to indicate trends.

The 49 runs previously mentioned yielded eight significantly cor-
related combinations. The evaluation of the results was made by adding
the individual power density spectra Si, r(co) and So TM on a power
basis and comparing the results with those obtained from S,i.o(co),
i.e., the power density for the correlated sum. Only top channel noise
was used in the comparison. A combination was considered to be
significantly correlated when the power sum and correlated sum dif-
fered by more than a few tenths of a dB. The amount that they differed
depended on the inputs, but for the values used,* some cases had
the correlated sum up to 3 dB above the power sum, in the top channel,
and some combinations caused the correlated sum to be as much as
15 dB below the power sum, in the top channel.

The eight significantly correlated combinations are shown in Table I.

TABLE I - CORRELATED COMBINATIONS

Transmission deviation in

Conditions under which the
correlated sum is higher than
the power sum (assuming k is

positive)

IrT (w) YAmtprew)

1. g3
2. 1)2

3. 62

4. h2

5. 1)3

6. b
7. b4

8. b

b3

9,
92

94

93

92

94

93 or b3 is negative
132 is negative
b2 and g,) positive or
b2 and 92 negative
b2 and g., positive or
62 and 94 negative
b3 and 93 positive or

and g3 negative
64 is negative
b., and 92 positive or
b4 and 92 negative
b4 and 94 positive or
b., and 94 negative

We see from Table I that the sign of the transmission deviations
determine if the correlation is positive or negative, i.e., whether the

* Same values as those used in Section 32.2 of Ref. 2: all gain transmission
deviations have 1 dB distortion, relative to the carrier, at 10 MHz away from the
carrier; all delay transmission deviations have 1 nanosecond distortion, relative
to the carrier, a 10 MHz away from the carrier.
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actual noise power is larger or smaller than the power one would obtain
from power addition of the two individual contributors. Also, we see
that all eight cases have the same format, i.e., if one transfer function
has a delay transmission deviation, the other transfer function has a
gain transmission deviation and vice versa.

Referring back to (39), we see that all of the correlation terms have
the same format, i.e., a Gi(±0.)1-/,(±0.) product. Since these terms
have k as a component, the sign of k will play a role in determining
if we have positive or negative correlation.

The results of Table I give us an idea of when to expect significant
correlation, that is, when power addition should not be used. These
results should prove useful for the more complex problems which are
confronted in practice.

VI. SYSTEM EXAMPLE

In Section 3.3.4 of Ref. 2, a representative FM radio relay system's
repeater characteristics were used in deriving the noise responses shown
in Fig. 11 of Ref. 2 and reproduced here as Fig. 8. The radio system
carried 1200 message channels, had a peak frequency deviation of 4
MHz and a top baseband frequency of 5.772 MHz, and had an rms
frequency deviation of 0.771 MHz. The system was pre -emphasized
by the function shown in Fig. 5 of Ref. 2. The basic repeater was

30

25

20

15
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0

5
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-15

TRANSMISSION
UNEQUAL-
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INTERMODULATION
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2 3 4
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Fig. 8 - Representative radio system noise responses.
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YI (w)

+2.5 DEGREES/dB

eiN = cos [wc t +9) (t)1-`1 YAM/PM (w) Y4;(0.)

BANDPASS TWT
FILTER AMPLIFIER

Fig. 9 - Repeater model.

gain and delay equalized and, from an analytical point of view, could
be represented as shown in Fig. 9. The transmission characteristics
for the equalized repeater, Yi(co), and for the bandpass filter, YA M/P M (CO

are shown in Fig. 10 of Ref. 2 and reproduced here as Fig. 10. The
associated least squares fitted transmission deviations are as follows

Transmission deviations 171(a) + 04) YA mir m (co + 04)

- 9.67 X 10-" 3.81 X 10-1'
g2 7.09 X 10-18 9.17 X 10-18
g3 1.17 X 10-25 9.04 X 10-27
g4 - 2.57 X 10-33 -1.97 X 10-33
b2 6.50 X 10-18 -4.82 X 10-18
b3 5.58 X 10-28 8.09 X 10-25
b4 -3.16 X 10-33 -3.35 X 10-34

The power sum of the AM/PM intermodulation noise and the inter -
modulation noise due to the equalized repeater's transmission deviations
(both are shown in Fig. 8) is shown in Fig. 11. Also shown is the power
density spectrum which includes the effects of correlation between
the two contributors. We see for this example that the actual noise
is 4.5 dB lower in the top channel than that obtained from power addition
alone.

Another interesting result is the curve shown in Fig. 12. This figure
shows how the sign and magnitude of the AM/PM conversion factor
can affect the noise response of a given system.

In Table I, eight correlated combinations were given. Of these
eight possibilities, the first combination is probably responsible for
the correlated sum being smaller than the power sum as shown in Fig. 11.
There are three reasons for this observation: (i) the parabolic delay
in YA mip m (co) is quite large, and the cubic gain in 17 i(co) is a significant
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Fig. 10 - Gain and delay characteristics.

UNEQUALIZED

part of the equalized repeater gain shape; (ii) this combination causes
negative correlation when the transmission deviations are both positive
and the AM/PM conversion factor is positive; and (iii) a negative
value for K causes positive correlation,* for this combination, which
is consistent with the results shown in Fig. 12. Hence, the trends given
in Table I can be useful for more complicated problems and may serve
as a tool for optimizing a system's noise performance.

VII. CONCLUSIONS

In this paper, we have studied the correlation which exists between
two noise contributors in FM systems: (i) intermodulation noise due
to transmission deviations, and (ii) AM/PM intermodulation noise.
The first contributor is generated when an FM signal is passed through
a linear transmission medium which has transmission deviations. We
denoted this medium by 17,(0)). The second contributor is generated
when an FM signal is passed through a similar medium, denoted by
YAM /P m(co), which is followed by an AM/PM conversion device. These

* When the transmission deviations are both positive.
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Fig. 11 - Comparison of power sum and correlated sum for a representative
radio system.

two media may or may not possess the same transmission deviations
in practice.

Even though these two contributors are different, they do possess
the same property of being a function of the baseband signal. There-
fore, one would expect that they would be correlated to some degree.
This would mean that combining the two noise power density spectra
assuming random addition (uncorrelated random variables), i.e., power
addition, might not be sufficient in general.

To study the amount and character of this correlation, the power
density spectrum was derived for the sum of the two noise contributors.
The resulting equation was programmed on a digital computer and
evaluated. Because of the format of the equation, no generalized re-
sults could be obtained. However, it was found that certain conditions
exist under which the correlation can be significant. These conditions,
even though not all engrossing, should prove useful in the complex
problems which occur in practice.

