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This paper illustrates the basic equivalence of many of the linear data
transmission design techniques. It shows the unifying feature of these
techniques to be a generalization of Nyquist's original ideas relating time
samples and frequency domain constraints. It examines pulse amplitude
(with and without constraints on the input data) and pulse shape modula-
tion systems, and shows their relationships. It uses a number of previously -
described systems to illustrate the range of possibilities of the very general
design approach. This paper presents some new results on noise and channel
parameter monitoring and on spectrum shifting by constraining the input
data.

I. INTRODUCTION

Over the years, many seemingly different techniques have been
proposed for synchronous data transmission. Unfortunately, the litera-
ture devoted to these techniques tends to expand the differences be-
tween a specific system and all other systems. It is our purpose to
show the basic equivalence of the various techniques; hence, to show
a unified view of the field. In doing this we examine some well known
and some relatively unknown transmission systems in a new light
and propose some new techniques.

The unified design view that we take here is basically a generaliza-
tion of Nyquist's ideas'. which have recently been expanded upon by
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Gibby and Smith.2 This really is the thread which ties together vir-
tually all of the literature on synchronous data transmission. Section
II summarizes the basic ideas of these two papers.

Section III describes the model of the general, linear, data transmis-
sion system to be considered. The system uses M channels and is de-
scribed by means of an input data vector rather than by any state-
ments about the transmitter characteristics. Thus, one type of data
vector implies a pulse amplitude modulated system (PAM) while an-
other type of data vector implies pulse shape modulation (PSM) such
as frequency shift keying (fsk) or pulse position modulation (PPM.)

In Section IV, we use Nyquist's approach to find the design con-
straints for distortionless transmission (no intersymbol or interchannel
interference). This section shows that the conditions for distortionless
transmission depend upon the input data vector description; hence,
different design constraints result from PAM or PSM transmission.

Section V illustrates the application of the constraints to some
special cases. These include:

(i) Linear precoding and decoding for PAM transmission.
(ii) The use of band -limited orthogonal signals for multichannel

PAM transmission.
(iii) Noise monitoring in PAM systems.
(iv) Binary PSM transmission (including the specific case of

Sunde's FM model with a linear receiver instead of a phase derivative
receiver).

(v) Parameter monitoring in PSM systems.
(vi) Zero stuffing techniques for shifting spectrum location. (The

section shows this to have some promise for voice channel transmis-
sion without carrier modulation.)

II. THE UNIFYING VIEW

In designing a data system, one usually starts with a desired time
response for the total system. Because it is only necessary to examine
the output signal at fixed times (for example, at T second inter-
vals where 1/T is the rate at which independent symbols are being
transmitted), one needs to specify the over-all response at those times
(for example, t = kT, all k). Since the total response of the transmit-
ting filter, the channel, and the receiving filter is easier to determine
in the frequency domain than in the time domain, one must relate the
time response constraints to frequency domain constraints.
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This briefly is the basic problem attacked by Nyquist. Here is a
summary of his results, as expanded by Gibby and Smith.

Any time function r (t) with Fourier transform R(0))

1 f°r(t) = - R (co)ei",
has sample values at multiples of T seconds which may be written

(1)

r(qT) = r = -1r
f°

2
R(coeiw T dw (2a)

1
co (2n+1) r/T

ra = E R(co)elT dco. (2b)
27r n--oo (2n-1) w/T

Or, changing the variable,

1rt, = E R(u 2n7/T)eiugT du. (2c)
G -r /T7

Assuming that

E R(u 2nr/T)

is a uniformly convergent series, one obtains

1 r w/T
R(u 2nr/T)el' du. (2d)

7.° = 2r J / '.7.co

Noting that 7-, is just the qth coefficient of an exponential Fourier series
expansion of

one obtains

- 2nr/T)

00

-r/T < u < 7/T,

E R(u 2n7r/T) = E -r/T 5 u r/T (3)T-, Q -X

which is very closely related to the Poisson sum formula.' Throughout
this paper the reader should keep in mind the interval - 7/T < u
r/T; we will not be repeating it explicitly.

Equation 3 relates a function of the frequency domain characteristic
(namely the sum of the values at frequency intervals 27r/T) to the
time response constraints r, which will be chosen for a particular trans-
mission scheme. Fig. 1 illustrates several frequency characteristics which
satisfy the time response constraint that rg = 0 for q 0. When ro 0,
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am k

we have the usual design for PAM transmission without intersymbol
interference. When ro = 0, we have a response which is useful when
crosstalk between channels is to be eliminated. That is, the output
of a signaling path whose time response has 7., = 0 for all q contains no
information about the input data at the sampling times. For further
discussion of equation 3 see Ref. 2.

III. THE GENERALIZED TRANSMISSION MODEL

The optimum theoretical method (in the sense of minimizing error
probability) for transmitting data through a Gaussian channel con-
sists of waiting until all data have been accumulated at the transmit-
ter and then sending a single waveform to represent the entire mes-
sage. The optimum receiver (in the presence of white noise) consists
of filters matched to each message waveform. The disadvantage of
this form of communication lies in the fact that transmitter and re-
ceiver complexity grows exponentially with message length.

Thus, system designers usually restrict system complexity by not
waiting for the entire message before transmitting. Short portions of
the message can be encoded systematically and transmitted sequen-
tially as they arrive using relatively simple terminal equipment.

Fig. 2 illustrates the general approach to transmission system de-
sign considered in this paper. The input data samples, a,,,k, m = 1, 2,
. . . , M are applied at t = kT to the M signal generators A, (6)).
The sequence { a,k} can be considered to be a random sequence of
impulses of weight a,k (where amk is in general multilevel) and spaced
T seconds apart. Since there are M signal generators, symbols are be-

a2k 182k+1

T

Ai (co)

A2 (w)

famk+t

1

Am (w)

B (6))
CHANNEL

C, (d) (t)

C2 (CO)

E E arnk Tin,2 (t. -kT)
k=-oo m=i

CM (w) 19M (t)

Fig. 2- General transmission system.
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ing sent at the rate M /T symbols per second. The receiver consists of

M linear filters, C,, (to) , p = 1, 2, . . . , M.
The channel input represents the sum of the transmitter outputs

and may be written
M co

E E amkam(t - kT)
m-1 k --co

where

am(t) = 2r
A,(co)ei " 0.,

Then, using

r ,(t) = f A ,(co)B(co)C (co)el " dw (4)

the output of the pth (p = 1, 2, . . . , M) filter may be written

m

g9(t) = E E amkrmp(t - kT). (5a)
m-1 Ic..-ao

It will be assumed that any decisions will be made on the basis of the
output waveform at integral multiples of T seconds. These output sam-
ples at the time t=1T ,

= g9(1T) = E E a,,,r,(1T - kT)
m-1 k--ao

may also be written in vector notation as

= E i(1T - kT)Zik

where

(5b)

(5c)

-i9(1T - kT) = [r1(1T - kT), r2,,(1T - kT), , r m,,(1T - kT)] (6)

and

ak =

ctik

a2k

_a k -

(7)

The model described, then, represents a general pulse amplitude
modulation system. For example, if the elements of rik are random
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multilevel values and the transmitter and receiver are systematically
chosen to be

Am(w) = Ao(co - Wm) Ao(-w - co,)

Cm(w) = Co(co - w.) Co(-co - Wm)

(8a)

(8b)

one has a frequency division multiplex PAM system. Likewise, choos-
ing

A,(,0 = A(0)) exp [ -2. (m -ml)coT1
(9a)

C,(0)) = C(w) exp [3. (m -211)(4171
(9b)

leads to a time division multiplex PAM system.
For the model to be as general as possible, it should include the

possibility of using multiple waveshapes to convey information. This
can be accomplished by restricting the kth data word to be

- -
1

- -
0

- -
0

-
0

0 1 0 0

ak = 0 0 1 or 0 (10)

_0_ _0_ _0_ _1_

Thus, the system transmits one of M possible waveforms in each time
slot and includes such modulation techniques as FM, PM, pulse posi-
tion or pulse duration modulation.

IV. DESIGN CRITERIA FOR THE GENERALIZED MODEL

The general design constraints for the two different interpretations
of at, are imposed by the requirement of distortionless transmission
(that is, no intersymbol or interchannel interference). Each of the two
cases leads to a different definition of distortionless transmission and
hence to different design constraints.

4.1 Pulse Amplitude Modulation

(Elements of a k are random and multilevel.)
The output of the pth receiver filter at t = lT is

go = E rp(lT - kT)ak . (5c)
k - oo
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For distortionless transmission it is required that this output depend
only upon the input value apl, that is,

= a9,KD (11)

where IC is a constant that depends on the pth channel
A (0))B (w) C  (0)) . This requirement constrains the time response4

r,(1T - kT) = Snip oikK (12)

where

(5,n, = 0 na p

= 1 m= p.
Using equations 3, 4, and 12, the time domain constraint becomes

the frequency domain constraint

1 ju 2n,7r )B(u 277n7r)cp(u 2Tn7r)

T

This is a generalized Nyquist criterion which applies to all linear
PAM systems.

Notice that equation 13 represents M2 equations which must be
satisfied by

MT/7r x positive frequency range of nonzero B (co)

independent variables. Therefore, B (0)) must have a radian band-
width of at least Mr / T for M channel distortionless transmission.

(13)

4.2 Pulse Shape Modulation

(dk given by equation 10.)

The definition of distortionless transmission of the previous part
(equation 11) could also be applied here. However, it is possible to use
a different definition with quite interesting results because of the con-
straint upon a, . Here, distortionless transmission will require that the
output of the pth filter at t = lT be

g, = apiK91 K92 (14)

where K1 and K2 are constants. That is, the output of the pth re-
ceiver takes on one of two values, at t = lT, Kg + Kp2 or K2 depend-
ing upon the value of cti,i.

This definition of distortionless transmission eases the constraints
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upon the various time responses. Examining

00

go = E - kT)-ci, (5c)
k--oo

it is seen that all elements of -r.(1T - kT) must be identical but not
necessarily zero for k 1; that is,

r,(1T - kT) = r(1T - kT) all m, q. (15)

With this condition satisfied, g(1T) is independent of for k 1

(that is, the information transmitted at times other than 1T) . Next it
is required that all elements of 7.9(0) be identical except rz,p(0) (that is,
r,(0) = r.,(0) m, q p). Thus, all) will take on one value if a91 = 1
and a different value if any other ao = 1 q 0 p. These statements may
be summarized by the equation

r,(1T -kT)FD.+ SmpaikG, (16)

where Fp, j-k and Gt, are constants which depend only on the subscripts
and are independent of m.

Using (3), (4), and (16), the time domain constraints become the
frequency domain constraints

1 ju 2n7T1 .13( 2n7T) 2n71)

T&,
00

S, G E F.1i.(1-k) T
1,k=-=

(17a)

= b, G, FD(u) (17b)

recognizing that the last term is really a Fourier series expansion.
Notice that there is a good bit of freedom in the design because Fp (u)
can be chosen arbitrarily. Alternatively, this means that the time
domain response samples, Fp, i-k can be arbitrarily chosen but, these
samples must be the same for the response to each transmitter. Thus,
because the input data has been restricted, the definition of distortion -
less transmission can be relaxed.

V. DESIGN CRITERIA APPLICATIONS

Let us apply the general design criteria derived in the previous sec-
tion to some special cases to illustrate the principles involved. These
examples include PAM, PSM, and systems in which the data vector is
partly independent multilevel and partly constrained (that is, where
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some of the components of the data vector are unconstrained and the
rest are forced to be zero). The examples clearly bring out the rela-
tionship between transmitting information with amplitude or wave-
form variation.

5.1 Pulse Amplitude Modulation Systems

5.1.1 Linear Precoding and Decoding
Pierces has suggested the use of linear precoding and decoding ma-

trices for data systems to improve performance in the presence of im-
pulse noise. Fig. 3 shows a system using this concept. It differs from
normal smear-desmear techniques in that there are M channels instead
of just one (that is, the input data are block -encoded).

The customer data, now labeled ask, n = 1, . . , N, are applied to
the precoder at t = kT. The transformed data amk are then applied to
the input of the mth transmitter. In terms of the input data, one has

(Lk = Pay, (18)

where P is the N by M (M N) precoder matrix and the input data is

-i4tk =

alk

a2k

-aNk-

Similarly, the output data may be written

talk

la Nk

Yk = D-dk

A, (co) (w)

LINEAR
TRANS-
FORM-

LINEAR
TRANS-
FORM-A2 (CO

B (0.)
CHANNEL C2 (CO) 1-

ATION ATION

P D

Am (co) Cm (6))

(19)

(20)

-

Fig. 3 - Transmission system using linear precoding and decoding trans-
formations.
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where D is the decoding matrix and

71k

and

yk =

4k =

72k

7Ark

yik

g2,

k_

It may be noted that the transmitted signal may be written
mEE a,,a,(t - kT)

.-1 k=oo
or in terms of the input signal

or

or

where

llf N oo

EE EP miceika,n(t - kT)
i -1 k- -co

oo N Df

E Eaik E miani(t - kT)
k- -co i =1 m-1

co N

E E aikct - kT)
k--oo i =1

of

(21)

(22)

= E P,niam(t). (23)
m =1

Thus, using a linear coder merely corresponds mathematically to us-
ing a different set of signal generators with no coder. It might be de-
sirable in some cases to treat the precoder separately,6 because it could
be an easily modified device (that is, one consisting only of gain or
delay variables) which could be used to combat noise, change the data
rate or shift the spectrum of the signals on the channel.
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As an example, consider the two precoding matrices

1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0

Pl = 0 0 1 0 0 0
P2 =

0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 -0 0 0 0 0 1_

used with time division multiplex transmitters (that is, serial trans-
mission

1
Am(w) = A(w) exp [ -j (m

l)coT ).

Matrix P1 corresponds to no precoding while matrix P2 represents
interleaving which might be effective in combating burst noise if the
input data is redundant (that is, digitally encoded into blocks of length
3, in this case. Notice that interleaving is basically a digital technique
for error control in burst noise. This is amply illustrated by the presence
of identical values as the single nonzero element in each row and column
of the matrix. For analog error control (smearing or spreading the
information over several symbols) in burst noise, the elements of P
can be any real values.

The choice of a particular precoding matrix would presumably be
based upon some knowledge of the noise characteristics. The decoder
can then be designed for distortionless transmission by solving DP = INN
if it is assumed that

1(u -2n7r)B(u 2n,r)c
P

(14, 2n7r)
an,,,

T \ T T \  T /
Similarly, D could be obtained by considering the transformed trans-
mitter and receiver and solving

2n7,-Bc 2n7r)cc 2 n7)
ösi K . (24)

T T T \ T 1

The transformed receiver C:(w) is just

C:(CO) = E D iC 2,(co)
i =1

The two approaches are equivalent.

(25)
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5.1.2 A Two -Channel PAM System
Fig. 4 shows a two -channel PAM system. All of the main features

of the design constraints can be easily shown by means of this ex-
ample. The four equations which must be satisfied are

1 2n7rir) ir = 5- A, u --)/3(u 2nC
u --2n) ,

T T T

m, p = 1, 2. (13)

It is apparent that A, [u (2m7r)/T] and Cidu + (2n7r)/T] must
have nonzero values for at least two values of n (two intervals of ir/T
bandwidth or two intervals of width 27r/T when both positive and
negative frequencies are considered). Hence, the total bandwidth must
be 27r/T for distortionless transmission. If the bandwidth is greater
than 27r/T, an infinite number of designs are possible.

A clearer idea of the implications of equation 13 can be gained by
examining the impulse responses in the time domain which are shown
in Fig. 5. Notice that rn (t) and r22(t) are the usual pulses required for
data transmission. The crosstalk waveforms r12 (t) and r21 (t) are re-
quired to be zero at all t = kT so that the output of either channel at
t = kT does not depend upon the input to the other channel. This does
not mean, however,
the transmitter of one channel and the receiver of the other. It does
mean that the characteristics must be chosen so that

1 mc
T

_2n7r)( 2n7r).., + 2nru + upu= 0 m p. (26)
T

Fig. 1 shows one such characteristic and Fig. 6 gives one possible
design for the two -channel system which anticipates the next example.

Notice that if A2(0)) were zero (that is, a single channel system),
the second receiver could be used for a noise monitor.? By taking the

elk

a2k

Al ((o)

A2 (1.0)

B (w)

C, (co)

00

E aik (t-kT)
-co +a r2,(t-kT)2k

C2 (CO)

00
aik ria (t-kT)

-°° + a2k r22 (t-kT)

Fig. 4 - Two -channel PAM system.
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r22(t)

r,2 (t)

r21(t)

-3T -2T -T o T 2T 3T
t

Fig. 5 - Required time domain responses for distortionless transmission.

output of this filter at kT seconds (when the noiseless component is
zero), squaring, and averaging, one can get an estimate of the variance
of the channel noise.

5.1.3 Band -Limited Orthogonal Signals for Multichannel Transmissions

Thus far, we have discussed only general design constraints with-
out regard for the specific choices that a designer must make if he
has available more than the minimum bandwidth (as he must). In
other words, if only the minimum bandwidth were available, the de-
signer would have no choice but to match the M2 equations with the
M2 variables (a slight choice does arise between serial and parallel
formats). However, arbitrary choices can be made when one has more
than M2 variables (bandwidth > Mr/T).

Chang8 has considered one such possibility; namely, a frequency
division multiplex system in which signals at the channel output,
A,(w)B (6)), are orthogonal. In other words, taking B (w) = 1 for
notational simplicity, Chang's signals are chosen to satisfy the time
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domain requirement

a,(t)a(t - dt = S, Oko K, .

In the frequency domain this requirement becomes

(27)

1-
_co

A,n(co)At(cOel"T dw = S,, Sko K, . (28a)2r

Using the technique of equations 1 through 2d, we obtain

7 / T co
1 Amu 2n7r-)A* U 2nr)

e7
'uk TLT ( du = 5., 8k0 K,T T

t

t
3

(28b)

Fig. 6 -A possible two -channel system assuming B(w) = 1.
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or

1 uA u +2mr) 2mr, = 8,K (29a)

for the frequency domain representation. This equation is identical
to equation 13 if C(0.)) = t(co) (which is best in the presence of white
noise) assuming B(w) = 1. [Nonideal B(w) can be considered by as-
suming that A,n(co) is the channel output rather than transmitter output].
Thus, it is seen that the requirement of orthogonality is a special case
of the general design criteria with the additional constraint that CD(w) =

In addition to this constraint, Chang chose a frequency division
multiplex format with overlapping signal spectra such that

1 Am(w) I 0

only for

1\ r
(m 7ri" < w I < (m

One can insert these assumptions into equation 29a and arrive at
at the design conditions. It is, however, more enlightening to examine
the system in the light of the previous discussion of a two -channel
system. Fig. 7a shows the spectra of the three transmitters which af-
fect the output of the Mth channel under the assumptions outlined
above. (For concreteness of the discussion, m is even; odd m would
proceed similarly.) No intersymbol interference in the mth channel
requires

1 Amu
2Tmr)A:(u 27,mr) =Km. (29b)

In other words, the characteristic 1/1,(0))12 must have vestigial sym-
metry about (0 = mir/T and (m - 1)7r/T.

Let us turn now to the crosstalk terms. The equations which must
be satisfied for distortionless transmission are

and

Am -1(u
2mr)A:(u

A,+,(u ±27.17)At(u

2mr)
T

2mr)T

= 0 (30a)

= 0. (30b)
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(b)

(C)

(d)

I A m _i(o))1

-

0

I A m(to)I

U

lAm+,(0))1

I Arn_1(w)A4(w)i

)2 72 T

Im Arn_l(w)A*(w)

00

Am_1(u+2nir/T)41(u+2nTr/T)
,f n=-oo

/
fr I w/T

IT

T

289

Fig. 7- (a) Spectra of transmitters which affect mth output. (b) Magnitude
of Am-i(w)Am*(w). (c) Required Am-i(w)A.*(w). (d) Demonstration that above
24.-1(co)A,,,*(w) satisfies constraint for periodic zeros.

Fig. 7b shows the magnitude of A,,(co)A.:(0.)) which is symmetric
about co I = - 1)7/T. The only way these components can sum
to zero following equation 30a is if they are imaginary as shown in Fig.
7c (with the sum given in Fig. 7d). The same argument applies to the
A,,1(w)At(co) product and is illustrated in Fig. 8. In other words,
At(w) must be ±90 degrees out of phase with A ,,i(co) and A1(0))
in the regions of overlap of the functions.

It is seen that the amplitude characteristic design is based upon the
condition of no intersymbol interference in each channel and is based
upon the usual Nyquist design. The remaining freedom in choosing
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(a)

(b)

lAm+1(0)A1-:(01

(m- 2) IT

T
12

TIT

Im Am+,(w)Am*(w)

U
(c)

-ir/T

0
->-

Vc° AM+1(u+2n/r/T) Artu+2n/r/T)
n= -co

TrYT

Fig. 8- (a) Magnitude of, and (b) required Am.i(w)Am*(w). (c) Demonstra-
tion that above 21,..,(044.*(w) satisfies constraint for periodic zeros.

the phase characteristic is then used to eliminate interchannel inter-
ference with the requirement being

phase of Am(co) = phase of A,_i(w) ±90°. (31)

5.1.4 Noise Monitoring'

The noise monitoring feature mentioned previously can be gen-
eralized to the M channel case. The minimum bandwidth of M7r/T
must be exceeded by the practical system. The bandwidth redundancy
can be used for noise monitoring by adding another filter CM+1 (w) at
the receiver. This receiver must satisfy the equations

Am(u 2Tn7r)B(u 2Tnicm,i(u 2Tn)

for 1SmSM (32)

and a nontrivial solution can result because of the bandwidth redun-
dancy. Then, the impulse responses r,m+i (t) go through zero at all t
= kT and the noiseless output of the M+1th filter
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M co

EE amicr.m+i(t - kT)
lc-co

is zero periodically, independent of the input data.
The filter output at t = lT can be squared and averaged to obtain

an estimate of the noise level and hence an estimate of the transmis-
sion performance. If the shape of the noise power spectrum is known,
one gets a quantitative estimate of the noise power. Timing errors or
poor knowledge of B (0)) can lead to the noiseless output of the M+1th
filter being nonzero at the sample time. The indicated noise variance
would be greater than the correct value, thus indicating poorer per-
formance than the noise alone. However, timing or channel characteri-
zation errors actually do lead to poor system performance so that the
monitor indication is in the right direction. Notice that this monitoring
scheme is not tied to any particular choice of transmitter or receiver
and is perfectly general.

5.2 Pulse Shape Modulation Systems

5.2.1 A Binary PSM System

Insight into pulse shape modulation system design constraints can,
perhaps, best be gained by examining a binary system such as that
shown in Fig. 9a. The equations that must be satisfied are

1 +Tr)B(u +Tnryp(u +Tr) = am, + F9(u)

(17b)

for in, p = 1, 2. Because it is a binary system, the receiver can be
just a single filter

C(w) = C2(w) - Cl(w)

T
Ai(.+277)B(u 27nic,(.+27,72,7,-) -G F(u)

2Tnir)B 2Tnry 277)
G F(u)T

where it has been assumed without loss of generality that

G = G, = G2

(33)

(34a)

(34b)
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-a; = Io] OR [1

Al (w)

A2 (CO

H (w)

H A2 (6)

H AI
(w)

= [I] OR [I]
I

H As (CO

- B (w)

(a)

B (w)

C1 (w)

HC2 (0))

(b)

B (0))

C2(61)- C1 (w)

(c)

C2 (w) -C1 (w) -

Fig. 9- (a) Binary PSM system. (b) Modified binary PSM system. (c) Equiv-
alent binary PSM system or PAM system with data constraints.

and where F (u) is an arbitrary function of frequency

F(u) = F 2(u) - F1(u) = E Qe ,"QT

0;1-00
(35)

This modified system described above is shown in Fig. 9b.
Fig. 10 shows two possible time domain responses which satisfy

equations 34a and b. Notice that the responses differ only at t = 0
and are identical to all other t = kT . This is the time domain implica-
tion of equations 34a and b. This corresponds to the case where two
signals are chosen to produce the same intersymbol interference which
was discussed briefly by Simon and Kurz.°

An alternate way of viewing equations 34a and b is to notice that
the two transmitters can each be decomposed into two components.
The information component A./ (0)) of each satisfies

2T")C(u + 2T") = G (36)
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or the usual Nyquist criterion, and is transmitted with an amplitude
of -±-1. The steady component .18(«,l satisfies

1
lu 211r)B(11 2nr\

zc
271,7r)

F(u)
T n=-o0 71/ \

and is sent with an amplitude of one regardless of the data stream.
The transmitted waveform .48 (w) can be anything because F (u) is
arbitrary. Fig. 9c shows this system, which is equivalent to the original.
The corresponding data vectors are

dk =
-1 1

or (38)
1_ _1_,

The basic equivalence of the PAM and PSM systems is thus made ex-
plicit. The difference in the two systems is basically a noninforma-
tion bearing signal which represents an inefficient (theoretically) use
of power. This point has been brought out by Bennett and Daveyl° in
discussing the Sunde" model of a synchronous FM system.

5.2.2 Sunde's FM Model With a Linear Receiver
In Sunde's"- model of a synchronous FM system, one of two phase

continuous signals

a,(t) = cos 2213. t + 0
--2 < t <

a2(t) - cos 271-(q

T
1)t ±

ai(t) = a2(t) = 0

-4T -31 -2T -T o

elsewhere

T 2T 3T 4T

Fig. 10- Possible time domain responses for distortionless PSM system.
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is sent during each interval. The transmitter output may be written
co

E aik COS (CO, t
7t+ 0) - (1 - a,k) cos (GO ± +

k --co

or
00

sin -T t sin (coct + 0) + E (2a1k - 1) cos t cos (coct +
k  -

where

(2q + 1)7r.-
This second form of the output is an explicit example of an informa-
tion -bearing component (second term where alk = 1, 0) and a steady
state component.

To achieve distortionless transmission (with a linear receiver) one
must choose any linear filter which satisfies

.2 ,(11 2Tn7r)B(u 27,n7r)c(u 27,n7r) =G (39)

where
T / 2

A AW) = f cos t cos (coct -I- 0)e- " dt (40a)
- T/2

= el° S(co - coc) S(co coc) (40b)

where

2 SW -
sin (w - r +it/T) sin (w + 7 /T)T /2

(40c)w - r/T w + 7/T
If one makes the assumption that S((0-1-(0,) is negligible at positive
frequencies, then

Ai(w) = cos
(w - coc)T [ -7/T

2 (6) wc)2 72/772110 co > 0. (40d)

By substituting equation 40d into 39 the requirements on B ((o) C(6))
can be found. The minimum bandwidth solutions are (neglecting con-
stants)

B (co)

(&) 02 72 /T2
C (co) - cos (w - coc)T/2

e

w nr /T < w < we (n 1)7r/77 n = -1,0
(41)

= 0 elsewhere
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which are shown in Fig. 11a. Solutions in other regions (other values
of n) are possible but require infinite gain.

Sunde's solution for the minimum bandwidth filtering before a phase
derivative (nonlinear) detector is given in Fig. 11b for comparison.
Notice that the linear receiver requires only half the bandwidth re-
quired by the phase derivative detector for distortionless transmis-
sion. The response of the linear filter to the steady state term is un-
important because it is deterministic and can be removed.

5.2.3 Monitoring System Parameters
If a second filter Cg (6)) is added to the system of Fig. 9c, one again

can monitor some aspect of system performance if the equation

T1 i(u 2Tnr)B(u 2Tnir)cp(u 2;1
(42)

is satisfied. Thus, the output at the sample times will be independent
of the input data. However, there will be a constant output value (ex-
cluding noise) of

co

E f Q

where

T1

.÷.°

`18\ T T
(n 27or )B(u 2n,r)c

ne, P\

IBCOC(0))1
n=-1

2717r)

T
= F (u) (43a)

co= E fgae-luaT (43b)
Q -

1.27- -1.27
1.0- -1.0

B(w)C (co)I

n=o

0we-7r/T Ulf 0
C WC+1711-

(a)

IB(w)C(w)I

1.27-
1.0-

(0 > we-IT/T too- Tr/T

(b)

Fig. 11-Minimum bandwidth filtering for FM system with (a) linear re-
ceiver and (b) phase derivative receiver.
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because of the steady state transmitter. The total output of this
filter is then a (generally) nonzero constant which depends upon the
steady state transmitter .and channel characteristics and the noise. It
does not depend upon the data sequence or the receiver's estimate of
the sequence. A change in this constant reflects a change in the trans-
mitter or channel parameters (for example, phase or gain) and can be
used to modify the receiver characteristics (such as, phase or threshold
level). Thus, the noninformation part of the transmitted signal, in
addition to perhaps simplifying implementation, also can be used to
provide needed information to the receiver. A simple example is the
reference tone for carrier recovery which in fact makes the PAM sys-
tem into a PSM system.

5.3 Pulse Amplitude Modulation System With Zero Constraints on Certain
Channels

In section 5.2 we showed that PSM could be considered as PAM
with constraints on the input to certain channels. In other words, the
equivalent PSM system shown in Fig. 9c contained one channel whose
input was constrained to be a one at all times. Now we will discuss a
system in which certain channel inputs are constrained to be zero.

Consider a four -channel PAM system and assume it to be serial;
that is,

A .(w) = A(w) exp [- j (m 4-
1)0,711

(9a)

C,(w) = C(w) exp [j (m -4
1)will

(9b)

If the input data vector is given by

ak =

alk

a2k

a3k

(44)

_a4k_

then a bandwidth of 47r/T is required. Now, under certain circum-
stances it might be desirable to reduce this data rate by inserting
zeroes for some of the a,,, (that is, not transmitting anything at cer-
tain times).
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Chang6 has considered this possibility for improving performance
in the presence of severe noise. In this case, some amk can be made
zero and the remaining data can be transmitted with increased power
(maintaining a fixed average power) to improve the noise margin.

