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This paper is concerned with the transmission of a discrete, independent
letter information source over a discrete channel. A distortion function is
defined between source output letters and decoder output letters and is used
to measure the performance of the system for each transmission.. The
coding block length is introduced as a variable and its influence upon the
minimum attainable transmission distortion is investigated.

The lower bound to transmission distortion is found to converge to
the distortion level dc (C is the channel capacity) algebraically as a/n.
The nonnegative coefficient a is a function of both the source and channel
statistics, which are interrelated in such a way as to suggest the utility of
this coefficient as a measure of "mismatch" between source and channel,
the larger the mismatch the slower the approach of the lower bound to the
asymptote dc . For noiseless channels a = cc. and for this case the lower
bound is shown to converge to dc as al(ln n)/n.

For noisy channels the upper bound to transmission distortion is found
to converge to the asymptote dc algebraically as b[(ln n)/n]4. For noiseless
channels, the upper bound converges to dc as ai (ln n)/n.

* The material presented in this paper is based upon the author's thesis,
"Coding Theorems for Discrete Source -Channel Pairs," presented to the Massa-
chusetts Institute of Technology in November 1966 in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.
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I. INTRODUCTION

By now the results originally obtained by Shannonl relating relia-
bility and channel capacity are well known. Roughly speaking, they
state that perfect transmission can be achieved if, and only if, the
capacity of the channel in the transmission link is greater than the
information content of the source. For amplitude and time discrete
sources the information content is the entropy of the source, but for
amplitude continuous sources the entropy and the information con-
tent are not the same since the information content is infinite. This,
of course, implies that perfect transmission of amplitude continuous
sources, or discrete sources with an entropy that is "too large," is
impossible with a given finite capacity channel. Yet this is just the
situation that is often presented to the communication engineer who
must then try to reduce the average distortion to the lowest possible,
or practicable, level.

For communication systems in which the capacity of the channel
is not sufficient to allow perfect transmission, there are two obvious
questions to ask:

(i) How small can the average distortion be made if any transmis-
sion strategy at all is allowed?
(ii) How much does the system complexity, or cost, increase when
you are required to get "closer" to this minimum?

To answer the first question, Shannon generalized his results in a
later paper2 in which the channel requirements are found that are
necessary and sufficient to allow transmission at a given level of
distortion, or a given error rate. It is our purpose here to consider
the second question. We use the coding block length to measure the
complexity of the system, and study the behavior of the minimum
attainable transmission distortion as the block length is increased.

In the work we restrict our attention to sources and channels that
are discrete in amplitude and time, and that are constant and memory -
less. This means that successive events are independent and are
governed by the same probability distributions. The encoder is a
block encoder that we describe later in this section. To measure the
distortion in the system, we introduce a nonnegative function d (w,z)
which gives the distortion in the event letter z is presented to the
user at the decoder output when letter w was transmitted. Normally,
this function would be specified by the user of the system to reflect
how undesirable any particular misinterpretation of the source output
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is to him. We will assume that the distortion between two sequences
of letters is the averaged sum of the composing letter distortions.

Shannon's theory associates with each source and distortion function
a rate -distortion curve which expresses the minimum attainable trans-
mission distortion in terms of the maximum allowable mutual in-
formation in the system. Associated with each point (dR,R) on the
rate -distortion curve is a particular set of transition probabilities,
called the "test channel," which has the significance that among all
channels that transmit the given source with distortion dR or less, it
operates at the lowest transmission rate, R. Equivalently, the test
channel is that channel which yields the lowest distortion dR among
those that transmit information from the source at a rate R or less.
It is in this sense the cheapest channel one could use and meet a
distortion criterion. The rate R can also be interpreted as the equi-
valent information content of the source when a distortion dR is
tolerable.

That the rate -distortion curve gives the channel capacity sufficient
to allow a prescribed performance is shown by Shannon through the
intermediate step of proving that the rate -distortion curve actually
expresses the entropy and resultant distortion in the "best" discrete
representation of an output sequence from the original source. This
discrete representation can then be transmitted with no further dis-
tortion, if its entropy is less than the channel capacity, by the use
of suitable channel coding techniques.

Shannon has found the rate -distortion curves for many discrete
sources and an explicit expression for this curve for time discrete
gaussian sources. These results, together with Shannon's work with
vector sources, were used to get rate -distortion curves for gaussian
random processes.3, 4 Bounds to the rate -distortion curve for non-
gaussian sources have also been obtained.5' 6

However, all of the rate -distortion results derived for both con-
tinuous and discrete sources are limiting results, that is, they can
be approached in general only when arbitrarily complex operations
on very long sequences of source output are allowed before transmit-
ting the "message" through a correspondingly large use of the channel.
T. Goblick was the first to study the rate of approach to these limit-
ing results as the source output block length increases, but limited
his work to source representation or source encoding, with a deter-
ministic map between the source and its representation.' Our work
includes a noisy channel, or probabilistic function, between the
source and user.
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A performance curve d(n) will be introduced for each source -
channel pair as the minimum possible average distortion obtainable
using a modulator that encodes a string of n successive source outputs
into an input signal acceptable by a channel composed of n uses of
the original channel. For a source with the rate -distortion curve of
Fig. 1 and a channel with capacity C, the performance curve might
look like the one shown in Fig. 2.

From Shannon's theory it is known that the performance curve
starts at do, the zero -rate distortion, and decreases to asymptotically
approach d0, the distortion corresonding to the information rate C
on the rate -distortion curve. The curve, of course, has meaning only
for integral values of n. Not all modulators and decoders provide a
distortion curve that approaches de for large n, but this curve ob-
viously must lie above the performance curve which alternately
could have been defined as the lower envelope to the set of distortion
curves corresponding to all encoder -decoder pairs.

II. THE LOWER BOUND

Upper and lower bounds to the performance curve have been
derived.8 We present the lower bound in the first part of this paper,
and the upper bound in Sections XI through XVII. Most of our
effort concerning the lower bound was directed toward finding infor-
mation about the rate of approach of the performance curve to its
asymptote. In particular, we tried to relate the source and channel
statistics, as well as the method of encoding that is used, to the rate
of approach of d(n) to d0.

H

C

do d --* do

Fig. 1 - The rate distortion curve for 8.
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Fig. 2 - The performance curve for 8 and e.
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Concerning this rate of approach, several interesting situations
are known to exist. For one, there are some source -channel pairs for
which the minimum attainable transmission distortion is independent
of the encoding block length, with the consequence that it is possible
to attain the distortion level de with a coding block length of one.
One example of such a pair is a binary symmetric source (equally
likely binary letters with d(i,j) = 1 - ay, i,j = 1,2) used with a
binary symmetric channel, where the optimum encoder is a direct
connection. Another example is a gaussian source used with an addi-
tive gaussian noise channel, where the optimum encoder is simply
an amplifier.°

When the source -channel pair is such that the minimum attainable
distortion is independent of the coding block length we shall say
that the source and channel are "matched." For the more common
situation wherein the minimum attainable transmission distortion
decreases with increasing encoding block length to asymptotically
approach the distortion level de, we say that there is a "mismatch"
between the source and channel, and suggest as a measure of this
mismatch the "slowness" of the approach of the distortion to de.

Another interesting situation occurs when there is a choice of
using one of several channels of different capacity. Although the
channel of highest capacity would be the best choice when one is
willing to use infinite block length coding, it might not be the best
choice with finite length coding. This could easily happen if the high
capacity channel were very much more mismatched to the source
than some lower capacity channel.
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TII. SYSTEM MODEL

Figure 3 is a detailed illustration of the transmission system that we
work with. The source S produces a sequence of letters (,) = w, , 02

, w , each chosen from the alphabet W = { w1 , , tvH}, which is
mapped by the encoder into a sequence of channel input letters t = 6
E2 , , En , each a member of X = , , xic}. The channel then
transforms the channel input word t into a sequence of channel output
letters n = 77 7/.1 .2 nn which are members of 17 = y , },

and n in turn is decoded by the receiver into a sequence l = T
?-2 , , Tn of letters from the decoding space Z = { z1 , , z.7}.

The source and channel are both assumed to be constant and memory -
less; therefore, successive events on each are independent and governed
by the same probability distributions. In particular we have

n
SOURCE

OUTPUTS

pw(w) = H p..(wm).-i

Pn t(3T I x) = I Atm I E. (Ym I X"'))

EN-
CODING

m

n USES OF
THE CHANNEL

Y,

y2

YL

Y,

y2

YL

111

11n

DE-
CODING

Fig. 3 - Block diagram of the encoding and decoding.

DECODING
LETTERS
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where the superscript on /en, x"', yin is used to denote the m'th letter
in the n -letter words w, x, y respectively, and is not to be confused with
the particular letters tv, , x, , and y, in the alphabets W, X, and Y.
The subscripts on the probability distribution are hereafter dropped
whenever no confusion will occur.

The distortion in the system when the source word w is transmitted
but received as z is taken to be the normalized sum of the n letter
distortions, or

1 nz) = - E d(wm , e).n ,, (1)

Finally, although we have set up the problem so that a sequence
of n source letters is transmitted as a sequence of n channel letters,
different block lengths at the source output and channel input can be
allowed by considering a new source and channel that are products
of the original ones, with the order of each product adjusted to obtain
the desired block length ratio mine.

IV. THE SPHERE PACKING ARGUMENT

A generalization of the sphere -packing concept is used to derive
the lower bound. We assume the coding block length is n and derive
a bound conditioned on the event that a particular source word w has
occurred at the source output. We further assume that the channel
input word x is used to transmit w, but delay the selection of x until
the end of the derivation when the result is optimized over all possible
choices. The total lower bound to distortion is found by averaging this
conditioned lower bound over all source words in W. The asymptotic
form of this bound is studied in detail and from it a measure of mis-
match between the source and channel is defined.

The idea involved can be described with the following simple, but
poor, bound which is subsequently improved. Remembering that the
source word w is assumed transmitted by the channel input word x,
we list all possible channel output words, y, ordered in decreasing
conditional probability p(y I x), and pair with each the decoder output
word z(y) to which it is decoded by the optimum decoder. The resulting
(conditional) distortion,

d(w) = E p(y
I

x) d[w, z(y)], (2)
Y"

is seen to equal the sum of conditional probability -distortion products
on this list. If the set of distortion values that appear on this list is
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now rearranged (with the list of conditional probabilities fixed) to
be ordered according to increasing distortion values, the resulting
sum of conditional probability -distortion products must be smaller
than, or at most equal to, the sum in equation 2. It therefore provides
a lower bound.

The improved lower bound uses the same sort of orderings and re-
arrangements but includes a probability function, f(y), in the ordering
of the channel output words. This function is defined over the set of
channel output words, r, and is later chosen to optimize the result.
The channel output words are now ordered according to increasing
values of the information difference /(x, y) = (1/n) In [f(y)/p(y I x)]

and each is again paired with the decoder output word z(y) to which
it is decoded by the optimum decoder.

The rearrangement of decoder output words is also slightly different.
To describe this rearrangement we visualize each channel output word,
y, as "occupying" an interval of width f(y) along the line [0, 1]. The
decoder output word, z(y), that is paired with a particular channel
output word y is also viewed as occupying the same region along [0, 1]

as y, but, because any particular word z, might be the decoding result of
several channel output words, the region along [0, 1] occupied by zo
could be a set of separated intervals. The rearrangement of decoder
output words is this time a rearrangement of occupancies in [0, 1]

toward the desired configuration wherein the decoder words are ordered
in increasing distortion along this line, and each occupies the same
total width in [0, 1] as it did before the ordering. Thus two monotone
nondecreasing functions can be defined along the line [0, 1]; one, 1(h),
giving the information difference /(x, y) at the point h, 0 < h < 1, and
the other, d(h), giving the distortion d(w, z) at h. The first theorem
presents a lower bound to the single word distortion in terms of these

two functions.

Theorem 1: The average transmission distortion, d(w), conditioned on
the occurrence of the source word w and its transmission using the channel
input word x, satisfies

d(w) fi d(h)e-"I`h) dh. (3)
0

Proof : Figure 4 is used to help prove the inequality. The distortion
resulting from optimum decoding is given by equation 2; the con-
ditional probability -distortion products on the previous list before
rearrangement of the decoder output words, For convenience this is
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rewritten here as

d(w) = d[w, z(y)][P(Y x) f(y) (4)
f(Y)

which can be seen equal to the "volume" in Fig. 4a enclosed by the
two "amplitude functions" d' and p/f and the "width measure" f.

The rearrangement of the decoder output words to obtain the mono-
tone function d(h) from d'(h) can be accomplished by a sequence of
interchanges of the following type. We consider any two points in
0 < h < 1, say hi and h2 , for which d'(h2) < Chi) and P/i(h2)
p/f (h i) . If we consider an interval Ah around each point in which
both amplitude functions are single valued and interchange amplitude
values of d' in the two intervals, we effect a volume transformation
that decreases (or leaves unchanged) the total volume since

initial volume-final volume

= [cho f (h1) d'(h2) (h2)] Oh

- d'(h2) (h1) d'(h,) 7 (h2)] Oh

= [d'(hi) - d'(h2)] [7 (h1) - (h2)]

, O.
Volume interchanges of this type are repeated until the desired

monotonic function d(h) is obtained. The resulting volume configura-
tion is then as shown in Fig. 4b. As each interchange of oh width
volumes decreases the total volume, or leaves it unchanged, the total
volume in Fig. 4b is certainly no larger than that in Fig. 4a. We need
now only notice that p/f (h) = exp-nI(h) to recognize that the
integral in equation 3 is equal to the volume in Fig. 4b, and, there-
fore, to establish the inequality claimed in the theorem.

To be sure, the construction in Fig. 4b, and the calculation of the
lower bound in equation 2 requires some knowledge of the structure
of the optimum decoder. Fortunately, this knowledge is minimal; it is
only the total width along [0, 1] occupied by each member, z, of the
decoding space El. We refer to this occupancy as the "size" of the
decoding set for z and denote it by g(z).

From the construction of the lower bound volume in Fig. 4b, we see
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that

g(z) = E f(y)
Y(z)

where Y(z) is the set of channel output words that are decoded into z
by the optimum decoder. Indeed, if we assume unique decoding by the
optimum decoder we have

E g(z) = E E f(y) = E f(y) = 1,
z. z. Y(z) Y.

or that g(z) is also a probability function. Even this function, though,
is unknown in the general case or at least is impractical to calculate.
The idea of the lower bound development, therefore, is to retain this
unknown probability function for the present and subsequently replace
it with another such function which minimizes the final lower bound
expression. Within this step an approximation involving the form of
g(z) is required which is detailed in Section 6.2.

V. FURTHER EVALUATION OF THE LOWER BOUND IN THEOREM 1

The integral in equation 3 can be simplified if we suppress the inter-
mediate variable h and relate the variables d and I directly. The pairings
of d and I through a common value of h, d(h) = I(h), does not by itself
define a function because several different values of d could be paired
with a given value of I, and vice versa. However, we will use the prop-
erties that exist among these pairs to define a distortion function d(I)
which has the property that for any I, the dependent variable d is at
least as small as the smallest d(h) among the pairs that have I(h) = I.

To do this, we reinterpret the monotone nondecreasing functions
d(h) and I (h). First, we view the distortion d(w, z) as a random variable
on Zn governed by g(z). Its cumulative distribution function

G(d) = E g(z) (5)
Z.

d(w,z)Sd

is then seen to be the "inverse" of d(h). (Strictly speaking, the inverse
of a staircase function does not exist, so the term inverse is used here
only as an aid in relating d(h) and G(d) pictorially.) In a similar way
we also view the information difference /(x, y) as a random variable
on Yn governed by f (y). Its cumulative distribution function is given by

Fa) = E f(y), (6)
Y.

/(z.Y) SI
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or the "inverse" of I (h). The desired function d(I) can now be defined
in terms of G (d) and F1 (I) by relating to any information difference
value I the distortion value that satisfies

F,(I-) = G(d). (7)

The following geometric interpretation of d(I) might be helpful. If
each size, or "volume," g(z) of the decoding sets is successively placed
about the volume g(z,) of the decoded word with minimum distortion
d(w, z1), and each size, or "volume," f (Y) of the channel output words
successively placed about the volume f (y,) of the channel output word
with minimum information difference /(x, yi), the total volume in-
cluded by a point in the first construction at a distortion "radius"
d is G(d) and that included by a point in the second construction at an
information difference "radius" I is F,(I). The function d(I) then gives

(except for edge effects) the correspondence between the radii that
include the same volume in both geometrical constructions. Figure
5a illustrates the construction of d(I) through the chain I F1(I-) =
G(d) d.

It is convenient at this point to introduce a second random variable
of information difference; one which is governed by p(y I x) rather than
f(y). Its cumulative distribution function is

F2(I) = E p(y I x). (8)
Y.

I(x, y) s I

To distinguish the two information difference variables, we will

denote by /l the variable that has the distribution function in equa-
tion 6 and by 12 the variable that has the distribution function in
equation 8.

We are now in a position to rewrite the bound in Theorem 1 in
terms of functions that involve only d and I. The distortion function
d(I) has been constructed to lower bound all d(h) with 1(h) = I,
thus we can replace d(h) in equation 3 with d[I (h)]. As this substitu-
tion replaces d(h) with a distortion function that is single valued
over subintervals of [0,1] in which I is a constant, we can perform
the integration in equation 3 by simply multiplying the integrand in
each such constant I interval by the interval width, dFi (/), and
summing. Therefore, we can continue the inequality in equation 3
with

Im.x

d(w) >=
J

d(I) exp (- nI) dF,(I),
Ira,
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F1 (I)  G(d)
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which, upon using p(y I x) = exp (-nI)f(y), establishes the lower bound
in the next theorem.

Theorem 2: The average transmission distortion, d(w), conditioned on
the occurrence of the source word w and its transmission using the channel
input word x, satisfies

d(w) > f d(I) dF2(1). (9)
rm n

VI. AN ESTIMATE OF THE FUNCTION d(I)

6.1 The Random Variables I, and El

To obtain an estimate of d(I) we require an estimate of the two dis-
tribution functions, G(d) and F,(I), from which d(I) was defined. We
first focus on F1(/) and the random variable ./, . Since the lower bounds
in Theorems 1 and 2 can be derived for any choice of f(y), we choose
a form of f(y) that simplifies the following arguments. We specify that
f(y) factors as

f(y) =fT f(Ym).
m=1

(10)

One consequence of this assumed form is that the information difference
/(x, y) is given as a sum of n letter information differences:

xtInf(Ym)

P(Ym I en) n Y

Among these n letter information differences, however, there are
different types, depending on the corresponding transmitted letter
xm in x. To separate these, we introduce the vector c to denote the letter
composition of the channel input word x, letting c = ci , c2 , , cK

when there are nc1 appearances of the letter xi in x, nc2 appearances
of x2 in x, and so on. Thus we can write the information difference in
equation 10 as

K nckgx, = - E E /kr (12)
n k=1 r=1

in which Ikr is used to denote the information difference between the
r'th appearance of the letter x, in x and the corresponding letter in y.
The interpretation of the /kr as letter information difference random
variables on Y governed by the letter probability function f(y) can
now be seen to be consistent with the previous interpretation of I,
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as a word information difference random variable on governed by
f(y). Using the abbreviations

1(m) =

P(Y xk) = Pk1

the probability distribution function of Ik,. can be written as

P..rk,[1n,nk] = 1 r nck ; 1 k K. (13)
ykt

What this has accomplished is to cast I, as the sum of n independent
random variables, a step that enables us to use large number laws to
estimate F,(1).1°-13

In an almost identical way, the random variable I, can be cast as a
sum of n independent random variables. This can be done if we as-
sociate with the variable Ik, the probability distribution function

= Pkl ; 1 r < nck ; 1 k K (14)
Pk!

instead of that in equation 13. With this distribution the word informa-
tion difference variable /(x, y) in equation 12 can be seen to be governed
by the probability function p (y I x), therefore, it is equal to the random
variable /2 .

6.2 The Random Variable d

In the work so far, the function g(z) is that probability function
induced on Zn by f(y) through the optimum decoder function and cannot,
therefore, be freely chosen once f (y) is chosen. On the other hand its
precise calculation from the optimum decoder is impractical. The only
alternative is to retain the unknown function g(z) in the lower bound
expressions and to minimize the final lower bound to distortion over
all possible probability functions on Z". Since g(z) is one such probability
function the inequality in the lower bound is continued. Unfortunately,
when this is done it cannot, in general, be shown that the function which
minimizes the lower bound factors into n letter probabilities, a form
which we were permitted to assume for f (y). However, to proceed
beyond the bounds in Theorems 1 and 2, it is necessary to approximate
this g(z) by such a product, as in

g(z) = fI g(z"').
m=1

(15)
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The necessity for an approximation of this type is, of course, because of
the requirement that an estimate be made for the distribution function
G(d). The assumed form for g(z) in equation 15, will again allow us to
use large number laws to obtain this estimate.

More specifically, the assumed product form for g(z) allows us to
cast the word distortion random variable d(w, z) as a sum of n inde-
pendent letter variables. This is done in the following way. Among the
letter distortions d(wm, zrn) that sum to the total word distortion there
are H different types, corresponding to each of the different letters

, 1 H, that appear in the source word w.
If the composition of this word is q = q, , q2, Di , that is, if

there are nq, appearances of w, in w, nq2 appearances of w, , and so on,
the normalized word distortion can be written as

1 " ng,
d(w, z) = - E E Dir .

n r=i
(16)

In this expression Dir is used to denote the distortion between the
r'th appearance of the letter wi in w and the corresponding letter in
z. Equation 15 now allows the interpretation of the Dir as independent
random variables, having the probability distributions

PD(dei) = g,
d(w, , zi) = d

g(zi) = g, ,

(17)

with the result that G(d) is an n -fold convolution of elementary dis-
tribution functions for which there exist many estimating forms."'"

We realize that the approximation in equation 15 is not entirely
satisfactory because it eliminates nonproduct probability functions from
the minimization of the lower bound and, as far as we know, one of
these functions could provide the minimization. However, there is
good reason to believe that this approximation does not significantly
affect the bound when n is reasonably large. For example, in the next
several sections we derive a lower bound to distortion that uses the
product from in equation 15. For this bound the required minimization
over all probability functions g(z) is reduced to one over all J dimen-
sional vectors g. It can be shown that if in the limit as n becomes large,
the product form requirement for g(z) is relaxed, and the minimization
of this lower bound is again made over all probability functions g(z),
then the optimizing function go(z) still has the product form.

Even more significant is the asymptotic form of the lower bound that
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is derived using equation 15. We later show that it is only the final
value of the minimizing decoder set size vector go(n = 00) that affects
both the asymptote of the lower bound, dc , and the next lowest order
term, which is one proportional to 1/n . Values of the minimizing vector
for finite n, go(n < 00), affect only terms of o(1/n).

Further, it can be shown that a similar conclusion is reached even
if the independence property assumed over letters in equation 15 is
generalized to be over blocks of length r, that is if

g(z) = g(z'm)

z'm = zi , , ; j = mr - r 1.

When g(z) is assumed to have this form, the minimization of the lower
bound over all decoder set sizes is a minimization over all probability
functions g(z') on T. The conclusion that can be made from the bound
derived using this assumption is that it is again only the value of the
minimizing decoder set size function at n = 00, go(z', 00), that in-
fluences both the asymptote and the term proportional to 1/n. And,
at n = 00, the minimizing decoder set size function on Zr, go(z', 00),
factors into a product of single letter probability functions on Z. When
this solution is substituted in the bound (that uses r > 1) the asymptotic
form is the same for every choice of the constant r. Only lower order
terms differ for different values of r.

There is one situation in which the assumed product form in equation
15 does not represent an approximation. That is the case of a doubly
uniform source, which is a source that has a uniform probability dis-
tribution over its letters and has a distortion matrix in which each row
and column is the respective permutation of another row and column.
For such a source it has been shown' that the probability distribution
g(z) which minimizes the lower bound in Theorem 1 is uniform for all
n, thus has the factorability property in equation 15.

6.3 A Lower Bound to d(I)

We now seek an approximation to d(I) that we can substitute in
equation 9 and preserve the inequality. A safe approximation to d(I)
can be had if, instead of equating F,(I-) to G(d) as in equation 7, we
equate a lower bound estimate of G(d) to an upper bound estimate of
F1(r). Figure 5b illustrates this construction. The result is another
distortion function, dL (I), that satisfies

dL(I) <= d(I) (18)
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which can be used in equation 9 to obtain

r,,,
d(w) > f dL(I) dF,(I) (19)

i n

Since the random variable /2 is a normalized sum of n independent
random variables, its variance is proportional to 1/n. Consequently,
when n becomes large the distribution function F2(I) has almost all
of its "rise" around the mean of /2 , which we denote by I. In this
region, I ti I, d d(I), the values of both distribution functions G(d)
and F1(I) are exponentially small. Therefore, the bounds to the tails of
distribution functionsw-13 are applicable to the estimation of G(d) and
F1(I) in this region. Indeed, it was with the intended use of these
powerful bounds that we formed both the distortion and information
difference random variables as sums of n independent letter random
variables. All of the bounds, though, are parametric in form and allow
only a parametric representation of d L(I).

We have elsewhere8 applied strict upper and lower bounds to G (d)
and F1 (I) , respectively, to obtain the function dr, (I) . However, when
these bounds are used, the resulting total lower bound to transmis-
sion distortion, though applicable for all block lengths n, does not
reveal the correct asymptotic behavior inherent to the sphere -packing
procedure which has been used. (This happens because the strict
bounds to G(d) and F1 (I) themselves do not have the correct asymp-
totic form to large n.)

In addition, the resulting lower bound to the total distortion is

very complex and so does not provide much insight into the factors
which affect the rate of approach of the performance curve to its
asymptote. For these reasons, we instead use Shannon'sn and Gal-
lager's13 asymptotic forms for the tails of distribution functions to
bound G (d) and Fl (/). These are:

with

(d) 1 + A u(n, s)] exp n[µ(s) - sµ/(8)] (20a)
L Varniµ (s)

µ'(s) = d (20b)

0 < d < E(d I q) = E d(w, z I comp w = q)g(z),
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and

P1(I)
1

AL(n, t)]
[ exp n[7(1) - t7'(t)] (21a)

1/2rney "

7'(t) = I (21b)

\\Pi th

< I < E(11 I c) = E 1(x, y I comp x = Of(Y)

In these bounds, Au(n, s) and AL (n, t) are sums of rather difficult
integrals but each has been shown by Shannon and Gallager to be

o( 1 -)
Vn

Also within the previous bounds, we have used p(s) to denote the
semi -invariant moment generating function of the variable d,

1.1(S) = E q.p,(s)
i = 1 (22)

= E q; In E g; exp s ,

and y(t) to denote the semi -invariant moment generating function
of the variable I,

(1) = E co,k(t)
k-,

= E ch In E frtp;,` .

k-1

(23)

To guarantee the boundedness of y(t), we restrict the vector f to
have nonzero components. This does not affect the resulting bound.
(Actually, these bounds strictly apply only when the variables d and
I are nonlattice. For lattice variables the corresponding bounds"'
have in their coefficient a quantity A which does not change continu-
ously with the argument of the distribution function, and cannot be
used within our derivation. One alternative would be to decrease one
assigned letter distortion d(w, z) by an arbitrarily small irrational
number, and similarly, to change two transition probabilities on the
channel in a way consistent with a lower bound to distortion. The new
variables d' and I' would then be nonlattice.)
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The desired distortion function, dr, (I) , can now be defined by
equating the two bounds in equations 20 and 21. It can be con-
structed through the chain: I- -t -+d in which the superscript
could now be dropped since the bound to F1(I) is continuous in I.
It is important to notice that the region of validity of the previous
two bounds allows definition of the function dr,(I) only in a subin-
terval [Id, Ib] of ['vain, /max] with

/m, < Io <I < Ib 5 E(I, I c), 1[E(cl I q)].

Outside the interval [IQ, Ib] we can define dr, (/) equal to zero and
write the lower bound in equation 19 as

Ib

d(w) > dt(I) dF2(I). (24)fa

We are now faced with the difficult integration of a doubly para-
metric expression. Rather than integrate directly, we use the following
Taylor series expansion for dL(I) within [/, , Ib] :

dL(I) = dL(I) diff)(I - + a di,(i)(1 - 1)2 + - i)3

TS(dL)

with I. < < Ib. (The indicated derivatives can be shown to exist
within the restricted interval [/, /b].) Using this form for dL(I)

within equation 24 we see that if the region of integration were [imin)
/max] instead of [/, .4], the resulting form would be a sum of central
moments of /2 with the Taylor series derivatives as coefficients. To
restore this form we rewrite equation 24 as

rm.. r. /max

d (w) f1,,n,. * imm. - it,
TS(dL) dF2(I). (25)

In these integrals, the lower limit /min is finite since fi is assumed
nonzero for all 1, and Imax can be taken as the largest finite value of
In fi/Pki since this is the largest value of I for which the random
variable /2 has nonzero probability. Therefore the function TS(dL) is
bounded in [LA., ./.] and [Ib , 'max] with the result that the last two
integrals in equation 25 are exponentially small in n. The first in-
tegral in this equation has the desired form, involving the central
moments of /2:

TS(dL) dF2(I) = dL(I) c 1(1)E(I - I) d'i(I)E[(/ - 1)2]
,min

d'n(P)ER/ - 1)1 .
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In the above equation the second term is zero since we have specified
that I is the expected value of 12 , and the last term can be shown to
be proportional to (1/n)2. This establishes the result in the next theorem.

Theorem 8: The conditional average transmission distortion, d(w), satis-
fies

d(w) dL(1) d'AI) var (I2) 4;9 (26)

Compared with the last low order term, the variance of I° is propor-
tional to 1/n.

The simplicity in the form of the last result is due to the use of
the Taylor series expansion which not only has allowed us to evaluate
a difficult integral, but has provided a natural way of separating the
important terms in the lower bound to distortion.

6.4 The Evaluation of ciL(1) and d' AI)

We shall denote by s, and t. the parameter values consistent with
I = I in equations 20 and 21. Since

K L

71(-1.) = E E pkz In fi/Pki
k=1 1=1

which is seen equal to E(.1.2) = I, we can conclude that t. = -1. We
also note here for future use that

y(-1) = 0.
The first of the two significant terms in equation 26 is immediate:

( I) = µ (s.)
Next, elementary differentiation of the parametric expressions in
equations 20 and 21 provides

(WI) 1

and

to,..

1=
So

dL(I)=1 [ 1 - t2

S y" (t) 5211"(s) t....

1 1

8° LY"(-1) 35,"(s.)-1
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Finally, the variance of 12 is seen from equation 12 to equal

K
Var (10

1= - E ck Var (/kr)
n k

= At ck
t

[ pki(In ji/pki)2 -1Pia fi/pki)21
=1 --I -

= -y"(- 1)

With the substitution of these terms in equation 26 we obtain the
result in the next theorem.

Theorem 4: The conditional average transmission distortion, d(w), satis-
fies

5,"(- ii+ 0(1) (27)d(w) le(8°) - 1_820A"(30)1)

in which so is given by

ii(so - solAs 4,) I - hi
+

(1
2n s'ai.4("(so) °

(28)

It remains to average this lower bound over the entire source space
Wn.

VII. THE AVERAGE OVER THE SOURCE SPACE

To average the lower bound in Theorem 4 over the source space W"
we assume that channel input words of equal composition are used for
all transmissions. It has been shown' that this assumption does not
affect the asymptotic form of the lower bound to distortion. We first
notice that the lower bound in Theorem 4 depends upon the source
word w only through its composition q which enters in the form of
1.(s). Therefore, we can average d(w) over the set of all compositions
for w rather than over all of W. As all composition vectors for w are
probability vectors, they are all located on an H - 1 dimensional
hyperplane, termed the composition space Q", which is in the "first
quadrant" of RH and intersects each axis qi at one. Not all points in
(217 are possible word compositions for any particular n. For example,
with H = 2 and n = 2 there are only three possible compositions. But
as n increases, the points in (2/1 that are source word compositions be-
come quite dense.

The probability that any particular composition q occurs at the
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source output is
H

( )
II

;
(29)

in which N(q) is the number of distinct source sequences with the
composition q and the product is the probability of each. The number
N(q) is given by

N(q) =

(nqi)
;ml

We now write the total average source distortion, d(S), as

d($) = E d(q)P(q)

n

all source
comnosi tions

which we can lower bound by substituting for d(q) the lower bound
found in Theorem 4. Rather than write out the entire expression each
time we want to use it, we let dL(q) denote the right side of equation 27,
thus have

d(S) >= E aL(q)P(q). (30)
all source

composi tions

Viewed as a function over QH, P(q) is a set of impulses. This allows
us to consider the distortion function dL(q) a continuous function over
all QH, rather than a function defined only at composition points, and
to write

d(S) > f f d L(q)P(q) dq. (31)
Q it

Again because the expression for dL(q) in equations 27 and 28 is para-
metric, we use a Taylor series expansion of this distortion function to
evaluate the integral. The point chosen for the expansion is p, the
probability vector characterizing the source. The reason for this choice
is that the components of this vector are the means of the coordinates
of q when the latter are considered (dependent) random variables
governed by P(q). The Taylor series then contains terms of the type
(q, - p,), (q, - p;) (q; - p,), and so on, which, when averaged by
P(q), are the central moments of the components of q.

Using the notation d',,;(p) to indicate the partial derivative of dL(q)
with the respect to q, evaluated at q = p (and similarly for higher
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order derivatives), we have

d(S) > f [c1L(P) (11,i(P)Oi - Pi)
0"

+ E dzii(p)(qi - - P1)

+ E coik(co)(qi - pi)(qi - pi)(qk - Pic)1P(q) del (32)

with (p E QH. The central moments of the components of q can be found
to be

E(qi - pi) = 0,

Eaqi Pi)(qi Pi)] = aii - PiPi)

E[(q, - pi)(qi - pi)(qk - pk)]

= (1,1)2[73; Ow, - Pip; ski - PiPk sii - pkpi 5;k ± 2PIPIPk],

which, when substituted in equation 32, yields

/1\
d(s) ciL(P)

1n

L
dZii(P)Pi E + 06) 

Referring to equation 27 we see that the required second derivative
need only be taken of te (so) as the two 1/n coefficients allow other
terms to be absorbed in those of o (1/n). The differentiation is lengthy,
but straightforward, and yields

a
(so , q) - µ; (so)

aqi So

and

Oi 1
02

µ (.3 , - 9" (s0 P)aqi aqi
where

(33)

(34)

Oi - 844:(80).

Upon substitution of these derivatives in equation 34 we obtain

d(S) CP) - 27241,,(3.) Pie - 0(!)

= clL(P) 2n41(s.)Var (0) + o(!)
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With the final substitution of the expression for d,(p) in equation
27 we have the result in the next theorem.

Theorem 5: The average transmission distortion of the source 8, when
used with the channel e, is lower bounded by

1 [-y" (-1) + cr2 (0) - 11
cl(8) A4'(8.", P) - 2ns 4" (so p)

in which so is given by

o()(35)

1 7" (-1)
+

4 1)
m(so , p) - solf(so , p) = I - In

In this bound the vector g is, for the reasons previously stated, that
which minimizes the bound, the vector f is chosen to maximize the
bound in order to obtain the tightest bound, and the vector c is chosen
to minimize the bound, that is to use the best composition for the
channel input code words. As formidable as the derivations of these
extremum appear, we show in the next section that the work involved in
establishing the asymptotic behavior of the bound is actually quite
simple.

It should be mentioned that these results do not apply when
y"(-1) = 0, which is a situation that occurs when channel e is noise-
less, for the reason that we have divided by and canceled factors equal
to y"(-1). The result for this case is derived separately in Section IX.

VIII. THE ASYMPTOTE AND RATE OF APPROACH

8.1 The Asymptote

When n becomes large, the limiting form of the bound in Theorem
5 is:

in which so satisfies

with
A(s. , p) - , p) =

K L

I = Eck E pk, In I i/pki .

The vectors g, f, and c must now be chosen to provide the extremum
indicated just after Theorem 5. Since only f and c enter in the expression
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for I, we can minimize 4(8) with respect to g for a constant I. This
minimization provides precisely the expression' for the rate -distortion
curve for S at the information rate I. It is further shown in the same
reference that the value of g which provides the minimization is the
vector that describes the output statistics on the test channel for S
at the point (di. , I) on the rate -distortion curve.

The maximization and minimization of 4(8) with f and c, respec-
tively, can be accomplished by finding the same extremum of I. The
resulting values for f and c are the output and input probabilities,
respectively, on channel e when it is being used to capacity and the
value of I at the extremum point is - C. Therefore, the resulting ex-
pression for the asymptote of the lower bound is

d(8) min µ'(s. , p) = de (37)

with so satisfying

gs. P) - s0i2(s. P) = -C. (38)

This agrees with what we know to to the correct asymptote of the per-
formance curve.2.7

8.2 The Rate of Approach to the Asymptote

Since the lower bound in equations 35 and 36 is parametric in s and
includes the vectors f, c, and g, which when optimally chosen are func-
tions of n, the complete asymptotic dependence of this lower bound upon
the block length n is not obvious. To establish this dependence, we
first find the full derivative of the lower bound in Theorem 5 with respect
to n and then integrate the result between n and infinity.

We first simplify the procedure slightly by using our freedom to
choose f by setting this vector equal to its value at n = oo ; f( co). This
does not change the end result. We also drop the terms of o(1 /n) in
equations 35 and 36, because they clearly do not affect the asymptotic
result. Denoting the right side of equation 35 by dL and using the chain
rule several times, we can write the desired derivative as

dd1. (ad,,
dn \an)c,,,

(ach) ds
\ as lc.,, dn

+ E

(ach) dg,

\agaigki dn
c,n,s

(adL) de,
\ack f c, pk dn
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with

ds as as dg, (as ) dc,.= )
do an g, gi ,i-dn k ack ,,, do

C . TI g n

The notations outside each parentheses indicate the variables which
are momentarily held constant. Substitution yields:

ddi,
=

(ad (ad,) (as
dn an) ±

,,g,s as ..g,n .(l,)g,c

± 7 I aL) ( s) (ad, dgi
a-- L \ as 1 \a 1c,g uj pk*j agi) pk,ildn

n c,n c,s,n

+ ad as (ad, dc,

k [( as),,g,(aCk)clk + n doUj Ctki
n g.n g,n, a

The bracketed terms represent the respective partial derivatives
of dj, with respect to g. and ck with s removed from those quantities
held constant. Since g(n) and c(n) are chosen for each value of n to
minimize the lower bound dL , these partial derivatives must satisfy

(ad,

g,n

+ X=0 1<jsJ (39)

+ v= 0 1 c 5 K. (40)

This presumes that, at least for sufficiently high n, both g and c have
only nonzero components. This is known to be true for c," which at
n = 00 equals the channel input probabilities that use the channel to
capacity.

The vector g, though, can at n = 00 have a zero component. For this
case, if the approach of g(n) to g(00) is from within the composition
space, that is, if the components of g(n < 00) are nonzero, equation
39 is correct as written for all finite n. If, however, the approach of
g(n) to g(00) is along the boundary of the composition space, that is,
having one or more components equal to zero for all n > N, then
equation 39 can be written, not for all 1 < j < J, but only for the J'
nonzero components. Over the region (N, co) the other J - J' zero com-
ponents obviously can be treated as constants and not included in the
differentiation process, thus excluded from the previous summations
on j. We shall not attempt to deal with the only remaining possibility,
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which has g(n) approaching g( cc) such that it oscillates between vector
values with all nonzero components and values with some zero com-
ponents, since no example has been found exhibiting this behavior.

We continue the derivation by substituting equations 39 and 40
into the derivative of dL to obtain

dd, (ad f, (ad,) (as)
-

v dgi - E dck
)

- 
do \an c.g,, as / c.g.n \anig,C td do k do

(41)

Finally, since both g and c are probability vectors, the last two sums
are equal to zero (this is true even when the first sum is only over the
J' nonzero components of g). It remains only to find the required
partial derivatives from equations 35 and 36. These are given by:

(ad,) 1 cr 2 1)
\ an icg.m 2n2S k s2/2"

\ as = 11" o(1)

(\on)g.c = ;25-177 in s2 1,,,
as 1

7,,

whence substitution in equation 41 provides

dcli, 1 1 [ " - 1 - In I'ff, + 2(7.1 + 0(,) (42)
2

1

do n2 2 I s I ks2/2" s s

At this point, the vectors g, c and the parameter s are still functions
of n chosen to satisfy the prescribed minimizations of Equation 55
and the parametric Equation 35. If, for large n, these functions are
written as

g(n) = g(00) Ag(n)

c(n) = c(00) Ac (n)

s(n) = s (CO) + s(n) ,

the delta terms can be extracted from the first term in Equation 42.
Since each has limit zero for large n, they can, together with the (1/n)2
coefficient, be absorbed into the terms of o(1/n2). Thus, in equation 42,
we can use for g, c, and s their final values: g( co ), c(00), and s(co).

Simple integration of equation 42 between n and infinity, and the
use of the known final value of dL(n), dL(00) = dc , provides the final
lower bound to distortion. We again point out that the derivation has
included the approximation that g(z) factors as in equation 15.
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Theorem 6: A lower bound to the minimum attainable transmission
distortion in a system that includes the source S and the channel e is given by

±
a.2

d(S) (43)
2n I s L

s2,2 - - In s2),,, -1-- 521z, -i-

in which

C = capacity of e

dc = the distortion at R = C on the rate -distortion curve for 8

A(s) = E q, In E g, exp sclii

-y(t) = E ck In E

q = p, the source output probabilities
g = the output probabilities on the test channel for 8 at (do , C)

c, f = the input and output probabilities on e when it is used to
capacity

t = -1
s satisfies µ - = - C.

The lower bound in equation 43 is seen to approach its limit alge-
braically as a/n. Since (w -1) is at least as large as In w for any w
and 0-2 and p." are variances, hence nonnegative, the coefficient a can-
not be negative. But it can in special cases equal zero. The conditions
for this are

7// s2aui/

vZ

conditions that are necessarily met when the source and channel are
perfectly matched; that is, when d($) = dc for all n.

They do not, however, constitute a sufficient condition for matching
since the low order correction terms in equation 43 could still be non-
zero. For the more common situations wherein a is nonzero, the form
of the lower bound suggests that the larger the value of a, the longer the
coding block length must be to obtain a tolerable level of distortion,
dc + A. In turn, the more complex the modulator and demodulator
must become. These relations all suggest the utility of the coefficient
a as a measure of mismatch between the source 8 and the channel e;
the larger the value of a, the slower the approach of the lower bound
to its asymptote and the greater the mismatch between source and
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channel. Section X gives several numerical examples illustrating dif-
ferent types of mismatch.

IX. THE SPECIAL CASE OF A NOISELESS CHANNEL

As we have stated, Theorem 5 cannot be applied when e is noiseless
because factors equal to y"(-1) have been canceled within its deriva-
tion and, for a noiseless channel, y"( -1) equals zero. We return to
the lower bound in equation 3 which is still valid. If the vector f is
chosen uniform over r, we see from the definition of a noiseless channel
(lin outputs) and the definition of information difference in Section IV
that /(x, y) is equal to In (1/L) for the output yl that has p(y1/x) = 1,
and is infinite for all other outputs. Since f(y,) = e-"I(h) is nonzero

only in 0 h S L -n, where it is equal to _U. Therefore, equation 3 can
be written as

L

d(w) Ln d(h) dh. (44)
0

We remember that the distribution function G (d) is the "inverse"
function to d(h) and write

d(L-n)

d(w) [I.-" - G(d)] dd
0

which can be continued, with any d2 < d (L-19, by

da

d(w) => Ln f [L -n - G(d)] dd.
0

Upon dividing the region of integration into two parts, 0 < d, < d2,
and using the monotonicity of G (d) , we have

d2

d(w) > d2 - d1G(d1) - L" G(d) dd. (45)fi

A further lower bound results if we use an upper bound to G(d) in
each of the last two terms. In particular, we use the asymptotic
bound in equation 20 which we denote here by

G(d) 5 H(n, s) exp n[µ(s) - (s)] (46)

14/(s) = d.

We now set d2 equal to ete (se) with so given by

H(n, so) exp n[A(so)- soil' (so)] = L -n = e -"c. (47)
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The fact that G (d2) < Lrn guarantees the inequality d2 < d(L-n)
which we have already used. The second term in equation 45 can be
shown to be exponentially small in n whenever d1 < d2 therefore, we
also impose this inequality. To bound the last term in the same equa-
tion we use the well known Chernov bound inequality:

exp n[A(s)-si2(s)] < exp n[1.1(s)- sod]

(s) = d
together with equations 46 and 47 to obtain

G(d) dd Dens"1"(")Ln c-ns,i
(1(1

NVi

HD = max H(n, s)
gdsd, H(n, so)

The resulting bound for d(w), therefore, is

d(w) > le(so) -D [1 - exp nso(te(so) - di)] o()ns
If d1 is chosen in a way to approach µZ(so) with increasing n, this
bound becomes:

d(w) µ'(s) + -1 [1 ± o(1)]
nso

in which so satisfies equation 47, rewritten here as

- s,u/(s) = -C --71-1 In H(n, so)

= -C
2n

In n[1 + o(1)]..

(48)

(49)

The remaining steps, averaging over the source space and minimizing
the resulting bound over all choices of g (we continue to use the approxi-
mation in Equation 15), are identical in procedure to those previously
used. We state only the result.

Theorem 7: The minimum attainable transmission distortion of the
source s, when used with a noiseless channel of capacity C, satisfies

d($)
1

dc
2

In
[1 (50)

I

n
so I n
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in which so satisfies

µ(s. P) - soi/(s. , = -C. (51)

We see by comparing equations 43 and 50 that while the lower
bound to distortion with a noisy channel approaches its asymptote,
d0, as 1/n, the lower bound to distortion with a noiseless channel ap-
proaches cla only as On n) /n. These bounds are not inconsistent
since for a noiseless channel the variance y" is zero with the result
that the coefficient of 1/n in equation 43 is infinite. A similar limiting
statement is also true. If a noisy channel is made to approach a noise-
less one by reducing the noisy transition probabilities toward zero,
at the same time keeping the channel capacity constant by appro-
priately reducing either the channel input alphabet size or the channel
dimensionality, the coefficient of the 1/n term increases and is un-
bounded. These results therefore suggest than when there is a choice
between using a noiseless channel or a noisy one of equal capacity,
the noisy channel is always the better choice. And, inasmuch as we
are using the coefficient of the 1/n term to measure the source -chan-
nel mismatch, the noiseless channel represents the worst possible
match to any source.

X. EXAMPLES

In the first three examples, we illustrate different types of source -
channel mismatch and calculate the effect of each upon the coefficient
a in the lower bound of equation 43. Each of these examples tends to
strengthen the suggestion in the lower bound result that this coef-
ficient is a measure of source -channel mismatch since it increases
monotonically as the channel is perturbed away from the matching
channel.

Because the channel statistics influence only the first two terms of
a, we use in these examples a doubly uniform source for which the r2
term equals zero. To further isolate the relative matching properties
of the source -channel pairs, we keep constant the channel capacity
per source output, C, as the channel is varied. Thus the distortion
per source component has the same asymptote, de, for all source -
channel pairs and the only difference in the lower bound curves, at
least asymptotically, is in the coefficient a.

Example 1

This example illustrates a dimensionality, or coding block length,
mismatch between a source and channel. We take for the source 8
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the m,'th product of a binary symmetric source, defined by p = 1)
and d11 = d22 = 0, d12 = d21 = 1. For the channel e we take the mc'th
product of a binary symmetric channel, each component e, having a
crossover probability p. The channel capacity per source component
is mdm, times the capacity of B. and is kept constant as mdm, is
varied by appropriately changing the crossover probabilities p.

Figure 6 shows the dependence of a upon me/m, . When comparing
the two curves in this figure, notice that the ordinate has been normalized
by de . We know that for mdm, = 1 the source and channel are pre-
cisely matched and this is indicated in the figure by the value a = 0
at that point. Above this point a increases monotonically in mdm and
can be shown to have the asymptotic form a k(m,/ma)1. Below
mdm, = 1, a also becomes unbounded as mdm, approaches the ratio
that requires each component channel e, be noiseless. This is not
inconsistent with the noiseless channel result (equation 50) which
indicated that the rate of approach of the distortion to de was not as
a/n but as (ln n)/n.

Example 2

Here we do not change the relative dimensionality, only the form
of the channel. The source is a binary symmetric source and the
channel a binary nonsymmetric channel of varying asymmetry. The
crossover probabilities are again changed in a way that does not vary
the capacity. We see in Fig. 7 that a is rather insensitive to small
perturbations from a binary symmetric channel and in most cases is
affected less by this type of mismatch than a dimensionality mis-
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0.001

0
0.1 02 04 t0.6 t .0

0.531 0.919

2 4

Mc/Ms
6 8 10 20 40 60 100

Fig. 6- The mismatch between a binary symmetric source and a binary
symmetric channel of different dimensionality.
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Fig. 7 - The mismatch between a binary symmetric source and a. binary
nonsymmetric channel.

match. A similar result obtains if the source is also allowed to be
nonsymmetric.

Example 3

For this example we use a binary symmetric source and a discrete
channel which models the m orthogonal signal modulator used in the
next example. The channel has m inputs and m outputs and has
from each input one transition of probability 1 - (m -1)p and m - 1
transitions of probability p. The numbers m and p are varied to-
gether in such a way that the capacity of the channel remains con-
stant. We see in Fig. 8 that the mismatch coefficient a is much higher
when the binary symmetric source is used with this channel than
when it is used with that product binary symmetric channel of
Example 1 which has available an input alphabet of equal size. The
comparison can be made on Figures 6 and 8 at points for which
m0/m3 = log2m.

Example 4
In this, the last example, we include in the system a continuous

channel which is to be used by a discrete source with a discrete modu-
lator. Now, as the modulator changes the discrete channel extracted
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from the actual channel changes and both its capacity and its match-
ing characteristics change. It turns out that both properties are not
necessarily optimized for the same modulator structure and, therefore,
one must strike a compromise (influenced by the block length of
interest) between a modulator design that minimizes the asymptote
de and maximizes the rate of approach to de.

To illustrate this we assume the channel to be a band -limited chan-
nel with additive white gaussian noise in the allowed bandwidth.
During the interval (0,T), the discrete modulator is constrained to
transmit one of m orthogonal signals in each of B bauds and alto-
gether an energy no greater than E. To model the bandwidth con-
straint the mB product is assumed constant, but m and B can other-
wise be varied to optimize the system. Thus the equivalent discrete
channel is the B'th product of the M input doubly uniform channel
of Example 3. The source to be transmitted is a binary symmetric
source with an output rate of M8 digits every T seconds.

In Fig. 9 we show the minimum attainable distortion de (deter-
mined through the channel capacity) and the mismatch coefficient
a as a function of m. For the values shown in figure, we see that
while d0 is minimized at m = 15, the coefficient a is then quite large.
And, around m = 22, where a = 0, the minimum distortion de is

clusion from this is that the modulator should be designed with m =
15 (to maximize capacity and minimize de) only when one is willing
to use very long coding block lengths. For shorter block lengths, a
larger value of m, and a corresponding smaller value of a, could result
in, a smaller average distortion even with the larger value of de. For
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0.

.

2

dc = 0.1

)8

0.01

4

0
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Fig. 8 - The mismatch between a binary symmetric source and the m -orthog-
onal signal channel.
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Fig. 9- The influence of the modulator design in Example 4 on the minimum
attainable distortion and the mismatch coefficient.

this example a compromise design with m about 19 would probably
be best over a range of intermediate block lengths.

It is interesting to notice in this example that the coefficient a can
be zero even when the source and channel are not matched. This is
consistent with our previous interpretation of a = 0 as a necessary
but not sufficient condition for matching. We remember that the
coefficient a being zero does not imply that the lower bound in equation
43 is precisely dc for all n. There are several other terms of o (1/n)
in this equation that have not been specified which are not neces-
sarily zero when a = 0.

XI. THE UPPER BOUND

Now let us present an upper bound to the minimum attainable
transmission distortion as a function of the coding block length. As
with the lower bound, the upper bound approaches the asymptote de,
but only as [ (In n)/n] %. The reason for the difference, we believe.
is that within the upper bound derivation the transmitting signal set
was restricted to contain at most M = en° members, a restriction
that was not necessary to impose in the lower bound. We also present
an upper bound to the transmission distortion with a noiseless chan-
nel. This bound does agree, asymptotically, with the corresponding
lower bound.

