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An Automatic Transmission Measuring System (ATM S) has been
designed to provide means for making rapid and accurate transmission
measurements on telephone trunks. The system consists of a control unit
(director) in one office and one or more responding units (responders) at
distant locations. Trunk selection (not treated in detail in this paper) is
accomplished either by a specially designed test frame in electromechanical
offices or by special programming in electronic offices.

All measurement sequences are under command of the director which
in turn receives its information from a teletypewriter tape or punched cards.
New measurement techniques utilized in ATM S which permit rapid and
accurate measurements are discussed. System accuracy of ±0.1 dB for
loss and ±1 dB for noise is achieved using these techniques. Total measure-
ment time (excluding trunk seizure and printout time) for loss measurements
in both directions and noise at both ends is less than five seconds.

Although the ATM S is presently capable of making only loss and noise
measurements, additional measurements can be added conveniently because
of its modular design and construction.

Where responders are not installed at the distant offices, other kinds of
existing Bell System transmission test lines may be utilized by the director
to make whatever measurements the test line permits.

Two schemes are described whereby measurements may be made on
trunks between two remote central offices and the results sent to a controlling
director in a third office.
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I. INTRODUCTION

The problem of trunk maintenance in the Bell System is magnified
by the number of trunks which must be considered. A typical central
office has more than a thousand trunks and there are about 2.7 million
trunks in the Bell System. Proper maintenance of these trunks requires
routine measurements at monthly or shorter intervals. In addition, at
least four different transmission measurements are required to insure
proper operation.

In view of the large number of measurements required, fully mech-
anized testing appears not only economical but necessary. The Auto-
matic Transmission Measuring System (ATMS) discussed in this
paper was developed to meet this need.

II. BACKGROUND AND PRIOR ARRANGEMENTS

In order to appreciate some of the intricacies involved in automati-
cally measuring telephone trunks, a brief description of the telephone
plant is in order. Fig. 1 is a simplified illustration of the telephone
plant. A connection between customers is made up of two customer
loops and 0, 1, 2 or more trunks. The loops shown connecting custom-
ers to the central offices are generally passive, i.e., without amplifiers.
The trunks connecting central offices, on the other hand, frequently
have active devices associated with them.

Fig. 2 depicts the make-up of a hypothetical trunk. A particular
trunk contains some of the elements shown. They will be discussed
only to the extent to which they affect measurements.
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Fig. 1- Simplified telephone plant.
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Fig. 2 - Hypothetical trunk.

(i) Systems with Amplifiers
Trunks utilizing carrier systems or hybrid -type repeaters complicate

transmission measurements since the transmission in the two direc-
tions is affected by different elements. Thus, measurements must be
made at both ends of the trunk.

(ii) Echo Suppressors

Echo suppressors, devices utilized in long haul trunks, affect remote
automatic measurements because they prohibit simultaneous trans-
mission in both directions.

(iii) Compandors

Compressors and expandors (known collectively as compandors) if
functioning perfectly, are of no concern to transmission measurements.
However, imperfect compandor action implies that the insertion loss
of the trunk at one transmitting level differs from that at another
transmitting level.

The use of active devices demands closer surveillance of the trunk
to detect changes in their characteristics due to aging, maladjustment,
etc. Until a few years ago, an operator using cords made the connection
between loops and trunks. Since the operator was required to com-
plete any call, she could perform rudimentary tests to determine the
suitability of the connection. By listening to the person placing the
call and to the person to whom the call was placed, the operator could
note excessive loss or noise if present, and if necessary, establish an
alternative connection. With the introduction of Direct Distance
Dialing (DDD), even this minimal transmission check has been lost.

Trunks may be classed as incoming, outgoing, or two-way depending
upon whether the trunk may be seized only from the distant office,
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only from the near -end office, or from either office. These terms do not
imply the transmission is limited to a single direction. It does mean
that (in the case of manual measurements) if a transmission test is
to be made on incoming trunks, the distant office must be requested to
originate the test call.

When a connection has been established, manual effort is required
at each end of the trunk if measurements at both ends are desired.
Perhaps the most serious disadvantage of such manual measurements
is the time involved in coordinating the efforts at each end and the
number of tests involved.

Semiautomatic measurements are defined for the purposes of this
paper as two-way measurements which are made manually using
automatic far -end equipment. In this case, manual effort is required
only at one end to make the measurements in both directions with
the automatic far -end equipment. More will be said of this later.

Automatic transmission measuring systems for measuring telephone
trunks are not new. At least two other systems have been developed
prior to ATMS. One of these, which was developed by the Bell Tele-
phone Laboratories in the early 1950's, is known as the automatic
transmission test and control circuit (ATTC).1 The other system was
developed in the early 1960's by the Swedish Company Telefonaktie-
bolaget L. M. Ericsson.2' 3 Both systems utilize the measurement tech-
nique illustrated in Fig. 3. After amplification and rectification, the
resulting voltage is compared with a fixed reference voltage. The at-
tenuator is then adjusted in discrete steps until the output voltage is
equal to the reference voltage within the limits of the attenuator's
step granularity.

Here the similarity between the two systems ends. The far -end
equipment associated with the ATTC adjusts a second set of attenua-
tors to equal the near -to -far loss. The far -end equipment then sends
a test tone first without and then with the additional loss stored in the
second attenuator. The near -end equipment measures the far -to -near
loss under both conditions and then computes the loss of the trunk
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RECTIFIER
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Fig. 3 -A transmission measurement scheme.
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in the near -to -far direction as the difference of the levels of the two
received tones. The Ericsson system sends the information contained
in the state of the relays controlling the adjustable attenuator to the
near -end in digital form by means of a multifrequency signaling
system.

Each of these systems has its advantages and disadvantages. One
of the attractions of the ATTC system is its adaptability to semi-
automatic measurements. The results can be decoded by manual
measurements. No special equipment is needed. On the other hand,
imperfect compandors and other nonlinearities in the trunk being
measured can cause appreciable errors. The system used by Ericsson
circumvents this problem by coding. Specialized decoding equipment,
however, must be used at the near -end for both automatic and semi-
automatic measurements.

Both the Ericsson system and the ATTC system are comparatively
slow due to the process of adjusting discrete step attenuators. Both
also make only noise checks, not noise measurements. In addition, the
Ericsson system does not contain some of the self -checking features
provided in the ATTC.

III. REQUIREMENTS

The following is a summary of the requirements upon which the
ATMS design is based.

3.1 Operational Requirements

(i) The system must make measurements at both ends of trunks.
(ii) Measurements at both ends must be made automatically with-

out manual assistance.
(iii) Measurements at the far -end should be controlled by signals

sent by the near -end equipment.
(iv) Measurements should be made of insertion loss in both direc-

tions of transmission and background noise at both ends of trunks.
Noise measurement results should indicate the amount of "back-
ground" noise present such as thermal noise, crosstalk, steady tone,
etc. These are kinds of noise most disturbing to a human listener. Im-
pulse noise, although its effects may be very serious on trunks used
for data transmission, should be included only to the extent that it
disturbs the human listener.

(v) Measurements should be made as rapidly as practical.
(vi) All measurement results should be made available at the near -

end.
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(vii) Modular construction should be used to allow for future ex-
pansion to include other tests and to facilitate maintenance.

(viii) The near -end equipment should be capable of making tests
to existing far -end measuring equipment to whatever extent practical.

(ix) Measurements should be possible on trunks where echo sup-
pressors prevent simultaneous transmission in both directions.

(x) All measurement results of loss and noise should be displayed
in logarithmic (decibel) units as deviations from reference values.

3.2 Accuracy and Range Requirements

(i) Overall system accuracy should be ±0.1 dB for loss measure-
ments and ±1 dB for noise measurements.

(ii) Loss measuring circuit should accept +5 to -15 dBm signals.
(iii) Noise measurement range should extend from +15 to +50

dBrnC.

IV. GENERAL SYSTEM DESCRIPTION

4.1 System Functions

In discussing a system which will automatically test the transmis-
sion performance of all outgoing trunks in a telephone office, it is

necessary to include originating and
terminating offices. In addition to the measurement, the functions of
gaining access to the desired trunk and of establishing a connection to
the far -end test equipment must be considered. The complete measure-
ment process can be broken down into a number of relatively simple
steps which can then be related to specific equipment. These steps are:

(i) accept priming information on trunks to be tested: i.e., tests to
be made, the transmission requirements of the trunks, and so on;

(ii) seize the trunk to be tested and dial up the far -end test equip-
ment;

(iii) coordinate the operations of the near -end and far -end test
equipment;

(iv) make transmission measurements at both ends of the trunk;
(v) transmit the far -end test results to the near -end;
(vi) display both the near -end and far -end results, in appropriate

units, at the near -end; and
(vii) release the connection.
In addition, to increase the reliability of the system operation, two

more steps may be added. These are:
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(viii) repeat the test on a trunk when a transmission impairment
is detected to determine if it is momentary or continual;

(ix) periodically make internal system checks of the measuring
circuits to insure accuracy.

4.2 System Equipment

The overall system is comprised essentially of four units: the
director, the responder, an automatic trunk test frame, and a test line
(designated the 105 -type test line). The director is used in conjunction
with the automatic trunk test frame in the office in which the tests
(and the trunks) originate (hereafter referred to as the near -end
office). The responder, which is accessed through the 105 -type test
line, is far -end test equipment.

4.2.1 ATM S Director

The director was designed primarily to make measurements with
the aid of the far -end responder and its associated test line. However,
it is also capable of making limited measurements with other far -
end arrangements. The director performs the following functions:

(i) Receives instructions from the automatic trunk test frame.
(ii) Sends commands to the responder.
(iii) Send test tones.
(iv) Provides a termination for far -end noise measurements.
(v) Receives data signals from a responder.
(vi) Makes far -to -near trunk loss and near -end noise measurements.
(vii) Converts the trunk loss and noise measurements made by the

director and data signals from a responder into numerical readings
and cues (indications that limits have been exceeded).

(viii) Provides these results to the automatic trunk test frame
which causes them to be printed on the readout device.

(ix) Performs a self -check of its operation and a check on the opera-
tion of the responder when commanded to do so.

4.2.2 ATMS Responder

In addition to the basic measurement functions, which are similar
to those of the director, the responder receives commands from the
director over the trunk under test, converts the received level of the
test tone or noise into data signals, and transmits the data signals to
the director.
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4.2.3 Automatic Trunk Test Frames
Several different automatic trunk test frames are used in the vari-

ous types of telephone offices. ESS offices have special programs which
provide the equivalent of a test frame. These test frames provide ar-
rangements for seizing the trunks to be measured and for pulsing for-
ward the codes of various test lines at the distant end of the trunk.
Information necessary for the director to make appropriate transmis-
sion loss and noise measurements and to evaluate the results is also
supplied by the test frame. In addition, it provides facilities for print-
ing the measurement results.

Another test frame function is to maintain trunk supervision, which
includes the ability to send and/or receive on -hook, off -hook, busy,
and reorder signals. In addition, most test frames make operational
tests on trunks (indeed, this may be their primary function) in con-
junction with an operational test line in the terminating office. These
tests check the trunk's ability to pass supervision and signaling and
are made independently of the transmission tests.

4.2.4 105 -Type Test Line
The responder must be accessed through a 105 -type test line. This

test line provides holding and supervision, connects the responder
through the switching system to the trunk being measured, and sup-
plies transmission measuring information to the responder. A group
of these test lines provides a parking arrangement which enables in-
coming calls to wait and be served in turn if the responder is engaged.

4.3 ATMS Operation
A typical transmission measurement setup using the ATMS is

shown in Fig. 4. A near -end connection to the trunk is made through
the office switching equipment or special test connectors. The code of
the far -end test line (in this case a 105 -type test line) is then pulsed
forward, and the distant switching machine makes the connection. The
105 -type test line terminates in a responder. The automatic trunk
test frame feeds the test conditions and trunk transmission require-
ments to the director, connects the trunk to the director, and instructs
the director to perform certain measurement sequences.

As the director makes the measurements, it provides measurement
data to the automatic trunk test frame which records the results on
a Teletype printout or other readout device. At the end of the test
sequence, the trunk and measuring equipment are released and control
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Fig. 4 - Typical ATMS system.

reverts to the automatic trunk test frame or central control (in an
electronic office).

The automatic test frame then advances the priming information
source to the next trunk to be tested and the sequence is repeated. In
the event that successive trunks have the same transmission character-
istics and terminate in the same distant office, the priming information,
except for individual trunk identity, is stored in the test frame until
all trunks of this category have been tested. At this time, the test
frame advances the priming source to the next trunk group.

4.4 Additional Features

A feature of the director that increases the usefulness of the test
results is the ability to make a repeat test whenever a measurement
exceeds predetermined (and selectable) limits. For example, suppose
the deviation from the expected value of the near -to -far loss exceeds
a preselected limit of ±1.5 dB. The director will complete the initial
measurements (loss in both directions and noise at both ends) and
then compare all the results against preselected limits. It then tells
the test frame either "end of test" or "repeat test." When a "repeat
test" is indicated, the test frame holds the connection to the responder
and the director and responder repeat all four measurements. If the
second measurement is also out of limits, the trouble is probably not
momentary, for the time interval between the first try and repeat of
any given measurement is about 5 seconds. A "good" second measure-
ment indicates a momentary or varying trouble or a hit on the trunk,
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either during the measurement or during data transmission of test
results from the responder to the director.

It was mentioned earlier that a self -checking feature is desirable
to insure system accuracy and reliability. This is true particularly in

a system like ATMS, for hundreds, even thousands, of trunks may
be tested without manual intervention.

The ATMS makes a self -check of both the director and responder
when it advances to a new responder (a self -check command is in-
cluded in the priming information supplied by the test frame). This
self -check includes practically all of the measuring and data trans-
mission circuits.

A loss and noise deviation register panel is available, which accumu-
lates statistical data on the measurements made by the ATMS. This
is accomplished by dividing the complete measurement range into
intervals and counting, or "scoring," the number of measurements
that fall within each interval. This provides information which can
be used in compiling measurement results statistics.

Modular construction facilitates both maintenance and addition of
new measurements.

4.5 Other Transmission Test Lines
the ATMS, it is worthwhile

mention other transmission test lines that are currently in use. The
ATMS director was designed with the capability to test to a number
of existing Bell System transmission test lines and make all the
measurements that are within the test line's capability. The exact
measurements to be performed are dependent upon the capability of
the far -end test line and the test requirements. Table I summarizes
Bell System Test Lines to which the ATMS will test and the measure-
ment capability they provide.

V. MEASUREMENT TECHNIQUE

In a sense the ATMS may be considered a very specialized digital
voltmeter. However, the measurement technique employed by the
ATMS must provide a number of features not generally imposed
upon a digital voltmeter. Because measurements cannot be performed
and the results transmitted simultaneously on the same trunk (a
condition precluded by the use of echo suppressors on some trunks)
some storage element must be used at least in the far -end equipment.
Results of measurements made at the far -end must be in a form suit-
able for transmission to the near -end by a means essentially inde-
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TABLE I - BELL SYSTEM TRANSMISSION TEST LINES

Test line
type*

Measurements

DescriptionLoss Noise

100t Far -to -near Near -end 5 seconds of milliwatt followed
by quiet termination

102 Far -to -near No Milliwatt, interrupted at
10 -second intervals

104 Both ways Near -end Transmission measurement and
noise checking circuit

105 Both ways Both ends ATMS responder

* This includes both toll test lines accessed by 10x codes and local and tandem
types accessed by other than 10x codes.

t This test line will be available soon.

pendent of the transmission characteristics of the trunk over which
the results are sent. Finally, all loss and noise measurement results
should be presented to the user in logarithmic units to conform with
the universal use of the decibel in the Bell System.

One of the simplest schemes which accomplishes the above is used
in the ATMS and takes advantage of the logarithmic character of an
RC discharge. After the signal to be measured is amplified, rectified,
and filtered, a capacitor is charged to the resulting voltage. The
capacitor provides a needed means for temporary storage of the
measurement. After the capacitor is charged, relay contacts remove
the charging source, leaving the capacitor with a charge proportional
to the signal voltage being measured.

The length of time that the capacitor is connected to the amplifier-
rectifier is about 0.4 second in a typical case for ATMS. If the trunk
being measured has a so-called beating problem (a condition as-
sociated with some carrier systems which causes the gain to fluctuate
slowly with time) and if the beating period is long, an ATMS measure-
ment will give a result equivalent to the average value of the received
voltage during that time.

The capacitor is now removed from the amplifier -rectifier for a brief
period during which it will retain its charge. A resistor is then con-
nected across the capacitor and the charge on the capacitor decays in
a known exponential manner as illustrated in Fig. 5. A voltage com-
parator monitors the voltage on the capacitor and generates a pulse
from the time the capacitor begins to discharge until the voltage on
the capacitor reaches the reference voltage ER. The duration of the
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4.1
= RC Ln (E/E R)

t = K (RECEIVED LEVEL IN L_
DECIBELS)

Fig. 5-Voltage-to-time conversion.

pulse so generated is

TIME

= RC In (E/ER), (1)

where E is the initial voltage on the capacitor C and R is the value of
the discharging resistor.

This time interval is proportional to the signal voltage (measured
in decibels) with the addition of a constant which is composed of
known factors. By means of a frequency shift data transmitter and
receiver the pulse length information can be sent to the director.

Errors at the director in determining the length of the pulse sent
from a responder may occur due to large impulse noise and the finite
bandwidth of the trunk over which the information is sent. Impulse
noise, if sufficiently large, may produce "holes" or additional error
pulses in the received pulse. Either of these conditions will cause
errors in determining the length of the pulse. Finite bandwidth implies
that the beginning and ending of the received pulse cannot be precisely
determined due to the finite rise and fall times of the pulse. Both the
effect of impulse noise and the effect of bandwidth limitations can be
mitigated by lengthening the RC time constant which in effect in-
creases the period of the pulse transmitted per dB. It is possible then,
at the expense of increased time spent in measuring, to achieve any
practical degree of error desired.

It remains now to determine the length of the pulse generated in
order to ascertain the magnitude of the voltage being measured.
Examination of (1) shows that equal intervals of time represent equal
decibel increments. Therefore, a gated oscillator and counter circuit
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such as shown in Fig. 6 may he used to determine how many decibels
above the reference voltage the voltage on the capacitor was before
discharge. For example, the oscillator's frequency may be set such
that one cycle is equivalent to 1 dB. If then the voltage placed on the
capacitor is 10 dB above the reference voltage, 10 cycles of the oscil-
lator output will be gated to the counter. This is shown pictorially in
Fig. 7. As a practical matter it can be shown that if the oscillator and
gate are not synchronized, a one count ambiguity can occur. Since the
exact time a pulse arrives cannot be arranged to correlate with the
phase of the oscillator and since turning on a precision oscillator and
obtaining full accuracy instantaneously is very difficult, synchroniza-
tion is not feasible. An alternative solution used in ATMS is to employ
a free -running oscillator whose frequency is much higher (36:1 in the
case of ATMS) than necessary. Then a gated divider is used which
divides the oscillator frequency down to the desired frequency and
gates the output to the counter. In this way the ambiguity is reduced
by the ratio of the oscillator frequency to the gating frequency. In the
case of an ATMS loss measurement, for example, where a tenth of a
dB is represented by 2 milliseconds the ambiguity is reduced to 2/36
milliseconds which corresponds to 0.0028 dB.

The counter output in Fig. 6 is the difference in dB between the
unknown voltage and the reference voltage, provided the counter was
set initially to zero. In practice, the quantity of interest is the differ-
ence between the measured voltage and the expected voltage. This
can be obtained by the use of a presettable reversible counter. Fig. 7
shows its operation. Assume that the readout is in dB's and that the
expected voltage is 10 dB above the reference voltage. From this in-
formation the counter is preset to 10 and set to count down. Further,
assume that the measured voltage is 10 ciB above the reference voltage.
When the capacitor discharges, 10 cycles of the oscillator output are
gated into the counter causing it to count down to 0. The resulting

AMPLIFIER
RECTIFIER VOLTAGE

COMPARATOR

E REFERENCE

OSCILLATOR

COUNTER

Fig. 6 - Block schematic for measurement of time interval.
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digital display on the counter will therefore be 0, corresponding to the
difference between the measured and expected voltages.

If, however, the voltage on the capacitor was 11 dB above the refer-
ence voltage, the counter would count down from 10, through 0, re-
verse and count up to 1. The difference or deviation is then read out
as 1 dB; the reversal of the counter indicates that the measured volt-
age exceeded the reference voltage.

To change the precision to which the results are displayed, it is
only necessary to change either the oscillator frequency or the RC
discharge time constant. In the ATMS, loss measurements are dis-
played to the nearest 0.1 dB and noise measurements are displayed
to the nearest 1 dB. The change is made by decreasing the RC time
constant by a factor of 10 during noise measurements.

VI. NOISE MEASUREMENT

The previous section discussed how a loss measurement was made
and the results displayed. The ATMS noise measurement is discussed
in more detail because it is the first widespread application in which
a noise reading made in a fraction of a second is taken as a measure
of the disturbing effect of noise to a telephone customer.

6.1 General

The fundamental obj ective of message circuit noise. measurement
is to give the same reading on various kinds of noise that are judged
to be equally interfering to a telephone customer. The accepted noise
measuring set in the Bell System for measuring message circuit noise
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is the 3A Noise Measuring Seta} The ATMS noise measurement circuit
will give approximately the same results as a 3A Noise Measuring Set.

6.2 Frequency Weighting

The ATMS noise measurement circuit employs the same C -message
-weighting filter as the 3A set. This characteristic was determined
during tests4 in which listeners were asked to adjust the loudness of 14
different frequencies between 180 and 3500 hertz until the sound of
each was judged to be equal in annoyance to a 1000 -hertz reference
tone. The results of these tests were averaged at each frequency, com-
bined and smoothed to obtain the C -message weighting as shown in
Fig. 8.

6.3 Quasi-rms Detector Circuit

The ATMS quasi-rms detector employs the same kind of detector
as the 3A Noise Measuring Set. The appendix of Ref. 4 explains in
detail the principle of operation of this circuit (see Fig. 9).

Briefly, the quasi-rms detector is somewhere between a peak and
an average detector. Since the rms value of a positive function lies
between the average and peak value, it is instructive to investigate
the action of a detector which gives a de voltage corresponding to
something between average and peak.

6.3.1 3A Quasi-rms Detector Circuit

Consider the capacitor of Fig. 9 to be large enough such that the
circuit time constants are much longer than any associated with the
input signal. The diodes conduct only when the input voltage is higher
than the voltage across the capacitor. If R, is zero ohms, then emit is
equal to the peak value of the input signal minus any diode voltage
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Fig. 8- Response vs frequency of C -message weighting characteristic.
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drop in D1 or D2. If R1 is made very large compared to R2, then e.ut
is a measure of the average value of the input signal. By selecting the
proper ratio of R, and R2, the circuit can be made to produce equal

e0 for any two input signal waveforms of equal rms value.
Thus, if one wishes that sine waves and white noise of equal powers

produce the same eout then a ratio of

R2 - 0.796.
Ri + R2

should be chosen.

6.3.2 ATMS Quasi-rms Detector Circuit
The ATMS quasi-rms detector circuits is shown in Fig. 10. The

operation of this circuit may best be understood by first considering
that diode D8 is an open circuit. Let the input be a sine wave. The
gain of the amplifier from the input to point H will be very large until
one pair of diodes D1, D2 or D, , D4 is broken down. D, , D2 will conduct
on the positive swing at point H and D3 , D4 on the negative swing.
Resistors R1, are much higher than the forward resistance of a con-
ducting diode. When the diodes are conducting the gain of the amplifier
is determined by the feedback resistors (Ri, , Rh , and Rh) and R, .

Thus, the signal at point H will appear to be a magnified replica of
the input signal sliced through at the zero voltage point with a square
wave of peak -to -peak amplitude VD1 + VD2 + VD3 + VD4 added.
If one were now to look with an oscilloscope at point A, a positive
half -sinusoid with an additional de voltage of VD1 would be observed
when the signal at H swings positive. If the signal at point B were now
subtracted from the signal at point A, a full -wave rectified signal riding
on an added de voltage equal to a diode voltage drop would be observed.

It is this added diode voltage drop which now permits compensation
for the voltage drop of D8 , which we will now reinsert.

C is the storage capacitor (4.22 IX) mentioned in Section V. If diodes
D1 and D2 are conducting, then C is charged through the R12 across

Di

Fig. 9 - Simple quasi-rms detector.
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D3 and the two 1111's in series. The relationship between the resistors
is as follows:

R2 - 0.796.+ + + R2
When the signal is first applied to this circuit, diode D5 will be con-

ducting most of the time. As C charges, D5 will conduct less of the
time as determined by the input signal waveform.

Diode D5 is chosen so that its forward voltage drop is the same as
the forward voltage drop across D1 or D3 which carry higher cur-
rents than D5. The size of the R.1 's, R2 and C are chosen as described
below.

0.4 Noise Detector Transient Response

The ATMS quasi-rms measurement circuit, as in the 3A set, is
designed to match the transient response of the human ear. This
response was determine& during tests in which listeners were asked
to match the loudness of bursts of 1000 -hertz tone to that of a steady
1000 -hertz tone.

The response of the ear could not be exactly matched with a quasi-
rms charging characteristic so a compromise was made to ensure a
close match in the 150 to 250 millisecond range (R.2 = 42.21c0 in Fig. 10).

The selection of- a time constant must take into account the fact
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that the discharge time constant of the quasi-rms circuit is more than
four times the initial charging time constant. Thus, for noise which
falls off during the measurement interval it is desirable to have R.
as small as possible.

6.5 Noise Measuring Interval

The ATMS was designed to measure background noise rather than
impulse noise. The most common types of background noise occurring
on trunks are single -frequency tones, combinations of tones or white
noise. The single -frequency tones can arise from such sources as power
line harmonics and modulation products on carrier systems. The white
noise arises from thermal and shot noise effects. The modulation
products falling in a carrier channel from a large number of talkers
in other channels also behave like white noise.

How long a period is necessary to measure white noise? It has been
shown' that the error resulting from a noise measurement made over a
short interval of time decreases with increasing bandwidth and in-
creasing measurement interval. It was desired that successive ATMS
noise readings of a stable white noise source exhibit a standard devia-
tion no larger than 0.25 dB. With the quasi-rms detector time constant
as determined previously, a measurement interval of 0.375 second was
found to meet this requirement.

Because of the characteristics of the quasi-rms detector, the meas-
urement of a sine wave over this interval produces less than .05 dB
error.

6.6 ATMS vs 3A Noise Measuring Set Observers

The ATMS noise measuring system performance was checked
against 15 observers using a 3A Noise Measuring set on a series of

noise tapes selected at random from a survey of 1069 intertoll trunks
covering the whole Bell System. Fifteen -second noise samples from 15
different trunks were selected from each of two trunk length ranges:
250 to 500 miles and over 2000 miles.

Each individual noise segment occurred twice at random positions
on the tape. The ATMS made three measurements during each 15 -
second segment for a total of six ATMS readings per segment.

The results of these tests are shown in Table II.
This data shows that the ATMS readings are consistent with the

design requirements. Even greater reliability can be obtained by
using the various repeat measurement modes. The possibility of rejecting
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TABLE II-COMPARISON OF ATMS AND 3A OBSERVERS

250 to 500 mile trunks Over 2000 mile trunks

3A
observers

a 0.31-0.33 dB 0.33-0.35 dB

Mean 31.7 dBrnC 38.8 dBrnC

ATMS
S 0.82-0.84 dB 0 . 60-0 . 61 dB

Mean 32.0 dBrnC. 39.0 dBrnC

a good trunk for high noise readings on two successive measurements
is remote.

VII. OVERALL ATMS OPERATION

7.1 General

So far, the basic measurement technique employed by ATMS and
some special considerations for the measurement of noise have been
discussed. In order to operate satisfactorily as a system, a number
of other functions must be considered. These relate back to the nine
simple steps described in the general description (Section 4.1) and
include: accepting priming information, coordinating simultaneous
operation of director and responder, making measurements, and dis-
playing all results at the director location. All ATMS operations may
be related to specific circuit functions or subsystems as follows:

(i) Measurement. circuits.
(ii) Computational (counting) circuits.

(iii) Storage (or registration) circuits.
(iv) Signaling system.
(v) Data transmission sytem.

(vi) Control circuits.
(vii) Timing circuits.

(viii) Logic circuits.

Before describing how these circuits and subsystems function to-
gether, however, it is necessary to say a few more words about the
measurement procedure.

7.1.1 Measurement Procedure
As described in Section V, the ATMS amplitude -to -pulse -width

converter generates a pulse whose length is proportional to the
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logarithm of the input signal level. A complete measurement requires
that this pulse length be converted into a digital output which can
be used to drive a Teletype machine or other display device. This is
shown in Fig. 11, a block diagram of the ATMS measuring circuits.
Thus, the pulse length is converted into a number of pulses which are
then fed into a binary-coded decade counting circuit.

The counting circuit, functioning as described in Section V, deter-
mines the difference between the measured and expected values. Thus,
upon completion of a measurement, the result, regardless of whether
the actual measurement was made by the director or the responder,
is stored in the director counting circuits.

7.2 Measurement Sequence

Using this information on the ATMS measurement procedure, the
overall operation of the system may be described by a relatively
simple sequence of events. In Fig. 12, a complete functional block
diagram of the ATMS is shown. The procedure involved in gaining
access to a trunk, making a measurement and advancing to the next
trunk, is described in the General System Description, Section 4.3,
which also discusses the functions of the automatic trunk test frame
and the test line. The circuit blocks within the ATMS director and
responder will be discussed as they occur in the description.

Before the measurement sequence begins, the test frame supplies
the director with all necessary priming information. This permits
the logic and control circuits to preset counters and limit circuits to

INPUT INPUT
CIRCUIT

NOISE

DATA
RECEIVER

AMPLITUDE -TO - PULSE -
WIDTH CONVERTER -----

VOLTAGE
COMPAR-

ATOR
GATE

PRECISION
OSCIL-
LATOR

Fig. 11- Block diagram ATMS measuring circuits.
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OUTPUT
REGISTER
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their correct values, set up the correct measurement mode (discussed
in Section VIII), set the input circuit for the correct impedance and
level, set the measuring circuits for self -check or trunk test, and
other similar operations. Once the responder has been connected to
the trunk, the test frame instructs the director to start the measure-
ment sequence. The measurement sequence can be described using as
an illustration a test sequence which includes loss in both directions
and noise at both ends.

7.2.1 Loss Measurements
The simultaneous activities carried on by the director and the

responder during loss measurements and the time allotted for each
of these activities are shown in Fig. 13. Loss measurements are
initiated when the director sends a 2 -out -of -6 (2/6) multi -frequency
(MF) signal to the responder commanding it to begin a loss measure-
ment sequence. The timing circuit of the responder is triggered by the
receipt of the signal, and the next three steps occur automatically.
The responder sends a 1 -kHz milliwatt test tone over the trunk to the
director. The loss measurement circuit of the director amplifies and

RECEIVE TEST TONE,
CHARGE CAPACITOR

SEND 2/6 START
LOSS SIGNAL

DIRECTOR

RESPONDER

SEND 10001.0
TEST ITONE

DISCHARGE
CAPACITOR

LL

75 H _375
MS mS

RECEIVE DATA
SIGNAL

1

'GUARD DATA GUARD\
TONE TONE TONE

RECEIVE SEND
START 00 0 'N.,

LOSS TEST
SIGNAL TONE

640
MS

TIME

RECEIVE TEST
TONE CHARGE

CAPACITOR

I I

I I

*
905 mS MAX -

OPERATE DATA TRANSMITTER,
SEND 2200'\-, DATA TONE DURING

CAPACITOR DISCHARGE

200"" 22001,
GUARD DATA
TONE TONE

sI
1200'1,
GUARD
TONE9
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MS

AWAITING
FURTHER
INST RUC-
TIONS

430 4, 430_
rn450

,«H100\ 60 F,,_
ms MS S mSmS

TIME-#
* THIS TIME WILL VARY DEPENDING UPON THE REFERENCE LEVEL

AND THE CHARGE ON THE STORAGE CAPACITOR

Fig. 13 - Loss measurement timing.
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filters the signal. The amplitude -to -pulse -width converter rectifies the
signal and uses_the resulting de potential to charge -a storage capacitor.

The director then performs two simultaneous activities. It dis-
charges the storage capacitor of the amplitude -to -pulse -width con-
verter. This pulse gates on the precision oscillator, and the decade
counting circuits count these pulses to rate the trunk on its far -to -near
loss. At the same time, the director transmits a 1 -kHz test tone to the
responder as the first part of a near -to -far loss measurement. The loss
measurement and the amplitude -to -pulse -width converter circuits of
the responder are identical to those of the director. These circuits
charge the storage capacitor in the responder to a level which is de-
pendent upon the near -to -far loss characteristic of the trunk. The loss
measurements are completed as the responder sends data back to the
director to indicate the near -to -far loss characteristic. When the stor-
age capacitor of the responder is discharged, the pulse is used to con-
trol a data transmitter which starts by sending guard tone (1200 Hz).
It then shifts to data tone (2200 Hz) for the duration of the pulse,
then returns to guard tone for a short period. The data receiver of the
director converts this data signal into the do pulse which gates on the
precision oscillator so that the near -to -far loss deviation may be
counted. Two-way loss measurements are accomplished in less than
two seconds.

7.2.2 Noise Measurements

Noise measurements begin when the director samples the noise
present on the trunk under test. The noise is amplified, weighted with
C -message weighting and rectified in the noise measuring circuit, then
used to charge the storage capacitor. The responder at this time func-
tions only as a quiet termination for the trunk at the far end. Next,
the director commands the responder to make a noise measurement.
It does this by transmitting a 2/6 MF signal to the signaling receiver
of the responder. After sending the "start noise" measurement com-
mand, the director provides a near -end termination for the trunk under
test. The responder uses its own measuring circuit and amplitude -to-
pulse -width converter to charge the responder storage capacitor from
noise present at the far -end of the trunk. Simultaneously, the director
discharges its storage capacitor which had been charged from the
near -end noise. The resulting pulse gates the precision oscillator and
the near -end deviation from the reference noise level is counted. Then,
the responder discharges its storage capacitor and sends a data signal
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indicating the results of the far -end noise measurement to the director.
The data receiver of the director converts the data signal into a gate
pulse for the counting of the far -end noise deviation from reference
level.

7.2.3 Nonmeasurement Functions

At the appropriate time in the testing sequence, the measurement
is transferred from the counter to the output register, a relay circuit
which translates the results from a binary to a decimal code and
stores them. The automatic test frame "reads" the ATMS output and

causes the results to be printed. Once the results of a measurement are
stored in the output register, the counting circuits may be preset and
the sequence advanced to the next measurement. Note that this pro-
vides the director with the capacity for the simultaneous storage of
two answers; one in the output register and one in the counter. This
feature is used to advantage to decrease the measurement time.

In addition to the functions described above, counters are preset,
results are compared with limits to determine cues (indications that
a measurement has exceeded a limit), and a determination is made
as to whether the trunk should be retested.

VIII. MEASUREMENT MODES

The ATMS provides its users with a choice in the amount of print-
out information that may be obtained. In all the preceding discus-
sions, the operation of the ATMS was described with all of the
measurement results printed out. This would include self -check results
and both initial and repeat results when a trunk test is repeated, and
is the maximum printout available. There are occasions, however,
where such complete results are not necessary (and indeed, may even
make it more difficult to utilize the results), and when desired, the
ATMS may be instructed to print out the results of only those trunks
whose measurement results have exceeded some limit. The advantages
of such operation include increased testing speed and a printed record
of only those trunks exceeding certain maintenance limit.

8.1 Measurement Limits and Cues

The ATMS director may be set for measurement limits that corre-
spond to two different degrees of urgency: maintenance limits and
immediate action limits. Any of ten maintenance limits and seven
immediate action limits may be selected. During the measurement
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sequence the director provides special indications called cues, along
with the measurement results, whenever one or more measurements
exceed one of these limits. A cue of "1" (Q1) is provided when a main-
tenance limit is exceeded and a cue of "2" (Q2) is provided when an
immediate action limit is exceeded. In addition, self -check limits are
built into the director. A cue of "0" (Q2) indicates a satisfactory self-
check and a cue of "9" (Q,) indicates a self -check limit has been ex-
ceeded (+0.1 dB for loss and +1 dB for noise).

8.2 Measurement and Printout Modes

Four different measurement and printout modes may be set into
the director by switch selection at the test frame. These modes are
as follows:

(i) Full Printout-No Repeat: All measurements are printed out
and no repeat tests are made regardless of the cue.

(ii) Full Printout-Repeat on Q2 : All initial measurements are
printed out and if Q2 , which is the highest limit, is exceeded, the
measurements are repeated and printed out.

(iii) Full Printout-Repeat Q1 or Q2: All initial measurements
are printed out and the measurements are repeated and printed out if
either Qi or Q2 is exceeded.

(iv) Abbreviated Printout-Repeat on Qi or Q2 : Initial measure-
ments are not printed out. If no limit is exceeded, no record is made.
If either Qi or Q2 is exceeded, the measurements are repeated and the
results of the repeat test are printed out.

All self -check results are printed out, both initial and repeat test,
regardless of the print mode selected.

IX. MECHANICAL FEATURES

ATMS directors and responders each consist of a group of modules
called circuit packs which plug into horizontal mounting shelves. The
shelves, in turn, are fastened to the framework of 23 -inch relay racks.
A typical circuit pack is shown in Fig. 14. Each circuit pack is 8-3/8
inches high, 8 inches deep, and either 1 or 2 inches wide. Most elec-
trical parts are mounted on epoxy glass printed wiring boards. A few
components, such as keys and jacks, are mounted in the face panel
of the cast metal frame. A multiple plug at the rear of the circuit
pack provides interconnection to other units through a mating con-
nector and the shelf wiring. On the director, installer wiring termi-
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Fig. 14-ATMS circuit pack.

nates in several multiple plugs which engage mating connectors wired

to appropriate circuit pack connectors.
Circuit packs of the director mount in four horizontal shelves. The

shelves are each 10 inches high. The overall assembly therefore oc-
cupies 40 inches in a 23 -inch bay. The director is shown in Fig. 15.

The responder occupies only three horizontal shelves of a bay. The
complete assembly, shown in Fig. 16 is 30 inches high and 23 inches

wide. As shown in Fig. 15 and 16, both the director and responder
contain circuit packs with no designations on the front. These are
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Fig. 15 - ATMS director.
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blank circuit pack frames and represent the expansion space for the
addition of new tests or additional features in the future.

The loss and noise deviation register panel is 6 inches high and 23
inches wide. It contains 34 message registers which provide informa-
tion on the distribution of deviations in an office. An early version of
the loss and noise deviation register panel is illustrated in Fig. 17.

The alignment unit (Fig. 18) is a carrying case containing circuit
packs used in testing the director and responder. It also holds a circuit
pack extender to aid in making maintenance measurements and ad -

.47..::!.

TITTIT' . , r1. ,,,, , ,.

ILO*"   0
11141 a 

Fig. 16- ATi\IS responder.
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justments. The unit is 10 inches high, 15 inches wide, and 11 inches
deep. It can be mounted by brackets in a 23 -inch bay. In this case,
the whole assembly is 10 inches high and 23 inches wide.

X. MAINTENANCE

10.1 Alignment

Alignment of the director or the responder is accomplished by use of
test circuit packs which normally are stored in the alignment unit.
Alignment is necessary upon installation, when a critical circuit pack
is replaced, and on a routine basis. Routine alignment is not expected
to be necessary more often than every six months.

10.2 Trouble Location

Maintenance is facilitated by use of test points located on the face
panels of the circuit packs. The test points provide access to particu-
larly important points in the circuits. The circuit packs can be placed
on an extender (included in the alignment unit) to make internal
measurements or adjustments. No maintenance or repair of individual
circuit packs is required by the user. Instead, the faulty circuit pack
is simply located and replaced. The faulty circuit pack is then sent to
a repair center. Special test procedures are provided for rapidly
identifying faulty circuit packs.

XI. ATMS FIELD TRIAL

An extensive field trial was undertaken to assure that the ATMS
and the associated switching equipment would function properly in
the actual telephone offices.

caltriz"---J di. t
Fig. 17- ATMS loss and noise deviation register.
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11.1 Equipment Location

The ATMS was on field trial in the Norristown, Pennsylvania, area
between January, 1965 and January 1967. An ATMS director was
associated with a No. 5 Crossbar Automatic Progression Trunk Test
Frame (APTT) in the Norristown, Pennsylvania, central office. Five
responders were located as indicated in Table III. Other far -end offices
with 102 -type and 104 -type test lines were included in the trial.

11.2 Field Trial Results

11.2.1 General

The ATMS was found to meet all its design requirements. Trunks
were tested more frequently and precisely than would have been
possible with manual trunk testing by the telephone office personnel.

Fig. 18-A1'MS alignment unit.
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TABLE III-RESPONDERS FOR ATMS FIELD TRIAL

Location of responder
Airline distance to

Norristown. Pa. in miles

Wayne, Pa. 6

Lansdale, Pa. 9

Philadelphia, Pa. 15

Pottstown, Pa. 19

Newark, N. J. 80

Type of access to responder
through 105 -type test line

4A toll

SXS toll, SXS local

XB tandem, 4M toll
IXB local, panel local

5XB toll, 5XB local

4A toll

11.2.2 Trunk Testing Time

It is desirable not only to reduce the time per trunk tested, but to
reduce the holding time of the trunk so that it will be available to
customers. The typical trunk was held for approximately eight seconds
on a no -repeat loss and noise measurement to an ATMS responder.
About half of this time was measurement time. The remaining time
was necessary to complete the printing of the measurement results.

The speed at which trunks can be tested varies considerably depend-
any or all of the factors below.

(0 Number of trunks in the trunk group.
(ii) Number of self -checks requested.

(iii) Printout mode-no repeat or repeat.
(iv) Number of trunks requiring a repeat measurement.
(v) Busy trunks-this is a function of the time of clay.
(vi) Trunk seizure time.

The trunk noise readings are usually highest during the hours of
peak office activity. Unfortunately, busy hour testing implies a maxi-
mum number of busy trunks (80 percent during one extended test) as
well as competition with the customer for the few available trunks.
The "busy hour" in Norristown extends almost all day, necessitating
night-time testing.

During the field trial, measurements were made in the Repeat -on -
Q1 -or -Q2 printout mode during the hours from midnight to 8 a.m.
Dividing the total time by the number of trunks tested results in an
average time of 50 to 60 seconds per trunk tested.

Assuming 10 hours of usage per day, a seven-day week and an
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average trunk test time of 60 seconds per trunk, one may then test
4,200 trunks per week.

XII. REMOTE -OFFICE TESTING

The classes of ATMS testing previously discussed permitted testing
of trunks between an office containing an ATMS director and other
offices with 100-, 102-, 104- or 105 -Type Test Lines. See Table I.

Trunks between offices too small to justify an ATMS director and
its associated test frame could not be tested with the ATMS until the
advent of the Remote Office Test Line (ROTL). The ROTL (to be
available soon) permits the director at Office A to obtain the results
of measurements on trunks between Office B, equipped with a ROTL,
and Office C equipped with a Code 100-, 102- or 105 -Type Test Line.

12.1 General

The office containing the director and its associated test frame will
be referred to as the near -end office, the office with the ROTL as the
remote office, and the office containing the test line as the far -end office.

The trunk between the near -end office and the remote office will be
called the access trunk.

Two kinds of remote office testing

(i) Remote -Office -Responder Testing-full accuracy, measurements
made at the remote office using a modified responder-see Fig. 19.

(ii) Remote -Office Through Testing-reduced accuracy, no measure-
ments made at the remote office, lower cost-see Fig. 20.

The remote office concept may be used to measure trunks if the
far -end office is equipped with a 100-, 102- or 105 -Type Test Line.

Under control of the test frame the ROTL can seize an outgoing

OFFICE OFFICE OFFICE
A B C

NEAR -END REMOTE FAR -END

DIRECTOR

TEST
FRAME

REMOTE -OFFICE
RESPONDER

ACCESS
TRUNK

ROT L
TRUNK TO BE

MEASURED

TEST
LINE

Fig. 19 - Remote -office -responder testing.
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Fig. 20- Remote -office through testing.

TEST
LINE

trunk to the far -end office, pulse forward a test line code and assist
in making transmission tests on the outgoing trunk.

The responder and test line can be in the same office or building
as the director and test frame to permit testing of incoming trunks.
An incoming trunk is defined as one which can be seized only at a
distant office. An access trunk and ROTL are used to gain access to
the originating end of these incoming trunks.

12.2 Systems with Similarities to Remote -Office Testing

12.2.1 L. M. Ericsson Remote -Controlled Measurement'
The Swedish Ericsson system mentioned in Section II can operate

in a mode in which the controlling set in office A can control test sets
in offices B and C. The results of the measurement of the trunk be-
tween B and C is then relayed to A by means of a multifrequency code.
This system employs a slower measurement method.

12.2.2 Loop -Around Test Line
At the present time manual, one-man, two-way loss measurements

are possible without 104 -Type Test Line or ATMS equipment if the
remote office is equipped for loop -around testing.

All trunks in a group to the remote office are first measured in the
far -to -near direction by seizing the Milliwatt Test Line in the remote
office. One of these trunks is then selected as the reference trunk and
is connected in turn through the loop -around test line to each of the
other trunks in succession. Test tone is then sent from the originating
office through the trunk to be tested and back through the reference
trunk. Subtraction is then necessary to obtain the near -to -far loss of
each trunk.

Loop -around testing necessarily requires that a means be available
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at the test location in the originating office for originating and holding
two connections simultaneously. Only outgoing trunks may be tested
by this method.

There are many disadvantages to this method in addition to the
subtraction required. If the loss of the reference trunk varies with time
or level (see Section II), then the computed near -to -far losses for the
other trunks will be in error. Mistermination errors may occur when
the reference trunk is connected to the trunk to be measured. As with
all manual measurements, the procedure is slow.

12.3 Remote -Office -Responder Testing

All measurements in this mode are made by either the far -end
responder (for the case of a 105 -Type Test Line) or a modified re-
sponder at the remote office. All measurement results are sent back to
the director in the form of frequency -shift data signals. The loss and
noise of the access trunk therefore do not degrade the accuracy from
that of a director -to -responder measurement.

12.3.1 Responder Modification

A responder is modified to a remote -office responder by the addition
of three circuit packs. These provide for modification of the timing
cycles and independent output circuitry toward the access trunk. The
remote -office responder is capable of transmitting different signals
simultaneously, one toward the director and another toward the f ar-
end equipment. This responder may still be utilized as a standard re-
sponder, if desired.

By using the isolation amplifier contained in the remote -office
responder one can pass a signal through a remote -office responder in
either direction. 2/6 commands may be passed through the remote -
office responder to the far -end responder or the data from the far -end
responder may be passed through the remote -office responder to the
director.