Another purpose of this zero stuffing technique might be to shift
(as well as reduce the bandwidth of) the spectrum of the transmitted
signals. As a trivial example, the data vector

ak =
0

a3k

(45)

_ 0

could be transmitted with a flat spectrum over either the region

0 < Iwl < 2ir/T or 2ir/T < IwI < 47r/T

and zero elsewhere. As a nontrivial example, consider a generalization
of a signaling system, invented by Bennett and Feldman,12 to prevent
intersymbol and interchannel interference in multiplex transmission.
The original system has been described very briefly by Sunde.13 Here,
the generalized system can be approached by writing the data vector

ak =

alk

a2k

0

0

(46)

where only the outputs of the first two receivers must be examined.
With the assumption (for simplicity) that B (w) = 1 the constraining
equations become

A(u Tror)c(u 2 Tnr)

and

= ro (47)

1 2nir 2mr 2mr) T
A + CU+ exp u o. (48a)



298 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1968

Recognizing that exp (±ju T/4) is a nonzero term which can be re-
moved, 48a becomes

1 c 2n7r)c(u 27)
T T J

(48b)

Fig. 12a illustrates the type of characteristic A (co)C (co) which satisfies
the constraints. (There are others of larger bandwidth which also will
satisfy the constraints.) If the characteristic is limited to I col < 47r / T
and zero elsewhere, it has symmetry about w = 2r / T and vestigial
symmetry about I (.4 I = ir/T and 37/T. It can easily be verified that
the equations are satisfied when one uses the value of the multiplying
factor exp ±jmr/2 which is shown in each region.

Notice that a response which is flat from r/T < (w I < 3r / T and
zero elsewhere satisfies the equations and represents the minimum
bandwidth approach to this scheme. The time response one obtains
at the receiver using this technique is illustrated in Fig. 12b. It is
constrained to be zero at all t = kT except k = 0 and ±(4q - 2) for
all q and can be used for transmission, as explained, without distortion.

The advantage of this particular scheme is that it represents a base -
band technique for shifting the transmission spectrum without modu-
lation merely by inserting zeros into the data stream. It appears
particularly attractive for placement within a voice channel (for ex-
ample, 200Hz-3KHz) as Fig. 13 shows. Here no modulation has been
required, the energy is concentrated in the center of the band and

EXP± nir- -I2 +J 1±J -I

- ir/ T 0 ir/ T
co

31T/

(a)

Fig. 12 - (a) Frequency characteristic, and (b) time response, for distortion -
less transmission with zero stuffing.
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A(w)B(w)C(w)

200 800 2400
I I

1000 2000
FREQUENCY IN HERTZ

3000

Fig. 13 - Zero stuffing spectrum for voiceband transmission.
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one could obtain symbol rates of 3200 symbols per second with easily
realized filtering. The primary disadvantage would be increased sen-
sitivity to timing errors.

VI. CONCLUDING COMMENTS

The thesis of this paper has been that all linear data system de-
signs are based on the modified Poisson sum formula

IL
,Tom/ E T

(3)
Q =

which relates the time domain samples to the frequency domain con-
straints. Various types of systems which a designer may choose re-
quire a variety of constraints on the time samples rq. These values
of rq, which depend upon the type of system chosen, then specify the
frequency domain requirements.

Section 5 gave a sampling of the range of systems which can be
designed using equation 3. That section certainly does not exhaust
the possibilities and we hope that it does not limit the reader's im-
agination. Most of the examples (as well as most real systems) as-
sume systematic choice of transmitted signals; usually related by
integral time or frequency shift. There may, however, be potential
gain in considering nonsystematic transmitters and receivers. This
may easily be done using equation 3. The last case examined, that of
spectrum shifting by adding zeros, is just such a nonsystematic func-
tion when viewed from a serial transmission point of view.
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Click Comparison of Digital and
Matched Filter Receivers

By H. L. SCHNEIDER
(Manuscript received May 25, 1967)

We applied the click theory of errors to determine the performance of a
digital FM receiver. The receiver had binary orthogonal FSK modulation
in a channel that had a single random -phase echo at the symbol duration.
We use practical bandwidth assumptions to show that this error performance
is identical to that calculated for a matched filter receiver. Numerical results
show, for example, that an increase in signal-to-noise ratio of 10 dB is
required to maintain a 10-4 error rate when an echo of half the signal power
is added.

I. INTRODUCTION

The concept of clicks in an FM receiver was originally used by
S. 0. Rice' and J. Cohn2 to explain the effect of noise on analog signal
demodulation near threshold. Recently, several theoretical investiga-
tions of digital FSK signal demodulation have applied the concept of
clicks in analyses of low pass filter processing of the discriminator
output. Klapper,3 and Mazo and Salz4 modelled the low pass filter
with an integrate -and -dump function, while Schilling, Hoffman, and
Nelson considered a gaussian low pass filter.5 In all cases, additive
gaussian noise was assumed to be the sole source of interference in
the signal channel.

In this paper, we consider intersymbol interference that is induced
by delay dispersion in the signal channel. Analysis is limited to a
practical single -echo channel* and binary orthogonal modulation. Al-
though the analysis seems to be tractable for only special cases, we
gain insight into the error mechanism of digital FM reception.

The relation between clicks and errors is viewed as follows. Since the
fundamental description of clicks concerns a random angular encircle-

* The single -echo channel was used by Bennett, Curtis, and Rice6 in their
study of analog angle modulated transmission systems.

301
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ment of the origin by the received signal plus noise vector, it is
convenient to choose the integrate and dump model for the post -dis-
criminator filter. Then the filter output is a measure of the angular
change of the received vector over a symbol duration. Signal and click
angular changes are readily compared. The particular signal angular
modulation considered here is ±7r radians; in this case an error occurs if
and only if a click occurs, to a good approximation. t Intersymbol inter-
ference is considered as a perturbation of the signal modulation. This
distortion affects the instantaneous signal-to-noise ratio and the in-
stantaneous frequency which, as shown by Rice, are the controlling
parameters for the click (error) probabilities.

After the calculations described above are used to compute the error
rate for the digital FM receiver, another computation for error rate is
made using a noncoherent orthogonal matched filter receiver. The error
performances of the two receivers are the same for this binary signal
having angular modulation ±7r radians.

In the following sections, the modulation and the channel param-
eters are first defined. An expression is derived for the distorted out-
put of the channel. The derivations of the FM receiver performance
and the matched filter receiver performance are explained, then the
significance of the work is discussed. Two appendices give detailed
derivations of the receivers' performances.

II. FSK MODULATION IN THE SINGLE ECHO CHANNEL

Since the two receivers are applied in turn to the same channel as
shown in Figure 1, we shall first express the output of this single echo
channel. The input waveform is either si (t) or s.,(t).

si(0 = Re I el'uc+ '

82(0 = Re fe'r(f.--mg}

where si (t) = (t) = 0 otherwise

f 0 is a center frequency
fa is the frequency deviation
T is the symbol duration.

(We shall consider only the deviation: 2f (IT = 1.) These input wave-
forms are applied in some arbitrary sequence to the channel; the

0 t T
(1)

t Mazo and Salz4 have considered the approximations involved in some detail,
and their work relates different angular modulations.
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INPUT
WAVEFORM

5,(t)
OR 0-

S2(t)

awl),

CHANNEL

DELAY

T2.1

WHITE
GAUSSIAN

NOISE

-1;-0.1 RECEIVER

DATA
SYNCHRONOUS 1 OUT

SAMPLER

Fig. 1- Data transmission system model.

channel input voltage can be described as
00

eat) = E sin(t - nT) i = 1, 2. (2)
n -.0

The output of the channel (receiver input) with noise added is

e(t) = Re Ictieh"ein(t - 7-1) ± ct,el"ein(t - 72)) eN(t) (3)

where

ctiel"r (1 = 1, 2) are the complex tap gains and we shall consider
that a, > a2
Ti are the tap delays and we shall consider the case 72 - T1 = T
eN(t) is additive white Gaussian noise.

In the ensuing work we shall refer to the first term in the braces of
equation (3) as the signal, and to the second term as the echo. Since
the echo is displaced by one symbol duration, the receiver input in
simply a superposition of signal and echo si, si (i, j = 1, 2). Because
each combination is assumed to be equally probable, and because cor-
responding conditional error probabilities are equal, it is sufficient to
evaluate the cases si , si and s1 , s.. Thus the receiver input is either

e(t) = Re f[alei(2i/dt+9,) a2ei(2ird1+")]erf`g -I- eN(t)

0 5 t T (4)

or

e(t) = fraiei(2,fdi+,,) a2ei(-2"ag+921ei2Tfet, -t- eN(t). (5)

III. FM RECEIVER PERFORMANCE

The FM receiver model used here includes a predetection filter,
limiter, discriminator, and a postdetection integrate and dump circuit,
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as shown in Figure 2. The predetection filter is used to reduce noise
and is supposed to have negligible effect on the modulation. Then the
receiver output is proportional to the angular change of the input
modulation over a symbol duration.

We proceed by first rewriting the input voltage, represented by
equation (4) or equation (5), in a form that shows explicitly the
amplitude and angular variations of the noise -free envelope in the
form

e(t) = Re "'e'2A(t)e'.
The envelope which describes the signal -echo pair si , .31, corresponding
to equation (4) ,is

A = [a2, + a: 2a1a2 cos (v, - v2)]1

40(0 = 27ridt + coo

where soo is a constant. The envelope which describes the signal -echo
pair si, s2, corresponding to equation (5), is

A(t) = [ai + a: + 2a1a2 cos (474 dt + col - s02)]1
(7)

v(t) = 2 a, + a2 cos (47i-fdt + col - so2)1
71-f tit + - tan' [ a2 sin (47rfdt + col - co2)

(In these equations, A(t) and co(t) have been obtained by straight-
forward trigonometric relations from equations (4) and (5).)

Thus in the absence of noise for signal and echo pairs Si, s1 or s, , s2,
the receiver output is proportional to

Aso = v(T) - v(0) = 27rfdT = +7r (a2 < a1),

Similarly, complementary signal -echo pair so, so or so, s1 would give
an output Ar = -7r.

The noise perturbation is considered an additive error angle 0 (t) ,
illustrated in Fig. 3. Now the FM receiver output is proportional to
t(t)

(6)

PRE DETECT ION
FILTER

>k(t) = co(t) + 0(t)

LIMITER
DISCRIMINATOR

INTEGRATOR

sis dt

Fig. 2 - Digital FM receiver.



CLICK COMPARISON OF RECEIVERS

Fig. 3- Angular perturbation caused by noise.

and the angular change over a symbol duration is

= Jaw + AO.
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The decision threshold is placed at Atfr = 0, midway between =-4--7.
When the transmitted signal has an angular modulation Ar = +r, an
error is made if M < -7r.

Fig. 4 illustrates possible loci of the signal plus noise envelope R.
For signal alone, the locus is simply a semicircle. With echo and noise
added, no error is made provided Alp > 0. We observe that the locus
encircles the origin in a counterclockwise direction. But when a nega-
tive click occurs, the locus encircles the origin in a clockwise direc-
tion, AO < 0, and an error is made.

The probability of error is obtained from the probability of a nega-
tive click during a symbol interval. Rice4 defines H_ dt as the proba-

SIGNAL ONLY
Aik=hict) =1r

..SIGNAL PLUS NOISE
AO <0 = ERROR

SIGNAL PLUS NOISE
AO >0= NO ERROR

Fig. 4 - Possible loci of angular change.
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bility of a negative click: the angle 0(t) decreases* through an odd
multiple of r between t and t + dt. H_ dt is a function of signal-to-
noise ratio and the time derivative of the angular modulation, which
are time- and phase -dependent according to equations (6) or (7). The
desired probability of error is obtained by integrating H_ over a
symbol duration and averaging over the random channel phase angle:

7 T

P =
2-7

dx H_(p, dt

where

(8)

A2(1) .
p is the instantaneous signal-to-noise ratio

2e,
e N2 is the noise power passed by the predetection filter
0 is the time derivative of the modulation angle 4o(t)
x = col - so2 is the relative echo phase, assumed uniformly distributed

over (0, 27).

As Appendix A shows, the error probability obtained when A (t)
and r(t) from equation (6) are substituted in equation (8) is

P.1 = /0 exp
1 (a,a2 ct:)

e N 2e -2N

The error probability corresponding to equation (7) is

Pee
QF a: a, jo(a,a2) ( a; tia:),

(10)
(e --I e N 2eN

where Q [  , ] is the Marcum Q function. The average of Pei and Pee
is simply

P. = 12(Pei + P.2) =
1 [ a2 al

2 (,0 (4)4

The noise power e ,42, depends on the predetection filter bandwidth,
which can be estimated using Carson's rule with the Nyquist criterion
for video bandwidth. These assumptions give a bandwidth B

(9)

B=T (1 + 2f,T) = -2 Hz (12)

*Decrease means in a direction opposite the time derivative of the modula-
tion p(t). It is possible that 0(t) can also increase by r and thus cancel the
decrease; the probability of this occurrence is asymptotically negligible for low
error rates.
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and thus a noise power

2 = BN watts (13)

where N is the noise density in watts/Hz. Substitution of equations
(12) and (13) into equation (11) gives

fla(f)i (E)il
2 '[ \N/ ' \N/

where

a = alis the echo/signal voltage ratio
a,

E = i-diT is the signal energy/bit.

IV. MATCHED FILTER RECEIVER PERFORMANCE

(14)

We are concerned here with the incoherent matched filter receiver
shown in Fig. 5. The mark and space filters are matched (except for
phase) to the waveforms si(t) and s2(t) defined by equation (1). As Fig.
5 indicates, the combined operations of filtering, square law rectifying,
and time sampling produce R2, and R: which are the squared envelopes

at the end of the symbol interval. Assuming mark
is transmitted, the probability of error is

P = Prob {14 > R = dR1 p(R, , R2) dR2 (15)f
R.

where p (Ri, is the joint density function of R1 and R2.
As shown in Appendix B, the error probability corresponding to

equation (4), with the signal -echo pair si, si is

1 (aE) a2E)
Pei = Tv- exp 2N 1' (16)

The error probability corresponding to equation (5), with the signal -
echo pair S1, s2 is

MARK
FILTER

SPACE
FILTER

SQUARE
LAW

DETECTOR

RS

COMPARATOR

Fig. 5 - Matched filter receiver.
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Q[a(g o(aNE) E +2Na2E).

The average of Pc, and Pr2 is

136 = i(P°1+ P62) Q[di' (a].
This is identical with the error performance of the FM receiver,
specified in equation (14).

V. DISCUSSION OF RESULTS

(17)

(18)

The concept of clicks has made possible a unique comparison be-
tween digital FM and matched filter receivers. When a suitable pre -
detection filter is chosen for the FM receiver and the assumption made
that this filter does not significantly process the signal, then the error
performance of the two receivers is described identically.

We have gained particular insight into the error mechanism of the
digital FM receiver under conditions of intersymbol interference. The
analysis shows how the rate of occurrence of the noise clicks is criti-
cally dependent on this distortion of the signal waveform. This is in
direct contrast to the usual AM systems where intersymbol inter-
ference manifests itself by a gradual degradation caused by "eye"
closing.

Numerical results, illustrated in Fig. 6, show that the receivers'

'

5

 10- 2
D 5

O

Ct 5

cr2
w

10-4

5

SIGNAL =3dB
ECHO

10
6

NO ECHO

5 10 15

dB
20

Fig. 6 - Error performance in single echo channel.
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performance can be summarized in terms of the increase in signal-to-
noise ratio required to maintain a desired error rate when an echo is
superposed. For example, 10 dB higher signal-to-noise ratio is required
to maintain a 10-4 error rate when an echo having half the signal
power is added. It is easy to show that the asymptotic deterioration
in performance with echo behaves as 20 logio (1-a)dB.
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APPENDIX A

Click Probabilities

This appendix concerns the application of an average click proba-
blity to FM receiver performance. The mathematical details are given
here which relate equations (6), (7), and (8) to equations (9) and
(10).

It has been shown in Refs. 1 and 2 that the probability of a click
in time dt can be approximated as*

H_ dt e -P dt
-7r

(19)

where is the time derivative of the envelope angular variation and

P =
2eN

is the signal-to-noise ratio. Substitution in equation (8) gives the er-
ror probability

2'r dx fT dt A2(x, 0
Jo 0

]P = 0(x, 0 exp [
-ar 2eN

(20)

where x = (pi - ,p2 . Substitution in equation (20) of A(x, 0 and the
time derivative of so (x, t), = 271-fd , from equation (6) gives for

* This validity of this approximation depends on sufficiently large p for (i) 74= 0.
Klappers has discussed this in some detail. Although the approximation is not
as good with intersymbol interference, it appears adequate.
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the signal -echo pair si , s1

P.1 =
1

2r
dx

27i-

=
2
-(a10 -1a3 exp
1 ( -I- a9

eT, 2eN
2

.10 r exp [
2e

(a21 a22 2a1a2 cos xddt
N (21)

where we have used the integral definition of /0 () and noted fdT =
We now take A (x, t) and (x, t) from equation (7) and notice that

the time derivative of the latter can be expressed as

+ a1a2 cos (47ridt + col - (.02) - 27f d (22)= 47rfd[a2 -I- a: -I- 2a1a2 cos (47fdt coi - s02)

When the first term of equation (22) and the expression for A (x, t)

are substituted into equation (20) the integral can be recognized as a
Q function representation given by Helstrom: 7

1 f a2 132 r2
Q(a, )3) =27r exP 2 J Jo

(1 - "2 cos u)e""'u

1 + (2)2 - 2(2) cos U
0 13

where a < f3 and we have replaced 4 7r fdt + (pi - 402 + ir by the vari-
able u.
We make the identifications

a2 a ala =
(eV (4)4

du

Substitution of the second term of equation (22) gives an integral
identical to the right-hand side of equation (21). Thus, for the signal -

echo pair Si , s2

P.2 = (2[ a2 a, 1 ,
0

(aia2 exp ct! a:)
(er) ' (a)11 /

eN

APPENDIX B

Matched Filter Receiver
This appendix concerns the application of the single echo channel

waveforms to filters which are matched to the waveforms in the
absence of the echo. The mathematical form is similar to the form
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illustrated by Helstrom,7 and we give only a brief summary here to
show the effect of the echo.

The error probability depends on a comparison of the sampled out-
puts, R1 and R2, of the two matched filters. Helstrom shows

where

= X2i 171 , i = 1, 2 (23)

X; = f e(t) cos (274;t) dt (24)
0

1'1 = f e(t) sin (2n -fit) dt (25)
0

where e (t) is signal plus echo plus noise defined by equation (4) or (5).

f; is one of the signal frequencies
11 = fc fd

12 - fc fd
Substitution of e(t) as given in equation (4) for the signal -echo pair
s1, s1 gives

a,TX - cos co, -
2

cos c2 + IN,

a,T
2

sin col

X2 = 'Na

Y2 = .1 N4

-
a2T

sin n + /N2 ,2
(26)

where /NI, IN2,1313, IN4 are zero mean independent Gaussian variables
having equal variances cr2 = NT/4 for noise density N(watts/Hz).

From these terms, we find that the joint distribution of B1 and R2 is
p(Ri, R2)

where

p(R1 , R2) =R2
T

(RaC
2

,)
exp + + C,)

(27)

(a2
\

T)2 (a2
1 92T)2

2(al(a7)
cos (col - co2).\
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The error probability is

P = fdi?, f dR2 p(R, R2)
0 R

1

= exp (-ccr%).

Averaging this value over x = gyp, - p. yields

2 rPry = f P(x) dx = 2 /0(1) exp [ E 2N E

(28)

(29)

Similarly, substitution of e (t) as given by equation (5) into equations
(24) and (25) gives, for the signal -echo pair s1, s.,

X a,2=
cos io 'Ni

T
171 = --2 sin gyp, + I,N2

(30)

a T
X2

2
= -1- cos c'2 + 1N3

T
172 = -

a22
sin- co2

,

i N4

Now the joint distribution of R1 and R2 is found to be

P(RI "'2)
, - 4

R,R2
I 0 2 1 0 2

(R22) exp
( R21

1+ R2 + C2 + c2) (31)C
2a2

where

C
aiT

2

C
T

2 2

The error probability in this case is found via the following steps.

r ee r 00

Pee = dR, dR2 rye/ R2)
0 R

""
R,cr2 rotR,C2,)Q(C2 ,R,) 2+0.29

\

(32)



CLICK COMPARISON OF RECEIVERS 313

where we have substituted p (R1, R2) from equation (31) and used the
Q function definition:

Q(a, = f tIo(at) ex') ( t2) dt.
k

We see, by this manipulation, that equation (32) is integrable; for
example, as shown by Stein.8 Thus

Pee

Q( C2 CI ) 1 (C 1C 2)
\ ,v2 , 2 -.0 20.2 xp 40.2 ) (33)

Appropriate substitutions of the terms from equations (31) and (14)
give equation (17).
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Eliminating Broadband Distortion in
Transistor Amplifiers

By LEE C. THOMAS
(Manuscript received July 6, 1967)

This paper presents the results of a study directed toward understanding
the basic distortion mechanisms in transistors. (i) We develop an analytic
model for the transistor which describes small signal linear performance
and nonlinear effects. The linear model is matched to the measured h -
parameters of the device over a wide range of frequency and bias current.
We superimpose three distinct nonlinear effects on this linear skeleton
model, all approximated to third order terms. (ii) We show experimental
confirmation that, for some bias -load conditions, the second order distor-
tion can be minimized and we show that it is possible to simultaneously
minimize both second- and third -order distortion under the same bias -load
condition. This result also is confirmed experimentally. (iii) We derive
and, discuss in detail an analytic expression for the optimum load. Based on
this expression, we present detailed procedures for finding this optimum
condition for any transistor, and give experimental corroboration. (iv) We
give a qualitative description of the interaction among these three nonlinear
effects based on an analog computer simulation of the model. This description
makes it easier to visualize the distortion cancellation phenomena derived in
this paper, and indicates a technique for extending the effect to a broad band
of frequencies. We conclude that proper use of the distortion cancellation
effect can greatly improve intermodulation performance in existing tran-
sistors.

I. INTRODUCTION

System studies have indicated that very broad band (greater than
20 mHz) AM coaxial cable systems will be modulation -limited. Inten-
sive investigations to understand and characterize the inherent modu-
lation properties of devices and repeater circuits have been called for.
We made one such study directed toward understanding the basic
distortion mechanisms in transistors.

315
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The history of transistor distortion literature can be characterized
as an erosion process in which highly restricted parts of the total
problem are attacked leaving fresh complexities exposed for future
work. In early work by Akgun and Strutt, the analysis is restricted
to nonlinearities in the emitter resistance assuming an ac short at
the input and outputl Observed nulls in second and third order
distortion do not correlate with the theory, which does, however,
include frequency effects. Using many of the same assumptions, Mal-
linckrodt and Gardner extended this earlier work to account for a
third order null at low frequencies when the nonlinear emitter resis-

tance is dominant.2
More recently Riva, Beneteau, and Dalla Volta considered all

important sources of distortion by breaking the problem into three
distinct operating regions with expressions for minimizing second
order distortion in each.3 They do not treat of third order minimiza-
tion, and they use a dc model. Reynolds analyzes third order mini-
mization at particular nonzero frequencies for dominance of the
emitter resistance nonlinearity.4

There are two reasons for the specialized nature of these efforts.
First, transistors, as contrasted with vacuum tubes, have at least three
dominant nonlinearities. It would be difficult to consider all of these
in a general expression for second and third order distortion. Second,
frequency effects can be important in many applications. In general,
the analysis of nonlinear effects as a function of frequency requires
the use of extremely powerful and, as a result, cumbersome analytic
techniques. In the special case of an exponential input v-i relation
it is possible to avoid a general analysis, which explains why analyses
which include frequency effects have been limited to emitter non-
linearities. Even in this exponential case, however, the third order
null predicted by Reynolds is a narrowband effect, applicable only
at a particular frequency.

This paper extends these earlier efforts in four important respects.
(1) We conclude that the distortion measured at the terminals

results from algebraic cancellation between distortion components
produced by nonlinear effects within the transistor. This conclusion
originated from empirical observations made on an analog computer
simulation of a transistor. An analytic argument reinforces this con-
clusion by comparing plots of algebraic cancellation to measured dis-
tortion curves. Also, we give experimental support of the cancellation
phenomenon.
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(ii) We present a low -frequency analysis of a complete extrinsic
model including three nonlinearities: emitter resistance, nonlinear
current gain, and avalanche multiplication, all approximated by a
third order polynominal. We avoid considerable complexity by direct-
ing the analysis strictly to the question of minimizing distortion and
by not developing a general distortion expression. This analysis is
independent of any assumptions concerning distortion cancellation,
but yields the same results.

(iii) From this analysis we show that it is possible to simultaneously
null both second and third order distortion under the same bias -load
condition. The analytic technique we use to determine a null is

linearization of the input-output relation up to and including third
order, thus implying a minimum in harmonic distortion, intermodula-
tion, or any other specialized figure of merit. The existence of this
simultaneous null is verified in the laboratory.

(iv) Extension of the cancellation effect to a broad band of fre-
quencies can be accomplished by external reactive compensation.
This compensation maintains a 180° phase shift between the collector -
base voltage and the real component of the emitter current, a relation
that exists automatically at low frequencies where the rigorous anal-
ysis is performed. This phase shift is the fundamental requirement
for total cancellation, based on the qualitative insight mentioned in
item i.

PRINCIPAL SYMBOLS

A Parameter in the #(/,) relation.
«(I.) Current dependence of the dependent current source.
a, , a2 a3 Taylor series coefficients in the expansion of a(1.) around

/e. .

a, al Maximum value of a with respect to /, .
0 Common emitter ac gain.
OM a X Maximum value of /3 with respect to /, .
/, Total collector current./ Collector current where !La, occurs.
is Small signal collector current.
I. Total emitter current.
/,. Emitter current bias level.

Small signal emitter current.
I, Collector current bias level.
/., Current in the load resistor.
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m(Veb) Voltage dependence of the dependent current source.
M1 , M2 M2 Taylor series coefficients in the expansion of M(Vcb)

around V. .
Emitter resistance.

ri , r2 , r3 Taylor series coefficients relating v. to i, .

RL Load resistance.
R(2) opt Load which minimizes second order distortion when third

order distortion is negligible.
R, Source resistance.
Vib Total collector -to -base voltage.

Veb Small signal collector -to -base voltage.
v. Small signal voltage across r. .
V. Collector -to -base bias level.
V.t Voltage across the load resistor.

II. A QUALITATIVE MODEL FOR THE DISTORTION MECHANISM

Let us describe the qualitative insight (i) to get a broad look at the
cancellation phenomenon before rigorous analysis obscures a simple
concept.

An analog computer simulation of the model of Fig. 1 allows us to
examine the interaction of the three nonlinearities by examining their
effects one at a time. Thus, for example, we may allow only a(I) to
be nonlinear and observe the second harmonic distortion components
of the output voltage. If we then make a constant and allow M(V.b)
to vary, we observe that the resulting waveform is 180° out of phase
with the first waveform as shown in Fig. 2. This is plausible since
V cb and I. are inherently 180° out of phase at low frequencies. Thus any
cancellation that we obtain between current dependent nonlinearities

Fig. 1- High frequency nonlinear model.
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Fig. 2 - Cancellation of distortion components.
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and voltage dependent nonlinearities will not require phasing I. and
Vcb properly, but will result from properly adjusting the relative
magnitudes of V ch and /6 .

Since I. Lu the most direct way to adjust the magnitude of
Vcb V put relative to I. is to change the load resistance. Hence the
strong dependence of distortion on 1?,, as shown in Fig. 3 for a fixed
bias level of Vcb = Vo and /out = L. To obtain cancellation in second
and third order distortion at the same time, not only the relative

are important level must be correct.
This cancellation model explains the sharpness of the null: since the
net distortion is a small difference between large distortion components,
a small percentage change in the ratio of the larger components will
yield a large percentage change in the difference. Experimentally, as a
null is passed the output distortion waveform changes phase by 180°
as we would expect from one component's becoming dominant over
the other.

It is important to notice that this cancellation effect is not some
artificial phenomenon that we are forcing to occur. According to the
model presented here, some degree of cancellation always occurs in
any transistor at any level of distortion. We give a more quantitative
argument supporting this exact cancellation model for visualizing the
transistor distortion mechanism in Appendix C.

It has been the author's experience that a disturbingly large per-
centage of published technical material is exclusively concerned with
presenting conclusions. In most cases, these conclusions were arrived
at by the rigorous manipulation of symbols long after the original
insight which prompted the investigation. The purpose of this section
is to describe the insights first in the belief that the reader will have
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Fig. 3 - Experimental null in second harmonic distortion as a function of Ri
using a Western Electric 20J transistor with V. = 30 volts, I. = 100 milliam-
peres, and R. = 500 ohms.

at least one less handicap if he is allowed to see the simple ideas
on which the rather interesting conclusions of this paper are based.
These ideas are:

(i) The nonlinearities of the transistor (including some, such as
the base spreading resistance and the diffusion capacitance, which

are not considered in this paper) are dependent on the emitter cur-
rent, /e, and the collector -base voltage, V cb. At low frequencies ./,

and Va. are 180° out of phase.
(ii) As a result of this phase difference, distortion components

resulting from these independent variables will subtract at low fre-
quencies.

(iii) On an analog computer simulation, we observe the ability to
extend this subtraction effect to the extent of total cancellation by
manipulating external circuit parameters. Thus it should be possible
to analyze a low frequency model by imposing the condition of zero
distortion and solve for the required circuit parameters. We would
expect the load resistance to be an important parameter in this anal-
ysis since it determines the ratio of Vcb to Ie.

(iv) Considering the low frequency phase difference between ./e and
V cb as the most important factor in achieving total cancellation, we
suggest a technique for extending the low frequency results to a broad
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band of frequencies. This extension is achieved by the simple expedient
of compensating the load to achieve a constant real part, RL, and still
maintain the proper phase between Vcb and /, as frequency increases.

The following sections develop the rigorous analysis (most of which
is relegated to Appendix A) and examine in some detail the analytic
conditions for a null and the implications of these conditions in the
area of circuit and device design.