5

Cr uJ
in co

< (1) a- (7) 0

1-
Li)

0 o_
0 0

Z t.7 Z 5
L i
uj _J0 w

j< cf) Z 10
< 0 lu Z

<
- I 5

-3 -2 0 2
AM/PM CON- STANT K IN DEGREES PER DECIBEL

3

Fig. 12 - Affect of sign and magnitude of AM/PM constant on correlated sum
for a representative radio system.
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A representative FM radio relay system was examined, and it was
found that the power density spectrum for the correlated sum of the
two noise contributors was substantially different than the power ad-
dition of the individual noise spectra. In the top channel, the corre-
lated noise power was about 4.5 dB lower than the noise resulting
from a power sum.

It was also shown that a simple change in sign of the AM/PM
conversion factor k, or certain transmission deviations, can cause the
correlated noise to be substantially higher or lower than the power
sum of the individual spectra.
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Phase Progression in Conical Waveguides

By ELLIOTT IL NAGELBERG

(Manuscript received August 10, 1967)

TVe studied the phase progression properties of normal modes in a
conical waveguide in order to develop techniques for analysis of multimode
microwave antennas. We found that the large -order asymptotic expansions
of Bessel functions developed by F. W. J. Olver are most appropriate
for such calculations by virtue of their simplicity and uniformity with
respect to argument. These expansions are applied to analysis of the conical
TB and conical TM1, modes and, in addition, to an examination of
the "quasi -cylindrical approximation" in which the conical waveguide
is regarded as a cylindrical waveguide with gradually changing cross section.

I. INTRODUCTION

For most applications to microwave communication systems, wave -
guides are designed in such a way that only the dominant mode can
propagate. This has been the case principally for practical reasons, as
evidenced for example by problems encountered in the development
of millimeter -wave systems using the higher -order TEO mode.' Since
the waveguide in this case must be oversized, small geometrical asym-
metries due to errors in fabrication, bends, and other structural perturba-
tions cause coupling to unwanted modes, which can result in a sig-
nificant degradation in performance.

On the other hand, there has been considerable interest during the
past several years in techniques which require the controlled excitation
of higher -order modes combined with the dominant mode in, for ex-
ample, a conical waveguide. Two such applications have been the
TE,`, - TM,;,* precision autotrack system for the Telstar® satellite,2
and the TE,i - TM,`, dual mode conical horn3 which has been suggested
as a primary feed configuration for low -noise satellite communication
antennas

* The notation TE or TML will he used to designate conical waveguide
modes.

2453
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A common feature of these techniques is the necessity for maintain-
ing a high degree of phase coherence among the various modes of
propagation. It is therefore required, in order to design such systems
and predict the effects of frequency, temperature and structural varia-
tions, to accurately determine the phase progression properties of the
guided wave fields.

The paper's contents may be summarized as follows: We first de-
scribe the conical waveguide modes, which are vector eigenfunctions
of Maxwell's equations in what is essentially spherical geometry. We
note that although these solutions are well known in principle, the
actual computation of their phase progression properties is not
straightforward. It is, therefore, necessary to consider the problem of
numerically evaluating both the eigenvalues and vector eigenfunc-
tions so that we can apply these results to actual antenna problems.
In order to do this we utilize certain uniform asymptotic expansions
due to F. W. J. Olver4 which are found to be well suited to such cal-
culations. We thereby observe that a very common method of deter-
mining phase progression, which might be termed the quasi -cylindrical
approximation, is not particularly accurate, and the errors associated
with this method are evaluated.

Rationalized MKS units and the (suppressed) harmonic time de-
pendence t will be used throughout.

II. MODES IN A CONICAL WAVEGUIDE

The normal modes characteristic of a conical waveguide are derived
in the usual manner by finding separable solutions to Maxwell's equa-
tions in spherical coordinates, subject to the boundary condition that
the components of electric field tangent to the lateral surface must
vanish. The solutions thus derived may be partitioned into two types,
TE` modes for which the electric field is transverse to the direction
of propagation (the r -direction), and TM` modes for which the mag-
netic field is transverse to the direction of propagation. In terms of
the coordinate system shown in Fig. 1, the components of electric field,
for example, are given by,'

TM'

E;rm = A h(12(7c-f-r)11) H ,Ti(kr)P;(cos 0)eit"

Era A d d
kr d(kr)

kr 1-114.(kr)]
d0P7,(cos

Beim ( 1)
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TE'

HORN
HALF

ANGLE

=, o

Fig. 1-Conical horn geometry.

ETM imA d
[Vi; H,(14A(kr)]P";(cos 0)e17"' ,

kr sin 0 d(kr)

ET' = 0

E,TE = 711B _ H ,(1,)1(kr)P":,(cos 0)ei"
sin 0 Vb.

= iB,- H,(,14(kr) [P",!(cos .

V kr de

z

(2)

In (1) and (2), PI: (cos 0) denotes the associated Legendre function
(m = integer) and H;1' (x) represents the Hankel function of the first
kind, corresponding to outgoing waves under the assumed time de-
pendence e-'". The constant k is the free -space wave number.

The eigenvalues v and ,u are found as solutions of the respective
characteristic equations

Pm(cos 0)] = 0 (3)d6 0-00

P7cos 00) = 0 (4)

for a specified horn half angle 60.
These eigenvalues can be computed by a variety of numerical meth-

ods. For example, one can represent the associated Legendre function
in terms of the hypergeometric function° as

1 - cos 0\ ,..

P'",(cos 0) = C shim" 0 (I + »1 +I1, M - in ± 1; (0)2
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where C is a constant. The v- or IL -zeros for a given 0o can then be
found by a variety of root finding techniques. It is, however, worth
noting that a first -order approximation may be determined from the
formula

P7(cos 0) ti J,(Vv(v + 1) 0) + 0(02), (6)

where .1, denotes a Bessel function. Since the roots of Bessel functions
are well tabulated,' (6) can be conveniently used to provide either
an estimate of the eigenvalue or a starting value for an iterative algo-
rithm. The phase errors associated with this approximation will be
discussed in a later section.

To indicate the behavior of the zeros and to provide helpful in-
formation for design of dual mode conical horns, a partial list of v
and p, values, computed using (5), has been prepared and is given in
the Appendix.

III. BEHAVIOR OF THE RADIAL FUNCTIONS. PRECISE CALCULATION OF PHASE

PROGRESSION.