12.3.2 Remote -Office -Responder Testing Sequence

Fig. 21 shows a two-way loss and noise measurement between a
remote -office responder and a far -end responder. One new 2/6 multi -
frequency command is necessary to make the near -end noise measure-
ment. The other 2/6 commands are the same as those required for a
normal director -to -responder measurement. It should be noted that a
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normal responder will not reply to any other 2/6 commands than those
mentioned in Section VII.

Both the remote -office responder and the far -end responder will
reply to the 2/6 loss signal. The remote -office responder will measure
the far -end responder test tone and at the same time transmit the
1200 -Hz guard tone to the director. The remote -office responder will
now complete the data signal to the director which it is transmitting
test tone toward the far -end responder. The director then receives the
loss data signal from the far -end responder through the remote -office
responded.

The director then commands the remote -office responder to measure
noise. After the director has received this data signal it commands the
far -end responder to measure noise, and with the same signal, the
remote -office responder to pass a data signal through to the director.
When this final noise data signal has been completed, both responders
return to a state where they can receive 2/6 commands.

Loss and noise self -checks of the remote -office responder and the
far -end responder may be completed in a somewhat similar manner.

It is now clear that the loss and noise of the access trunk will have
no effect on the accuracy or range of measurements.

12.4 Remote -Office Through Testing

This mode of testing necessitates connecting the access trunk to the
trunk to be measured. If both of these trunks employed negative im-
pedance repeaters, then a possibility of a singing condition exists due
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to mistermination. This can be eliminated by the use of a buffer
amplifier.

12.4.1 Buffer Amplifier

The buffer amplifier eliminates the effect of interaction between the
impedances of the two trunks and provides terminations of nominal
impedance during measurements. Because of its unilateral transmis-
sion, however, the buffer amplifier necessitates more control functions
in the ROTL.

Since no measuring equipment is present in the remote -office equip-
ment, the director must make the measurement for noise at the remote -
office end of the trunk to be measured. Noise on the access trunk of the
same level as that on the trunk to be measured can have a large effect
on the measurement accuracy. For this reason a buffer amplifier gain
of 20 dB was chosen for the period of this noise measurement. At all
other times a buffer amplifier gain of 0 cIB has the advantage of

preserving signal levels.
In the sequences which follow, the buffer amplifier is used in such a

manner that its actual gain is relatively unimportant as long as the
amplifier is linear.

12.4.2 Remote -Office Through Measurement Sequence

Fig. 22 shows the actual sequence for a measurement to a far -end
responder. Fig. 23 is a simplified diagram of the amplifier and the
transmission portion of the ROTL. Table IV describes the sequence
followed by the circuit shown in Fig. 23.

The far -to -near loss measurement is made by first measuring the
loss of the access trunk (interval t1) from the remote -office to the
director and then subtracting this from the loss of the trunk to be
measured and the access trunk in tandem (interval t3). During inter-
val t4 the far -end responder is measuring the test power from the
remote office.

The director makes a measurement of the noise at the ROTL end
of the trunk to be measured during interval tg. During interval tg the
responder can make a valid noise measurement because the buffer
amplifier is pointed toward the director. Not only does it block any
noise on the access trunk, but it terminates the trunk to be measured
in the correct impedance independent of the impedance of the access
trunk.
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TA BLE IV-REMOTE-OFFICE TH ROUG I TESTING SEQUENCE

Time interval
from Fig. 22

Approximate
time in seconds A

Relays operated Function being performed during
the time relays are operated

and relaesed as shownB C D

ti 3.00 X X 3 sec. MWT from Fig. 23
to near end

12 0.08 2/6 freq. signal from
near to far end

t9 0.43 X MWT from far end
to near end

t4 0.64 X MWT from Fig. 23
to far end

/6 0.65 X Loss data from far
to near end

16 0.38 X X Near end measuring noise

11 0.15 2/6 freq. signal from
near to far end

is 0.43 X Far end measures noise

t9 0.54 X Noise data from near
to far end

lio 0.08 2/6 freq. signal from
near to far end

It should be noted that the far -end responder receives commands
from the director and acts on these commands in exactly the same
manner as it would in a measurement without a ROTL. Thus, a re-
sponder does not have to know whether its commands come through
a ROTL.

Testing to a 100- or 102 -Type Test Line is accomplished by employ-
ing parts of the 105 -Type Test Line sequence shown in Fig. 22.

12.4.3 Remote -Office Through Testing Limitation

In the loss measurement portion of the sequence the director must
make a measurement of the access trunk loss which it will subsequently
subtract from the loss of the trunk to be measured and the access
trunk loss in tandem. The access trunk loss measurement is made during
an initial transmission of the remote -office test tone through the remote -
office buffer amplifier. Since the director cannot measure a received
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level below -15 dBm the loss of the two trunks in tandem cannot be
greater than 15 dB.

Raising the gain of the buffer amplifier at the remote -office would
increase this range but would also imply initial transmission of the
remote office milliwatt at the level about 0 dBm. Such a transmission
could cause overload and crosstalk problems on an access trunk over
a carrier system. The most practical plan, therefore, is to use access
trunks with as low a loss as possible.

The subtraction process to obtain the loss of the trunk from the
far -end office with the test line to the remote office involves two separate
measurements made at different times and at different levels. With some
carrier access trunks, beating of pilot frequencies can easily result in
time -varying trunk loss variation of 0.2 dB. Compandor tracking errors
can add another 0.1 dB or more of error.

If the far -end test (100- or 105 -type) line permits noise measurement
at the remote -office then the 20 dB buffer amplifier gain mode is em-
ployed. The loss of the access trunk now affects the noise measurement
accuracy, for the noise level at the director must be reduced by 20 dB
minus the loss of the access trunk. This access trunk loss is stored in
pads in the noise measurement path in the director. This loss is stored to
the nearest 1 dB-thereby introducing a noise error of ±0.5 dB. Corn-
pandor tracking errors are greater at noise measurement levels. These
errors add to the carrier beating problem already mentioned.

The necessity for the initial test tone transmission from the remote -
office limits the printout to one mode-full printout-no repeat.

No remote -office through automatic testing is attempted to a 104 -
Type Test Line because its automatic mode (as opposed to manual
mode) cannot be utilized. The half -minute cycle time for the 104 circuit
in its manual mode restricts the number of trunks which could be tested.

XIII. SUMMARY

The Automatic Transmission Measuring System (ATMS) permits
accurate and more rapid measurement of telephone trunks than was
previously possible. The 1000 -Hz loss of a trunk may be measured in
both directions to an accuracy of ±0.1 dB. Noise measurements at
each end of the trunk are accurate to ±1 dB. The results of these
measurements are printed on page copy, or perforated on punched
tape or cards.

An ATMS director is in one office and an ATMS responder is in
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the other office. The responder may be commanded to make any one
of several measurements in conjunction with the director.

The ATMS director works in conjunction with one of several auto-
matic test frames or ESS central control which provides an interface
for the director to the particular switching system. Interface for the
ATMS responder is provided by a 105 -Type Test Line. For most
switching systems, the total ATMS measurement time for two loss
and two noise readings is less than the overall time to read the trunk
information from the input tape and seize the trunk.

Personnel are needed only for loading the input, reading and inter-
preting the output, periodic alignments and occasional maintenance.
When an ATMS director and its associated test frame cannot be
provided in a particular office, measurements may be made on trunks
between central offices by using one of two Remote -Office Test Line

(ROTL) concepts.
The ATMS director can make measurements to four different far -

end test lines-
(i) 100 -Type 5 seconds of milliwatt followed by a quiet termina-

tion (to be available soon).
(ii) 102 -Type Milliwatt, interrupted at 10 -second intervals.

(iii) 104 -Type Transmission Measuring and Noise Checking Cir-
cuit (TMANC).

(iv) 105 -Type ATMS responder.

A director may make measurements through a remote -office to a
100-, 102-, or 105 -Type far -end test line.

Flexibility and ease of maintenance result from the use of transistor
circuits on plug-in circuit packs. The director requires 40 inches of a
23 -inch relay rack and the responder requires 30 inches of a 23 -inch
relay rack.
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A Solid -State Regenerative Repeater
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Recent advances in solid-state device technology for generating millimeter
waves as well as advances in component design for IF and baseband portions
of repeaters have renewed interest in millimeter -wave guided -wave com-
munication systems. This paper describes a 306 Mb / s, all solid-state
repeater which has been built using a 1.3-GHz IF and a form of differen-
tially -coherent phase modulation. A signal-to-noise ratio of 13.6 dB is
required for an error probability of 10-9 (compared with a theoretical value
of 13.0 dB for an ideal differentially -coherent phase -modulated system).
Sufficient gain for 15 -mile repeater spacings (using two-inch circular wave -
guide) has been obtained with an LSA diode, an IMPATT diode, and a
varactor multiplier as the millimeter -wave power source.

I. INTRODUCTION

1.1 Guided Millimeter -Wave Communication Systems

High-speed, long -haul communication by means of millimeter waves
transmitted in the circular -electric mode in a multimode circular wave -
guide was described by S. E. Miller'. in 1954. Recent advances in solid-
state devices for generating millimeter waves as well as advances in
circuit design for the IF and baseband portions of the repeaters have
renewed interest in such a system.

The purpose of this paper is to describe the design and performance
of an experimental all solid-state millimeter -wave repeater which has
recently been built and tested. It operates at a carrier frequency of
51.7 GHz and transmits binary PCM at a 306 Mb/s rate. The experi-
mental repeater includes all of the active circuitry for one channel of

1977
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a complete repeater and contains channel filters representative of

those needed to separate and combine the many channels of an actual
system. It was built to demonstrate certain principles and no attempt
is made here to describe or design a complete system. Certain system
considerations are discussed in Section IV in order to give the reader
some perspective concerning those factors which influenced the design
of the repeater.

In section II, we discuss a modulation scheme which was conceived
to satisfy the requirement imposed by the nature of the system. The
circuitry used in the repeater is discussed in Section III. Particular
emphasis is placed on those portions of the circuit which the authors
feel represent a significant advance in the state of the art. The per-
formance of the repeater is described in Section V. Finally, the con-
clusions which are to be drawn from the experimental performance of
the repeater are summarized in Section VI.

For a given repeater gain and spacing the communication capacity
of such a system is set by the attenuation characteristics of the wave -
guide. The system under consideration would use TEoi mode trans-
mission in 2 -inch helix or dielectric -lined circular waveguides.

The characteristics of these kinds of waveguides have been studied
theoretically by H. E. Rowe and W. D. Warters,2 S. P. Morgan and
J. A. Young,3 and H. G. Unger ;4 and studied experimentally by A. P.
King and G. D. Mandeville5 and W. H. Steier5 for a straight wave -
guide. More recently a study of typical route loss has been undertaken
by W. G. Nutt and others.7 Their results, shown in Fig. 1 along with
the results of the other measurements cited above, are used for the
calculations in Section 4.1. From these measurements, one finds that
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Fig. 1- TE., mode attenuation characteristic of 2 -inch circular waveguide.
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the attenuation is less than 3 dB per mile over a band of frequencies
extending from approximately 40 GHz to 100 GHz. This 60-GHz band
of frequencies is considered the "usable bandwidth" of the waveguide.
In Section IV, it is shown that approximately 200,000 two-way voice
channels can be accommodated by the waveguide if 9 digit binary PCM
transmission is used.

The purpose of this experiment was to demonstrate the feasibility
of building repeaters for a millimeter -wave communication system.
When this experiment was begun early in 1966, the band -splitting
filters and the IF amplifiers had already been developed and no prob-
lems were expected in these areas-and in fact, none arose. Our
initial efforts were concerned with building filters for dropping the indi-
vidual channels and for injection of local oscillator power into the
up- and down -converters, providing a source of millimeter -wave
power, building up- and down -converters with attractive conversion
loss, building FM deviators, and building baseband and timing recov-
ery circuitry which would operate at the 306 Mb/s rate. Soon after
this work began, the LSA (Limited Space -charge Accumulation)
oscillator was developed by J. A. Copeland.3 It provides what seems
to be a suitable millimeter -wave power source. In addition, a 12.6-
GHz IMPATT (IMPact Ionization Avalanche Transit Time) diode
driving a quadrupler, provides a suitable power source. More recently,
a 50.4-GHz IMPATT diode has been successfully tested as a milli-
meter -wave power source. The other components were developed dur-
ing the course of the experiment. Thus, it has been demonstrated that
such a system is within the present state of the art.

One significant component, a delay distortion equalizer, which will
be required in an actual system, was not considered in this experi-
ment. Several possible equalizers have been proposed in the past and
while considerable study is still required before a choice can be made
from among these alternatives, there do not seem to be any problems
associated with equalization that would affect the feasibility of the
system. A review of some work which has been done on equalization
of delay distortion is presented briefly in Appendix A.

II. MODULATION

2.1 Modulation Requirements

It was felt that the modulation scheme used in this repeater should
satisfy four important requirements. First, in order to make efficient
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use of the limited power available from solid-state devices-especially
at millimeter -wave frequencies-it is important to use a type of

modulation which gives good noise immunity, that is, one which will
provide an acceptable error -rate with relatively small signal-to-noise
ratio.

Second, because the repeaters are to be regenerative, timing infor-
mation must be provided at each repeater. While this can be accom-
plished in several ways, a very attractive way is to use a type of
modulation which allows the repeater to extract timing directly from
the signal regardless of message statistics. This eliminates the neces-
sity of sending timing information on a separate channel or of includ-
ing pulses into the bit stream to insure a timing signal even in the
event the message causes a particularly unfavorable pulse pattern.

Third, since the system is to operate at very high bit rates, it is
important that the modulation scheme be one which can be imple-
mented with a minimum of circuitry.

Finally, the modulation scheme must not be excessive in its band-
width requirement even though, due to the large bandwidth capability
of the waveguide, one is willing to make a reasonable trade of band-
width for noise immunity.

The optimum noise immunity (consideration 1) would be achieved
with binary coherent phase this
type of modulation requires that a reference phase be provided at
each repeater. The need for a reference signal is eliminated by using
a differentially -coherent signal at a cost of less than 0.5 dB in
noise immunity at acceptable error rates (the order of one error in
10° bits), as can be calculated from the equations in a review paper by
J. G. Lawton."

2.2 Description of FM-DCPSK

A modulation scheme which we have designated FM-DCPSK (Fre-
quency -Modulated Differentially -Coherent Phase -Shift -Keyed) mod-
ulation was conceived as a reasonable compromise among the four
considerations. FM-DCPSK is a hybrid of frequency modulation and
differentially -coherent phase -shift -keyed modulation. The signal has
constant amplitude and is angle modulated in such a way that the
information is carried in the relative phase, i.e., the phase shift between
adjacent sampling instants. Optimum noise immunity occurs when the
two possible signal states in a given time slot differ in phase by 7r.
This can be achieved by shifting the phase by an amount -1-7r/2 or
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-r/2 between successive time slots (the choice of the sign depending
on the message). A signal -space diagram is shown in Fig. 2. Fig. 3
shows the variation of phase and frequency resulting from modulation
with the binary train indicated at the top of the figure. It will become
apparent when we discuss repeater circuits in Section III that the
simplicity consideration is satisfied by the FM-DCPSK signal.

Modulation from polar binary baseband to carrier IF is performed
directly with an FM deviator. No flip-flop or other binary to differ-
ential -binary translator is required because of the differential rela-
tionship between frequency and phase. The deviator linearity is unim-
portant since only the area under the frequency -versus -time curve is
important. The constant -amplitude continuous -phase nature of the
signal allows phase -locked oscillators to be used for gain and limiting.

Because there is a phase change (hence, a frequency swing) in each
time slot, regardless of the signal statistics, timing information is
available in the signal itself. This can be readily extracted by means
of a frequency discriminator and a narrow bandpass filter as described
in Section 3.9. Finally, the bandwidth which gives optimum results is
found experimentally to be slightly larger than the bit rate, which is
in agreement with theoretical calculations for frequency modulated
systems by R. R. Anderson and J. Salz."

III. CIRCUITRY FOR THE REPEATER

3.1 Introduction
The repeater circuit is shown in block diagram form in Fig. 4. Fig.

5 is a photograph of the repeater. This subsection will give a brief
introductory discussion of the layout and operation of the repeater.
Detailed discussion of the operation of various components is deferred
to the following subsections.

- 7/2 7/2

Fig. 2 - Signal space diagram for binary FM-DCPSK tiso = 0 or r for n = no,
no -I- 2, 714) 40,, - 7/2 or - r/2 for n - + 1, no + 3, nm + 5,
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Fig. 3 - Phase and frequency variations of a FM-DCPSK signal.

The signal enters in the TE01 mode in 2 -inch circular waveguide
and first encounters a band -splitting filter which divides the 60-GHz
band of the waveguide into two sub -bands. The signal in each of these
sub -bands next encounters a channel -dropping filter which drops the
individual channel for the individual repeater. In an actual system,
several (perhaps as many as six) band -splitting filters would be used
and a string of several (perhaps as many as 30) channel -dropping
filters would follow each band -splitting filter. The first component
which the individual signal encounters after the channel -dropping
filter is a down -converter which translates the millimeter -wave signal
frequency to the 1.3-GHz IF frequency of the repeater. The down -
converter is followed by a low -noise transistor amplifier which pro-
vides approximately 52 dB of gain. This amplified signal is then used
to lock an oscillator which serves as a limiter. The output of this
limiter is amplified by a second transistor amplifier having 27 dB
of gain. The next component is a combination differential -phase de-
tector and timing recovery circuit. This component provides both a
timing signal which consists of a sine wave at the bit frequency re-
covered from the transmitted signal and a baseband information signal
whose polarity depends on the binary information transmitted.
This polar baseband signal is then applied to a regenerator along
with the timing signal and the regenerator makes a decision as to
which of the binary states was transmitted in each time slot. The out-
put of the regenerator drives an FM deviator which provides an
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angle -modulated signal at IF. This signal is amplified by a third
transistor IF amplifier and up -converted to the original millimeter -
wave frequency. This millimeter -wave signal is now combined with
the signals in other channels by means of a series of channel -adding
filters and band -combining filters which are identical to the channel -
dropping and band -splitting filters used at the input. The output is
again in the TE01 mode in 2 -inch circular waveguide.

3.2 Band -Splitting Filters

The band -splitting filters perform the function of splitting the
40-GHz to 100-GHz band into relatively wide sub -bands. The devices
used for this purpose have been described in detail by Marcatili and
Bisbee.'- For completeness, their scheme will be reviewed briefly. Fig.
6 shows a constant resistance filter made up of two hybrids connected
together by two identical high-pass filters.

Power entering port 1 is equally split by the hybrid Hl with each
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half propagating through equal line lengths toward the high-pass
filters. Frequencies above the cutoff frequency of the high-pass filters
pass through the filters unattenuated, are recombined in the second
hybrid and emerge at port 4. Frequencies below the cutoff frequency
of the high-pass filters are reflected back towards the first hybrid
where they recombine and emerge at port 2. Marcatili and Bisbee
realized this structure in low -loss TE01 circular electric mode com-
ponents.

The hybrids developed consist of a right angle tee junction of two,
2 -inch i.d. round waveguides with a thin sheet of dielectric material
placed diagonally across the junction. The system can be analyzed on
a quasi -optical basis with the result that proper selection of the
dielectric material produces hybrid performance.

The high-pass filters used were TE01 mode guides with cutoff fre-
quency equal to the splitting frequency. They were coupled to the 2 -
inch helix guides by means of helix waveguide tapers. Experimental
results on a composite filter show that the maximum loss in either sub -
band is 1.5 dB and that the transition region takes up only 160 MHz
of the spectrum.

Fig. 5 - Experimental model of millimeter -wave repeater.
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3.3 Channel -Dropping Filters

The requirements for the channel -dropping filters are determined
by such factors as tolerable insertion loss, intersymbol interference,
and interchannel interference. Explicit analysis of intersymbol inter-
ference and inter -channel interference problems associated with the
type modulation used is as yet incomplete. Hence, a procedure for
optimizing channel to channel spacing is not available.

For the experimental repeater, attention was directed to two -pole,
wideband channel -dropping filters because they afford a significant
reduction in required channel spacing relative to that for single pole
filters. A bandwidth of 1 GHz was chosen to prove the flexibility of
the design procedure. The theory developed13 employed narrow band-
width approximations; thus, the design of filters having smaller band-
width would be no problem. As stated in Section 2.2 an overall channel
bandwidth slightly greater than the bit rate yields optimum error
rate. Based on this fact, consideration of all of the band -limiting
elements in a given channel indicates that channel -dropping filter
bandwidths of less than twice the bit rate will be adequate.

Fig. 7 shows the physical structure and identifies the resonant ele-
ments of the channel -dropping filters. Ports 1 and 3 are the circular
mode input and output ports, respectively. Port 2 is the dropped (or
added) channel output (or input) port. The input and output guides
are above cutoff for the TE01 mode and just below cutoff for the TEo.
mode. The large guide sections are just above cutoff for the TE02
mode. The rectangular waveguide output is coupled to the mode-

conversion resonator nearest the input by means of a wrapped resona-
tor of rectangular cross section.

A qualitative description of the behavior of the structure is as fol-
lows. First, consider an individual rejection resonator. A signal inci-
dent in the TE01 mode is coupled to the TE02 mode by means of a
symmetrical diameter discontinuity. Since the input and output
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guides are below cutoff for the TE02 mode, the power in that mode is
trapped in the large diameter region. Marcatili's analysis of the
structure shows that at resonance the transverse mid -plane of the
resonator is effectively a short circuit.'} The center frequency and
bandwidth are dependent on the length of the resonator and the ratio
of the input guide diameter to the resonator diameter. The details of
the relationship are given by Marcatili.14

In the structure of Fig. 7, the mid -planes of adjacent mode -conversion
resonators are electrically separated by odd multiples of r/2 radians.
Hence, at resonance, the rejection -resonator pair presents an open
circuit at the mid -plane of the input mode -conversion resonator. All
of the incident TE01 mode power appears at the rectangular wave -
guide output when the various coupling coefficients are properly
chosen.

Further insight into the electrical behavior of the structure is ob-
tained by considering the prototype network shown in Fig. 8. The
prototype network consists of complimentary admittances connected
in shunt. The elements of the network have been chosen to yield a two -
pole, maximally flat insertion loss response between ports 1 and 2
while maintaining a constant input admittance as a function of fre-
quency. Total power transfer occurs at zero frequency, and half -power
transfer occurs at an input angular frequency of one radian per second.
The prototype network is converted to a network having total power
transfer at some frequency wo through use of the angular frequency
mapping function

= -
4.00

(1)
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where

= angular frequency variable of the prototype network
= angular frequency variable of the desired network

Qt = (-00/(04 - w2)
col = half power angular frequencies of the desired network.

For the purpose of obtaining a qualitative understanding of electrical
behavior it is sufficient to state that the performance of the micro-
wave structure will be identical to that of the frequency -mapped pro-
totype network subject only to the approximations involved in relating
their respective parameters.

Four filters were constructed for use in the repeater system. The
results were consistent from filter to filter. Figs. 9 and 10 show a set of
typical characteristics. The insertion loss to the dropped channel is
about 0.5 dB. The theory predicted an overall bandwidth of 1.13 GHz.
The agreement between measured and theoretical values is good.

3.4 Solid -State Millimeter -Wave Power Sources

Three different solid-state millimeter -wave power sources were
used. They were an LSA diode oscillator, an harmonic generator and
an IMPATT diode oscillator.

The first solid-state device used successfully in the repeater was an
LSA oscillator.8 The diode used in this experiment required de power
of 0.4 amps at 3.5 volts and delivered 4 mW of power at 50.4 GHz.
(Similar units which deliver 20 mW at various frequencies in the 40 -
to 100-GHz band have been built by Copeland.) The LSA oscillator
was used in all of the error -rate and gain experiments described in
Section V.

The varactor quadrupler uses a zinc diffused gallium arsenide diode."
The diode was a planar array structure similar to the "honeycomb"

PORT 1

Yi ÷ Y2 =1

go =1 OHM
 9, = 0.707 FARADS

92, g, =1.414 HENRIES

Fig. 8- Prototype network for a two -pole diplexer.

PORT 2

PORT 3
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type described by Young and Irvin.16 It was mounted in a Sharpless
wafer as shown in Fig. 11. The input signal frequency was 12.6 GHz.
The power output and overall efficiency of a typical unit are shown
in Fig. 12. The maximum power output obtained was 10 mW at an
efficiency of 6.5 percent. The input VSWR was less than 2 to 1 and
the output VSWR was about 7 to 1. The power source for the quad-
rupler was an IMPATT oscillator which provided a 12.6-GHz signal.

The millimeter -wave IMPATT diode delivers approximately 50 mW
at 50.4 GHz. (Diodes of this type which deliver 130 mW at 70 GHz
have been built by T. Misawa.17)

Each of these power sources gave an overall performance as good
as that obtained from an Oki Klystron.

3.5 Local Oscillator (LO) Injection Filters
The local oscillator power is coupled to the up- and down -converters

by means of a three port diplexer as shown in Fig. 13. The local oscil-
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Fig. 10 - Insertion loss from port 1 to port 2.
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lator power is injected at the bandpass port (port 1) and the signal
at the band rejection port (port 3). The up (or down) converter is

connected to the constant resistance port (port 2).
The construction of an efficient millimeter wave diplexer was ac-

complished by utilizing two low -loss TEon circular cylindrical cavity
mode resonators as shown in Fig. 14. The device operates as follows.
Both resonators are tuned to the local oscillator frequency. At reson-
ance, the rejection cavity effectively open circuits the waveguide. The
bandpass resonator (dropping filter) is located an odd number of
quarter wavelengths from the transverse symmetry plane of the re-
jection resonator. Hence, at resonance, a short circuit appears to exist
at plane A of Fig. 14.

Ideally, proper adjustment of the coupling apertures yields coupling

LO INPUT

I
SIGNAL o
INPUT

(PORT 3) DIPLEXER

(PORT I)

(PORT 2) DOWN
CONVERTER

0 IF
OUTPUT

Fig. 13-Schematic of the local oscillator injection arrangement.
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Fig. 14 - Physical realization of local oscillator injector filter.

of 100 percent of the LO power to port 1 in the absence of dissipation.
The details of the design procedure are given in Ref. 18.

The requirements on the bandwidth of the diplexer were established
by considering the tolerable dissipation of LO power at resonance, and
the transmission loss through the diplexer over the signal band. The
tolerable LO loss was set at 2 dB maximum based on the millimeter -
wave power available from the solid-state source and the LO power
requirements established for the up- and down -converters. Minimum
attenuation to the signal band is achieved when the bandwidth is at a
minimum consistent with the LO loss requirement. Experimental work
indicated that a 50 -MHz bandwidth in the power transfer from the
LO input port to the converter port was about optimum.

Four diplexers were constructed with consistent results. The inser-
tion loss to the LO averaged 1.4 dB. The return loss at the signal input
port was better than 25 dB over the signal band. The return loss look-
ing into the converter port was better than 15 dB at all frequencies of
interest. Figs. 15 and 16 show typical frequency responses at the
various ports.

3.6 Down -Converters
The down -converters developed for the system had the following

characteristics:

(i) IF frequency band from 1.0 to 1.6 GHz
(ii) LO frequency of 50.4 GHz at a power level of -3 dBm

(iii) Input signal from 51.4 to 52.0 GHz
(iv) Conversion loss of 6.0 ± 0.5 dB over the above band
(v) Converter noise temperature ratio of nearly unity.
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This performance was achieved using Schottky barrier diodes at a
fixed de bias.

The basis for the design was the converter mount described by
Sharpless." The only modification required was the addition of an IF
impedance matching network. The millimeter -wave portion of the
structure was not changed. Fig. 17 shows the structure. The following
paragraphs describe the equivalent circuit and give a brief discussion
of the design procedure.
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Fig. 16 - Return loss of local oscillator injection filter at port 2.
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The equivalent circuit for the structure is shown in Fig. 18. The IF
input admittance Yr, was measured over the band with the LO on and
the bias fixed. It was found that Yr, could be closely approximated by
a constant conductance shunted by a capacitive susceptance. At mid -
band

YL, = (59)-' j(150)-' mhos.
The admittance YI, was matched to 50 ohms at mid -band by a short
length of transmission line having a characteristic impedance of 83
ohms. This was followed by a biasing tap consisting of a quarter wave-
length 50 -ohm stub by-passed to ground. The excellent broadband
behavior of the completed circuit is indicated by the small variation
of conversion loss over the band. The latter is shown in Fig. 19.

3.7 IF Amplifiers
Wideband transistor amplifiers (with a center frequency of 1.3 GHz)

of the balanced integrated circuit type originally developed by Engel -
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Fig. 17 - Down -converter structure.
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Fig. 18 - Down -converter equivalent circuit.

ADJUSTABLE
SHORT

brecht and Kurokawa2° were used in this repeater. Fig. 20, which is
reproduced here from Ref. 20, shows the basic amplifier circuit. These
amplifiers can be built with excellent noise figures (less than 4 dB)
and, because of the excellent match between sections, can be cascaded
to achieve high gain. These amplifiers exceeded the required specifi-
cations in all respects and have proved entirely satisfactory for this
repeater.

3.8 Limiter
Because of the nature of the regenerator which is used in this re-

peater, an improvement in error -rate performance for a given signal-
to-noise ratio is expected from the inclusion of a limiter ahead of the
differential -phase detector.21 A simple but effective limiter was

w -
>

z cp
o -0
cc z

Z0 0

5
1000 1100 1200 1300 1400 1500 1600
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Fig. 19 - Conversion loss of down -converter.
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Fig. 20 - Schematic representation of single -stage balanced amplifier. (Taken
from Ref. 20).

achieved by the use of a tunnel -diode oscillator built in 50 -ohm
coaxial transmission line and phase -locked to the IF signal (see
Fig. 21). The tuning of the diode was inductive and was accom-
plished by means of a shorted 75 -ohm transmission line stub. The
tunnel diode was of germanium point -contact construction and had a
peak current of 2 mA. Fig. 22 shows the output power of the oscillator
versus gain (ratio of output power to input power) at the center fre-
quency of the oscillator. Best error performance was found experi-
mentally to occur at a gain of 8 dB. The change in output power with
frequency for several values of gain is shown in Fig. 23.

3.9 Differential Phase Detector and Timing Recovery
The baseband and timing circuits are shown in Fig. 24. The couplers,

delay lines, and diode mounts are microwave printed circuits; the
filters and combining Tee are coaxial. The differential phase detector
and the timing recovery circuit are combined (share a common delay
line) in order to save space and cost.

0

DC SUPPLY TBYPASS . '100

Fig. 21 -Limiter circuit.
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Fig. 25 shows the basic differential -phase detector or timing -re-

covery circuit. A straightforward analysis (see the Appendix of Ref.
22) shows that the output voltage of this circuit is given by

V(t) = cos {wor w(r) dr} (2)f
-

for an input FM-DCPSK signal given by

t8(1) = -7:1?, cos {coot w(1') I'} (3)
0

with

I co(t) I = I (Xi nT)
(n1 -1)T

in -4) T

One can readily see that if wor is chosen to be a multiple of lr, V(t)
is independent, to first order, of the sign of 0,(t) hence, the output is
periodic in period T, where T is the reciprocal of the bit rate. By proper
choice of wor a signal is obtained with a strong frequency component

w(P) dl' = ±7r/2.
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Fig. 23 - Change in output of the limiter vs frequency for several values of gain.
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Fig. 24 Differential phase detector and timing recovery circuit.

at the bit rate. This signal is used to lock an oscillator at the bit rate.
The oscillator, in turn, provides the timing signal to the regenerator.

If war is chosen to be an odd multiple of it/2 and r is chosen equal
to T, the reciprocal of the bit rate, one sees from (2) and (3) that at
the sampling instants, [t = (n+i)T], the output is given by

V(t) = cos f(in -1)7 ± 7/21 = +1.
Thus, under these conditions the device is the desired differential -phase
detector for this signal.

3.10 Regenerator

The regenerator consists of a balanced -line logic element23 which
is a modification of the standard Goto-pair circuit. The input signal
is applied at the midpoint between the two tunnel diodes and a
timing signal is applied across the pair of tunnel diodes as shown
in Fig. 26. Ideally, the timing signal causes one and only one of
the diodes to switch once each time -slot. The input signal deter-
mines which of the two diodes switches. When one of the diodes
switches, the resultant voltage drop across the other diode inhibits its
switching and this voltage drop occurs across the output of the re -
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Fig. 25-Basic differential phase detector or timing recovery circuit.
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generator. If the diode labeled D1 in Fig. 26 switches, the voltage pulse
at the output of the regenerator is negative and, correspondingly, if D2
switches the voltage pulse is positive. The transients initiated by the
switching of the diode travel down the delay lines and are reflected
with inverted polarity back to the diodes by the low -impedance termi-
nation. These reflected signals reset the diode to its original condition.
Thus, the information content of the signal is translated into a sequence
of polar baseband pulses at the regenerator.

E. G. Herzog24 has discussed limitations on the speed of operation
of the Goto-pair. His conclusions also apply to the balanced-line logic
element. He showed that for bias voltages above a certain critical
value the Goto-pair has a stable zero output state in addition to stable
positive and negative output states. Due to the junction capacitance
and the series inductance of the diode, it takes a finite time (talking
time) for one diode to indicate to the other that it has switched. Thus,
with a small input signal each diode can go to its second positive
resistance region and if the synchronizing voltage passes the critical
value too soon they will be left there and the zero output state will re-
sult. Also, we have observed that if the voltage does not pass the criti-
cal values soon enough both diodes will return to their first positive re-
sistance region resulting in an intermediate amplitude output. In order
to minimize the probability of occurrence of these undesirable opera-
tions, the following properties are desirable for the diodes: First, the
diode must have adequate peak current (if the peak current is too
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TIMING INPUT
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Fig. 26 - Regenerator circuit.
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low, the load will prevent bistable operation) ; second, it must have low
junction capacitance (this decreases the talking time) ; third, the
magnitude of the product of the negative resistance and the junction
capacitance should be low enough to make the switching time short
compared with a time -slot; and finally, the diode should have low
series inductance (this decreases the talking time). For the regenera-
tor, the third condition must be strengthened to make the switching
time short compared to the round-trip time on the delay line. Since
several round trips are required for the pulse to die out, the switching
time of the diodes in the balanced -line logic element must be several
times faster than for a Goto-pair.

TD -252A germanium tunnel diodes have been found to meet the
above requirements. They have a series inductance of 1.5 nli, a peak
current of 4.7 mA and a junction capacitance less than 1.0 pF. The
diodes are mounted in the circuit of Fig. 26 in the manner shown in
Fig. 27. This circuit has been built in such a way that the diodes are
placed as close together as possible in order to eliminate lead induc-
tance. By building the diodes into the transmission line, connector
mismatches have been eliminated. The inductance of the leads of the
input and output resistors has very little effect on the output pulse and
it is believed that it steers the current from one diode to the other dur-
ing the short time required for switching. Fig. 28 (a) shows an eye
diagram of a low signal-to-noise ratio input signal to the regenerator
and Fig. 28(b) the resulting output signal of the regenerator. This fig-
ure illustrates the ability of the regenerator to remove noise from the
signal.

3.11 FM Deviator

The FM deviator is basically a tunnel -diode relaxation oscillator.
The frequency of oscillation of the tunnel diode in this type of circuit
is extremely sensitive to bias voltage, allowing it to be driven by the
balanced -line logic element. Fig. 29 shows the circuit. Tests on a low -
frequency prototype circuit showed that the oscillator could be tuned
over a bandwidth of more than half an octave in a time interval cor-
responding to less than 1 RF cycle. The total tuning range of the
L -band deviator was greater than an octave, as shown in Fig. 30.

The circuit of Fig. 29 was built for use in L -band using conventional
(as opposed to printed) circuits with the circuit dimensions kept as
small as possible. Fig. 28(c) shows the differentially detected output
eye of the deviator.
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Fig. 27 - Mechanical layout of the regenerator.

3.12 Up -Converters

The chief goal in designing the up -converters was the maximiza-
tion of output power over the band from 51.4 to 52.0 GHz when used
with a local oscillator supplying + 3 dBm of power at 50.4 GHz.
Typical units exhibited 6 -dB LO to RF conversion loss across the
band. Fig. 31 shows the frequency response of a typical unit. Both
GaAs Schottky barrier diodes and planar diffused gallium arsenide
varactor diodes were used with similar results-the latter exhibiting
slightly lower conversion loss.

The physical structure for the units was similar in form to that of
the down -converter described in Section 3.6. An E -H tuner preceded
the converter block on the millimeter -wave side and was used to match
the input impedance at the LO and signal band frequencies. All of the
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( a )

(C)

( b )

Fig. 28 - Eye diagrams. (a) Degraded regenerator input. (b) Regenerator out-
put. (c) Regenerated differentially detected IF.

diodes were operated at zero bias voltage. A more detailed description
of planar diffused diode performance is given in Ref. 15.

3.13 Power and Space Requirements

The baseband circuitry of the repeater requires approximately 0.3
watts and the IF circuitry requires approximately 1.5 watts. Thus, the
power requirement per channel per repeater is approximately 1.8 watts
exclusive of the power required for the millimeter -wave power source.
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Fig. 29 - Deviator circuit.
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The total power required per channel per repeater can thus be ex-
pressed by

Total Power Required = 1.8

+Millimeter
-Wave Power Required Watts

Efficiency of Millimeter -Wave Source

The experimental repeater included many commercial components
and no serious thought was given to miniaturization. Even so, it oc-
cupies only a volume of the order of 2 cubic feet (exclusive of band -
splitting filters). With printed circuit techniques, the total volume per
channel per repeater can be of the order of 0.5 cubic feet or less.
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Fig. 31 - Varistor up -converter data. (a) Output versus input data. ()) Fre-
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IV. SYSTEM CONSIDERATIONS

4.1 Error -Rate as a Function of Signal -to -Noise Ratio

The error -rate versus signal-to-noise ratio has been calculated in a
manner which includes the effects of non -ideal regeneration of the
signal and of intersymbol interference.22 Some results of this calcula-
tion are shown in Fig. 32 for an ideal regenerator and for a regenerator
which has a threshold of operation, T, 9 dB below the expected signal
level, S. The term threshold of operation is defined as follows. Suppose
that the expected value of the signal at the input to the regenerator is
V1 or - V1. The regenerator will then regenerate a positive or negative
output pulse according to whether the input is positive or negative.
However, if magnitude of the signal is too small the regenerator will
not function properly. The minimum voltage at which the regenerator
will function properly is the threshold of operation.

It is impossible to consider quantitatively the effects of intersymbol
interference unless the waveform of the signal is known accurately.
However, it is plausible to assume that the intersymbol interference
contributes phase shifts of the order of a few degrees in the sense
described in Ref. 22. For that reason, Fig. 32 shows the results of error -
rate versus signal-to-noise ratio for the case where. there is no inter -
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symbol interference and for the case where the intersymbol interfer-
ence corresponds to a phase shift, 8, of 10 degrees. These values should
constitute the bounds on the expected error -rate. From Fig. 32 one
observes that the expected value of S/N for 10-9 error rate lies between
13 and 14 dB.

4.2 Model of a Systent
Fig. 33 shows a model of a system which was used as an aid in the

design of the repeater. This model is not, an attempt to describe or
design a complete system, it is intended only to give some perspective
and insight into those factors which influenced the design of the
repeater.

An actual system would use both frequency division and time
division multiplex to separate individual voice channels. One possible
arrangement of filters to separate the individual frequency multiplexed
channels in the system is shown in Fig. 34. The skew arrangement of
the filters is chosen to offset in part the variation of loss with frequency
in the waveguide bandwidth. That is, since certain channels experi-
ence greater loss in the medium, the filters are arranged so as to give
less loss to these channels at the expense of channels which have suf-
fered less loss in the medium. Since the shape of the loss -versus -fre-
quency curve is a function of repeater spacing (the relative loss in dB
at two frequencies depends on the repeater spacing), the details of the
arrangement of the filters are a function of repeater spacing. As an
illustrative example, we assume a repeater spacing of 15 miles and
attenuation curves for the medium given by Fig. 1. In addition, we
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Fig. 33-Illustrative model of a system.
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Fig. 34 - Channel -dropping filler array for the illustrative example.

make the assumption that the power available from realizable solid-
state sources falls off at a rate of 3 dB per octave in frequency." The
loss of each band -splitting filter is taken to be 1.5 db.12 Based on the
data of Figs. 9 and 10, conservative estimates of channel -dropping
filter losses are 1.0 dB to the dropped channel, 0.5 dB to the adjacent
channel and 0.2 dB to all other channels which pass through them.

Fig. 35 shows the waveguide loss as a function of frequency for a
15 mile repeater spacing. It also shows the power at the input to a
repeater relative to the power at the output of the up -converter of
the 50-GHz channel (based on the curve of Nutt in Fig. 1 and the
assumed 3 dB per octave fall off in available power). The points in
the figure then show the total relative signal power at the output of
the channel -dropping filter for each channel (based on the filter ar-
rangement shown in Fig. 34). The term "relative power" here means
the power relative to that available at the output of the up -converter
in a 50-GHz channel. From Fig. 35 one observes that in the worst case
the relative signal level is -58 dB for this model. Thus, the repeater
gain (defined as the ratio of the output power of the up -converter to
the signal power at the input to the. down -converter which gives an
error rate of 10-0) must be 58 dB. Since this is the value which gives
the maximum acceptable error -rate, it seems expedient to include a
6 -dB margin in the design of the repeater and thus the design goal for
a 15 -mile repeater spacing is a gain of 64 dB.
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Fig. 35 - Ratio of power at the output of the channel -dropping filters to power
at reference point. The power reference point is the output of the up -converter of
the 50-GHz channel of the preceding repeater.

In this model, there are 100 channels spaced at 600 -MHz intervals
across the band. The experimental repeater described here uses a
500 -MHz bandwidth set by an inexpensive commercially available
five -section Tschebycheff filter. (Only a slight degradation is experi-
enced by using a 400 -MHz filter of the same type.) Even smaller band-
widths might well be practical if suitable attention is given to the
phase characteristic of the filters. Thus, the 600 -MHz spacing assumed
in the model is a conservative estimate. The capacity of the waveguide
based on this model is 30,000 Mb/s. Since 72 Kb/s are required for
each voice -grade circuit, the capacity of the system would be 416,000
voice -grade circuits or 208,000 two-way voice channels.

4.3 Theoretical Gain
The gain of the repeater in the sense in which it is used here can be

expressed as
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G = (PLO - Luc - L,) - (Loc F KTB + S/N), (4)

where

PLo is the local oscillator power,
Luc and Lpc are the conversion losses of the up- and down -con-

verters, respectively,
L, is the loss in the isolator, the waveguide between the LO and

the up -converter, and the injection filter
F is the noise figure of the first IF amplifier (since one finds ex-

perimentally that aside from conversion loss, the noise figure
of the down -converter is negligible),

KTB is the thermal noise in the pass band of the IF section, and
S/N is the signal-to-noise ratio required for the acceptable error -rate.

As stated in Sections 3.12 and 3.16, one finds experimentally that

Luc = 6 dB, LEoc = 6 dB and F = 3.7 dB.
Using a 500 -MHz bandwidth, the thermal noise power is -87 dBm.
Therefore, the required local oscillator power for 15 -mile repeater
spacing is

PLO = S/N - 7 dBm.
If one assumes a value of 14 dB for S/N (from the discussion in Sec-
tion 4.1) and 4 dB for LI, he obtains 11 dBm as the required local
oscillator power at the up -converter for a 15 -mile repeater spacing.
Since 0.5 mW of LO power is required for the down -converter, the
total millimeter -wave power requirement for a 15 -mile spacing is
approximately 12 dBm.

V. EXPERIMENT AND RESULTS

5.1 Description of the Apparatus

The experimental apparatus used in the experiments to be described
in Sections 5.2 and 5.3 consists of a transmitter, a receiver, and the
repeater described in Section III as well as the necessary equipment
and circuits for counting the errors made by the repeater, the receiver,
or both. The transmitter is shown (in block diagram) in Fig. 36. The
random -word generator consists of a regenerator of the type described
in Section 3.10 driven by a similar regenerator which is, in turn, driven
by differentially -detected wideband noise generated in a pair of X -
band traveling -wave tubes. The random -word generator drives an
FM deviator of the type described in Section 3.11. The remainder of
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the transmitter is identical to the portion of the repeater which fol-
lows the FM deviator.

Just as the transmitter is a duplicate of the second half of the
repeater, the receiver is a duplicate of the first half, beginning with
the down -converter and ending with the regenerator. It is shown in
Fig. 37.

All of the regenerators (including the random -word generator of the
transmitter) are built with two outputs-one to drive the next follow-
ing component in the circuit, the other to serve as a monitor port or
as a source of pulses for error counting. The three pieces of apparatus,
the transmitter, the repeater and the receiver are built so that they
can be interconnected in either of two ways; the transmitter can be.

connected to the repeater which is in turn connected to the receiver,
or the transmitter can be connected directly to the receiver. This
affords an A -B test of the performance of the repeater which is the
heart of the gain experiment to be described in Section 5.3.

5.2 Error -rate vs S/N Experiment

One of the experiments performed with this apparatus measured
the error -rate as a function of signal-to-noise ratio. This experiment
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was performed for the four possible cases, namely, errors introduced
by the transmitter to repeater hop, those introduced by the repeater to
receiver hop, those introduced by the transmitter to receiver hop, and
those introduced by the complete transmitter to repeater to receiver
hops. Allowing for the differences in the noise figures of the actual
devices used in each of these components, the results were quite con-
sistent. Therefore, the experiment will be described for one case only,
transmitter to repeater.

The signal from the extra output of the random word generator was
delayed in a transmission line for a time interval equal to the time for
the transmitted signal to be regenerated. The outputs from the random
word generator and from the regenerator of the repeater were then
combined in a "baseband hybrid" as shown in Fig. 38. The output of
this "hybrid" is 0 if the two input pulses are of the same polarity and
is some amount Ev if the input pulses differ in polarity indicating
that an error was made. These output pulses drive a pulse -height
discriminator which has two output channels. This device delivers a
pulse to one of its two outputs if the magnitude of the input pulse
exceeds a certain threshold value. If the input pulse is positive the
output occurs in one channel; if the input is negative the output oc-
curs in the other channel. These "error -pulses" are counted on a dual-
channel counter.

The experimental procedure is quite similar to that used in perform-
ing similar experiments on a prototype model of the IF portion of this
repeater. It is described in some detail in a previous paper26 and need
not be repeated here. Certain differences should, however, be pointed
out. First, the error -counting technique has been improved by the
use of the dual -channel counter as described above. Second, in this
experiment the signal-to-noise ratio was adjusted by changing the
signal level and using the actual amplifier noise instead of injecting
additional noise into the input of the repeater as was done in the experi-
ment of Ref. 26. Finally, in addition to the checks on signal statistics
listed in Ref. 26, the IF signal was observed on a spectrum analyzer.
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The biases on the random -word generator were adjusted until the
spectrum was symmetric and free of "horns" or spikes (which are
indicative of periodicities and hence nonrandomness in the signal).

