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A rate of 0.8 failures per billion hours or less is desirable for memory
components in large integrated arrays. This unusually stringent require-
ment complicates the determination of lifetime from accelerated aging
studies. The value and limilations of step stress aging techniques are dis-
cussed in terms of experimental results obtained using plated wire memory
arrays designed to withstand the high ambient temperatures required for
accelerated aging. Step stress aging measurements alone are insufficient
for confident lifetime prediction. Therefore, longer term measurements at
lower temperatures must also be made to establish the validity of the lifetime
extrapolations. It is essential to protect the plated wires against corrosion.
Given proper protection a shelf life in the hundreds of years is forecast.
The importance of duly cycle on lifetime in exercising the memory 18
discussed and the results of aging under extreme pulsed magnetic field
stress conditions are reported. Criteria for wire selection, with long term
stability in mind, are discussed.

“And in short measures life may perfect be”’—Ben Jonson

1. INTRODUCTION

In spite of their advanced state of development, there is still un-
certainty concerning the long term stability of magnetic film mem-
ories. As early as 1958 E. N. Mitchell showed that the anisotropy of
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permalloy thin films eould be modified by a magnetic anneal at
moderate temperatures.! Chang, Gianola, and Sagal subsequently
pointed out that such a phenomenon could be detrimental to the life-
time of a magnetic film memory element, and that in the case of
plated wire intolerable changes in magnetic anisotropy and coercivity
occur in freshly plated films.2 These changes result in an increased
minimum digit current for reliable writing along with a serious de-
crease in the digit disturb level. The result is a monotonic reduction
in operating margins that, in time, can lead to a complete loss of
range,

It was, however, also shown that the magnitude of the rate of
change of magnetic properties could be substantially reduced by
following electrodeposition with a stabilization anneal in an easy
direction field.> * From a practical standpoint, a stabilization anneal
has been found essential and is now in general use in plated wire
fabrication. It is worth noticing that a post-deposition anneal is au-
tomatically provided in vacuum deposited magnetic films, since the
latter are deposited on a hot substrate which is allowed to cool in
the vacuum system.

From a simple physical viewpoint the effectiveness of the stabiliza-
tion anneal should increase with annealing temperature and anneal-
ing time. However, Chang, Von Neida, and Calbick have shown that
detrimental changes can also occur in electro-deposited films even
when annealed in an easy direction field, thereby setting effective
limits on the maximum annealing temperature for a given annealing
time.* These limits were shown to correlate with discontinuous grain
growth in the film. Grain growth, however, may have been comple-
mentary rather than causative to the increased dispersion in magnetic
anisotropy noted. Copper diffusion from the substrate wire into the
permalloy film has been shown not to be a primary contributor to
the aging mechanism.*

These early studies showed that the post-deposition anneal ex-
tended the mean lifetime of the plated wire memory element to years
or decades. Subsequent studies, however, have shown that a clear
prediction of lifetime is complicated by a distribution of aging rates
between individual bit elements in a large capacity memory, reflect-
ing both nonuniformity in initial element properties as well as the
distribution expected of a stochastic process. Since in a highly inte-
grated large memory system the time to occurrence of the first few
failures is of greater interest than the mean time before failure that
is commonly used to define the lifetime of discrete components, the
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distribution of failures is of prime importance. The aging phenomenon
in magnetic films is also field dependent, being accelerated by hard
direction fields (word fields) and retarded by easy direction fields
(digit fields).? Therefore, since hard and easy direction fields are ap-
plied intermittently in an operating memory system, an added com-
plication to useful lifetime prediction is the need to establish the
average field environment that a memory element experiences over
years or decades of use.

Earlier work has primarily been concerned with changes in disper-
sion and skew produced by a magnetic anneal, thereby delineating
the magnitude of the aging phenomenon, but falling short in that a
clear relation between skew and dispersion and the funetional memory
parameters of interest was not simultaneously established. Rabinoviei
and Renton subsequently examined the effect of aging on the func-
tional parameters directly,® but, while a step in the right direction,
the sample population used was insufficiently large to permit lifetime
predictions at low failure levels.

To estimate the problem, consider some of the current thinking
about high speed memories for which the plated wire is well suited.
To achieve an economical system, a compact construction with a
minimum number of interconnections, is desirable. We estimate that
a suitable module size is about 4 x 10® bits; for example, 4096 words
% 100 hits. Such a store operating as part of the central processor in
an electronic switching office would be unacceptable if it were neces-
sary to rework a single spare word or digit line once a year. On this
basis then, if each bit in the memory is considered an independent
deviee (not a fully justified assumption since failures are often
grouped), an accelerated aging technique capable of predicting with
some aceuracy one failure in greater than 3.5 x 10° device hours
(0.3 FIT) is needed.*

Clearly, it is impractical to build, age, and test large stores for the
extended periods needed to derive statistically significant aging data
under normal operating conditions. To overcome this difficulty, we
have examined the possibility of adapting step stress accelerated
aging techniques to magnetic memories in order to estimate lifetime
at normal operating temperature. Such techniques are commonly
used, particularly for determining the reliability of semiconductor
components,® but have not been applied previously to memory arrays.
This paper attempts to define the value and limitations of the tech-

*1 FIT = one failure in 10° device hours.
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nique based on exploratory step stress aging studies of typical plated
wire memory arrays.

II. STEP STRESS AGING

It is well established that the aging process in thin magnetic films
is thermally activated, and a reasonable starting assumption is that
the aging process can be described by a characteristic time constant
7, which is governed by the Arrhenius rate equation. More specifically,
it is assumed that the average behavior of a device parameter of in-
terest P(¢#) ean be adequately represented by P(t) = Py + F (t/7),
where P, is the average initial value. For the present purposes F' (t/7)
need not be defined, the only assumption necessary is that it be a
continuous monotonic funection, albeit a complicated one. In addition,
although a number of different rate mechanisms enter into the aging
process we postulate a single time constant only. That condition, in
faet, must be satisfied if the lifetime extrapolation is to be valid as
discussed later.

The Arrhenius rate equation relates the aging time constant to
the aging temperature, as follows:

T = 7o exp ¢/kT.

Where =, is a characteristic time constant, ¢ = activation energy, k
= Boltzmann constant, and T = absolute temperature. This equa-
tion describes many of the mechanisms responsible for device degrada-
tion; for example, interatomic diffusion, chemical reactions, and
crystallite growth.

The procedure followed in step stress aging is first to define a pass-
fail criterion, defined by limits on one selected device parameter. In
testing memory arrays a convenient device parameter is the output
signal, which may be required to exceed a set discrimination level
for a given set of operational write, disturb, and read current levels.
All bits which give outputs exceeding the discrimination threshold
pass, all others fail.

Such a pass-failure criterion is equivalent to setting P(f;) equal
to a predetermined constant P; at the time of failure {;. Consequently,
the value of F (¢;/r) = P; — P, and therefore f;/7 are in turn pre-
determined constants and the Arrhenius rate equation can be used to
relate the time of failure to the temperature at which aging is bemg
carried out as follows: ~
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Int, = % + In 7+ I F'(P, — P,).

In other words, In t; is inversely proportional to T

The first step in a step stress aging measurement is to stress (that
is, anneal) the sample population at an elevated temperature T'; for
a prescribed time ¢;, and then retesting at ambient temperature to
determine the number of failures produced, if any. The sample is
then once more stressed for the same period (£;) as before but at a
higher temperature (7 + A). The temperature increment A is such
that any failures produced are large compared to those accumulated
at the lower stress temperature.

Experiment has shown the aging process to have an activation en-
ergy of about one electron volt. Therefore, a 20°C increment is ap-
propriate. After aging, the sample is retested to determine the cumula-
tive number of failures. This procedure is continued at successively
higher temperatures using approximately the same temperature in-
crement, each time until the entire population has failed according to
the original test specifications. This series of measurements provides
a distribution of failures as a function of temperature for a given
exposure time. Figure 1 shows a hypothetical distribution plotted as
a function of inverse stress temperature. For the particular exposure
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Fig. 1 — Hypothetical step stress aging data.
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time chosen, no failures are observed to temperatures up to 200°C,
and 1, 10, 70, and 100 percent cumulative* failures are obtained after
stressing at 200, 220, 240, and 260°C, respectively.

The distribution of failures in temperature will depend upon both
the initial distribution of Pg's and the statistical variations expected
of a thermally activated process. If these were random, a gaussian
distribution of failures after aging might be expected as suggested in
Fig. 1. However, such a distribution is virtually precluded by an ini-
tial selection criterion that truncates the distribution of Py’s. If that
were not the case, the initial sample population would contain that
percentage of bad bits expected of an initially random distribution.
This complicates the extrapolation of aging measurements based upon
a small sample population. To reduce the uncertainty, the predictions
of a step stress aging experiment must ultimately be confirmed on
larger sample populations.

The distribution of failures in temperature may be converted to a
distribution of failures in time. To do this, a second set of step stress
measurements are obtained using a second sample population as identical
to the first as possible, but in this case stressed at an exposure time £,
that is approximately an order of magnitude larger than ¢, . The failure
distribution in this ecase will be centered at a lower temperature as
illustrated in TFig. 2, which plots the logarithm of time to a given per-
centile failure versus the inverse stress temperature. A straight line
extrapolation through points of equal failure in Fig. 2 provides an
estimate of the time required to reach that level of failure at normal
operating temperatures, for example, <50°C. The slope of the linear
relationship is determined by the activation energy (gq).

Figure 3 illustrates the difficulties encountered if aging is not the
result, of a simple thermally activated process. If it is assumed, for
example, that two distinct and independent processes exist, then,
depending upon the relationship hetween the 7o's and ¢’s, a lifetime
extrapolation from an accelerated aging measurement may or may
not be valid. If the r, for the high g process is larger than that of the
low g at all temperatures then the extrapolation will be valid. If,
however, the high ¢ process has the shorter =y, it may dominate at
the temperatures used in step stress aging, thereby leading to an in-
valid life prediction because at the operating temperature the low ¢

* Averaging of the number of failures would provide an improved fit at the
lower and upper ends of the distribution, but is not justified by the small statis-
tics in the measurements reported here.
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. Fig. 2—"Translation of distribution of failures in temperature to distribution
in times at lower temperatures.

process will be dominant and will produce earlier failures. It follows
that there will always be some uncertainty regarding the validity of
such extrapolations unless it can be positively established that a sin-
gle aging mechanism is dominant up to and including the tempera-
tures used in accelerated aging. In order to reduce this uncertainty
as far as practicable, the results of the step stress aging measure-
ments should be confirmed by longer term aging experiments at
lower temperatures,

III. AGING PLATED WIRE MEMORY ARRAYS

The essential structure of the conventional plated wire memory
consists of plated wire pairs used as digit lines intersected by orthog-
onal word solenoids to form a regular memory array.” The sample
populations used for the step stress aging experiments described in
this paper each consisted of a 32 word X 31 bit array (992 bits). The
test planes used had word solenoids on 50 mil centers with plated
wires on 25 mil centers. A 2 mil thick permalloy overlay was used to
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provide shielding, enhance the word field, and limit word to word
interaction.

In order to withstand the high temperatures used in the aging ex-
periments the memory substrate was made of a slotted ceramic block
and the word solenoids were Teflon insulated as illustrated in Fig. 4.
Normal substrate materials and insulators are unsatisfactory at the
higher aging temperatures. As shown, the plated wire is used in the
shape of a hairpin. This construction has two important advantages;
first, any uniform skew existing in the plated wire is nullified, second,
since one end of the digit structure is free to move, the plated wires
are not stressed by differential thermal expansion between the wire
and memory plane. For most of the experiments the plated wire con-
sisted of a 3500 angstrom thick, nominally nonmagnetostrictive, per-
malloy film on a 5 mil diameter conducting wire substrate preplated
with a micron of copper. The wires had passed a functional on-line,
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Fig. 4 —Structure of memory planes used for accelerated aging measurements
at high temperatures.

destructive readout memory test and had received a stabilization an-
neal at 350°C for approximately one minute., During the course of
these experiments wires from other sources were examined also; but,
apart from differences reflecting different operating points and uni-
formity resulting from different processing details, no substantial
difference in aging characteristics was found.

A functional test of normal destructive readout operation with
adjacent word interaction using the following program was used to
evaluate test planes. (z) Write zero in the test location using nominal
word current and maximum digit current. Repeat 250 times. (it) Write
one in the test location using nominal word current and minimum
digit current. (iii) Write zero in one adjacent address using nominal
word current and maximum digit current. Repeat 10° times. (i)
Write zero in the other adjacent address as in step #i. Repeat 105
times. (v) Read the test bit and determine whether it has passed or
failed. This program provides a worst case memory history that biases
the test location towards minimum outputs.

A =20 percent operating range on digit current was used to ensure
a worst case test. It is assumed that a 410 percent range will be more
representative in actual system operation. The center values of currents
used varied with the source of available wire. However, the following
was typical for the wire used in most of the measurements: word cur-
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rent equal to 800 ma with 40 ns rise time and 200 ns duration; digit
current equal to 25 ma with 10 ns rise time and 200 ns duration. The
word and digit pulses were overlapped by approximately 100 ns. The
threshold level for pass was set at 2.5 mV corresponding to approximately
one half the nominal output.

Test results were recorded using an xy plotter to show the failure
locations in the array. Figure 5 is a typical map for a plane that
has been aged to a 22 percent failure level. It clearly illustrates the
tendency for failures to cluster in particular locations along the digit
line, and demonstrates a marked variability in number of failures
from wire to wire. By mapping failures for both digit senses (that is,
0’s and 1’s) the cause of failure can often be diagnosed. A negative
correlation between failures for the two senses at corresponding loca-
tions indicates skew induced failures, while a positive correlation in-
dicates either failure to write adequately or a low disturb threshold.
Further diagnoses can be obtained by noting correlations produced
under modified test programs.

Aging measurements were performed using several different ambi-
ences: (¢) air atmosphere, zero applied field; (%) hydrogen reducing
atmosphere, zero applied field; and (iiz) hydrogen reducing atmos-
phere, pulsed hard direction field.
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IV. AGING UNPROTECTED WIRES IN AIR

Figures 6 and 7 show the result of step stress aging of unprotected
plated wires in air for exposure time of 2, 20, and 200 hours at tem-
peratures up to 320°C. In this experiment the onset of failures was
so abrupt that the earliest failures were not observed in using a 20°
stress temperature inerement. Instead, Fig. 6 shows the last tem-
perature at which no failures were obtained as 0.1 percent failure
points for each of the exposure times. The 0.1 percentile represents
the first measurable point in the test population of 1,000 bits. Notice
that the percentage cumulative failures are plotted on a logarithmic
scale. As pointed out previously there is no reason to expect a normal
distribution of failures in temperatures, nor is one obtained.

Equal percentage failure points interpolated from the data of Fig.
6 are plotted in Fig. 7 on a 1/T vs logy £ graph. A good approxima-
tion to the linear relationship ealled for by the simple thermal activa-
tion model is obtained, and leads to extrapolated lifetimes for 0.1 per-
cent failure at 50 and 25°C of 2 and 20 years, respectively. This
extrapolation is additionally supported by a constant temperature
aging experiment run at 80°C for several thousand hours using an-
other similar 1,000 bit plane. The results of that experiment are also
plotted in Fig. 7 and show excellent agreement with the step stress
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Fig. 6 — Distribution of failures in temperature for unprotected wires aged in air.



1550 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968

3'2_______;:0%___%?////4{' -

°°  CUMULATIVE
¥~ - “FAILURES

w
o

CONSTANT TEMPERATURE AGING
—{ (80°C) —|

x X=X

o,/ 2.4 % FAILURES

b
@

2.4 A

RECIPROCAL STRESS TEMPERATURE IN ol x 103
N m
n o
&

n
=)

| 10 102 103 104 10 108
TIME AT STRESS TEMPERATURE IN HOURS
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for unprotected wires aged in air.

prediction for the 1 percent failure point. The agreement with the 0.1
percent failure point is not unreasonable in view of the large experi-
mental inaccuraey in determining the first failure in a population of
1,000 bits. These results lead to extrapolated lifetimes at normal
operating temperatures that are marginal for large memory systems.

Physical examination of failed wires in these studies showed that
corrosion of the substrate wire with a resulting eruption of the mag-
netic film at pinholes appeared to be a primary cause of failure. In-
deed, the activation energy of 0.84eV derived from the slope of the
1/T vs log t relation is consistent with the value for the oxidation of
copper (0.87 eV).® These observations, together with the results of
the following experiment, lead to the conclusion that chemical pas-
sivation or protective encapsulation of the plated wire is essential if
adequate lifetimes are to be obtained.

V. AGING PROTECTED WIRES

A dramatic reduction in failure rates is obtained if the wires are
protected either by chemical passivation or through the use_of an
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inert or reducing atmosphere. Figures 8 and 9 show the result of step
stress aging protected wires. The distribution of cumulative failures
versus inverse absolute temperature is seen in Fig. 8 to be better
behaved than when corrosion occurs. The 0.1 and 0.2 percent data
points in this experiment were obtained experimentally, so that ex-
trapolation to 0.01 percent failure is reasonably justified. The extrap-
olation of equal percentile failure points on a 1/T vs logy, t rela-
tionship in this case yields lifetimes to early failures in the many
thousands of years at normal operating temperatures.

The validity of the step stress extrapolations is well confirmed by
a constant temperature aging experiment carried out at 140°C that
has been in progress for 5600 hours with no failures observed in a
population of 1,000 bits as indicated in Fig. 9. The slope of the 1/T
vs logyo ¢ relationship in this case yields an aectivation energy of 1.3
electron volts in reasonable agreement with the value 1.25 electron
volts that we estimate from the grain growth data of Chang, Von
Neida, and Calbick.® Therefore, it appears that crystallite growth,
or a common causative phenomenon, is responsible for the aging ob-
served in protected wires in the absence of applied magnetic fields.
Complementary measurements indicated that the prime functional
cause of failure was a reduction in the digit disturb threshold as
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would be expected from the monotonic reduction in coercivity that
occurs in permalloy as a result of a strain relief anneal.

The results of this experiment show that properly stabilized wires
protected from corrosion should have an adequate shelf life.

VI. EFFECTS OF MAGNETIC FIELDS ON AGING

Hard direction fields produce a rotation of the uniaxial anisotropy
in a magnetic film memory element. This result is a natural con-
sequence of the well known magnetic annealing properties of the
permalloys.” The sensitivity to hard direction fields is substantially
reduced by the stabilization anneal discussed previously. In a memory
environment the individual magnetic film memory elements are sub-
ject to aperiodic pulsed magnetic fields so that measurements of the
effect of de hard direction fields are not simply applicable.

To further complicate matters, the magnetic anisotropy is not uni-
formly affected by an applied field, but in first approximation it ap-
pears to have a relatively stable component in addition to an easily
rotatable component. The magnitude of the latter is considerably
reduced by the stabilization anneal. This situation can be desecribed



STEP STRESS AGING 1553

in terms of a simple model that assumes that the rotatable component
of anisotropy experiences a torque proportional to a function of the
angle between the anisotropy and the direction of magnetization, and
that the rotatable component relaxes towards the direction of mag-
netization under a characteristic time constant. Under these circum-
stances, the rotatable anisotropy component relaxes back towards the
easy axis direction established by the stable anisotropy component in
the interval between word field pulses.

An analysis based upon this simple model is given in the Appendix.
It shows that the worst case effect of hard direction field pulses ap-
plied at low duty cycles is to induce a skew that is approximately
proportional to both the duty ecycle and the ratio of the rotatable to
stable anisotropy components. Such a growth in skew with a depend-
ence on duty cycle has been verified experimentally, although there
is as yet insufficient data to provide the exact form of the dependence
over a wide range of duty eycles.

One problem, then, in designing a meaningful field aging experiment
is to decide upon a representative duty eyele. In a 4,000 word memory
with a ratio of eycle time to word pulse duration of 5, no one memory
element would be subjeet to hard direction fields for more than 0.005
percent of the time if the memory were exercised in a completely
random fashion. On the other hand, it would not be out of the ques-
tion for any one memory word to be interrogated once every 10 in-
structions over substantial periods. In that case some memory words
will be subject to hard direction fields 2 percent of the time. On the
other hand those same memory words would be unlikely to be ex-
ercised continuously over many years of operation. In the absence
of any definitive data, it is suggested that a representative worst case
duty eycle will be about 0.1 percent.

Figures 10 and 11 give the results of an exploratory step stress
aging measurement under pulsed field stress. In this experiment every
bit in the test population was subject to hard direction fields under a
1 percent duty cycle to determine the effect of extreme aging condi-
tions. It will be elear from the previous arguments that this is an
unrealistically severe test which, however, serves to illustrate the
problem of making extrapolations from aging measurements under
pulsed magnetic field stress.

The test program used was the same as described previously, except
that a =14 percent digit current range was used. Unsatisfactory ex-
trapolated lifetimes were obtained for the 420 percent margin used in
the previous experiments. This was not surprising since a 420 percent
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criterion was used for initial selection of wires. During step stress
aging, all word solenoids and the test planes were connected in series
and pulsed with 400 mA amplitude word current pulses at a 1 percent
duty eycle. Thus, all bits in the test population were subjected to field
stress during aging.

The 400 mA word current level was chosen for nondestructive read-
out during aging. This is a necessary condition since each bit must
remain in an approximated single domain state during accelerated
aging if anisotropy “recovery” during the interpulse interval is to
take place. This procedure provides a not unreasonable simulation of
the actual state of the memory sites in operation and avoids the com-
plications that would be introduced, both in instrumentation and in-
terpretation, if the memory were exercised in the destructive readout
mode during aging.

In contrast to the situation for “no-field” aging, failures were ob-
served to result primarily from increased skew as evidenced by an
increase of the minimum digit write current and an asymmetry in
bit failures for opposite polarities of digit write eurrents. In addition,
the sense of skew correlated with the direction of the hard direction
field pulses applied during aging.

The results of these experiments are given in Figs. 10 and 11. In
Fig. 10 the 0.1 percent failure points represent the last stress tem-
perature at which no failures were observed. An approximately log-
arithmic failure distribution is again found, in Fig. 10, although this
relationship is not as well obeyed as the case for no-field aging, sug-
gesting that the plated wires used were not homogeneous in field aging
property. Once again, early failures tended to cluster on particular
digit lines, but no obvious correlations to initial physieal properties
have as yet been established.

As already mentioned, no simple distribution could be obtained for
a ==20 percent range of digit current indieating the severity of the
additional aging induced under field stress. In addition, Fig. 11 shows
that the extrapolated lifetime for 0.1 percent failures and a 14 percent
digit current range is substantially less than for “no-field” aging (Fig. 9),
with a 220 percent margin. Furthermore, the step stress data points
do not as satisfactorily fit a linear 1/T vs log ¢ relationship, suggesting
the possibility of even lower lifetimes as discussed in connection with
Fig. 3.

On the other hand, the extrapolation shown in Fig. 11 is consistent
with the results of a constant temperature aging experiment, which
has been under way for 6500 hours at 140°C with no failures using the
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same =14 percent digit margin criterion. However, a different batch
of wires was used for the constant temperature aging experiment. Thus
there is a residual uncertainty regarding the validity of the lifetime
extrapolation, and more comprehensive measurements will be needed
before lifetime predictions can be made with reasonable confidence.
Assuming that the data of Fig. 11 is representative it can be concluded
that the plated wire memory has an adequate lifetime for many ap-
plications even under pulsed magnetic field stress, provided that proper
attention is paid to duty cycle and choice of operating range.

VII. DISCUSSION

As stated at the beginning, this paper’s prime purpose is to describe
the procedures that have been developed for accelerated aging of
memory arrays using functional test criteria, and to illustrate the
pitfalls that must be taken into account. It is not intended to provide
definitive answers to the plated wire lifetime question. The limited
data presented is encouraging and suggests that, given proper selec-
tion and use, reasonable lifetimes can be ensured. We caution, though,
that a much more comprehensive study is needed before confident
predictions can be made. Measurements using larger sample popula-
tions will reduce the statistical uncertainty in extrapolating failure
distributions, and longer term measurements at lower temperatures
will reduce the uncertainty in extrapolation to long periods.

Because a memory is a large integrated entity, and because in
present day usage only small numbers of failures can be tolerated
over years or decades of operation for economical reasons, the prob-
lem of determining reliability is difficult. It has not arisen in the case
of ferrite core memories since no short term degradation in properties
has been reported. The time scale of degradation in the properties of
anisotropic magnetic alloy films, however, is such that the possibility
of a lifetime limitation needs to be ccensidered seriously. The physical
mechanisms responsible for aging deserve as much attention as the
origins of the induced anisotropy. The step stress aging technique
used in this study followed those in common use for determining the
reliability of semiconductor devices. With the increasingly large num-
ber of functional cells being integrated into semiconductor circuits,
similar attention will need to be given to the limitations of the tech-
nique. This will be especially true should large semiconductor mem-
ories be realized.

It has been established that the aging mechanisms in magnetic films
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are thermally activated. Indeed, physical reasoning leads to that ex-
pectation. There is no evidence for a temperature threshold, which
might only occur should a cooperative mechanism be responsible for
aging. The activation energy is such that at normal temperatures, a
20°C temperature inerement produces approximately one order of
magnitude increment in predicted lifetime. Thus, if the long term
reliability proves to be marginal for more extreme applications,
improved heat sinking should be used. Magnetic film memory ele-
ments are unique in the small energy dissipated in the cell itself.
Normally, the main cause of temperature rise above ambient is dis-
sipation in peripheral cireuits. It is also worth noticing that magnetic
film elements are relatively unaffected by reduced temperatures. P. 1.
Bonyhard, in unpublished work, has shown that the plated wire can
be operated to at least —70°C with no significant changes in operat-
ing margins.

Since we first drew attention to the potential severity of aging in
plated wire memories, industry wide practice has followed the post-
deposition stabilization anneal that we recommended. This practice
has reduced aging from a first order to a less significant problem
and, accordingly, has made reliable long term lifetime predictions
more difficult, The measurement problem is also inereased by the
wide distribution of failure rates found. The step stress aging tech-
nique deseribed in this paper reduces the measurement problem to
experiments of reasonably short duration. Furthermore, the comple-
mentary longer term aging experiments at lower temperatures have
provided reasonable confirmation of the extrapolations from the short
term step stress measurements, although further corroborative studies
are desirable.

The necessity for corrosion protection has been established by this
study. In turn, it has been established that protected wires have
adequate shelf life. Furthermore, this study also focusses attention
on the importance of word pulse duty cycle in an operational memory.
The desirability for adequate magnetic shielding against static en-
vironmental magnetic field follows implicitly.

The prime functional result of aging has been shown to be an
erosion of both upper and lower limits of digit current. It is axiomatic,
therefore, that for high reliability plated wire should be selected to
have wider digit current margins than required operationally. Since
an inerease of the lower limit on digit current is likely more severe
than the decrease of the upper limit, the center of the selection margin
should be offset with respect to the nominal operational value. It also
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follows that correlations of aging with manufacturing process should
best be performed, at least initially, with attention to the rate of
change of the lower limit on digit current as determined by short
term step-stress aging.

APPENDIX

Analysis Based on Magnetic Model

Let
K, = “stable” component of anisotropy
K. = “rotatable’” component of anisotropy.

Assume that the rotation of K, is reversible. Hard direction field
pulses (applied normal to K,) rotate K, through an angle 8 with respect
to K, . Relaxation of K, towards K, takes place during the zero field
interval between hard direction field pulses.

Of interest is the steady state situation under repetitive pulsing.
Steady state is achieved when 8 = $, such that the ineremental rotation
AB produced by each successive field pulse of duration ¢, equals the
relaxation —AB during each interpulse interval ¢, .

We postulate that the rotation of K, results from a torque exerted
by the magnetization M upon K, . We further postulate that this torque
has the same sin 2, dependence as the torque exerted by K upon M
in a uniaxial material, where 6 is the angle between K and M. These
are physically reasonable assumptions, but are presented without
experimental confirmation.

The dynamies of the rotation is assumed to be governed by some
characteristic relaxation time constant =. Its exact form is unimportant
for the present discussion, but we do assume 7 >> ¢, or {, in which case
AB & B, . In that case for the steady state solution it is sufficient to
consider the conditions required for a time averaged balance of the
torques applicable during intervals {, and f,. This condition can be
expressed:

t, sin 2(6, — B,) = —t, sin 2(6, — 1) (1)

where 6, is the angle between M and K, during interval ¢, when the
hard direction field pulse is applied, and 8, the angle between M and
K, during the interpulse interval £, . 6, is related to K, and K, through
minimization of the energy relation for zero applied field and negligible
magnetostatic field. In this case:

0 = K, sin 26, + K, sin 2(6, — B.). (2)
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Thus, substituting for (6, — 8,) from equation (2) in equation (1)
sin 293 ~ [Kztl sin 2(0}, — ﬁj)]/Kﬂ‘rn.

For cases of interest, (low duty cycle and stabilized material), we may
agssume small 8, and 6, >> B, . Under these circumstances the steady
state skew produced by repetitive field pulsing is

8, ~ [K.l, sin 26,]/2K.1,.
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The Transmission Performance of

Bell System Intertoll Trunks

By L NKSELL, C. R. ELLISON, Jr., and R. HOLMSTROM
(Manuseript received February 28, 1968)

A systemwide survey of the transmission performance of Bell System
intertoll trunks was undertaken in 1964. The sample design used for the
survey 18 described briefly. The main purpose of the paper is to present
survey results. Thus, the physical composition and some physical attributes
of the trunks are given. The transmission measurement procedures are
summarized, and measurement resulls are presented in distribulional form
for 1000-Hz loss, frequency response, background moise, tmpulse noise,
and relative envelope delay. Among the results noted are an increase in
average noise level and a decrease in notise level standard deviation as the
trunk length is increased. The frequency response of long trunks is superior
to that of short trunks. Measurement results are presented separately for
major transmission facilities.

I. INTRODUCTION

The Bell System toll network consists of a hierarchy of toll offices
interconnected by transmission paths called intertoll trunks. A toll
call between two subseribers is built up of a tandem connection of
several transmission paths which are joined by switching.

At each end of such a connection is a loop that connects the sub-
scriber’s telephone set with a local telephone office. The local tele-
phone offices connect with toll offices by toll connecting trunks. These
toll offices are connected by either a single intertoll runk or by several
intertoll trunks through intermediate toll offices. The transmission per-
formance of a toll connection between subscribers is thus influenced
by the performance of each trunk and loop in the connection.

Systemwide improvement in transmission performance by a cate-
gory of trunks is directly measured by the corresponding improve-
ment in built-up connections. Systems engineering on transmission
objectives, therefore, requires information about the relation between
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transmission performance on trunks and the corresponding transmis-
sion performance that results on built-up connections. Such informa-
tion is meaningful only if it is based on accurate information about
the transmission performance of the various entities of importance;
that is, the intertoll trunks separated into mileage categories, the
major transmission facilities used in the toll plant, the toll connect-
ing trunks, the loops, and the built-up connections. This need for in-
formation constitutes the basic reason for undertaking the intertoll
trunk survey discussed in this article.

The introduction of data transmission over the switched telephone
network has brought with it the need for information about trans-
mission parameters that are of only minor importance for the trans-
mission of spoken messages. The discussions of impulse noise and
envelope delay in Sections VII and VIII both deal with this category
of parameters.

Each intertoll trunk consists of trunk facility and office equipment
in tandem. The trunk facility supplies a transmission path between
the two toll offices connected by the trunk. The office equipment con-
tains signaling devices and attenuators, and sometimes echo sup-
pressors and hybrid transformers. There are several different trans-
mission facilities in the Bell System toll network. The most important
are voice-frequency facilities, compandored short-haul cable carrier,
coaxial cable earrier, and microwave radio.

Survey results are presented both for various trunk lengths and
for selected transmission facilities. The results for trunks take a
slightly different form than for facilities. The frequency response for
facilities gives the difference between the loss at a certain frequency and
at 1000 Hz, while the frequency response for trunks gives the actual
switch-to-switch loss at each frequency. Thus the trunk results depend
on facility mixture, loss design, and loss maintenance of trunks, while
none of these factors influence the facility results. Background noise
levels for facilities are referred to a standard zero transmission level
point, while those for trunks are referred to the receive switch of each
trunk. Facility mixture, loss design, and loss maintenance of trunks
affect the trunk results but not the facility results.

There is not such a separation of results for impulse noise; both
facility results and trunk results are referred to the receive switch. The
reason for this is the expectation that the switching equipment con-
tributes to the impulse noise level on an intertoll trunk. Relative en-
velope delay is given separately for facilities and trunks; varying
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facility mixture and various types of office equipment influence the
trunk results in different mileage categories.

The facility composition of intertoll trunks considerably influences
their transmission performance. Facility composition is continuously
changing; the most important change in recent years is the introdue-
tion of new short-haul earrier systems with improved transmission
characteristics.

II. SAMPLING CONSIDERATIONS

2.1 Definition of Population

A sampling plan tailored to the structure of the Bell System inter-
toll network was established and followed earefully. The objective
was to design the survey so that the sample data could be used to
make estimates of characteristics associated with the entire popula-
tion. An important preliminary step is to give a precise definition of
the population so that the extent and limitation of the survey results
are known.

An intertoll trunk is defined as a trunk between two toll offices,
that is, between two separate toll switching units that both have one
of the long distance switching plan classifications: regional center
(class 1), sectional center (elass 2), primary center (class 3), or toll
center or toll point (class 4). In case one toll office building (or
complex of buildings) contains only one toll switching machine, it is
counted as one toll office. This means that a manual switchboard
in the same building as a switching machine is not counted as a
separate toll office, and trunks between such a switchboard and the
switching machine do not qualify as intertoll trunks. If a building
contains two or more switching machines that are separately identi-
fied and that have access to different groups of trunks and where the
trunks between the machines are designed as intertoll trunks, then
these switching machines are considered as separate toll offices. So-
called tandem offices that can connect with the long distance net-
work are classified as toll offices. Trunks between tandem offices are
regarded as intertoll trunks if they can carry traffic to or from the
long distance network.