Having obtained the appropriate eigenvalues as defined by (3) and
(4), we may then proceed to the more interesting calculation of the
radial dependence. In principle, the phase shift between the two
spherical surfaces r = r1 and r = r2 is given by

SaTE = arg [HyTi(kr,)] - arg [1-41.)i(kr,)]

SaTM = arg
dx [V; H;+)i(x)]
d kr

(7)

d -- arg {-; vrx //,`,1)4(x)]} (8)

for the TE and TM modes, respectively, where arg ( ) denotes the
phase angle associated with a complex number.

The difficulty which arises when one attempts to utilize these ex-
pressions is essentially one of computation, due to the particular
regime of order and argument frequently encountered in analysis of
conical horn waveguides. We are particularly concerned here with the
so-called transition region where the argument and order of the Hankel
functions are large and comparable. For example, when 0 = 5°, v =
20.6155 and p, = 43.4109 (see Appendix), which means that we must
allow for a range of arguments increasing from these values.

Asymptotic formulas for Bessel functions have, of course, been
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studied in great detail. Asymptotic forms in the transition region kr
v have been given, for example, by Watson and Langer.8 Although

of mathematical interest, these typically give only the limiting be-
havior of the function, with the remainder specified within some order.
However, engineering design generally requires more precise results,
which can be obtained only with the aid of complete asymptotic ex-
pansions.

Expansions particularly appropriate for our problem have been
given by Olver.4 These formulas represent the Bessel functions as
asymptotic series in terms of reciprocal powers of the order, and are
valid asymptotic expansions for all values of argument. Although
their derivation is very complicated, and will not be discussed here,
we shall state the general form of the result and indicate several sim-
plifications which are valid for most problems involving phase pro-
gression in conical horns.

The complete asymptotic expansion for the Hankel function of the
first kind, following Olver's notation, is given by

/
H!"(P4 -

4rx2v{Abir) - iBi(k)
)

(0 Aiyo - iBewo BQ-)
2n m

V (;) V

In this expression, Ai, Ai', Bi, and Bi' represent Airy functions and
their derivatives,8 and t is a constant related to x by the formula

r = -{-142 - 1)i - sec' 201. (10)

The coefficients An(C) and B (g) are determined through an auxi-
liary sequence {U(t) } defined by the recursion formula

U0(t) = 1

12(1 - 12)
un(1) = U_i(t) g fo (1 - 5t2)U_,(t) dt,

where the prime denotes differentation. The An and B can then be
found using the relations

A

n-0 V
5/3 27+ (9)

An(0 =

B7(s) =

2" b U2n-m(T)
.3m/2

mLU

"+1 a U2n +1 (7)
(3m+1)/2

s

,

(12)

(13)
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where T = (1-x2)-1 and fa,), (b,,,) are given by

ao = bo = 1 (14)

(2m + 1)(2m + 3)  (6m - 1)
cim(m > 0) - (15)

m! (144)m

Ginb, > 0) = +1(m

6m - 1 am
(16)

Since for the range x > 1, which is of interest here, C is negative and
T is imaginary, it is also necessary to define the proper branches, which
are as follows:

r = i(x2 -

1

1 23m
t..3m/2 .)3m/2

(17)

(18)

(19)

Using a table of Airy Integrals,* one can proceed to evaluate the
required Hankel functions to whatever accuracy is needed. As an in-
dication of the number of terms required in a typical calculation, it
has been observed by J. A. Cochran and C. M. Nagel* that for v > 10,
four decimal place accuracy can be obtained simply by using terms
including Bo and A1. The coefficients required for most horn calcula-

tions are thus given by

Ao = 1 (20)

Al - 814 + 4624 385r1 7(3T1 5.4) 455

1152 11520 4608r;
(21)

371 + 5r1 5Bo - (22)
240 48e

where Ti = (x2 - 1) -I and CI =

IV. APPLICATIONS

In this section we shall discuss several applications of the preceding
results. After presenting examples of phase progression for different
modes we consider the phase errors introduced by approximating the
eigenvalues ih and v. Finally, we examine what might be called the

* Private communication.
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"quasi -cylindrical approximation," in which phase progression is
calculated by considering the horn to be a cylindrical waveguide with
slowly varying cross section.

4.1 Phase progression of the T and 7'M modes. Effect of errors
in v and A.

A qualitative understanding of the phase progression properties of
conical waveguide modes can be achieved by regarding a horn as a
cylindrical waveguide with gradually increasing cross section. Although
such a model has limitations, which will be discussed later in Section
4.2, it correctly predicts the fact that the phase progression rates
for both classes of modes begin at relatively low values and increase
monotonically toward that corresponding to the far field of a spherical
wave in free space. This limiting behavior is reached when the conditions
kr >> v or kr >> µ are satisfied, corresponding to conical TE or conical
TM modes, respectively.

Fig. 2 shows, for example, a direct computation of the phase shift as
a function of kr2-kri for the conical TEn mode for half angles 00 =
3°, 10°. The value kri is in each case taken to be that corresponding
to the cut-off cross section of a cylindrical waveguide, i.e.,

ki -
sin Bo

(23)

where r 1.84118. Fig. 3 shows analogous results for the TW, mode,

40

30

20

10

80=10°

10 15 20 25
kr- TE/SIN Bp

30 35 40 45

Fig. 2-Phase shift for the TE;, mode relative to the cross section at which cut
off would occur for a cylindrical waveguide. rTE r -t% 1.84118.
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lcr_TM/ SIN 8

30 35 40 45

Fig. 3-Phase shift for the TMn mode relative to the cross section at which cut
off would occur for a cylindrical waveguide. 3.83171.

the principal difference being in the more gradual increase in phase
near kri .