The results of this experiment are shown by the points plotted in Fig.
32. Comparison between theory and experiment can readily be made
from this figure.

5.3 Repeater Gain Experiment
The second experiment consisted of setting up two arrangements

of components mentioned in Section 5.1 and setting the attenuators
between these components to the value which gave an error rate of
one error in 109 pulses (the assumed acceptable error -rate). This ex-
periment is illustrated in block diagram form in Fig. 39. The gain of the
repeater (in the sense of Section 4.3) is then given by

(Loss from Trans. to Rep.) + (Loss from Rep. To Rec.)

- (Loss from Trans. to Rec.)

after allowance is made for loss in the passive millimeter -wave cir-
cuitry of the repeater. Experimentally, the loss between the trans-
mitter and the receiver was found to be an amount Ao, the loss be-
tween transmitter and repeater plus the loss between repeater and
receiver was found to be Ao + 43 dB for 10-9 error probability at each
regenerator. The loss in the passive millimeter -wave circuitry of the
repeater was found to be 14 dB. Thus, the experimentally determined
gain of the repeater is 57 dB. The measured local oscillator power is
6.0 dBm. From this one concludes that an additional 7 dB of LO power
or a total of 13 dBm is necessary to achieve the 64 -dB gain required
for 15 -mile repeater spacing with a 6 -dB margin (from Section 4.2).
This is in good agreement with the 12 dBm predicted by the argument
of Section 4.3.

VI. CONCLUSIONS

A solid-state millimeter -wave repeater has been built which operates
at a 306-Mb/s rate with an error -rate performance within 0.5 dB of

fFROM ANY 2 "BASEBAND
REGENERATORS HYBRID"
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AMPLIFIER

POLARITY AND
AMPLITUDE

DISCRIMINATOR

Fig. 38 - Error -counting circuitry,

COUNTER
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RECEIVER

Fig. 39- Experimental arrangement for gain test. In = loss from transmitter
to receiver, = loss from transmitter to repeater, L. = loss from repeater to
receiver.

the theoretical value. It gives a measured gain of 57 dB with a local
oscillator power of 6 dBm. Since the repeater gain is proportional to
LO power it is concluded that a 13-dBm local oscillator would give the
64 -dB gain necessary for a 15 -mile repeater spacing with a 6 -dB
margin and a suitable channel -dropping filter array for over one hun-
dred 300-Mb/s channels.
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APPENDIX

A.1 Introduction
Several types of delay distortion equalizers have been proposed dur-

ing the past several years. Five of these equalizers will be discussed
in the following paragraphs. Any of the five could, in principle, be
used to equalize the delay distortion of the waveguide; economic con-
siderations will dictate which is the most practical. It might, for eco-
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nomic reasons, be desirable to use more than one type of equalization.
For example, frequency frogging (Paragraph A.3) might be used to
give partial equalization with a transversal equalizer used to complete
the equalization. Other possible combinations will suggest themselves
as the advantages and disadvantages of each type of equalizer are dis-
cussed.

Delay distortion is inversely proportional to the cube of the fre-
quency. The delay distortion introduced across a 500 -MHz band by
15 miles of waveguide varies from 34 nsec at 40 GHz to 2.2 nsec at
100 GHz. Therefore, considerable equalization is necessary in the lower
bands and some equalization is desirable (although not required) in
the upper bands.

The pertinent characteristics of the delay distortion are summarized
as follows. The time delay, T, in a length, 1, of waveguide can be writ-
ten as

T = 1 = 1 (90

v, caw

where v, is the group velocity in the medium and the. waveguide
propagation constant, is given by

0 = 1/1 - (codo-,)2.

Expanding p in a Taylor's series about (00, the center angular fre-
quency of the channel, gives

T = 1[13, 2132(w - coo) + 3133(co - coo)2 +  ], (5)

where /31, /32 are the expansion coefficients of the Taylor's series
ford.

For frequencies and bandwidths of interest the terms of order /33 and
higher are negligible for the 2 -inch waveguide. Since the /31 term is a
constant time delay, the only source of distortion is the /92 term.

A.2 Reflection Equalizer
The reflection equalizer, proposed by J. R. Pierce and W. S. Alber-

sheim,27 is illustrated in Fig. 40. Since the higher -frequency compo-
nents of the signal penetrate deeper into the taper before being re-
flected than the lower frequency components, their round trip transit
time is longer. By properly designing the shape of the taper the distor-
tion of the guide can, in principle, be exactly equalized. Equalizers of
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Fig. 40 - Reflection equalizer.

this type (operating at X -band) have been built by K. Woo28 and
also by C. C. H. Tang.29 This type of equalizer can be built with an
adjustable delay characteristic; as an alternative, one might build a
small number of "stock" tapers which give approximate equalization
and use a different type of equalizer to "trim" the equalization.

A.3 Transmission Equalizer
A second type of delay distortion equalizer is the transmission

equalizer shown in Fig. 41. If the frequency spectrum of the signal in
the channel is inverted and this signal is then passed through a short
piece of waveguide near cutoff the delay distortion can be equalized
since the frequency inversion causes a sign reversal in the )3,, term.
Writing the transit time in the medium as

Tm = m + 2/32.(0) - coo)]
and the transit time in the equalizer as

T = 1,[0,, + 202400 - 303,(w - C1))2 + 17

one obtains for the total transit time

T. Te = [1.01.

2[02.1. - 132.1.1(co - wo) 333.1.(coo - CO2 + 
The cutoff frequency of the equalizer can he chosen such that

02m1, = 132,i, .

INPUT
FREQUENCY
INVERTER

wAvEGUIDE
NEAR

CUTOFF

Fig. 41-- Transmission equalizer.

OUTPUT
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The delay distortion of the medium is thereby removed. If, however, le
is short, the equalizer must be operated quite near cutoff in order to
satisfy this equation. If le is too short, the terms of order [13, and higher
may contribute significant distortion to the signal. This, in fact, sets
the lower limit on the length of the transmission equalizer. The mini-
mum length of the equalizer depends on how much of this distortion
is tolerable (which is not precisely known) and on the carrier fre-
quency used in the equalizer. However, lengths of the order of ten
feet or less are probably adequate for carrier frequencies above 50
GHz. For frequencies between 40 and 50 GHz, the length of the
equalizer would probably be prohibitive for channel bandwidths of
500 MHz. However, transmission equalizers might be attractive as
"trimming equalizers" for use with "stock" tapers or for use with the
frequency -frogging scheme discussed in the next section.

Recently, J. H. Johnson3° has built a transmission equalizer. His
tests indicate that at the frequencies of interest, the phase charac-
teristic is in agreement with the lossless theory and that the attenua-
tion will not be prohibitive.

A.4 Frequency Frogging
The third approach to delay distortion equalization is due to D. H.

Ring.31 It is known as "frequency frogging" and consists of replacing
every other regenerative repeater in the system with nonregenerative
repeaters that invert the frequency spectrum of each channel and
provide linear gain. This scheme is illustrated in Fig. 42. The medium
itself in span 2 (see Fig. 42) then acts as a long transmission equalizer
for span 1. If the spans are of equal length the equalization is exact
except for the contribution from the )33, p5, etc., terms in (5) which is
negligible for reasonable channel bandwidth and repeater spacings. If
the spans are of unequal length, say x1 and x2, respectively, only the
distortion 2132(0)-(00) (xi -x2) must be equalized. Since one would have

2t2(co (00(xi - x2) << 202(6) C.14)X1

the "trimming equalizer" required in such a system could be a com-
paratively simple transmission or transversal equalizer.

REGENERATIVE
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POWER =Pr)

--
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INVERTING
REPEATER
(OUTPUT
POWER =

??
SPAN 2

Fig. 42 - Frequency frogging.
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The chief disadvantage of frequency frogging is the requirement
that the nonregenerative repeater be linear.* This will probably result
in lower available power at these repeaters than is attainable at the
regenerative repeaters. The effect on repeater spacing can be calcu-
lated. If we define P,. and P1 to be the average power available at the
output of regenerative and linear repeaters, respectively, xo to be the
maximum allowable spacing between repeaters in a system having all
regenerative repeaters and ideal delay distortion equalizers, and x1
and x2 to be the lengths of the spans in the frequency -frogging sys-
tem, the values of x1 and x2 which maximize the quantity x1 ± x2 are
given by

x, = - 1 miles

10 P
x2 = -3- 1 - Log miles.

(A loss of 3 dB per mile has been assumed in the above equations.)
The fractional decrease in repeaters spacing using this scheme is thus,

1 -5 Log -Pr 1 + (Pr/Pi) dB
2x0 - (x1 + x2) 3 PI 6

2x0 xo xo

which, for example, amounts to only about 12 percent for P,./P/ = 8
dB and x0 = 20 miles. The amount of delay distortion which must be
made up by a "trimming equalizer" is equivalent to A miles of guide
where

A = x, - x2 = 10 LogP,

For the example cited above, A = 2.67 miles.

A.5 Transversal Equalizer
Baseband transversal equalization can be used in a linear system

to improve the pulse response.32 This type of equalizer functions by
adding time shifted images of the input pulse to itself in such a man-
ner that the pulse response of the system is set to zero at a finite num-
ber of instants an integral number of time slots from the pulse center.
The addition of the time shifted images of the pulse is usually carried
out by means of a tapped delay line and a summing network.

* Since the delay distorted signal at. the nonregenerative repeater may possess
amplitude modulation, this repeater may have to be linear up to power levels
higher than the average signal power.
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Since the conversion to and from baseband in our system is non-
linear, baseband equalization cannot be used. However, an IF trans-
versal equalizer can be used. A possible configuration of the circuit is
shown in Fig. 43. It can be shown that any realizable transfer function
can be approximated over a finite band using this type of circuit."
Thus, this circuit can be used to compensate for the waveguide delay
distortion.

An alternate approach to transversal equalization can be used which
is similar to baseband transversal equalization. It can be shown by
taking quadrature components that the binary FM-DCPSK signal is
equivalent to two polar pulse trains in phase quadrature. By proper
choice of tap gains and phase shift the response of the system can be
set to zero at instants that are multiples of a bit interval from the
pulse center.

Computations made by one of the authors, JEG, which will be pub-
lished at a later date, show that transversal equalizers with about 11
taps can be built to equalize the channels at 50 GHz and that above
70 GHz extremely good equalization can be achieved with 5 or fewer
taps. Also, under certain circumstances, the phase shifters can be
eliminated.

A.6 Equalization by Quasi -Periodic Structures
In a recent paper," H. S. Hewitt has described a tapered meander

line filter, shown in Fig. 44, which produced 300 ns of nearly linear
delay distortion over a frequency band from 1.1 to 1.7 GHz. This de-
vice, which had a total length of less than 18 inches, demonstrates the
feasibility of using a filter of this type. It is believed that this type of
structure deserves careful consideration.
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Fig. 43 A microwave realization of the transversal equalizer.
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A Quantitative Theory of Type Noise
Due to Interface States in Thermally

Oxidized Silicon
By E. H. NICOLLIAN and H. MELCHIOR

(Manuscript received June 22, 1967)

A quantitative theory of 1/f type noise is derived from the distribution
of trapping times for charges in interface states. The distribution of trapping
times has been recently explained quantitatively by means of a random
distribution of surface potential caused by a random distribution over the
plane of the interface of fixed charges located in the oxide. This model,
which agrees with the interface state time constant dispersion measured
by the MI S conductance technique, leads to a noise spectrum which is
independent of frequency at very low frequencies, tends towards a 1112
dependence at high frequencies, and has an extended 1/f frequency de-
pendence at intermediate frequencies. The mechanism for time constant
dispersion is independent of temperature and silicon resistivity; it depends
only on the majority carrier density at the silicon surface, the interface
state density, and the density of fixed oxide charges. The dependence of
open circuit mean square noise voltage on these parameters and frequency
are illustrated for an MOS capacitor.

I. INTRODUCTION

It has long been recognized that states at the Si-Si02 interface which
exchange charge with the silicon can give rise to 1/f type noise. Re-
cently, Sah and Hielscherl have shown by experiment that the 1/f
noise of a metal -Si0.-silicon (MOS) capacitor is directly related to
interface state density and capture conductance over the energy gap.
Random capture and emission of carriers by interface states results
in fluctuations of trapped charge. In an MOS capacitor, these charge
fluctuations cause random changes in admittance constituting noise.
These charge fluctuations can be calculated from the dispersion of
interface state time constants. A major obstacle to a quantitative
theory of 1/f type noise arising from interface states has been the lack

2019
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of an experimentally established mechanism for interface state time
constant dispersion. This obstacle has recently been removed. With
the MIS conductance technique,2, 3.4 accurate small -signal measure-
ments have been made of interface state density and capture con-
ductance over the middle half of the energy gap in the Si-Si02 system.
A large interface state time constant dispersion was observed in the
depletion and accumulation regions. An explanation which quantita-
tively fits these measurements essentially without any arbitrary ad-
justable parameters is that the dispersion arises from a random dis-
tribution of surface potential over the plane of the interface. The
random surface potential distribution is in turn caused primarily by
a random distribution of built-in oxide charges and charged interface
states over the plane of the interface. The noise measurements of Ref.
1 and the small signal conductance measurements of Ref. 2 through 4
suggest that a quantitative explanation of 1/f type noise of an MOS
capacitor can be given in terms of the interface state time constant
dispersion caused by the random distribution of surface potential and
the resulting capture conductance.

It has been reported that low -frequency noise generated at semicon-
ductor surfaces shows a 1/f" spectrum with n 1 over many decades
of frequency.6, 6 Various mechanisms have been proposed to explain
this, such as slow states in the oxide or at the oxide -air interface or
slow time dependent changes in the density of states at the semicon-
ductor surface.6, 7.8 Atalla, et a1,6 have shown that surface generated
1/f noise extending over many decades of frequency is considerably re-
duced in magnitude when silicon is thermally oxidized. The noise theory
presented here is based on conductance measurements made on ther-
mally oxidized silicon samples prepared as described in Ref. 4. In these
samples, oxide thickness is greater than 500 A. These samples have
stable electrical characteristics at room temperature under bias. Also,
losses in the oxide layer and bulk silicon are found to be negligible.2. 4
Thus, they should be free of noise mechanisms other than random emis-
sion and capture of carriers by interface states having a time invariant
density. The case where interface state transitions dominate the loss
as in the measurements of Ref. 4 will be the only case considered here.

This work clearly shows that in thermally oxidized silicon, surface -
generated noise arising from random emission and capture of carriers
by interface states does not explain a 1/f noise spectrum over many
decades of frequency. Measurements in which a 1/f noise spectrum is
found over several decades must involve additional mechanisms as
mentioned.
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The noise spectrum of a single level state, as is well known,°. 10 is
independent of frequency at low frequencies and has a 1/12 frequency
dependence at high frequencies. We shall show that the time constant
dispersion found by conductance measurements introduces an inter-
mediate range in the noise spectrum with a 1/f type frequency de-
pendence. The resulting open circuit noise voltage appearing across
the terminals of an MOS capacitor has been calculated and found to
have a large 1/f type range and the same dependence on interface state
density and capture conductance as in Ref. 1.

The MOS capacitor is the simplest case of interface state 1/f type
noise to treat quantitatively because there is no dc current flow. The
theory for the MOS capacitor will be worked out here in detail. This
theory can be extended to explain 1/f noise arising from interface
states in MOS field effect transistors and oxide passivated bipolar
transistors because in these devices, time constant dispersion also will
be caused by the random surface potential distribution. This exten-
sion will not be made here.

II. THEORY

We shall use the Nyquist formula for the calculation of noise. This
is justified by the fact that in the MOS capacitor it is reasonable to
assume that the interface states and the silicon are in thermal equilib-
rium with each other at each bias when no dc leakage current flows
through the oxide layer. We shall consider the case where the applied
voltage biases the silicon into accumulation or depletion up to within
a few kT /q of mid gap. In these regions, majority carrier density is
several orders of magnitude greater than minority carrier density at
the silicon surface. Neglecting minority transitions will cause little or
no error at the frequencies considered in this paper (0.1 Hz to 108 Hz)
because in these regions of bias there is virtually no recombination -

generation through interface states or states in the silicon bulk.4 Dif-
fusion from the bulk is also negligible. In the MOS capacitor, recom-
bination -generation and diffusion are the only ways the minority
carrier band can communicate with an external circuit. Thus, the
noise we shall calculate arises primarily by the random capture and
emission of majority carriers by the interface states. Fig. 1 shows the
noise equivalent circuit for the MOS capacitor at a given bias and
angular frequency to. Using the Nyquist formula, the mean square
noise current per cm2 generated in G, (w) is

= 41,-TBG,(co), (1)
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Fig. 1- Noise equivalent circuit of MOS capacitor. C.s is oxide layer capaci-
tance in farads/cm2, Co is depletion layer capacitance in farads/cm2, C9(w) is

the interface state capacitance given by (9) in farads/cm2, Gp(w) is the interface
state equivalent parallel conductance given by (8) mhos/cm2, and <ig2> is the
mean square short circuit noise current in amps2/cm2.

where G, (w) is the interface state equivalent parallel conductance in
mhos/cm2, k is Boltzman's constant in Joules/°K, T is the absolute
temperature in °K, and B is the bandwidth in Hz. The mean square
open circuit noise voltage x cm2 appearing across the terminals x -x
in Fig. 1 is then

4k7'BG(co)

\lig/ G:(co) co2[CD Cp(co)]2

where C (0)) is interface state capacitance in farads/cm2, and CD is
the depletion layer capacitance in farads/cm2.

The problem in evaluating (2) is essentially to find the interface
state admittance as a function of bias and frequency. This has been
done previously as described in Refs. 3 and 4. This derivation will be
briefly outlined here. It is based on a model in which the interface
state time constant dispersion required for a 1/f type noise spectrum
is caused by a random distribution of surface potential. A detailed
analysis of this mechanism complete with experimental documentation
can be found in Ref. 4.

(2)

2.1 Depletion
With the silicon surface in depletion or accumulation, it has been

shown experimentally (see Ref. 4) that the ohmic loss in the oxide
layer and the silicon space -charge region is negligible compared to
the ohmic loss arising from transitions between interface states and
the majority carrier band. Bulk silicon series resistance and contact
resistance can be made negligible in practice4 or calculated separately.
Because this paper is restricted to a discussion of noise due to inter-
face states, these two resistances will be ignored.
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A single level interface state is not, observed experimentally. Rather,
the interface states are observed to be comprised of energy levels so
closely spaced in energy that they cannot be distinguished as separate
levels. They appear as a continuum over the bandgap of the silicon.
The time constant dispersion observed is larger than expected for a
continuum. A random distribution of surface potential caused by a
random distribution of fixed oxide charges over the plane of the inter-
face is found to quantitatively explain the time constant dispersion
measured. To analyze this mechanism, we proceed as follows. Divid-
ing the plane of the interface into a number of squares of equal area,
the largest area within which surface potential is uniform is called
the characteristic area of the random fixed oxide charge distribution.
The admittance of the continuum of levels located in a characteristic
area can be obtained by integrating the admittance of a single level
over all the levels distributed in energy from the valence band to the
conduction band. The resulting total interface state admittance in a
characteristic area is4

= -I-
,v2 N,/0(1 fo)

kT E. 1 ± jcafolc,,p '
(3)

where q is the electronic charge in coulombs, j = N is the
density of interface states cm -2 X eV-', fo is the Fermi function at a
given bias, 4, is the majority carrier capture probability in cm3/sec,
71.8 is the majority carrier density at the silicon surface in cm', and
di' is a small energy interval in the bandgap in eV. The integrand of
(3) is sharply peaked about the Fermi level with a width of about
kT /q. Thus, (3) can be easily integrated because both N and c,, are
experimentally observed to vary only slightly over several kT/q in a
range of bandgap energy of about half the gap centered about mid -gap.
Making the substitution fo(1 - fo) = (kT/q)(dfoldili) transforms (3)
into an integral over fo . Integrating from zero to unity yields

Y,° = In (1 + 0.)97,28) jq ILI arc tan (corm),2r,
where Tm = 1/cpp.o. Equation (4) was first derived by Lehovec.11

Typically Ngg is in the range 1010cm-2 x eV -1 to 1011cm-2 x eV -1. This
means that the interface states are spacially separated too far apart
in the plane of the interface for the wave function of an electron in
one center to overlap a neighboring center. Transitions from one cen-
ter to another, even though the centers arc closely spaced in energy,
are therefore, highly improbable. Thus, transitions between the ma -

(4)
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jority carrier band and a particular level in the continuum located in
energy near the Fermi level are not correlated to transitions between
the majority carrier band and other levels nearby in energy.

The total admittance YT is obtained by multiplying the admittance
contributed by each characteristic area Y83 from (4) by the number of
characteristic areas in which the surface potential is between u8 and
u,+du, and integrating over all the characteristics areas under the
field plate. The result is

YT

f0:0

Y P(u.) du. , (5)

where P (u8) du8 is the number of characteristic areas in which the sur-
face potential (in units of kT /q) is between u8 and u,+du, and YR, is
given by (4). P(u8), the probability that the surface potential in a
characteristic area is u,, is obtained from the random distribution of
fixed oxide charges.4 When the mean number of charges in a charac-
teristic area is large, the probability of finding N charges in a char-
acteristic area P(N) is given by the Gaussian approximation of a
Poisson distribution. Transforming P(N) to P(u8) for the case of
small fluctuations (see Refs. 3 and 4), we get

P(u,) = (27ra2)-* exp [-(u, - 7202/24, (6)

where a is the standard deviation of surface potential and ft is the
mean surface potential in units of kT/q at a given bias. The standard
deviation of surface potential is

(q/kT)W(0/a)1a - (7)
WC.x Eai

where W is space -charge width in cm, (2", is the fixed oxide charge density
in coul/cm2, a is the characteristic area in cm', C.x is the oxide layer
capacitance in farads/cm', and esi is the permittivity of the silicon in
farads/cm.

Substituting (4) and (6) into (5), we get

G(w) = ?friN.(27rcr2)-1

f exp [-(u, - ii)2/20-2]7-Z1 In (1 -I- 2720 du, (8)

and

C7,(w) = qN(27ro-2)-1

(AI) - ,/20-1(coT,)-1 arc tan (corm) du, .

-00
(9)
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For p -type, Tm, = 1/cpP80 = (1/cpNA)exp u8, where NA is the accep-
tor density in the silicon in cm -3 and c is the hole capture probability.

These integrals can be evaluated numerically using the experimental
observation that the density of states and the majority carrier capture
probability vary very slowly over several kT of bandgap energy.

The values of Gp(w) and Cp(w) calculated from (8) and (9) can be
used in (2) to obtain the open circuit mean square noise voltage of the
MOS capacitor.

To illustrate the noise properties predicted by the statistical model,
the spectrum of the trapped charge fluctuations in the interface states
is derived from this model. First, the spectrum of charge fluctuations
for a single time constant is°, 10

SA a(co) -
4BN,Tf,(1 - to)

w2T2 (10)

where =TLT and N8 is the density of states cm -2._

The noise spectrum for the continuum of states located in a char-
acteristic area is obtained by integrating (10) over bandgap energy in
a manner identical to (3). The result is

2 (w) = (2kT/OBN a((.02Tm)--1 in + (11)

Integrating (11) over all characteristic areas similarly to (5), (8),
and (9) yields for the actual spectral distribution

S(w) (2kT / q)BN (2702)-

I-.-00
exp [-(u3 - /i.)2/2a2i(co2T..)-1 In (1 ± co.2-7-:,) du, . (12)

Equations (8), (9), and (12) have been numerically integrated on an
IBM 7094 computer using the trapezoidal rule.

III. DISCUSSION

3.1 Depletion

Curve (a) of Fig. 2 shows the noise spectrum for a single level state
calculated from (10) with the Fermi level at the trap level. Curve (b)
of Fig. 2 shows the noise spectrum for the continuum of levels located
in a characteristic area calculated from (11). Both of these curves are
normalized to their low -frequency values. Comparing curve (a) to
curve (b), it is seen that integration over the continuum of levels re-
sults only in minor modifications of the shape of the spectrum. Curve
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Fig. 2 - Log -log plots of normalized spectral density vs corn for the mean
square fluctuations of the number of electrons trapped at the interface states.
Curve (a) is for a single time constant calculated from (10). Curve (b) is for a
continuum of states calculated from (11). Curve (c) is a plot of (12) using a
standard deviation of surface potential of 2.6. All three curves are calculated
using a hole density at the silicon surface of 6.4 x 1012 cm -3 and a hole capture
probability of 2.2 X 10-9 cm3/sec. The conditions: WT. = 1.0, 1.98, and 2.5
correspond to the values of COTm at which the Gr(w)/co curve peaks for each case.

(c) of Fig. 2 shows the noise spectrum calculated from (12) using a
standard deviation of surface potential of 2.6. This curve is also
normalized to its low -frequency value. Curve (c) is seen to be sig-
nificantly different from curve (a) and curve (b). Fig. 2 shows that
the random distribution of surface potential for an experimentally
observed standard deviation of 2.6 is the dominant influence on the
shape of the noise spectrum. In fact, the random distribution of sur-
face potential will be the dominant influence over the range of standard
deviation between 1.8 and 2.6. This is the range found by conductance
measurements on several [111] and [100] crystals both n and p type.

In Fig. 3, curve (a) is the noise spectrum calculated from (12) and
curve (b) the corresponding G,(6))/(0 vs frequency calculated from
(8). For the parameters given in the caption under Fig. 3, G, (0)) bo
goes through a peak of 6 kHz. Fig. 3 shows that:

(i) The noise spectrum becomes independent of frequency at low
frequencies. For the ease considered, this occurs at frequencies much
lower than 6 kHz.
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(ii) The noise spectrum tends towards a 1/12 frequency dependence
at high frequencies. This will occur at frequencies much higher than 6
kHz for the case considered.

(iii) In the intermediate frequency range where G,(0))/(0 has its
highest values, the noise has a 1/f type frequency dependence. For the
case considered here, this occurs around 6 kHz.

A 1/f spectrum is drawn through curve (a) in Fig. 3. To see that the
standard deviation determines the frequency range over which a 1/f
spectrum fits our theory, we transform P(u8) to P(r,).

P(7,) = P(u,) duddr, , (13)

where P(u,) is the probability that the time constant in a characteristic
area is T, . From the relation Tm = (c,,NA)' exp u, given previously,
(13) becomes

P(Tr) = P(u.)7,7,1 . (14)

We expand P(us) given in (6) in a power series. As long as the con-
dition (u. - g.)2/20-2 << 1 holds, all terms in the series except the first
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Fig. 3 - Curve (a) is a log -log plot of (12) vs frequency and curve (b) a log -
log plot of Gp(W) /CO from (8) vs frequency. Both curves are calculated for a
standard deviation of 2.6, a hole density at the surface of 6.5 x 1012 cm -s, a
hole capture probability of 2.2 x 10-9 cm3/sec, an interface state density of
3 X ion cm -2 X eV -1, and a temperature of 300°K,
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can be dropped. Then, from (14), P(r,) = (27ro-2)-1r,,;1 . Superposing
spectra of the type T(1 + 27.2)-1 with a time constant distribution
proportional to 1/r gives a 1/f noise spectrum.' The integration over
the trap levels in one characteristic area results only in a minor change

of shape of a T(1 coy) . - spectrum as shown in Fig. 2. Essentially
only the frequency for G0((0)/0.) maximum shifts to a higher value. Thus,
a 1/f spectrum will fit our theory over a frequency range determined
by the condition (u, - u,)2 /2v2 << 1. The width of the frequency range
given by this condition is determined by a. This can be clarified by an
illustrative example. Let us replace P(us) with a rectangular distribution
of height (2r0-2)-1 and width (2ra2)1. This distribution gives a 1/f
spectrum which is within a factor of 2 of curve (a) in Fig. 3 over four
decades of frequency. The highest and lowest frequencies in this range
are given by

fn,r = fp exp {±(r/2) o1, (15)

where fp is the center frequency of the range and is the frequency at
which the corresponding Gp(())/(0 vs log (0 curve peaks. This center
frequency is proportional to the majority carrier density pso at the
silicon surface and is almost independent of a. For the statistical model
with a between 1.8 and 2.6, f,, = (2.5/270 cnp.. Equation (15) shows
that the frequency range over which the 1/f spectrum is observed de-

pends exponentially on Q.
C,, (w) and Gp((0) given by (8) and (9) are independent of tempera-

ture and silicon resistivity. For a given a, cp, and w, these equations
depend only on pi80 through the variable T, . The relation between Tm
and P. is T. = 1/cpp80. Measurements reported in Ref. 4 show that
capture probability is independent of temperature. For a wide range of
temperature and silicon resistivity, the same value of P80 in depletion
or accumulation can be obtained just by adjusting field plate bias.
Thus, our mechanism for time constant dispersion is independent of
temperature and silicon resistivity. Silicon conductivity type is im-
portant only because the capture probability for electrons is found to
be about ten times larger than for holes.

Fig. 4 shows open circuit mean square noise voltage for two dif-
ferent values of p or bias calculated from (2) using (8) and (9).
Curve (a) is for p = 6.4 x 1012 cm -3 and curve (b) for p = 3.5 X
1014 cm -3 both for a = 2.6. Fig. 4 illustrates the bias dependence of

the noise voltage vs frequency. The curves in Fig. 4 will be a function
of temperature and silicon resistivity as seen from (2).

Fig. 5 shows the influence of standard deviation of surface potential
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Fig. 4 - Log -log plot of open circuit mean square noise voltage of MOS
capacitor vs frequency calculated from (2), (8), and (9). Curve (a) and curve
(b) are for hole densities at the silicon surface of 6.4 X 1012 cm -3 and 3.5 X 1014
cm -3 respectively. For both curves, standard deviation is 2.6, hole capture prob-
ability is 22 x 10-3 cm3, acceptor density is 2.1 X 1016 cm -3, interface state
density is 3 x 1011 cm -2 X eV -1, and temperature 300°K. Mean surface potential
is 8.1 in curve (a) and 4.1 in curve (b). Experimental points are taken from
Fig. 1 of Ref. 1 at a gate voltage of -2 volts. Notice similarity of shape to
curves (a) and (b).

on the mean square noise voltage vs frequency for a majority carrier
density at the silicon surface of 6.4 x 1012 cm -3. Curve (a) is for a
standard deviation of 2.6 and curve (b) for a standard deviation of
1.8. These are the largest and smallest values found by conductance
measurements on several MOS capacitors.

Fig. 5 shows that:

(i) The standard deviation has the greatest influence on the magni-
tude of the mean square noise voltage at low frequencies.

(ii) The range of frequencies over which the mean square noise
voltage has a 1/f frequency dependence increases with increasing
standard deviation of surface potential.

Standard deviation is experimentally observed to be independent of
bias over most of the depletion range. It is shown in Refs. 3 and 4 that
the relation between characteristic area and space -charge width is

al 'Aa., 2W. (16)
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Fig. 5 Log -log plot of open circuit mean square noise voltage of MOS
capacitor vs frequency calculated from (2), (8), and (9). Curve (a) is for a
standard deviation of 2.6 and curve (b) for a standard deviation of 1.8. For both
curves, hole density at the silicon surface is 6.4 x 10" cm -3. Hole capture prob-
ability, acceptor density, interface state density, and temperature are the same
as in Fig. 4. Mean surface potential is 8.1.

Substituting (16) into (7), the fixed charge density causing the
random distribution of surface potential can be calculated from the
standard deviation. For a standard deviation of 2.6, fixed oxide charge
density will be 1 x 1012 cm -2 and for a standard deviation of 1.8, fixed
oxide charge density will be 5 x 1011 cm -2. A doping density of 2.1 x
101° cm -3 and a mean surface potential of 8.1 have been used in calcu-
lating these values of charge density.

It is found experimentally that (8) and (9) are valid over the fre-
quency range from 50 Hz to 500 kHz. The curves in Figs. 3, 4, and
5 cover the frequency range from 10-1 to 108 Hz. In extending these
curves over a wider frequency range than covered by the conductance
measurements, it is assumed that no new important ohmic loss
mechanisms arise at the lower and higher frequencies.

Fig. 6 shows open circuit mean square noise voltage calculated
from (2) using (8) and (9) as a function of mean surface potential.
A frequency of 10 kHz and a standard deviation of 2.6 have been
used in this calculation.
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In the practical case, the noise voltage curve peaks at the same
value of mean surface potential and has the same shape as the equiv-
alent parallel conductance vs it, which would be measured across
terminals x -x in Fig. 1.

At a given frequency, Fig. 6 shows that mean square noise voltage
decreases at values of mean surface potential near flat bands and
saturates in accumulation. A constant density of states with energy
has been used in calculating the curve in Fig. 6. Actually, the density
of states increases rapidly toward the band edges as shown by Gray
and Brown.13 This means that mean square noise voltage would be
greater near flat bands than indicated in Fig. 6. The noise spectrum
in this region, however, would have a shape similar to the curves in
Fig. 4.

The mean square noise voltage decreases at values of mean surface
potential near mid -gap. Because the theory developed here considers
only majority carrier transitions, it does not apply without error when
the Fermi level is within a few kT/q of mid -gap where both majority
and minority carrier transitions become important. For this reason,
the curve in Fig. 6 is shown as a dotted extrapolation in this region.

In the region of weak inversion where the Fermi level has moved
past mid -gap a few kT/q toward the minority carrier band, the time
constant dispersion disappears.3, 4 In this region, the noise spectrum
is expected to be similar to curve (a) in Fig. 2 for a single time con-
stant.
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Fig. 6- Open circuit mean square noise voltage of MOS capacitor vs mean
surface potential in units of kT/q. The curve is calculated from (2), (8), and (9)
using a frequency of 10 kHz and a standard deviation, acceptor density, hole
capture probability, interface state density, and temperature the same as in
Fig. 4. Mid -gap is at fz. = 14.1. Notice similarity in shape to experimental curves
in Figs. 1 and 2 of Ref. 1.
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IV. SUMMARY AND CONCLUSIONS

A theory of 1/f type noise has been presented based on a model for
the interface state time constant distribution which quantitatively
fits MIS conductance measurements. The noise spectra have been
obtained from measured capture conductances Gp(w) through the rela-
tion s (0)) = 4kTB (qw)-2 Cip(w) which is independent of the particular
model used. Thus, the noise spectra presented in this paper are based
solely on measured time constant dispersion.

The mean square noise voltage vs frequency in the model discussed
in this paper depends on three quantities for a given temperature and
silicon resistivity

(i) It depends upon the majority carrier density at the silicon sur-
face which in turn is determined by field plate bias.

(ii) It depends upon the standard deviation of surface potential
which is related to fixed oxide charge density.

(iii) It depends upon the density of interface states as seen from
(8) and (9) combined with (2).

This theory predicts that 1/f type noise due to interface states can
be reduced by decreasing the density of states which can exchange
charge with the silicon and the density of fixed oxide charge. One
consequence is that 1/f type noise can be calculated from the elec-
trical properties of the interface obtained by measuring the admit-
tance of an MOS capacitor.

V. ACKNOWLEDGMENTS

We wish to thank J. A. Morton for pointing out to us the possible
connection between the results obtained from MIS admittance meas-
urements and 1/f type noise. We also thank A. Goetzberger, H. K.
Gummel, and R. M. Ryder for many useful discussions and their
critical reading of the manuscript. A stimulating discussion with
A. S. Grove is also acknowledged.

REFERENCES

1. Sah, C. T. and Hielscher, F. H., Evidence of the Surface Origin of the 1/f
Noise, Phys. Rev. Letters, 17, October, 1966, pp. 956-958.

2. Nicollian, E. H. and Goetzberger, A., MOS Conductance Technique for
Measuring Surface State Parameters, Appl. Phys. Letters, 7, October 15,
1965, pp. 216-219.

3. Nicollian, E. H. and Goetzberger, A., MOS Study of Interface -State Time



NOISE DUE TO INTERFACE STATES 2033

Constant Dispersion, Appl. Phys. Letters, 10, 15 January, 1967, pp. 60-62.
4. Nicollian, E. H. and Goetzberger, A., The Si-SiO, Interface -Electrical Prop-

erties as Determined by the Metal -Insulator -Semiconductor Conductance
Technique, B.S.T.J., 46, July -August, 1967, pp. 1055-1133.

5. McWhorter, A. L., 1/f Noise and Germanium Surface Properties, in R. H.
Kingston (ed.), Semiconductor Surface Physics, University of Pennsylvania
Press, Philadelphia, 1957, pp. 207-228.

6. Atalla, M. M., Tannenbaum, E., and Scheibner, E. J., Stabilization of Silicon
Surfaces by Thermally Grown Oxides, B.S.T.J., 38, May, 1959, pp. 749-783.

7. Bess, L. A., A Possible Mechanism for 1/f Noise Generation in Semiconductor
Filaments, Phys. Rev., 91, September, 1953, p. 1569.

S. Jiintsch, 0., On the Theory of 1/f Noise at Semiconductor Surfaces, (in
German), Verhandlungen der Deutschen Physikalischen Gesellschaft, 6,
1967, p. 35.

9. Sah, C. T., Theory of Low -Frequency Generation Noise in Junction -Gate
Field -Effect Transistors, Proc. IEEE, 52, July, 1964, pp. 795-814.

10. Lauritzen, P. 0., Low -Frequency Generation Noise in Junction Field Effect
Transistors, Solid -State Elec. 8, 1965, pp. 41-58.

11. Lehovec, K., Frequency Dependence of the Impedance of Distributed Surface
States in MOS Structures, Appl. Phys. Letters, 8, 1966, pp. 48-50.

12. Van der Ziel, A., On the Noise Spectra of Semiconductor Noise and of Flicker
Effect, Physica, 16, 1950, pp. 352-359.

13. Gray, P. V. and Brown, D. M., Density of Si02-Si Interface States, Appl.
Phys. Letters, 8, 1966, p. 31.





Stability Considerations in Lossless
Varactor Frequency Multipliers

By V. K. PRABHU

(Manuscript received May 31, 1967)

A general analysis of stability conditions of pumped nonlinear systems
is presented in this paper. The type of instability investigated for these
systems is that which causes spurious tones to appear at any point in the
system in the vicinity of an appropriate harmonic carrier. A set of stability
criteria that assure stability for the system has been given in terms of
scattering parameters of the system. These criteria have then been applied
to investigate the stability of lossless varactor harmonic generators that
have been shown in this paper to be potentially unstable systems. It is then
investigated for these multipliers how instability arises, and how it can
be avoided by proper terminations. For some simple terminations, which
are usually used in practice, sufficient conditions, that assure total stability
of the multipliers, are explicitly given.

I. INTRODUCTION

One of the principal limitations to efficient wideband harmonic
generation with varactor diodes is the generation of spurious sig-
nals." 2, 3 The origin of these signals is usually thought' to be due to a
parametric "pumping up" of some signal in the multiplier passband,
or to a parametric up -conversion process,' or a variation in the average
capacitance of the diode at input frequency.3 A multiplier which con-
tains these spurious signals is considered to be unstable,4 and it is
this type of instability that is investigated in this paper.

At the present time, much is not known about the stability of har-
monic generators, even though it is a widely -known experimental fact
that this is a serious problem in high -efficiency varactor multipliers.2' 4
Very little is also known about the conditions imposed by stability on
the available circuit configurations. Consequently, present design
procedures leave the problem to be solved experimentally, and this is
often done at the expense of efficiency. Very often isolators are used

2035
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to connect a chain of multipliers which are individually stable in order
to guarantee stability of the chain.4 The isolators used in the chain
always lower the overall efficiency.

A start on this problem of stability in multipliers has been made by
Ref. 4 which considers the stability conditions of multipliers of order
26 with minimum number of idlers. Some simple conditions on the
terminations have been obtained4 in order to ensure stability of the
multipliers. This paper extends this analysis to harmonic generators
of arbitrary order and also obtains refinements to the conditions ob-
tained in Ref. 4.

Varactor harmonic generators come under the general class of
pumped nonlinear systems, which are systems driven periodically by
a pump or a local oscillator at a frequency 00.5 For such systems, a
general method can be used5 to obtain the scattering parameters which
relate the small -signal fluctuations present at various points in the
system. In particular, Ref. 5 obtains these scattering relations for
lossless abrupt -junction varactor multipliers of order 211, 38, and 2638,
n and s integers, with the least number of idlers.

These scattering relations for pumped systems have been obtained
in Ref. 5 when the difference frequency w is real and small. The concept
of analytic continuation has been used to obtain these scattering para-
meters when this difference frequency is complex, and is still small
in magnitude.

Stability conditions for pumped systems are then expressed in terms
of the scattering matrix of the system and a certain characteristic
equation is obtained which determines the stability of the system. For
the system to be stable it is necessary and sufficient that the roots of
this characteristic equation must lie external to a region R of the
complex frequency plane. Proper terminations that guarantee sta-
bility of the system can he determined for the pumped system from
this equation.

We then discuss AM -to -PM and PM -to -AM conversion properties
of a set of lossless interstage networks usually used with multipliers.

Stability conditions of lossless abrupt -junction varactor multipliers,
most frequently encountered in practice, are then considered. It has
been shown that if the bias circuit is properly designed(' so that there
are no currents flowing in the vicinity of de the characteristic equation
of the multiplier can be expressed as a product of an AM characteristic

This condition can be achieved in practice by having a bias source with
infinite internal impedance.
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equation and a PM characteristic equation. If any root of the AM
characteristic equation lies in the closed right -half§ of the complex
plane there will not be a finite upper bound to the AM fluctuations
originating at some point in the system. Such a system is defined to be
unstable with respect to its AM fluctuations. Similarly, the PM fluctu-
ations will be finite if and only if all zeros of the PM characteristic
equation lie in the open left -half plane. For total stability of the
multiplier no zero of its AM and PM characteristic equations should
lie in the closed right -half plane.ff

It has been shown for multipliers of order 24 that all roots of the AM
characteristic equation always lie in the left -half plane for arbitrary
values of input, output, and idler terminations.' I It has also been
proved for these multipliers that PM stability is not achievable with
arbitrary terminal impedances.

We then specifically consider PM stability of a 1-2 doubler, 1-2-4
quadrupler, and 1-2-4-8 octupler when their terminations are single -
tuned series circuits.t Simple restrictions to be satisfied by these
terminations are obtained to guarantee PM stability of the multi-
pliers.

Stability of a 1-2-3 tripler for an arbitrary passive idler termination
is the subject of discussion of the next section. We show that a tripler
is potentially unstable for arbitrary input and output terminations.
It has also been proven that a tripler is stable with respect to both
AM and PM fluctuations if its terminations are single -tuned series
circuits.

We next assume that the bias source impedance Z0 can be a finite
number. We then show that the stability characterization of a multi-
plier having finite bias source impedance is the same as that of a multi-
plier having infinite bias source impedance.

For a multiplier of any order, a general method of obtaining the
conditions on available circuit configurations imposed by the condi-
tion of stability has also been presented.

§ The closed right -half of the complex plane is the region of X -plane where Re
X 0. The open left -half plane contains all the points of the X -plane for which
Re X < 0.

If For total stability of systems whose characteristic equation F(X) cannot be
expressed as a product of AM and PM characteristic equations, it is necessary
and sufficient that no zero of F(X) lies in the closed right -half plane.

II All terminations considered in this paper are assumed to be linear and
passive.

t It can be shown that a single -tuned series circuit is a first -order approxi-
mation to any circuit usually used in practice, since the average elastance S. of
the varactor diode is almost always nonzero.?
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II. SCATTERING RELATIONS IN LOSSLESS VARACTOR FREQUENCY MULTIPLIERS

For a pumped nonlinear system a general method can be used' in
order to obtain the scattering parameters which relate the small -signal
fluctuations present at various points in the system.§ Such a method
has been applied' in order to obtain scattering relations for lossless
abrupt -junction varactor multipliers of order 2'3', n and s integers, with
minimum number of idlers. The scattering matrix S is given by

Sa Sil p

8Spa :

1 (- 1) n _
2 (-1)"2-"

3 3

1

0

0

0 (-1)"3-8

1 (-1)"
2"38 2"

3 3

(1)

(2)

It is assumed that the bias circuit is properly designed and that
co/coo << 1.

In order to discuss the stability of the multipliers it is necessary to
include the effect of the external circuits on the scattering matrix 8
of the multiplier. This can easily be done as is shown in the succeeding
sections of this paper. It is also assumed in Ref. 5 that the difference
frequency CO is real and small in deriving (2). Since we shall discuss
stability of multipliers in this paper it is convenient to have a complex
value for this difference frequency. The small -signal terminal voltage
(57),(t) in the vicinity of the carrier frequency ±kwo is represented in
Ref. 5 as

kk(t) = 2 Re [Vak exp (jkwo exp ico)ti (3)

Let the difference frequency have a complex value A. = a+ joi, a and w
real. The terminal behavior of a pumped nonlinear system can be de-

§ Since the notation used in this paper is identical to that used in Ref. 5, details
of these notations are not given in this paper for the sake of brevity. The assump-
tions under which these scattering relations can be obtained are also given in
Ref. 5.

¶ Only lowest order terms in (.0/wo are retained in deriving (2). Since frequency
selective circuits are always used in a multiplier and since the average elastance So
of the varactor can always be included with these external circuits for purposes of
analysis, (2) is a first -order approximation to Sin the vicinity of the carrier.
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scribed by an equation of the form

V = Za_pI

2039

(4)

where V and I are the terminal voltage and current column matrices
and Z is an impedance matrix. We shall now utilize the principle of
analytic continuation' to obtain Z (and other parameters) of the pumped
nonlinear system when the difference frequency is complex. This can
be done by the simple expedient of replacing the variable jco by the
complex variable X = o ± jc wherever it occurs' in (4).§ The truth
of this statement, expressing a property of functions known as their
permanence of form, follows directly from the identity theorem, since
Z and its continuation obviously coincide on the jco-axis.8

We can, therefore, obtain scattering parameters of all pumped non-
linear systems (including those of lossless abrupt -junction varactor
multipliers) when the difference frequency A is complex.

III. STABILITY OF PUMPED NONLINEAR SYSTEMS

We shall first begin with a discussion of stability of pumped non-
linear systems in which small -signal fluctuations may be present at
various points in the system. Since lossless varactor harmonic genera-
tors are specific pumped nonlinear systems all these results and re-
marks also apply to these harmonic multipliers.

A small -signal fluctuation originating at some point in the system
is propagated, in general, throughout the system. We shall define a
pumped nonlinear system to be stable if and only if the amplitude of
small -signal fluctuations at any point in the system is finite for a
finite small -signal fluctuation originating at some point in the system.