Every intertoll trunk allows transmission in two directions, but
measurements in the survey and hence characterization of perform-
ance are made only in the receive direction. Therefore, it is clear
that the trunks themselves do not constitute the population elements.
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Rather, a population element is identified with each direction of
transmission of an intertoll trunk. One requirement for inclusion in
the population is that the trunk have both of its terminations within
the USA (excluding Alaska and Hawaii) or Canada. A further re-
quirement is dictated by the administrative necessity of confining the
measurements to Bell System toll offices. This further requirement
states that the receive termination of a particular direction of trans-
mission of an intertoll trunk should be located in a Bell System toll
office. This implies that those intertoll trunks that have both end-
points in Bell System toll offices give rise to two population elements,
while those that have one termination in a Bell System toll office and
the other in an independent office are counted just once.

2.2 Sampling Plan

The sampling plan used in the survey is a two-stage plan with
substratification which is self-weighting within each substratum and
where the first-stage sample is selected with probabilities propor-
tional to measures of size. (See Hansen, Hurwitz and Madow?* for a
general discussion of this type of sampling plan.) The primary units
were Bell System toll offices as defined in the preceding section. A
substratification is a stratification of the population elements in each
sampled primary unit. The substrata were defined in the same way
for all primary units; they are identified with length-categories of
intertoll trunks as shown in Table 1.

The first step in the sampling plan was to establish a frame for
the first-stage selection. The frame listed all Bell System toll offices
and gave for each the number of intertoll trunks terminating in the
office. The number of trunks per office was used to form probabilities
for the first-stage selection of primary units. Such a probability was
computed for each office as the quotient of the number of intertoll

TABLE I— DEFINITION OF SUBSTRATA

Trunk length I

Substratum
number Miles km (approx.)
1 0 <l 625 0<i< 100
2 62.56 <l < 125 100 < I < 200
3 126 <1< 250 200 <1 < 400
4 250 <1< 500 400 <! < 800
5 500 <1 <1000 800 < I < 1600
6 1000 < I <2000 1600 < I < 3200
7 2000 <1 <4000 3200 < I < 6400
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trunks terminating in that office to the total number of trunk termina-
tions found in all Bell System toll offices.

After the sample size had been determined, as discussed in the
next seetion, this frame was used for selecting a first-stage sample of
48 primary units. Randomness was assured by using lists of random
numbers. The selection was made with replacement. As a result, three
toll offices were selected twice. The first-stage sample therefore con-
tains 45 different toll offices representing 48 primary units. The sam-
pling was done with replacement in order to correspond with the
specific assumptions made in the derivation of the estimation form-
ulas.® More efficient sampling without replacement is being considered
for future surveys.

The next step of the sampling plan was to acquire detailed in-
formation about the selected offices. This consisted of lists of all inter-
toll trunks terminating in the selected offices, giving for each the trunk
number, the distant termination, and the actual trunk length in miles.
These lists were used to establish frames for the second-stage sampling
in each substratum of each toll office.

The final step in the sampling plan was to select sample elements
from these frames. In this selection, all population elements in a given
substratum of a sampled toll office were given the same probabilities
of inelusion. The selection was made with tables of random numbers,
without replacement. Tt resulted in lists of specific trunks to be meas-
ured in the survey. To these lists were appended lists of ‘spare”
trunks which were resorted to only when a trunk in the original list
was not available for testing when the measurements were taking
place.

2.3 Determination of Sample Size

The size of a survey sample ideally should be determined to give
maximum precision for fixed cost, or to minimize the cost while
achieving a required precision. Many transmission parameters were
measured for each trunk in the intertoll trunk survey. An ideal sam-
ple size would, therefore, recognize precision requirements for each
of these parameters; but for most of them it was far from obvious
how the precision requirements should be stated. The sample size
therefore was determined to maximize the precision of estimates of
background noise levels (measured with the 3A noise level meter?),
combined with some basic cost constraints. This parameter was chosen
as the cruecial one in determining sample size because meaningful
preeision requirements could easily be stated.
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To estimate the precision expected from a survey requires estima-
tion of variance components. There had been no systemwide survey
of Bell System intertoll trunk transmission performance before 1964,
so direct variance estimates based on previous survey results were
not available. Variance estimates were therefore derived, based partly
on a small pilot survey and partly on an indirect approach that used
data available for some selected transmission facilities.

Experience has indicated that many transmission parameters show
a dependence on trunk length. It is therefore of interest to present
survey results by mileage categories. This in turn carries with it the
desirability of making precision estimates within the same mileage
categories.

Table II lists the widths of the 90 percent confidence intervals for
the mean 3A noise level that were expected in each of the seven mile-
age categories of Table I. These expectations are based on the above-
mentioned variance estimates combined with a sample size of 151
trunks in each mileage category. This sample size was acceptable
from a cost standpoint, and the expected confidence interval widths
were in line with precision requirements. The increased precision with
longer trunks results from the smaller noise variance for long trunks,
discussed in Section VI. Since the longest trunks have the highest av-
erage noise level, it was deemed desirable to require greater precision
for these trunks. The final sample contained a total of 1069 trunks.

The last column in Table II gives the precision that was actually
achieved in the survey. A higher variability than expected was found
in the first two substrata; hence the achieved precision was some-
what poorer than expected. Otherwise the precision achieved was uni-
formly better than expected. This is a reflection of using unnecessarily
pessimistic variance estimates in substrata 3 to 7.

TasrLe II—Wipte oF 90 PeEr CENT CONFIDENCE INTERVALS
FOR MEAN oF DistriBuTIiON OF 3A Noise LEVELS

90 percent confidence interval
[ Bubstratum (dB)
Expected Achieved
1 +1.3 +1.7
2 +1.3 +1.4
3 +1.2 +1.0
4 +1.1 +0.6
5 +1.0 +0.5
6 +0.8 +0.4
7 +0.9 +0.4




TOLL TRUNK PERFORMANCE 1567

2.4 Data Analysis

All estimation formulas associated with the sample design de-
seribed above are based on so-called ratio estimators.? Such estima-
tors have the undesirable feature that in general they are biased.
However, the bias decreases with sample size and can be ignored for
large enough samples. Furthermore, ratio estimators have the desir-
able property that their sampling variance is small and that they
allow a large amount of flexibility in the data analysis. The most
important aspect of this flexibility is related to the analysis of sub-
classes of the population. Examples of this usage of the ratio esti-
mator appear in most of the sections that follow where results are
presented for specific transmission facilities,

All of the results presented here refer to the population defined
above. In many cases where means, standard deviations, and propor-
tions are discussed, these are estimates of population parameters
based on the sample data. Because of the structuring of the sample,
the estimate of the population mean, for example, is often weighted
and therefore not identical with the unweighted sample mean.

The amount of data treated here is large and the data analysis
formulas are complicated. Therefore, digital computer programming
has been used extensively in all of the data analysis work.

Much effort was put into “data cleaning,” that is, in serutinizing
the data collected in the field for errors, omissions, and inconsisten-
cies. Several errors were unveiled and corrected. Most important among
these were erroneous readings of the measurement instrument, errors
in the facility classification, and errors in transeribing the data onto
IBM cards.

III. PHYSICAL CHARACTERISTICS OF INTERTOLL TRUNKS

The results reported here are based on various record data dis-
tinet from the transmission measurement results discussed in Sections
IV through VIIL.

3.1 Trunk Lengths and Airline Distances

Trunk length information was included for each trunk listed in the
frame from which the second stage sample was selected. For each of
these trunks it was also possible to compute the airline distance be-
tween toll offices. This information was used to estimate the distribu-
tion of trunk lengths and the distribution of the ratio of trunk length
to airline distance. The sampling plan used to achieve this was a one-
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stage cluster sampling plan where the selection of clusters coincided
with the selection of primary units discussed in Section II.

Table III gives the distributions of both trunk length and trunk
mileage. It shows that although only 3 percent of the intertoll trunks
are longer than 2000 miles, no less than 25 percent of the total inter-
toll trunk mileage is accounted for by trunks longer than 2000 miles.

The distribution of the ratio of trunk length to airline distance
shows some small variations with the airline distance between toll
offices. Thus, ratios up to five were found on a small proportion of the
trunks that connect toll offices separated by less than 180 airline miles.
On the other hand, the distribution was confined to ratio-values less
than two when the airline distance exceeded 1450 miles. The average
ratio over all trunk lengths was found to be 1.40.

The distribution of the ratio is quite naturally truncated by one
at the lower end, and it has a strong positive skewness. The trans-
formed variable ¥ = logyo(r — 1), where r is the ratio of trunk length
to airline distance, is, however, close to normal in its distribution.
Computed over all trunk lengths, ¥ has a mean of —0.53 and a
standard deviation of 0.64. The mean of ¥y corresponds to a trunk
length to airline distance ratio of 1.29, which is close to the median
of the ratio. The fact that the median of r is lower than the mean
reflects the positive skewness of the distribution of the ratio.

3.2 Toll Office Characteristics

At the time the first-stage sample was selected in early 1964 there
were 1544 Bell System toll offices in the USA and Canada that quali-
fied under the toll office definition in Section II. It was estimated that
the same geographical area contained more than 600 additional toll
offices that were independently owned and therefore excluded from
selection as primary units in the sample.

TasLE III— DistriButioNs oF TRUNK LENGTH

Trunk length Percentage Percentage of

(miles) of trunks trunk mileage
0- 62.5 35 3
62.5~ 125 21 6
1256 - 250 14 8
2560 - 500 11 12
500 -1000 9 19
1000 -2000 7 27
2000 -4000 3 25
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Fig. 1 — Distributions of sizes of toll offices.

The sizes of Bell System toll offices are represented by distribution
curves in Fig. 1. Office size is measured by the number of intertoll
trunks terminated in the toll switching machine. The figure demon-
strates that office size increases with office class, and that the office
size distribution is approximately log-normal within each of the four
classes of offices. The number of Bell System toll offices belonging to
each class is also given in the figure.

Table IV is another way to demonstrate the high concentration of
intertoll trunks in large toll offices. This table gives the estimated
percentage of intertoll trunks within each of seven mileage categories
and over-all trunk lengths that interconnect toll offices of indicated
classes. Notice that an estimated 50 percent of all intertoll trunks in-
terconnect toll offices of class 1, 2, or 3. From Fig. 1 we find that toll
offices of these classes constitute only 16 percent of all Bell System
toll offices. Table IV also shows that 94 percent of the intertoll trunks
have at least one of their end-points in a toll office of class 1, 2, or 3.
The table further indicates that the concentration of trunks to high
level toll offices is even more pronounced if attention is restricted to
mileage categories that contain trunks longer than 125 miles.

The combined percentage estimates for all intertoll trunks terminat-
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TABLE IV—PERCENT OF INTERTOLL TRUNKS INTERCONNECTING
Torn OFFICES

Office class Per cent of intertoll trunks within mileage category PB;BBllil:
0- 62.5- 125—- 250— 500- 1000- | 2000- in‘:eratoll
From To 62.5 125 250 500 1000 2000 4000 trunks
1,2 | 1,2 8 6 20 38 66 66 89 24
1,2,3(1,2,3| 23 | 35 | 58 | 79 | 96 | 97 |100 50
1,23 4 63 60 40 21 4 3 — 44
4 4 14 5 2 —_ — — —_ 6
Percent of all
intertoll 35 21 14 11 9 7 3 100
trunks

ing on at least one end in each of the four classes of toll offices are:

Regional centers 21 percent
Sectional centers 58 percent
Primary centers 47 percent
Toll centers or toll points 50 percent

Closely associated with office rank is the type of switching machine
used in the office. From the standpoint of transmission performance
the major distinction in toll switching equipment arises from the use
of 4-wire versus 2-wire switching, since the latter will ordinarily
require additional equipment (a hybrid transformer and impedance
matching network) to convert a 4-wire transmission path to a 2-wire
path for switching,.

Table V lists the estimated percentages of intertoll trunks within
each mileage category that interconnect two 4-wire machines, two

TasLe V—PERCENT OoF INTERTOLL TRUNKS INTERCONNECTING
SwircHING MACHINES

Percent of intertoll trunks within mileage category Percent
Switch type of all
0- |62.5- | 125- | 250~ | 500~ | 1000~ | 2000~ | intertoll
62.5 125 250 500 1000 2000 4000 trunks
From To
4-wire | 4-wire 9 6 25 44 70 77 91 26
2-wire | 4-wire 41 54 60 47 29 23 9 44
2-wire | 2-wire 50 40 15 9 1 — —_ 30
Percent of all
intertoll trunks 35 21 14 11 9 7 3 100
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2-wire machines and a 2-wire with a 4-wire machine. In 1964 there
were 73 4-wire toll switching machines (types 4A or 4M crossbar) in
service in the Bell System; the table shows that 26 percent of all
intertoll trunks interconnect these toll offices and that 70 percent
touch at least one of them.

The combined percentage estimates for all intertoll trunks termi-
nating on at least one end in one of the four major types of Bell Sys-
tem toll switching machines are:

4A or 4M crossbar  (4-wire) 70 percent

Crossbar tandem (2-wire) 40 percent
Number 5 crossbar  (2-wire) 19 percent
Step-by-step (2-wire) 29 percent

3.3 Facility Composition

More important than toll offices in terms of transmission per-
formance is the facility makeup of intertoll trunks. Percentage esti-
mates of intertoll trunks within each mileage category and over-all
trunk lengths are listed according to line facility makeup in Table VI.

TaBLE VI-—FaciLity CoMPOSITION OF INTERTOLL TRUNKS

Percent of intertoll trunks within mileage category Percent
Facility of all

0- 62.5— 125- 250~ 500~ | 1000- | 2000- | intertoll

62 .5 125 250 500 1000 2000 4000 trunks
Voice frequency 29 3 1 11
N1-carrier 42 11 9 19
ON-carrier 22 47 17 1 20
C or J carrier 6 3 1 2
K-carrier 1 5 8 5 2 1 3
L-carrier 2 5 14 15 15 4 4 7

Microwave radio 3 16 25 51 42 33 55 21
L-carrier and
radio 1 6 9 28 53 37 9
N1 and ON
carrier 1 5 2 2

Noncompandored
carrier combi-
nations + 4 8 7 4 3

Compandored and

noncompandored

carrier combi-

nations 1 11 14 5 2 3

All intertoll
trunks 35 21 14 11 9 7 3 100
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The table partitions all intertoll trunks into eleven facility categories.
(For detailed descriptions of the commonly found telephone carrier
systems see Refs. 3 through 7.) The microwave radio category in-
cludes all the commercial telephone carrier systems using line-of-
sight radio as the transmission medium. A majority of the trunks in
this category used the TD-2 radio system. Four specific single facility
categories include the two short haul cable carrier systems, N1 and
ON, the long-haul K-carrier system, and coaxial cable carrier, des-
ignated L-carrier. (Most intertoll trunks in this category used L3-
carrier.) Trunks made up entirely of the older C or J open wire car-
rier systems were combined into one category because they represent
such a minor contribution to the toll network. The most widely used
combination of the two long-haul line facilities, coaxial cable car-
rier and microwave radio, and the two short-haul facilities, N1-
carrier and ON-carrier, are listed separately for emphasis. Intertoll
trunks made up of all other combinations of carrier facilities are
divided into two categories on the basis of whether any compandored
carrier (N1-, ON- or O-carrier) was used in their makeup.

The voice frequency category in Table VI includes only those
intertoll trunks made up entirely of voice frequency facilities. Eleven
percent of the intertoll trunks fall into this category but 80 percent

TasLE VII— CuanNEL Baxk MAKEUP oF INTERTOLL TRUNKS

Channel banks Percent of intertoll trunks within mileage category Pe;ce]rln
_— 0 62 .5~ | 125- 250— 500~ | 1000- | 2000- in?:.e:’t:ul.l
Number Type 62.5 125 250 500 1000 2000 4000 trunks
0 |[Voice 29 3 1 11
Fre-
quency
2 1 41 10 9 18
4 N1 1 1 1
2 O 22 47 13 1 19
4 (0] 4 1
2 C 5 1 1 1
2 A 6 27 56 T4 76 66 52 37
4 A 1 3 9 17 26 37 6
6 A 1 2 6 10 1
8 A 1 0
>4 |Aand N1 4 3 2 1 1
>4 [AandO 1 7 11 3 1 2
>4 |NandO 1 5 2 2
All intertoll trunks| 35 21 14 11 9 7 3 100
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of these are shorter than 15 miles and 93 percent shorter than 62.5
miles. Trunk records revealed that about 1 percent of all intertoll
trunks contain a section of voice frequency facilities in tandem with
carrier facilities. These trunks were classified by their earrier facility
makeup for Table VI. Using this rule for facility classification, 83
percent of all intertoll trunks have a homogeneous line facility com-
position and more than half of the remainder are made up of the long-
haul combination of coaxial eable earrier and microwave radio.

The estimated percentages of all intertoll trunks containing any
of the eight major carrier facility types in their facility makeup, in
descending order of facility occurrence, are:

Facility Percent
Microwave radio 33
ON-carrier 24
Nl-carrier 22
L-carrier 18
K-carrier 6
C-, J-, or O-carrier 4

The estimates given in Table VI do not differentiate between car-
rier facility combinations connected at voiceband frequencies and
those connected at group, supergroup, or mastergroup frequencies,
nor do they distinguish tandem combinations of the same facility
type connected at voice frequency from single facility trunks.

Information about the number of voice frequency modulators and
channel bank filters used in intertoll trunks is, however, given by
Table VII. This table lists percentage estimates of intertoll trunks
within each mileage category and over-all trunk lengths classified by
the types and number of voiceband channel banks in their makeup.
The 13 categories listed identify all earrier trunks with five types of
channel bank, but not with a specific equipment configuration, for
several generations of a particular type of channel bank are found in
service. A-type channel banks® are used on the long haul ecarrier
facilities, J, K, L, and microwave radio; N1-type is used on NI1-
carrier; O-type on O- and ON-carrier; and C-type on C-carrier.
Note that when intertoll trunks made up entirely of voice frequency
facilities are included, 86 percent of all intertoll trunks encounter no
more than one pair of channel banks and only 5 percent are equipped
with combinations of dissimilar channel banks.

The degree of interconnection of various facilities to form a trunk
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is only party exposed by Tables VI and VIL It is common to com-
bine facilities that use A-type channel banks without demodulating
to voice frequency. This is done by the use of group, supergroup, and
mastergroup connectors.

Table VIII shows the use of such high frequency connectors in Bell
System intertoll trunks. Notice that this table is only concerned with
those trunks that contain at least one pair of A-type channel banks.
Furthermore, any portion of such a trunk that contains channel banks
different from the A-type is disregarded. The table indicates a strong
trend toward a larger number of connectors for the longer trunks. Thus,
the average number of group connectors increases monotonically
from 0 for short trunks to 1.8 for trunks longer than 2000 miles. Like-
wise, the average number of supergroup connectors increases from 0
for short trunks to 2.3 for trunks in the 2000-4000 mile category.

The average number of high frequency connectors, that is, of con-
nectors at group, supergroup, or mastergroup frequencies on trunks
with A-type channel banks can be found in each mileage category
by addition of the corresponding averages for each of the three cate-
gories of connectors. Thus, the average number of high frequency
connectors on trunks with A-type channel banks in the 2000-4000 mile
category equals 4.2. No trunks in the sample shorter than 1000 miles
contained more than 5 high frequency connectors. Among the trunks
in the 1000-2000 mile category, 2 percent contain 8 or more high
frequency connectors, while 3 percent of the trunks longer than 2000
miles contain 8 or more high frequency connectors.

3.4 The Number of FM Terminals per Radio Facility

The intertoll trunks in the sample that used microwave radio as a
transmission facility were analyzed to determine the number of FM
terminals per radio facility. Frequency modulation and demodula-

TaBLE VIII—AvERAGE NUMBER oF Pairs oF A-TypE CHANNEL
Banks anp Hica FrEqQueEncy CONNECTORS ON INTERTOLL
Trunks wiTH A-Type CHANNEL BANKS

Miles 0- |62.5-| 125- | 260~ | 500- |1000- | 2000-| Al
62.5 | 125 250 | 500 | 1000 | 2000 | 4000 | Trunks

Pairs of A-banks 1.0(1.0(1. 0 1.1|1.2|14(1.6] 1.2
Group connectors 0.0/0.1(02]|0.5]1.1[17|1.8| 0.7
Supergroup connectors 00(0.1]|02]|05]|08|1.4(23| 0.7
Mastergroup connectors | 0.0 { 0.0 | 0.0 | 0.1 | 0.1 | 0.3 | 0.1 0.1
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tion is resorted to when groups, supergroups, or mastergroups of voice
frequency channels are dropped from a radio system at an inter-
mediate point. The number of pairs of FM terminals in a radio facility
18 important from a design standpoint because of its effect on the
resulting noise level.

Table IX lists the average radio facility length, the average num-
ber of pairs of FM terminals per radio facility, and the average length
between FM terminals for seven different mileage categories. The
length of a radio facility is the sum of the lengths of all sections of
radio facility used on a given trunk. This rule of computation is used
even when the radio facility sections of a trunk are not all adjacent
to each other. The most important result indicated by Table IX is
that the length between FM terminals is strongly correlated with the
radio facility length.

The average length between FM terminals computed over all radio
facilities is 240 miles, while the average length between FM terminals
for radio facilities longer than 2000 miles is 495 miles. The average
length between FM terminals is approximately proportional to the
square root of the radio facility length. For a radio facility length of
4000 miles, the average length between FM terminals is estimated at
620 miles. Correspondingly, the average number of pairs of FM
terminals for a 4000 mile long radio facility is approximately 6.5. The
distribution of the number of pairs of FM terminals for radio facilities
longer than 2000 miles shows that only one percent contain 9 or more
pairs of FM terminals in tandem.

. 1000-HZ LOsS

The switch-to-switch loss of intertoll trunks at 1000 Hz have been
analyzed. The term switch-to-switch loss is used to refer to the total
loss between outgoing switch appearances at the originating and ter-
minating ends of a trunk. It equals the loss inserted into a connection
by switching the trunk into an operating condition.

The loss at 1000 Hz can be studied from three different viewpoints:
design, performance, and maintenance. The switch-to-switch loss at
which each trunk in the sample was designed to operate was ex-
tracted from trunk records in each of the toll offices visited. The
actual switch-to-switch loss was found by measurement. The main-
tenance effect is measured by the difference between measured loss
and design loss, if it is assumed that all trunks met the design value
exactly when they were first put into service.
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TasLe IX —Rapio SysreM CoMPOSITION VERSUS RADIO
SystEM LENGTH

Average radio Average number of Average length
Radio facility | facility length pairs of FM terminals between FM
length (miles) (miles) per radio facility terminals (miles)
0-62.5 39 1.0 39
62.5-125 80 1.3 64
125-250 173 1.5 120
250-500 341 2.1 168
500-1000 708 2.8 255
1000-2000 1264 3.8 337
2000-4000 2565 5.2 495

4.1 Design Loss

The scatter diagram of Fig. 2 shows how the design losses of inter-
toll trunks vary with trunk length. Intertoll trunks are designed ac-
cording to the via net loss concept discussed by H. R. Huntley.® Ac-
cording to this concept, the design loss for carrier trunks increases
linearly with trunk length from 0.5 dB to 2.6 dB, from 165 to 1565
miles; this is shown as an exponential trend in Fig. 2 because of the
logarithmic mileage scale. Trunks longer than 1565 miles and trunks
between regional centers are designed to have a loss of 0 dB and to be
equipped with echo suppressors. Fig. 2 shows that in 1964, such trunks
had generally a design loss of 0.5 dB. The deviations from these rules
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Fig. 2 — Seatter diagram of switch-to-switch design loss versus trunk length.
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are given by trunks on noncarrier facilities and trunks in “unbalanced”
toll offices, that is, 2-wire toll offices of elass 1, 2, or 3, that do not meet
certain objectives for uniformity in office cabling impedance. The scat-
ter diagram indicates that the design loss distributions are non-normal;
definite modes exist at loss values given by the via net loss computa-
tion. The scatter diagram also shows that the adherence to a uniform
loss design improves as the trunk length increases.

A summary of the results of the data analysis for design loss is
given in columns 2 and 3 of Table X. As in most tables in Sections TV
to VIII, estimates are given of the mean and the standard deviation
of the population distribution, and the mean is equipped with its esti-
mated 90 percent confidence interval. The first seven mileage cate-
gories in this table correspond to the seven substrata defined earlier.
A further breakdown has been made of the sixth substratum, which
contains trunks between 1000 and 2000 miles long. The reason for
this additional breakdown is the design rule already mentioned that
prescribes the use of echo suppressors and a switch-to-switch loss
of 0 dB for all trunks longer than 1565 miles as well as on trunks be-
tween regional centers,

The break in the sixth mileage category is at 1465 miles rather than
at 1565 miles because all trunks in the sample between 1465 and 1565
miles long were equipped with echo suppressors and had a design loss
of 0.5 dB. None of these trunks interconnected two regional centers,
and according to present design practices only 17 percent of them

Tasue X —INnTERTOLL TRUNK SWITCH-TO-SWITCH LOSSES

AT 1000 Hz
Measured loss minus
Tru(l:écﬂler;gth Design loss (dB) Measured loss (dB) design loss (dB)
es
Standard Standard Standard
Mean deviation Mean deviation Mean deviation
0 - 62.5 09 %02 1.0 1.2 +02 1.4 0.3 + 0.2 1.0
62.5- 125 (1.0x03| 0.9 [12=x03| 1.3 [01+02| 1.1
125 - 250 |08 +01| 0.4 |11+02] 1.2 (0302 1.2
250 -500 ([1.0x+01| 0.3 |144+02| 1.1 |04 +02 1.1
500 -1000 1.5 £ 0.1 0.3 1.9 £ 0.2 1.1 0.4 4+ 0.2 1.0
1000 -2000 |16 =x02) 0.9 |21 x+02| 1.3 |04 02| 1.1
2000 4000 (06+01] 0.2 |094+01] 1.2 |03 +01]| 1.2
1000 -1465 1.9 4 0.2 0.7 23 x£03 1.2 03 £ 0.2 1.1
14656 -2000 0.6 &+ 0.1 0.4 1.3 =03 1.2 0.8 =03 1.2
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would be equipped with echo suppressors and have a design loss of 0
dB, while the remaining 83 percent would be without echo suppressors
and have a design loss of 2.6 dB. This difference does not mean that
the 1964 trunks were incorrectly designed; rather, it reflects a small
change in design rules that has been introduced after 1964.

Table X shows the same trend in mean design loss observed from
the scatter diagram. The improved adherence to a uniform loss design
with increasing trunk length is seen from the decrease in standard de-
viation with trunk length. The only notable exception is found in the
1000 to 1465-mile category. The higher standard deviation here is
caused by the fact that 14 percent of the trunks in this category inter-
connect regional centers. These trunks would, by present design prac-
tices, be equipped with echo suppressors and have a design loss of 0
dB, while in 1964 their design loss was 0.5 dB. An additional one per-
cent of the trunks in this mileage band are estimated to have been
equipped with echo suppressors and accordingly have a design loss of
0.5 dB. According to present design rules, these trunks would not con-
tain echo suppressors, and their design loss would be 2.6 dB.

4.2 Measured Loss

All survey measurements of intertoll trunks were made so as to
describe as closely as possible the transmission characteristics from
switch through switch as they appear when the trunk is being used
in a built-up connection between subseribers. The maintenance and
testing facilities provided in each toll office, such as toll testboards
and code test lines, are geared toward the same objectives and were
therefore used extensively in the survey.

The loss measurements were made with the far end of the trunk
connected to a 1000 Hz one-milliwatt testing power source. This con-
nection was either supplied by a dialable test termination or it was
made manually at the far-end test board. The received level was then
measured at the near-end toll office.

Figure 3 is a scatter diagram of measured loss versus trunk length.
The fourth and fifth columns of Table X list the corresponding means
with 90 percent confidence intervals and standard deviations in each
of the mileage categories already discussed. The distributions are es-
sentially normal with a slight positive skewness in some length cate-
gories. It is quite remarkable that no trace remains in the distribu-
tions of measured loss of the very pronounced non-normality of the
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Fig. 3 — Scatter diagram of switch-to-switeh measured loss versus trunk length.

distributions of design loss. The reason for this is that the variability
resulting from maintenance overshadows the design variability.

Table X shows that the average measured loss follows the same
pattern as the average design loss as a function of trunk length. The
standard deviations of measured loss decrease as trunk length in-
creases over the first four mileage categories, similar to what was
observed for design loss in the previous section. After this, however,
the standard deviation remains generally constant and it can be noted
that it is substantially larger than the standard deviation of the cor-
responding design loss distributions.

4.3 Loss Maintenance

The loss maintenance of intertoll trunks can be studied by consider-
ing the difference between measured loss and design loss. The last two
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columns of Table X summarize the results, The distributions of these
loss differences within mileage categories are all close to normal.

The table shows that the measured losses are on the average some-
what larger than the design losses. Comparison of the third and
seventh columns shows that the standard deviation of the loss differ-
ence is larger than the standard deviation of the design loss, as stated
in the previous section.

Finally, we notice that the standard deviation shows a small but
statistically significant increase with trunk length over the mileage
categories that contain short-haul trunks (up to 250 miles), and that
it also increases (again significantly) with trunk length over the
mileage eategories to which long-haul trunks belong (longer than 500
miles). This indicates that within each of these two broad classes of
trunks, the longer trunks are somewhat more difficult to maintain
at the loss value at which they have been designed to operate. This is
to be expected since the longer trunks contain more sources for loss
variation and more points where loss adjustment ean be applied.

V. FREQUENCY RESPONSE

5.1 Measurement Procedure

Frequency response was measured by noting the loss at each of 9
frequencies throughout the voiceband. Tones were sent from a variable
frequency oscillator located at the far end toll testboard and the re-
ceived level was noted at the near end toll testboard. The frequency
of each tone was verified by a frequency counter at the receive end
and received levels were measured using the meter available at the
toll testboard. The frequencies of measurement were 200, 300, 400,
1000, 1700, 2300, 3000, 3200, and 3400 Hz. The frequency response of
the office meter was also noted and measured loss values were arith-
metically corrected for any roll-off in the meter.

Since the range of the office meters was generally limited to switch-
to-switeh losses less than 31 dB, it was not always possible to meas-
ure loss at all nine frequencies. This was the case for trunks with
compandored carrier systems where the loss at 3400 Hz was almost
always beyond the range of the meter. In this situation a value of 31
dB was arbitrarily assigned as the switch-to-switch loss. Such a pro-
cedure is necessary to provide a realistic, albeit conservative, estimate
of the mean loss at 3400 Hz for groups of trunks with varying facility
composition.
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5.2 Frequency Response of Facilities and of Office Equipment

As we mentioned, all frequency response measurements in the sur-
vey were made from test board to test board, that is, they included
the sum of the effects of the facility and the office equipment at each
end. In order to isolate these separate contributions, the assumption
was made that the frequency response of office equipment and facility
are independent random variables which add to produce the overall
switch-to-switeh frequency response of a trunk.

Each major facility category was divided into three different sub-
classes: those in which the trunk has 2-wire switching at both ends,
those with 2-wire at one end and 4-wire at the other, and those with
4-wire at both ends. For the largest categories, that is, those contain-
ing one and two pair of A-channel banks, the largest proportion of
the sample was found in the category with 4-wire switching at each
end. The two subclasses consisting of trunks with one pair of A-chan-
nel banks and 4-wire switching at each end and trunks with two pair
of A-channel banks and 4-wire switching at each end were used to
estimate the frequency response of A-channel banks and of 4-wire
office equipment.

The difference between the estimated frequency response character-
istics for these two subclasses of trunks was taken as the frequency
response of faecilities with one pair of A-channel banks. An estimate
of twice the frequeney response of office equipment for 4-wire offices
was obtained by subtracting the above estimate for facilities with one
pair of A-channel banks from the frequency response for trunks with
one pair of A-channel banks and 4-wire switching at each end.

The frequeney response of two sets of 2-wire office equipment was
estimated in an analogous manner, using results for trunks with one
pair of A-channel banks and 2-wire switching at each end in con-
junction with the facility estimates. The separate estimates for the
frequency response of the facility and the two types of office equip-
ment were combined and found in excellent agreement with observed
frequency response for trunks with 2-wire switching at one end and
4-wire at the other.

The estimates for office equipment thus obtained were then used to
obtain estimates of frequency response for the other types of facilities,
Table XI shows the estimates of mean, standard deviation, and 90
percent confidence interval for the mean of faeility loss differences
relative to 1000-Hz loss. The loss estimates omitted from the table
correspond to switch-to-switch losses in excess of 31 dB.
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Notice that the bandwidth of a facility with A-channel banks is
superior to that of the short haul facilities with O-carrier or N1-
carrier channel filters. In fact, a facility with three pair of A-channel
banks in tandem will have greater bandwidth than either of the
short-haul carrier facilities. It may also be noticed that between the
short-haul carrier facilities, N1-carrier has the superior frequency
response characteristic at low frequencies while facilities with O-
carrier terminals are superior at the high frequencies.

The loss differences for office equipment are given in Table XII.
Comparison with Table XI shows that office equipment may con-
tribute more to switch-to-switch loss at low frequencies than a pair
of A-channel banks. This is especially true when both offices use
2-wire switching, in which case the mean loss difference of office
equipment at low frequencies exceeds even that of two pair of A-
channel bank facilities in tandem.