In view of the difficulty in computing the v- and /A -zeroes of the
Legendre functions, as required by (3) and (4), it is of practical in-
terest to determine how an error in the eigenvalue will effect the cal-
culation of phase shift. If, for example, we denote by ATE the error in
phase shift due to a small error Sv in the eigenvalue, then from (7) we

TABLE I-MAXIMUM PHASE ERROR DUE TO 0.10 PERCENT
MISCALCULATION OF v OR tt

k(r2 - r,) = 100

TEn mode

00 OP ATE = (r/2) by ATE actual

3° 0.035 3.15° 2.04°
5. 0.021 1.89° 1.26°

10° 0.010 0.90° 0.61°

TMII mode

0o Op ATM . (.12) Op ATM actual

3° 0.073 6.87° 4.68°
5° 0.043 3.87° 3.14°

10° 0.021 1.89° 1.16°
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have that

a aATE
av

arg [11,.4
av

(kr2)] - arg [H(:+)i(kri)]  8v, (24)

where vo denotes the correct eigenvalue. Although the calculation
required by (24) is, in general, very difficult, it is relatively simple to
obtain an upper bound to ATE. First, it can be shown (see Ref. 7, p.
368), that at the cutoff radius r1, the argument kri is approximately
equal to the eigenvalue v (or µ) and furthermore that the partial
derivative at that value tends toward zero as v or /.1. becomes very
large. It follows that an upper bound on the error ATE can be obtained
by neglecting the second term on the right side of (24) and letting
kr2 -> co. In this way we find, from the asymptotic behavior of the
Hankel functions (see Ref. 6, p. 85), that

max I ATE = Sv I ((25)
and, in a similar way for ATM,

max I ATM I = I oje 12 (26)

In Table I we present a comparison between the actual computed
error in differential phase shift, for an assumed relative 0.1 percent
error in the eigenvalue, and the upper bound as determined by (25)
and (26). The results indicate that the predicted estimates are quite
reasonable. Note that the larger phase errors for smaller angles are due
simply to the fact that the eigenvalue and hence the absolute error
is greater.

The principal purpose of the previous exercise was to determine
what error might be expected from using (6), which expresses the
Legendre function in terms of a Bessel function. Results for the
mode show that (6) is sufficiently accurate in predicting the IA -zeroes
that the maximum differential phase error for horns up to 30° in half
angle should be less than 1°. As might be expected, however the same
approximation applied to the v -zeroes of the derivative of the Legendre
function is not as accurate. Nevertheless, as shown in Fig. 4, for a horn
with half angle equal to 30° the maximum phase error is approxi-
mately 6°, which would ordinarily be acceptable.

4.2 Evaluation of the Quasi -Cylindrical Approximation
The difficulty of making precise calculations of phase progression in

conical horns has led to the use of an approximate formula derived



2462 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967

6.0

4.5

3.0

1.5

0
5 10 15 20 25 30 35

HORN HALF ANGLE IN DEGREES
40 45

Fig. 4-Maximum error in phase shift using Bessel approximation to the Legendre
function.

by assuming that the horn behaves as a cylindrical waveguide with
gradually increasing cross sectional radius. The phase shift is then
determined simply by integrating the local waveguide propagation
constant, with the result that

1
13 ff

V (kr sin 002 - t-2 cos' r (26)
tan uo f, kr sin 00

where r is the characteristic value for the particular mode (e.g., for
the TE° mode 1.841 and for the TM° mode 3.832). This
formula is, in fact, asymptotic to the true phase shift in certain limits.
For example, let (kr sin 0) be fixed and let 0 - 0. Then it can be shown
that (26) becomes essentially equivalent to the simple Debye approxi-
mation. (See Ref. 7, p. 366.) However, this formula is known to be
invalid in the range where order and argument are comparable. Never-
theless, it is useful to investigate the properties of (26) in order to
determine what errors accompany its use.

Fig. 5 shows the resulting error in differential phase shift when the
quasi -cylindrical approximation is applied to the TE,`, mode, with
kr1 = c/sin 00 (corresponding to the cut-off diameter) and 0 5°.

The error is seen to grow very rapidly at first, showing that the quasi -
uniform approximation predicts too slow an increase in propagation
constant with increasing cross section. Eventually, the error curve
approaches a linear variation. This asymptote can actually be predicted
fairly well by using the large argument behavior of the Hankel function,
combined with the fact that for large v (see Ref. 7, p. 368),

arg 1,")(v) -7r/3. (27)
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By letting kr sin 00 -+ 00 in (26) and using (6) , which relates C to v,
we find that in the limit of large kr

6aTE
12 -

( sin
6°/kr

(28)0 tan 00/ 2
+ tan

which, for small 0 reduces to

7 F7
n2
Go

SaTE 5,3TE - On -I- -- kr.
12 6 2 (29)

This result, shown in Fig. 5 as the dotted line, is seen to predict very
accurately the asymptotic behavior of the error.

Fig. 6 shows the corresponding error for the TAI,`, mode. In con-
tradistinction to the previous example, the quasi -cylindrical approxi-
mation at first predicts too high a phase progression rate, but eventually
also conforms to the linear error predicted by the last term of (28).
The formula analogous to (29) is given by

oaTM ofiTM 7 iT14171.

12 6 2

This result, shown in Fig. 6 as the dotted line, is also seen to cor-
rectly describe the asymptote.

A salient feature of these results is that the linear portion of these
curves is quite independent of the type and order of the mode being

25

20

cr

o 15

10

G0 5

0

1

EXACT ERROR

--.V.

-

 ---'
ASYMPTOTIC APPROXIMATION

%

I

( EQ. 29)

r
0 5 10 15 20 25 30kr_ 35 40

(30)

45

Fig. 5 - Error in phase shift due to quasi -cylindrical approximation for the
TE;, mode. -'rE =s-% 1.84118.
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ExACT ERROR -1,
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kr - 00
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Fig. 6 - Error in phase shift due to quasi -cylindrical approximation for T1V1f,
mode. i'TM ^% 3.83171.

considered. This immediately implies that the error in differential
phase shift between modes resulting from the quasi -cylindrical ap-
proximation is always bounded at a value easily predicted by (29)
and (30). This latter result is considered to be one of the more sig-
nificant conclusions of this study.

V. SUMMARY AND CONCLUSIONS

In this paper, we have considered the phase progression properties of

conical waveguide modes. The principal difficulties have been in com-
puting Bessel functions over their so-called transition region. It is

suggested that, in view of the typically large orders involved, the
asymptotic expansions due to Olver are the most applicable. An exam-
ination of the quasi -cylindrical approximation has shown that this
latter formula, although not necessarily accurate for evaluating phase
progression of a particular mode, can be used to determine differential
phase shift between modes with an error which is bounded over the
conical region.
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APPENDIX

Roots of 131 (cos 0) = 0 and d/d0 Pt, (cos 0) = 0 for a Given Value of 0

In order to assist in design of dual -mode conical horns, we have
prepared an accurate table of the roots of the associated Legendre
Function and its derivative for a given value of the horn half angle 0.
These values of v and µ may then be used to evaluate the vector wave
functions which characterize the propagation of the and T1W,
modes in the horn section.

The computational program consisted of using the hypergeometric
series representation for the Legendre function, and determining the
zeroes by a standard root finding method. The program was termi-
nated when the value of the function was less than 10-6 in amplitude.