We shall make use of some of the results obtained in the study of
stability of linear n -port systems.9.10,11,12.13.14 The stability of a linear
n -port system is usually described by the statement that the roots of a
certain characteristic equation F(X) of the system must be external
to a region R of the complex frequency plane, that is, F(X) 0 in
region R, where X = + jco is the complex frequency variable. Some
set of stability criteria can also be obtained9,10,11.12,13 for a general
class of linear reciprocal and nonreciprocal n -ports. For a reciprocal
twoport, a well-known result by Gewertz" states that it is stable under
all passive terminations if and only if it is passive. This theorem has
been generalized by Youla" to the reciprocal n -port. Very little, how-

§ In order that (Inc(t) is small compared to the carrier at frequency kcon for all
time t, it is required that cr 0.
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ever, is known"'" about the stability of linear nonreciprocal n -ports,
when n 3.

It is shown in Section II that the terminal small -signal behavior of
noise -free pumped nonlinear system can be described byt

V = Zo_oI (4)

where Zo_o is a function of juk, and X = a + jw.
We shall restrict ourselves in this paper to the consideration of

stability of pumped nonlinear systems having only two (physical)
accessible ports. It can be noted, however, that most of the concepts
developed for the system having two accessible ports can be extended
in a straightforward manner if the system possesses more than two
accessible terminal pairs. This will be evident to the reader when we
discuss stability of a tripler elsewhere in this paper.

If /coo and swo are the input and out put carrier frequencies, it can be
shown' that the AM and PM fluctuations at different points in the
system can be related through a scattering matrix S:

_q_a_a_Ls.,_

Spa 1 Spp

(5)

where m and 0 are the AM and PM indexes of the system, Soa is the
AM scattering matrix, etc. We shall write (5) as

b = Sa.

Let the system be terminated in linear passive impedances
Fig. 1) z, , z2 , z, , and with reflection coefficients pi , P2 P3

Th.§ Let us define a matrix p where

P = dia. [Pi , P2 , P3 y 134].

Since zi's are assumed passive, we have

(6)

(see
and

(7)

$ Let 4 be an arbitrary matrix. Then 41, 4*, 4 f, and M, stand for the transpose,
the complex conjugate, the complex conjugate transpose, and the determinant of 4,
respectively. Column vectors are denoted by V, I, etc. A diagonal matrix [Ai So.]
{ oii = 1, i = j; Sii = 0, i s j}, is denoted as dia. [pi, iL2, , an]. ln is the unit
matrix of order n.

§ The linear impedances zf, z2, z,, and z4 are normalized with respect to "char-
acteristic impedances" at corresponding carrier frequencies. Characteristic im-
pedance at input port is the "input impedance"7 and that at the output port is
the "load impedance"?
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I p, I 1, 1 i 4, (8)

for Be X 0.

From (6), we can show that the system is stable if and only if§

A{1, - 0, for Re X 0. (9)

We can, therefore, state that the characteristic equation of the system
is given by

F(X) = A{l, - Sp} = 0; (10)

and for stability of the system it is necessary and sufficient that nc,
root of F(X) lies in the closed right -half planel

2

(rni.)1

0

(801
0

T (eg),-

(mL),

J -

T

3

z4

Fig. 1- Pumped nonlinear system, in amplitude -phase representation, termi-
nated in linear passive impedances.

Theorem 1: We shall now show" that two systems described by
scattering matrices Si and S2 possess identical stability characterizations
if Si and S2 possess identical principal minors" of all order.

The characteristic equation F(X) of a system described by scattering
matrix S for a certain termination described by matrix p is given by
(10). If S is nonsingular, we can write (10) as

- el = 0. (11)

§ The constraints imposed on S for a twoport system may be found in Ref. 14.
These constraints, if satisfied, guarantee stability of the system independent of
the terminations.

II The reader will recognize that F(X) = 0 gives the natural frequencies of the
system. For stability of a system, simple zeros of F(X) on the jw-axis are usually
allowed, since this just leads to sustained response of finite amplitude. However,
multiple order zeros on the jw-axis lead to instability of the system.
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Now O { - p} can be expanded in terms of the elements of p as
follows:

4 4

A{ p} = AS -1 - E pkBk + E pkp,Bk,r ,
(12)

k=1 k<r

where .8, is the principal minor of S-1 obtained by striking out the
kth row and column, 13,, is the principal minor obtained by deleting
the kth and rth rows and the kth and rth columns. It, therefore, follows
that two systems described by scattering matrices Si and S, have
identical stability characterizations if ST' and 821 have identical prin-
cipal minors of all order. We know that ST' and 821 possess identical
principal minors of all order if and only if Si and S, possess identical
principal minors of all order. This proves the theorem.

If F(X) 0 for Re X > 0 for all allowable values of p, we shall say
that the pumped system is absolutely stable. If there is only a set of
p which meets this requirement the system will be considered to be
conditionally (or potentially) stable. It can be observed that if one port
of the system is terminated in a linear passive impedance z and if
the real part of the impedance across any other pair of terminals is
negative for Re X 0, the system cannot be absolutely stable. This
is one of the methods to investigate absolute stability of a system.

IaL
I$L

+0-°-( 000 \--I

VaL

F

Fig. 2- Typical interstage network used in a multiplier. All series and shunt
arms are resonant at frequency kwo.

IV. SOME PROPERTIES OF A CLASS OF LOSSLESS INTERSTAGE NETWORKS

Frequency separation is obtained in harmonic generators by using
linear bandpasst filters. A typical example of a class of filters most
commonly used in harmonic generators is shown in Fig. 2. This filter
has a passband centered around carrier frequency ±kwo . Such filters
with proper terminations are connected at accessible ports of a multiplier
so as to obtain the desired frequency separations and proper impedance

This can be a low-pass filter at the lowest carrier frequency present in the
multiplier and a high-pass filter at the highest carrier frequency.4
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terminations at different carrier frequencies present in the multiplier.§
A multiplier with input frequency coo , output frequency moo , and
interstage networks Ni , Ar2, , Nk , , N. is shown in Fig. 3.7

For such interstage networks it will be shown that the scattering
parameters' I are given by

x n
MULTI PLIER

S_
!S (2

0 S,

0

wo Ni

k coo

n w

0

_L
Z L

V9

Fig. 3- Lossless interstage networks as used in a frequency multiplier.

(13)

so that these networks do not produce AM -to -PM or PM -to -AM
conversion.

Since the series arms are resonant at frequency kwo, and the antires-
onant frequency of the shunt arms is also kcoo, if co/coo << 1, we can write

Vai Zii 0 zio 0 /ai
Vs,

V.0

0 zii 0 zip

Zoi 0 Zoo 0 ic,0
(14)

- Vp0_ 0 Zo i 0 ZOO_

For example, this filter should also act as a matching filter at the input
carrier frequency wo.

lilt is assumed that all idler terminations are losiless.
II Even though Nk is a two -port network we must obtain 4x4 scattering matrix

of this network since amplitude and phase transmission characteristics of the
pumped nonlinear system with which Nk may be used are not necessarily the
same.6 See Ref. 5 for the definitions of amplitude and phase transmission charac-
teristics as used in this paper.
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We shall now assume that large signal voltage at carrier frequency
kwo is in phase with the large signal currentt
We can now write

-Ira; rz, 0 zio 0 iai

Vpi

V cio

0 zi, 0 zio

Zoi 0 Zoo 61

I pi

40
(15)

_V 0_ _0 Z01 0 ZOO_ -40-

Equations (14) and (15) show that the scattering parameters of a
lossless interstage network are given by (13). This shows that if such
interstage networks are used in multipliers which are characterized
by uncoupled§ scattering matrices the resultant scattering matrix is
also uncoupled.

V. STABILITY OF LOSSLESS ABRUPT -JUNCTION VARACTOR MULTIPLIERS

The general analysis of the stability conditions presented in the
earlier sections will be applied to investigate stability of frequency
multipliers of order 2n38, n and s integers, when lossless interstage net-
works of the form discussed in Section IV are used with these multi-
pliers. It will be shown that these multipliers are potentially unstable
and we shall obtain some circuit configurations which guarantee their
conditional stability.

It has been shown' that a multiplier of order 2n3° with any input,
output, and idler terminations can be considered as a chain of n doublers,
s triplers, and n + 2s + 1 interstage networks (see Fig. 4). All these
interstage networks ¶ will be assumed to be of the form presented in
Section IV. A lossless abrupt -junction varactor tripler with an arbitrary
lossless idler termination is shown in Fig. 5. It is assumed that the tripler
is tuned at the idler frequency, Z2(2(.40) = 0, and that oilcoo << 1. By the
techniques of Ref. 5 we can show that the scattering parameters of a
tripler can be represented as

* This condition usually leads to optimum efficiency of multipliers and is
usually satisfied in practice.7

§ The scattering matrix is defined by us to be an uncoupled scattering matrix if
_Sap = Spa = 0.

¶ The average elastance So of the varactor diode is considered as a part of the
interstage networks usd in the multipliers.
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OSCILLATOR N2 Nn+2s-+

Nn +25

1 I

x3 Nn +25+1

Fig. 4 Lossless abrupt -junction varactor multiplier of order 2"3s.
interstage network of the form shown in Fig. 2.

=

where

- 1/2
0 ± 3/2

0
-1

1 + 3/2
(16)

-1 1 ,u - 3/2

0
,u + 1/2 3 -+-1/2

3 0 J

LOAD

is an

1O2
= y2 I

3 I Si 1 2Rc, - 83
I82 I wo

For a tripler, we can hence write

Saa =

and

0

1

 - 1/2
 + 3/2

-1
,u + 3/2_

I -1 1 i.i - 3/2
µ -l- 1 /22 3 A ± 1/2

3 0

(17)

(18)

(19)

(20)

S,, Sp. = O. (21)

Since a doubler,5 a tripler, and all interstage networks used in the
multiplier have uncoupled scattering matrices it follows that general
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Fig. 5- Lossless abrupt -junction varactor tripler with an arbitrary lossless
idler termination Z2.

scattering parameters of multipliers of order 2n38 are given by the
following equation:

S_
L.3aa -Q-0 iS

If such a multiplier is terminated in passive impedances as shown
in Fig. 6, the characteristic equation of the system according to (10)
can be written as

where

Z

z91

(22)

F(X) = 0114 - Sp = 0, (23)

p = dig,. [Pm' Pm2 P01 P02]

n -
Pm VI

L 0 Po _

xN
MULTIPLIER

Zm2

Z92

(24)

Fig. 6 - Multiplier of order N. AM and PM ports of the multiplier are
terminated in linear passive impedances.
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From (22) through (24), we can write

F(A) = { 12 - SanPrn fl2 - Spree}

where

and

= Fa(X)F,,(X),

Fa(X) = { - A50,42,1

Fp(X) = { 12 - &pee

2047

(25)

(26)

(27)

(28)

For stability of the multiplier it is necessary and sufficient that the
zeros of TVA) and Fn (A) lie in a region external to the closed right -
half plane. F. (A) and F9 (A)will be called the AM and PM charac-
teristic equations of the multiplier respectively. It must be borne in
mind that the uncoupled nature of the scattering matrix of the multi-
plier with a properly designed bias circuit enables us to express F(A.)
as a product of F(A) and F(A). If this cannot be done we will not
be able to investigate the nature of roots of F(A) by studying only the
roots of Fa (A) and F,, (A).

For multipliers for which we can express F(A) as the product of
F(A,) and F(A) we can define AM and PM stability independently.
If no zeros of Fa (A) lie in the closed right -half plane we shall say that
the multiplier is AM stable. A multiplier is PM stable if all roots of
F,, (A) lie in the open left -half plane. For total stability of the multi-
plier it must be both AM and PM stable.

5.1 AM Stability of Multipliers of Order 2"
The AM stability of lossless abrupt -junction varactor multipliers

of order 2" wth minimum number of idlers will be considered in this
section. It has been shown5 that a multiplier of order 2" is equivalent to
a cascade of n doublers as shown in Fig. 7. It will be assumed that inter -
stage networks are passive, do not produce AM to PM or PM to AM
conversion, and that the load z is a linear passive impedance. Since

OSCILLATOR x2 Nn x2 Nn+t LOAD
Z

Fig. 7 -Lossless abrupt -junction varactor multiplier of order T. Only AM (or
PM) ports of the doubler and interstage networks are shown in the figure.
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N+1 is a passive interstage network it follows that the amplitude
terminal impedance for the nth doubler is also passive.

Let us now assume that the terminal impedance of the jth doubler is
zi where z1 is passive. We shall now show that the input impedance
(zin)1 of the jth doubler (see Fig. 8) is passive, 1 < j < n. Since the
generator impedance is assumed to be passive, no AM instability can
arise in the multiplier.

The AM scattering matrix of a doubler is given by

p1

Li 0

Let the reflection coefficient of zi normalized to some convenient num-
ber he pi. It can be shown" that

p; I 1, for Re X > 0. (30)

From (29), we have,'"

(29)

(pi.); = 1 - 1. (31)

From (30) and (31), it follows that

(pin); I < 1, for Re X > 0. (32)

Equation (32) proves the desired result that if zi is passive, (z91); is
also passive.

This shows that if input, output, and all idler terminations of a
multiplier of order 2 are passive, the impedance measured at any ac-
cessible pair of terminals is also passive. This result leads to the con-
clusion" that a multiplier of order 2" is absolutely stable with respect
to its AM fluctuations.

5.2 PM Stability of Multipliers of Order 2'

The phase terminal behavior of a multiplier of order 2 has also been
shown5 to be equivalent to a chain of n doublers as shown in Fig. 7.

Fig. 8- jth doubler.
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The PM scattering matrix of a doubler is given by

S = [0 -11.
2 1

If the phase terminal impedance of jth doubler has a reflection coef-
ficient (pd j, we have

(33)

RPP - -2(PP)i
1 - (PP) i

(34)

Fur (pp); = (p),); = -2. This shows that the phase input im-
pedance of jth doubler is not necessarily passive if its phase terminal
impedance is passive. A doubler is, therefore, potentially unstable with
respect to its PM fluctuations if its phase port is terminated in an
arbitrary passive impedance. For this reason, we conclude that a
multiplier of order 2", n > 1, can become unstable with respect to its
PM fluctuations for some values of its input, output, and idler termina-
tions.

Fig. 9 - Lossless abrupt -junction varactor doubler. Interstage networks
and No are assumed to be single -tuned series circuits.

The PM stability of a doubler, a quadrupler, and an octupler when
interstage networks are single -tuned series circuits is studied next.
Since the average elastance of a varactor diode is always nonzero,
these circuits are always a first -order approximation to any circuits
usually used in practice. For any other set of interstage networks used
in the multiplier recourse can be had to Section V to obtain the con-
straints imposed by the condition of PM stability.

5.3 PM Stability of a Doubler
A lossless abrupt -junction varactor doubler with single -tuned series

circuits for its generator and load impedances is shown in Fig. 9. R1
and R2 are the real parts of generator and load impedances of the
multiplier.* These are given' by

# It is assumed that the generator is matched to the varactor diode at carrier
frequency We.
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and

as

R, - I S,
,

coo

(35)

Si 12R., - (36)
- 4 I S2 I coo

The bandwidths Bi's for the single -tuned series circuits are defined

Ro-B =
'

1 < i < 2, (37)
Li

where Roi is the normalizing number for the ith termination. It is as-
sumed for the doubler that

Roi = Ri , 1 s i < 2. (38)

From (28), (33) , and (37) , we can show that the PM characteristic
equation Fp (A) of the doubler can be represented as

F7,(X) = 2X2 B1B2 = 0. (39)

We can observe from (39) that a doubler is PM stable for any finite
nonzero values of B1 and B2. Therefore, it follows that a doubler is
conditionally stable with respect to its AM and PM fluctuations if
single -tuned series circuits are used for its input and output termina-
tions.

5.4 PM Stability of a quadruple?.

Before we discuss PM stability of a. quadrupler we shall present in
this section a systematic method to obtain the characteristic equation
of a multiplier of any order which is equivalent to a chain of multipliers.6
Let us say that a multiplier of order M1 X M2 is equivalent t to a
multiplier of order M, cascaded with a multiplier of order M2 as shown
in Fig. 10. It is assumed that the 2 X 2 scattering matrices of M1 , M2 ;
and the linear interstage network N are known. The impedance Zms
is assumed to be normalized with respect to its port number." The
reflection coefficient pm,m, of the load termination Zmor, is given by

Z At v, - 1
PM, -

t The conditions under which this is true are given in Ref. 5.

(40)
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Pi,n

0

x M, X M2

Fig. 10-Multiplier of order M1XM2.

ZM M2

Since the scattering matrices of M1, M2 i and N are known, reflection
coefficient pin can be calculated. If the generator reflection coefficient
p, is given by

Za - 1
pc Z, + 1

the characteristic equation of the multiplier is given by

(41)

1 - poin = 0. (42)

Let us now consider PM stability of a quadrupler. A lossless abrupt -
junction varactor quadrupler is equivalent to a cascade of two dou-
blers. We shall now investigate its PM stability when its input, output,
and idler terminations are single -tuned series circuits as shown in
Fig. 11. The normalizing impedance for the idler port is assumed to be

R 811202 -
I S2 Iwo (43)

It can be noted that R02 is the "input impedance" of the second
doubler. The bandwidths Bi's are defined as in the earlier section.

We can now show that the PM characteristic equation of a quad-
rupler can be written as

F(X) = 4X3 2X2(B4 - B2) + X(2.81/32 B2B4) B,B2B4 = 0. (44)

In order that a quadrupler is PM stable it is necessary and sufficient
that no zero of (44) lies in the closed right -half plane. The Routh-

x

-1-1-76H H-
L2 C2

x2 4

Fig. 11- Lossless abrupt -junction varactor quadrupler. Interstage networks
N1,N2, and N, are single -tuned series circuits.
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Hurwitz" criteria can be used to obtain the constraints on the coef-
ficients so that the quadrupler is PM stable. It can be shown from this
criterion that if

B4
> 2B ± 1

2,2 Ai 4
(45)

all the zeros of (44) lie in the open left -half plane and the quadrupler
is PM stable. Hence, we conclude that a quadrupler can be made
conditionally stables if (45) is satisfied.

Let us now assume that

B4- B2_

The minimum value of y which guarantees PM stability of the multi-
plier can be obtained from (45) . We can show that (45) is satisfied if
and only if

(46)

y > 1.629. (47)

Specifically, we would like to note here that a quadrupler becomes un-
stable with respect to its PM fluctuations if B2 00 

Also, we note that it is PM stable if simple bandwidth restrictions
given by (45) or (47) are satisfied.

5.5 PM Stability of an Octupler
The AM stability of an octupler has been proved earlier in this

section. The PM characteristic equation of an octupler with single -
tuned series circuits for its input, output, and idler terminations can
be shown to be given by the following equation :

Fv(X) = 8X4 4X'(B8 - B4 - B2)

2X2(2B,B2 + 3/32/34 - B2B8 B4BS)

X(2B,B2B8 B2B4B. - 2B1B2B4) B,B2B4B8 = 0. (48)

Bi is the bandwidth of the multiplier at carrier frequency iwo.
The Routh -Hurwitz criterion can again be used to get the con-

straints on Hes so that the octupler is PM stable. These constraints
can be shown to be

We have shown earlier in this section that a quadrupler is AM stable for all
passive terminations,
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B,
>B, B4- m

2
B+

3
B ± >

, Bs 1

and

10% + 20/38) - -2(t)(1)

- (t)2 (t)(t)(t)
3C9 B, B4

+

- (V% - 4(*) 12(t) + 4 (BO
4

3(t)(t) 6(B)(BB) 2(BB,i)(B0

(B:r13)
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(49)

(50)

(51)

If we can choose Bi's so that we can satisfy (49) through (51), the
multiplier will be PM stable. Let us now choose

Bs B4 B2
B.,= B2 = B, x; (52)

and see whether there exists a value of x which satisfies (49) through
(51) simultaneously. The answer is in the affirmative and we can
prove that if

x > 1.992 (53)

the multiplier is PM stable. This shows that an octupler can be made
conditionally stable by using single -tuned series circuits which satisfy
certain bandwidth restrictions.

5.6 PM Stability of Multipliers of Order T

Methods presented in earlier sections can be used to investigate PM
stability of multipliers of order T, n > 4. It is our conjecture based
on earlier discussions and results that a multiplier of order T with
single -tuned series circuits as interstage networks is PM stable if
bandwidths B2i's, 0 < i 5 n satisfy the following equation:

B2i
<< 1.

B2, (54)
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VI. STABILITY OF A TRIFLER

The scattering relations for a tripler are given in (16). Even if the
idler termination for the tripler is lossless it is evident from examin-
ing (19) and (20) that a tripler is not AM or PM stablef for arbitrary
input, and output terminations.

Hence, we shall assume that single -tuned series circuits are used
for input, output, and idler terminations of the tripler as shown in Fig.
12. Bandwidths B1 and B3 are defined as usual. B2 is defined as

where Ro, is given in (18).

R021)2=
L2

N2
L2 C2

IL:(00 \HE I

x3

.--OHEd-000)
C3 L3

L_ N3

O

(55)

Fig. 12- Lossless abrupt -junction varactor tripler. Ni, N2, and Ng are single -
tuned series circuits.

We can now obtain Fa (A) and le, (A) for the tripler from (19) and
(20) . These can be shown to be given by

F0(X) = 6X3 X2(5.B1 3B3)

X(B1B2 B2B3 3B3131) .131B2B3

=0
(56)

and

F2(X) = 6X3 X2(B1 3B3) X(B,B2 B2B3 B3/31) BIB2B3

= 0.

$ One of the reflection coefficients in Si,,, can be made in magnitude larger than
unity by arbitrarily choosing ;I. Also S.a does not satisfy the criterion given in Ref.
14 for the absolute AM stability of the system.
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By Routh -Hurwitz criterion, it is necessary and sufficient that

5B,(13,132 3B3B) 3B3(132B3 3.133B,) 2B,132.13. > 0 (58)

so that no zero of Fa (A) lies in the closed right -half plane.
Similarly, for PM stability of the tripler, it is necessary and suf-

ficient that

133 {./. .83 . 3

2 -B-3 + 3 IT + + 2} > 0. (59)

Since (B1/B3) (133/13,) - 2 0 for all positive values of BI and
B3, it follows that a tripler is both AM and PM stable when single -
tuned series circuits are used for its terminations. There are no band-
width restrictions imposed by the condition of stability.

This does not mean that a tripler can be connected with another
circuit (for example a stable doubler) without affecting the total sta-
bility of the system. We can indeed show that a 1-2-4-6 multiplier
which is equivalent to a cascade of a doubler and a tripler imposes
certain bandwidth restrictions on its external circuits so as to be as-
sured of its stability.

VII. BIAS CIRCUIT AND ITS INFLUENCE ON THE STABILITY OF
HARMONIC GENERATORS

It was assumed all along that the bias circuit in lossless abrupt,
junction varactor multipliers is designed properly so that there are no
currents flowing at sideband frequencies ±w. We shall now assume that
the varactor harmonic generator has a finite impedance at frequencies
±w so that there are currents flowing at those sideband frequencies.
It will be our purpose in this section to investigate how this assumption
affects the stability of the multiplier. The study of the influence of the
bias circuit on the output signal-to-noise ratio of harmonic generators
and other related results are reserved for a future publication in which
we shall discuss noise performance of harmonic generators.

We shall also restrict ourselves in this section to the consideration
of lossless abrupt -junction varactor harmonic generators which satisfy
the following condition. If we choose the time origin so that carrier
current I, is real and positive, all carrier currents ik's, 2 < k n, of the
nth order harmonic generator are all real. We shall also assume that
the multiplier is tuned at all carrier frequencies so that carrier voltages
are in phase or out of phase with the respective carrier currents.

There are a large number of multipliers which by design satisfy
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these conditions.7, 18 We known that the multipliers of order 2n38 dis-
cussed in this paper come under this category. We can also show7 that
the 1-2-4-5 quintupler can be designed to satisfy this condition.

Tuning circuits I for the multiplier are considered part of the termina-
tions as shown in Fig. 13. We shall also assume that all idler terminations
are lossless. The small -signal voltages V ak and V pi, atsideband fre-
quencies ±kco, + w can be written as

Sk-1 , Sk
VV. = E ra, + E j(- mw /0, + / (60)

-k+ S-k_, S-k
V pk = rp, + E i, + 7-,-/a,, (61)

_1 7 S'n IV = xicoo c,j) = 1 j(7M00 + CO)\ 41'n

wo

k coo

no) o

MULTIPLIER

(62)

Fig. 13- Lossless abrupt -junction varactor harmonic generator of order n.

With the assumption that co/coo << 1, and using amplitude -phase
representation, we can write (60) through (62) as§

S1.-1vak = 2: ±
Iwo

E Sk-1
Iwo

'at + E Sk+m

MCO 0
(63)

+ E± s ± [8'
2o)

S411 (64
4

)
MO

t Average elastance S. of the varactor diode is included in these terminations.
§ Note that Sk's are all pure imaginary because of our assumptions about /k's.
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and

van = E ± 2 , . (65)
two

Let us now assume that all idler and bias terminations are such
thatif

Vac, = -ZOIa0 (66)

2 k n - 1 (67)

and

1',, = -Z,,/, 2 k < n - 1. (68)

From (63) through (68), we can write

V.,

Van

Zn1n1 Za an 0 0

Oanal Oanan 0
(69)

V,,, Zple,1 ;Ian ZpIpl ZpIpn

Opnal Zpnan Zpnpl ;Nun]

The scattering parameters of a lossless abrupt -junction varactor
harmonic generator hence can be described by

=
Spa II Sp,

_ _ _]San 1 U
(70)

It follows from (62) through (68) that ScH, and S in (69) are the same
as those that can be obtained by assuming Z. = co . For example, the
scattering matrix of a doubler with finite bias source impedance Z, is
given by°

S =

0

1 (71)

-2.

0

0 -1
2 1

The characteristic equation of a harmonic generator with finite bias
source impedance Zo can, according to (10), be represented as

F(X) = A I 14 - Spl = 0, (10)

Sp

¶ See Section IV.
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where e is defined in Section III. From (10), (24), (25), and (70), we
can write

F(X) = A { 12 - Sp,} A f 12 - 8/201 (72)

= Fo(X)F(X). (73)

Equations (70) and (72) show that stability of a harmonic generator
is not affected by the finite bias source impedance present in the multi-
plier even though it increases the output fluctuations of a harmonic
generator.6 If a harmonic generator is stable for certain generator and
load impedances for Zo = oo , it is also stable when Zo is finite. This is
one of the important results of this paper.

The conclusions arrived at in this section are applicable to harmonic
generators of order 2"38 discussed earlier in this section.

VIII. REMARKS AND CONCLUSIONS

A general method has been presented in this paper to investigate
the stability of pumped nonlinear systems, and to obtain the condi-
tions imposed thereby on the available circuit configurations. The type
of instability investigated is that which causes spurious tones to ap-
pear at any point in the system in the vicinity of a carrier.

It has been shown that the roots of a certain characteristic equation

F(X) = A { 1, -S p} = 0 (10)

should lie in the open left -half plane for the system to be stable.
For lossless abrupt -junction varactor multipliers of order 2"38 in

which a certain set of interstage networks are used it has been shown
that there is no AM -to -PM and PM -to -AM conversion and the char-
acteristic equation can be expressed as

F(X) = All2 - Sao P.16412 - (25)

= Fa(X)F,(X) , (26)

and that we can treat separately AM and PM stabilities of the system.
A multiplier of order T has been shown to be AM stable for all

passive terminations. However, it is not absolutely stable. with respect
to PM fluctuations.

The conditional stability of a 1-2 doubler, 1-2-4 quadrupler, and
1-2-4-8 octupler is investigated next. All these multipliers are shown
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to be PM stable if single -tuned series circuits are used as their termi-
nations, and bandwidths Bi's of these terminations satisfy certain con-
ditions.

The PM characteristic equation of a doubler is given by

Pp(X) = 2X2 B2X B,B, = 0.
It is PM stable for any finite B1 and .132.

A quadrupler has the following PM characteristic equation:

(39)

PD(X) = 2X2(B4 - X(2BIB2 B2B4) .8,132B4 = 0. (44)
The quadrupler is PM stable if

-y > 1.629,
where

(47)

B4 B2

B2 =131=y. (46)

An octupler has also been shown to be PM stable if

x > 1.992,
where

(53)

Bs B4 B2
B4 B2 - B1 X.

(52)

The scattering relations for a tripler when its idler termination is
a passive impedance Z2 are obtained. It has been shown that a tripler
is not absolutely stable both with respect to its AM and PM fluctuations.
However, it is stable when the interstage networks used in the tripler
are single -tuned series circuits. The condition of stability does not
impose any bandwidth restrictions.

Finally, it has been shown that the scattering matrix S of a lossless
abrupt -junction varactor harmonic generator with a finite bias source
impedance Zo can be expressed as

S
[ San 0

(70)
ASI,0 SDD

where Saa and S are the same as those obtained by assuming Zo = C°
It is then shown that stability characterization of a lossless varactor
harmonic generator is not affected by finite bias source impedance.

The noise analysis of harmonic generators and other related results
will be discussed in a future publication.
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Some Properties of a Classic
Numerical Integration Formula

By I. W. SANDBERG
(Manuscript received May 19, 1967)

The numerical integration formula

y4, = E am -k h E
k=0 k=-1

n > p (1)

can be used to obtain a numerical solution of the system of nonlinear
differential equations

f(x, t) = 0, l > 0 [x(0) = x0]. (2)

In many instances, it is known beforehand that the solution of (2) possesses
a particular property such as boundedness or asymptotic periodicity with
a given period, and it is then of interest to analytically determine the range
of values of the step size h such that the sequence {yn} defined by (1) exhibits
(at least) that property. In this paper, we consider problems of this type
[but do not actually use assumptions concerning the character of the solution
of (2)], and we study also the overall effect of solving instead of (1) the
equation

zu+, = E akz, h E bkz_k R, n p
k=0 k=

which takes into account the effect of local roundoff errors and errors in
the starting values. We consider explicitly only the case in which x(t) is
scalar valued.

I. INTRODUCTION

In this paper, we present some theorems concerning properties of
the classic numerical integration formula'

Yn+1 = Eakyn_k + h E bkv,, ,

k=0 k=-1

2061

n p (1)
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a formula which can be 'used to obtain a numerical solution of the set
of first -order nonlinear differential equations

t f(x, t) = 0, t > 0 [x(o) = xol. (2)

In (1) the y are approximations to the x ° x(nh), where h, a positive
number, is the step -size parameter; yo , , , yp are starting vectors,
the last p of which are obtained by an independent method; and

yn -fry,, , nh)

Specializations of (1) include, for example, Euler's method:

Yn+1 = yn (3)

and the more useful formula

Yn+i = yn V,+1). (4)

In many instances it is known beforehand that the solution of (2)
possesses a particular property such as boundedness or asymptotic
periodicity with a given period, and it is then of interest to analytically
determine the range (or ranges) of step sizes that will lead to a se-
quence {y} which exhibits (at least) that property. This is one type of
problem that we consider. For related material concerned with the
overall effect of local truncation errors, see Ref. 2. Our results dealing
with questions of asymptotic periodicity of the y are restricted to
cases in which the basic period is a multiple of the step size h. How-
ever, it is often reasonable to choose h in this way to reduce program-
ming complexity.

In addition to the fact that the solution of (1) differs from the sam-
ples of the solution of (2) due to truncation effects,", 3 the problem of
solving (2) is further complicated by the fact that the numbers ob-
tained from the computer differ from the yn of (1) as a result of round -
off errors. The local roundoff error R. introduced in calculating yn+l
can be taken into account' by replacing (1) by

y, = E akY-k h E + R. , n p. (5)
k=0 k=-1

If 0, the error in solving (1) for y+ caused typically by trunca-
ting an iteration procedure" after a finite number of steps, can be
accounted for by redefining R. . The second type of problem that we
treat is to bound (from below as well as from above) a measure of the
overall error in solving (5) instead of (1). The problem of estimating
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the R before the calculations are performed is by no means trivial, and
is not considered here. On the other hand, since there exist methods for
bounding R given y, for (n - p) < k < n (see, for example, Wilkinson',
for bounds on the effect of roundoff in forming sums, products, etc.),
our results suggest the feasibility of programming the computer to
evaluate overall error bounds as the calculation of the successive
yn., proceeds.

We shall explicitly consider only the case in which x(t) and the yn
are scalars. Without much difficulty, each of the theorems can be ex-
tended to cover the vector case. In this extension, requirements on, for
example, the derivative Of (x, t) /0x are replaced by conditions on the
Jacobian matrix of f (x, t) (see Ref. 2).

For reasons that will become clear to the reader, our theorems are
quite naturally characterized as "frequency -domain" results. Some of
these theorems are close relatives of earlier results concerned with the
input-output stability of nonlinear feedback systems* (see Ref. 5
and the difference -equation theorems stated without proof of Ref. 6).
To the writer's knowledge, the only even remotely related material
concerning (1) in the numerical -analysis literature, with the exception
of Ref. 2, is Hamming's transfer -function approach.3

II. RESULTS'

We begin by introducing some definitions and assumptions. We as-
sume throughout this section that yn and f (y nh ) are real -valued
scalars.

Let a and 13 be two real constants, let a_1 0, and let

F(z) n1 - E [ak - -1(a + S)hb k1Z- )

k--1
(6)

for all complex z 0.
Assumption 1: It is assumed throughout that 1 + i(a 0)hb_1 0 0,
and that F(z) 0 for all I z I > 1.
This assumption implies that the sequence of approximations defined
by (1) is bounded and approaches zero as n 00 for all sets of starting
values when f(x, = f3)x.

* The usual frequency -domain nonlinear system stability results such as
Popov's criterion7 are not directly related because they do not deal with systems
subjected to external inputs.

t The proofs of the theorems stated here are given in Section III.
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Definitions

P i(13 - a)h max
05. co g 2

E bk exp [-i(k 1)w]
x=-1

F(e"')

{{s} E I s.12 < 00
n=0

/CO { kJ I sup I s. I < /
null

Let K be a positive integer, and let

3C { isni I 8. = Sn+K+1 for n = 0, +1, +2, 
}

bk exp [ i(k 1)271
+ 1

p - a)h max h=-1
K

q i2irqF[exp

in which 61 -4 {0, 1, 2, ,

2.1 Properties of (1)

Theorem 1: If
V

yn+i = E h E bkl[y_, , (n - Oh], n > p

if p < 1, and if

uenh) - 1(0, nh)
a Ls 0

tr

for all real u 0 0, then

(i) { f(0, nh)} c 12 implies that t /2
(ii) {AO, nh)) implies that fy,$)

Remarks:

The condition that p < 1 is satisfied if and only if the locus of

E a,, exp (ikw) - exp (- iw)
(w)

n'="

* We consider only real sequences.

E bk exp (il,U)
1

(7)
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for 0 <= w < 27 lies outside the "critical circle" C of radius 4(0 - a)h
centered in the complex plane at [E« + opt, 0] (see Fig. 1).

For Euler's formula (3), we have F(z) = 1 - [1 - 0)hiz- , so
that F(z) 0 0 for I z I .?_. 1 if and only if 0 < + (3)h < 2. For this
formula the locus of 0 is the circle shown in Fig. 2, since 0(w) = 1 -
e-". If ah > 0 and Oh < 2, then the critical disk (Fig. 2) is not in-
tersected by the locus of e, the condition that 0 < 1(a + (3)h < 2 is
satisfied, and p < 1. Concerning the necessity of the condition p < 1,
we note that if ah > 0, but (3/i > 2, then for even the special case in
which f(x, t) --= 13x, we have yo , yi , y2 , unbounded (assuming
merely that yo 5 0).

For the formula (4):

F(z) = 1 + tl)h - [1 - i(a + 13)14z- , and

O(co) -
1 - - 2i tan (2)
(1 ± w) 2

We have 1 + i(a 13)/i 0 0 and F(z) 0 for I z I >= 1 if and only
if (a + 13)h > 0. The locus of O lies entirely on the imaginary axis of
the complex plane,

/3-a
P - + a

and obviously p < 1 if a > 0. On the other hand, if a < 0, then for
even the special case f(x, t) = ax : yo , yi , is unbounded provided
that yo 0 0.

The following theorem is concerned with conditions under which

Fig. 1- Location of the critical circle C.
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Fig. 2 - The locus of OM For Euler's method, and the critical circle C.

asymptotically periodic f (0, nh) in (1) implies that {y} is asymptotically
periodic with the same period as that of f(0, nh).

Theorem 2: If

y+, = E akYn-k - h E bkt[y.-k , - k)h], n p
k=0 k=-1

if p < 1, if [f(u, nh) - f (0, nh)] = [f(u, (n K 1)h) - f(0, (n
K 1)h)] for all real u and n > 0, if

af (u , nh)a n>=0- au '

for all real u, and if there exists a yt c such that [f(0, nh) yt] c 12 , then
there exists a yt E such that

(i) (y - yt) E 12

(ii) yt is independent of [f(0, nh) - y4,1].

Remarks:

In many cases of interest U(u, nh) - f (0, nh)] is independent of n,
and hence certainly satisfies the periodicity requirement.

Theorem 3, below, provides a condition under which the sequence
y1 of (1) cannot approach a "self sustained" limit cycle with period

(K + 1).

Theorem 3: If

11.+1 = E akyn_k - h E ify-k , (n -
k -U k=-1

n p
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if [f(u,nh) - f(0, nit] = [f(u, (n K 1)h) - (n K 1)h)] for
all real u and n > 0, if

<
af(ti, nh)

mo 13,au
n > 0

for all real u, if f(0, nh) --> 0 as n --> 00 , and if there exists a y* c 3C dif-
ferent from the zero element of 3C such that (y,, - yt) 0 as n -> 00 ,

then p K > 1.

Remark:

For p K Z 1, at least one of the complex numbers

e( 27rq
11

q = 0, 1, 2, ,I{

must lie on or within the circle C of Fig. 1.

2.2 Results Concerning the Effect of and Errors in the Starting Values

Theorem 4, below, is essentially the same as a result concerning the
effect of local roundoff and truncation errors proved in Ref. 2. The proof
of Theorem 4 given in Section III is considerably more direct than the
corresponding argument of Ref. 2.

Definition:

(S)N
( 1 ÷

Sn
12)1

\AT + 1 I

for all N > 0 and every sequence {s}.

Theorem 4: If

= E akYn-k - h E bki[Y7,-k ,
- k)h], n > p

k=0 k--1

Zn = E akZn_ h E bkEZn-k (n - k)h] R , p
k=0 k--1

if

af(u, nh)aS
au

, n 0

for all real u, then for all N > 0:

(i) (y - z)N (1 + pr min I F(e'w) (0) N ,
0.1w52T
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and

(ii) if p < 1,

Z)N < (1 - max I F(esw) L'
Oswg2Ir

in which

#n = , n (p + 1)

= (yn - z) - E akcyn_k_, - zn_k_o
k=0

+ h t bklf[y_k_, , (n - k - 1)h] - f[z_k_, , (n - k - 1)11]1,

n = 0, 1, 2, , p

with yn = f(yn , nh) = zn = f (zn , nh) = 0 for n < 0.

Remarks:

Ref. 2 considers two simple examples concerning the evaluation of
the numbers

(1 + p)-1 min I F(eiw) r and (1 - p)-1 max I F(e") .

Since

p = 1(0 - «)h {min 10(w) - 2(« )3)/i ,

we see that p is the ratio of the radius of the circle C of Fig. 1 to the
distance between c and 0, where c is the center of C and 0 is a point
nearest c on the locus of 0(0.)).

The following corollary provides asymptotic bounds on the difference
between the solutions of (1) and (5) when the solution fy,j of (1) is,
for example, asymptotically periodic.

Corollary to Theorem 4: If

with

Yn+1 = E akyn_k - h E bkf[Yn-k (n - k)hJ,
k=-1

a af(u, nh)
au

n p



NUMERICAL INTEGRATION FORMULA 2069

for all real u and n >= 0, if there exists a sequence 9- such that (y - 0
as n co , and if

z+, = E akzn_k - h E bki[zn_k , (n - k)h} Rn , n Z p.

Then

(i)

kmO

with qN 0 as N ,

and

(ii) if p < 1,

- (1 -

with rN 0 as N 00

in which

min
1:15wS2r

max
0561$27

I Res w) (1,0 N Tv

F(e2w) 1-1 (ON +

 = R_, , n (p + 1)

= 0, = 0, 1, 2, p

1.N

Remark:
Note that the lower bound is valid under quite weak assumptions.

III. PROOFS

We first prove the following lemma which plays a role in the proofs
of all of the theorems

Lemma 1: If

y,, = E - h E bkfiYn-k , (n - Ohl T R, , n p
k -fl k=-1

then

y = E tv_,g(y, , 1,11) E kh) E 0
,C) k=u

in which {wn} and Ivnl are the inverse z -transforms of

TV(z)

_h E bkz-(k+1)
k=-1

1 - E [a, - 1(« 0)hb,]z-'
k--1
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and

respectively;

and

V(z)
1

1- E [ak - ,3)hbk]z-(""

E I wn I< Eiv,ii<
n=.0 n=0

g(Yk , kh) gYk , kh) - 1(0, kh) - ,

con = R_i , r (p + 1)

Y. --Ej akY.-k-1 + h E bkf[Y.-k-1 , k 1)h],
k=0 k=-1

n = 0, 1, 2, ,p

with y = f(y ,nh) 1 0 for n < 0.

Proof of Lemma 1:

From
V

Y.+1 = E akY.-k - h E bki[Y.-k , (n - k)h] + R. , n p
k=0 k=-1

we have

yn - E akyn_k_i
k=0

-h E bkf[y , (n - k - 1)11] Rn_i , n (p + 1)
k=-1

and, with the (p as defined in the lemma,

Y. = [ak-- 16Y + h bkb. -k -1 + con n 0
k=-1 k=-1

where

ak = f(Yk kh) - MY!,

Let M > 0. Then y = gn for n = 0, 1, , M, in which

fin = E [ak - 1(ct - h E bkgn-k-1 On I

k=-1 k=-1
n > 0,
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where

= Sn for n S At

0 for n > 112,

sO = ,r) for n M

= 0 for n > /11,

and

gn = f(g nh) = 0 for n < 0.

It is clear that 101, [(70), and { yn) are z -transformable. Let

and

Then

[1

Co 00

ow E 0z n, A(z) G E 8z -n,
n-0

Y(z) E p*,,z-n.

[a, - Mhb,]z-(4+1)1Y(z)
k - 1

Therefore,

Y(z) -

= -h E bkz-(k."gz) + (z)

-h E bkz-(k."
k -1

1 - E [ak - + () hb " "
k - 1

0(z)

1 - E [ak - 0)//bk]z-('
1.-

k -1

and, with {w} and { v,,} the inverse z -transform of W(z) and V(z),
respectively,* we have

Jn = E wn_ksk + E vn_keh, n 0
k=0 k 0

* Recall that 1V(z) and V(z) are defined in Lemma 1.
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with (in view of Assumption 1)

Eitv,,I< 00, and Elvj< 00.
n0

Thus,

(8)

Yn = E w_kak + E vn_kyok (9)
k=l) k=0

for n = 0, 1, 2, , M. Since ill is arbitrary, (9) is satisfied for all
n > 0. Finally, with

9(y, , kh)
nf(y,

, kh) - f(0, kh) -

Y. = E tv,i_kg(yk , kh) E wn_kf(0, kh) E , n 0.
k=0 /c..0 k=0

We now prove a lemma which is used in the proofs of most of the
theorems. We repeat the

Definition:
A'

(8)` (N ± 1 i2

for all N > 0 and every sequence {M.

Lemma 2: If

= E wu-kaMy, , it 0
k=0

and if -13 - a) < a(k) < 4- (13 - a) for all k > 0, then

(i) (y)N (1 ± p)-1(b)N for N 0,

and

p < 1, then (ON > (1 - p)-1(b)N fur N 0.

Proof of Lemma t:

Let

q 1 E lon-ka(1,7)Yk
k=0

By Minkowski's inequality,

n 0.

(ON 5_ (q)% (I))% (10)
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and

(b)x 5 (ON + (ON 

Lemma 2 follows from (10), (11), and the inequality

(q).v < P(ON 

3.1 Proof of Theorem 1:

By Lemma 1, we have
71

Y  = E w_krgyk ,
k

11

E w -,f(0, /do + E ,

k k

with (because R = 0 for all n > p) v = 0 for all n (p + 1).
Let.

b = E wn_kf(0, klt) E
k k =0

Since both [tv,,} and {yn} belong to ll [i.e., since (8) is satisfied], b c
if {AO, kh)} E 1, and b E 1.0 if 11(0, kit)} E 10, .

Suppose that b e 12 , and let

a(k) 0(11 131) for
yk

,

=0, for yk = 0.

0

Yk 0

n 0.

The function a(k) satisfies the bounds of Lemma 2, and

Y = E wn-kawyk + bn n > 0
k

Therefore, by Lemma 2,

E Y. 12 6. (1 - p) E b -5 (1 - p)- 2 t b1,
n+.0

(12)

for all N > 0, from which it is clear that y E /2 .

If b E 1., , then {y} satisfies (12) with b c . According to the first
conclusion of the following lemma, this implies that y E /0, .

Lemma 3: If

y= E w,a(k)y, bn , n>_0

with b E 1. , if p < 1, and if -1(8 - a) :5_ a(k) Ji(I3 - a) for all k > 0,
then
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(i) y e loo
(ii) there exists a constant coo , which depends on only the ak, , the bk , a,

and 13 such that

sup I yn coo sup I bn 1.
nO

Proof of Lemma 3:
The proof is essentially the same as that of the second part of Theorem

2 of Ref. 2. The details are omitted.*

3.2 Proof of Theorem 2

Definitions: Let 3C denote the set of all real sequences {s,} such

that s = so+K÷, for all n = 0, ±1, ±2, , and let GI 1 {0, 1,
2, ... , K}.

Lemma 4: Let g*(x, nit) be defined for all real x and all n = 0, ±1,
±2, , such that: g* (x, nh) = g*[x, (n K 1)11] for all x and n, and

-103 -
a g* (x , nit) -ax

for all x and n. If p c 3C and if pK < 1, then 3C contains exactly one element

y* such that
71

= E wn_ke(yk , kh) p.

for n = 0, ±1, ±2, 

Proof of Lemma 4:

With the norm

k -oo

11811 (kit 18.12Y,

the set 3C is a Banach space. The operator WG defined on 3C by

(TVGs),, wo_kg*(sk , kh),
k=-co

maps 3C into itself. By the contraction -mapping fixed-point theorem,
it suffices to show that WG is a contraction when pK < 1. It is clear that

WGs. WGsbIIWII'IIGsa-GsbII
5 1(0 -a) II TV sb II

for all so c ac and all sb e 3C.

* See also Ref. 6.