III. TRANSISTOR MODEL

The model in Fig. 1 has been matched closely to the h parameters
of the Western Electric type 46A transistor over a wide range of
frequency (5 to 100 mHz) and bias current (50 to 150 mA). Figs.
4 and 5 show a typical match, obtained from a general purpose
optimization program. Three distinct nonlinear effects were then
superimposed on this small signal linear skeleton model. The current
dependence of the dependent current source is changed from ct/e to
the expansion around the emitter current bias point, leo)

ce(I e) = I - l e 0)

- I00)2 + i-oz3(1. - I 00)3 + (1)

where /0 is the quiescent collector current. The voltage dependence
of the dependent current source is changed from the constant, M, to
the expansion around the collector -to -base bias voltage, Vo,

111(V eb) = 1 + i(V eh - 0)

+ VI 2(1 7 - o)2 + 6 AI 3(1 - V 0)3 + (2a)

5011 12.1ft

9.0I(pF

0.027ft

56k11

0.979Ie

T7450 pF
500

Fig. 4 - Linear model for I. = 150 mA, Vcb = 10V. With the indicated ele-
ment values, this model matches the measured h -parameters shown in Fig. 5. The
quality of the match at this bias point (I. = 150 mA, Vob = 1017) is typical.
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So that the total dependent current source relationship is

I. = a(/.).71/(Vcb).

323

(2b)

And finally the emitter resistance, re, is replaced by the expansion
around -reo

v. = r,(1. - - /e.)2 - /..)3 + (3)

where the coefficients in equations 1, 2, and 3 are the corresponding
derivatives of the Taylor series expansion. Define the small signal
quantities as

is = /. - /. (4)

ie = /, - /.. (5)

Vce, = Vet, V o . (6)

Using these relations, equations 1, 2, and 3 become

a(Ie) = 10 a1i0 (7)

M(V,b) = 1 + Miv 1/1/2vcb + My% + (8)

va = ?yid + + (9)

Substituting equations 7 and 8 into 2b, and retaining third order terms

Ic = (I° «lie 2«22e 6ce3i3e)

 (1 + Mivcb 1--M2vcb 0/3v%) (10)

/, - I° = is = a12e + ioiii,vc, + 2«22e + 1I.1112v2cb +

2a2m,vcbi. + t/0/1/0% (11)

At this point we have developed a model for the transistor, indicating
the nature and form of the particular nonlinearities considered in both
the analog computer simulation of the complete, frequency -dependent
model of Fig. 1 and the analysis of the de model of Fig. 6.

IV. THE ANALYSIS

4.1 Optimization Equations

An analog computer simulation of the complete, frequency -depend-
ent model just discussed suggests that a simpler model is sufficient
to describe the distortion characteristics of the transistor at low
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vs

Ic(ie,vcb)

Fig. 6-Low frequency nonlinear model.

frequencies. Fig. 6 shows this simplified dc model. The following
analysis of this model is detailed in Appendix A.

(i) The incremental output voltage, v.t, is related to the input
voltage, Vs, retaining third order terms as in equation 11.

(ii) This input-output relation is constrained to be linear, thus
forcing both second and third order distortion to zero.

(iii) This constraint requires certain coefficients in the nonlinear
vout (Vs) relation to be zero. These coefficients are, of course, func-
tions of the linear and nonlinear parameters of the system. Thus,
when these functions are made zero, v.t is a linear function of Vs
(to third order), and the derivation of the optimization equations is
complete. These equations are:

where

and

-R2L(/0M2) RL(2ct1M1) + S - a2 = 0 (12)

RI(I0111-3) - R1(3a1M2) - as = 0

= r2/(R. 71) < 0, since r2 < 0,

= rs/(R,± 7.0> 0, since r3 > 0

(13)

(equation 19), (14)

(equation 20) . (15)

For the simpler case where the amplitude of third order distortion
is sufficiently low so that third order terms are negligible, equation
13 is satisfied identically and only equation 12 remains, which is
easily solved to yield

R(2) op, = %M1/L/112 [(aiMifi.M2)2 - (a2 - (5)//0M2]1. (16)

Thus R(2)opt is the value of load resistance which causes second
order distortion to be zero for the case where third order terms are
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negligible. Notice that the analytic technique used to determine a
distortion null here is linearization of the input-output relation, and
thus implies a minimum in harmonic distortion, intermodulation dis-
tortion, or any other specialized figure of merit. Of course, R(2)00 is a
function of bias current and voltage because of the dependence of
M1 and M2 on voltage and r2, al and a2 on current. The implications
of equations 12, 13, and 16 become more clear when the dependence
of these parameters on bias is considered.

4.2 Relating Parameters to More Directly Measurable Quantities
It is revealing to express the parameters of equations 12 and 13

in terms of the bias variables and other directly measurable param-
eters of the transistor.

Assuming the standard exponential i-v relation at the emitter -base
junction we can immediately derive from

I, = /,[exp (XgV e/kT) - 1]
the following relations:

(17)

r, = kT/XqIo = roll. ,

7'2 = -kTIXT12, = -roll! ,

7.3 = 2kT/Xqr = 2r./r, .

(18)

(19)

(20)

Similarly, if we assume that the avalanche effect in the common -
emitter mode is described by an equation of the same form as Miller's5

m(veb) = [1 - (volvA)T1 (21)

where VA is the common -emitter breakdown voltage as shown in Fig.
7. Then, at V cb = Vo:

IC MIN
Vs VA VCE

aM (Vs)= 1 M(VA)=c°

Fig. 7-Avalanche characteristics.
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Ml = n(Vo/VA)n/Ve, (22)

M2 = n(n - 1)(V 0/V A)" /V2. , (23)

M3 = n(n - 1)(n - 2)(V./ VA)n/V: . (24)

The avalanche voltage, VA, can be determined on a curve tracer
oscilloscope by leaving the emitter open -circuited in a grounded base
configuration and sweeping the collector -base voltage. The sustaining
voltage, Vs, shown in Fig. 7, is obtaining with the transistor in the
common -emitter mode and at least enough base current flowing to
produce /c.fn at the output. At Vs the avalanche factor M(VCb) has
increased above unity sufficiently so that a(/c)M(Vs) = 1. As a result
the common -emitter current gain (p) at this voltage is infinite. Choos-
ing the smallest a at which this occurs («min) allows us to determine
the exponent, n, in equation 21:

aminM(Vs) = 1 = amin[l - (Vs/V A)"il

Therefore

n log 13,n/log (VA/Vs),

(25)

(26)

where pinin corresponds to amin and may be determined from equation
27 using /0 = /c.f.. Notice that equation 21 constitutes an empirical
relationship in this study and is not intended to be rigorously tied to
any one of the various avalanche mechanisms. It is apparent, too,
that the measurements determining equations 25 and 26 will be influ-
enced by other voltage -dependent mechanisms (for example, the
Early effect) ; hence they are not strictly related to the avalanche
multiplication effect alone. Equation 21 has the virtue of mathematical
tractability; equation 25 allows the parameters of 21 to be determined
conveniently; and, finally, the excellent experimental agreement with
the theory described in Section V provides adequate justification of
the original assumptions. In any case, the derivation of equations
12 and 13 is based on a general power series expansion for M (Va)
around V0; hence it remains valid for any 1171, M2, and M3.

Finally we require a2 and «3. We show in Appendix B that /3 can
be empirically related to collector bias by

13 ft,../[1 + A 7,2 (I,,/I,)] (27)

where f3. is the maximum /3 which occurs at I, = I, as shown in
Fig. 8, and A is a parameter of the equation. Determination of a2,
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Icp Icp
e

LOG 1c --)".

Fig. 8 - Current gain nonlinearity as a function of the bias current,

a3, and A is derived in Appendix B. They can be expressed as

a -(In2

4Ace2,x) (.1.91

/Lax/. \/c/
(6/44,c) ( o)
\oina.12

A = [0... -)3Pe)1/gmax

so that A may be determined by finding I and measuring /3 at that
current and at 1/e times that current. Thus equations 18 through 30
give the functional relations for the various parameters in equations
12 and 13 and indicate the method of measuring the more funda-
mental parameters such as n and A. In the next section we use these
relations in existence conditions for a simultaneous null, in order to
guide an experimental search for this condition.

(28)

(29)

(30)

4.3 Existence Conditions for Realizability
While the simultaneous solution of equations 12 and 13 has not

been accomplished in closed form, it is possible to derive the condi-
tions under which a solution exists. Expressed in terms of the bias
variables, such conditions can then be used as a guide in an experi-
mental search for simultaneous nulling of second and third order
distortion.

Basically we require RL to be real and positive. For the second
order equation, solved in equation 16, this simply requires that

(«NO-o1l/2)2 > (a2 - (3)/I.M2 . (31)
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The condition for the existence of a positive, real solution to a cubic
of the form

- px2 ± 7' = 0 (32)

where

p = 3criM 211.111 3 (33)

r = - cy3)/ I 01113 (34)

x = RL (35)

is easily derived. Basically require

= px2 - r. (36)

Now, from equations 34 and 29, r > 0 for /0 < e/". Thus, at x = 0,
the parabola on the right side of equation 36 will be below the cubic
on the left. There will be a positive intersection only if the equation
is satisfied before the cubic term begins increasing more rapidly
(larger slope) than the parabola. The slopes are equal at

= fp. (37)

Therefore require
.3 .2 - r

Or

(38)

AP3 V. (39)

Expressing this existence condition in terms of the problem variables
and rearranging terms gives

77

(a11112)3 - a3)(1.1113)2 (40)

Substituting in equations 31 and 40 with 18 through 29 and arranging
terms we obtain

where

(17,1VA)" > the Greater of [(21 , Q2}

=1 lir. + r) ( 4 Aal..\ , (11:,)]
71/ /0 ' k sma. i ul

Q2 = [IL) (R. -1-- r0I.
(3Aa2.,x) ( / )1 (n - 2)2

(43)\ /Ls. / keica) 2n(n - 1)
For most ranges of parameters and bias variables Qi > Q2, thus, we
will examine the condition

(41)

(42)
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(V±:)" >(1 ° 7)- (4A#44 ax) in (.1t)] (44)

in greater detail. This distinction between Q1 and Q2 is not critical,
however, because they are similar in form. Thus, many of the qualita-
tive considerations to be developed in the next section are the same
for Q1 or Q2.

4.4 Searching for a Simultaneous Null
A careful examination of the existence condition (44) is useful

in guiding an experimental search for a simultaneous null. Starting
at the left side of the inequality, it is obvious that the bias voltage,
Vo, must be as large as possible relative to VA. Since, in any case,
Vo < VA, the exponent, n, should be as small as possible. The value
of n, according to Rogers,5 depends on whether the collector or base
has the higher resistivity, and whether the high resistivity side is n
or p type.

Where the collector has the higher resistivity, the lowest values of
n are for npn silicon, and for pnp germanium. A second, less impor-
tant, advantage of small n is that the multiplier on the right side of
the inequality is reduced. The first term in the brackets tends to be
the major contributor to the right side of the inequality and is there-
fore the term which is most desirable to reduce. This term, which
represents input distortion resulting from a nonlinear emitter resis-
tance, can be reduced by increasing the bias, I8, and by increasing
R8 to approximate a current source drive, thereby reducing input
distortion.

The second term in the brackets will favorably reduce the right
side of the inequality only if the logarithm is positive. This will be
true if the bias current, Ii,, is greater than I, which is consistent
with the earlier requirement for a larger Io. Finally, the multiplier
A, in equation 18 should be small in order to reduce r0.

Thus, it appears that the most likely candidate for a simultaneous
null is a silicon power transistor to allow large values of .10 and V°.
The structure should be either pnp or npn, depending on which type
gives the smaller n.

V. EXPERIMENTAL PROCEDURE AND RESULTS

Let us illustrate the application of these existence conditions in an
experimental determination of R(2)0pt as well as a simultaneous null
in second and third order distortion.
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As a fundamental check on the theoretical results, we decided to
determine the accuracy of equation 16 with 19, 22, 23, and 28 sub-
stituted for the Taylor series coefficients. Also, it was desirable to
verify the existence of a simultaneous null using the existence condi-
tions of the previous section. Because of the low frequencies involved
(input frequency of 1 kHz) , the simplest approach was to simulate
the measurement apparatus on the analog computer, using the same
oscillator and bandpass filters already available on the original simula-
tion.° The transistor used was the Western Electric 20J, and npn
power transistor.

Using this equipment, the parameters of the /3(h ) characteristic
curve of the transistor were measured:

= 78

/, = 15mA

13(I/e) = 73.
From a curve tracer oscilloscope, the avalanche parameters were
determined:

VA = 60V

VS = 35V

/min = 45.
These measurements yield the information to compute

n = 7

A = .064

from equations 26 and 30. From the manufacturer's data, r. = 50 mV
and 71 = 50 g. The output power was maintained at one watt.

These parameters give all the information required by equation 16
to compute the function R(2) .,,(I.) for various values of V.. The
curves in Figs. 9 and 10 show this computation compared to the plotted
points which were measured. The agreement here is quite adequate. The
quality of the match is further emphasized by comparing the computed
values of R(2) opt indicated in Fig. 3 and Fig. 11 to the measured nulls.
The computed value shown in Fig. 11 is based on a solution to equation
16 only.

A typical simultaneous null obtained in the laboratory is shown in
Fig. 11. This data indicates the high voltages (to emphasize avalanche
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a function of bias current, I., using a Western Electric 20J transistor with
R. = 500 ohms and V. = 25 volts.
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distortion) and currents (to minimize input distortion) required for
a simultaneous null exist on an

(RL,L,V,R8) surface, giving some redundant control to achieve
desired power and impedance levels as well as minimum second and
third harmonic distortion. It is apparent that a transistor manufac-
tured with a lower value of n would allow a broader range of control
over the bias voltage and current level required. Measurements on
different units of the WE20J show a maximum spread of ±10 per
cent in measured values of the optimum load for a simultaneous null.

Experimentally, as RL is varied, the second harmonic displayed on
the oscilloscope decreases in amplitude, goes to zero, and begins to
increase in amplitude. As it goes through a null, the second harmonic
changes sign, giving additional weight to the qualitative distortion
model discussed in Section II.

VI. EXTENSION OF CANCELLATION TO A BAND OF FREQUENCIES

Up to this point, our discussion has been limited to low frequency
effects. Now let us consider why the above results do not apply at
high frequencies and look at a straightforward approach to extend
the validity of all previous results to a broad band of frequencies.
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If we accept the qualitative picture given in Section II, it is obvious
that we should not expect to maintain exact cancellation as fre-
quency increases, since the phase of Veb relative to I, will change. A
small change in phase will have an effect similar to changing the
relative magnitudes of the current and voltage -dependent distortion
components: the amplitude of their difference (the net distortion)
will change by a large percentage near a null. In fact, at higher fre-
quencies (on the order of fT/100), the null of Fig. 2 vanishes alto-
gether. It is apparent, then, that a solution to this problem is to apply
external reactive compensation in such a way as to keep Vel, and Ie

180° out of phase as frequency increases. In the model shown by
Fig. 6 if we consider a capacitor, CD, in parallel with re, it is straight-
forward to derive the relation,

where

- Vt.b//, Re 1Zi. Im ZLii (45)

cor =
1

(46)
Dr,

Ideally, we would desire ZL = RL - jwrg/cor but this would require
a negative inductor. A simple first order approximation to this function
would be to parallel RL with a capacitor, C. Then

RL RICL - w2R2L6,2 -.1
+ co2R2LC2.

From equation 47 choose

Now

Copt = rf,/R2,47.

= RL . CO3 [ rgRIC2opt- -
2 2

, 1 + co2R LC op, + 0 T co2R2LC:pt

(47)

(48)

(49)

For small angles the phase is given by

so (6)) = co3(rg/RLwT)3. (50)

Thus the phase is reduced below the uncompensated case up to the
frequency

RLCOT
COmax = /

rb
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At which point the cubic dependence of equation 50 intersects the
linear phase of the uncompensated transistor.

Obviously additional compensating elements can be used to cause
higher derivatives of 97 (0)) to be zero. A complication may arise if
Copt is less than the parasitic C Cg of the transistor. In this case we
extend the required low-pass structure of the compensating network
to include an inductor in series with RL . In this case the required
inductance is given by

Loot = RiTcB - Wcor

which is greater than zero for C g > rfiR2WT = Copt 

VII. CONCLUSION

Our conclusions are based on simulation of the transistor on an
analog computer, analysis, and experimental results. The rigorous
analysis predicts the existence of a simultaneous null in second and
third harmonic distortion under the same bias -load conditions. This
null has been observed in the laboratory. In addition, experiments
on the simulation provide qualitative insight into the nature of the
distortion mechanism.

We conclude that this mechanism consists of the algebraic sub-
traction, at low frequencies, of distortion components from various
sources within the transistor such as the nonlinear emitter resistance,
current gain, and avalanche multiplication effect. This interaction
between distortion components yields a net distortion which is the
difference between the contributing components, and can be made
zero by a proper choice of the bias and load.

With this mechanism in mind we developed a technique for ex-
tending the cancellation phenomenon to a broad band of frequencies.
This technique consists of external reactive compensation which
maintains 180° phase shift between the distortion components, a
condition which exists inherently at low frequencies.

We have obtained experimental confirmation of the theoretical
dependence of the optimum load for second order distortion on bias
variables. The theory predicting a simultaneous null in second and
third order distortion has been confirmed. We have also obtained
experimental support for the distortion cancellation phenomenon. We
discussed methods to aid future measurement efforts in implementing
this distortion reduction phenomenon. These methods are based on
interpretation of the theoretical expressions developed in the paper
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which reveal the necessity for high levels of bias voltage and current
to obtain a simultaneous null.

This study opens several fruitful areas for future work, both in
device and circuit areas. Primarily, the phenomenon described uses
circuit techniques to minimize distortion (optimizing the bias -load
point). Additional effort in the circuit aspects of minimizing distor-
tion should be directed toward desensitizing the null condition to
variations in the bias -load point. For example, if the bias current is
forced to change with RL as shown in Fig. 9, optimum conditions
could be maintained over a range of changes in the load.

In the realm of device design, effort should be directed toward
adjusting device parameters to allow nulling in useful regions of the
bias -load space. For example, a softer avalanche characteristic (lower
value of n) would allow the use of lower bias voltages.
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APPENDIX A

Derivation of the Optimization Equations

In Fig. 6 the following relations hold

je = ib is (51)

= (V - ve)/(R, rf,) (52)

pout = -R Lic 1. vrb (53)

Let

V AR, rf,) = I (54)

rd(R, rf,) = -y (55)

71,) = 6 (56)

1'3/(R. rb) = S (57)

Substituting (9) and (54) through (57) in (52)

t, = I - 7i, - - -4- Vac . (58)

Combining (51) and (58)

= i.(1 + + - I. (59)

Now is is given by equation 11. Therefore

if(1 + 7) + a Si! + 6523 - I

= alie + I 0111 cb + 2azie 0M 2v2ct, ceillf lie?) cb

2aiM2vcbie 2a2Mivcbi: -1/0M34, . (60)

Substituting (51) and (53) into (60) and gathering terms:

in/02I/3R1 la2MIRL - ict1M2R1 - 123 6fl

+ - za2 - goM2R2L, a1111 iR

 ib(R - la1M2R1 - la2M,RL - 2a3)]
 ic[1 ± y - a1 + /XI& ib05 - a2

2a2MIRL)] ib[i + y - al]

+ in- S- - tad - I = 0 (61)



ELIMINATING DISTORTION 337

The only approximation that we have made up to this point is that
vont 173 Vcb the collector -to -base voltage, assuming that v, is small.
Now we would like to express the variables of (61) in terms of the
independent driving voltage, V. , and the output current, ie , which
is linearly related to the output voltage. To accomplish this, we start
with (58) and make the approximation

ib I - 7i, (62)

where we have ignored the high order terms in (58) and used the linear
relation i, .

Notice that (62) certainly does not imply that we have fixed a linear
relationship between 4 , I, and i, . We are simply using this new ap-
proximate variable in the highly nonlinear (61) for convenience. The
approximation is justified by the fact that second order and higher terms
ignored in (62) would appear as fourth order and higher terms in (61).

Substituting (62) into (61) we have

Zc { */./li3RL - 6cy3(1 - 7)3

+ U(1 - 7)3 + la2/1/,&(1 - 7)2 - 2aiM2R2L(1 - 7)1
- 1)2 + -y) - 1I.M2R2L, - la2(1 - 7)2

 na21'WIRL (1 - + - 7)2 - la3(1 - 7)2 - I

 is 1(1 - 72) a(1 - + IoM,RL

 1101 - -y) - a2(1 - y) + aiMIRL]

+ /2[10 - - la3(1 - + 1a2MIRL] I

± /[y - ai] ± /2[1 - + r[i-E - ice,] = 0. (63)

At the 100 mA bias levels where we are assumed to be operating,
r, < 0.5 O. Also rt, R.-/, 10-20 S2 and R. can only increase the R. +
sum in (55). Hence 7 << 1 and will be ignored in (63). Thus we have
effectively substituted I for ib in (61) to obtain (63). This substitution
is not justified by requiring the assumption I >> 7i, in (62) (that is,
a current source drive); but is justified on the grounds that the sub-
stitution of (62) into (63) did not generate new terms in (63) for 7 << 1.
Equation (63) is of the form

i!(b c/) ic(d eI f12) gI hI2 jI3.= 0. (64)

Now to force linearity we would like to require

rout = kV, , where k is a constant. (65)
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But from (53) and (54), (65) can he expressed in terms of the
variables of (64) as

k(R. ) I = BI. (66)
=

'

RL

Substituting (66) into (64) and gathering terms

I3[aB3 cB2 fB j]

I2[bB2 eB h] I[dB g] = 0. (67)

Now I is an independent variable so that this equation can hold only
if each coefficient is simultaneously zero. In the linear term

dB ± g = 0

B =

Ignoring terms in y and noticing that /MIRL << I in (63)

(68)

a, (69)B 1 - a, + I °Ali&
The constant B should be easy to identify. For small M1 (low levels
of V0), B = 131. However, at the higher values of I,, and Vo,
can be on the order of (1 - Lei). Thus, roughly speaking

B 113 >> 1. (70)

Substituting (69) into (67) our final coefficients to be equated to zero
in (67) become

aB3 cB2 fB j = 0
bB2 eB h = O.

(71)

(72)

Substituting for a, c, f, j in (71) by comparison between (64) and
(63) ; ignoring terms in y:

B3R/,,M3R3z, - ia3 la2MIRL - iaiM2R2L]

B2[a2M1RL - i013 laiM2R2L]

B[it - 1a3 2a2M1RL] + - tad = 0. (73)

Gathering terms in RL:

R3L[L,M3][6B3] Ra-aiM2P3 + B2]
RL[a2Mi][iB3 + B2 + B] + [I6B3 -k]

- «3[03 + 02 + + *] = 0 (74)
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Using (70) we can ignore lower powers of B, and tv2M1, being the prod-
uct of second order terms, is very small compared to the other coef-
ficients in (74). Thus (74) becomes

(/0/113)R2 - Ri2,(3a,M2) + - = 0. (75)

Now substituting for b, e, and h in (72) by comparison between (63)
and (64) ; ignoring terms in y:

B2[S - aiMiRL -

+ Br6 - a2 «,31 ,Rd -1-[ S- 71a2] = 0 .
Gathering terms in lir,:

Ra-121121[1132] + + B]

+ 6[02 + B] - «2[1132 + 1B] = 0. (76)

Using (71), (76) becomes

- (/0M2)N (2aIMl)RL + 6 - a2 = 0. (77)

Equations (75) and (77) are the relations that must be satisfied to
satisfy (67), which in turn results from the requirement of a linear
input-output relation, (65).

APPENDIX B

Relating Current Gain Nonlinearities to the Bias Current

Riva3 has shown that the small signal gain of a transistor can be
closely matched to an expression of the form

= h 10g1210 inn,) + 2a log,,, e log, (/, //, + 1]-,
(78)

Where

hfen,,, = maximum de current gain
,x = collector current bias where kern.. occurs

a = a constant characteristic of the transistor.

Differentiating the denominator of (78) reveals that the maximum ac
current gain (iginnx) occurs for I, = I ,.,x/ e. Call this current /Op. Then

f3 = 11,0,ax[a login - a login e + 1]-'. (79)

At the peak in the )3 (lc) curve, I, = Ic, and

0, = hre,,,x/(1 - a login e). (80)
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Substituting for hr,,,, in (79)

= 0,[1 a(1 - a login c)-1 login (/,//,)]-1. (81)

Then, for

Where

Thus

and

A = a(1 - a logo er log% c
= 13,na/[1 + A 1n2 (/,//,)]

+ -
amnx

Aa, (/,

da 1 2a
Air =axle = (al ± (V, AI, + 15, (ii! Ai2e) AL

da I 2a
DI, = a, AI, + (--i-Te 6,I + .- -d-pAre

= a, AI e + la2 a: + ia3 DI: 

a2
die

2 -da

2d2a da2a = 3 = 1.5
die dle

Now, taking le I from (84)
In (///,)a2 = -
Aamnx (L ,i12

L Icy)..1

at /, = 10. In essentially all cases

(82)

(83)

(84)

(85)

(86)

(87)

0.04 < < 25I

> 30
Acemax < 0.15.

Thus, to within 10 per cent in the most extreme case

a2 -(4A4./0..J.) In (/0//"). (88)

Then, from (86)

a3 (6Aala.M..../D In (I del cp) (89)
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Now to solve for notice that, from (78)

(3( Tax) = .3,[a login e2 - 2a logfo e log", ea+ 1] ' (90)

But from (82) and (90)
h,, = 13,,,x/(1 A).

Therefore,

A= ($max hfemax)/hfemax

where kenax may be measured at

/, = I ,x /e2 = I/e.

APPENDIX C

The Qualitative Distortion Model

The purpose of this appendix is to support the qualitative picture
of algebraic distortion cancellation given in the text. The development
here is not intended to be rigorous, but rather to strengthen the reader's
ability to share the author's insight into the cancellation mechanism.
We have argued that the net distortion current, D, is the algebraic
difference between positive and negative distortion current compo-
nents, A and B, dependent on output voltage and current, respectively.
Express this relation as

D = A - B. (94)

But, for A and B monotonic in voltage and current, the ratio A/B is
a measure of the load. Define this measure as

Now

On a dB basis

.4I? = -- 
B

D = B(R - 1).

20 log -D = 20 log I I? - 1 I.

(95)

(96)

(97)

Fig. 12 is a plot of 20 log IR-11 as a function of R. Compare this plot
with that of Fig. 2, which was measured in the laboratory. The simi-
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Fig. 12 - Decibel measure of the small difference between large numbers.

larity between the nature of these two minima adds additional weight
to the idea that exact algebraic cancellation is involved in producing
the net distortion frequencies. Thus any dependence of distortion on
frequency should be compensated at distortion frequencies and not at
input frequencies, since it is at the distortion frequency that cancella-
tion takes place.
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This paper considers the identification and synthesis of linear sequential
machines from their state transition tables. Necessary and sufficient con-
ditions for linearity are derived which form the basis of identification tests.
A sufficient condition leads to a method for coding the system's state vectors
in a fashion consistent with linearity but which does not entail trial and
error. The coding process is analytic in nature and allows the coding of
state vectors independently of the coding or linearity of the output table.
Both the Moore and Mealy models are considered in deriving coding pro-
cedures for the input and output vectors.

I. INTRODUCTION

This paper develops a method for identifying and synthesizing
linear sequential machines using their state transition table representa-
tion. The basic objective is to construct a procedure which can be
efficiently implemented by a digital computer. Towards that end, we
develop simple and easily used preliminary tests which reject non-
linear systems to precede the time consuming synthesis, or state cod-
ing, process. The method for the coding of states is completely analytic,
with the result that trial and error processes are not required.

Consider the symbolic state transition table, Table I.
The input vectors, u, have m components (2 Lc. M 2m),* and the

next state vectors, six , and present state vectors, si , have n unspecified
components (N < 2n). The vector components are defined over a
modular field, and here this field is taken as GF (2). Most of the results
obtained below can be easily extended to other prime fields.

In terms of the state transition table, a linear sequential machine

* This paper considers tables which have at least two distinct columns of next
states (nonautonomous systems).

343
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is defined as a system which changes state according to the equation

six = As; -I- Bus . (1)

A and B are n X n and n x in matrices, respectively.* A linear se-
quential machine is called fully linear when its symbolic output vector,
zr,, obeys

zis = Cs; Dux (2)

where C and D are matrices of proper size.
When D is the null matrix, the last two equations represent a Moore

model of the linear system. Otherwise, the equations describe a Mealy
model. Cohn and Even have given a method for model conversion in
linear systems.1

TABLE I

Ul U2 U, Um

SI SI I SI 2 Six SI M

82 s21 S22 82x S2.1/

Si Sit S12 Six SiM

SN SNI, 8N2 SNx SN M

In recent years linear sequential machines have been studied ex-
tensively. The motivation for this activity stems from two sources.
Not only do linear sequential machines exhibit interesting mathemati-
cal and theoretical properties, but they have found a wide range of
practical applications; for example, memory addressing circuits, com-
puting over finite fields, counting and timing circuits, error correct-
ing codes, encoding and decoding circuits, and generating pseudo-
random and minimum -time test sequences.

As persistent research led to greater understanding, several investi-
gators developed synthesis procedures for linear sequential machines.
Davis and Brzozowski2 have reported a method for the synthesis of
nonsingular systems (systems in which, under each input, every pre-

* The addition and multiplication operations are modulo 2. Also, the entries
in all matrices are from GF(2).
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sent state goes into a unique next state). Their technique is based
upon an iterative search over partitions of the system states.

In a mathematically elegant treatment, Cohn and Evenl have
derived a synthesis procedure which is free of trial -and -error processes.
Coded output vectors are used to generate the state vector codes. Not
only is it necessary that the system have a linear output, but the
more severe restriction that the output vectors have been given, a
priori, a linear coding is also required.

Yau and Wangs have disclosed a synthesis technique which does
not require a linear and coded output. The construction of the A
matrix by examination of a transition graph, which describes the state
transitions owing to a given input, leads to the coding of the state
vectors. The method requires the system to have 2" states. When N <
23, a sufficient number of "don't care" states are introduced to com-
plete the state transition table; however, no suitable procedure is
given for the specification or coding of the "don't care" states. The
lack of complete freedom from trial -and -error routines is another dis-
advantage of the method.

In this paper, necessary and sufficient conditions for linearity of the
state transition table are derived which lead to the development of
the procedure for coding the state vectors. The method accommodates
linear systems in general (both singular and nonsingular). The syn-
thesis procedure is analytic and, therefore, no trial -and -error routines
are necessary. Also, the state vectors are coded independently of the
output table so that the coding process is able to treat systems that
have linear or nonlinear, coded or uncoded, output vectors. Both the
Moore and Mealy models are considered in deriving coding procedures
for the input and output vectors.