TABLE II -ROOTS OF 13: (COS = 0
0 A 0 A

3.00° 72.6819 17.00° 12.4239
3.50 62.3379 17.50 12.0552
4.00 54.3874 18.00 11.7070
4.50 48.2893 18.50 11.3777

11.0657
5.50 39.4196 19.50 10.7697
6.00 36.0935 20.00 10.4885
6.50 33.2792 20.50 10.2211
7.00 30.8669 21.00 9.9664
7.50 28.7764 21.50 9.7235
8.00 26.9471 22.00 9.4918
8.50 25.3332 22.50 9.2703
9.00 23.8985 23.00 9.0585
9.50 22.6110 23.50 8.8557
10.00 21.4597 24.00 8.6613
10.50 20.4146 24.50 8.4749
11.00 19.4645 25.00 8.2960
11.50 18.5970 25.50 8.1241
12.00 17.8019 26.00 7.9589
12.50 17.0704 26.50 7.7998
13.00 16.3952 27.00 7.6467
13.50 15.7700 27.50 7.4992
14.00 15.1894 28.00 7.3570
14.50 14.6490 28.50 7.2197
15.00 14.1446 29.00 7.0871
15.50 13.6728 29.50 6.9591
16.00 13.2304 30.00 6.8354
16.50 12.8149
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TABLE III-RooTs OF did° Pp' (cos 0) = 0

B v 0 .

3.00 34.6743 17.00 5.7637
3.50 29.6526 17.50 5.5881
4.00 25.8867 18.00 5.4224
4.50 22.9581 18.50 5.2657
5.00 20.6155 19.00 5.1174
5.50 18.6992 19.50 4.9768
6.00 17.1026 20.00 4.8432
6.50 15.7518 20.50 4.7163
7.00 14.5943 21.00 4.5955
7.50 13.5913 21.50 4.4804
8.00 12.7139 22.00 4.3706
8.50 11.9400 22.50 4.2658
9.00 11.2522 23.00 4.1656
9.50 10.6370 23.50 4.0697

10.00 10.0835 24.00 3.9779
10.50 9.5828 24.50 3.8900
11.00 9.1279 25.00 3.8056
11.50 8.7126 25.50 3.7246
12.00 8.3321 26.00 3.6467
12.50 7.9822 26.50 3.5719
13.00 7.6593 27.00 3.4999
13.50 7.3605 27.50 3.4306
14.00 7.0831 28.00 3.3638
14.50 6.8250 28.50 3.2995
15.00 6.5842 29.00 3.2374
15.50 6.3591 29.50 3.1775
16.00 6.1481 30.00 3.1196
16.50 5.9500
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Mode Conversion in Lens Guides
with Imperfect Lenses

By D. GLOGE

(Manuscript received August 16, 1967)

A coherent Gaussian beam transmitted through many imperfect lenses
suffers a distortion of its profile. Particularly smooth polishing errors
generate parasitic modes which travel with a slightly different propagation
constant and about the same low loss as the beam. While the two modes
of lowest order essentially influence position and width of the beam, all
higher -order modes deform the profile and may hamper position control
and detection if they build up to sufficient power. The calculations show
that this effect can be reduced to a negligible amount if the beam cross-
section is of the order or smaller than the dimensions of the irregularities.
This is in agreement with experiments. The perturbation of the beam
in the air path between the lenses is also investigated and it is shown from
experimental data that this effect is negligible in a properly shielded under-
ground lens guide.

I. INTRODUCTION

There has been much uncertainty about the optical quality re-
quired for the components in an optical transmission link. Particularly
for a lens guide with thousands of lenses, this is a major cost factor. It
has been shown that systematic lens aberrations may lead to a severe
degeneracy of a transmitted laser beam,1 but hardly anything is
known about random errors. Previous work in this field dealt with
antenna or imaging problems,2.3. 4 but none of these theories can be
applied to iterative structures.

The theory presented here was developed in parallel with experi-
ments in a half -mile underground lens guide designed to gain data
about the required component quality.5 This guide employed antire-
flection-coated quartz lenses separated by about 140 m. A loss of
roughly 1 percent per lens was measured, so that a transmission over
100 miles without amplification seems feasible. Systematic aber-
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rations are negligible as compared with random surface irregularities.
These irregularities are of various nature and origin. There arc

minute scratches in the polished surface and tiny holes or craters in
the antireflection coatings. Both cause a wide angle scattering and
part of the measured overall loss without considerably changing the
intensity profile or the phasefront of the transmitted light beam.

On the other hand, the polishing process achieves a spherical sur-
face only to a certain degree, so there are always small smooth pro-
tuberances and recesses called "polishing errors." They show up in an
interferometer check and their magnitude is usually given in fringes
or wavelength of the light used in the interferometer. This magnitude
defines the quality of the lens.

It is this imperfection which will be of interest here, for, without
introducing immediate loss, it distorts the light beam in a way that
may lead to complete deformation of the intensity profile when oc-
curring repetitively. The consequence may eventually be an additional
loss. Furthermore, it influences the choice of the receiving technique
used at the end of a long lens guide because the efficiency of a hetero-
dyne system will depend on how well the signal and local oscillator
beams can be matched. Thirdly, it affects the applicability and de-
sign of beam position control systems which probably will have to be
employed in some sections of the lens guide to provide for occasional
realignment°, 7

Refractive index variations in the atmosphere between the lenses
are of course an additional source of beam distortion. Though weak
in a shielded underground lens guide the influence might be comparable
to that of imperfect optical components. The calculations in the last
part of this work consider these index variations using the model of an
imperfect waveguide.8 Though not as general or accurate as previous
work9 this approach has the advantage that it yields simple formulae
for the case of weak coupling. By inserting some experimental data
the influence of the air paths and the optical components will be
compared.

II. THE STATISTICAL FEATURES OF IMPERFECT LENSES

Restricting the following calculations to smooth irregularities has
two consequences. First, in the proximity of the lens surface the ap-
proximations of geometrical optics may be applied, which means that
the wavefront emerging from the surface exhibits a phase deviation
but no amplitude change.
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If there is, for example, a protuberance of magnitude S at a certain
point of a lens surface, the phase retardation of a light ray passing
this point will be

= k An (3, (1)

where k is the propagation constant of the light outside the lens and
An is the refractive index change at the surface.

Second, the surface irregularities and consequently also the phase
deviations may be described by a random function which is both
well-behaved (with at least the first derivative being finite) and
homogeneous over the whole surface, since the irregularities were
generated everywhere by the same process.