5.3 Frequency Response of Trunks

The loss data were also analyzed within the mileage categories
defined previously. The results of this analysis are presented in Ta-
ble XIII. A general trend toward smaller values of mean loss and
standard deviation with increasing trunk length is evident at both
the lower and higher frequencies of the voice band. Hence the longer
trunks are seen to have a frequency response characteristic that is
superior to that of the shorter ones, This reflects the transition from
compandored carrier on short-haul trunks to A-channel banks for
long-haul trunks and is consistent with the superior performance of
long-haul earrier noted previously. The high percentage of voice
frequency cable and N1-carrier in the shortest category accounts for

TarLe XII—Loss DrrrerEnceEs IN dB RELATIVE TO 1000 Hz
Loss ror OrricE TRUNKING EQUIPMENT

4-Wire office 2-Wire office
Frequency (Hz)
Standard | Standard
Mean deviation Mean deviation
200 0.7 = 0.8 0.4 14 4+ 09 1.3
300 0.3 £ 0.5 0.4 0.7 = 0.5 0.8
400 0.3 & 0.4 0.3 0.3 £ 0.2 0.1
1700 0.1 £03 0.2 0.2 0.2 0.2
2300 0.2 + 0.3 0.3 0.4 & 0.3 0.5
3000 0.3 £+ 0.5 0.1 04 +04 0.4
3200 03 £ 0.5 0 0.4 + 0.4 0.4
3400 0.6 & 0.7 0.5 0.5 + 0.6 0.9
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the superior low frequency performance of trunks in that category
compared with trunks from 62.5 to 125 miles long where O-carrier ter-
minals predominate (see Table VII).

In the first two mileage categories notice that the estimated mean
loss at 3400 Hz is above 20 dB. Included in these estimates are a
high percentage of assigned values of 31 dB for loss too high to be
measured. Hence these estimates are best interpreted as indicating a
mean loss in excess of 20 dB rather than as true estimates of mean
loss. A similar statement holds for the estimated mean loss at 3400
Hz in the 125 to 250 miles category; that is, the estimate of 16.4 dB
indicates mean loss exceeding 16 dB. With these exceptions the ef-
fect of assigned values is to provide more realistic estimates rather
than to alter the interpretation of the estimates.

A comparison between frequency responses for short and long in-
tertoll trunks is made in Fig. 4. It contains plots of the median
switch-to-switch losses as a function of frequency for trunks in the
first and last of the seven mileage categories. Notice that these are
not median curves in the sense that 50 percent of all frequeney
response curves lie on or below these curves; rather, they connect such
points at each frequency that 50 percent of the trunks have a lower
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Fig. 4 — Median switch-to-switch loss for (a) short (0 to 62.5 miles) and (b)
long (2000 to 4000 miles) intertoll trunks.
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loss at that frequency. Fig. 4 shows clearly the larger bandwidth for
the longer trunks.

VI. BACKGROUND NOISE

The noise on a telephone communication channel affects the trans-
mission of both spoken messages and data signals. From a practical
standpoint, the noise is important only when it is interfering with or
disturbing to the transmission of a signal. Hence the noise evaluation
of a telephone communication channel seeks to quantify the inter-
fering or disturbing effect of the noise in relation to particular types
of information bearing signals. The character of this evaluation takes
different forms for different types of signals. The disturbing or annoy-
ing effect of noise for spoken messages is related to the time-average
noise power, while the most interfering effect of the noise on a data
signal is related to the peaks of the noise voltage. Thus, although
we are dealing with the same noise in either case, different aspects of
that noise are important for different types of signals. In presenting
survey results, we refer to “background noise” when dealing with
those noise aspects that basically affect the transmission of spoken
messages, while we use “impulse noise” to describe those aspects that
most seriously affeet data transmission.

6.1 Measurement Procedure

All measurements of background noise in the survey were made
with the far end of the trunk connected to a quiet termination, sup-
plied either by a dialed test termination or by a manually established
connection. Noise levels were then measured at the near end with the
3A noise measuring set used both with C-message weighting and with
3-kHz flat weighting. All noise measurements were made during the
busy period of an ordinary business day.

6.2 Results of 34 Noise Level Measurements

A scatter diagram of 3A noise levels with C-message weighting
versus trunk length is shown in Fig. 5. All noise levels here are given
“as measured,” that is, referred to the receive switch of each measured
intertoll trunk. The scatter diagram exhibits clearly the important
facts that the mean noise level increases with the length of the trunk,
while the variability decreases.

The regression line in Fig. 5 gives an estimate of the mean noise
level under the assumption that the mean noise level is linearly
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Fig. 5 — Seatter diagram of 3A noise level at receive switch versus trunk length.

related to the logarithm of the trunk length. The equation for the
regression line is

N = 37 + 3.1 logl

where ! is the trunk length in miles and N is the average 3A noise
level in dBrnC. This equation shows that the average noise level in-
creases by 3.1 dB for each doubling of length of trunk and that the
average noise level at 4000 miles iz 40.8 dBrnC.

The fact that the variance is not constant with the trunk length
affected this regression analysis; the least squares fit to the noise
levels as a function of the logarithm of the trunk length was weighted
in inverse proportion to the variance about the regression line. This
means that higher weight was given to those observations that show
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a small spread about their mean. The variance about the regression
line was in each case computed as the variance in a mileage category
minus the contribution to that variance that occurred because the
mean noise level varies with the trunk length.

The means and standard deviations of the noise distributions in
each of the mileage categories discussed earlier are listed in the second
and third eolumns of Table XIV. As before, the mean is given with
its 90 percent confidence interval. The strong dependence of both
mean and standard deviation on the trunk length is again clearly ex-
hibited. The discontinuity in loss design rules around 1500 miles is
seen to result in a noticeable extra increase in the average noise level,
since the rise of 3.1 dB from 34.4 to 37.5 dBrnC occurs for an in-
crease in trunk length that is approximately half of what corresponds
to a double length. The noise distributions in each of the mileage
categories are all close to normal with only a small tendency toward
positive skewness in some of the categories.

Compandored carrier facilities are used extensively on short-haul
trunks as shown in Section III. These facilities have the property
that the noise level during quiet intervals is lower than the noise
level during periods when speech or some other signal is transmitted
over the facility. Tests have shown that the subjective reaction to this
noise behavior is approximately accounted for by adding 5 dB to the
noise level measured in a quiet interval. The resulting noise level is
commonly referred to as an “effective’” noise level. The distributions

TasLe XIV—3A NoisE LeEvEL AT RECEIVE SwriTcH

Noise level
Trunk length Measured Effective*
{miles)
Standard Standard
Mean deviation| Mean [devintion
{dBrnC) (dB) |(dBrnC) dB
0 - 62.5( 181 = 1.7 7.5 21.6 | 8.6
62.5- 125 220 £ 1.3 6.2 25.2 5.8
125 - 250 26.4 4+ 1.0 5.3 28.0 4.8
250 - 500 30.6 = 0.6 4.4 30.9 4.2
500 -1000 33.1 £ 0.5 2.9
1000 -2000 35.1 =04 3.0
2000 -4000 394 + 04 2.6
1000 -1465 34.4 4= 0.4 2.8
1465 -2000 375 £ 0.7 2.5

* Including subjective compandor penalty.
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of effective noise levels for various length categories of trunks are
obviously influenced by the proportion of trunks in the category that
contain compandored earrier.

The fourth and fifth columns of Table XIV give means and stand-
ard deviations of distributions of effective noise levels in those mile-
age categories where there is a noticeable difference between the
average effective noise level and the average measured noise level.
These results have been derived by adding 5 dB to the measured noise
level on each trunk composed entirely of compandored facilities, and
adding a correspondingly lower value to the measured noise level on
the trunks made up of a tandem connection of compandored carrier
facilities and noncompandored facilities. Comparison of the second
and fourth columns shows that the average difference between effec-
tive and measured noise levels ranges from 3.5 dB for trunks shorter
than 62.5 miles to 0.3 dB for trunks from 250 to 500 miles long.

The noise performance of the most important transmission facilities
used in the intertoll trunk plant was estimated from the survey data
by subclass analysis. The results are summarized in Table XV. Notice
that noise distribution estimates are not given for all mileage cate-
gories of each transmission faeility. The short-haul carrier facilities
N1 and ON are restricted to the first three mileage categories by their
capabilities (compare with Table VI). Results for these as well as
for other facilities are presented only in those cases where the sample

TasLe XV—MEeasurep 3A Noise LEvEL ReFERRED TO 0 TLP

Trunk Voice frequency facility N1 carrier ON-carrier
lalr.JLpl:l:h Standard Standard Standard
(miles) Mean deviation Nean deviation Mean deviation
(dBrnCO) (dB) (dBrnCO) (dB) (dBrnCO) (dB)
0-62.5 16.6 =+ 3.1 8.6 25.1 £ 2.0 5.7 189 = 1.5 4.6
62.5-125 v wee 29.0 = 1.9 4.3 21.8 &+ 2.0 5.5
125-250 293 £ 1.5 3.0 23.0 £ 1.5 4.0
Conxial cable carrier Microwave radio carrier
Trunk
length Standard Standard
(miles) Mean deviation Mean deviation
(dBrnCO) (dB) (dBrnCO) (dB)
62.5-125 298 =19 4.1
125-250 | 31.1 = 1.9 3.0 31.2 &+ 2.1 4.7
250-500 | 34.5 + 1.4 4.0 34.0 £ 0.9 3.9
500-1000{ 36.0 = 1.1 2.9 37.2 &= 0.6 2.5
1000-2000 v s 39.1 + 0.7 2.4
2000-4000 R wes 42.8 + 0.6 2.3
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contained at least 10 trunks. The noise levels have here been referred
to a conventional reference point called the zero transmission level
point (0 tlp). Intertoll trunks operate with the transmitting switch at
a transmission level of —2 dB relative to 0 tlp, and with the receiving
switch at a transmission level of — (2+design loss) dB. The mean
noise level at 0 tlp was computed by adding 2 plus the mean measured
loss to the mean measured noise level. The variance was calculated
by subtracting the variance of measured losses from the variance of
measured noise levels. In this way, it is seen that the noise level com-
puted at O tlp does not include effects resulting from the loss varia-
bility of trunks. Thus the random variables representing noise level
at 0 tlp and measured loss can be regarded as independent.

Table XV shows that voice frequency facilities have a lower av-
erage noise level than the compandored short-haul carrier systems
N1 and ON, while the standard deviation is higher. The average noise
level on N1-carrier, which is a double-sideband system, is more than
6 dB higher than the average noise level on the single-sideband ON-
carrier system.

Microwave radio facilities are used for a wide range of trunk mile-
ages. The trend with increasing mean and decreasing standard devia-
tion as trunk length is increased is clearly visible from the table.
This trend is in line with the results already mentioned for 3A noise
levels on trunks. The trend can be explained theoretically by regard-
ing a transmission facility as a tandem connection of a mumber of
noise sources n, with n being directly proportional to the facility

TasLE XVI—Mgasurep Frar-WelGHTED 3A Noise LEVEL AT
REcEIVE SwiTcH

Noise level
Trunk
Length Mean Standard
(Miles) (dBrn flat) deviation
(dB)
0-62.5) 29.4 &+ 2.0 9.0
62.5-125 | 30.2 &= 1.4 7.8
125-250 | 31.9 &= 0.8 4.9
250-500 | 34.9 = 0.7 4.8
500-1000| 36.3 &= 0.5 3.3
1000-2000{ 37.7 = 0.6 2.9
20004000 41.3 = 0.5 2.4
1000-1465| 37.2 £ 0.7 2.7
1465-2000( 39.6 =+ 0.9 2.9
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length. The resulting noise level on the facility is then the power sum
of n components. Recent work by Marlow?® and Nasell* has shown
that the mean of a power sum increases while the standard deviation
decreases as the number of component variables n is increased.

Table XVI summarizes the results of 3A noise readings with 3-
kHz flat weighting. Trends similar to those for 3A noise levels with
C-message weighting are indicated; the mean inereases with trunk
length while the standard deviation decreases. Noise level readings
taken with a 3-kHz flat weighting network are mainly used to in-
dicate the presence of low-frequency noise components on a measured
channel. Such noise levels do not in general propagate along tele-
phone trunks since their main frequencies fall below the lower cut-off
frequency of most telephone channels.

VII. IMPULSE NOISE

One of the major sources of impairment to the successful trans-
mission of digital data over telephone circuits is the appearance of
short-term, high-level peaks of noise 12 to 50 dB above the back-
ground noise. These peaks are called “impulse noise” because they
frequently resemble the impulse response of a bandpass filter when
viewed on an oscilloscope.

Impulse noise and its interfering effects on various voice-band data
signals have been studied extensively in recent years by Fennick and
others.*® %34 Tt has been characterized in terms of peak amplitude
distributions, burst durations, frequency spectra, distributions of the
intervals between impulses and conditional probability of receiving
a second impulse within “t” units of time from an initial impulse.
Among these, the distribution of peak amplitudes above selected
threshold levels provides an adequate and useful deseription of the
impulse noise process with instrumentation of minimum complexity.:s
It is not the object of this section, therefore, to expand or improve
upon the methods of characterizing impulse noise now used, but rather
to use one of these methods to describe the impulse noise performance
as measured during the 1964 intertoll trunk survey and to identify
some factors that significantly influence its charaecter.

7.1 Impulse Noise Description

The impulse noise on any one transmission channel can be deseribed
by the time-average of the number of noise bursts that exceed a
threshold level as a function of threshold level. This functional rela-
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tion is referred to as the peak amplitude distribution. Experience has
shown that the relation between the logarithm of the average count-
ing rate and the threshold level is in many cases approximately linear,
that is,

L =1L — KlogC. (1)

Here, L is the threshold level in dBrn at which the average counting
rate is C counts per minute, as observed on a 6A impulse noise
counter,!® L, is the impulse noise level that corresponds to an average
counting rate of one count per minute, and K is the slope of the peak
amplitude distribution. It expresses the dB decrease in threshold level
that increases the average counting rate by a factor of ten.

7.2 Measurement Procedure

During the field measurement phase of the survey, a 15 minute
magnetic tape recording was made of the trunk noise for each inter-
toll trunk in the sample. Trunks containing no compandored carrier
facilities in their makeup were terminated at the distant end either
in a dialed quict termination or, in the case of one-way incoming
trunks, in a termination supplied manually at the transmitting end
of the trunk.

If a trunk contained any compandored carrier, a low-frequency
tone (325-350 Hz) was transmitted at —13 dBm from the distant
toll testboard in order to operate the compandors with a simulated,
fixed-power data signal. This tone was removed by filtering before
the noise was recorded. To ensure that all impulse noise data were
collected during a period of peak channel loading and switching ac-
tivity at both ends of the trunk, it was required that noise be recorded
only when the local time at both ends of the trunk fell between 9:15
and 11:45 am. or 1:15 and 4:15 p.m.

After the field measurement phase of the survey was completed,
each tape recording was played back in the laboratory and monitored
simultaneously by eight 6A impulse counters with threshold levels
spaced 3 dB apart. Each 6A counter was equipped with a voiceband
weighting network.’® The playback gain was adjusted so that the 6A
counts covered the range from 4 to 45 counts during the 15 minute
observation period for each sample trunk. Using relation (1), the
levels corresponding to 45, 15, and 4.5 counts, respectively, were de-
termined by interpolation between the levels that in each case gave
a count higher and lower than the count for which the corresponding
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Fig. 6 — Scatter diagram of impulse noise level versus trunk length. v = voice-
frequency trunks; * = trunks containing only compandored carrier; o = trunks
containing both compandored and noncompandored carrier; + = trunks contain-
ing only noncompandored earrier.

level was sought. The slope of the peak amplitude distribution was
computed for each trunk as the difference between the interpolated
4.5 and 45 count levels.

7.3 Results of Impulse Noise Measurements

The 1963 survey of impulse noise on Bell System carrier facilities
revealed that mean threshold levels corresponding to a 6A counting
rate of 3 counts per minute were significantly higher on the short haul
compandored carrier facilities, N1 and ON, than on long haul carrier
facilities.’® In recognition of this, the scatter diagram of impulse noise
levels versus trunk length, shown in Fig. 6, reflects the following par-
tition of intertoll trunlks:
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(i) Trunks made up entirely of compandored carrier facilities (N1,
ON, or 0),

(i) Trunks made up of any combination of compandored carrier
with noncompandored carrier facilities (part N1, ON or 0),

(i) Trunks made up entirely of noncompandored carrier facilities
(C,J, K, L and microwave radio), and

(#v) Trunks made up entirely of voice frequency facilities.
Trunks in the first three categories that include a short section of
voice frequency facilities in tandem with carrier facilities were classi-
fied by their carrier facility makeup.

Fig. 6 suggests the following trends:

(2) Impulse noise levels measured on trunks containing any com-
pandored carrier are distinetly higher than on noncompandored
trunks.

(%) Impulse noise levels measured on mixed facility trunks con-
taining any compandored carrier are dominated by the compandored
carrier impulse noise.

() Impulse noise levels measured on noncompandored trunks are
correlated with trunk length.

These trends are described quantitatively by the results shown
in the fizures and tables that follow. Tables XVII and XVIII sum-
marize estimates of the mean, standard deviation, and 90 percent
confidence interval for the mean for the impulse noise level (cor-
responding to an average of 1 count per minute) and the slope. All
noise measurements were made on trunks and therefore are referred
to the level of the receive switch.

In Table XVII estimates are presented for all intertoll trunks and
for nine subeclasses defined by transmission facility. These subclasses
include trunks made up entirely of the five major Bell System carrier
facilities, voice frequency facilities, and the common long haul com-
bination of coaxial cable carrier and microwave radio. The remain-
ing categories partition all carrier intertoll trunks whether single
facility or mixed, into those using only noncompandored carrier
facilities and those using any compandored carrier facilities. Table
X VIII summarizes estimates for the latter two trunk categories within
seven mileage categories. Voice frequency trunks are eliminated from
Table XVIII because 93 percent of them are shorter than 62.5 miles;
impulse noise on these trunks is therefore adequately characterized
by Table X VIIL.
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TasLe XVII—SumMmary oF Impurse Noise REsurrs, AT RECEIVE
Swrrcx, Over ALt Trunk LENGTHS

Impulse noise level

(1 count per minute) Slope
Facility type
Standard Mean Standard
Mean deviation| (dB per deviation
(dBrn VB) (dB) decade)
Voice frequency 51.4 + 2.5 8.4 | 82+08 | 3.4
N1 carrier 68.7 £ 1.8 7.9 6.9 4+ 1.2 4.3
ON-carrier 66.7 = 1.8 7.3 5.5 4 0.8 3.2
K-carrier 58.3 & 2.5 9.8 92 4+ 1.3 6.3
L-carrier 549 + 2.2 7.6 6.6 &= 0.7 3.5
Microwave radio 573 + 1.4 7.0 7.9 £+ 0.7 4.1

L-carrier and

microwave radio | 59.9 £ 1.7 6.3 73 £ 0.5 3.7
Any compandored

carrier 67.8 +£ 1.3 7.6 6.2 + 0.7 3.9
Noncompandored

carrier 57.8 == 1.0 7.6 7.7 £ 04 4.1
All intertoll

trunks 61.6 + 1.2 9.7 7.1 =04 4.0

Tasue XVIII—SumMary oF ImpurseE Noise REsunts, AT
ReceEvE SwitcH, For Carrier INTERTOLL TRUNKS

Impulse noise level
(1 count per minute) Slope
Mileage Compandared
stratum carrier Standard Mean Standard
Mean deviation (dB per deviation
(dBrn VB) (dB) decade)
0-62.5 ANY 67.1 £ 1.8 8.0 6.3 + 1.1 4.3
NONE 52,6 £ 2.8 5.5 72 +18 3.1
62.5-125 ANY 694 £+ 1.8 7.2 6.3 & 0.9 3.4
NONE 55.1 = 3.3 9.2 9.2 = 1.3 5.0
125-250 ANY 67.0 &£ 1.5 6.3 6.0 &+ 0.9 3.4
NONE 56.7 + 1.6 7.6 8.2 4 0.8 4.6
250-500 ANY 67.8 &= 2.4 6.6 5.0 £ 0.5 1.9
NONE 58.4 £ 1.6 7.3 7.7 £ 0.6 4.0
500-1000 ANY 66.4 + 3.6 5.9 43 £ 1.9 2.6
NONE 588 £ 1.5 6.4 6.9 & 0.6 3.6
1000-2000 NONE 599 + 1.1 6.1 7.2 &£ 0.5 3.5
2000-4000 NONE 63.2 + 1.3 5.0 7.1 = 0.3 2.8
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Table XVII supports the observation made from the scatter plot:
the average impulse noise level is 10 dB higher on trunks containing
any compandored carrier than on trunks using no compandored car-
rier. On the other hand, the average slope is 1.5 dB higher for non-
compandored carrier trunks. The differences between mean impulse
noise levels observed for the three facility categories L-carrier, micro-
wave radio, and the combination of L-carrier and microwave radio
is not a reflection of different impulse noise performance of these
facilities. If a comparison between the three is made within mileage
categories, one finds no significant differences. The differences ob-
served in Table XVII depend on the varying length distribution of
the three facilities combined with the fact that the average impulse
noise level increases with trunk length for trunks on noncompandored
carrier facilities.

Some of the results of Table XVII are depicted graphically in Fig.
7. The intertoll trunks are partitioned into three major facility cate-
gories, voice frequency trunks, trunks made up of noncompandored
carrier facilities, and trunks containing any compandored carrier,
For each facility category, a peak amplitude distribution is given by

4
w Al
] '—V TRUNKS
) CONTAINING
Z \ ANY
2 5 AL COMPANDORED
& \ INTERTOLL GARRER
a TRUNKS
/
= \,/
5 &
Q
R AK_‘
< 091~
w0
W 0B \
S o7l \
G oer PANDORED %
8 sl 5 CARRIER
5 VOICE * TRUNKS \
z . FREQUENCY
w & TRUNKS X
v}
<
& 03 i—\>—<
z
0.2 | | ! | | |
45 50 55 60 65 70

LEVEL IN dBrn (VOICEBAND)

Fig. 7— Average impulse noise levels at receive switch with 90 percent con-
fidence intervals.
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Fig., 8 — Average impulse noise level (1 count per minute) at receive switch
with 90 percent confidence intervals.

the curve that connects the mean impulse noise levels at which an
average of 3, 1, and 0.3 counts occur per minute.

Table XVIII demonstrates how the average impulse noise level on
noncompandored carrier trunks increases with increasing trunk length,
while the average impulse noise level on trunks containing any com-
pandored carrier shows no significant change. The table also indicates
a tendency for the slope to decrease with trunk length within each of
these two facility categories. Furthermore, standard deviations of
both impulse noise level and slope tend to decrease with trunk length
for each of the two facility categories.

Fig. 8 clearly portrays the relationship between average impulse
noise level and trunk length. Abscissa values for points plotted in this
figure are the mean trunk lengths within each mileage-facility cate-
gory.

For each of the categories given in Tables XVII and XVIII the
distribution function was estimated for both the impulse noise level
and the slope. Distributions of the impulse noise levels in all these
categories are very nearly normal and therefore are adequately de-
fined by the distribution parameters given for them. The distributions
of the slope show a positive skewness, however, and so Fig. 9 is in-
cluded to show the amount of this skewness for the two major trunk
facility categories referred to throughout this section.

Estimation of the slope of peak amplitude distributions is mean-
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Fig. 9— Distribution functions of slope of peak amplitude distributions.

ingful only to the extent that relation (1) is a good approximation to
the relation between counting rate and threshold level. Fig. 7 indicates
a high degree of linearity in the functional dependence between the
logarithm of the average counting rate and the average threshold level
in dBrn. However, this does not guarantee linearity of individual peak
amplitude distributions. Some insight into the latter can be gained by
studying the difference, A, between the level at which 15 counts occur
in 15 minutes and that level at which 15 counts in 15 minutes would be
predicted on the basis of the levels at which 45 and 4.5 counts occur
in 15 minutes and using the linearity assumption in (1).

The 90 percent confidence interval for A includes zero for all subclasses
of trunks listed in Table XVII, except K carrier. Excluding this category,
the mean A values range from 0.3 to 0.7 dB, and the standard deviations
of A range from 0.8 dB for L carrier to 1.5 dB for microwave radio.
The mean A for K carrier trunks is 1.2 dB with a 90 percent confidence
interval of 40.5 dB. This indicates a nonlinear peak amplitude dis-
tribution for trunks made up entirely of K carrier. The standard devia-
tion of A is 2.7 dB for these trunks.

Fig. 8 demonstrates that the impulse noise level for noncompan-
dored carrier trunks is correlated with length, but Fig. 5 shows that
background noise level is also correlated with length. In an effort to
assess the relative significance of these two factors on impulse noise,
a weighted multiple linear regression analysis was performed on the
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impulse noise level corresponding to 3 counts per minute for noncom-
pandored trunks versus the logarithm of trunk length in miles and
the background noise level as measured with the 3A noise measuring
set. The least squares fit was weighted in inverse proportion to the
variance of impulse noise levels about the regression plane.

This regression analysis gave the following result:

L = 33.2 + 0.08 log, I + 0.65 N, )

where Ly is the average impulse noise level in dBrn(VB) correspond-
ing to an average 6A counting rate of 3 counts per minute, I is the
trunk length in miles, and N is the background noise level in dBrnC.
As with all results reported in this section, both Lg and N refer to
noise levels measured at the receive switch of an intertoll trunk. Re-
lation (2) shows that the correlation between impulse noise level and
trunk length is very low if the background noise level measurement is
included as an independent variable in the regression analysis.

A weighted linear regression analysis of the impulse noise levels as
a funetion of trunk length alone gave the result:

L, = 37.9 + 1.9 log, I. (3)

Thus the average impulse noise level Ly on noncompandored carrier
trunks inereases by 1.9 dB for each doubling of the trunk length.
Such a strong correlation between these two variables was to be ex-
pected because of (2) and the dependence of average background
noise level on trunk length discussed in Section VI.

VIII. RELATIVE ENVELOPE DELAY

Relative envelope delay can be used to characterize nonlinearity
of the phase characteristic. It is the delay of the envelope of an ampli-
tude modulated carrier relative to the envelope delay at a reference
carrier frequency. As such it provides an approximation to the deriva-
tive of the phase characteristic. Hence linear phase corresponds to
constant delay, or zero relative envelope delay. The reference fre-
quency chosen for all measurements in the survey was 1800 Hz.
That is, the envelope delay of each trunk in the sample is given rela-
tive to the envelope delay of the same trunk at 1800 Hz.

8.1 Measurement Procedure

Envelope delay was measured with a loop-around technique. When-
ever possible a trunk was looped back onto itself at a 4-wire point
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in the distant office, thus ensuring the same facility composition in
each direction of transmission. Delay was then measured from a
4-wire point in the near-end office. Since voice frequency patch bays
are standard 4-wire points for most earrier systems, they were used
hoth for point of measurement and point of loop back when available.
For facilities not appearing at a voice frequency patch bay, an alter-
nate point of measurement. and loop-back was selected. In offices where
compandored carrier systems terminated only at the ecirenit patch
bay this point was used; and for voice frequency facilities, the re-
peater jacks were used. For 2-wire voice facilities the trunk to be
measured was looped back onto its cable quad pair, thus assuring
similarity of loading, repeater type, and spacing. The loop-around
measurements were converted arithmetically to one-way values in a
manner described later.

In order to characterize each trunk as completely as possible, meas-
urements were also made on the office trunking equipment between
the toll test board and the voice frequency patch bay (or similar
points where the facility measurements had been made). Measure-
ments between the toll testboard and the voice frequency patch bay
in 4-wire switching offices were made from the test board with a
loop-back at the voice frequency patch bay. In offices with 2-wire
switching, two separate measurements were made on the office equip-
ment: one from the toll test board to the voice frequeney patch bay
and a second from the voice frequency patch bay to the toll test
board.

8.2 Loop-Around to One-Way Conversion

As already mentioned, relative envelope delay on facilities was
measured with a loop-back technique. The requirement to charac-
terize the transmission performance by one-way data, therefore,
makes it necessary to find a method for converting the loop-around
data to one-way delay. This conversion presents a problem, since a
direct division by two of each two-way delay reading would lead to
an underestimation of the standard deviation of the distribution of
one-way delay readings, even though the mean of the same distribu-
tion would be correctly estimated.

The classification of trunks into homogeneous facility categories
is of importance here, since it allows us to view the delay in the two
directions of transmission of the trunk as independent, identically
distributed random variables. Within each such facility category, the
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following conversion formula was used at each frequency:

(4)

where d, is the desired one-way delay for a given sample trunk, d, is
the measured loop-around delay for the same trunk and d, is the esti-
mated mean loop-around delay for all trunks in the category.

The use of a ratio estimator in the sample survey estimation formulas
means that d, is not an unbiased estimator of the mean loop-around
delay. However, this estimator is asymptotically unbiased. Therefore,
if the sample size within the facility category is large enough, the bias
of d, can be neglected, and its variance can be neglected in comparison
with the variance of d,. The covariance of d; and d, is likewise neg-
ligible. Under these conditions it is easily shown that:

E(d,) = 3E(d») (%)
and

Var (d,) = % Var (d,). (6)

The conversion formula (4) is thus seen to have the desired properties
for a large enough sample size in the corresponding trunk category.
It has, however, been used for conversion from two-way to one-way
delay in all of the facility categories regardless of size. The bias in-
troduced in this way is certainly less serious than the errors that
would occur through a simple division of each measured loop-around
delay by two.

8.3 Delay on Facilities

The data were analyzed separately for each of the facility cate-
gories. The results include estimates of the mean, standard deviation,
and 90 percent confidence intervals for the means. These results for
facilities with one pair of A-type channel banks, one pair of O-carrier
channel filters, one pair of Nl-carrier channel filters are presented in
Table XIX and in Fig. 10. The curves for facilities with A-channel
banks and O-carrier channel filters are quite symmetric while the
curve for Nl-carrier channel filters is not. Measurements at high
frequencies could not always be made on the compandored carrier
systems because of excessive attenuation, as mentioned previously.

Delay characteristics are additive. That is, the relative envelope
delay for two or more facilities in tandem may be obtained by adding
the individual delay curves for cach of the component facilities. For
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TasLe XIX —REeraTive ENvELOPE DELAY FOR MAIOR
Facmwiry CATEGORIES

Delay (us)
Frequency (Hz) A Channel banks O Channel Filters N1 Channel Filters
Standard Standard Standard
Mean deviation Mean deviation Mean deviation
400 1096 + 29 | 213 | 1545 = 30 131 513 =11 | 50
600 538 + 11 79 671 &= 9 61 143 = 4 22
800 315 £ 6 48 357 =7 43 36 =5 18
1000 180 = 3 27 212 £ 5 33 —20 £ 4 14
1200 104 4+ 3 25 118 £ 5 30 | —26 =4 14
1400 57 &+ 2 19 54 £ 3 21 —26 = 3 11
1600 21 =1 12 15 £ 2 11 —17 £ 2 9
1700 8+1 9 541 7 -9 +2 6
1800 0 0 0
2000 2x2 15 52 12 27T =2 8
2200 29 4+ 4 29 31 +3 20 79 £ 2 10
2300 51 =4 33 53 &= 4 25 117 = 4 14
2400 7T x5 37 81 + 4 31 162 = 4 17
2600 147 £ 6 44 161 £ 6 44 252 £ 7 23
2800 257 £ 7 al 293 £ 10 63 393 =9 31
3000 444 + 8 61 537 = 15 89 750 = 23 | 84
3200 837 = 10 79 936 =+ 33 154 cee .
3300 1279 + 14 | 109 s cee
3400 1837 + 29 | 186 v cee
2000
1600 -‘ /
8 1 A—
5 \
g 1
u 1
@ 1200 i
(]
[+ \
v \ o P
: \ 1
> hoo AL f I’
é \ \\ N1~ /
o \ /
AL /
400 X +
! \\ W /’
A e
“ . 4
o 500 1000 __l_SOO 2000 2500 3000 3500

FREQUENCY IN HERTZ

Fig. 10 —Mean relative envelope delay for facilities with A-type channel
banks, O-carrier channel filters, and N1-carrier channel filters.
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example, the delay characteristic of a trunk facility containing one
pair of A-channel banks in tandem with an ON system may be ob-
tained by adding the data for a facility with one pair of A-channel
banks and that for a facility with one pair of O-carrier terminals.
This follows from the fact that the voiceband channel filters are, with
two notable exceptions dealt with later, the only significant contribu-
tors to envelope delay on carrier facilities.

Variance for a tandem facility category is similarly estimated by
the sum of the variances. Precision in the form of 90 percent con-
fidence intervals for the mean may also be estimated by “addition”
of confidence intervals in the same manner as standard deviations
(square root of sum of squares). Estimates of the cumulative distribu-
tion functions have indicated that the assumption of normality is
justified within facility categories. Henece the percentage points of the
distribution funetions may be estimated from the means and standard
deviations.

The property of additivity was directly used in the data analysis.
That is, delay for facilities with two pair of A-channel banks was
assumed to be the sum of that for two facilities, each with one pair of
A-channel banks. Similarly, delay for facilities with three pair of
A-channel banks was regarded as the sum of three separate A-channel
bank facilities. The data for facilities with one, two, or three pairs of
A-channel banks were then pooled to provide the estimates for a facil-
ity with one pair of A-channel hanks given in Table XIX and Fig.
10. This procedure has the advantage of producing greater precision
than use of only data for facilities with one pair of A-channel banks.

In addition to channel bank filters, other factors which may con-
tribute to the over-all delay on a facility are group connectors and
K-carrier modems. The most noticeable effects of these are found on
edge channels of the basie group (channels 1 and 12). Estimates of
the additional delay contributed by each of these are given in Ta-
ble XX. The results for group connectors are also shown in Fig. 11
which presents the delay curves for A-type channel banks with and
without the effects of group connectors on edge channels.