II. NECESSARY CONDITIONS FOR LINEARITY

Forming the sum of two next states, say sis, and 4,, under the same
present state, 4, yields

s,x s,,, = B(ux + us),
since A(si + si) = AO = 0, mod (2). Since the sum is independent
of the present state, it follows that

Six + Sly = 82x + 82. = ' ' ' = Six 8,. =  = 8Nx
for each x and y. Let the equality of these sums, for a particular x
and y, be denoted by the term state sum, and call the individual sums
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of pairs of next states component sums. For example, the state sum,
su + 812 = s21 + 822 = S31 + 832 i consists of the component sums sit
+ s12, s21 + S22 and 831 + 832.

As a direct consequence of the state sum: if a present state has two
identical next states, under two different inputs, then the columns
which correspond to the inputs in question are identical, or the table

represents a nonlinear machine.*
The state sums of a linear system must be consistent over all pairs

of inputs. For example, assume that a state sum contains component
sums (written in terms of present state symbols) s1 + s2 and si + 88.
The state sum is consistent only if s2 = s3 however, if the output ta-
ble does not allow the reduction of the state transition table by merg-
ing s2 and s3, then the state sum is inconsistent and the system is
nonlinear.

In order to check state sums over the entire table only M - 1 state
sums are required. Taking the input u1 as a reference, the state sums

S11 + s1 = " . = 811 + Sill =  = S,V1 y

for y = 2, 3, . . . , M cover the table. Since, if sji + = 811 + si, for
all y of interest, then for any x

Six + Si,, = Six + Sit + Siv Sii

= Six + Sii Sii

= Six + Siv
Therefore, it is not necessary to form state sums for all possible pairs
of inputs. For example, consider Table II.

TABLE II

Si

Ul

S2

U2

Si

U3

83

U4

84

82 84 S3 S, S2

83 83 84 82 Si

84 81 82 84 S3

From inputs u1 and u2, si + 82 = 83 + s4 (redundant components sums
have been deleted) is consistent in the first two columns. From u1 and

* A similar result has been obtained by Davis and Brozozowski2 using a different
approach.
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u3, + s3 = s1 + S4 and from u1 and u4, s2 + s4 = s1 + s3. The last
two state sums are rearrangements of the first and therefore, the state
sums are consistent over the entire table.

Another symmetry feature appears in singular linear machines
(those characterized by a singular A matrix*). If A is singular, then
for some present states the rows of next states are identical.2 This
follows since a singular A has rank r < n, and therefore, the null space
of A has dimension n - r, so that As; + Bu. = si, has more than one
solution for si given s1, and u2.

The reduced state transition table of a linear sequential machine
has additional interesting properties. In what follows only reduced
state transition tables are considered unless stated otherwise.

As a preliminary, consider

Theorem 1: If A is nonsingular, then the reduced table of a linear
system has an even number of states.

Proof : If A is nonsingular, under each input, each state will appear
once, and only once as a next state. Thus, the next state columns are
permutations of the present state column. As a consequence, each of
the state sums involves all of the system's states. If the number of
states, N, were odd, then the same state must appear in two distinct
component sums of the same state sum. That is, the state sum con-
tains an equality s.1 + si = se + si which implies si = se,. But this
contradicts the statement that the state table is reduced.

Next, a starting result which connects the number of system states
to the number of distinct inputst is described by

Theorem 2: For a reduced, nonsingular, linear sequential machine
which has N states, the number of distinct inputs cannot exceed 2, if
N/2 is odd, or

2 ± N E21-`

where t is the smallest integer for which N/21 is odd.

Proof : Consider the state sums associated with the first two dis-
tinct inputs, ul and 1/..

811 +812 = 821 +822 = = S11 +S i2 =  " = 3N1 3N2 (3)
* Common terms from linear and abstract algebra which appear in this paper

are treated in several texts; for example, see Birkhoff and MacLane.4
t ux is said to be distinct from uy if and only if the columns of next states

under ?Ix and uy are distinct.
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Taking u1 with uz, a third distinct input, the following state sum is
obtained:

S11 + S1s = 821 +S2= = = Si' + Si. = = SN1 SN. (4)

Writing segments of equations 3 and 4 in terms of present state sym-
bols as si + s; = se + sk, = + sti = . . . , and si + se = sp. + six =
. . . , respectively, leads to the conclusion that state sum consistency
requires that equation 4 contain a sum sj + sk. For if it did not,
then locating the terms of equation 4, which contains sk, say sk + si,
leads to si + se + sk + si = 0. From equation 3 sj + + sk + se = 0.
For compatibility, si = s1; so that equation 4 must contain sk + si or
contradict the reduction of the table. It then follows that the state
sums over distinct pairs of inputs must be mutually derivable via
component sums.

Let the component sums obtained from the first state sum from
u1 and u2 be denoted as follows:

= Sil + 512 Si = Sil Si2 ; , SN = 8N1 SN2 

Since there are N/2 distinct sums, let the symbols 4,C1- S2 SN/2
denote the distinct component sums. Then equation 3 can be repre-
sented by Si = S2 = = SN/2 

In view of the foregoing, a necessary condition for linearity is that
all other state sums must be derived from the sums S, , , SN/2

In generating new state sums the Sss are paired and the component
sums which are consistent with equation 3 are formed by transposing
terms in the resulting equation. For example, pairing Si and Si can
yield either of the two equations which do not appear in 3:

S1 + Sil = Si2 Si2

or

811 + Si2 = Sil 812

Then it is clear that each pairing of the Ss yields two possible state
sums. Therefore, the number of unique pairings of the Ss, where each
pairing occurs only once (this insures that no component sum will appear
in two distinct state sums), is equal to half the maximum number of
distinct inputs in excess of the first two.

Separating the Si according to subscript parity gives:

S1 S3 SN/2-1

S2 S4 . . SN/2
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If N/2 is odd, then one S cannot be paired. Therefore, one sum will
occur in more than one state sum. Since this is inconsistent with a
reduced linear table, a system for which N/2 is odd can have only two
distinct inputs. If N/2 is even, then the number of unique odd to even
subscript pairings is N/4. The odd -to -odd and even -to -even pairings
can be enumerated by considering a single row. It is advantageous to
transform the subscripts as follows:

Si = Ag2 , = , , sf = S2,

Then, separating the new symbols by subscript parity gives:

Sf A% SN/ 4-1

8;174

When N/4 is odd, no pairing is possible. If N/4 is even, the odd -even
subscript pairings number N/8. Clearly, the odd -to -even pairings of
the S' can be treated by reapplying the same transformation to the
subscripts. Therefore, the number of allowed pairings is

N E 2-',
2

where t is the smallest integer for which N/2t is odd, if N/2 is even.
Since each pairing provides for the generation of two distinct columns,
in addition to the first two columns, the number of distinct inputs is
2, if N/2 is odd or not greater than

2 + N E otherwise.
i =2

This completes the proof.*
Theorem 1 leads to a very simple test for the identification of non-

linear tables. The number of states in the table is used to determine
the maximum number of distinct inputs. Then, the table is rejected
as nonlinear if the number of its distinct inputs, or, equivalently, the
number of distinct columns, exceeds the maximum. Table III illus-
trates the restriction which linearity imposes upon the form of the
state transition table.

There are similar, but weaker restrictions associated with the state
transition tables of singular linear machines. Consider a system which
has N states such that each next state column contains d(<N) distinct
states. (The singularity of the A matrix requires that some rows of

* A smaller upper bound can be obtained when N 2.. See the Appendix.
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TABLE III

Maximum Number of
N Distinct Columns or Inputs

4 4

6 2

8 8
10 2

12 8

14 2

16 16

70 2

72 56
74 2

76 40
526 2

528 464
530 2

2086 2

2088 1568
2090 2

2092 1048
2094 2

2096 1836

state transition table to be identical.) If the singular matrix A has rank
r, then the maximum number of present states which yields the same
next state (that is, the maximum number of times a row can be re-
peated) cannot exceed 2"-. Since there are N(<= 2n) states, N2r-"
d < 2'. r n implies that each column cannot contain all of the system's
states so that the reasoning of the last theorem cannot be applied.
In order to gain some insight into how linearity limits the form of the
state transition table, consider the case where N = T. That is, the set
of state vectors form a complete set of n -dimensional vectors with
components over GF(2). Let S denote the set of present states,
(s1 , 82 , , 8N), Siz is defined as the set of distinct next states, (81.
82z , , saz) under the input ux , and it is assumed that u1 = 0.
Consider the following

Theorem 3: A linear system which is associated with a singular A
matrix of rank r, a null input vector, and which has all states appearing as
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next states must have at least 2"-T distinct input vectors, and Six and Si are
either identical or disjoint for all x and y.

Proof: First, it will be shown that the Six are cosets of the group
S, +1. Since S is a vector space, 0, si si are members of S for any

si , si which belong to S. If u, = 0, then the vectors of S,, are a subspace
of S because:

(i) A (0) = 0 £ Si, and
(ii) Asi , As; £ Si, implies A (si si) e S11

(This follows since Si + si = Sk £ S and Ask e Su .)
The nonull input, u, , generates cosets of the group { 5, } , because
Buz is an n -component vector which must belong to S and therefore,
Sii + Buz = Six .

It is well known that cosets are either disjoint or identical. Since
0 c Si, , Buz Si, implies that Si, and Six are disjoint. Therefore, no
member of Si, can be used as But if the table is to have a column which
contains states not found in column 1. If Si, and S,z are to be disjoint,
then Buz e (S - Su); that is, Buz can be selected from a set of 2" - d
vectors. Continuing, the next distinct coset is associated with an input,
u such that Bu has not appeared in any of the preceding cosets.
(If it has, then 0 e S Bug .) Then, Bug is among 2" - 2d vectors.
The last unique cosets is generated from a set of d vectors, or 2" -
kd = d. So that there are k 1 = 2n/d unique cosets of next states in the
table. If each present state is to appear as a next state, the table which
contains the minimum number of distinct columns must be comprised
of one column from each unique coset. Since A has rank r, d =
consequently, there must be 2n -T distinct inputs.

Also, since each unique coset can form 2r distinct columns, the num-
ber of distinct inputs is not greater than 2", as expected.

This section has derived several properties that must be exhibited
by the state transition table of a linear sequential machine. The con-
sistent state sum requirement will play a central role in the code
assignment problem.

III. SYNTHESIS: THE ASSIGNMENT OF LINEAR STATE CODES

To each symbolic state, s, it is necessary to assign a p -dimensional*
vector, v, with components over GF (2) . That is, sip ---> vix

The vector assignment must preserve linearity;

viz ='Av, + But .
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Linear systems must give rise to consistent state sums; therefore,
the vectors must obey the same sums. Since state sums are only neces-
sary conditions for linearity, a nonlinear state transition function may
exhibit consistent state sums.

For any sequential machine the general state transition equation

can be written as

vs, = Av, But f , (5)

where ft is a p -dimensional vector which is a nonlinear function of
the present state and input vectors. When the symbolic states obey

the state sums, (equation 3), the vectors must be assigned such that

Vix 1 Vly = V2s V2, = . . = Viz Viy = . . . = ViVx VNY I (6)

for each x and y. Therefore, from equation 5 it is clear that the non-
linear function obeys the same restriction,

fix + fiv = f2r + f2. = - - = fix + fi., = = fA, + fNy (7)

The selection of the A and B matrices exerts some control over the
nonlinear function. When n = 0,

A[v1 I v2 I I vp] [f.' I f2i I I fpt] = [v11 I V21

where

I v,]

[vj I V2
I

Ivy]

is a p x p matrix whose columns are p linearly independent vectors.*
Then,

111 = f21 =

can be achieved by

A=[v11Iv21I...I
Similarly,

A[v, I v, I

-fn. =0

vp,][v,
I v2 I

I v1-1

(8)

I v1] ± B[u2 I% I I u,,]

-I- [112 1 113 I I fi,m+1] = [v12 I V13 I
I Vlon+l],

where u2, . . . , unt+1 are m linearly independent input vectors, yields

112 = 113 = = fion+1 = 0 (9)

* In cases where the system is singular the matrix of next states (the matrix
on the right side of the last equality) must be selected so that A has the required
rank. The rank of A can be determined directly from the repetition of rows in
the transition table.
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when

B = [v12 + V11
I V13 + V11 I " I Vi,m+1 Via% I U3 I u,4.1]-1

Additional constraints on the nonlinear function become clear when
equation 7 is examined in light of equations 8 and 9. For x = 1, a
sample equality in equation 7 is

fii + fiy = fi, + fa.

When i, j p, fl 1 = fii = 0 (by equation 8); so that fi, = fi . Equa-
tion 9 indicates that fi = 0 for y < m 1, j = 1. Therefore, fi, vanishes
when i <= p and y 5 m + 1. Equation 7 implies fix = fii, = 0 and fix =
fit, for x, y < m 1, i < p < j. Finally, = fiz h. when x m
1 < y, and j < p < i. Table IV below summarizes the restrictions on
the nonlinear function for systems which exhibit consistent state sums.

u, it2 um.1

1,1 0 0 0

p2 0 0

pi, 0 0 0

Pp+ I fp+ 1 .1

VA, f,.1 '12111'

TABLE IV

fl. m+2

constant

Um

11.11

constant

.m+2 JIM

fp+, + f1.m+2 fp-1.1.1 /11,1f

f.V1 iN1 11.m +2 IN! +

A particular code assignment can be verified by comparing state
transitions along segments of one row and one column with the transi-
tions predicted by the linear equation. If f and f,z are found to vanish
for p < j < N and in + 1 < x M, respectively, then the code as-
signment is acceptable. The necessary state transition checks number
M N -m - p - 1 (compared with MN - p -m - 1 checks if
state sum consistency is not verified before a code assignment is at-
tempted). The implication is that sufficiently large values of m and p
will force the nonlinear function to vanish over the entire table. While
it is undesirable to increase m and p (since this requires more memory
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elements) it is certainly possible to do so in principle.* However, in
computing the A matrix it was convenient to construct a nonsingular
matrix of p linearly independent vectors. The state sums (equation 6)
which contain no more than N/2 component sums imply that at most
N/2 + 1 states can be assigned vectors independently.

Therefore, not more than N/2 ± 1 of the coded state vectors are
linearly independent with the consequence that it is impossible to
form a nonsingular matrix of coded state vectors when p > N/2 + 1.
Where p exceeds this limit it is possible, in some cases, to express some
elements of the A matrix in terms of the remaining elements. This
method for finding A is far less attractive than forming a nonsingular
matrix of coded state vectors; accordingly, the bound p < N/2 ± 1
will be enforced. The development which follows demonstrates that
the limitation on p does not obscure a system's linearity. Similar con-
siderations lead to m M.

Turning to the state coding problem, the state sum will play an im-
portant role in the generation of equations which lead to the linear
coding of states. First, attention will be concentrated on nonsingular
systems, then a later section will treat singular systems.

3.1 Nonsingular Systems

Consider the sum of two component sums

viz vi + viz + vh, = 0;

it is true that

A(viz v, + viz + viy)

+ Viz" + ViVI fin fiY1 I fixl flY1

= 0.
(The additional subscript indicates that vi, is the present state which
goes into vi1 under the null input, tti .) Taking via v111, and vi among
the p independent vectors implies fu.i = fiyi = f jal = 0. Furthermore,
assigning vectors such that

Viz]. Viy1 VizI vi51 = 0 (10)

forces bpi to vanish. The sum (10) must be consistent with the state
sums (that is, no state sum can contain an equality of component
sums which contradicts equation 10).

* When the input vectors are given as coded it is possible to increase their
dimension by a translation,
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By similar treatment of all component sums of a state sum, the
nonlinear function can be made to vanish in the first column (and
therefore, over the first m + 1 columns) provided that the attendant
increase in the value of p (owing to the designation of independent
vectors) does not cause it to exceed its bound.

If all component sums are treated, it is possible to generate an
equation of the type 10 in which all four of the vectors have been
previously designated linearly independent. Clearly, the equation con-
tradicts the independence of one of the vectors; then, any one of the
vectors must be deleted from the set of linearly -independent vectors.
The nonlinear function corresponding to the deleted vector can be
made to vanish by satisfying the type 10 equation which is obtained
when the A matrix operates on the generated equation in question.
Consider the following process for treating a single state sum.

(i) Select a component sum as a reference sum. Add another com-
ponent sum to the reference sum.

(ii) Operate on the resulting sum with the A matrix to obtain an
equation of the type in equation 10. Designate linearly -independent
vectors as required and mark the vectors for which the associated
nonlinear function has been forced to vanish.

(iii) Verify that the equation obtained in step ii is consistent with
the state sum and the other equations obtained in ii. If all vectors
in the equation generated in ii are linearly -independent, delete one
of the vectors from the set of linearly -independent vectors and repeat
step ii using the generated equation as the sum upon which A operates.

(iv) If one of the type 10 equations has three linearly -independent
vectors, use it as the sum in repeating step ii. Otherwise, add another
component sum to the reference sum and repeat step ii. Repeat ii and
iii until an inconsistent equation is generated (the system is no -
linear) , or until all vectors have been used (the system is linear).

The first time the process passes through step ii, three linearly -
independent vectors are required; in subsequent passes at most one
additional independent vector is needed. After the first pass through
the process N/2 - 2 unused component sums remain. Therefore, not
more than N/2 + 1 independent vectors are required for the process,
precisely the upper bound on p. If the state vectors were coded using
this process, the system would have an undesirably large number of
memory elements. Therefore, this process is not an efficient design
procedure. However, completion of the process implies linearity of the
first m + 1 columns with the result that the A and B matrices can be
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determined. Linearity of the table over the remaining columns is
dependent upon the coding of the input vectors.

As previously indicated, linearity over all of the columns can be
attained, in the worst case, by increasing the dimension of the input
vectors. In this case, m = M - 1 would yield a linear system. If it
is assumed that the input vectors are uncoded, or can be recoded,
then it follows that completion of the process is a sufficient indication
that the system is linear. (The problem of coding input vectors is
treated in a later section.) The process will be referred to as the
maximum memory process.

In order to illustrate the maximum memory process consider the
reduced table, Table V.

TABLE V

0 1

S1 S1 so

S2 57 Sg

S3 S5 53

S2

S5 S8 S7

S6 S4 82

S7 S6 Si

ss S3 55

In terms of the coded vectors the state sum is

V1 + V6 = V7 + V8 = V3 + V5 = V2 + V4

(which is consistent over the table). Using v1 + v0 as the reference
sum,

A (v, vs + v7 + v8)

= f1.0 + /6,0 + /7,0 + 18,0 + V1 + V4 Vg + V3 = 0.

Designating v1, v6, and v7 as linearly -independent vectors and satisfy-
ing the equation

V1 + V4 + Ve V3 = (12)
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yields

11.0 = 16.0 = 17.0 = 18.0 = 0
However, vectors v1, vs, and v4 appear in two component sums of
equation 11, the first and last; this implies

V1 + V6 + V2 + V4 = 0.

Adding this to equation 12 leads to v2 = v3. This contradicts the re-
duction of the table; therefore, equation 12 is inconsistent with the
state sum. The system is nonlinear.

As pointed out, the maximum memory process is not a suitable
vehicle for the economical design of linear sequential machines. The
process extracts a limited amount of information from the state
transition table. This can be improved by considering all of the unique
state sums (that is, from the M - 1 state sums by pairing the first
input with every other input), and using such equations as 10, which
the process generates, to better advantage.

Consider the following procedure:

(i) Form the M - 1 unique state sums.
(ii) Select a reference sum from one of the state sums. Add another

component sum (from the same state sum) to the reference sum.
(iii) Operate on the sum with the A matrix. Designate linearly -in-

dependent vectors as required. Obtain an equation like equation 10
and verify that it is consistent with the state sums. Mark the vectors
in all state sums and equations of this type which have been guaran-
teed a linear state transition under the null input by this step. If all
vectors in the equation obtained have been designated linearly in-
dependent, delete any one of these vectors from the set of linearly -
independent vectors and repeat this step using the equation as the sum
upon which A operates.

(iv) In the state sums where at least one component sum has had
both vectors marked in step iii, search for a component sum which has
one vector marked or, search over the type 10 equations for one
which has three terms marked. If such a component sum or equation
is found, use it in repeating step iii. (Since three of the vectors make
a linear transition, the nonlinear function which is associated with
the fourth vector can be made to vanish in step iii without designating
another linearly -independent vector.) Otherwise,

(v) If the sum of the type 10 equation is unique and has two vec-
tors marked, then use it in repeating step iii. Otherwise,
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(vi) Form a new sum for use in step iii by adding the reference sum
to another component sum (from the same state sum). Repeat step iii.

The process is repeated until all of the vectors have been marked
in step iii (the system is linear) or until an inconsistent equation is
generated in step iii (the system is nonlinear). The coding process for
the state vectors is initiated by assigning arbitrary, but linearly in-
dependent, vectors to the state vectors so designated by passes through
step iii. The remaining state vectors are coded using the type 10 equa-
tions which were generated in step iii in conjunction with the state
sums.

The application of this synthesis procedure is more straightforward
than its description would indicate. This is best illustrated by an
example. Consider Table VI.

TABLE VI

(00) (10) (01)

Si S6 S4 32

S2 SI S3 Sg

S3 S2 87 86

34 S3 81 S5

S5 84 S6 S7

S6 S5 Sg S3

S7 Sg S5 8,

Sg 87 82 S4

S9 S11 S12 S9

810 89 510 811

S11 S,0 So 812

812 812 S11 810

In terms of the coded vectors, the state sums are: from inputs () and
0

(1

v6 + v4 = v1 + v3 -= v2 + v7 = v5 = v,, + v12 = v10 , (13)

0)
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0 0from inputs (0 ) and(i)

VG = vg = v3 ± v5 = v4 ± v7 = v11 + v0 = v10 ± 1,12 . (14)

Equations 13 and 14 are mutually consistent, and both are consistent
over the table.

The observation that Avi2 =- v12 leads to the assignment of the null
vector* to v12 (therefore, 112,0 = 0) . Then in step ii of the synthesis
process, take v11 + v12 of equation 13 as the reference sum, and add
it to v5 + v8 of equation 13. In step iii form

A(v12 v11 + v5 + v8)

= 112.0 + 111,0 + 15,0 Is.° + V12 + V10 + V4 + V7

Since 112,0 = 0, taking v11 and v5 among the linearly -independent vec-
tors and the satisfying equation

v12 + v10 + v4 + V7 = 0 (15)

leads to fii3O = 15,0 = 18,0 = 0. Also, the set of vectors for which the
nonlinear function vanishes, denoted by L, is

L = {v12 , , v8 v5}.

Equation 15 is the sum of two component sums of equation 14. There-
fore, equation 15 is automatically satisfied.

At this point, component sums do not satisfy the conditions of step
iv. In step v equation 15 is not unique. In step vi taking v2 v7 with
the reference sum yields

A(v12 + v11 + v2 + v7)

= 112,0 + 111.0 + 12.0 + 17.0 + V12 + V10 + V1 V8

Since f,0,0 = f 11.0 = 0, designate v2 as a linearly -independent vector.
Then,

12.0 = 17,0 =

if

v12 ± v10 + v1 ± vs = 0.

The last equation is a rearrangement of terms in state sum (14) and
therefore it is automatically satisfied.

* The assignment of the null vector is somewhat arbitrary. It has been shown
(Yau and Wane) that the null vector can be assigned to any state which is
mapped into itself under the null input.
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Updating the set L,

L = (v12 , V11 , v8 , V7 V5 , V2I

The conditions of steps iv and v are not satisfied ; in step vi, adding
v1 + v3 and the reference sum yields

A(11,2 + vi + v3)

= 112.0 + 111,0 + /1,0 + /3,0 + V12 + V10 + V6 + V2

Since 112,0 and fii3O have been shown to vanish, including v1 among
the linearly -independent vectors leads to

11,0 = /3.0 = 0

if

V12 + VIO + V8 + V2 ==

The last equation is the sum of two component sums of equation 14.
The set L becomes

L = V12 y V11 y V8v7y V5 ,V3 ) V2 ) V1 l

In equation 14, v1 + vs, and vs + v5 have both vectors marked in
step iii while vs + v2 j v4 + v7, v11 + v9 and v10 + v12 each have one
vector marked.

In step iv, forming

A (v, + v6 + v2) = 11.0 + 18.0 + 16.0 + 12.0 + V6 + V7 + V5 + V1

Since ii.o, 12,0, and /8,0 have been shown to vanish, fo,o = 0 if

vo + v7 ± v, v, = 0. (16)

Equation 16 is unique and consistent with the state sums.

L = {v12 , vii , VII , v6 , V5 , V3 , V2 V1)

Proceeding more quickly, A operating on v1 + vs + v4 + v7 (from
step iv) yields 40 = 0 and

vo + v7 + vs + vs = 0. (17)

The last equation is unique and consistent with the state sums. Up-
date the set L; let A operate on v1 + v8 + vn + v9 (from step iv) to
obtain f9,0 = 0 and

V8 + V7 + V10 + V11 = (18)
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Equation 18 is unique and consistent and also has three vectors in the
set L. Update the set L.

From step iv, A (vg + v7 + v10 + v11) yields he,0 = 0 and vs + vs
vg + v10 = 0 (which is the sum of two component sums of equation

14). Update the set L. Step iv gives v11 + v12 + v9 + v10 which, when
operated on by A, yields

110.0 = 0 and Vlo + V12 V11 =

(which is the sum of two component sums). L contains all of the
state vectors; therefore, the system can be coded.

There are four linearly -independent vectors (p = n = 4) . Make
the following assignment of the linearly -independent vectors:

Since v12 =

=

0

0

0

0,

1

0

0

0

=

"0-
1

0
0

l'9 =
0

1

Lo,

71 =

0'
0
0

, all of the component sums in equation 13 equal

V11 -I- V12 =

Then, from equation 13 it follows that,

and

Vs = V5 +

1,13 - +

1

0

0

0,

1

0

0

0

1

0

0

0

0

0

'1

0

,o)

r 1

0 0

0 0

,1
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Similarly, the component sums in equation 14 are each equal to v9 +

2/11 =

1

1

0
with the result

Vg = V2 +

=

= v11 ±

V10 = V I 2 +

To calculate A consider

1

0

1

1

1

0

1

0

1,

1

1

0

,1

1

1

1

1,

0

1

1

1

0

1

0

1

1

0

A [vl1 I v;
I V2 vi] = [v,0 I V4 I VI I v8]

1 0 0 0 1 0 0 1

A
0 1 0 0 = A = 1 1 0 1

0 0 1 0 0 1 0 1

_0 0 0 1_ 1 1 1 1_

The matrix B satisfies

B
1 0

= [r4 ± V6 I V2 ±



with the result
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B

1 1

0 1

0 0

0 1

363

Since equation 16 and 18 are consistent with the state sums and
since they were not used in the coding process, they are redundant.
It is easy to verify that the equations are satisfied by the code
assignment.

The process produced a code assignment for which the coded state
vectors had the minimum number of components. This will not be
true for all tables. Considering the way the process extracts infor-
mation from the table leads to the conclusion that the attainment
of the minimum component coding vector depends upon the con-
nectivity of the sequential machine. In a case where the machine is
not strongly connected there is a possibility the process will require
p > n.* (The last example involved a machine which was not
strongly connected.) In order to illustrate this consider Table VII.

TABLE VII

0 1 0 1

s1 s6 S4 89 811 812

S2 S1 83 S10 So Si,)

S3 S2 87 S11 Sin S1)

S4 83 SI S12 S12 S11

S5 S., SO S13 814 S15

So S5 So S,4 S15 S14

S7 S8 S5 815 813 816

86 87 82 816 816 813

The coded vectors obey the state sum:

V4 + V6 = V1 + V3 = V2 + V7 = V5 + V8

= V11 + V12 = V0 + V10 = V13 + V16 = V14 + V15 (19)

* A sequential machine is said to be strongly connected if it is possible to reach
any state of the system starting in any initial state.
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Taking via = 0 leads to the seection of v13 + v16 as the reference
sum since it is an advantage to exploit the fact that 116,0 = 0. For
brevity, the results obtained from step iii of the synthesis process are
shown in Table VIII.

TABLE VIII
Additions to

The Set Linearly
The Sum A Operates The Equation L Inde-:

Upon Obtained pendent

+ V13 + V8 + V16 V16 + V7 + V14 + V4 =0 v16 , V13 ) V8

V16 + V7 + V14 + V4 V16 + V8 + V3 + V15 = 0 v14 ,y7 v4

V16 -4- V13 + V8 4- V4 V16 + V14 + V5 + V3 = 0 Vg

V16 + V13 + V14 + V15 V16 + V14 + V13 + V15 = 0

V16 4- V13 + V7 + V2 V16 + V14 ± Vg =

V18 + V14 + V1 +v8 +v7

V15 + V13 + V1 + V3 V16 + V14 + V8 + V2 = 0

V15

v2

1PL

V3

V5 V5 ) V13

V7 )V14

At this point it is observed that v9, v10, v11, and v12 are not in L,
and more importantly, it is not possible to involve these vectors in a
relationship by application of step iii without introducing another
linearly -independent vector. By continuing the process it can be
demonstrated that the system is linear.

when

(v16 ± v13 + vil + 112) yields ,It.6 = 112.0

V16 4- V14 + V10 + V12 = 0.

Then, A (v16 + v14 v10 vr,) leads to f10.0 = 112,0

when

(20)

V18 + V15 + v12 + Vg = 0. (21)

A, operating on the last equation, gives 1'6,0 = f 12,0

when

v16 + v13 -1- v12 -I- v11 = 0 (automatically satisfied). (22)
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The system is linear since designating v12 as a linearly -independent
vector leads to

112.0 = 10.0 = 110.0 = 111,0 = 0.

It is also of interest that the set L which was obtained by the process
can be coded using the four linearly -independent vectors. This will
be true in general.

In order to insure realization of the transition table with the least
number of memory elements, it is important to develop a means for
keeping p at its minimum value, n. First, a general method for the
reduction of the number of vector components will be developed. Then,
the method will be applied to the problem at hand.