Sc 3C



NUMERICAL INTEGRATION FORMULA 2075

If s c 3C, then ()i271k
K + 1E exp for k --= 0, ±2, 

/-0
8k =

in which

and

Thus, if

i2r1n)= (K sn exp

E s. 12 = + E I a. 12.
n-0 n=0

Un = E Wn-k8k

with s E 3C, we find that

for it = 0, +1, ±2, 

(tiarlkzc.n = L w_k L sr exp
k- 1..0 K 11

i27rik= E W_k exp K (w = 0, n < 0)

arin= exp exp(_
1-0 K-}-1

W ex
i271-1 i2irin

pE [
i-0 K 1 1'

i271 -1e1
K 11

Therefore, since

n = I I Ws II -5 max TIT exp (Ki2±7rg1)1 Hs II,
Q.01

we have

II TV II 6. max
a t

TV[ex22'x4)1p K+1
and II WGsn - WGsbII s PK II so - sh II for all sc, E .3C and all s, c 3C.
This completes the proof of Lemma 4.

By Lemma 1,

Jn = E wn_kg(yk , kh) E wn_kyo, k/1) + t,i kirkE
k-0 k -O k =0

n 0
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with sok = 0 for k > (p + 1). Here, since both Iwn) and {v} belong to

/ we have

E w_,/(0, kh) E vn_Lgok = p + cn , n > 0
k=0 k=0

with p c 3C and c E 12 . In fact, with y* as defined in Theorem 2,

Prt = E w-kJak I

k=-- 02

n = 0, ±1, ±2, 

Let g*(x, nh) be defined by the conditions: g*(x, n/i) = g*[x, (n

K 1)11] for all x and n = 0, +1, ±2, , and g*(x, nh) = g(x, nit)
for all x and n = 0, 1, , K. Then, since pi; < p < 1, by Lemma
4 there exists a y*, E 3C such that

Ynt = E wn_kg*(ht , 1,7h) p

for n > 0. Therefore,

Yn - YI:t =

in which

But

k= -co

E wn-are(y, loh) g*(ilbt 1,'11)] (I ,

d = c - E , kh), n > 0.
k=,-ao

Ew_kg*(y,,t , kh)

it > 0

5 sup g*(Y , n11) E w--,
ni10 k-oo

and, using the fact that there exist constants n > 0 and > 0 such that
2cI < n exp (-01) for n 0,

E w_k = E I
w, n exp [- + 1)] E exp (-On).m=(+1),null

We see that

Ewn-kg*oh,L , 1'11) c 12 ,

k= -co

and consequently d F 12
Let

,q*(y , 1,:h) - g*(y,:t 1,.h.)a(k)= '
Y k Ybk

k

= 0 Y k Y bt
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Then -1(0 - a) < a(k) < :1(0 - a), and

Y. - Ybt = E wn_ka(k)(yk -y) dn , n > 0.
k-0

By Lemma 2, we have (y - it,;) , and since it is clear that 0, depends
on yt , but not on [ f(0, nh) - yt], this completes the proof of Theorem 2.

3.3 Proof of Theorem S

We need the following lemma.

Lemma 5: If y = ?in with y* t 3C and Tin -, 0 as n o0 , if
g(x, kh) = g[x, (k K 1)111 for all k 0 and all x, if there exists a
positive constant c such that I g(u, kh) - g(a,, , kh) I < c I u1 - u2 I for
all real u, and u2 and all k >= 0, and if

Y. = E wn_kg(yk , kh) pn + an n 0
k =0

with p 3C and 6 0 as n x, then

y,*, = E , kh)

for all n = 0, ±1, ±2, , in which g*(x, kh) is defined by the con-
ditions:

g*(x, kh) = g*[x, (k K 1)h]

for all k and all x, and
g*(x, kh) = g(x, kh)

for all x and k = 0, 1, 2, , K.

Proof of Lemma 5:

For n 0:

yn + = E ev-kg[y: + flk , kit] p On
k=0

= tv,,_kg(yr , kh) E wn_k[g(yt + nk , kh) - g(iit , kh)
k=0

It

E wn-o*(y: , kh) E + 77k , kh) -
k=-oo k =0

g (yt , kh)]

_
1)--kg*(1J : kh) p + 6,, .

1..
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Therefore,

?J;1 - E tv_frg.(4: , kh) - pn = -nn
k=-oo

+ E w...4g(yt nk , kh) - g(yt , kh)]
k= 0

-1

- E wn-kg*(yr , on , n > 0.
k -co

Since w} e , both sums on the right -side approach zero as n 00.

Thus, the left side also approaches zero as n 00. But the values of
the left side are periodic. Therefore,

y: - E w_kg*(yr , kh) - p. = 0 (13)
= - oo

for all n z 0, and since y* E 3C and p e X, (13) holds for all n. This proves
Lemma 5.

By Lemma 1,

y = E w_kg(yk , kh) E kh) + E Vn-kg0k
k0 k=0 k-0

n>_0

in which g(yk kh) is defined in Lemma 1, and Pk = 0 for k > (p + 1).
Since fw1 and {v} e 11, and f (0, kh) 0 as k -> cc , we have

Ew_kyo, kio + E 2,_,.c', 0 as n -4 cck=0k=0
By Lemma 5 and the hypotheses of Theorem 3,

= E wn_kg*(yr , kh)
k- - no

for n = 0, ±1, ±2, , with y* E X. If pK were less than unity, it
would follow from Lemma 4 (in particular the uniqueness property
of y* of Lemma 4) that yt = 0 for all n, since g*(0, kh) = 0 for all
k z 0. Therefore, pK > 1, which completes the proof of Theorem 3.

3.4 Proof of Theorem 4:

According to Lemma 1,

Y. - zn = E wn_k[g(y, , kh) - g(zk , kh)] E vn-kok , n 0.
k-0 k

Therefore, with
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bn = E vn_ofrk ,

k.0
n>0

we have, by Lemma 2,

(y - z), (1 +
and if p < 1,

(y - z)N < (1 - (b).v .

Since2

(b) max F(eiw)
I

(1k)v ,

og.g27

it remains only to prove the following lemma.f

Lemma 6: If

then

Proof :

Let ed be the inverse z -transform of V'(z). Clearly, led
have

71

(1 E Vn-kek
k0

n 0

(d), min I F(eiw) ON .
0ScuS2r

. We

Thus,2

Ee_, d , E e_, E vm_kck = en for n > 0.
m=0 kO

(c), < max I V -1(e") (d),,
CIStoS2r

and, since F(z) = V'(z),

(d)N ( max I F(e") 1)-1(c)Ar
og,012T

min I F(e") (c) ,v
OSio 52r

which proves Lemma 6, and completes the proof of Theorem 4.

3.5 Proof of the Corollary to Theorem 4

Minkowski's inequality.

Lemma 6 is proved in Ref. 2. The proof given here is simpler
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A Normal Limit Theorem for Power Sums
of Independent Random Variables

By N. A. MARLOW

(Manuscript received June 8, 1967)

Suppose that

P = 10 login [10' +  + 107""1,
where {X.} is a sequence of independent random variables. The main
result of this paper shows that under very general conditions on the sequence
{Xn}, the power sums Pn will be asymptotically normally distributed.
This result supports a commonly used normal approximation, and shows
why many physical quantities obtained by power addition of random variables
tend to be normally distributed in dB.

I. INTRODUCTION

In many areas of transmission engineering, logarithms of sums of
powers are considered in the form

P = 10 log [1e") +  + 10x""°],
where X1 , . . X. are random variables. Specifically, if Xi , . . Xn
are power levels in dB such that

X 10 logio (w;/w0) j = 1, 2, , n,

where wo , w1 , , wn are powers (e.g., expressed in watts), then the
power level in dB of the sum w = wi + w is given by the so-
called "power sum,"

P,, = 10 log, (w / w0) = 10 login [10' +  + 10xn/l.
Quite often X1, , X are taken to be mutually independent random
variables with specified distributions, and it is of interest to determine
properties of their power sum Pn.

A major difficulty encountered in working with power sums is that
the distribution and moments of such a sum usually cannot be ex-

2081
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pressed in simple closed form. This includes, for example, the im-
portant case when X1, , X are mutually independent and each has
a truncated normal distribution. Even in the simpler case when X,,

, X. are mutually independent, identically distributed, and X1 is
normal, the problem is intractable. The difficulty and importance of
the general problem, in turn, has led to a number of methods for ap-
proximating the distribution of a power sum.1, 2, 3, 4, 5, 6, 7, 8, 9

In the present paper, the asymptotic distribution of a power sum
is studied. The main result is a limit theorem which shows that under
very general conditions on the components X1, X2, , the correspond-
ing power sums P will be asymptotically normal as n ---> 00. The par-
ticular form of the result is as follows: Given a sequence {X.} of
mutually independent random variables satisfying certain conditions,
there exist sequences of constants (c.) and {d} such that

rim P {[(P. - c.)/d.] = [1/ \ 727 L. exp [- t2/2] dt. (1)
-.noo

The conditions for (1) to hold are the central concern of this paper,
but the implications of the results are equally important. In particular,
one of the oldest and most useful approximations to the distribution
of a power sum is a normal approximation. This approximation was
first used at Bell Telephone Laboratories in 1934 by R. I. Wilkinson,2
and is based on the fact that many observed power sum distributions
are "nearly normal." This includes power sum distributions obtained
by numerical convolution; and empirical distributions of physical
quantities such as noise levels on trunks and connections where the
resultant noise (on a dB scale) can be viewed as an approximate power
sum.1°, 11 The limit theorem proved in this paper thus provides mathe-
matical support for a normal approximation, and substantially explains
why many physical quantities obtained by power addition of random
variables tend to be normally distributed in dB.

II. A NORMAL LIMIT THEOREM FOR POWER SUMS

2.1 Discussion
Before stating the main results, it is instructive to show informally

why one would expect power sums to be asymptotically normal. To
take a simple case, suppose that (X.} is a sequence of mutually inde-
pendent, identically distributed random variables such that

Var [101.'11



NORMAL LIMIT THEOREM 2083

is finite. Let 0 = E10'1° and put

AS = 10A -in° +  + 10-"/1°.
Then by the law of large numbers, one expects that for large n,

1.
n0

Next, note that if x 1, then log, x x - 1 so for large n

to
Sn S - nOg,--
nO nO

Multiplication by (0 V71 )/r then gives

ON/T./. S - no-- - n (2)
n 0 T Vn

But, by the central limit theorem, the right-hand side of (2) is asymp-
totically normal with mean 0 and variance 1. Thus, it is strongly sug-
gested that

lim P{L\I-1-; [log, S - log, (n0)] :c
n-ao r

z= [1/1/Kr] f exp [-e/2] dt.

This, and more, is indeed true as will be shown.

2.2 The Main Result
The normal limit theorem for power sums is a consequence of the

following result which will first be proved:

Lemma 1: Let {S} be a sequence of positive random variables. Sup-
pose there exist sequences of positive real numbers {a} and {b}, and
a distribution F such that

(i) At each point of continuity of F,

lim P{Sn -a = F(x)
n--ao bn

(ii) lim (b./an) = 0.
n-n.o

Then at each point of continuity of F,

lim P [(a,,/b,,) log, (8/a) 5 xi = F(x).
n-.ce
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Proof: Let x be a continuity point of F, and let c > 0 be given. Because
F has at most a countable number of discontinuities, there is a 8 > 0
such that F is continuous at x + S and

F(x S) - F(x) < e. (3)

Next, define

U = (Sr, - an)/b. and V. = (an/b) log, (3/a).
Then

P{V S x} - F(x)
P {V < x} -P {U  5 s} P{ x} - F(x) I.

By assumption (i) therefore,

lim V S x} -F (x) I P x - U
n -no n -no

Let

An(x) = !P{TT. <x} - PIU. xl I

To complete the proof it suffices to show that

lim An(x) = 0.
n -no

To prove this note first from the inequality log, x < x - 1, x > 0, that
U. for all n. Thus,

An(x) = V < x} n lun >

= Pfx < U. < (a/b)[exP (bnx/a.) -
Using the inequality e - 1 < ye, -oo < y < co , it follows that

0 S An(x) < P{x < U 5 x exp (bx/a.)}.
By assumption, (b./an) > 0 for all n and limn-. (bn/an) = 0. Thus,
there exists a natural number N such that n > N implies

x < x exp (bx/a.) x S.

So if n> N,

0 6 A.(x) < P ix < U 5 x .

Because x and x + S are continuity points of F, it follows by assump-
tion (i) and inequality (3) that
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0 5 urn 6,(x) F(.1: + 5) - F(x) < E.

Since c > 0 was arbitrary, the proof is complete.
The importance of Lemma 1 is that it gives a sufficient condition to

go from limit theorems for sums of random variables to limit theorems
for logarithms of sums. In the important case of power sums of in-
dependent random variables, general conditions for asymptotic nor-
mality can thus be obtained from classical central limit theory as
shown in the next result.

Theorem 1: Let (X.} be a sequence of mutually independent random
variables and suppose that

Var [10xli0]

is finite for every j. Let 0; = El0x1110 and put .

111= E o, , en = E 2Ti .
-1

Denote the distribution of 10'10 by Hi(x), and let

= 10 log10 [10u1/1° 10'1'1 .

If the following conditions are satisfied:

(i) The Lindeberg Condition: For every c > 0,

n. 1 E f (x - 0)2 dn. i(x) = 0,
n -no Sn 1 A i

where

Ain = tx: I x - 0; I > Es,,

(ii) lim (s./111.) = 0
n -K0

it will follow that

lien P (X111/8) 11P - 10 log10 111,d = (I)(x) (4)

where A = (loge10)/10 and

43(x) = [1/ 1 2r] exp [- t2/2] (it.

Proof : Let

sn = 10.1 +  +
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Then condition (i) implies that

lim P
T,

x} = cl)(x)
n-.00 Sn

"

(cf. Feller,12 p. 256). With the identifications a = M and b = s it
follows from condition (ii) and Lemma 1 that

lira P { (M"/s") log. (8/M) S x =
A-.00

The assertion of the theorem then follows by changing to logarithms
with base 10.

An interesting thing to note is that if the conditions of Theorem 1
are satisfied then the sum of powers

Sn = 1011/1° -1- 10xsi°

and the power sum in dB, P. = 10 logioS,,, will both be asymptotically
normal. Thus, not only will normality be observed on a "power scale"
but on a "dB scale" as well.

2.3 Identically Distributed Components

The preceding result implies the asymptotic normality of P when
the components are identically distributed. To show this, suppose that
{ X} is a sequence of mutually independent, identically distributed
random variables with H(x) = P{1.0x111° 5 x}. Let

72 = Var [10/'/12]

and 0 = E10"10. If 72 is finite, condition (ii) of Theorem 1 is clearly
satisfied since

Sn = '7'

M. 0 Vir,

Condition (i) is also satisfied because if E > 0,

1 E f (x - 0i)2 dl i(x) = -1 (x - 0)2 dH(x) -4 0 as n ,

8n j=1 A in A n

where A = {x : I x - 0 I > ET V 11 J. It thus follows that

lira P{X [1)7, 10 log,0 (n < x}
1

1/27, exp
[- t2/2] dt,

hence, P. is asymptotically normal with mean 10 log10 (n0) and vari-
ance 72/ (nA202) .
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and

2.4 Bounded Components
Suppose next that (X) is a sequence of mutually independent ran-

dom variables and that the following conditions are satisfied:

(i) There exist constants b and B such that

0 < b 10xl/1° B for all j

(ii) 2S cr as n --> 00 .

The conditions of Theorem 1 are easily shown to be satisfied in this
case, and it follows that P will be asymptotically normal. Note that
condition (i) will be satisfied whenever 10' /Yi 10 represents power from
a physical source. Condition (ii), on the other hand, will be satisfied
if 71 > c > 0 for some fixed c and an infinite number of indices j.

HI. THE NORMAL LIMIT THEOREM AND WILKINSON'S
NORMAL APPROXIMATION

One of the most useful approximations to the distribution and mo-
ments of a power sum is based on a normal approximation as men-
tioned in the introduction. The method consists of approximating the
distribution of P by a normal distribution so that

P (P x} P ± x),

where 5 is normal with mean 0 and variance 1. Writing as before,

/11 = ElOP" and 82 = Var [10P""0],

the parameters a and /3 are chosen so that

M. = E[10(a+1"11

and

sn = Var [10'ti-puil
which is equivalent to equating means and variances on a "power
scale." Ifs is normal with mean 0 and variance 1 then

eE[10("E+13)/10,jxfte icx.).

Var [10(at+13)""] = e"qe2x2a2 - al,

X = (loge 10)/10.

where
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Solving the above equations for a and /3, the approximation then as-
serts that P is normal with

and

E(P) = /3 = 10 log,. M - 5 log, [1 + (s/11/)2]

Var (P) = ce2 = -1x0 logo

(5)

(6)

In light of the normal limit theorem, it is quite natural to assume
that P is approximately normal, provided the conditions of the
theorem are satisfied, and n is large. On the other hand, the estimates
given by (5) and (6) are different from those based on (4) :

E(P) = 10 log to -Mn (7)

Var (P.) (XM )2 (8)

The difference, however, is easily resolved once it is realized that if

condition (ii) of Theorem 1 is satisfied then (5) and (6) are asymptot-
ically equivalent to (7) and (8). In fact, it is a simple matter to
show (cf. Feller,12 p. 246) that if the conditions of Theorem 1 are
satisfied then

xlim P {[(P -u)/IVF) 1 f) - exp [- t2/2] dt, (9)
1/Kr

where

u = 10 log,. M. - 5 log,. [1 + (s.//11)2]

and

v = 0 log,. [1 + (s./M.)2].

In numerical applications, the normal approximation based on (9)
is to be favored over that based on (4). In the first place, when
X1, , X,, are mutually independent, identically distributed, and X1
has a truncated normal distribution, Monte Carlo studies by I. Nasell°
have shown that the mean and variance estimates given by (5) and (6)
are better than those given by (7) and (8) (although for large n and
small variance of X1 there is hardly any difference). Secondly, the nor-
malizing factors in (9) were obtained quite naturally by equating mo-
ments on a power scale. This is analogous to the situation in classical
central limit theory when the sequence (S-M) /s converges in dis-
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tribution to the standard normal. The normalizing factors M and s,,
are not the only ones that give this result, but they are chosen in a
natural way to insure that for every n, the mean and variance of
(S-M)/s agrees with its asymptotic distribution.
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Some Properties of Power Sums of
Truncated Normal Random Variables

By INGEMAR NASELL

(Manuscript received June 15, 1967)

The power sum of P. n components X X, , , X. is defined by
the relation

P = 10 logic [lei" +  + 101./10].

The distributions of such power sums are studied both analytically and by
Monte Carlo simulation techniques for the case where the components are
independent, identically distributed, truncated normal random variables.
Results are given in terms of distributions and moments of P. . The num-
ber of components varies from 2 to 256, and the standard deviation of the
component variables before truncation ranges from 1 to 10 dB. The de-
pendence of the results on the choice of truncation point is also investigated.

I. INTRODUCTION

It is common practice in communications engineering to express
signal and noise powers on a logarithmic scale. As is well known, such
a scale serves both to narrow the numerical range between large and
small powers and to simplify some computations by replacing multi-
plication by addition. The decibel scale is most commonly used. Em-
ploying this scale, the power level x of a power w is defined by

x = 10 logic, , (1)
0

where wo is a reference power, and x is expressed in decibels (dB) over
the reference power wo. Note from (1) that w/wo =

In the situation where a number of uncorrelated signal sources feed
into the same load, the power level p of a sum of powers w1, . . , w is
given by

= 10 log. [10x1") +  + 10'1, (2)

2091
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where xi is the power level of wi. Examples of such sums arise in cross-
talk computations, overload theory for multichannel amplifiers, noise
calculations on carrier systems and multihop radio systems, and in the
evaluations of noise distributions on built-up connections between
telephone subscribers. Here, however, the power levels are in many
situations random rather than deterministic variables. Thus, in analogy
with (2), one is faced with the random variable

P = 10 log,,, [10x210 1e Rio), (3)

where each X is a random variable with known distribution. The clas-
sical power sum problem consists of finding the distribution function
and the moments of the power sum P. defined in (3). This problem
does not, however, possess a simple closed -form mathematical solu-
tion. As a result, the task of finding approximate solutions has re-
ceived extensive attention, beginning at least 35 years ago and persist-
ing till this date.

Among earlier contributions to the problem, we can distinguish
those that give specific methods for numerical evaluation of the power
sum distribution without introducing any other approximations than
those that are directly related to the numerical technique that is being
used.1, 3' A. 5' 6 Another approach is based on approximating the power
sum with a normally distributed random variable.% 7 This approach,
due to R. I. Wilkinson,2 is quite appealing, since it leads to simple
evaluation formulas. Moreover, it has now been put on a firm mathe-
matical foundation with the development of a limit theorem by N. A.
Marlow. In a companion paper,8 he proves that power sums are asymp-
totically normally distributed, provided some mild conditions on the
component variables are satisfied.

The present paper considers power sums of independent, identically
distributed, truncated normal random variables, since this is a situa-
tion of considerable practical importance in transmission engineering
work. Two approaches are being used. In the first one, asymptotic ex-
pressions are developed for the mean and variance of Pn. The second
approach is based on Monte Carlo simulation.° This method has a
number of distinct advantages over other numerical methods in that

(i) it can accept any number of component variables with arbitrarily
specified distribution functions,

(ii) independence among the component variables is not required,
(iii) computation errors do not cumulate as more than two variables

are added, and
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(iv) accuracy can be determined through the evaluation of con-
fidence limits.

Our main results are numerical estimates of moments of P. and
selected graphs of its distribution function. A wide range of component
distributions is covered with n ranging from 2 to 256. Most of the results
are based on a nominal symmetric truncation of the component variables
at ±3.5 standard deviations from the mean. In addition, the effect on
P of choosing other truncation points is discussed, and some general
trends are developed.

II. ANALYTICAL RESULTS

Consider first the case where the Xi are independent, identically
distributed random variables. Assume that the expectation

0 =

and the central moments

T = E[10X1/1°

exist and are finite for a sufficiently large range of j. We require -1
j < 8 to derive the results for the mean of P. , -2 < j :5_ 12 for the
variance and wider ranges for higher -order moments.

Rewrite the power sum P. of X, , X2 , , , as

where

= 10 loglo (4)

1011/10 + 10 ").

Now expand (4) in a finite Taylor series about the mean, nO, of S.
This gives

Pn = -1 [Ion. (nO)
Sn - nO 1 (S - nO)2 + 

A ne 2 nO

(-1) "'+' (S - nO)-+ - nO)+ Rua "
nO '

(5)
era n 0

where

1X - 0.23026
10 e

and log stands for log,. The remainder term in (5) can be expressed in
integral form as
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R.(x) = (_i)msm+i tm dt

1 xt '
or, alternatively, as

Rm(x) =
m 1 1 + ox)

where 0 < 8 < 1.
With R,,, (x) given by (7), one obtains

x > -1, (6)

x > -1, (7)

R4S n0)
0 for »1 odd,

so that from (5) we get our first result

E(P) < LAP , (8)

where

LAP = 10 log,,, (nO) = x--1 log (n e) (9)

is the level of average power.
To derive asymptotic expressions for the moments of P, we apply

the Lemma in Appendix A and (6) to get

EVS
nO

nOI
\

VRlS
nO

nO))1
0(n-i(a+8(m+1))) (10)

k

Next, to derive an asymptotic expression for E (P), we take the ex-
pected value of both sides of (5) with m = 3. An application of (10)
then gives

E(Pn) =LAP 0(1/n2)
2X02 n

as n 00. (11)

Here the independence of the component variables has been used to
express the variance of S,, as nT2, and the third central moment of Sn
as nT3. The term containing T3 is of order 1/n2.

To arrive at an asymptotic expression for the variance cr2 (Ps) , we
use (5) with m = 2 and (11) to get

1 S - nO 1 (S - n0)2
n

Pn - E(P ) = "
X nO 2X nO

+ 1 R,(Sn
nO

ne
X

) + 0(1/n) as n co . (12)
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Squaring (12), taking the expected value of both sides, and applying
(10) to four of the resulting terms gives

u2(Pn) x..
7,202 1 (1 in2)

'-'
n

\z n --> 00 . (13)

A similar approach can be used to derive asymptotic expressions for
higher -order moments. The measures of skewness and excess, denoted
by yi (P) and y2(Pn), respectively, are defined by

EPn)3i(P - (P

and

E(P. - EP.)4
72(P.) 4(P.) 3

They are found to satisfy the expressions

71(PO = [171-1 - 1-76;1]

and

122-3

72 072

The asymptotic results given in (11), (13), (14), and (15) are all
consistent with Marlow's normal limit theorem.' The main virtue of
the asymptotic results above is that they indicate the rate of convergence
of the four quantities considered. This is of practical interest since
engineering applications often involve a finite and fairly small number
of component variables.

In the particular case where the X, are truncated normal with mean
0 dB, standard deviation before truncation of o dB, and symmetric
truncation at ±ca dB, the results contained in Appendix B can be
used to express (11), (13), (14), and (15) in terms of a, c, and n. For
the mean and the variance we get, respectively,

and

+ 0(1/n3) as n -> 00 (14)

20 r2 in2) as n -> 00 . (15)
02

31

ten) = LAPS - exp (X2cr2)UM - 1
+ 0(1/n2)

2Xn
(16)

,72(pn) exp 0,20.2)u,(0) _
x2n + 0(1/n2), (17)
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where the truncation factor U,(0-) is defined by

Tr(2a)
Uc(a)

with

and

Tr(a) -
4)(c - X0-) - 4)(-c - X(y)

4)(c) - (-c)

r
(1)(x) =

1

v-gr _.exp (- t2 / 2) dt.

Derivation of the Wilkinson estimates for the mean and variance of
the power sum Pa is given in Appendix B. This derivation uses the same
ideas employed by R. I. Wilkinson in 1934.2 Thus, Pa is approximated
by a normally distributed random variable Paa, . As above, the com-
ponents are independent, identically distributed truncated normal
with mean 0 dB, standard deviation before truncation of a dB, and
truncation at dB. From Appendix B we then have

exp (X20-2)Ue(a) - 1]
µ(1',w) = LAP?, - 5 login [1 (18)

=
lx0 log. 1

exp (X20 -2)U(0-) - 1].[

The first terms in the asymptotic expansion of (18) and (19), re-
spectively, agree exactly with the results in (16) and (17). This agree-
ment establishes the important result that expressions (18) and (19)
are asymptotically correct to the order of n included in (16) and (17) .
Finally, we note that the actual result due to Wilkinson is contained
in (18) and (19) the case with nontruncated component variables is
obtained by putting the truncation factor Uc(a) = 1.

III. MONTE CARLO RESULTS FOR C = 3.5

(19)

Having established analytical estimates for the mean and variance
of power sums of truncated normal random variables, let us now turn
to estimation using the Monte Carlo technique. The power sum problem
is basically solved by estimating the distribution function of Pa . Using
the Monte Carlo method, one obtains an estimate of this function by
random sampling. Each sample of the power sum is obtained by selecting
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n independent samples, one from each of the component distributions on
the dB scale. The corresponding sample value of the power sum is then
directly computed from (2). For the results presented here, the com-
ponent samples have been selected via computer generation of so-called
pseudo -random numbers. These have approximately a uniform distribu-
tion over the unit interval. Using the inverse error function together with
nominal truncation at ±3.5o gave a random variable with truncated
normal distribution. Because of requirements of computing speed, this
transformation has been achieved via a table look -up scheme with
values of the transformation stored in the computer memory.

Table I summarizes Monte Carlo results in terms of estimates of
the mean p,(P), the standard deviation a(P), and the measures of
skewness and excess yi (PO and yo(P). Monte Carlo estimates of
these quantities are denoted by the corresponding latin letters m (Ps),
s(P), gl (P), and g,(P). The standard deviation and the measures
of skewness and excess are estimated directly by the corresponding
characteristics of the sample distribution. The mean is estimated
through the formula

m(Ps) = LAPS - (LAPmc - mmc) (20)

The value of LAP is computed exactly from relation (9), while
LAPAw and maw are the LAP and the mean, respectively, of the sam-
ple distribution. The mean p.(P) could also be estimated by maw.
However, m(P) from (20) is preferred over m3f0 because the Monte
Carlo results show that it has a smaller sampling variance.

An indication of the accuracy of the results in Table I is given by
the number of decimals included. The half -width of the 99 percent
confidence interval that represents the sampling uncertainty is between
one and five times the unit in the least significant digit. For the mean,
the confidence interval width has, however, been computed for mmc
instead of for rn(P). The computation of these confidence intervals
has been based on the asymptotic normality of the corresponding sta-
tistics.

Table I shows that the mean of the power sum increases by some-
what more than 3 dB when the number of component variables is
doubled for a fixed Q. This effect is illustrated in Fig. 1, where the
mean is plotted as a function of the number of components n. This
figure shows that the increase in the mean is substantially more than
3 dB for a doubling of the number of components n in case n is small
and a is large. On the other hand, Fig. 1 indicates that the slope of the
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Fig. 1- Monte Carlo estimates of ki(P.). The components are truncated normal;
= 0, truncation at ±3.5er.

graph of the mean levels off at approximately 3 dB for each doubling
of the number of components at all values of a for n large enough.

It is illuminating to compare these properties of the mean with the
properties of LAP. According to relation (9), LAP increases by
10 logo 2 ti 3 dB for each doubling of the number of components n,
similar to the increase of the mean noted above. Furthermore, rela-
tions (8) and (11) imply that LAP - 12(P) is nonnegative and ap-
proaches 0 as n increases toward infinity. The rate of decrease of
LAP- A(P) is illustrated by the Monte Carlo results plotted in Fig. 2.

Table I also shows that the standard deviation of the power sum
decreases as the number of component variables is increased for fixed
o. This is illustrated in Fig. 3, where Monte Carlo estimates of cr(P)
are plotted as a function of the number of components n.

The measures of skewness and excess in Table I can be taken as an
indication of the deviation from normality of the distribution of the
power sum. These measures are zero for the normal distribution and
they have low values for distributions that deviate only slightly from



2100 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1967

20

10

5

2

1.0

0.5

0.2

0.I

0.05

0.02

0.01
2 5 10

4

3

20
n

7

6

50 100 200 500

Fig. 2-Monte Carlo estimates of LAP-A(P). The components are truncated
normal; th = 0, truncation at ±3.5a.
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Fig. 3-Monte Carlo estimates of 0-(P.). The components are truncated normal;
= 0, truncation at ±3.5q.
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normality. The table shows that g, and g2 are very small for a -values
up to four over the range of n -values considered. The table also shows
that g1 is, in general, positive. This indicates that the power sum dis-
tribution is positively skewed. Moreover, g1 considered as a function
of the number of components n has definite maxima around n = 32
for all sufficiently large values of Q. In particular, this means that the
magnitude of g1 decreases as n becomes large enough. This behavior
is consistent with the asymptotic behavior of the measure of skew-
ness as expressed by relation (14).

The results of the previous section show that both LAPS - p.(P)
and 0(P) converge to 0 as n becomes infinite. From these two facts it
follows that the distribution of P - LAP converges to a distribution
degenerate at 0. Fig. 4 illustrates this convergence by plots of the
Monte Carlo estimates of the distribution function of P for n = 1, 4,
16, 64, and 256. This convergence is also illustrated in Fig. 5 where the
1 percent and 99 percent points of the distribution function of P are
plotted in addition to the mean m (P,,) and the level of average power
LAP, for cr = 10. It is seen that the slope of the 1 percent point with
a doubling of the number of components can be considerably larger
than 3 dB, while the 99 percent point changes by somewhat less than
3 dB whenever the number of components is doubled. LAP does not
represent a fixed percentage point on the distribution function as
n is changing. It is, therefore, seen that the plots in Fig. 5 of some
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< 50
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k7.)
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m
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< z 10
m <
0

H

01
-40 -30 -20 -10 0 10

DECIBELS
20 30 40

Fig. 4 - Monte Carlo estimates of distribution function of P,,. The components
are truncated normal; A = 0, c = 10, truncation at ±3.5i.



2102 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1967

percentage points would actually cross their asymptote LAP. from
below before approaching it asymptotically from above. This is true
for all percentage points of the component distribution that lie be-
tween 0 and LAPi. In other words, the fact that all percentage points
approach LAP, asymptotically does not imply that the approach is
monotone.

IV. COMPARISON BETWEEN ANALYTICAL AND

MONTE CARLO RESULTS

At this point it is natural to examine the relative agreement be-
tween the various analytical approximations and the Monte Carlo
estimates. Figs. 6 and 7 contain plots of the asymptote (16), the
Wilkinson approximation (18), and the Monte Carlo estimates of
LAP - p.(P.) for a = 6 and 10, respectively. Both figures show the
asymptote as an upper bound for LAP,, - p.(P). The plots also in-
dicate that the Wilkinson expression gives a better agreement with the
Monte Carlo results than the asymptote, and they illustrate the de-
gree of agreement between the Monte Carlo results and the analytical
expressions for various values of n. Finally, a comparison between the
two figures shows that the analytical approximations are better for
low values of a than for high values. Figs. 8 and 9 present similar
comparisons between Monte Carlo results and analytical approxima-
tions for a(N). The figures contain plots of the asymptotic expression
(17), the 'Wilkinson expression (19), and the Monte Carlo estimate

40
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20

10

0

10

-20

99%

LAPn

2 5 10 20
n

50 100 200 500

Fig. 5-LAP and Monte Carlo estimates of g(P) and of two points on the
distribution function of P.. The components are truncated normal; A = 0, o = 10,
truncation at ±3.5q.
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Fig. 6-Compar;son between three estimates for LAP -1.(P). The components
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Fig. S- Comparison between three estimates for a(P). The components are
truncated normal; u = 0,o- = 6, truncation at ±3.5o.

of (P) for CI = 6 and 10, respectively. The figures serve as a basis
for conj ecturing that the asymptote provides an upper bound for a (P).
Furthermore, the figures indicate as above the degree of agreement
between the analytic approximations and the Monte Carlo results,
and they show that the analytical approximations are better for low
than for high values of cr.

V. INFLUENCE OF TAILS

The results discussed thus far are all based on a truncation of the
component distributions at ±3.5a. Truncations at other points can
easily be studied with the tools used. Thus, Table II summarizes results

50

20

10

5

2

- ASYMPTOTE

-WILKINSON

MONTE CARLO -
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Fig. 9 - Comparison between three estimates for a(P). The components are
truncated normal; A = 0, Q = 10, truncation at ±3.5u.
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of Monte Carlo evaluations for symmetric truncations at ±2a, ±2.5a,
and ±3a for a = 1, 6, and 10 dB, respectively, and with the same range
of n -values as considered previously. A study of the table reveals that
the truncation point can have a considerable influence on the distribu-
tion of the resulting power sum. To exemplify this, Fig. 10 shows plots
of the standard deviation of the power sum of 256 components as a func-
tion of the truncation point c. The plots cover a wider range of c -values
and o -values than found in Tables I and II. The extensions are based
on the Wilkinson approximation.

The plots in Fig. 10 exhibit the important trend that the influence
of the truncation point increases with an increase of the component
standard deviation o. The same conclusion can be drawn from a study
of the c -dependence of the mean p (P) or of the quantity LAP -
1A(Pn) 

Table II contains several cases of negative skewness of P. Hence,
the earlier observation that P is in general positively skewed does not
apply for c -values below 3.5.

VI. CONCLUDING REMARKS

The extension of the results given here to an even larger number of
components (n > 256) is straightforward, but the computer time
needed can easily become excessive. The agreement betweent asymp-
totic expressions and Monte Carlo results for large enough n does, how-
ever, indicate that the Monte Carlo technique is not necessary for

1.0

0.5

a=10

6

4

0.2

0.1

0.05
20 25 30 35 40 45 50 55

C

Fig. 10 - Esti ma tes of 0-(/),56). The components are truncated normal; y = 0,
truncation at ±c0-.
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power sum evaluations beyond a certain n -value, namely, the one
where the asymptotic expressions become sufficiently accurate.

Finally, we note that the problem of evaluating the distribution of
the power sum of nontruncated normal components has not been
brought closer to its solution by the results presented here. This prob-
lem is certainly of mathematical interest even though it represents a
physically unrealistic situation. Some Monte Carlo studies with larger
values for the truncation points have indicated that the convergence
of the power sum to normality is much less rapid in this case, and that
considerably larger values of the measures of skewness and excess can
occur than those contained in Table I.
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APPENDIX A

Let Xi , X2 , ' , X. be independent identically distributed random
variables. Put

S = 10x'l1" +  + lOrn"°

and let 0 = E[10x1110]. In order to prove the asymptotic results in the
main body of the paper, we need the following.

Lemma: Suppose

Q(x) = xi '

fo it' +71 ti ,

where 1, j, in are nonnegative integers. If E102'" and E10-ixa10
bounded, then

Proof : Let

x > -1

E[Q(S n = 0(n-1/2)
nO

as n --* 00 .

trn
dt,I,(x) = x > -1.
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Then Q(x) = x'[1,(x)]1, and it follows from the Cauchy -Schwarz in-
equality that

-
) )

\ 2 s
2'

n n nO

The asymptotic behavior of the central moment of S of order 2/ is
found from Cramer.10 Hence,

2i
E[Q(8

nO
" - 2 = 0(n- l)E[i,(Sn

nO

nO
as n 00.

To complete the proof, it suffices to show that

ne 21
Erim (Sin = 0(1) as n-> co

nO

To show this, we again apply the Cauchy -Schwarz inequality. Thus,

dt 1 1
Il(x) f I dt .10 (1 + xt)2 - 2m + 1 x 10

Hence,

E[i (8 n ne)12i ° YE(L1-)ine 2771 + 1 Sn

Consider now the function u(x) = 1/xi, which is convex on (0, co) for
j z 0. By Jensen's inequality it follows that if a1 , - , a , y , yn

are non -negative real numbers such that al +  + a = 1, then
u(aiy, + + anYn) «MO +  + anu(y).

In particular,

(n/S.)' = u(S/11) c (1/n)[u(10'1°) +  + u(10x")]
= (1/n)[10-'''''° +  +

Hence,

E(n/S)i E[10-'1/11.
The right-hand side of this inequality is finite by assumption, so the
proof is complete.

APPENDIX B

Derivation of the Wilkinson Results for Truncated Normal
Components

As in Appendix A, let X1, X2 . . . X,, be independent, identically
distributed random variables, and assume further that they all have a
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truncated normal distribution. The density function of X, is then

g(x)

0, x < µ - C T, x > + Co -

1 1
eXp (- (X - 11)2)

4)(C) - (1)( -C) - 2a2

- co- x S µ+ Co*

where st. stands for the standardized normal distribution function.
Now let Wi be the nonnegative random variable that expresses the

power corresponding to Xi, i.e.,

TV; =

The density function of 1V1 is

1(0 =
0, tv < " '1' ° , > 1O(µ+-)/10

1 1
p
(

2X26,2 '

(log to - Xi.4)2)
4)(c) -4(-c)A/27 crAw

ex

The moments of W1 are therefore,

where

10 P " 1" < w < 10`", ral/10

Elr; = f wkl(w) dw = exp (kX/./ -1- 11c2x20.2)Tcyco),

0

(1)(c - AO-) - (I)(-c - Au)
T°(o-) = 43(c) - 4)( - c)

accounts for the effect of the truncation. We note that Tc(a) -0 1 as
c-> oo

The mean and variance of W1 are found to be

0 = ETV, = exp ()kit + 1X20 -2)T,(0-) (21)

and

72 = Vat. (WI) = exp (2Xiu X20-2)V(0)[exP (X2(72)U,(0) - 1], (22)

where

Tc(2cr)

"c(°) no)
Now let P be the power sum of X, , X2 , X. and take µ = 0.

Furthermore, let P be approximated by a normally distributed random
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variable P, . The independence of the Xi's then allows us to establish
two equations by adding the means and variances of the Wi's to get
the mean and variance, respectively, of

Smw = 10P = W +  ± .

Relations (21) and (22) allow mean and variance of Sm, to be ex-
pressed in terms of mean and variance of P,. Hence, we get

n exp (1X2cr2)7 ((o) = exp [X p(P 1X2 o-2 (P nm,)]

and

n exp (X20-2) T:(0-) [exp (XY) Ue(cr) - 1]

= exp [2Xp(Pnw) X20-2(P,,w)][exp X20 -2(P,) - 1].

Solving these two equations for tt.(P,,e) and 0-2 (Pm) we find

I.L(Pm) = L APm - 2\ log [1 + exP
(\2Q2} Um - 1]

and

0.2(P.,) = log [1 + exp (X2'.2)U.(cr) - 1

where

1 1
L APm = log n 1X0-2 -x log 71 c(a).
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Random Packings and Coverings of
the Unit n -Sphere

By A. D. WYNER

(Manuscript received July 13, 1967)

It is well known that the quantity 1119(n, 0), the maximum number
of nonoverlapping spherical caps of half angle 0 (a "packing") which
can be placed on the surface of a unit sphere in Euclidean n -space is not
less than exp [-n log sin 20 + o(n)] (0 < ir/4). In this paper we give a
new proof of this fact by a "random coding" argument, the central part of
which is a theorem which asserts that if a set of roughly exp (-n log sin 20)
caps is chosen at random, that on the average only a very small fraction of
the caps will overlap (when n is large).

A related problem is the determination of M c(n, 0), the minimum num-
ber of caps of half angle 0 required to cover the unit Euclidean n -sphere.
We show that 31 c(n, 0) = exp [-n log sin 0 o(n)]. The central part
of the proof is also a random coding argument which asserts that if a set
roughly exp (-n log sin 0) caps is chosen at random, that on the average
only a very small fraction of the surface of the n -sphere will remain un-
covered (when n is large).

I. INTRODUCTION

A problem in coding theory for the Gaussian channel is the deter-
mination of /14(n, 0), the maximum number of points which may be
placed on the surface of a unit n -sphere such that the spherical caps
with centers at these points and half angle 0 are disjoint (the "pack-
ing" problem). This quantity, though unknown, has been estimated
by upper and lower bounds.5 In this paper, we give a proof of the
known lower bound by a "random coding" argument. It is felt that
this new method is of interest in itself.

A related problem is the "covering" problem, the determination of
M 0(n, 0), the minimum number of caps of half angle 0 required to
cover the surface of a unit n -sphere. This problem is of interest when
one wants to quantize an n -dimensional Gaussian vector with inde-

2111
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pendent components (which with very high probability lies near the
surface of an n -sphere). In this paper, .111,(n, 0) is estimated with upper
and lower bounds which are "exponentially" tight. The upper bound
is also proved by a "random coding" argument.

The random coding arguments owe much to Shannon." The ran-
dom covering theorem in particular is similar to his approximation
theorem in the latter reference. R. Graham has called my attention to
the work of Rogers,I, 2 who has considered the problem of covering a
large n -dimensional cube with spheres of a unit radius. Rogers' meth-
ods and result parallel those given here.

Let x, y with and without subscripts denote points on S , the surface
of a unit sphere in n -dimensional Euclidean space. Let a(x, y) be the
angle* between x and y, and note that a(x, y) satisfies the axioms of
a metric. For 0 < 0 _C. 7r, let e(x, 0) = ty : a(x, y) < 01, the open
spherical cap of half angle 0 centered at x. A set S C 8 is said to be a
0 -covering (0 < 0 LC. 7r) if U=,2 e (x, 0) covers S. , and S C Sn is said
to be a 6 -packing if e(x, 0) n e(y, is empty for x, y E S, x y.
Let 111,(n, 0) be the minimum number of points which can constitute
a 0 -covering of S and let .111,(n, 0) be the maximum number of points
which can constitute a 0 -packing. These quantities are related by

Lemma 1: .111 c(n, 20) < Lll p(n, 0).

Proof: We say that S C Sn is a maximal 0 -packing if S is a 0 -packing, and
for all y S, the union yj V S is not a 0 -packing. We establish Lemma 1
by showing that every maximal 0 -packing is a 20 -covering. Let S be a
maximal 0 -packing. If S is not a 20 -covering then there exists a y such
that a(x, y) > 20 for all x E S. Thus, from the triangle inequality for
a, e(x, 0) n e(y, = 4 for all x c S, and y] V S is a 0 -packing con-
tradicting the maximality of S. Hence, the lemma.t

The quantity /1/p(n, 0) is well studied.5 In particular, it is known that
(for 0 < 7r/4)

exp [nP 1,(0)(1 I3n(0))] LC. 1119(n, 0) s exp [nP u(0)(1 7(0))], (la)
where /3 ,y -> 0 as n -> co and

PL(0) = -log sin 20, (ib)

* The angle is defined as follows. Say that the center of the unit sphere is the
origin of coordinates in n -space. Then x and y may be thought of a unit vectors.
The angle a(x, y) between them is defined by cos a = inner product of x and y,
where 0 :5_ a

t The fact that it does not seem possible to obtain a reverse inequality relat-
ing M. and M, may lead one to suspect that covering and packing are, in fact,
not dual problems. This may account for the fact that random coding appears
"better" for covering than for packing.
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and

Pu(0) = - log -0 sin 0. (1c)

Thus, roughly speaking 111,(n, 0) increases exponentially in n (as n
-> co) with exponent between Pr, and P.

In Section III we give another proof of the lower bound in (1). The
central part of this proof is a theorem that asserts that if a packing
with roughly exp [nPL(0)] points is chosen at random, that on the
average only a very small fraction of the caps will overlap (Theorem
1). The lower bound of (1) is a corollary to this theorem. It is felt that
Theorem 1 is of interest in itself.

Now consider Mc (n, 0). We will show that it too increases roughly
exponentially in n (as n 00). But here we can find the exponent
exactly, viz., (for 0 < r/2)

111,(n, 0) = exp [nRe(0)(1 c(0))], (2a)

where en --> 0 as n ---> 00 and

lic(0) = - log sin 0. (2b)

The central part of the proof of the existence of a covering satisfying
(2) is a theorem which asserts that if a covering with roughly exp [nRc(0)]
points is chosen at random, that on the average only a very small frac-
tion of 8 will remain uncovered.

II. THEOREMS

In this section we give precise statements of our theorems, leaving
the proofs for Section III. We begin with some definitions.

Assign the usual "area" measure to 8 . If A C 8 is measurable, let
p(A) be its measure. In particular, let

(n - 1)7(n-"" f (n_2)C(a) = a))-- TRn + 1)/2] 0
sin co thp (3a)

be the area (measure) of a cap of half -angle a, and let

C,,(70
nor

11[(n 2)/2] (3b)

be the area of 8 . It is easy to show that (for a < 7/2)

Cn(7 1- exp In log (sin
a

o(n)}
Cn(a))

as ri --> 00.

(4)
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In connection with the packing problem, let S = C 8,,
and consider f e(xi , 0)1:_, the corresponding caps of half -angle 0.

Define

1 'Fp(S, 0) = k g,(S, 0),

where g; (i = 1, 2, , M) is defined by

{1,
e(xi , 0) n e(x, , 0) = tall j i,

gi(S, 0) =
0, otherwise.

Thus, Fp(S, 0) is the fraction of the caps which do not overlap. Notice
that S is a 0 -packing if and only if Fr(S, 0) = 1. We now state

(5a)

(5b)

Theorem 1: (Random Packing) Consider a random experiment in which
the M members of S are chosen independently with uniform distribution
on Sn . TVS, 0) is then a random variable. Let 0 be fixed and let M increase
as n 00 , then

(20)Cnif M - 00 , EF,(S, 0) -4 0 (6a)
C(r)

and

i f
C"(2 6) EF,(S, 0) -+ 1, (6b)
C(r)

where E denotes expectation.