XII. THE RANDOM CODING ARGUMENT

All of the upper bound derivations in this paper use random coding
arguments. That is, we do not explicitly find the encoder and decoder
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which, when used with 8 and e, provide the distortion in the upper
bound, but show that one pair does exist. More specifically, we con-
struct a set of encoder -decoder pairs with a probabilistic rule according
to which each system is selected to be used. This defines an ensemble
of transmission systems, each with its own distortion, corresponding
to all possible coding selections. What we calculate is a bound to the
average distortion of this ensemble. Clearly, this provides an upper
bound to the minimum distortion in the ensemble, hence to the mini-
mum attainable distortion in any system that includes 8 and e.

12.1 The Construction of the Ensemble

We denote the set of points on the rate distortion curve for 8 by
(dR , R) and assume the capacity of e to be C. We first choose any point
(d*, R*) on the rate -distortion curve below (de , C) and design the
code in such a way that the ensemble average distortion approaches
d* with increasing block length. We know this to be possible from
Shannon's results.2 Moreover, we expect, since the situation is some-
what analogous to a channel coding problem with R* < C, that the
distortion can be made to approach d* exponentially fast. The point
(d*, R*) is subsequently varied to obtain the best result at any particular
block length of interest.

For any selection of (d*, R*), we then choose the number of signal
points, M = en', used to transmit 8. To attain a transmission distortion
level d*, we certainly must have the number of signal points large
enough to represent the source to at least within d*, and this requires
that 1? be greater than R*. We also require that R be less than C so
that in the limit as n becomes large, we are guaranteed correct decoding
among the signal points at the receiver. Therefore we have

R* < R < C (52)

and, for the corresponding values of distortion on the rate -distortion
curve,

d* > dR > dc . (53)

The value of R can also later be chosen to optimize the result.
An ensemble of codes of length n is constructed for each selection of

R and R*. We use the probability distribution p(x, z) to generate the
ensemble by picking, according to p(x, z), M independent pairs (x, z)
from Xnr. Thus we have a set of codes containing all possible mappings
of the integers 1 through M into pairs of n -letter words (x, z), or (JK)'
codes in total. (We continue to use here the notation defined in the



864 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1968

earlier part of the paper dealing with the lower bound.) Each of these
codes has the associated probability

dl

Pr (code).= II p(x; , z,)
f=1

Any probability function p(x, z) could be used to obtain an upper bound,
but we use a distribution that factors into p (x)g (z); therefore, in the
ensemble, each set of M decoded words, 0, , is independent of each
set of M channel input words, 02 . Thus we can write

.11"

Pr (code) = p(0, , 02) = p(01)p(02) = H P(xi) II g(zi).

Further, we use for p(x) and g(z) the product forms

II p(xm) and H g(z7")
m-i m-1

in which the letter probability distribution p(x) is that which yields
a mutual information C on e and the letter probability distribution
g(z) is that which gives the output statistics on the test channel for
$ at the point (d*, R*) on the rate -distortion curve.

The encoding and decoding is done as follows: In every ensemble
member there is a list 0, of allowed decoded words and a list 02 of usable
channel input words. When a source output w occurs, the encoder scans
01 and chooses any member zo in this list for which

d(w, zo) < d*. (54)

If there are none, the encoder chooses any member at all on the list

0 say z, . Since the lists are chosen together, there corresponds to
zo or z1 a particular x in 02 , and this word is used to transmit w. The
decoder uses a maximum likelihood decision rule to decode y into a
member of 02 , which is then associated, through the pairings among the
two lists, with a member z in 0, . The resulting distortion, by definition,
is d(w, z).

12.2 The Ensemble Average Distortion
Each member, 0, of the ensemble is a complete transmission system

in itself, and has an average transmission distortion dependent upon
the codes, 01 and 02, that are used. This average distortion, which is
an average over all possible source and channel events, is equal to

d(0) = d(01 02) = E p(w) E p(y
I

x) d(w, z)
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The ensemble average distortion is obtained by averaging d(01, 02)
over all choices of 0, and 02, hence

(d(0))av = E p(w) E {E E p(y d(w, z)p(01)p(02)]. (55)
IV" Y" 0, 0,

We next separate the events w, 0, , 02 , and y into two sets: (i) those
quadruples for which either there does not exist a z in 0, satisfying
equation 54 or the received word y is decoded into a member of 02
different from the transmitted word x(w), and (ii) its complement.
For quadruples in set one, the distortion d(w, z) is surely upper bounded
by cl, , the maximum entry in II d(w, z) II. For those in the second
set, we use equation 54 and the fact that the decoder returns us through
x(w) to z,, to upper bound the distortion by d*. Therefore, if the char-
acteristic function 4, is used to indicate the quadruples in set one, we
can upper bound the ensemble average with

(d(0)), < E p(w) E E E p(y I x)p(ei)p(02)[d*o. - 4)) + d,4)]
vim Y" 0, 0,

= d* (dm. - d*) Pr (4)) . (56)

Finally, we use the union bound to upper bound Pr(4)) and the ensemble
average distortion, (d(0)), , to upper bound the minimum attainable
transmission distortion, d($), and obtain the result in the next theorem.

Theorem 8: The minimum attainable transmission distortion of the
source 8, when used with the channel e, satisfies

d($) < a* + (d...-d*)[Pr( 3 'z. in 0,) Pr(channel error)] (57)

in which 3 ' means "there does not exist," d* is any distortion greater
than dc , and R (a variable in the bracketed terms) is any rate in the
interval R* < R < C. The bound is a function of n through the quantity
in the brackets.

The last term in the brackets, the probability of error on the channel,
has been approximated by many people, but we will use Gallager's
bound"

Pr(e) e-nE(R) (58)

in which E(R) is a positive monotonically increasing function of the
difference C - R. The next section is devoted to the evaluation of the
first term in the brackets, which is the probability that the source
word w and the list 0, are such that equation 54 is not satisfied for
any z in 0, .
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XIII. THE PROBABILITY OF FAILURE AT THE ENCODER

We say that failure occurs at the encoder, for the source output w,
when each of the M allowed decoded words on list 0, are at a distortion
d(w, z) from w greater than d*. Because each of the M words in 0i is
selected independently, we can write the total probability of this failure
as

Pr ( 3 'zo in 0i) = E p(w) Pr ( 3 'zo in 03 I w)
wn

= E p(w)[1 - Pr (z 3 d(w, z) < d* lw)]m

(59)

The last probability is seen equal to the distribution function of the
distortion random variable described in Section 6.2 and defined by
equations 16 and 17. In these equations q = qi , q2 , , Dr is the
composition vector of the source word w, and Di. is the letter distortion
random variable between the r'th appearance of the letter w; in w and
the corresponding letter in z.

We again notice that the distribution function of d(w, z) depends
only upon the composition q of w. Thus we are able to perform the
average over W" in equation 59 as one over all possible compositions
of w. All possible compositions can be represented as points in the H - 1
dimensional hyperplane within the first quadrant of RH which intersects
each axis qi at one. This hyperplane is called the composition space
QH. The probability of any composition point is equal to the product
of the number of different source words having this composition and
the probability of each, therefore, we have

P(q) = N(q) II p",`"
1=1

n !
1-1 P7".

(nq,) ! t-i
i =1

Interpreting P(q) as an impulse function over Cr we can now write
equation 59 as

Pr ( 3 'zo in 0,) = f - f P(q)[1 - G(d* I q)]M dq. (60)

Q

To continue the inequality in equation 57, we require a lower

bound to G (d*). For our present purpose, Fano's lower bound12 is



TRANSMISSION DISTORTION 867

sufficient:

in which

G(d* I q) > K(n, q) exp n[A(s, q) - q)]

q) exp - nR(d*, q)
(61)

q) = d* (62)

0 < d* < E(d I q) (63)

gs) = E qi In E gi exp sdii
s-i i=1

and K(n, q) is a rather complex function of q and n that goes to zero
algebraically in n with increasing n. Its precise form is otherwise un-
important in the following derivation. (The bound in equation 61 can
still be used for points q that violate equation 63 if one uses the value
of s = 0 rather than that which satisfies equation 62.) We can therefore
write

Pr ( 3 'z0 in 61) S f f P(q)[1 - K(n, q) exp - nR(d* , q)]°"° nR dq.

(64)

The next step is to divide the composition space QH into two dis-
joint subspaces, Q and Q', that are defined by

Q = Iq: R(d*, q) < R - SI (65)

Q' = {q: R(d*, q) R - 5} (66)

with S any positive number satisfying R* < R - S. The idea behind
this separation is illustrated in Fig. 10. The bracketed term in the
integrand of equation 64 has the form [1 - exp (- nA)]exP nB which
approaches zero with increasing n when A < B, and one when A > B.
In the first region, which, except for the 8, corresponds to the set Q,
we shall use the upper bound

[1 - exp (- nA)]"" nB exp [- exp n(B - A)] (67)

and in the second region, corresponding to Q', the (poorer) bound

[1 - exp (- nA)]"9 Bn

(68)
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Fig. 10- The division of the composition plane Qil into the sets Q and Q'.

The use of these bounds in equation 64 results in

Pr ( 3 'zo in 01)

f f P(q) exp -K(n, q) exp n[R - R(d*, q)]} dq

(J'

f

f
0

f P(q)(1) dq

f P(q) exp [-K(n, q)enl dq + Pr (Q')

exp [-K(n)en + Pr (Q') (69)

in which K(n) denotes the minimum of K(n, q) over Q. The first term
in this upper bound is a double exponential in n which will turn out
to be unimportant. Thus it remains to evaluate Pr (Q').

We shall use what we call the hypercube method to upperbound
Pr(Q'). Although the resulting bound is not as tight as others that
could be derived (see, for example, the maximum probability point
method in Ref. 8), it has the advantage of being simpler both to derive
and to use and, in addition, does not seriously degrade the final bound
to transmission distortion. What is done is to enclose the set Q' by
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another set Q; that has a relatively simple configuration, and to upper
bound Pr(Q') by Pr(Qa.

We construct in R" a. hypercuhe of dimension 2u centered at q = p,

K" = {q: pi -u 6 qi pi + u},

and intersect with it the composition space V. The intersection forms
a "solid" Qi

Q. = QH KH

which contains vertices of the form q, = q1. q2, DI, with the
components, of course, summing to one. When H is even, q1, equals
either pi u or p, - u, and when H is odd, qi, has the same values
with the addition of one component equal to pi . The vertices of Q1
are joined by straight lines.

At this point we use the fact that Q is a convex set,8 that is, for
0 < X < 1, Xcia + (1 - X)qb is a member of Q whenever both q and
qb are. This property ensures us that whenever the vertices of Q1 are
in the set Q, the entire set Q, is in Q,

Qi g Q,

with the consequence that

Pr(Q') Pr(Qf). (70)

The remaining step is to bound the total probability of the set ifX .

Because this probability equals the probability that any of the dependent
events qi El [pi - u, pi u] occurs, we can use the union bound to
upper bound Pr(Q;) by the sum of the individual probabilities. Thus

Pr (Q0 < E Pr [q, < pi - u] + Pr [q; > p; u].
i=1

These quantities can be further upper bounded by a simple applica-
tion of Chernov bounds. This has been done for us in Ref. 16, page
102, where the result found is, in our notation,

in which

H

Pr (Qi) E e-n1i + e-nYi

L\di, ki_ di/
17,j

(71)
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and

d; = pi -u for X,

= pi + u for Vi .

In these bounds, the hypercube dimension 2u should be maximized,
to obtain the tightest bound, subject only to the constraint that all
vertices q. be in region Q, that is, that they satisfy equation 65.

The bound in equation 71 can be simplified still further by writing

Pr(Q0 ,-5 2H exp [ -n min (Xi , Yi)]

L--- K1 exp - nE,(R). (72)

Indeed, it can be shown,8 that there are two, and not 2H, candidates
for the minimizing quantity in the exponent.

XIV. THE SET OF UPPER BOUNDS

Combining equations 57, 58, 69, and 72, we have the following result:

Theorem 9: The minimum attainable transmission distortion of the
source 3, when used with the channel C, satisfies

AS) ._ d* + (dm., - d*) {exp [-K(n)eni

+ K, exp [ -nEs(R)] + exp [-nE(R)]}

for any d* and R that satisfy

dm.. d* > dR > dc (74)

R* < R < C. (75)

(73)

The freedom provided by equations 74 and 75 can be used to generate
a set of upper bounds, corresponding to all possible choices of d* and
R, the properties of which depend upon those of the two exponential
functions in equation 73. It has been shown elsewhere' that E,(R)
is a positive monotone increasing function of the difference R - R*,

that E,(R*) = E;(R*) = 0, and that E,"(R*) 0 0. Comparing these
with the corresponding properties of the channel reliability function:"
E(R) a positive monotone increasing function of the difference C - R,
E(C) = E'(C) = 0, E"(C) 0 0; we see that the two functions are quite
similar. Typically, their curves would look like those in Fig. 11.

With these curves, we can examine the behavior of the set of
bounds in Theorem 9. As shown in Fig. 12, when d* is chosen much
larger than dc, the nonzero slope of the rate -distortion curve allows
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R

Fig. 11 - Typical behavior of E,(R) and E(R) near their zero value.

a choice of R that can make both the differences C -R and R - R*
large. In turn, the exponents E 8(R) and E (R) in equation 73 are large
and the exponential terms decay very rapidly with n. But for this
choice, the asymptote d* is much greater than the level de, which we
know can be approached.

On the other hand, if we choose d* only slightly greater than dc,
we have an upper bound with an asymptote that is nearly d0, but
now the differences C -R and R - R*, and therefore the exponents
E (R) and E (R) , are much smaller and the rate of approach to the
asymptote d* is correspondingly slower. Thus, in the selection of
d* and R there is a trade-off between a small asymptotic value and
a fast rate of approach. This is illustrated in Fig. 13 in which we
show a set of curves obtained from the upper bound expressions in
equation 73. The best compromise for any value of n is given by the

C

R

R.

dc dR d*
d

Fig. 12 - The rate -distortion curve for S illustrating the relations among the
parameters in Theorem 9.
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Fig. 13 - The upper hound in Theorem 9 with three different values for d*
and R.

lower envelope to the entire set of bounds in equation 73, therefore
we have

Theorem 10: The minimum attainable transmission distortion of the
source 8, when used with the channel e, satisfies

d($) < min du(n, d*, R) = do(S)
d R

(76)

in which the function du (n, d*, R) is used to denote the right side of
equation 73.

In the next section we study the asymptotic behavior of the lower
envelope. At this point, though, we wish to include an important
conclusion that can be established from the set of upper bounds
in equation 73. Each individual bound indicates that, in a system
where the distortion level dc is attainable in the limit, if one would
tolerate a distortion d* = dc + A, this level could be approached ex-
ponentially fast as the coding block length is increased.

Actually, a much stronger statement is possible. Since the distor-
tion curve for d* = dc + iA approaches this level in the limit, it
must cross, at some finite n, the level dc + A. Because both curves are
for the same source and channel, this proves that the distortion level
dc + A is not only approachable exponentially fast, it is in fact at-
tainable with a finite coding block length. This is true for any A > 0,
no matter how small.



TRANSMISSION DISTORTION 873

XV. THE ASYMPTOTIC BEHAVIOR OF THE UPPER BOUND

From the previous discussion it is clear that as n increases, the
optimum value of d* must approach de and therefore that the ex-
ponents E8 (R) and E (R) must approach zero. For this reason we
use the Taylor series representations for these functions at R* and
C in equations 73 and 76, respectively, and obtain

du(8) ,c:.1 min {d* mnx- d*)
d.R

[K,. exp - nb,(R - R*)2 exp - nb2(C - R)2] } (77)

with b, = IPAR*) and b2 = iE"(C). In using the Taylor series for
E (R) and E,(R) we have dropped the cubic terms since both Em(C)
and Em(R*) are finite and C -R and R - R* are o(1). The double
exponential term involving 6 is also dropped since it can be shown to
contribute nothing important in the asymptotic bound.

We next avoid the minimization on R by choosing that value of R
which equates the two exponents:

b1(R - R*)2 = b2(C - R)2. (78)

While this selection of R is nonoptimum for finite n, it can be shown
that it asymptotically approaches Roo, and that it does not affect
the asymptotic behavior of the upper bound. This particular choice
of R allows us to combine the two exponential terms in equation 77.
If we start with equation 78 and the obvious equality

(C - R) (R - R*) = C - R*,

we can establish

(C - R) - V b1 .072(C - R*) (79)

- R*) - Vb2
R*)

(80)
A/17, ± A/172 (C

which further allows us to write the two exponents in terms of the
common difference C-R*.

Next, we wish to express the difference C-R* in terms of the
difference de-d*. Taylor's formula with remainder is again used:

R(d*) = R(dc) (d c)(d* - do) o(d* - dc)
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or

C - R* = - R' (dc)(d* - dc) - o(d* - dc)

= -so(d* - dc) - o(d* - dc).
In the last equation we have used the fact that the slope of the rate
distortion curve at the point (de, C) is equal to the value of s which
satisfies ,u(s) - spf(s) = - C.7' 8

Finally, we substitute equations 79, 80, and 81 into equation 77,
subtract dc from both sides of this last equation, and change the
minimizing variable to d*-dc to obtain

d(8) - dc 5 min [x ± (A - x)K2 exp - Bnx2] (82)

in which x = - dc, A = - dc, K. = K1 + 1 = 2H + 1, and

B = b,b2820/(1/b1 + -02)2.
We next find the asymptotic behavior of the lower envelope in equa-
tion 82.

If x is considered the parameter, each function of n in the set
f (x, n) starts at f (x, 0) = x + (A - x) K2 and decreases exponentially
to f (x, oo) = x. For any two parameter values, x1 and x2, with x1 >
x.2 we have

(81)

f(x, , 0) - f(x2 , 0) (1 - K2) (x,- x2)
= -2H[f(x, , 00) - i(x2 00)l

Consequently, any two curves must cross as in Fig. 14.
It follows that the parameter xo(n), which identifies the minimum

of f (x, no) at the value n = no, must change with n. Since this param-
eter is the solution of

f' (x, n) = 0,

we have

exp (nB4) - K2 = 2nK2Bx,(A - x0). (83)

Figure 15 shows the required graphical solution which clearly always
exists. The substitution of xo(n) in f (x, n) specifies the single func-
tion of n, f[x,,(n), n], which is the desired lower envelope. Un-
fortunately, an explicit solution is not possible for xo(n), nor for
f[xo(n), n], but we can obtain bounds to both that are adequate for
our purposes.
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X2+ (A-CC2)K2

+ (A- XI) K2

n

Fig. 14 - Two members of the family of curves: f (x,n) = x + (A - x)IC.
exp(-Bnx").

From the graphical solution in Fig. 15, we see that any conjec-
tured solution, xo?, must be too large if, in equation 83, the left side
exceeds the right and too small if the reverse is true. This criterion
could also be used on a trial functional solution xi, (n) ?. Now, if the
left side of equation 83 is functionally stronger in n than the right,
we know that our trial solution xo(n)? is too strong in n. Again the
reverse is also true.

After several guesses we are led to the trial functional solution
xo (n) = [a (ln n)/Bn]% with which the right side of equation 83 is
greater than the left for a < 1/2, and the reverse is true for a > 1/2.

Fig. 15 - The graphical solution of equation 83.
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This determines the highest order term of xo(n) and we can write

fidlBn en

'
Vri dln

Bnxo(n) o(1)].
\

It follows that

(21: (1nnny[1
o(1)]f[x 0(n) , n]

and, since the lower envelope is smaller than any individual f (x, n),
that

(-1)1( (
f[x o(n) , n] f[ln ny 21B W___ )ln n[1

+ o0)]. (84)
2B n '

n = n

Although only an upper bound to f (x, n) is required, both upper
and lower bounds were found to show that the method used to obtain
the desired lower envelope provides asymptotically tight results. Con-
tinuing the inequality in equation 82 by that in equation 84 provides
our final upper bound to transmission distortion.

Theorem 11: The minimum attainable transmission distortion of the
source 8, when used with the channel e, is upper bounded by

d($) 5 dc b(1111[1 o(1)] (85)

in which
1. ( 1 1 1 I- 1 1 -1

k2Bi - (2)1 i so L(bi)' VJ
= = C)

b2 = 1E" (C)

For a fixed source 8, we see from this theorem that the coefficient
b is smallest when 8 is used with that channel (among those of equal
capacity) for which the constant b2 is largest. In the same way, the
coefficient b is seen to be a decreasing function of bt when the channel
is fixed. Since the constant b2 is independent of the source and b1 in-
dependent of the channel, our upper bound does not provide an in-
dicator of matching between the source and channel as we obtained in
the lower bound. This was actually expected since here we were forced
to separate the source and channel with an interface containing at
most e' points.

The coefficient b1 , though, has an interesting significance. It is
equal to one-half the derivative ENR* = C) which can be thought to
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indicate how fast the boundary of Q' initially moves away from p with
increasing R. In turn, this indicates, in a reciprocal manner, the neces-
sary rate of change of the rate required to handle source words with
compositions just around p, which are just less than typical. Thus, we
can think of the coefficient b, as a type of "stretch factor' for the
source.

When the result in equation 85 is compared with the lower bound to
distortion, we see that the [(In n)/n]4 rate of approach to dc is slower
than the 1/n rate of approach of the lower bound. Mathematically,
at least, the reason for the upper bound decreasing more slowly than
(1/n)1 is that, for small arguments, the lowest order term in the two
exponents E(R) and E ,(R) is quadratic. Their form for large n, exp
-n(AR)2, shows that values of OR larger than (1/n)i are required to
have these terms go to zero with increasing n. Because the slope of
the rate -distortion curve is nonzero, the corresponding values of dis-
tortion difference (Ad) must also be larger than (1/n)i.

There is reason to think that this type of exponential term, and the
consequential Di n)/n11 rate of approach to de , is present in the upper
bound because we have used threshold devices in the transmission
system. One at the encoder leads to the first exponential term in equa-
tion 73 (we again disregard the double exponential term). It uses the
rule in equation 54 to choose, for each source word w, any decoder word
z in list 01 at a distortion less than d*. When list 01 is lacking such an
entry, any z at all on the list is chosen which, since the members of
0, are chosen independently, is then independent of w. The resulting
distortion in this circumstance is usually much greater than d*. In the
next section we compare the performance of this encoder with another
that does not use such a threshold and show that the source encoding
alone need only contribute to a rate of approach to dc equal to (In n)/n.

A second threshold operation in our system is at the channel decoder,
but it is really dependent upon the coding of the entire system. It leads
to the second exponential term in equation 73. To isolate its effect on
the system performance, we assume that failure has not occurred at the
encoder, that is, there does exist a z on 0, with d(w, z) S d*. Now if
the channel decoder makes no error, we are assured that the resulting
distortion is less than d*. However, if an error is made, the believed
channel input word x, is different from the actual word x; therefore the
decoded word z, is different from z. . Moreover, since the lists 01 and
02 are chosen independently, z, and z, are statistically independent.
It follows that z, and w are also statistically independent, and in con-
sequence that the distortion d(w, z1) is usually much greater than d*.
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It is this threshold which, it is believed, cannot be eliminated when
the signal space is constrained to contain at most M = enc points, even
if the lists Oi and 02 are chosen dependently. A heuristic argument in
Ref. 8 suggests that with such a constrained signal set, the transmission
distortion can approach dc no more rapidly than as n-1. This, of course,
is a slower rate of approach to dc than the a/n rate of approach of the
corresponding lower bound to distortion that was derived using a
signal set not constrained in size.

XVI. AN IMPROVED UPPER BOUND FOR NOISELESS CHANNELS

For the special case of a noiseless channel, the previously derived
upper bound can be improved. Since such a channel contains e° noise-
less transitions, or "direct" paths, transmission of the encoder output
is trivial and the communication problem is only one of source
representation. For this representation we are allowed to choose, from
an e° letter representation alphabet, one representation letter for
every source output letter. Just as one is allowed n uses of the channel
to transmit an n -letter source output, one is allowed an n -letter
representation word to approximate an n -letter source word.

We first state that if the threshold source encoder defined by equa-
tion 54 is used in the ensemble of representation codes 01 of Section
XII, the ensemble average representation error is very similar to the
ensemble average transmission error derived in the previous sections.
The only difference in the derivation is that the Pr (channel error)
term is no longer present in equation 57, nor in any succeeding equa-
tion, with the only result being that b2 = 00 in equation 85.

We note here that this particular result is valid only for sources
that are not doubly -uniform, that is, having a uniform probability
distribution and a distortion matrix in which all rows are permuta-
tions of one row vector and all columns are permutations of one col-
umn vector. The reason for this exclusion is that for doubly -uniform
sources the exponential term in equation 73 involving Ea(R) also
vanishes, and the double exponential term involving 8, previously
dropped as insignificant, now remains as the only term. It is instruc-
tive to delay further evaluation of the bound in this case until after
the following upper bound to representation distortion is derived.

um Optimum Source Encoder

We now derive an upper bound to the source representation error
when an optimum source encoder is used in place of the threshold
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encoder of the previous section. The resulting upper bound will be
seen to approach the asymptote, de, as (ln n)/n. This represents an
improvement upon the best previously known upper bound to source
representation distortion7 which approached do essentially as n-16.

The coding ensemble used here is very similar to the set of codes,
611, used in Section XII. But now the size of the set, M, is set equal to
en° for all n, rather than have it approach this size with increasing
n. And, the probability with which each ensemble member is used,

Pr (code) = p(0,) = II g(zi),

is now governed by that probability distribution g(z) equal to the output
probability distribution of the test channel at the point (do , C) on
the rate distortion curve for 8. Within each ensemble member the
encoder chooses, for any occurring source word w, that member z
on O for which d(w, z) is minimum. Therefore, for each ensemble
member the average distortion over all possible source events is

d(0,) = E p(w)[ min d(w, z,)]. (86)
Zi tOy

The ensemble average distortion is given by

= E p(w) E p(0,)[ min d(w, zi)]. (87)
iv. igigm

Zi CO3,

The set of quantities d(w, zi) in equation 87 could be thought of as
a set of M independent and identically distributed random variables,
each conditioned on w and governed by the word probability distribu-
tion g(z). The minimum of this set, dmin(w), is then also a random
variable, governed by the code probability distribution p(01). The inner
sum in equation 87 is, therefore, the expected value of dvain(w) and
we can write

rdm.z

(C1(91))., = : p(w) d dFdminIW(d I w)
iv.

which, upon integration by parts, becomes

(d(c)av = E p(w) [1 - Fd,,,(d I w)] dd. (88)
0

The conditional distortion random variables d(w, zi) are the same dis-
tortion variables used in Section XIII. Since they depend only upon
the composition of w, we can again perform the summation in equation
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88 by integration over the composition space, thus

(d(01)). = f f P(q) dq fo [1 - Pd. 'Oa I q)] dd (89)

Q H

fP(q) dq(d,in(q)),
Q H

(90)

The inner integrand in equation 89 is the probability that all M
points on 0, have a distortion d(w, z) from w greater than d. Using the
independence property of the members of 0, , we can write this proba-
bility as

1 - Fd., ,i(d
I

q) = [1 - G(d I q)1m. (91)

It can be seen from equation 16 that the variance of the variable d is

proportional to 1/n for every q. Therefore the function [1 - G(d I q)],

which for every n decreases monotonically from one to zero, approaches,
with increasing n, a negative step at the value of distortion d = E(d I q).

The same is also true of [1 - G(d I q)]M which approaches a negative
step at some lower value of distortion, dc(q). This can be established
using the following asymptotic upper and lower bounds to the dis-

tribution function G(d I q) which are from Shannon' and Gallager13:

h(n, q) exp -nR(d, q) < G(d I q) H(n, q) exp -nR(d, q) (92)

with

R(d, q) q) - siAs, (93)

0 < te(s, q) = d 5_ E(d I q)

and in which h(n, q) and H(n, q) are algebraically small functions of n.
Therefore, within the range 0 < d < E(d I q), the function in equation
91 can be bounded by

[1 -H e'r° [1 - G(d I q)J" < [1 - he -"1"9 n ;

(94)

which proves that [1 - G(d I q)]`11 must approach one when R(d, q) > C

and zero when R(d, q) < C. That the function R(d, q) is monotone
decreasing in d within 0 < d < E(d I q) now establishes the stated
limiting step function form of [1 - G(d I q)]`" with dc(q) equal to the
distortion value for which

R[dc(q), q] = C. (95)
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The region of integration in equation 89 is thus conveniently divided
into two parts: one over [0, dc(q) + A] in which the integrand is upper -
bounded by unity, and the other [dc (q) + A, dm] in which the integrand
is upper -bounded by its value at the lower limit. The result is

(dmin(q))av dc(q) + A + [dma. - dc(q) - 0][1. - G(d (q) A I q)lm

(96)

which, with the use of the lower bound in equation 92, can be continued
by

(dmin(q))av 6 dc(q) + A + [dma. - dc(q) - A]

{ 1 - h exp [-nR(dc(q) + A, q)] }exp ne.

Equation 67 allows the further continuation of this bound by:

(d,(q))a, < dc(q) + A + [d,.. - dc(q) - A]
exp (-h exp {n[C - R(dc(q) + A, q)]}). (97)

Again the monotone decreasing property of R(d, q) in d provides that
the quantity C - R(dc(q) + A, q) is positive when A is positive and,
therefore, that the last term in equation (97) is a decreasing double
exponential in n.

Equation 97 actually provides, for each q, a set of upper bounds to
(dmiii(q))a, very similar to the family of curves studied in Section XV.
In the choice of the parameter A there is once again a trade-off between
a small asymptote, dc(q) -I- A, and a fast rate of approach. It should,
in general, be chosen to optimize the bound at each n. Since we want an
upper bound to (dmin(q)).,, that approaches dc(q) with increasing n,
the optimizing parameter D0(n) clearly must approach zero as n in-
creases. But A0(n) must approach zero in a way that also allows the
last term of equation 97 to vanish.

Since an asymptotic bound is our goal, we extract the essential be-
havior of this term for small A by forming a Taylor series of R(d, q)
at d = dc(q):

C - R(dc(q) + A, q) = -AR'(dc(q), q) o(A)

= -sA o(p).

In this expression s is the parameter value in equation 93 when d equals
dc(q). Thus the lower envelope to the set of bounds in equation 97
can be written, for the purpose of an asymptotic bound, as

(d,(q))a, min {dc(q) -I- A + [dn. - - exp - he- anA) }
0
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The minimization is found using the same method used in Section XV.
In this process, it is important to notice that Shannon's coefficient
h(n, q) in equation 92 is proportional to n-1. The result is that the
optimizing parameter satisfies

2snn [1 + o(1)] Ao(n) (1
e) In n

[1 o(1)]2 -sn

and that (dmin(q)). satisfies

(dmin(q))av 5 d c(q) e)
In

snn [1 +o(1)] (98)

Returning to equation 90, the ensemble average representation error
therefore can be upper bounded by

f f (4d
2

+ e) In n
(99)-sn

o 11

The above integral is evaluated in the same way similar averages
were found for the lower bound. The bracketed quantity is expanded
in a Taylor series about q = p and is truncated after three terms with
a Lagrange remainder term. Upon integration of this expansion we find

(d(01))av 5 d c(P) (2
) lnsnn

1 n+ E -a [dc(q) + (-2 + ) In

-sn E(qi - pi)
aqi p

E a2+ q[d ( ) + +aqi dq; 2

\ In ni
) E[(q, Pi)(qi - pi)] (100)-sn

with so = s(p) and co e Q".
Using the following expected values in equation (100) ,

E(qi - pi) = 0

E[(q, - pi)(q; - pi)] = (p. Si; - pip;),

we have the following upper bound to the ensemble average distortion
and, therefore, to the minimum attainable representation error.

Theorem 12: The minimum attainable transmission distortion (rep-
resentation distortion) of the source 8, when used with a noiseless channel
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of capacity C, is upper bounded by

d(s) < dc e) n [1 + o(1)]-son

in which so satisfies

883

(101)

(s. P) - (s. P) = -C.
Except for the arbitrarily small positive e, the bound in equation 101
agrees precisely with the asymptotic lower bound that we found earlier
in this paper.

We see by comparing equation 85 (with b2 = 00 for the noiseless
channel) and equation 101 that the replacement of the threshold source
encoder with an optimum encoder increases the rate of approach to
the asymptote from [(In n)/4 to (In n)/n. To obtain some feeling
for the reason for this improvement, we might think of the optimum
encoder as a threshold encoder, but with a threshold that varies de-
pending on the particular source output. Indeed, we used this step
within the mathematics when we separated all events (equation 96)
into two sets with the separation dependent upon the source word. In
particular, for any source output word with composition q, we used
a threshold, dc(q) ± A, just large enough so that for large n there is
almost surely a representation word in Oi that is acceptable. It does
not require, as does the fixed threshold encoder, that the set of source
words not meeting a fixed distortion level of d* have a total probability
that goes to zero with n. This restriction is really more severe than one
would think we need, since some of the source words w discarded by
the fixed threshold encoder are just outside p, having characteristics
just less than typical, for which some of the distortions d(w, z,) might
be only marginally greater than any fixed d*.

16.2 The Special Case of a Double Uniform Source

There is one situation for which both source encoders provide a
representation distortion that approaches the limit dc as (In n)/n.
This is when the source S is doubly -uniform. Since 1.1,(s, q) is independent
of q for such a source, R(d*, q) in equation 61 is also independent q,
with the result that the set Q' in equation 66 is always empty. There-
fore, Pr(Q') = 0 in equation 69 and we have for the set of upper bounds
to representation distortion, using threshold encoders:

d($) < d* (dm - d*) exp (-he").
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In this bound we have used the lower bound in equation 92 rather
than that in equation 61. It can now be shown, using precisely the
same procedure as before, that this set of bounds approaches the
limit de as (ln n)/n.

XVII. SUMMARY

We have presented upper and lower bounds to the minimum at-
tainable transmission distortion of a source measured by a specified
distortion measure. The bounds, which were derived for both noisy
and noiseless channels, have all been shown to converge to the same
level of distortion, de, algebraically in the block length n. The quan-
tity dc is that level of distortion shown by Shannon to be the mini-
mum attainable transmission distortion when the channel capacity is
C and arbitrarily complex transmission methods are allowed.

For noisy channels, the rate of approach of the lower bound to dc
is as a/n and that of the upper bound as b [(in n/n) ]%. The non -
negative coefficients a and b are both functions of the statistics of the
source and channel, but have different forms. The lower bound coef-
ficient, a, interrelates these statistics in such a way as to suggest its
utility as a measure of "mismatch" between the source and channel,
the larger a, the slower the rate of approach of the bound to de, and
the larger the source -channel mismatch. This coefficient is, of course,
necessarily equal to zero whenever the source and channel are per-
fectly matched, that is, whenever the minimum attainable transmis-
sion distortion is equal to de for all block lengths, n.

The coefficient b in the upper bound, though, does not present an
indicator of source -channel mismatch. It is the sum of two terms
which separately contain the source statistics and the channel sta-
tistics. The cause of this separation is the interface between the
source and channel that results from the use of a transmitting signal
set constrained to contain at most enc members, a constraint which
we found necessary to introduce in the development of the bound.

For noiseless channels, both the upper and lower bounds to the
transmission distortion (or the source representation distortion)
have the same form. They both have been shown to approach the
asymptote dc as ai (In 71)/n.

REFERENCES

1. Shannon, C. E., "A Mathematical Theory of Communications," B.S.T.J.,
27, Nos. 3 and 4 (July and October 1948), pp. 379-423, 623-656,



TRANSMISSION DISTORTION 885

2. Shannon, C. E., "Coding Theorems for a Discrete Source with a Fidelity
Criterion," IRE National Convention Record, Part 4 (1959), pp. 142-163.

3. Holsinger, J. L., unpublished work.
4. Goblick, T. J., "Theoretical Limitations on the Transmission of Data from

Analog Sources," IEEE Trans. Inform. Theory, IT -11 (October 1965),
pp. 558-567.

5. Gerrish, A. M. and Shultheiss, P. M., "Information Rates on Non -Gaussian
Processes," IEEE Trans. Inform. Theory IT -10 (October 1964), pp. 265-271.

6. Pinkston, J. T., "Information Rates of Independent Sample Sources," S. M.
Thesis, Department of Electrical Engineering, M.I.T., Cambridge, Massa-
chusetts (1966).

7. Goblick, T. J., "Coding for a Discrete Information Source with a Distortion
Measure," Ph.D. Thesis, Department of Electrical Engineering, M.I.T.,
Cambridge, Massachusetts (1962).

8. Pilc, R. J., "Coding Theorems for Discrete Source -Channel Pairs," Ph.D.
Thesis, Department of Electrical Engineering, M.I.T., Cambridge, Massa-
chusetts (1967).

9. Pile, R. J., unpublished work.
10. Chernov, H., "A Measure of Asymptotic Efficiency for Tests of an Hypoth-

esis Based on a Sum of Observations," Ann. Math. Stat. 28 (1952), pp.
493-507.

11. Shannon, C. E., unpublished work.
12. Fano, R. M., The Transmission of Information, New York: Wiley, 1961.
13. Gallager, R. G., "Lower Bounds on the Tails of Probability Distributions,"

M.I.T. Research Lab. of Electronics, Quart. Progress Report, 77 (April
1965), pp. 277-291.

14. Gallager, R. G., unpublished work.
15. Gallager, R. G., "A Simple Derivation of the Coding Theorem and Some

Applications," IEEE Trans. Inform. Theory, IT -11 (January 1965), pp.
3-18.

16. Wozencraft, J. M. and Jacobs, I. M., Principles of Communication Engi-
neering, New York: John Wiley (1965).





Some Considerations of Stability in Lossy
Varactor Harmonic Generators

By C. DRAGONE and V. K. PRABHU
(Manuscript received March 4, 1968)

Explicit expressions are derived for the scattering parameters which
relate small -signal fluctuations in a lossy varactor harmonic generator
of order N = 2", n an integer. The effect of losses on the stability of the
mutiplier is then studied. The very important particular case is then ex-
amined in which all the losses occur in the series resistance of the varactor
diode, and it is shown that absolute stability is obtained provided the effi-
ciency nt of the multiplier <<N-1, because of the particular distribution
of the losses at various carrier frequencies. Therefore, the conclusion is
reached that in most cases of practical interest restrictions have to be placed
on the available circuit configurations to prevent instability of the multiplier.

I. INTRODUCTION

A serious limitation to efficient wideband harmonic generation with
varactor diodes is that instability in the multiplier might cause the
generation of spurious tones.' It is the purpose of this paper to study
the effect of losses on stability of abrupt -junction varactor frequency
multipliers of order N = 2" = 2, 4, and so on, with the minimum
number of idlers.

The type of instability considered here is the one discussed in Refs.
2, 3, and 4. It produces undesired low -frequency fluctuations in the
amplitude and phase of the output harmonic and is caused by the
time -varying elastance of the varactor, which is potentially unstable
with respect to phase perturbations.

The stability conditions of lossless abrupt -junction varactor mul-
tipliers have already been extensively discussed elsewhere in Refs.
3 and 4. More precisely, these works have shown that, in the absence
of any losses in the varactor diode, the frequency characteristics of
the input, output, and idler circuits must satisfy certain restrictions
in order that the multiplier be stable. The main objective of this

887
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paper is to determine the amount of loss that the multiplier must
have in order to be absolutely stable, that is, stable for arbitrary
linear passive input, output, and idler circuits.

First we show that the over-all multiplier efficiency n, can he ex-
pressed as the product of the efficiencies of the input, output, and
idler circuits; that is

nt = ni X n2 X  nN

where n, represents the ratio of the power PL delivered to the output
at carrier frequency Mt.), to the power supplied by the input pump at
carrier frequency w . The partial efficiency nr is the efficiency of the
circuit at the carrier frequency rco. , or 1 - nr represents the ratio of the
power lost at rco, to the sum of PL and of the total power lost at the
frequencies me , 2no. , , NW. .

Next we show that the behavior of the multiplier with respect to
small amplitude and phase fluctuations is related in a simple way
to the efficiencies , 772 , and so on. For instance, in the case of very
slow fluctuations, the PM scattering parameters of a doubler are
given by the matrix,

[0 1.

2 772(1 - ni)
In the last two sections we examine the conditions of absolute

stability and show that the multiplier may become unstable for some
circuit conditions if

n, > 1/N.

If, on the other hand,
nt < 1/N,

then the multiplier is absolutely stable if and only if

nr < 50%, for r = 1, , N/2.

Finally, the important particular case is considered in which all
the losses of the multiplier occur in the series resistance of the varac-
tor. It is found that in this case absolute stability is obtained if
and only if

-> 0.06,

-> 0.1,

N = 2,

N > 2,
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where WC is the cutoff frequency of the varactor. If these conditions
are satisfied, then the efficiency of the multiplier is found to be so
low that the conclusion is reached that in most cases of practical
interest restrictions must be placed on the available circuit configura-
tion in order to obtain stability.

H. SCATTERING RELATIONS

Nominally driven abrupt -junction varactor frequency multipliers
of order 26 come under the general class of pumped nonlinear sys-
tems, and the general method presented in Ref. 5 can be used for
such systems to obtain the scattering parameters which relate small -

signal fluctuations that may be present at various points in the sys-
tem.* These small -signal fluctuations are assumed to be small and
they are at frequencies close to the carriers.

The varactor model that we use is shown in Fig. 1. It is a variable

0

S(t) Rs
Wv

Fig. 1- Varactor model.

0

capacitance in series with a resistance R8. The multiplier has the
minimum number of idlers. The linear passive circuits used in the
multiplier as input, output, and idler terminations are assumed to
produce no amplitude to phase or phase to amplitude conversion.t
If input, output, and all idler circuits are tuned,f it can be shown"
that the small -signal terminal relations of a harmonic generator
can be expressed in the form (see Fig. 2)

_
St,8 i 0 (m;)1(m1)2-

-
(0i)]

(1)

* Notation in this paper is identical to that in Refs. 4 and 5. Details of these
notations are not given in this paper for the sake of brevity.

t This condition is satisfied by circuits usually used with multipliers .4
Tuning of idlers, and input and output circuits usually gives near optimum

efficiency for the multipliers. (See Refs. 7, 8, and 9.)
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Fig. 2 - Small -signal terminal behavior of a harmonic generator of order 2".
m is the AM index and 0 is the PM index of the multiplier.

or*

b = Sa (2)

where S is the scattering matrix of the multiplier and (raj; is the
incident AM index at carrier frequency jw , (0r)k is the reflected PM
index at carrier frequency kco , and so on. The small -signal fluctuations
in the vicinity of carrier frequency lccoa are assumed to be at kw,,
w < w0/2.

It can also be shown' that the AM scattering matrix S.a and the
PM scattering matrix Sp, are independent of the bias source impedance
Z. , and that the stability of the multiplier is completely determined
by S.. and S . It can also be shown' that a multiplier of order 2" is
stable with respect to its AM fluctuations for all input, output, and
idler terminations. In this paper we shall, therefore, obtain an expression
for Sp. for a varactor harmonic generator of order r with the minimum
number of idlerst and consider its PM stability.

An abrupt -junction varactor multiplier of order 21; with the least
number of idlers can be shown" to be completely equivalent to a
cascade of n lossless doublers as shown in Fig. 3. Z2k , 0 < k S n, is
the termination impedance in the vicinity of carrier frequency 2kw,, .

* A column matrix is written in the form a, a matrix which is square is written
as A, and a unit matrix of order n is written as 1.

rMethods given in Ref. 5 can, in all cases, be used to obtain S in equation (2).
t The conditions under which a multiplier of order M1 X Ms is completely

equivalent to a cascade of two multipliers of order M1 and M2 are given in
Ref. 5.
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Fig. 3-Equivalence of an abrupt -junction varactor multiplier of order 2" to
a chain of n doublers. R, is the series resistance of the varactor diode.

Input and output circuits which are not shown in Fig. 4 can be any
arbitrary linear passive circuits. For 000, << 1, it can be shown that
the AM scattering matrix Sat, and PM scattering matrix S of the
k th lossless doubler are givens by

and

Sat, = [2
2

1

S, =

1 0_

0 -1

(3)

(4)

_2 1,
Now let us consider the kth lossless doubler. The "input impedance"

(Rok)in and the "load impedance" (Rok),, of the lossless doubler are
given by5, 7

(Rok)in
,S2 k I

1 k n (5)

and

2k2
(Rok)out - 2k+1 I

8
s2k-

1

1 <= k S n. (6)

Since all impedances are purely resistive, we can define partial
efficiencies no's by the relations

772k - , D -r lli
, r iDo(k+1)1in

0<= k n - 1 (7)
[R0(k+1)1.

Z2k + R5

[Ro(k+id.n

Z2k+R 5

R (k +11.,

Fig. 4 - An interstage network used with the multiplier.
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and
ZL

772" - Z2. + RR + ZL

where ZL is the load resistance connected to the multiplier. We notice
that n2k , 1.k._-1 is equal to the ratio of carrier power flowing

into the input port of (k + 1) th doubler to that supplied by the k th

doubler, n, the ratio of carrier power supplied to the first doubler to
the power supplied by the pump, and that n2. is the ratio of power
dissipated in the load resistor ZL to that supplied by the nth doubler.
The over-all efficiency n, of the multiplier can, therefore, be written as

n = n2, (9)
r

Consider Fig. 4. The scattering matrix of the (k + 1)th interstage
network can be shown to bey, 0,1°

0 772k

_1 1 - 772k

If co/coo << 1, we can then show from equations (4) and (10) that the
PM scattering matrix S, for the multiplier shown in Fig. 3 can be

written as

(8)

SDP =

0 (-1)nn,

2' 1 +
n- I

E(-2)-772.772.- 772n 2rn
r 0

(10)

III. DERIVATION OF THE ABSOLUTE STABILITY CONDITIONS

First, consider the case of a doubler. The scattering matrix of a
stage consisting of an ideal doubler with two resistances R8,1 and R3,2

connected* in series to the input and output ports, respectively, is :t

nin2

n2(1 - ni)
(12)

By means of standard techniques,4 one obtains that absolute stabil-
ity requires that

2771772 I 1 - 2772 27702 I < 1 (13)

* Notice that R.,i Zi + R. and R8,2 = Z2 + R2.
t Put n = 1, N = 2, t = 712772 in equation (11). See also Appendix A for an

alternate derivation of absolute stability conditions.
Condition (13) requires that the magnitude of the largest output reflection

that can be obtained when the termination of the input port is passive be less
than unity.
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which is satisfied if and only if

771 < 0.5. (14)

It is important to notice that (14) shows that the output circuit
losses do not have any effect on the absolute stability conditions of
a doubler. This property will be used in the following discussion of
the absolute stability of a multiplier of order N > 2.

Consider a multplier with n > 1. It can be shown that in this case
it is necessary and sufficient that

< 0.5, n2 < 0.5, , nN/2 < 0.5. (15)

The fact that (15) guarantees absolute stability follows directly
from (14) and the fact that a chain of absolutely stable stages is
stable.

In order to show the necessity of (15), consider the kth ideal doubler
of Fig. 5, and the impedances presented to its input and output ports
by the remaining part of the circuit. The impedance presented to the
input port is given by

Z 1,k = Z2k-i Rs+ Z o.(k-1) (16)

Since Zo,(k_i) approaches zero as the magnitude of Z2k-, approaches
infinity, Z1,k can have all complex values with nonnegative real part.
Furthermore, the impedance Z2,k terminating the output port of the
kth ideal doubler has arbitrary imaginary part, because of the presence
of Z2k . Therefore, since (14) shows that the absolute stability of a
doubler does not depend on the real part of the output impedance,
one concludes that it is necessary that

n2k < 0.5, 0 (17)

if the chain is to be stable for all allowable values of Z2k-1 , Z2k , and
712k .

Rs
z k-/--7 2

X2

Z k Z
1 L, k

Rs Z2kH

Zo,k Z2,k

Fig. 5- Lossless k" doubler.
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IV. ABSOLUTE STABILITY CONDITIONS

Equation (15) shows that a multiplier of order N= r of the type
considered in this paper will become unstable for some frequency
characteristics of the input, output, and idler circuits, if the efficiency
77, is greater than N-1, that is, if

> 1/N. (18)

Therefore, if equation (17) is satisfied then the circuit must satisfy
certain conditions such as those derived in Refs. 2, 3, and 4, in order
that the multiplier be stable. If, on the other hand,

n, < 1/N, (19)

then (15) shows that the multiplier will be stable for all circuit con-
ditions if and only if the efficiencies of the input and idler circuits
are all less than 50 per cent.

At this point the particular case

Z2k = 0, 0<k<n (20)

deserves special attention. This represents in fact the important case
in which all the losses occur in the series resistance RR of the varactor.
It will be assumed that the output load has the particular value which
gives maximum efficiency.?

For the absolute PM stability of a doubler, equation (15) requires
that

n, < 0.5. (21)

We can show* that this condition can only be satisfied if and only
if the overall efficiency

n, < 36%. (22)

In the case of a quadrupler, the condition of absolute stability
requires that

nl < 0.5 (23)

and

772 < 0.5. (24)

We can showt that equations (23) and (24) can be satisfied if and

* From Ref. 7, p. 331, ni < 0.5 for (.0./wo > 0.06. For this value of cdo/w., ,r <
36 percent.

t See Ref. 7, pp. 364-365.
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only if

ft < 0.7%. (25)

It therefore follows that for absolute stability of multipliers of order
2", it is necessary that

nt << (26)

Thus, if (15) is satisfied then the multiplier is so inefficient that
it becomes of little practical interest. Therefore one concludes that,
if all the losses occur in the series resistance of the varactor, in most
cases of practical interest the question of stability cannot be neglected
and the frequency characteristics of the input, output, and idler cir-
cuits have to satisfy certain restrictions (such as those given in Refs.
2, 3, and 4) in order to guarantee stability of the multiplier.

V. RESULTS AND CONCLUSIONS

Scattering relations for lossy abrupt -junction varactor harmonic
generators are presented in this paper. Explicit expressions have been
given for the PM scattering parameters of the multiplier in terms
of partial efficiencies defined for the multiplier.

Absolute PM stability of 2" multipliers is then considered. It is
shown that the multiplier is stable if and only if

n2i < 0.5, 0 :5_ jn-1. (15)

We have also shown that a multiplier of order 2" and having all
the losses occur in the series resistance R. of the varactor diode is
absolutely stable if its efficiency is much lower than 2-4, the inverse
of order of multiplication of the multiplier.

The problem of stability is then of major importance in all high
efficiency varactor multipliers and proper circuits should always be
designed to assure at least the conditional stability of these multi-
pliers.2-4

APPENDIX

PM Stability of 2" Multipliers

Let us investigate by an alternate method absolute PM stability
of 2" multipliers for n > 1. Let us consider the kth lossless doubler
(see Fig. 5) in the equiva lent circuit shown in Fig. 3.

If Zi,k and Zo,k are the phase termirating impedances of the kt"
lossless doubler (see Fig. 5) , we can derive from equations (4)
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through (6) that

7o,, =

and

n4k-, (wcy

1 +1
22(k-1)

1

2 We
[Z., (k-1)/Re] ± [712,-./Ra] ± 1 k-1 M2k -2 (.0

1 < k < n; (27)

;k-, 02M
22(k-1) 1.

Zi.k = R
1 Cs.), 1

.11
--4=2 1 M2k C.00

+ 2 [Zi,ck+1)/Rgi + [Z2k/R3] + 1.1 '

1 _.0 k 5 n (28)

where mk is the modulation ratio of the varactor at carrier frequency
kwo

Since Z2k's are all linear passive impedances, it is seen from eqs. (27)
and (28) that the multiplier is absolutely stable with respect to PM
fluctuations if and only if

m2k (04)
2k-1

wo
1 k < n. (29)

If any of these conditions are not satisfied, the multiplier will become
unstable for a certain set of Z2k's.
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Computer -Aided Analysis of
Cassegrain Antennas

By H. ZUCKER and W. H. IERLEY
(Manuscript received December 8, 1968)

A method of analyzing, in detail, the performance of symmetrical Cas-
segrain antennas has been developed that uses a digital computer efficiently.
For a specified antenna geometry and feed excitation, the program will
compute and graphically display the amplitude and phase illumination
of the subreflector, main reflector, and far -field pattern. These results may
be used to optimize antenna performance by changing parameters and ob-
serving the effect.