The delay contributed by group connectors reflects the specific
combination of an older and a newer generation of such connectors
that existed in the plant in 1964. The newer generation gives smaller
additional delay than the older one. It is therefore expected that the
additional delay resulting from group connectors will decrease as the
proportion of new group connectors in the plant inereases. Table XX
shows that the low frequency effect of a K-carrier modem is similar
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TaBLE XX — AppiTioNAL MEAN RErATivE ENVELOPE DELAY oN
Epcge CoannELs FROM K-CARRIER MobpeEMs AND Group

CONNECTORS
Delay (us)
Frequency (Hz) K-Carrier modem Group connector
Channel 1 Channel 12 Channel 1 Channel 12

400 517 342 455 —138

600 334 253 314 —121

800 231 114 233 —109
1000 164 73 154 —90
1200 117 32 103 —67
1400 76 5 65 —47
1600 37 0 32 —27
1700 20 — 16 —13
1800 0 0 0 0
2000 —34 —3 —27 39
2200 —63 0 —50 90
2300 —80 —8 —63 122
2400 —903 —17 —68 158
2600 —120 —28 —84 244
2800 —147 —27 —09 360
3000 —170 —38 —115 533
3200 —238 —121 —127 851
3300 —296 —59 —133 1058
3400 —293 217 —141 1349

to that of a group connector on channel 1. In fact, a K-carrier modem
contributes more excess delay at 400 Hz than one group connector.
This is seen to be true for both channels 1 and 12 associated with
the K-carrier modem. We may also notice that on channel 12, un-
like channel 1, a K-carrier modem will also add delay to the highest
frequencies of the voice band. In Fig. 11 we observe that for channel
12, the effect of a group connector is to produce a shift of the delay
curve toward the left and an attendant asymmetry. This is seen to
be opposite to the effect on channel 1 and also somewhat greater in
magnitude. For a K-carrier modem, the effect on both channels 1
and 12 will be similar to that of a group connector on channel 1;
that is, a shift of the entire delay curve to the right.

8.4 Office Equipment Delay

The results for office equipment are presented in Tables XXI and
XXII for 4-wire and 2-wire offices, respectively. The left part of Ta-
ble XXI shows the results of loop-around measurements, with the
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measurements being made at the toll test board (ttb) and the loop-
back at the voice frequency patch bay (vipb). The right part of this
table indicates that the relative envelope delay is lower if the loop-
back is made at the circuit pateh bay (epb) instead of at the vipbh.
The difference hetween these two sets of readings is attributable to
the single frequency signaling units located between the e¢pb and the
viph. Voice frequency facilities and older types of compandored car-
rier systems generally do not use in-band single frequency signaling
units, so the data on the right side of Table XXI apply specifically
to the delay of office equipment associated with such facilities.

The results in Table XXII for office equipment in 2-wire offices
show a small difference between the delays in the two directions of
transmission. Also, slightly lower values of delay are recorded where
the transmission path does not contain a signaling unit. The differ-
ence is, however, not as large as in the case of 4-wire offices. This
could result from the fact that the delay in 2-wire offices shows greater
variability than the delay in 4-wire offices, as indicated by the esti-
mates of standard deviation. This greater variability and a smaller
sample size combine to produce less precise estimates, thus masking
the contribution of the signaling units.

The existence of 4-wire to 2-wire hybrid transformers in offices

2000
1
/|
]
1600 'ﬁ 1 !
- \ GROUP !l
o CONNECTOR |/
g \ CHANNEL 12 [ l
!
0 1200 - | l
0 J [
e \ NO GROUP __ |/
& CONNECTOR 7~ ,
b= \ \ / |
2 B0 l 7 f
> \ \ GROUP / /
I \ CONNECTOR —//_
d \ \ CHANNEL1 /7~
o \ / N
400 v i
I
A
- /
0 ‘_/ ‘.-/
0 500 1000 1500 2000 2500 3000 3500

FREQUENCY IN HERTZ

Fig. 11— Mean relative envelope delay on edge channels for facilities with
one group connector and one pair of A-type channel banks.
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TapLE XXI—RErLATIVE ENVELOPE DELAY oF EQUIPMENT IN
4-Wire OFrFICEs

Delay (us)
Frequency (Hz) TTB-VFPB-TTE* I TTR-CPR-TTB®
Standard | Standard
Mean deviation Mean deviation

400 307 £ 9 48 195 = 6 15
600 122 £ 3 20 77+ 2 6
800 62 + 2 12 35 1 4
1000 35 1 8 19 £ 1 3
1200 201 5 11 +=1 4
1400 10 =1 5 61 4
1600 b 4 21 2
1700 2 2 1 1
1800 0 0
2000 —4 2 =241 2
2200 —-7+1 8 -3 +1 3
2300 —6 =1 5 —4 41 3
2400 —5+2 8 =51 3
2600 —6 =1 6 —6x1 3
2800 —6 =1 9 —7=+1 3
3000 —16 =1 7 -8 %1 3
3200 —14 4+ 1 5 -8 %1 3
3300 —14 £ 1 5 -8 x1 3
3400 =156 %1 4 -9 %1 3

* 178, toll test board; vFes, voice frequency patch bay; ces, cireuit patch bay.

with 2-wire switching is also noteworthy. Observe that the office
equipment delay in 2-wire offices is approximately twice that in
4-wire offices. The use of different types of hybrid coils and wiring
arrangements may also acecount for the higher variability encountered
in 2-wire offices.

The office equipment contribution to the total relative envelope
delay of intertoll trunks becomes appreciable compared with the
facility contribution only at low frequencies. Tables XXT and XXII
show that the average office equipment delay amounts to no more
than 50 ps per office throughout the frequency range from 1000 to
3400 Hz.

8.5 Delay on Trunks

After conversion of the loop-around delay on facilities to one-way
data the results were combined with the data on office equipment to
obtain estimates of the total switeh-to-switeh delay on trunks. The
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delay for the office equipment at the far end of a trunk was generally
taken to be the mean delay characteristic for the type of office equip-
ment involved. That is, for each trunk the far-end office equipment
was identified by whether 2-wire or 4-wire switching was used and
whether in-band single frequency signaling units were present. The
appropriate mean delay curve was then taken to represent the delay
of the far-end equipment. The exception to this rule occurred when
both near-end and far-end offices had 4-wire switching and both
used the same type of signaling (that is, both used in-band single
frequency signaling or neither did). In this case, the delay as meas-
ured for both directions of transmission on the near-end office equip-
ment of a given trunk was taken as representative of the total office
equipment delay for that specific trunk. In all other cases only the
receive direction of the near-end office equipment measurement was
added (the mean delay curves used for far-end office equipment were
for the transmit direction). When the near-end office equipment was
measured on a loop-around basis and the far-end was not similar the
loop-around value was divided by two to represent the receive direc-
tion of the near-end equipment. A loop-around to one-way conversion
similar to that used on the facility data was not used here because of
the relatively small variances encountered.

The resultant data for switch-to-switch delay were grouped into
mileage categories. The mean, standard deviation, and a 90 percent
confidence interval for the mean were then estimated for the trunks
in each mileage category. The results of this analysis are presented
in Table XXIII. The lower relative envelope delay in the shortest
mileage category reflects its high percentage of Nl-carrier and voice
frequency cable facilities.

The data for delay at frequencies above 3200 Hz in this category
refers mainly to the characteristics of voice frequency cable, since
high loss generally precluded measurements on N1 and ON systems
in this frequency range. A gradual increase in delay is also evident
with increasing trunk length at the higher frequencies. This trend is
caused by the increased use of tandem facilities and group connec-
tors on longer trunks (compare with Tables VII and VIII). A similar
increase in delay with trunk length is not observed at the lower fre-
quencies since the transition from mainly 2-wire switching on short
trunks to 4-wire switching on long trunks produces a decrease in the
contribution of office equipment to overall delay (compare with Ta-
bles V, XXT, XXII).
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Figure 12 compares delay characteristies for short and long inter-
toll trunks. It contains plots of the median relative envelope delay
curves for trunks in the first and last of the seven mileage categories.
The asymmetry of the curve for short trunks reflects the previously
noted facts that N1 ecarrier channel filters dominate in this length
category and that the delay curves for that facility are not sym-
metrical.

IX. CONCLUDING REMARKS

The transmission performance of intertoll trunks has an important
influence on the transmission performance of built-up connections
hetween subscribers. Notice, however, that the latter cannot be
derived in a simple manner from the former since the relation be-
tween the two is influenced by a number of factors, such as customer
calling habits, toll network routing patterns, and automatic alternate
routing probabilities, as well as by the transmission performance of
toll connecting trunks.

It should come as no surprise that important differences have been
noticed between intertoll trunk performance and conneetion per-
formance. One example illustrates this. The regression analysis re-
ported in Section VI shows the mean 3A noise level with C-message
weighting to inerease by 3.1 dB per double length of intertoll trunk.
In contrast to this, the 1966 connection survey'” showed the average
noise level on built-up connections to increase by only 2.0 dB for
cach doubling of the airline distance hetween end-offices.

Some earlier survey activities have been directed at establishing
the transmission performance of selected transmission faeilities.!®
The results of such surveys cannot be used to directly estimate the
performance of trunks. On the other hand, the results diseussed in
this paper show that a survey of intertoll trunks can be used to ar-
rive at performance estimates of both trunks and facilities. This is
possible sinee any given facility constitutes a subelass of the popula-
tion of trunks. The powerful technique of subeclass analysis on sam-
ple survey data can, therefore, be applied directly. It is seen from
this that a systemwide trunk survey supplies more information than
a survey of specifiec transmission facilities,

The dynamiec growth of the toll plant should be taken into ac-
count in applying the results given here. An important aspect of this
growth is the introduction in recent years of the new short-haul
carrier facilities N2, N3, and T1. Their transmission characteristics
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Fig. 12— Median relative envelope delay for (a) short (0 to 625 miles) and
(b) long (2000 to 4000 miles) intertoll trunks.

are, in practically all aspects, superior to those of the carrier facili-
ties N1 and ON, which dominated the short-haul trunk plant in 1964.
The trend in trunk performance because of this is expected to be
toward improved performance. Specifically, the background noise
levels on short-haul earrier trunks should decrease, and their band-
width should inerease to be more nearly comparable with the band-
width of long-haul trunks.
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Effects Associated with the Thermal
Response of the T1 Telephone Transmitter

By C. A. FRITSCH
(Manuseript received April 16, 1968)

The thermal response of the T1 transmitler, when excited by a bias
current, is analytically obtained. The thermal expansions which produce
a decrease in electrical resistance are described. (ood agreement with
experimentally measured temperature rises and displacements is demon-
strated for the early time transients during which the resistance change
occurs. The displacements which produce “thermal packing” are found
to be a stronger function of the thermal expansion coefficient of the dome
electrode than of any other part of the transmatter assembly.

I. INTRODUCTION

The design of an effective telephone transmitter requires that an
acoustic signal (voice) be efficiently converted to an electrical output.
One method of performing this function is to use a moving electrode
(attached to a diaphragm) as one wall of a chamber containing
granular earbon. Thus, if a de bias current is impressed on the trans-
mitter the resulting variations ean be used to operate remote telephone
apparatus,

An important factor in the design of sueh a transmitter is the con-
trol of thermal effects, not only caused by variations in ambient
conditions but also arising from the heat generated each time the
telephone set is connected to the line. These thermal effects result
in dimensional changes in the transmitter body, resistance change
resulting from temperature rise of the granular carbon itself, and the
resistance change caused by thermal expansion of the carbon granules
when they are heated by the biasing current. The total effect, which
produces a loss of carbon transmitter efficiency, is referred to as
“thermal packing.”

To assay the relative importance of the various thermal effects it
is first useful to ascertain whether the carbon granules should be

1615
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treated individually or as a continuum. It has been observed that the
contact points resulting from the granule asperities cause a ‘“bunch-
ing up” of the current.* Consequently, for ac heating in the kilohertz
range, the high local rates of heat generation produce larger tempera-
ture changes at the points of contact with a proportionately large
drop in electrical resistance.r However, it can be readily shown (see
Appendix A) that the carbon particles are small enough and their
thermal diffusivity is high enough so that any local temperature
changes are virtually diffused in about one millisecond. Since the
resistance changes in the Bell System T1 transmitter® have been
observed to take place in about one second,? then the local heating
caused by the asperities and the accompanying resistance change can
be neglected and the granular carbon can be treated as a continuum.

To determine the effects of thermal expansion in both the micro-
phone body and the granular carbon itself, the temperature distribu-
tion throughout the transmitter must be known. Thus, the work
reported here consists of a first-approximation type of analysis to
determine the temperature distribution in the carbon chamber of the
T1 transmitter. The associated thermal effects are then considered
with the hope of providing a better insight into what has been ex-
perimentally observed.

II. ANALYSIS

2.1 Thermal Analysis of the Carbon Chamber

The telephone transmitter design of interest here is shown in Fig. 1.
We wish to deseribe the transient thermal response of this transmitter
as the above mentioned de current is turned on. Geometrically, the
carbon chamber consists of a dome (moving) electrode connected
with a conical back electrode by a flexible nonconducting chamber
closure, If we assume that the surfaces of constant voltage and con-
stant temperature within the carbon aggregate are hemispherical then
the walls of the carbon chamber can be considered as two concentric
hemispheres (see Fig. 2).

If we also assume for the moment that the relatively heavy back
electrode is held at the initial and ambient temperature T',, then, the
thermal response of carbon and its chamber can be conveniently

* Made by Western Electric Co. the manufacturing and supply unit of the
Bell System, and available only to the Bell System.



TRANSMITTER THERMAL RESPONSE

COMPLIANT _ BACK
CHAMBER CLOSURE _ ——" ELECTRODE
GRANULAR
MEMBRANE ——— — __ =l .—— CARBON
Te—— DOME
ELECTRODE
DIAPHRAGM — — — —— __

Fig. 1 — Cross section of T1 transmitter.
written in terms of a temperature excess @ defined by

E=T—TD.
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1)

If we further assume that the temperature excursions are small
enough so that no significant variations in the physical properties

take place then the energy-balance equation is given by

%_~ 2 rer

where

k is the effective thermal conductivity of the carbon
pc is the heat capacity of the carbon

g’ is the rate of heat generation per unit volume.

2

Because of the angular symmetry of the boundary conditions and
the heat generation, gradients in the directions of the angular co-
ordinates can be neglected. Thus, on dividing through by the thermal
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Fig. 2 — Coordinate system for carbon chamber analysis.

conductivity k%, equation (2) in spherical coordinates becomes

10y _ 1 2 (s30) | 2
col P\ o TR 3)
where « is the thermal diffusivity.

In general, the heat generation per unit volume is given by the
product of the square of the current flow per unit area times the
electrical resistivity. Since here we have only radial flow of current
I then

¢"'(r) = I/2m°)’p, = Gpa . (4)
It can be readily shown that the resistivity pe is related to a total
measured resistance R for a cavity formed by two hemispheres of
inner radius, a, and outer radius, b, by

p. = 2rlab/(b — @)]R. ®)

To specify the boundary conditions on our problem we recall that
the initial and back electrode temperature are taken to be ambient.
To approximate the heat lost by the dome electrode we specify a
certain thermal resistance between the dome and some sink at am-
bient temperature and that resistance is represented by a coefficient
h in the so-called “radiation” boundary condition. Consequently, on
using (4) and (5) in (3) the following boundary-value problem can
be stated.

196 _ 17av( 706\, 2 (_ab

x 9 _ r.or (] d ar):+ rt (b — a)'e ©)
8(r, 0) = 0 1)
6(b, ) =0 (8)

k 88/ar(ast) = hé(a, 1), (9)
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where
B8 = I’'R/4xk. (10)

The above nonhomogeneous problem in spherical coordinates can
be simplified by the following substitutions. If we define the dimen-
sionless variables

r = /(b — a)’, (1)
n=(b—n/b—a), (12)

and
oin, ) = 0D 4 SR, (13

then the problem specified by (6) through (10) becomes a homo-
geneous transient conduction problem in a slab with an initial tem-
perature distribution:

= (14)

Mm®=WU—WGjﬁjﬁﬂ (15)

v(0, 7) = F/(1 — F) (16)

ao/on(t, 7) + LT Ny (1, 2) = (s +2/F, (D)
where

F=a/b (18a)

Na: = ha/k. (18b)

N is called the Biot number which characterizes the ratio of the
rate at which heat is lost at the dome electrode to the rate at which
heat is conducted to it through the granular earbon.

The analytical solution of the transformed problem is relatively
straightforward if the dimensionless temperature v (y,7) is first divided
into two functions, one representing the steady-state temperature
rise, the other corresponding to the transient response. Thus, we set

v(n, 1) = e(n) + &, 7). (19)
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The steady-state portion, ¢ (), satisfies
d’e/dn* = 0 (20)
¢(0) = F/(1 — F) (21)
de/dn(t) + ST (Va4 Doll) = Wae + 2/F. (22)

The steady-state solution is then

P T

The transient portion of the solution results from letting & (n,r)
satisfy

ad/ar = a'®/an" (24)
1
#q, 0) = F/(1 — F)[m] — ¢(n) (25)
#0, 1) =0 (26)
aw/on(1, ) + L2 @ 4 1901, 1) = 0, (@)

The solution to the problem in & (5,) is derived in Appendix B and
can be stated as follows:

Z"’: 20\ + )

1
o _ 2 . .
1’(’71 T) = o }"2‘ + cil! + ¢ BXp( x11'3'-) sm Rrl'qj; ﬂ("l 0) s hnﬂ dﬂ!
(28)
where A, are the positive roots of
Aeot A, = —¢, (29)
and the parameter ¢, is defined as
1 —_—
¢, =( FF)(NB"'FD- (30)

The series solution given above was found to converge too slowly
for practical evaluation.* However, the problem specified by (14)
through (17) can be readily solved through the use of finite differ-
ences. Once v (y,r) was so determined for various values of Ny and

* The difficulty resulted from the oscillating nature of the integral in (28). At
small values of = as many as 350 terms were inadequate for convergence.
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F, then the temperature rise above ambient #(r,f) could be found
using (13).

2.2 Temperature Distribution in the Conical Diaphragm

In the analysis of the transient response of the carbon chamber,
the boundary condition associated with the dome electrode has speci-
fied that the heat loss from every point on the interior surface of
the dome electrode is proportional to the difference between the elec-
trode temperature T (a,f) and the ambient temperature T,. The con-
stant of proportionality has been designated as h, which is a measure
of the impedance of the conical diaphragm to the flow of heat. Thus,
the heat flux at the junction between the diaphragm and the dome
electrode is given by*

Y e ” = ) a_q_-'.
g"" = h[T(a, t) — Tol-y = kas

3D

where the coordinate system is shown in Fig. 3. The factor v is defined

o e L o o S s T A T A A A B D

N AMUURALLALAANAN
%} §—\§
N ' ‘%

7

——— So—_ ek -!\
N = R

Tig. 3 — Coordinate system for heat flow along the conical diaphragm.

as the ratio of the surface area of the dome to the cross-sectional area
of the diaphragm at s = s,. If the thickness of the diaphragm is 8
then v = a/é.

In actuality, the coefficient % as defined by (31) is not a constant
since the 87/ds|,-.,, divided by [T(a, t) — T,] is still a function of

_ *1It can easily be shown that the heat losses for the dome electrode to the air
in contact with it are negligible.
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time, somewhat larger at early times than at steady state. This means
that the thermal impedance increases from some initial value in propor-
tion to the loss of the capacitive effects as the transient dies out. Thus,
the steady-state value of & will be a minimum value.

A more exact approach to the problem would require the simul-
taneous determination of the transient response of the diaphragm
linked to the carbon cavity by a matched heat flux boundary condi-
tion. However, if the capacitance of the diaphragm is small com-
pared with the capacitance of the carbon cavity® then the determina-
tion of h using the steady-state temperature gradient in (31) should
be at least in the correct order of magnitude. Because of the crude-
ness of other approximations it was felt that the more exact ap-
proach was not warranted.

When we perform a heat balance for steady state axially symmetric
heat conduction in the conical diaphragm, the following boundary
value problem ean be stated:

d/ds(s dT'/ds) = 0 (32)
T(s:) = T(a, 1) (33)
T(SG) = Tﬂ . (34)

The solution is
T() — T(a, t)  In(s/s)
Ty — T(a, O " In (s0/51)

Differentiating (35) and using the results in (31), we then have
for the steady-state approximation

: (35)

_ 8k, cos 12.5°

b= G 0

where
s, = a/cos 12.5°.

2.3 Displacements Resulting from the Thermal Response

To ecalculate the displacements of the dome electrode we have
chosen some rather simplified models for the geometrical configura-
tions and constraints.

First, consider the dome electrode itself. If we assume that the

* The capacitance of the diaphragm is about one tenth the thermal capacitance
of the earbon chamber for the Tl transmitter.
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edge in contact with the diaphragm is essentially free it can be
shown from both physical reasoning and the theory of elasticity
that for an unconstrained hemisphere with a uniform temperature
change the change in radius is given by

Ar = e,b6(a, t)-a. (37)

The calculation of the displacements in the conical diaphragm
are somewhat more involved because of the temperature gradient
along the diaphragm. We first assume that the cone angle is small
enough so that the conical diaphragm ecan be approximated by a
disk. Thus, the displacement in the radial direction is given by?

w= 0+ [ 16~ Tsds + Ca + Cofs,  (38)
where

T(s) is the temperature along the diaphragm as given by (35)
T, is the (ambient) temperature in the stress free condition.
If we rewrite (35) in the following form:
_ _ _ In (s/s,)
TG — To = [T(a, t) — T,) T faja) 7o) (39)
where T'(a,t) — T, = 6(a,t), then (38) becomes

_ a,ﬁ(a t)

S (L) — s (B) s 8
[5 In (s_g) 2s i (s,,) 4 + 4s] + Cs + Cofs. (40)
The two constants can be determined from the boundary conditions

on the diaphragm. We will assume that the outer edge of the diaphragm
is fixed so that

u=0 s=s. (41)

If we also consider that the inner edge is free so that the radial stress
at the location is zero then®

du/ds + vu/s — (1 -+ v)a,b(a, t) = 0, §=8. (42)
Applying these conditions to (40) we find that

_ | aubla 1) [i (s_) _s (s_) _s 3]
u= 1+ In (s;/s0) L2 In Sp 2s In So 4 T 4s
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(43)

_[(l—v)_{_S_f]i_é(zﬁ?)n""%h(:_‘:)_

8 l 2
1 ) (sn) ( y)
S1 1 + v

Since we are primarily interested in the displacement of the dome
electrode which is fastened to the diaphragm at s = s;, we first eval-
uate (43) for that location:

1_1fs) 1 s_)
2s,,0(a, 1) | 4 4(3,) -'_2]11(.91 )

uls) = = (80/81) igE R (g—:)!(i ; :)

There are two methods by which the displacement along the slant
height of the conical diaphragm can be exhibited as displacement
of the dome electrode along the axis of symmetry of the T1 type
transmitter. As shown in Fig, 4a, if the diaphragm is rigidly fastened
to the dome then the dome displacement resulting from the thermal
stresses in the diaphragm are given by

(44)

Ahpin = —1u 8D a, (45)

so that the axial displacement, Ah, is somewhat less than the dis-
placement along the slant height of the conical diaphragm. Consider-
ing the other extreme, as illustrated in Fig. 4b, if the fastening is
loose but the dome electrode is rigid then the edge of the diaphragm
moves as if up a rigid wall and the axial displacement is amplified

Fig. 4 — Displacement of dome electrode resulting from thermal stresses in
the diaphragm.
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by the sine of the angle. When the growth of the dome electrode,
a:0a, is taken into account we have

a,fa u

Ahpax = -
™ tana  sina

(46)

In the actual case the true axial displacement will be somewhere
between these two extremes.

III. ANALYTICAL RESULTS

The thermal response of the carbon chamber has been determined
for various values of Np; ranging from 0 to 100 and for two values
of the shape parameter F. As noted earlier, the conical shaped back
electrode has been approximated by a hemisphere of radius b. The
choice of the value of b (and hence F) was somewhat arbitrary.
Thus, two values were taken for comparison. The character of the
approximation is illustrated in Fig. 5. It was felt that the smaller
value, b = 0.44 cm corresponding to F = 0.636, was the better choice.

The results in terms of the temperatures in the slab, v(y,7), were
transformed back to the temperatures in the earbon chamber using
(13). Consequently,

ab(r, ) r
ﬁ - 1 — (1 _ F)"? [U(‘I], T) - U(’T, 0)] (4:7)

Q\\\\\\\\\\\
N

2

Fig. 5 — Approximation of carbon chamber by hemispherical eavity. Indieated
radii are in em.
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Fig. 6 —Dome electrode maximum temperature rise vs Na:. (F=0.636 for
standard T1 transmitter.)

Evaluating (47) at 5 = 1, the temperature rise of the dome electrode
can be expressed as:

8(a
%ﬁ - B, D) — 141 — P 48)
r/o
1.0 095 080 0.85 0.80 075 070 065

028 T T T T T T T

024 o
F=0636 /
/ 0.5
—_—Npai =
0.20 BiL v

===Ngy=10 / 0.25_|—T——|
// ]
PP

N 0.16 =
é}“l !
@ / - =TT T
@
o2 v /"’ ——t—— —-_..\""\
- 025 [T TN
”4 SN
0.08 4 e <
-~ N
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-~
0.04 g ’5:
<l
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b

Tig. 7— Temperature distributions at various times for two values of Nm.
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From the steady-state solution (23) the maximum value of 6(a,f)
beecomes

afla, ©) (1— F) )
B B 1 + (]- - F)Nﬂi

(49)

This funetion is plotted in Fig. 6 for various values of F.

The temperature distributions above ambient for F = 0.636 and
two values of Np; (1 and 10) are given in Fig, 7 for various times
expressed in the nondimensional time variable r. The value of the
abscissa denoted as 5 = 1 (r/b = 0.636) corresponds to the tempera-
ture rise of the dome electrode. As expected, the temperature rise of
the dome electrode is substantially decreased as the Biot number is
increased. This fact is also demonstrated in Fig. 6.

The “early time” transient response of the T1 transmitter to the
“thermal packing” effect will be shown later to be closely linked to
the transient temperature changes experienced by the dome electrode.
This transient response is illustrated in Fig. 8 as the ratio of 8(a,t)/
6(a, o) versus r. The effect of choosing a smaller value of I is also
shown for various values of Np; by the broken lines. It is seen that
virtually all of the transient temperature change has taken place by
the time that - = 1. If the thermal time constant =, is defined as that
value of = where the transient has decayed to 1/e of its value, then
the ratio 6(a,r)/6(a, ) = 0.632 at r = r,. Taking the values of
, from Tig. 8 then a curve of =, vs Ny ean be drawn for both values
of F. These are indicated in Fig. 9 by the notation » = 1. The thermal
time constant for a position whieh roughly characterizes the maximum
temperature within the earbon chamber, that is, 5 = 0.7, is also shown.

IV. EXPERIMENTAL OBSERVATIONS AND APPLICATION

Experimental observations have indicated that the electrical resis-
tance of the T'1 transmitter is significantly altered when a bias eur-
rent is imposed. Fischer and Gaudet have attributed the major cause
of this change to the thermal expansion of transmitter components
resulting from the joulean heating in the carbon.? They tested both
the standard T1 transmitter and a similar transmitter with a invar
dome, diaphragm, and back electrode. The low expansion coefficient
of invar reduced the thermal expansions and hence the invar trans-
mitter packed less than the T1 transmitter. However, the reduction
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Fig. 8 — Transient temperature rise of the dome electrode for various Na
and two values of F.

was not as significant as had been expected because the thermal re-
sistance of the invar parts was greater and consequently higher
temperatures were experienced on the dome electrode.

0.28 ,
——F=0636
\ —_——F=0.611
024 \\
0.20 -\\ _
N\
016 \ S
™ Ll NN WP
n=1 | T
0.08 . - —
0.04|— — ol
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0 2 p 6 ) 0 iz 1416 18 20
Ngi

Fig, 9— Thermal time constant at two positions as a function of Na:.
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A detailed description of the thermal effects necessitated measure-
ments of the dome electrode displacement and temperature. These
were undertaken by C. Sandahl and P. E. Prettyman. The report has
not been published but here is Mr. Sandahl’s deseription of some of
the instrumentation.

A flexible silicon semiconductor strain gage, 6 mils square by 50
mils long, was bonded to the diaphragm with epoxy in the region of
maximum radial strain. A spherical bead thermistor 5 mils in diameter
was attached to the underneath side of the dome electrode at the
centerline with pressure sensitive tape.

The strain gage and thermistor were connected into Wheatstone
bridge circuits, Bridge excitation was one volt, in order to minimize
seli-heating of the devices. The thermistor was calibrated in an oil
bath using a NBS-calibrated thermometer graduated in 0.01°C. The
strain gage was calibrated in deflection of the dome by installing a
small front-surface mirror (weight 0.204 gms) on a balsa wood plug
in the dome. The transmitter was excited by the JRB circuit (a nearly
constant current circuit) at various current levels and the steady-
state deflection of the mirror was measured with an optical interfer-
ometer. The strain gage bridge output was measured for each incre-
ment of deflection,

During each test, thermistor bridge output, strain gage bridge
output, JRB circuit voltage across the transmitter, and current
through the transmitter were recorded simultaneously on a four-
channel Sanborn recorder. Results for four typical tests on a par-
ticular transmitter are reproduced in Fig. 10. The test shown in 10d
was a repeat of 10c changing only the scale factor on the original
recording equipment,

In addition, detailed knowledge of the thermal resistance of granu-
lar ecarbon in a brass container was neecessary for the application of
the analysis presented here. This thermal resistance was found to
consist of two parts: an effective thermal conductivity for a con-
tinuum representation of the granular carbon and a thermal contact
resistance at the interface between the medium and the container
walls. Experimental measurements of these two quantities have been
recently completed and are reported in Ref. 4.

In Fig. 10, two types of response are apparent. There is an early
time transient for which the back electrode temperature can be as-
sumed constant. After a few seconds the back electrode and the whole
transmitter begins to heat up. The subsequent over-all growth coupled
with the thermal expansion of the granular carbon itself combines
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in such a manner that the transmitter resistance (voltage) reaches
a constant value. No attempt will be made here to deseribe analyti-
cally this combination of effects at times later than about 6 seconds.
However, the early time transient, which produces the resistance
change, can be described.

We first caleulate Np; for the standard T1 transmitter. Calculating
the thermal conductance of the diaphragm from (36)

bk, cos 12.5°

Oftq COS La.0” 2 ofy
h == /o 660 W/(m*-°C)
when
8 = 0.0076 em,
ks = 140 W/(m-°C),
a = 0.28 em,
s, = 2.1 cm,
s, = 0.286 em.

From Ref. 4 we take the thermal conductivity of the carbon to be
0.24 W per (m-°C) and the thermal contact conductance as he = 300
W per (m?:°C). Consequently, the total conductance is the sum of the
contact conductance in parallel with the conductance of the dia-
phragm:

1/h. = 1/660 + 1/300;
hence,
heot = 206 W/m?*.°C).
Using hyot in Np; we have
N = ha/k = 24.

Turning to Fig. 6 we see that af(a, «)/8 = 0.19 and Fig. 9 gives =,
= (.18 for this value of N. Now, the thermal diffusivity x = k/pc =
0.32 X 10~* m* per second for granular carbon where p = 900 kg per
m? and ¢ = 840 J per (kg-°C) (for the loose state). Consequently,

s = = 1.4 seconds,

_ To(b — H)g
K
where b = 0.44 ¢m from Fig. 5. In the determination of 8 we use the

average values (IV),, as obtained by a graphical integration of the
transient portions of the appropriate curves of Fig. 10. Taking the
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value from Fig. 10b as typieal we have

_ UV _ 0
g = o 5.17 em°C.

Therefore, § = 0.198/a = 3.5°C.

By comparing the time constant of 1.4 seconds to the measured
values of f, in the range of 3 seconds, one could say that this is rea-
sonable agreement especially since the capacitance effects of the
diaphragm and the electrodes have been neglected in the analysis.
The capacitance in the real situation would tend to give higher values
of t, as observed.

The calculated temperature rise of 3.5°C compared with the meas-
ured “steady-state” value of 1.0°C needs some explanation. Of course,
the capacitance and contact resistance of the thermistor would tend
to give rise to the lower measured value. But more important is the
fact that the predicted value is for the granular carbon continuum
whieh is linked to the brass dome through a contact resistance. The
temperature drop across that resistance can be calculated by multi-
plying the temperature rise above ambient (6) by the ratio of the
contact resistance (1/h,) to the total resistance (1/hit);

ATcuan\mm to thermistor -9"]1(71}% = 2.4°C.
TheTEfﬁre, ATthermlator above ambient — 3.5°C — 24°C = 11°C; which is
in remarkably good agreement with the measured value of 1.0°C. The
other measured values, at the end of the early transient (namely,
0.33°C, 1.56°C, and 1.61°C), scale linearly with the input power;
hence, the agreement with analysis remains good for all the results
given in Fig. 10.

Consider briefly a transmitter made of invar. For invar the ky
value is 18 times smaller than that of aluminum. Consequently,

1/h.. = 1/36.6 + 1/300;
hence
R = 32.6 W/(m*-°C)

and Nj; = 04. From Fig. 6 we see that the temperature rise would
be 1.74 times that under corresponding conditions in the T1 trans-
mitter. From Fig. 9 the value of ¢, would be 30 percent longer. This is
in qualitative agreement with the observations of Fischer and Gaudet.*
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Turning now to the displacement we first caleulate the extension of
the slant height of the aluminum diaphragm using (43). Taking » =
1/3 and o = 23.4 X 10°°C* we obtain for a temperature rise of 1°C

u = —0.029 um.