Thus, in particular, if M = en (p fixed), we have from (4) that
EF,(S, 0) -> 1 or 0 according as p < -log sin 20 = PL(0) or p > PL(0).
Further, since there must be a set S such that F9(S, 0) >= EF,, we
conclude that for any p < PL (0) and any e > 0 there exists an n suffi-
ciently large and a set S C 8. with M = en members such that

Fp(S, 0) 1 - e. (7)

If we delete the (EM) members of S with overlapping caps we obtain
a 0 -packing with M = e"(1 - e) points. This is equivalent to the lower
bound of (1).

Let us now turn to the covering problem. We can easily establish a
lower bound on 111,(n, 0) as follows. Let S = C S be a 0 -
covering, so that Uf.,, en(x, , 0) covers 5 . Hence,

at 3/

C (1-) = 12(8) = u U e(s , 0) E 11(e(X. 0)) = AIC(0). (8)
i=1
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Thus, we have proved

Lemma 2: Mc (n, 0) > C.(r)/C.(0).

In the light of (4), Lemma 2 implies that M is not less than the right
member of (2a) for 0 < 7/2.

Let 9 > 0 and S C 8n be given. Define the set

B(S, = 1Y E Sn Y e (x, for all x E SI . (9a)

Then

F,.(S, 3) = A(BOS, 3))/C.(7) (9b)

represents that fraction of 8 not covered by the caps e(x, 3), x E S.
We now state

Theorem 2: (Random Covering) Consider a random experiment in which
the M members of a set S are chosen independently with uniform distribu-
tion on S . Then Fc(S, )3) is a random variable. Let 13 < 7 be fixed and let
M increase as n oo , then

if M Cn(a) -) , E(F,) -+ 0,
Cn(7)

and

Further,

if M > 0 E(F,)
C.(7)

E(F c) exp {-M cn(8)}*
Cn()

In particular, if M = (p fixed) and 13 < 7/2, we have from (10)
and (4) that E(F.) -) 0 or 1 according as p > -log sin 13 = R,(0) or
p < Rc(fI). Further, since there must be at least one set S for which
FC(S, 13) < EFc, we conclude from (11) and (4) that for any # < 7/2
and any p > Re(Q) there exists for each 91 = 1, 2, a set S C S
with M = ePn members such that

ou(B(S, OD < exp - exp [(P - Rc(())n(1 x(0))]1 (12)Cn (7)

where X03) 0 as it 00 . The following corollary (also proved in
Section III) follows from (12).

Corollary: Let 0(0 < 0 < 7/2) be arbitrary and let p > R,(0). Then for
n sufficiently large there exists at 0 -covering of 8 with M = e" points.
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It remains to show that /l/c is not more than the right member of (2a).
For 0 < 7r/2 let

p* (8) = hill sup 1 log 111,(n, 0).
n

Say p* > R,(0). Let p = (R(0) p* (0)) /2 < p'. We conclude that
there is all infinite sequence of n's such that any set of eP n points in
S cannot be a 0 -covering. But since p' > R,(0), application of the above
corollary yields a contradiction. Thus, p* < R,(0). This taken together
with Lemma 2 gives

lim I log 111(n, 0) = R,(0),
n

from which (2) follows.

III. PROOFS

Proof of Theorem, 1: Let the points xl , x2 , , XII, E be chosen in-
dependently with a uniform distribution on 8 . The random variables
gi (i = 1, 2, , ill) defined in (5b) may be rewritten

y X2 , =
a(xi , xi) > 20,

otherwise.

Thus, the random variable F of (5a) has expectation

1 M 1EF = E Egi = Pr {gi = 1}.

i'
(13)

(14)

Let i be fixed. If x; = x then gi = 1 if and only if the (M - 1) inde-
pendent choices of xl , , xi -1 , xi+i , , xm do not belong to e(x, 20).
Since the x, are uniformly distributed on 8 we have

Pr{gi = 1 I xi = x}

independent of x. Thus, from (14)

(1 C(20))
C(71-) '

E(F) =-CC,,(20))"1
noo

( AI -1 /lin)]

un

where /.z = C(r)/C(20). Our result follows on noting that as n

(1 - 1/A0P^ and (M - MCn(20)/Cn(r).

(15)

00,
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Proof of Theorem 2: Let the points x, , x2 , , xm e 8 be chosen in-
dependently with a uniform distribution on 8 . The random variable
Fc may be written

where

1 fF, = js.h(y, x1 , x2 , , xm) MY),

h(y, xi ,
,,I 1 if a(xi y) -- 0, 1 _. i <M

O, otherwise.

Since h .-_. 0 we may interchange the expectation and integration opera-
tions and obtain

(16)

EF, - 1 clii(y)Eh(y, x , xm),
Sn

where as indicated Eh is computed with y held fixed. Now

If

Eh(y, x, , , xm) = Pr [h = 1} = Pr n {c(x, ,y)>0}
=1

= (1 - c"( oyf
exp [- 111C( 0)/C(r)] ,C (r)

from which (10) and (11) follow.

Proof of Corollary to Theorem 2: Let p > R,,(0) be given. Let be
defined by Rc(-y) = p. Since p > Re(0) a decreasing function, we have
7 < 0. We will apply Theorem 2 with $ = (0 + 7)/2, so that p > R(().
Let 2 (n = 1, 2,  ) be the sets which satisfy (12). By (4) and (12),
C[(0 - 7)/2]/C(r) decreases much more slowly (as n ---> co) than
[m(B(S , 13))]/Cn(7r) S , so that we can find an N sufficiently large
such that for n > N,

Sn
C[(0 - 7)/2]

<
Cn(r)

We claim that for n > N, the sets 3 are 0 -coverings of S . To show
this observe that if ts,, e(xi , 0), then a(xi y) 0, all x, s 2 .
Thus,

e(Y,6 4- 7) _ (i) f ctll T £ AS
7) (--. e(x, n/
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which in turn implies

e(y, - C B(S. ,

0
+2 7)

Thus,

µ{B(Sn ,

0 + 7)}
26 = C(r)

144Y -9 7)} Cn(e 2 7)

a contradiction. Thus, there is no such y and the corollary follows.
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Slope Overload Noise in
Differential Pulse Code

Modulation Systems

By E. N. PROTONOTARIOS

(Manuscript received June 12, 1967)

In differential pulse code modulation (DPCM) systems, often referred
to as predictive quantizing systems, the quantizing noise manifests itself
in two forms, granular noise and slope overload noise. The study of overload
noise in DPCM may be abstracted to the following stochastic processes
problem. Let the input to the system be a Gaussian stochastic process
{x(01 with a bandlimited (0, fo) spectrum F(f). Denote the output of the
system by y(t). Most of the time y(t) is equal to x(t). During time intervals
of this kind, the absolute value of the derivative x'(t) = dx(t)/dt is less
than a given positive constant 4, . (In a DPCM system, xL = kf, where
k is the maximum level of the quantizer and f, is the sampling frequency.)
There are time intervals, I i(V , t;')) (i = 0, ±1, ±2,  ), for which
y(t) 0 x(t). These time intervals begin at time instants to'' such that

x'(4") I increases through the value 4, . For t r I, , y(t) = x(4i))
(t - tV)x,c . The interval ends at , when x(t) and y(t) become equal
again. The overload noise in the DPCM system is defined to be n(t) =
x(t) - y(t). The problem is to study the random process 1n(t)I. In the
present paper, we will give an upper bound to the average noise power
(n2(t))a, which at the same time is a very good approximation to the noise
power itself.

Two previous attempts have been made to find (n2(t)) . One, due to Rice
and O'Neal, involves an approximation valid only for very large xL.
Another approach to the problem, due to Zetterberg, includes an ingenious
way of avoiding the determination of ti" . A new approach is given here
that combines the best features of the two methods. The present result is a
better approximation for slope overload noise than has been previously
obtained. The result differs from previous results but is asymptotically
equal to that given by Rice and O'Neal for 4, -) 00 . In the region where
overload noise is important, the present result is in very good agreement

2119
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with computer simulation and experiment. The technique used could be
applied for the determination of other statistical characteristics of the
error random process.

I. INTRODUCTION

This paper is concerned with the slope overload noise in Differential
Pulse Code Modulation (DPCM) systems, often referred to as predictive
quantizing systems. Delta Modulation (AM), the simplest member
of the DPCM family, is a European invention of the mid -forties.'
DPCM was first revealed in a Phillips Company patent' in 1951 and
as a predictive quantizing system in a patent by C. C. Cutler' of the
Bell Telephone Laboratories in 1952. AM and DPCM are receiving
renewed attention due to the present trend toward digital communica-
tions and general efforts aimed at redundancy reduction' in picture
transmission. The present work was motivated, to a large extent, by
the application of DPCM to Picturephone® signal transmission.

Work on AM and DPCM was reported in the early and mid -fifties.
Most representative are the papers by (i) DeJager' on OM, mainly
of introductory and descriptive nature, (ii) Van de Wee on uniform
DPCM-we will refer to it in the sequel, and (iii) Zetterbere whose
long paper on AM is the most detailed study of the subject to date.
Recent publications note the beginning of a "renaissance" period for
AM and DPCM.8,9,10,4

In DPCM systems the quantization noise manifests itself in two
forms, the granular noise and the slope overload noise. The granular
noise is essentially uncorrelated with the input signal and has a more
or less flat power spectrum and an approximately uniform amplitude
probability distribution, resembling the granular noise in standard
PCM. The granular noise for single integration DPCM systems with
a uniform quantizer has been studied by Van de Weg.°

In contrast with a straight PCM system, which overloads in ampli-
tude, a differential PCM system overloads in slope. Consider a DPCM
system (Fig. 1) with a single integrator in the feedback path and a
symmetric quantizer which is not necessarily uniform. Practical DPCM
systems have leaky integrators. For simplicity, we are considering only
perfect integrators here. Let k be the maximum level of the quantizer
and f, the sampling frequency. Then the maximum slope that the system
can follow is xf, = kf. , corresponding to the emission of a string of
impulses of strength k by the quantizer of Fig. 1. For a fixed value of
xo = kf, and for k 0 the granular noise tends to zero, and the total
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(t)

y(t)

Fig. 1-Single integration DPCM with a symmetric quantizer.

noise is due to slope overload alone. In this paper, we concentrate on
certain statistics of the overload noise defined precisely in Section III.

QUANT1ZER

---b DECODER r
yitt,)

LP

II. SUMMARY OF RESULTS AND COMPARISON WITH PREVIOUS WORK

There exist two previous papers concerning overload noise in DPCM
systems. Approximate results are given for the slope overload noise
No in terms of the slope capability xi; of the DPCM system and the
power spectrum of the input signal, assumed to be Gaussian. The
result due to Zetterberg7 (with some corrections) is as follows

N°''
3

3b;)5)JA(X)
exp

xf12)

513 2 \'
where bi and b2 are the variances of the first and second derivatives
of the input signal, respectively, and they are given in terms of the
spectrum in (1) of the following section. The quantity X and the func-
tion A (X) are defined in (31) and (32), respectively. The second result
is due to Rice and O'Neal.' Their basic approximations are: (i) a trunca-
tion of the Taylor series for x(t), around a transition point, including
terms through the third derivative; and (ii) the assumption that the
third derivative of x(t) at the transition points has, as a random variable,
a very small variance compared to its mean value. Therefore, the third
derivative is taken to be a deterministic constant with value equal to
its mean. With these assumptions, (22) of Ref. S results in

No.!? = 1 bi2 31)). 5 exp - xf:2
2b,4-V97r b2 xo

There are two points that we want to make here:

(i) When the formula above together with an expression for the
granular noise given in Ref. S are used to compute S/N we see that the
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agreement with computer simulation is not very satisfactory in the
region of severe slope overload. This formula does, however, identify
the peak of the S/N ratio quite successfully (see Fig. 11).

(ii) When we compare Zetterberg's and Rice's results by considering
the ratio No, z/No. R we get

1N )
21(A) - 3 .44 ANo

,R 35r

10 logio
No. R

-5.36 + 10 log,, A(X) dB.

Thus, we see that the two results differ substantially.
Hence, the question of the average slope overload noise power cannot

be considered settled since the two results above are different and they
both differ from computer simulation and experiment. The present
paper sheds further light on the question of the slope overload noise. Our
principle result is the approximation

1 14(,)(3b15 ,2

exp -2IL)-)A(x),
4 V27r \x0/ \ xo 1),

where the quantity x and the function A (x) are defined in (64) and
(66), respectively. This expression, like the previous ones, is a function
of only two things-the maximum slope capability xo of the DPCM
system and the power spectrum of the input signal. Indeed all the varia-
bles appearing in this formula are calculated directly from these two
quantities only [see (1) and (64)]. The present formula gives better
agreement with computer simulation than the one by Rice and O'Neal,
when used to compute S/N (see Fig. 11).

We might also point out here that the present work applies to any
system which is slope limited, not just to DPCM or digital encoding
systems.

III. PROBLEM DEFINITION

With reference to Fig. 1 let the input {x(t) } be a stationary band -
limited Gaussian random process. Let 11/(T) be the autocorrelation func-
tion of x(t) and F(f) the one-sided power spectrum. Let A be the band-
width of x(t) and F. = f./fo the normalized sampling frequency. The
random process { x(0) is assumed to be zero mean. Let b. be the variance
of the nth derivative of x(t) (n = 1, 2,  ). These numbers (be) will be
extensively used in the sequel. They are given by the relation
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to

bn = f (274)27(f) df . (1)

The output signal y(t) follows the input signal x(t) during certain time
intervals. Within these time intervals

Idx(t)
.

dt
< xo

The rest of the time y(t) follows segments of straight lines having slope
4, or -x() . If to is a time instant at which a transition from the input
signal to the straight line segment takes place, we have

or

For

and for

x"(to) > 0

x'(to) = -xf, , x"(10) < 0.

x'(4) - xu

y(1) = x(to) + (1 - to)xL

x' (to) = - x6

y(I) = x(10) - (t -

e (to , I')

e (to ,

where ti is the smallest time t, > to for which

x(11) = y(11) = x(to) + (t, - 10)e(10)

Since the overload noise is defined to be

n(t) = x(t) - y(t),
the problem boils down to the study of the random process 1n(t) .

We will concentrate on the derivation of an upper bound to the average
noise power (n2(t)), which at the same time is a very good approxima-
tion to the noise power itself. Other statistical properties of n(t) can
be obtained, but we will only mention them at the conclusion of the
paper.

In contrast with straight PCM the evaluation of the overload noise
in DPCM systems is not easy. The beginning of a slope overload burst
can be defined statistically in a clear manner. Difficulties arise in
defining a valid tractable procedure for determining the duration of
the burst and its end point (ti).
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As pointed out before two previous attempts have been made to
find (ie (t)) a, One, due to Rice and O'Neal,' involves a Taylor series
approximation for determining the end point t1 of the burst valid only
for very large x; , i.e., in a region where slope overload noise is not
dominant since it is over -shadowed by the granular part of the quantiza-
tion error. Another approach to the problem is due to Zetterberg.' His
approach includes an ingenious way of avoiding the determination of
ti . Unfortunately, his work contains a conceptual error in the averaging
procedure. The error resides in his interpretation of continuous con-
ditional probability density functions in the vertical window sense.

A new approach is given here that combines the best features of the
two methods. The result is asymptotically equal to that given by
Rice and O'Neal for '4 - co . In the region where overload noise is
important, the present result is in very good agreement with computer
simulation and experiment. As noted above, the technique can also
be applied to the determination of other statistical properties of the
error random process.

In Section IV, we give a critique of Zetterberg's work. It must be
emphasized that Zetterberg's valuable work contains concepts and
techniques on which our improved results are based. The wedding of
the best in the methods of Rice and Zetterberg is accomplished in our
Section V. Theoretical results are compared with computer simulation
in Section VI and agreement is seen to be excellent.* Finally, in Section
VII we indicate how other statistical properties of 91(t) may be obtained
by utilizing some of the approaches developed herein.

IV. CRITIQUE OF ZETTERBERG'S APPROACH

Using an argument based on the ergodicity of the random process
x (t) } Zetterberg' states that

where

012(t) = (n2 (t)), = S fo n2 (to s) d

s = t -
Si = ti - 10

(7)

(8)

and Sx, is the average number of points of transition per second. In
what follows, we summarize his procedure deviating slightly from his
notation and arguments to clarify a few points. Consider the ensemble

* Comparison with experiments will be given in another paper.11.
) denotes ensemble average and ( )0,, time average.



SLOPE OVERLOAD NOISE 2125

of the sequences = 0, ±1, ±2, , of time instants such
that e(ti(r), = xt, and x"(t,(0, ?') > 0 or xio,(0, = -x,; and
x-0,(0, ± 0 for i = 0, ±1, ±2, . Zetterberg avoids the definition
of the end point of the burst by defining a sequence of random processes
{mi(s, } (see Fig. 2), with index corresponding to the above time
instants, in the following way:

= [s(ti(0 s, - x(t1(0, - rr(sl  ii(s)

gx(ii(0 s, - x(ii(0 , - fis) (9)

tL

m (s)
Lerrrr,r,1

Fig. 2-An overload noise "burst" ni(s) and the approximating function mi(s).

for

x'(/,(0, = and x"(tia), > 0,

and

mi(s, = fx(ii + - x(ii , +
 P(-./7(1i s, x(ii , -

for

x'(11 , = ,

(.4(s) is the unit step.)
t For clarity we show in this paragraph the input random process as generated

by an experiment with outcome

(10)

x"(t, , < 0.
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For brevity, we drop the index i and the argument r. We denote, as
before, the beginning of a burst by to , the end by ti and by si its duration,
such that for a "positive burst," i.e., x'(to) > 0 we have

m(s) = [x(to - x(to) - x4sJi.L(s)p[x(to - x(to) - xOs]. (11)

In general, as shown in Fig. 2, m(s) contains not only noise burst cor-
responding to the transition point to but also some additional "bursts"
cut from the function x(t) by the straight line starting at the point
(to , x(t0)) and having slope xo . This makes

f,
and

m2(s) ds f (t s) ds
0

m2(s) ds)> n2(10 ds

(12)

(13)

For sufficiently large values of 4/ , (b1 is the variance of x'(t)),
however, the probability is small that the situation depicted in Fig. 2
will occur. Also, generally the additional sections in m(s) occur in
reduced amplitude and the squaring reduces the introduced error still
further. Denote by Rx, the average number of points for which

x'(t,) = yr, , .v"(ti) > 0

or

x'(t;) -x6 , x"(ti) < 0.

It is seen from Fig. 3 that Rx,. > Sx,. , since a burst cannot start when
another is taking place even if the conditions on the first and second
derivative are satisfied. But again, for sufficiently large 4[0T; , R.,,
is a good estimate of ,Sx,. . It follows from the discussion above that
the quantity

Fig. 3-Kb K2 C whereas K, C Sx'. but K2 IT Sx .
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Rx..(f' m2 (s) (is (14)
0

is an upper bound and actually under certain conditions a good estimate
of (n2(0).,

When one defines .
Q=' (I m2(s) ds) = f (7712(s)) ds, (15)

I) 0
where the equality above holds provided that the integrals exist, then

NO = RZ .0(22' (16)

is Zetterberg's upper bound to the overload noise.
At this point Zetterberg takes the ensemble average (m2(s)) in the

following way:

(m2(s)) =
00

00 2.1 +.2 0

(x, - - x4s)2P(xl , x2 I ±i = xj ; dx2 dxi

ell

(x2x,+ X4S)2P(S i I, 1 ±1 = x() dx2 dx, , (17)

where p(xl x,
I ±, s) is the conditional joint probability density

function of the random variables X, = x(to)X2 = x(to s) given the
value of the random variable Xi = dx(to)/dt, understood in the vectical
window sense. It turns out that the averaging procedure_as_described
by (17) is wrong for two reasons:

(i) The joint probability density of X, and X2 should be subject
not only to the condition X, = dx(to)/dt = ± 4, but also to the
condition it' = d2x(to)/dt2 0. If we do not impose the above con-
dition on the second derivative at the beginning of the burst, then an
m(s) of the form depicted in Fig. 4 would erroneously add to the ap-
proximation of the average slope overload noise power per burst.

(ii) It is known" that conditional probability densities must be
treated with great caution. M. Kac and D. Slepian in Ref. 12 have il-
lustrated with examples how different the expression for conditional
probability densities might be, depending on the way we understand
them. From the ensemble viewpoint quantities like the conditional
joint probability density for the ry X, = x(to) and X, = x(to s) given
that X, = dx(to)/dt = xt, are not clearly defined since the set of sample
functions with dx(to)/dt = xt, has probability zero. We can of course
give meaning to the conditional densities by means of limiting proce-
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`x(t)

v(to)= xa x"(to)< o

Fig. 4 - Consequences of not requiring x"(10) to be positive.

(lures. As Kac and Slepian point out, a condition like dx(to)/dt = xt,
would be replaced by a condition, A, with nonzero probability, depend-
ing on parameters, such that when these parameters tend to limiting
values A becomes the condition dx(to)/dt = 4 . It turns out that, in
general, the resulting conditional probability density function depends
on the manner in which A approaches the condition dx(to)/dt = 4 .
Two window conditions are considered below.

(i) A vertical window condition is a condition of the form

Ito)<< xii + S. (18)

Then, with reference to Fig. 5(a),

p(x, , x2 I ±(1,,) = xi; ; s),u,

d±i

= lirn P(xi , x2 , xo ;
(19)

19(4)
P(t1) (IX,

where p(x, , x2 , it ; s) is the joint probability density function of the
random variables X, = x(to) X2 = x(to s) and Xi = dxi(to)/dt and
P(±1) is the probability density function of the derivative = dx(to)/dt.
Note that the time argument of the density functions above are written
taking into account the stationarity of the input process {x(t) }

(ii) A horizontal window condition is a condition of the form dx(t)/dt =
4 for some t such that

to t to + (5.

Then,

p(x1 , x2 I x'(10) = xo ; s)h.
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H
-o

-0

0

00

= Jim {f dx;' , x2 , x; , x;' ; s) dx;
.5-0 0

0

f dxf' fx' '1' p(x, , x, , x; , xf' ; s)

0

{1' (14' L. p(xl , xi') dxfi
zo

0 .-.r. ' 5 -1f p(x; , x;') dxf}f
fw I p(x1 , x2 , xa , xf' ; s) d2ii

4)

H
-o

f I xf' I P(4 , x;')

0
0

x10+8

to

TIME,t
(a)

-4--8
> 0

0 to to +8

(20)

x'o -x18

x'0

x'; < 0

PE X7 < 0

dx (t)
dt

0
TIME,t

( b)

to to + 8

Fig. 5 - (a) A "vertical window condition. (b) A "horizontal window"
condition.
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where p(x1 , x, , xi , ; s) is the joint probability density function
of the random variables X1 = X (to) X2 = + = dx(to) /dt and

= d2x(to)/d12 and p(xf , xi') the joint probability density of the
random variables Xf and Xf' . Equation (20) follows from the fact
that the "horizontal window" condition is equivalent (within first
order in small quantities and for a given second derivative, say xi' > 0)
to xo - xi' S < clx(to)/dt xL . For xi' < 0 condition A is satisfied
only if 4 5 dx(to)/dt 4 - xi' ö [see Fig. 5(b)].

Consider now according to Kac and Slepian an "empirical or time
derived joint probability density for x1 and x2 given that x'(to) = xf,"
resulting from taking one sample function of the process and observing
the values of x(t) and x(t s) at each value of t for which dx(t)/dt = 4
(s is of course a given number). It turns out that the empirical or time
derived density thus obtained is equal to the conditional density defined
in the horizontal window sense.

Note that if we impose the additional condition x,"(t,,) > 0 we have

P(xi 2.1I x'(to) = xri , x"(10) > 0;

, x2 , xi' ; s) de
0

f

(20a)

It will become clearer in a later section where the averaging is done
carefully that one should interpret the conditional probability densities
in the horizontal window sense.

Zetterberg defines the conditional densities in the integrals of (17)
in the vertical window sense; this follows from the way that he computes
them.

But let us overlook for a moment these shortcomings of Ref. 7 and
continue with the approach presented there. For a Gaussian input
process {x(t) Zetterberg derives the following expression for QS,..

where

= Pr'
f k(s)u2 exp --2(u g (s))2 du ds,

{dAM 2
lc(s) = 2(%to - %(s))s))

1

ds

xf,8 {1 dAk}
9(s) = bis ds

(21)

(22)

(23)
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b(n = 1, 2,  ) is defined in (1) and

Ifro = (0) 

The following asymptotic expressions are valid (noted in Ref. 7).
For

s 0

For

,s4b4
k(s) (24)

g(s) VC2 (25)
3 b,

k(s) %to

xf,sg(s)ti
12tp0

(Note the meaning of the symbol as used here:

x(s) ti y(s) for s so

if

(26)

(27)

x(s)iim -=
Y(s)

1.)

An approximate calculation of the integral for Qz,, as given by (21)
is based by Zetterberg on the following simplifications. He uses the
asymptotic formula for g(s) for small s. This is a justificable approxima-
tion since the smaller values of g(s) are more important in the evaluation
of the integral (21) and in any case the slopes of g(s) for s 0 and s co

do not differ drastically.
For k(s) he sets

b2s4

4 '

for s < s,
k(s) =

2 , for s > si ,

where s, is determined such that

b2s:
=4

2%t"
,

(28)
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_
4\181Po

b2

The evaluation of the integrals (21) for Q. are not correct as reported
in Ref. 7.* In Appendix A the evaluation of the integral is made and
the result is [see (90)]

where

and

with

4 br (3b
i1/2)5Qz'° Nir 35 b'2'/2 x, L'-°9 '

_x4
4

o2q,
3 b, 2

(29)

(30)

(31)

A(A) = 1 P (X)e-" - (X) 4,(X) (32)

17 4 X2

= X + X -

Q(,\
17 ,7 5 \,

= 94 16

00

4)(X) = f dv.

(33)

(34)

(35)

For the number .1?x,o both Rice and Zetterberg agree since the formula
comes from one of Rice's classic papers;13 namely

Rx,,, = 1 exp (--2xbn:) (36)

Therefore, the overload noise according to Zetterberg is

4 2

11(X)
exp (37)(bnebt\'

No,z = Rz,.(2z -
° 35r2 b, xo

V. OVERLOAD NOISE-THE NEW APPROACH'

In this section we will determine the overload noise using an approach
which combines the more accurate model of Zetterberg with the correct
averaging procedure given by Rice.

* Zetterberg's expression corresponding to the A(X) given in (32) was not posi-
tive for all values of X - clearly a nonphysical situation.

t In the present section we assume, without loss of generality, 4,(13) = o-2 = 1.
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This formulation proceeds as follows:

(i) The average noise energy per burst is approximated by
ave 157, m2(s) ds 1, as per Zetterberg. This approach avoids Rice's ap-
proximation of n(t) during a burst with a third -order polynomial and
does not refer to the end point of the burst. On the other hand it yields
clearly an upper bound on the overload noise, whereas in Rice's ap-
proach the sense of approximation is not clear.

(ii) The averaging process is done the "correct" physical way in the
following paragraph. This paragraph is a paraphrasing of the lucid
lecture given to us by Rice.

Consider a very long record of the input signal (Fig. 6) of time duration
NT, where N is a very large positive integer and T is an extremely long
time interval compared with the time unit. Mark on this time record
of the input signal all points for which a positive burst begins-all
points for which the derivative dx(t)/dt increases through 4 . Mark on
the record of the signal all time instants s time units following the
beginnings of the bursts and measure the value of m(s). Let K be the
average number of "positive" bursts per unit time. Then the total
number of "positive" bursts in the time interval NT will be: NTK.
The average value of m2(s) over all these positive bursts will be

NTK
E {714(s)}

ave {m2(s) } - ' NTK (38)

Now break up the total signal record into N equal records of duration
T and imagine them placed one below the other such that their begin-
nings lie on the same vertical line as shown in Fig. 6. Divide the time
interval into T/it equal small time intervals of length At and imagine
vertical lines drawn at the dividing points. Consider a vertical strip
of width it around time t and sum up the values of m2(s) over all
members of the ensemble that have a "positive" burst which began in
the time interval of duration At and around the time point t - s = to,
i.e., s time units before t. This sum is independent of the vertical strip
we consider and it is denoted by E g M2 (8)

If follows that
NTK

E =
T-E ni2(s) (39)
At At

When a member x(t) is picked at random from the ensemble of the
N x(t)'s we denote by p the chance that the following three things
happen:
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(i) A "positive" burst begins in the interval (t - s, t - s + At)
or equivalently the derivative dx(t)/dt increases through xf, during
t - s, t - s + At.

(ii) The slope of dx(t)/dt at to = t - s lies between e and xi' + .

(iii) In the time interval (t, t At), m(s) lies between m(s) and
m(s) d(m(s)). Since m(s) = x(t) - x(t - s) - xf,s, this is equivalent
to asking that X1 = x(t - s) lie between x1 and x1 + dx1 where x1 is
any real number and X2 = x(t) lie between x2 and x2 ± dx2 where
x2 e (x1 + 48, 00).

Then we have

7) = r'p(a., , a., , , xf' ; s) dx, dx, de At,

where

P(Xi , x2 , xO xf' ; s)

is the joint probability density function of the random variables

,m1 (s)

s

ti to -s

m2(s)--
t.21

N

to --
At

-to+ s
At

NT

T

Fig. 6 - Illustration of the averaging procedure.
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X, = x(t - = x(ta)

X2 = x(1)

Xi = dx(t)
dt t -go

ex(t)
XV

clt.' g=to

(40)

For an extremely large number N of members of the ensemble of
x(t)' s the number of members satisfying the three conditions above
will be

pN = (NAt)xf'p(xl , x2 , Xi) , ; dx2 dx, (41)

and therefore,

E m2 (s) = (x2 - x, - xcsAATA0x;'
-x, Jr, +20

P(S1 , x2 , xi) ; dr2 dx, de . (42)

Consequently,

ave fni2(s)1 -
NTK

-E m2 (s)

1 r r -
.I .1

(x2 - x, - xlis)2xf'

p(x, , , ;s) dx, dx, dxV . (43)

Make the change of variables

.r2 =

Then

ave Ini2(3) =K , x, a7i,s ± u, xo , ; s)

Remark:

Note that"

dx, de du. (44)

K = .10 x"p(xr, , x") dx" , (45)
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where p(x', x") is the joint probability density function of the random
variables X' = dx(t)/dt and X" = d2x(t)/dt2. Using (20a), therefore,
and substituting into (44) we can write

ave m2(s)

f- u2p,(xi , xi x4s u I x'0) = , x"(10) > 0; s)
00

 dx, du. (46)

Hence, the present "physical" averaging procedure amounts to taking
conditional densities in the horizontal window sense.

42,R , 1 (bK = = - -2 eXi)
2 2r b, { 21),

(47)

On the other hand,

p(si , x4s u, xu , xi' ; s) -
(270 2

1
exp , (48)

where

x =

and x' is the transposed vector. M is the 4 X 4 cross -correlation matrix:
{µs; }, i, j = 1, 2, 3, 4 and it is given in Appendix B. I M I is the deter-
minant of M.
After some very lengthy algebraic manipulations which are summarized
in Appendix B we find [see (137)]

k,(s)
ave m2(s)1 z2 A(s)X2(8) (p() dz (49)

where ki(s), Ms), and X(s) are complicated functions of s, expressed
in terms of the signal autocorrelation function and its derivatives. They
are given in Appendix B, (138), (135), and (128), respectively. Note
that they do not coincide with Zetterberg's k(s) and g(s) as given by
(22) and (23). Other symbols in (49) are defined below.

X (s)- 2(s) g,(s)) (50)
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with

(T(S) = e -t'/2 (51)

(1)(x) = f --'/2 dz. (52)

Consequently,

Q. = ave {f.° m2(s) ds}
0

1 f k,(s) fc° z2 exp [ i(z+gi(s))2] x7s )X2(8) co(E) dz ds. (53)
1/27r

Up to this point we have made no approximations beyond those in-
herent in the initial model. In the following, additional approximations
are required to evaluate (53). In Appendix C it is seen that at s = 0,
z = 0

= to - Vb,b3 - VC,

and for s and z large

(54)

7oz Sos,

where 70 and So are positive constants defined in Appendix C. The
function o() is plotted in Fig. 7. It is easily seen that, for > 0

(Pa) e
-E2/2

- 1 +
2;

- tet2/240 .7
6

3

-gIF
I SLOPE

2 3

Fig. 7 - The function cp
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Fors > 0 we have

et'l24q0 < 1

and fors large

1 - Ee'3124,() = Z(1- + -)

Hence, fors large

1/27r 5 3

CE2/2 (1 1 + 

The derivative of co(t) is very close to 1/27 for large t. Namely,

co% 1 4)(0

1/27r 1/27r 

Note also that

co(1) so (2) io(3)

-07r
- 1.08, - 1.004, 3'0;- 1.0002.

Hence, fors > 2 the approximation

co (s) Vgr (55)

is very good (error less than 1 percent). The approximations hold good
even fors somewhat larger than 1, as seen in the calculations above.
So that if to > 1, as given by (54), it is justifiable, for the sake of sim-
plicity, to substitutes -\/r for co(t) in the integral (53).

Another interesting comment here is that to , as given in (54), is
equal to the ratio of the absolute value of the mean of the third deriva-
tive of the input process x(t) over its standard deviation. Indeed, the
mean of x" (to), where to is the beginning of a positive burst, is -b,x4/b,
and the standard deviation 1/63/bi , where

= 1/b, b3 -

[see Rice's comments above (18) of Ref. 8]. Rice assumed that this
ratio is large compared to unity. Here the approximation is good even
with to close to 1. With the approximation introduced in (55) and using
(50) we get

V1 x2(8)

X(8) CP(E)
91(8)) Vgr
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and consequently,

Q,.. = f k,(s) r 22(z + g1(s)) exp [-2(z g1(s))2] dz ds. (56)
n

Integrating in the inside integral by parts we get the simplified expres-
sion

Q,.. = 2 k,(s) z exp [-1(z g1(s))2] dz ds. (57)f
0

5.1 Approximate Evaluation of the Noise Energy per Burst

The following asymptotic expressions for kl (s) and g1(s) are found in
Appendix C, for s small

and for large s

k, (s)b21 (58)

g1(s)
tib, x(,s (59)

3b,

"\/
kl(s)

b,- (60)
Vb2

X S(s) /7..../., 0

2
(61)

The function g(s) has an approximately linear variation for small
and large values of s.

To calculate Qz.. according to (57) we will use essentially the same
approach used by Zetterberg; namely, use the asymptotic expression
for Ms) near 0 [see (59)] and for k(s) the expression (58) when s < s,
and (60) when s > s, . Here, S2 is the value of s for which the two ex-
pressions are equal; namely,

and

where

25/8611/1
S2 -4N1 - (62)

b., br

g1(s) = as,

Vrh ,

a
(63)
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set

X 3

4
(64)= asq -

- b VI;
The nature of approximation of the functions k ,(s) and g1(s) by their

values for large and small s is indicated in the Figs. 8 and 9.
The evaluation of the integral (57) for Q. . is done in Appendix D and

the result is

where

=
gr (3b1 y

Qso A (x)'
8 xo

-x2/2
1

A (X) = 1 P (x) (I)(x) ( (x)

P (x) = 2(15 x5 + x3 + x)

(-2 (x) = 2(b-?) xn + x4 - 1) (67)

f
X

The average overload noise power is obtained by multiplying (L0 by
the average number of bursts per unit time, given approximately in (36).

The average overload noise is, therefore,

(65)

(66)

dz.

No - 1 (VI) 3bt)5
4 Var

exp (-
2b,/"00,

t

ke

0

k, (s)

)
11 ---APPROXIMATE

/ I

II

O
S,

S

Fig. 8 -Ms) and the approximation used for the evaluation of Q....

(68)
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U)

CY)

U)

2

A

APPROXIMATE

Vs)

a

3b1 xo

S

S

Fig. 9- Approximation to g1(s) used for the evaluation of Q.

where x and A (x) are given in (64) and (66), respectively. This result
is equal to Rice's result [see (22), Ref. 8] times A(x). For x large com-
pared to unity A(x) is very close to 1 and thus, in this case (equivalent
to xo being large compared to Arb-,) the two results are identical. This is
very interesting when we note that the route taken in the two approaches
differ markedly.

The factor A (x), for x > 0 is a positive monotonically increasing
function of x varying between 0 and 1. The function A(x) is studied
in Appendix E and -10 logioA (x) is plotted in Fig. 10.

VI. COMPARISON WITH COMPUTER SIMULATION AND EXPERIMENTS

The new formula for the average slope overload noise power gives
results for both, flat low-pass Gaussian, and band -limited RC Gaussian
input signals, that agree in a very satisfactory manner with O'Neal's8
computer simulation. For flat low-pass Gaussian input signals we have

(2402b, -
3

- (22-fo)l

5

Using (64) we get, in this case,

(3.6)1x = (kF.) 0.153(kF8)

so that for lf,F. = 2, 4, and S we have, respectively,
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30
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x

Fig. 10-The function -10 logo A (x).

xi = 0.306 x2 = 0.612 x3 = 1.224

A(xi) 5.3 X 10-3 A (x2) = 4.95 X 10 A(x3) 0.270

and the corresponding corrections in O'Neal's curves (Fig. 4 of Ref.
8) would be

-10 log10 A(x1) 23 dB

-10 log10 A(x2) 13 dB

-10 log10 A(x3) 5.7 dB.

With these significant corrections the present analytical points pass
through the computer simulation points, as seen in Fig. 11. Note that
the slope overload noise as defined depends only on (kF,) and not F, .

Excellent agreement with computer simulation also occurs for RC
shaped bandlimited input signals. For RC -shaped signals with spectrum
given by (6) of Ref. 8 we have

2rfoa - a2, -
tan-' ( 2a

fol

b2 =
(27403« - 67rf0ck3

3 tan -1 (27I-I°)
a

so that for a = 0.251°(= 1/RC)

a4
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bi

13.21(1

And from (64)

x 0.744 (kF,)

so that for kF, = 1 and 2 we have, respectively, X, = 0.744 and X2 =
1.488 yielding a correction to Rice's result of about 10.6 and 4.2 dB,
respectively. A comparison with Fig. 5 of Ref. 8, reveals the agreement
with computer simulation.

For RC -shaped signals (Gaussian and bandlimited) with a = 0.068
[corresponding roughly to the envelope of a black and white entertain-
ment TV signal (FCC standard)]

1), = 0.267g

b2 = 3.57f(4,

x = 1.62(078)

so that for kF, = 1, 1, and 1 the corrections are, respectively, 18.6,
9.7, and 3.4 dB. Good agreement with computer simulation in this
case may be noted by applying these corrections to Fig. 6 of Ref. 8.

30

25

20

15

S
N

10

5

0

-5
0 2 4 13 16 32

k Fs
64 128 256

Fig. 11- Flat bandlimited Gaussian signals-comparison of the new results
with previous analytic results and computer simulation.
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Comparison of the new analytical result with experiment will be
covered elsewhere.

VII. OTHER STATISTICAL CHARACTERISTICS OF THE OVERLOAD NOISE

7.1 Probability Density

The technique used in the present paper, i.e., the substitution of
m(s) for n(t) and the application of the averaging procedure presented
in Section V, can be used for the determination of other statistical
characteristics of the slope overload noise.

For example, let q(m, s, xt,) be the probability density of m(s), where
s is a given number, i.e., a parameter, taking on nonnegative values.
Let us define the following auxiliary probability functions q*(m, s, xL) ds,
the conditional probability that x(t) - x(t - 8)T 48 lies between
m and m + dm given that the derivative of x() increases (decreases)
through 4 between t - s and t - s ds, where m > 0 ands > 0.
Clearly,

q -(m, s, x7;) = q+(-m,s,xf,) for m < 0.

Also using the same averaging procedure as in Section V and the defini-
tion of conditional probability densities in the horizontal window sense,
we find that [see (20a) and (46)]

g4 (nn., s, xf,)

= Ph,,,Gr , 3.2 = XI ± M I = , X" > dx,

xf/p(x, s2 = + m, xo , xf' ; s) dxf' dxi

.f0
xf'p(x,' x;') (lx;'

1 f= xf/p(x. , = xi + m, xi; , xf' ; ed dxi
A f 0

From (100) and (101) we see that

q+ (m, s, xL) - P(m, 8).
(2r)IK Ws)

P(, ) is defined in (101) and is determined in (116), Appendix B.
It is easy to verify that
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q(m, s, = fq+ (n, s, 4), for m > 0
q -(m, s, 4), for m < 0.

Note also that there is a finite probability that m(s) = 0. Hence, the
density q(m, s, 4) contains an impulse at m = 0 with strength p(s)

p(s) = 1 - 2 f q+ (m, s, xO dm.
0

The probability density of m, i.e., without specified s, is clearly

P m(m, xf,) = f q(m, s, xf,) ds.
0

Clearly, Pm (m, xf,) contains an impulse at m = 0 of strength

fp(s) ds.

7.2 Other Statistical Characteristics

Another useful attribute of the noise is its covariance (x(t)n(t)) with
the input random process. This quantity is of interest in comparing
results obtained by a particular measured procedure with those obtained
analytically. This will be discussed further in the paper referred to pre-
viously. The evaluation of (xn), has been performed applying the
method presented in Section V. The calculations are even more com-
plicated than the ones employed in the evaluation of (n2 (0) s, and we
will not consider them here. Moments of any order could be worked
out. The expected value of I n(t) I has also been determined. There
are many statistical problems that may be generated by the study of
slope overload noise in DPCM. These problems have their counter -part
in the theory of level -crossings of random processes, but they are even
more complicated.
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APPENDIX A

Correction of Zetterberg's Q,..

The evaluation of Qz,. (Q, with the notation in equation 4.26 of
Ref. 7) is not done correctly in Ref. 7 since A(x) in Equation (4.32)
attains negative values. The integral to be evaluated is

2,0, = k(s)u2 exp g(s))2] du ds (69)
or 0

with

g(s) = as, (70)

where

xf,\IC2a -

[see (25) and the following comments] and

(ii) k(s) =

b2s4 for
(71)

s s,
4 '

where

, for s > s, ,

(72)= - 
b2

Make the change of variable

u + as = v.

Then

= f V .k( )u2e--./2 du dv. (73)
f'

7 0 a

Set

X(v) =-- f
0

qv -a lu2 kn(v - dz for vf
a

as, = X* (74)du =

X (v) v7
(75)

2
1, = (v - z)2z4 dz

#0/X4
f

105

*X here corresponds to Zetterberg's x. (X is introduced to avoid confusion with
the input x(t).)
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For v

X(v)
Y2 (v

_)2z4 dz

1- A
\ 4

200/X4 - x

Hence,

- -42 dz

34 - "X' +3- X'v2 X6v.

1 2.r° [f X

7r a A4 105
dv

(76)

4..3f e-11/2(2-1i-
3
-105A°v - x7) 4

Consequently,

Qs
42- 1 24_

°
11J7(X) 13X4Ili(X)

- 35X5.12(X) 35Xfiii (X) - A' 43(X)1,

where

and

(77)

(I)(A) = f e-`'/2 dz (78)
 x

I (X) = f z"e"v2 dz

J.(X) = f z"e"'" dz.
0

(79)

(80)

Integrating by parts we find the following recursive relations for In
and J, respectively,

/(X) = A" -le -x" (n - 1)/-2(X). (81)

Clearly,

and

10(X) = 4'(X)

I1(X) = e -X'/2

(82)

(83)

J.(X) = (n - 1)J. -2(X) (84)
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(85)

(86)

2277r
= e-2212 dz -

0

= 1 - e -x212.

Applying these recursive relations we find

12(x) = Xe-"/2 'T(x), (87)

/3 = X2e-"" 2c -x",

and

(88)

J = 48[1 - e-'2/2(fg ?-; 1)] (89)

Substituting in (77) we get

Q.c., =
2 1.32 t- El + 1)i(x)c-2222' - Qi(X)(10)1, (90)

where
(x) 1.1x6 trx4 x2

Q.(x) = Flx7 + 4x5.

APPENDIX B

Algebraic Manipulations with the Statistical Parameters

Denote by

M= 1/211)(i, j = 1, , 4)

the cross -correlation matrix of the random variables

X1 = x(10)

X2 = x(to s)

- dx(to)
dt

d2x(to)Xf' = dt2

Then we have

= E(Xi) = 1



Therefore,

Al2

A13

SLOPE OVERLOAD NOISE

A21 = E(X,X2) = E(x(10 - s)x(to)) =

= µa1 = griXD = 0

A11 = g. = E(X,X;') = (-1)2 d2#(27) = -b,
a T .0

A22 = = 1

g23 = A32 = E(X2X1)
dids/4s) - --ks)

1/1

A21 = Al2 = E(X2Xn = (
d2 (8)

1)2 ds2 - %.4

.E(X2) = b,

A34 =µa3 = E(X;X;') = 0

A44 = E(X112) = b2 .

1

M = 4,(s)

0

_-b,

Call I M I the determinant of M.
It turns out that

M I = (b2 - b21)fb,(1 - 11,2(4) - e(8)} - bi { bok(8)}2.

Os)

1

0

-'(s)
- b,

II; (s)

-46(s)

1,1(s)

b,

0

0

b.,

2149

(91)

(92)

(93)

Denote by Mii(i, j = 1, , 4) the co -factors of the matrix M. Since
M is a symmetric matrix, is also symmetric and Mii = Mii and

1-
M

{Mii}. (94)

These co -factors are given in terms of the statistics of the input process
as follows:

11111 = b,b2 - b1lk2(s) - b24k2(s)

111,2 = -1),(1)20(8) + bogs))

11113 = - ks)(b21148) N144)

11114 = b,(b, OWigs) - %VW)
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31-22 = bl(b2 - 14)

M23 = k8)(b2 1724)

M24 b1(1A8) b10(4)

M33 = (1 - #2(8)) (b2 bD ( (8) bl (8))2

M34 = 4(IP(8) bl #(8))

M44 = b1(1 - 02(4) - A8).

It is easily seen that

(95)

1

- MI(ax; 2bx, c), (96)

where

a = a(s) = 31 + 2111 -I- Ill12 - 22 (97)

a function of s only

b = (M14 + M24)xf' + (M12 + 11122)(u + xf,$) (111,3 AI 23)4 , (98)

a linear function in xf' and (u 4s)

c = M 4,,e2 + 2[M 24(u + 48) + 111344 + M22(u 4s)2

2M234,(u xf,$) 1113342 (99)

quadratic in xi' and (u xLs).