Let the set L denote the largest set L generated by the synthesis
process using n linearly independent vectors; let L denote the set of
vectors which require additional linearly independent vectors in order
to become members of L. The n -component vectors y are members of
L. , and the n -component vectors g are in L.

The members of L. can be coded. Taking the first n vectors of L. as
linearly independent (since order is unimportant), the calculation of A,
after the coding, leads to

A[y, I Y2 I I Y.] = [Tho I Y20 I I yno].

This can be simplified by coding the linearly -independent vectors such
that [yl I Y2 I I

Yn] = I (the n X n, identity matrix). Then,

A = [1/10 I Y20 I I No].

Suppose the set L, is tentatively formed by designating another
linearly -independent vector. It is clear that the vectors in L. (and
L...,) have n ± 1 components. In order to preserve the coding of L.

take (0) c L, where y c L . That is, the vectors which have been

coded over n linearly -independent vectors are increased by one com-
ponent (which is taken as zero. Members of in which become members

of L.+1 will be denoted as (Y). Let 91' denote the (n + 1) th
1

linearly -

independent vector where g,., is any coded vector not in L. . The
(n + 1) X (n + 1) matrix A is given by

Aryl

0

Y2

0

Y.

0

17.+11

1

Yio

0

Y20

0

Yn0

0

* If fin+1 and iin+1,0 are in different sets (Ln or Lin), then the known A matrix can be
used to determine the coding of the vector which is in L. .
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From the previous coding of L,4 , it follows that the left side of the last
equation can be written as

1

Inn

Therefore, it can be verified that

[A
0

gn+111

Agn+1 + gn+,01
1

Observe that if A has the form

[0
A

A= - J

(23)

(24)

then A operating on any vector which has the form () will yield a
1

vector of the same form. Similarly, all vectors (Y0) are mapped into

another vector where the last component is zero. Since all of the n
component vectors y (of L) and all n component g vectors have different
codes, then the last component of the vectors in Ln, can be deleted.
Also, the matrix A (in equation 23) is the required matrix.

In view of the foregoing, a code transformation, acting on the coded
9, must be found such that A has the form of equation 24. It is well
known (for example, Cohn and Even') that the code transformation
y' = Ry, where R is a nonsingular matrix, cannot alter the linearity
of a system. From the state transition equation 1 it is easy to show that
this type of code transformation produces a new matrix of the form

It is required to find an R such that

RAR-1 = [A
0

01
J' (25)

Comparison of equations 23 and 24 indicates that R must have the form

R
0

(26)

Using equation 26 in equation 25 leads to the following restriction
on the vector T:

A9n+1 9n+1.0 = (A + In)T. (27)
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Also, applying the coding transformation yields

and

R() = Cy)0 0

R() = 1")1

g. T cannot be a member of L if the (n 1)th component is to be
deleted.

Therefore, the process of reducing the vector components by one is:

(i) Determine the vectors T which satisfy (27).
(ii) Of the vectors obtained in i, select one which preserves the

identity of L

Returning to the example, it can be verified that the following is an
acceptable code for all of the states except v vio , v,, , and v12 :

/11 =
0 =

0'
1

1
V3 =

0

0

,1 ,0 1

0 0 1

vs = 1

1

V7 = 0

1
vs =

1

0
1 ,0 o
0 0

V 1 1

0

0
V15 =

1

0
and v, =

1,

The corresponding A matrix is

A=

0 1 0

0 0 1 1

1 0 0 0

_1 1. 0

The set L4 is vt, , vio , vi, , v121. Set vc, equal to any vector not in L4
for example

0

0

,o,

V4 =

V13 =

0'
0

1

e

0
1

0

s_o

=

1

1

0

0
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V9 =

1

0

1

,o

From the table v9,0 = v11. To determine v11, add equations 21 and
22. The result is

V11 =

Then,

Avg -J- V9.0 =

and

A +

V9 + V15 + V13

0 0 1 011

0 0 1 1

1 0 0 0

1 0 1

r1 0

0 1
14 =

1 0

1 1

r

0

1

0

1

1

1

0

=

0

1

0

o_

0

1

,1

1

0

1

1,

1

Substituting in equation 27 yields

1 0 1 0 0

0 1 1 1
=

1

1 0 1 0 0

_1 1 0 0_ 0,

An acceptable solution is

T=
0

0

0

1,



since the new v, ,

1

0

1
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equations 20 through 22,

1'9 =

1

0
1

1

r',,,;=

0

0

0 1

0

1

, is not a member of L . From

I' 1 =

1

0

,0,

alld V12 =
1

0

It can be verified that this is an acceptable coding.

3.2 Singular Systems

The synthesis procedure which was developed in the last section
can be readily extended to treat the coding of singular systems.

Consider a state transition table that has d (d < N) distinct rows.
For linear systems, tables of this type have columns of next states
comprised of sets of d distinct entries. Therefore, the state sums
(with respect to the first column) have the form

V11 + VI. = = V11 + Vi. = ' " = Vdi Vds

for x = 2, 3, , M. (28)

In general a given table can have columns that are disjoint sets of
states. Also, when 2d < N, these columns can generate state sums such
that the only state vectors two state sums may have in common are
from the first column. State sums of this type will be called distinct
state sums.

An attempt to apply the synthesis algorithm of the last section
to a table which has distinct state sums can lead to undesirable
results. Since the equations determined in step iii of the algorithm
can contain only the d distinct vectors of the first column, and since
all state vectors must be guaranteed a linear transition to column
one, it is clear that in step iv at least one linearly -independent vector
must be designated for each distinct state sum. As a consequence, a
system coding that requires a large number of components may re-
sult. In order to avoid this situation it is useful to introduce the
concept of independent inputs.

The set of independent inputs is the set of input vectors that spans
all of the input vectors. That is, if u2, . . . , u,+, are the independent
inputs (the set of linearly -independent input vectors), then any other
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vector, say uy, , can be written as
m+i

u,, = E ayxu, ,

x=2

where the a, are constants which can be arbitrarily assigned when
the inputs are uncoded, or they can be determined by inspection of
uy when the inputs are coded.

Recall that Bu = viy + vi1 , for any i; allowing B to operate on
the expansion for u yields

m+1

vil E +
z=2

where each j (x) can assume any row index.
The state vector vi, can be forced to make a linear transition under

the null input if all vectors in column one and all of the vi(x)x have
been guaranteed a linear transition in step iii, and if (29) holds. To
demonstrate this, use the A matrix to operate on the sum of vi + vil
and another component sum; then, compare the result to that obtained
by repeating the operation after vi + vu has been replaced by its
expansion. The equations of the type (10) which are generated are
required to meet the conditions of step iii. Since each distinct state
sum not associated with an independent input can be treated in this
way, these state sums meet the conditions of step iv without the desig-
nation of a linearly -independent state vector. Also, since all vectors
in column one make linear transitions, all other vectors in the state
sum can be treated via step iv.

After the independent inputs have been identified (for coded inputs) ,
or designated (for uncoded inputs) the synthesis procedure of the last
section* can be applied over the state sums associated with inde-
pendent inputs. The remaining vectors could be treated by employing
equations of the type (29) and entering the synthesis process at
step iv.

A modified synthesis procedure of this nature would require con-
sideration of the equations of the type (29) in the coding process.
The modifications are compatible with nonsingular systems.

The remainder of this section develops an alternative synthesis
procedure that is better suited to capitalize on the redundancies found
in transition tables of singular systems.

(29)

*It is necessary to provide for the selection of another distinct state sum
after all component sums of the state sum under consideration have been ex-
hausted. This can be accomplished by selecting the reference sum in step vi from
another state sum.
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When, for example, columns 1 and 2 are disjoint sets of states,
(28) contains 2d distinct vectors. It is asserted that the 2d vectors
of this distinct state sum can be coded over the r + 1 components
(where r is the rank of the A matrix) by a modified form of syn-
thesis procedure of the last section and that the remaining vectors
can be coded by a simple relationship. Since only one distinct state
sum is to be considered, the information concerning the designation
and deletion of linearly -independent vectors (in step iii) which is
implicit in the other state sums must be incorporated. This is readily
accomplished by generating equations of the type (10) over the re-
maining state sums and equations like (29). Then, the unique equa-
tions, which must be compatible with state sums, are used to augment
the state sum; that is, these equations, as well as the state sum, are
used as state sums in coding over r + 1 components. (Notice that the
equations in question contain only vectors from column one.)

Partition the vectors such that the upper partition contains r + 1
components. That is,

V = [ //1
V ix

Then, using the augmenting equations,

241 -I- V12 =  = yf, -I- V12 =  = 24c, -I- en

and the state sums formed by columns which may appear in the table
that are permutations of the first or second columns in the synthesis
process, will yield a coding of these vectors and an (r+1) x (r+1) A
matrix. Let A' denote this matrix of rank r. The relations

(from Section II) and

imply

N2r-n :5_ d< 2'

271-' < N< 2"

2' < 2d < 9" 1 (30)

which verifies that 1' + 1 components are required to code the vectors
in the first two columns.

Before continuing, it is convenient to separate the present states
into sets such that all members of a particular set give rise to identical
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rows of next states. Let V1 denote the set of present states which are
associated with the ith row. If one or more members of the set has been
coded over r 1 components, then select one such r 1 component
vector as the characteristic vector of the set. Denote it by the symbol
cv! . If no vector in Vi has been coded over r 1 components, the
characteristic vector can be determined from

A'ev; = e, .

This last equation has at least one solution for cv! since the columns of A'
must span all of the v' vectors of the first column. Also, the cv; so deter-
mined is not a characteristic vector of any other set. Then, taking the
system A matrix (n. X n) as

A =[14-±0
0

0

will make the linearity of the transitions in the first column depend-
ent only upon the coding over v'. For the vectors which have been
coded over v', set the remaining components, the v", equal to the
n-r -1 component null vector. (This is necessary, if ui = 0.) That is,

= = 0 for i = 1, 2, , d.

Thus, all vectors in the first two columns are completely coded.
The remaining vectors can be coded by the following process. Con-

sider the column of uncoded vectors under an independent input u.
From the state sum of u1 and u, it follows that

v,, = v11 v,, vii , for j = 2, 3, , d. (31)

Since v11 and vi, are known, once v,, is coded, the coding of all other
vectors in the column is determined by equation 31. vi can be set equal
to the characteristic vector of the set V in which v, (as present state)
belongs. This will insure that the present state v makes a linear transi-
tion under input u1 . vg can be set equal to any n - r - 1 component
vector that has not been previously used as a v" vector. When u, is
not an independent input, v can be obtained from equation 29 after
the independent inputs have been treated; then equation 31 gives the
the coding of the remaining vectors in column y.

To illustrate the process consider Table IX.
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TABLE IX

0 1 0 0 0

0 0 1 1 0
0 0 0, 1 1

S1 S 1 S3 S5 S7 S9

S2 S2 84 S Ss 5115

83 S I 83 S5 S7 S9

S4 S2 84 Ss Ss S10

S5 8 1 83 S5 S7 S9

Ss 82 84 Ss Ss S I 0

87 S I 83 S5 S7 S9

88 S2 84 so Sy so

S9 SI 8:1 S5 87 S9

StO So 54 S8 S8 819

The state sums are

373

VI + V3 = V2 + V4
I

V, + V5 = V2 + V6

V1 + V7 = v2 + v8

V, V9 = V2 + VIO

The state sums are consistent over the table. Take the second, third",
and fourth inputs as independent. All state sums and equations like
(29) generate augmenting equations identical to the null vector. To
determine r, note d = 2; therefore, from equation 30, r = 1. The vec-
tors in the first state sum are coded over two components using the
synthesis process. The result is

and

1

CO '

A' = 1 0

_0 0_

(o1) (11)
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The sets V are:

171 = / V3 / V5 / V7 / Vol?

V2 = 11/2 , V4 , V6 7 v8 , V101 

The characteristic vectors are taken as vl and 2) , respectively; that is,

cv1 = (g) and cv2 = (10)

The vectors in the first two columns are fully coded by setting the
last two components of each vector to zero:

1,,

and

[0
0

0
LO

"1

'
V2

0

0
1,3 =

0

A=

From the second state sum,

Take

Since vii E V.

therefore,

0
1

0

,o,

r1 o o o

0 0 0 0

0 0 0 0

_0 0 0 0_

V5 = vl + V2 + V6 

vn =

= (0)

v4 = cvr, = (0)

0

1

,o,

V4 =

1

1

,o
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and

1

V5 =
0

0
+

0
1

=

.0 ,0_

Similarly, taking

=
(11)

and observing that

v; = cv; and v7 = /.,

o)
0
1

LO

lead to

1

Vs = 0
1

and 1', = 0

1

1

respectively. Since the last input is the sum of the third and fourth
inputs, v1 + vo = V1 + v5 + v1 + v7. Then,

Finally,

0

VI) =
0

0
and 0

V10 = 0

1 11

ro o o

B = 1 0 0

0 1 0

LO 0 1_

IV. CODING THE OUTPUT VECTORS

4.1 The Mealy Model

Let z1z denote the symbolic output vector for input us and present
state si . Let the output table contain L distinct vectors; then, z,,. is an
/-component vector (L S 2t) over GF(2). A k -dimensional vector
(1 < k), evi; , is to be assigned to each symbolic output vector,
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If the output is linear,

= Cv, + Dux . (32)

This equation implies that all of the equations obtained in terms
of the coded state vectors (state sums and equations derived in the
coding process) can be converted directly into relationships involving
the coded output vectors. For example, if vi -l -v2 = v3+ v4, then from
the output table, for any

Wly T W2y = to3y T wo, 

Let the equations obtained in this way be referred to as state derived
equations.

From equation 32 it follows (by the same reasoning leading up
to equation 6) that

WI w1, = = wiz ± w11, = = w, . (33)

Such equalities will be denoted by the term output sum.
Clearly, output sums, and state derived equations must be con-

sistent if the output is linear.
It is known that N = 2" for a reduced table of a fully linear sys-

tem.* Therefore, if N < 2" for a reduced table, the output is non-
linear. On the other hand, where N = 2", the set of coded state vectors
forms a complete set of n component vectors. Then, when 1 > n and
there is a null input, say u1, it is easy to show that the output vectors
in column 1 are a subspace of the space of all output vectors. This sug-
gests that the output vectors in column 1 can be coded over n compo-
nents setting the remaining / - n components to zero (that is, code
over the subspace only) .

The upper submatrix of the partitioned C matrix,

[Cn ](Cn is an n X n matrix)
Ci_,,

can be determined by considering the outputs associated with the
independent coded state vectors. Then,

Cn[vi I I v] = [w11
I I

where the w' are n component vectors. Recalling that [v1 I I Mt]

= In (for convenience in the state coding process) leads to

* Cohn and Even'
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C [7v;, I I wnl]

Since the subspace property of the first column must be preserved,
it is true that Ci_ is the n x n null matrix. Furthermore, C and
the code assignment over it components can be determined by designat-
ing n independent output vectors in conjunction with the state derived
equations and outputs sums.

For all columns which are premutations of the first column, the
corresponding Dui must have zero as components 1 - n through 1
(again, to preserve the subspace property). More generally, the
entries in the first n components of Dud, generate permutations of the
first column, while the entries in the remaining 1 -n components force
the output vector out of the it dimension subspace.*

In order to code the output vectors which are not members of the
first column, notice that an output sum which involves such a column
and the first column has N distinct sums and 2N vectors. N of these
vectors have been coded (the members of the first column) and one
of these vectors appears in each sum of vectors in the output sum.
Therefore, if a linearly -independent vector is designated, by assigning
a nonzero entry in 1 -n components, then all of the remaining N - 1
vector codes are determined.

For example, if, in equation 33, x = 1, then wix, for i = 1, 2, . . . ,

N are vectors in the subspace (and can be coded), then setting w1v
equal to a linearly -independent vector or any vector not in the sub-
space gives the code assignment for all other vectors in column y
since wiy = wiv + wly + wjg, for any i. The procedure is basically the
same as in coding state vectors of a singular system.

The case where L < N can be treated as an obvious special case of
the above.

4.2 The Moore Model

In the Moore model of a sequential machine the output is a func-
tion of the system's state alone. That is, D = 0. It is then obvious
from equation 32 that the number of distinct output vectors cannot
exceed the number of state vectors. Therefore, the method for coding
over the n -dimensional subspace introduced in Section 4.1 can be
applied directly, using the state -derived equations.

* This property is the identity or disjointness of sets of vectors which can be
rigorously proven by an argument parallel to the proof of theorem 3.
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V. CODING THE INPUT VECTORS

5.1 The Mealy Model

In the Mealy model of a sequential machine it is possible to have
inputs which do not generate distinct columns in the state transition
table and yet give rise to distinct output columns. Such cases require
an interaction in the determination of the B and D matrices.

Let there be M different inputs, and K(K < 2k) distinct columns
in the state transition table. Take one input as the null input, say
u, = 0. Considering one component sum from each state sum, it follows
that

Buz = v11 ±

for each ux that generates a distinct column. For convenience number
such inputs u1 through uK. Similar to the approach of Section 4.1,
code the input vectors over the first k components. That is, from

select

B = [Bk I Bm_k] (where Bk has k columns)

Bk = [Vii V12 I I v11 + V1 , +
I

I u;,+11-1, (34)

where the u' are linearly independent vectors formed by the first k
components of the input vectors, and where v11 + v12, , v11 +
v1, k+1 are the k vectors that span the set of the K distinct sums
of the form v11 + v1x. Since it is only the first k components of the
input vectors that influence the state transitions, it must be true that
B,_k is the n X (m - k) null matrix. The remaining k component in-
put vectors can be obtained by solving the set of linear equations* (in
matrix form)

Bku,; = v11 + 2,1,, 

At this point k components of all input vectors have been coded.
Considering the output table, the D matrix can be determined from

DN. I - I ur] = [w1, ± Wla I Wil Wlb I I w11 Win] (35)

where the columns of the matrix on the right side span all sums of
the form w11 + wiy, and where ua, . . . , ur are m inputs which are
assigned as linearity independent vectors.

* These linear equations must be consistent since the columns of Bk span all
vectors of the form vu viy. (See equation 34.)
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Consider the example in Table X.

TABLE X

379

it U2 U3 U4 U5 Ug U7 Us

S, /z s,/z2 31A5 81/20 52/27 s2/z8 82/Z0 52/210

82 S342 s3/z, 83/26 s3/z5 S4 /ZS S4/Z7 S4 S4 /Z0

s3 S4/Z3 s4/z4 S.11/Z1I 84/Z12 S3A13 S3/214 S3/215 S3/Z I 0

84 s2/z4 82/Z3 82/Z12 82/2I I 81/214 S1/x13 S1/z16 S1/x15

In order to code the system states, consider u1 and u8 which generate
the only distinct columns. Take u1 = 0. It can be verified that an
acceptable coding is

vi = (°) ()
0 ' v2 = k101 '

(0)
'

_ 1 1
= (1

giving

1 11

_1 O]

For the output table, L = 16, 1 = 4. Calculating the upper partii ion
of the C matrix, C2)

or

Take

then, C2 = 12 or

A=

c2[y3 I v21 = [tv; I 14],

C, = Iw3 I Wd

=
0

(1
11)2 =

(0
;) 'i)

1 0

0C = 1

0 0
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1
From the state sum, w: = 0, and since v, = 0, it follows that wf = .

Clearly, w1 w2 , w3 , and w4 are given by including two additional zero
components. In order to code column 3 consider the output sum

W6 = W2 ± W6 = W3 + W11 = W4 + W12 

Taking w; =

Similarly,

0

0

1

0

leads to

W6 = WI + W5 + W2

os

0

0
0
0

1

0,

'1 1

0 1
W, =

0,

W12 =
1

0,

By taking

0

=
0
0

and w9 = 0
1

,1, 1,

0 0
1 1

0
0, 0,

the remaining output vectors can be coded.
Coding the first component of the input leads to

With the results

and

r1-1
B =

L0j

B = 1 0 01

0 0 0_1

ui = 2c2 = u3 = icq = 0, (36)

= ue = /4 = u8 = 1. (37)
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The output vectors w2 , w5 , and w, span all sums of the form w,
(notice w, = 0) x = 2, 5, 6, 7, 8, 9, 10. Then,

D[u, I u3 I u5] = [w2 I W5 I w7] =

0 0 0--

1 0 0

0 1 0

_0 0 1_

Considering equations 36 and 37, make a linearly -independent assign-
ment of th , u3 , and u6 . Say

ro' 0
,

(it, = 0 , u3 = 1 , and u5 = 0[

1, 0 0

which leads to

0 0 0

I) = 0 0 1

0 1 0

1 0 0_

To determine u4, for example, set up the linear equations

or

Similarly,

=

Du., =

r0 0 0

0 0 1

0 1 0

Ll 0 0

1

0

(recall = 0)

214 =

01

0,

414 = 1

1

(1)

= 1 , and us =
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5.2 The Moore Model
For the Moore model all columns of the state transition table are

distinct; therefore, the method for coding over k components of u,
introduced in the last section, can be applied directly.

VI. LINEARITY AND INCOMPLETELY SPECIFIED SYSTEMS

This section considers the problem of specifying "don't care" entries
in the state transition table in a way consistent with linearity; the
results can be extended to the output table.

It is obvious that if an incompletely specified table is to have a
linear realization, then the entries in the table must obey the same
relationships which were developed in the preceding sections. For
example, the table must exhibit consistent state sums, and allow
completion of the maximum memory process. The resulting restric-
tions on the unspecified entries may be used to deduce their appro-
priate assignments.

Consider Table XI in which the "don't care" next states are de-
noted by the symbol t.

TABLE XI

0 1

ti 82

S2 S4 S6

S3 58 t4

S4 S6 54

sb S3 Si

So Si S3

S7 t2 Sg

S8 t3 S5

The state sum is

V2 + t1 = V4 + V6 = t4 Vg = V1 + V3 = t2 Vg = t3 + V5

From the third and fifth terms, it follows that t4 = t2 . Forming

A(vi ± v3 -I- v4 + v6)

(38)



leads to

Also,

yields

SEQUENTIAL MACHINES

v. +v, + v. ± t, = 0.

A(v, + + v2 ± t1)

383

(39)

v. + v1 + V4 + 11 = 0,

where 1, = At, . Locating v. , v1 , and v4 in the state sum leads to the
conclusion 1, = v.. The present state which gives s3 as its next state
under zero input is 85 . So that, t1 = v.. The first and last terms of the
state sum imply that t3 = v2 . From A(v4 + v. + v. + t2) obtain

V6 + V1 + t3 + 12 = Ve V1 + V2 + = 0.

Adding the last equation to equation 39 gives

vs + ti ± v2 -I- 12 = v. ± v; ± v2 ± 12 = 0.

However, equation 38 indicates t2 + v8 = v2 + v, ; so that 12 = t2 . From
the table, t2 = v, . Table XII shows the fully specified table.

TA I3LE XII

0 1

Si S5 S2

S2 84 S5

S3 S8 S7

54 S6 8.4

SS 53 S1

S5 81 83

S7 87 S8

S8 82 85

APPENDIX

An. Addition to Theorem 2

For N not equal to 24 there is a set of 24 -N vectors that cannot
he used as state vectors, However, when the system is linear operat-
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ing on any unused vector with the A matrix, and adding Buz must
produce a vector which is also an unused vector. If this were not
the case, there would exist a state vector which would give rise to
one of the unused vectors as a next state for some input. It follows
that a transition table can be constructed containing only the 2" - N
unused vectors. Let this system be called a virtual system. From the
foregoing, it is clear that the states of the virtual system must obey
the restriction of Theorem 2; that is, the number of distinct inputs
cannot exceed

2 ± (2n - N) E
s

where t is as before. Since the virtual and original systems must re-
main disjoint, the original system must observe the bound. This is a
smaller upper bound than obtained in Theorem 2.
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Laser Machining of Thin Films
and Integrated Circuits

By M. I. COHEN, B. A. UNGER, and J. F. MILKOSKY
(Manuscript received September 5, 1967)

The feasibility of using the YAG laser as a tool to thermally machine
integrated circuits has been studied. Results suggest that defining the resistor
geometry, trimming the resistors to value, fabricating gap capacitors,
and defining interconnecting circuitry might be performed by such a laser.

Pattern generation by laser machining has been demonstrated on various
thin and electroplated films. Vaporized lines (gaps) are readily attainable
as fine as 0.25 mil in thin films and 0.4 mil in plated films. Much thinner
lines may be obtained under particularly well -controlled conditions. These
films may be removed with minimum effect to the substrate surface. The
heat -affected region of the substrate may be confined to less than one film
thickness. Better laser output control and shorter pulse widths will diminish
this thickness.

Gap capacitors have been made on sapphire substrates with capacitance
approaching 20 pf in 0.04 square inches, and experiments suggest im-
provemen ts.

Tantalum films may be shaped to resistor geometries and trimmed to
tolerance by removing metal or by oxidizing the resistive film with the
laser. Resistors usually can be trimmed to tolerances of less than ± 0.1
per cent.

With further development it might be possible to combine these laser
machining processes into a single-step, automated fabricating procedure
for certain types of integrated circuits. We review some of the technical
aspects of this and discuss using Q -spoiled YAG lasers to directly machine
masks for photoetching.

I. INTRODUCTION

The steps to fabricate thin film passive elements and interconnecting
circuitry on hard substrates are well documented* 2 These procedures,
defining resistor geometry and interconnecting circuitry, resistor trim -

385
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ming to value, and capacitor fabrication, are the essential steps for
producing precise integrated circuits. It is our intention to show that
a laser can be used to vaporize, in a controlled manner, thin film
structures, and that it therefore might be capable of supplementing or
performing these four processes; or it might be used to supplement
photolithography by directly machining thin film masks for making
circuits by photochemical methods.

We studied methods for performing these steps with a continuous
neodymium doped yttrium -aluminum -garnet (YA2G:Nd or YAG)
laser. Laboratory work has demonstrated the feasibility of fabricating
circuit building blocks and eliminating many steps for film structures
which are common to tantalum integrated circuits; that is, circuits
in which the resistive films are compounds of tantalum. Similar
techniques will be applicable to other types of circuits.

Tantalum thin film resistors have been shaped and trimmed to
value with a laser beam. A controlled laser has removed various
combinations of thin films from substrates without adverse effects
to the substrates. Tantalum films have been thermally oxidized with
the YAG laser as the heat source. Controlled parasitic or gap capaci-
tors have been made with specific capacitance up to 4.5 x10-4 pf per
square mil by laser machining narrow lines across thin films.

The YAG laser has demonstrated considerable potential as a thin
film machining tool. The simplicity of operating and controlling the
device, and the characteristics of its output beam render it particu-
larly well suited to this application.

II. GENERAL CONSIDERATIONS

2.1 Characteristics of Lasers as Fabricating Tools

The utility of a laser as a tool for fabricating thin film circuits
results primarily from the spectral purity and degree of collimation
of the laser light. These characteristics allow the beam to be focused
to a very fine and intense spot. The high heat flux which occurs when
the light is absorbed by the target material, and the sharp definition
and localized nature of the working region allow heating, melting, or
vaporizing minute amounts of material, with minimum effect to ad-
jacent material or components.

Among other useful characteristics of light as a working tool is
its small absorption depth in metallic materials. This property renders
the laser particularly applicable to operating on thin materials such
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as films without damaging the substrate or material beneath the film.
In addition, energy may be transferred to the workpiece through an
optically transparent material or atmosphere, and without physical
contact with the workpiece. Encapsulated or otherwise inaccessible
parts may be machined, and working regions may be kept free of
contamination which might result from contact with a tool. Refer-
ences 3 and 4 give more detailed discussion of the suitability of lasers
for fabrication.

Many types of lasers have been shown to be applicable in processes
related to thin-film circuit fabrication. Pulsed lasers have been used
to vaporize slots and lines in metallic targets5 and have been included
in an experimental automated procedure for trimming thin-film
resistors.6 Pulse -pumped He-Ne gas lasers have been used to scribe
lines on metals.' Reported linewidths are 12.5 microns. Ionized argon
lasers operating at one-half watt cw output have been used to scribe
lines as fine as 10 microns in iron -nickel films deposited on glass!'

The neodymium -doped yttrium -aluminum garnet (YAG) laser dis-
cussed by Geusic and others,'-li is particularly well suited to thin-
film fabrication because of its good combination of such character-
istics as the adequate intensity, stability, and optical quality of the
output beam, and its simple and compact design. Such YAG lasers -
may be operated continuously at about 1 watt output, or may be
repetitively Q -switched by rotating the rear reflector. The Q -switched
output is a continuous train of pulses with peak power exceeding
1 kw, and pulse duration about 200 ns when the repetition rate is
400 cps. Both types of operation may be obtained by using as a
pump source an inexpensive lamp powered directly from line current.
In both cases the laser may be adjusted to oscillate in a sufficiently
low order mode that the output beam may be focused conveniently
to the fine spot needed for precise thin-film machining.

2.2 Machining Thin Films

The processes that we studied, except thermal oxidation, use the
laser's ability to vaporize material. It is desirable, therefore, to dis-
cuss briefly a few of the parameters and phenomena of material re-
moval by laser. Cohen and Epperson give more detail.8

We notice first that it is the optical power density in the focused
spot rather than the laser power output, itself, that determines the
suitability of a laser for removing material. Greater power densities
often may be obtained from a laser that oscillates in a low order
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mode, than from a higher -powered multimoded device. For the useful
case of a laser oscillating in the fundamental Gaussian mode, the
minimum focal spot radius, w1, may be determined from the relation-
ship. (See Ref. 3.)

1 1 (Zo d)) , 1
= 1 - 1-

Wf wo f (fe)2
(1)

where, f is the focal length of a lens with sufficiently great aperture
to admit the entire beam, wo and z0 are parameters which depend
upon laser cavity configuration, d represents the distance of the focus-
ing lens from the cavity, and B is the far -field beam divergence angle.
In many metal -working applications, including the one we are dis-
cussing, the lens is sufficiently far removed from the laser output
reflector that equation 1 becomes

lim Wf =
xf

11/(Zo+d) 1-0 rW
(2)

where w is the radius of the beam as it enters the lens. Equation 2
predicts, therefore, that spot sizes of the order of wavelength, A, may
be obtained with lenses having small f numbers (that is, small ratios
of focal length to aperture).