The minus sign indicates that the diaphragm grows toward the dome
electrode. The expansion of the dome electrode is obtained from (37)
using &y = 16.2 X 10-%°C~ for brass. For § = 1°C, Ar = 0.04 um. The
minimum displacement, given by (45), becomes 0.0064 ym, while the
maximum displacement given by (46) becomes

Al = m — = 0.180 - 0.134 = 0.32 pm.

The upper limit which assumes a perfectly rigid dome electrode com-
pares reasonably well with the measured value of 0.18 pm from Fig.
10b. Notice that the top of the dome electrode moves an additional
0.04 pam,

The most significant factor arising out of this rather erude model
for displacements is that the thermal packing appears to be more
sensitive to the thermal expansion coefficient for the dome electrode
than any other part. Hence, a simple and inexpensive modification
of the T1 transmitter would have been to change only the dome elec-
trode to invar. Although the ahove analysis does not strictly apply
to the modified transmitter design of Huffstutler; the same conclu-
sion with regards to an invar dome seems appropriate.

The thermal expansion of the carbon produces an additional pack-
ing effect. The change in volume caused by the heating could be
calculated by using the expansion coefficient value® of 10.4 x 10-°C-
and the local temperature as given in Fig. 7. An estimate of such a
calculation yields a dome displacement equivalent to 0.05 ym in the
direction opposite the displacements mentioned above for the condi-
tions of Iig. 10b.

V. CONCLUSIONS

The resistance change of the T1 transmitter resulting from the
joulean heating can be associated with the thermal expansion of the
dome electrode and the aluminum diaphragm. The agreement of the
model presented here with the measurements of Sandahl and Pretty-
man attests to its validity for the early time transients. The displace-
ments which produce thermal packing are a stronger function of the



1634 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968

thermal expansion coefficient of the dome electrode than any other
part. A simple modification would be to make this part of invar in
the T1 or any similar transmitter. The model also demonstrates that
the displacements associated with the temperature rise of the dome
electrode are affected less by changing the thermal parameters of the
system than by reducing the thermal expansion coefficient in going
from aluminum and brass to invar. The thermal contact resistance
between the granular carbon and the dome electrode reduces the tem-
perature rise significantly.
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APPENDIX A

Loealized Heating tn the Carbon Granules

Because of the asperities of earbon granules and of the “bunching
up” of the current flow at the contact areas, the importance of
localized heating should be checked. It can be assumed that the
localized effects are virtually all diffused at the values of time for
which the Fourier modulus «f,/D? is approximately unity. Then on
setting the characteristic dimension of the granule, D equal to 0.2
mm, and the thermal diffusivity, «, of solid carbon equal to 0.2 X 10
m? per second, the value of the time constant, #,, becomes approxi-
mately
. 0.2)* X 10~°

b= D'/ =428 10

We see that the thermal time constant for the solid carbon granules
is at least three orders of magnitude less than the thermal time con-
stant of the thermal effects being observed. Consequently, any lo-
calized heating is rapidly diffused and the granular carbon can be
treated as a continuum.

= 1.4 msec.

APPENDIX B
Transient Temperature Response of the Carbon Chamber

Consider the transient portion of the heat conduction problem
specified by (24) through (27) and repeated below for convenience.
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89 /dr = 9°%/an" (50)
, 1 =
d(n,0) = F/(1 — [Tﬁ] — ¢(n) (51)
30, 7) = 0 (52)
a9/on(t, ) + L7 (e + 1001, 9 = 0. (53)

Assuming a separable solution of the form

d(n, 7) = X(n)T(7) (54)

so that
= A sin An + B cos Ay (55)
T = Ce™. (56)

But (52) requires that B = 0 and (53) specifies that
MceosN+ecAsinAh =0

or,
Acot A = —¢ (57)
where
1—F
e = %(Nm + 1). (58)
To satisfy the nonhomogeneous initial condition we set
9(n, 0) = 2 AX,, (59)
n=1

where X, = sin A,y and A, is the nth positive root of (57). Multiply-
ing both sides of (59) by X,,, integrating, and using the orthogonality
condition we have

f X.(n)#(n, 0) dn
A4, == . (60)

1
f X dny

Evaluating the integral in the denominator where the boundary con-
ditions have been used we have

1 . k@ + c'.i' + ¢
X; d — - 5 2 N ! = !
-I; TT 20+ ) (61)
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The transient part of the solution can thus be written as
My, ) = "Zq:, N+ Etoe exp (—A.7) sin A.q 3 #(n, 0) sin \,n dn.
(62)

To evaluate the integral in (62) we first notice that (51) can be
written as

?9("?- 0) = Gu C"’? + 1 = c.“?

so that

1
f #(n, 0) sin A\,p dn = ¢/A[l — cos \.] — e/Mi[sin A, — A\, cos \, ]
(1]

 sin £ dE (LE .
+ ¢ f - (63)

The last term which can be expressed in various forms is the one
which causes the series to converge very slowly.
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Gain of Antennas with Random Surface
Deviations

By H. ZUCKER
(Manuscript received March 20, 1968)

On-azis gain of antennas with rough reflecting surfaces is computed
as a function of rms surface deviation e, correlation dislance c, antenna
area A and wavelength \. Gaussian stationary surface deviations, Gaussian
correlation functions, and uniform illuminalion are assumed. Antennas
with rectangular and circular apertures are considered. It is shown that
a normalized gain can be defined which has the same functional form for
both. A principal result of this work is quantitative calculation of the
on-axis anlenna gain when the normalized variance (4we/N)* of the rough
surface is larger than 4. The off-axis gain is also considered, and it s
shown that in the asymptotic limit (as N — 0), the gain reduces to that
obtained by using geometrical optics.

I. INTRODUCTION

The gain of shallow paraboloid reflector antennas with random
surface deviations has been derived by Ruze."'* The deviation was based
on scalar Kirchhoff approximation to the radiation from reflector
antennas. The surface deviations were assumed to be gaussian stationary
with gaussian correlation functions. On these bases, an approximate
solution for the antenna gain was obtained in terms of an infinite
series. The series has been evaluated for relatively small rms surface
deviations, e, in comparison to the wavelength, \, namely (4me/N\)* < 4.
Asymptotic limits (as A — 0) for the gain were also given by Ruze’
based on a similar analysis by Scheffler’. On-axis gain measurements
of large reflector antennas as a funetion of frequency, exhibit the char-
acteristics as predicted theoretically by Ruze.

The present work was motivated primarily to determine the gain
in the intermediate region between very long and very short wave-
lengths and to establish a criterion for applicability of the asymptotic
limit. Of primary interest was the near axis field distribution in the
foeal plane of a paraboloid reflector antenna illuminated by an inei-

1637



1638 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968

dent plane wave. However, since hoth the far-field radiation pattern
and the field distribution in the focal plane are Fourier transforms
of the antenna aperture illumination, the derivations by Ruze are
applicable for determining both the far-field and foeal-plane dis-
tributions.

The series solution for the antenna gain obtained by Ruze does
not seem to be suitable for numerical computations for large argu-
ments. This is beeause some of the terms in the series will assume
large values before the terms begin to decrease. However, the series
for the on-axis gain is related to an exponential integral. The expo-
nential integral also has an asymptotic series representation, which
is particularly suitable for numerical computation for large argu-
ments. On this basis, the on-axis gain has been computed as a fune-
tion of the rms surface deviation to the wavelength ratio and for a
range of correlation parameters. The asymptotic limit for the gain
is evident from these computations.

The off-axis gain is also considered. Asymptotic representations of
the series which may facilitate the off-axis gain computations are dis-
cussed. The limiting value (A = 0) for the off-axis gain is obtained,
and it is shown that in this limit, the gain reduces to that obtained
from geometrical optics.*

The gain of antennas with rectangular apertures and gaussian
stationary surface deviations is presented by assuming uniform il-
lumination. A generalization to include certain types of nonuniform
illuminations is discussed. The on-axis gain for antennas with eir-
cular apertures also is given. It is shown that the on-axis gain for
antennas with rectangular and circular apertures can be normalized,
such that the normalized gain is the same for both. The off-axis gain
is expressed in terms of series with known asymptotic expansions.

II. ANTENNA GAIN

The far field gain, G (4,®), in the vicinity of the axis of a shallow
paraboloid reflector antenna with surface deviations, z(v,y) is, using
the scalar Kirchhoff approximation®

G, B) = %

f f [ E,(x, E*(x, , y1) exp (j{Bau+Bo+2k(z(z, y) —2(x; , y:)]}) ds ds,

f f E.(z, yEX(x, y) ds (1)
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where E, is the projected electric field on the antenna aperture and s
is the aperture area.

b= 27 _ free space propogation constant
A

A = wavelength

B, = k sin 8 cos @ (2)
B, = ksin 0 sin @ (3)
@ and @ are the spherical coordinates indicated in Fig. 1.
U= — I (4)
Rl Lot ()

The Kirchhoff approximation is based on the assumption that the
surface is locally plane, and hence equation (1) is applicable to sur-
faces for which the curvatures are small.

Equation (1) can also be used to determine the power distribution
in the focal plane of shallow paraboloid reflector antennas in the
vicinity of the focal point, in which case (referring to Fig. 1)

B. = kx,/f (6)
B, = ky./f (7)

where z; and y; are the coordinates in the focal plane and f is the
focal length.

If z(z,) is a Gaussian stationary random variable with zero mean
it has been shown® ¢ that by performing the statistical averaging, the
expectation value for the gain, (G'(6, ®)),, is:

1l

Il

4

(60, B = T exp (— )
ff f B (o, Ay, yy) exp B + )] exp [8%(u, v)] ds ds, o
[[ £, B4, 9 as
where
=T ©)
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— z(x,y)

Fig. 1 — Antenna coordinates.

e = rms surface deviation
8°r(u, v) = correlation funection.

To evaluate equation (8), four integrations have to be performed.
It is shown in Appendix A that for antennas with rectangular aper-
tures two integrations can be readily eliminated for certain types
of illuminations, truncated cosine illuminations, for example.

In particular for uniform illuminations, E,(z, ¥) = 1, and for a
gaussian correlation function with
r(u, v) = exp (— @t_gz_v_) (10)

where ¢ is the correlation length, it is shown in Appendix A that the
expectation value of the gain is:

(G(0, ®)).e = exp (—8)Gy(0, ®)

+ (2_7"0) exp (=) gn'n[ (_ i_;) h A":l Lol

where G(8, ®) is the antenna gain in the absence of surface devia-
tions.
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For an antenna with a reetangular aperture

' _ 4nA (Sin B,a sin 3,5)2
Go(o, @) = 15 (T T 12)
where A = 4ab is the aperture area.
8 = 2 sin 6 (13)
A
and
g 1 1
B < 5 [a + b] (14)

Equation (11) agrees with the gain derived by Ruze for antennas
with cireular apertures exeept for the term A,. This term is small, if
the correlation distance ¢ is small compared with the linear dimen-
sions of the antenna. This assumption is made in the subsequent
computations,

For antennas with cireular apertures the exact evaluation of equa-
tion (8) is in general more difficult. However, for uniform illumination,
the on-axis gain (G7(0, 0)),, is evaluated exactly in Appendix B with
the aid of @ functions. The gain has the same functional form as equa-
tion (11) with 8 = 0. In particular for n/2(D/¢)* > 1

2c
A = B!

(15)
where D is the antenna aperture diameter.

IM. ON-AXIS GAIN

Equation (11) can be readily computed for small values of §. For
large values of 8 the terms §*"/n!n will become very large; therefore,
the series is not suitable for direct computation if & is large. Never-
theless, the gain on-axis can be readily computed by noticing that
the series in equation (11) for B = 0 is related to an exponential
integral, which also has an asymptotic representation.

The exponential integral, ¥, can be written?

E@=v+Mhz+ X -5

n
n=1N1IN

(16)

where v is Euler's constant. The asymptotic series (zr — o) for
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Ei(x) is

B = 2@ S 1l o(1)] an)

n=0

Though the asymptotic series diverges for all finite values of x it can
be used to evaluate E;(z) for large x by using up to N terms? where
N is an integer nearest to the value of z.

In terms of the exponential integral, the on-axis gain for both
rectangular and eireular aperture antennas is

(@0, 0. = ()

2 3 2\ . .. 2 2
-{5' exp (—é&) + (ﬁr) Sexp(—8)[E(85) —Ind — -y]} (18)
where D, is related to the antenna area, A, by

, T Di
4 === (19)
One parameter in (18) is readily eliminated by defining a normal-

ized on-axis gain, (7 (0,0)),, by

(G0, 0Dy
(g(0| 0)>nv = (Da/4€ T /ANE

= ¢ exp (—5"){1 + [%]?[E,(EE) — In & — T]}' (20)

The normalized gain thus depends only on two parameters, §° and
(¢/Do)*.

Equation (20) has been computed by using a SHARE program for
the computation of the exponential integral®*. This program computes
E;(x) with at least four-decimal accuracy.

Computations have been performed for 107 < § =< 80 and for
107* = ¢/D, £ 0.1. The computed normalized gain is shown in Fig. 2.

The computations show the normalized antenna gain has three
distinet regions which are characterized by the normalized rms surface
deviation to wavelength ratio, é.

In the region 0 £ §° = 1 the normalized antenna gain is nearly
independent of the correlation length ¢, and increases almost linearly
with &°. In the region 1 < & < 20 the gain is dependent on both §

* Contributed by D. 8. Villars,
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Fig. 2— Normalized antenna gain.

and ¢. In the region 6° > 20 the gain is almost independent of §* and
is a function of ¢/D, only. This region is the asymptotic region. For
the range of parameters used in the computation, the gain in the
asymptotic region, for a given ¢/D;,, deviates by less than 5 percent
from the asymptotic value.

The curves shown in Fig. 2 seem to confirm the general charae-
teristics of the measured gain as a function of frequency of large
reflector antennas presented by Ruze.* The presented measurements
extend only slightly from the first into the second region but not
sufficiently far to determine qualitative agreement between the theory
and experiment in much of the intermediate and all of the asymptotic
regions. A detailed comparison of the measured and computed gain
can not be made since uniform illumination has been assumed in the
computation.

IV. ASYMPTOTIC VALUES FOR THE OFF-AXIS GAIN

Computation of the off-axis gain directly from equation (11) can
only be readily performed for relatively small values of 8. An
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alternate representation for the off-axis gain for large values of 8
is obtained by expanding the exponential in the second term of equa-
tion (11) in a power series. By using this expansion and neglecting
A,, (11) ean be rewritten as follows:

(G(8, ®)).., = exp (—8)G,(8, ®) + (&) Z:,' (=" ALm(f—) (%’) (21)
where
A8 = e (—8) 32 ) 22)

The series for A,,(8%) are special cases of functions considered by
Barnes® who obtained their asymptotic expansions. These functions
were also studied by Ford* who also presented a recurrence relation
for the coefficients of the asymptotic series. The above functions

designated by Gg(z,®) are:

n

Gs(z, @) = — ., 23
o ) nz—o n! (n + @) &3
The functions A4,,(8*) can be written as:

An(8) = (&)™ exp (— 8)Gn1a(8, 1). (24)
Only the asymptotic limit for the off-axis gain is considered. For
T = o

e @) = P @ 1
13(-1-, ()) - .Ifﬂ [1 + O(l)]

hence for 8 — o

The off-axis asymptotic gain will be designated by G (6, ®), and is

given by:
G(8, @), = (é) exp [-(ﬁ sin 9)] (26)

The corresponding normalized gain is found as

g8, @), = (%—D)z exp [—(4% sin B)E:I- (27)
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The asymptotic value for the gain, equation (26), is in agreement
with the gain obtained, based on an approximation to the gaussian
correlation funetions,® and also with results obtained by using geome-
trical optics.* Equation (24) is independent of frequency but strongly
dependent on the ratio e/c. This ratio has been interpreted as an
average surface slope.? The range of 3 over which the above off-axis
approximation applies has not been determined precisely, however,
it is reasonable to assume that this range will correspond to the asymp-
totic region for the on-axis gain.

V. CONCLUSIONS

The on-axis gain of antennas with gaussian stationary random
surface deviations and gaussian correlation functions has been deter-
mined for antennas with rectangular and cireular apertures by assum-
ing uniform illumination. For both types a normalized expression for
the gain was derived which depends only on the normalized rms sur-
face deviation g, to wavelength A ratio, 8(=4=x¢/A), and the ratio of
the correlation length ¢ to a defined linear antenna dimension D,.
For circular antennas, D, is the diameter.

The antenna gain as a function of § exhibits three distinet regions:
(0= =1, 3G)1 <8 <20, and (i25) 8 > 20. The last is called
the asymptotic region. In this region the gain is nearly independent of
wavelength.

The computed gain exhibits in general the characteristics of the
measured gain as a function of frequency of large reflector antennas
reported in the literature. These measurements extend only partially
into the second region and have not been obtained in the third
(asymptotic) region.

For large values of 8 the off-axis gain can be expressed in terms
of series with known asymptotic expansions. The limiting value for
the off-axis gain has been obtained and reduces to that obtained by
geometrical opties.

VI. ACENOWLEDGMENTS

The author wishes to thank B. H. Bharucha for the valuable dis-
cussions on the properties of the @ functions, and H. G. Cooper for
helpful comments. J. A. Arnaud brought Ref. 4 to the author’s
attention.



1646 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968

APPENDIX A

Gain of Antennas with Rectangular Apertures

To evaluate equation (8) for antennas with rectangular apertures,
consider the following integral

o= =8 [ [ [ [ B obe
-exp [8°r(u, v)] exp [j(B.u + B)] dz dz, dy dy,  (28)
with
U= — o (29)
v=Y — (30)

Since equation (28) contains the correlation funection in terms of
uw and v, it is preferable to introduce the w,» coordinate system.

In the z,z; coordinate system the integrations are over the square
region shown in Fig. 3a. In the y, y; system the region is similar. With

T Ty
= _ u=x-1,
g - A @a O @,a)
=)
T Tu
% pery (a,-a) W (-a,a)
(@) (b)

Fig. 3 — Coordinate transformation.

the coordinate transformation equation (29), the transformed region
in the x;,u coordinate system is also shown in Fig. 3b.

In the z;,u plane the integration with respect to z; is readily per-
formed for certain types of illumination functions.* In particular, let

E“(QE, .U) = Eu:("c)Euv(y) (31)

* A similar method has been used by Hoffman in his treatment of scattering
of electromagnetic waves from a random surface.®
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where

B, (x, +w) = Z_:, ga(@1)fu (W) (32)

with a similar equation for E,, (y; + v). An example of such illumina-
tions are truncated cosine illuminations, where equation (32) will
consist, of two terms.

It is sufficient to consider the following integral

e = [ [ o, duda . (33)

Referring to Fig. 3, equation (33) can be written as
I = f f g(x)f(u, v) dz, du
0 —a

+ [ et e au 39
let

G(x,) = f g(x,) dz,
then

I = [ 16 — ) — G0,
+ 6@ — G(—a + Wf(—u, o) du.  (35)

Using equation (35) and assuming uniform illumination, E,(x,y) = 1,
two integrations are readily eliminated and equation (28) reduces to

(D = 4 exp (— &) fh fu (2a — w)(2b — 7)

-exp [8%(u, v)] cos B cos B, vdudv.  (36)

By expanding the exponential function in a power series, equation
(36) can be divided into two parts corresponding to the coherent and
incoherent parts of gain, as follows

(I>nv = I + Line (37)
where

in B, sin 8, )

I. = A% exp (— 5}(S B,b

(38)
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and

Iie = 44 E f f [6 ?(ﬂ ol cos f.u cos B dv du — Al;,. (39

n=1

where

AI'"‘ = 4 E\p( 6) Z f f ‘)(bu + (u) o !“I M

n=1 L

- c08 B cos B du dv (40)
and A = 4ab is the aperture area.

The coherent part of the gain is the same as the antenna gain in
the absence of surface deviations but multiplied by exp(—8§2). This
follows from equation (28) by expanding the exponential function
which contains the correlation funetion in a power series.

To obtain an estimate for the on-axis gain, equation (39) is eval-
uated for 8, = B, = 0, and for a gaussian correlation function with

r(u, 1) = exp (— TL:T vh) (41)
where ¢ is the correlation distance.
On-axis
(5" ¢ (1 1 ) _t"ﬂ_]. ;
Ime(O 0) = ms i ; nln [ 2(7!'?1)% a + b + rAn (42)

In equation (42) terms of order exp[—n(2a/c)?] and exp[—n(2b/c)*]
were neglected.

By extending the limits of integrations in equation (39) to e, the
integration of the first part of this equation can be performed and
gives equation (11).

APPENDIX B

On-Azis Gain for Circular Aperture Antennas

For circular aperture antennas the on-axis gain for uniform il-
lumination and a gaussian correlation function is obtained from
equation (8) by expanding the exponential function and performing
the integrations for the » = 0 term, and the integration with respect
to the azimuthal coordinates for the remaining terms, resulting in

0.0 = () ew (=) + (2 7wy

= n!
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where D is aperture diameter, and

p/2 ab/2 2 j 5
- j; j:, - |:_ B ;_ p)]fﬂ( nc,:p,)p dppi dpy . (44)

I, = Modified Bessel function of order zero.
The two integrations in equation (44) ean be performed either with
the aid of the Q (1, a,) function defined by**

g _'2_ Y -)I oax dx (45)

A, a) = [ ew (-

or by means of recently evaluated integrals of products of Bessel
funetions.!? Let us use the former method. Let

x = (2n)p/c (46)
y = (2n)ip./c (47)
a, = D/e(n/2)}. (48)
With equations (45) through (48), equation (44) can be written
.= (%) (M0 -ew awa (49)
o \em/ — &, GIlY 4Y.
Integrating by parts results in
(¢ _ Y r‘)Q -
fip = (‘,n){ - Q. e+ [ 4 dr} (50)
The derivative in equation (50) can be expressed as
%‘?— = @, exp ( L + Y )I (a.3). (51)

Equation (51) is readily derived from (45) and the following integral*®
1:2 + yE
2

f“ exp (—£°/2)J.(x).J (yD)t dt = exp (— )I,(:vy) (52)

where J, is a Bessel funetion of order ». Substituting equation (51)
into (50) and integrating by parts yields the result

1o = (&) {0 - e a) ~ ew (—adnE)

an

-+ % | exp [—4(ad + )] d% [yl (a.)] dy}- (53)
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Using the relation
d
5 [yI(a)] = ay Io(a.y) (54)
and the definition of the @ function, equation (45), yields
¢ a,
L= (SN - 0. 0y - % exp —adm@) 69

To evaluate Q(a,,a,), the following relation, readily derived from
(45) and (52), is used.

- d
Qe /) + Q@) =2+ [ ew (—%f){;,; [Jn(at)Jn(az)l} at.  (56)
Integrating (56) by parts and using (52), gives the known relation

+J

0.9 + Q@ v =1+ ew (-EE L)@y, @
With equations (55), (57), and (48), (44) is given by

- @3- [ T262) 4162 o0

The gain on axis (43) can therefore he written by using equation
(58) as

o n! n A"I]
(59)

smew[ @ 16F) 4165 @

G0, 0) = (D) [5 it~ a)+(") 5 exp (— &

with

For n/2(D/c)® > 1, when the modified Bessel functions can be
approximated by the first terms of the asymptotic series, A, is then
given by equation (15).
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Injection-Locked-Osci]lator
FM Receiver Analysis

By C. L. RUTHROFF
(Manuscript received April 18, 1968)

The major components of an injection-locked-oscillator FM recedver
are a linear mizer and a van der Pol type of negative resistance oscillator
in a phase-locked configuration. In this paper the nonlinear differential
equalion describing the recejver output 7s solved and explicit expressions
obtained for the output signal, noise, and controlling second and third
order distortions. The input signal carrier is both amplitude and frequency
maodulated. Signal-to-distortion ratios have been computed and are presented
for the case of a noise modulated FA input signal. The results indicate
that excellent performance may be expected of such a recetver.

I. INTRODUCTION

It is well known that a conventional phase-locked loop can be
used as a frequency modulation receiver.*® It is perhaps less well
known that the locking performance of the phase-locked loop and
the injection-locked oscillator are deseribed by the same differential
equation.® These two facts suggest that an FM receiver using an
injection-locked oscillator is possible. It is. And such a receiver is
deseribed here.

The principle of operation of the two receivers is the same but
there are important practical differences. The baseband bandwidth
of the phase-locked-loop receiver is limited by delay in the feedback
loop to frequencies of about 1 MHz. The baseband bandwidth of the
injection-locked-oscillator FM receiver can be as large as half the
locking bandwidth of the injection-locked oscillator. With existing
solid state oscillators such as the tunnel diode, locking has been
achieved with bandwidths in excess of 200 MHz,? indicating that
operation with basebands of about 100 MHz is possible.

This type of receiver is not used in present day systems and there
has been little or no interest in it for about 20 years.®*° Woodyard’
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is eredited by Edson' with the first explicit receiver operating on the
locking prineiple but the beginnings go back to Appleton in 1922.°
Beers® and Bradley® reported excellent measured performance in con-
figurations using vacuum tube oscillators; in the light of these results
it is surprising that interest has flagged in recent years.

The existence of solid state oscillating devices such as the tunnel
diode, the avalanche diode, and the Gunn diode is sufficient cause
for renewed interest in injection-locked-oscillator FM receivers. They
are especially attractive at the higher microwave and millimeter
wave frequencies, where conventional receivers are difficult to build.
This paper describes the principle of operation of a receiver configura-
tion suitable for dominant mode transmission lines. Applications at
optical frequencies are also of interest.

The distortion analysis which follows requires a mathematical
description of the locking behavior of an oscillator. For this purpose
the van der Pol sine wave oscillator model is used; there is abundant
evidence in the literature that all oscillators which have nearly
sinusoidal outputs are adequately described by the van der Pol model.
The receiver output is derived in the form of a nonlinear differential
equation. The solution of the equation gives the output signal and
distortions explicitly in terms of the frequency and amplitude modula-
tion on the receiver input carrier.

An example of receiver performance is computed in some detail
for the case of a carrier modulated with a band of gaussian noise.
Such a modulation signal is often used to simulate the output of a
multichannel telephone multiplex terminal. The receiver input signal
is corrupted by additive noise and the distortions resulting from the
effects of envelope noise are computed in addition to those eaused
by signal-sensitive nonlinearities inherent in the demodulation process.

II. DESCRIPTION AND ANALYSIS

The receiver is shown in block form in Fig. 1. This circuit configura-
tion is convenient for description and is suitable for the microwave
frequency range. Many other configurations are, of course, possible.

Let the input signal be a carrier, modulated in amplitude and
frequency:

() = I(t) sin [pt + 6()]. 0

The frequency modulation is df(¢)/dt; the envelope I(t) is usually
nearly constant with a small variable part representing noise or other
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Fig. 1 — Injection-locked-oscillator FM receiver.
undesired amplitude modulation. Let

I = I, + I,(M), ©LO<KI. (2

The function of the directional coupler in Fig. 1 is to divide the
signal into two parts which are 90° out of phase. Letting the amplitudes
be equal, the output of port 1 is given by (1), and the output of
port 2 is

i,(t) = I(t) cos [pt + 6(2)]. (3)

The output of the injection-locked oscillator is

ta(t) = Is(t) cos [pt + 6(t) — «(B)], (4)

where ¢(f) is the phase tracking error. The receiver output is contained
in ¢(t) and is discussed in detail later. The envelope variations in (3) are
reduced in the passage of 7,(f) through the oscillator. The output of the
oscillator is used as the local oscillator for the linear mixer of Fig. 1, and
since small envelope variations on the local oscillator port do not appear
in the output, the envelope of (4) can be regarded constant, that is,

ta(t) = Is cos [pt + 0(1) — «()]. (5)

The envelope variations on the input to the linear mixer signal
port are not suppressed however, and the low frequency output of the
mixer, from (1) and (5), is

w(t) = MI() sin o(t), (6)
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where M includes the linear mixer conversion constant. The receiver
FM output is contained in the term sin ¢(%).

The differential equation describing the locking behavior of the
van der Pol sine wave oscillator has been derived in many places.’* **
With the input signal of (3) it has the following form.

(N = 0'() + (p — wo) — A(Y) sin (1), (7)
where: the prime indicates differentiation with respect to the argument,
I
Al = I,® (wq) *

wg is the natural resonant frequency of the oscillator,

|p—UJu|<<OJu,ﬂ.D.d

®'(w,) is the phase slope of the passive oscillator circuit at the
resonant frequency.

Now, the injection-locked oscillator locking bandwidth is 24, where
= Io/[I:®'(wp)], so the expression for A(f) becomes

All) = 1‘}—0 10). ®)

A solution of (7) has been found by an iteration procedure and
substituted into (6) to obtain the receiver output.

iot) = ML i) + p - o - 50

ks K ¥ "6 + p — wy)]

A
_ [a"0@® 4+ p — w) + 0 + p — w)/2]
A@t)?
[6""(2) + 39”0) A'@]

When the locking bandwidth 24, is much larger than the baseband
bandwidth, that is, when A, 3> 6'(f)me , the distortion will be small
and the series (9) will converge rapidly. For this case the first few distor-
tion terms will dominate. Expression (9) can be rearranged to identify
these terms. Let p = w,, and let
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From (2) and (8) it follows that A,(f) << A, . The following relations
will also be used.

1/A%) = 1 — A()/A, +/§:1\1(t)/au) 4. -
0t — 1/A) = 0(1) — "’X? 4 ﬂz'g) _ Baff) R

Substitution of (10), (11), and (12) into (9) transforms the re-
ceiver output to

) = W oy — L) 4 &0 sem

[A.()e' (D] CAO)
_|___imA§_.__+..._6—Ag+...}. (13)

The first term is the frequency modulation on the input signal,
delayed by 1/A, seconds. The second and third terms are linear
distortion and correspond to video roll-off. The fourth and fifth terms
are second and third order nonlinear distortions, respectively. Notice
that the second order distortion requires both amplitude and fre-
quency modulation—if there is no AM there is no second order dis-
tortion. The third order distortion is independent of any AM on the
input signal.

III. EXAMPLE—NOISE MODULATION

Let the modulating signal, 6/(¢), be a flat band of gaussian noise of
bandwidth O — W with a two-sided spectral density

Se..(f) = ¢°/2W watts per eyele of bandwidth.
-W=f=W. (14)

Assuming an F'M transmitter sensitivity of 1 Hz per volt, the param-
eter o is also the rms frequency deviation. The notation S,(f) is used
to indicate spectral density of h(f) and is, of course, a function of
frequency.

Normally the input signal to a receiver is contaminated by noise.
Let this noise have a constant spectral density of n, watts per cycle
of bandwidth. The input signal is (2)* 7,() where

() = (2C)" sin [wo t+ 6,(0)] + n(D), (15)

and C is the input carrier power. The additive noise, n(t), is narrow-
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band gaussian noise and can be represented as follows.??

n(t) = x.(l) sin [wt + 0,(8)] — z,(t) cos [wet + 0,()] (16)

where z,(f) and x,(f) are gaussian random variables with zero mean
and variances equal to the variance of n(t). Using (16) and assuming
a large carrier-to-noise ratio, that is, (2€)* > n(t), (15) becomes

i) = [(20)} + 2.(0)] sin [w, t+ 6,() — =.()/(2C)}]. - Q7
From (1), (2), and (8) we have
o) = 0.() — 21(8)/(20)}, (18)
and
A = [A0/(2C) | (0). (19)

Expression (18) contains the desired output signal 6(f) and a noise
term which represents the frequency modulation caused by the additive
noise. The signal-to-noise relationships of FM receivers have been
discussed widely in the literature;'* since the noise is small relative
to the signal, that is, z/(£)/(2C)* < 6(t), it will have a negligible effect
on the distortion and need not be considered further.

The quantity of interest in broadband radio systems is the ratio
of signal spectral density to distortion spectral density. From (13)
the second and third order distorfions are

D,y = (LSO (20)
and
Dy = 1%L, @
The distortion spectra are
S0 = 25 Stssrar() = gz S, @)
and
St = =L Sperumy () = =g Serns(h). (23)
36 A, 36 Ay

To evaluate Sp,(f) notice that z.(f) and 6,(f) are statistically inde-
pendent. The spectrum of the product can then be written

Seco (f) = S..() * Sor. (),
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where the asterisk means convolution. Performing the convolution,
and letting B > 4W, where B is the RF bandwidth of the FM signal,
the output distortion spectral density in the baseband is

2

Soulf) = 543 8. (N*Se ()

2C Ay
',
and the signal-to-distortion ratio is
Sae, () ( C )(A)
g o =l ) s o=f=w. 25
Soh ~ \maW/\g 4 R

The evaluation of Sp.(f) requires an expression for S;.» where 6:(t)
is the input signal (14). From Hateh,"

, _ 9 1(1Y
'SD'.’(f) - 4'”7 [1 - 3 (IV’) :| ’ 0 é f é W: (26)
B ]rng'" B 1 i 2
So.0) = 15w as [1 3 (W) } , 0sfsW, @
and
Sell]. L 0o=f=wW. (28
So.(f) a*f[l B l(i)] =f=s (28)
3\W

For a locking bandwidth 2A, = 200 MHz, a baseband W = 5 MHz,
and an rms frequency deviation ¢ = 15 MHz, the signal-to-distortion
ratios in the worst message channel, that is, at f = W are:

So ) o

() |,y = 522 Db (29)
Sa..(f) _

S |, = 697 Db. (30)

In computing (29), the carrier-to-noise ratio in the RF band B
was assumed to be near threshold, that is, C/(n,B) = 16 (12 dB)
where

= 21r(1 + %‘;) (31)

is the Carson bandwidth and 4o i1s the peak frequency deviation. If
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this receiver were used in a radio system with a fading margin of
30 dB the signal-to-distortion ratio for second order distortion would
he 82.2 dB during periods of normal propagation and the performance
would be limited by the third order distortion.