Integrating with respect to x, in (44) we get

K ave { m2(8) }

1 r 1

(2703 vi:t(s) - x.'exp { 2 m (c - 71)} dxf' du

1
ro

(2701

where

u2P(u, 8) du, (100)

P(u, s) = f xf' exp 11.m. (c 12a)} dx(' . (101)
0

It is seen that

1 ( b2

M
c a) = A(s)xi'2 2B(s, u, C(s, u, 4), (102)
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where

A(s) - M1 {"44 (lif" :(8)21124)2}
(103)

is a function of s only and

B(s) = B1(s)(u xOs) B2(s)xf,

= B,(s)u (sB,(s) B2(8))4 (104)

is a linear function in u, with

Ns) 1 {iv (M14 + M24)(M12 M22)}
(105)M I 2 a(s)

B2(s) - 1 {M.,, (11/114 M24)(31.13 M23)}.
(106)1M1 a(s)

Further,

C(s, u, xO) = Ci(s)(u x4s)2 2C2(s)4(u xOs) C3(8)xO2 (107)

is quadratic in u, where

1 { (M12 + M22)2}
Cl(S) M22

a(s)

C2(s) - "ILI {M23 (11/1,2 + M224(83/1) 13 + M23)}

{M. (M13 -:(8)M23)2}.

Substituting in (101) we get

!-321)}

exp {_ (xf,±f)2} de. (111)
0

Make the change of variables

(xf' ± = (112)

Then
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1 1 B2 B
P(u, - exp {-2 (C - L.; (n

do

Set

and

where

Hence,

Clearly,

where

=
A(s)

cxp
1 {1(C Tg-Bv2A 1 r ]-"" dn

(113)

(114)B(u, B ,(s) sB,(s) B2(s)-
71(s) .,) U VA (s)

xu

cow = e-°/2 E4)(-E)

c13(x) = 6-'2 dz.

P(u,s) = exp {-1 - .2;)}4°W.

(115)

(116)

C(u, = C1(s)(u x42)2 2C2(s)(u + 4s) + C2(s)4,2

= (u1/C1(8) g*(s))2 xe[C3(s) - Ca] , (117)

* 8Ci ± C2g (s) - x0 (118)

and C1, C2, and C3 are given in (108), (109), and (110), respectively.
Using these equations and the definition of a(s) in (97) we find

111 I[C3(4 - Cc,:i(011 M33
(M13 ± M23)2

a(s)

{3123(3111 12) - M13(3/12 M22))2

(M/111.13122 - 111 12)a(s)

We also note that

(119)
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111. M23 Rs)
/1/i2 - /1122 bi

[use (95)].
From (119) and (120) it follows easily that

M I [C30) - M22 M2b2t2

Substituting the expressions for M22 and M33 from (95) we find

M242
- M

33 b,

Hence,

Set

Then we have

2153

(120)

(s) 1
C3(s) - C: - bi (121)

v = u N/C,(s). (122)

C = + g*(s))2 (123)

and from (114)

- B,(s) {v
V"C,(s) F-B2(8))41 (124)

A(s)C,(s) B,(s)

Using (120), the definitions of B,(s), B2(s), C,(s), and C2(s) in (105),
(106), (108), and (109), respectively, and the relation

M34 ,k(s)
(125)

M24 b1

resulting from (95) we find

B2(s) C2(s) ks)
B,(s) C,(s) b,

Hence, (124) becomes

- = (8)(v 9*(s)),
-v A

where

(126)

(127)



2154 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1967

X(s) - B1(s)

VA(S)C1(s)

and g* is defined in (118). Note also that

g*(s) = A/U, '(4)4 .

(128)

(129)

From (123) and (125) we get

B2C - -A = (1 - X2(s))(v g*(8))2+bit (130)

Using the value of K given in (47) we find for the quantity P as given
in (116) that

P; = (04 exp [-4(1 - X2(s))(v g*(8))211( ). (131)

Substituting in (100) and using the change of variable as given in
(122) we get

ave m2(s)) -

so that from (129)
tifg,(s) = (bis ib(s)) A(s)C,(s) - Bi(8)

Then
X(s)

- (z +i(s))

and

and set

(bi / b2)4

V§; A (s) (VCVs))3

f v2 [ - x2(8))
) (E) dv, (132)

where and v(E) are given in (127) and (115), respectively.
Now make the following change of variables:

v 1/1 - X2(s) = z (133)

g*(s) V1 - X2(s) = g,(s) (134)

(135)

(136)

ave Pre(s)1 -k1(s)f z2 exp [-4(z g,(s))2]
V1 - X2(8) (A) dz,

71- 0 X(s)

(137)
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where

(b,V -B ,(s) V A (s)

l'21V A (s) (s) C, (s) 13(s) } 2

Finally, the average energy per burst becomes

(138)

Qx'" = v27,- z2 exP [- g1(s))2]
- X2(8)

X(s)
c9(E) dz ds.

(139)

APPENDIX C

Asymptotic Behavior of Several Functions of s for s 0 and s -> co

Assume that f"F(f) is integrable for n less than or equal to 8. For
bandlimited signals, the usual case :in practice, this requirement is
automatically satisfied.

For small s the following Taylor expansions hold:

f3 38

1/ (8) = b, b2 - b,, ± ,,t(8)0,0,

where 0 is a number such that 0 < 0 < 1 and 4/(8)(0s) is the 8th deriva-
tive of '(s) evaluated at Os.

For a signal bandlimited to the band (0, f,,) we have

,k(s) (es) I < b, < (240)2k,

Therefore, the absolute value of the remainder term satisfies the fol-
lowing inequality:

8

S (8)
lk (es)

8.
b

sn (27rf,$) 2

6! 56

so that this term will be negligible if (240)2 << 56, i.e., if fos << 1.2.
In the expansion for the first and second derivatives of 1,G(s) the first
three terms are included and the remainder terms may be disregarded
for the same values of s.

Consequently, we have
83

4.40 = + 1)2 Ti
85-I).5! tk's)( 0.8)

.1 e)

i(s) 61 b2 b3 :OS 11(8)(028)
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with

0 01 , 02 1.

We, now, obtain the asymptotic behavior of some expressions -fs
which appear in the functions of s involved in the integral for Qz...

Note that

S
2

4 6
(i) 1 - ,y(s) = b, - b, + 1)2 -(T1-1- 0(88)

(ii)
1 - (s) = b is2 - (-12b-1

4 4!+ ) 16 + ) ")8' + 0(s')
(i !

(iii)
1)11)284 (2b

51

ib3 b: 6 + n 8
1,b (S) = b2,s2 3 + + s)

b2s2 b3s4(2v)iT(s) + b1 - 24 0(s°)2

b2s 4 &b4oa
Ms) b 1) 2 0(e)

4 2

11)2b; b b2 b3 4
(i)) (S) b , 1,1/ (s) -

4!
s 0(86)

2

(1, i) (Rs) + b. ks))2 -
(b2 - 14)2 4 (b2 - 14) (1 )11) 2 - 1)3) s6

4 4!

0(2).

Using these formulas and the formulas of definition of the different
functions of s we find after a considerable amount of algebraic manip-
ulations, the following asymptotic expressions for s -> 0. Set

03 = /03 - b: .

b2(33'
a(s) s

I

(b2 -
36 8

A(s) -9b,

B,(s)
18b,
er3s4
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tk(
(v) B2(s) - I),s) Bi(s) Re

18b117-

36b,
(vi) C,(s) ,=-...' Bs

36b1
(vii) C2(s) - ks)Ili C,(2) f:-../., -1333,

b,
(viii) A(s)C1(s) - B;(8) "-:::1 1

32 1
gi

B,(s)

X(8) = -V A(s)C,(8) ''''

(x)
1/1 - a2(s) 1 rers.

X(s) 3 b, b2

Using the formulas above we find that

B,(s)V.N b s4 ,
1c, (s) = for 0

b2 V7-(s) A(s)C,(s) - B;(s) } 2 4

and

= x.,;(8
Us)) 1//1(s)C1(s) - Bf(s)
C, (s)/ VT1W

/0

fil(s) = as for s small

with

ivrb72

3b, 8 for s-40,

"
For s °o, L(s), '(s), and %I/ (s) approach zero.

The following asymptotic expressions are easily derived for s

(1) a(00) = b,(2b2 - b21)

(ii) I M I = b,(b2 -

(iii) A(c(') - 22b2 bt

(iv) B'( c°) 2b2b,

00
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(v) /32(co) = 0

(vi) C1(°°)
b2

2b2 -

(vii) C2(00) = 0

(viii) A(00)C,(00) - Moo) -
2b2 1 b;

(ix) X(°°) -
bt

2b2

7/1 - X2(00) N/2b2 -
X(00) b1

Using these expressions we find

(x)

and

km = lim k(s) =b.,

x4s
giks) for

Ar2
S-1 co ,

Note also that for as defined in (50) we have

(i) For z = 0 and s small
X(s)

V1 - x20) 910)
3P-2: 1 -VV2

(33 s x° 3b, 8.

Hence,

E =
2x4

0

(ii) For s large

1/2b2 - 1/2b2 -
Z X48 = ToZ Sos.

b, biAr2

APPENDIX D

Approximate Evaluation of Q.,,

From (57) we have
co

Q,, = 2 Ms) z exp [-Hz g,(s))2] dz ds, (140)f
0
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where

k, (s)=

(Ms) = as 0 < s < CO

keo
(-) , for s c (0, s2)

82

koo for S E (s2 , )

(141)

The symbols a, .92 , and k. are defined in the relations (63), (62), and
(60), respectively.

Make the change of variables

y = z + as.
We then have

(210 =
a

-2f e-VV2 f 1(11 z)z dz dy.a 0

Set
V

X(y) = zki(Y
- z) dz = f (y - n)k,(11) (177.

0 o a

Then

Q.,. = -2a j: X(y)e-'2 dy.

For y x = as,
X(y) yi 774(y - 1do = Yrk./X4 .0 30

For y x

X(y) x
kx/x4 30

Consequently,

r
8X"

I 2

- 71) dn = - x15 2

Q.,. 4 5 8 6

2k./ax4 - 6 +
1

X 12 -X Il 15- X Cx),

where 43(x), in(x), and J,,(x) are defined in (78), (79), and (80), respec-
tively.

Applying the recursive relations (81) and (84), we find

Ii(x) = e-xv2
/2(x) = Xe- X V2 + 4)(X)

,/, - 15 1/27r
2 x2/2

(x5
5x3 15x) - 15cID(x).

(142)
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Substituting in (142) the values of J6 , 12 , 11 , we get

V -x 2/24g{1e- P(x) +
1

(x)2(x)} (143)2fr
,/ax 4 v/2rV27r

where

13(x) = 2(1-2x5 ax? x) (144)

and

Q(x) = 2 (14X6 + x4 - 1), (145)

Qx,. - 2
x4«

A (x),

where
- x 2/2

A 0() = - P(X) (1)(X)Q(x) (146)

Using the expressions (63), (64), and (60) for a, x, and leo, , respectively,
we get

Q.., Vgr (3b y
13''

,

A (x) = (Rice's Results)  A (x) . (147)
8 xo

APPENDIX E

The Function A (x)

The function A(x) as defined in (66) is a monotonically increasing
function of x in the interval (0, 00) with A(0) = 0 and A (00) = 1.

The computation of A (x) for different values of x was performed using
the computer and 10 logy 1/A (x), the correcting factors of Rice's
result, is shown in Fig. 10.

Expanding into Taylor series we can find that for x small

A (x) x4 -2 N! x5 +
113 16) 0 4

120 Nig, ig x x (1 1.6x + 1 .44x2);

whereas, for x large, using the asymptotic expansion for

1 1

\7-2; (1)(x) = 2
erfc

V2



SLOPE OVERLOAD NOISE

we get

4x3e- x'" 3
11(x) 1 - -
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A Generalized Nyquist Criterion and
an Optimum Linear Receiver for

a Pulse Modulation System
By D. A. SHNIDMAN

(Manuscript received June 27, 1967)

A pulse modulation system is modeled with M waveforms {s,(t)}r , each
of which is amplitude scaled and simultaneously transmitted over a single
physical channel. An infinite pulse train is assumed with signal interval
T, which is determined by bandwidth consideration of the channel. We
restrict the receiver to be linear with M outputs, one for each signal wave-
form.

At a high signal-to-noise ratio the main sources of interference at the
input to the receiver are the intersymbol interference and crosstalk; by
crosstalk we mean the interference between the different waveforms. It
is desirable, therefore, for the receiver to eliminate both types of interference
and to minimize the remaining error due to additive noise in the channel.
This constraint on the intersymbol interference and crosstalk is defined as
the generalized Nyquist criterion.

The receiver which accomplishes the above is determined for a mean
square error criterion. Finally, some examples are presented which de-
monstrate the ease with which the generalized Nyquist criterion can be
used to design waveforms without intersymbol interference or crosstalk.

I. THE MATHEMATICAL MODEL

The mathematical model for a pulse modulation system is shown in
Fig. 1. The M waveforms {s,(t) } , which are assumed linearly in-
dependent and of equal energy, are simultaneously transmitted over
a single physical channel. Information is carried on each waveform by
amplitude scaling the waveforms s,(t) by the real numbers I am } u which
are random variables. An infinite pulse train is assumed with signal
interval T so that the resulting transmitted waveform is

co Ilf

E E an rnS m(I nT).
11 CC 1
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{ani}

{ant

{anM}

PULSE
MODULATOR

00 NA

2 a nm Sm(t-nT)
n=-oo m.1

00
anm rm (t-nT)

n= -co m=1

LINEAR
TRANSMISSION

NETWORK

LINEAR
RECEIVER

bni

b n2}

{bnivt}
SAMPLE

AT t = nT

Fig. 1- Model of the pulse modulation transmission system.

Characterizing the linear time invariant channel by its impulse re-
sponse, h(t), we define r,(t) as the convolution of s,(t) with h(t) so
that the received signal waveform is

co Af

E E anmrm(t - n7').
n= - co m=1

(2)

To this the channel adds stationary zero mean noise, n(t), with cor-
relation function n(r) and spectral density N(f). The received waveform
is processed by a bank of receivers f r whose M outputs are sampled
at times t = nT, n = 0, ± 1, ±2,  to give b, which are the estimates
of the a, .

If we consider the set ts,(t)1 Air with our one physical channel as
comprising M different channels then we can refer to the interference
of the waveform due to sk(t) with that of s,(t) (m k) as crosstalk.

Restricting our attention to linear time -invariant receivers then we
can characterize the receivers {wk r by impulse response {wk(t) if so
that the output of the receivers can be expressed as

where

oo Af co

bk(t) = E E ct,v,,(1 - pT) n(x)iv,(1 - x) dx,
m=1 -ao

CO

v,k(0 = wk(t - x)r,(x) dx.

The sampled outputs are designated by bnk

bn, = bk(nT).
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At high signal-to-noise ratio (8/N) where

E l4,i(o)
.S/N - 1 (6)

fE fk=1 -ao -co
n(y - x)wk(x)wk(y) dx dy

the main sources of interference at the input to the receivers are inter -
symbol interference and crosstalk. It is desirable, therefore, for the
receiver to process its input so that the output eliminates intersymbol
interference and crosstalk; i.e., that

co M

E E ap,nvmk(nT) = ank (7)
p= -4x)

for all possible sequences of the a.1. This is equivalent to requiring
that

v,,,k(nT) = amk On0
?n, k = 1,  ,M
n = 0, ±1, ±2, ,

where the 8j are Kronecker delta functions. Further justification for
imposing this constraint at high S/N is provided in the Appendix.

We use as our error criterion the mean square error averaged over
the receiver outputs

1 mJ = - EER b )1n a nm - 71 7112

(8)

(9)

where the expectation is with respect to the random variables a,, and
the noise.

We are now in a position to specify the problem concisely: to de-
termine the linear receiver which minimizes the mean square error
under the constraint that there be no intersymbol interference or
crosstalk.

II. A GENERALIZED NYQUIST CRITERION

A waveform v(t) is said to satisfy the Nyquist criterion' for the
signal interval T, if

v(nT) = o,0 n = 0, ±2, . (10)

Denoting the Fourier transform of v(t) by V (f) (upper case letters
will be used throughout to denote the Fourier transforms of the func-
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tions represented by lower case letters), we can state that (10) is true,
if and only if,

v(f - 1;;) =1.-

This is easily shown using Poisson's sum formula (Papoulis)3

1 t-, \
T 43Y T) e-fa2rf

To(aT).

a --co ammoo

If we associate 4(t) with v(t) then (10) implies and is implied by
(11)

Our constraint that the v,.(t) satisfy (8) requires not only that the
v,,(t) satisfy (10) but also that the 111(31 - 1) waveforms v,(t) (m 0 k)
be zero at t = nT. We refer to (8) as the generalized Nyquist criterion.
The equation analogous to (11) is

Vilc f - = oak .

This will be used interchangeably with (8) in solving the optimiza-
tion problem. Since the {Vik (f) ) can be checked almost by inspection
to see if they satisfy (13), the equation is very simple to use.

(11)

(12)

III. THE CONSTRAINED OPTIMUM RECEIVER

(13)

The object of this section is to determine the linear receiver which,
subject to the constraints of (8), minimizes the error expression (9).
Because of the constraint of (8) we have

bnk - a, = n(x)wk(t - x) clx (14)

so that the error becomes

= IVA }WNW df-
which is independent of n.

We are now left with the interesting variational problem
mizing J with respect to all linear receivers Wk (f) such that

T
1 v-,- Ra,(f - )117,(f - = 3,,

T

i.e., which satisfy the generalized Nyquist constraint.
this, we vary each WA (f) by an amount E rk (f), where

In order to do
the rk(f) must
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be such that (16) is still valid. We require

7 t - 4wk(f TI + Er k(f L')]

,:t.Rm(f il)Wk(f fL1)+ Rm(f c)1'k(f = 3"'k

so that rk(f) must satisfy the condition

k, m = 1,2,  ,M (17)

Rm(f - (i)rk(f -i) = 0 m, k = 1, 2, - , M. (18)

The error with variations becomes

J(e) = /4- f
o

[Wk(f) + erk(DIEWI(f) + 11(f)]/%7(f) df

= ikt f:Wk(f)W1(f)N(f) df

+ f [rk(f)wl(f) + 11,(f)Wk(f)]N(f) df

+ II; t.r,(Drt(i)N(f) df.

J(0) is minimum if (the wk(t) are constrained to be real)

_0.
rk(f)WtWN(f) df = 0 (for each k = 1  M),

where rk (f) must satisfy (18).
In order to solve for Wk (f ) we manipulate (20) as follows:

fIrkwWt(f)N(f) df
ao

rk(DIVt(f)N(f) df
--co  -1/2T+oaT

1/2T

.111/2T rk
(f )Tv.k(f - )N(f -17') df

(19)

(20)

f -11/2Tk
/2T co r

E LW(f - 1:)Ary T- T- df = 0. (21)
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Comparing (21) with (18) it can be recognized that (21) is satisfied
by a Wk(f) such that

Wk(f) = E
R*(f)

Zak(f) k = 1, , M, (22)
N(f)

where the Zek (f) are arbitrary periodic functions of f with period 1/T.
In order to completely specify Wk (f) we must determine the &k(f) 

Substituting (22) into (16), we obtain

1 E I? ,(1 E TZcky - 1;)

Ar(f - (2-)
11

,(f - -;-,)Rt(f T

Ar(f -
k = 1,2, 

since Zck(f) is periodic with period 1/T. Let

L,c(f) = tR,(.1 - ya)ilt(f - Ig;) /N (f

then (23) becomes

1
Z, 1,-(1)zek(1) = 6,/, m, k = 1, 2  m (25)

or in matrix form

L(f)Z(f) - I, (26)

where

and

co

T E z (i) E

L(f) = EL.,(f)1

Z(f) = ii(f)1

are M by M matrices.
Thus, we have, if L is nonsingular for all f, that

Z(f) = [L(1)]-1

- Oink

,

al

T

(23)

(24)

(27)
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so that I L 0 is a necessary and sufficient condition for a solution to
exist. Wk(f) is now completely specified and a realization of the optimum
constrained receiver is shown in Fig. 2.

A simple expression for the resulting mean square error is obtained
from a manipulation similar to that of (21) :

M

J,,= Z,,(1) df.
112 WS 1

E
-1/2 T

IV. EXAMPLES

(28)

In this section examples are presented which demonstrate the ease
with which the generalized Nyquist criterion can be used to design
waveforms without intersynibol interference or crosstalk.

4.1 Example

We start out by making the simplifying assumption that N(f) = 1.
In addition, if the transmitted waveforms { S,(f) fi are chosen such
that R,,,(f), where R,(f) = 8'm(f)H(f) satisfy the equation

R.,(f71
7'- -c1) =dmamk, (29)

then a solution exists since the L matrix becomes a diagonal matrix

= Id; d =
d,

_d,_

(30)

bni

{z11(fij
F2,*(f )

N (f )

zu, (f)

,, (f)
F2,*(f)

bnNA
N

z.(f)

Fig. 2 -A realization of the optimum constrained receiver.
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and

Z = =

with the resulting error

r 1/d, 0

0  1/d,_

1 m 1= -

(31)

(32)

Under these conditions the outputs of the matched filters satisfy the
generalized Nyquist constraint except for scale factors and the Zom(f)
functions need only perform the appropriate scaling. We consider next
two cases where (29) is satisfied.

4.2 Case I

Only the case of M = 2 is presented here in detail although other
values of M can similarly be handled.

First, note that since matched filters are used the actual phases of
the R{ (f) are not important since the output depends only on phase
difference between Ri(f) and Ri(f). We use
reference phase.

fc ei 6
(f)

,

0,

If I
1/T

IfI>1/T
"a iai(n+Acf)),

,

fl<1/T
If I> 1/T

where 04)(f) = 6,4)(-f) ±7r for I f I S 1/7'. The sign is chosen so that
14(f) I -5= r

To simplify matters we can choose

{
Ack(f) =

7/2 , f > 0

-7r/2, f < 0

SO

R1(f)R1(f) =
{c2e-i44(f)

0,

I fI 14 1/T

f 1 > 1/T



PULSE MODULATION SYSTEM 2171

Therefore,

«E R,(i -
Similarly,

and

SO

and

- , 0 f < 1/T
= -1/7' f < 0

0, elsewhere.

i',)llt(f - (71,) = jc2 - jc2 = 0 (Fig. 3).

R.,(f - if?';(f -
71

= 0
71

R,,, (f -
7'

,)c2 m= 1,2

2[2c 01= = 2c2I
0 2c2

1R,(f )1' = IR ()12

c2

1
= I

2c-

1J0 -
2c2

f

T T

R,*(f)

T
I

JR!

-J

T
1)R2*

t

f- f)
I I I

-2T -T 0 T 2T

TIME, t

Fig. 3 - Case I transforms at the output of the matched filter.
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In the time domain we have

1112(1) = C2(COS l,f - 1)/rt
and it is easily seen that

v12(nT) = 0 for n = 0, ±1, d2, 

4.3 Case II

Consider a set of band -limited frequency multiplexed signals {R,(f)}i' .

The bandwidths are (1 + 7m + ^y,_ ,)/T where the -y,(0 7. 1)

are parameters associated with the excess rolloff bandwidth, and the
signals are separated in frequency by 1/T hertz so that the waveforms
overlap the adjacent signals only. As in Case I, the actual phases are
unimportant because of the matched filters so only phase differences
0,(1) from a reference phase o(f) will be important.

R,(1) = I R.(f)
I

exP ROW + 0.(f)]

Rm(i)Rt+1(1) = I R,(1)1L-1(1) I exP iki).(f) - 0.+1(/)].

We define roll -off characteristics as a real function (LW such that

Qm(f) = 0 for In>
2T

and

2,(f) = -2,(-1);
VVe can specify the R,,, (f) as follows:

Rr4(f)I

for I f I Lc.

1 m
-Y17

1 ni)
I T= cAlrect (IfI m) Q.. (I 1 + -

A,(f) = 4),(i) 0,-1(f)

and

Am(f) = fir(- f)±
With the R,,, (f) specified it is easily checked that

co

a = - CO
Rm(f - al 2

2

= Cm
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R.(f)R,_,(f) = Rm(f) I I R,, -1(f)
I

exp [- jA,(f)]

m=
C ,c,._,{13,(f T- ,exp [jA(f)]

B, (f m.exp [-j,(f)]}

where B,,, (f) is an even real function with bandwidth 27,_1/T.

BA = 1/Qm(i f - f

We can specify 0,,, (f) as

Am(f) =
2-, 1 > 0

f < 0

without really restricting ourselves. The resulting R,R:_, is shown
in Fig. 4. Looking at Fig. 4, we see by inspection that the {R,n},' satisfy
(29).

1Rrn(f)12

T

(m - I/2)
T

AI

(f )1'

jRm(f)Rm-i (f)

m
T

f

Qm(f m-TV2)
Qm+1 (f-±

m+ 1/2

1
m-i

m-1/2 \
T

f

T

Fig. 4 - Case II transforms at the output of the matched filter.
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APPENDIX

The Optimum Mean. Square Error Receiver

In this appendix the optimum mean square error receiver is obtained
and it is shown that as S/N oo this receiver and the optimum con-
strained receiver of Section III converge to the same receiver when the
{a,a) are stationary.

The general expression for the mean square error is

1 m
M

Jn = - E E a m- 2 E E anmapkv,,(1/7' - pT)
13= - k-1

oo M co M

EE E apkaryk,(nT - pT)vi,(nT - rT)
k=1 r=-oo

ao

- 2a m n(x)w,(nT -x) dx

+ 2 E E apkvkm(nT - pT) f n(x)w,(nT - x) dx
p --co b=1 -00

n(x)n(y)11.',02T - x)w,(nT - y) dx dy}

1 " 7111

.11"

= A/
2 E E p,,kvkm(nT - pT)

_,
P III ?II

P= -x k 1

co M co

+EEEE Pl5km(nT - pT)vi,n(nT - rT)
p=-co k-I r=-co

+ N(f)TY ,(f)WW) df] ,

where

= E anmapk I

Since the (ak} are stationary we can write

(n-p)
Pink = P mk

(33)

(34)

(35)
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Defining
CO

m.kw = E exp (-j2rinT), (36)
nm-DO

then J. can be written as

J= [p,:, - 2 f
co

Ai.L(f)vt.(j) df
.=1 L=1 -

Jr if
+ E E 111,;(f)Vf,(f) - -17i,(f

1:=1 ;=1 -co T
a

df

f JV,(f)-1Vt(f)N(f) df] (37)

which is independent of n so the index has been dropped.
Using variational calculus we obtain as a necessary condition on the

optimum (TV,(f)) that they satisfy the equations
Al

1 42,E m,:(i)[E ..A(f) T E R.(f - )W A(1 - ) - M.k(f)1T T

Wk(f)N(f) = 0

The solutions for the { Wk(f)} are

Wk(f) = (f)c-1 N(f)

k = 1,2, , M. (38)

lc --= 1,2,  ,M, (39)

where the 17,,(f) are periodic functions of f with period 1/T. In order
to see that the {Wk(1)}i' of (39) satisfy (38) for the appropriate deter-
mination of the { Yck(f)}, substitute (39) for Wk(f) in (38) to obtain

/C.(/)[ M.,(1) - (a/T)]

NU - (cY/TA)]
E (a/T Y ,[f - (a/T)] - 111,k(f)]
c-i

+ E RIWY .k(f) = 0 k = 1, 2, , M (40)
.-1

or since the Yak (f) are periodic

E ica[37,k(f) - M -(f) + E At.,(f) E Lap' ',k(f)1 = 0
.-1

k = 1, 2, -  ,M, (41)

where L,0 (f) is as defined in (24).
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Defining M (f) and Y (f) as matrices whose elements are, respectively,
Mii(f) and Yo(f) and a column vector R (f) whose elements are R,(f)
(41) can be written as

R(f)T( Y(f) - 31(f) M(f)L(f)1-(f )) = 0, (42)

where L(f) is as previously defined. Unless R (f) = 0 we require that

(/ ML)Y = M (43)

Y = (I + ML) -'M. (44)

With Y so specified (39) satisfies (38) and the resulting mean square
error is

1 I

II

At M

opt = 117I E L

(0,

P"' - 11/1.,(D

Re( f)
RI(f) Y.,(f) dd (45)

Manipulating as in (21) and using the periodicity of M (f) and Y(f)
we then obtain

T mJot 2 r1/2T
31,,,,(1)

1-1/27'

Ir 31

,k(f)Lt(i)1'?,(D1 f .
k c=1

(46)

Lastly, recognizing that the integrand is Y»,(1) we get

m

/1/27'

1 *,,(f) df. (47)

Finally, we wish to show that the optimum and constrained optimum
receivers approach the same limit as S/N --> co.

We define U to be the resulting L matrix when the S/N is unity,
and we write for any other S/N

L = aU , (48)

where a is proportional to the signal energy. Since both receivers are
of the same form, we need only show that Y -> Z as a co.

'Y = (ML

= (aMU 1)-1M

= [(1/a)U-1M-1 - (1/4(U -1M-1)2 + (1/a3)(U-1M-')3 -  1111

= (1/a)U-1 0(1/ , (49)

where 0(1/a2) indicates terms dropping off at least as fast as 1/a.2 As
a oo the terms of order 1/a2 become negligible with respect to the
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1/a term. Using the fact that L-1 = 1/a U-1, we obtain the result

lim Y = L-1 =Z, (50

and the two receivers converge and the constrained optimum is opti-
mum.
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An Automatic Equalizer for
General -Purpose

Communication Channels

By R. W. LUCKY and H. R. RUDIN

(Manuscript received June 19, 1967).

The restriction imposed by linear distortion on the flow of information
in a communication channel is well known. In the past, the effects of this
distortion have been alleviated through the use of manually adjusted equaliz-
ing or compensating networks. The adjustment of these networks is too
cumbersome a process for the user of a switched communication service
to perform each time a new connection is established. Therefore, in present
switched networks, control of linear distortion is imposed only on the in-
dividual links. Variation between links and variation of the number of
links in tandem result in channels with distributed performance. Lower
distortion can be achieved by equalizing the overall connection.

Recent developments have made automatic linear distortion removal
(equalization) practical for synchronous data communication systems.
Here an implementation is described wherein these techniques have been
generalized so that automatic equalization can be provided for a communica-
tion channel independent of the signal format used in that channel. For a
number of applications the speed of automatic equalization makes efficient
end -to -end equalization practical in a switched network.

The implementation described affords automatic minimization of the
discrepancy between a specified response and the actual response of a
linear transmission medium. Thus, on the one hand, it permits the automatic
reduction of transmission defects such as signal dispersion and echoes,
and, on the other hand, it permits the mechanized synthesis of filters with
specified transfer functions.

This paper reviews the general aspects of automatic equalization, de-
scribes an implementation of a general purpose automatic equalizer, dis-
cusses the theoretical performance of such an equalizer as determined
from computer simulations, and lastly presents results for the equaliza-
tion of real channels using the implementation described.

2179
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I. INTRODUCTION

Recent years have witnessed an increasingly intensive investigation
of automatic equalization techniques.1 Equalization, itself, is neces-
sary because of the increased demand for efficient use of communica-
tion channels. Fixed compromise equalizers have been used in terminal
equipment but they cannot remove all of the distortion because of
variation between connections in a switched service. Two factors
contribute to the distribution of distortion on different connections-
differences in the characteristics of the individual links that may be
Switched together and differences in the number of links in a connec-
tion. Better equalization and, therefore, greater transmission efficiency
can be achieved by individually equalizing each connection after it
has been established. Automatic equalization provides a practical
means for rapidly and efficiently equalizing each connection.

Several automatic equalization schemes have been published which
provide equalization for specific, usually synchronous, communication
systems. Some of the techniques for synchronous data transmission
systems are those of Coll and George,2' 3 DiToro,4 Funk et a1,5 and
Lucky and Becker et al.°' 7'8 These techniques are very powerful for
the synchronous data transmission systems for which they are in-
tended. Furthermore, the implementations of these equalization strat-
egies possess considerable economy of design because they rely upon
the peculiarities of the particular synchronous transmission systems
for which they are intended. But, their use is restricted to such systems.

The present paper is concerned with an equalization technique which
is essentially independent of the transmission format to be used on the
channel. The inclusion of such an equalizer in a communication chan-
nel is shown in Fig. 1 in the simplest form. A test signal is transmitted
through the channel and the equalizer controller adjusts the equalizer
until optimum equalization has been attained. The equalizer adjust -

TEST SIGNAL
TRANSMITTER

CHANNEL

DATA
TRANSMITTER

EQUALIZER

EQUALIZER
CONTROLLER

DATA
RECEIVER

Fig. 1- Preset mean -square channel equalizer.
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ments are then locked and the equalized channel used for communi-
cation.

"Optimum" equalization is here defined as the minimization of the
mean -squared difference between a specified channel response and the
actual equalized channel response. Much work has been done on
the problem of optimization under a mean -squared error criterion. The
most famous of these is Wiener's classic paper.9 A paper by Narendra
and McBride" also relates to the present work.

In the equalization schemes for synchronous data transmission,2-8
the data receiver is inside the equalizer control loop and the actual
data transmitter is used to generate the test signal. Here, the equalizer
can correct for distortion introduced by imperfections in the trans-
mitter and receiver as well as in the channel, resulting in very effec-
tive equalization. A general purpose equalizer of the type described
does not have this capability (by intent) but instead has the advantage
that it is not tied to a single communication system. The equalized
channel can be used by arbitrary information transmission systems.
The equalization is generally carried out at passband frequencies and
the control circuitry could be shared by a number of communication
channels. Thus, the technique described may be an attractive one
when it is necessary to provide equalization for a variety of customers
whose communication channels terminate at a common location.

The equalizer described here uses a transversal filter to operate on
the channel response so that the equalized channel response approxi-
mates the desired response in an optimum fashion. Again, the criterion
used to determine this optimum fashion is the minimization of the
mean -squared error.

In summary, this paper reviews some of the general aspects of auto-
matic equalization, describes an implementation of a general purpose
automatic equalizer, discusses the theoretical performance of such an
equalizer, and presents results for the equalization of real channels
using the implementation described. Some laboratory results are also
presented for the application of these techniques to a network synthesis
problem.

The present paper expands on two previous brief disclosures in the
literature.11, 12

II. THE TECHNIQUE

2.1 The Basic Mathematics
The notion of the mean -square equalizer starts in the frequency

domain. Here, the channel transmission characteristic is equalized so
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that it best resembles the ideal transmission characteristic. This "best"
fit is made using a mean -square error criterion. Thus, the distortion
to be minimized is

E, = f I H(w) - G(w) 12 d , (1)

where H(0)) is the equalized channel characteristic and G (0)) is the
ideal channel characteristic. Notice that this error criterion includes
both phase (and consequently delay) and amplitude information in
the goodness of fit.

The error criterion given in (1) can be made more general by adding
information concerning the relative importance of errors at various
frequencies. For example, in most information transmission schemes
the major portion of the signal energy is placed near the center of the
band, so that the equalization should be most perfect there. Since rela-
tively little signal energy is put near the band edges, the quality of
equalization is not of as great concern in this region. Therefore, a real,
nonnegative weighting function IW (0)12, which assigns a relative
weight IIV (0)) 12 to the equalization error at each frequency w, is in-
cluded in the criterion. The resultant criterion is

E =
J

I H (co) -G (co) 12 I IV (0)) 12 d0). (2)

Usually the ideal characteristic G (0)) would have flat amplitude and
linear phase within the band of interest, while the spectral weighting
function I TV (012 would resemble the spectral density of the signal
likely to be transmitted, if this spectral density is known beforehand.
The system is shown in block diagram form in Fig. 2.

The equalized channel characteristic is the product of the unequal-
ized channel characteristic X (w) and the equalizer characteristic C(0)).

H(6)) = X(co)C(w). (3)

The frequency characteristic function of a (2N+1) - tap transversal
equalizer with tap gains c, n = -N, , N spaced at r second in-
tervals is

= E cne- (4)
n = -N

Notice that this response is periodic with period 2r/r, the real part of
the response being even about frequencies 2n7r/r and the imaginary
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Fig. 2 - Mean -square equalizer.

g(t) * w(t)

part odd about these frequencies. Thus, the transversal equalizer offers
independent control of the overall frequency response of the system
over only one of the frequency intervals nr/i- 5 w 5 (n 1)71r.
The value of the tap spacing T must be picked such that the desired
equalization frequency range is included in one of these intervals. A
frequent case is that where the channel is essentially low-pass in nature.
Here the tap separation r will be the Nyquist period 1/2W, where W
is the highest frequency of interest. For bandpass channels, T will
generally have to be less than a Nyquist period.

The objective is the minimization of the distortion E as a function of
the (2N + 1) variables c in automatic fashion. Because this minimiza-
tion is more easily carried out in the time domain, Parseval's theorem
is used to obtain an equivalent form for (2):

E = f f[h(t) - g(t)] * w(012 dt. (5)

In (5), h(t), g(t), and w(t) are the impulse responses corresponding to
the frequency responses H (w) , G (w), and W (w) , respectively, and the *
symbol is used to represent convolution.

If x (t) is the impulse response of the unequalized channel, the
equalizer output response is

h(t) = E cnx(t - nr) (6)
n=-N
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and (5) eau be written

E = f E enx(t - nr) * w(t) - g(t) * w(t)} dt.
- 0o n..-N

It can easily be demonstrated that E is a convex function of the tap
gains c., n = -N, N. Thus, there is a single minimum of E and this
occurs when the (2N+1) derivatives OE lac are zero. Setting these
derivatives to zero gives (2N+1) simultaneous linear equations which
can be solved to effect a minimization of E. If the partial differentia-
tion is carried out with respect to a particular tap setting (say c;), the
following relation is obtained:

=
ac, -

2 f fh(t) * w(t) - g(t) * w(t)] - jr) * w(01 dt,
00

(7)

-N j N (8)

The set of (8) contains all the information required for automatic
optimization. First, if these equations are set equal to zero and solved
for the c's, the desired tap coefficients are obtained. Second, if arbi-
trary values are chosen for the c's, the set of (8) dictates the direc-
tion in which the coefficients must be changed to reduce the error E.
Further, a comparison of the set of (8) with Fig. 3 yields a technique
which facilitates the calculation of the partial derivatives which, in
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Fig, 3- Mean -square transversal equalizer.
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turn, provides the basis for an algorithm for automatic equalization
under the mean -square error criterion.

2.2 Basic Implementation
The tapped -delay line structure which forms the basis of a trans-

versal filter is shown in Fig. 3. The "attenuators" have the capability
of supplying both positive and negative weights. The first term in the
set of (8) is simply the error signal, or the difference between the
equalized channel response and the ideal channel response. The sec-
ond term, which multiplies the first, is the signal at the jth tap when
(8) is written for 8E/aci. Thus, the partial derivative of the distortion
with respect to a particular attenuator setting is given by the time -
integral of the product of the error signal and the signal at the par-
ticular tap being considered. In other words, the partial derivative is
given by the cross -correlation of the error signal with the tap signal.

Coincident with the start of the equalization process, the various
cross -correlation coefficients for all of the delay -line taps are calcu-
lated by the correlators. The polarity of a particular cross -correlation
coefficient indicates the polarity of the partial derivative of the dis-
tortion with respect to the corresponding tap weighting coefficient.
Because of the convexity of the criterion this polarity information
indicates the direction in which the tap weight must be changed to
reduce the distortion. When all cross -correlation coefficients become
zero, no further adjustment of the weights can lower the distortion
and the desired equalization is achieved.

Some feeling for the algorithm can be obtained from the following
argument. The signals at the various taps contribute to the error
signal in linear fashion. The best that the equalizer can expect to
achieve is the elimination of any systematic contribution between the
tap signals and the error signal. Under a mean -squared error criterion
the measurement of such a systematic contribution is cross -correla-
tion. When all the cross -correlation coefficients are zero, nothing fur-
ther can be done to reduce the error.

2.3 Related Applications
In the course of equalization, an automatic equalizer is called upon

to perform a network synthesis. Specifically, it synthesizes that net-
work within its repertoire which results in the minimum mean -squared
error. It is possible to use the automatic equalizer simply as an auto-
matic network synthesizer.
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The distinction between these two cases (channel equalization and
network synthesis) is made in Fig. 4. Fig. 4(a) shows the conventional
application of the equalizer wherein the equalizer strives to first deter-
mine and then synthesize the function

C(w) 1/X(w), (9)

where X(w) is the frequency response function of the distorting chan-
nel. If the equalizer could perfectly synthesize 1/X(w) (plus an arbi-
trary flat time delay) the distortion would be completely removed.
The use of the equalizer for network synthesis is shown in Fig. 4 (b) .
Here, the transversal filter with complex frequency response C (w)

strives to approximate A (w) directly so that the quantity

E = L I A (co) -C (w) 12 do (10)

is minimized. As in the case of channel equalization the error can be
given a frequency sensitive weighting, W(0)).

So far, the discussion has centered upon an equalizer of the trans-
versal filter type (as in Fig. 3). This is by no means the only possibil-
ity, and a more general equalizer/synthesizer is shown in Fig. 5. The
common ground shared by the schemes (as shown in Fig. 3 and 5) is
that both rely upon the sum of weighted responses. The parallel net -
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Fig. 4 - (a) Channel equalization. (b) Filter syntheses.
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Fig. 5 Generalized mean -square equalizer/synthesizer.

work layout of 5 has greater flexibility than the series network
layout of Fig. 3. The series layout has the advantage that much of the
filtering necessary for one particular response is performed by the
preceding networks.

For practical reasons only it is required that the responses of the
various networks shown in Fig. 5 be linearly independent; it is
desirable (but by no means necessary) to have network responses
orthogonal to each other so as to minimize the interaction between the
setting of the various weighting coefficients. The desirable orthogonal-
ity results when 11) is satisfied.

0 =
J

I X(w) 12 Y; (w)Yi (co) dw, i j. (11)

In (11) the 17./(0,) are the transfer functions of the various networks
and X(w) the Fdurier transform of their common input. A discussion
of various sets of such orthogonal networks may be found in Lee.18

If X (w) is constant from de to f Hz and if the taps on a delay line
are spaced at 1/2h second intervals, the desired (but again not neces-
sary) orthogonality is obtained. In the case of the equalization of a
communication channel, orthogonality can not usually be obtained.
Here X (w) is affected by the amplitude response of the distorting
channel and this of course is unknown, a priori.

An application closely related to network synthesis is that of a
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relatively new technique for echo suppression: echo cancellation. This
problem most commonly occurs in long -haul voice communication.
Here the possibility of an improperly terminated hybrid makes un-
desirable returned echoes probable. These echoes are generally dis-
persed in time by the transmission medium. Previous techniques have
introduced attenuation into the echo path. The recently developed
technique uses, instead, principles identical to those developed here
to generate a replica of the echo. The actual echo and its replica are
then added together in such a fashion that they cancel. This can be
achieved automatically and adaptively as discussed in Refs. 14

through 17.

2.4 Performance in the Presence of Noise

In the network synthesis problem, the environment is largely under
the control of the designer and as a result noise represents a negligible
problem. This is not the case for equalization, where noise is definitely
to be reckoned with. Noise effectively alters the equalized channel's
frequency characteristic. It will be shown in what follows that the
change in the frequency characteristic is a desirable one, i.e., the total
mean -square error is minimized.

Noise also increases the settling time in a very complicated fashion.
However, in the implementation discussed, this increase is very small
and for that reason will not be further discussed here.

2.4.1 The Mean -Square Criterion in a Noisy Environment

In the process of equalizing a communication channel to approach
the desired flat amplitude and linear phase -frequency responses, care
must be taken that the noise in the channel is not increased to harmful
levels. Ideally, when noise is present the equalizer should mini-
mize the average total error consisting of both the component result-
ing from the imperfect channel frequency characteristic and the com-
ponent resulting from noise. If the spectral weighting function W (0))
is chosen properly, the equalizer described here attains this objective.
The noise in the channel is assumed to be the same during and after
equalization. It will be shown that the proper choice (in the sense
above) is a W(0)) function which makes the equalizer test signal's
power spectrum duplicate the information signal's power spectrum.

Consistent with the notation used previously, let the channel [with
impulse response x(t) ] be used to transmit information w(t). (The
square of the amplitude frequency response, of the error weighting
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filter is thus picked to be identical with the power spectral density of
the transmitted signal.) The received noise 77(t) will be taken as a
sample from a stationary random process. Thus, the received signal,
y(t), is given by

y(t) = w(t) * x(t) n(t). (12)

The error criterion E is again taken as the average mean -square error
between the equalized received signal h(t) and the transmitted signal
passed through the ideal, noiseless channel G (w) .

En = ([h(t) - w(t) * g(t)r). (13)

The brackets ( ) denote a time average. The equalized signal h(t) is
given by

h(t) = E cbAt - nr) w(t) * x(t - nr)] (14)
n,-N

using the transversal filter equalizer of Fig. 3. As before, the partial
derivatives of the distortion are computed with respect to the various
tap gains ci.

OE = 2([h(t) - w(t) * g(t)][n(t - jr) w(t) * x(t - jr)]). (15)
ac,

When this relation is compared with Fig. 3, it is seen that the expected
value of the output signal of the eross-correlator is given precisely by
(15). Thus, the equalizer does minimize the total expected mean -
squared error in the presence of noise. Again, this is true provided
that the test signal used for purposes of equalization has a spectral
density identical to that of the signal to he transmitted over the
equalized channel.

Often the power spectrum of the information transmission signal is
not known beforehand. In this instance a flat weighting can be used.
Examples of the effect of various weighting functions are given in
Section IV.

III. IMPLEM ENTATION

This section is devoted to the description of an implementation of a
general-purpose automatic equalizer. The discussion of the imple-
mentation will be broken down into three parts: The automatic
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transversal filter itself, carrier recovery, and timing recovery. The
first part is of general interest and pertinent to both the problems of
automatic equalization and network synthesis; the second and third
parts are peculiar to the equalization process. The need for carrier
recovery arises because of the incidental modulation which can occur
in some transmission channels (notably those involving carrier facili-
ties). Timing is needed to ensure the proper synchronization of the
desired signal generated at the equalizer with the signal received from
the distant transmitter.

Throughout this discussion, reference will be made to Fig. 6.

3.1 Implementation of the Automatic Transversal Filter
Many sets of functions could have been used as the basis functions

for the equalizer. Only one set, the set of functions generated at regu-
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larly spaced taps on a delay line, will be discussed here. There are
two reasons for this, the first being that the transversal filter has been
found to be a reasonably efficient means for the removal of distortion
and the second being that considerable experience with the use of
tapped delay lines is available.'

In the selection of an appropriate delay line, three parameters must
be established: bandwidth, tap spacing, and number of taps. Because
the equalization is carried out at passband, it is clear that the usable
bandwidth of the delay line must be at least coincident with the chan-
nel's bandwidth. Often, as in a telephone voice channel, the passband
extends sufficiently close to de that it is reasonable to use a line which
provides delay from de to the upper frequency limit of the passband.