Analysis of a Cassegrain antenna with a near -field conical horn feed is
discussed as an application of the method. Because the radiation character-
istics of the horn are determined by the horn flare angle rather than the
horn aperture, broadband performance is obtained. It was indeed found that
a 50 per cent bandwidth is achieved with a dual mode TEn - TM 1, mode
feed, provided the proper phase relationship between the modes can be
maintained over the band. For dual mode excitation an aperture efficiency
of 70% and a noise temperature due to the power loss at the sub and main
reflectors of less than 6.5°K was obtained. For a single mode feed (TE,,),
there was a degradation in the E -plane side lobe levels and a corresponding
10°K increase in noise temperature. Excitation in the TM0, mode was also
examined for angle -error sensing purposes. Also, the antenna can be used
with reasonable efficiency well below the design frequency in which case it
functions as a far -field fed Cassegrain antenna.

I. INTRODUCTION

The essential radiation characteristics of multiple reflector anten-
nas can be predicted very accurately with existing analytical and
computational methods. Previous work on the open Cassegrain antenna
showed that good agreement can be achieved between calculated and
experimental results.' Deviations occurred mainly in the sidelobe
regions of the radiation patterns, and these had only a small effect on
overall antenna performance.

897
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We are concerned here with a simpler problem, but one of perhaps
more general interest: the analysis of symmetrical Cassegrain anten-
nas. We present a computational method in which the amplitude and
phase illuminations of the subreflector and main -reflector, as well as
the far -field radiation pattern, are determined in detail, given the
geometry of the antenna, the dimensions of the feed horn, and the

excitation modes of the feed. The analysis includes near -field excita-

tion-an important configuration for broadband operation. Included
in the program is a graphic routine which plots all radiation patterns,
the intermediate illuminations and the final far -field results. Because
of the this feature, and the fact that only seven parameters arc
required to define the geometry of the antenna, the program is par-
ticularly useful for optimizing antenna performance.

The symmetry of the antenna results in improved computational
efficiency. For the open Cassegrain antenna, double -integration was
required to compute radiation patterns. An approximation recently
was obtained2 which, when applied to symmetrical Cassegrain anten-
nas, eliminates one integration with only a small reduction in ac-
curacy.2 This makes it possible to compute the radiation char-
acteristics of large Cassegrain antennas a few hundred wavelengths
diameter in minutes.

II. NEAR -FIELD SYMMETRIC CASSEGRAIN ANTENNA

The antenna under consideration was intended to be used as the
ground station of a satellite communications system. Wide -bandwidth
(25 per cent) and low -noise requirements motivated the choice of a
near -field conical -horn symmetric Cassegrain configuration. The
near -field feed produces relatively low spillover at the subreflector,
resulting in a lower noise temperature.' Also, because radiation of the
feed is virtually confined to the geometrical illumination region of the
horn,4 there is a larger potential bandwidth available.

An additional requirement had to be explored: operation at about
1/4 nominal frequency, for target -acquisition, by using both TE, and
TMoi mode excitation. This leads to the choice of a near -field design
at the higher frequency because it would tend to function as a con-
ventional far -field design at the lower frequency. At the lower fre-
quency there would, however, be a shift of the phase center towards
the horn aperture, resulting in a phase error in the subreflector il-
lumination and a consequent reduction in efficiency, but perhaps it
would be adequate for the intended function. Fir_ally, dual -mode
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illumination using the TE11 and TAIii modes was of interest because
of the nearly circular symmetric radiation patterns that can be
obtained.5

III. CASSEGRAIN ANTENNA GEOMETRY

Figure 1 shows the geometry of a Cassegrain antenna. It consists
of a conical feed horn, a hyperboloid subreflector and a paraboloid
main reflector. One focal point of the hyperboloid coincides with
the focal point of the paraboloid and the other focal point with the
phase center of the horn. The main reflector illumination angle is
equal to the geometrical subreflector illumination angle, 0,. The feed
is located in the geometrical shadow region of the subreflector.

The initial design of a Cassegrain antenna is usually based on
geometrical optics, which imposes certain restrictions on the antenna
geometry. The constraints are that the feed horn be located in the
shadow region of the subreflector and that the subreflector intercept
most of the power radiated by the horn.

To relate the radiation properties of the horn to the antenna
geometry it is convenient to define a parameter K by:

K = -X sin (1)

where

d = horn aperture diameter
X = wavelength
5 = the angle subtended by the subreflector with respect to the

center of the horn aperture (Fig. 1).
For conventional Cassegrain antennas representative values of K

are from 1.2 to 1.6. For these values of K the major portion of the
main lobe of a narrow angle horn excited by TEii and TM11 modes,
is intercepted by the subreflector. The lower value of K is preferable
for TE11 mode excitation because the major lobe of the horn radia-
tion pattern is narrower in the E plane than in the H plane. Beyond
the major lobe region the phase variations are too large for efficient
subreflector illumination.

For near field Cassegrains the values for K are much larger, such
that the radiation characteristics of the horn are primarily determined
by the horn flare angle.

For the feed horn to be located in the geometrical shadow region of
the subreflector it is necessary that angle Ob be not less than angle Obh,
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Fig. 1- Geometry of cassegrain antenna.
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tan Ob = B tan Obh (2)

where B is a constant with B > 1. Figure 1 shows the angles Ob and
Obh. The horn blocking angle Obh can be expressed in terms of the
geometrical parameters and (1) by

tan Obh D sin (6 + Cm)

With all other parameters specified, Obh is minimum for

KX sin Om

a+ em = 2.

(3)

(4)

Similarly, with Of,,, also specified, K has a maximum value when (4) holds.
Using (2) and (3) and expressing Ob in terms of the geometrical

parameters, the following equation is obtained for the subreflector
diameter, D.

Nisin + 6) ± sin em
BKX

2BKfX sin OmD = (5)
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where

f = focal length of the paraboloid main reflector.

Equation (5) agrees with the previously given condition for no block-
ing6 D (2KfA) In practical antenna designs BKA/16f is small
compared with sin (8 + 0,,,) , hence (5) may be rewritten in terms of
the main reflector diameter, Do, as:

D ?__ cos (---1° )Nai
in (BX-F-D0s 0,)

Equation (6) shows that antennas with large main reflectors also
require larger subreflectors, but that the ratio (D/D0)2 which is a
measure of the amount of power blocked by the subreflector is in-
versely proportional to the main aperture diameter Do. Hence the
condition (6) is of importance primarily in the design of relatively
small Cassegrain antennas.

Equation (6) also shows, as expected, that a conventional Casse-
grain antenna requires a smaller subreflector than a near -field Cas-
segrain antenna, since K is smaller for the former. However, this dis-
advantage of the near -field Cassegrain antenna is offset by other
advantageous properties.

Another parameter which influences the antenna design is the
total Fresnel number of the horn at the subreflector distance, defined
by

(6)

Ft ± ) (7)4X / /i

For a conventional Cassegrain, Ft can be selected, to a certain ex-
tent, independently of the antenna geometry, because the radiation
properties of the horn are not directly related to the horn length, 1.
For such an antenna with combined TE11 and TM11 mode excitation,
a total Fresnel number in the 0.5-0.65 range would provide a nearly
uniform subreflector illumination over a wide frequency range (about
30 per cent) with relatively small phase deviations. For TE11 mode
excitation, a lower Fresnel number is necessary, because the phase
of the E -plane horn radiation pattern is more frequency sensitive for
larger Fresnel numbers.

For a near field Cassegrain antenna the total Fresnel number is
almost directly related to the antenna geometry. Specifically, for an
antenna with the horn located in the shadow region of the subreflector
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and with a subreflector illumination angle equal to the horn flare
angle, Ft is given by

D tan Oh
F`- 2X 1 - /°

+ 1.

with

(8)

2 4i
tan 01, = (9)

1 -

Since 10 is much smaller than 11 the total Fresnel number, Ft, is
mainly determined by the subreflector diameter D.

For a near field Cassegrain it is necessary to have both K and Ft
large. Equations (3) and (8) show that these quantities are propor-
tional to D2.

IV. ANTENNA DIMENSION

For the antenna under consideration the main reflector dimensions
were specified. Its diameter, D, is 224A (A = wavelength at the design
frequency), its focal length, f, is 72.8A and the corresponding geo-
metrical illumination angle, Om, is 75°.

The initial choice of the other antenna dimensions was based on
the following consideration. As shown above, K has a maximum for
8 + = ir/2. Using this condition the subreflector diameter, D, has
been chosen such that the optimum value of K is unity at the lowest
frequency (AL = 4.5X). At the design frequency, K is about 3 times
larger than is required for a conventional Cassegrain antenna feed.
For this value of K, D is 25A. With these parameters a horn with a
maximum diameter of 17.6A can be located in the shadow region of
the subreflectors. The corresponding horn length, 1, is 100A. However,
a feed horn with these dimensions would introduce, at the lowest
frequency, appreciable phase variations at the subreflector owing to
the shift of the phase center of the horn radiation pattern. For this
reason these horn dimensions were not used in the computations.

The horn dimensions used were d = 14A and 1 = 42.5A. With these
horn dimensions K is only slightly less than the optimum value. The
location of the phase center, which is 5A in the front of the horn
vertex, and the subreflector illumination angle, which is less than
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the horn flare angle, were chosen on the basis of the computed horn
radiation patterns for combined TE11 and TM11 mode excitations.

Table I summarizes the antenna dimensions.

V. PROGRAM FOR COMPUTING ANTENNA CHARACTERISTICS

Programs have been developed which compute the antenna radia-
tion characteristics and plot the computed radiation patterns. The
computational methods are similar to those used in the computation
of characteristics of the open Cassegrain antenna.1 However, only
single integrations are used; one integration was eliminated by using
the Fresnel region approximation for wide angles and large Fresnel
numbers.2 Appendix A gives the equations used. Appendix B discusses
operational aspects of the programs and gives flow diagrams.

The antenna characteristics for combined TE11-TM11 and TMoi
mode excitations are computed in one operation. The computer pro-
gram consists of three parts which compute (i) the horn radiation
patterns, (ii) the subreflector radiation patterns, and (iii) the far
field radiation patterns.

The horn radiation patterns are computed at a constant radius, s,
corresponding to the subreflector distance. From these computations
the power loss at the subreflector is obtained by integration. The horn
radiation patterns are also computed at the subreflector surface to
obtain the subreflector illumination.

The subreflector radiation patterns are computed at a constant
radius, f, and at the main reflector surface. From these computations
the power loss at the main reflector and the main reflector illumina-
tion is obtained.

From the computed main reflector illumination the aperture gain,
aperture efficiency and finally the far field radiation patterns are
obtained.

The antenna gain and antenna efficiency are determined from the

TABLE I - ANTENNA DIMENSIONS

Main reflector diameter, Do 224X
Focal length, f 72.8X
Main reflector illumination angle, Om 75°
Subreflector diameter, D 25X
Subreflector illumination angle, Oh 9.5°
Horn length, 1 42.5X
Horn flare angle, a 9.5°
Phase center location, p 5.0X
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computed aperture gain and efficiency respectively by including the
loss at the subreflector and main reflector.

In the computations the phase variations at the sub- and main
reflectors are included. Also included is the effect of the main reflec-
tor aperture blocking by the subreflector but not the effect of the
protruding horn.

An estimate of the antenna noise temperature is obtained by as-
suming, somewhat arbitrarily, that near the horizon half the power
lost at the sub- and main reflectors contributes to noise. At zenith
it is assumed that the power lost at the main reflector contributes
to noise. A ground temperature of 300°K is used in the computations.
The additional noise from possible scattering of the subreflector sup-
port and the noise from the wide angle sidelobes of the far field radia-
tion patterns are not included in the computations.

VI. COMPUTED ANTENNA CHARACTERISTICS

The antenna characteristics have been computed with the above
computer program for the following feed horn excitations: (i) TE11
and TM11 at the design frequency, fo , 0.8 fa and 1.3 fo , and (ii) TE11
and TM01 modes at 10 and 0.22 10. The antenna characteristics for the
different modes and frequencies are summarized in Table II. The
tabulated power losses are normalized with respect to the total power
radiated by the feed horn.

6.1 TE11 and TM Mode Excitations
The computations were performed by assuming that the two modes

are in phase at the horn aperture. The TM11 to TEll power ratio
was assumed to be 0.17. This value was used because at the design
frequency it minimizes the phase variations of the horn radiation
patterns at the subreflector both in the E and H planes.

Computations have been performed at the design frequency, fo, 0.8
fo, and 1.3 fo. This corresponds to about a 50 per cent bandwidth.
Except for the expected change in the antenna gain, the antenna
radiation characterikics remain virtually the same across this fre-
quency range. This indicates that if a frequency -insensitive conical
feed -horn using TE11 and TM11 mode excitation could be developed,
this antenna design is capable of efficient radiation over a 50 per cent
bandwidth.

Figures 2 through 6 show the antenna radiation patterns at the
design frequency, 10. Included are: the amplitude and phase of the
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TABLE II - CALCULATED ANTENNA CHARACTERISTICS

Frequency Design, Jo 0.8 fo 1 1.3 fo fo 0.222 fo

Mode
TEI1
and

TALI
TMin TEn and TALI TEli TEii TMoi

50.8

Per cent of:
Power loss at sub -
reflector 2.7 20.0 3.4 2.1 9.3 26.0

Power loss at main
reflector 0.7 2.9 0.9 0.5 1.0 4.4 5.6

Power blocked by sub -
reflector 5.0 - 4.8 5.5 3.3 2.9 -
Aperture efficiency 72.7 - 73.4 71.5 75.4 82.2 -
Antenna efficiency 70.4 - 70.3 69.8 67.7 57.2 -

Antenna gain, dB 55.4 49.4
at max

53.4 57.6 55.2 41.4 33.3
at max

Antenna noise
temperature,
°K

Near
horizon 5.1 34.35 6.45 3.9 15.45 45.6 81.6

At
zenith 2.1 8.7 2.7 1.5 3.0 13.2 16.8

First.
sidelobe, dB

H plane -22.7
12.9

-23.9 -21.4 -24.1 -17.2
13.9

E plane -24.5 -23.8 -24.2 -15.1 -21.0

0
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subreflector illumination, the amplitude and phase of the horn radia-
tion pattern at the subreflector distance, the amplitude and phase
of the main reflector illumination, the amplitude and phase of the
subreflector radiation pattern at the focal distance, and the far field
pattern.

These figures show that the phase variations of the sub- and main
reflector illuminations are relatively small at this frequency. This is

to TE11 modes has been chosen to minimize the phase variations at
the subreflector. These figures also show that the far field radiation
pattern is virtually the same in the E and H planes. This should
result in a nearly circular symmetric far field radiation pattern.

Figures 7 and 8, and Figures 9 and 10 show some of the antenna
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radiation characteristics at 0.8 fo and at 1.3 f , respectively. The phase
variations of the sub- and main reflector illuminations, though small,
are larger than at the design frequency. This primarily results from
the shift in the phase center of the horn radiation pattern. It is the
shift in the phase center which ultimately limits the upper frequency
of operation for this type of antenna.

6.2 TM°, Mode Excitation

The radiation characteristics for the TMoi mode excitation were
computed at the design frequency, f 0. Figures 11 through 13 show
representative radiation patterns for this mode. Particularly pro-
nounced are the amplitude oscillations of the main and subreflector
illuminations. This seems to be characteristic for the TM01 radiation
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patterns from apertures and reflectors which are large compared with
the wavelength and which are illuminated with nearly spherical wave
fronts. However, no experimental evidence has been found to confirm
these characteristics.

The advantage of this antenna for TMoi mode excitation com-
pared with a conventional Cassegrain is less spillover at the subre-
flector, hence, less antenna noise. However, the sidelobe levels of the
far field radiation pattern are perhaps a few dB higher than could
be obtained with a conventional Cassegrain.

6.3 TE Mode Excitation
In view of the difficulties in realizing a conical feed horn with TE11

and TMii mode excitation which would maintain the proper phase
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relationship at the horn aperture over a wide frequency range, TE11
mode excitation only has been investigated for the same antenna
geometry.

Figures 14 and 15 show some of the radiation patterns for this
mode at the design frequency, fo. The computations show that the
phase variations of the sub- and main reflector illuminations are
considerably larger, particularly in the E plane, compared with those
obtained by using combined TE11 and TM11 mode excitations. Also,
the sidelobe levels of the far field radiation pattern in the E plane are
considerably higher than in the H plane.

Table II shows that the computed antenna gain is 0.2 dB lower
than the computed gain for TE11 and TM11 modes. However, the
most significant difference is the increase in the antenna noise tern -
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perature by 10°K near the horizon. This increase is primarily caused
by the larger power loss at the subreflector because of the E plane
horn radiation pattern characteristics.

A reduction of the antenna noise temperature by a few degrees
might be possible by increasing the subreflector illumination angle
perhaps even beyond the geometrical illumination angle of the horn.
Figure 14 shows that the phase variations in the E -plane radiation
pattern are not very large in the vicinity of the presently -used sub -
reflector illumination angle of 9.5 degrees. The computed horn power
radiation patterns show that if in the present design the illumination
angle were 10.5 degrees the antenna noise temperature would be re-
duced by 4.8°K. The antenna gain for such a design would be reduced
by only a small amount.
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The bandwidth characteristics for this mode in the vicinity of the
design frequency should he similar to those of the combined TE11
and TM11 modes.

6.4 TE11 and TM01 Mode Excitation at 0.22 fc,

The horn and far field radiation patterns for these modes are shown
in Figs. 16 through 19. The right side of Table II summarizes the
computed antenna performance at 0.22 f0. The antenna efficiency for
the TE11 mode is relatively high particularly in view of the large
phase variations of the subreflector illumination. The far field radia-
tion patterns for both the TE11 and TM01 modes show good charac-
teristics. The primary disadvantages, however, are the high noise
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temperatures for both modes, owing to the power loss at the subre-

flector.

VII. SUMMARY AND CONCLUSIONS

Computer programs have been developed for computing the radia-
tion characteristics of Cassegrain antennas and for plotting of the
computed radiation patterns. The method is applicable to symmetrical
Cassegrain antennas and provides the means of their design for nearly

optimum performance.
A Cassegrain antenna with a near field conical feed horn has been

investigated for different mode excitations and over a wide frequency
range. For large antennas (over 200 wavelength main reflector diam-
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eter) this type of feed can be used over a 50 per cent bandwidth
with only small variations in the over-all antenna characteristics,
except for the predictable increase in the antenna gain with frequency.

The computed antenna characteristics for the combined TE11 and
TALI mode excitations show that the advantages of the combined
excitation are: (i) lower far field E -plane sidelobes, (ii) 0.2 dB
higher antenna gain, and (iii) 10°K lower antenna noise temperature.

At the design frequency for TE11 mode excitation, the computed
antenna efficiency is 70 per cent and the noise temperature near hori-
zon 15.5°K. With a design modification it should be possible to
reduce the noise temperature by a few degrees without affecting the
antenna gain.

For the TA101 mode, the calculated antenna gain and noise tern-
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perature at the design frequency are superior to those obtainable by
using a conventional feed. The sidelube levels of the far field radia-
tion pattern are perhaps a few ciB higher.

At a frequency 4.5 times below the design frequency the calculated
antenna efficiencies for the TE11 and TMoi modes are relatively high.

However, the power loss at the subreflector gives rise to appreciable
noise temperatures near the horizon.

APPENDIX A

Formulations Used in Computing the Characteristics of Cassegrain
Antennas

A.1 Horn Radiation Patterns

The horn radiation patterns have been computed by using the Kirch-
hoff approximation to the aperture radiation field. With this approxi-
mation the electric field E, at distances of at least a few wavelengths
from the aperture is:'

where

e-ikR

Ep 113 if [E (1 ± 1  1R) - E.  1 R(1. ± 1R)] R ds (10)
4r s

S = horn aperture area

rk = 2

X = wavelength
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and 1 and 1, are unit vectors in the normal, and in the R direction as
shown in Fig. 20. EL, is the electric field in the horn aperture, assumed to
be the same as for circular waveguide modes but with spherical wave
fronts

Since it has been shown by actual computations' that the primary
contributions to the horn radiation patterns are due to the first terms
of (10), in the computations the term E  4(1_ + 1R) has been neglected.

Because of the periodicity of the CikR/R with respect to the azimuth
coordinates f../ and  it is suffirinnt to evaluate (10) in a discrete
number of (p, planes, the number !Ring equal to number of Fourier
components of the aperture field in co'. In particular it has been shown'
that for TEI, and TM mode excitations it is sufficient to evaluate one
rectilinear x or y component of (10) in the two principal planes (pi = 0
and r/2. Similarly for TM0, mode excitation only one rectilinear
component of Ea in one plane needs to he evaluated.

The integrals which are evaluated the TE , TMii , and ?Win
modes are:

ki2 1t

le =
4 f Bay(1 + i 1,) sin 01' (0' (le 01)

with the aperture fields for the different modes given by:

TE mode

(Eat) T E = (A' T -(19:) - (k E n cos 2co' (12)

Fig. 20 - Coordinates for horn radiation pattern computation.
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with

Jc(kTE) = 0. (13)

TM mode

with

with

mode

Way) M  = Jo M J2(kTm 5) cos 2c0' (14)

J1 m ) = 0. (15)

(Ea v) TM = J1(kT f-:.) Sill (pf (16)

Jo (kT m ,) = 0. (17)

J = Bessel functions of order n.

a = horn flare angle.

The integration with respect to sof has been eliminated by approxi-
mating the integrals, I, given by:

27 e-ikR
I h = .10 R

(1± 1 h 1R) cos c0') d((p, - cp'). (18)

The approximations used are modifications of the previously derived'
approximations, I' , to the integrals (18) with 1  1R = 0. The modifica-
tions consist of including the values of 1  1R at the stationary phase
points since it has been shown that the previously derived approxima-
tions, In , reduce to those obtained by the method of stationary phase,
and that In can be separated into terms which correspond to the sta-
tionary phase terms. It is subsequently shown that R can be expressed
as:

2u f
R r ..\11 - - cos wi -

r
(19)

where r and u are functions which are independent of (p. and 'p', on this
basis, the first order approximations to (18), /1 are;
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with

e-ik(Ri-u).,,e
R (1 L1R,)

R
(1 + 1 101J(ku)

- (1 + 11) -.[C ek(Rn+u) -ik(R,-

R,

R. = r(1 -2r y

R, = r(1 -
r

(1 + 11,,J1J'i(ku)} (20)

(21)

(22)

and 1Jzo and 1R0 are the unit vectors at ((pi - co') equal to zero and iv
respectively.

By using the approximation (20), one integration is eliminated in (11)
and the radiation patterns for the different modes are computed from
the following integrals:

TE,, Mode

(.E,,,)TE = f [Jo(kTE ./2(krEi. af-)/21k1 sin 0' d0'
0

where the minus signs give the
and the plus sign the radiation

TAIii mode
The integral is analogous to (2
TM,/ mode

(Epy) T M r" 47r 0

(23)

radiation pattern in the plane cp, = 0
pattern in the plane q)1 = 7/2.

3).

Referring to Fig. 20,

R = (I' r2i p2 + 2r ,p cos 0,

with

and

(-°-/-, )11, sin 0' d0'.

cos y, = sin 0, sin 0' cos ((pi - cri) + cos 0, cos 0'

p cos 0' - l + r cos -y,1  1,t
R

(24)

- 21p cos 0' - 2r11 cos 7,)/ (25)

(26)

(27)
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Hence a comparison of (25) with (19) shows that

(12 + p2 2r,p cos 0, - 21p cos 0' - 2r,/ cos 0, cos 0')4 (28)

and

r11 sin 0, sin 0'
zc - (29)

The integrals for the difference modes have been computed at two
values of r1: (i) at the subreflector surface to obtain the subreflector
illumination, and (ii) at a constant distance corresponding to short-
est distance, s, from the subrefiector to the horn aperture. The latter
was performed to obtain the horn radiation pattern in a form which
is readily measurable and convenient for subsequent computation of
the horn power radiation pattern used for determining the power loss
at the subreflector.

For the first computation referring to Fig. 21

c (1 - )32)
1 - (30)

with

Xs

Zs

2 cos 0, -/3

=
b

in,

P (r,0,95)

C/2 C/2

Fig. 21 - Subreflector coordinates.

PHASE
CENTER
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For determining the subreflector illumination it is preferable to
obtain the illumination in terms of subreflector coordinate 02. The
relationship between the coordinates 01 and 02 is:

(1 + 02) cos 02 + 213cos 0, - (31)
1 + 132 + 2)3 cos 02

The second computation

ri = -2 (1 + 13) (32)

and the integration is performed as a function of 01.
A comparison has been made between some radiation patterns

computed by single and double integration. Good agreement was
obtained.

The electric field in the spherical 01 and ri coordinates can be ex-
pressed in terms of the radiation patterns in the principal planes
cpt = 0, r/2.

For TE11 and TM11 modes

Er = 18,E42) sill coi 1,,E3,(0) cos (pi (33)

The TMoi mode has only a 01 component given by (24).

A.2 Horn Power Radiation Patterns

The horn power radiation pattern, P11, is computed from the fol-
lowing integral:

O,

Pi, =2n E  Et sin 0 dO chp.
n

(34)

n = free space intrinsic impedance.

The total power is obtained by extending the range of 01 to the region
where E, Et has a negligible value.

The total radiated power can also be obtained from the assumed
fields at the aperture (12) through (17). On this basis the total
power for the different modes is approximately

TE mode

TM mode

2
27r(la) [2 - iirJ,(kTE)1

P"' - 2n
kT.,

L a

271-(/a)2

2n tj'(i"'")

(35)

(36)
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TM 1 mode

7-001)2
p11, - Ji(kTm..) (37)

2n

The computations performed for the different modes and fre-

quencies by using (34) are in agreement with (35) through (37)

within 1.8 per cent, with the power computed by using (34) giving
larger values for all modes. This is at least partially caused by the
higher values that the approximations ./" give compared with those
obtained by precise numerical integration.2

A.3 Subreflector Radiation Patterns
The subreflector radiation patterns have been computed by using

the surface integral relating the radiated fields and the current dis-
tribution over a surface.? For the distance of at least a few wave-
lengths from the reflector the radiated electric field with reference
to Fig. 21 is:

E =
s,.

1,. X (J X 1R,. R,) ors,ff

where

(38)

J = surface
S, = subreflector area.

To evaluate (38) it has been assumed that the reflector is locally
plane. With this assumption the current density is directly related to
the incident electric field. To simplify the computations 1R, was re-
placed by La . (A test computation of the subreflector radiation pattern
of the open Cassegrain antenna showed that using 1r instead of 1R,
results in a negligible difference.)

For a hyperboloid reflector, the relations between the incident
electric field and the current density have been derived.' By using
the approximation (20) the integration with respect to co, can be
eliminated. On this basis the radiated fields of the subreflector result-
ing from the incident fields of a TE11 mode (23) , are given by:

In the plane 02 = 0,

r ,{[ (r) (1 ±

63 ±

13 cos 0,1
[E,(0)1TE =

2

EPY" E" ec's °2)

k(0) - E(;) (113+47:2)1/4r22 sin 02 dO, . (39)
v2
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In the plane 402 = r/2,

1=
2X 0

f fi"s c""{[E,,,(0) E( + /3 cos 02
r) (1

)
cos 0

2 /3 cos 02 °

E (0) -
I-11

(71.) (1 + /3 cos 02)1/1
cos 0-E" 2i3+ cos 02 2

+ 2E42) Sin 02
± cos 02

/I 1 sin Ole, sin 02 d02 (40)

For the TMii mode, the fields are analogous to (39) and (40)
with the corresponding TMii illuminated functions E, (0) and E,(7r/2).

For the TMoi mode,

[E,(0)iTma,
2A Jp Epv(0) e -1k"

[cos 0
(1 + 13 cos 02) 3 sin 0 sin 11,

cos 02
I, + + cos 0,-

.1 r, sin 0, (10, (41)±
where E, (0) is given by (24).

In the above r2 is the equation of the subreflector in the coordinates
shown in Fig. 21, and is given by

c (1 - /32)
r2 = (42)

2 )3 + cos 02
./;, are the first order approximations to the integration with respect
to 402 . They are given by (20) with 1n  1R. and 1 1R, set equal to zero.
The other parameters are:

R2 = (r2 - 2rr2 cos 72)4 (43)

cos 72 = sin 0 sin 02 cos ((' - V2) + cos 0 cos 02 . (44)

rr2 sin 0 sin 02
U2 - 2 (45)

r22 - 2rr2 cos 0 cos 02)4

The subreflector radiation patterns have been computed at two
distances: at the paraboloid surface

2fr- (46)1 ± cos 0
where f = focal length of the main reflector, to obtain the main
reflector illumination, and at

r = f (47)

to determine the power loss at the main reflector.
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The 'p dependence of the subreflector radiation patterns are ob-
tained in terms of radiation patterns in the principal planes and are:

For TE,, or TM,, modes

[E,]TE.Tm = 1E,(0) cos ,(i) sin co . (48)

For the TM0, mode

[Es]Tmoi = 10E,(0). (49)

The power radiation pattern of the subreflector is computed by using
the integral (34).

A.4 Aperture Gain and Efficiency

The aperture gain and efficiency are computed by projecting the
incident field on the main reflector aperture. The fields in the recti-
linear x, y components are related to 0, r components by the ex-
pressions

E. = -12(E10 cos cp - E.:cos (p)
- 1y(E,0 sin (p2 cos co2). (50)

For TE11 and TM11 mode excitations polarized in the y direction,
the gain on axis, GM , is

2

472 fob [E,t) E (0)17.2 sin 0 d

131 x2 ' [1 (r) 2I
I
E,12} + I !i,(0) 112 sin 0 de

0

where r is the equation for the paraboloid (46).
The aperture efficiency, g, is obtained from the relation

with

G
9=G°

47f sin 0, 2

X(1 ± cos 0:.)

(51)

(52)

(53)

The maximum antenna gain for the TM01 mode is determined by
normalizing the amplitude of the TM01 mode electric field at the
horn aperture with respect to the amplitudes of the TE11 or TE11
and TM11 modes for the same power input, by using (35 through 37) .
The gain for the TM01 mode is then related to the gain for the TE11
mode on axis, referred to the maximum of its pattern.
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A.5 Far Field Radiation Patterns
The far field patterns are computed from the projected field on

the aperture, using the relation
- kr.

E - e
f X

Om r2r

1:12 i()
Er, exp [Ai. sin 0 sin 0,, cos (go - goa)]72 sin B dO thp (54)

where r0, Oa, and ra are the coordinates of the far field observation
point.

Because of the antenna symmetry the integration with respect to
p can be the readily performed. The resulting integration with respect
to 0 is for TE11 or TM11 modes

Bus= - --ikra

ra 0
{[E, 1(0) + Es () 110--rr sin 0 sin 0)

, 2 X

[E -E (0) .I2(2F sin 0 sin Oak2 sin 0 de (55)

where ± signs correspond to the patterns in the H(coa= 0) or E(coa=7r/2)
planes.

Similarly for the TA10, mode

(Ef)Tmoi = 1.0a E,(0),I,( 2 sin 0 sin 0,B)r2 sin de (56)
97r e- ikra nt 71

X 7'a 0 b

where E8 is the main reflector illumination (48) and (49) for the
different modes in the planes 'p = 0 and = 7r/2 .

APPENDIX B

Program for Computing the Characteristics of Cassegrain Antennas
and for Graphic Display of Radiation Fields

The package consists of two programs: a program to compute the
horn radiation patterns, the subreflector radiation patterns, the far
field radiation patterns, and other characteristics of Cassegrain an-
tennas described in Appendix A, and a program to scale, label, and
plot the radiation fields. The two programs are linked by intermediate
storage of computed results and control variables on tape, at the
conclusion of Part 1 execution.

(Efy) T t

B.1 Computation Program

Figure 22 is a logic diagram of the program. The following conven-
tion is used throughout the logic diagram. Square -bracketed symbols
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START(

READ NAMELIST
PDATA

READ NAMELIST
H DATA

DO 50 1.<1< =i,2

THS [02] =0.0
THC [01] =o.o

DO 50 N=i,

THH [0'] =o.o

(DO so J = T

CALL J012, CALC.
APERTURE FIELDS

(EaY)TE,(EaY)Tm
(Eay)Tmoi

N

CALL SIM, TO CALC.

EHS (N)[(Epa i6=o

EES (N) REpa0=7/2

ETMS (N) gEpj TMOI
AT SUBREFLECTOR

CALL SIM, TO CALC.
EHC (N) E(Epacti=o

EEC (N) Epy)]ib=w/2

ETMC (N) REpaTMoi
AT DISTANCE S

THS =THS +A2

CALC.

RL [rt (02)]
CT HI[cos{01 (02)}]

CALC.

RL [ri (92)] =CONST

CTHI [cos (0,)]

CALC.
RN [r] , X [u]

RO[R0], RI [RI]
APL

AMI [1n, 1R1]

CALL 1012, CALC.
IO [110h], Ii

12 [I2h]

EVALUATE INTEGRAND
AT SUBREFLECTOR

SI (J) H-PLANE}TE
&S2 (J) PLANE TM

S3 (J) TM0, MODE

EVALUATE INTEGRAND
AT DISTANCE S

S4 (J) H-PLANEITE
S5 (J) E -PLANE TM

S6 (J) TMoi MODE

60 THH -THH +Ai

THC= THC +A3

CONTINUE
WRITE
RECORD

NO.1

WRITE
RECORD

NO. 2

WRITE
RECORD
.NO.3)

PRINT OUTPUT

I CALL PRAD I

READ NAMELIST SUBDAT

CALL QUAD, TO CALC.

EHSU (NTS) =QUAD[EHS (L)]
EESU ( NTS) = QUAD[EES (L)]

ETMSU (NTS) =QUAD[ETMS (L)]

(DO 500 MM =1,2)

TSP [0] =o.o
1

(DO soo N=1 LS

TSU [02] =0.0

DO 510 R=i,NTS

CALC.

RPC [r (Bm)]
CALC.

RPC [r] =CONST.
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CALC. RH C [r2]

XSP [U2] ETC.

CALL 1012, CALC. IOS[ro],
I2S[I12] WITH

In  IRo = In' IRt = 0

Y N

EVALUATE INTEGRAND
AT PARABLOID SURFACE

SHP (K) H-PLANE}TE
SEP (K)E -PLANE TM
STMP (K) TM 01 MODE

EVALUATE INTEGRAND
AT DISTANCE f

SHPC(K)H-PLANEI_TE
SEPC(K)E-PLANE TMI,

STMPC(K)TMQ, MODE

I

TSU = TSU + A2

CALL SIM, CALC.

EH P (N) [(E5)] 0=o

EEP (N) [(Ea 0=1T/2

ETMP (N) REA TM°,
AT PARABLOID SURFACE

CALL SIM, CALC.

EHPC (N) [(E5)] 0= o

E E PC (N) RE 5)] 0=71/2

ETMPC (N)[(E5)] TMoi
AT DISTANCE f

TSP = TSP+A5

500

TSP = TSP +A6

CONTINUE

WRITE
RECORD

NO.4

WRITE
RECORD
NO.5)

PRINT OUTPUT

CALL PRAD

CALL GAIN

READ NAMELIST
FFDAT

CALL QUAD, TO CALC.

EHPF (NTP)=QUAD[EHP(LS)]
EEPF (NTP) = QUAD[EE P (LS)]

ETMPF (NTP) = QUAD[ETMP (LS)]

TPF [02] = 0.0

( DO 700 M = I,LP

TPD [0] = 0.0

(DO 710 J =i, NTP)

EVALUATE INTEGRAND

SHPF (J) H- PLANEITE"
SEPF (J)E - PLANE TM"

STHPF(J) TMoi MODE

TPD= TPD + A7

CALL SIM, CALC.

EHFF (M) f 0a = 0

EEFF (M)REra Oa =1/12

ETMFF (M)[(Er)] TWA

33

TPF = TPF + A8

PRINT OUTPUT

Fig. 22 - Logic diagram for field calculation program.

WRITE
RECORD

NO.6
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follow the notation of Appendix A, while the preceding alphanumeric
symbols are the Fortran IV source program names.

Four groups of input data are required, designated by the NAMELIST
names PDATA, HDATA, SUBDAT, and FFDAT. Although some of the fol-
lowing data is redundant, the formats are designed for convenience
and precaution.

PDATA

NS - Number of sets of field patterns to be computed, that is,

NS = 2 Horn radiation patterns only
NS = 4 Horn and subreflector patterns
NS = 5 The above plus far field patterns

NPS - Number of patterns per set, that is,

NPS = 2 E & H planes only
NPS = 3 The above plus TA/Li mode

ITE - Control bit for plotting program (see Section 2)

HDATA

HL - Horn length
HLAMD - Horn length normalized with respect to design wavelength
FQ - Frequency normalized with respect to design frequency
c - Distance between foci of hyperboloid
BETA - Defined by equation (30)
PL - Location of phase center normalized with respect to horn

length
ALPHA - Horn flare angle
L - Number of points at which horn radiation pattern will be

evaluated
NT - Number of points at which integrand will be calculated for

evaluation of integrals in equations (23) and (24).
DEG - Angular increment (in degrees) for obtaining subreflector

illumination
ANG - Angular increment (in degrees) for obtaining horn radiation

patterns
Tm - Complex constant which determines TM11 mode to TE11

mode ratio
YIP - Control bit for plotting program (See Section B.2.)
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SUBDAT

- Focal length of paraboloid
Note: The dimensional unit for F, c, HL must be the same.

FLAMD - Focal length normalized with respect to design wavelength
CLAMD - C normalized with respect to design wavelength
LS - Number of points at which subreflector radiation pattern

will be evaluated
NTS - Number of points at which integrand will be calculated for

evaluation of integrals in equations (39), (40), and (41)
GAMA - Main reflector illumination angle (degrees)
DEGP - Angular increment (in degrees) for obtaining main reflector

illumination
ANGP - Angular increment (in degrees) for obtaining subreflector

radiation patterns
INCS (N + 1) where N is the number of points to be interpolated

between previously computed subreflector illumination points
- Number of points which are not included in integral (51)

because of subreflector blocking
121' - Control bit for plotting program (See Section B.2.)

NTP - Number of points at which integrand will be calculated for
evaluation of integrals in equations (55) and (56)

GAMAB - Angular portion (in degrees) of main reflector blocked by
subreflector

NTPB - Number of points which are not included in integrals in
equations (55) or (56) owing to subreflector blocking after
interpolation of main reflector illumination

LP - Number of points at which far field radiation patterns will
be evaluated

INCP - (N 1) where N is the number of points to be interpolated
between previously computed main reflector illumination
points

DEGFF - Angular increment (in degrees) at which far field radiation
pattern will be evaluated

I3P - Control bit for plotting program (See Section B.2.)

The following subprograms must be included in the deck before
execution.



928 THE BELL SYSTEM TECHNICAL JOURNAL, JULY -AUGUST 1968

PRAD - Computes the power radiation patterns in accordance with
equation (34)

J012 - A Bessel function subroutine developed by J. Alan Cochran
and P. A. Alsberg. The present version includes two sub-
sidiary subroutines :8

DPHASE - Uses phase -amplitude method for large values
of argument

JLOW - Uses downward recursion technique for small
values of argument

1012 - Calculates the first order approximations (20) to the
integrals Inh (18)

QUAD - A quadratic interpolation scheme for complex arrays
INTERP - A subroutine called by QUAD
PROC - A subroutine to format and print output data
SIM - A complex Simpson's rule integration routine. Will accept

an even or odd length array with negligible variation in
accuracy

GAIN - Computes the antenna gain and aperture efficiency as defined
by equations (51), (52), and (53)

TR --- A special purpose of Simpson's rule integration to evaluate the

only by the GAIN subroutine

The program requires approximately (52,660)8 or (22,000)10 words
of storage. A representative execution time for both modes (TE11
and TM11 combined, and TM01) at the design frequency is 14 min-
utes; the same calculations at 0.22 times the design frequency, where
a smaller number of integration points is required, takes approxi-
mately 5 minutes.

B.2 Plotting Program

A logic diagram of the program is presented in Fig. 23.
All input data required by the plotting program has been stored

on tape by the previous program.
The plotting control bits, referred to in Section 1, have the fol-

lowing meaning: if field calculations are to be made in a combined
TE11 and TM11 mode-that is, input data TM11 (0.0, 0.0)-the
control bit ITE in NAMELIST PDATA must be set equal to 2. If the field
calculations are to be made in the TE11 mode alone-that is, TM11 =
(0.0, 0.0) -the control bit should be set equal to 1. Therefore calcu-
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lations for the three sets of radiation patterns, horn, subreflector,
and far field, will generally be made in two modes, a combined TEn
and TMii mode, and the TMoi mode, where it is understood that the
combined mode may be the pure TE11 mode, if TMii = (0.0, 0.0) and
ITE = 1.

For the combined mode the radiation fields will be evaluated in
both E and H planes. E- and H -plane data are plotted together for
ease of comparison. However, in some cases (particularly for certain
far field patterns) a rapidly varying phase plot superimposed on a
rapidly varying amplitude plot may result in an unclear graph. For
this reason the control bits HP, 12P, and 13P are introduced. HP con-
trols horn radiation pattern plotting, 12P controls subreflector plotting,
and 13P, far field plotting. If the control bit for a particular field is
set equal to 0, two plots will be generated, that is,

Combined Mode

(i) E -plane and H -plane amplitude and phase

TM01 Mode

(ii) Phase and amplitude

However, if the control bit is set equal to 1, four plots will be
generated:

Combined Mode

(i) E -plane amplitude and H -plane amplitude
E -plane phase and H -plane phase

TM01 Mode

(iii) Amplitude
(iv) Phase

Vertical scales are restricted to allow only 20 divisions, therefore a
preferred set of increments for the various scales has been selected.
The allowed increments in dB for the amplitude scale, stored in
array ADB (I) , are:

0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0;

for the phase scale, in degrees in array APH (I) :

1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 15.0, 18.0;
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READ
RECORD

NO.1

READ
RECORD

J+t

START/

( DO 73 J=I, NS)

(DO 72 K=i, NPS)

K=1: ER (I)=ER1 (I); EI (I) =EI (I)
K=2: ER(I)=ER2 (I); EI(I)=EI2 (I)
K=3: ER (I)= ER3 (I); EI (I)= EI3 (I)

AMP (1) =[[ER (I)]2 + [EI(1)]

EN = AMP (N)
EI 1

PN=TAN-I
(N)

LER (N)j

EN =AMP(1)

PN = TAN-
Ei(,)
ER (1)

INTERPOLATE
REAL PART ER (I)

INTERPOLATE
IMAG PART E I (I)

CALC. RELATIVE AMP

dB ( I)= 20.0 x LOG AMP (r)
EN

CALC. RELATIVE PHASE

RR (I) = TAN -1
FE I al PN
LER (I)

CONSTRUCT AMP SCALE
YLt> MAX { dB (I)}
YS15_. MIN { dB (I)}

CONSTRUCT PHASE SCALE
YL 2 MAX {RP (I)}

YS2=-YL2

CONSTRUCT ANGLE OFF
AXIS SCALE

COMPOSE PARTIAL
TITLES FOR PLOT

SYLI =YLt
SYSI =-YSI
SYL2=YL 2
SYS 2= YS 2

SDB(I)= DB (I)
SRP (I)= RP (I)

COMPLETE TITLE
FOR PLOT

CALL FRAME

IOPT=i

COMPLETE TITLE
FOR AMP PLOT

CALL FRAME

CALL PLOT 2 PLOT DB (I)

PLOT

DB (I), RP(I)
COMPLETE TITLE
FOR PHASE PLOT

CALL FRAME
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YL1 =SYLI
YSI = SYSt

YL1 =SYLi
YSI=SYSi

COMPLETE TITLE
FOR DUAL PLOT

CALL FRAME
f

CALL PLOT 2

PLOT
DB (i) RP (I)

SDB(I) SR P (I)

YL2 =SYL 2
YS2 = SYS 2

COMPLETE TIT LE
FOR AMP PLOT

CALL FRAME

PLOT

DB (I), SDB (I)

COMPLETE TITLE
FOR PHASE PLOT

CALL FRAME

PLOT

RP (1.), SRP(I)

72

73

CONTINUE

CONTINUE

CALL CLEAN

STOP

Fig. 23 - Logic diagram for field plotting program.
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for the angle -off -axis scale, in degrees, stored in array AS (I) :

6.0, 5.0, 4.0, 3.0, 2.5, 2.0, 1.5, 1.0, 0.75, 0.5, 0.4, 0.3, 0.2.

The following subroutines must he included in the deck before
execution:

PLOT 2 - A subroutine to generate a grid with two independently
labeled ordinates sharing a common abscissa

MINMAX - A subroutine to select the algebraicly largest or smallest
entry in an array and specify its index

INTERP - A quadratic interpolation scheme for real arrays
FILTER - Adjusts plotting data for phase variations in the vicinity

of ±180°
LABEL 2 -A modified version of the microfilm subroutine LABEL.

Called only by PLOT 2.

The program requires approximately (51,536)8 or (22,000)10 words
of storage, and about 0.5 minute execution time for all twelve plots.
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Precise 50 to 60 GHz Measurements on
a Two -Mile Loop of Helix Waveguide

By D. T. YOUNG and W. D. WARTERS

Precise measurements made in the 50 GHz to 60 GHz band on a two-
mile triangular loop of 2 inch diameter helix waveguide are presented.
The measuring technique is discussed in some detail regarding accuracy.
A brief comparison of the experimental results with theory is made. The
average measured attenuation of the waveguide varies smoothly from 2.62 dB
per mile at 50 GHz to 2.82 dB per mile at 60 GHz. Fast variations versus
frequency were within experimental error. Several short -radius bends of
different angles were measured; losses less than 0.8 dB across the band
were observed for a 42° bend made of mitered elbows.

I. INTRODUCTION

the TE0, mode in circular waveguide
has been studied for many years for use as a wideband communica-
tion medium.' Much work has been done on the design of improved
waveguides,2' 3 the understanding of the effects of spurious modes,4,
and the measurement of sample guides over wide frequency bands.°,7

Interesting waveguide communication system layouts have pro-
posed repeater spacings in the range of 10 to 20 miles. Reasonable
design requires that the total loss of such a waveguide section be
predictable to within a few dB. However, the longest guides on which
measurements have been reported are a few hundred yards, and the
variation to be expected between different samples of similar con-
struction is unknown.

This paper describes measurements made in the 50 GHz to 60
GHz band on a two-mile triangular loop of helix waveguide. Ex-
tremely precise observations were made on many sections of the
loop in order to:

(i) Test whether the loss of a long line is indeed the sum of the
losses of its component sections as is expected if the sections act in-
dependently.

933
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(ii) Discover the statistical variations between sections, both in av-
erage loss and loss fluctuations with frequency, so that confidence
limits can be found for predicting the behavior of very long lines

from measurements on shorter lines.
(iii) Allow accurate measurements of bends and other components by
taking the difference between the losses of sections with and without

the test component included.

II. THE TWO-MILE WAVEGUIDE LOOP

The two-mile facility was constructed at Holmdel, New Jersey,
by A. C. Beck and C. F. P. Rose. The permanent installation con-
sists of a triangular shaped loop of two parallel 4 -inch steel conduits
buried below the frost line, with poured concrete ties every 10 feet,
along a precisely aligned path. The layout is shown in Fig. 1. The
loop begins and ends in a laboratory building, and large waterproof
access manholes are provided approximately every 400 feet, as in-
dicated by the letters in Fig. 1. The waveguide was installed in the
conduit by adding sections in one manhole and pulling the assembled
guide through the conduit to the next manhole with a cable and
winch

The vertical profile of the path is quite smooth, with no radii of
curvature less than 4,000 feet. The horizontal plan of the path con-
sists of straight lines, as shown in Fig. 1, except the two sections
between manholes U, V, and W. These sections have a constant radius
of curvature of 708 feet. The angles at the corners of the loop are 90°,
90°, and 42°.

The waveguide was two-inch inside diameter steel -jacketed helix
waveguide. It was constructed at the Holmdel Laboratory by A. C.
Beck and C. F. P. Rose and has been described by them.3 It was
made in 15 -foot lengths which were connected with precision threaded
couplings. The guide rests on its couplings in the steel conduit be-
tween manholes, and is thus supported at 15 -foot intervals. A short
connecting section is provided in each manhole; it is easily removed
to allow insertion of measuring gear.

The total added loss at 55 GHz owing to the horizontal and verti-
cal path bends has been calculated by A. C. Beck to be 0.045 dB
and 0.002 dB, respectively, for the whole two miles. The former was
readily measured, the latter was beyond our measurement accuracy.

To complete the loop, various types of sharp -radius bends were
placed in the corner manholes H, 0, and U. Section IV describes these
bends and experimental measurements on them.
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Fig. 1- Layout of experimental Holmdel waveguide.

The entire waveguide loop, including bends, was made vacuum
tight and could be evacuated to a pressure of a few microns of
mercury. All measurements were made with the guide filled to
slightly over one atmosphere with high purity dry nitrogen. Each
time the guide was opened to change experimental conditions it was
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flushed with nitrogen, pumped, then refilled. These precautions are
necessary to eliminate oxygen, which has several strong absorption
lines in our band of interest.

III. MEASURING TECHNIQUES AND DATA REDUCTION

The TE01 transmission losses of the waveguide sections of interest
were measured by the shuttle -pulse method. This method allows
highly accurate measurements on low -loss line sections, provided that
certain precautions are observed, because it includes observations on
many round-trip traversals of the section and because the time res-
olution of the pulse allows spurious reflections to be avoided.

3.1 Apparatus
Figure 2 is a block diagram of the measuring setup. It used a

heterodyne receiver system in which the CW beating oscillator signal
and the transmitted test pulses are both provided from a single back-
ward wave oscillator by pulsing the beam voltage every 100 pS with
a 0.1 tLs duration pulse which changes the oscillator frequency by 70
MHz. This scheme was suggested by D. H. Ring and has been de-
scribed earlier.° The test pulses and beating oscillator power driving
the converter are reflected from the coupling mesh. A portion of each
transmitted signal pulse enters the test section and bounces back
and forth between the mesh and piston in the test section many times,
thus causing a train of pulses with decreasing amplitudes to be re-
turned to the receiver.

Since the mesh has transmission loss of approximately 17 dB, the
level of the signal pulses which have traveled in the test section be-
fore returning to the converter is at least 34 dB below the beating
oscillator level and good receiver linearity is assured. The trans-
mitter power and receiver noise figure allowed as many as 100 trips
to be observed, depending on the length of the test section.

The 70 MHz IF pulse train passes through a precision attenuator
adjustable in 0.1 dB steps. The range unit opens a 0.4 its time gate
to select a desired pulse from the train. The selected pulse is peak -
detected and read on an expanded -scale levelmeter. The attenuator
is set to center the levelmeter, so the entire IF strip operates at con-
stant level. Readings of relative pulse height may readily be made
to within 0.05 dB. Measurements are made, after adjusting the BWO
and converter for the desired frequency, by selecting a series of pulses
(usually 15 to 20) from the train with the range unit and recording
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the trip number and relative pulse height of each. This data, together
with end corrections for mesh and piston return losses, is reduced by
a simple computer program.

The millimeter -wave circuitry is all of precision construction and,
with the exception of the TE10-TE,7 transducer, is extremely well
matched. The effects of the 15 to 20 dB return loss of the transducer
will be discussed later.

The coupling mesh is a flat transverse copper plate 1/32 inch thick
with many small uniformly -spaced holes. Care was taken in machin-
ing both it and its mounting fixture to insure flatness. The shorting
piston was 1/4 inch thick solid copper, machined for flatness and
polished. The return loss of the mesh was precisely measured by sub-
stituting it for the solid piston in a short test line (terminated beyond
it) and comparing the relative pulse heights of the 100th trips in the
two cases. The mesh return loss varies between 0.054 and 0.114 dB
across the 50-60 GHz band. The return loss of the solid copper pis-
ton is taken to be the calculated value of 0.005 dB.