1IV. AUTOMATIC FREQUENCY CONTROL

If the natural resonant frequency of the oscillator, wg , is not equal
to the input signal earrier frequency p, the receiver output contains
a direct current component. From (9),

. MI,
lpe = A,

(p — w). (32)

This current gives the direction and magnitude of the frequency
difference and, by using it to control a suitable oscillator parameter,
the oscillator ean be kept tuned automatically to the input carrier
frequency.

V. DISCUSSION

One may question whether & (w) is really constant in the band of
interest. If the oscillator eircuit is a single resonance then the locking
bandwidth is equal to the 3 dB bandwidth of the passive circuit divided
by the current gain of the locked oscillator. For a 20 dB gain the circuit
phase changes -+4.5° over the locking band, therefore ®'(w) is reasonably
constant over bandwidths less than the locking bandwidth. Since
®'(w) is the slope of a passive circuit, it can be made arbitrarily close
to constant over the necessary frequency range by increasing the com-
plexity of the circuit.

Tt would be nice to compare the theoretical performance of the
injection-locked-oscillator receiver with the conventional FM receiver
consisting of a limiter and a balanced discriminator. There is, how-
ever, no theoretical analysis of the conventional receiver comparable
with the analysis presented here. Such an analysis can probably be
done with the aid of recent work by Bedrosian and Rice,'® although
it would be difficult to deseribe analytically the amplitude-to-phase
conversion in a real limiter and to take into account the nonlinearity
of the envelope detectors which are used in the diseriminator.

The situation with the injection-locked-oscillator receiver is dif-
ferent., The amplitude-to-phase conversion has been accounted for
in the present analysis and practical linear mixers are certainly linear,
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A most important question about the practical realization of the
receiver is the extent to which real oscillators can be deseribed by
the van der Pol model. The evidence in the literature® answers the
question favorably in that the locking equation (7) does indeed
deseribe the loeking hehavior of tunnel diode and avalanche diode
oscillators,
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Hybrid Digital Transmission Systems
Part I: Joint Optimization of
Analog and Digital Repeaters

By ROBERT W. CHANG and S. L. FREENY
(Manuseript received Mareh 11, 1968)

A hybrid digital transmission system consists of analog repeaters placed
between digital repeaters. Joint optimization of the analog and digital
repeaters 1s considered in this paper, using minimum mean-square error
between the transmitted and received symbols as the performance criterion.
A general hybrid system is considered. The joint optimization problem is
solved in closed form for deterministic sampling under two usually satisfied
conditions. From the results the minimum mean-square error and the
optimum repeater characteristics can be computed for given system pa-
rameters. Timing error is also considered. From a general result, it s
concluded that in many practical systems it 78 not only economical, but
also optimum, to use identical analog repeaters, and that hybrid systems
can be used for either digital or voice transmission with no compromise in
theoretical performance.

I. INTRODUCTION

It is customary in long-haul digital transmission systems to regen-
erate the digital signal at each point that gain is introduced into the
system. This is not necessary, however, and in fact there are circum-
stances in which it is advantageous to do otherwise. One such cir-
cumstance occurs when multilevel pulses are being transmitted and
the associated digital repeater* is too complicated and costly to be
placed at every gain point. In this case there is merit in interspersing
a number of analog repeaters between digital repeaters, even though
the digital device must usually be complicated further by the intro-
duction of automatic equalization to compensate for the misalign-
ment which accrues over several analog links in tandem.
—*—A—dj_gital repeater is also called a regenerative repeater,! a reconstructive
repeater, or a regenerator.

1663



1664 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1068

Part I of this study addresses itself to the problem of jointly op-
timizing the various filters contained in a combination analog-digital
or “hybrid” multilevel transmission system. The ecriterion used is
minimizing the mean-square error between transmitted and received
symbols, The system studied is general in that: (i) the repeater spac-
ing may be nonuniform and the transfer functions of the transmission
media may be different, (i) the noises introduced by the repeaters
may not be white and each may have a different speectral density
(1) the analog repeaters are not constrained to be identical, and
(iv) the repeater output power levels are not constrained to be the
same.

The mathematical model is formed in Section II. Results are sum-
marized in the concluding section. Interesting characteristics and
potentialities of hybrid cable systems are explored in Part I1.?

II. MATHEMATICAL MODEL

Figure 1 illustrates a general hybrid digital transmission system.
Information symbols {a;} are transmitted from one digital repeater
to the next through L analog repeaters. The output network of the
sending digital repeater is referred to as the transmitting filter with
transfer function By(f). The input network of the receiving digital
repeater is referred to as the receiving filter with transfer function

ol | TRANS- TRANS - TRANS-
REPEATER [0 | MISSION P misslioN P, Mission
\ ! MEDIUM Y MEDIUM \, MEDIUM
ay \ \ \
£ Bolf) VT Ay (F) B, (f) Fe A, (f) B (F) el A, (F) ==
TRANS- FIRST SECOND
MITTING ‘ ANALOG ANALOG
FILTER | REPEATER REPEATER
NOISE Ns ()
2
| N, (F)
LTH TRANS-
. JEls, J RECEIVING DIGITAL REPEATER
REPEATER MEDIUM o
| X{t)
. BL(F) AL(P) o B4 (7) e { bk} oecision
k PL L ki { CIRCUIT
| Receving
’ EILTER
N () Nty (F)

Fig. 1— A general hybrid digital transmission system.
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Br.1(f). The transfer funetion of the ith analog repeater is denoted
Bi(f},© =1,..., L. In this paper the analog repeaters are not con-
strained to be identical; hence, the ratio B;(f) /B;(f) may be a function
of frequency. The noise at the input of the tth analog repeater has a
speetral density N;(f),2 =1, ..., L. The noise at the digital repeater
input has a spectral density Nz 1 (f). Notice that N1 (f), ..., Nro1(f)
may be all different and each may be a function of frequency.

As shown in Fig. 1, the transfer functions of the transmission
media between the repeaters are denoted by Aq(f), 4:(f), . . ., and
Ar(f). These transfer functions may be all different; hence, the
repeater spacings may be nonuniform, and the transmission media
may be different.

The average output signal power of the transmitting filter is con-
strained to be Py. The average output signal power of the tth analog
repeater is constrained to be P,z =1,..., L.

The information symbols {a;} are multilevel digits or real num-
bers. It is assumed that {a;} is stationary in the wide sense. The
autocorrelation funetion is denoted by

my = E[alal+k11 ll k= — @, , 0.

Pulse amplitude modulation is considered. Let 1/T be the baud
rate. The transmitting filter output is then

o0

> as(t — kT)

k==—ca
where s(¢) is the impulse response of the transmitting filter,

As is well known, in linear PAM systems the receiving filter output,
X(#) in Tig. 1, is sampled sequentially at T-second intervals, and
the kth time sample b, is used as an estimate of a;. For analytical
purposes, a constant time delay in the system may be neglected, and
it may be assumed that by, is taken at

t=LkT + 5,

where 8y is the timing jitter.®

The system from the output of By (f) to the input of By, (f) may
be considered as a channel. For a given channel, Berger, Tufts, and
Smith* ® have considered methods for designing the transmitting and
receiving filters for minimizing the mean-square error E[ (b — ax)?].
By these methods the digital repeaters can be specified if the analog
repeaters were given, and their output powers were not constrained.
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In this paper, the analog repeaters are to be designed, and their
output powers are constrained. We consider joint optimization of the

analog and digital repeaters. For given L, Ni(f),1=1,...,L + 1,
A;(f),i=0,...,L, {m}, and T, we wish to design Bx(#), k = 0,
1,...,L -+ 1, jointly to minimize the mean-square error

= E[(b. — )] (1)

subject to the constraints of fixed repeater output signal power P;,
1=20,---,L.

The letter E in (1) denotes the ensemble average taken over {a},
d;, and the noise. The Fourier transform of the probability density
function of 8, is denoted by P(f). The notation “*”’ denotes a complex
conjugate and ““|-|”" denotes a magnitude.

By a well known method,* the mean-square error in (1) can be
expressed as

&=m+ [ M(f)[ﬁ A*(f)B*(f)]

i=0

E Al -l -

- f 20 () [LIf A% B*(f;]P(f) df
> [ v ay @)

where

M) = mo + 2 2, my cos 2rfkT
k=1

is the spectral density of the stationary, random message sequence
{ax}.

By introducing the dummy variable A_,(f) = 1 for all f, we can
write the repeater average output signal powers all in the same form as

H Adf)- HB(f) 4, 1=0,1,--,0.(3)

- [0 | 1L

III. NECESSARY AND SUFFICIENT CONDITIONS

Necessary and sufficient conditions for B.(f),» = 0,1, --- , L + 1,
to minimize the mean-square error & can be derived by using the
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standard techniques of the caleulus of variations. These conditions
are rather lengthy. In order to conserve space and to facilitate the fol-
lowing manipulations, we write these conditions in the same form.
To do so we use the dummy variables

A_(f)y =1 forall f

Apa(f) =1 forall f
Apsr = 0.

Then it can be shown that the necessary and sufficient condition for
B.(f),y n = 0,1, «++ , L 4+ 1, to minimize the mean-square error &
subject to the power constraints in (3) is
L+1 L+1 1
M(ﬂ[H A?(ﬁ][n B?’(f)] T

i=0 i=0
i#n

5 O[T b~ D~ H])

- o[ 11 4z | 1 5100 Jpo
40 T80

iEn

"B}

% Z {Nl(ﬂ

=0

L+1

+ {m,f—rM(n’ 11 4.0 11 B0 !an(f)} =0 forall| (4)

l=n im—] i=
i#n

where A, 1 = 0, . . ., L, are Lagrange multipliers. The definition

2

50| =1

is used in (4).

In the following sections, we consider the problem of determining
the optimum B,(f),n = 0,1, ..., L + 1, from equations (2) to (4).

We can eliminate a trivial case first. In some correlation schemes
(such as duobinary) M(f) may be zero at some frequencies. It can
be shown that By .,(f) must be zero at the frequencies where M (f) = 0.
Furthermore, B,(f), n =0, 1, - - -, L, can be arbitrarily chosen at these
frequencies without affecting the mean-square error €. In practice, they
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may be chosen so that their amplitude and phases are continuous at
these frequencies.

In the following sections M (f) # 0 is assumed. Furthermore, as is
always the case in practice, N;(f), A;(f), P:, and T are assumed to be
nonzero, finite quantities.

IV. GENERAL RESULTS

By multiplying equation (4) by B*(f) one obtains

> {N,(ﬁ }

L+1

HBU)

L+1

11 4.0

2

L+1

+ Z{h*M(f) H A(f)

i=—1

T =10

n=20,1, -- ,L+1 (5)

where

) = | 1T 400 || TE 310 |

o -3 £ @40~ -2)])

is not a function of n. It can be shown that we may use equation (5)
instead of (4) without changing the solutions.

Letting n = m and m + 1 by turns in equation (5), one obtains two
equations. Subtracting the latter from the former gives

'm

i=—1 =0

L+1 2 L+1
= Nauil) _HlAi(ﬁ H B; m=0,1,---,L. (6)
i=m+ j=m+1
Since the right-hand side of equation (6) cannot be zero for all f, one
has Ay > 0, m = 0, ..., L. From equation (6)
Mas | 44 2| Buoh) [* _ L A0)
)\h N’H‘I(ﬁ | Ahﬂ(ﬂ |2 IBM](ﬂ I2
h=0,1,--- L — 1. )

Equation (7) is equivalent to
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‘ 2 _ E_NH]U)]% — 1
| Bi(f) | ‘: N, N,DJd TALD | AD |
i=1,2,---,L. (8)

It can be shown that, regardless of the values of m in equation (6),
substituting equation (8) into equation (6) gives

1 M| .
T M(f) | Ao(f) | l:m] | Bo(f) |
= | AL | [&—g@] | Bea(f) . (@)
From equations (8) and (9) one gets
ey MM@)T g
Let us define 6(f) to be the phase of [TT51 A:(NB:())], that is,
1T 4080 = | I 408 | (1)

Substituting equations (8), (10), and (11) into equation (5) and
setting n = 0, one obtains after a few steps

N M () L y 2 ,i0en
[MMDT | ap 1180 |

s £.A8E 40 - (-] -ro

& MNIH(]F)T 1 —iaen
T 12[ () | TAm "

We have shown that the optimum digital and analog repeaters
must satisfy the L + 2 equations in (8), (9), and (12). Some dis-
cussion is in order.

Let us refer to the frequencies at which By(f) # 0 as the transmission
band. There is no signal transmitted outside this band. Clearly, the
analog repeaters may have arbitrary amplitude characteristics outside
the transmission band. Furthermore, the analog repeaters may have
arbitrary phase characteristics at all frequencies.* Therefore, it is only

=0. (12

*Tt is seen from equation (2) that the mean-square error depends on the
over-all phase characteristic of the system, but not on how the over-all phase is
distributed among the repeaters. Thus, the analog repeaters may have arbitrary
phases. The over-all phase ean be adjusted at the digital repeaters.
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necessary to specify their amplitude characteristics in the transmission
band. Equation (8) shows that, in the transmission band, the jth
analog repeater (j = 1, - -+ , L) should have an amplitude characteristic
proportional to the function

[Nr\'ﬁb(fﬂ}[l Y |]%'

This simple specification holds regardless of the distribution of timing
jitter and the spectral density M (f) of the message sequence. Since
the above function is in general well behaved, and since the phases
can be arbitrary, the optimum analog repeaters ean be closely realized.

For brevity, we say that several functions are similar when they
differ only by multiplicative constants. In practice, the repeater noise
spectral densities may be similar, and the transmission media may
have similar transfer funetions. In such cases, equation (8) shows
that the amplitude characteristics of the analog repeaters are also
similar, A rather important physical meaning of this is:

The use of similar analog repeaters is not only an economical
choice, but also an optimum one, for systems where the repeater
noise spectral densities are similar and the transfer functions of
the transmission media are similar.

It remains to determine the digital repeaters, the gain constants
of the analog repeaters (the L + 1 LaGrange multipliers), and the
transmission band. They must satisfy the L + 2 equations in (8),
(9), and (12), and the L + 1 power constraints in (3). Furthermore,
as will be shown, they must also satisfy some validity conditions
because the repeater amplitude characteristics must be nonnegative.
Since the solution depends on the distribution of timing jitter and
since it is difficult to cover all cases in one paper, we shall consider
only the important case of deterministic sampling (that is, the case
in which timing jitter can be neglected) in the remainder of this

paper.

V. DETERMINISTIC SAMPLING

From now on we consider deterministic sampling, that is, timing
error & = 0, or

P({) =1, forall f§. (13)
Substituting (13) into (12) and noting that re, M (f), T, N+(f), and
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|4o(f)| are nonzero, finite quantities (we consider M(f) = 0 in
Section III), one can see that joint optimization requires either

| Bo(f) | = 0 (14)
or

p 2 (T4l -2l -8)] -

ANH-I.(IF) 1 o 110 5
+§[TMI)]|AU)| S0 19

The first term in (15) is a periodie function in f with period 1/T, that
is, it has the same value at the frequencies f and f — k/T, where k is
any integer. Hence, a necessary condition for (15) to be satisfied at
both f and f — &/T is that

= ?\lN:u(f)il* 1 —i0()
E[ GERPYIN

k
L )\INI.-H(]t - 'T) 1 )
= E 0=k T) (16)

= TM(f - %) J ‘ Ai(f - %) ’

Since M (f) is a periodic funetion in f with period 1/7, (16) is equiv-
alent to the set of conditions

T
|

a cos 6(f) = B cos 6(3’ — T’?) (17
and
asin 8(f) = Fein e(f - %) , (18)
where
i )\ NH—l(D] (19)

= |40 ]

-8

TR

Noting that « and 8 are positive, one can show that (17) and (18)

(20)
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hold only if
a=24 (21)

and

B(f — T—}i) = 6(f) -+ v, (22)

where
» = any even integer, including zero.

Thus, (15) ean be satisfied at both f and f — k/T only if (21) and
(22) are satisfied.
From (11), (10), and (22), one obtains

ST al-el-4)]

k
as - 7)
[man} S ’ =7
T k=—o0 [N ( _ E)]%
1 f T
Substituting (23) into (15), one can show that
IR (24)
Substituting (24) and (23) into (15) gives

-

TM(n] L [wm(nT 1
T[ TN A @

=0

The optimum jitter-free system must satisfy either (14) or (25a).
For convenience, we assume that for each f, (25a) is satisfied at f — m/T
for m e ®, , where ®, is a set of integers to be determined. The subscript
f indicates that &, may vary with f. Clearly (14) must be satisfied at
f — m/T for m ¢ &, , that is,

Bn(f - %) I =0, mi®. (262)
If ®, is an empty set, | Bo(f — m/T) | must be zero for all m (including
m = 0).
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Let us define a frequency set 4 as
g = {f s —e= =S f = and @, is not an empty set}

Clearly, (25a) is satisfied in the frequency set
={fif=g—m/T, ged and me®,},
and (14) must be satisfied for f ¢ &, that is,
| Bo() | =0 for fg35. (26b)

Notice that F is the transmission band. Clearly, the transmission band
can be determined from J and &; .

Substituting (13) into (5), letting n = L + 1, and integrating the
resulting equation, one obtains

[ M(D[Lﬁ At ﬁB*w)]

o {Tka[ﬁt( Aoi=2)] -po

L+1

T A B(f)}df—o (27)

L+1

+3 [ W

Combining (2), (13), and (27), one gets

e = mo— [ 00| T1 230820 | . (28)

Substituting (11), (10), and (24) into (28) yields

= ] 5
6= mo— [ [ 3DT 4 | 1By Far. oo

Using (26b) and the definitions of § and ¢, and noting that M(f) is a
periodic function in f with period 1/T, one can cast (29a) in the form

o= mo— [ [220]

r | -
OB M |2y - 1)

T ee-R)
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Since (25a) is satisfied at f — m/T for m ¢ ®,, one has from (25a)

_m+tk
uls-45) & -2 Bl -0 |

= ol=)

By changing the index m + k to 7, using the periodieity of M (f), and
then using (26a), one can rewrite (25b) as
’ Au(}f -
M(f) E[

i T(f_i:))]a Bo(f - %) " T[M]i
N

Ao
i
-7 i PINHIQ _ %):l A , me®; . (25¢)
=0 1] ‘ Al(f

-

Now we may substitute (25¢) into (29b) to obtain

b = my — f TM() df

[vli-5)]
afi-%))

Equation (30) is the expression of & for the case of deterministic sam-
pling.

+ [ oy 2o d, me®,. (30)

VI. DETERMINATION OF THE TRANSMISSION BAND

Let us consider the determination of the frequency set ¢ and the
integer sets &, . The ratios



HYBRID DIGITAL SYSTEMS 1675

| A !)i

have appeared in the previous equations, such as in (30). It is obvious
from Fig. 1 that [N1(f)]1%/|A40(f)| may be interpreted as the noise-
to-signal ratio of the first analog link, [Na(f)]%/|A.(f)| as the
noise-to-signal ratio of the second analog link, and so on. A similar
noise-to-signal ratio has*® appeared in optimizing the transmitting
and receiving filters for a given channel (see Section II). Since such
noise-to-signal ratios are usually not periodic functions in f, it is
customary to assume that for any f and k& we have either

o [Nm()‘ ~ qkw)]} ,
AOTT 1 a(- 8|

vt =2
[f\rﬁ:l((!j))]l} - H Al((j - ,g))% | =

This assumption is valid for most practical cases.

In the following we assume that (31) or (32) holds simultaneously
forl = 0,1,...,L. Physically, this means that the pass and attenua-
tion bands (valleys and peaks of the noise-to-signal ratios) of the
analog links coincide. Important applications where this assumption
is valid are considered in Part II of this study.* It should be em-
phasized that this assumption is usually valid because carrier modula-
tion ean and should be used at the analog repeaters to shift the fre-
quencies so that the pass and attenuation bands of the analog links
coincide and the transmission media are best used.

From the above assumption, it is easily seen that

kY |*
E D\ ]5 [Nwi i g [Nlﬂ(f B T):l
L P |

(31

or

(33)

for any f and k& # 0, regardless of the values of the \;'s. Comparing
(33) with (19) to (21), we see that (21) is not satisfied. Therefore,
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from Section V, (15) and (25a) cannot be satisfied at both f and f —
k/T for any f and k # 0. Consequently, the set of integers @&, defined
after (25a) cannot contain more than one element, and (26a) becomes

rB.,(f — Ag) ' =0, for me@,, k #= 0. (34)

Substituting (34) into (25b) gives

M) S 13

_ A TMO ] & [A,Nmm]* 1
‘T[ xn] UP2] vl R a R ALE

From this the transmitting filter is determined as

gl
1B " = 376Gy | 4o TN

{zay - 30 WPl yes o

For the solution of the optimization problem to be valid, the solu-
tions of |B;(f) | must satisfy the conditions

|BIU)1§0| leJls"'|L+1-

These conditions can be used to determine the appropriate signs of
()Y 1 =0, -+, L. Consider first the possibility that (\)! < 0. It
can be seen from (8) that (A\,)! < Oand |B.()|*= 0,1 =1, ---, L,
together require

oat<o I1=1,---, L
But, from (35), the conditions

(X;)!<0, l=0:1.|"':Lr
would imply that

| Bo(f) | = 0,

which is not a valid solution. Therefore, (\,)! cannot be negative and
must be positive. It can be shown from (35), (8), and (9) that (\,)* > 0
and | By(f) |° 2 0,1 =0, ---, L + 1, together require that*

* D(f) defined in (36) is an abbreviation used later.
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= [TM (/)]

=0, [ed; me ®; (36)

and that (A\)*% > 0,1 = 1,. .., L. From these and the fact that
(Xo) * must be positive, it is conecluded that the solution is valid only
when (36) is satisfied and

O)t>o0 1=0 -, L (37)

The necessary conditions in (36) and (37) are used later in determining
g and &, .

By substituting (26b), (35), and (8) into (3), together with some
algebraic manipulation, it ean be shown that the power constraints
in (3) can be expressed as:

L
MP, =B, — > Maw, 1=0,1,--,L (38)
h=0

D=3
o)

T e | L k| PO
r= RE = I

Clearly, if 9 and ®, are known, 8; , @y , and (\;)! can be computed,
the validity conditions in (36) and (37) can be checked, and the filter
characteristics can be computed from (35), (8), and (9). Thus, the
optimization problem is reduced to that of determining the ¢ and &,
which minimize the mean-square error & in (30), subject to the power
constraints in (38) to (40) and the validity conditions in (36) and (37).

where

= [y a, (39)

6.1. Mean-Square Error versus &,

Before a design procedure can be proposed, it is necessary to under-
stand the relationships among &, 9, and ®, . Such are the subjects of
this section and the next, and Section 6.3 gives a simple design procedure
based on the results.
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From (30) and (39), the mean-square error can be written as

& = my — [ TM()df + 3 Mg, .
a4 =0

From the definition of M({) in (2), it is easily shown that

/27
[y ar = m, .
—-1/27
From (41) and (42), we may decompose & into
8 = 81 + 8-2

where

1/2T
g, = f— T df - £ TM(f) df
and

L
& = Z ?‘?ﬁl .

1=0

(41)

(42)

(43)

(44)

(45)

Since T and M(f) are given, & depends on g, but not on the integer
in ®; . Therefore, for any 4, the integer in &, must be chosen to minimize
&; subject to the power constraints in (38) and (40) and the validity

conditions in (36) and (37).

If we define
A Bo
M B,
A= e=|T
Y, P
Pn + ag (231} By QLo
Q= Qpy P1+°¢11 Ly
oy, oL P L + aLLJ
then the power constraints in (38) take the compact form
QA =38

and (45) becomes
& = A'B = A'QA.

(46)

(47)

(48)

(49)
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It can be shown that Q is positive definite; hence, Q" exists and
we may combine (48) and (49) to obtain
& = §'A = 3'Q7'B. (50)

For each f, one may choose m to minimize the ratios
[Non(f = m/TP/| Aulf — m/T) | .

When this is done, 8, and a,; decrease—see (39) and (40)—and the
elements of § and Q decrease—see (46) and (47). However, it is difficult
to see from (50) whether &, would decrease or increase (the elements
of ¢ and Q decrease, but the elements of Q™" may increase).

We resolve this difficulty by first considering the inerement in &,
resulting from arbitrary changes in the ratios

[l - )]

; l=0,---,L.
m
(- %)
For brevity, we use the abbreviations
¥
[Nr*,(f -~ i}ﬂ
cff) = =/———, {=0,-,L; me@; . (51)

4l =)

Let T',(f) denote the increment in C,(f), I = 0, - - - , L. The resulting
increments in A}, &,, A, B, and Q are denoted, respectively, by 4,,
d, A, B, and Q.

Notice that the inerements I';,(f), Il = 0, --- , L, are not necessarily
small.

Replacing Q, A, 8, and &, by (Q + Q), (A + A), (8 + 5), and
&, + d, respectively, one has from (48) and (49)

Q+PA+A)=8+38 (52)
& + d = (A + A)(B + B). (53)

From (52) and (48)
QA =3 — QA — QA. (54)
From (53) and (49)

d= A8+ A8+ A'B. (55)
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Multiplying (48) by A’, transposing A’QA in the resulting equation,
noting that Q is symmetrie, and using (54), one obtains

A3 = A8 — A'QA — A’QA. (56)
Substituting (56) into (55) gives
d= A%+ B(A+ A) — A'Q(A + A). (57)

By the definitions of 8; and az; in (39) and (40), and by the defini-
tions of the inerements, one can show after some manipulation that

A'Q(A -+ R) = ;; [)\i + A4l ./:, I:E )\Ecx(f):|rh(f) df

+ i‘, N f {ZL) I+ AJlC(n) + I‘n(D]}I‘JU) df  (58)

=0 k=0

B(a + &) = XM+ a] [ [rugPr) of (59)

IGED MY fJ [TMAPT) df. (60)

We are looking for a condition to determine the sign of d. We must
decompose or combine the terms in such a way that the condition, if
it exists, can be detected. This is done by substituting (58) to (60)
into (57) and casting the resulting equation in the following form:

d= 2 M+ 4] j; {[TM M - g ?\?C:(f)}f‘:.(i) df

+ ,.):.; M f‘ {[TM(m* - ;) N+ AdlC(D + I‘,(D]}I‘n(f) df. (61)

From (61) we can prove a theorem about the selection of ®, for any
given 4.

It has been shown after (35) that the solution of the optimization
problem is valid only when (36) and (37) are satisfied. From the defini-
tion of C,(f) in (51), (36) can be written as

D) = (TUGY — S NCH 20, for fes.  @O)

For any given 4, let us define:
[@;}s = the set of all the choices of &,
which, together with the given g,
satisfy (36) and (37). (62)
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We have assumed that (31) or (32) holds for all I; therefore, there is a
choice of ®;in {®,}, which simultaneously minimizes C,(f),l =0, - -+, L.
For later use, let us define:

®y.s = the G, in {&,}; which minimizes C,(f), 1 =0, ---, L. (63)

If we change G, from @, , to @, , which is also in {®}s, C,(f) will
be increased, say, from C,(f) to C;(f) + T.(f), where

L z0o =0 ---,L

We have shown that if C,(f) is increased to Ci(f) + T.(f),l =0, --- , L,
&, is changed to &, + d, where d is given in (61). Since G4 is in {®,},,
(36) and (37) are satisfied. Since @, , is also in {®,}s, (36) and (37)
are again satisfied, but in the form

[TM (N1t ~ Z; N+ AJICH + TN 20, for fesg

and
M4+ a >0, l=0,--+,L

because C,(f) is increased to [C;(J) + T.(f)] and (\,)} is changed to
[(A)Y + Al Substituting (36), (37), and the two inequalities above
into (61) shows that

d > 0.

Therefore, & and & increase when 6i, , is chosen instead of @,y (&
is fixed for a given ¢). This proves:

Theorem 1: For any given d, the mean-square error & is minimized by
selecting ®y.q n {®Ryls .

Clearly, @&, is the optimum @&, for the given ¢ because it minimizes
the mean-square &, subject to the power constraints in (38) to (40)
and the validity eonditions in (36) and (37).

6.2 Mean-Square Ervor versus 4

We now consider the variation in the mean-square error when a set
of frequencies is deleted from a given 4. Let us define a frequency sef
g as

PR S 2T
Clearly, 9 M g is an empty set and ¢ |J g is the frequency set —1/27T =

g = {f r L [ = -J—andﬁl, is an emptyset}-
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f < 1/2T. Equation (43) can be written as
g = f TM(f) df + A'B. (64)
F]

Let Q be a set of frequencies in 4. By deleting @ from g we mean that
®, is changed to an empty set for f & €, but remains unchanged for
f ¢ Q. When Q is deleted from ¢ (that is, when ¢ is changed to 9 — Q),
9, Q, A, 8, (\,)}, and & are changed to (g + 9), (Q — Q), (A — A),
@ — B), [(\)} — A, and (&8 + e), respectively. Equation (64) is
changed to the form

8+e=LmTM®ﬁ+%A—Eﬂ3—®- (65)

Since @ C 4 and 4 N g is an empty set, @ () g is an empty set. From this
we may subtract (64) from (65) and obtain

g = fﬂ TM() df — A’ — A'B + A'B. (66)
It is seen from (48) that
A’B = A’QA. (67)
When 4 is changed to § — @, (48) is changed to
Q— Q-4 =8-38 (68)

Subtracting (48) from (68) and combining the resulting equation with
(67) yields

A=A — A'QA + A’QA. (69)
Substituting (69) into (66) gives
e= [T df~ AT — (A - DT+ A0A - K. (0
The ith element of the vector § is
[ rapre . .

The 7th element of the vector A is A;_; . The element in the ith row
and the jth column of Q is

LCHmQJﬁﬁ
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Using these element values, it can be shown from (70) that

f {[TM(n 2 = A)C, (f)}{[TM(f)] Zn x?cl(n} df.

(71)
We have shown in Theorem 1 that C;(f) should be minimized. Thus,
®, should be selected to avoid those frequencies where C,(f) = =

(for instance, where discrete tone interferences exist). Furthermore,
the validity conditions in (36) and (37) cannot be satisfied at such
frequencies. Therefore, we may assume, without loss of generality,
that C,(f) # o« for the given ®,. The variation in (\)Y, A, then
approaches zero when the variation in 4, Q, approaches zero. There-
fore, if @ is replaced by an infinitesimal frequency set ©, A, becomes
negligible and (71) becomes

e = L{[TJI(I)]* — Zz: Af():(f)}z df. (72)
We have defined in (36) the abbreviation
D(f) = [TM()) Z NCL(). (73)

It is seen from (71) that if
D{f) =0, forall feQ, (74)

then e is zero and & is unchanged when  is deleted from 4.

If D(f) # 0 for some f ¢ Q, there is, in @, an infinitesimal frequency
set © in which D(f) # 0. If 0 is deleted from 4, e is given by (72). The
integrand of (72) is [D(f)]* and is positive; therefore, when 0 is deleted
from 9, e > 0, and & increases. Repeating the deleting process we see
that & can only increase when any frequency set @ is deleted from g
and D(f) # 0 for some f & Q.

The above proves the theorem:

Theorem 2: For any given g and ®, which may or may not satisfy the
validity conditions in (36) and (37), and for any Q@ C 9, deleting @ from
g will not change the mean-square error & if D(f) = 0 for all { € 2, and
will tncrease & if D(f) = 0 for some f £ Q.

6.3 A Design Procedure

The ambiguity in (50) is resolved in Section 6.1. It is proven in
Theorem 1 that, for any given 4, the ®, which minimizes C,(f), | =
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0, -+, L, is the optimum choice among all the solutions of ®, which
satisfy the validity eonditions and power constraints. Theorem 2 shows
that deleting a frequency set @ from a given ¢ will increase or not change
the mean-square error (never decrease). It is clear from these results
that, in searching for the optimum ¢ and @&,, one should begin with
the largest possible 9 and with the ®, which minimizes C,(f), I = 0,
-+« , L. From the definition of 4 in (27), the largest possible g is seen
to be

=y S 1 S ﬁ} (75)

Thus, we can propose the following simple design procedure:

Choose § = gy, - For each fin 9., choose the ®; which minimizes
Ci(f),l =0, ---, L. Compute 8, , ay , and (\,)! from (39), (40), and
(48), respectively. If the resulting values of (\,)! satisfy the validity
conditions in (36) and (37), the above choice of 9 and ®; is optimum.
The power constraints are satisfied by computing (A,)! from (48).
The mean-square error & is minimized.

Increasing C,(f) or deleting some frequencies from 9.,,, will increase &.
See Theorems 1 and 2.

The optimum filter amplitude characteristics are given by (35),
(8), and (9). The over-all phase of the system, 6(f), is given by (24)
(the system may have an additional time delay). As diseussed previously,
6(f) may be distributed arbitrarily among the repeaters. The minimum
mean-square error is given by

L
é = Z k%ﬁ; .
=0

Thus closed form results are obtained if the choices of 4 and ®, in
the above design procedure satisfies the validity conditions in (36)
and (37). As illustrated by the applications in Part II, such validity
conditions are usually satisfied under normal operating conditions.®

VII. CONCLUSION

The joint optimization problem is solved in closed form for deter-
ministiec sampling under two conditions:

() The pass and attenuation bands of the transmission media must
coineide: (31) or (32) holds for all I. This is usually the case, because
similar transmission media are usually used. Moreover, carrier modu-
lation can and should be used at the repeaters to shift the frequencies
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so that the pass and attenuation bands coincide and the transmission
media are best used.