To proceed in the mathematical description, some assumptions
must be made which seem to be reasonable for the random function
under consideration, but will not be proved as valid here. One may
conceptually construct an ensemble of identical optical surfaces
which exhibit different point -by -point deviations, but are statistically
equivalent. It is assumed that averages over the surface are replace-
able by ensemble averages, and that S and therefore r are Gaussianly
distributed, have zero mean, and variance A2 and 42, respectively.
Obviously, the correct lens surface can always be defined in such a
way that the mean value of S is zero.

For simplicity, the two-dimensional model shown in Fig. 1 is used
at the beginning. S and r are now functions of the surface coordinate
x only. The covariance

F(ri - x2) = (g2i)(r2)) (2)

Fig. 1 - Two-dimensional model of an imperfect lens.
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can be shown to exist and be a function of the distance x1 - x2 only
because of the assumed features of 9,(x). For later calculations the
identity

(exp i[co(xi) - go(x2)]) = exp (F - c132) (3)

is needed, which can be derived from those assumptions also.3
The fact that q) is smooth and stationary suggests a Gaussian

covariance

F = 42 exp [- (xl - x2)2/v2i (4)

where v is a correlation length determined by the dimension of those
protuberances and recesses on the optical surface.

III. COUPLING TO PARASITIC MODES

A coherent light beam with Gaussian field profile conserves itself
from lens to lens in a lens guide if it enters with the right phasefront
curvature and the right half -width w of the field profile." This
"Gaussian beam" is the lowest order of an infinite set of modes which
can propagate in such a lens guide. All these modes have the same
phase fronts, slightly different propagation constants and a field
profile that can be described by the orthogonal set of hyperbolic
cylinder functions

D.(2xl =
to tv) '

(5)

where He. are the hermite polymonials.1°, 11 Note that Heo = 1 and,
therefore, Do describes the Gaussian beam profile.

The higher the mode number, the further the profile extends about
the lens area. As will be shown, the smooth irregularities under con-
sideration here generate mainly low order modes and those to an
amount that the comparatively small losses at the lens apertures are
negligible. It seems justified, therefore, to consider the lenses as un-
bounded.

Assume that a perfect Gaussian beam traverses the optical surface
in Fig. 1. Then the emerging wave function is

u(x) = Do exp [iq,(x)] (6)

which, on the other hand, can be expanded into the infinite series

u(x) = E cD . (7)
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The expansion coefficient c. describes the coupling or scattering from
the Gaussian beam to the nth mode. Using (6), (7), and the orthog-
onality relation given in Ref. 10, one finds

r+0.
C = Do.D. exp (i) dxn! w L.

Multiplying this by its conjugate complex and averaging over the
ensemble yields the average power coupled to the nth mode from a
Gaussian beam of unit power passing one distorted surface. The calcu-
lation is shown in the Appendix. The result is

D D exp [F( E) - (DI (4. (9)Pn n! 2nw 0 2n

For a Gaussian correlation function F as defined in (4), the most useful
representation is an expansion in powers of the variance 4)2

- (2n)! 4)2a (qw2/112)n
exp ( (10)22n 01 2 q! (1 ± qte/v2)"1

This formula is valid for any value of 41 and v. In practice, the con-
verted power is only a small part of the total beam power and there-
fore,

(8)

cl,w/v << 1. (11)

In the case of a lens guide, this is a necessary condition for recon-
version from parasitic modes into the beam to be negligible.

Two cases are of interest: 4) is large, say, of the order of 1 rad or
larger, but (11) is satisfied since v is large at the same time. A series
expansion in powers of 43, as in (10), is not very useful in this case.
However, expanding F in powers of w/v and truncating after the
quadratic term yields for (9)

Pn 22not 02 432w2/112)n+ (12)

Probably of more importance are optical surfaces which cause a
small rms phase distortion 43 but have a correlation length v of the
order or even smaller than the beam width w. Then (10) may be used
and terms with q > 2 in (10) may be neglected. Note that for both
(10) and (12) a summation over all n yields unity. No power is lost
in the conversion process. po is the power that is left in the Gaussian
beam and 1 - po, consequently, the conversion loss.

(2n) ! (1.2W2/V2)n
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W. THE THREE-DIMENSIONAL REPETITIVE STRUCTURE

To investigate the three-dimensional model, the additional assump-
tion is made that the irregularities are isotropic over the optical area.
The correlation function (4) may then be extended to two dimensions
by

]F = (1)2 exp [ - (x1 - x2)2 -I- (:J1 -- Y2)2

V2

The modes of the new model are defined by two numbers n and m.
It can be shown that groups of modes with the same

(13)

r = n m (14)

are degenerate, that is, they travel with the same propagation
constant.11

The coupling coefficients for the three-dimensional model must be
evaluated from double integrals which are separable if higher orders
of 4,2 may be neglected. One finds for the average power coupled from
a unit power beam

poo = 1 1 -E v2/w2

432

and

(15)

(2n) ! (2m) ! 4,2v2/w2
for n, m = 1, 2, .

Pnm 22"(n!)2 22m(m!)2 (1 v2/0)"+""-1

Physically more meaningful is the computation of the average power
that is coupled to a complete group of degenerate modes:

and

432

P = 1 -
1 -I- / w2 '

4)2 v2 w2

P - 2 2 r+1
r (1 ± V )

r = 1, 2, .

(16)

It has been shown in Ref. 1 that an optical surface can be adjusted
in such a way that no power is coupled to the first group of parasitic
modes. If this is done, the power loss is a minimum and the power
kept in the beam may be found from (16) to be

2150 - 1 - (1 + (D2/W2 2 
V

(17)
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If, furthermore, one is free to adjust the width of the transmitted
beam at the receiving end, say by a telescope arrangement or by
adapting the local oscillator beam to the width of the signal beam, one
can minimize the losses even further. In this case no power is coupled
to the second mode group either.' The power kept in the beam may be
found from (16) to be

4,2

P0 = 1 -
(1 v2/0)3.