The shuttle pulse technique provided a further important advan-
tage for the present experiments, where many sections physically
separated by large distances were to be measured, by allowing the
test gear to remain in one location. The coupling mesh to the test
section was placed in any desired manhole around the loop, and the
shorting piston for the far end of the test section was then placed in

the appropriate following manhole.
The waveguide between the building where the test gear was lo-

cated and the manhole where the coupling mesh was located served
as a transmission line. Thus measurements could be made on the
waveguide section between any two manholes chosen by the experi-
menter simply by locating the mesh and piston appropriately. The
waveguide between the test gear and the coupling mesh also served
as a delay line to allow complete time separation between the incident
pulse and the pulse reflected from the mismatch at the mode trans-
ducer.

Unless these pulses are separated the effective return loss of the
coupling mesh will vary considerably. The measured return loss of
the coupling mesh is then no longer correct, and this will seriously
affect the accuracy of measurement of short waveguides.

3.2 Data Reduction
The basic assumption in shuttle pulse measurements is that the

loss of each successive trip through the test section is identical, thus



HELIX WAVEGUIDE MEASUREMENTS 939

the total loss in decibels is a linear function of trip number. The
validity of this assumption for our experiment is discussed in Sec-
tion 3.3.

In order to obtain high precision, many sets of pulse height level
vs trip number readings (hi, nj) were taken at each test frequency
for each test line. To weight the readings equally and to obtain a
measure of the experimental precision, a straight line was fitted by
the method of least squares. Thus A and B were chosen such that

(A, B) was minimized, where

This requires

where

M(A , B) = E (hi -A + Bni)2
i=1

K E - Q , hi

B=N

N

K2 -
E - K E hi

K2- NQ

K = E ni
i=1

Q = E 2ni

and N is the number of data pairs (he, ni). B is therefore the desired
experimental loss per trip and A is the intercept at zero trips. A de-
pends upon the transmitter power level and is of interest mainly as
an internal check that the data is consistent with other measure-
ments. The attenuation constant a of the test section is then com-
puted from

a(i) = [B(f) - C(f)] (1)

where L is the length of the section, B is the measured round trip
loss and C is the known end correction.

If we assume that the pulse height measurements hi are distributed
normally about the true line A, - B,ni , we can readily calculate the
standard deviation of B, our experimental measure of B and thus
the accuracy of our experimental value of a.
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If we assume the variance A2 of the hi is known so that

hi = A, - Bgni ± Ai (2)

with (Ai) = 0,64) = 0, except (64) = ',612, where ( ) is the statistical
expected value, then we can readily calculate

NQ
2AT A

K2
((B - B,)2) - (3)-

Thus the accuracy of the experimentally determined loss is related to
the individual measurement variance A2 by equation (3).

If the variance A2 is unknown then one can use the variable

(4)
NM

where N, M, K and Q are as previously defined. It can be shown'
that t has Student's t distribution with N - 2 degrees of freedom,

/2

/ -(N-1)/2
f(t) = Const (1 + N -2

From (4) we can write

(5)

NM
(N - 2)(NQ - K2) (12)

and (t2) can be evaluated from (5) to give

NM((B - B,)2) - N > 4. (6)(N - 4)(NQ - K2) '

The value of ((B - B,)2) was calculated from (6) for each measure-
ment. Comparison with (3) over many measurements gives a value
for 46; of about 0.05 dB, which is in agreement with the expected limit
of accuracy of our pulse height measurements.

The loss in dB per mile as calculated from (1) and the standard
deviation of the measurement as calculated from (6) were plotted
versus frequency for each test section by the computer. Some of these
results are shown in Figs. 3 to 8 and are discussed in detail in Section 4.

For most test sections, measurements were made at frequencies
spaced by 100 MHz from 50 to 51 GHz and from 59 to 60 GHz, and
at frequencies spaced by 1 GHz from 51 to 59 GHz. This arrangement
allowed a check at the ends of the band on the consistency between
the calculated deviations and the actual spread of points, and gave
sufficiently fine-grained data across the band to detect any expected
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Fig. 3 - Measured attenuation of short length waveguide sections.
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variations with frequency. Helix waveguide of the type used in these
experiments is not expected to show loss variations vs frequency with
periods less than 6 GHz.9

3.3 Experimental Precautions and Limitations

There are a variety of precautions that must be observed in shut-
tle pulse measurements in order to avoid anomalies and inaccuracies.

Of prime importance for high precision is that there be no interaction
between different traversals of the signal pulse in the test section.
Otherwise the observed loss will not be a linear function of the number
of trips and the desired single trip loss will be difficult to derive. Interac-
tions can occur in two major ways: (i) between successive trips when
spurious mode generation is high enough or spurious mode loss is low
enough that significant spurious mode power can be built up during
one traversal and then be reconverted to the TE0i mode in the next
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traversal, and (ii) between nonsuccessive trips when the test section
length L and the delay line length / are related by mL nl so that
pulses bouncing in the delay line as a result of reflections or mode
conversions at the input transducer can coincide with some of the
desired signal pulses bouncing in the test section.

The first type of interaction is readily observed in waveguides
with low spurious mode loss and has been discussed4 in detail. The
cure in the low -loss case is to provide mode filters at each end of
the test section. For helix waveguide with high spurious mode loss,

as in our experiments, it is expected that the spurious mode level is
never high enough to cause observable interactions for all except
TEon modes. This expectation was tested in several guide sections at
several frequencies by using a movable shorting piston and observ-
ing the signal pulse after many round trips. By moving the shorting
piston one changes the phases of any reflected spurious modes and
thus of the reconverted TE01, causing distinctive variations in the
observed signal pulse height.4 No variations outside experimental un-
certainty were observed with the exception of a series of narrow loss

peaks at the TE02 spacing.
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The TEo. mode is coupled to TE01 by imperfections possessing
circular symmetry,'° such as diameter changes or slight dishing of the
mesh or end pistons. Its loss in helix waveguide is very low, so it can
interact over several trips in short waveguide sections, causing loss
peaks when the frequency and section length L are such that 2L
contains an integral number of TE01--TE(y) beat -wavelengths, or
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Fig. 6- Measured attenuation of total straight waveguide.

60



944 THE BELL SYSTEM TECHNICAL JOURNAL, JULY -AUGUST 1968

w
- J

4.2
CC

w
0.

-6CO 4.1

a

0
I= 4.0 -

I- 50

TOTAL LINE INCLUDING BENDS NOS. 2. 3.4
L=10442'

ESTIMATED
STANDARD
DEVIATION

I I I I I

52 54 56
FREQUENCY IN GI-Iz

58

Fig. 7 - Measured attenuation of total line including bends.

1.8

1.6 -

1.4

_J

CO

w
O 1.2

0

O 1.0 -z

I -

w
z

0.8 -

0.6 

0.4
50

NO. 4

NO.3

NO.2

I I I i

52 54 56 58
FREQUENCY IN GHz

Fig. 8 - Bend losses.

60

60



HELIX WAVEGUIDE MEASUREMENTS 945

nearly so.4 The diameter tolerance of the helix waveguide was such
that continuous conversion to TE02 was not expected to be observable,
so conversion at the coupling mesh and end piston was suspected as
the cause.

This suspicion was verified by the following experiment. The piston
and mesh were fixed, and the test frequency was varied slowly. Loss
peaks were observed every 120 MHz although the beat -wavelength
condition was satisfied every 60 MHz in the test line. Such an effect
should indeed occur if both mesh and piston are converters of roughly
similar magnitude. When the coupling mesh was turned around, the
loss peaks still occurred every 120 MHz but were shifted 60 MHz
to frequencies between those observed originally, thus indicating the
expected phase reversal in the coupling at the mesh. Various meshes
and end -pistons were tried, with similar results.

It can be shown5 that conversions 50 dB down at each end of the
test section will cause 10 per cent additional loss at the loss -peak
frequencies in a 450 -foot section; to reduce this number significantly
requires flatness beyond that obtainable with simple machining tech-
niques. For our experiments, therefore, we selected the best mesh and
piston available, and chose test frequencies which avoided the loss
peaks. This precaution was unnecessary in sections 1500 feet or more
long, as the extra peak loss was then below experimental uncertainty.

The second type of intertrip interaction was avoided by identifying
and observing the spurious pulse trains arising from the delay line.
Both TE01, which is reflected for several trips with rapidly decreas-
ing amplitude because of the mismatch at the transducer, and TE02,
which is generated at a low level in the taper to the transducer but
is then almost totally reflected from taper and mesh on successive
trips, are important. Certain test section -delay line combinations
with nearly rational length ratios were not measured because these
effects were observable. In general they become less important as the
delay line length (and therefore its loss) increases.

A third possible cause of nonlinearity between pulse height and
trip number is the receiver down -converter noise. This effect was
observable only after many trips when the signal pulse was much at-
tenuated and the receiver attenuator was set near zero; it was easily
avoided by monitoring the signal-to-noise ratio.

Two other major sources of inaccuracy are oscillator stability and
oxygen absorption. At one atmosphere pressure, contamination of the
nitrogen filling gas by 0.02 percent of oxygen will increase the meas-
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ured loss at 60 GHz by approximately 1 per cent. Thus the elaborate
flushing procedures mentioned earlier were followed.

The oscillator frequency stability must be sufficient to hold the
beating oscillator level at the receiver down -converter constant dur-
ing a measurement run. The level will vary with frequency because
the main return from the mesh at the end of the delay. line will phase
with the reflection from the transducer mismatch. In addition, the
return from the mesh will change when the test line is in the vicinity
of resonance for the beating oscillator frequency. These effects be-

come severe as the lengths L and I become large. In the present ex-
periments the BWO beam supply was regulated to a few millivolts,
giving frequency stability of a few tens of kHz, but for lengths of

either delay or test line of over 1000 feet it was necessary to monitor
the converter crystal current very carefully to avoid serious loss of
precision, and for lengths over 5,000 feet precise measurements be-

came difficult.

IV. RESULTS AND COMPARISONS

4.1 Individual Line Sections

The measured attenuation constants vs frequency for several line
sections are plotted in Figs. 3, 4, and 5, grouped roughly by length.
The results for sections* AB, BC, CD, and DE, all of which are under
500 feet long, are plotted together in Fig. 3. Sections AD, DH, HL,
LO, UR, and RO, from 1289 to 1952 feet long, are shown in Fig. 4.
Results for the three long straight runs AH, HO and UO, all around
3000 feet long, are shown in Fig. 5. Notice that in all cases the verti-
cal scales are greatly expanded.

On each figure is indicated the estimated standard deviation of the
experimental points, ( (a - «02)1/2, as calculated from equations (1)
and (6). The actual value of this quantity of course varied some-
what from point to point and curve to curve; the indicated amount
is a rough average. In general the actual value tended to be a bit
larger at the lower frequencies in the band and smaller at the higher
frequencies, because of the greater number of trips observable at
lower attenuations.

The over-all high quality of the helix waveguide is evidenced by
the low observed attenuation constants. The theoretical loss for per-

* The first letter in the section code refers to the manhole in which the
coupling mesh was located and the second to the manhole with the piston.
Manhole locations are indicated in Fig. 1.
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feet solid -copper guide varies from 1.79 dB per mile at 50 GHz to
1.35 dB per mile at 60 GHz. Thus the additional losses from all
causes, including finite helix -wire size and pitch, surface roughness,
and manufacturing tolerances, total less than 1 dB per mile for most
sections.

The rapid variations in loss vs frequency for each section are
within the estimated experimental error in most cases. As mentioned
earlier, in this waveguide we would expect to see no variations vs fre-
quency with periods less than 6 GHz. None were observed, except the
spurious TE0, peaks discussed in Section 3.3, and a peak at 54.3 GHz
in line LO which is believed to be from a mechanical failure of the
steel jacket-lossy lining bond in some of the helix waveguide pieces.
Experiments over much wider frequency bands would be necessary
to detect the very slow variations which are expected from the ran-
dom curvature of the waveguide axis.

On the other hand, the difference in measured loss between one
line section and another of roughly the same length is much greater
than experimental error is most cases, and is therefore quite real.
This difference is discussed in detail in Section 4.4, where it is com-
pared with a theoretical estimate. It results from the statistical in-
dependence of the loss components between one section and the next;
the variations vs frequency for a single section should be as great
over frequency differences large enough that the statistical inde-
pendence again holds.

Figure 6 shows the average attenuation constant for all of the hori-
zontally straight line sections, obtained by adding the measured
losses for sections All, HO and UO and dividing by their total length.
Figure 7 shows the average attenuation constant for the entire loop
including sharp bends in the corner manholes. The mesh was in man-
hole A and the shorting piston in the laboratory building at the other
end of the waveguide loop; thus everything was included except the
short delay -line section between the building and A.

4.2 Bend Losses

The losses of several models of sharp bends for use in the corner
manholes were measured by taking the difference between the losses
of line sections with and without the bends included. The coupling
mesh was placed in an appropriate manhole ahead of the corner
manhole, and the shorting piston was placed in the corner manhole,
first following the bend and then preceding it. In the measurement
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with bend included, for nonhelix bends, a short section of helix wave -
guide was placed between the bend and the piston to serve as a mode

filter.
The losses of bends 2, 3, and 4 are shown in Fig. 8. These bends

were used in manholes H, 0, and U, respectively, for the measure-
ment shown in Fig. 7. Bend 2 is made of two 90° mitered elbows

back to back, with a rotary joint between them adjusted to give the
42° horizontal angle. The measured loss agrees well with theory."
Bends 3 and 4 are 7/8 inch inside diameter helix waveguide with lossy

jacket, bent 90° on elastically tapered curves, with effective bend
radii of about 3 meters. The loss of bend 3 is in agreement with
theory; that of bend 4 is considerably higher.

For all three bends the measurement accuracy is a few hundredths
of one dB, thus the plotted variations vs frequency for bends 2 and
4 are real. For bend 2, some phasing between spurious modes gen-
erated at the two elbows is to be expected, but for bend 4 the varia-
tions further indicate that the helix waveguide was not properly

constructed.
Figure 9 shows the measured attenuation of section XU, which

contains the 708 -foot radius horizontal bend. It also shows the pre-
dicted straight loss of XU, obtained by subtracting the calculated

2.9

_12.8

w
a
co)

w 2.7
co

Uw

oZ 2.6

I=

z
w

1.7c 2.5

2.4
50 52 54 56

FREQUENCY IN GHZ
58 60
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bend loss from the measured loss. The agreement with the measured
losses for other straight sections as shown in Figs. 3 through 6, indi-
cates that the effect of the horizontal bend is well predicted by theory.

4.3 Sums of Sections and Residual Errors

An important purpose of these experiments was to determine
whether the sum of the losses of several sections measured individually
would be the same as the loss measured for a line made up of the
same sections connected. The assumption that this is indeed true is
inherent in all predictions of the losses of long lines based on measure-
ments on short lines. It is also inherent in our technique for measuring
bends, and it underlies our assumption of the validity of the shuttle -
pulse technique in general. Thus, although there were no known
reasons to expect the assumption to be false, an experimental verifica-
tion was considered important.

Figure 10 shows the difference in dB between the measured loss
of section AD and the sum of the measured losses of sections AB,
BC, and CD, as a function of frequency. The differences are very
small indeed. The dashed lines indicate the average across frequency
of the estimated standard deviation of the differences about zero as
calculated from the sum of the mean square errors of the individual
measurements as given by (6). The clashed lines thus indicate only
the effect of the scatter of the data points and do not include any
effects such as long-term drift of the apparatus between measure-
ments, variations in oxygen contamination between sections, residual
tails of the spurious TE02 loss peaks, or absolute errors such as in
the end correction due to mesh and piston.

The scatter in Fig. 10 of the experimental differences is therefore
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Fig. 10-Residual dB for difference AD-(ABA-BC-BCD). The dashed lines
are the estimated standard deviations about zero owing to measurement varia-
tions only.
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quite satisfactory. The measured loss of section AD is about 0.6 dB
and of its shorter component sections about 0.2 dB; the largest
observed difference is thus just 2 per cent of the loss of AD, and
about half of the observed differences are within 1 per cent. All of
the differences would be shifted a constant 0.004 dB, or 2/3 per cent
of the loss of AD, by a fixed absolute error of 0.002 dB in all meas-
urements. That amount is roughly the limit of accuracy of the
measurement of the mesh and piston end correction. In addition,
oxygen contamination would cause an error rising from zero at 50
GHz to 1 per cent at 60 GHz in any section with 0.02 per cent oxygen
from improper flushing or filling.

The addition of longer sections, where the end correction is unim-
portant, is shown in Fig. 11. Here the difference is between the loss of
section AO and the sum of the losses of sections AH and HO and of
bend 2. Bend 2 was itself measured by taking the difference of the losses
of section GH with and without the bend included. The dashed lines
are again the estimated standard deviation about zero as calculated from
data point scatter only. The loss of section AO is about 3.6 dB, so the
dashed lines are at slightly over ±1 per cent. The experimental points
fall quite satisfactorily within them.

Other additions were checked with similar results. The direct measure-
ments made during be accurate
to the order of about ±1 per cent or ±0.005 dB, whichever is greater,
and the sums of losses of individual sections are the same as the loss
of the sum of the sections to within that measurement accuracy.

4.4 Statistical Confidence Limits

A further purpose of these experiments was to determine experi-
mentally the variation in attenuation between different waveguide
sections and to try to discover the length of guide that must be
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measured in order to obtain estimates of a given accuracy on the
loss of very long waveguide runs. We assume that the loss variations
among sections are caused by variations in the mode conversion in the
different sections and are thus determined by a random process whose
statistics are related to the statistics of the mechanical tolerances of
the guide.4' 5

A theoretical solution for the confidence limits on loss as a function
of sample length requires knowledge of the probability function for the
additional loss caused by mode conversion. An exact solution is difficult
when the differential loss between coupled modes is nonzero. An ap-
proximate solution for two modes and two polarizations is given in
the Appendix; it predicts a normal distribution with mean unity and
variance 1/(4 I A« I L) for the quantity A / (A). Here A is the additional
loss caused by mode conversion and is thus the difference between actual
loss and theoretical heat loss. (A) is its expected value.

In Fig. 12 the ±2cr lines for the predicted theoretical distribution
are plotted as a function of line length along with experimental values
of A / (A) for all line sections measured. The experimental value of (A)
was derived from the curve shown in Fig. 6, so is itself subject to experi-
mental error. The values of A /(A) plotted for each line are the means
of the maximum and minimum values observed vs frequency.

The fit between theory and experiment would be better if the plotted
curves were at ±10. instead ofd 20 . However, the approximations of
the theory, which includes only one spurious mode, and the experimental
accuracies of the points are probably sufficient causes for the poor agree-
ment. In addition the manufacturing variations in our virtually hand-
made waveguide may be considerable. It should be remembered that
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the quantity A is the additional loss only, and the value of (A )/L is
less than one dB per mile. Thus less than 4 per cent variation in the
observed total loss will cause a 10 per cent variation in A. The experi-
mental errors are similarly magnified.

Assuming that the theoretically predicted variance of A is correct,
one needs to measure 2000 feet of our present waveguide to assure 95
per cent confidence that the measurement is within 5 per cent of the
true value of A or thus within 2 per cent of the true value of attenua-
tion constant a. Two per cent gives the loss of a 20-mile section to

1 dB. If the variance were twice that predicted, one would need to
measure four times as much guide, or 8000 feet, for the same confidence.

V. SUMMARY

Precise measurements have been made across the 50 GHz to 60 GHz
band on many sections of a two-mile long loop of two-inch inside diameter
helix waveguide. The measurement accuracy is approximately ±1 per
cent or ±0.005 dB, whichever is greater.

The waveguide is of high quality; the average measured attenua-
tion varies smoothly from 2.62 dB per mile at 50 GHz to 2.32 dB
per mile at 60 GHz. Fast variations vs frequency were within ex-
perimental error.

The losses of several long sections were compared with the sum
of the losses of the smaller sections of which they were composed;
the agreement was excellent and within experimental error. Several
short -radius bends of different angles were included in the line and
measured; losses less than 0.8 dB across the band were observed for

a 42° bend made of two mitered elbows.
Differences among line sections in the values of their measured

losses were considerably greater than variations vs frequency for

any one section, as was expected. It was found that quantities of
waveguide from 2000 to 8000 feet must be measured in order to be
95 per cent assured that the measurement is typical of the population
to within 2 per cent.

APPENDIX

Approximate Confidence Limits for the Variations Between
Guide Sections

For the case of one spurious mode with nonzero differential loss
Da, Young has shown° that the additional loss in a guide of length
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L is given by convolving the expression for the additional loss when
as = 0 with a particular loss function. Thus

A(t) = B(t - s)A0(s) ds, (7)

where Ao(t) is the additional loss if Acr = 0, and where B is the
function,

B(t) - 2 1
(8)

Da (27r t)2
\Acx

The variable t is most conveniently taken as t = 643/27r, where Ail
is the differential phase constant between signal and spurious modes.
t is thus roughly proportional to the wavelength A. The function Ao
has been extensively studied by Rowe and Warters,5 who show that
under reasonable restrictions it is a band -limited function and can
thus be expressed by its values at its sample points, which are
spaced by

At =2L (9)

If the convolution function B is much broader than At, meaning that
7/AaL I << 1, we can approximate Ao by constant line segments

through its sample -point values, and can estimate the convolution
integral (7) as a summation over the sample points. This gives

A(t) = B(t - si)A0(si) Ds (10)

where

Thus

-to

si = 013,/27r = i/2L.

A 0(8 i)- 1 ± (11)
271- ActL,

1 ±
(psi, - i7r)2

AaL

For convenience we study A (64/270 at the Nth sample -point (6.4)/27
= N/2L. After substituting n = N-i in the summation, we have

1 v..' Ao(sN-.)
7r) I Acj.

I

1 + (n y (12)

--
no
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where

no -
ir

From our earlier requirement on the width of the loss function B, we
require no >> 1.

If the coupling coefficient between signal and spurious mode is ex-
pressed as a complex Fourier series for the length L, the additional
loss Ao is simply expressed in terms of the Fourier coefficients.° For
two polarizations of the spurious mode,

4

A0(t)
1= E (13)

where

Ik(t) = L Kk(-1)" sin r(t -n)
- n)71=-00

(11

The index n denotes the nth Fourier coefficient; the index k separates
the real and imaginary parts of the coefficients for the two polariza-
tions and thus has four possible values. If the x and y components
of the mechanical imperfections are independent random Gaussian
variables with white power spectrum, then so are the Kkn , at least for
large L and over small percentage bandwidths.° Under these assump-
tions one finds that

(A o (ON)) = 2L2(1(,) = 2L2(K2) (15)

and

(A 0(iN)A 0(1m)) = 6L4(K2)2 , M = N

4L4(K2)2, M 0 N. (16)

Expressions (15) and (16) are then used to calculate the lower -order
statistics of the loss function A from (12), giving

(A(tN)) = 2L2(K2) = (Ao(IN)) (17)

(6212(t,)) = ((A - (A))2)

(A o(1.0)2
4 I AcYL I

The requirement I AaL I > 7r has been used to simplify the expressions.
Since A 0 is a sum of squares of samples from a Gaussian process,

(18)
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and since A is a weighted sum of values of A0 , it seems reasonable
that the distribution function for A should be close to a chi -squared
distribution with appropriate normalization. However, for large AceL
the approximate chi -squared distribution will have many degrees of
freedom, approaching a normal distribution. Therefore, for large Acx
the variable A/(A) becomes normally distributed, with unit mean
and variance 1/(4 I LiaL I ). For this distribution the 95 per cent con-
fidence limits are the ±2cr lines.

A

(A)
1= 1 ±

t2a ACYL
(19)

The lines are plotted, together with the experimental observations on
various waveguide sections of different lengths, in Fig. 12. The value
of A« used is -0.184 neper per foot, which is typical of the differential
TEI2 loss in lossy-jacketed helix waveguide. For sections with L greater
than 300 feet, I AaL I is greater than 55, so the approximation I AaL I >> r
is well satisfied.
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A Statistical Theory of Mobile -Radio
Reception

By R. H. CLARKE

The statistical characteristics of the fields and signals in the reception
of radio frequencies by a moving vehicle are deduced from a scattering propa-
gation model. The model assumes that the field incident on the receiver
antenna is composed of randomly phased azimuthal plane waves of arbi-
trary azimuth angles. Amplitude and phase distributions and spatial
correlations of fields and signals are deduced, and a simple direct rela-
tionship is established between the signal amplitude spectrum and the
product of the incident plane waves' angular distribution and the azimuthal
antenna gain.

The coherence of two mobile -radio signals of different frequencies is
shown to depend on the statistical distribution of the relative time delays
in the arrival of the component waves, and the coherent bandwidth is shown
to be the inverse of the spread in time delays.

Wherever possible theoretical predictions are compared with the experi-
mental results. There is sufficient agreement to indicate the validity of the
approach. Agreement improves if allowance is made for the nonstationary
character of mobile -radio signals.

I. INTRODUCTION

In a typical mobile -radio situation one station is fixed in position
while the other is moving, usually in such a way that the direct line
between transmitter and receiver is obstructed by buildings. At ultra-
high frequencies and above, therefore, the mode of propagation of the
electromagnetic energy from transmitter to receiver will be largely
by way of scattering, either by reflection from the flat sides of build-
ings or by diffraction around such buildings or other man-made or
natural obstacles.

1.1 The Model

It therefore seems reasonable to suppose that at any point the
received field is made up of a number of generally horizontally tray -

957
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eling free -space plane waves whose azimuthal angles of arrival occur
at random for different positions of the receiver, and whose phases
are completely random such that the phase is rectangularly distributed
throughout 0 to 2n.. The phase and angle of arrival of each component
wave will be assumed to be statistically independent. The probability
density function p (a) which gives the probability p(a)da that a com-
ponent plane wave will occur in the azimuthal sector from a to a + da
will not be specified, since it will be different for different environ-
ments, and is also likely to vary from region to region within one
environment; but the assumption that the phase has a rectangular
probability density function throughout 0 to 27r will be made in all
cases.

For simplicity, it will be assumed that at every point there are
exactly N component waves and that these N waves have the same
amplitude. In addition it will be assumed that the transmitted radia-
tion is vertically polarized, that is, with the electric -field vector di-
rected vertically, and that the polarization is unchanged on scattering
so that the received field is also vertically polarized.

The model described so far gives what might be termed the "scat-
tered field," since the energy arrives at the receiver by way of a
number of indirect paths. Another term for this scattered field is the
"incoherent field," because its phase is completely random. Some-
times a significant fraction of the total received energy arrives by
way of the direct line -of -sight path from transmitter to receiver. The
phase of the "direct wave" is nonrandom and it may therefore be
described as a "coherent wave." It will be seen later that the field
in a heavily built-up area such as New York City is entirely of the
scattered type, whereas the field in a suburban area with the trans-
mitter not more than a mile or two distant is often a combination of
a scattered field with a direct wave.

1.2 Comparison With Other Proposed Models

J. F. Ossannal was the first to attempt an explanation of the sta-
tistical character of the received mobile -radio signal in terms of a set
of interfering waves. He was concerned with measurements taken in
a suburban environment, and assumed that reflection occurred at the
flat sides of houses and that the incident and reflected waves form an
interference pattern through which the receiver moves. He then as-
sumed that all orientations of the sides of houses are equally likely,
and hence obtained spectra for the randomly fading signal with the
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angle between the direction of vehicle motion and the direction to
the transmitter as a parameter.

There is quite good agreement between Ossanna's theoretical spectra
and those derived from measurements on several suburban streets
situated within 2 miles of the transmitter. There is marked disagree-
ment, however, at very low frequencies and at frequencies in the
region of the sharp cut-off associated with the maximum Doppler
frequency shift. At very low frequencies the spectral energy is al-
ways observed to be higher than that predicted by theory, whether
Ossanna's or the one we use in this paper. The reason for this is that
neither theoretical model takes into account the large-scale varia-
tions in total energy which result from the changing topography
between transmitter and mobile receiver.

The basic difference between Ossanna's theoretical model and the
model used here is that the former is essentially a reflection model
whereas the latter is essentially a scattering model and so includes
the former as a special case. An example of the limitations of the
reflection model can be seen from the experimental spectra plotted
in Ossanna's paper. The spectra are derived from signal -fading rec-
ords made on several streets whose inclination to the transmitter
direction ranged from 15 degrees to 84 degrees, and in each case
there is evidence of a shelf which cuts off at twice the maximum
Doppler frequency shift. Ignoring the higher harmonics generated in
the detection process, the reflection model predicts a spectral cutoff
which depends on the direction of the street with respect to the trans-
mitter, ranging from the maximum Doppler frequency shift itself
when the street is at right angles to the transmitter direction to twice
that value when the street is in line with the transmitter.

With the scattering model, on the other hand, the angular distribu-
tion p (a) of scattered waves can be chosen to predict the existence
of a spectral shelf out to twice the Doppler frequency shift for any
street direction. Another feature of the reflection model which makes
it rather inflexible is that for every randomly oriented reflected wave
there exists a direct wave incident on the mobile receiver and carry-
ing the same power. Thus the ratio of coherent to incoherent power
in the received signal is fixed, whereas in the scattering model this
ratio is arbitrary and may be adjusted according to the environment.

In his study of energy reception in mobile radio, E. N. Gilbert2
examined several models of the scattering type and established a
number of important relationships between them. One feature com-
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mon to all of them, however, was the uniform distribution of waves
in angle, although he briefly mentioned the effect of a single strong
component arriving directly from the transmitter. The first model
Gilbert considered was that of N waves arriving from fixed directions,
equally spaced in angle. The phases of the waves were assumed to be
independent and uniformly distributed throughout 0 to 2.7r, their
amplitudes were assumed to be Rayleigh distributed and independent,
but with the same variance. In a second model the angles of arrival
were allowed to occur at random with equal probability for any
direction; the phases were again completely random but the ampli-
tudes were assumed to be constant. (This model is the same as the
one we use in this paper, with the restriction that p[a] = [2ir]-1.) A
third model was an extension of the second to include the case of an
arbitrary distribution of the amplitudes. Gilbert showed that the
second and third models were equivalent to the first for sufficiently
large N.

1.3 Scope

This paper shows that the scattering model can be used to predict
the statistical characteristics of the signal received at the antenna
terminals, hence at the output of a square -law or envelope detector,
of the mobile receiving vehicle. These characteristics include the
probability distributions of amplitude and phase, spatial correlations,
amplitude spectra, and frequency correlations.

A simple relationship is established between the spectrum of the
signal input and the product of the azimuthal power gain g (a) of the
antenna and the probability distribution function p (a) of the angle
of arrival of the component waves. This relationship will be particu-
larly useful in analyzing mobile -radio systems with directional an-
tennas on the mobile unit.

Other topics discussed are the use of space and frequency diversity,
coherent bandwidth, and random frequency modulation. Some com-
ments also are made on the nonstationary aspects of mobile -radio
fields and on the consequent need for their characterization in terms
which will be useful to the mobile -radio system designer. Whenever
possible the theory is discussed in the light of available experiments.

II. FIRST -ORDER STATISTICS OF THE FIELD

2.1 Theory
Under the assumption that the total field at any receiving point

is vertically polarized and is composed of the superposition of N
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waves, the nth wave arriving at any angle an to the x axis (Fig. 11
with phase p, the field components at point 0 (the zero phase refer-
ence point) are

B. = E0 E exp Used (I)
n..1

E0 gHY = - - E sin an exp { jso,1 (2)
n n..1

E 0 NHi, = -E cos a. exp (3)
n n=1

In these equations E0 is the common (real) amplitude of the N waves
and 77 is the intrinsic impedance of free space. The time variation is
understood to be of the form exp (jut). Notice that E. will be propor-
tional to the signal input to the receiver when a vertical dipole an-
tenna is used, and that Ex, Hz, and Hy will be proportional to the
three inputs from a Pierce antenna system.2

The three field components Ex, Hz, and are complex Gaussian
random variables, to a good approximation, provided that N is suf-
ficiently large. This is a consequence of the Central Limit Theorem
and the assumption that the phases son are independent of each other
and of the angles of arrival a. Thus each field component has a real
part and an imaginary part which are approximately zero -mean Gaus-
sian random variables of equal variance, the approximation improv-
ing for larger N, and provided that the phases %On are rectangularly
distributed throughout 0 to 2ir. Appendix A shows that under the
same assumptions the real and imaginary parts of each field com-
ponent are uncorrelated; they are therefore approximately statistically
independent.2

An important consequence of this is that the envelope of all three
field components (hence of the signals at the terminals of a vertical

DIRECTION OF THE
nTH COMPONENT WAVE

Fig. 1- A typical component wave and the two field points 0 and 0'.
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dipole antenna and of two orthogonal, vertical loops) will be Ray-
leigh distributed; and their phases will be rectangularly distributed
throughout 0 to 27r. (See pp. 160-161 of Ref. 3.)

If, in addition to the N scattered waves, there is a wave of sig-
nificant magnitude arriving directly from the transmitter, the result-
ing envelope and phase will no longer be respectively Rayleigh and
rectangularly distributed. The relevant distributions will then be
those derived by Rice for a sine wave plus random noise. These
distributions are, in general, quite complicated (see pp. 165-167 of
Ref. 3) , but in the limit, when the power in the direct wave is con-
siderably greater than that in the combined scattered waves, both
the phase and the envelope are approximately Gaussian distributed;
the phase with zero mean and the envelope with a mean value equal
to the amplitude of the direct wave.

2.2 Experiment

W. R. Young° has found that the Rayleigh distribution gives an
excellent fit to the observed amplitude fluctuations in mobile -radio
reception at 150, 450, 900, and 3700 MHz in New York City, pro-
vided that the sample area is less than about 1000 feet square. Tri-
fonov, Budko, and Zutov, in a review of several investigations at 50,
150, and 300 MHz, also found that the Rayleigh distribution fits the
data measured in rural suburbs at distances of about 5 and 9 km
from the transmitter.° The fact that the measured distributions are
Rayleigh in the above situations implies that there is no significant
directly transmitted component and the fields are wholly of the
scattered type, which seems physically reasonable.

Trifonov and his colleagues also found that for short transmission
distances in towns (about 1 km) , the signal amplitude has a non-
zero -mean Gaussian distribution; and that for a transmission distance
of 11 km in woodland, the signal has a Rice distribution. In these
two cases there is apparently a significant direct component wave,
and in the first case, where the transmission distance is only 1 km,
the power in the direct component is considerably greater than that
in the combined scattered components.

W. C. Jakes and D. 0. Reudink have compared the statistical
character of the amplitude of the fluctuating signal at the two fre-
quencies of 836 MHz and 11200 MHz on the same street in a suburban
environment at about 4 km from the transmitter. They find that the
signal amplitudes are Rayleigh distributed at both frequencies, again



MOBILE RADIO 963

indicating that the direct wave is not significant.? This conclusion is
borne out, for reasons discussed in Section 3.2.3, by the shape of the
amplitude spectra which were computed from the same data.

The particular section of data which Jakes and Reudink analyzed
was chosen with some care. The criterion of choice was that the data
should "look" statistically uniform, and although this criterion is
both arbitrary and subjective, it is important that it be applied in
the absence of any other satisfactory criterion. The point is well il-
lustrated by Fig. 2, which shows a section of signal -amplitude data
at 836 MHz, obtained with a vertical dipole on a street adjacent to
that used by Jakes and Reudink. The speed of the mobile receiver was
22 feet per second, and each of the five frames lasts about a second
(time scale horizontal). The vertical scale is approximately linear
in dB, covering a 70 dB spread with about 7 dB to each vertical
division.

There is an obvious change in the statistics of the received signal
in the fourth frame, compared with the others. (In fact, the fourth
frame corresponds to the position of a street intersection, with one

a_
2

a_
2

1

FRAME I

FRAME 3

ir\A, 1
IY

TIME

APPROX. I SECOND PER FRAME

III
FRAME 2

4pf

(tr11))

TIME

APPROX.
1 7 DECIBELS

PER SMALL
DIVISION

FRAME 5

Fig. 2 - Section of a mobile radio data run, showing the variation of signal
amplitude with time. (One vertical division is approximately 7 dB, and one hori-
zontal frame is approximately 1 second.)
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of the intersecting streets pointing in the direction of the transmitter.
Then, according to the arguments used above, there will be a strong
direct component which will raise the average signal level and change
the distribution from a Rayleigh to a Rice or even a Gaussian. The
average signal level in the fourth frame does rise, and the distribution
does appear to be more symmetrical.) Using all five frames to estimate
the probability density function would therefore be misleading in
this case since obviously different parts of the data are samples of
different distributions.

More subtle differences, as when the distributions underlying the
data are all Rayleigh but with different variances over different parts
of the run, can be equally misleading. Young found that whereas over
fairly small areas of New York City the signal amplitude was accu-
rately described by a Rayleigh distribution, over larger areas-even
when the path of the receiver was roughly concentric with the trans-
mitter-the data did not fit a Rayleigh distribution. This is examined
in greater detail in Section VI.

III. SPATIAL CORRELATION OF FIELDS

3.1 Theory

The field components at some point 0 (see Fig. 1) in the mobile -radio
field are given by equations (1), (2), and (3). At another point 0', a
distance away from 0 in the x -direction, the phase of the nth component
wave will no longer by ion but con kt cos an , where k = 2ir/X is the
free -space phase constant. In the case of the electric field, the product
of the complex conjugate of E, (the field at 0) with (the field at 0') is

= E: E exp {- jyon} E exp j((pn kE cos an) )
n=1 n=1

N N

= Eo E E exp {j(co, - (p)) exp jkt cos an, .

n=1 m=1

Taking the average (that is, expectation) of both sides of equation
(4), the autocovariance function of the electric field is

RR.(t) = (Etna,
N N

= E: E E (exp j(co,n - con) } (exp jIct cos a,))., .

n=1 m=1

The angular parentheses denote "the average of" the quantity they
enclose, and in this case may be thought of as an ensemble average

(4)

(5)
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over all the possible situations implied by the assumed statistics of
p and a. The right-hand side is written as the product of two separate
averages because of the statistical independence of r and a. The first
of these averages is zero except when m = n, so that

RE,(E) = E(20E (exp Ukt cos an (6)
n-1

= NE: f p(a) exp jkt cos a} da. (7)

In the particular case when the N waves can arrive from any
direction with equal probability,

P(a) =
1

(8)

the spatial autocovariance function of the electric field becomes

RE,(t) = = NE:Mkt). (9)

The spatial autocovariance functions for the two components H
and H of the magnetic field can similarly be shown to be

R=(E) =
NE:

= [10(k) + J2(4)] (10)

and

NE:RH(t) = (MI =
2n2 V°(k) - (12(k0] (11)

for waves arriving from any direction with equal probability. J0( )

and J2 ) are, respectively, the zero- and second -order Bessel func-
tions of the first kind. The autocovariance functions (9), (10), and
(11) are plotted in Fig. 3.

For the same probability density function p (a) of the equation (8)
it can be shown in a similar manner that the cross -correlations of
the field components are given by the following covariance functions.

RE.H.(t) = (EtH').- = 0 (12)

Nc)f) J1(k) (13)RE,H,(E) = (Etig), = j = -(Ezig,*)av

RH .11.(t) = (11-41H;),, = 0. (14)

These equations show that all three field components are uncorrelated
and therefore independent, since the fields are Gaussian at zero spatial
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Fig. 3 - The normalized autocovariance functions PE,(E), m( ), and m(a)
from equations (9), (10) and (11).

separation. Further, Ez, H,, and H,,, H are uncorrelated and inde-
pendent for all spatial separations, whereas Ez, Hi, are correlated-
except at spatial separations corresponding to the zeros of J1( ) , the
first -order Bessel function of the first kind. The normalized covari-
ance function for Ez and H, is plotted in Fig. 4.

The autocovariance functions (9) , (10) , and (11) and the covari-
ance functions (12) , (13) , and (14) are for the particular case of
p (a) uniform in the interval -IT to +7. The autocovariance and
covariance functions for any p (a) can be obtained from equation (7)
and similar equations, but those derived here are useful illustrations
as well as useful approximations in practice.

In any practical case, however, the complex field components Ez,
H,,, and H cannot be measured. But their magnitude (that is, en-
velope or squared magnitude, that is, energy) can. Appendix B shows
that the normalized autocovariance function of the departure from
their mean of the squared magnitude of complex Gaussian random
variables, such as the field components Ez, Ham, and H, is equal to the
square of the normalized autocovariance function of the complex
random variable itself. Taking the electric field Es, as an example,
the normalized autocovariance function of the departure 8 I Ez 2 of
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the squared modulus from its mean is, from equation (9) ,

PUB .19() = .102(4). (15)

Similar normalized autocovariance functions and covariance func-
tions for the squared magnitude of all three field components can be
obtained from equations (10) through (14) , and they can be shown
to agree with the theoretical energy density correlations obtained by
Gilbert.2 This agreement was to be expected since energy density is
derived from the squared magnitude of the field components; in addi-
tion, Gilbert used a theoretical model which is equivalent to that
used here with uniform p (a).

With regard to the envelope of each of the complex field compo-
nents, Appendix B also shows that the departure of the magnitude
of such complex random variables from their mean is described by
a normalized autocovariance function which is to a good approxima-
tion equal to the square of the normalized autocovariance function
of the complex random variable itself. Thus, in the case of the electric
field component E2, again from equation (9) ,

Pa en(k0 (16)

(This quantity is also the normalized correlation coefficient of the
signal envelopes at the terminals of two vertical monopole antennas

apart on the mobile receiving vehicle which is traveling through an
isotropically scattered field.) Similar normalized autocovariance and
covariance functions for the magnitudes of all three components can
be obtained from equations (10) through (14).
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Fig. 4 - The normalized covariance function pEd4,(t), from equation (13).
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3.2 Experiment

3.2.1 Spatial Diversity

Only indirect experimental evidence is available at this time on
the spatial correlation of mobile -radio fields. In his measurements of
the predetection combining of the signals from several equally spaced
vertical monopole antennas, A. J. Rustako found that there was very
little difference between the cumulative distributions of the com-
bined amplitudes from four antennas spaced 1/4, 3/4, and 5/4 wave-
lengths apart.8 Equation (16) indicates that the correlation coef-
ficients of the signal amplitudes at the antenna terminals at these
three separations are about 0.25, 0.06, and 0.03, respectively. Bren-
nan has shown that such correlations produce very little difference
in the combined signal from two channels,8 and so the difference is
presumably even less with four channels combined.

3.2.2 Field Diversity

Equations (12), (13), and (14) show that all three field compo-
nents are uncorrelated (and therefore independent, because they are
complex Gaussian random variables) at zero separation. The possi-
bility of a "field diversity" system arising from this fact is exploited
in the energy density reception scheme from Pierce.2 (An alternate
scheme, proposed by W. C. Jakes, would use predetection combining."
This has the advantage that the modulation is not affected.) W. C. -Y.
Lee has devised and constructed an energy -density antennall and
his analysis of the measurements,12 based on Gilbert's isotropic
scattering model, show sufficient agreement with theory to indirectly
confirm equations (12), (13), and (14) at E = 0.

3.2.3 Frequency Spectra

If the mobile receiving vehicle is moving with velocity V in the
x direction, the spatial displacement 6 and the corresponding time
displacement T are related by

= VT. (17)

Then all the spatial correlations derived in Section 3.1 can be trans-
formed into time correlations by using equation (17). The Fourier
transform of the time autocovariance function then yields the fre-
quency spectrum.

In the case of the signal at the terminals of a vertical monopole
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antenna in an isotropically scattered field, equations (9) and (17) give
the normalized time autocovariance function as

pE,(r) = Jo(kVr). (18)

The corresponding input spectrum (see Ref. 3, p. 104) is given by

SF,r(f) = f pE,(7) exp (-jwT) dr (19)
00

r1[1-12/f:Vim

This spectrum is centered on the carrier frequency and is zero outside
the limits ±f, on either side of the carrier, where

(20)

fm= x (21)

is the maximum Doppler frequency shift.
Gilbert2 has shown that the corresponding baseband output spec-

trum from a perfect square -law detector is given by the complete
elliptic integral,

SdIE.12(1) 721fm K 1[1 - (f/2f,)2Jil. (22)

This output spectrum can be obtained either from the self -convolution
of the input spectrum of equation (20) or by taking the Fourier trans-
form of equation (15) expressed as a function of T by means of
equation (17) . The spectrum of equation (22) also describes to good
approximation the baseband output spectrum from an envelope de-
tector (that is, half -wave linear rectifier). Thus,

SsiE.1(.0 r2if. K{ L1 - (f/2f,,)2]i}.

This is a consequence of the approximate equality of the spatial
autocovariance functions of equations (15) and (16).

Figure 5 shows input and baseband output spectra for the above
case of a vertical monopole antenna in an isotropically scattered
field. The sharp cutoff in the baseband spectrum at twice the maxi-
mum Doppler shift is observed to some extent in all measured mobile -
radio spectra.1' 8 A small amount of spectral content will occur beyond
this cutoff in the case of an envelope detector13 because of the higher
order terms neglected in the analysis, and in all cases because of the
finite length of the time series used to compute the spectra. Again,

(23)
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Fig. 5-Input and baseband output spectra for a vertical monopole antenna
in an isotropically scattered field.

in all cases the spectral content at the very low frequency end of the
spectrum is much higher than that predicted by theory, owing to
the nonstationary character of mobile -radio fields (see Section VI).

But in some cases, such as the spectrum obtained by Rustako,8 there
is reasonably good agreement between the general shape of the spec-
trum observed and that shown in Fig. 5b. Section IV shows that the
theoretical spectra are different, except for the occurrence of the cutoff,
if there is a significant directly transmitted component wave in addi-
tion to the scattered component waves. Most of the observed spectra
seem to be of this latter type.

The above method of deriving spectra, by way of the Fourier
transform of the autocovariance function, is not ideal. In all but the
simplest cases (for example, when p (a) is uniform) , direct integration
of equation (7) is often impossibly difficult. As an alternative, the
direct method (described in the next section) which depends on asso-
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ciating a Doppler shift with the direction of arrival of each com-
ponent wave, is much simpler to apply and allows one to retain a
clear picture of the underlying physical processes.

IV. SIGNAL SPECTRUM AND ANGULAR PROBABILITY

There is a simple direct relationship between the signal spectrum
at the mobile receiver's antenna terminals and the product g (a)p (a).
This is the product of the antenna's azimuthal power gain function
g (a) and the probability density function p(a), the arrival angles of
the plane waves which comprise the field incident on the antenna.
Let us look at the use of the relationship for an omnidirectional an-
tenna, the antenna assembly for the Pierce energy density scheme,
and an azimuthally directive antenna.

4.1 The General Relation

The theoretical model proposed in Section 1.1 describes the field
incident on the mobile receiving antenna in terms of a random set of
vertically polarized plane waves incident horizontally which occur
with probability density p (a) , where a is the azimuth angle. Then,
because of the vehicle's movement, each angle a (see Fig. 6) will be
associated with a Doppler shift f in frequency from the carrier fre-
quency, such that

where

f = fm cos a

fm = (21)

is the maximum Doppler shift at the vehicle speed V and carrier
wavelength A.

DIRECTION OF A
TYPICAL COMPONENT WAVE

y:
_4..L±

DIRECTION OF VEHICLE,
l- SPEED V

ANTENNA

Fig. 6 - Relative directions of the mobile vehicle and a typical component
plane wave.
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The spectrum of the signal v at the terminals of the receiving antenna
on the mobile vehicle will consist of a set of spectral lines which will
occur at random in the range ±fm about the carrier frequency f, . The
probability that one of these spectral lines will occur in the range from
f to f df is given by the probability density function pi(f), which may
be obtained (see p. 33 of Ref. 3) from the probability density function

p(a) by equating the differential probabilities

?MD Idfl = IP(+ a) + p(-a)) idai (24)

since +a and -a give the same Doppler shift. Then, from equation
(23),

Pi(i) -
fin - 12/g

 {p(a) la- 00.-.(f/fm) p(a) I a-- (I/t.) I

1

(25)

The signal spectrum St,(f), the average energy of the signal v in the
frequency range f to f + df, is given by pi (f) weighted by the power
gain g (a) of the antenna in the corresponding azimuthal direction a.
Thus

Sr(f) -
f,n V1 - 12/17

1

{p(a)g(a) la. co.- p(a)g(a) I a cos-. (17/m) I (26)

which is the desired general relation. (See Appendix C for a formal
proof.)

4.2 Application of the General Relation

4.2.1 Omnidirectional Antennas

The practical case of most frequent interest is that of a vertical
monopole antenna, which has a constant azimuthal gain function,
say g(a) = 1. Assuming that p (a) is uniform for all angles through-
out the range -7r to +7r, p(a) = (270-1 and the signal spectrum at
the antenna terminals would be

S.(f) =
1

(27)
rim V1 - f2/f.2.

for frequency shifts in the range ±f, about the carrier frequency f
and would be zero outside that range. The spectrum of equation (27)
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is identical to that of equation (20) which is for the electric field under
the same circumstances, an identity that was to have been expected.
The spectral shape of equation (27) is therefore that of Fig. 5a. The
corresponding receiver baseband output spectrum, assuming square -law
detection, would be that of Fig. 5b.

The baseband output spectrum is considerably different if, in addi-
tion to the uniformly scattered set of waves, there is a significant
wave transmitted directly from the transmitter to the receiver. If
the angle of arrival of the direct wave is al the spectrum of the signal
at the terminals of an omnidirectional antenna would be that shown
in Fig. 7a. This is the basic scattered spectrum of equation (27)
together with a spectral line displaced from the carrier frequency
by fmcos

The corresponding output spectrum from a receiver with a square -

law detector (or to good approximation if the detector is half -wave

-1

co 8
U
0

-12

-16

1

fm cos a,

fc - fcf
(a) INPUT SPECTRUM

fc+f m

0.01 0.02 0.04 0.1 02 04 06 1.0

f/fm

(b) OUTPUT SPECTRUM

4

Fig. 7- Input and baseband output spectra for signals from an omnidirec-
tional antenna, when a uniformly scattered field plus a direct wave are incident.
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linear) may be obtained by convolving the above input spectrum
with itself. (See p. 255 of Ref. 3.) This yields a baseband output
spectrum of the form in Figure 7b, in which al was chosen to be 60
degrees. In general, the high -frequency part of the baseband spectrum
ends in a shelf which cuts off at twice the maximum Doppler fre-
quency shift. (In the case of the half -wave linear detector there is a
small amount of energy at frequencies beyond the cutoff frequency.)

There are two peaks in the baseband output spectrum which occur at
f = f.(1 ± cos a,). Such peaks, as well as the final shelf, are clearly in
evidence in Ossanna's experimental spectra.' Figure 8 shows two more
experimental spectra, one where the direction to the transmitter was at
right angles to the path of the receiving vehicle, and the other where
the transmitter was directly ahead. The dashed curves are theoretical
spectra with the ratio of power in the direct wave to the total scattered
power adjusted arbitrarily. The theory apparently gives the basic form
of the experimental spectra, but there are differences in detail.

Of course, complete agreement of theory and experiment is not
to be expected. Apart from obvious changes, such as the speed of
the vehicle and its inclination to the transmitter direction, the p (a)
for the scattered waves and the magnitude of the direct wave will
change throughout the entire data run. This means that the time
series constituted voltage of the receiver is not a sta-
tionary process, whereas the spectra are deduced on the assumption
that it is. Methods of approaching this problem of the nonstationarity
of mobile -radio data are discussed in Section VI, and methods of mak-
ing a more valid comparison of theory and experiment are suggested.

4.2.2 Vertical Loop Antennas

As a simple example of an azimuthally directional antenna, the
vertical loop is interesting because it forms part of the Pierce "total
field" antenna system. (See Ref. 2, pp. 14 and 15, where this arrange-
ment of a vertical monopole, together with two orthogonal vertical
loops, is discussed in terms of the vertical component of the electric
field and the two horizontal components of the magnitude field.)

Assume that the plane of loop 1 (see Fig. 9) lies in the direction
of travel and that the plane of loop 2 lies perpendicular to that di-
rection. Then the azimuthal power gain functions for the two orthog-
onal loops will be of the form

g,(a) = cos' a (28)
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of, the vehicle path.

and

Ma) = a, (29)

respectively.
If it is further assumed that the scattered waves are uniformly dis-
tributed in angle, that is, p (a) = (27)-1, and that there is no sig-
nificant direct wave. Then, using the general relation of equation
(26), the spectra of the signals at the terminals of the two loop



976 THE BELL SYSTEM TECHNICAL JOURNAL, JULY -AUGUST 1968

LOOP 2

a
DIRECTION OF

VEHICLE TRAVELLOOP I
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Fig. 9- Plan view of Pierce antenna system, consisting of a vertical monopole
and two orthogonal vertical loops.

antennas will be

and

WM'
rf. 1/1 - fig

V1 - fig
S2(f) - rim

(30)

(31)

Figure 10 shows these spectra with their corresponding baseband
output spectra, assuming square -law detection in the receiver.