(17) The validity conditions in (36) and (37) must be satisfied (see
Section 6.3). As illustrated in applications in Part II, such conditions
are usually satisfied.?

The closed-form expressions for the optimum repeater character-
istics and the minimum mean-square error can be computed using the
procedure in Section 6.3.

Two theorems are proven in Section VI for resolving the ambiguity
in the selection of the transmission band. These theorems hold regard-
less of the second condition above.

Timing error is also considered. It is shown that in the transmission
band, the jth analog repeater (j = 1, ..., L) should have an ampli-
tude characteristic proportional to the given funetion (see Fig. 1).

|:N,-H(n]=[ 1 ]*
N L a-mam [

This simple specification holds regardless of the timing jitter distri-
bution, the message sequence spectral density, and the two conditions
above. These conclusions are deduced from this result:

(f) Since the above given function is in general well-behaved, and
since the analog repeaters may have arbitrary phases, the optimum
analog repeaters can be closely realized.

(i) It is not only economical, but also optimum, to use identical
analog repeaters (which may have different gain factors) in many
systems where the repeater noise spectral densities differ only by
multiplicative constants (but are not necessarily flat with frequency),
and the amplitude characteristics of the transmission media differ
only by gain constants.

(11z) If the repeater noise spectral densities differ only by multipli-
cative constants (and are not necessarily white), each analog repeater
will be required to provide amplitude equalization for its adjacent
transmission media (with arbitrary phase equalization). This specifi-
cation for digital transmission is the same as the requirement for
analog repeaters in a voice system.! Thus, by installing a digital as
well as an analog repeater at the (L+1)th repeater location, a hybrid
system ean be used for either digital or voice transmission without
changing the L analog repeaters between.
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Hybrid Digital Transmission Systems
Part II: Information Rate of
Hybrid Coaxial Cable Systems

By S. L. FREENY and ROBERT W. CHANG
(Manuscript received March 11, 1968)

The information rate of a hybrid coaxial cable transmission system using
multilevel pulse amplitude modulation is studied, assuming that the additive
repeater noise has o flat spectral density and that statistically independent
message symbols are transmitted. Questions considered theoretically are:
(#) Reduction in information rate when some repeaters in an “all digital
repealer” system are replaced by analog repeaters, (17) Number of digital
repealers required for converting an analog system to digital service, (it7)
Information rate versus number of added analog repeaters in a fized digital
repeater seciion, (iv) System sensilivity to repeater output power and noise
spectral density variations, and (v) Bit rate versus baud rate and achieving
the greatest bit rate. Curves and tables answer these questions.

It is economical and theoretically optimum to use identical analog
repeaters and uniform repeater spacing for the coarial cable systems con-
sidered. The optimum gain-frequency characteristic for the analog repeaters
18 the same for both analog and digital transmission. Analog cable systems
can be adapted directly to hybrid digital service with mo compromise in
theoretical performance.

I. INTRODUCTION

In Part I,' the general problem of optimizing the parameters in a
hybrid (eombination digital and analog) transmission system was
considered. Closed form expressions were obtained for the transmit-
ting, receiving, and analog repeater filters which would minimize the
total mean square error at each digital regenerator. In this part these
formulas are applied to the important special case where the transmis-
sion medium is coaxial cable, under the assumption that the additive
repeater noise has a flat spectral density and that statistically in-

1687
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dependent message symbols are transmitted. No attempt was made
to include practical details of circuit and filter design.

II. A COAXTAL CABLE HYBRID DIGITAL TRANSMISSION BYSTEM

A hybrid digital transmission system is illustrated in Fig. 1. In-
formation symbols {a;} are transmitted from one digital repeater to
the next through L analog repeaters. Multilevel pulse amplitude
modulation is considered. Each symbol @; can assume any one of »
equally spaced levels with probability 1/v. The spacing between two
adjacent levels is denoted by d. The levels are assumed symmetrically
spaced about zero; hence,

Ela] =0
d°(° — Iy

Notice that » can be an odd as well as an even integer. As usual, the
a's are assumed to be statistically independent.

The a;'s are transmitted sequentially at 7' second intervals. The
baud rate of the system is 1/7T, and the bit rate is

Elay] =

R = (1/7) log, v bps. (2)

It is assumed that the input amplifiers of the analog and digital

SENDING
DIGITAL }
REPEATER P COAXIAL P coaxiaL P coaxiAL
% CABLE \  CABLE \  CABLE
{ak} TRANS-| A ¥ \
L miTTiNG P A(F) B, (f) Fel A(f) Bo(f) el A(f) o=
FILTER | | \
7 FIRST SECOND
Bolf) ‘ ANALOG ANALOG
‘ REPEATER REPEATER
‘ NOISE No
No
‘ i RECEIVING
L1 DIGITAL
ANALOG COAXIAL ‘ REPEATER
REPEATER CABLE
TO
R B A(F) + H%S"E':G Lt‘)-{bk} DECISION
P CIRCUIT
BL+(f)
1
No NO '

TFig. 1 — A hybrid coaxial cable digital transmission system.
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repeaters introduce zero mean thermal noise of constant spectral den-
sity No watts per hertz over the frequency band of interest. The av-
erage signal powers at the analog and digital repeater outputs are
constrained to be P.

As in all linear pulse amplitude modulation systems, the signal at
the decision ecireuit input—X (f) in Fig. 1—is sampled sequentially
at T second intervals, and the kth time sample b, is used as an esti-
mate of a;. The system’s performance is measured by the familiar
criterion of mean square error between b, and a, that is, by the
quantity

& = E[(by — a)’]. (3)

The system is said to be optimum if & is minimized by jointly designing
the analog and digital repeater characteristics.

It is shown in Appendix A that for the coaxial eable systems con-
sidered the mean square error & is further minimized if the analog
repeaters are equally spaced along the eable. Therefore, uniform repeater
spacing is henceforth considered. The transfer function of the coaxial
cable between each two repeaters is denoted by A(f) (see Fig. 1). Over
most of the useful frequency range one may assume’

| A | = e @
where
S = cable length in miles
fo = frequency at which one mile of cable has attenuation of one

neper (a cable constant).

The analog and digital repeater characteristics that minimize &
can be determined using the general results in Part I (see Appendix B).
The main purpose of this part is to explore the interesting characteristics
and potentialities of hybrid cable systems. Let us define

N = (L + )N,

é The minimum value of & that can be attained by jointly de-
signing the analog and digital repeater characteristics.

S
k= G ©)

Notice that p is the cable attenuation in nepers measured at a fre-
quency equal to one half the symbol rate. Using results in Part I, it
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is shown in Appendix C that if

1 g
N.= = (L + 5? = [2ue™ — 3™ + 4¢" — 1] (6)

then the bit rate of the optimum system can be related to all other
system parameters by

S°P
| s,
R = o log, 41 + B = @)
1 5?[(#—1)8 1]

The condition in equation (6) requires that the signal-to-noise ratio
of the system be larger than a certain value. This condition is satis-
fied under normal operating conditions for the following reason. It
can be shown that the quantity

;15 [2ue™ — 36 + 4¢" — 1]

in equation (6) is zero when p is zero, and increases with u. There-
fore, the right side of equation (6) increases with the number of
analog repeaters, the symbol rate 1/7, the repeater spacing S, and
the attenuation in the cable (that is, 1/f;). It can be shown that if
L, 1/T, 8, and 1/fy are made so large that equation (6) is not satis-
fied, the optimum system will be foreed to use a bandwidth less than
the Nyquist bandwidth 1/2T to reduce thermal noise. A system should
not be designed to operate under such an extreme condition since
intersymbol interference increases rapidly as the bandwidth is reduced
to less than the Nyquist bandwidth 1/2T'.

For equation (7) to be useful one must assume something about the
probability distribution of the total interference (intersymbol plus
noise). This allows one to relate the ratio &/d” to the average probability
of error. In the remainder of this paper the natural and useful assump-
tion will be made that the total interference is normally distributed.
Evidence to date indicates that this assumption is actually conservative
and that average error probabilities even less than those stated would
actually be obtained in most cases.”

III. SELECTION OF SYMBOL RATE

To facilitate comparing bit rates of systems which have different
values, we ignore the variation of error probability with number of
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levels, which can be at most a factor of two (for details see Ref. 4,
pp. 114-118), and assume that it depends only on &/d°. Specifically,
a value of d°/& = 126 gives an error rate of 10 for binary transmission.
Unless stated otherwise, this value for the ratio will be used throughout.
Consider now the system parameters. The cable constant f, is usually
a given parameter. Values which the thermal noise spectral density N,
and the power constraint P may assume are restricted in most cases.
As already discussed, if the error rate is specified, the ratio d*/8 is also
approximately fixed. Thus, the factors over which the system designer
may exercise the most control are the symbol rate 1/T, the number of
levels », the number of analog repeaters L, and the repeater spacing S.
Let us consider the selection of 1/7.

R = (Q/T) log, v bps (2)
where logyv is the number of bits per symbol. It is proven in Appendix
D that under the normal operating condition represented by equation
(6), logay decreases when 1/7" increases. Thus, usually there exists a
symbol rate which maximizes the bit rate R. To illustrate this and the
significance of selecting the symbol rate, we consider a typical sys-

tem in the following,
Consider a system using standard 3%-inch coaxial eable which has

fo = 5 X 10° hertz. (8)

The analog or digital repeater output power is constrained to be

P = 0.1 watt. 9

The thermal noise spectral density depends on the noise figure of the
amplifiers. A reasonable assumption® is that

Ny = 1 X 107" watts/hertz (10)
corresponding to a noise figure of 13.8 dB.
Let us assume a repeater spacing S of 1.25 miles. (11)

Consider the case I. = 9, that is, nine analog repeaters are used
between each two digital repeaters. The ratio d°/& is fixed to 126,
corresponding to an error rate of approximately 107° per 12.5 miles.

If we vary the baud rate 1/7, we obtain the results in Fig. 2. When
the baud rate 1/T increases from zero, the bit rate R first increases
andTthen decreases. There is a peak of R at 1/T =2 2.8 X 10% Also

* A thermal noise spectral density of 167 x 10™ watts per hertz was used
in Ref. 2 based on a noise figure of about 162 dB,
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Fig. 2— Bit rate and number of levels vs symbol rate 1/7.

shown in Fig. 2 is the quantity ““bits per symbol’ (that is, log, ») which,
as proven in theory, decreases when the baud rate increases. Notice
that the results are meaningful only when v is an integer. Therefore,
one should consider only those points where » is an integer, or commonly
used integers such as 2, 3, 4, 8, and 16.

Two observations are made from Fig. 2:

(4) If a low symbol rate such as 1/T = 107 is selected, not only is
the resulting bit rate too low (about 1/10 of the maximum R), the num-
ber of levels must also be extremely large (approximately 2'* levels)
in order to attain this very low bit rate.

(#i) At the maximum bit rate » is approximately 32, an impractically
large number. However, reducing » to 16, 8, or 4 levels only reduces
R from 1.38 X 10° to 1.35 X 10°, 1.21 X 10°, or 0.96 X 10°, respectively.

These observations clearly show the significance of selecting the
baud rate and how a baud rate can be chosen for best use of a given
system,

Notice that the above results are eomputed from equations (7)
and (2) and that equation (7) is valid if equation (6) holds. By re-
arranging the terms of equation (6) together with some algebraic
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manipulation, it can be shown that equation (7) is valid if the R
computed from equation (7) satisfies the inequality

1 G’ 8
R2ﬁ109[1+4_—g] 6a
2 o log w_1terd (6a)
of if » computed from equations (7) and (2) satisfies the inequality
6’ é:l
> L = ————
log, » = 3 log, l:l + o o1 pE (6b)

Notice that equations (6a) and (6b) represent lower bounds on hit
rate and bits per baud, respectively. The lower bound on bits per
symbol is plotted in Fig. 2. Tt is seen that, as discussed in Section II,
equation (6) is easily satisfied in practice.

IV. REPLACEMENT OF DIGITAL REPEATERS

What happens if some of the repeaters in an all-digital repeater
system are replaced by analog repeaters? Because in multilevel trans-
mission analog repeaters might be less expensive than digital repeat-
ers, this may reduce the cost of the system.

Since analog repeaters introduce thermal noise, replacing digital
repeaters with analog repeaters decreases the bit rate of the system
(assuming a fixed error rate), but the reduction might not be much.

Let, us consider the same system specifications (8), (9), (10), and
(11), as in Seection III, and let us consider three cases:

(1) The repeaters in the system are all digital.

(i7) 90 percent of the digital repeaters are replaced by analog
repeaters (10 percent digital).

(222) 99 percent of the digital repeaters are replaced by analog
repeaters (1 percent digital).

The ratio d°/& is set to 144, 126, and 108, for cases ¢, 4, and %3,
respectively. As discussed in Appendix E, this gives an error rate of
approximately 1077 over a distance of 125 miles for all three cases.

Under the above conditions, the bit rates of the three cases are
computed using equations (7) and (2). The results are compared in
Table I and plotted in Fig. 3.

In comparing cases ¢ and 12, we see that the bit rate decreases only
18 to 28 percent when 90 percent of the digital repeaters are replaced
by analog ones. From cases ¢ and i, we see that the bit rate de-
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TapLE I— CompPARISON OF Bir RATES

Bits per second (X 10%)

Type of Transmission Case 1 Case 1i Case 1ii
Binary 0.71 0.58 0.46
Ternary 1.02 0.82 0.63

4-level 1.21 0.96 0.74
8-level 1.56 1.21 0.91
16-level 1.77 1.35 0.98
32-level 1.86 1.38 0.98
64-level 1.85 1.33 0.91

creases 35 to 50 percent when 99 percent of the digital repeaters are
replaced by analog ones. The reductions in bit rate are moderate
compared with the amount of replacement.

It is important to observe that the bit rate of case i is best at 32-
level transmission, but it is difficult, if not impossible, to realize a
32-level transmission system. Therefore, one is forced to consider a
reduced bit rate. If one uses only digital repeaters, there is only one
choice, reducing bits per symbol. However, hybrid systems give an-
other degree of freedom: one may consider various combinations of
transmission levels and numbers of analog repeaters.

2.0
——
1.8 /’/"'_'
1.6 -
100 PERCENT
DIGITAL |

1.4

/ / — ]

. /,ﬁ PERCENT
Y ///// T PERCENT
ool N

0.4 /// 1

GIGABITS PER SECOND

2 3 4 5 6
BITS PER SYMBOL

(=]

Fig. 3 — Comparison of bit rates of three arrangements.
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For example, consider the two choices from Table I:

(7) Repeaters all digital, ternary transmission used, bit rate reduced
to 1.02 X 10° bits per second.

(77) 90 percent of the repeaters are analog, 4-level transmission,
bit rate reduced to 0.96 x 10° bits per second.
Since the bit rates are very close, the selection depends largely on
the cost of the repeaters, installation, maintenance, and so on.

V. HYBRID SYSTEM FLEXIBILITIES

We have considered a digital system and computed the reductions
in bit rate when digital repeaters are replaced by analog repeaters.
But in other applications, the system may be originally built for voice
communication with all analog repeaters. As is well known, the
analog repeater gain-frequency characteristic for voice communica-
tion is shaped to mateh the loss-frequency characteristic of the coaxial
cable.® Appendix B shows that such shaping is also optimum for multi-
level digital transmission. Thus, an analog system is basically suited
for digital transmission provided that digital repeaters are inserted;
the question is how many.

Tables such as Table I can be helpful in making such decisions.
Case it in Table I corresponds to inserting one digital repeater after
every nine analog repeaters, and case %% corresponds to inserting a
a digital repeater after everv ninety-nine analog repeaters. Bit rate
can be easily computed for other values of L, », S, fo, P, Ng, and er-
ror rate using equations (7) and (2). The results reveal the capacities
of various systems.

A hybrid system can be used for either digital or voice communica-
tion by installing a digital as well as an analog repeater at the (L +
1) st repeater location. The L analog repeaters between can be used
for both services without saerificing the system performance because
of common gain-frequency shaping recquirements.

VI. INSERTION OF ANALOG REPEATERS

Replacing digital repeaters with analog ones or inserting digital
repeaters into an analog system amount to changing the parameter
L of a hybrid system. The repeater spacing S is unchanged.

In certain cases, one might wish to fix the distance between two
digital repeaters, and vary the number of analog repeaters between.
In these cases S varies with L.
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Let the distance between two digital repeaters be » miles. Then
8 = y/L + 1. Thermal noise spectral density at the input of the re-
ceiving digital repeater is N = (L + 1)No. When L increases, ther-
mal noise increases, but S and cable loss decrease. Hence, the bit rate
may increase or decrease depending on thermal noise and cable loss.
For instance, if N, and f, are both very small, inereasing L will in-
crease the bit rate; if Ny and f are large, increasing L will decrease
bit rate. The following shows that for typical values of N, and f, in-
creasing L increases hit rate.

Let fo = 5 % 10%, P = 0.1 and Ny = 10'® as considered earlier, and
assume a distance 5 of 100 miles. Table IT shows L for each of the
following:

a/7). The baud rate that maximizes the bit rate
Roux = Maximum bit rate in bits per second at (1/7),,
(log; ). = bits per symbol baud at (1/7)., .

I

For all L, d*/8 is set to 126 (error rate =2 107" for each digital repeater
section). Notice that the table contains values of L which are both
impractically small and impractically large, which are included only
for completeness.

TFrom Table IT, we see that when L increases from 1 to 10, 100, and
1000, Ryax increases 17, 550, and 12,700 times, respectively. Similarly
rapid inereases in bit rate are also obtained for 5 as small as 10 miles
or as large as 200 miles. Tt is concluded that, for the typiecal values
of N, and fo considered, the insertion of analog repeaters increases
the theoretical bit rate rapidly. The number of analog repeaters, how-

TasLe II — Bitr RaTE vERsUs L For 7 = 100 MILES

Bits per second

L (1/T)m Rumax (logz ¥)m
1 3.68 X 105 2.58 X 108 7.00

2 7.60 X 108 5.10 X 100 6.71

5 2.60 X 108 1.62 X 107 6.22
10 7.53 X 108 4.37 X 107 5.80
20 2.32 X 107 1.24 % 108 5.35
50 1.06 X 108 4.99 X 108 4.73
100 3.31 X 108 1.41 X 10¢ 4.25
200 1.02 X 10° 3.85 X 10° 3.77
500 4.30 X 10° 1.36 X 10w 3.16
1000 1.22 X 10 3.27 X 10 2.68
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ever, is limited by such practical considerations as misalignment,
equalization, and economy.

VIL. BIT RATE, POWER, AND NOISE

We have assumed a repeater output power, P, of 0.1 watt and a
thermal noise speetral density, Ny, of 107" watts per hertz. Although
these are conservative figures, it is nevertheless interesting to ask how
sensitive the system is to variations in P and N, .

Let us consider the coaxial cable system specified by (8), (11), and
d*/8& = 126. Notice from (7) that we need to consider only the ratio
P/N,, not P and N, separately.

P _01
N, 107" T

It is very unlikely that P/N, will vary by a factor of 107, but let us
consider such a range.

Sinee N = (L + 1) N, and since L appears only in the ratio P/N
in (7), we may vary P/N instead of P/N, so that the results can be
used for all L. For instance, when L = 9, varying P/N from 10 to
10" corresponds to varying P/N, from 10** to 102,

In Tig. 4, P/N is varied from 108 to 10, For each P/N, bit rate
is shown versus bits per symbol (that is, versus the logarithm of the
number of levels of transmission). We see that the reduction in bit
rate is moderate compared with variation in P/N. For instance, when
P/N reduces from 10*® to 10 (by a factor of 10%), bit rate reduces
only 37 percent at binary transmission, or 40 percent at 4-level trans-
mission. Thus, the system can tolerate a reasonable amount of varia-
tion in P/N. However, as one should expect, an extremely severe re-
duction in P/N is not tolerable, For example, if P/N reduces from
1078 to 10*, the maximum hit rate would be reduced to 6 x 107,

Figure 4 shows that binary transmission is the least sensitive to
variation in P/N. As P/N decreases, the peak of the curve shifts to
the left, reducing the theoretical advantage of multilevel transmis-
sion over binary.

10°%,

VIII. CONCLUSIONS

The information rate of a hybrid coaxial cable digital transmission
system has been evaluated theoretically. Because of the assumptions
made, the various curves involving information rate are to be inter-
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Tig. 4 — Bit rate vs bits per symbol for P/N from 10* to 10",

preted more in the nature of upper bounds than actual performance
curves to be attained in practice. Taken as such, the curves never-
theless illustrate the interesting characteristics and potentialities of
hybrid eable systems. Among the more important results of the study
are:

(7) In general it is not only economical but also optimum to use
uniform repeater spacing and identical analog repeaters. Moreover,
the optimum gain-frequency characteristic for the analog repeaters
is the same for both analog and digital transmission. Therefore, an
analog system can be adapted directly to hybrid digital service with
no compromise in theoretical performance over the frequency band
that the analog repeaters were originally designed for.

(%) In general, hybrid systems give system designers an additional
degree of freedom. For example, the curves of Fig. 3 show that, for
the particular system illustrated, the sacrifice in theoretical informa-
tion capacity for binary transmission between a system using all
digital repeaters and one in which only one in ten repeaters is digital
is about 20 percent. In order to remove low frequency energy from
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the transmitted pulse spectrum, it is customary in present binary
PCM systems to actually use some form of 3-level transmission, thus
incurring a sacrifice of 37 percent of the information capacity. There-
fore, another method of solving this de problem (for example, some
form of amplitude modulation) which is too expensive for use in each
repeater might profitably be used here where it would appear in only
every tenth repeater.

(122) System parameters which have a first order effect on informa-
tion capacity are the symbol rate, repeater spacing, and cable diam-
eter. On the other hand, the hybrid cable system is relatively insensi-
tive to variations in repeater output power, repeater noise figure and
average probability of error.

APPENDIX A

Best Uniform Repeater Spacing

& denotes the minimum value of & attained by jointly designing the
analog and digital repeater characteristics as pointed out in Part L'
Some terms in & are extremely small for the coaxial cable systems con-
sidered. With such terms neglected, & can be further minimized by using
uniform repeater spacing.

Minimum notations are used in the text for clarity, but it is necessary
to add a rather large number in the appendices.

Part, I showed that under two conditions we have

& =003 (12)
where
Bu Pn + Qpn Qyp v Yo
@_ ﬁ?l i Q= a'-Dl PI_,._CEII ﬂ-m ,
LISL g, 2304 cee Pp 4 (2543
L
1/27 [A’P.H—l(f - %):I
o= [ ey df, 1=0,---,L

e a8,
e Wy = )] - )]

m,:j ]dj, K Do Byos s o L
=1/2T 4(1._2) ‘
i! T
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In the above, m is the integer that minimizes the ratios [Nyi,(f —
m/T) )%/ | Ai(f — m/T) | (notice that m may vary with f), 1/7" is
the symbol rate, and M (f) is the spectral density of the stationary
random message sequence {a;}. Furthermore, as illustrated in Fig. 1
of Part I, N;(f) is the spectral density of the noise at the input of the
Ith analog repeater B;(f), Ny, (f) is the spectral density of the noise
at the input of the receiving filter Bz .1 (f), 4:(f) is the transfer func-
tion of the transmission medium between B;(f) and B, 1(f), and P,
is the average output power of B:(f).
Equation (12) is valid under the two conditions:

(i) For any frequency f and integer K, and for 1 =0, ..., L, we
have either
K\ |
4 [Nldvl(f - _)]
Nl o 71 forall 1 (13)
! T
or
K\ [
L [N;u(f r_)}
Vea(DE L7d | forall L. (14)
(A | ‘A(f_f_()’
! T
(i7) Let
A
M -
A= J =Q 8 Qg)
A

then we must have

[TM(F — ;ﬂ M

and

NE>0 1=0,---,L (17)
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where m, as defined previously, is the integer that minimizes the ratios
[Nogalf = m/T)1%/|Au(f — m/T) .
Notice that condition i guarantees that m does not vary with L.
Now we consider the coaxial cable systems. We assume in Section
1T for the coaxial cable systems that

Ela] = 0, (18)
s A0 = 1)
Ela) = Luf , 19)
Elaa,] =0,  j#0, (20)
N.(f) = Ny, l=1,--+,L4+1, (21)
and
- I D R S (22)
By definition?
M(f) = Elai] + 2 3 Ela.a,.;] cos 2T (23)

Substituting (19) and (20) into (23) gives

A’ — 1)
12
In order to consider repeater spacing, let us define

M) = (24)

S; = length of the cable (in miles) between the repeaters B;(f)
and B;.1(f), I = 0, ..., L. Over most of the useful fre-
quency range one may assume?

| Al(f) | = e—Sr(Ul/fu'll' l= O, e ,L (25)

where f; is a cable constant.
From (21) and (25),

[Z\rrn(ﬂ]l _ b oSt/ fart _
TAD] = (No)'e , =0, . (26)
Since the right side of (26) increases monotonically with f, condition
1 is satisfied (that is, for any f and K either (13) holds for all [, or
(14) holds for all [).
Notice from (26) that, in general, the ratios [N,11(f)]%/] Ai(f) |
will inerease monotonically with f even if the repeater noises are not
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white (the variation in the exponent usually outweighs possible varia-
tions in the noise spectral densities). Thus, condition 7 will usually be
satisfied even if white noises are not assumed.

The second condition in (16) and (17) serves as a final check. It is
not used in any computation, and we only have to show that our re-
sults satisfy it. This is done at the end of this appendix.

As already discussed, for each f in —1/2T = f = 1/2T, we should
choose the integer m in 8; and «,, to minimize the ratios

(o))
a(r-)

Tt is clear from (26) that these ratios are minimized by choosing

l=20,---,L

1
m =0, forall f in — 2T =f= o (27)

Substituting (24), (21), (25), and (27) into the definition of g; gives

ﬁz=¢‘%[1+(nz—1)e"'], l=0,--+,L (28)
where
[N &0t =1 ]*
v = [ 37
_ S
"‘l =] [2Tfo]I
Substituting (21), (25), and (27) into the definition of an gives
Qp T_Z_N_z 1+ (un + w0 — D™, h,1=0,---,L.
(un +
(29)
Substituting (22) into (12) gives
E=p[PL+ o' (30)
where I is the identity matrix and
rﬂf{m Qg T ﬂfz.u-
Qg O ttooapy |

Ggg Oyttt Opg
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The total distance between the two digital repeaters By (f) and
BL+I (f) is

7]580+Sl+"'+SL' (31)

Clearly, we should regard 7 as fixed when varying the repeater spacings
Sy to S to minimize &.
It is customary to use uniform repeater spacing, that is,

n &

S, = — = = e 32

S L+1 . [ =0, . L (32)

where S is the common repeater spacing. It is shown in the following
that:

(¢) Uniform repeater spacing minimizes the mean square error &
if @ is negligible in (30).

(77) « is indeed negligible for the coaxial eable systems considered.
(Therefore, uniform repeater spacing is considered in the text.)

Let us prove the first statement. When e is negligible in (30), we have

= g, = §'FI'S (33)

where &, is an abbreviation.
Substituting (28) into (33) yields

L
g0= 5 ¥ L i [+ (u — DT (34
1=0 Mg
We now determine the repeater spacings S, to S; which minimize
& in (34), subject to the constraint in (31). Since there is a one-to-one
correspondence between S; and g, , the problem is equivalent to deter-
mining the values of p, to gy which minimize &, in (34), subject to the
constraint

Bo T+ M1+ 0 B = Beorar (35)

where ..., 18 a fixed constant.
A necessary condition for w; to minimize &, subject to the constraint
in (35) is

Z=A=0, 1=0,+-,L (36)

where A is a Lagrange multiplier and

T = f‘f[l + (g, — De"']e" — %’ 14+ (r — D). (37)
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Clearly (36) requires that
T = B ,9=0,--,L; 1 # j. (38)
We may solve (35) and the L equations in (38) for ue to pr. Clearly,

_ Hiotal _ -
My I, + l ' l 0! 1 L (39)
is a solution. It is also the only solution because since repeater spac-
ing S; > 0, we have »; > 0. It ean be shown for alll = 0, ..., L that

T, =% when g, =0,

and that z, increases montonically with g, when g; > 0. From this it
is clear that z,’s cannot be all equal as required by (38) if g,’s are not
all equal. Therefore, (39) is the unique solution of the constraint (35)
and the necessary conditions (38). It can be easily established that
& is a minimum, not a maximum, at (39). Therefore, (39) minimizes
& , or, uniform repeater spacing minimizes &, .

Next we must show that « is so small that for all practieal purposes
minimizing &, minimizes & Notice that it is not necessary to show this
for all possible repeater spacings. Clearly we do not have to show this
for classes of nonuniform repeater spacings which we know will produce
& larger than the & of uniform repeater spacing. One such class is that
which calls for

S; > Y8, for at least one I,

or equivalently
pr > Y, for at least one I,

where
S
W 40
“ = @rp) (40)
and Y is given by the equality
sz(vz —= H oo Yu 2
AV (Yu — e + 1]
Lt s @k — DE™ 1]
N. T 2(vpT ™ ¢ ¢
Td*(* — 1)(L 1 i
(v 3 4T(2 + ) [(# = l)c + 1]2
- ol . (41)

P Lil1
v+ g (2 — D 411
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The right side of (41) is the & of uniform repeater spacing (see Ap-
pendix C). The left side can be easily shown to be a lower bound of &
for the class of nonuniform repeater spacings which calls for §; > Y8
for at least one I. Hence, this class produces an & larger than that of
uniform repeater spacing, and should be ruled out. Consequently,
it is only necessary to show that e is negligible when

S, Y8, foralll=0,---,L. (42)

This can be easily shown for the coaxial cable systems considered. For
example, consider the typical system parameter values (Section III):
fo = 5 X 10° hertz, P = 0.1 watt, N, = 107" watts per hertz, S =
1.25 miles, L = 9, and 1/T = 2.8 X 10°. Substituting these values into
(41) gives

y = 1.2,

Notice that it is not necessary to specify d and » because they cancel
out in (41). Furthermore, it can be shown that the left side of (41)
inereases monotonically with ¥ under the conditions in (16) and (17).
Hence, the solution of Y is unique. Substituting the above values into
(42) and (29), one can show that the largest element in « cannot exceed
0.00003, which is extremely small compared with 0.1 for the diagonal
elements of PI. Thus, e« is negligible in (30), and, for all practieal
purposes, minimizing &, minimizes &.

Tinally, before adopting uniform repeater spacing, we must show
that it satisfies (16) and (17) in condition 7i. As shown in Appendix C,
for uniform repeater spacing, (17) is automatically satisfied and (16)
is equivalent to (6). As discussed in Section II and demonstrated in
Section III, (6) is easily satisfied. Therefore, uniform repeater spacing
easily satisfies (16) and (17) in condition 7.

APPENDIX B

Optumum Repeater Characteristics

Part I showed that," under the same conditions—(13) to (17) in
Appendix A—the analog and digital repeater characteristics which
minimize the mean square error & are:

| Bu(l) [

_ TN { et ey [N mrn} _
M) | A | A [T — Z N for fe 3,

=0, for f¢5 (43)
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. )\-_N-H(J’)T’ 1
B |* = [ iz . for fe,
BO =15 m ) Tasmam) o T
= arbitrary, for f¢ 7, j=1,2,+-+,L (44)
A T | Au(h) | M) :
B; ., = = B, , forall
| Bulf) | |:1\’|(fJN:.+1(f) A, ¢ | BT, forall f
(45)
and the repeater phases need only satisfy the condition
e 1 =1, for fe,
= arbitrary, for f¢ & (46)

where 6(f) is the over-all phase of the system that is defined by

L+1

IT 4B =

L+l

IT 4.(0B.()

=0

A time delay may always be added to 6(f). Furthermore, 8(f) may be
distributed arbitrarily among the repeaters. The notations above are
all defined in Appendix A after (12) except & which is the frequency set

1 1
€F={f:1=g—%,ﬁ§f géz—f} (47)

where m is also defined after (12).
Now apply these general equations to the coaxial cable systems
considered. Substituting m in (27) into (47) gives

1 1
=4 ——— < f < —>.
5 {f —op =TS 2T} (48)
The hest uniform repeater spacing has been discussed in Appendix
A. In this and the following appendices, we adopt uniform repeater
spacing. Therefore,

6-:‘3(1‘1‘

A

S, = 8, l=0,-,L (49)
and

[ .Al(f) l = BﬁS(U‘HD)!; l= Ov e IL‘ (50)
Substituting (49) into (28) and (29) gives

&=¢%H+@fJWL 1=0, L (51)
Mo o — e, k1
Q= 2IJ-ET []- + (-’I’" - 1)3 ]! l-, = 0! e lL (52)
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where

_ S
SRRt
Notice that now 8, and ey do not vary with & and I. Substituting
(51), (52), and (22) into (15), one ohtains

%u+w—n€
)= 1=0,---,L. (53)
P+(L+153 2T (1 4+ (2u — De*]

Now A; does not vary with L.

Substituting (21), (24), (48), (50), and (53) into (43) to (45)
gives the repeater amplitude characteristics which minimize the mean
square error as:

127N P T rde* — 1 AL
lBrl(]() [ = [ dz(vzc_ 1) ]{|: ( (i’zkn )] _ (L + I)Nacs(!/!n } '

for 0=f< % )
=0, for f> 21T (54)
A e }
Beo) | = [MTC=D 5|, toran f (59
and
B | =", 0ss55,
= arbitrary, > ,)lT j=1,2,--- L. (56)

Several observations are made from (54) to (56). First, | Bo(f) |
and | Bry1(f) | differ only by a multiplicative constant. Therefore,
identical filters may be used for the transmitting and receiving filters
in the digital repeaters. [As discussed after (46), an all-pass network
may be used at any point of the system to adjust overall phase of
the system.]