(18)

It seems reasonable to assume that the irregularities on both sides
of a lens surface are uncorrelated, in which case the powers generated
in both conversion processes simply add. Fig. 2 shows the conversion
loss 1 - 2P0 and the powers in the three parasitic modes of lowest
order versus w/v for a lens quality of A/10. For the first approxima-
tion, it is assumed that such a lens has an rms deviation of A = A/10
though actually the rms value should be somewhat smaller. An in (1)
is 0.5. The loss increases rapidly with decreasing correlation length.
For v < w, the loss approaches the value 432. For a correlation length
larger than the beam width, almost all the losses are found in the
first parasitic mode.
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Fig. 2 - Average loss and power coupled to higher mode groups by a lens of
quality X/10.
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Proper adjustment reduces the loss by this amount. This is shown
in Fig. 3. For v = 2w, a factor of 4 is gained by adjustment. The loss
decreases by more than an order of magnitude if the beam spread is
neglected also. The lens quality in this example is A/10. Fig. 4 com-
pares the losses for lenses of various qualities. Fig. 5 gives the same
quantities when proper adjustment of the lenses is taken into ac-
count. Fig. 6 in addition neglects spreading of the beam.

For hand -polished lenses, the correlation length can be expected
to be of the order of cm. The beam width in a lens guide depends on
the lens spacing and the wavelength of the transmitted light.11 For
lenses separated by 140 m and red light of 0.63 p., the beam width is
2w = 1 cm. Fig. 6 shows that in this case the conversion loss is less
than 0.1 percent and therefore, a negligible amount of the total loss.
Nevertheless, poorly attenuated parasitic modes may build up and
distort the beam profile.

Certainly there is no correlation from lens to lens. So the average
mode power simply increases proportionally to the number of lenses.
The modes under consideration have about the same overall attenua-
tion as the Gaussian beam. Therefore, after N lenses, the average
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Fig. 3 - The conversion loss is reduced if the lens is adjusted and a beam
spread tolerated (quality x/10).



LENS GUIDES 2475

100
80
60

Z 40

cc
tri 20
a_

z
10

cn 8
6

_J

cc 4
tu

2

0
1.0
0.8

Ft 0.6
cc
LIJ 0.4

0
(-) 0.2

0.1

A-

X
10

A
30

A
100

01 02 04 0.6 10 2 4 6 8 10
CORRELATION LENGTH /BEAMWIDTH

Fig. 4 - Average conversion loss for lenses of various qualities.

100
80
60

40

20

10
8
6

4

2

1.0
0.8
0.6

0.4

0.2
100

0I

A
30

A = -3

A
10

0.1 02 04 0.6 10 2 4
CORRELATION LENGTH /BEAMWIDTH

6 8 10

Fig. 5- Average conversion loss for lenses of various qualities (beam aligned
on axis).



2476 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967

100
80
60

40

20

10
8

4

2

1.0
6 0.8
(7) 0.6

w 0.4

O
U 0.2

01

A = 3

x
10

x
100

30

01 02 04 06 10 2 4 6 8 10
CORRELATION LENGTH /BEAMWIDTH

Fig. 6 - Average conversion loss for lenses of various qualities (beam spread
tolerated).

power in the rt.h parasitic group of degenerate modes is

2NP,
1 - 2NPo

times the power in the Gaussian beam, provided that the conversion
even after N lenses is small enough to permit the negligence of re-
conversion and higher -order loss terms. The average amplitude
ratio is

V2NP,
1 - NP,.

The respective phases even of modes in the same group are undeter-
mined.

To gain a conception of the distortion a situation is assumed in
Fig. 7 to 9 where all modes are in phase. Fig. 7 shows a possible in-
tensity profile after passing a lens of quality A/10 and correlation
length v = 2w. The result is mainly a displacement. In Fig. 8 the
beam passed 10 lenses but these now are adjusted so that the beam
stays on the guide axis. The main effect is a spreading. Fig. 9 is a
sketch of the profile after 100 lenses, all adjusted, and the profile is

(19)

(20)
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reduced to the nominal beam width. There is a slight tilt of the pro-
file and a side lobe, but no basic destruction of the beam.

V. CONVERSION IN THE ATMOSPHERE BETWEEN LENSES

Similar to the mode coupling at certain cross -sections of the lens
guide there can be mode coupling all along the guide if there is a
source of distortion. In the case of a gas between the lenses the source
may be the random fluctuation of the refractive index of this gas.

For simplicity let us return to the two-dimensional model of Fig.
1. Here An, the deviation from the mean index no, is a function of x
and z. Consider slabs of thickness Az cut perpendicular to the guide
axis. A light beam traversing a slab at z suffers a distortion of its phase
front

co(x, z) = k Az An(x, z). (21)

This causes a conversion into parasitic modes which can be calculated
from (8). The validity of this model has been investigated in Ref. 8.
Its usefulness lies in its physical simplicity which allows controlled
approximations.

Contrary to the lens irregularities 8, the index variations An are
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only "locally homogeneous," which makes it necessary to use struc-
ture functions instead of covariance functions for the statistical de-
scription. In two dimensions the structure function of 4, is

S(x, - x2 , z, - z2) = ([co(x. z,) - co(x2 , z2)]2)- (22)

Instead of (3) the identity

(exp i[co(xi , z,) - 50(X2 , z2)]) = exp (23)

will be used later, which may be derived in the same way as (3).3
From Kolmogoroff's theory for a locally isotropic turbulent flow one
fincls".

S = k2(Az)2.1.(x1 - x2)' + (z1 - z2)2]1. (24)

a is called the refractive index structure constant and measures the
strength of the index fluctuations.

If Az, the thickness of the slabs, is made very small the coupling
per slab will be proportional to Az, say cAz for the nth mode. As-
sume that a Gaussian beam of unit amplitude traverses the air path
from one lens to the next. Then in every slab an amplitude c Az is
generated in the nth mode. Assume that the coupling to all parasitic
modes is so small that reconversion can be neglected. Then, at the end
of the air path of length L, the amplitude in the nth mode is

c(z) exp (- in ez/L) dz. (25)

nO/L describes the phase lag between the fundamental and the nth
mode as they travel along the path.' For a confocal system 0 = 7/2,
i.e., the phase retardation of the first parasitic mode with respect to
the fundamental is 7/2 from one lens to the next. Considering that
the patches of correlated index variations are much smaller than the
lens distance, it can be expected that the phase between low -order
modes changes only a negligible amount within the area of correlated
coupling. In the following, therefore, the phase lag will be neglected.

For the evaluation of (25) it has to be considered also that c. is a
function of the beam width w which varies slowly along the transmis-
sion path. In a confocal lens guide the modes are \/ times wider
at a lens than in the center between two lenses." It is by a factor of
this order that the results will deviate from the true values if for the
following w is kept constant and equal to the width at a lens.