The spectra of equations (30) and (31) could also have been ob-
tained from the autocovariance functions of equations (10) and (11)

by substituting equation (17) and taking their Fourier transforms.
However, the general relation is much simpler to use and indeed is

the only reasonable method to use in cases where p (a) and g (a) are
other than of the simplest functional form. In addition, the general
relation preserves the physical description of the problem. Thus the
shapes of the spectra in Fig. 10a have a straightforward explanation
in terms of the antenna patterns emphasizing the Doppler shifts
resulting from waves arriving from some directions and deemphasizing
others-which is precisely the meaning of the general relation of
equation (26).

4.2.3 Beam Antennas

The general relation of equation (26) gives a simple and direct
solution for a beam antenna. The use of such highly directive antennas
in mobile radio was suggested by W. C. Jakesi° with a view to reduc-
ing the spectral width, and hence the rate of fading, of the received
signal. The general relation shows immediately that such a reduction
in spectral width does indeed occur, and gives the precise nature of
that reduction.
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Consider the idealized beam antenna pattern shown in Fig. 11. The
power gain function g (a) in this case can be considered to be unity
over the beamwidth /3 and zero in all other directions. If it is again
assumed that the scattered waves are uniformly distributed in angle
and that there is no significant direct wave, the effect of the antenna
pattern on the spectrum of the signal at the antenna terminals can
be thought of in terms of the pattern being a sectoral slice of a ficti-
tious omnidirectional pattern. Hence the spectrum for the beam an-
tenna is a slice taken from the spectrum for an omnidirectional
pattern. See equation (27) and Fig. 5a.

When the beam antenna is directed broadside to the direction of

0
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2 4

Fig. 10-Receiver input and baseband output spectra for the two orthogonal
loop antennas of Fig. 9.
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Fig. 11- Receiver input spectra for an idealized beam antenna used in a
uniformly scattered field. (a) Beam antenna pattern. (b) Spectrum for antenna
directed broadside. (c) Spectrum for antenna directed straight ahead.

vehicle travel, the spectrum of the signal at the antenna terminals
will be that shown in Fig. 11b, where the dashed curve shows the
"remainder" of the omnidirectional spectrum. The spectrum is almost
flat and is 2f,sin (/3/2) wide.

When the beam antenna is pointed straight ahead, along the direc-
tion of vehicle travel, the spectrum is that shown in Fig. 11c. Instead
of being centered on the carrier frequency, as in the broadside case,
the spectrum occurs at the extreme right of the omnidirectional spec-
trum, and is f,[1 - cos (13/2)] wide.

Thus it is apparent that the use of highly directive antennas in
mobile radio will lead to a reduction in spectral width. W. C. -Y. Lee
has confirmed this experimentally, using an array antenna at 836
MHz in a suburban environment." Lee derived from the measured
data the rate of crossing of the signal at a certain level and plotted
this against antenna beamwidth. Rice has shown that for a narrow -
band random signal which has a symmetrical spectrum about the
carrier frequency, the rate of signal crossing at a certain level is
just the probability density at that level multiplied by the square
root of the second moment of the spectrum about the carrier fre-
quency.4 In this way the level crossing rate at a particular level is
a measure of the width of the spectrum of the fading signal.

The sectoral beam pattern assumed in the early part of this section
never occurs in practice. It is worth emphasizing this rather obvious
point in connection with calculating spectral second moments. Because,
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even though the antenna sidelobe level might be uniformly low, there
will be spectral content throughout the entire range of f, ± f.. Also,
the basic omnidirectional spectrum emphasizes the contributions at
the extremes of this range. Hence calculations of the spectral second
moments might well be in error if they are based on the assumption
that the side -lobe level is zero.

V. CORRELATION BETWEEN SIGNALS OF DIFFERENT FREQUENCIES

The problem of correlating two signals of slightly different fre-
quencies occurs in mobile radio when questions of maximum usable
bandwidth, or the use of a pilot signal at a frequency other than
the carrier frequency, arise. Let us show that the covariance of two
signals as a function of their frequency separation is simply the
characteristic function of the probability density function of the
time delays suffered by the component plane waves which are as-
sumed to compose the mobile radio field.

5.1 Theory

Suppose that the transmitted signal contains two unmodulated
signals of frequencies oh and w2 , whose difference Ow = CO2 - COI is small
enough not to violate the following assumptions. Assume that the two
signals take exactly the same time to travel from transmitter to mobile
receiver along any one of the scattering paths assumed in the model in
Section I. This assumption implies that propagation along all paths is
by way of freespace type waves (which do not suffer dispersion), and
that any phase changes experienced at reflecting or diffracting objects
are independent of frequency. Associate a time of travel tn with the
nth component wave, and define a time delay At in comparison with
the shortest possible time of travel t. such that

At, = t. - t,. (32)

To preserve the assumption made in all previous sections that the
phases of the component waves are random and equally probable
throughout 0 to 27 it is necessary that the average magnitude of the
time delay difference between the nth and mth waves, assumed to be
independent, be

(I t, i)av > 1/f, (33)

where fc is a frequency in the neighborhood of fl and h.
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The electric fields at the two frequencies may be written as

= E0, E exp - tO}
n-=1

E2 = E02 E exp - t.)}
n=1

where E01 is the amplitude at frequency fi of all the waves, and
similarly E02 is the common amplitude at 12. Forming the complex
product

N N

Ezt.E2 = EA E02 exP {i(w2 - col)t} E E exp { -i(w2t. -
n=1 m=1

and taking the expectation of both sides,
N

(EIE2), = EoE02 exp { Aco2 - coi)t} (exP - co,) to I ) (34)
n-1

since it has been assumed that the time delays are independent, and
therefore that

(exp { -j(co2t, - witn)})., = 0 for m n

as a consequence of inequality (33). The covariance of the two fields
as a function of their frequency separation A(.4 is therefore

R12 (46W) = (EIE2)av

= NE0E02 exp {j Acot} exp -j &an} (exp I -j Au.) AO).

where the subscript n has been dropped on Atn because the average is
the same for any n. The normalized magnitude of R12(&)) is:

Pi2(Aw) I = (exp Aco At})., (35)

is simply the characteristic function, with negative argument, of the
probability density function for the time delays At. (See Ref. 3, p. 50.)

As an example, suppose that the time delays are exponentially
distributed, so that the probability density function of At is

p(At) =
T T

exp {--Al} for 0 At co (36)

where T is a measure of the spread of the time delays. Then the
normalized magnitude of the covariance function in equation (35)
becomes

pi2(Aco) I = + (A0)7)1-1, (37)
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which is shown in Fig. 12. It is apparent that the correlation falls off
significantly for frequency separations OW > 1/T, the inverse of the
measure of the spread in time delays.

5.2 Experiment

Aside from its mathematical convenience, the exponential distribu-
tion of time delays seems physically plausible on the grounds that
the shorter delays appear more likely to occur than the longer delays.
Indeed, the pulse observations made by Young and Lacy at a fre-
quency of 450 MHz in New York City support this contention.15

Ossanna has computed the envelope correlations from measure-
ments at 860 MHz in a suburban environment for two -carrier fre-
quency separations of 0.1, 0.5, 1.0, and 2.0 MHz.1° The corresponding
covariances are shown as circles in Fig. 12, where it has been as-
sumed that T = 1/4 psec. A comparison of these experimental points
with the theoretical curve indicates that an exponential distribution
of time delays is a reasonably good assumption, and that in the
suburban environment where the experiments were performed the
time -delay spread T is about 1/4 psec.

In contrast, Young and Lacy's pulse measurements indicate a

time -delay spread about 5 ilsec, but with an approximately exponen-
tial distribution. The reasons for the difference in time -delay spreads
appears to result from the different environments in which the ex-
periments were performed, not to the different frequencies, because
their difference is not great. Thus in a suburban environment the
component waves are likely to have been redirected by objects within
a few hundred feet of the mobile receiver, whereas in New York City

1.00

0.75

3
- 0.50
o.

0.25

0

0
0

0

0 1/T 2/T
Aw

3/T 4/T 5/T

Fig. 12 - Normalized covariance of two signals as a function of their frequency
separation, assuming an exponential distribution of time delays with delay
spread T. The circles are Ossanna's experimental points.
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the range of these objects can reasonably be put at many thousands
of feet.

5.3 Significance of the Random Time Delays

The immediate benefit of knowing the probability distribution of

the time delays of the component waves is that it enables one to
deduce the "coherent bandwidth" for that particular system. But
the significance of the time delays is much more than this, in that
it emerges as a basic characteristic of the system along with the
probability distribution of the angles of arrival of the component
plane waves.

Indeed, it would appear that a knowledge of the joint distribution
p (a,At) of the angles of arrival a and the delay times At provides
an almost complete description of the mobile radio field; hence, of
the mobile radio signals sensed by antennas moving through this field.

Thus, integration of the joint distribution with respect to a yields
the distribution of time delays. Then if the standard deviation of

the time delays is large compared with a period of the carrier fre-
quency, the component waves may be said to be completely ran-
domly phased and their phases and angles of arrival to be inde-
pendent. The results obtained in Sections II, III, and IV would then
follow, because they are based solely on the knowledge of p(a) and the
assumptions that the phase is completely random and independent
of the angle of arrival.

An interesting sidelight is that the cross -covariance of two signals
of different frequencies, one shifted in time by T from the other,
depends on the joint distribution p(a, At). The Fourier transform
of this cross -covariance yields the cross -spectrum of the two fre-

quency -separated signals.
It is tempting to assume that a and At are independent, thus mak-

ing the calculation much simpler. But this does not yield answers
that accord with experiment; so one must conclude that a and At
are not independent. This also seems a reasonable conclusion on
physical grounds, since it is likely that the shortest time delays will
be associated with angles of arrival from the general area of the
transmitter, and that the longest delays will be associated with the
opposite direction.

VI. THE NONSTATIONARY CHARACTER OF MOBILE RADIO SIGNALS

A perennial difficulty in the analysis of mobile -radio data is its
nonstationary character. This makes both the analysis arbitrary and
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its interpretation uncertain. This section attempts to meet this dif-
ficulty directly, rather than trying to find sections of data that "look"
stationary or attempting to "doctor" data to that same end before
it is analyzed.

The data chosen for analysis were those obtained by Rustako on
a single omnidirectional antenna at 836 MHz along Sherwood Drive,
a suburban street approximately 2 miles from the transmitter and
running at an angle of about 48° to the transmitter direction.8 The
choice of data was made on the grounds that Rustako's computed
output spectra most closely resembled the shape of the theoretical
output spectrum of Fig. 5b which is for a completely scattered field
with no significant directly transmitted component.

Two tests were performed on the data, one to determine the proba-
bility distribution of the envelope and the other to determine its
time correlation by using Kolmogorov's structure function.

6.1 The Probability Distribution

6.1.1 Theory for a Stationary Process

According to the theory of Section 2.1, if the field incident on the
mobile receiver is of the scattered type, each component wave being
independent and randomly phased, then the probability density func-
tion (p.d.f.) of the envelope R is Rayleigh, that is,

{p(R) = 2R
--2- exp for 0 .5 R < + oo (38)

which has the corresponding cumulative distribution function

P(R) = f p(R) dR = 1 - exp R2

cr

This distribution has a root -mean -square value

-VR2 =

a mean value

(R)a, = V; = 0.8860.
2

and a most probable value (or "mode")

R'pm,. =
-V2

1
= 0 .707cr . (42)
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A convenient method of testing whether or not a given set of statistical
data follow an assumed distribution is as follows!' First the histogram
of the data (that is, relative frequency diagram), which is the practical
approximation to the probability density function, is obtained. This
is then summed point by point to give the cumulative frequency dia-
gram, which is the practical approximation or estimate P(R) of the
cumulative distribution function P(R). Then P(R) is plotted against
P(R). If the two are identical for all R, then the resulting plot will be
a straight line from (0, 0) to (1, 1). If not, the departure of the plot
from the straight line is a measure of the departure of P(R) from P(R).

In analyzing Rustako's data the question to be answered was how
closely the data followed a Rayleigh distribution. The appropriate
P(R) is then that of equation (39) and the value of a can be ob-
tained from the maximum of the histogram with the aid of equation
(42). The above arguments assume that the data is a stationary

process.

6.1.2 Theory for a Nonstationary Process

If the theory of Section 2.1 is modified slightly to take account
of the undoubted fact that either the number or the magnitude of
the component waves will vary as the vehicle moves along its path
by normalizing to the local mean, and if the assumption that the
field is completely scattered is retained, then the expected distribution
of the envelope will again be Rayleigh. However, the root -mean -
square value if will no longer be a constant, but will vary with time
in some manner 0(t). The envelope can now be classed as a non -
stationary Rayleigh process.

It is possible to estimate 0(t) from the record by computing the
"local" mean (R),(t) ; then from equation (41)

(R),,,,(t) = 0.8860-(t). (43)

Hence, writing the new random variable

R 0.886R
r 0(t) - (R),,(t)

which in effect has a root -mean -square value of unity. The r process
will be a stationary Rayleigh process with a p.d.f.

p(r) = 2r exp -?.2}

Equations (43) and (44), ill effect, remove the nonstationary effects

(44)
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from the statistics. The meaning of "local" is explained further in the
next section.

6.1.3 Analysis

Rustako's data, which had been converted to digital form at 500
samples per second, was taken in sets of 4000 points at a time. Notice
that such a length of data contains approximately 200 fading cycles.

Each set was analyzed, first of all, on the assumption that it was
stationary, by the method outlined in Section 6.1.1. To obtain the
histogram, the amplitude range between the lowest and the highest
value was divided into 50 equal slices. The P(R) versus P(R) plots
for three sets of data are shown on the left side of Fig. 13. Each point
corresponding to a partiuclar slice level. The three sets of data were
chosen to illustrate where P(R) is always greater than P(R), where
P(R) is always less than P(R), and where they are approximately equal.
On the assumption that all three sets of data are stationary it would
have to be said that the first two cases are definitely non -Rayleigh
while the third case is.

Next, the same sets of data were normalized by the method outlined
in Section 6.1.2. The local mean for every point was obtained by averag-
ing the 200 points symmetrically adjacent to that point. The resulting
normalized random variable was then treated in exactly the same way
as the unnormalized random variable. The right side of Fig. 13 shows
plots of P(r) versus P (r). It can be seen that in the first two cases the
normalized random variable is much more closely Rayleigh distributed
than is the unnormalized random variable. The third case is interesting
because, although the normalization was not necessary to reduce the
data to a stationary Rayleigh process, it demonstrates that the tech-
nique of normalization itself does not significantly impair the original
process.

In conclusion, it can be said that the technique of normalizing
a nonstationary Rayleigh process by way of its running mean can
be used to determine whether or not the process is in fact Rayleigh.
But it must be emphasized that the technique cannot be applied to
processes that are non -Rayleigh. It is certainly possible, however,
that different techniques along these same lines might apply to dif-
ferent processes, although it would appear that some knowledge of
the expected distribution is essential. The Rayleigh process is one of
the simplest to handle because it is determined by a single parameter.
In the example used here the Rayleigh process was clearly indicated



986 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1968

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6
CC

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

  ...794°"/
/

x//
///

//
//

/
///

/..,

/ii/
.5.

//

/ 1
//

e

///
// .

///
//

.

///
/

// 
Ire.

// .

.?
,4/

.4."A
/(.//y//

.01
V

.,'/

i
;/

_.r

02 0.4 0.6
P(R)

(a)

08 10

l/.
. 'i/ /a/ / /./.,

,./
.,//'

.//
./

i/.i

P
ix

i
///'

.,,/./ /
/i

.,
vv

 A
.>/

 ,-/
>/

ir

7

./.,
,/

dir

r7,Y

0 0.2 04 06
P(R)

( b )

08 10

Fig. 13 - Plots of P(R) versus P(R). (a) For the raw data. (b) For the same
data normalized by its running mean.



MOBILE RADIO 987

by the theory, and the analysis amounts to a positive confirmation
of its applicability.

6T2 Using Kolmogorov's Structure Function

Tartarski's has described the value of using a "structure function"
in specifying random variables which are not statistically stationary.
(The technique was first used by Kolmogorov to describe meteroro-
logical quantities.) The structure function might be of value in
analyzing nonstationary mobile radio data.

6.2.1 Definition and Properties

The simplest type of structure function, Df (T) of the real random
variable f (0, is defined by

Df(T) = (t r) - f(t)r). (45)

where the angular parentheses denote a time average. This should be
compared with the more commonly used autocovariance function,
defined for a stationary random variable whose mean is zero by

RA(T) = (f(t T)f(t)).. (46)

Thus the structure function for a stationary random variable which
can be written in terms of the autocovariance function is

Df(T) = 2[Rf(0) - RAT)]. (47)

As an example, the structure function for a stationary random variable
with a Gaussian autocovariance function, exp 2/4,

1 in which To is
constant, is depicted by the solid line in Fig. 14. The equation of this
solid line is

ti

Df(T) = 2[1 - exp { -7.2/4 }].

TIME, 7 --).

Fig. 14 - Structure functions for stationary (solid line) and nonstationary
(dashed line) random variables.
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Now, if the random variable is nonstationary in that it has, say,
a slowly varying mean value, then the structure function would be
modified in some way such as that shown dashed in Fig. 14. This
dashed portion would very likely be indeterminate, so that the cor-
responding autocovariance function would be indeterminate for all T.

Hence the value of working, at least initially, with the structure
function: if the random variable is stationary, that will immediately
be apparent in that Df(T) will approach a horizontal asymptote for

large 7, and if it. is nonstationary, the portion for small T can be
relied on.

The dashed portion of Fig. 14 can be shown to correspond to an
increase in low -frequency spectral energy compared with the station-
ary case.' 8

6.2.2 A Structure Function Computed from the Data.

The solid line in Fig. 15 shows the structure function for Rustako's
Sherwood Drive data, computed from the definition of equation (45).
The data, again consisting of 4000 points, roughly straddled that
which gave the first two probability plots of Fig. 13. The structure
function is shown out to a time separation T of 50 data points, or
100 msecs.
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Fig. 15 - Structure function computed for Rustako's data (solid line). The
dashed line is the theoretical structure function for a stationary random variable.
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The dashed curve is a theoretical structure function for an assumed
stationary process with an auto -covariance function of the form
4(24 sr), where f. is the maximum Doppler shift. This autocovariance
function, which is derived from equations (16) and (17), is for the
departure of the signal envelope from its mean value for the case of
an omnidirectional antenna in a uniformly scattered field. The theoret-
ical and experimental structure functions were arbitrarily made equal
at the first maximum.

The experimental structure function, which is typical of many that
were obtained, exhibits some of the features that were expected. The
initial part of the curve, for small 7, closely follows the theoretical
curve, and the quasiperiodic nature of the curve for large 7 is also
evident. In this region the experimental curve rises systematically
above the theoretical curve, as was to be expected for nonstationary
data.

This upward trend of the experimental structure function for large
T corresponds to the repeated observation of baseband low -frequency
content at a significantly higher level than the theory predicts.

If this large-scale trend in the structure function were removed,
then the modified structure function should agree with the theoretical
structure function, provided that the basic assumptions of the theory
are sound. The curves do differ, both in the amplitude and the period
of the quasi -periodic variation. However, this might well result from
the wrong choice of p(a), and not to a basic flaw in the theory.

It is evident that the structure function does afford a method of
analyzing nonstationary data. The effect of large-scale variations
shows up in the structure function and can be removed at that point,
rather than by tampering in an arbitrary manner with the original
data. Then the modified structure function can be compared with
theoretical forms which are appropriate to stationary data.

VII. CONCLUSIONS

The theory presented in this paper attempts to explain the statis-
tical behavior of fields and signals encountered in mobile radio in
terms of a set of independent plane waves, redirected by scattering
and reflecting obstacles, and incident horizontally on the mobile
receiving vehicle. These waves can be described statistically by the
joint probability density function p (a, At) such that the probability
of a wave arriving at the azimuthal angle a with a time delay At is
p(a, At)dad(At).
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At ultrahigh frequencies and above, in urban and suburban en-
vironments, the spread in the magnitudes of the time delays is suf-
ficiently large, compared with the radio -frequency period for the
waves, to be considered randomly phased, in which case the follow-
ing conclusions apply.

The field components are Gaussian, in the sense that their real
and imaginary parts are independent zero -mean Gaussian random
variables of equal variance. Thus the envelope of a signal derived
from such a field by an antenna will be Rayleigh distributed, unless
there is a significant nonscattered wave arriving directly from the
transmitter, in which case the envelope will be Rice distributed.

The spatial correlation of the field components may be derived
from the probability density function p (a). The spectrum of the
signal at the antenna terminals may be derived from the product of
p (a) with g (a) , the azimuthal gain function of the antenna. The
coherence of two radio frequencies, as a function of their frequency
separation, may be derived from the probability density function of

the time delays p (at).
A brief examination of available experiments reveals that simple

forms of both p(a) and p(at) give theoretical results which agree
broadly with experiment. We do not claim detailed agreement, nor
does this seem possible until more complete experimental information
is available. It does appear, however, that it is essential to take ac-
count of the nonstationary character of the signals obtained in mobile
radio when attempting such a comparison.

The theoretical approach we have taken is midway between a
purely phenomenological one, based on a complete catalog of the
statistical characteristics of mobile -radio signals received under a
variety of circumstances, and a purely analytical one in which the
transmission environment is specified in detail. The phenomenological
approach would be incomplete, in that it would not provide knowledge
of why the signals have the character observed. The analytical ap-
proach is impossibly difficult to execute. Our approach, which seeks
to describe the mobile -radio fields in terms of the compact (though
not necessarily simple) quantity p at), does provide the system
designer with information which he can use to advantage in a straight-
forward way. The following is an example to illustrate this claim.

For example, suppose that experiments in a particular environ-
ment have shown that p(a) is roughly uniform and that p(at) is
approximately exponential with parameter T such that T is very
large compared with the period of the proposed carrier frequency of
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the mobile radio system. Then it is known that if an antenna with
uniform gain in azimuth is used on the receiving vehicle the received
signal will be a Rayleigh distributed fluctuating quantity with a
baseband spectrum approximately uniform out to a frequency 2V/A,
where V is the vehicle speed and A. is the carrier wavelength.

This system can be improved in a number of ways. The depth of
fading, as Rustako has demonstrated,8 can be reduced by using a
number of such antennas separated by a sufficient distance for the
signals to be essentially uncorrelated. The signals are then brought
to a common phase, at which point they are combined before detec-
tion. The resulting signal is therefore the sum of a number of in-
dependent, Rayleigh distributed amplitudes, which for a large num-
ber will approach a Gaussian distribution with a nonzero mean.

Furthermore, the ratio of the root -mean -square fluctuation to the
mean of the combined signal will decrease as the square root of the
number of signals combined (by an approximate application of the
Central Limit Theorem). Alternatively, the rate of fading, as Lee has
demonstrated," can be reduced by using directional antennas, which
give a reduced spectral width of the fading* and hence a reduction
in its rate.

W. C. Jakes has suggested a system, particularly suited for use at
microwave frequencies, which combines the advantages of both a
reduced depth and a reduced rate of fading.1° The system consists of
a number of directive antennas mounted on a single mobile unit and
pointing in different azimuthal directions. If the signals from the dif-
ferent antennas are brought to a common phase and then combined
before detection, the resulting signal will not only be considerably
reduced in bandwidth compared with the case if an omnidirectional
antenna had been used, but its depth of fading will also be reduced
according to the square root of the number of antennas used. The
widest coherent bandwidth that can be transmitted in the situation
assumed is about T-1.
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APPENDIX A

On the Correlation of the Real and Imaginary Parts
of the Field Components

It is important to know the precise conditions under which the six
real random variables comprising the real and imaginary parts of

the three field components of equations (1) , (2), and (3) are un-

correlated. Thus

Ez = E E cos (p jE0 E sin P
n=1 -

= sin an cos co - j f L sm a sin
n n=1 n n=1

E,, N E0H,, = -E cos an cos ion + -- E cos an sin con .

n n=1 n n=1

Denoting the real and imaginary parts of each field component by

the superscripts (r) and (i), the correlation coefficient of the real
and imaginary parts of the electric field, is

N N

(E(:).1.3! i)), = FO E E (cos con sin som)nv = 0
n=1 In=1

since the r's are independent and rectangularly distributed through-

out 0 to 27r.
Similarly,

E02 N N

(11.,( r )),. = E E (sin an sin an, cos con sin co,)a, = 0
n n=1 m=1

and

712 N N

(Hy(r)Hy"))v = z E E (cos an cos a, cos 40 sin ic.,), = 0
n n=1 m=1

with the additional assumption that the r's and a's are statistically
independent. It can also be shown, based on the foregoing assump-
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tions, that the correlation coefficient for any component real part
and any component imaginary part is zero.

Notice that the above correlation coefficients are zero whatever
the probability density function p (a) is of the an's. Where p (a) is

important is in the correlation coefficients for the component real
parts with each other and for the component imaginary parts with
each other. For example, N

(E(')H('))., = E E (sin an cos con cos 4o,).v
n n=i in=1

is zero if the further assumption is made that p (a) is rectangular
throughout -7r to +7r. Then the correlation coefficient is zero for any
pair of component real parts and for any pair of component imaginary
parts.

APPENDIX B

Correlation of Fields-Their Magnitudes and Squared Magnitudes

Section 2.1 and Appendix A show that under certain conditions the
fields in mobile radio are "Gaussian fields," which means that a
typical field component F (either an electric or magnetic component)
may be represented by

F = x jy

where x and y are real, independent, zero -mean Gaussian random
variables of equal variance. Thus

(x)., = (y)ar = 0

= (Y2)av = o2

and since both x and y are Gaussian distributed, their independence
is implied by

= 0.

The theory in the main text is concerned with finding the covariance
(FIFO., of two such Gaussian fields, where F, and F2 may be two field
components separated in space, in time, in frequency, or in all three.
Thus

F, = x, jy,

F2 = x2 + iY2
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and

RF = (FIF2)av = (x1x2)av (Y1Y2)av j((xiY2)av - (x2Y1).,).

If, as is most often the case, all real parts are uncorrelated with all

imaginary parts,

(X1Y2)av = (X2Y1)av = 0

and

RF = (FV2), = (I? iF:)v = (xix2)av (YIY2).. (48)

is wholly real.
In practice it is not possible to measure the correlation of the

complex fields. But what can be measured is the correlation of their
magnitudes (that is, envelopes)

A=IFI= V x2 + y2
and the correlation of their squared magnitudes (that is, energies)

= F = FF* = x2 + y2.

The relation between the autocovariance functions RF RA y and RA,
is as follows.

Consider first the autocovariance function for squared magnitude

RAa = (I F, 12 I F2 2)av = (FI FIF2Ft)v

= (X4)9.v (YM)av (XM)av (4Y)..,
To evaluate the right-hand side one may use the result that if x1 , . . . ,

x4 are real, zero -mean Gaussian random variables (see Ref. 3, p. 168) ,

(X1X2X3X4),,v = I X2)-(X3X4)fty (X1X3).v(X2X4).., (X1X4).42X3).,

Then, typically,

(xix1x2x2)av = cr4 2((xix2)a,)2

and

(4y:), = = o4

so that

RAs = 40-4 2[((xix2)av)2 ((/1Y2)...)21.

Now, in most cases

(xix2).. = (YlY2)" 

(49)

(50)
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For example (48) and (50) can be shown to follow if F, and F2 are the
same field component, but do not hold if F, is E, and F2 is H..
Then equations (48) and (49) combined give

RA. = 4o-4 + R; , (51)

or from equations (48) and (50)

RA, = 4o-4(1 p2), (52)

where p is the normalized autocovariance function of the x and y
random processes.

The corresponding result for the autocovariance function of the
magnitudes (see p. 59 of Ref. 13) is

RA = (A1A2)av = (IF 11 IF 21) av

= o-2[2E(p) - (1 - p2)K(p)], (53)

where K and E are the complete elliptic integrals of the first and
second kind. In series form

RA =
2

Q2(11p2/4 + p4/64 +  ) (54)

so that to a good approximation, neglecting powers of p higher than
the second,

RA r=-1-2 g2(1 + P2/4),

which has the same form as equation (52).
Finally, in terms of the field autocovariance function,

R2
RA t- i- Cr2(1 P )

2 16a4

(55)

(56)

Both autocovariance functions RA, and RA take on a much simpler
form when normalized in the following way. Define the normalized
autocovariance function of the departure SA2 of the squared magnitude
A2 from its mean as

((A2, - A1)(A22 - A2)),
Poit, -

A; - Ab ), (( 22A2 - A:)2V (( ),
Then from equation (52)

2

= P

(57)

(58)
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Defining the normalized autocovariance function of the departure
8A of the magnitude A from its mean in a similar manner, equation
(54) gives

Pa A = 4(4 (P2 + P4/16 + d'/64 +  ), (59)

or to a good approximation
2

Pam P (60)

Equations (48) and (50) show that p is the normalized form of the
autocovariance function RF of the complex field component F.

APPENDIX C

Derivation of Equation 26

The complex amplitude of the received signal appearing at the
antenna terminals may be written in the form

V = Eo E a(an) exp
n=0

where E0 is the common amplitude of the N azimuthal plane waves
incident on the mobile receiving antenna. The phase of each wave is
(p, and a(a) is the voltage response at the antenna terminals owing
to a unit -amplitude plane wave arriving at the azimuthal angle a.
At another point a distance e away (see Fig. 1) the signal at the
antenna terminals would be

= Eo E a(am) exp kt cos am))

Forming the complex product v*V and taking its expected value to
yield the spatial autocovariance function of the two signals, namely

Rr()= (V*V'),
N A"

= I En 1. E E (a*(a)a(a,) exp 1,k cos a,1), (exp Won, - (#0.) ),,
n=1 m=1

where it has been assumed that the phases and angles of arrival of
the component waves are independent. Making the further assump-
tion that the phases are equiprobable throughout the range 0 to 2r,

+7
R,(t) = N I E0 12 p(a)g(a) exp j4 cos a) da (61)f1r
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where p (a) is the probability density function of the component plane
waves, and

g(a) = a*(a)a(a) = la(a)12
is the azimuthal power gain function of the antenna.

The temporal autocovariance function of v can be derived from
equation (61) for a receiver moving with constant velocity V by
making the substitution 6 = VT, where 7 is a displacement in time.
Then

+ r

R,(r) =
J

p(a)g(a) exp ljw,T cos al da (62)

where co. = 27rfm with f, = V/X the maximum Doppler shift, and
N 1E012 has been set equal to unity. The spectrum of the signal at the
antenna terminals is given by the Fourier transform of the temporal
autocovariance function of equation (62) and is

Sr(f) = fa° R.(7) exp -j27IT dr

ao +

= dr dap(a)g(a) exp {j(co, cos a - 211)T}

(63)

where f = toPer is the shift in frequency from the carrier frequency.
Reversing the order of integration in equation (63) , the integra-

tion w.r.t. 7 yields a Dirac 8 -function, thus

S.(i) = f+
Now writing

P(a)g(a) 6(1, cos a - 1) da. (64)

h(a) = fm cos a - f (65)

it may be noticed that the 8 -function of a function may be written
in the form19

6[h(a)] = E 8(a - an) (66)
I hi(a) 1

where the a are all the values of a for which h ( a ) = 0, and the prime
denotes differentiation w.r.t. a. Hence, from equations (64), (65), and
(66) the spectrum of the signal at the antenna terminals is

S,(f) - 1

fm -Vi - f2/f2,

 IP(C)g(CO I z ( film) + p(a)g(a) It cos -1 (Ilf.)
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which is equation (26). Notice that since the angle of arrival a must
be real, the frequency shift f must lie in the range ±f, .

APPENDIX D

Random Frequency Modulation of the Carrier

Since frequency modulation is often used in mobile radio systems
it is pertinent to inquire what will be the nature of the received audio
signal when a single unmodulated frequency is transmitted. The phase
of the received signal is changing with time in a random manner;
hence its instantaneous frequency is random.

It has been shown,2° based on the work of Rice,4 that the p.d.f. of
the time -rate of change of phase 0' (the instantaneous frequency) for
narrowband Gaussian random noise with an amplitude spectrum
which is symmetrical about the carrier frequency, is

p(0') = [-63-b (1 + 0'2)3]-1 (67)

where b0 and b2 are the zeroth and second moments, respectively,
about the carrier frequency of the amplitude spectrum S(f) . Notice
that it has been assumed that there is no constant sinusoid present
in the noise. It has also been shown2° that the conditional p.d.f.

P (0/ I r) which is the density of the instantaneous frequency given
that the normalized envelope r is a certain value, is

1
p(0' I r) =

exP {-20-'011}
(68)

2

which is a Gaussian distribution with zero mean and standard devia-
tion

= \rb2-.
r 2b0

The above equations can be applied to the case of a mobile radio
signal derived from an omnidirectional antenna in a uniformly
scattered field.

The appropriate amplitude specturm is that of equation (27) and
yields the moments,

bo = S(f) df = 1f

(69)

(70)
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and

b2 = (27)2 f 12S(1) df = (1/2)2. (71)

where w,,, is the maximum Doppler frequency shift in radians per second.
Equations (67) and (68) then become

P(8') = [2co:,(1 + 26:2)31-1 (72)
con,

and

1-p(0' I r) - exp {-t;o4

with

(73)

01) = (1/2) °IL; (74)

The p.d.f. of equation (72) has a rather sharp maximum at 0' = 0,
and falls to about 0.2 of this maximum value at 0' = ±Wm . For large
instantaneous frequency deviations the p.d.f. behaves asymptotically
as the inverse cube of the frequency. In practical terms this p.d.f. is
that of the amplitude of the output of a frequency discriminator in the
receiver for a single frequency transmitted.

The conditional p.d.f. of equation (73), which is Gaussian in form,
can also be interpreted as the p.d.f. of the amplitude of the discriminator
output. But this is the p.d.f. of the frequency deviations measured only
when the envelope amplitude is in the neighborhood of a particular
level r, which is the envelope normalized by its r.m.s. value. In the
particular example chosen the envelope has a Rayleigh distribution.

When r = 1 the conditional p.d.f. of the frequency deviations has a
spread of the order of the maximum Doppler frequency shift w, . The
spread will be 10 con, when r = A--, the probability that r -_ ilir being
0.01. Similarly the spread will be 100 0.), when r = i.) 0, the probability
that r .. i '0- 0 being 0.0001. Thus the wider ranges of random -frequency
excursion are associated with only very small fractions of the total time.
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Some Transmission Characteristics of
Bell System. Toll Connections

By I. NASELL

(Manuscript received January 10, 1068)

A systemwide survey of the transmission performance of built-up toll
connections was undertaken in 1966. The sampling plan underlying this
survey is discussed briefly. The results are presented in terms of distribu-
tions of background noise levels, 1000 Hz loss, phase jitter, time to connect,
and airline distance between end offices. The measurement results are broken
down by mileage categories. Comparisons are made with the results from
the 1962 connection survey. It is found that noise performance has im-
proved since 1962 while loss .performance is virtually unchanged.

I. INTRODUCTION

Many systems engineering studies require detailed knowledge
about transmission performance and transmission capabilities of the
Bell System plant. The need for such information exists both for
specific parts or building blocks of the network and for built-up
connections between subscribers. A system -wide survey of noise and
loss on toll connections was undertaken in 1962.1 The results of this
survey found an important application in the setting of new over-all
objectives for background noise.2

A similar survey was undertaken in the summer of 1966. It is our
purpose to describe this connection survey and to give its results.
Present transmission performance of built-up toll connections is given
in terms of distributions of noise, loss, and phase jitter. Furthermore,
the results include distributions of time to connect, and the distribu-
tion of airline distances between end offices of toll calls as presently
established by customers.

Connection results discussed in this paper describe the toll plant
contribution to the transmission performance on built-up toll con-
nections. In considering complete toll connections from subscriber

1001
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to subscriber, the influence of the loop plant must also be taken into
account. Some of its characteristics have been described by Hinder-
liter.3

II. TARGET POPULATION

The target population is the population about which information is
desired. It was defined as the set of all toll calls made in the Bell
System during the busy period (9 a.m. to 5 p.m.) of an ordinary
business day. A call was considered a toll call if it satisfied the fol-
lowing two conditions: (i) the customer received a bill which included
a separate charge for the call, and (ii) the originating and terminat-
ing central offices did not home on the same toll office. The first
criterion assures us that the population contains only completed
messages rather than call attempts, while the second criterion means
that with some minor exceptions the toll calls included in the popu-
lation require at least one intertoll trunk for their completion.

The main difference between the population defined here and the
population defined for the 1962 survey lies in the extension from the
busy hour used in 1962 to the busy period. This extension provides
for a more satisfactory reflection in the population of the traffic
patterns generated by telephone subscribers. For example, cross -
continental calls originating on the U. S. east coast were under-
represented in the 1962 survey because of the different time zones
on east and west coasts. Such under -representation does not exist in
the 1966 survey.

III. SAMPLING PLAN AND SAMPLE SIZE

The sampling plan can be described as a two -stage plan with pri-
mary stratification and substratification and with the primary units
selected with probabilities proportional to measures of size.4' 5 The
primary units were identified with Bell System end -office buildings.
Two primary strata were defined, based on the size of the primary
units. One of these strata contains those buildings in which at least
400,000 toll messages originate annually; the other contains the re-
maining smaller buildings.

The first -stage sample contains 40 end -office buildings. Twenty-
five of these were selected from the stratum with large offices, and
fifteen from the small offices stratum. The sample units in the two
strata were selected independently from lists that contained the total
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of 9052 Bell System end -office buildings that were in service on Janu-
ary 1, 1964.

For each of the selected primary units, information was acquired
about the outgoing toll traffic during the busy period of an ordinary
business day. This information consisted of lists of terminating end-
points of toll calls originating in the sample office during the indi-
cated time period. Every call in each of these lists was assigned to
one of three substrata. The substratification was based on the airline
distance between originating and terminating end offices. Toll calls
shorter than about 180 miles were assigned to substratum one, while
calls longer than about 725 miles were assigned to substratum three.

Independent selections of sample elements were made in each of the
substrata for each sampled primary unit. The aim of the substrati-
fication was to achieve a sample size that would give acceptable
precision in the estimation of transmission performance for toll calls
in each of a number of mileage categories. The success of this en-
deavor is demonstrated by the confidence interval widths listed in
the various tables of Section V.

An approximately equal number of toll calls was selected into the
sample in each sample office. The resulting sample is not self -weight-
ing. This means that different sample toll calls in general carry
different weights in the estimation of population characteristics. The
sample contains a total of 1463 calls. Of these, 476 have an airline
distance between end offices up to 180 miles, while 554 are between
180 and 725 miles long, and 433 calls are longer than 725 miles.

IV. METHOD OF MEASUREMENT

The measurement procedure in the survey was similar to that used
in 1962. Thus, the aim of the measurement phase was to duplicate
the calls included in the sample and make transmission measurements
in the receive direction on the established connections. In addition,
the time required to establish the connection was noted.

All survey connections were established from an ordinary tele-
phone set connected via a test set to a zero loop in the originating
central office. The test set consisted of coils and switches and allowed
the telephone set to be switched out of the connection and be con-
veniently replaced by a suitable measurement instrument. This test
set and the transmission measuring equipment used in the survey
are manufactured by the Western Electric Company for Bell System
use only.
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Two separate connections were established for each call included
in the sample. One of them was made to the balanced (quiet) ter-
mination in the distant central office, and the other was made to the
far -end milliwatt supply. The first one allowed the measurement of
noise on the connection. The 3A noise measuring set° was used, and
two readings were taken: one with C -message weighting and the
other with 3 kHz flat weighting. As in the 1962 connection survey,
no information about the physical routing of the call was acquired,
and the measured noise levels did not include the subjective penalty
due to the possible presence of compandored carrier facilities in the
connection.

The second connection was established to record the 1000 Hz loss.
The received level was measured with a transmission measuring set
and recorded to the nearest tenth of one dB. The peak -to -peak phase
jitter of the received signal was measured on the same connection
with a voiceband phase jitter meter. The calls to the milliwatt sup-
plies were also used to acquire information about time to connect.
This time was measured as the time elapsed after the last digit had
been dialed or after the conversation with the operator was finished
until the test tone or a ringback signal was heard.

All of the terminating end offices for the sample calls were not
equipped with balanced terminations or milliwatt supplies. In order
to allow measurements to be made, such sample calls were replaced
by calls that terminated in an end office geographically close to the
desired one, and equipped with proper test lines. Replacements of
this type were made on somewhat less than 10 per cent of the sample
calls.

V. SURVEY RESULTS

The survey results presented here have all been evaluated by com-
puter programs based on sample survey evaluation formulas con-
tained in Ref. 4. The transmission results give noise, loss, and phase
jitter as measured across a 900n termination on a zero length loop.

5.1 3A Noise with C -Message Weighting

A scatter diagram showing observed 3A noise levels with C -message
weighting as a function of the airline distance between end offices is
contained. in Fig. 1. The previously observed'. general trends of
increasing mean and decreasing standard deviation as the call dis-
tance is increased is visible from this figure. These trends are ex-
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Fig. 1- Scatter diagram of 3A. noise level (C -message weighting) vs airline
distance.

plained qualitatively by reference to the theory of power sums of
random variables. The noise level on a toll connection can be re-
garded as the power sum of noise levels from a number of different
noise sources, and with the number of noise sources increasing with
call distance. Recent results by Marlow'. and Nasells show that the
mean of a power sum increases with the number of components,
while the standard deviation of the power sum decreases as the
number of components is increased, in line with the trends observed
in Fig. 1.

The regression line in Fig. 1 gives an estimate of the mean noise
level under the assumption that the mean noise level is linearly
related to the logarithm of the airline distance between end offices.
The equation for the regression line is

N= 12.6 ± 2.0 log, D (1)
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where D is the airline distance between end offices in miles, and N
is the average 3A noise level. This equation shows that the average
noise level increases by 2.0 dB for each doubling of the airline dis-
tance between end offices. The fact that the variance changes with
distance has been accounted for in the regression analysis; weights
were applied in inverse proportion to the variance about the regres-
sion line.

A summary of the results for 3A noise levels with C -message
weighting is contained in Table I. As in most tables in this section,
estimates are given of the mean and the standard deviation of the
population distribution, and the mean is equipped with its 90 per
cent confidence interval. Table I gives such results for each of eight
mileage categories. These categories (except the first) are one double
distance wide. The first four taken together correspond to the cate-
gory referred to as "short" (0-180 miles) by D. A. Lewinski,2 the
next two cover the "medium" length and the last two contain the
"long" calls (longer than 725 miles). The tendency for the mean
to increase, and the standard deviation to decrease with distance is
clearly demonstrated in this table.

The noise distributions discussed here are all very close to normal.
No significant difference was found between mean noise levels on
operator -handled calls and mean noise levels on direct -dialed calls.

A comparison between noise level distributions observed in the
1962 and the 1966 connection surveys is made in Table II. The table
indicates improved noise performance of the toll plant in the inter-
vening period; both means and standard deviations show generally
lower values in 1966, and the difference between means in the long
category is statistically significant. The results given for the 1962

TABLE I - SUMMARY OF RESULTS FOR 3A
NOISE LEVELS WITH C -MESSAGE WEIGHTING

Airline
distance
(miles)

Mean dBrnC
Std. dev.

(dB)

0-23
23-45
45-90
90-180
180-360
360-725
725-1450
1450-2900

19.8 f 1.0
21.9 f 1.7
22.4 f 1.6
25.3 f 1.4
28.9 dE 1 . 0

31.0 f 0.8
31.1 dE 1.3
34.6 f 0.9

6.2
6.5
6.1
5.3
4.3
3.6
4.2
3.1
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TABLE II - COMPARISON OF RESULTS FOR 3A NOISE WITH
C -MESSAGE WEIGHTING FROM THE 1962 AND 1966 SURVEYS

Airline
distance
(miles)

1962 Survey 1966 Survey

Mean dBrnC Std. dev.
(dB) Mean dBrnC Std. dev.

(dB)

0-180 23.4 E 2.6 7.4 21.6 ± 0.8 6.4
180-725 31.0 ± 1.2 5.3 29.6 f 0.7 4.2
725-2900 35.8 f 1.5 4.0 32.5 f 1.0 4.1

survey deviate slightly from those quoted by Lewinski.2 The reason
is that Lewinski's numbers are based on a sub -sample, while the
results in Table II are not. The differences are well within the con-
fidence intervals.

Table II also illustrates the improved precision achieved in the
1966 survey compared with the precision of the 1962 survey.

5.2 3A Noise with 3 kHz Flat Weighting

A scatter diagram of 3A noise levels with 3 kHz flat weighting as
a function of the airline distance between end offices is shown in Fig.
2. It indicates much less of a distance dependence of the observed
noise levels than that shown in Fig. 1. This is to be expected since
flat weighted noise readings are predominantly caused by low -fre-
quency noise components that fall below the lower cutoff frequency
of most carrier facilities used in the toll plant.

A summary of the results for 3A noise with 3 kHz flat weighting
is given in Table III. The table reinforces the impression that the
distance dependence of both mean and standard deviation is very
slight. It does, however, bring out the fact that both means and
standard deviations of operator -handled calls are larger than those
for direct -dialed calls. This fact is believed to be related to differ-
ences in local trunking arrangements. All of the distributions of flat
weighted noise levels have a moderate amount of positive skewness.

5.3 1000 Hz Loss

The end -office to end -office loss at 1000 Hz is shown as a function
of distance in the scatter diagram of Fig. 3. Just as was the case in
the 1962 survey, we find the distance dependence of the loss to be
only moderate. Table IV summarizes the results for each of the eight
mileage categories discussed above. A small trend for both mean
and standard deviation to increase with distance is seen to exist.
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Fig. 2-Scatter diagram of 3A noise level (3 kHz flat weighting) vs airline
distance.

This is related to the higher probability of encountering more than
one intertoll trunk in tandem for the longer connections. All the
loss distributions deviate somewhat from normality through a mod-
erate amount of positive skewness. Loss values exceeding 20 dB
were found both on operator -handled and on direct -dialed calls.

Operator -handled calls will in general require one more trunk for

TABLE III - SUMMARY OF RESULTS FOR 3A NOISE WITH 3KHZ
FLAT WEIGHTING

Airline
distance
(miles)

Over-all Operator DDD

Mean dl3rn
(3kHz flat)

Std. dev.
(dB)

Mean dBrn
(3kHz flat)

Std. dev.
(dB)

Mean dBrn
(3kHz flat)

Std. dev.
(dB)

0-180
180-725
725-2900

43.9 ± 1.6
45.9 ± 2.4
45.2 ± 1.5

7.4
7.6
6.0

46.7 ± 3.1
47.8 ± 4.0
46.5 ± 2.5

9.1
8.8
7.0

42.5 ± L5
43.6 ± 1.4
43.9 ± 1.1

5.8
5.2
4.2
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Fig. 3 - Scatter diagram of 1000 Hz loss vs airline distance.

TABLE IV-SUMMARY OF RESULTS FOR END -
OFFICE TO END -OFFICE Loss AT 1000 Hz

Airline
distance
(miles)

Mean (dB) Std. dev.
(dB)

0-23 6.8 ± 0.6 2.4
23-45 7.7 ± 0.5 2.6
45-90 7.1 ± 0.7 2.6
90-180 7.4 ± 0.6 2.8

180-360 8.7 ± 0.6 2.8
360-725 9.4 ± 1.0 2.9
725-1450 9.5 ± 0.4 2.9

1450-2900 9.7 ± 0.8 3.0
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TABLE V - COMPARISON OF Loss DISTRIBUTIONS FOR
OPERATOR -HANDLED AND DIRECT -DIALED CALLS

Airline
distance
(miles)

Operator DDD

Mean (dB) Std. dev.
(dB) Mean (dB) Std. dev.

(dB)

0-180 7.5 ± 0.6 3.0 7.0 f 0.4 2.3
180-725 9.3 ± 0.8 3.1 8.5 ± 0.6 2.5
725-2900 10.2 ± 0.6 2.7 8.9 f 0.6 3.0

their completion than direct -dialed calls. The total loss on the con-
nection is, therefore, expected to be somewhat higher on operator -
handled than on direct -dialed calls. A comparison between the loss
distribution parameters on the two types of calls is made in Table
V. The table shows a lower mean loss on DDD calls in each of the
three mileage categories, and in the third category the difference is
significant. The mean loss difference is seen to range from 0.5 dB
for short calls to 1.3 dB for long calls. No rationale is known for a
distance dependence of this loss difference.

A comparison of means and standard deviations of loss distribu-
tions observed in the 1962 and 1966 surveys is made in Table VI.
No large changes in the intervening time period are indicated.

5.4 Phase Jitter
The phase jitter measurements in the survey reveal the amount of

phase modulation that an unmodulated sinusoidal carrier of 1000 Hz
is subjected to on a toll connection. These measurements were in-
cluded since certain types of data transmission are susceptible to
phase modulation of transmitted signals. The measurements give
the peak -to -peak phase jitter in degrees for jitter components be-
tween 10 Hz and 120 Hz on the signal transmitted by the far -end

TABLE VI - COMPARISON OF Loss DISTRIBUTIONS FROM
THE 1962 AND 1966 SURVEYS

1962 Survey 1966 Survey

Airline
distance Mean (dB) Std. dev. Mean (dB) Std. dev.
(miles) (dB) (dB)

0-180 7.3 ± 0.6 2.8 7.2 f 0.4 2.6
180-725 8.9 ± 0.7 3.0 8.9 ± 0.7 2.9
725-2900 9.3 ± 1.4 3.8 9.6 ± 0.5 2.9
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1000 Hz milliwatt supply. A scatter diagram of observed phase jitter
versus connection distance is contained in Fig. 4. The connections
for which a phase jitter of 21 degrees is indicated are connections
where the phase jitter measurement was larger than or equal to 21
degrees. A trend for the average phase jitter to increase with mileage
is indicated by the figure. The phase jitter distributions are definitely
not normal with a high amount of positive skewness. Because of this,
the summary data in Table VII give 10-, 50-, and 90 -percent points
of the phase jitter distributions rather than means and standard
deviations.

Operator -handled calls that are of short and medium length show
a significantly higher median phase jitter than direct -dialed calls of
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Fig. 4 -Scatter diagram of phase jitter vs airline distance.
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TABLE VII - SUMMARY OF RESULTS FOR
PEAK -TO -PEAK PHASE JITTER*

A irline distance
(miles)

Phase jitter (degrees)

10% 50% 90%

0-23 1 3 7
23-45 1 3 7

45-90 2 4 15
90-180 2 7 14

180-360 2 7 20
360-725 2 11 21
725-1450 4 12 20

1450-2900 3 12 21

* The table gives the 10-, 50-, and 90 -per -cent points (in degrees) of the phase
jitter distributions in each mileage category.

corresponding length, while no apparent difference exists for long
calls. A numerical comparison is made in Table VIII.

5.5 Time to Connect

The time to connect is shown versus distance in the scatter diagram
of Fig. 5. A range up to 100 seconds is used to cover some operator -
handled calls that suffered long delays. The scatter diagram shows

This is a reflection of the higher average number of intertoll trunks
in tandem for the longer connections, which in turn means that a
larger number of switching offices is involved in establishing the
longer connections.

A separation of operator -handled calls from direct -dialed calls is
made in Table IX. It shows that the average time to connect is
longer for operator -handled calls than for direct -dialed calls. It also

TABLE VIII -PEAK -TO -PEAK PHASE JITTER FOR OPERATOR -
HANDLED AND DIRECT -DIALED CALLS*

Airline
distance
(miles)

Phase jitter (degrees)

Operator

10% 50% 90% 10%

DDD

50% 90%

0-180
180-725
725-2900

2
3
5

4
11
11

11
21
20

1

2
3

2
6

12

9
18
21

* The table gives the 10-, 50-, and 90 -per -cent points (in degrees) of the phase
jitter distributions in each mileage category.
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Fig. 5-Scatter diagram of time to connect vs airline distance.

shows that the average time to connect is virtually independent of
distance for operator -handled calls, while a definite trend exists for
direct -dialed calls. Finally, we notice that the standard deviations
are considerably higher for the operator -handled calls than for those
that are direct -dialed. For these reasons, a detailed study of the time
to connect for direct -dialed calls is of interest.