The tap spacing has already been touched on in Section 2.1. For the
case just mentioned, the tap spacing T was chosen equal to the recip-
rocal of twice the upper band -edge frequency, thus making the tap
spacing slightly smaller than the Nyquist interval. The alternative in
this case would be separating the taps by the Nyquist interval and
providing additional, frequency -independent phase shifting networks
at the various taps. This is equivalent to translating the passband
into a comparable low-pass channel, equalizing, and retranslating to
passband.

The number of taps necessary depends on the nature and degree of
the dispersion (or distortion) likely to be found in the channel and
on the precision of the equalization desired. A very rough approxima-
tion can be obtained from paired -echo theory.18 This estimate equates
the necessary number of taps to four times the number of cycles in the
highest frequency Fourier series component needed to represent the
distorting frequency characteristic function. The accurate determina-
tion of the necessary number of taps can be made only by case -by -
case calculation. Examples showing the effect of a varying number of
taps will be given later.

The attenuators associated with each tap on the delay line are
capable of providing both positive and negative weights to the tap
signals. The attenuators are controlled by digital counters composed of
a number of binary memory elements. These are connected in such a
fashion that the total count can be increased or decreased by one at
any time and are therefore given the name up -down counters. All the
attenuators are changed at the same time by a common clock. The
outputs of the binary elements control the solid-state switching of
constant -resistance ladder networks. A full count corresponds to a
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normalized tap weight of +1, a zero count to -1, and a half -full count
to 0. Each attenuator is thus a kind of granular potentiometer with
constant increments. The number of increments is determined by the
number of binary elements and for K elements is equal to 2K.

The number of steps in the attenuator and the relative ranges of
the attenuator determine an upper bound on the accuracy of the
equalizer. Taking into account the required polarity information and
assuming the attenuator settings to be off by half an increment, the
accuracy to which an attenuator may be set is 1/ (2)K. If there are
(2N+1) taps, then the maximum signal-to-noise ratio (considering
the residual distortion as noise) attainable is

(2)2K

(S/N)ii s = 10 login
(2N 1)

Or

(16)

(S/N)RE s 6K - 10 log. (2N + 1) dB. (17)

In the implemented equalizer of 19 taps and 10 -bit attenuator-counters
this residual signal-to-noise ratio is about 54 dB. The relations above
assume the ranges of all attenuators to be the same. Often the char-
acteristics of the channels to be equalized permit the ranges of the
various attenuators to be tapered as one moves from the center to-
wards the ends of the delay line. This would make the above estimate
somewhat pessimistic.

The settings of the attenuators are controlled by the cross-correla-
tors whose inputs are the error and delay line tap signals. The
multiplying function necessary in measuring cross -correlation is ac-
complished through the use of a switched modulator driven by a
pulse -width modulated signal. The output so obtained is directly pro-
portional to the normalized cross -correlation coefficient and the magni-
tudes of the two input signals. This particular scheme was selected
from the many available because first, it is capable of handling the
very large dynamic ranges of the two input signals and second, it
determines the true cross -correlation, thereby guaranteeing conver-
gence for all reasonable input signals.

The measurement of cross -correlation also requires integration in
time, in fact, integration over the infinite interval. This is, of course,
simply too long to wait. A simple resistor -capacitor low-pass filter
provides a suitable approximation to real integration.

The outputs of the low-pass filters in the correlators are sliced about
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the zero level. The polarity of the output signals from the slicers deter-
mines whether the corresponding counter is incremented or decre-
mented when a repetitive clock pulse occurs.* (The repetition rate of
this clock pulse will be discussed later.) When the equalization
reaches equilibrium, the clock pulses are removed and the attenuator
weightings are retained permanently by the binary memory elements.

An equalizer consisting of the elements just described is shown in
Fig. 7. The tapped delay lines are shown clustered in the top left-
hand corner. The remaining cards in the top row are the resistive -
ladder attenuators. There are 20 attenuators, 19 associated with the
19 delay -line taps and the remaining unit serving as part of the au-
tomatic gain control loop which regulates the signal level on the delay
line. The two rows below the attenuators serve only as lamp indicators
for the attenuator settings. The two rows below the lamps contain
the binary memory elements and associated logic. The bottom row of
cards consists of the cross-correlators. This equalizer was constructed
for voiceband use; the delay line has a usable bandwidth in excess of
3,000 Hz, and the tap spacing is 150 microseconds. Examples of its
performance will be given in a subsequent section.

3.1.1 Settling Time

The settling time (the time required for the equalizer to reach
equilibrium) is determined in large measure by the time -constant of
the low-pass filter in the correlators and the frequency of the clock
which controls the counters.

Nothing has been said to this point about the nature of the test
signal used to determine the equalizer settings. The test signal is a
passband signal obtained by modulating a smoothed pseudo -random
sequencet into the passband frequency range. The pseudo -random
sequencel° was used because this facilitates the generation of identical
signals at the transmitter and receiver. The smoothing is done in ac-
cordance with the error spectrum weighting filter W (w) ; the modula-
tion is necessary because of the likelihood of frequency offset on car-
rier transmission facilities. These subjects will be treated in greater
detail later.

The pseudo -random sequence has a periodic auto -correlation func-

* The magnitude of the cross -correlation coefficients can be used to control the
rate of change of the attenuator settings as in Refs. 10, 15, and 16.

t The pseudo -random sequence is a repetitive sequence of binary digits chosen
in a random manner. The sequence can be generated by a binary shift register.
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Fig. 7 - Photograph of 19 -tap equalizer.

tion. The sequence generator must be designed in such a manner that
the period of this auto -correlation function is larger than the length of
the expected dispersion in the channel. If this were not the case, the
correlator would react to properties of the test signal, rather than to
properties of the channel. It is then necessary to integrate, in the cor-
relator, for a length of time corresponding to several periods of the
pseudo -random sequence. In the implemented equalizer, the integra-
tion is performed in a simple resistor -capacitor low-pass network; the
RC -product was established at about four times the pseudo -random
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sequence period. The polarity of the output of the correlator must be
sampled at a still slower rate so that time is provided for the integra-
tors to reach the steady-state after a change in the attenuator set-
tings. Again, several time constants must be allowed for this to take
place. The ratio of the repetition rate of the pseudo -random sequence
to the sampling rate of the correlators is about 20 for this particular
implementation.

Thus, in general, the length of the dispersion of the channel in time
(i.e., the length of the significantly nonzero portion of the channel's
impulse response) determines the repetition rate of the pseudo -random
sequence and, in turn, this repetition rate determines the rate at which
the attenuators are adjusted. The settling time for the equalizer can
then be calculated by dividing the number of steps the attenuator must
change by the rate of change.

As an example consider a voice channel wherein most of the dis-
persion is confined to a five millisecond interval. If the repetition rate
of the pseudo -random sequence is established at 10 milliseconds, then
in accordance with the above comments the clock rate for the pulse
controlling the attenuators should be 20 times slower or about 5 Hz.
In an equalizer using 10 -bit attenuators and starting from the reset
condition of zero attenuator weights, the longest travel of an attenua-
tor would be some 500 increments. It would take 100 seconds to tra-
verse the full range. This is a rather long time to wait, even for an
equalizer used in such a manner that it is divorced from the communi-
cating modems. There is, fortunately, an easy remedy and this involves
letting the attenuators run rapidly to their approximate values and
then slowly to their exact values. This dual -mode operation of the at-
tenuator clock can decrease the settling time by a considerable factor.

The settling time for this particular implementation is 10 seconds.
This is achieved by running the attenuator clock at a high rate for a
fixed initial period and then by continuing operation at a slower rate.

3.2 Carrier Recovery
The implementation was designed for use on all voice -frequency

channels, including carrier channels. The nature of carrier channels is
such that the channel may introduce a slight frequency shift. If such
a frequency shift were not compensated, the output of the correlators
would be modulated by the shift frequency, ruling out the possibility
of satisfactory operation. There are two equivalent means of dealing
with this frequency shift. The first is to remove the frequency shift
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from the received channel signal and the second is to alter the modulat-
ing frequency of the generator of the comparison or desired signal as
indicated ("carrier .+ offset") in Fig. 6. In either case, the frequency
offset generated by the channel must be detected; the latter scheme
was selected here.

A technique suggested by F. K. Becker2° was used to recover both
modulating frequency and the frequency necessary to drive the ran-
dom sequence generator. In this approach, two pilot tones are added to
the transmitted signal, one each at the upper and lower edges of the
band of interest. These tones can then be combined in such a fashion
that the transmitted carrier plus frequency offset can be recovered. At
the same time, by combining the two pilot tones in another manner,
the sequence generator clock can be recovered. In the case. of the
equalizer shown in Fig. 7, the modulating carrier frequency (2400 Hz)
plus carrier offset (S Hz) is obtained from the two pilot tones at 600
Hz and 3000 Hz as indicated by (18).

(2400 + (3) = (3000 + S)
(3000 + 15) -

4

(600 + 5)
(18)

Once the proper modulating frequency is obtained, it remains to
establish the proper phase. This is achieved by transmitting energy at
the carrier frequency. The phase of the carrier generated at the
equalizer is adjusted until it agrees with the received carrier phase as
it appears at the output of the "main" equalizer tap. This is achieved
through the use of a cross-correlator. After the proper phase has been
established, the variable phase shift element is locked.

3.3 Timing Recovery

In conjunction with the discussion of settling time, it was stated
that the test signal is derived from a pseudo -random sequence gener-
ator. It is necessary to synchronize the remote and local generators
(which are identical) so that near -optimum use is made of the trans-
versal filter.

Like the modulating carrier, the clock frequency required to drive
the sequence generator at the equalizer is derived from the two pilot
tones. In the implemented equalizer shown in Fig. 7, the clock fre-
quency of 2400 Hz is obtained via the relation

(2400) = (3000 + 13) - (600 -I- 3). (19)
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In addition to obtaining the proper phase for this clock, it is necessary
to synchronize the random 63 -hit sequences. These ends are attained
in a sequence of two steps.

It is known that the autocorrelation function R (v) of a pseudo-
random sequence of the variety used here has a shape like that of Fig.
8(a). (In the equalizer, the W(0)) weighting function causes a smoother
function to be generated for the autocorrelation function of the desired
signal.) The timing recovery circuitry is built upon this fact.

What in essence is needed is an estimate of the arrival time T of the
received signal x(t). Knowing this, the desired signal g(t) can be
properly synchronized. A maximum likelihood estimate of T is devel-
oped using a correlation detector.21 Under the assumption that the
noise is Gaussian, white, and additive, it can be shown"- that the
maximum likelihood estimate of T can be found by adjusting T so that

q(T) = fit g(t T)x(t) dt (20)
0

is a maximum. Because of the noise component in x(t) there will be
some ambiguity in deciding exactly where the maximum of q(T) is,
but this ambiguity can be reduced by increasing the length of the
observation time tl. In fact, when t1 is very large q(T) approaches
the Rpp shown in Fig. 8(a), assuming no spectral weighting, band
limiting, or channel distortion.

It is known that the effect of linear distortion in a bandlimited
channel can be represented in terms of pairs of echoes of the impulse
response in the time domain." An estimate of T is obtained for the
distorted xd(t) just as it was in the distortion -free case but because of

63 ----63 BITS ---

t

CC

(a) TIME, V
(b)

Fig. 8- Synchronization waveforms. (a) Autocorrelation function of pseudo-
random word generator (63 -bit length). (b) q(7') function for pseudo -random
word generator in presence of linear distortion.
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the distortion only an approximation to the maximum likelihood esti-
mate is obtained. Again

q(T) = ft' g(t T)xd(t) dt (21)

is maximized. As in the distortion -free case the ambiguity in q result-
ing from noise can be made vanishingly small by making t1 very large.
However, the distortion echoes do contribute systematically to q(T)
and an increase in the observation time does not diminish their con-
tribution. If the distortion were such that a single echo were introduced
by the channel, the q(T) function might have the appearance of Fig.
8(b), again ignoring the effects of band -limiting and smoothing by the
filter W(0)). It can be seen, then, that linear distortion makes the
search for the absolute maximum of q(T) more difficult by introduc-
ing greater undulations in the q(T) function. Because of the com-
plexity of the q(T) function, the search for its absolute maximum
is made in two successive modes.

In the first mode, gross synchronization is attained. This means
that the timing of the desired waveform sequence is shifted until it is
roughly lined up with the received signal as it appears at the "main"
tap. This coarse alignment is obtained by cross -correlating the two
signals just mentioned and comparing the result with a fixed threshold.
Until the output of the cross-correlator, q(T), reaches the threshold,
the phase of the timing signal is continuously increased (over an inter-
val which may be as large as 63 symbol periods in the case of the 63 -
bit sequence). When the threshold is reached the phase is locked. The
threshold is determined empirically so that only the one large spike
(corresponding to the undistorted pulse) penetrates the threshold.
Thus, in the first mode the proper "spike" of q(T) is found; in mode
2 the maximum of this spike is found.

The maximum of q(T) can be found by partial differentiation of
(21) with respect to T and setting the result equal to zero.

(9q(T)
t,

OT
0 = g'(t T)xd(t) dt, (22)

0

where g'(t) is the time derivative of g(t). This approach could not
be used from the start because q(T) can be assumed to be a convex
function only over a small region. The operation indicated in (22) is
achieved through yet another cross-correlator.

A few words are in order about what has been called the "main"
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tap-that tap which is used for both carrier and timing reference. The
main tap would normally be the center tap on the delay line. It turns
out empirically, however, that most distorting echoes lag the undis-
torted impulse. Hence, lower residual distortion is obtained by shift-
ing the main or reference tap to a position about two-thirds down the
delay line.

IV. PERFORMANCE

4.1 Computer Simulations

In order to determine the theoretical performance of this equaliza-
tion technique, a computer simulation was made. Fig. 9 shows results
for a voiceband channel. The unequalized channel characteristic was
taken as a typical Direct -Distance -Dialed connection as given in
Alexander, Gryb, and Nast.22 The amplitude characteristic has a 15
dB/octave falloff starting at 240 Hz, is flat from 240 to 1100 Hz, has
a linear logarithmic slope to 7.6 -dB loss at 3000 Hz and an 80 dB/
octave loss commencing at 3000 Hz. The delay characteristic is para-
bolic, centered at 1500 Hz, with a maximum delay of 1 millisecond at
0 and 3000 Hz. In the simulation, the error spectral weighting function
W(0)) used was of raised cosine shape, symmetric about a peak at 1650
Hz and zero at 300 and 3000 Hz. The tap spacing was established at
150 microseconds. In Fig. 9 the amplitude and delay frequency -response
curves for both unequalized and equalized channels are shown. Three
cases are shown, those of 9, 13, and 25 taps.

A simulation was also made for a baseband channel with group
bandwidth.$ Only the amplitude frequency responses are shown be-
cause the delay distortion was not significant in this particular case
and remained essentially invariant throughout the equalization proc-
ess. Both uniform and nonuniform spectral weightings were investi-
gated. In the cases where a nonuniform spectral weighting TV (0)) was
used, W(0)) was selected as a half -cosine rolloff shape, essentially flat
to 12.5 kHz, and then falling to zero at 37.5 kHz as a cosine. Energy
at very low frequencies was given small weighting by a simple high-
pass filter with 2 -kHz corner frequency. Fig. 10 displays the ampli-
tude characteristics on both linear and logarithmic frequency scales
as the number of taps is increased from 13 to 51, all with the half -cosine
rolloff weighting. Performance improves with the number of taps but

t A "group" is twelve voice channels with a bandwidth of about 12 X 4 or 48
kHz.
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Fig. 9- Simulated voiceband performance (a) Amplitude characteristics, 9

taps, raised cosine weighting. (b) Delay characteristics, 9 taps, raised cosine
weighting (c) Amplitude characteristics, 13 taps, raised cosine weighting. (d) De-
lay characteristics, 13 taps, raised cosine weighting. (e) Amplitude characteristics,
25 taps, raised cosine weighting. (f) Delay characteristics, 25 taps, raised cosine
weighting.

the change is rather subtle compared with the voiceband case. Fig. 11
illustrates the effects of error weighting (weighted and unweighted)
and the effect of signal-to-noise ratio for the case of white noise. Note
that in the case of very small noise, the equalized channel character-
istic may behave erratically in the region where the error has very
little weight (i.e., hear 37.5 kHz). The addition of noise or the use
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of a more uniform weighting prohibits this behavior. Note also that
the use of weighting forces the best equalization to occur in the region
of highest weight, i.e., 2 to 25 kHz.

It may also be seen that in the case of abnormally high noise the
equalizer minimizes the total error energy consisting of both dis-
tortion and noise as predicted in Section 2.3.

4.2 Measurements on Real Facilities

Measurements have also been made with the experimental equip-
ment operating over real facilities. Fig. 12 shows the equalization of
an actual L -carrier looped facility from Holmdel, N. J. to Chicago
and return. Both the unequalized and equalized delay and amplitude
frequency responses are shown. The results are those for thirteen taps
with a raised cosine error spectral weighting function with zero weight
at 600 and 3000 Hz. Fig. 13 shows the binary eyes resulting from
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transmission of an FM data signal on a DDD looped facility from
Holmdel to Denver and return. A 19 -tap equalizer was used for the
rms-equalized case. As an example of asynchronous transmission over
similar facilities, Fig. 14 shows facsimile transmission, equalized and
unequalized. Fig. 14 was obtained using the Bell System DATA -PHONE*
Data Set 602A which contains an FM modem.

The nineteen -tap equalizer shown in Fig. 7 was used to equalize a

* Service mark of the Bell System.
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looped facility from Holmdel, N. J. to Omaha and return. The results
of this test are shown in Fig. 15 with the requirements for a schedule
4B line. The weighting function is identical to that used for the equali-
zation obtained in Fig. 12. As can be seen, the 4B requirements are
met by the equalized channel except at the band edges.

4.3 Filter Synthesis

As an example of automatic filter synthesis, the curves in Fig. 16
were obtained. The system configuration is that of Fig. 4 (b). The de-
sired or model amplitude response is shown for comparison with 5-,
9-, and 19 -tap approximations to it.

V. CONCLUSION

Automatic Equalization is a powerful tool for increasing the ef-
ficiency of communication channels. The implementation described is
of general utility and need not be married to a particular modern. It
functions conveniently in the passband and is especially suited to
the equalization of a large number of communication channels termi-
nating at a common location where the adjustment circuitry can be
shared. In addition, the principles of the techniques seem applicable
to a wide class of problems.

Much work remains to be done before generalized automatic equali-
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zation becomes practical. In addition, the equalizer described here
does nothing for the problem of nonlinear distortion or for the time -
varying channel. However, the results obtained thus far are encour-
aging.

The authors gratefully acknowledge the encouragement and contri-
bution of their colleagues, especially F. K. Becker, L. N. Holzman, and
E. Port.
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Minimum Cost Communication Networks

By E. N. GILBERT

(Manuscript received July 21, 1967)

Cities A1 , , A,, in the plane are to be interconnected by two-way
communication channels. N(i, j) channels are to go between A, and A, .
One could install the N(i, j) channels along a straight line, for every pair

j. However it is usually possible to save money by rerouting channels over
longer paths in order to group channels together. In this way, large numbers
of channels share such preliminary expenses as real estate, surveying, and
trench digging.

The geometry of the least expensive network will depend on the numbers
of channels N(i, j) and on the function f (N) which represents the cost per
mile of installing N channels along a common route. If the preliminary
expenses are the only expenses then f(N) is a constant, independent of N.
In that case the best network is obtained by routing channels along lines
of the "Steiner minimal tree", a graph which has been studied extensively
and which can be constructed by ruler and compass. In part, this paper
generalizes Steiner minimal trees for the case of an arbitrary function
f(N). One again obtains a ruler and compass construction for a minimizing
tree, which is likely to provide a best or good solution when preliminary costs
are a significant part of the total cost. However the minimizing tree need
not be the best solution in general because further cost reductions may now
be possible by using graphs which have cycles. Other properties of Steiner
minimal trees generalize only part way, and some examples illustrate the
new complications.

The remainder of the paper considers functions f (N) with special prop-
erties. A convexity property

f(N + 2) - 2f(N ± 1) + f(N) s0,N = 1,2, 

ensures that there is a minimizing solution in which all N(i, j) channels
between Ai and A, take the same path (no split routing). If f(N) is a
linear function (f (N) = a + bN), one can obtain simple bounds on the
minimum cost. The lower bound is fairly accurate.

2209
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I. INTRODUCTION

Let points A1, An in the plane represent n cities which require
a communications network. Let N(i, j) denote the number of channels
which the network must supply between Ai and A. The network
sought must provide these channels at minimum cost. In calculating
costs suppose that a monotone function f (N) represents the cost in
dollars per mile to install N channels together along a common route.

One possible network just connects each pair Ai, A; by N(i, j) chan-
nels installed along a straight line path. This network will be called
the complete network because the routes used form a complete graph.
Fig. 1(a) is the complete network for a case with n = 4; the numbers
on the lines are the N (i, j).

The complete network makes each channel as short as possible; it
is the cheapest network if f (N) = N. However, most situations have
more complicated functions f (N). In particular, there are usually some
preliminary costs for surveying, obtaining the right-of-way, digging a
trench, etc. These items have a non -zero cost f (0) dollars per mile
regardless of how many channels are to be installed.

In some cases preliminary costs may be so high that a network which
merely minimizes preliminary costs is a reasonable choice. Such a net-
work must minimize the total number of miles of right-of-way. For the
example in Fig. 1(a), the network which minimizes preliminary costs
is Fig. 1(b) [or, more simply, Fig. 1(c) . Such networks can be drawn
with a ruler and compass in a finite (possibly large) number of steps
(see Ref. 1, 2).

When f (N) is not constant, the cheapest network is harder to find.
Still the methods which minimize only the preliminary costs generalize
far enough to be useful. Sections III and IV develop these generaliza-
tions. In particular, if preliminary costs are a large fraction of the

9

(a) (b)

Fig. 1- Networks.

(C)



MINIMUM COST NETWORKS 2211

total cost one has a good chance of constructing the cheapest network
by these methods.

In many problems the cost function is linear, f (N) = a + bN. A
linear cost function is obtained if the incremental cost f (N) - f (N-1)
of adding an Nth channel to a group of N-1 channels is a fixed amount
b dollars per mile, independent of N. The cost of additional copper
wires, channel filters, or repeaters usually does not depend on N. By
contrast, consider waveguide systems. Each guide can supply thousands
of channels. The incremental cost is small for most values of N but is
large when adding channel N requires adding another guide; f (N)
is a staircase function. Section VI obtains some bounds on the cost of
the cheapest network when f (N) is linear. Section V finds a property of
the minimal cost network when f (N) is merely convex.

II. STEINER MINIMAL TREES

A network may be represented, as in Fig. 1(c), as a set of lines (the
routes or right-of-ways) connecting A1, , An and perhaps some other
points where lines join. This representation will be called the graph
of the network. Figs. 1(b) and 1(c) illustrate the distinction between
a network and its graph. A Steiner point is a junction point of the
graph which is not one of A1, , An. Fig. 1(c) has two Steiner points.
The minimal graph is the graph of the cheapest network. A graph is
relatively minimal if its Steiner points are located so that no small
displacement of the Steiner points reduces the cost. If a graph is
relatively minimal there is no guarantee that a more violent perturba-
tion, altering the topology of the graph, may not secure a reduction;
i.e., relatively minimal graphs need not be minimal.

The procedure to be described here finds relatively minimal graphs
which are trees having exactly three lines incident at each Steiner
point. The cheapest of these relatively minimal trees will be called
the Steiner minimal tree for A1, , An. The procedure in question
is a modification of one which applies when the cost function is simply
f (N) = 1. In order to have an easy terminology by which one may
compare a given problem against the corresponding problem with f (N)
= 1, I use the adjective ordinary freely to mean "having f (N) = 1".
Thus, "ordinary minimal graph, ordinary relatively minimal graph,
ordinary Steiner minimal tree,  " mean "minimal graph, relatively
minimal graph, Steiner minimal tree, in the case f (N) = 1".

The ordinary case is a simpler one than the general case because the
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ordinary minimal graph is the ordinary Steiner minimal tree. In gen-
eral, the minimal graph need not be a tree (recall that the complete
graph is minimal if f(N) = N). Moreover, even the cheapest tree need
not be a Steiner minimal tree. For example, consider four cities A1,

, A4 at the corners of a unit square as shown in Fig. 2. For the de-
mand matrix N (i, j) take

II AT j) I I =

0 1 1 1

1 0 1 10

1 1 0 1

,1 10 1 0..

and let N channels cost f (N) = 1+N dollars per mile. Fig. 2 (a) shows
the cheapest tree. It is not a Steiner minimal tree because four lines
meet at its Steiner point. Fig. 2 (b) shows a typical tree in which three
lines meet at each Steiner point. However, Fig. 2 (b) is not relatively
minimal; its cost decreases when the two Steiner points are displaced
toward the center of the square. If one continues to displace these
Steiner points, in hopes of finding a relatively minimal tree, they
finally merge together as in Fig. 2 (a).

III. GENERALIZATIONS FROM THE ORDINARY CASE

In Ref. 1 we gave some simple properties of ordinary relatively
minimal trees and ordinary Steiner minimal trees. Some of these
properties generalize directly while others do not. This section will
discuss the simplest generalizations. In some cases the proofs are
omitted because the arguments of Ref. 1 apply with only trivial
changes.

3.1 Mechanics
A graph of a network may be interpreted as a mechanical system

of elastic bands (the lines). A1, , A are fixed supports for the

(a) (b)

Fig. 2 - Four cities problem.
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bands incident there but the bands at a Steiner point are merely
joined together and left free to move. Let each band have a tension
equal to the cost per mile of the channels in the corresponding line.
Then the mechanical system has a potential function equal to the cost
of the graph; the system is in stable equilibrium if and only if the
graph is relatively minimal.

3.2 Angles at a Steiner point

At a Steiner point S let vectors v, v', v",  denote the forces (ten-
sions) exerted by the elastic bands. The condition for mechanical
equilibrium (relatively minimal graph) is v + v' +v" +  = 0. The
magnitudes Iv!, Iv'I, lv"1, are the costs per mile of the lines at S.
When S has only three lines, the law of cosines determines the angles
between the lines. For instance,

cos (v', v") = (I v 12 - v' 12 - Iv" I')/(2 I v' I I v" I). (1)

The analogous condition on ordinary relatively minimal trees, which
stated that three lines meet at 120° at 5, is an instance of (1) with
Iv' = Iv'l = lel. When four or more lines meet at S the equilibrium
condition does not determine the angles at S.

3.3 Number of Steiner points
Consider any tree joining A1, , A and let s be the number of

Steiner points. It is no restriction to assume that no Steiner point has
less than three lines; for clearly such Steiner points can save no cost.
Then (see Ref. 1, Section 3. 4)

s n - 2
with equality holding if and only if each Steiner point has three lines
and each Ai has one line.

3.4 Uniqueness

Suppose a graph, not necessarily a tree, is given for a network con-
necting A1, , A. The numbers of channels are also supposed pre-
scribed for each line of the graph. Now perturb the positions of the
Steiner points trying to reach a relative minimum cost for graphs
with the same topology. As illustrated by Fig. 2, it can happen that a
relative minimum may be only approached but not attained. In the
ordinary case, when one does find a relatively minimal graph one can
conclude that there are no others with the same topology.

In the general case, there is no such uniqueness. For example, sup-
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pose A1, A2, A3 are at the vertices of an equilateral triangle and sup-
pose N(i, j) = 1 for all pairs (i, j). Let f (N) = 1 + (3i-1) (N-1).
Fig. 3 shows a possible graph and gives the angles, obtained from (1),
which suffice for a relative minimum. These angles do not determine
the locations of the Steiner points. It suffices to put each Steiner point
Si at the same distance from the center 0 of the triangle and on the
line OA{.

Fig. 4(a) shows that one may encounter non -uniqueness even when
searching for a relatively minimal tree. To perturb S into a position
of minimum cost, place S anywhere on the line segment A2A3. The in-
dividual channels [N(i, j) = 1 for all i, j] appear in Fig. 4(b). Steiner
points, such as S in Fig. 4(b), at which all incident lines meet at
either 180° or 360° have no real interest. Any channel which makes a
180° turn at S can be rerouted away from S over a shorter path using
only existing right-of-ways. After the shortening [Fig. 4(c) ] the
Steiner point is gone.

In spite of examples like Figs. 3 and 4, a weak kind of uniqueness
holds even in the general case. Any relatively minimal tree is either
the unique relatively minimal tree with the given topology or else it
has a Steiner point, like S in Fig. 4(b), at which all lines meet at angles
of either 1.80°.or 360°. An outline of the proof follows. As in Ref. 1 the
argument uses an "averaging" operation for graphs. If G and G' are two
graphs with the same topology, the averaged graph pG + qG' (where
p > 0, q 0, and p q = 1) has vertices of the form pV qV' where
V, V' are corresponding vertices, V E G and V' e G'. For each line VI V2
of G (and correspondingly, ViV2 of G') pG qG' has the line joining
pV1 qVi to pV2 q -VT . If L is a line Vi V2 of G and L' the correspond-
ing line of G', let pL qL' denote the corresponding line of pG qG'.

The lengths I L I, I L' I, I pL qL' I of these lines satisfy

Al

f(I) = I
f(2) =TS

A3

Fig. 3 - Example of non -uniqueness.
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(a)

( b )

(C) o 3 4 3

Fig. 4 - Non -uniqueness for trees.

IPL+gL'I iLi+giL'i (2)

with equality holding only if the directions of the line segments V1V2
and VrV 2 are the same.

One can now prove that all relatively minimal graphs with the same
topology have the same cost. For suppose, on the contrary, that graphs
G, G' have the same topology and have costs c, c' with c < c'. Because
of (2) the cost of pG qG' is no greater than pc + qc'. Then, taking
p to be small, pG qG' is a slight perturbation of G' and costs less than
c'. Then G' cannot have been relatively minimal, a contradiction.

If G and G' are two different graphs which both attain the relative
minimum cost, then (2) shows that an average graph pG qG' will
cost even less (a contradiction) unless every line of G' is parallel to
its corresponding line in G. Note that the graphs obtained from Figs.
3 and 4(b) all had that property. Now suppose G and G' are relatively
minimal trees. If G and G' differ some Steiner point S in G is connected
to vertices V, and V2 such that V i = V, , V a = V, , but S' 0 S. For
instance, V, and V, might be two of A, , , . But, to avoid the
contradiction noted above, SV, and S'V, must be parallel, as must
SV, and S' V2 . That can be true when S S' only if S, 8', V, , V2

are colinear, whence V iS makes a 360° angle with V2S.

3.5 Number of choices

In Ref. 1 the solution to the ordinary case is found by constructing
a relatively minimal tree, if one exists, for each of the topologically
distinct ways of interconnecting Al , . Because of 3.3 there
are only a finite number of cases to consider. For s = 0,1, , n - 2,
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the number of cases with s Steiner points turns out to be

2-*(
±n 2)(n s - 2) Vs!.

In the general problem, each of these cases is again a candidate for
the Steiner minimal tree. The total number of cases for n = 3, 4, 5, 6, 7,

are 4, 27, 270, 3645, 62370, . Of course the minimal graph may
not be one of these trees; in general, there will be many more cases.

Fortunately, it seems to be easy to guess topologies which, if not ac-
tually best, cost only slightly more than the minimal cost. In Ref. 1, for
example, we were unable to invent a problem in which the minimum
cost was less than 86.6 percent of the cost of the (easily constructed)
best tree having no Steiner points. The four cities in the unit square of
Fig. 2 illustrate the same thing. Again let f (N) = 1 N and let
I IN(i, j) I I

be the same as in Section II. Table I compares the cost of
the cheapest graph, Fig. 2 (a) , with some other simple ones.

These comparisons suggest that one should be willing to accept a
good network (perhaps the best relatively minimal network obtained
for several reasonable topologies) even though it is not proved to have
absolutely minimum cost. There are usually too many cases to find
the best network by exhaustion also the saving in cost is apt to be
slight.

IV. CONSTRUCTION ALGORITHMS

The ruler and compass construction of relatively minimal trees is
similar to the construction in the ordinary case.

Consider first the case n = 3. Fig. 5 (a) shows a typical case with
given points A1, A2 , A3 to be joined to a Steiner point S. The costs ci
per mile of the three lines Sill are supposed known. The angles at , a21

TABLE I

Graph
Cost

(in dollars)

Fig. 2(a)
complete graph
ordinary Steiner min. tree

13

24.04
26.38
25.55

27 . 80
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«3 at which lines meet at S are now determined from the equilibrium
condition,* e.g., by (1). A ruler and compass construction for ai , a2 ,

«3 is easy because these angles are the exterior angles to a triangle
with sides c1, c2, c3 [Fig. 5 (b) .

In general, c1, c2i c3 might have any values, including some which
are not constructable by ruler and compass (e.g., perhaps c1 = 21/3,
c2 = 7r, c3 = e). Then Fig. 5 (b) is itself not constructable without first
using the ruler as a "scale" to lay off segments of lengths c1, c2, c3. I as-
sume that these segments have already been drawn. Then all other

Al

(a)

Fig. 5 - First construction with n = 3.

constructions, such as the one for ai , a2, cr3, can use the ruler and com-
pass in the manner intended by Euclid.

Since angle A iSA2 = a3, S lies on a circular arc of angle 27r -2a3
through Al and A2. By constructing this arc, and a similar arc for
A2A3 or A3,41, one constructs S as an intersection of circular arcs
[Fig. 5 (c) ] . The same construction appears in Ref. 4.

In Fig. 5(c) consider the line A3S extended to meet the circle through
A and A2 again. Let A1,2 denote this new point of intersection [Fig.
6(a)]. The point A1,2 has interesting properties which are needed for
solving cases with n > 4.

First note [Fig. 6(b) ] that the exterior angles of the triangle
A1A2A1, 2 are al, «2, «3. Then this triangle is similar to the triangle of
Fig. 5 (b) and so can be constructed by ruler and compass (if IAIA21

* If one of the cl exceeds the sum of the other two, say c. c2 < c., no choice
of angles satisfy the equilibrium condition. The minimal tree consists just of two
lines (A.A. and A.A. in the case cited). In many cases the function f (N) is convex,
as defined in (3), and then c, c2 < c3 cannot happen.
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=d, then 1A,Ai, 21 = dc2/c3). The important fact used later on is that
this construction will produce Al, 2 from cl, c2, c3, A1, and A2, with-
out using A3.

Another construction for the case n = 3 proceeds as follows. With
A1A2 as a base erect a triangle* with sides 1.41,421 = d, dc2/c3, and
dc1/c3 to construct Al, 2. Circumscribe this triangle in a circle C12.
If A3 lies inside C12 there is no Steiner point (the cheapest solution
consists of two lines A3A1 and A3A2). If A3 lies outside C12 draw the
line segment A1, 224.3. Observe whether this segment crosses the arc
A1A2 of C12 which does not contain A1, 2. If there is a crossing point

360° -2a,
ARC

(a)

Fig. 6 - Construction of Ai .

( b )

S, then S is the desired Steiner point. If not, then there is no relatively
minimal tree with the given topology. The best solution consists of
A1A2 and A1A3 if A2 and A3 are on opposite sides of the line A1A1, 2 ;
use A1A2 and A2A3 if A2A1, 2 separates Al from 213. Fig. 7 shows how
the cheapest tree depends on the location of A3.

When the construction produces a legitimate Steiner point [Fig.
7(d) J, Ref. 1 showed, in the ordinary case, that the length 18A11 +
15,4,1 + 1SA31 of the tree is just IA3A1, 21. The appropriate generaliza-
tion here is that the cost of the tree is the same as that of 1A3211, 21
miles of circuit costing c3 dollars per mile, i.e.,

c1 1 SA, I + C2 I SA2 1 + C3 1 "3 I = C3 1 A3A1,2 l (3)

The proof of (3) will follow from a theorem in Ptolemy's Meydk1
Eimr4ig stating that the product of the diagonals of a quadrilateral

* In general, there are two such triangles. Construct the one which places A1, 2
and A3 on opposite sides of the line All12.
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(d)

Fig. 7 - Second construction with n = 3.

equals the sum of the products of opposite sides.3 When applied to the
quadrilateral A1SA2A1, 2 in Fig. 6 the theorem becomes

I SA1.2 I.d = I SA1 I dc1/c3 + I SA2 I dc2/c3

or

ci I SA, + c2 I SA2 I= c, I SA1.2 I.

Add c3 I SA3 I to both sides to get (3).
The construction of Fig. 7 may be used iteratively to find relatively

minimal trees with n > 3 when each Steiner point is restricted to have
only three incident lines.

The details are similar to the ordinary cases and so it suffices here
to give an illustrative example. Fig. 8 shows cities Ai, , A5 to be
interconnected by a graph having Steiner points Si, So , S3 .To locate
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Fig. 8- A construction wit li n = 5.

the Si one begins by finding a pair of cities which are to be connected
to a common Steiner point; A3 and A4 will serve in Fig. 8. Construct
A3, 4 as in Fig. 6(b) , and draw the circle circumscribing A3, A4 and
A3, 4. S3 will be obtained ultimately by intersecting this circle with the
line 82A3, 4 [compare Fig. 7 (d) ] but at the moment the position of 82
is unknown. Nevertheless, the problem is now reduced to drawing a new
tree for Al , A2, A3, 4, and A5 with Steiner points Si and 82 (the cost
per mile for the new line S2A3, 4 is taken to be the same as the original
cost per mile of 83.83) . Again pick a pair of cities with a common
Steiner point, say A5 and A3, 4 j draw the triangle with base A5A8, 4
to construct a new point A5, (3, 4). Now the problem reduces to drawing
a tree for A1, A2, and A5, (3, 4). This is a case with n = 3 which is
solved as described above. The solution locates Si . One can then locate
S2 on the line S1A(3, 4), 5 and finally, S3 on the line S2A(3, 4) 

In general, one has n cities A1, , An and at most n-2 Steiner
points. By iterating the construction of Fig. 6(b) at most n-2 times
one ultimately reduces the problem to a solvable case. There are three
cautions to observe.

First of all, there are two triangles having a given base AiAj and
given sides. The correct choice of triangle, and hence the correct Ai, j, is
clear if one knows the location of the third point which shares the
Steiner point of A, and A1. If this third point is itself a Steiner point
and not yet located, one may have to try both possibilities for At j.
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However, if one can guess the correct choice of Ai, i and then find a
relatively minimal tree, the uniqueness result of Section III shows
that one need not try the other choice..

Secondly, at some stage in the construction, one may find the situ-
ation shown in Fig. 7(a), (b), or (c) and so be unable to locate a
Steiner point. This can happen either because no relatively minimal
tree exists with the topology sought or because one of the Ai, j was
chosen wrong.

Thirdly, the construction described here produces only trees which
have three lines at each Steiner point. A tree having Steiner points
with four or more lines or a graph which is not a tree may he cheaper
than the Steiner minimal tree in some cases.

V. SPLIT ROUTING

Unlike trees, which provide just one path between each pair of
points, graphs with cycles offer a choice of paths. Then the N (i, j)
channels from i to j may be distributed over two or more paths (split
routing). The example in Fig. 9 shows that split routing is sometimes
economical. The three cities are at the corners of a unit equilateral
triangle and the demands are N(1, 2) = 13, N(1, 3) = N(2, 3) = 1.
The cost per mile for N channels is

f(N) = [(N + 2)/3].

Such a cost function might be encountered if channels arc available
only in cables containing 3 channels each; then f (1) = f (2) = f (3),
f (4) = f (5) = f (6), etc. In Fig. 9(a) all channels follow direct paths
in the complete graph. In Fig. 9(b) one of the channels from Al to A2
has been rerouted through A3. This reduces the cost of the line A1A2 ;

A3A
Ai 13 A2

COST = 7

(a)

12

COST = 6

( b )

Fig. 9 - Split routing.

2 2

12

COST = 5.732

( c )



2222 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1967

it increases the number of channels in the other lines but does not in-
crease their cost. Fig. 9(c) shows the minimal graph, which also uses
split routing.

The remainder of this section will show that split routing gains
nothing if f (N) is a convex function, i.e., if

f(N + 2) - 2f(N + 1) + f(N) 5 0 (4)

for all N. Suppose f (N) is convex and consider a network which uses
split routing. Then one can find two channels, say a and /3, which join
cities Ai, As by different routes. To make cost comparisons easy, sup-
pose that all other channels of the network have been installed and that
the two channels for a and /3 have been installed on those lines of the
graph which belong to both a and /3. Now for n = 0,1,2 let L(n) be
the incremental cost of installing n channels in each of the remaining
lines of a and let /fi(n) be a similar incremental cost for /3. The cost
to finish constructing the network is

cost = /,2(1) /p(1). (5)

However, la (n) is the sum of incremental costs of adding n channels
to certain existing lines. If the kth line has Nk [a] channels

I a(n) = E (KATI, [a] + - f(Ar, rap
A

Then (4) shows f(N + 2) - f(N) < 2Lf(N + 1) - f(N)1, so

Ia(2) < 2I(1),
and similarly,

_4(2) < 2Is(1).

Now (5) shows

cost {Ia(2) + /0(2)}

Min 1/(2), /s(2)1.

The last inequality shows that it would be as cheap to complete two
copies of one of the channels a or as to complete one of each.

VI. LINEAR COST FUNCTIONS

Suppose f (N) is linear, f (N) = a + bN. Consider any graph. Let
Li denote the length of the ith line of the graph and Ni the number of
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channels along that line. The cost of the network is

cost = aL E NiLib, (6)

where L = L1 + L2 . . . is the total length of the graph.
A simple lower bound on the cost of networks which satisfy a given

demand for channels may be obtained by bounding the two terms in
(6) separately. The preliminary cost term aL is at least as large as
aLo, where Lo is the total length of the ordinary Steiner minimal tree
connecting the given cities. The remaining cost in (6) would have been
the cost of building the network if f(N) had been bN. This cost is
minimized by the complete network. Then

cost > aLo b E I A.,21., I N(i, j). (7)
i<i

Another way of writing (7) uses two new quantities,

L. = E I A,A.;
i<i

(the length of the complete graph) and

P = L:1 EI AiAi I N(i, j)

(the average of the numbers of channels required between pairs of
cities with the distance between cities as a weighting factor). Then
(7), combined with the observation that the cost of the complete
graph is an upper bound, becomes

aLo bvid, < cost < aL, byL, . (8)

The form (8) of (7) is useful when numbers of channels which will
be required between cities can be predicted only relatively but not
absolutely. Then v is a convenient measure of "traffic level".

The lower bound (8) is an instance of a more general inequality
expressing a convexity property of the minimum cost function c (v) :

c(v) > i (P2 - P)c(vi) (1, - Pi)42))/(P2 - Pi) (9)

for Pi S v 5 P2. According to (9) linear interpolation between known
values c(v,), c(v2) gives a lower bound on c(v). In particular, (9) becomes
the left half of (8) in the limiting case P1 = 0, P2 --> oo .

In the proof of (9) which follows it is convenient to extend the
definition of c(v) from a discrete set of v values [at which all N(i, j)
are integers] to all positive real values. Although a line may require
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a nonintegral number N of channels to satisfy traffic level v exactly,
its cost will be computed still at a bN dollars per mile. Now let
c(G, v) be the cost of providing channels for traffic level v using graph
G. In specifying G I intend that the location of any Steiner points be
specified and not to depend on v. Then c (G, v) is a linear function of
V. Since

c(v) = Min c(G, v), (10)

the region below the curve c = c (v) is an intersection of the half -
spaces lying below the lines c = c (G, v) . Then the region in question
is convex and (9) follows.

The lower bound (8) is asymptotic to the minimum cost both for
small v and large v. Even at intermediate values of v the lower bound
is reasonably accurate. For example, when there are three cities at the
vertices of an equilateral triangle and v channels are required between
each pair of cities, the lower bound stays within 11.3 percent of the true
minimum for all V. The worst disagreement occurs when v = (1+3i)
a/b.

For a more realistic illustration, I took the four cities New York,
Chicago, Houston, and Los Angeles and the numbers of channels
given in Table II.

TABLE II-NUMBER OF CHANNELS BETWEEN CITIES

Cities
Separation

(miles)

Houst.-L.A.
Houst.-Chi.
Houst.-N.Y.
L.A. -Chi.
L.A. -N.Y.
Chi. -N.Y.

1374
940

1420
1745
2451

713

Number of channels

x
2x
4x
5x

10x
20x

Here x is another parameter to specify traffic level; the average num-
ber of channels per pair of cities turns out to be v = 6.52x. The number
of channels listed is nearly proportional to the product of the popula-
tions of the cities.* The cost function was f (N) = 17,000 + 7N
dollars per mile. The complete graph and ordinary Steiner minimal
tree have lengths

La = 8,643 miles

Lo = 2,980 miles
* N. Y. population includes Philadelphia; Chicago population includes Detroit.
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so the lower Hound

50,660,000 + 394,400x

dollars. Table III compares this bound with the true minimum cost.
Fig. 10 shows some of the minimum graphs. The upper bound in (7)
differs from the lower bound by

TABLE III-COST OF MINIMUM GRAPHS (MILLIONS OF DOLLARS)

X v
Minimum

cost
Lower
bound

Discrepancy
(percent)

30 195.6 63.2 62.5 1.1

50 326 72.0 70.0 2.2
100 652 93.2 90.1 3.4
200 1,304 135.2 129.5 4.2
500 3,260 260.4 247.9 4.8

1000 6,520 466.0 445.0 4.5
5000 32,600 2096.0 2022.7 3.5

a(Le - Lo), which in this example is about 240 million dollars. Then,
for values of x larger than those shown in Table III the two bounds
will agree to better than 4.6 percent.

Suppose one kind of technology, say coaxial cable, provides chan-
nels with a linear cost function

f(N) = a + bN

and suppose that a competing technology, say waveguide or micro-
wave relay, has another linear cost function

F(N) = A + BN .

Suppose that a < A but B < b so that the first technology is the more
economical one to use if v is small but the second is the more economi-
cal if v is large. It is interesting to compare the two costs at various
traffic levels and to find a value v = vo at which the two technologies
are equally expensive.

Suppose one computes minimal graphs and minimal costs c (v),
as in Table III, using the function f (N). The corresponding minimal
graphs and costs C (v) for F (N) may be obtained immediately by the
following "scaling" argument. First, note that if F(N) were just a
multiple xf (Ar) of f (N), the minimal networks in the two technologies
would be identical and the costs would satisfy C (v) = Jac (v). Secondly,
note that if F (N) = f (F,N) for some multiplier µ,, then the minimal
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network in the second technology is the same as the one which the
first technology had at the traffic level py, also C(v) = c (kw). Since,
in general,

F(N) = Xi(tiN),
where A. = A/a, and p. = aB/(Ab), the two observations above com-
bine to show that

C(v) = (A / a)c(aBv/(Ab)).

Moreover, the minimal graph for the second technology is the one
found for the first at traffic level aBv/ (Ab).

To get a very rough estimate of the traffic level vo at which the two
technologies are equally expensive one might use the lower bound in
(8) as an approximation to the minimal cost. Doing this provides
the estimate

v. = (A - a)L0/ f(b - B)Lc) .
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