The size of the affected zone in the target material will depend
on the thermal properties of that material as well as the optical spot
size and the intensity distribution across the spot. Edge definition
of the affected zone depends primarily on thermal properties of the
target and the duration of exposure. Metals with high thermal dif-
fusivity and a large difference between melting and vaporizing tem-
peratures, such as gold and copper, tend to develop a lip formed by
molten metal around the region from which material was removed.
The lip may be minimized by using a very short exposure such as that
which might result from operating the laser in the Q -switched mode.

The use of Q -switched output also is desirable to minimize thermal
damage to the substrate. Damage results both from heat conducted
from the film into the substrate, and from direct impingement of the
focused laser light on the substrate after the film has been removed.
Using laser pulses of high peak power and short duration substantially
decreases both effects.3

Many metals reflect an appreciable portion of the incident laser
light. Such metals might need much higher laser output levels than
nonreflecting materials. In most laser micrometalworking processes,
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the surface remains solid and reflecting for only a small portion of
the laser pulse duration. The reflectance of the surface may decrease
abruptly when it melts or reacts with its atmosphere, and subsequent
absorption will occur with greater efficiency. The initial laser output,
however, must be sufficient to break down the surface.

2.3 Experimental Apparatus
Figs. 1 and 2 show the apparatus used in our experiments. The YAG

laser was Q -switched by rotating the rear reflector at 400 hertz. The
output pulse parameters at the rated voltage of the pump lamp (120
V) were about 1 kW peak power and 200ns duration at the half
power point. Output, at 1.06 micron wavelength, was monitored by
means of a photomultiplier tube behind the cavity, and the photo-
multplier frequently was used in conjunction with a thermopile which
measured the mean power of the output beam, so that the peak power
could be calculated. The laser output was attenuated by neutral den-
sity filters. Laser mode pattern was observed by means of an image
converter tube, and the laser cavity was adjusted periodically so
that most of the output was contained in the fundamental mode.

An x -y -z micropositioner was used to focus and move the workpiece.
For applications such as line scribing, in which the work is moved
across the beam, one of the micrometer barrels is rotated by means
of an hydraulic drive coupled to a gear and belt mechanism. A wide
range of continuously -variable speed was available. The maximum
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Fig. 1- Schematic diagram of laser machining apparatus.
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permissible sweep speed, however, was dependent upon the diameter
of the focal spot and the stability of the laser output. With excessive
sweep speed, successive laser pulses did not overlap, causing scallop-
ing at the edge of the line. Speeds of 0.1 inch per second were per-
missible with 0.0002 -inch gaps, and correspondingly lower speeds were
required with smaller gaps. Working atmosphere generally was air,
although limited tests suggested that somewhat better edge definition
is possible in oxygen -rich environment.

The viewing and focusing device consisted of two partial mirrors
and an eyepiece mounted on a traverse mechanism, and a separately -
mounted microscope objective. Objectives with 23 mm focal length
(10X) were used for most of the applications studies associated with
direct machining of tantalum integrated circuits, and lenses with
focal length as short as 4 mm (approximately 70X) were studied for
thin-film mask -making application.

The 23 mm objective was a particularly good lens for general-
purpose work. Its depth of focus was sufficiently great (approxi-
mately ±0.001 inch) that fine lines of appreciable length (greater
than 0.5 inch) usually could be scribed with good uniformity on
nonuniform surfaces such as that of a glazed alumina substrate with-
out elaborate alignment of the workpiece. The spot diameter, 2 WI,
calculated from equation 1 and the parameters appearing in Fig. 1,
was about 8 microns (about 0.0003 inch) for this lens. Increasing
the strength of the objective to about 40X will decrease the cal-
culated spot size to about 2 microns, but the severe loss of depth of
focus restricts use of such lenses to very flat and well -aligned targets.
Such lenses with short working distances also necessitate careful at-
tention to laser output intensity in order to prevent lens damage due
to the laser plume of vaporized material.

The apparatus described has been used to vaporize spots and scribe
lines in a wide variety of thin-film structures. Figs. 3 through 5
show some of the general characteristics of such lines.

Figure 3 indicates the effect of laser beam intensity and stage sweep
speed on width and definition of lines vaporized in a gold thin film
(approximately 3000 A) on sapphire substrate and a nichrome film
(2000 A) on quartz. An 8 mm lens was used to scribe the gold film
and a 4 mm lens was used for the nichrome. The finest lines were
about 0.00025 inch wide for the gold and 0.0001 inch for the ni-
chrome. Such gaps generally contain no metallic debris, as evidenced
by the very low electrical conductance that is measured across them.3
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GOLD
8MM LENS
125 X

A

LINE NUMBER '1 2 3 4' 11 2 3 4 '1 2 3 4' '1 2 3 4 5'
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Fig. 3 - Effect of machining parameters on lines machined in 3000 A gold
film on sapphire and 2000 A nichrome film on quartz.
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Lines as fine as 0.00004 inch (1.0 micron) have been scribed in tan-
talum nitride, titanium, and nichrome films.

It has been shown that for thin film samples similar to those shown
in Fig. 3, the extent of damage to the sapphire substrate may be
minimized by proper control of power density and sweep speed.3 Fig.
4, representing a typical cross section through such a sample, indicates
that the extent of the affected zone may be limited to a depth ap-
proximately equal to the film thickness. Recent results have shown
that some metal films may be removed with no substrate damage
observable by optical means.

Fig. 4 also suggests the presence of a small gold lip bounding the
laser -machined gap. The size and nonuniformity of the lip, and the
depth of the thermally affected zone in the substrate increase as the
film thickness is increased. Fig. 5 shows typical depth of penetration
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into the sapphire when the gold thin film is plated with approximately
0.3 mil of copper and then 0.01 of gold. Although gaps as narrow as
0.00020 inch have been machined in such films with a 23 mm lens,
gaps smaller than the film thickness require precise control of laser
and stage parameters. The lateral extent of the heat -affected zone
resulting from thermal conduction in YAG laser -machined thick
films often is the same as the film thickness.

Results similar to these have been obtained when the substrate
material is glazed alumina, quartz, or silicon rather than sapphire,
although the body of data for these materials is not nearly so large
as it is for sapphire. Damage to the surface, apparently caused by
melting, is confined to a depth less than the film thickness. Cracking
of the glaze in the vicinity of the working zone has not been observed
when laser parameters have been adjusted properly.

III. DIRECT MACHINING OF TANTALUM INTEGRATED CIRCUITS

3.1 Gap Capacitors

3.1.1 Characteristics
Interelectrode effects normally are present in miniaturized or high

density integrated circuits. However, these parasitic or stray capaci-

EPDXY POTTING
MEDIUM

APPROX 3000 X

 1400 X

Fig. 4 - Cross section through gap machined in 3000 A gold film showing the
affected zone in the sapphire substrate.
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tances usually are minimized by judicious spacing or isolating the
components. These parasitics, gap capacitors as we call them in this
article, can be produced with values high enough for use as discrete
circuit elements by varying the spacing and length of the coupling
electrodes, and the dielectric constant of the surrounding media.

Kaiser and Castro have calculated the interelectrode effects be-
tween two thin film conductors deposited on a substrate.12 The cal-
culations were directed at predicting parasitic capacitances between
parallel conductors on substrates of various dielectric constants. The
analysis was based on a model of two parallel conductors a distance
d apart, of equal width 1, on the same side of a substrate with dielec-
tric constant k, of finite substrate thickness t, and of infinite extent.
It has been assumed that the dielectric constant of the environment
is negligible compared with that of the substrate. Fig. 6 presents, for
various d/t and //t ratios, calculations based upon this analysis.

Fig. 6 shows experimental data for some gap capacitors fabricated
in the laboratory by means of a Q -switched YAG laser. Gap width
was varied from 0.0005 to 0.025 inch for thin chrome -gold films on
0.025 inch thick barium titanate substrates (dielectric constant ap-
proximately 500), and 0.0003 to 0.015 inch for tantalum -chrome -gold
thin film composite on 0.03 inch sapphire. In the case of the high
dielectric substrate, agreement with numerical calculations is best for
the larger gaps. Behavior for the fine gaps probably is affected by the
granular and nonuniform nature of the substrate, and further study

EPDXY POTTING
MEDIUM

FPLATED FILM

SAPPHIRE

Fig. 5- Cross section through gap machined in plated thin film showing the
affected zone in the sapphire substrate,



0.6

0.4

0.2
z

U_

0.1

0.08

0.06

0.04

0.02

LASER MACHINING 395

9

41.....,46
.

9
1=

/ t
'- I

...i....."."" 111%,

it

t
/- -=0.3o __. t

- - ANALYTICAL REF. 12)
EXPERIMENTAL, SAPPHIRE

- A EXPERIMENTAL ,
BARIUM TITANATE (K= 67 1)

\
0 EXPERIMENTAL ,

BARIUM TITANATE (K= 456)

I I I I I I I I

001 0.02 0.04 0.06 0.1

Fig. 6- Capacitance of gap
of analytical and experim

is necessary. The shape of
predicted by the analytic
curves may be explained
through the environment.

3.1.2 Laser Fabrication
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the curve for sapphire is similar to that
1 model. The displacement between the
by considering the fringing capacitance

A Q -switched YAG laser was used to machine fine lines in thin
film conductors to form the gap capacitors. The effects of gap width,
line length and geometry have been investigated. Most of the data
were obtained with gap capacitors on single crystal polished sapphire
substrates. Limited data also have been obtained for other substrate
materials.

Fig. 7 demonstrates the linear relationship that has been observed
between capacitance and gap length. There is no observed effect of
bending the cut into a serpentine configuration until, as will be
shown later, the parallel legs become sufficiently closely spaced. These
results suggest that there is no significant contribution clue to the
field concentration at the corners, since such an effect would cause
a deviation from linearity.

Most of the data in Fig. 7 were taken on tantalum -chrome -gold
thin film composites on sapphire. Some data also are included for gaps
machined in 0.3 mil thick copper -plated conductors. Gap width in
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both cases was 0.5 mil. The plated films appear to produce capacitance
values similar to those for unplated thin films.

The response of gap capacitors to frequency was determined by
measuring a gap capacitor at frequencies to 4 GHz. A plated 0.5 mil
wide gap capacitor cut in a plated 50 ohm transmission line on an
alumina substrate (Fig. 8) was measured with the following results:

Fig. 8- Gap capacitor laser machined in plated 50 ohm transmission line on
glazed alumina substrate.
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At frequencies of 465 kHz, 1 MHz, 3 GHz, and 4 GHz, the meas-
ured capacitance was 2.49, 2.48, 2.65, and 2.49 pf, respectively. The
response of a laser machined gap capacitor appears relatively flat
up to 4 GHz.

A further study was made of the effect. of gap width on capacitance
value. Fig. 9 shows the results of a tantalum -chrome -gold composite
film on a polished sapphire substrate, and of a chrome and gold
composite on an unglazed barium titanate substrate. Calculated points
from Fig. 6 are indicated to show the agreement with the analytical
model. The data indicates that the gap capacitors are insensitive to
changes in gap dimensions when the gap is a few mils wide, but very
sensitive when the gap is made less than a mil across. These results
suggest that in order to achieve the highest possible specific capaci-
tance it is desirable to achieve the smallest possible gap width. On
a normalized plot, such as Fig. 9, the elements are also insensitive
to substrate dielectric constant and the dielectric properties of the
test environment. Gap capacitance therefore can be presented on a
normalized basis with some constant as a dielectric scaling factor.

We show in Fig. 7 that capacitance varies linearly with length for
straight-line gaps. To achieve a high capacitance per given area-,
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however, the gap may be fabricated in a serpentine geometry. Fig.
10 shows a portion of a serpentine capacitor with 0.5 mil gap and
5 mil spacing. Fig. 11 shows the results of capacitance as a function
of total line length for serpentine gap capacitors of equal heights
on a conductor 0.225 inch wide. The curve is linear down to about
a 50 mil spacing between the parallel legs. As this dimension de-
creases, the relationship between capacitance and line length becomes
nonlinear. These results suggest the interaction of fields remote from
the gap edges that significantly affects the value of the element.

Specific capacitance is one means of comparing different thin film
capacitors. A specific capacitance can be given for gap capacitors
provided the substrate dielectric constant and gap width are stated.
Laser machined gaps 0.5 mil wide have been made in films on 200
mils -square sapphire substrates (K ,-, 10) in a serpentine fashion
with values up to 18 pf. This corresponds to a specific capacitance of
4.5x 10-4 pf per square mil. It is estimated that this value can be
increased to about 1><10-2 pf per square mil by adjusting the ser-
pentine geometry and decreasing the gap width to 0.2 mil. Such gap
widths have been machined in thin films with the YAG laser when
the optical alignment and beam control have been precise. With care-
ful control of techniques and equipment, repeatable gap widths of a
few microns or less are practical.

Fig. 10 - Serpentine gap capacitor on sapphire substrate. Gap width 0.5 mil,
separation between legs 5.0 mils.



20

16

12

8

4

0

LASER MACHINING 399

1 I

GAP WIDTH = 0.0005" A=0.005.

0.175

-). A 1.4- -+-

 0.010

-4 - 0.225 -

 0.025

/0.050 -
 0.075

A = 0.225
1

0 2 3 4 5
LINE LENGTH IN INCHES

6 7 8

Fig. 11-Capacitance of serpentine gap capacitors a:: a function of total
length of gap.

Leakage currents less than 10-° amperes at 40 V are normal for
these units. These values indicate that there is very little debris
remaining in the gap.

3.2 Trimming Thin Film Resistors

Two techniques for increasing the resistance of tantalum nitride
resistors with the YAG laser have been explored. Initial studies have
established the feasibility of trimming to value by removing material
and by thermal oxidation.

Trimming by removing material may be accomplished either by
changing the dimensions of the resistor or by vaporizing small spots
in the interior of the resistor. Fig. 12 shows a resistor whose value
has been increased 19 per cent by means of a series of internal spots,
each vaporized with a 1/50 -second exposure to the Q -switched beam.
Included in Fig. 12 are the results of resistance measurements taken
on this resistor.

Changes in resistance from less than 0.01 to over 0.1 per cent per
spot have been demonstrated by varying the size and location of the
spot on the resistor. Fig. 13 demonstrates typical resistance changes
for a resistor, one of whose edges has been removed progressively in
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0.0001 -inch steps. With proper instrumentation and control, either
the spot or edge laser vaporization method could provide a rapid
means of trimming resistors to better than 0.1 per cent. We notice
that resistors trimmed by material removal change less than 0.1 per
cent in resistance after such resistors are exposed to the laboratory
environment for several months. These results suggest the temporal
stability of laser trimmed resistors. A definitive measure of stability,
however, will necessitate a power aging test under controlled condi-
tions.

Our studies of thermal oxidation were exploratory because a proper
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quantitative investigation will require a laser with sufficiently high
output to achieve the required power density over a spot large enough
to completely expose the entire resistor. In the present study, a spot
about 0.001 inch across was used and the resistor surface (0.005 inch
square) was swept past the beam. A uniform brown color resulted,
accompanied by a change in resistance from 16.96 to 17.98 ohms. The
same color and increase in resistance may be obtained by wet anodiza-
tion to a potential of about 20 V.

A much greater increase in resistance (for example, 16.29 to 38.26
ohms) was obtained by further exposure. The surface, however, ap-
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pears nonuniform in color, indicating the varying degrees of oxida-
tion. As treatment progressed, the process appeared to lose stability
in the sense that it required greater attention to laser output and
stage sweep speed to prevent the resistor from burning through locally.
The indication is, however, that both uniformity and stability will
improve when larger laser spots are used.

We noticed that oxidation of tantalum areas adjacent to gold con-
ductors is possible without damage to the gold. The high reflectivity
of the gold raises the damage threshold of gold well above the power
required for converting the tantalum to oxide.

3.3 Miscellaneous Applications
The YAG laser may be used to remove metal films in order to de-

fine interconnecting circuitry. Such pattern generation requires no
considerations other than those already discussed. With the present
laser the small spot size necessitates many passes by means of an
index -and -repeat method, in order to remove large areas of film. Such
a method would be more economical if the present YAG laser were
Q -switched at great speeds so as to allow correspondingly greater
sweep speeds. An alternative would be to use a higher powered laser
to define roughly the circuit dimensions, and then to trim precisely
with the present laser.

The initial results suggest the possibility of fabricating, in one step,
a complete integrated circuit with all the passive elements. Such a
process would start with a metallized substrate and would use a
programmable laser and work stage. Complete laser fabrication of
hybrid circuits will require a process in which a metal film is removed
selectively, exposing a different film. For example such a process may
be necessary in order to remove the conductor and expose the resistor
film.

In the present tantalum -chrome -gold technology such a selective
removal of the gold presents substantial difficulties because the reflec-
tivity of the gold is much greater than that of the tantalum nitride.
It is quite probable, however, that some combination of films will be
found for which the upper film can be removed from the resistor with-
out damaging it.

IV. MACHINING THIN-FILM MASKS

The machining of masks involves considerations similar to those
for pattern generation. Experience has indicated that a variety of
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sputtered and deposited films (1000-3000 A) on quartz, glass, and
sapphire may be machined conveniently. Patterns machined in tita-
nium and nichrome films, however, appear to have superior edge
definition and uniformity of transmitted illumination compared with
patterns produced in other films. Mechanisms governing the behavior
of the metal film during laser machining have not yet been defined,
but appear to depend upon the surface tension and bonding charac-
teristics of the film as well as the thermal properties of both film and
substrate.

V. SUMMARY

The feasibility of machining resistive and capacitive components
directly on thin film metallized substrates with a laser has been demon-
strated. Tantalum films can be shaped into resistor geometries and
trimmed to tolerance by removing metal. These films also can be
oxidized to value using the laser beam as the heat source. Resistors can
be made with tolerances in value of less than ±0.1 per cent.

Gap capacitors have been made on sapphire substrates with capaci-
tance measuring up to 20 pf in an area of 0.04 square inch with 0.5
mil gap spacing. Limited studies have indicated that these elements
are stable with time, have leakage currents at 40 V of less than 10-9
amperes and do not change significantly with frequency up to 4
GHz. Variation of capacitance with gap width has been studied and
experimental results show good agreement with numerical results
based on an analytical model for determining parasitic capacitance.

Pattern generation by laser machining has been demonstrated on
various thin films as well as on electroplated films. Vaporized lines
as fine as 0.25 mil are readily attainable in thin films, as are 0.4 mil
lines in plated films. Much narrower lines may be obtained under
particularly well -controlled conditions. Uniform lines as fine as 1

micron have been scribed in thin films on sufficiently flat substrates.
These films have been removed with minimum effect to the substrate
surface.

The present work has been accomplished with a Q -switched YAG
laser operating with a repetitive output, at 400 hertz, of 1 kw peak
power and 200 ns pulse duration. Advantages of such a laser as a
machining tool include the optical quality of the output, and simplicity
and economy in both design and operation. Maximum machining speed
presently approaches 0.1 inch per second for 0.2 mil gaps, and a further
increase of one to two orders of magnitude may be expected as the
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repetition rate of the laser is increased. Continued development of the
YAG laser, particularly with regard to decreasing the width of the
pulse, is expected to provide for increased definition of the working
zone, improved selectivity in removing films of various metals, and a
further decrease in the already small damage to the substrate.

Our study has been exploratory and has served only to establish
the feasibility of machining thin film circuits with existing lasers.
Further attention to the details of the specific machining processes as
well as to the combination of these processes into an automated pro-
cedure is necessary in order to evaluate their practicality. It is neces-
sary, also, to better define the mechanisms governing laser material
removal processes in order to realize fully the potential applicability
of laser machining of thin film circuits.
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Performance Degradation
by Postdetector Nonlinearities

By GEORGE H. ROBERTSON
(Manuscript received October 17, 1967)*

This article gives the performance degradation found by using a computer
program to calculate the effects of various processing techniques applied
after envelope detection of narrowband Gaussian noise plus a CW signal.
Nonlinear processes that we studied are: suppression of low output levels,
hard limiting of high output levels, restricted dynamic range of output
level, and quantizing the detector output.

By modifying the program, we produced performance curves for systems
in which a steady CW component was present in addition to possible
signals. We also adapted the program to generate performance curves for
systems using a square -law detector so that a comparison could be made
with the results obtained for an envelope detector. We found that the presence
of a CW component, and all the nonlinear processes applied after envelope
detection, caused a loss of sensitivity in detecting small CW signals. Quan-
tizing even in as few as 8 levels, however, caused very little additional
degradation.

I. INTRODUCTION

A computer program was developed that would draw receiver op-
erating characteristic curves for a system using an envelope detector
to search for CW signals in narrowband Gaussian noise.1 The pro-
gram computed the probability that the detector output would exceed
a chosen threshold under two circumstances:

(i) No signals were present; this result gives the probability of
false alarm, PP -4.

(ii) Signals at various S/N were present; this result gives the prob-
ability of detection, PD .

S/N is the ratio of the CW signal power to the noise power ac-

* The U. S. Navy supported this work under contract N600(63133)64940,
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companying it in the specified narrow band. These probabilities were
calculated using formulas which described the appropriate distribu-
tions of the detector output.

The program also averaged independent samples of the detector
output, and produced appropriate receiver operating characteristic
curves by deriving a Gram-Charlier A series for the distribution of
the sample average.

When the program was adapted to take into account the modifica-
tions of the detector output caused by various subsequent nonlinear
processes, receiver operating characteristic curves were produced for
systems in which such processes occurred. The performance degrada-
tion was determined as the change in S/N that would be required to
make the detectability of a signal, for given probability of false alarm,
the same as without the nonlinear process.

II. DISCUSSION

Since some types of nonlinear processing greatly reduce the labor
of handling large amounts of data, and others are unavoidable, or
their effects are costly to minimize, it is useful to know the penalties
on performance that are incurred by their presence.

The types of nonlinear process studied are: suppressing low output
levels, hard limiting of high output levels, restricting dynamic range
of the output level, and quantizing the output of the detector.

Suppressing low output levels occurs in some kinds of recording
equipment where the output must reach a minimum level before a
record can be made. High output limiting always occurs because the
power handling capacity of physical equipment is limited. Dynamic
range is restricted when the first two processes occur together; this
also represents a commonly used technique in which a fluctuating out-
put is converted to a binary waveform with respect to a chosen
threshold. Quantizing is particularly useful when a digital computer
is used to implement the statistical analysis. With this application in
mind quantizing was evaluated in combination with restricted dynamic
range.

For simplicity in programming, we assumed that the unit used to
process the output of the envelope detector had an appropriate trans-
fer characteristic from the set shown in Fig. 1. It can be seen that over
part of its operating range this unit has a linear characteristic. Quan-
tizing would cause the slope of the linear region in Fig. 1(c) to be
replaced by a staircase.

In addition to the changes needed to allow investigation of the
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(a) (b)

INPUT

Fig. 1- Transfer characteristics of post detector processor. (a) Suppression of
low levels, (b) hard limiting of high levels, (c) restricted dynamic range.

above processing techniques, we made alterations in the program so
that it would produce receiver operating characteristic curves for sys-
tems using a square -law detector, and for systems in which an un-
wanted CW component occurred in the specified narrow band in ad-
dition to the one representing a signal.

The latter case is typical of situations where a large, relatively
stable, CW component tends to mask the presence of a smaller stable
signal in the resolved band of a spectrum analyser. The results show
how effective in such cases is a decision process similar to that de-
scribed in Ref. 1, for detecting a small signal.

The distortions produced by some of these processes on the detector
output distributions are so radical that many samples must be aver-
aged to get an adequate Gram-Charlier representation even using up
to 31 moments) the limit available in the program. Consequently a
large number (8192) of samples were averaged before deriving the
Gram-Charlier series from which the receiver operating characteristic
curves could be produced. We made some checks where it was pos-
sible to produce curves for fewer samples averaged. We marked these
on the figures; they show only slight deviations from the results ob-
tained by averaging 8192 samples.

Since the normal distribution becomes a satisfactory approxima-
tion as the number of samples averaged grows large it may be in-
ferred that the degradation caused by nonlinear processes could be
estimated by averaging enough samples and using the normal ap-
proximation. For some of the processes described here the receiver
operating characteristic curves for averaging 8192 samples showed
perceptible variation from the results obtained by a normal approxi-
mation at PF.4 values less than 10-4. Thus, to ensure the validity of
a normal approximation it might be necessary to average a very large
number of samples indeed.

When the results for one of the simulated nonlinear processes were
plotted on the appropriate chart of Ref. 1, the variation of the degra-
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dation from the average was never found greater than 10 per cent and
usually within a few per cent. Consequently the average degradation
shown in the accompanying figures represents a good approximation
within the range covered by the appropriate chart of Ref. 1.

Fig. 2 shows the degradation in performance when low output levels
are suppressed, and when high levels are hard -limited. The position
at which the levels are truncated is given along the abscissa as a
multiple of the mean value of the ideal detector output when only
noise is present (Rayleigh mean). The ordinate gives the change in
S/N required with the distorting process to give the same performance
as can be achieved without it.

Fig. 3 shows the degradation sustained when the dynamic range
factor of the detector output is 10 (solid line) and 2 (broken line).
The dynamic range factor is the ratio of the high end of the linear
range to the low end for a transfer characteristic like that in Fig. 1(c).
Fig. 3 also gives the degradation sustained when the output is vir-
tually converted to a binary signal by limiting the dynamic range
factor to 1.001 (dotted line). The lower truncation point is shown
on the abscissa and the ordinate gives the degradation in dB.

III. QUANTIZING

When a digital computer is used to implement the statistical anal-
ysis of the detector output, it is important to know the maximum
number of bits that need to be used to encode the output level. Three
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Fig. 2 - Degradation caused by (a) suppressing low output levels and (b) hard
limiting high output levels.



6

0

DETECTOR PERFORMANCE DEGRADATION 411

%

I

A=8192,
I

0=32,
I I I 1

INDEPENDENT SAMPLES AVERAGED

HIGH END/ LOW END =10

 HIGH END/ LOW END = 2
HIGH END/ LOW END =1.001

N`
>,.

-,....

- -
----

0 0.2 04 06 08 1.0 1 2 1.4

LOW END/RAYLEIGH MEAN

Fig. 3 - Degradation resulting from limited dynamic range.

1.6 18 2.0 2.2

bits allows coding into 8 levels, and four bits allows coding into 16
levels, and so on. If three bits are used, for example, the range of
possible detector outputs must be divided into 8 regions. The highest
region will include all levels that would equal or exceed the high end
of a characteristic such as that in Fig. 1c, and the lowest region will
include all levels below the low end. The remaining six regions will
be between the two truncation points. The computer simulation was
carried out by dividing the detector output in this way and assigning
the value of the lower limit of any region to all the values in it less
than the upper limit.

From Fig. that if a dynamic range factor of 10 is
used and the low end is placed at three tenths of the Rayleigh mean,
very little degradation in performance is suffered. When this range
was quantized into 6 equal steps it was found that the total degrada-
tion was only about 0.01 dB more than the value shown in Fig. 3.

Two other ways of dividing the range into 6 unequal steps were
tried, but the results were poorer than that for equal steps. In the first
of these the range between the low end and high end was divided into
6 intervals in such a way that the change in probability density was
the same between each. The degradation in performance was about
0.1 dB greater than that using 6 equal steps. The other way of quan-
tizing the range divided it into 6 intervals of constant change in
cumulative probability. The degradation in this case was 0.39 dB
greater than that using 6 equal steps.

IV. CW INTRUDER

Fig. 4 shows that the system performance falls off rapidly owing
to the presence of a CW component as the level of such a component
increases from -10 dB with respect to the noise in the narrow band.
The distribution curves corresponding to the no -signal hypothesis in
this case were those for Gaussian noise plus a CW component at the
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S/N specified on the abscissa. The curves corresponding to the hypoth-
esis that a signal was present were those for Gaussian noise plus
a resultant sine wave component. The power of the resultant equalled
the power of the small signal plus the power of a large CW compo-
nent at the level specified on the abscissa. The results thus represent
the average for all possible phase relationships between the CW
component and small signal assuming that all phase values are equally
likely, and many samples of the detector output are averaged.
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V. SQUARE-LAW DETECTOR

It was found that satisfactory Gram-Charlier series approxima-
tions to the output distribution of a square -law detector could be
produced only when a few hundred or more samples were averaged.
Consequently subprograms were written to compute values for Chi-
square and noncentral Chi-square distributions over the desired ranges
of S/N and samples averaged. Using these and the results reported in
Ref. 1 it was possible to produce the curves shown in Figs. 5, 6, and 7.
which enable the receiver operating characteristic curves of Ref. 1

to be used to estimate the performance for a square -law detector
with quite good accuracy. Fig. 5 compares the performance of linear
and square -law detectors at a false -alarm probability of 10-6 and
three different detection probabilities when the number of samples
averaged ranges from 1 to 8192. The approximate S/N corresponding
to a PD, PFA pair is also given over the range of samples averaged.
Curve 1 in Figs. 6 and 7 compares the detector performance for the
same S/N as curve 1 in Fig. 5, but when the PFA is 5 x 10-4, and 0.09,
respectively, and curve 2 in Figs. 6 and 7 do the same for the S/N
that applies to curve 2 in Fig. 5,
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VI. CONCLUSION

We have given curves which show that the sensitivity for detecting
small signals using an envelope detector is degraded when any of
several common kinds of nonlinear processes occur between the detec-
tor output and the averager used prior to the decision threshold.
When only one sample of the detector output is used to form a deci-
sion, the system will be oblivious to the presence of the nonlinear
process as long as the decision threshold lies within the linear range.
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The system performance in such a case is thus restricted to threshold
variations within this range.

It is interesting that J. V. Harrington has analyzed the detection
of repeated signals in noise using binary integration.2 The system he
assumed corresponds closely to the one discussed here for which Fig.
3 shows the results. Harrington deduced that the optimum position
for the quantizing threshold was about 1.44 times the Rayleigh mean,
in which case binary integration would give results 0.77 dB poorer
than if ideal processing with a linear detector had been used. These
numbers are in excellent agreement with the minimum degradation
condition shown in Fig. 3.

We have shown that the presence of an unwanted CW signal, even
-10 dB with respect to the narrow -band noise, causes some degrada-
tion of the sensitivity for detecting small CW signals, and the degrada-
tion increases rapidly as the level of the unwanted component rises
from there.