TABLE IX - COMPARISON OF DISTRIBUTIONS OF TIME TO
CONNECT FOR OPERATOR -HANDLED AND DDD CALLS

Airline
distance
(miles)

Time (seconds)

Operator DDD

Mean Std. dev. Mean Std. dev.

0-180
180-725
725-2900

24.7 ± 4.2
27.0 ± 4.5
24.8 ± 2.4

21.1
20.5
11.1

11.1 ± 0.1)
15.6 ± 1.0
17.6 ± 2.1

4.6
5.0
6.6
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A scatter diagram of time to connect versus distance is given for
DDD calls in Fig. 6. The regression line shown has the equation

T = 7.6 + 0.9 log, D (2)

where D is the airline distance between end offices in miles, and T
is the average time to connect in seconds. The regression equation
shows that the average time to connect increases by 0.9 seconds for
each doubling of the airline distance between end -offices.

A summary of the parameters of time to connect distributions for
DDD calls is given in Table X. The table indicates that the regres-
sion assumption of a linear relation between the mean time to con-
nect and the logarithm of the airline distance may be an oversim-
plification; the mean time to connect is virtually constant in the
first three and in the last two mileage categories; in between it
increases by more than 0.9 seconds per double distance.

The distributions of time to connect over all calls have a high
positive skewness as indicated by the scatter diagram in Fig. 5. On
the other hand, only a small amount of skewness is present in the

5 10 20 50 100 200
MILES

500 1000 2000 5000

Fig. 6 - Scatter diagram of time to connect on direct -dialed calls vs airline
distance.
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TABLE X SUMMARY OF RESULTS FOR TIME
TO CONNECT ON DDD CALLS

Airline
distance
(miles)

Time (seconds)

Mean Std. dev.

0-23
23-45
45-90
90-180

180-360
360-725
725-1450

1450-2900

10.7 ± 1.2
11.6 ± 1.2
11.2 ± 1.8
12.3 ± 3.0
15.0 ± 1.0
16.8 ± 1.5
17.8 ± 3.1
17.4 ± 1.1

4.6
4.2
4.8
5.2
4.6
5.5
7.6
4.4

distributions for DDD calls, as seen from the scatter diagram in
Fig. 6.

5.6 Distance Distribution

The distribution of airline distances between end offices of toll
calls is given in Fig. 7. The distribution is seen to deviate somewhat
from a log -normal distribution, and it is virtually truncated at 2500
miles. Table XI gives estimated percentages of toll calls that fall in
each of the eight mileage categories. A comparison with the results
from the 1962 survey shows no important changes. that
only about four per cent of all toll calls are longer than 725 miles
illustrates a problem for the design of the sampling plan. Unstratified
sampling would tend to give a sample in which only about four per
cent of the sample calls exceed 725 miles in length. In contrast to
this, precision requirements dictate approximately equal sample size
for short, medium, and long calls. The problem was solved, as men-
tioned before, by the use of substratification based on the airline
distance between end offices of toll calls.

VI. CONCLUDING REMARKS

The 1966 connection survey represents an improvement over the
1962 survey in terms of precision. It also represents a small extension
of the measurement program, to include measurements of such en-
tities as phase jitter and time to connect. It does, however, suffer
from certain limitations, which it shares with the 1962 survey. Most
important is the fact that a number of important transmission param-
eters, such as frequency response, delay distortion, and impulse noise,
were not measured. An additional limitation is that the milliwatt
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TABLE XI - DISTANCE
DISTRIBUTION OF TOLL CALLS

2000

Percent of calls in distance class

Airline
distance
(miles)

1966 Survey 1962 Survey

0-23 33.7

23-45 20.0
83.7 85.0

45-90 18.2

90-180 11.8

180-360 8.0
12.4 11.0

360-725 4.4

725-1450 2.3
3.9 4.0

1450-2900 1.6

5000
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signal source at the far end of each call could not be calibrated.
The use of specially -equipped test teams at both ends of the con-

nections would alleviate both of these limitations. Studies are, there-
fore, under way to investigate the feasibility of using a 3 -stage
sampling plan in place of the 2 -stage plan that was used in the 1966
survey. The main accomplishment of the 3 -stage plan would be to
limit the number of far -end end offices involved in the sample con-
nections, thereby reducing the total traveling cost.

A toll connection appraisal program has recently been introduced
in the Operating Companies of the Bell System. The procedures of
this program are similar to those used in the connection survey
described here. However, the main purpose of this appraisal pro-
gram is to provide data to aid in the location of weak spots and also
to aid in managerial decisions affecting the transmission performance
of the present plant. In contrast to this, the data collected in the
connection survey will find its main application in systems engi-
neering studies conducted at Bell Laboratories and elsewhere in the
Bell System.

It might be surprising that a sample of only 1463 calls originating
in 40 end offices suffices to estimate the transmission performance
of the 15 million toll calls that originate each day in one of more
than 9000 end -office buildings. The results presented here show, how-
ever, that the achieved precision is indeed acceptable for a number
of engineering applications. This fact demonstrates very concretely
what can be achieved for data -acquisition purposes by a judicious
application of the powerful methods of modern sample survey theory.
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Negative Impedance Boosting

By L. A. MEACHAM

(Manuscript received February 6, 1968)

Linearized and feedback -stabilized negative impedance circuits having
only R, C, and solid state components, powered in series at intervals along
a cable pair, offer new possibilities in bilateral transmission. After dis-
cussing the basic negative impedance boosting units and the transmission
characteristics they impart to a line (computed, with experimental con-
firmation), this paper describes a field test of two 32 -mile telephone lines,
largely 22 -gauge, each having an insertion loss of only 3 dB at 1,000
Hz. It also shows means for broadening bandwidth and almost eliminating
delay distortion. over negative impedance boosted lines. Treatment of this
sort adapts them to unusual uses. Examples include converting rectangular
to raised -cosine pulses in transmission, without pulse -forming circuitry,
and the bilateral two -wire transmission of carrier or pulse signals in both
directions simultaneously, without frequency separation.

I. INTRODUCTION

The insertion of lumped negative impedances at intervals along
each conductor of a cable pair has long been of interest as a means
of improving bilateral transmission. In the familiar expressions for
propagation constant

-y = a ± j = -OR + jcoL)(G jue) (1)

and characteristic impedance

Zo = Ro jXo = -V(R jcoL)/(G jo.e) , (2)

if one lets both G and R go to zero on presumption that the shunt
conductance of well -insulated cable is negligible and that the copper
resistance can effectively be canceled by active devices, he encounters
four challenging approximations:

a 0, 0-V LC , Ro V L/C and X0 0. (3)

1019
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To the extent of their accuracy these describe lossless transmission,
free of phase distortion, between matching terminations that are
resistive and independent of frequency. Such properties would indeed
be of value in either analog or digital transmission.*

In the early 1940s effort toward canceling R was devoted to high
speed point -contact thermistors as the requisite "current -controlled"
or "open -circuit -stable" negative impedance elements,2 but lack of
stability and uniformity were severe obstacles. Similar handicaps were
later encountered with other devices such as avalanche transistors.3
At least partly for such reasons, development eventually tended to
abandon the scheme of distributing bilateral active elements along
a pair over which they could also be powered, and instead moved
toward combinations of shunt and series type negative impedances
(transformer coupled, locally powered, and designed to match the
cable in characteristic impedance) that could be installed at con-
venient points such as in central offices, and there contribute modest
amounts of bilateral gain. A well-known outcome was the E -type
repeater,4 of which both vacuum -tube and transistor versions have
found extensive use in the exchange plant of the Bell System.

Recently, however, a new look has been taken at negative im-
pedance boosting- (NIB) . This paper outlines in chronological
order various findings of a small research project that has been in
progress for several years at Bell Laboratories.

II. BASIC NIB CIRCUIT

An NIB unit devised early in this study and used as a basic tool
appears schematically in Fig. 1. Figure 2 shows its d -c V -I charac-
teristic and equivalent circuit. For convenience the latter represents
the total impedance ZA of a pair of units, one in series with each
conductor, at a boosting point.

Accordingly, for small currents (below the first bend of the char-
acteristic) -R = +2R3 and R = 4R2. At that bend the silicon
transistors begin to conduct, while at the second bend they saturate.

* As early as 1887 Oliver Heaviside defined a "distortion constant" (R/L -
G/C) = 2a and an "attenuation constant" (R/L G/C) = 28, and showed
that distortion could be "annihilated" by increasing G to make G/C = R/L'.
He undoubtedly would have stressed the. benefits of making both a and 5
approach zero, had he known of any way to reduce R except the use of more
copper.

t "Boosting" is proposed as a better term than "loading," on the grounds
that the mass/inductance analogy suggested by the latter is irrelevant.
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R,

Fig. 1- Circuit schematic of basic negative impedance booster unit.

In the active region between bends simple circuit analysis shows that

R7, -R4 IR2 (4)
R, + R2

-R = -2R3[R2(2a
- 1) - R11

(5)R, ±R2
and

-C R3C3 (6)- -R
Here a, the usual ratio of collector to emitter current, is assumed con-

stant and the same for both transistors. Expression (5) tacitly takes
into account the nonlinearity of the emitter junctions in Fig. 1; this
follows from the fact that the voltage across each emitter junction is

compensated, except for an approximately constant voltage difference
of about 0.5 volt, by the drop across a germanium junction diode car-
rying a proportional and almost equal current. The 0.5 -volt difference,
inherent between silicon and germanium, effectively affords a bias
essential to the circuit. The drop across R2 equals this bias at the first

bend, and to a close approximation exceeds the drop across RI by the
same value of 0.5 volt throughout the active region. The important
result of this compensation is a high degree of linearity between the
bends, which correspondingly are sharpened almost into cusps.

III. BASIC NIB LINE

Some basic features of an NIB line are illustrated in the telephone
customer's loop of Fig. 3. The boosters have a spacing that is (prefer-
ably) regular and not much greater than one quarter wavelength at
the top of the transmission band. For telephone speech, a suitable
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Fig. 2 - DC characteristic and equivalent circuit of basic NIB unit.

spacing would be 12,000 feet. In general, boosting gives the line a
characteristic impedance substantially lower than that of ordinary
nonloacleci or inductively loaded telephone lines. Hence the line circuit
at the central office includes an impedance -matching transformer, as
well as means for regulating the d -c loop current roughly at the center
of the active region of the V -I characteristic. The telephone set can
be conventionally powered by this current, and should have a resis-
tive impedance, preferably matching that of the line.

Stability criteria are well known° for such arrangements. In prac-
tical terms, for regularly spaced NIB units with the equivalent cir-
cuit of Fig. 2, the system is found stable (experimentally and by
computer) when the net d -c variational resistance (AV/a) of the
loop, including its terminations, is positive, provided that the time
constant T = RC is greater than a certain critical value. In this
study (except where noted) we have consistently made

= 1R + R, - R = 0,
where R is the copper resistance per unit length of cable and 1 is the
NIB spacing. The negative capacitor -C bypasses -R , and with
rising frequency gradually reduces the negative real component of
terminal impedance of the NIB unit. One way of visualizing the need
for such reduction is to notice that the positive copper resistance
adjacent to each of the four terminals of the two NIB units at a
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boosting point is also effectively reduced, being bypassed by the mu-
tual line capacitance. Hence with rising frequency, a point of insta-
bility is almost certain to be reached unless the negative resistance
diminishes at least as fast as the copper resistance as seen from the
NIB terminals.

T is therefore an important parameter of the NIB circuit. Increas-
ing it raises the margin of stability, but at the penalty of reducing
transmission bandwidth. The midspacing image impedance of the
line is also affected by Tn. It is found that when the line conductance
per section (1G) is negligible, and when the line resistance per section
(1R) is exactly compensated by R, - Rn, the midspacing image
impedance ZH remains essentially constant and resistive as the fre-
quency falls toward zero. As shown in the Appendix, the value it thus
approaches is given precisely by

RT L R212Z' = lim  = + -
le C 12

(7)

where R, L and C are the usual primary cable constants (per unit
length). Rp enters (7) implicitly, being the difference between R,,
and 1R.

A related effect of T is upon the phase velocity 171/ = 003H, which
also approaches an asymptotic value:

17' = lim V =
CZ7.

SUPERVISORY
RELAY

(8)

Fig. 3- Negative impedance boosted subscriber line and central office ter-
minating circuit.
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Expressions (7) and (8) are useful, for the values they give hold
approximately over a major part of the low -loss frequency band. As
an example, take the case of 12,000 foot (2.2727 -mile) NIB spacing,
along 22 -gauge BSA cable that has the primary constants (at low
frequency) R = 173 ohms per mile, L = 0.874 x 10-3 henry per mile,
and C = 0.825 x 10-13 farad per mile. For the NIB parameters (per
section) R, = 97.3 ohms, R = 490.5 ohms, and T = 16 x 10-6
second, expressions (7) and (8) tell us

Z' = 198 ohms
and

V' = 61,200 miles per second.
For this velocity, the spacing becomes a quarter wavelength at the
frequency

ix/4 = V' / 41 = 6,730 Hz.

IV. COMPUTED CHARACTERISTICS

Computer programs have been worked out to give propagation
constant and midspacing image impedance as functions of frequency,
for any set of cable primary "constants" (which of course actually
vary with frequency) and NIB equivalent circuit parameters. Some
typical results, plotted in Figs. 4, 5, 6, apply to the set of parameters
used in the foregoing example. For comparison, characteristics are
included for nonloaded (NL) and loaded (H88) cable, also of 22
gauge. (H88 loading uses 88 mH inductors at 6,000 -foot intervals.)

Among varied uses of these programs has been the finding, by suc-
cessive approximations, of the minimum or "just stable" time constant
(jstc) for various gauges and NIB spacings. Figure 7 shows attenuation
constant versus frequency for the jstc condition and also for a time
constant 10 per cent greater. To illustrate another use, the effect
upon attenuation of moderate over- or undercompensation is pictured
in Fig. 8. Here the loss per mile between image impedances is shown for
errors in compensation of ±20 ohms, or approximately ±5 per cent
of the copper resistance. Over most of the useful band, these errors
introduce almost flat gain or loss of about 0.2 dB per mile. Their effects
upon phase velocity and image impedance (not plotted) are small
except at frequencies below 500 Hz.*

* In that region the variation of image impedance is such that. if Fig. 8 were
a plot of insertion loss between 198 -ohm resistive terminations, it would show
the gain or loss of 0.2 dB per mile extending almost unchanged all the way
down to zero frequency.
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In general, our laboratory tests using either dependably representa-
tive artificial lines, or pairs in actual cable on spools, confirmed the
computed results very accurately. Conversation over lines several
12,000 -foot NIB sections in length was found highly satisfactory-
remarkably free of hum, echo, and distortion. But the need was seen
for experience with NIB transmission under actual field conditions.

V. "ROUND ROBIN" FIELD TEST

With the cooperation of the New Jersey Bell Telephone Company
two NIB lines were set up using pairs in existing interoffice cables
over the route shown in Fig. 9. For convenience of measurement,
both ends of each line were brought to the same room at the Murray
Hill, New Jersey, branch of Bell Laboratories. Experimental ap-
plique circuits were provided for coupling to the Murray Hill PBX,
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permitting each pair to serve as a regular telephone extension when
not in use for other tests.

The cable, 32.4 miles long, was all of 22 gauge except for 0.5 per
cent of 24 and 4.2 per cent of 26 gauge. Seventy-seven per cent of
its length was underground, the rest aerial. All boosting points, one
for each of 16 sections ranging from 9,750 to 13,380 feet long, were
in manholes. There the NIB units were plugged into jacks within
containers that could be conveniently opened and resealed, taking
advantage of equipment already installed (for housing regenerative
repeaters of the T1 type PCM transmission system).

The NIB circuits were adapted to field conditions in the following
ways:

(i) By giving R3 an appropriate positive temperature coefficient,
the net coefficient of each NIB unit was matched approximately to
that of copper. It was recognized that this compensation would he
reasonably accurate for underground cable, but little better than
seasonal for aerial.

(ii) Taps were provided along R3 so that any one of four values of

6
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3

2

0

Tn =JSTC+
= 14.74AS

0%

Tn = JSTC =13.401AS

0 4 8 12 16
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20 24

Fig. 7- Attenuation constant of line with NIB time constant at or near "just
stable" value; 22 -gauge BSA cable, NIB spacing 12,000 feet.
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-Rn could be selected by strapping, as a best fit for the section resis-
tance. No corresponding adjustment of C3 proved necessary, as the
image impedance fortunately turned out to he kept almost constant
by the related changes in Tn, -R and 1.

(iii) To increase stability margins in view of the nonuniform NIB
spacing, Tn was raised to 20ps for the mean length of 22 -gauge sec-
tion. This gave an image impedance Z' of 225 ohms.

(iv) For the two end sections of each line, which happened to in-
clude all the 26 -gauge cable, Tn was adjusted by changing the capaci-
tor C3 (Fig. 1) to make the image impedance roughly equal to that
of other sections (225 ohms).

Except for these adjustments, the NIB units had the equivalent
circuit parameters listed in the discussion of expressions (7) and (8).
They were normally powered by 16 mA of loop current, with their
linear negative slopes extending from 6 to 26 mA. This range was

1.2
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Fig. 8 - Effect of over- or undercompensation of copper resistance; 22 -gauge
BSA cable, spacing 12,000 feet, 16tis time constant.
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PLAINFIELD

Fig. 9 - Cable route in field test of negative impedance boosting. The line was
32 miles long, mostly buried 22 gauge cable, and it had 16 NIB sections.

twice as great as required for telephone speech; the excess was an
allowance for possible hum current. The total IR drop in copper and
NIB units of either loop was about 186 volts; hence, with an additional
4 -volt drop across a 225 -ohm resistive station set, the potentials on
tip and ring conductors at the "office end" were approximately ±95
volts from ground.

Touch -Tone® calling was used on one line, rotary dialing on the
other. The severe distortion occurring when the rotary dialing pulses
were produced by complete interruption of loop current was rem-
edied by having the dial merely insert enough resistance to drop
the current from 16 to 6 mA (the regulator going out of range). With
the NIB thus left operative, dial pulse distortion became negligible.

Tone ringing° was used on both lines, the signal being a 1,000 Hz
wave interrupted at 10 Hz. This was applied with a level of about 1
mW at the applique line circuit, under control of the ordinary ringing
signal from the PBX.

Supervision was conventional. The current regulator was so designed
that when the path was broken by the switchhook the open -circuit
voltage on the loop did not greatly exceed the ±95 volt figure. A relay
in the applique, responding to the switchhook (and dial pulses) trans-
ferred the information to the PBX pair.

The performance of the NIB lines was gratifying. People conversing
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Fig. 10 - Insertion loss of 32 -mile field-test NIB line between 225 -ohm resis-
tive terminations.

over them were favorably impressed by resemblance of the transmis-
sion to that over a short loop, and by freedom from noise, hum,
crosstalk and distortion. Fig. 10 shows the insertion loss of one 32.4 -
mile line measured between 225 ohm resistive terminations. It also
shows a computed plot of this loss, using a program that takes
account of the individual dimensions of each section and NIB unit.

To help ensure stability in spite of the inherent restrictions on
temperature compensation, the total copper resistance (6,000 ohms)
was intentionally left undercompensated by about 100 ohms. As a
result, the insertion loss had a low -frequency asymptote of roughly
2 dB. Strip chart records of a 1 kHz test tone showed the transmis-
sion varying over a typical day and night by about ±0.5 dB. Neither
line lost stability at any time during the entire test, which extended
over four fall and winter months and encountered large and rapid
changes of weather.

Figure 11 shows the input impedance of one line, measured and
computed, for a 225 -ohm resistive far -end termination. The irregulari-
ties of these plots, resulting from nonuniformity of the sections,
correspond to echo return losses no smaller than 12 dB, and exceeding
17 dB over most of the band.

Crosstalk loss between the two lines was roughly 88 dB at 1 kHz;
there was little difference between near -end and far -end measurements.

In planning the field test, hum was of course recognized as a pos-
sible source of trouble. It was known that hum is generally introduced
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by magnetic induction from power lines, effectively generating equal
voltages in series with each conductor. Longitudinal hum currents,
impelled by these voltages, could trouble the NIB transmission in
two ways: by using up a significant part of the operating range of
the NIB units, and by coupling into the metallic circuit as a result
of unbalance between the two sides of the line.

Experience and measurements afforded by the test were encourag-
ing, but not extensive enough to be conclusive. In order to minimize
hum currents, station grounds were avoided; the only path to ground
was via capacitance distributed along the line. At the central office
end, the longitudinal termination to ground was roughly matched to
the longitudinal impedance of the line, to avoid possible accumulation
of multiple reflections. With this arrangement line balance was found
adequate to prevent more than a trivial hum level from ever being
coupled into the telephones.

Hum voltage to ground (largely 60 Hz) recorded at the station
end was found to vary from minute to minute as well as over a daily
cycle. The extreme range of these measurements was from 1.8 to 6.5
volts rms, the largest values occurring around 5 to 6 pm. Without
knowing the distribution of magnetic induction along the line, one
could not determine hum current from such measurements. However,
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Fig. 11 - Input impedance of 32 -mile NIB line with 225 -ohm resistive far -end
termination.
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by varying the d -c loop current away from its usual 16 mA value
until current peaks "bumped" an edge of the NIB dynamic range
(putting audible 120 Hz pulses into the metallic circuit) one could
readily measure the maximum hum current, reached at some boosting
point along the line. Typical measurements of this sort gave values
around 5 mA peak -to -peak in each conductor, or 25 per cent of the
20 mA dynamic range; under worst conditions at least half the range
was undoubtedly filled. Although this amount of hum was found to
have no noticeable effect on telephone speech, larger hum currents
would probably be encountered at other locations.

Experience with lightning was also encouraging although far from
comprehensive. The NIB units were left unprotected except by their
own fairly low resistance at large forward currents, and by diodes to
bypass reverse currents. No damage was done by thunderstorms,
several of which did occur during the field run. Not until after these
tests was it recognized that valid protection against large forward
currents also could have been provided by merely giving each bypass-
ing diode a zener potential of around 10 volts. Of course, this value is
chosen to exceed the drop across the NIB at the "first bend" of its
V-I plot. At large forward currents, the emitter and base circuit resis-
tors of Fig. 1 combine to give a terminal resistance of about 48 ohms.
With the terminal voltage zener-limited to 10 volts, the current
through the NIB could not exceed 0.2 ampere, whereas simulated
lightning tests have shown that an unprotected NIB is undamaged by
surge currents as great as 5 amperes. Lightning is not expected to
present a serious problem.

VI. BAND BROADENING

Shortly after conclusion of this field experiment continuing effort
to improve the NIB circuit revealed that by adding to it a resistor
and a capacitor, one could flatten and substantially broaden the
resulting transmission band, indeed achieving virtually flat lossless
transmission almost up to the frequency of quarter -wavelength NIB
spacing. The band -broadened equivalent circuit, shown in Fig. 12,

is simply that of the basic unit (Fig. 2) shunted by R, and C, in series.
The effect of the addition can be seen more readily if one first

writes the impedance of the basic unit:

. T R
ZA = RA + jXA

-"
2 + R jw1 + (

R(UT

) 1 + (0)77)2 (9)
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Rs Cs

ZB = RB-1- jXB

Fig. 12 - Equivalent circuit of NIB unit with hand broadening.

When the shunt is applied, the real component RB (negative) of the
resulting terminal impedance Zn is made larger than the real compo-
nent RA (also negative) of ZA by what amounts to antiresonance
between C8 and the positive (inductive) imaginary component of ZA
Resistor R8 keeps the shunt path from acquiring so low an impedance
at any frequency as to bring instability to the "open -circuit -stable"
basic unit.

When the straightforward algebraic analysis used to derive expres-
sion (7) for the basic unit is repeated for the band -broadened circuit,
it shows that the asymptotic low -frequency image impedance (for
C = 0 and R = 0) has been slightly modified. With the shunt
elements added,

\IR T L R212 R21TZ' lirn Z11 = " " - - ' (10)
/C C 12 RN

This expression reverts to (7) when T8 0 with R8 > 0, or when
R8 -> oo with finite T8. Computer results confirm the accuracy of (10).

Computed transmission characteristics also support an initial esti-
mate that the time constant T8 = R8C8 should be made roughly equal
to T, and show that the revised circuit can be proportioned to sustain
its compensation of copper resistance up to hig))er frequencies, while
still letting its negative resistance fall off faa enough above the
transmission band to preserve stability.

The effect of band broadening upon the NIB transmission is shown
in Figs. 13 and 14 for the case of 22 -gauge BSA cable with 12,000-
foot NIB spacing, used earlier as an example. Here both time con-
stants (T8 and T,,) are made 16 /As, and curves are shown for three
values of Rs. When R8 = 2,000 Si the attenuation (Fig. 13) has its
widest fiat region without appreciable gain over any of the band. For
R8 = oo, the circuit reverts to the original or basic NIB. At an inter-
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Fig. 13 - Effect of band broadening upon attenuation constant of NIB line;
22 -gauge BSA cable, 12,000 -foot spacing.

mediate value, R8 = 6,500 f2, there is less band broadening, but the
phase velocity (Fig. 14) becomes remarkably constant from zero
frequency up to 6.7 kHz (at which 1 = A/4). A similar change in
slope of the phase velocity plot, shifting from positive sign for the
basic NIB to negative for the band -broadened version, has consis-
tently been observed over a wide variety of gauges and booster
spacings.

VII. PULSE FORMING

The foregoing combination of linear variation of phase with an
approximately parabolic variation of loss in dB, both as functions of
frequency, clearly offers interesting possibilities in baseband pulse
transmission. Under such a condition the line has the properties of a
Gaussian filter. If rectangular pulses of a suitable width T and baud
rate fo = 1/T are applied to it, these pulses are shaped in transmis-
sion into the raised cosine form. As received, they have the width T
at half their peak amplitude and 2T along the baseline; they are
almost free of tails. For ideal raised -cosine pulse forming, the line
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or Gaussian filter should have a loss of 1 neper or 8.68 dB at the baud
rate 10. Hence, for the case of R8 = 6,500 ohms in Figs. 13 and 14,
a baud rate of 8 kHz (at which the loss is about 0.635 dB per mile)
could be sent over a line 8.68/0.635 = 13.7 miles long. Of course if
the line were shorter, or the baud rate slower, the pulses would still
be symmetrical and well formed, but would show flatness at their
peaks.

Figure 15 shows the output "eye -diagram" formed by a random
sequence of 8 -level rectangular pulses at a 16.67 kilobaud rate, sent
over 10.2 miles of 22 -gauge BSA cable, with 6,000 -foot NIB spacing.
Here the information rate was 3 times the baud rate, or 50 kilobits
per second. The NIB parameters were R, = 97.3 ohms, R = 293.9
ohms, T8 = 7' = 6.1 x 10-6 second and R8 = 2,000 ohms.

VIII. BIDIRECTIONAL TRANSMISSION

Because of low loss in a broad transmission band, and an image
impedance that can be well matched over that band, new possibilities
are opened of simultaneous bidirectional carrier transmission; for
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example, by double-sideband amplitude modulation of the same car-
rier frequency at each terminal of the line. Similar possibilities exist
for bidirectional baseband pulse transmission. Both of these schemes
have been successfully carried out in the laboratory over the same
10.2 -mile 22 -gauge line with 6,000 -foot spacing that was used in
obtaining Fig. 15.

In either case, hybrid balance separates the incoming from the
outgoing signal. As a result of the low transmission loss, the received
signal, if it is a modulated carrier, is left sufficiently free of out-
going carrier (whatever its phase) to be detected without appreciable
distortion. Similarly, if the received signal is a pulse train, it is left
sufficiently free of interference from the outgoing pulses to be cor-
rectly decoded or regenerated.

Figure 16 shows two eye diagrams, received simultaneously at the
two ends of the 10.2 -mile line while two random 8 -level pulse trains
were being sent in the respective directions. Some interference may
be seen in the interpulse intervals, resulting from imperfection of the
hybrid balance presented to the higher frequency components of the
rectangular input pulses. For this photograph, the pulse rate was
raised slightly (to 16.81 kilobauds), thereby roughly centering the
interference in the intervals between eyes of the diagram.

wm.

14147.14 41tirr
)4,

'.i.

1416.4k&_

Fig. 15 - Eight -level pulses received over phase -linearized NIB line.
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Fig. 16- Bilateral pulse transmission over phase -linearized NIB line.

APPENDIX

Zero -frequency Asymptotes of Midspacing
Image Impedance and Phase Velocity of NIB Lines

In this appendix derivations are given for expressions (7) and (8)
of the text. The same method yields (10) when the NIB units include
R8 and C. as in Fig. 12.

Terms

Zil = Midspacing image impedance of NIB line.
= Phase velocity of NIB line.

ZA = Total impedance of two NIB units, one on each side of balanced
line, serving a single section.

1 = Length of NIB section (miles).
Zo = Characteristic impedance of nonloaded line.

= a + jf3 = Propagation constant of nonloaded line (per mile).
Zo = Open -circuit impedance of nonloaded half section (length //2).
Zsc = Short-circuit impedance of nonloaded half section (length //2).

T. = &C. = Time constant of basic NIB unit.
1P = 1(aH = Propagation constant of NIB line (per section).
Z' = lim ZH

0

V' = lim V
w
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Characteristic Impedance

From well-known theory,4

and

where

Also

where

Then

ZH = He
\IZA + 2Z 8C

(11)
ZA 2Z0 C

Zoc - Zo
(12)

/
tanh -2

7/Zsc = Zo tanh -2

R + jcoL aZ° =
NIG + jwC b

-y = -OR + jcoL)(G + jwC) = ab

a2 = I? jcd, and b2 = G + jwC.

tanh 21 2 3
= - 1 (7-213

2 (71)5
-

and from (11),

ablF
= 2

a2 b2 /2
a4b414

12 120
F = (1 - )

Zoc =
b21F

2

a221FZse =

4(ZA a2lF)
b21F(ZAb21F + 4)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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From Fig. 2

-ZZ,,I?=  - (1
+

W2 2)

R c.o2T,2,R, - +
1 + w27'

= S(R, - R) 71,,S(c2R,T,, Mt.) (22)

where

S = 1 + w2T: - 1 - w2t w477.1'-
(23)

Putting (16) and (22) into (21) gives

4[S(14.- 1?)+TnS(cd2R,Tn±juRn)±(R-1-jcoL)1F]
Z H2 = (G-I-jcoC)1F[S(Rp- -I-jwC)1F ±TnS(ce214Tn±jcoRn)(G-1-jwC)1F +4] (24)

Of present interest is the special case in which G = 0 and R,, - R =
-1R. For this condition,

=
4[1R(F - S) jw(lLF R.T.S) w2R,VS] (25)Z,r jwClF[4 - jo.C/2RFS jcoC/FTS(w2R,,T jcoR)]

Consider now the term F-S in the numerator of (25). From (18)
and (23)

F - S = a2b2/2
+

a4b4/4

12
co4T4

120 n

and since a2b2 = jwRC - 21,C

jo.)12RC 2 uti2LC /4R2C2)

12 w 12 + 120

(26)

(27)

where M = 1 + terms of positive order in w. Putting (27) into (25)
gives

zll -
4[ -1 C +ARAI (1212 +T,2 14R2C2)-jo(ILF ±RnTnS)+62RrTn2S1

jouCI F[4 -jwCPRF -FicoC1FT.S(co2RpTn±jcoRn)]

4r R2 . 7,,,112L 14R2C\ j_LF i_RnTnS jcoRpTn2S1

L 12 36'`'`' k 12 m C 120 )-1- C IC IC _I

F[4 -jael2RF -FjwCIFTS(co2R,T-FicoR)]
(28)

Thus far, although F, S, and M are power series expansions, they are
included in their entirety; nothing has been approximated, and (28)
is therefore exact.
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In passing to the zero -frequency limit we notice that when G. = 0

lim F = lirn S = lim M = 1. (29)

Accordingly, for the special case considered,

4[ - 12 - C /C

12R2 L(1) RT(1)

(1)1.4 - 0 + 0]
(Z')2 = lim Z2H

= -R T L 12R2

1C C 12

oi

(30)

Phase Velocity

Again from well-known theory,4

H1Ptanh = Z
(31)

Lao,.

From (30) the zero -frequency limit of ZH is finite, real and presumed
positive, while from (19) that of Zo, (for G = 0) is infinite, imaginary
and negative. Hence as w 0,

ZH 1P 1P ji3H1= tan -4 -+ 0.
Zoc 2 2 2

Accordingly,

lim i =
2ZH.7,

11,zdoc

and since VI, = (OH ,

lim VH = limjw/Zoc
co-.0 w_.0 2ZH

But from (12), with G = 0

2
Zoc = ,

2WC1F

and therefore

lim VH =
1 lim 1

co -40 C ZH
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Computation of FM Distortion in Linear
Networks for Bandlimited

Periodic Signals

By CLYDE L. RUTHROFF

(Manuscript received December 14, 1967)

Computations of the distortion generated in passing large -index, fre-
quency -modulated signals through symmetrical single -pole and three -pole
bandpass filters are presented. The computation is for a bandlimited
periodic modulation signal; noise modulation is simulated by the use of
periodic noise samples in a Monte Carlo procedure.

The convergence of the Monte Carlo procedure is illustrated for the
case of the single -pole filter and the results are in good agreement with
measurements.

Computations of envelope distortion are also presented. These data give
the amplitude -to -phase conversion in the receiver containing the filter to
within a constant factor, the constant being the AM/PM conversion
coefficient of the limiter.

I. INTRODUCTION

In spite of the efforts of a large number of investigators who have
studied the problem over three decades there is no way to compute
the distortion caused by filters and other networks for arbitrary
angle modulated signals of large index or large baseband bandwidths.
However, by use of the Fourier method' -4 introduced by Roder in
1937, it is possible to compute the exact responses of networks to a
frequency -modulated signal for bandlimited periodic modulation
signals.

In addition to deterministic signals of this class, noise modulation
can also be simulated and the resulting network distortion computed
by a Monte Carlo procedure. In an excellent paper, Medhurst and
Roberts4 have described the procedure and given some results for
low index FM, pre -emphasized in accordance with CCIR standards.

1043
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Their computer program was written in Extended Mercury Autocode.
The same method, coded in FORTRAN II, and extended to include the
effects of amplitude as well as phase distortion is being used to study
large index FM systems.

The results presented are for single sine wave modulation and
random noise modulation.

II. ANALYSIS

The modulating signals are restricted to those which are both
bandlimited and periodic. This class includes many signals used for
test purposes; the notable exception is the signal consisting of band -
limited Gaussian noise. More will be said of noise modulation later.

The analysis and computational procedure follows that of Med-
hurst and Roberts in Ref. 4 and is outlined briefly here. Specifically,
the signals are those which can be written as finite Fourier series.

pl(t) = E (a. cos moot b sin moot) radians,
n-1

where:

00 = 24. = 2r/ T,
T is the period of µ.(t),

2 T/2

a = -- /A(t) cos rtwat dt,,i - T/2

T /2i
b,, =

2
AL(t) sin moot dt.

T -T/2

(1)

If p.(t) is the desired phase modulation, or /.,!(t) = di.4(t)/dt the
frequency modulation, the angle -modulated signal is

e = (2)4 cos [coci A(t)] (2)

where w, is the carrier frequency in radians per second. The FM signal
of (2) has a line spectrum with lines at co, ± Mco,, , M = 1, 2, 3, .

The lines always occur at these frequencies, changing only in amplitude
and phase as functions of an , . It is this feature which makes possible
a digital computer solution and, conversely, is the reason for restricting
the form of the modulating signal to that of il(t) in (1). Beginning
with (1) and (2) the major steps in the analysis are:

(i) Derive the line spectrum of (2).
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(ii) Modify the lines in amplitude and phase in accordance with
the response of the network being studied.

(iii) Derive the envelope and phase of the modified line spectrum,
that is, determine E(t) and 0(t) where the output of the network
is written

e. = E(t) cos [wet + 0(t)]

(iv) Derive the line spectrum of E(t), 0(1), and dO/dt.

III. RANDOM MODULATION

(3)

An important measuring method in widespread use on FM systems
is the noise loading test. The importance of this method arises from
the fact that a band of thermal noise is a good approximation to a
frequency division multiplex signal which consists of a number of
voice channels. In this test a band of thermal noise in the frequency
range 0-W Hz is the baseband signal. The noise is removed by band
rejection filters in one or more narrow bands or slots ahead of the
modulator. At the receiver the power density appearing in the slots
is a measure of the intermodulation distortion in the system. The
results are usually given in the form of a signal -to -distortion ratio,
the signal being the power density at the slot frequency when the
band rejection filter is removed, that is, when the signal is present.

Computations of distortion can be made along these lines by fol-
lowing a Monte Carlo procedure with a sequence of random noise
samples generated from the periodic form of (1). A set of N sine
waves of equal amplitudes and random phases distributed uniformly
in the interval 0 - 27r constitutes the basic signal. Figure 1 is an
example of this random noise sample for N = 10 and Fig. 2 for
N = 50. One or more amplitudes are set to zero to form the slots,
and the power in the slots as a result of network distortion is com-
puted as outlined in Section II. The process is repeated with a se-
quence of random noise samples, each sample with a set of N inde-
pendent random phases. The distortion is averaged for the final
result. If N is large enough, if the number of sets is large enough,
and if the network transfer function is well-behaved, then the results
approach those obtained in a noise loading test.

Rice5 has shown that such a noise representation has a normal ampli-
tude distribution as N co and coo 0. Bennett' has computed the
amplitude distribution as a function of N. The conclusion is that with
respect to amplitude distribution the sets of random signals of the
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Fig. 1- A periodic random noisy sample for N = 10. Peak amplitude/rms
amplitude = I -0.525 I/E1/(2N)11 = 2.34.

form (1) approximate Gaussian noise. With respect to the spectrum
the situation is otherwise; the spectrum of noise is continuous whereas
the simulation, for finite N, has a line spectrum. This means that the
results computed with the simulated noise will approximate the results
for real noise only for network responses which are smooth enough.
An example of a function which is not smooth enough is a network
response of unity at the spectral lines and zero elsewhere. In spite of
this limitation it is not expected that smoothness will be a serious prob-
lem for most cases of interest.

3.1 Modulation Index

The modulating signal gt) can be written as follows:

(t) = E A cos (moat + an) radians, (4)
n=1
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where,

The baseband is

= V,

a = -tan
a-n

W = Ncon . (5)

Using (4) to simulate noise in a phase modulation system, the ampli-
tudes An are equal and the random phases an are uniformly distributed
from 0 to 2r. If the rms phase deviation is cp radians,

An = co(2/N)1 radians. (6)

For the FM application the amplitude terms of the frequency modula-
tion µ' (t) are made equal to simulate a flat band of noise, that is,
nwA = A, the peak frequency deviation per sine wave. The mean
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Fig. 2 -A periodic random noise sample for N = 50. Peak amplitude/rms
amplitude = I 0.29 1/[1/(2N)1/2] = 2.90.



1048 THE BELL SYSTEM TECHNICAL JOURNAL, JULY -AUGUST 1968

square frequency deviation is
A 2 2.. 2 A N.N

- 2 2

Substituting for 04 from (5) we get

A = (a/W)[(2N)Yn. (7)

The rins phase and frequency deviations can be related to the RF
bandwidth by Carson's rule which, for noise modulation, is written

B = 2W(1 4a./W), (8)

where the peak frequency deviation is assumed to be 4a.. Suppose
that the line spectrum of (2) contains kN lines in addition to the
carrier, then the bandwidth of the computed spectrum is

B = kNco . (9)

From (5), (8), and (9) we get the relation between k and a

k = 2(1 4a./W). (10)

This equation is as accurate as Carson's rule and is useful for estimating
k when 0-/W is given. If k is chosen too small, significant spectral com-
ponents are omitted from the spectrum; the effect is to pass the com-
plete spectrum through an ideal filter of bandwidth kNco .

In a similar manner k and r can be related for the phase modula-
tion case. The rms frequency deviation for the PM case is given by

=

3 1

-I- 2N22N
3

where N is the number of tones in the baseband. Substitution of (11)
into (10) gives the desired result.

3.2 Limitations on Modulation Index

It has been shown (9), that the maximum RF spectrum bandwidth
is given by B = kNco . From (5) the baseband bandwidth is W = Nw. .
Assuming that only negligible energy falls outside B, then B is the RF
bandwidth and the parameter k is a bandwidth expansion factor since

k = B/W. (12)

Now, k and the rms frequency deviation a are related by (10). The
product kN is limited by the high speed storage capacity of the machine;
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this implies a relationship between N and a/W. Let M kN be the
maximum value of kN which can be accommodated in the machine.
Then,

(7/W < 1/4(M/2N - 1). (13)

This expression is dependent upon Carson's rule and has the same
unknown precision-but it serves to demonstrate the point that if
large cr/W is desired, N must be made small. In the work reported
here, M = 500 so that for N = 10, cr/W < 6. Conversely for N = 100,
(y/W < 0.375.

Because Carson's rule has an unknown precision it is necessary to
determine to reasonable accuracy the relationship between k and (r/W.
With a perfect rectangular filter of bandwidth kNw. , signal -to -dis-
tortion ratios have been computed for the case N = 10. In these com-
putations, slots 1 and 10 were set to zero separately and the SDR
computed for that slot.

The results are shown in Fig. 3 as a function of (7/W with the band-
width expansion ratio k as a parameter. In all cases slot 1 has the lowest
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Fig. 3 -FM signal -to -distortion ratios for square filters containing kN+1
spectral lines and with N = 10.
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SDR. The levelling off for SDR near 124 dB is probably caused by the
computer round -off error. The negative slopes are the result of the
finite filter bandwidth of kNco and the decreasing accuracy of the
method of harmonic interpolation in approximating the spectrum.
Increasing k improves the accuracy of the approximation.

Values of a/W obtained from Carson's rule in the form given in
(10) are shown by the arrows in Fig. 3. Fig. 3 can be used to determine
the value of k required to compute the SDR for a given a/W. In all
examples reported here, k and N have been chosen so that without a
filter an SDR > 100 dB was obtained for the values of cr/W used. The
data of Fig. 3 are averages of 20 noise samples.

IV. THE SINGLE POLE FILTER

The single -pole filter is the simplest possible realizable bandpass
filter and is important for two reasons.

(i) It is widely used. For example, it is nearly optimum for use
in the IF section of a frequency feedback receiver.

(ii) As simple as it is, no previous method is adequate for the com-
putation of FM distortion for high frequencies and large deviations.

4.1 Single Sine Wave Modulation

A number of years ago Bodtmanns made extensive measurements
on a single -pole filter with both single sine wave and noise modula-
tion.* Let us compare the measured and computed results.

The transfer function of a narrow band single -pole filter is

Y -

where:

1

1-Fj-f.
fe

(14)

f o is the center frequency and
fc is the half bandwidth, that is, the frequencies at which the response

is down 3 dB are f t, ± f .

Bodtmann's filter was centered near 70 MHz with a half bandwidth
of 1.223 MHz. The skirts fit the response of (14) to within ±0.1 dB
out to the 15 dB loss points. The measured and computed ratios of
signal -to -third harmonic distortion power are shown in Fig. 4. Notice

* It was Bodtmann's results which led to the discovery of a simple error in
existing theories 9-11
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Fig. 4 - Third harmonic distortion in single pole filter.

the peculiarity which occurs at a deviation of 1.2 MHz where the curves
for 360 KHz and 1 MHz modulation frequencies cross. Existing theories
do not predict this behavior which is verified here by direct computation.

4.2 Results for Random Modulation

Computations of SDR have been made for a single pole filter for
the random modulation discussed in Section III. The results, for
noise samples of 10 and 50 sine waves of equal amplitude and random
phase, are shown in Fig. 5 with Bodtmann's measured results. The
computations followed the Monte Carlo procedure described pre-
viously. The data in Fig. 5 for X = 50 is the average over two slots
at each frequency for 50 noise samples. The pairs of slots are 4 and
5, 17 and 19, and 49 and 50, corresponding to the slot frequencies
84 KHz, 360 KHz and 1 MHz, respectively. Data for all the slots
were computed in the same computer run. In the computations for
N = 10 one slot at a time was computed, each point being the average
of 80 noise samples.

When the noise sample is simulated by 50 sine waves, the agree-
ment with the experimental data is good. The SDR's for the case of
10 sine waves per noise sample are somewhat higher reflecting the
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Fig. 5 - Bodtmann's measured results compared with noise samples.

fact that larger modulation peaks are to be found in the sample
with the larger number of sine waves.°

4.3 Convergence of the Monte Carlo Process

The SDR's of 80 individual noise samples for N = 10 are shown
in Fig. 6 in four sets of 20 each. The average SDR as a function of
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ce 60
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(f) 50

400
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3

4164. w,./14Airt.

te/

2 4 6 8 10 12 14 16 18 20
NOISE SAMPLE NUMBER

Fig. 6-FM SDR in a single pole filter. Ten sine waves in baseband; SDR
computed in slot 4; bandwidth expansion factor k = 10; cr = 0.2 MHz; coc/W =
1.223.
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the number of noise samples is shown in Fig. 7; the four sets of Fig.
6 are averaged in sequence. It is interesting to ask how close to the
80 -sample average one would get if only 20 samples were used. As a
partial answer, the four sets of Fig. 6 were averaged separately and
the results are shown in Fig. 8. All four 20 -sample averages fall
within 1 dB of the 80 -sample average.

Similar data for slot 19 is presented for the case N = 50 in Figs.
9, 10, and 11. Slot 17 was also computed and the averages for both
slots are shown in Figs. 12 and 13. The results for slots 17 -I- 19 are
remarkably similar to those of 19 alone. The 10 -sample averages
deviate from the 50 sample average by a maximum of 2.7 dB for
slot 19 and 2.3 dB for the sum of slots 17 + 19. Interestingly enough,
the 10 -sample average for N = 10 deviates from the 80 -sample
average by a maximum of 2.2 dB.

The behavior of the SDR of a single noise sample as a function
of cr/W is also of interest. Fig. 14 shows this behavior for each of the
first six noise samples of set 1, Fig. 6, compared with the 80 -sample

60
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510
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NUMBER OF NOISE SAMPLES AVERAGED

.Fig. 7-Fluctuations in SDR of single pole filter as a function of number: of
sets of computations. Ten sine waves in baseband; SDR computed in slot.4;
bandwidth expansion factor k = 10; cr = 0.2 MHz; we/W = 1.223.
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Fig. 9 - FM SDR in a single pole filter. 50 sine waves in baseband ; SDR
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Fig. 10-Fluctuations in SDR of single pole filter as a function of number
of sets of computations. 50 sine waves in baseband; SDR computed in slot 19;
bandwidth expansion factor k = 10; o- = 02 MHz; coe/W = 1223.
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Fig. 14 - Behavior of the SDR in a single noise sample as a function of
a/W. Single pole filter; slot 4; N = 10; sample set 1.

average. The same behavior has been observed for other filters. It
is clear that almost any noise sample will predict the SDR behavior
as a function of 0-/W, but the actual SDR computed for the single
noise sample depends on the peakiness of the sample.

V. THE THREE -POLE MAXIMALLY FLAT AMPLITUDE FILTER

The maximally flat amplitude filter is used widely in frequency
modulation systems; it has the flattest possible amplitude response
near the midband frequency and is often used in conjunction with a
phase equalizer. The transfer function of a narrow band three -pole
handpass filter is

Y=
1 - 1)2(1 - 1")2 j(1 111), - - 92]

f,

1

where

(15)

10 is the midband frequency and
I', is the filter half bandwidth; that is, the frequencies at which the

response is down 3 dB are fo ± fe ,

bt , N are both equal to 2 for an MEA filter,
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SDR computations for an unequalized filter are presented in Fig. 15
as a function of frequency deviation. The dashed lines are 12 dB
per octave slopes placed arbitrarily to coincide with the data at
0/W = 2. The data points are 20 -sample averages. The large cross
is the SDR in slot 10 of a three pole 0.1 dB ripple Chebyshev filter
with the same skirt selectivity as the MFA filter at a frequency 256
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Fig. 16-FM signal -to -distortion ratios in a three -pole MFA filter. oiW =
3.12; 3 dB filter bandwidth = 238 MHz; N = 10; k = 30; slot 10; no carrier
offset,
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MHz from the carrier. The Chebyshev filter is clearly superior to the
MFA filter in this instance. The SDR is a function of baseband W as
shown in Fig. 16 for cr/TV = 3.12 and slot 10. An arbitrary slope of
18 dB per octave is included. As in Fig. 15, the data points are
20 -sample averages.

Fig. 17 shows the effect of a carrier frequency offset with respect
to the filter midband frequency. In the application for which this
filter was chosen, the midband frequency change over the ambient
temperature range -40°F to +140°F is about ±6 MHz.

Results for perfect phase equalization are shown in Fig. 18; arbi-
trary slopes have been added. It is clear that nearly all of the dis-
tortion in the unequalized filter is due to nonlinear phase.

VI. AMPLITUDE TO PHASE CONVERSION

In addition to the FM distortion in the filter output there is gen-
erally some envelope distortion. Since all known limiters convert
envelope modulation to phase modulation this source of distortion
must be accounted for in system design. The envelope distortion is
computed as described in Section II and it is necessary to relate
it to the AM/PM conversion of the limiter.

For good limiters the AM/PM conversion is small and can be
assumed linear, that is,

90

0

0 = Qm (16)

rz 80
z

cc U-1

SLOT 1

0 Mo 70 SLOT 400
O

SLOT 10
_J 60
z

(7)

50
-20 -10 0 10 20

CARRIER OFFSET IN MHZ

Fig. 17 - FM SDR in three -pole MFA filter as a function of carrier offset.
W = 7 MHz; 3 dB filter bandwidth = 238 MHz; N = 10; k = 50; cr/W = 3.12.
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where

m is the index of amplitude modulation for the slot of interest,
0 is the phase shift. in radians in the same slot caused by m, and
Q is the AM/PM conversion coefficient.

The normal signal in the slot of interest is a sine wave of amplitude
A. The signal-to-AM/PM distortion ratio is given by

SDR (AM) = 20 log A/0

= 20 log A/Qm

= 20 log A/m - 20 log Q. (17)

The first term, 20 log A/m, can be computed for the network and
the AM/PM conversion coefficient can be included separately.

The AM and FM SDR's for transitional Butterworth -Thomson
filters'2 are plotted in Fig. 19. For the Chebyshev filter the AM and
FM SDR are 72.3 and 66.3 dB, respectively. All filters were adjusted
for equal loss 256 MHz from the midband frequency. The trends are
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Fig. 18 - FM SDR in a phase -equalized three -pole MFA filter. W = 7 MHz ;
3 dB bandwidth = 238 MHz; N = 10; k = 50; slot 10.
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Fig. 19 - FM and AM SDR in three -pole transitional Butterworth -Thomson
filters. W = 7 MHz ; loss 256 MHz from midband = 20 db ; N = 10; k = 30;
no carrier offset; cr/W = 3.12; slot 10.

as expected, as the filter goes from MFA to maximally flat envelope
delay (MFED) the FM distortion decreases and the AM/PM dis-
tortion increases. The effect of the limiter AM/PM conversion coef-
ficient can be included by adding -20 log Q to the curve marked AM.

The frequency responses for the filters are given by (15) ; for the
0.1 dB ripple Chebyshev filter b1 = 1.921, b2 = 1.801. For the tran-
sitional Butterworth -Thomson filters the parameters are:

Filter No. 1-MFA 2 3 4 5 6-MFED 7

b 2.0 2.103 2.201 2.294 2.383 2.466 2.547
b2 2.0 2.092 2.182 2.268 2.352 2.433 2.510

VII. DISCUSSION

The Fourier method for the computation of FM distortion in linear
networks has been described and some results presented for single
sine wave modulation and for random noise modulation simulated
by groups of harmonically related sine waves. The method is exact
to an accuracy determined by the round -off error in the machine.
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Although the computation is exact for any individual input signal,
the results for noise modulation are only approximate because the
results depend upon averaging over a finite number of periodic noise
samples. Much of the work described in this paper has been devoted
to describing the behavior of the noise computations and in the
determination of the maximum modulation index for which computa-
tions can be made with suitable accuracy.