With this in mind the expected power coupled to the nth mode can



2480 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967

be calculated by multiplying (25) by its conjugate complex and taking
the average, which in this case will be an average over an infinite time.
The evaluation agrees with the one outlined in the appendix. Since S
is proportional to the square of the small increment Az the exponential
function in (23) may be expanded up to the linear term of the argu-
ment. The average power in the nth mode is finally

Pn
YT7 r f "

= D0D9[1 - 1SL( )]dS (26)

with

JO 0
SL(x, - x2) = S(xi - x2 , Z1 z2) dzi dz2 . (27)

SI, has been calculated elsewhere in connection with the investiga-
tion of a plane wave propagating in a turbulent flow.13 It is called the
phase structure function of a plane wave and describes the statistics
of the phases in a phase front that has traversed a turbulent air path.
Equation (26) states that under the employed approximations the
parasitic power arriving at the path end can be calculated from the
intensity profile of an undisturbed beam multiplied by the phase
structure function of a plane wave at the path end. From Ref. 13
one finds

L

SL(x, - x2) = 2.910L0'(x, - x2)513. (28)

As long as the function SL is of the form 4. for a > - 1 the follow-
ing general solution can be found for (26) :

with

Pn = 50n -SL(A1-2

Son

r( + (a/2)(_ -0"2"
11(1) \ n /

{1 for n = 0

0 for n = 1, 2,

(29)

For the three-dimensional case again groups of modes with equal
propagation constants are combined. The expected power in the rth
group can be calculated from an expression similar to (26) but with
double integrals for the x and y coordinates. It is

Or SL(
(cc:5)

(
n/ 2) 1).2./2. (30)
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In the case of the plane wave approximation a = 5/3. 1 -Pr is
the total average power loss for a Guassian beam. Note that the sum-
mation over all Pr yields unity. No power is dissipated.

The application of the waveguide model is no longer useful if the
refractive index variations are so large that reconversion from para-
sitic modes into the fundamental must be considered. The mode con-
version at the path end, however, may then still be calculated from
the undisturbed profile multiplied by the appropriate phase structure
function. Only, the phase fluctuations at the path end will then be so
large that an expansion of the exponential function in (26) is no
longer valid. For a configuration close to confocal the phase structure
function SI, of the plane wave will be a good starting point to calculate
the expected powers

07;T: f"- 2w DoD2. exp [-ISA (31)

A better approximation would have to consider the amplitude varia-
tions at the path end in (34) as well. It has been shown elsewhere
that its neglection results in an error of the order of two only."

The results given in Fig. 10 for the three-dimensional case were
calculated from an expression similar to (31). Fig. 10 shows the loss
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in the beam and the powers in the first four parasitic mode groups
versus the correlation parameter

o = (2.911eLa)-3/5 (32)

which is a measure for the correlation at the path end. This plot al-
lows a comparison with Fig. 2.

For large v the curves in Fig. 10 turn into straight lines indicating
a functional dependence W5I3 as given by the approximate formula
(30). Also for large v the ratio between P1 and the total loss is a con-
stant close to 1. By measuring P1 the total power loss can be found.

This has been done in an experimental underground lens guide
using a photoresistor bridge.' The first mode group consists of two
modes of equal average power orientated in perpendicular planes. The
photoresistor bridge described in Ref. 7 measures the instantaneous
amplitude of one of these modes as compared to the amplitude in the
fundamental. Actually if this ratio is of the order of some percent or
smaller it *is equal to the ratio of bridge signal V to bridge battery
voltage Vo (see Ref. 7). The variance of this signal is the ratio of ex-
pected first mode power to beam power and twice that is the loss.
Neglecting a seasonal slow beam drift a variance of 3 10-7 was meas-
ured in a 400 -foot section of the underground lens guide. The loss is
consequently of the order of 10-6 of the total power.

It cannot be asserted here that this loss is indeed due to atmospheric
effects. Microseisms may cause fluctuations of the lens positions that
lead to disturbances of the same order. The measurement must be
understood merely as an upper limit for the conversion caused by a
well -shielded air path. The conversion expected from the lenses is
several orders of magnitude larger, but, being independent of time,
it can only be measured in a large number of sections to represent a
reasonable average. An experiment of this kind is described in Ref. 5.

VI. CONCLUSIONS

In a lens guide with widely separated solid lenses, aberrations are
negligible as compared to random surface irregularities. How much
a Gaussian beam is distorted by the irregularities depends not only
on the rms deviation A, but also very strongly on the dimension of
the irregularities as compared to the beam cross-section.

For a beam of width 2w, which loses no power into the two parasitic
modes of lowest order, the conversion loss is proportional to (w/v)6
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where v is a correlation length defining the dimension of the irregulari-
ties. Consequently, w should be made small enough to assure that the
conversion loss is negligible compared to all other losses and that the
beam profile distortion caused by the generated parasitic modes is
tolerable.

A beam with nominal width of 1 cm seems to satisfy these condi-
tions if lenses with a quality A/10 are used. These calculations are
based on a conservative estimate of 1 cm for the correlation length.
In this case, the conversion losses are smaller than 0.1 percent per
lens and 1/10 of all other losses. The profile after 100 lenses may, at
best, exhibit small side lobes with a peak intensity of the order of
1 percent of the beam peak intensity.

Refractive index variations in the air path between the lenses also
lead to a conversion loss. It grows with w513 for weak distortions. In a
400 -foot section of the underground lens guide described in Ref. 7 an
upper bound for this loss was measured to be 10-6 of the total power.

APPENDIX

A meaningful measure for the effect of surface imperfections is the
power coupled from the Gaussian beam into parasitic modes, averaged
over the ensemble of equivalent surfaces:

p = n! (cnct). (33)

The coupling coefficients c,, are given by (8). After changing the order
of integration and averaging process and by replacing the ensemble
average by an average over the surface, one gets

2
pn - n! rw2 Do(xl)D.(xi)D0(x2)Dn(s2)(e" (z ''(")1) dx, dx2 , (34)

where all integrals here and in the following extend from -co to + cc .

To separate the double integral in (34), it is appropriate to change to
new coordinates

XI - X2 + X2and n - (35)
V2

in the plane of integration. From the properties of the hyperbolic
cylinder functions, the identity

D(xi) Dn(s2) = E (- 2) -"(n)D,() (36)
p
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can be derived. The use of (35), (36), and (3) turns (34) into

2
p - n! zw2 p

-0
n

(_2)-n n

DoD2.--2 do f dt (37)

and because of the orthogonality of the D, this can finally be sim-
plified to

P. = V2/7r (7712wr f pop,/ (v;E)_,
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