Computation shows that there is little performance difference to
be expected from the use of envelope or square -law detectors. Envelope
detectors would thus seem preferable in view of their greater simpli-
city, especially when a considerable dynamic range is to be covered.
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Phase Principle for Measuring
Location or Spectral Shape of

a Discrete Radio Source
By A. J. RAINAL

(Manuscript received May 19, 1967)

This paper describes a phase principle for measuring the location or
the spectral shape of a discrete radio source. The phase principle is relatively
simple to implement and leads to a measurement of location or spectral
shape which is insensitive to receiver gain fluctuations. For measuring
the location of a weak, discrete radio source, the theoretical accuracy is
slightly better than the theoretical accuracy resulting from the Ryle inter-
ferometer. For measuring the spectral shape of a weak, discrete radio
source, the theoretical accuracy is slightly better than the theoretical ac-
curacy resulting from either the Ryle interferometer
Furthermore, the implementation of the phase principle doesn't require
input switching. Also, the calibration curve associated with the phase
principle is independent of changes in the average receiver gains of the
two receivers.

I. INTRODUCTION

In many branches of science and technology observations of a dis-
crete radio source provide fundamental knowledge. In the field of
radar the illuminated target serves as the discrete radio source. In the
field of space exploration the radio transmitter on -board the space
vehicle serves as the discrete radio source. In the field of radio astro-
nomy the "radio star" serves as the discrete radio source.

The "radio star" is a remarkable example of a discrete radio source.
In the past twenty years radio astronomers have discovered that na-
ture provided many discrete radio sources or radio stars at certain
locations in the sky. What are the locations of these radio stars? What
is the power spectrum of the observed radiation from a particular
radio star? Answers to such questions are of fundamental importance
in the field of radio astronomy.'

415
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In order to measure relatively small values of radiated power from
a discrete radio source, one must compete with the inevitable back-
ground noise and the inevitable radio receiver noise. It is well known
that one requires a method of measurement which is relatively in-
sensitive to receiver gain fluctuations. The papers by Dicke2 and
Ryle3 discuss this important point in more detail. In fact, the present
day method for measuring relatively small values of radiated power
from a discrete radio source makes use of some form of the Dicke2
radiometer or the Ryle3 interferometer.

The purpose of this paper is to describe a phase principle for meas-
uring the location or the spectral shape of a discrete radio source. We
shall see that the phase principle is relatively simple to implement
and leads to a measurement of location or spectral shape which is
insensitive to receiver gain fluctuations. For measuring the location
or spectral shape of a weak, discrete radio source, we shall see that the
theoretical accuracy associated with the phase principle is slightly
better than the theoretical accuracy associated with the Dicke radi-
ometer or the Ryle interferometer. We shall also see that for measur-
ing the location or spectral shape of a weak, discrete radio source
using only phase information, the accuracy associated with the phase
principle is essentially equal to the accuracy associated with the maxi-
mum likelihood principle.

II. MEASUREMENTS BASED ON THE PHASE PRINCIPLE

2.1 Implementation

Fig. 1 illustrates a simplified implementation of the phase principle
for measuring the location or spectral shape of a discrete radio source.
S(t), N1(t), and N2(t) represent zero mean, independent, narrow -band,
stationary Gaussian processes. N1(t) and N2(t) each represent the sum
of background noise plus receiver noise. N,(t) and N2(t) are assumed
to have equal variances. The spacing, d, between the two antennas is
many wavelengths in order that N, (t)and N2(t) can be considered as
independent processes. S(t - At) and S(t t) are due to the presence
of a discrete radio source located at a small angle 0 with respect to
boresight. We assume that the receivers preserve the phase difference
between the antenna excitations.

S(t - At) ± N1(t) and S(t At) N2(t) represent the outputs
of the two receivers. ni represents the ith independent sample of the
phase difference between S(t - At) + Ni (t) and S(t + 1t) + N2(t).
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Fig. 1-Simplified implementation of a phase principle for measuring location
or spectral shape of a discrete radio source. When source is located at d sine =
X/4, nt 0. When source is located at 0 = 0, receivers scan in frequency and nt
traces out a measure of spectral shape.

ni is taken to be in the primary interval (- r, r). After n such samples
the output ,fit is given by

where

t 1= L, COS '71 ,

n

n = BT
B = IF bandwidth
T = observation time.

We shall assume that n is relatively large like n 104, since we are
primarily interested in observing relatively weak, discrete radio sources.

Fig. 2 illustrates a relatively simple method for generating nt from
the inputs S(t - At) ± N1(t) and S(t At) N2(t). Ri , wo , and Oi
represent the envelope, IF angular frequency, and phase angle, respec-

S(t-At)+Nt(t)=RI dOS[coot + BAND-
PASS

LIMITER

S(t+6.1.)+N2(t)=R2cos[wot.+02

BAND-
PASS

LIMITER

cos [(oat+ad

LOW-
PASS

FILTER

cos[wottq

cos (82-ei)

-Le. AVERAGE
'it

Fig. 2 -A method for generating nt from the inputs S(t-10-HVi(t) and
SU-FAO-EN:4i). The band-pass limiters remove all amplitude information.
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tively, of the narrow -band Gaussian process S(t - At) + Ni(t). Sim-
ilarly, R2 Cdo , and 02 represent the envelope, IF angular frequency,
and phase angle respectively of the narrow -band Gaussian process
S(t + At) + N2(t). The band-pass limiters shown in Fig. 2 are well-
known devices for removing all amplitude information and preserving
the phase information as is indicated in Fig. 2. See Davenport and
Root4 for a discussion of the band-pass limiter.

As indicated in Fig. 2, if one takes the product of cos (wot + 01)
and cos (wot + 02) and passes the result through a suitable low-
pass filter the result is cos (02 - 01) = cos n(t). By taking the average
of this result, one can generate nt.

This method of generating nt can also be used to help implement
the phase principle described in Ref. 5 in order to detect the presence
of a discrete radio source located at 0 = 0.

Fig. 2 indicates clearly that nt is independent of receiver gain fluctua-
tions or changes in the average receiver gain of each receiver. Also,
the two receivers need not have the same average gain. Thus, an
unusually long observation time 7 is advantageous when using the
phase principle.

Notice that if the band-pass limiters in Fig. 2 are shorted out, we
have the well-known correlator configuration." '8.9

We shall now show that a measurement of nt leads to a measurement
of location or spectral shape of the discrete radio source.

2.2 Statistical Properties of n,

In order to simplify the analysis, we shall always assume that the
discrete radio source is at a small angle 0 with respect to boresight.
To begin, we shall state some known statistical properties of the angle n, .

Equation (34) of Ref. 10 gives the probability density p2(n) of each
independent sample n1 as

X] (2)
1 -

sin' 1 32 + 1r)-
2P 2(n) - 2 r

(1 -

where

02 = 1 cos (n - no)

a
1 + a

Var S(t) Var S(t)
a = \Tar N, (t) Var N2(t)
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Var = Variance

no/2 = 5- d sin 0 = wo OI

r- sin-- 02 <
2 - 2
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The Fourier series development of (2) follows from Middleton's1'
equation (9.33)

+
/112(n/2

+
1) 2r...1(2- ; n 1; 12) cos n(n - no),

where 2F1 is the Gaussian hypergeometric function

2Fi(ce, fl; x) = 1 + a a(a 1)0(0 + 1) x2
7(7 ± 1) 2!

and r is the gamma function.
The expectations E cos ni and E cos2 ni follow from (3)

E cos n = 4 - 2F1 (z 12 »(I . 2; /2) cos no

E cos2 ni = + 12F,(1,
1; 3; 12) cos 2no

(3)

(4)

(5)

We shall see that the phase principle for measuring location or spectral
shape of a discrete radio source is based on (4). Equation (4) should
be compared with (4) of Ryle,3 the equation which characterizes the
output of a Ryle interferometer. Both equations are proportional
to cos no .

2.3 Measurement of Location

Let us first consider the problem of measuring the location of a
discrete radio source whose true location is some small positive angle 0.
From (4) we see that E cos ni = 0 when no = r/2 or d sin 0 = X/4.
This suggests that we observe nt and conclude that d sin 0 = X/4
when ?if = 0. How accurately can we form an estimate B of 0 in this
manner?

For no near r/2 let the estimate 710 of no be determined from the
linear equation

t r/= -1 1. 1) (6)
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Thus,

Var ilo = (2702(02 Var B = [Var nt][(7-V),,y,a, 1; 2; /2)1-2 (7)
d

or, in a more suitable form,

n(A 1)2 Var 9 = (1 + a)2(E cos2 n1)2F-i-2(a, 1; 2; 12) (8)

where E cos2 ni is given by (5) with no = r/2. Equation (8) char-
acterizes the theoretical accuracy associated with the phase principle
for measuring the location of a discrete radio source and is plotted in
Fig. 3.

2.4 Measurement of Spectral Shape

Now let us consider the problem of measuring the spectral shape
of a discrete radio source located at 6 = 0. We shall assume that the
variances of the background noises and receiver noises are invariant
over the frequency region of interest. Under these conditions the esti-
mate a of the signal-to-noise power ratio "a" can serve as an estimate
of spectral shape by using the well-known frequency scan technique

0.20

0.16

<az
cr

cu . 12

731

0.08

0.04

0

dS INO=

RYLE
INTERFEROMETER

PHASE
PRINCIPLE

MAXIMUM LIKELIHOOD
(PHASE INFORMATION)

0 0.4 0.8
a

1.2 1.6 20

Fig. 3- Theoretical accuracies of Ryle interferometer, phase principle, and
maximum likelihood principle (using only phase information) for measuring
the angular location of a discrete radio source.
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indicated in Fig. 1. How accurately can we form an estimate a of "ac"
in this manner?

Equation (4) with 0 = 0 or ne = 0 defines "a" as an implicit func-
tion of E cos ni which we shall indicate by

a = H(E cos ni). (9)

Equation (9) suggests that we form an estimate a of "a" from the
equation

a = H(n). (10)

A plot of (10) is presented in Fig. 4. This figure can be considered as a
theoretical calibration curve. Notice that the theoretical calibration
curve is independent of changes in the average receiver gain of each
receiver. This is indeed unusual. One measures nt and reports the cor-
responding value of a. Assuming that Var N1 and Var N2 are invariant
with frequency over the frequency range of interest, a will then trace
out the spectral shape of the discrete radio source as the receivers scan
in frequency. We shall now characterize the accuracy of the estimate el.

For large n, the only case of interest in this paper, Cramer's" work
shows that the estimate a is characterized, approximately, by a Gaus-

Fig. 4 - The theoretical calibration curve associated with the phase principle
for measuring spectral shape of a discrete radio source. The receivers scan in
frequency and a traces out the spectral shape.
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sian probability density having the following expectation and variance:

Ed = H(E cos n2) + 0(n-') a (11)

Var a = H Var nt + 0(n-1) = Hl Var ?if, (12)

where

dd [dE cos ni
Hi = -- T -an E cos v i da 01-1

4(1 + a)2 [ /2 +
-1

r ,F 1(1' 1 . 3. /2) 2F 1(1 , 1; 2; 12)1
4 - "

This last result follows by differentiating (4) with respect to "a",
setting no = 0, and then taking its reciprocal. Equation (11) implies
that the estimate a is essentially unbiased for large n.

From (12) and (1) we have

n Var 4 = 1-If(E cos2 ni - E2 cos ni), (13)

where E cos ni and E cos2 ni are given by (4) and (5) with no = 0.
Equation (13) characterizes the theoretical accuracy associated with

the phase principle for measuring the signal-to-noise power ratio "a"
or the spectral shape of the discrete radio source and is plotted in Fig. 5.

III. MEASUREMENTS BASED ON THE RYLE INTERFEROMETER OR DICKE
RADIOMETER

3.1 Measurement of Location

When 0 is small and ne = r/2 or d sin 0 = X/4, the theoretical ac-
curacy associated with the Ryle interferometer for measuring the
location of the discrete radio source was derived by Manasse." In
our notation Manasse's13 (60) becomes

nM2 Var 0 = (270-2(1 + a) 2 . (14)

Equation (14) characterizes the theoretical accuracy associated with
the Ryle interferometer for measuring the location of the discrete radio
source and is plotted in Fig. 3.

3.2 Measurement of Spectral Shape

One can measure the spectral shape of the discrete radio source
located at 0 = 0 by using the Ryle interferometer or the Dicke2 radi-
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Fig. 5 - Theoretical accuracies of Ryle interferometer, Dicke radiometer, phase
principle, and maximum likelihood principle (using only phase information) for
measuring the spectral shape of a discrete radio source. Both the Ryle inter-
ferometer and the Dicke radiometer require some amplitude information.

ometer. In fact, these methods are at present the accepted methods.
We shall go on to characterize the accuracy associated with these
methods of measuring spectral shape.

In order to simplify the notation of this section, let P, = Var S(1)
and PN = Var N,(t) = Var N2(t). Then,

aP
.

a
PNA

= and a = (15)P

P. denotes the unbiased estimate of P, and PN is regarded as a param-
eter.

The Ryle interferometer utilizes a phase reversing switch to produce,
periodically, the following inputs to a square -law detector

2S(t) NM) + N2(1)
2

Or

N1(t)
2

(16)

(17)
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Thus, using some of Rice's" results, the mean values at the output
of the square -law detectors are, periodically,

2P. + PN
2

or
P,

2

(18)

(19)

The difference in the outputs of the square -law detector is taken as
the unbiased estimate Pa . Thus, EP. = Pa and Ed = a.

Also, using some of Rice's14 results, the variances at the output of
the square -law detector are, periodically,

[2P. PAT
4(n/2)

Or

[PN] 2

4 (n/2)

The factor n/2 appears because the output is in either position only
one half of the time. Since the difference in the outputs of the square -
law detector is taken as the unbiased estimate P. , the variance of
P. is given by the sum of expressions (20) and (21):

Var P. - [213

P
'1

2

[P ']2 (22)
2n

(20)

Or

(21)

n Var d = nPN-2 Var P = 2a2 + 2a + 1. (23)

Notice that the Ryle interferometer can be considered as a Dicke2 radi-
ometer switching between the two inputs given by expressions (16)
and (17). Thus, (23) characterizes the accuracy of both the Ryle
interferometer and the Dicke radiometer for measuring the spectral
shape of the discrete radio source. Equation (23) is plotted in Fig. 5.

IV. MEASUREMENTS BASED ON THE MAXIMUM LIKELIHOOD PRINCIPLE
USING ONLY PHASE INFORMATION

4.1 Measurement of Location

If one uses the maximum likelihood principle to process a large
number n of independent samples of the phase difference ni in order
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to estimate the location of the discrete radio source when
or d sin 0 = X/4, one finds

(ady
11 ar - a2 Var ale

(27r)

1 (1 ap2)21
Lp2. \a One/ -.I v/2

-1

ne = 7/2

(24)

where p2 is given by (2) and the integrand of the integral in equation
(24) is to be evaluated at no = 7/2. For various values of "a", the
definite integral appearing in '(24) was evaluated numerically by using
a digital computer and Simpson's rule. The resulting curve is plotted
in Fig. 3. Incidentally, this curve applies for all values of no .

As a 0 we find that (8) and (24) both yield

lim [n M2 Val. B = -24 -L.- 0.02053. (25)

Thus, as a 0, the phase principle and the maximum likelihood
principle using only phase information are essentially equivalent.

4.2 Measurement of Spectral Shape

If one uses the maximum likelihood principle" to process a large
number n of independent samples of the phase difference n, in order to
estimate the signal-to-noise power ratio "a" or the spectral shape of a
discrete radio source when 0 = 0, one finds

7, [ap }n Var = {2 f - dn
-.

,

0 p2 aa
(26)

where p2 is given by equation (2) with no = 0. For various values of
"a", the definite integral appearing in (26) was evaluated numerically
by using a digital computer and Simpson's rule. The resulting curve
is plotted in Fig. 5. This curve also applies for all values of ale .

As a 0 we find that (13) and (26) both yield

lim [n Var a] = 8-÷-
0.81057. (27)

Thus, as a 0 the phase principle and the maximum likelihood principle
using only phase information are essentially equivalent.
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V. COMPARISONS OF THEORETICAL ACCURACIES

5.1 Measurements of Location

When using the Ryle interferometer to measure the location of a
weak, discrete radio source located at d sin 0 = X/4, we have, from (14),

[n(adV
Var

0 - 1 2 0.02533. (28)
-0 X / (2r)

Whereas, when using the phase principle or the maximum likelihood
principle to measure the location, we have, from (25),

lim [4-12 Var 0 = 2 = 0.02053. (29)

Thus, the phase principle and the maximum likelihood principle are
essentially equivalent, and they are both slightly more accurate than
the Ryle interferometer.

See Fig. 3 for a comparison of the theoretical accuracies at other
values of "a".

5.2 Measurements of Spectral Shape
When using the Ryle interferometer or the Dicke radiometer to

measure the signal-to-noise power ratio "a" or the spectral shape of a
weak, discrete radio source located at 0 = 0, we have, from (23),

lira In Var a] = 1. (30)
a.°

Whereas, when using the phase principle or the maximum likelihood
principle to measure the signal-to-noise power ratio "a" or the spectral
shape, we have, from (27) ,

lim [n Var a] = 8 0.81057.
a-ao 7r

(31)

Again, the phase principle and the maximum likelihood principle are
essentially equivalent, and they are both slightly more accurate than
either the Ryle interferometer or the Dicke radiometer.

See Fig. 5 for a comparison of the theoretical accuracies at other
values of "a".

For values of "a" away from zero, Fig. 5 shows that the Ryle inter-
ferometer or Dicke radiometer are more accurate than the maximum
likelihood principle using only phase information. Thus, one must
conclude that the Ryle interferometer or the Dicke radiometer require
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some amplitude information. Consequently, their accuracy is subject
to deterioration by gain variations.

Notice that (29) divided by (28) equals 8/1r2, and (31) divided by
(30) also equals 8/72. Thus, for measuring the location or the spec-
tral shape of a weak, discrete radio source, Var B and Var a associated
with the phase principle are lower, by the same factor 8/72, than the
corresponding variances associated with the Ryle interferometer.

VI. CONCLUSIONS

For measuring the location or the spectral shape of a discrete radio
source, the phase principle leads to a measurement which is insensitive
to receiver gain fluctuations.

For measuring the location or the spectral shape of a weak, discrete
radio source, the accuracy associated with the phase principle is
slightly better than the accuracy associated with the Ryle interferom-
eter or the Dicke radiometer. Also, the accuracy associated with the
phase principle is essentially equal to the accuracy associated with
the maximum likelihood principle using only phase information.

The phase principle is relatively simple to implement, and the im-
plementation doesn't require input switching.

The calibration curve associated with the phase principle is inde-
pendent of changes in the average receiver gain of each receiver. The
two receivers need not have the same average gain.

An unusually long observation time is advantageous when using the
phase principle.

For measuring spectral shape, both the Ryle interferometer and the
Dicke radiometer require some amplitude information. Consequently,
their accuracy is subject to deterioration by gain variations.
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Some Considerations of Broadband
Noise Performance of Optical

Heterodyne Receivers

By V. K. PRABHU

(Manuscript received September 8, 1967)

We derive an explicit expression in this paper for the spot noise factor
of a perfectly aligned optical heterodyne receiver consisting of a semicon-
ductor photodiode followed by an IF amplifier. We show that this noise
factor FR , which is a function of the admittance of the diode, varies as a
function of the modulation frequency. We obtain constraints imposed by
the photodiode on the broadband noise performance of the optical receiver
for any arbitrary lossless interstage network. The integral form of the
constraint shows that the noise f actor FR cannot be made equal to its optimum
value F R0 over any nonzero band of frequencies. We give explicit expressions
for the amount of tolerance of broadband noise performance obtained with
lossless interstage networks. We show that for certain types of approxima-
tions, and for a certain transistor IF amplifier usually used in practice,
the interstage network which achieves broadband signal performance for
the receiver also obtains broadband noise performance. The theory of
broadband noise performance we present for optical heterodyne receivers
can also be applied to the study of broadband noise performance of other
linear systems normally encountered in practice.

I. INTRODUCTION

Semiconductor photodiodes like Schottky barrier diodes or con-
ventional p -n or p-i-n diodes are increasingly being used for detec-
tion in optical heterodyne (double detection) receivers.' -'2 They nor-
mally are fast and efficient, converting up to 70 per cent of the photons
of the light beam into photoelectric current.11 Because of the intensity
of the light beam, almost all photodiodes used in optical detection
give an output proportional to the intensity of light.' However, this
output is normally so small that further amplification is required, and

429
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so any practical receiver consists of a photodiode followed by a high -
gain low -noise IF amplifier.

We have already considered in detail the signal performance of such
receivers.13 In this paper we shall deal only with the noise performance
of the receiver. The output of the diode is usually corrupted by noise
generated within the diode and elsewhere in the system. We discuss
briefly the characteristics of the photodiode in Section II and give its
equivalent circuit. In Section III we discuss the noise performance of
the IF amplifier and show that its noise factor is a function of its
source admittance." We show that the noise factor FR of the optical
receiver is a function of frequency in spite of the fact that the IF
amplifier has a broadband noise performance characteristic.

In Section IV we discuss the role of the lossless interstage network
in achieving broadband noise performance of the optical receiver and
show that it is impossible to make the noise factor FR equal to its
optimum value FRo over any nonzero band of frequencies.

Section V shows that Butterworth and Chebyshev approximations
to FR are realizable, and we obtain the tolerance of broadband noise
performance for these approximations. We show that, for the photo -
diodes normally encountered in practice, this tolerance (2 is a monoton-
ically increasing function of the complexity of the interstage net-
work but decreasing for Chebyshev approximations.

We show in Section VI that to obtain broadband signal and noise
performance characteristics from the optical receiver two separate
lossless interstage networks are necessary. However, we also show
that for certain types of approximations and for a certain transistor
IF amplifier, the interstage network which achieves broadband signal
performance also obtains broadband noise performance for the opti-
cal receiver.

The theory of broadband noise performance presented in this paper
for an optical heterodyne receiver can also be applied to obtain broad-
band noise performance of other linear systems normally encountered
in practice.

II. AVAILABLE SIGNAL AND NOISE OUTPUT POWERS

Fig. 1 shows the optical heterodyne receiver that we discuss. It
consists of a photodiode followed by a lossless interstage network, and
an IF amplifier of center frequency D0 and a semibandwidth W.t The

t The amplifier may, depending on the frequency of modulation, use vacuum
tubes, transistors, masers, parametric amplifiers, tunnel diodes, or other active
devices.
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Fig. 1- A double detection optical receiver. The input to the photodetector
is the sum of the local oscillator beam and the incoming signal beam.

geometrical center frequency wo of the IF amplifier is defined as

wa = 1020 - WW2. + TV) }1/2. (1)

The available gain G. of the IF amplifier and its optimum noise factor
F. are assumed to be independent of the frequency w for St, -W
w 5 SZa + W4

In this paper we shall not consider any effects on the noise per-
formance of the optical receiver of beam misalignment, nonuniformity
of the surface of the diode, or distortion from transmission through
a nonhomogeneous atmosphere.2° Because background noise has been
shown to be of almost negligible consideration, we shall assume that
this noise has no effect on the broadband noise performance of the
optical receiver.21, 22

The diode is normally so arranged that the junction or portions
of it close to the junction are illuminated by the sum of the local
oscillator beam and the incoming signal beam. The electron -hole
pairs thus created by the incoming photons give rise to a small signal
current." In operation, a reverse bias Vo is put on the diode, and the
characteristics of the device'''. for small excursions around V, are that
of a signal current generator Ls, and a direct current generator I°, in
parallel with a capacitance C(VO), and this combination in series with
a parasitic series resistance R (V 0)

The time -average current Io is caused both by the time -average
illumination and by the electrons and holes that are generated at or
near the junction. The signal current 10 is caused by that portion of
the illumination at or near the signal frequency of interest. In general,
C(V0) and R (Vo) are functions of the bias voltage. Assuming that,
in practical cases, the excursions around the bias point are small, we
shall henceforth assume that C(Vo) is a constant capacitance C, and
the series resistance R (T7 0) is a constant resistance R.

Since G. and Fa are real and even functions of w, we shall only consider co > 0.
The case in which Gof and Bof are functions of frequency CO is very complicated and
will not be discussed in this paper.
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To account for any thermal noise generated in the photodiode, we
use an equivalent noise -voltage generator e with mean -squared valuet

en 12 = 4kT dR Af, (2)

where Td is the temperature of the diode, k is Boltzmann's constant,
and Of is the spot frequency band about which we are concerned. In
addition, there is another source of noise, shot noise, present in the
photodiode. This can be accounted for12 by placing in parallel with /8
and I,, a shot noise current generator in with mean -squared value

I in 12 = 2g10 f (cor) 12 Af, (3)

where q is the electronic charge, and Awl-) is a transit time reduction
factor, T being some effective transit time. We assume in this paper
that gun-) which always satisfies the inequality

i(o)r) I < 1, (4)

can be considered independent of w in EL -W < co W, and that

If(w7)I = 1. (5)

The equivalent circuit of the photodiode which describes its terminal
signal and noise characteristics is shown in Fig. 2. This equivalent

Io

Fig. 2 -Equivalent circuit of photodiode. The physical sources of noise that are
present in the diode are also shown. The conductance G which appears in parallel
with C is usually so small (around 10-7 mho) that it can be neglected for all practical
purposes if co >> 0.

circuit very well describes the behavior of the diode provided the lowest
frequency of the signal occurring in the system is very far from zero,
or w >> 0.

The peak photoelectric current I, and de current I o for a double
detection optical receiver can be shown to be given by23,24

2nq
"I

hp
= -VP P (6)

t The horizontal bar denotes an average.
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and

= h (P. + P.), (7)

where n is the quantum efficiency of the photodiode,t It is Planck's
constant, v is the optical frequency, P. is the signal power, and Po is
the local oscillator powent

The available signal and noise powers are easily determined from
Fig. 2. The signal available power Spa and noise available power _Vpd
can be written as§

and

Spd
12. 12

8co '

Npd = 2 ± I in I 2

4R 4co2C2R

(8)

(9)

An important quantity that characterizes the noise performance of
the photodiode is its signal-to-noise ratio Spd/N . According to equa-
tions 2,3, and 5 through 9, this is given bylJ

Spd (17q)2 P.P.
I d \hvl

2kTdG(2.1 -)2 Af q( MP. Af
co, 11p

where

-
1

RC.

(10)

The signal-to-noise ratio at the input to the diode will be defined
as the best possible signal-to-noise ratio which an ideal detector could

t A quantum efficiency of greater than 70% has been obtained [11] for Schottky
barrier photodiodes.

In practice, a fraction k 1 of incident photons are absorbed in the active
region of the diode. To account for this effect, I, and I. are usually multiplied by a
factor k. We assume that k = 1. I, is also usually multiplied by a reduction factor
similar to the shot -noise function, f(wr), determined by the signal frequency, optical
wavelength, and device construction. We assume that this factor is unity.

To account for any mismatch between the local oscillator beam and signal beam,
and I. are also multiplied by a beam matching factor # where # 5 1. We assume

that 13 = 1.
We can argue from the physics of the diode that the shot noise source and

thermal noise source shown in Fig. 2 are uncorrelated.
¶ We can assume that P. >> P. , so that P. + P. P. .
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achieve. This can be shown to be given hyt

(S / N), -
hv Af

III. IF AMPLIFIER NOISE FACTOR

(12)

The terminal characteristics of any IF amplifier used in the optical
receiver (see Figs. 3 and 4) can normally be described by

+0

yi, yi2 Vi

[1.2 Y21 Y22 V2 742_

[1[l
VI nL

O

SOURCE -FREE
TWO PORT .2

0+
V2

O-

(13)

Fig. 3 - Separation of twoport with internal noise sources into a source -free
twoport.

or

V1 A Bi V2 + ny
(14)

_C -12 _n1_

where and ni2, or nv and ni characterize all physical sources of
noise present in the IF amplifier.14 we assume that the IF amplifier
has ideal broadband signal and noise performance characteristics and
that the amplifier remains stable for all linear passive input and out-
put terminationS.2a-28

By definition, the spot noise factor at a specified frequency of any
linear twoport network (such as an IF amplifier) is given by the ratio
of the total output noise power per unit bandwidth exchangeable at
the output port to that portion of that power which is engendered by
the input termination at the standard temperature To .14 To derive

t Ref. 25 shows that it is impossible to measure amplitude and phase of an
incoming optical signal with a better signal-to-noise ratio than given by equa-
tion 12.

Exchangeable power, exchangeable gain, etc. coincide' with available power
and available gain when the output impedance of the amplifier is positive -real.
They are the logical generalizations of the available power and available gain
when the output impedance has a negative -real part. Since the amplifier is
assumed to be absolutely stable, we may substitute the word "available" for the
word "exchangeable" wherever it appears in this paper.
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the noise factor of the IF amplifier we are considering, let us connect
the amplifier to a statistical source comprising an internal admittance
Y8, and a noise current generator /18 (see Fig. 5). It can be shown
easily that the noise factor F is given by

F = 1 +1 ni 14 Y. 12
1 /.

We notice that the mean -square source noise current is related to the
source conductance G. by the Nyquist formula

I In, 12 = 4kT0G. Af.

(15)

(16)

Also, we can express the noise voltage fluctuation In, 12 in terms of
an equivalent noise resistance R as

O

ny 12 = 4kToRn Of

SOURCE -FREE
TWO PORT

12

V2

Fig. 4 - The Rothe-Dahlke noise model for a linear twoport network.

(17)

and the noise current fluctuation In, 12 can be expressed in terms of
an equivalent noise conductance G where

Let us also write

n, 12 = 4kT0G Al.

non* = 4kTop1/RnGn Of,

where p is a complex number. It can be shown that

1pI 5- 1.

From equations 15 through 19, the formula for the noise factor be-
comes§

F = 1 ±G,.+ 2 VRnG 1G, Re p - B, Im p} (G: .82.)R
(21)

G.

As we can see from equation 21, the noise factor F is a function of
the source conductance G. and also of its susceptance B8. We can

Re a and Im a denote the real and imaginary parts, respectively, of the
complex number a.
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show that F attains its optimum valuelf

Fo = 1 + 21/RG. {Re p [1 - (Im p)11)

for a certain source admittance Yo = + :113of where

VGo'RnGv{1-(Imp)2}1

and

Ins

VRG. Im p.Bof = R.

en

SOURCE-FREE
TWO PORT

Fig. 5 - Network for noise factor computation.