In addition to demonstrating the nature of convergence of the noise
averaging method, a detailed comparison of this method with the
experimental results of W. F. Bodtmann provides an excellent demon-
stration of the extent to which a noise sample consisting of as few as
10 sine waves approximates a thermal noise signal. The noise simulation
with a 10 sine wave noise sample is sufficient for most applications and
accurate computations have been made for modulation indexes of
a 6W where a is the rms frequency deviation and W is the bandwidth
of the modulating signal.

It is notable that a single periodic noise sample is sufficient to
determine the shape of the curve describing the signal -to -distortion
ratio as a function of the deviation, the baseband bandwidth, or the
filter parameters. This result, illustrated in Fig. 14, can be used to
conserve computational time when optimizing the parameters of a
system.
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Linear -Real Codes and Coders*

By WILLIAM H. PIERCE
(Manuscript received August 22, 1967)

In linear -real coding, the transmitted signals are (possibly redundant)
linear combinations of the data signals. The linear combination of data
signals can have a block pattern, resulting in linear -real block coders, or
a stationary pattern, resulting in linear -real stationary (shift -register)
coders. Stationary coding is shown to be a limiting case of block coding.
Both methods appear to be practical for the control of burst and impulse
noise. However, stationary coding appears to have some advantages and
is the only one we study here. We propose shift register implementations
which promise the required precision and dispersion at less cost than
tuned RLC circuits.

Error properties of both block and stationary coders are similar, but
it is easier to learn concepts by analyzing the block coders. When the receiver
is able, by using some of the techniques we discuss, to estimate the noise
covariance matrix for each codeblock, the resulting noise power is less than,
that for receivers not using the statistics for each codeblock.

Nonlinear memoryless filters, such as clippers, are especially effective
when used with linear -real coders. We propose a memoryless filter which
attenuates the input signal more severely when a second input to the filter
indicates the channel is having a noise burst. If the memoryless filter is
designed for the worst case noise, then performance will not degrade with
decreased noise when the nonlinearity is odd and monotonic.

1. INTRODUCTION

Many communications channels, including telephone channels, con-
tain noise which comes in short bursts, such as noise from impulses.
Such noise is particularly deleterious when the channel is used for
the transmission of digital data.

* Part of the research for this article was performed at Carnegie Institute of
Technology under National Science Foundation grants GP -39 and GK -373.
Some of the material contained in this paper is taken from the author's con-
vention article.°

106:5
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At least as early as 1958 it was discovered that it is sometimes
possible to reduce digital errors in such channels without reducing the
noise power by using a scheme such as Fig. 1 shows. In some formu-
lations1-7 the transformation A consisted of a continuous all -pass filter
whose Fourier transform magnitude was unity at all frequencies but
whose phase characteristic varied with frequency; the inverse linear
transformation was the continuous all -pass filter with the conjugate
phase characteristic. The linear filter was called the smear operation,
and its inverse the desmear operation. Later papers considered linear
transformations to be real -number matrices operating upon the data
in blocks.8-1°

In all schemes to which Fig. 1 applies, a single impulse of noise
into the inverse linear filter will be transformed into an output noise
which is dispersed in time. With proper design, this dispersed noise will
be small enough at all times to not produce errors at the output of
the quantizer.

Our purpose is to investigate coding schemes which fall in the
general pattern of Figure 1 to gain conceptual insight and learn practi-
cal design. Such study is useful because the practicality of the matrix
version has never been studied, and the continuous all -pass filter was
limited by cost and filter imprecision. The shift registers we might
propose avoid the problems which hindered the application of contin-
uous all -pass filters.

We show that the real -number linearity of the transformations of
Fig. 1 will permit the receiver to use any available information about
noise correlation or position. All of the proposed means for using this
information are simple in concept, and some are simple to implement.

II. DESCRIPTION

Linear -real block coding is a form of coding in which A, an n by k
matrix of real numbers, is used to produce an output vector b from an
input vector r according to the equation

DIGITAL
SOURCE

LINEAR
TRANS-

FORMATION
A

om.mmello

b = Ar. (1)

CHANNEL
WITH BURST
OR IMPULSE

NOISE

INVERSE
LINEAR
TRANS-

FORMATION
A-1

ANALOG
OUTPU Ti QUANTIZER

DIGITAL
OUTPUT

Fig. 1- A general arrangement for placing linear filters A and .A-1 to reduce
digital errors,
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If n > k, then b will be redundant in the sense that not all of its com-
ponents are independent. The word "real" is used in order to emphasize
the fact that the arithmetic in equation 1, and all other equations in
this paper, is real number arithmetic. The use of real number arithmetic
distinguishes this work from generalized parity -check coders which are
linear in finite -field arithmetic.

Stationary (shift register) linear -real coding is a limiting case of
linear -real block coding, but is best described as being the convolution
summation given by

bi = E hi_iri (2)

where b1 is the ith signal transmitted, is the data number, and
where h, can naturally be called the unit pulse response of the en-
coding filter at time -step q.

The conclusions to be reached on practical applications are that
moderate cost encoders and decoders of considerable use for burst and
impulse noise channels can be built as soon as low-cost tapped digital
delay lines are available. Magnetic domain -wall digital delay lines,"
for example, might well make these coders practical.

There are two general ways in which noise is controlled by means
of linear -real coding. We give the complete details and mathematics
later. Briefly, the qualitative aspects are:

The total noise power in the decoded signal is made less than that
without coding. We discuss three distinct ways of doing this:

(i) When linear -real block coding is used, and when the noise
covariance matrix is known (or can be adaptively deduced by the
receiver) then this knowledge can be used to reduce the noise power.
It can be correlation type knowledge, as accounts for the effectiveness
of Wiener filtering. If the noise process is a posteriori nonstationary,
then a receiver which estimates the noise correlation matrix for each
code block may effectively use the available information on the po-
sition of burst noises within the block. This is particularly effective in
burst noise channels having block coders using rectangular A matrices.

(ii) A stationary memoryless nonlinear filter (such as a clipper) can
be used to reduce the noise power before the inverse linear transforma-
tion is applied. Such a filter would of course reduce noise power in
the absence of an inverse filter when it immediately precedes the
quantizer, but it would not then reduce errors. When placed before
the inverse transformation, the stationary memoryless nonlinear filter
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reduces both errors and noise power. We refer to equations for analyz-
ing design and performance of the memoryless nonlinear filter. A simu-
lation example in Section VI shows these devices to be surprisingly
effective.

(iii) A memoryless nonlinear filter can be used which has both the
noisy signal and an estimate of the instantaneous noise power for
inputs. The output is an optimized estimate of the signal given the
estimated instanteous noise power. This filter always reduces noise
power, as does the filter in method ii, and only reduces errors if
there is a filter such as the inverse linear transformation between it
and the quantizer. We describe several methods for estimating the in-
stantaneous noise power in Section V. One of these, which appears in
Fig. 6, uses the fact that practical pam signals have more bandwidth
then the Nyquist bandwidth for their pulse interval.

The remaining noise power is distributed more evenly among all
decoded signal components and (in the limit of infinite smearing)
made Gaussian. This type of noise control is especially effective in
quantized -signal burst and impulse noise channels which have a
thermal noise which is small compared with the separation between
quantization levels. In this case a burst noise with power which is
small compared with the thermal noise would be unable to produce
many errors if it were evenly dispersed, although it could when
bunched up. Dispersal of the burst noise power is sometimes un-
favorable, but if the noise power is reduced enough and the noise
dispersed enough, then the effect is very favorable. The decoding op-
eration also tends to make the decoded signal have a Gaussian first -
order probability distribution, which reduces the probability of a
large peak and thereby reduces errors for quantized signals.

The design equations for the nonlinear memoryless filter (clipper)
to which we refer assume a known probability distribution on the
noise, as does the simulation reported. In practice, the actual noise
can be less noisy than that used for design purposes, and the resulting
mean square error will not be larger than that with the design noise,
provided the noise probability density is even and the nonlinearity
has certain properties. We give precise details in Appendix D.

III. BLOCK CODES AND THEIR NOISE COVARIANCE MATRIX

In general, assuming r and c are independent zero -mean column
vector random variables, which represent the signal to be encoded and
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the channel noise, respectively, and assuming r and c have nonsingular
covariance matrixes Q and N, respectively, and assuming that f =
b c is decoded by some linear operator T, where b is given in equation
1, then a straightforward evaluation of the covariance matrix of u =
r -Tf will show that

M = E[ute]

= (Ickxk) - TA)Q(I(kxk) T21) 71N711 (3)

where ( )t denotes the transpose of a matrix or column vector. This
formula can be used to compare the performance of encoder -decoder
pairs with good and bad choices for matrix A, and good and bad
choices of matrix T.

Table I shows three possible T matrices. The first was shown to be
the least mean square linear estimator in (9), and for Gaussian
signal and noise gives the conditional mean of the transmitted vector
given the received vector. The second is the first evaluated for infinite
signal power in all degrees of freedom (which implies Q-1 = 0)
and produces a decoded error uncorrelated with the signal. The third
does not require the use of the N matrix. All assume the columns of
A to be linearly independent.

Table II gives further insights into the behavior of the decoded error
by presenting a number of special cases of equation (3). The justifica-
tion of the equations of Table II is given in Appendix A. In one of
the special cases in Table II, namely when equation (7) applies, the
decoded noise energy is proportional to the arithmetic mean of the
received noise energy. In other cases, such as that of equation (12),
the eigenvalues of AW-1A play a crucial role in formulas for the mean
square decoded noise.

Equation (13) of Table II shows that the average of the eigen-
values of A tAT-1-A appears in a formula for a lower bound for the mean

TABLE I - THREE DIFFERENT LINEAR OPERATORS FOR
DECODING f INTO r.

Name Formula

Mean estimator
(Gives least mean square error)

Unattenuated estimator

Unadaptive estimator
(The generalized inverse of A)

T = (Q-1 + AtN-IA)-1AtAr--1

T =
T = (AIA)-'A'
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TABLE 11 -SOME SPECIAL CASES OF THE ERROR COVARIANCE
MATRIX OF EQUATION (3) AND THE RESULTING MEAN SQUARE ERROR

Unadaptive Estimator
M = (AIA)-1AINARAIANs.

m.s. error = 1/k tr (A IA) -1A INARAIA)-9g.

When the columns of A are orthogonal and each of length (n/k)i:
M = (kIn)2AgNA.

(4)

(5)

(6)

When in addition N = diag (ni , n2 , , ny,), and AM is the arithmetic mean of
these nes, and A is 1/(k)i times the first k columns of a Hadamard matrix (see
Appendix A for a definition):

m.s. error = Mii = (k/n)AM. (7)

Unattenuated Estimator
M = (A IN -121)-1.

m.s. error = 1/k tr
Mean Estimator

(8)

(9)

M = (Q-1 + A'N-'A)-'. (10)

m.s. error = 1/k tr (Q-1 + (11)

Mean Estimator (f2 = 1) or Unattenuated Estimator (ft = 0)

m.s. error = 1/k E
1 (12)

Xi(062-1 + AIN-1A)

where X1(Z) denotes the P' unordered eigenvalue of Z. Special case of above when
Q = 8/, s scalar:

m.s. error = 1/k E
1 1

+ Xi(A IN -1A) -
Its -1 + 1/k Xi(A

(13)

Special case of equation (12) when Q = sI, and A is square, orthogonal, and each
column has length (n/k)i:

1
m.s. error = 1/k E

1
(14)

s +
Xi(N)

The following assumptions are referred to as equation (15):
ci = 1: 7' is the mean estimator.
SZ = 0: T is the unattenuated estimator, and 21.'N -1A is positive definite.
Q = sI, s scalar.
A is 1/(k)i times the first k columns of an n X n Hadamard matrix.
N = diag (ni , nz , nn)
The ni variables are independent, identically distributed random variables such

that E(1/ni) exists, has finite variance ef 2 , and the harmonic mean of the ni
variables

Hill = [1/n

is finite.
k is large enough for the weak law of large numbers to apply.

(15)



Assuming equation (15):

LINEAR -REAL CODERS 1071

1 < m.s. error (16)
08-1 +

k HM

0 . 55 0
m.s. error < -+ (17)

-1
n a2-1 n cr.9

\I_____
7 k II 1 1 +A

T

-
s +k HM

8 +

provided that the first denominator is positive, where 7 is given by equation 35
of Appendix I.

square error; furthermore, that the mean square error equals this
lower bound only when all the eigenvalues are the same. Thus the
deviations of the eigenvalues of AW-1A detemine the closeness of the
lower bound of equation (13), which Appendix A shows is sometimes
related to the harmonic mean of the eigenvalues of N, which appears
in equations (16) and (17).

A geometric illustration of the eigenvalues of AW-411 for rectangu-
lar A with orthonormal columns begins with the observation that the
eigenvectors of N-4 form the semiaxes of an n -dimensional ellipsoid.
The projection of this ellipsoid by the transformation At forms an-
other ellipsoid, which will be called the k -dimensional shadow of the
original n -dimensional ellipsoid.*

The semiaxes of the shadow ellipsoid have the lengths of the eigen-
values of AtN-1A. In order for the equation (13) bound to be close
to the actual value, the semiaxes of the shadow ellipsoid have to be
generally near their mean length; in other words, the shadow has to
be round. A sufficient condition for the shadow to be round is that
the ellipsoid is the shadow of a round ellipsoid, but this is not neces-
sary. For some of the possible spacial orientations, for example, a
football's shadow is rounder than the football.

IV. THE LIMITING CASE OF STATIONARY (SHIFT REGISTER) CODING

The purpose of this section is to show that-in the limit- all linear -
real coding and decoding operations can become time stationary, so
that they can be implemented by shift registers with time -invariant
impulse responses. The limit is taken in the sense that the transmitted
digits are obtained as a single block code whose output is a column

* An ordinary planar shadow of a three-dimensional object will be an orthogo-
nal projection only when the light rays are parallel, and are normal to the
plane of the shadow.
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vector with components from -n to n., where n approaches infinity.
There are two reasons why a study taking linear -real coding to the

limit of being time stationary can be advantageous or useful:

(i) Stationary encoders and decoders appear to be more economical
to implement than the block type of encoders and decoders.

(ii) The mathematical investigations to be made in the passage to
the limit will add insights to linear -real coding by showing that a
special case of it is Wiener filtering, and will add insights to Wiener
filtering by showing that a Wiener filter is related to the least mean
square estimator of matrix -encoded noise data vectors.
Toeplitz matrices, defined later, and Z -transforms (Ragazzini and
Franklin)," are our main mathematical techniques to reach these
ends.

4.1 Stationary Coders
The transmitted signal bi is assumed to be obtained from the data

stream rj by the convolution summation of equation (2), which can
be put in matrix form by means of the doubly infinite vectors

-  -

b=
b,
b0

b,

r =
r,
ro

r1

and the Toeplitz matrix (defined in section 4.2)
Ai, = ati_, =

etc.,

so that equation (2) can he expressed in matrix form by

b Ar.

The problem of how to perform the infinite matrix multiplications,
either analytically or with hardware, will be shown to be solvable by
the use of Z -transforms.

4.2 Infinite Toeplitz Matrices

An infinite matrix A, with elements Aii , i, j = 0, ±1, ±2,
will be called Toeplitz* if some sequence . . . , a_ ao , a, , ... exists

* Hermitian matrices of the type of Equation (14) are called Toeplitz forms,
and are described by Grenander and Szego.18 The Hermitian property is not
assumed in this paper's definition, since it is not needed for some of the results.
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such that
= (18)

for all i, j. Associated with this Toeplitz matrix will be the two-
sided Z -transform

a(z) = E (19)

The convergence properties of Toeplitz matrices could prove trouble-
some in some cases, but in this paper most difficulties will be avoided by
using only those matrices whose associated Z -transform, according to
equations (18) and (19), has all its poles some finite distance from the
circle z I = 1, and which is absolutely convergent on I z I = 1. (If the
matrix is to be inverted, it also must have its zeros some finite distance
from I z I = 1.)

Any poles outside I z I = 1 arise from a° sequences which are nonzero
for q < 0. This should not cause alarm, as noncausality of unit pulse
reponses for decoders is not a serious practical obstacle, since actual
noncausal unit pulse responses can be arbitrarily well approximated
by accepting a decoding delay. These restrictions on the poles of the
associated Z -transforms require that a° be bounded by a geometrically
decreasing sequence as q -> ± 00 .

Section B.1 of Appendix B presents theorems which are useful in
relating Toeplitz matrix operations to Z -transforms, and shows how
least mean square matrix operators of the Toeplitz type can be related
to Weiner -filter types of sampled data estimators.

4.3 Error Analysis

When A, Q, and N are Toeplitz and nonsingular, the expressions for
the mean square error equivalent to the equations of Table 2 are '

TMEAN = AW-1,4)' Ai N-1

or

gives

q(z)a(z/
IM EAN (Z)

n(z) a(1z)q(z)a(z)

m.s. on diagonal component

error _of MMEAN = (Cr + A)-1
(20)
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or
M.S.

=
error

, J q(z)n(z) 1

ln(z) 41-z)q(z)a(z)1

(21)

where is the inverse Z -transform integral operator. When A is either
finite or Toeplitz but nonsingular, TuNATTENUATED and TUNADAPTIVE
give the same decoding matrix, namely A-1, which will be called
T1NVERSE

TINVERSE = A -I

or for the Toeplitz case

gives

1
tiNvERsE(z) = a(z)

M.S.

error

on diagonal component

of A-1N(A-1)`
(22)

m.s.

error
=

la(z)a(z)f

n(z) (23)

The above error can be evaluated by these three methods:

(i) Truncate A and N and then compute an on -diagonal component
of (A'N'A) -1 near the center of the matrix.
(ii) Use Z -transforms to find t-UNATTENUATED(Z) Invert the Z -trans-

form by either
(a) Using the inversion integral for Z -transforms, or
(b) Using pole -zero expansions and a small table of Z -transforms.

Method (ii -a) is the Z -transform analog of using Parseval's theorem to
find mean square errors of stationary nonsampled systems.

Lemma 1: When A is Toeplitz with columns orthogonal and of length 1,
then

(a) At A = I

(b) a(z)a(z) = 1.

The proof is trivial. Also notice that (a) <=> (b).
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Corollary 1: When. T = A-1 and A is orthogonal,

m.s. = m.s. noise.
error

For design purposes it is desirable to make the following definitions;
both assume T = A-1 which is assumed to exist.

For Toeplitz A and N:

on diagonal component on diagonal component
noise
power of A'N(A')` _of At A
amplification [on diagonal component of N]

(24)

For Block Coders:

noise tr A-IN(A-1)`1R- tr A `A
power (25)
amplification [1 tr-k INT1

Physically, this corresponds to the actual amplification of noise in a
channel which encodes with a matrix proportional to the A matrix,
where the proportionality constant is selected to make the encoder
give unity power amplification to a white signal, and where the decoder
is TINVER SE  For the stationary coder and channel, the Z -transform
version is:

n(z) 1

.1a(z)41;.)f {a (z) a (-z)}noise
1

power (26)
amplification

The block code version of the trace formula can also be used to show
that if the impulse response of the stationary encoder is . . . a_i , a0 , al ,

. . . , and its inverse is . . . b_i , bo , bi , . . . , so that ag*b. = 8q o , then
for N cc the noise power amplification can be evaluated from the
impulse reponses by:

noise
power
amplification
(for white noise)

y --Y.

no

V)] (27)
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The Z -transform version for N « I. is:

noise
power = Z-i 1 1 Z-'{a(z)41)} (28)
am plification z k -O

(for white noise) a(z)at(1z.)f
k-0

It can be readily seen from equation (26) that:

Lemma 2: When A is Toeplitz, the noise power amplification will be
unity whenever

1
a(z)a(-z) = constant

whether or not the noise is white, so long as it is Toeplitz.

An equivalent statement is that when A and N are Toeplitz, a sufficient
condition for the noise power amplification to be unity is that At A = I. ,
which is equivalent to a(z)a(1/z) = constant.

The above lemma will be seen to be especially significant after it
is proved that unity noise power amplification is the least:which can
ever be obtained, and when it is shown that simple a(z) functions,
namely all -pass functions, obey the conditions of the lemma. Notice
that the noise power amplification definition was based upon a receiver
which performed the inverse of the encoding operation, and not upon
a receiver which made a least square estimate of the signal given the a
posteriori noise statistics. Consequently, statements about least possible
noise power amplification are not applicable to adapative types of
receivers such as those employing T mEAN 

The following theorem is for block codes with n = k.

Theorem 1: When square block coding is used and N is proportional to
the identity, then the noise power amplification is always greater than or
equal to one, and it is one only when A is proportional to an orthogonal
matrix.

Proof: What is required is a demonstration that:

(i) z[tr -1(A -1)1][tr AA`] > 1

and

(29)

(ii) Equality occurs if and only if A is proportional to an orthog-
onal matrix. (30)

These are established in Section 2 of Appendix 13.
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The following corollary is the Toeplitz matrix limit version of the
above.

Corollary 2: When A and N are Toeplitz, and N is proportional to
I,,, a necessary and sufficient condition for unity noise power amplifi-
cation is that AtA = 100, which is equivalent to a (1/z) a(z) = con-
stant. Otherwise the noise power amplification is greater than one.

When stationary (shift -register) linear -real decoding is used, then
the decoding filter passes the noise through a Z -transform transfer
function. When the noise is statistically stationary, the expected
value of the mean square of the output noise is stationary, and de-
pends only upon the amplitude of the transfer function averaged over
the values of z. However, for burst noise the variance of the mean
square of the decoded noise does depend upon the phase of the trans-
fer function. For burst -noise or impulse -noise channels, this variance
is minimized if the impulse response from the noise to the analog
output of the decoder consists of many small terms instead of a few
big ones.

For quantized signals it is important to minimize the variance of
noise power because fluctuations above the mean of the variance in-
crease the error rate far more than fluctuations below the mean of
the variance decrease it. In order to make the variance of the noise
power small, the impulse response from noise to analog output must
be near its peak for many times longer than the periods of fluctua-
tion in the noise process.

Because trace and expected value operators commute, the expected
value of the output mean square error can be found by substituting
E (N) where N appears, provided the noise process is stationary. This
cannot be done for error probabilities after the quantizer, however.

4.4 All -Pass Z -Transforms

A Z -transform a(z) is defined to be all -pass if la(z)I = constant
for Izl = 1. These are the Z -transform version of two-sided Laplace
(or Fourier) transformed all -pass functions. Figure 2 shows some im-
portant properties of all -pass Z -transforms, including the fact that
a(z)a(1/z) = constant is an alternative definition of an all -pass
Z -transform. The proofs of relationships in the figure not proved
previously are straightforward. The practical implications of these
relationships are that all stationary (shift -register) linear -real coders
should have Z -transforms which are all -pass, in order not to in-
crease the noise power amplification.
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V. A. Kisel' has made an excellent short study of all -pass Z -trans-
forms, with a view toward using them as phase -correcting networks.14
He has shown that networks whose Z -transform transfer function
are of the form

a (z) - 1 + 0,z + ,32z2 133z3

/33 + 132z + 01Z2 + Z3

are all -pass, and that Fig. 3 synthesizes such functions. Additional
modifications are added to this basic structure and implementations
are proposed in the next section.

V. IMPLEMENTATION STUDIES

The decoder for block coding with adaptive mean decoding appears
to require a large modern digital computer, and even then it could
probably only operate "on line" with a slow channel and a block
size not much over one hundred. Further research may lead to A
matrices for which (Q-1 + AW-1A) can be easily inverted for realistic
Q and N, or further research may lead to quicker inversion proce-
dures, but with the present techniques, block coding with adaptive
mean decoding appears to be decidely less practical than other meth-
ods of error control.

The decoder for unadaptive block decoding appears to be generally
feasible if certain simplifying techniques are used. The most impor-

/33

DELAY

2

DELAY

OUTPUT

$1

DELAY

3

Fig. 3 -A shift register (real -number arithmetic) whose Z -transform transfer
function is all -pass. (After V. A. Kisel', with modifications and a correction.)
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tant of these is the use of an A matrix which is a permutation ma-
trix* times diag(Ao, A0....., A0), where Ao is itself a matrix. A0

must be large enough to give adaquate smear, whereas A must be

large enough to make error burst lengths considerably shorter than
the length of a code word. The hardware simplification achieved is

that the inverse of the small Ao can be repeatedly applied in time by
the same hardware so as to invert the larger A. The practicality of
block coding appears to be slightly overshadowed by stationary
(shift register) coding, which offers somewhat simpler circuits and
freedom from the problem of block synchronization.

Stationary (shift register) coding appears to be the most practical
form of linear -real coding. In effect, such coding is a smear-desmear
type of signal processing whenever the encoding and decoding filters
are inverses of each other and of the all -pass type. The fundamental
reason for the practicality of shift register all -pass filters is that
accurately tuned shift registers can be relatively inexpensively
synthesized, even when the dispersion times are several seconds. This
is partly so because the "absolute" tuning of a shift register is deter-
mined by the clock pulses and not the precision of the components
used in making the register, and partly because the "relative" tun-
ing in a shift register is controlled by gains which in practice can be
resistor values. As will be seen, analog shift registers can be imple-
mented digitally, in which case complexity grows only as the loga-
rithm of accuracy. In RLC filter synthesis, in contrast, cost grows
rapidly with accuracy.

Figure 4 is a block diagram for coding of the basic stationary (shift
register) type. The decoder, because it must handle the analog signals
from the channel instead of the digital input signals, is selected to
have the impulse response simplest to implement, namely an all -pass
causal 1/a (z) obtained by a shift register made from a tapped delay
line with a relatively moderate number of taps. The encoder is con-
sequently left with approximating the noncausal a (z), which it does
with a delay by means of a tapped delay line.

The decoding shift register of Fig. 4 can be implemented by the
arrangement of Fig. 5, which is a particular synthesis of the all -pass
shift register shown in Fig. 3. In Fig. 5 all the digital -to -analog con-
version is done by resistor summing networks. This is relatively in-
expensive, although it does require that the flip-flop registers be de-
signed for relatively precise voltage levels on the "on" and "off" states.

. . . . .. ..... . . - -

*A permutation matrix is a Matrix with a single one in each column and
each row; it is always nonsingular.
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DIGITAL DAT A
DATA OUTPUT
INPUT

TAPPED DIGITAL
DELAY LINE

APPROXIMATING
THE NONCAUSAL
a (z) (WITH DELAY)

ANALOG
SUMMER

NONLINEAR
FILTER

( MEAN
SQUARE

CRITERION)

MODULATOR
AND

CHANNEL

SAMPLER

SAMPLER

(z) SHIFT
REGISTER

(SEE FIG. 5
FOR DETAILS)

SHIFT INPUT

SAMPLING INSTANT
DETERMINER

( ASSUMED PART
OF THE BASIC

CHANNEL)

QUANTIZER

ERASURE
ZONE

DETECTION
SIGNAL

(OPTIONAL)

Fig. 4-One possible general arrangement for unadaptive stationary (shift -
register) linear -real encoders and decoders. For multilevel signals, a Gray encoder
can be used before the analog summer, and the quantizer would incorporate a
Gray decoder.

Notice that in Fig. 5 there is only one analog -to -digital converter,
because the analog feedback signal is added to the input signal before
the conversion which is necessary in order to place the signals in
the digital delay line.

The cost of the encoding and decoding shift registers will be roughly
proportional to the amount of smear that they introduce. The amount
of smear necessary for given performance depends upon the noise
power. It follows that a considerable economic saving can be obtained
at given performance if circuits, inexpensive compared to the decoder,
can be found to reduce the noise during bursts.

A new circuit with this purpose for PAM systems is as shown in
Fig. 6. The operation of the circuit requires that the interval between
signal pulses be longer than the Nyquist interval for the bandwidth
of the pulse shape. A way to find part of the noise component is to
sample at the sampling instants, reconstruct the waveform which
would be transmitted if these sample values were the data -signal
values, and then subtract this signal from the actual received signal.
(For proof of this statement, see appendix C.) An estimate of the
instantaneous noise power can be made directly from those noise
components which can be found. These components, for example, can
be used to deduce the presence or absence of a noise burst. The circuit
in Fig. 6 can obtain some noise components,* provided that the taps

* Specifically, Fig. 6 obtains the sample values of (t) of Appendix C at
t = nT/2, n integer. Notice that by construction, (nT/2) = 0 for n even. By
the sampling theorem, just the samples of A(t) will be sufficient to reconstruct
A(t) provided that C(w) is zero for 10,1 > 2 r/T.
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DIGITAL
DATA
INPUT

TAPPED DIGITAL
DELAY LINE

APPROXIMATING
THE NONCAUSAL

a (Z) (WITH DELAY )

-T1 r
ANALOG
SUMMER

SIGNAL SAMPLE
INSTANTS

SAMPLER

CHANNEL

OUTPUT .4 FUANTIZER

a

/ o -
SYNCHRONOUS

/
A

SAMPLER

HALFWAY

DELAY

DELAYED
BETWEEN NOISE ONLY

SIGNAL AT HALFWAY
SAMPLE POINTS

INSTANTS BETWEEN
SIGNALS

DELAYED
SIGNAL

TAPPED ANALOG 41

DELAY LINE

a --1(z)
DECODING

SHIFT REGISTER

SUMMER

SQUARER

SMOOTHING
FILTER

MEMORYLESS
NONLINEAR FILTER

( MEAN SQUARE
CRITERION )

GIVEN SIGNAL
AND ESTIMATED
INSTANTANEOUS
NOISE POWER

Fig. 6 -A stationary (shift register) coder with an adaptive decoder for PAM
channels with white burst noise and pulse rates less than the Nyquist rate.

on the delay line represent the PAM pulse value at t = n772, n odd.
The output noise estimate (specifically o (nT/2, n odd, in the lan-

guage of Appendix C and the previous footnote) is then squared to
produce the sample variance of the noise; then the sample variance
function is put through a smoothing filter, as shown in Fig. 6. The
optimization of this filter is complicated by the absence of an ap-
propriate error criterion, but Wiener filtering principles could be used
to optimize a mean square criterion. The problem formulation would
specify that the sample variance is the true ensemble variance con-
taminated by small sample -size noise, and that the cross -correlation
between the halfway sample process and the sample process could be
found from the autocorrelation function of the channel noise.

Finally, a two -input nonlinear memoryless filter is used, also shown
in Fig. 6. It is reasonable to optimize this filter using a mean square
criterion because in the limit of infinite smearing only the power of
the noise will be significant because of the smearing and Gaussianizing
effects of the decoding shift register. Some improvement may be pos-
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sible by using other criteria, but the details appear to be very dif-
ficult and are unsolved.

The general scheme of Fig. 6 appears to be the most economical
form of linear -real coding when the channel is used for PAM at less
than the Nyquist rate. Telephone lines are used at less than the Ny-
quist rate because they are used with signals with nonsharp-cutoff
frequency characteristics. Radio links can obtain information on non -
tuned burst noise, such as static, by listening on adjacent frequencies,
and could therefore provide the smoothed estimate of instantaneous
noise power, needed as an input to the two -input memoryless filter,
by other means. Instantaneous carrier -to -noise ratios could be used
for carrier systems, for example.

It is also possible to use a different principle of instantaneous noise
power estimation which does not require a PAM channel used below
the Nyquist rate. The other principle uses the quantized structure of
the data stream. It is implemented by a decoder with a "pilot" decoder
which decodes, followed by an operator which squares the difference
between the signal and the nearest quantization level, which is then
smoothed and put into a two -input memoryless filter like that of Fig.
6, following which is the regular decoding shift register and quantizer.
This scheme is probably less practical than Figs. 4 and 6, but it does
give conceptual insights into some of the signal properties which can
be used in decoding, especially for burst channels.

VI. COMMENTS AND SIMULATION RESULTS
Any sample of the decoded noise is a weighted sum of the random

channel noises at many other sample instants. When the number of
terms in this sum approaches infinity and the relative size of the larg-
est term in the sum approaches zero, the central limit theorem applies.
It will probably be true that practical designs will not have the con-
ditions of the central limit theorem fulfilled to the extent that very
small digital error probabilities can be computed by using integrals
of the tails of the gaussian distribution.

Nevertheless, the fact that the decoded noise at any instant is a
sum of the random channel noises at many instants will tend to make
the decoded noise have some of the characteristics of a gaussian dis-
tribution. One characteristic that the decoded noise will have is the
small probability that the decoded noise is larger than three or four
standard deviations. This effect of the decoding filter (or matrix)
will be called the gaussianizing property.

The use of nonlinear filters in conjunction with linear -real coders
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is extremely effective, since such filters can considerably reduce both
the noise power and the probability that the noise has a large peak.
By reducing the probability that the noise has a large peak, the
desirable gaussian distribution of the decoded noise occurs with
smaller matrices, smaller shift -registers, or simpler all -pass filters.
In the limit when the decoded noise is actually gaussian, the noise
power is the only significant statistic; the higher -order moments of
the noise become insignificant due to the gaussian-distributing prop-
erty of the decoder. It is therefore quite appropriate to design the
nonlinear filter using a mean square error criterion, as is done in
Section viii of Reference 9.

Linear -real coding has features which could greatly improve error
detection in channels with burst noise. When erasure zones are used
to detect errors, the gaussian-distributing property of the decoder
greatly increases the ratio of the probability in the erasure zone to
the probability beyond the erasure zone. In addition, the noise spread-
ing gives more opportunities for a signal to land in an erasure zone in
the presence of impulses or bursts, because of randomness of the
decoded noise, and, with suitable designs, because of deterministic
reasons.

If the communications channel is, in order, digital processor to
analog transmitter to analog receiver to digital processor, then linear -
real block coding permits the energy per transmitted data digit to
be altered by reprogramming the digital processors, instead of physi-
cally retuning bandwidths of analog equipment. Although this option
does not in itself affect error control, it perhaps could greatly simplify
the implementation of adaptive communications systems in which the
signal energy per digit is adjusted to be appropriate for the transmis-
sion conditions, message importance, or message load.

A digital computer simulation was run of an additive -noise channel
with a linear -real block -code encoder at the input, and several types
of decoders at the output. Table III shows the results of the simula-
tion. The listed results are averages. The A matrix is the Hadamard
matrix which is generated recursively according to the procedure de-
scribed by Golomb and his colleagues (p. 55, first paragraph in proof
of Theorem 4.5).15 The N matrix had zeros in all off -diagonal com-
ponents, and independent random variables on the diagonals, which
were 0.3 with probability 0.7 and 8.3 with probability 0.3. In ac-
cordance with Theorem 4 in Appendix D, these can be worst -case
values which then give the worst -case decoded mean square error.

Once the N matrix was generated, the channel noises were gen-
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TABLE III - SIMULATED PERFORMANCE OF LINEAR -REAL CODERS

MS ERROR IN
DECODED COMPONENTS

COMMENTS
When receiver

uses perfect
N matrix

When receiver uses
N = diag (ne, me)

where n;'= max (0.3, fi2 - 1)

Mean estimator 0.516 0.711

The lower bound of
equation (13) is some-
what loose; it gives
0.297.

Unattenuated
estimator

2.821 2.821

Equation (12) has cor-
rectly predicted that
the error would be the
same as that of the un-
adaptive estimator be-
cause A is square.

Unadaptive
estimator

2.821

Equation (7) averaged
over the possible N
matrices gives m.s.
error of 2.70. The ran -
domness of the N
matrix accounts for
difference.

Clip estimator
parameters

(1 . 2, 0 . 9, 4 . 0)
1.805

Clip estimator
parameters

(1.0, 0.75, 3.0)
1.152

Clip estimator
parameters

(0 . 8, 0.6, 2.0)
0.771

Clip estimator
parameters

(0.6, 0.6, 1.5)
0.677

Clip estimator
parameters

(0.5, 0.5, 1.3)
0.645

Clip estimator
parameters

(0.4, 0.5, 1.0)
0.649

Channel: Additive noise channel sending +1 and -1 binary numbers and block
encoding with an A which is k-* times the first k columns of an n by n Hadamard
matrix.

n = 16.
k = 16.
Number of words in simulation: 10. Noise type: Zero -mean white Gaussian noise

has variance 0.3 with probability 0.7 and variance 8.3 with probability 0.3.
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erated randomly from a Gaussian distribution having the given N
for a covariance matrix. The clip estimator used a decoder which
first put each received component through a memoryless nonlinearity,
and then decoded the resulting components with the unadaptive esti-
mator. The parameters (x, y, z) indicate that the nonlinearity is a
continuous odd function having slope 1 for inputs of magnitude less
than x, and slope y for inputs of magnitude between x and z, and
slope 0 for inputs of magnitude exceeding z. These parameters can be
chosen to approximate the least mean square memoryless nonlinear
filter referred to earlier, or they can be found by a trial -and -error
procedure with either analysis or simulations to evaluate the resulting
error.

The following two conclusions can be drawn from the simulation,
but it would not be appropriate to generalize them to cases of non -
square A matrices:

(i) For intermittent additive impulse noise of the type simulated,
the simple clip estimator scheme, for appropriate parameters, is
almost as good as the mean estimator, even though it is unadaptive
and therefore requires only a simple receiver.

(ii) The use of rather crude algorithms for generating an estimate
of N appeared to be inferior to clip estimator decoding with appro-
priate parameters.
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APPENDIX A

Justification of Table 2 Equations

A.1 Unadaptive Estimator

In the case of the unadaptive estimator TA = I(kXk), so equation
(3) reduces to equation (4) shown in Table II. Now in general, when
M is the covariance matrix of the decoded noise, the mean square
error will be the average of the on -diagonal terms of M, or in other
words, (1/k)tr M. In this way (5) follows from (4). Equation (6)
follows from (4) because AtA = (n/k)I(kxk) in this case.

A Hadamard matrix is a square matrix with +1 or -1 elements
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and orthogonal columns. (Golomb and his associates fully describe
Hadamard matrices and their application to binary block codes.15)

In deriving equation (7) , a straightforward evaluation of (6) under
the assumption of diagonal N gives the result that

n

= E .

n

assuming:

T is the unadaptive estimator

N = diag (n n2 , ,nn).

The on -diagonal terms of the above can be evaluated by using the
Hadamard assumption, which causes (all) 2 to equal 1/k for all 1 and
i. This gives

M = (111 E nzin n /-1
assuming:

T is the unadaptive estimator

N = diag (n 7/2 , 74)

A is 1/(k)1 times the first k columns of any Hadamard matrix.
Notice that the term in brackets is AM, the arithmetic mean of the
set (ni , n2, . , nn)

A.2 Unattenuated Estimator

Equation (8) comes from (3) by direct substitution for the T
matrix.

A.3 Mean Estimator

In the case of the mean estimator,

I (kXk) TA = I (kxk) - (Q-1 AW-1 A)-1 At N-1 A

= I (kXk) (Q' A`117-1,4)'(Atlr',4 Q-1 - (2-')
(Q-1 AtN-1A)-1Q-1. (31)

Substituting (V -AgN-1A)-1(4-for (/(,,k) - TA) in equation (3)
readily shows that

M = (Q' A1N-1

assuming T is the mean estimator.
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A.4 Joint Mean and Unattenuated Estimator
The unattenuated estimator is the special case of the mean esti-

mator when Q-1 -> 0. It is convenient to handle the two cases together
by using the variable a = 1 when the mean estimator is used, and
SZ = 0 when the unattenuated estimator is used.

The next two equations use an approach from Berkowitz.1° Equa-
tion (9) or (11) can be simplified by using the fact that, for any
nonsingular Z,

1
tr =

where At (Z) denotes the ith unordered eigenvalue of Z. The result is
equation (12) . When the signal is white, the relation At (7/ + Z) =

+ Ai (Z) can be used, giving the equality in equation (13) . When
= 1 the positive semidefiniteness of AW-1A causes its eigenvalues

to be real and nonnegative ; when a = 0 the positive definiteness of
AW-1A will now need to be assumed. Because 1/ (as -1 + A) is a convex
upward function of A in the region of possible A, the inequality part
of (13) follows by convexity. This inequality will prove useful later
when-under additional assumptions-the term in brackets will be
found in closed form.

For square orthonormal A, it follows that A-1 = At, so

Xi(AW-1A) = = Xi(N-1)=
x,(N)

Equation (14) results when the above is substituted into (13). Notice
that when a is zero and N is diagonal, this will reduce to AM. On
the other hand, when a is one, this will be less than AM.

When A is rectangular, the next analysis leads to a closed form
solution for the average of the eigenvalues of AtN-1A , under the as-
sumptions of equation (15) , and it also leads to upper bounds upon
the m.s. error. The exact values of the components of A may enter
into the formulas for some statistics of the error. However, in the
first and second moment statistics to be investigated under the par-
ticular assumptions made, it turns out that the only important prop-
erty of the A matrix is the inner product between the ith and 5th
columns. This will always be (n/k) Su, independent of the particular
Hadamard matrix upon which A is based. However, since higher -
order moments are significant, especially in quantized channels, it is
likely that some Hadamard matrices might be more useful for prac-
tical purposes than others.
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Under the assumptions of equation (15), straightforward calcula-
tions will show the following. HM is the harmonic mean of the diag-
onal components of N; equation (15) includes its formula.

(i)

where, for large k

AW-1A - I Ykk HM

E[(17k)"] = 0
all i, j (32)

ER 1702ii] = k22n

(ii) E[ltr A'N-1A1 - (33)k HM

(iii) Var [-1 tr AtN-1A1= -n2 o-2
k

(34)

The above equations are especially useful because they show that

the average of the eigenvalues of A'N'A k HM

This can be substituted into equation (13) to prove equation (16).
Equation (16) becomes an equality when all of the eigenvalues of
A til./-1-A are equal; otherwise the mean square error is greater.

Because the m.s. error evaluated according to equation (12) re-
quires the computation of eigenvalues of typically a rather large
matrix, or the trace formula of (9) or (11) yields little insight, and
because the bound of equation (16) is a simple closed -form equation,
the question arises of whether the bound given by (16) is really
close enough to be used for design and analysis purposes as an equal-
ity. The analysis which follows will derive an upper bound for the
m.s. error, which could be used to develop some sufficient conditions
for near equality of equation (16)

Let equation (32) be used to define Yk, let ,V( (Yk) denote

max 'Xi( (Yk) I ,

and let T be any number such that

kk

1Xi(17012

T < [X'(17k)]2
(35)
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Notice that T can always be as large as 1 and never exceeds k. The
second of the following inequalities is Schur's inequality, which is
valid for any square Yk .1° The first comes from (35) .

k k

.71m(170]2 CE lx,(17012 CE E

Assuming that k is large enough for the weak law of large numbers
to hold permits (32) to be used to evaluate the above double sum,
so that with a few manipulations (36) reduces to

X'(17 k)
7

(36)

(37)

By using equations (13) , (32) , (33) , and (37), and a relatively ob-
vious property of convex functions,* equation (17) is established.

APPENDIX B

Relating Teoplitz Matrix Operations with Z -Transforms

Theorem 2: If

A,, = ai-r
and if

a(z) = E aQz-g
Q--00

converges on Izi = 1 and has no poles or zeros for a finite distance
from Izl = 1, then A-1 exists and

a -1(z) = -
a(z)

Proof : Let

b(z) = a(z) forI z I = 1.

* The property is that if f(x) is convex downward, and

E xi = 0,
i-1

then

max I xi I sR,

+ xi) 5 ff(u - R) ff(u + R).
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The assumptions on a(z) cause aq and b, to have geometrical decay,
and therefore the following converge absolutely:

(BA)" = E BiAai = E b, -.a.

Also reducing to the above is (AB) ii. Letting q' = q - j gives

CO

(BA)" = (AB), = E h = b,* aQ
Q --.0

where the * denotes the convolution sum in the line above. Because
b (z) a (z) = 1, it follows that

bq * a,j,_i = oi,i

So BA = AB = I., thus proving that B is the inverse of A, which
completes the proof.

The following have proofs similar to that of the theorem.

Lemma 3: If A and B are Toeplitz, then C = AB is Toeplitz with

c(z) = a (z)b (z) .

Lemma 4: The half -power of a Toeplitz matri-c N can be defined by

(z) =n(z)
The following has a straightforward proof:

Lemma 5: If A is Toeplitz, then At is Toeplitz and at(z) = a(1/z).

The following relates linear -real coding for Toeplitz matrices with
Wiener filtering.

Theorem 3: When A, Q, and N are infinite Toeplitz, then the least
mean square estimator

T = AtN-1A)-1A`N-1

is the infinite Toeplitz, and the noncausal Wiener filter, given by

q(z)a(1z)
t(z)

n(z) a(z)q(z)a(z)
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Proof: By Theorem 2 and Lemmas 3 and 5.

1(z) =
1 a(1) 1

1 a (1z z)a(z)

n(z)

q(z) n(z)

This equals the stated result, which completes the proof.

Corollary 3: When A =

T = ((2-1 N -1)-1N'

and

q(z)
t(z) =

q(z) n(z)

is the noncausal Wiener filter.

The following proof of equation (29) and statement (30) follows
the ideas of J. E. Mazo. For square A,

tr [A. -1(A.-1)1 = tr RA -TA -lb

since in general tr HC = tr CH for square H and C. Now let B =
AAt. Notice that (A-9 'A-1 is B-1. Equation (29) is then:

1 tr ./3-1 tr B > 1.

But

tr B = E A; (B)

= L

SO

1 _ k ;=,
-3 tr B tr B =

1

1
k1

Xi(B)

The numerator and denominator are respectively the arithmetic and
harmonic means of the eigenvalues of the B matrix. Hardy, Little-
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wood, and Polya (p. 26, special case of 2.9.1) show that this ratio
always exceeds one, except when the eigenvalues are all the same, in
which case it is one." This proves (29).

At equality B has equal eigenvalues, and since it is symmetric the
eigenvectors span the space and B is proportional to an orthogonal
matrix:

B = XU = P-1(XI)P

= Pt(XI)P

because B is symmetric

= X/.

Therefore AAt = Al and A-4 = AA', so A is proportional to an orthog-
onal matrix at equality, thereby establishing (30) and completing the
proof of (29) and (30), thereby completing the proof of Theorem 1.

APPENDIX C

Finding Noise Component

In the text we discuss the circuit shown in Fig. 6 and state that a
way to find part of the noise component is to sample at the sampling
instants, reconstruct the waveform which would be transmitted if
these sample values were data -signal values, and then subtract this
signal from the actual received signal.

The proof of this statement requires the use of the valid converse
of the sampling theorem, which states that an arbitrary function
with frequency components out to 10)1 = ir/T1 cannot be reconstructed
from samples every T seconds if T > T1. If it is assumed that

(i) h(0) = 1
(ii) h(nT) = 0

(iii) H (w) is nonzero for I 0) I < r / T ,
(iv) T1 < T
(v) The additive noise c(t) has components at all frequencies for

which H(0)) has components,

then it follows that

actual sample at t = c(t) + E rnh(t - nT)
.
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predicted sample at t based upon

samples at nT, n = 0, ±1, ±2,  = E [r c(nT)]h(t - nT)

A(t) = difference of the above = c(t) - E c(nT)h(t - nT).

By using a well-known result in sampling theory12 the Fourier trans-
form of A (t) can be written as either of the following.

A(co) = g[A(t)] = C(w) - H(w) E c(nT)e-i'T

nT27)
= C(w) - H(co) E c(u)

By the converse to the sampling theorem, no H(co) will make o(w)
zero for all w. Consequently, A(w) contains some components of the
additive noise. If T, z T/2, then the direct sampling theorem shows
that samples every T/2 are sufficient to reconstruct A (t) .

APPENDIX D

The purpose of this appendix is to state and prove the following
theorem.

Theorem 4: Assuming

(i) Channel I has additive noise c independent of the signal b
(ii) Channel II has additive noise g independent of the signal b

c and g are zero mean, and each is even about its mean
(iv) F(a) = pact < a), (a is defined to be nonnegative)
(v) K(a) = P (I 9 I 5- a)

(vi) In both channels signal plus noise are passed through the memory -
less nonlinearity nl( ) at the receiver

(vii) nl(x) is odd
(viii) nl(x) has a slope bounded between 0 and 1 for all x, and this slope

is monotonically decreasing in I x I

(ix) The mean square errors of channels I and II are M SE, and M SE ,

respectively.
(x) Channel I is noisier than channel II in the sense that F(a) K(a)

for all a, which means that for every bit of probability density c has
at ±i3, g has an equal amount at a distance which is at least ±fl,

then

MSE, z MSEH.
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(Thus, worst -case noise gives worst -case results with these non-
linearities.)

The next definition and lemma are used in the proof of Theorem 4.

Let MS (a) denote the special case of MSE, of Theorem 4 when

P2(c) = 15(c + a) + o(c - a) (38)

where a is a positive constant, and 8( ) denotes the Dirac impulse
function.

Lemma 6: Under the conditions of Theorem 4, (aMS(.)/a«) > 0.

Proof:

MS(a) = f f [nl(b e) - b]2p1(OP2(c) de db. (39)

Substituting equation (38) for la:, (c), integrating with respect to c, and
then taking partial derivations with respect to a gives

8M S(«)
- {[nl(b + a) b] dnl(x)

dx b+a

A

- [nl(b - a) - b] dnl(x)
dx- b-

C D

1(b) db. (40)

Now

[assumptions 7, 8] [C < 0 for b > 0, A < 0 for b (41)

[assumption 8] = [D ->-: 0, B 0] (42)

[assumption 8] [B :5_ D when b > 0, B > D when b 0]. (43)

Therefore

Consequently

am sw
a« -

Now

-CD > -CB when b > 0 (44)

AB > AD when b < 0. (45)

[f

o -

[(A - C)D]p1(b) db f' (A - C)B]p,(b) db. (46)
0

A -C = r- dnl(x)
ib-a dx

(47)
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and by assumption 8 the integrand is nonnegative, so both sides of
(47) are nonnegative. This fact and (42) , and the nonnegativeness
of pi (b) , make the right side of (46) nonnegative, which proves the
lemma.

Proof of Theorem 4: The assumed evenness of the noises, and the
linearity of the expectation operator, permit the MS (a) function to
be used to evaluate the mean square error, as follows

MSEI - MSEII = MS(a) dF(a) -f MS(a) dK(a). (48)f
0

The above right side can be combined into one integral, such that
integrating by parts gives zero for the end conditions plus the result-
ing integral.

MSEI -M SE, = [K(a) - F(a)]
da

{dMS(a)} da. (49)f
Assumption 10 makes the bracketed term nonnegative, whereas
Lemma 6 makes the braced term nonnegative, so the right side of
(49) when integrated is nonnegative, which proves the theorem.
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Matrix Multiplication and Fast
Fourier Transforms

By W. MORVEN GENTLEMAN
(Manuscript received January 29, 1968)

Factoring a matrix and multiplying successively by the factors can
sometimes be used to speed up matrix multiplications. This is, in fact,
the trick which creates the fantastic gains of the fast Fourier transform.

The same trick which creates the fantastic gains of the fast Fourier
transform may be used with other matrices.

As an example, suppose the matrix

1 -10 4 3 -14 12

-5 2 -20 -7 6 -28
2 -20 1 6 -28 3

-20 1 -10 -28 3 -14
4 -5 2 12 -7 6

-10 4 -5 -14 12 -7
is to be multiplied by a large number of different vectors, so that it
is worthwhile to try to be as efficient as possible. At first glance, it
would appear that (neglecting the possibility that multiplications
by one might not actually be performed) multiplying this matrix
with a single column vector would require 62 = 36 multiplications
and 6(6-1) = 30 additions. The crafty person, however, might notice
that this matrix may be written as the product of two matrices:

1 2 4 1 3

-1 -2 -4 -5 -7
2 4 1 1 3

-4 -1 -2 5 7

4 1 2 -1 -3
-2 -4 -1_ 5 7

1099
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The zero elements in the decomposed form have been written as
periods to emphasize that these elements need not really enter into
the computation when either of these matrices multiply a vector.
In view of this, multiplying sequentially by the two factors would
require only 6(2) + 6(3) = 30 multiplications and 6(1) + 6(2) = 18
additions.