(22)

(23)

(24)

Using equations 21 through 24 (see Ref. 14), we can show that F can
be written in the formt

Rn
F= F0 + -Gs I Y. - Yor 12 (25)

where the value of R5 is as given in equation 17.
Let Y2(p) be the admittance of the photodiode as seen by the IF

amplifier (see Fig. 1). We shall now compute the over-all signal-to-
noise ratio for the optical receiver, and its overall noise factor FR. In
defining FR, we shall use the concept of noise factor as originally in-
troduced by Friis and Franz.31 This noise factor FR is defined as

(SIN),
FR =

(AS /Mout
(26)

where (S/N)in and (S/N)out are the input and output exchangeable
signal-to-noise power ratios of the optical receiver. From equations
10,12, and 26 we can write

11 It can be shown that Re p [1- (lin p)2}112 is always a nonnegative quantity.
t It can be shown (see Ref. 30) that equation 25 can also be written in the

form (G,-Gor) 2 + (B.-Bor) 2 = F2, where G,, B., and F, can be determined
from Equations 21-25.
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1

Ai 1 +2kT (co y.
Td

Rn

ql. R we Re Y2 I Y2 - 17"f 12 +

all d

(27)

1[ 2kT 1 (coyFR = 1 ± -
n qi0 R co,

{F. R" 1 172 - ITof 12 Td T.T°}1Re Y2

We now note from equations 27 and 28 that (S/N)out and FR are
functions of the frequency of the detected signal, and for Y2 = Yob
(S/N).t, and FR attain their optimum values (S/N)0 and FRo where

(S/A00 = Pa 1

by Of 2kT. 1 (6) 2{ T, - T.}
R T

and

FRO =

(28)

(29)

1 [
1 -F

2kTol (
F. +4)2{ Td

T
710}1.

(30)

If optimum noise performance of the heterodyne receiver at a finite
number of signal frequencies is desired, it can be shown" that suitable
lossless interstage networks can be designed so that (S/N)0 in equa-
tion 29 and FRo in Equation 30 can be realized at the respective signal
frequencies. If the band of frequencies of interest is continuous and
nonzero, it can be shown that we cannot make FR equal to FRo over
the whole band.15' 16 The question arises whether there are any con-
straints to be satisfied by FR, imposed by the diode or any other com-
ponents of the system, and what lossless interstage networks must be
used to make FR as close to FRo as possible. We shall discuss these two
topics in the rest of this paper.

IV. DERIVATION OF INTEGRAL CONSTRAINTS'

We shall use the results obtained in the theory of broadband match-
ing of linear systems'13-19 to derive the expressions which relate

t The methods of derivation of most of the results in this section are very
similar to those in Ref. 13.
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the noise factor of the optical heterodyne receiver to other parameters
of the system. The integral relation shows that it is impossible to
make FR equal to FRo over any nonzero band of frequencies. Since
the IF amplifier is assumed to have ideal broadband signal and
noise performance characteristics, it follows that F. and Yof are inde-
pendent of frequency w for U. -W + WI It also follows
that Bof = O. Without any loss of generality we shall normalize all
admittances with respect to Gof

Let us look at Fig. 6 and define two reflection coefficients P, (p) and

+ Ii
LOSSLESS

INTERSTAGE
NETWORK

Yi

10

Fig. 6 - Lossless interstage network used in equalizing the noise perform-
ance of the optical receiver. Y(p) is the admittance of the photodiode as
shown in Fig. 2.

P2(P), and an all -pass function i3(p) where

171(p) - Y(-p)
P"19/ - 171(P) + Y(p)

Y2(p) - 1
P2(p) - Y2(p) + 1

1(p)= Pr-i p + «:k

(31)

(32)

(33)

and p = a + jw is the complex frequency variable. Y(p) is the admit-
tance of the photodiode as seen by the lossless interstage network,
and «, , a2 , , a,,, are the poles of Y(-p) in Re p > 0. Since the
interstage network is lossless," it can be shown that

I Pi(ito) I = I P2 (3W)
I

(34)

Also from Equations 25, 32, and 34

1 1
1 '11?'°' (35)

I Pi(50) 12 - I P2(5) 12 - F - F.
The study of the case in which F. and Yoe may be functions of frequency

is very complicated and beyond the scope of this paper.
§ For any realizable admittance Yof , Bof(w) must be an odd function of to.
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From equations 31 and 33, we can also write

OW {1 - Pi(P) = 13
Y(P) -P)

kPi Y1(p) Y(P)

Equation 36 shows that regardless of the lossless interstage net-
work used in the receiver, every zero of y (p) = [1+ Y(-p)/Y(p)
in Re p > 0 must also be a zero of

(36)

'(1)) = 0(P)11 - Pi (P) (37)

A zero /Jo of y (p) in Re p > 0 of multiplicity k is said to be a zero
of transmission of the admittance Y (p) of order k. Youla distinguishes
four kinds of such zeros.'' Class 1 contains all those in the strict right-

half plane. Class 2 contains all those on the real -frequency axis which
are simultaneously zeros of Y(p). Class 3 contains all those on the
real -frequency axis for which 0 < I Y(Po) < co, and class 4 contains
all those for which

I Y(p0) I = oo. The restrictions imposed on pi (P)
through equation 36 are formulated13,119 most compactly in terms of
coefficients of the power series expansions of the following quantities:

s(p) = 13(p)pi(p) = E skcp - pc.)k
k=0

In s(p) = - Po)A
k=0

9(p) = B k(p - Po)k
k=0

In = E bk(p Po)k
k.=0

RP) = 0(13)[17(P) Y(-1))] = A(P - P.)4

p2 012 - AE0_ jp

F(p) N-,°'

g(P) 20(p) - uk(i3 P°)k

Also, let n (p) be a regular all -pass network such that

n(p) = IIPp +

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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and
CO

in n(p) = E nk(p - P.)k 
k -U

Pq's are a set of points in the right half of the complex plane.
Let

(46)

1 4R f
°

s°(p) (-P)
+ F nG- Fa (47)

and let so(P) be such that all its zeros and poles are in the left -half
plane.f It is now cleart that if

WTe

19(p)p1(p) = s(p) = n(p)s,,(p)

1 1

18(../c0 12 1 Pi(ico) 12
1

= 1 +G°f (49)F - Fa
may now show', -18 that Y1(p) is a positive -real admittance if

(48)

so(jw) 12

and only if:

(i) At every class 1 transmission zero p, of order k,

B 0 7' k - 1; (50)

or

`"' { 4RGof
ba = erj + no - .1. fa in 1 + Fol cho,

o

e = 0, if
d li 4RnG ail

do) ' F - Faj 7- '''

E = 1, if
d j

1 +
4RnGaiF

d7.0 F - ai
= 0,

and

(51)

br= n7. - Jr ln {1 ±4R "Gfdw' 1 r k - 1. (52)
o F -F 0

t It will be recognized that so(p) is a minimum -phase function.'
t Multiplication of pi(p) by p(p) is necessary to make it analytic in the right -

half plane. This multiplication makes s(p) a bounded real scattering coefficient?'
Multiplication of so(p) by 7) (p) introduces right -half plane zeroes. This is some-
times necessary" and is done so that s(p) can satisfy all the constraints imposed
by Y(p).
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(ii) At every class 2 transmission zero jwo of order k,Sr,= B 0 r k - 1,
and

Sk Bk

F k+1

or

br = n,. -f 1, In {1 + 4RG°f

0 F - Fo
and§

(53)

(54)

0 r k - 1, (55)

bk Sk > 0
Ok+1 =

If I co. I = 0, or co , equation 56 may be replaced by

bk - nk fk In {1 + F -F4RnG'i chef
Ok+1

(iii) At every class 3 transmission zero of order k,Sr,= B 0 7' k - 9,
and

Sk-1 Bk-1 < 0.
FA. =

or

b,. = n,. -f f,. In {1
4RnG'f

dw,
0 F - Fo

and

bk-1 Sk-1 >
Ok

with equality if and only if the matching network is nondegenerate.
If I wo I = 0 or 00, equation 61 may be replaced by

0.

(56)

(57)

(58)

(59)

0 r k - 1, (60)

bk, - nk-1 + f ln {1 -I- 4R"G'f dw
JO F - F

Ok

§ If the interstage network is nondegenerate16,17, equation 56 becomes an equality.
If I Y(jwo) I 0 00, the network is said to be nondegenerate if and only if Yi(jcoo)
ricoo) 0 0. If I Y(jwo) I = 00, the network is said to be nondegenerate if and only if

Yi(jwo) I 0 00

(61)

> 0. (62)
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(iv) At every class 4 zero of order k,

S,=B., (63)

and

1 k-1 < a-, (64)
8k Bk

where a_, is the residue of Y(p) at Po = icoo ;
or

b, = nr -fJr In {1 + 4RnG°f
dco,F - Fo 0 r k - 1, (65)

and

20k-i > a (66)
bk - Sk = -1

with equality if and only if the matching network is nondegenerate. If
I wo I = 0 or 00, equation 66 may be replaced by

20k--1
> . (67)

bk - nk f fk in {1 + 4RG
dco

0 F - Fo
If equations 50 through 67 are satisfied, Y1(p) is a positive -real

admittance. If Y1(p) is positive -real, the Darlington method can be
used to obtain the lossless twoport interstage network needed in the
receiver.

Let us now use the theory of broadband noise performance that
we have presented to derive the constraints imposed by the photodiode
on the noise performance of the optical receiver. The normalized
admittance Y(p) of the photodiode shown in Fig. 2 can be written ast

1 p
17(P) = RGof p co, 

From equation 36 we can show that the only transmission zero of
Y(p) lies at po = 0, and is of order 1. Also from equation 33,

/3(P) - Pp coc

= -1 + 4) - (70)
w we

(68)

(69)

f The equivalent circuit shown in Fig. 2 for the photodiode is valid for frequencies
w >> 0. Also, without any loss of generality, we normalize all admittances with respect
to G.1 .
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From equation 42 we can write

1 2732C

F(P) GofWe(1P/We)-

1 [2Cp2 4Cp3
Gof We We

(71)

(72)

Since the transmission zero is of class 2, we can write from equations
53 and 54 that

So = -1, (73)

and

Si < 2/(.0 (74)

where

s(P) = ±n(P)so(P), (48)

and

1 4R G f
(47)

so(P)so(-P) F °

Also from equations 55 through 57 it follows that

1 f' 1 4R G2-
.111 {1 + " °f} dco - /2,

+
}

(75)F -F - we 1=1 ,Let

where p,i's are a set of points in the right -half plane. Since Re (1/p.1)
> 0 for all 1, we put n (p) = 1. We, therefore, have

fo
cot

In liRFnG°f
o

clio (76)rk F - )

Also, from equations 25, 28, and 30, we can write equation 76 as

1 f°' 1
In 1 -I- n °

EaT R G f (CO/C0`)22
R

L, cho < (77)r 0 co nq/0 FR- L'RO We

We must notice that R and G01 are completely determined by the
IF amplifier used in the system, and if we assume that the signal
power P8 remains constant at all frequencies of interest, equation 77
shows that FR cannot be made equal to FRO over any nonzero band
of frequencies in spite of the fact that any arbitrary linear lossless
interstage network may be used in the receiver. This is one of the
important results of this paper. We must notice that the equivalent
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circuit shown in Fig. 2 has been assumed in deriving equation 77.
This equivalent circuit very well describes the behavior of the diode
provided that the lowest frequency of the signal occurring in the
system is very far from zero.12 Also we must observe from equation
77 that FR can be made equal to FRO at a finite number of discrete
frequencies."

V. RATIONAL FUNCTION APPROXIMATIONS

We have shown that FR cannot be equal to FRo over any nonzero
interval 0 -W < w W of the frequency spectrum.f We shall,
therefore, make some rational function approximations to a flat noise
performance characteristic of the optical receiver. If these rational
function approximations satisfy all the constraints of Section IV, a
finite linear lumped lossless network can be found which realizes this
kind of noise factor for the optical receiver." A complete treatment
of this problem is beyond the scope of this paper; but let us consider
certain kinds of approximations widely used in network theory.

5.1 Butterworth Approximations

The problem at hand is to approximate FR as close to FRO as possible
over the range Oo -W + W. A set of polynomials which can
be used for this purpose are Butterworth polynomials."'" Let

6
FR = -1 + (FRO --11 e2

2
(78)

c4 W '

where n is the order of complexity of the interstage network to be used
in obtaining broadband performance from the optical receiver, and n is
also the order of the Butterworth polynomial. It may be verified that
FR approximates FRO in a maximally fiat manner. The behavior of FR
as a function of w is shown in Fig. 7. Since it can be shown that FR in
equation 78 can be made to satisfy equations 73 through 77 by properly
choosing 62 for all values of n, the approximation of equation 78 is
realizable.

From equation 47,

so(P)so(-P) - 4R G f1111 + n
2

2 (co co.

2wW

1
(79)

t Since the noise factor is a real and even function of w, we shall only consider the
behavior of FR for w 0.
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FR -1/n FOR n=2

FR -1/n FOR n =1

FR0-1/n

10- 0 100 200 300 400 500 600

FREQUENCY f = (0/ 277- IN MHZ

700 800

Fig. 7 - Butterworth approximations of order n = 1,2. It is assumed that
= 31.83 GHz, n = 0.70, Td = 290°K, /0 = 500 ,ace, F. = 2.0833, and e2 = 1.

where

111o=l
po

(80)

It can be showna5 that

(p2+ CO20)"

So(P) = ± 2 2

+ WO" an --1(200(p2 2.)-1 +  + ao(2pW)"

(81)
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where

(4RG ON 0)1
2

an -1 =
sin -

2n

(82)

We can now expand equation 81 into a Taylor series about p = 0.
We have

Now

2W
so(P) = -1 + an -1 2 p - 

n(P) = pp

= (- 14i -p {1 1 } t

2-d
1=1 11/ At Az

(83)

(84)

From equations 48, 74, 83, and 84, we have

(85)
co. 1=1 14 Al -We

Since I (1/Ai) (1/g4;)} 0 for all 1, let us put n(p) = 1. We can then
write from equations 82 and 85 that§

4RG fill°2 >
2n

(86)
(CO 0 CO

Sin 2nW' m

A typical value of fc = coy/air for a photodiode is about 31.83 GHz.lf
For this value of f , fo = S20/27 = 300 MHz, and 2W/00 = 100 percent,
we have plotted in Fig. 8 2mia/4RnGofMo as a function of n. It may be
seen from the plot that 2,n, is a monotonically increasing function of n.
This behavior of elin can be explained by the fact that Butterworth
polynomials approximate the ideal broadband noise performance char-
acteristic of the optical receiver in a maximally flat fashion".

Since no useful purpose is served by using higher values of n, we

We choose negative sign for so(p) to satisfy equation 73. This does not
entail any loss in generality."

§ Equation 86 can also be obtained by using equation 77.
I( Typical values of R and C for a photodiode are C = 1/44, and It = 5 ohms.8°
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Fig. 8 -A typical plot when Butterworth polynomials are used to approximate
the ideal noise performance characteristic. Even though n is a discrete variable
the plot is given for all n > 1.

shall only consider the case n = 1.* For n = 1,

2 4RGofM.
Emin

(CO0 wo

CO, W

and

s(p) = so(p) = P2 +
2

p2 + 2p co2o

we

Now from equations 31, 48, and 88, it can be shown that
2

CO0

CO,

Yl(P) RGof 2

P

(87)

(88)

(89)

Fig. 9 shows the circuit to realize 171(p). Remember that CO: is the geo-
metric mean of the band of frequencies of interest, and

1L = (90)
C(S20 - W)(00 W) '

t = VG0fR. (91)

This circuit agrees very well with our physical intuition.

* Since we are interested in minimum value of e2 we have used the equality
sign in equation 77
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5.2 Chebyshev Approximations

Of the various means of approximating a given function, the Cheby-
shev method is one of the most interesting and important. It can be
shown that given a set of n parameters, a function f(co2) approximates
g(w2) in the Chebyshev sense if the parameters are determined in such
a way that the largest value of I g(c02) - f(co2) in a given interval is
minimum.* Since for a given complexity of the structure the maximum
amount of tolerance for a Chebyshev approximation is the same through
the band, this type of approximation seems to be the most desirable
in the broadband noise performance of optical receivers.

L-
R

c(s20+ w)(00-vv) t:1
L wv----0--, 0 0 0 \----, ,' [I>

AMPLIFIER

Fig. 9-Lossless interstage network for a Butterworth approximation of order
n = 1. The ideal transformer ratio t is given by t = AT-RGof 

Let us try to approximate FR by
2 2

FR = + (FRO -1 + 271:(w 2co-wW 0)1 (92)

where T (x) is an nth degree Chebyshev polynominal given 1)3'34' 35' 37

Tn(x) = cos (n cos -lx). (93)

The behavior of FR as a function of w for n = 1, 2 is shown in Fig. 10.
The equiripple behavior of FT, is evident from equation 93. We can also
show that the approximation of the type given in equation 92 can be
made to satisfy equations 73 through 77. It can also be shown that

so(P) -
.2\ n b

n-2(2w)2(p2

(4,20)n-2

"°) "1 (94)(p2 + 2or + an-1(2Pw)(p2 co )n-1

where

sink 1[- -1
. 2 A/RnG0,M01

sink
(95)an -1 = sin ,r/2n

* The Chebyshev approximating function has the equiripple property.", 35, 37
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If we expand so (p) about p = 0, we can show that

so(p) = -1 + pan_i
2W

(96)

We again put Op) = 1 to obtain minimum E2. From equations 74
and 96

10

8

6

4

6

4

cc
LL

2

10 2
8

6

4

2

2

Emirs
4RG o fill o

sinh2 [n Binh -1 {(229.) (W12)2) sin 7r }I.
2n

(97)

1030

-1/n FOR n=2

FR -1/'p FOR n =1

R0-1/71

100 200 300 400 500 600
FREQUENCY f =ow27r IN MHZ

700 800

Fig. 10-Noise factor FR as a function of w for Chebyshev approximations of
order n = 1,2. It is assumed that f = 31.83 GHz, n = 0.70, To = 290°K, Io =
500 /2a, Fo = 2.0833, and e2 = 1.
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In practical cases, assuming that coo/co, << 1/ A/i, (coo/co.)(coo/W) sin
7/2n << 1, for coo/W > 1/15.f We can then write

16RGofM,,2
Em in =

2

(A.A,)2 ( 0) 2 (Sin 7r/2n) 2

co, \IVi 7/2n

(98)

A normalized plot of for fo = S/0/27r = 300 MHz, f, = 31.83 GHz,
and 2W/ft. = 100 percent is given in Fig. 11. We notice that

[ein].1 - -ti 2.5, (99)[elin]n, 4

and

53

52

(n

w

w

51
0

c 2
E t

0
c
it

50

[Emin]n=2

[e2min]n=00

ir2

8
1.25.

49
0 1 2 3 4 5 6 7

n

(100)

Fig. 11- A typical plot when Chebyshev polynomials are used to approximate
the ideal noise performance characteristic. Even though n is a discrete variable
the plot is given for all n > 1.

§ It can be shown from equation 1 that wo/W < 15 for 2W/R.
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From equations 99 and 100 and Fig. 11, we conclude that el, is a
monotonically decreasing function of n, but that no great improvement
in the value of E,2, is obtained by using very high values of n. Since the
complexity of the network increases with n, we shall only consider the
cases n = 1, 2. For n = 2, j attains 1.25 times the minimum possible
value. For n = 1 the Butterworth and Chebyshev approximations are
the same. For n = 2, from equation 98

2 iv 2

in = 2RnGofAio(C)
6)(-)O° 0

(101)

and from equations 94, 95, amt 101, we can write

(P2 + w0)2 i(2017)2
so(P) = (102)

(P2 + co2,)2 co2o) ?-s(2pITT)2
we TV

Equations 31, 48, and 102 show that

1'i(p) =
2 2 2

1 6)0 P
RG o f (±)±, 1)(0).: 21V2)

P c we

(103)

The lossless interstage network realizing 171(p) in equation 103 is
shown in Fig. 12.

Similar methods can be used to determine the lossless interstage
networks when n > 2. We have shown however that no great im-
provement can be obtained by using very high values of n.

5.3 Approximations with Greater than Optimum Noise Factor

In the preceding parts of this section we used Butterworth and
Chebyshev polynomials to approximate the ideal broadband noise
performance characteristic of the IF amplifier in such a way that the

R iccog

O

2 ( )2

C(00 (00

i (-)WO 2
2 w

t:,

r

TO IF
AMPLIFIER

Fig. 12 - Lossless interstage network for a Chebyshev approximation of order
n = 2. The ideal transformer ratio t is given by t = "VRGof 
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minimum passband noise factor is FRO. These polynomials also can
be used17.18 in a manner in which the minimum passband noise fac-
tor is KFRo where

K > 1.
Such approximations are given by

tc02 w2

FR =1 + IC(FRo -
2wW

and

FR
2 2\

= -1 + K(FRo -1\-771 e2T'2'/W 2C0.)-WW°)]

where T (x) is an nth degree Chebyshev polynomial.
We can seen from equations 105 and 106 that

1[FR]mi = KFRo - - (K - 1) FRO .

(104)

(105)

(106)

(107)

If equations 73 through 77 are to be satisfied, it can be shown from
equation 105 that

[ 1 41?,,Gafill 11 /2 n

[
1/2n

K 1
1

W
i -7 (108)- 2n

Also, if FR in equation 106 is to be realizable, it can be shown that the
following constraint must be satisfied:

1
(1 - 4RnGfM,/K)

sinh
n

sinh-

(1
)41

- sinh 1
sinh-1

(u_iNcoo) . r
-n

E = \co,/ \W/ sin 2n. (109)

In general, for arbitrary n, equations 108 and 109 can only be solved
numerically. The numerical solution of these two equations requires
that the value of RGoil , 0)0/0.) and coc,/W be known. For any specific
IF amplifier, the values of K and e can be determined from equations
108 and 109 and the interstage network can then be synthesized. Since
we do not propose to go into the characteristics of the IF amplifier,
we shall not consider these two equations any more in this paper.

Minimum average noise factor approximation, least -squares approxi-
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illation,' and the like also can be used in the theory of broadband
noise performance of the optical receiver. If these approximations satisfy
the restrictions which are imposed by the photodiode, and which are
given in equations 73 through 77, the methods given in Section IV can
be used to obtain a positive -real Yi(p). This Yi(p) enables us to deter-
mine the lossless interstage network required in the broadband noise
performance of the optical receiver.

VI. GAIN AND NOISE FACTOR

It has been shown for an optical heterodyne receiver" that the
available output power P must satisfy the constraint given by

wheret

1 f" 1- In flr 0 co

hP)2 8R1Go. (0)/0.02

7.1q1 RP.P, 1 1 - we
P.. P. maxi

Re Y22
Rf

Y21 12

Goo = I 1110i21 I ..Vx2 1

2 Re 1122

X - 2 Re (Yu) Re (Y22) - Re (y12y21)

Yi2Y21 I

P... = woRN2

2

(Po = zGa i,c(h) P.P.
by

Y21

Y12

1

Vx2 - 1

(110)

Equation 110 is identical in form to equation 77, and it can be
shown from Ref. 13 that obtaining the broadband signal and noise
performance characteristics of the optical receiver are analogous
problems. It can also be shown from Ref. 13 that if Butterworth and
Chebyshev approximations of the form given by

P. = P. max K'
64\ 2n ,

1 +
2wW

0 < K' 1 (117)

t For an IF amplifier which is absolutely stable, it can be shown"' that X > 1.
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and

K"Poa = 3 ,x
1 ± °

2coW

0 < K" S 1 (118)

are used for the available output power of the optical receivert reali-
zability by lossless interstage networks requires that

[1 - K' 4K 'R fG ogG0 max]1/2n
K11/2n < C12)(C2i sin 71-- W 2n

(119)

and

sink
[1 sink -1 _ (1 - K" 4K " R fG Go max)11-

1 . (1 - K")11 co o co.) 7- sinh [- smh-1
(- )(W- sin - (120)- 2n

We now notice that equation 119 is similar in form to equation 108
and 120 is similar to 109. However, it can be shown that the element
values of the lossless interstage network obtained by solving either
equation 119 or 120 will not be identical to those obtained by solving
either 108 or 109. This shows that the problem of broadband noise
performance, in general, requires a network different from that re-
quired for obtaining the broadband signal performance of the optical
receiver. But for K = K' = K" = 1, and for Gog = GO, it can be
shownt from equations 108, 109, 119, and 120 that the network which
achieves broadband signal performance for the optical receiver also
achieves broadband noise performance.

For a single stage common emitter transistor IF amplifier (see
Fig. 13), we can show that the source conductance GO for minimum
noise factor is approximately equal to the source conductance Gog for
maximum available gain.§ We can then say that a common emitter
transistor IF amplifier can be used with advantage in obtaining si-
multaneously broadband signal and noise performance from the opti-
cal receiver.

1' We can compare equation 117 to equation 105 and equation 118 to equation
106.

$ We have assumed Bo, = Bor = 0 for the IF amplifier.
§ In fact it can be shown (see Ref. 39) that for reasonable transistor parameters

and frequencies below (1 - ao)fc, , Gof is always within a factor of 1/2 of the common
emitter G00 . a° is the low frequency alpha of the transistor andfa is the alpha cutoff
frequency.
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IC

Fig. 13 - Simplified signal and noise equivalent circuit for the transistor.

VII. RESULTS AND CONCLUSIONS

455

A theory of obtaining broadband noise performance from an optical
heterodyne receiver is presented in this paper. It is shown that the
following constraint must be satisfied by any lossless interstage net-
work used for obtaining broadband noise performance from the op-
tical receiver:

1 .r 8kT R G f (C10.0 )2+In 1 ° " dco - (77)r 0 o nqI. R FR - FRO we

This equation 77 shows that it is impossible to make FR equal to FRO
for any nonzero band of frequencies and for any realizable lossless
interstage networks.

We then consider certain types of rational function approxima-
tions to an ideal noise performance characteristic of the optical re-
ceiver. We show that Butterworth approximations to an ideal char-
acteristic are realizable, but that the broadband noise performance of
the receiver deteriorates with increasing values of n, the order of com-
plexity of the interstage network. By approximating the ideal char-
acteristic by Chebyshev polynomials, it can be shown that the per-
formance improves with n, but no great improvement can be obtained
by using very high values of n. We have shown that the performance
for n = 2 is slightly worse than for n = oo. Realizations of networks
for n = 1, 2 are given.
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We also consider the problem of obtaining simultaneously both
signal and noise broadband performance from the optical heterodyne
receiver and show that, in general, these two problems require two
separate lossless interstage networks. We then show that for a com-
mon emitter transistor IF amplifier, and for certain types of Butter-
worth and Chebyshev approximations, these two networks turn out
to be identical.

We give design methods and equations for any kind of rational
function approximations to an ideal broadband noise performance
characteristic of the optical receiver, and explicitly state the con-
straints to be satisfied by these approximations.

As is evident from Section IV, the theory of broadband noise per-
formance presented in this paper for an optical heterodyne receiver
can be applied to any other linear twoport network driven by a
source whose internal admittance is a function of frequency.
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B. S. T. J. BRIEFS

Approximate and Exact Results Concerning
Zeros of Gaussian Noise

By A. J. RAINAL

I. INTRODUCTION

Let r denote the interval between two successive zeros of a station-
ary gaussian process having zero -mean and one-sided power spectral
density W(f). We shall refer to such an interval as a zero -crossing
interval. This brief is concerned with these probability functions:

(i) Po(T) = Probability density of a zero -crossing interval.
Fo(T) = Probability that a zero -crossing interval lasts longer

than r.

Thus, Fo(7) and Po( T1 are related by

PVT) = f P0(x) dx = 1 r 13 .(x) dx. (1)

An exact, explicit solution for Po(r) or Fo(7) in terms of arbitrary
W (f) is at present unknown.

In a very interesting paper, E. Wong1 presented exact, explicit
solutions for both Po (Sr) and F0 (r) for the special case when

16 V5/3
WU) - (0,2 + 3)(w2 ±

where w =
The corresponding autocorrelation function p (7) is given by

p(r) = W(f) cos 27-fr df = - le-21r1').
0

Wong's exact, explicit solutions are in terms of complete elliptic
integrals, and they stemmed from a recent result in the theory of
Brownian motion.

The purpose of this brief is to compare Wong's exact results with
the approximate results of McFadden.2 McFadden's approximate
results stem from the numerical solution of an integral equation, and
they are based on the assumption of "quasi -independence" which
assumes that a given zero -crossing interval is statistically independent

(2)
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(3)
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of the sum of the previous (2m+2) zero -crossing intervals for all
non -negative integral m.

We shall see that McFadden's approximate results compare well
with Wong's exact results over a significant range of T.

II. COMPARISON OF APPROXIMATE AND EXACT RESULTS

Figure 1 compares McFadden's approximate result P, (T) with Wong's
exact result Po(T). The exact first moment of Po(T) follows from Rice's
work8 and is indicated in Figure 1 as E(T) = T. Thus, the approximate
and exact results for Po(T) compare well over a significant range of T.

Figure 2 compares McFadden's approximate result P(T) with Wong's
exact result Fo(T)._ From Wong's equation 31 we have that as T -3 03,
F 0(r) ,-, C e-- "(2" where C is a known constant. The semilog plot
in Figure 2 shows this asymptotic exponential decay of F 4,(r).

III. CONCLUSION

McFadden's approximate results PO (T), P, (T)compare well with
Wong's exact results P, (T), F, (T)over a significant range of T.
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Fig. 1- Comparison of approximate and exact results for P, (T), the probability
density of a zero -crossing interval of gaussian noise having power spectral
density W(f).
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Fig. 2-Comparison of approximate and exact results for F.(7), the probabil-
ity that a zero -crossing interval lasts longer than T.
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Erratum

On page 205 of the February 1968 Bell System Technical Journal,
the drawings of Figs. 10 and 11 were inadvertently transposed. Fig.
10 is the drawing with the gate electrode marked -100V, and Fig. 11
is the drawing with the gate electrode marked +100V.
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