If we are really concerned about efficiency, more can be done by
taking into account other special elements. For example, observing
that 1 or -1 require only an addition or subtraction would save 3
multiplications in the original form, and 9 multiplications in the
decomposed form. Other savings could be made if some of the ele-
ments of a column were negatives of other elements in the same
column.

In the three years since the fast Fourier transform was first pub-
lished,1 there have been numerous accounts of what it is and why it
works. The more mathematical of these tend to explain it in terms
of the fact that the quotient group of a cyclic subgroup of order
MN relative to its cyclic subgroup of order M is itself a cyclic group
of order N. Those accounts written by computer people usually con-
sider the binary representation of the time and frequency indices,
and observe how each bit enters into the summed products. And
accounts written by engineers invariably explain the algorithm in
terms of merging the spectra of suitable decimations of the original
series to form the spectrum of the original series itself.

These approaches are, of course, all quite valid, but they miss the
essence of the fast Fourier transform which is, in fact, contained
in the example above. If we wish to multiply a matrix M by a column
vector x, it may be possible to find a factorization M = AB such
that forming first y = Bx then z = Ay requires less multiplications
and additions than would forming z = Mx directly. The factors
A and B might themselves be able to be factored further profitably.

The fast Fourier transform is a special case of this, where the matrix
of interest is the finite discrete Fourier transform matrix whose ele-
ments are exp an-i(a/N) for and t from 0 to N - 1. It is really quite
irrelevant that the factors turn out to be (except for a permutation and
phase shifts) block diagonal matrices where each block is of the same
form as the original matrix-this fact is only used in showing that the
factoring can be continued.*

Indeed, the example above has exactly the same structure as a
* In fact, for the fastest programs it is not even quite true. See Bergland.2

The factors there are not equivalent to each other as the "twiddle factors" have
been redistributed to increase the number of coefficients having simple forms.



FAST MATRIX MULTIPLICATION 1101

6 = 3 X 2 point fast Fourier transform, except that the nonzero
elements in the factors are different. And it achieves exactly the
same savings that the fast Fourier transform does in this case. Even
the comments about taking advantage of explicit plus or minus ones
or negatives of other elements in the column reflect features cur-
rently in the better fast Fourier transform programs.

Having seen that the possibility that matrix factoring will speed
things up is not unique to the finite Fourier transform, we might
ask when we can expect to take advantage of it. It is immediately
evident that it does not improve things all the time. We cannot, for
example, reduce the number of operations required to multiply by a
diagonal matrix. Can we then identify those matrices for which it
is useful? Unfortunately not, except by exhibiting a factorization
with the required property.

At this point it is useful to observe that, taking advantage only
of zeros and ones, there always exist factorizations which do at least
as well as the original matrix. This is trivially true if one of the
factors is some permutation matrix, but more interestingly so if we
consider factors generated by row (or column) elimination as used
in the Gaussian elimination method of solving simultaneous linear
equations. In matrix terms this process is based on the observation

rill M12 m,,,

1112, m22 m2-

1 m1, m12 MI.

r 1 _m2, rmll m22 - rm12 m2 - rm,
The parameter r is then chosen to make one of the elements in the

second row vanish. Since this means that the right factor takes one
less multiplication and one less addition than the original matrix did,
and since the left factor clearly only requires one multiplication and
one addition, the total number of operations for the two factors is
exactly the same as for the original matrix.

In other words, row (or column) elimination preserves the number
of operations required to form the product of the matrix with an
arbitrary vector. This assertion assumes, of course, that in the elim-
ination we do not destroy more special elements (such as zeros or
ones) than we create. In fact, if we can create more of these special
elements than we had before, we have won: we have achieved a
factorization requiring less operations than did the original matrix.
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-4

Notice that in the above example we used a nonsquare matrix. In
fact, nothing in the whole discussion suggested M be square, and
considering nonsquare matrices is no more difficult than considering
square ones. An immediate application of this is to the case where
a set of only a few Fourier coefficients are required from a large
number of very long sequences. Up until now, usually the best that
could be done was to compute the complete fast Fourier transforms
and discard the unneeded coefficients.

But it is apparent that by carefully factoring the matrix consisting
of those rows of the finite Fourier transform matrix which are of
interest, a more efficient algorithm can be produced, tailored to the
problem. A reasonable factorization to start from might be fast
Fourier factorization of the complete matrix. This is illustrated below
for the case where three coefficients are wanted from an eight point
transform. The four factor matrices are the reordering and the three
passes of the Cooley factorization. Only those rows of each matrix
which are marked by arrows need actually be computed. (W = exp

explicit negatives and ones are represented as such).[ (2774)/8],

1 1 1 1 1 1 1 1

V4

1 W W2 W3 -1 -W w2 -W3

1 W2 -1 w2
1 W2 -1 w2

1 W3 -W2 W -1 -W3 W2 -W
1 -1 1 -1 1 -1 1 -1
1 -W W2 - W3 -1 W w2 W3

1 -W2 -1 W2 1 -W2 -1 W2

_1 - - w2 -W -1 w3 W2 W_

1 1 -4 1 1

1 1 W2

1
w2 --> 1 -1

1 W3 1 - W2

-1 -4 1 1

1 -W 1
-Fr

1
w2 -> 1 -1

1 - w3_ 1 -w2_
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-4.

-3 1 1

1 -1

1

1

1

1

1

We could also have regarded ±i as special elements.
Our suggestion then is that if one has a matrix which he wants

to multiply efficiently into a great number of arbitrary vectors, it
might be worthwhile to try to find a factorization of the matrix such
that multiplying sequentially by the factors is cheaper than multiply-
ing by the original matrix. Indeed, it is worthwhile to try to find an
extremely good, perhaps even the best, such factorization.

Since we cannot identify a priori matrices for which this can be
done, let alone give an algorithm for finding the best or even just
a good factorization, the best we can recommend is to generate trial
factorizations and compare them. A useful tool for this is row (or
column) elimination: because of the invariance property mentioned
earlier, such a factorization cannot lose much, and might gain. As
an exercise to the reader, we suggest deriving the factorization of
the matrix given at the beginning of this paper, or the eight point
fast Fourier transform above. Notice that in the case of the fast
Fourier transform it is useful to express the matrix in real arithmetic
before reducing it, because then it is more obvious how to go further
in the reduction, since in the computer it is usually the number of
real operations that counts.
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On a Class of Configuration and
Coincidence Problems

By Z. A. MELZAK*
(Manuscript received August 28, 1967)

Let A and B be sets in En where B is convex and symmetric about o.
Let n points be taken in A and let B. be the translate of B centered at the
ith one. Let Y be the subset of the Cartesian product An, corresponding to
the configurations (B1 Bn) such that no more than p - 1 sets B
intersect, or corresponding to any similar configuration condition, expres-
sible in purely Boolean terms. The problem of evaluating various integrals
over Y generalizes a number of questions in queuing, telephone traffic,
statistical mechanics of hard spheres, and so on. This article gives a complete
solution for certain special cases, and discusses numerical (Monte Carlo)
techniques.

I. INTRODUCTION

We consider here a number of problems of the following general type.
Let A and B be two sets in the m -dimensional Euclidean space En' (m1).
B is assumed to have a center of symmetry and for any point x B(x)
denotes the translate of B centered at x. An integer n(n > 2) is fixed
and the n -fold Cartesian product A X A X  X A is denoted by P.
If u E P then u = (x, , , xn) where xi E A for i = 1, - , n; we shall
be interested in the sets B(x,), , B(x). By a configuration condition
we shall understand a statement referring to the relative positions of
the sets B(x,), , B(xn) and describing their intersection properties
in purely Boolean terms.

Examples of admissible configuration conditions are : (i) the n sets
are pairwise disjoint, (ii) their intersection is empty, (iii) their union is
connected. A configuration condition which generalizes (i) and (ii) is: an
integer p is given (2 p S n) and no p of the n sets intersect. Any admis-
sible configuration condition C induces a partition of P into two disjoint
and complementary sets Y = Y(C) and N = N(C) ; if u = (x , xn)

* University of British Columbia, Vancouver.
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P then u E Y if and only if the condition C holds for B(xi), , B(x.).
Finally, a function F = F(xi , ,x,i) is defined over P and dV denotes
the volume element dx1  dx. Our problem is to evaluate the integral

J= f F dV.

In all cases to be considered the sets A, B, and Y, as well as the
function F, will be sufficiently regular so that the questions of meas-
urability and integrability will not arise. In fact, in most cases of
interest B turns out to be a ball, a cube, or an 7n -dimensional regular
octahedron. All these are Minkowski balls for a suitable norm p (6) =
p (ti , . . . , a). We get the Euclidean ball with

P(s) = t: ') ,

the cube with p(/) = max (el, . . , en) , and the octahedron with

PM = ti

It will be therefore assumed throughout that B is a Minkowski ball.
This amounts simply to assuming that B is a convex symmetric body.
The precise shape of A is of no particular importance, only its con-
tent and sufficient regularity are.

The integrand F will be usually of some highly symmetric type
such as

F= 1, F= f(x;), F= II f(I xi-xi I),
isi<i,n

where f is a suitable sufficiently regular function.
In this part of the paper we are concerned with certain special

configuration conditions which lead to an explicit expression for J in
terms of the so-called cluster -integrals. Later we consider a related
expansion of the form

J = E
1 -0

(1)

where the parameter A measures the ratio of sizes of B to A. We shall
take up the questions of the existence of the expansion (1) and the
regularity of J as a function of A.
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II. EXAMPLES

Example I

Let m = 1, A is the interval [0, 1] and B is the interval [0, a], n is
any integer such that (n - 1)a LC. L, the configuration condition is
that the sets B(x1), , B(xn) are disjoint, and F = 1/L. J is now the
probability that with n points at random on the interval [0, L] no two
points are closer than a.

Example 2

Let m, A, and B be as above,

F(x, , x.) = II f(xi)

where f(x) is a probability density on A. The configuration condition
is: p is an integer (2 < p n) and some p-tuple of the sets B(x1), ,

B(x) is to have a nonempty intersection. Here we have the following
interpretation: [0, L] is a basic time interval and n events occur during
that time. Each event occurs independently of the others with the
probability density f(x). A p -fold coincidence is defined to be the com-
pound event arising when some p events occur closely together-on a
time -interval of length a. Now J is the probability that a p -fold coinci-
dence occurs.

The above examples show that problems of our type might be of
interest in queuing theory, telephone traffic, the theory of particle
counters, and in similar areas. The next example is a scattering
problem for a random linear array of n identical isotropic point -
scatters, no two of which can be too close together.

Example 8

Let m, A, B, and C be as in example 1. We suppose that the wave-
length is 27r and that L is an integral multiple of it. Aside from propor-
tionality factors the signal scattered by the array is the vector (e,
where

= cos xi , n = E sin x; .

We are here interested in the probability P (u, v) that

u < .u-Edu and
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The Markov method' gives

where

P(u, v) = (270-2JA-, f
.. f 20

- CO -
e -'"+")13(r, s) dr ds

B(r, s) = f exp E cos xi s E sin xi)] dV .
Y A 1 1

J.4 and YA are the integral and the region of example 1, respectively.
Therefore the spectrum B (r, sl is obtained in the form of our integral
J if we take

F = 11 f(x,), f(x) = e i(r clos x+a sin z)

When a = 0 then P(u, v) reduces to the probability density for the
isotropic plane random walk of n unit displacements in arbitrary
directions.

Example 4
Let m = 3, let A be any large and sufficiently regular portion of

space, and let B be the ball of radius a. The configuration condition
is that no two sets B (xi) and B (x5) overlap. There is a suitable given
function r (x) and

F(x , = eIsi<is.

Now, aside from some simple normalization factors, J is the so-called
partition function for a hard -sphere model of idealized gas with inter-
molecular potential r and the hard core radius a.2

The knowledge of J is here of considerable importance in statistical
mechanics and a great deal of work has been done on the subject of
evaluating J in the form (1) which is closely associated with the so-
called virial expansion.

III. A SPECIAL CASE

The method to be used involves certain dissections of Cartesian
products together with the inclusion -exclusion principle of combina-
torics.3 As an illustration and an introduction to the more complex
examples which follow, we consider here at some length example 1
of the previous section, The material is taken from Ref. 4, where some
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further details can be found. The well-known solution' is here

J = J(n, a, L) = [1 - (n - 1)a/L]" (2)

and it may be obtained analytically as follows.
Let the coordinates of the n points be xi , , xn ; these can be ordered

in n! ways. Suppose that 0 5 xi 5x2 5 5 xn < L; the conditions
of the problem are satisfied if and only if

0 5 xl x2 - a 5 x3 - 2a
5  5 x. -(n- 1)a - (n - 1)a. (3)

Let yi = - (i-1)a (i = 1, . . . , n), then the probability that (3)
holds is L-3 times the volume of the region in En consisting of the
points y = (yi , , yn) for which

0 5 yi 5 y2 5  5 yn L - (n - 1)a.
The volume in question is [L- (n-1)an] /n! ; since there are n! equi-
probable orderings we get (2) at once.

Consider next an alternative geometrical proof of (2), which is
considerably more complicated, but leads to useful generalizations
and gives some additional insight.

First, let n = 2. The sample space of pairs (x1, x2)(0 5 xi , x2 5 L)
is the
containing the origin as a vertex. Let D be the diagonal of Q through
the origin and draw the two lines parallel to D at the distance 2 -la
from it. The hexagonal subset of Q contained between those two lines
is the sample space of the forbidden configurations with lxi - x2I 5 a.
The remainder of the square Q consists of two congruent triangles which
can be moved together so as to form a square Q1, of side -length L - a.
By the randomness assumption J(2, a, L) is the ratio of the areas of
Qi and Q which yields (2) for n = 2.

The case of arbitrary n is handled similarly. In En we take a
Cartesian coordinate system with the n axes X1, . . . , X. The n -
dimensional cube

H = (xi , , xn): 0 5 x; < L, i = 1, , n}

is then the sample space of all n-tuples of points on the segment [0, L].
Let be the interval [0, L] on the Xi- axis. In the two-dimensional
square face Qii = I; X I; of H let Di; be the diagonal through the
origin and let Hii be the hexagonal subset of Q1, consisting of all points
no further from Di; than 2-4a. Let S,, be the Cartesian product of Hii
with all the /k's for which k i and k j.
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Sii is now the sample space of the configurations which are forbidden
on account of too close approach of the points xi and xi for the chosen
indices i and j: lxi - xii < a. The sample space Y of the allowed con-
figurations is therefore the set

H - U S..

Isi<fgn

When the (2) paradiagonal slabs Sii , based on the paradiagonal sets

Hii , are removed from H, the remainder of the cube H consists of n!
congruent simplexes which can be reassembled by suitable translations
so as to form a smaller cube Hi of sidelength L - (n - 1)a. By the
randomness assumption J(n, a, L) is the ratio of the volumes of the
cubes H, and H, and so (2) is proved again.

The above procedure works on account of a lucky geometrical accident
of the fitting of n! simplexes. If A and B were some other, m -dimensional,
sets, we could still form the paradiagonal sets and slabs and we could
attempt to find the volume of the union U Sii of all the paradiagonal
slabs. This is essentially what is done in the next section by means of the
inclusion -exclusion principle'.

IV. SIMPLE COINCIDENCE WITH SEPARABLE INTEGRAND

In this section we are concerned with a configuration condition cor-
responding to simple coincidence: u = (x, , , xn) E Y if and only if
for some i and j B(xi) and B(xi) intersect. Subject to general restric-

tions, A, B, m, and n are arbitrary. We let N = (2) and we form the N

paradiagonal sets

Hii = f (xi , B(xi) n B(xi) 401

and the N paradiagonal slabs

= {(x, , , B(xi) n B(xi) 1.

Let the slabs be enumerated by a single index as {Sk), k = 1, . . . , N.
Then an application of the inclusion -exclusion principle gives

fy
F dV = E (-1)- F dV 4)1 E E

r-1 lgks<k2<...<kr5N
1 (

= E (-1)"11,. .
r-1
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With the general integrand no further elaboration of (4) is possible.
Suppose now that F has the separable form

F = 11 f(xi). (5)

With the double -index enumeration of the Sii's the first term K1 can
be written as

Ki = E f IJ f(xi) dVisii<iisn 4iiii 1

and since all the N paradiagonal sets are congruent, we have

K1 = N(f f(x) dx) f f(xi)gx2) dx1 dx2

n-2

A

For reasons which will be clear shortly we write

Ni, = N, f f(x) dx = Jo fi. Rxi)gx2) dx1 dx2 = J11 (6a)
A

so that

K1 = . (6b)

Similarly, the second term K2 in (4) is

nK2 = E E f Ti f(x) dV
(ii,ii) 1

where the summation extends over all distinct pairs (i1, j1), (i2 , 52)
such that 1 S i1 < jl S n, 1 5 i2 < j2 S n; no regard is paid to the
order of pairs; [(1, 2), (3, 4) is the same as (3, 4), (1, 2)] so that there
are exactly

C(2/

such pairs of pairs. There are two types of these: N21 pairs like (1, 2),
(3, 4) with all four indices different, and N22 pairs like (1, 2), (1, 3) with
one shared index. By a simple. calculation

N21 = n(n - 1)(n - 2)(n - 3)/8, N22 = n(n - 1)(n - 2)/2,

((2))
(7a)

\ 2N21 + N22 =
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and in analogy to (6) we set

J21 =
4

L,,nri, 4 I

II 1(0 dx, dx2 dx3 dx4

2

[f i(xi)f(x2) dxt dx21 = J;1 (7b)
2

3

J22 = II f (x;) dx, dx2 dx3
Lanni,

so that

K2 = N21Jr4J211 N2241-3./22 (7c)

The main purpose of this section is to develop formulae, analogous
to (6) and (7), for the general term K,. of (4). The principal dif-
ficulty here is that in passing from the single -index formula for K,.

Kr = E  E dV (8a)
1 gki<  <krgN skinnskr 1-1

to the double -index formula

K, = E E f(xt) dV (8b)
(ii.ia) (ir,fr)

we need an adequate description of the different types of r-tuples
of pairs of indices occurring in (4), together with a hold on the range
of summation in (8b). For instance, with r = 2 there are two such
types, illustrated by (1, 2), (3, 4) and (1, 2) , (1, 3) . With r = 3 there
are five types of index -sharing in triples of pairs:

(1, 2), (3, 4), (5, 6); (1, 2), (1, 3), (4, 5); (1, 2), (2, 3), (3, 4);

(1, 2), (1, 3), (1, 4); (1, 2), (1,3) (2, 3); (9)

We may therefore expect that the formula for r = 3, analogous
to (7c) for r = 2, will have five terms rather than two. The number
of such types grows very rapidly with r, and as an aid we introduce
certain graphs associated with the terms of (8). These graphs reflect
completely the intersection properties of the sets B (xi) , . . . , B (x) .
For r = 3 there are five such graphs corresponding to the five types
enumerated in (9). These are given in Fig. 1 together with the cor-
responding B -configurations. (It is, of course, assumed that n > 2.)

Each graph is of the following kind:

(i) No vertex is isolated.
(ii) No pair of vertices is connected by more than one edge.
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2 3

1 4 2 3

6 fo-o5 4 0-05

Fig. 1- Coincidence graphs, r = 3.

1113

(iii) No edge connects a vertex to itself.
(iv) There are exactly r edges.
(v) There are exactly v vertices.

One further, and crucial, condition is added:

(vi) If the v vertices are enumerated in some order then there exists
a configuration of v translates B1, , B, of B, such that B.
and B. intersect if and only if the ith and the jth vertices are
connected by an edge.

For the sake of convenience we make here the following conven-
tion: two convex 7n -dimensional bodies will be said to intersect only
if their intersection is itself rn-dimensional, otherwise they are to be
regarded as disjoint. The reason for this is that we are interested in
purely metric properties: the intersections of such sets serve as do-
mains of integration for well-behaved functions in Em.

A graph satisfying conditions i through vi will be called a (B, r, v) -

graph, one satisfying i through iv and vi a (B, r) -graph, and one
satisfying i through iii and vi a B -graph. It must be emphasized that
the condition vi is not of the usual graph -theoretic kind and it pre-
vents many graphs from being B -graphs. For instance, let m = 2
and let B be a circular disk. Since a disk in E2 cannot intersect six
congruent pairwise disjoint disks, the graphs of Fig. 2 are not B -
graphs.

The proof of the above assertion for the graph of Fig. 2b is obtained
by showing that here the "extreme" configuration is that of Fig. 3.

Similarly, when m = 2 and B is a square then B cannot intersect
five pairwise disjoint translates of itself (for each translate contains
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(a)

Fig. 2- Graphs which are not B -graphs. (B is a disk.)

a vertex of B) so that the graph of Fig. 4a is not a B-graph. On the
other hand, the graph of Fig. 4b, which corresponds to that of Fig.
2b, is a B -graph as shown by the configuration of Fig. 4c.

Returning to the evaluation of Kr we start with (8b). Summation
there extends over all the

(T)
distinct r-tuples of pairs of indices where for each pair , j.)1 S i. <
j. 5. n; r-tuples differing only in the order of pairs are not considered
distinct. We can now associate the terms of (8b) in a 1 : 1 fashion with
the distinct (B, r) -graphs on some n vertices w, , , wn . Given a
B -graph G let

S(G) = n Si; , (10)

where the intersection is taken over all pairs (i, j) for which w; is con-
nected to /Di by an edge in G. Then (8b) may be written as

Kr = E f(xj) dV ,
G S(G) i-1

Fig. 3 - An extreme B -configuration.
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(a)

3

4

2

(c)

Fig. 4 - Configurations when B is a square.

6 7

the summation running over all distinct (B, r) -graphs on n vertices.
Let v(G) denote the number of vertices of G and C(G) a connected

component of G. Since the integrand in (11) is completely separable,
the integral over S(G) splits into a product of integrals over the con-
nected components and we get

Kr = E Jg cG> fJ J[C(G)]. (12)
C(0)

Here J[C(G)] is an integral over the connected component and the
product is taken over all such components of G. Two examples of
integrals J[C(G)] are given in (7b). Owing to the congruence of all
the paradiagonal slabs and the form of the integrand, it is not neces-
sary to sum in (12), over all (B, r) -graphs on the vertices w1, ,

w,,, but only over their types.
Suppose that there are exactly t = t(r) types of such graphs and

let Gi be any one of the jth type; let also Nri(n) be the number of
different (B, r) -graphs on the vertices w1, . . . , w,,, of the jth type.
Then (12) becomes

t(r)
K. = E Ny.,(n),g--(Gi) JJ J[C(G,)] (13)

i-1 cwo
Thus the problem of evaluating J has been reduced through (4)

and (13) to: the geometrical problem of determining the types of
(B, r) -graphs, the combinatorial problem of calculating the coef-
ficients Nri(n), and the analytical problem of evaluating the cluster-
integrals over the connected (B, r) -graphs.

V. MULTIPLE COINCIDENCE WITH SEPARABLE INTEGRAND

Formulae analogous to those of the previous section will now be ob-
tained for the case of p-tuple coincidence. Subject to general conditions,



1116 THE BELL SYSTEM TECHNICAL JOURNAL, JULY -AUGUST 1908

A, B, n, and m are arbitrary and F is of the separable form (5). An in-
teger p is fixed (2 < p < n) and the configuration condition is: u =
(x, , , xn) E Y if and only if there are p indices i, , , 4(1 < i1 < 
< 4 <= n) such that

R(x;.) srk
3-1

We observe here our convention that the intersection must be it-
self m -dimensional. We introduce the analogs of paradiagonal sets
and slabs:

H...i,, = {(xi . . .
, xi) 11 g}

8.=1

8,,..., = {(xi , , xn) : n B(x,) cb} ,

we let M = and we re -enumerate the M sets Si,...i with a singlep),

index k as {SO, 1 S k :5. M. Then we get a formula analogous to (4):

J=
r=1

= EF dVE Ef' dV
isk.<<krgist skinnsk.

= E .

As in (6a) we let

(14)

M = 111, f f(x) dx = Jo n f(xi) dx,  dx = J1, ,

A

to get

U1 = .

In terms of p-tuple indices the second term U2 of (14) is

= E II f(xi) dV.sitipnsii;
The summation extends over the (2) distinct pairs of p-tuples. We have

now p types of such pairs, depending on the number of shared indices,
which may be 0, 1, , or p - 1. Let M2; be the number of p-tuple
pairs of type j (that is, with j - 1 indices shared) and put

2p -i+1

= II f(x1) dx, . . ds2,-i+1 ,
i1-12...7Y-111p+2-i  39- ii -1 i=.1
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V

U2 = E N2, 4 -2D -1-1J2,

Observe that the integral J21 splits into a product: J21 = ,11. To
get an expression for arbitrary U. we introduce a higher -dimensional
equivalent of B -graphs. Let X be a regular simplex in En-' on the vertices
tvi , , tv . On account of properties i through iii listed in Section IV,
a (B, r) -graph is simply a set of certain r edges (or one-dimensional
faces) of X. A d -dimensional hypergraph G will be just a set of some of

n
1

the (d + d -dimensional faces of X. This takes care of properties

i through iii. When there are r such faces in G we shall speak of an
(r)-hypergraph and when these faces comprise between them v vertices
of X, G will be called an (r, v)-hypergraph.

An equivalent of the important condition (vi) is very naturally
obtained: there is a B -configuration of v translates B,, , B, of B,
such that any d 1 of them, say, B,, intersect if and only if
wit , wid+i are the vertices of a d -dimensional face of X included
in G. Components, types, and so on, for (B, r)-hypergraphs are defined
in the same way as before. For instance, a hypergraph G is connected
if no plane disjoint from it can strictly separate some of its d -faces from
others. All quantities such as C(G) and v(G) have the same meaning
as before. Let t = t (r, d) be the number of different types of (B, r)-
hypergraphs, let Gi be any one hypergraph of the ith type, and let
Aid; (n)be the number of different (B, r)-hypergraphs of the jth type on
the n vertices. Then, proceeding as before, we get the equivalent of (13):

t(r.p-1)
Ur = E mr7.(n)4"-"," II J[C(G;)]. (15)

C(G1)

VI. SOME COMBINATORIAL PROPERTIES OF B-GRAPHS AND B-HYPERGRAPHS

Let cp (r) and (r) be the smallest and the largest number of ver-
tices, respectively, in a (B, r, v) -graph G. From conditions i through
iii we have at once ii (r) = 2r. G is then minimally connected with r
components (Fig. Sal. Suppose that r is a triangular number: r =
s(s-1)/2; there is then a complete graph on s vertices which is
clearly a B -graph for any B, so that s = v. If r is not a triangular
number let t(t-1) < 2r < t(t+1) and put e = r-t(t-1)/2.

Let G be the complete graph on t vertices. For the corresponding
B -configuration we may assume that the translates B1 , B, of B
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I 0-0 1 0 0 0 1 0 0 0 0 0 1 -0 0...--0.-0

2 0-0 20-0 2 0-0 0---.<) 0....:).....0

r-2 o-o
-

r -2 o-o
-i

r -2 0.--.0 o-o 0,...m..0

r i o-o r o-o
ro-o

(a) (b) (c)

Fig. 5 - (B, r, v)-graphs with high v.

have an interior point in common. We check that e < t and that B, , ,

B may be arranged so that a point z e ry,B, can be strictly separated
from (Y.+, B. by a plane P. Let B2, be a translate of B which contains

z and lies strictly on the same side of P as z. Then the resulting B -
configuration B , B, corresponds to a (B, r, v) -graph G with
v = t 1. This G may be said to be a maximally connected (B, r, v) -
graph. We have now

,y(r) = 2r, ,,o(r) = min {j : j [1 ± (1 8r)1]/2} .

Similarly, let co(r, d) and /'(r, d) be the corresponding minimum and
maximum of v for a (B, r, v)-hypergraph. Then clearly kr, d) = (d + 1)r.

To determine io(r, d) we suppose first that r = (d 1). There is then

a complete hypergraph on s vertices, consisting of all the d -dimensional
faces of an (s - 1) -dimensional simplex. This hypergraph is a B-hyper -

graph for any B and so v = s. If

td 1
< r <

we proceed as before and find that v = t 1. Hence

0(r, d) = (d + 1)r, co(r, d) = min fj :

j k largest pos. root of x(x - 1) (x - d) = (d ).

The bounds r (r) and (r) lead us to the possibility of a combina-
torial identity

((2
)) = A rk (k7 k -V(*) ) (16)
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and its relation to B -graphs and the numbers Nri(n). For instance,
we find for r = 2

((23)) = 3(14) + 3(713) '

((2)) is the total number N21 + N22 of graphs of (7a) and
2

3(n4/ )

l3/
(n) ,

iv22

To prove the validity of an expansion like (16) for all n observe
that the left-hand side is a polynomial in n of degree 2r = Or) so
that

(T) = r Ark(k)

Further, Ark = 0 for k < so(r), for we substitute successively n = 0,
1, , co(r) - 1 in (16) and recall that (P) = 0 for p < r. By expanding

both sides of (16) in powers of n and comparing the coefficients we find

Ar 2r = (2r) !/2rr!, = (2r - 1) V2r-2(r - 2) !,

Ar 2r-2 = (2r - 2)!(3r - 1)/3.27-1(r - 3)!
and so on. Therefore (16) may be written as

(7.'2')) = (n)2r/(2 r!) (n)2,._,/[2 -1(r - 2)!]

(n)2r-2/[3.2r-1(r - 3) ! (3r - 1)] + (17)
2r-w(r)

= E (n)2, -./D,
(n), stands for n(n-) . (n-p+1).

The denominators Di have the following interpretation. Consider
first the (B, r, 2r) -graph of Fig. 5a. The 2r vertices can be chosen out
of w1, . . . , wn in (n)2r ways. We define the symmetry number for
a (B, r, v) -graph to be the number of ways in which its vertices can
be labelled with integers 1, 2, . . . , v, all of which ways are to corre-
spond to the same B -configuration. Here the symmetry number is 2rr!,
as there are 2r ways of permuting the labels on the two vertices of a
component and r! ways of permuting their components. This leads
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us to the first term (n).,./2rr! in (17) which is precisely the number_
Nri(n) of (13) provided that we consider G1 in (13) to be of the type
of Fig. 5a.

Similarly, for the (B,r,2r -1) -graph of Fig. 5b we find the sym-
metry number to be 2r -1(r -2) !. The number of ways to choose the
2r-1 vertices is (n) 2r-1 and so we get the second term (n)2r-1/2'
(r -2) ! of (17). The situation gets somewhat more complicated for
the (B,r,2r -2) -graphs. Here we have three types instead of one,
illustrated in Fig. 5c. The 2r-2 vertices can be selected in (n) 2r-2
ways, the symmetry numbers for the three types are

2r -2(r 3)!,3.2r -2(r - 3) !, and 2r -1(r - 4)!. (18)

Therefore, the corresponding numbers of graphs, say Nr3 (n) N,.4 (72,)

Nr5 (n) are

(n)2r-2/[2r-2(r - (n)2, -2/[3.2r-20" (7)2,-2/[2r-lfr - !]

and their sum is precisely the third term of (17). The corresponding
denominator D2 is therefore three times the harmonic mean of the
three symmetry numbers in (18).

Thus the first few terms of (17) give the total numbers

of (B,r,v) -graphs for v = 2r,2r -1, and so on. However, this pleas-
ing circumstance breaks down as soon as we reach the smallest term
i for which one of the types of graphs in question is not a B -graph.

For the case m = 2, B a circular disk, this occurs for i = 7 and the
graph in question is then that of Fig. 2a together with other components
containing one edge each. When B is a square the graph of Fig. 4a shows
that the breakdown occurs for i = 6. On the other hand, the quantity
(n)2r_,/1), from (17) always provides an upper bound for the sum
E Nri(n), the summation extending over all types j of (B, r, 2r - i)-
graphs.
The explicit form of (16) is

where q = (r) and

2r it
((r I3)) = E Ark(

k\

Ark = (-1)i(k)(r1)).
=0 r

(19)

(20)



CONFIGURATION AND COINCIDENCE 1121

We prove (2) by induction on k. For k = q, (20) holds, suppose it to be
proved for k 5 q s - 1. Let n = q s in (19), then

\q
which by the induction hypothesis may be written as

= (_iy(q k°4.-i))
a-0 r

In the double sum we may sum first over those terms for which the
difference u = i - j is constant, then over u. In this way one gets

A,+ = 1C+21)\\ J. -FE (-1)-(q s)
((°u -o q r

which after some simple algebra becomes (20) with k = q+s. This
completes the induction and the proof of (20).

Some combinatorial identities may be obtained from the above.
For example, we know that Ar2r = (2r) !/2rr!. Hence, on putting k = 2r
in (20), we get

2r -q

E (-1)'(211 1) (2r) !.

-i\

Similarly, with k = 2r - 1 and k = 2r - 2 we get

and

(21)

2r -a-1 97. (2r-1)
E (-- 2 i) (2r - 1)!/2'(7. - 2) ! (22)

2r-47-2

(- we/. - 2)((2";i1/)
k r

= [(2r - 2)! (r - 1/3)]/2-1(i. - 3) !. (23)

For hypergraphs we have the identity

((I;)) = Ark(d) (ic)
(24)

where q = r(r,d). The explicit expression for the coefficients Ark(d)
can be found in the same way as (20) :

Ark(d) = E (-i)1( (k- ')).
(25)

k
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Some of the higher coefficients Ar dr, Ar . . . can be evaluated by
comparing the powers of n in (24) :

A,. dr(d) = (dr)!M(d0r, Ar dr-i(d) = (dr) !d(r - 1)/2./1(d!)?

and so on, so that by putting k = rd and k = rd - 1 in (25) we get
dr-a j)

E (-1)7 kd ') = (dr)!/r! (d Or (26)
a -0

and

dr-a-iE (dr - 1) ((dr-cri))
f =0 r / (dr)! d(r - 1)/2.r! (d!)r . (27)

The coefficients Akr(d) have the same interpretation with hyper -
graphs as the Akr have with ordinary graphs, and they refer to
symmetry numbers.

VII. SIMPLE COINCIDENCE IN A CUBE

We consider here the problem of evaluating the probability P (n,a,L)
that when n points are taken at random (uniform distribution) in a
three-dimensional cube of edge -length L, then no two points are closer
than a. The problem occurs in deriving the van der Waals equation
from a primitive hard -sphere gas model. See, for instance, Ref. 2,
where the problem is termed "very difficult" and the crude (though
sufficient) approximation

"1
P (n , a, L) fl (1 - 47rja3/3L3) 1 - 2irn2(a/L)3/3 (28)

i=1

is used.
From our formulation we find that

L3n[1 - P(n, a, L)]

is the J integral for the case m = 3, A is a cube of volume L3 B a ball
of radius a/2, and the configuration condition is that not all sets B (xi)

be disjoint; in other words, a simple coincidence. Therefore by (4),
(13), and an inspection of Fig. 1 we have

L3n[1. - P(n, a, Ar11/13" 6/11 - (N211/3n-12121 11 22L3n-6/22)

+ (N31/2" 18131 + 1T 32L3n-16132 N33L3"12133

N34/2"12134 -F N 35113"9135) - . . (29)
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where the integrals /11, /21,
follows

. . can be symbolically represented as

111 = f , 121 = f = 122 = f , 131 = f = A0_00_00_0 (30)

132 = f = 1111.22 , 1.33 = f 134 =
1

135 = f
A 0 0 0 0

To obtain an explicit Cartesian expression for an integral, I, we
consider its signature graph G which is a (B,r,v) -graph. If the v
vertices are enumerated as 1,2, . . . , v in an arbitrary order then I
becomes a 3v-tuple integral

I = f f dr, dr, (31a)
RI

where r, is the vector (xj, yi, zi), dri stands for dx, dyi dzi, and the
region of integration R, is given by 3v + r inequalities:

0 xi LC. L, 0 y; L, 0 z; L, (i = 1, , v), (31b)

ir, - rir < a2 if the it" and the jth vertices are connected (31c)

in G by an edge.
Further, such an integral occurs in (29) with the multiplier NriL3n-81

where N,.5 is the number of distinct graphs on n vertices, which are of
the same type as G. Together with each such integral I = / we may
also consider the corresponding integral K given by

K = f f dr, dr, ,

Q

where the region Q, is given by the (v2 5v)/2 inequalities (31b), (31c)
and

- rii2 > a2 if the ith and the ith vertices are not connected in G

(31d)

by an edge.
It turns out that the I integrals are expressible in terms of the K

integrals, and conversely. For instance, consider the K integral with
the signature graph which has four vertices 1, 2, 3, and 4, and edges
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12, 13, 23, and 24. We write it in a self-explanatory terminology as

(12)(13)(23)(24)[1 - (14)][1 - (34)]

and multiply this out to get

(12)(13)(23)(24) - (12)(13)(23)(24)(14) - (12)(13)(23)(24)(34)

-I- (12) (13) (23) (24) (14) (24) (34)

which yields at once a representation of K as a sum of four /-integrals.
The first integral /11 is sixtuple and can be reduced to an iterated

integral as follows:

where

and

Al.

Ill= dx, dx2 dy1 dye dz1 dz2
ma ml

M2 = M4 = MI3 = 0, M2 = M4 = M6 = L

(32)

m1 = max [0, x2 - [a2 - (Y1 - Y2)2 (z1 - 22)2111

M1 = min IL, x2 + [a2 - (.,1 - Y2)2 - (zi - 22)2111,

m3 = max { 0, y2 - [a21(zi - 22)2]11,

M3 = min {L, y2 [a2 - (Si - z2)2]il,

m6 = max {O, z2 - a},

M, = min {L, z2 a}.

This arrangement of the limits of integration corresponds to taking
two balls of radii a/2 and centers (x1, yi, zi) and (x2, y2, z2), and
letting the center of the first ball move freely over the cube while the
coordinates of the second center vary so that the balls intersect.
Accordingly, In has a simple probabilistic interpretation: Iii = L6[1 -
P(2,a,L)], where P(2,a,L) is the probability that two points taken
at random in the cube of edge -length L are no nearer than a. Similar
probabilistic interpretation holds for any other K integral. If G is its
(B,r,v)-graph then K is L32 times the probability that when v balls

of radius a/2 are taken with their centers at random in the cube, then
the balls are in the configuration of G (so that two of them intersect
if and only if the corresponding vertices of G are connected by an
edge).

We evaluate now the integral (32) subject to the condition a 5 L.
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Integration with respect to x, and x2 gives

L2 - [max (0, L -
where

1125

(33)

D2 = a2 (Yi -- Y2)2 -- (zi z2)2.

Since a < L we have D < L and therefore (33) is 2LD - D2. Integrating
this with respect to yi and y2 we get first, on putting y, - y2 = u,

rL flit

fl J -m
[2L(b2 - 12)1 - (b2 - u2)] du dye

where

b2 = a2 (z, z2)2, = min (y2 , b), M = min (L - y2 , b).

Again, a < L implies b < L and the double integral is therefore

irL2b2 - 8Lb3/3 b4/2.

Finally, integrating with respect to z, and z2 we get

Ill = 4ira3L3/3 - 37ra'L2/2 8a5L/5 - a°/6, 0 a S L. (34)

There are two more forms of /1, corresponding to the ranges L
a < 2iL and 24L < a < 34L, but they do not appear to be expressible
in terms of elementary or standard transcendental functions. It may
be observed that the leading term in (34) is the product of the volumes
of the cube and the ball of radius a.

To get a better approximation to P(n,a,L) than (28), we examine
(29) and find that for small a every integral /;j, beyond In, is 0 (a8).
Therefore

P(n, a, L)

= 1 - (2) [47r/3(a/L)3 - 371-/2(a/L)4 8/5(a/L)5] 0[(a/ L)6]. (35)

It is possible to find the exact limit of P (n,a ,L) as

n 00, a 0, (47r/3)(n2/2)(a3 / L3) -) b.

For we have then P(n,a,L) = P(b) and

1 - P(b) = N ,,/ L6 -N 2,I2,/ L12 + N31I31/ Lis - 



1126 THE BELL SYSTEM TECHNICAL JOURNAL, JULY -AUGUST 1968

and

N k 1

(72"1

ti kokk2

k=
This amounts to neglecting all graphs other than the "principal" one,
for each k, that is, the one corresponding to the configuration of Fig.
5a. Hence

1 - P(b) = (-1)'[(47/3)(n2/2)(a/L)30j! = 1 -
-

so that
P(b) = e -b . (36)

VIII. NUMERICAL EVALUATION OF THE I -INTEGRALS

Since no I integral beyond Ill appears to be explicitly evaluable in
terms of standard functions, the possibility was investigated of com-
puting those integrals numerically by the Monte Carlo method. The
first set of trial calculations was performed on In itself, in order to be
able to compare the results with the known true value. We assume
as before that a < L and we put L = 1 (homogeneity!) to get

111(a)=4.1888a3-4.7129a4+1.6000a5-0.1667d, 0 < a < 1.
We now choose a suitable integer M and set the value of a at 1/M.

Next, two points pi (xi, Yi , zi) and P2 (X° y y2, z2) are taken at random
in the unit cube by choosing each coordinate to be a random number
from the rectangular distribution on [0, 1]. Such pairs of random
points are selected N times; suppose that in Ni of them the distance
between the random points does not exceed 1/M, then the quotient
Ni/N is taken as the Monte -Carlo approximation to Iii (1/M). Then
the whole procedure is repeated with 1/M replaced by 2/M, 3/M, and
so on, until the value 31/2 is passed. The whole calculation will be
referred to as an N by M Monte Carlo run.

In the first set of trial computations N by M Monte Carlo runs
were executed for various values of N and M, and in each case a
least -squares fit was done on these data by a polynomial of the form

E A,& .

i

The results are shown in Table 1.
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TABLE I - FIRST TRIAL COMPUTATIONS

True value of Ai 4.1888 -4.7129 1.6000 -0.1667
1st 1000 by 20 run 3.1873 -1.0742 -2.5488 1.3448
2nd 1000 by 20 run 3.3296 -1.6727 -1.9088 1.1584

10000 by 20 run 4.4765 -5.9918 3.4012 -0.9760
1000 by 200 run 4.3008 -5.2689 2.4437 -0.5641

10000 by 200 run 4.1974 -4.7337 1.6358 -0.1911
100000 by 20 run 4.1546 -4.5615 1.4043 -0.0879

It appears from this polynomial that very long and large runs are
necessary to determine the coefficients with fair accuracy. However,
the values of the integral itself can be computed quite well. To check
this we have computed the standard deviations, both for the Monte
Carlo data, from

nr

= 1/M E [(N ;/N) - I11(j/M)12
i=1

and for the least squares fit from

0-: = 1/M [I (of) - I (joi) l 2

i=1

where
6

Iii(a) = E ilia'

is the least -squares fit to I. The results are shown in Table 2.
As a compromise between accuracy and length of the Monte Carlo

run, the values N = 10000 and M = 20 were selected. In this way
there were computed the two integrals /31 and /32 corresponding to
the two (B,r,3)-graphs, the six integrals 141, . . . , 146 corresponding
to the six (B,r,4)-graphs, and the 21 integrals 151, , /521 correspond-
ing to the 21 (B,r,5) -graphs. The first two series are shown in Figs.
6 and 7. The programming was quite simple and no details need be
given. The total time taken up on the CDC 6600 computer was about
one hour; this, however, includes a lot of trial runs and tests.

TABLE II - STANDARD DEVIATIONS

N
Monte

Carlo al
Least

Squares 02

1000
10000

100000

0.01154
0.00257
0.000922

0.00753
0.00183
0.000554
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To sum up, it appears that numerical computation of J -type inte-
grals is quite feasible, with the help of an automatic computer, to
fairly good approximation. One well known advantage of the Monte
Carlo method of evaluating multiple integrals was clearly brought
out; namely, its relative independence of the dimension.
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Data Transmission with
FSK Permutation Modulation

By H. L. SCHNEIDER

(Manuscript received November 8, 1967)

Performance characteristics are derived for an FSK data transmission
scheme in which M frequencies out of N are used simultaneously. Non -
coherent matched filters are applied at the N frequencies, and the filter
outputs are compared as in a permutation modulation system.

It is shown that many permutation alphabets provide energy per bit
advantage over binary FSK, although the best results are obtained with
one -out -of -N alphabets. Considering bits per unit bandwidth, many per-
mutation alphabets perform as well as or better than binary; however, one -
out -of -N alphabets carry less information per unit bandwidth when N > 4.

I. INTRODUCTION

The technique of N-ary frequency modulation in which energy is
transmitted on 1 out of N frequencies to convey log2 N bits of informa-
tion per character has been known for some years." David Slepian3
has recently described a general modulation system, permutation
modulation, which is applied here to a multifrequency modulation
scheme in which energy is transmitted simultaneously on M frequencies

out of N, thus conveying log2 (m) bits of information per character.

Binary and one out of N FSK modulation are special cases of FSK
permutation modulation.

Such a transmission scheme is basically not new; it has been used
for many years for transmitting decimal digits, address, and other
supervisory information in the telephone plant. This work was motivated
by a requirement to compare the information transmission capability
of these alphabets. However, the application analyzed here is, in fact,
different because we assume a baud synchronous matched filter receiver
with a mutually orthogonal set of signals. The channel is assumed to
be nonfading, frequency flat, with white gaussian additive noise.

1131
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II. GENERAL DESCRIPTION

For convenience, we shall refer to this modulation scheme as PFSK.

The PFSK alphabet has (N) characters,

N!
(MN) M! (N - M)!

The
()alphabet is the binary FSK modulation with which other (N)

1

alphabets will be compared. The (1) alphabet is commonly referred

to as N-ary or AIFSK (multiple frequency shift keyed).

PFSK transmission operates in a manner shown for the (2) alphabet

in Figure 1. One of the (1 characters is input to the transmitter; the

PAIRS OF TONES

TRANSMITTER

/ / 
CHANNEL

FILTER

FILTER
2

FILTER
N

ENVELOPE
DETECTOR

ENVELOPE
DETECTOR

11 ENVELOPE
DETECTOR

DECISION
CIRCUIT

CHOOSE
2 LARGEST
DETECTOR
OUTPUTS

RECEIVER

(NFig. 1-Transmission system for alphabets.
2

signal out is M simultaneous pulses of energy, one pulse on each of M
distinct frequencies, lasting for T seconds. White gaussian noise is
added in the channel. Filters, matched to the pulse shape, are tuned to
each of the N possible frequencies. The filter outputs are envelope -
detected and all N envelope samples are intercompared at the end of
the pulse period. The largest M of these outputs determine the trans-
mitted character.*

* Slepian has shown that this technique of amplitude comparisons minimizes
the error probability. See Ref. 3.
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III. ANALYSIS

An error is made in this process when any of the noise samples exceeds
any of the signal plus noise samples. The error probability is P. and
is one minus the probability of making a correct decision:

= 1 - p m(s) dsf
where

(1)

pm(s) is the p.d.f. of the smallest signal plus noise sample
PN-m(s) is the distribution function of the largest noise sample.

The p.d.f. of the smallest signal plus noise sample is determined as
follows. The p.d.f. of the output sample of a matched filter detector
can be written as*

P(Y) = Y/0(y V2R) exp Y2 + 2R\
2

where

(2)

y is the output envelope sample amplitude normalized to the
rms noise

) is the modified Bessel function
R is 8m/gto

8M is the received signal energy in joules at each of the M trans-
mitted frequencies

gto is the noise density, in watts per Hz.

The probability of the smallest of M samples exceeding a value s is
the same as the probability that all M samples exceed the value s.
This probability is expressed by equation (3) , with independence of
the M samples following from orthogonality.

r
1 - P,1(s) = Li dy]it = (2'1 (V 21? , s) (3)

where

Pm(s) is the distribution function of the smallest signal plus noise
sample

Q( ,  ) is the Q function and is tabulated by Marcum'.

* We view equation 2 as a renormalization of an expression by Helstrom4 for
matched filter detection, although it was originally derived by Rice5 in a
different context.
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Thus, the p.d.f. of the smallest output is simply

p m (s) = Pm(s) = 8)p(s) . (4)

Similarly, with independent noise samples, we find the distribution
function of the largest noise sample.

a N-%

PN-m(s) = [ f y exp ( -y2/2) dy
0 (5)

N-M
= E (--i)r(N -r M exp

Substitution of equations (4) and (5) into equation (1) yields (after
some labor) the character error probability:

P. = M E lr r
ica [Q(V2R, 8)]m-1

r-1 0

X s/o(s 1"2R) exp [ (r 1)82 ± 2R]
2

ds (6)

A closed form expression for the case M = 1 was found by Reiger.2

pew= 1) = (-1)r(N exp [ -R(1 - (7)

A closed form expression for the case M = 2 is obtained from equation
(6) using integration forms, having Q function integrands, given by
Stein:7

2 )
r=2 r + 1

where

X [1 + rQ(a, $) - Q(13, a)] exp [ -R(1rl (8)

aa - +
2Rr,

=

Closed form expressions for cases of M > 2 are not known; how-
ever, an asymptotic form for large R is obtained following arguments
by Helstrom8 for approximating the Q function:
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M N -M+1 M + 1)
Pe(M) N -M + 1 (-1)r

 exp [ -R(1 - (9)

or taking the predominant first term of equation (9) we have*

M(N 31) _RN
Pe(M) 2

exp 2) (10)

Equation (10) can also be obtained heuristically. At high signal-
to-noise ratios, character errors occur because of a binary decision
error; that is, one of the noise samples is mistaken for one of the
signal plus noise samples. The probability of a binary decision error is

P. = 1/2 exp (-R/2).

In the multifrequency situation, there are M(N-M) ways for this to
happen; the product of these two factors yields equation (10).

IV. COMPARISON OF ALPHABETS

We interrelate the performances of the PFSK alphabets to those
of binary FSK using two criteria: energy per bit required for an
equivalent error rate, and bits per unit bandwidth.- First, the per
character information of these alphabets is defined as k:

k = log, NGI)

The normalized energy per bit 8/No is related to the ratio R, defined
in equation (2), by

R
= (1 )Go/

Since the quantity R appears in the exponent of the error rate
expression, it is apparent that, for low error rates, the power advan-
tage (over binary FSK) of a PFSK alphabet approaches k/M. We
can observe this numerically by comparing error rates on the basis

* It is easy to show that the first term is always an upper bound to P..
t The reader can compare the results of the work here with recent work of

I. Jacobs,9 who intercompares coherent modulation systems using virtually the
same criteria.
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of "equivalent error probability,"" which is the binary error proba-
bility for which the probability of one or more errors in a binary
sequence of k bits is equal to the probability of error in the PFSK
case. This equivalent error probability is defined as Peq:

Peg = 1 - [1 - Pe(M)J"kN ilePe(M). (12)

Figure 2 illustrates Peg as a function of 8/T to for several alphabets.
At error rates of 10', the power advantage is within 0.6 dB of the k/M

value for the (16) and (126) alphabets, and closer for the other examples.

10-1

 1- 0-2
En

co
O

cc
.0 1 0-3

w

-J

5 lo -4
O
w

10-5
4 5 6 7 8 9 10

6/11,0 IN DECIBELS

(7) CO

( )

11

Fig. 2 - PFSK error probabilities.

12 13 14

The number of bits per unit bandwidth for a PFSK alphabet is
ddtermined by estimating the bandwidth as N times the frequency
separation, which is 1/T for noncoherent orthogonal signals with mini-
mum frequency spacing. Since the information rate is k/T, the desired
bits per cycle ratio is simply k/N.* Figure 3 shows paired values of 10
1og10(k/M) and k/N for illustrative alphabets.

*It is easy tci show that this ratio for PFSK alphabets approaches a maximum
value of 1 for large N, with M = N/2. At this point k/M = 2 for a 3 dB
advantage.
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Fig. 3- Performance comparison of PFSK alphabets.

1.0

Symbol A BCD E F G H I J K L

Alphabet
(21) CO (81) (16) (312)

(2)
(25) (26) (28) (212) (216) (36)

V. SUMMARY AND CONCLUSIONS

It has been shown that the PFSK technique gives significant power
advantage over binary FSK. In addition, bandwidth can be controlled
by the proper choice of alphabet.

Disadvantages of the technique are practical ones. Implementation
of the decision function is relatively complicated. In some applications
peak power limitations might make the average power calculations
inapplicable.

A generally large number of characters in the alphabet is not suited
to all applications, but can be very efficient in some. For example, the

() alphabet, containing 10 characters, is well suited to decimal digits.
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