Second, the |B;(f)|,j = 1,..., L, do not vary with j; hence, iden-
tical analog repeaters may be used. Furthermore, |B;(f)| in (56) is
just the reciprocal of [4,(f)| in (50); therefore the analog repeater
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gain-frequency characteristic is shaped to match the loss-frequency
characteristic of the coaxial cable.

Third, it is much more difficult to realize the transmitting and
receiving filters in the digital repeaters than it is the analog repeater
filters. This is because |Bo (f) | and [Bry1(f) | must be zero for f > 1/2T
(usually requiring a vertical cutoff, or discontinuity, at f = 1/2T),
while the analog repeater filters B;(f) to Br(f) may have arbitrary
amplitudes for f > 1/2T (no discontinuity is required at f = 1/2T
and the filters may cut off in any convenient manner).

APPENDIX C

Information Rate
Substituting B; in (51), ez in (52), and (22) into (12) yields

27 2 —
T d—(VTL) 4sz [(e — De* 4+ 17"
b=—p 1 (57)
- e — 2u
¥ + 57 [@a — De* + 1)
where
N = (L + 1)N,.
Solving (57) for +?, yields
fAI;Jr Gu— D+ 1,
o= 14 5 ok (58)
Zfw— e+ 1 °
n

The bit rate R is therefore given by

1

RiTloggv
. J f§+(2u—1)82"+131
::—2?10g.,,1—l—"2 Z(
l g?[(ﬂ“l)ep"l'l]z J

which is (7) in Section II.

Equation (12) and hence (7) are valid under the conditions stated
in (13), (14), (16), and (17). Appendix A showed that the condition
in (13) and (14) is satisfied. Furthermore, it can be easily shown
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from (53) that (17) is satisfied. Hence, the only condition remaining
is (16). From (21), (24), (27), and (50), it is clear that now (16)
is satisfied if and only if it is satisfied at f = 1/2T, or (rearranging
the terms) if and only if

P _IL+1
N, = 2T

which is condition (6).

[2ue™ — 3¢ + 4¢" — 1]

APPENDIX D

Symbol and Bit Rates

This appendix proves that under the normal operating condition
in (6), the number of bits per symbol, log, », decreases monotonically
when the baud rate increases.

Clearly, log, v decreases if »* in (58) decreases. For a given system,
the quantities S, fo, P, L, and N, do not vary with the baud rate 1/T.
The quantity &/d* is fixed to obtain an approximately constant error
rate. The quantity u, however, is a function of 1/T. Therefore, we have

o0°) _ 967 ou

oT du oT
S*P 2
TdPon| 2 . [ oT (2Tf,)}
“E?M—W+HJ i
& .uz u H -3
—? ﬁ (p.e - + 1) Ty (59)
where
a; = [_3]123“ + 3,[13” e 36” + 3] "S’_AITJ + (24} (60)

8, = 3;1.263" 4 6,u282" _ 3uzep
— Que™ 4 Gue™ + 3ue* + 3¢ — 3™ — 3¢" + 3. (61)
Clearly, p = S/(2Tfs) % > 0. It can be shown that
pwe* —e"+1>0 for u>0.

Therefore, from (59), if &y < 0 for p > 0, then 8v*/0T > 0 and logar
decreases when baud rate 1/7 increases.
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We now prove that, under the normal operating condition in (6),
a; < 0for u > 0. It can be shown that

—3u’e" + 3pe" — 3" +3 <0 (62)

for u > 0. The condition in (6) can be written as

S°P 5 3
> u ap .
N = 2ue 3¢ + 4e 1. (63)
From (62) and (63)
S*P n "
V| e — 3 + 3+ S0 (64)

where
oy = [2ue®™ — 3e™ + 4¢* — 1][3u’¢" — 3ue” + 3¢" — 3].
It can be shown that
ay, < az forp >0 (65)
Therefore, from (60), (65), and (64)

2 " u S*P

a; = [—3ue” 4+ 3ue" — 3¢ + S]W-I'—CME
(i}

}S’; +a; =0 for p> 0. (66)
0
Inequality (66) shows that «; < 0 for g > 0. From previous discus-
sion, this implies that the number of bits per symbol, logv, decreases
monotonically when symbol rate 1/7 increases. The proof is complete.

< [—3p%" + 3ue” — 3¢" + 3]

APPENDIX E

Error Rates

The system from one digital repeater to the next (including L analog
repeaters—see Fig. 1) is referred to as a ‘“digital repeater section” in
the following.

In case 7 of Section IV, L = 0 and each digital repeater section covers
a distance of 1.25 miles. There are 100 digital repeater sections in 125
miles. If d/& is set to 144, error rate is approximately 10~° for each
digital repeater section, or approximately 107" over a distance of 125
miles.

In case 72, L = 9 and each digital repeater section covers 12.5 miles.
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If d°/& is set to 126, error rate is about 10™° for each digital repeater
section, or approximately 10™" over a distance of 125 miles.

In case i3, L = 99 and each digital repeater section covers 125 miles.
If d*/& is set to 108, error rate is approximately 107" for each digital
repeater section, that is, a distance of 125 miles.

The bit rates in Table I are not sensitive to variations in d’/&. For
instance, if one sets d*/8& to 126 for all three cases (comparing the three
cases with the same mean square error at decision circuit inputs), the
bit rate of case 7 increases only about 1.5 percent from that in Table I,
the bit rate of case 4% is unchanged, and the bit rate of case 747 decreases
only about 2 percent.
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The Binary Regenerative Channel*
By RICHARD H. McCULLOUGH

The nature of the errors in a regenerative digital transmission sysiem
1s such that a memoryless channel is a poor model for predicting the error
phenomena. In this paper we present a model which provides a reasonable
approximation to observed error phenomena. The memory of the channel is
represented by a Markov model. This model is similar to the model de-
veloped by E. N. Gilbert, but several wmportant modifications greatly
simplify the estimation of parameters, and make the model correspond
more closely to the physical phenomena tnvolved.

Bounds for the channel capacity of the binary regeneralive channel are
obtained. Error separation, block error, and burst stalistics are derived.

Error model parameters are derived from available experimental dala
on the T1 digital transmission line and the switched telephone network.
The Markov model is shown to provide a qgood representation of the observed
error phenomena.

I. INTRODUCTION

The Gilbert hurst-noise channel introduced the idea of error states.?
The error states represent different error processes, each of which
generates independent errors. Gilbert’s model yields a “renewal er-
ror process,” that is, an error process for which the gaps between
successive errors are independent random variables with the same
probability distribution. Elliott®> introduced a generalization which
yields what we shall call a “Markov error process,” that is, an error
process for which the gaps between errors are dependent random
variables with probability distributions which depend only on the
last gap between errors. More recently, Iilliott used a renewal error
process, with component error processes which do not generate in-
dependent errors.® In order to match experimental data for bloek

* This paper is hased on material tuken from a dissertation submitted to the
Polytechnie Institule of Brooklyn in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in 1967.
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error distributions, he found it necessary to introduce three empiri-
cally derived error separation distributions.

Berger and Mandelbrot proposed a renewal error process in which
the error separation follows a Pareto distribution.* Sussman has used
the Pareto distribution to model the switched telephone network.®

Gilbert’s model and Elliott’s model both assume that the transition
probahlities for the error states are independent of the occurrence of
errors. In this paper we drop that assumption to define a general
Markov error process. We then consider a particular Markov error
process in which transitions between error states are allowed only
when an error occurs. We associate this error process with the
“binary regenerative channel.” Error separation, block error, and
burst statistics are derived for this latter process. Error model param-
eters are calculated from available data for the T1 digital transmis-
sion line, and for the switched telephone network. We discuss briefly
the possible usefulness of the Pareto distribution for approximating
a many-state Markov error process, or for approximating a non-
stationary error process.

This author extends this model to apply to a ternary channel.®

II. ERROR MODEL

An error model must bhe able to reproduce the burst error phe-
nomena which are known to occur in digital channels. Real channels
seldom appear to be memoryless, and it is common for a large frac-
tion of the errors to be burst errors. To reproduce the burst phe-
nomena, we have chosen to use a Markov model similar to Gilbert’s.
Our model differs from hig in two important aspects. First, we have
attempted to make the model correspond more closely to the physical
phenomena involved by introducing several error-producing states,
each with different error rates. Second, transitions between states are
allowed only immediately following an error. This assumption greatly
simplifies estimation of the parameters of the model, since the num-
ber of digits between adjacent errors is determined by a single error
state.

The similarities and differences hetween these models are most
easily understood by examining the transitions between error states.
We shall restrict our present discussion to fwo-state error processes.
We define:

Z, = error state for the nth error digit
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Z, = nth error digit = 1 for error and 0 for no error

Py = Prob {2, = j| 2,-1 = %, Z,., = 0}

q:; = Prob {En = jl En—l = 7;: Zn-l = 1}

P, = Prob |{Z, = 1| 2, = i} = average error probability (for the
binary symmetric channel) of state <.

Il

The state diagram of the general Markov model is shown in Fig. 1.
A renewal error process is obtained if ¢;; is independent of 7 (so that
the next error state is independent of the state which produces the
error), or if Py or P, is zero (so that only one state produces errors).

The Gilbert burst-error process' assumes that p,; = ¢;; and P; = 0
The assumption that P, = 0 makes this process a renewal error process.
Elliott’s generalization® assumes p;; = g¢;; but P, # 0. This process is
a renewal error process only if ¢;; = ¢a (and g2 = ¢22). Our model, the
“binary regenerative channel,” assumes that p;; = &;;, the Kronecker
delta. This process is a renewal error process only if ¢, = g¢a (and
Qiz = (z0)-

Our assumption that state transitions can occur only after errors
(py = 8;) seems reasonable for two reasons. First we hold the opera-
tional viewpoint that all our information comes from the occurrence
of errors, and we might as well assume that nothing changes between
errors, This also provides a practical technique for estimating transi-
tion probabilities from error separation data. Furthermore, this model
seems to be quite “stable” in that extremely small transition proba-
bilities are not encountered in practice, so that statistical estimates
are relatively easy to obtain.

922

Fig. 1 — State diagram of general Markov model.
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Second, this is exactly the model we would choose for an error process
consisting of random errors plus signal-correlated errors, where a certain
fraction of the random errors produce a wake of closely spaced errors.
In the case of bursts which are not correlated with random errors, our
physical intuition suggests something like p,, = 1, pi» = 0 and py =
¢ < 1 would be more appropriate. Operationally, however, it really
does not matter if the first error in a burst is “incorrectly” identified
as a random error.

Although the mathematical descriptions of the Gilbert model, the
Elliott model, and our new model are different, we suspeet that the er-
ror separation, bloek error, and burst statistics obtained from the
three models will be quite similar. (We show that the form of the
error separation statisties is identical for the Gilbert model and our
new model.) We contend, however, that the new model is more use-
ful because the parameters of the model are easily determined from
experimental data and are easier to interpret in terms of physical
noise processes.

In the above discussion we have considered the two error states to
correspond to different physical error processes in a single channel. How-
ever, this single channel is clearly equivalent to a two channel trans-
mission system where the “error” state indicates which channel is
being used. We use this latter interpretation in the next section. Notice
that the two channels are simply binary symmetric channels with
different error rates. In practice we have P, < P, & 1/2; therefore,
we refer to state (channel) 1 as the burst error state (channel) and state
(channel) 2 as the random error stale (channel).

III. CHANNEL CAPACITY

Closed form expressions for the capacity of the Markov channel have
not yet been found* so that we are limited to determining the capacity
for specific numerical values of the parameters. On the other hand, we
can find reasonably simple and tight bounds on the capacity which
are quite useful. Therefore we consider only bounds on the channel
capacity.

Let the sequences of input, output, and error digits be denoted by
X., Y., and Z,, respectively, with ¥;, = (X; + Z,) mod 2 and © =
1,2, - -+ . Since the noise sequence is independent of the input sequence,

* Note that the method used by Gilberl? is valid only for a renewal error
process, and did not yield a closed form solution.
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the channel capacity is given by

¢ = max [H(X) — H(X|Y)]

p(X)
= max [H(X) — H(Z)] = 1 — H(Z)
p(X)
where H denotes the entropy of the sequence and p(X) is the prob-
ability of the sequence X. Following Ash? we define the entropy of
the noise sequence by

H(Z) = im H(Z, | Za-r , -+, Z)).

We shall find bounds on the channel capacity by bounding the en-
tropy of the noise, using the steady state probabilities of the Markov
noise sequence.

Consider the state diagram in Fig. 1. There are really only four
states which we shall designate by S; = 11, 10,21, 0r 20,2 =1, 2, ...,
where the first digit indicates which of the two binary symmetric
channels is being used (3; = 1 or 2) and the second digit gives the
value of the error digit (Z; = 1 or 0). Thus the state diagram may be
redrawn as shown in Fig. 2 (using p; = 8;). The steady state proba-
bilities r; are the solutions of the equations

|7(111P1 gu(l = Py)  qioP2 gqi2(l — Py)
P 1—-—P 0 0
[r1riora20] = [7'117'1117'217’20]' ' ' .
(I21P1 921(1 — o) Q22P2 922(1 - PZ)
L 0 0 P, 1—P,
It can be shown that
rn = R.P,
T = R;(I —_ Pl)
Ty, = R.P,
rse = Ru(1 — Py)
where
Q, /£
Ii) = Pr 5 ¢ = 1
' P, Q Q12 1+ G2
Q‘J 12
R, =P, -G
) P, ¢ Q12 + G2
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QnPy g22P2

Fig. 2 — State diagram of binary regenerative channel.

_ 1

Ql Q2

P, P,
We notice that R, and R, are the steady state probabilities of =;, Q4
and @, are the steady state probabilities of 3; given that Z,, = 1, and
P, is the steady state probability that Z; = 1 (that is, P, is the av-
erage error rate).

We are now ready to compute upper and lower bounds on H(Z).
An upper bound is

P, =R1P1+R2P2.

H(Z) < lim H(Z, | Z.-)

n—w

= PHQP: + QPy) + (1 — P.)h[l L a-qp - Qsz)]

where h(P) = —P log P — (1—P) log (1—P). A simpler (and looser)
upper bound is

lim H(Z, | Z,-,) < lim H(Z,) = h(P.).

n—0 n—o

Sinee S, is determined by a first order Markov process, a lower
bound is

H(Z) z lim H(Z, | Bucr v 2y 5 8a)

n—+oo
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= lim H(Z, | S,_)

= R.\Ph(g..P, + ¢:.P:) + R,(1 — P,)h(P,)
=+ R2P2h(q21P1 + !bsz) o Rz(l - Pn)h(P2)

Using the fact that h(P) is a convex function we obtain a simpler
(and looser) lower hound

lim H(Z, | 8a-1) Z RiPi[gnh(Py) + giuh(P2)] + Bi(1 — Py)A(Py)

n—og

+ R.Pi[q.,h(P)) + Q22h(P2)] + R.(1 — Pz)h(Pz)
R.WP,) + R.h(P.,)
lim H(Z, | Z.).

n—o

I

From the loose bounds we see that the capacity of the binary regen-
erative channel is greater than the capacity C = 1—h(P,) of a binary
symmetriec channel with the same average error rate, and is less than
the capacity C = R;[1—h(Pi)] + Rz[1—h(P:)] which could be
achieved if we always knew which component channel was being used.

A convenient way to describe the channel capacity is to give the
probability P, of the binary symmetrie channel with eapacity C, that
is, H(Z) = h(P;). From the bounds given above it follows that

W RAP,) + RAP)] < k' (lim H(Z, | 8,-)] < P.

n—o

< h'[lim H(Z, | Z,-)] < P, .

n—+o

For the practical case where P, < P, =~ 1/2 and @, =~ @, =~ 1/2 the
above inequalities are approximately

P2SPQSP4:$(1—Q1P1)P¢SP-
or
QP, £ P. < (1 —QP)P..

The loose bounds given above can be generalized to apply to any
finite number of memoryless, nonsymmetric channels in the form

B(RlPl"" LR +Rum) écé RIB(P1)+ S +RmB(Pm)

where R; is the steady state probability of using channel ¢ and B(P;)
is the capacity of channel z.
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Digital transmission systems may use many digital links, with
regeneration of the transmitted signal at the end of each link. For a
system of N identical links where NP, < P, , we can approximate the
over-all system by a single digital regenerative link with the same g;;
and P, but with P, replaced by P; = NP, . This substitution yields

P! ~ NP, R} =~ NR, R!~R,
which agrees with one’s intuitive notion of how the over-all system
should behave. That is, the number of random errors and burst errors

both increase by a factor of N, and the length of the bursts remains
the same.

IV. ERROR STATISTICS

We shall now derive error separation, block error, and burst statis-
tics for the two-state Markov error process. We assume two com-
ponent error processes which generate independent errors with dif-
ferent average error rates, P;, 1 = 1, 2. Transitions between error
states are allowed only after errors, with the probabilities given by

g:;; = Prob {state i — state j|last digit was an error}.

For the error separation statistics we shall make use of several re-
sults for independent errors. We begin by deriving the basic equations
for an independent error process. Let P be the probability that any
digit is in error. The error sequence then contains a 1 with probability
P and O with probability 1-P. Given an error, the probability that
the next error occurs on the kth digit is

p(k) = Prob {0*"'1]1} = Prob {0*7'1} = P(1 — P)* .
The average error separation is

F= > kpt) =P 3 k1 — PP = 3

k=1 k=1 P
The probability that the number of good digits between errors is
greater than or equal to n (that is, the error separation is n+1 digits

or greater) is given by the cumulative distribution

Q@) = Prob (k> n) =1~ 3 p(k)

1l

1—P YA —P} =P



REGENERATIVE CHANNEL 1721

For P << 1 the following approximation is quite useful
(1 _ P)" — P“ lag(1—=P) ~ e—-uP.

The probability of getting m errors in n digits is

!
n.o I)m(l _ P}n-m-

m! (n — m)!

P(m,n) =

The probability that a block of n digits contains an error is

Il

1—PO,m)=1—(1—P ~nPlaP<Ll, n <<I%-

Let @, 7 = 1, 2, be the unconditional probability of being in state
7 at the first digit following an error. Making use of the results for
the independent error process, we have

pk) = @ P,(1 — PO 4 Q.P,(1 — Pg)k_l

PG Q1
k=p tp =7,

Rn) = Q,(1 — P))" + @(1 — Py)"

where P, is the average error rate.

The expression for P(m, n) for the Markov error process is a very
complicated function of the parameters of the process. However, the
form of the dependence upon n is easily found through an appropriate
set of recurrence relations, The recurrence relations are also useful
for computing numerical values on a digital computer.

Let A;(m, n) be the probability that m errors have oceurred (that
is, m oceurrences of state 11 or 21) in n digits and that channel < is
used for the n—+1st digit (that is, 3,,., = ). Then

P(=1,n)

P(m, n) = A,(m, n) + A.(m, n).

Considering all possible events which may occur at the nth digit we
obtain the following pair of recurrence relations.

A(myn) = Amn—1)-1 — P) + A(m — 1,n — 1)-Piqy,
+ Az(m — 1, n — 1) Pygy
A,(myn) = Ayimyn — 1) (1 — Py) + Ay(m — 1, n — 1) Pygay

+A1('m - 1Ln— 1)'qu1z-

Solving the equations for successive values of m we find that the
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general solution has the form*®

P(m,n) = G,(n)(1 — P)"™™ 4+ Gx(n)(1 — P)"™"

where G,,(n) is a polynomial of degree m in the variable n, and the
asterisk denotes a ecyclic permutation of the parameter subscripts,
that is, 1 = 2 and 2 — 1. Assuming that the Markov process is in the
steady state at digit “zero,” the first two polynomials are

Gy(n) = R,

@ = 25 =Es
It is possible to determine the functional dependence of P (m, n) upon
n because we assumed that the error state changes only after an er-
ror occurs. This effectively decouples the set of recurrence relations
so that A;(m, n) and As;(m, n) can be determined separately. For
larger m the explicit expressions for the coefficients of G, (n) become
so complicated that they are of little use. Thus one can only hope to
gain some insight into the behavior of P(m, n) as a function of m by
numerical evaluation for a typical case.

The average number of digit errors in a block of n digits is

)Rlqulz + [B/Piqu]n.

m = 2, iP(i,n) =nP, .
i=0
Given that the block contains one or more errors, the average number
of digit errors is
P = s — = - '
P(z1,n) Qi1 — (1 — P)'I/P, + Q1 — (1 — P)"]/P,

In practice we usually have P, < P, &~ 1/2 and R, < R, ~ 1. There-
fore, we have

P(m, n) =~ Gt(n)e"™"™"* for n — m > 1/P,.
Specifically, we find that

PO, n) ~ e
P(z1,n)~1—em"

B~ __‘7&22_'
Qe 1— ¢

The burst error behavior of the channel is indicated by the num-

for n>>1/P, .
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ber of successive occurrences of state 1, the burst error state. Let

p(b)

Prob {leave state 1 after b errorsjnow in state 1}
= QIII(]- Q'u) b = 1, 2’ & A

Notice that b occurrences of state 1 implies b + 1 “closely spaced”
eITOrS.

In the next section we calculate error model parameters from avail-
able data on transmission of binary information over the T1 digital
transmission line, and over the switched telephone network. A three-
state model is required to provide a reasonable match in some cases.
Therefore, we digress briefly to generalize our results to apply to a
three-state model. (Actually, we give the results in a form which is
suitable for any finite number of states.)

We assume three component error processes which generate inde-
pendent errors with different average error rates, P;, © = 1, 2, 3.
Transitions between error states are allowed only after errors, with
the probabilities given by

q:; = Prob {state i — state j|last digit was an error}.

Let Q;, 7 = 1, 2, 3, be the unconditional probability of being in state
7 at the first digit following an error. The @; are the solutions of the
following set of equations:

Ql = Q:(Iu =+ QzQ'm == Qaq:n
Qz = Ql?m =+ Qn'{[zz + QaQsz
Q, = qulli < Qi({za + QaQaa .
Corresponding to the previous results we now have
p(k) = Q.P,(1 — P)' 4 Q.P,(1 — P,)"' + Q.P:(1 — Ps)k-l

@, Q: Qs _ 1
R R R

Qm) = Q1 — P))" + Qu1 — P.)" + Q,(1 — Py)”
where P, is the average error rate. The recurrence relations become
Aim,n) = (1 — PYA,(my,n — 1) + Pigndi(m — 1, n — 1)
+ PagnAs(m — 1, n — 1) 4+ Pyguds(m — 1, n — 1)
Ay(m,n) = (1 — Py)Ay(my, n — 1) + Pagods(m — 1, n — 1)
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—I"‘ PaquAs(m — 1, n — 1) + qulgAl(m — 1, n — 1)
A.a(m, n) = (1 — Pa)Ag(?ﬂ, n — 1) ‘I" P;;q:;gAa(m — 1, n — 1)

+ Pigisdi(m — 1, n — 1) + szIzaAz(m —1,n-=1)
where A;(m, n) is the probability that m errors have oecurred and the
error process is in state ¢ after n digits. The solution of the recurrence
relations gives

P(m,n) = A,(m,n) + A.(m,n) + Az(m,n)
G.m)(A —P)™ 4+ Gim)(1 —P))" " + Gr*m)(1 — Py)"™"

where @,.(n) is a polynomial of degree m in the variable n. The coeffi-
cients of G.(n) are complicated functions of the model parameters.
G*(n) is G.(n) with the parameter subscripts cyclically permuted,
that is, 1 — 2, 2 — 3, 3 — 1. G**(n) is G*(n) with the same cyclic
permutation. We again have G,(n) = R, so that

P0,n) = R(1 — P))" 4+ Ry(1 — Po)" + Ry(1 — Py)”
P(z1,n)
1 — P(0, n)

Il

I PR BT EYIEN S

The probability of being in state ¢ at any digit is

1— (1 — Pa)":l_

Q:
R, === Qik; = P, - PrQ—"-
Q1k1+Q2E:2+Q3!1"3 &4‘&4'& P,
By “Py o Py

V. EXPERIMENTAL PARAMETERS

5.1 T1 Digilal Transmission Line

For the T1 digital transmission line® (see Refs. 8 and 9), the error
data was obtained by measurements'® on three different lines, each
looped to obtain an equivalent system length of about 24 miles. In
total, there were five runs of approximately one hour duration, that
is, about 5 X 10° digits each. The transmitted pattern was 10000000
repeated. Each run produced about 100 errors. The data were proe-

* Manufactured for Bell System use only, by Western Electric Co., manufac-
turing and supply unit of the Bell System.,
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essed in real time with an IBM 7094 computer equipped with a
direct data device. The results (a sequence of numbers a,, as, . . .
where a; is the number of good digits between the jth and [j + 1]st
errors) were recorded on a magnetic tape.

To determine the parameters of the Markov error process model,
we processed the experimental results as follows.

(z) Add 1 to each a to get &, the error separation.

(¢7) Classify each k as state

1 = “burst error state” 1 = k < 10
2 = ‘“4ntermediate error state” 10 < & < 10°
3 = “random error state” 10° < k.

(#3i) For each state 4, find the average error separation, &; = 1/P; .

(i) From the sequence of states find the relative frequency of
occurrence of state %, @; , and the relative frequency of occurrence of a
transition from state 7 to state j, ¢,; -

Steps i and v were carried out for each run individually, and
with all runs together (considered as one bhig sample). Table I lists
the parameters (rounded to two significant digits) which were ob-
tained by the above procedure. Notice that the conditions g1 = ge1 =

TasLE I—Markov MobpeL rFor T1

Run Qiy Qi Py P,
.35 .00 .65 | .23 .46

1 43 .07 50| (19| 3.2 X 1078 | 1.5 X 1078
120 .31 .57 | LB8 | BB X 10°#
.35 .26 .39 | .36 .46

(5]

.67 .08 .25 | .19 | 40 X 107® | 1.4 X 107®
.24 17 .59 | .45 | .61 X 1078

.29 .33 .38 .35 /37
3 62 .19 .19 | .23 | 4.9 X 107 | 1.0 X 10°¢®
24 17 .59 | 42 | 44 X 1078
.03 .22 .25 | .38 .83
4 B0 U150 .35 | .20 3.6 X 107% | 24 X 1078
190 .20 .61 | .42 | 1.0 X 10°8
47 .13 .40 | .19 .26
5 .31 .31 .38 | .17 | 3.7 X 107* | 1.6 X 10°®
0B .14 .78 | .64 ] 1.0 X 10¢
.42 .21 .37 | .31 .43
All runs together .61 16 .33 | .20 | 3.7 X 107% | 1.6 X 1078
.16 .20 .64 | .49 | .77 X 1078
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ga1 and Gia = Qa2 = @32 and @13 = @3 = @33 are not satisfied. Hence,
the T1 error process does not appear to be a renewal error process.
(This does not mean that we should discard the renewal error process.
In essence, it is a first approximation to a real error process, the
Markov error process is a second approximation, and higher order
Markov processes are higher order approximations. The first approxi-
mation may be satisfactory in some applications.) Using the param-
eters of Table I, the validity of the model was checked in three ways.

Tirst, the theoretical cumulative distribution of the error separation,

Q(n) = Qi(1 — P)" + @Q:(1 — Po)" + @s(1 — Py)"
was plotted for each run. The theoretical and experimental curves
matched within approximately 40.05, for all five runs. Typieal curves
are shown in Fig. 3a (semilog plot) and 3b (log-log plot). Notice that
we could have derived rough values for the @, and P; by inspection
of the experimental @(n) curve.

1.0

(&)
0.8
\%cn_ RUN 4
- —_— — THEORY
6 —

= 0 EXPERIMENT
5 (129 EVENTS)

0.4 S og

02 N

o[ TEN EVENTS I}*%%)_

16“0-:033—
P ol ol o (b)

1ot S

Q)

[«— ONE EVENT

e}
[+ TWO EVENTS ioo
o Y

1073

1074

| 10 102 103 0% 102 108 107 108 102
N=ERROR SEPARATION IN DIGITS

Tig. 3 — Error separation statistics for T1 digital transmission line.
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™ (49 EVENTS)
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3
/

ape=TWO ?VENTS \u

e ONE EVENT

1072 | | \ i
1 2 3 2 5 ) 7
b=NUMBER OF SUCCESSIVE OCCURRENCES OF BURST STATE

Fig. 4 — Burst statistics for T1 digital transmission line.

Second, to check the burst error behavior of the channel, we compared
the experimental and theoretical probability densities, p(b), of suc-
cessive oceurrences of the burst error state

p(b) = ¢ii* (1 — qu).

The agreement is excellent as illustrated in Fig. 4. (Since our sample
size is only 49, we should not expect the experimental points to follow
the theoretical curve for probabilities of about 1/49 =~ 0.02.) The ex-
perimental and theoretical curves matched within approximately 0.02
in all five runs. Notice that the procedure for calculating ¢,, simply
provides an exact match at b = 1.

Third, to check the adequacy of the model for predicting block error
statistics, we compared the theoretical and experimental (averaged
over all possible phases) curves for P(m, n). Figures 5 and 6 show
P(m, n) versus n and m, respectively. The agreement is excellent for
m = 4. For m = 5 the experimental curves are somewhat erratic owing
to the small sample (the quantum of probability is approximately
2 X 107'° in this case), which happened to contain two unusual error
patterns.

The excellent match between the experimental data and the model
indicates that a three-state Markov error process with independent
transitions is a good representation of the T1 error process. Since
this is the case, it is useful to consider a physical interpretation of
the mathematical model. The three different error states correspond
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Fig. 5— Block error statisties (digits per block) for T1 digital transmission line,

to different sources of error, of which only one is controlling at any
given time. Allowing state transitions only at error digits corresponds
with the fact that we cannot identify the controlling error process
except by the error (and error separation) which it produces.

As for the sources of error, we can make several speculations. Fur-
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TFig. 6 — Block error statistics (errors per bloek) for T1 digital transmission line.

ther experimental data will be required to determine which of the
suggested possibilities is correct. “Burst errors” may result from signal
correlated errors (generated in successive regenerators) following a
random error, or from burst-like interferences such as impulse noise
(all errors of the burst generated at the same regenerator). “Inter-
mediate errors” may be caused by looping effects (outgoing and
incoming regenerators are packaged together and are thus subject to
the same interference), or by slowly propagating interferences such

TasBLe II—SieyAL DEPENDENCE oF T1 ERRORs

Run Number of errors for each signal digit Total
1 0 0 0 0 0 0 0

1 0 31 13 6 8 5 4 7 74

2 1 19 8 12 6 7 6 6 65

3 1 26 13 7 5 9 L 2 70

4 2 63 15 11 10 11 8 10 130

5 1 54 7 3 + 4 1 B 78

All runs 5 193 56 39 33 36 26 29 | 417

Percent all

runs 1.2 46.3 |13.4|9.4|7.9|8.6|6.2|7.0]100.0




1730 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968

as teletype or other de signaling. “Random errors” are assumed to
come from thermal noise.

We have thus far ignored the question of whether the error sequence
is really independent of the transmitted signal sequence. Table 1T
summarizes the available experimental data concerning this point.
We observe that the average probability of error is roughly 5 to 40
times greater when the signal digit X; = 0, depending on the number
of digits since the last 1. (Notice, however, that Table II does not
really tell us the number of digits since the last 1 because errors
cause the “signal” to be different in successive regemerators.) Over
all, the average probability of error is roughly 10 times greater when
X; =0

What does this imply about our model? First, since there are so
few errors when X; = 1, our component channels are nonsymmetrie
and the model parameters derived above essentially apply only when
X, = 0. In fact, it is possible that the error rate for X; = 1 is the same
in all three component channels, so that no burst phenomena occurs
if X; = 1 for all 7. Second, the dependence of the error rate on the
number of digits since the last 1 probably results from intersymbol
interference. This suggests that bursts might very well be signal cor-
related errors which are generated in successive regenerators, in which
case the average length of a burst should increase with the number of
regenerators. Unfortunately, the available data are not sufficient to
verify or disprove these conjectures.

How do we correct our model to take into account the data presented
in Table II? As a first approximation we would replace the three com-
ponent binary symmetric channels with memoryless nonsymmetric
binary channels with error probabilities P, , P,, and P; for X; = 0,
and P!, P}, and P} for X; = 1. With the limited data available the
best we can do is to use the previously calculated values for P, , Py, and
P, , and let (using the figures for all runs)

P! =P} =P; = zH(1.6 X 107%) = 1.9 X 107",

The computation of channel capacity and error statistics now becomes
more difficult because we must consider the joint probability densities
of the source and channel. However, we can still use the bounds for
channel capacity given at the end of Section III.

To get any better approximation we must replace the three channels
with three nonsymmetric binary channels with memory. The memory
would contain d, the number of digits since the last 1, and could probably
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be limited to three states:d = 1, d = 2, and d = 3. (As already dis-
cussed this memory would also generate burst phenomena so that we
might possibly require only two channels for this model.) This approach
is intuitively appealing for modeling the effects of intersymbol inter-
ference, but we should use ternary channels with memory because the
T1 digital transmission line actually transmits ternary signals.

The fact that the average error probability is always greater for
X; = 0 (that is, even for d > 3) probably is because of long term
intersymbol interference, which in the case of T1 may persist for
hundreds of digits. This interference is approximately proportional to
the running sum of the digits W; = X; + X. + ... 4+ Xi. The Bipolar
Code used in the T1 digital transmission system guarantees that W
can assume only the values 0 or —1 in the absence of errors.* We
assume that the output of each regenerator is recoded into Bipolar
so that the W, satisfy the same constraint in successive links, and
the ehannel ean be deseribed using a finite memory. Recoding allows
one to loealize errors to a particular digital link and reduces the
error rate in successive links. If the output is not recoded, the W;
are theoretically unbounded which requires an infinite memory to
describe the channel.

To summarize our thoughts on the T1 error process, we may say
the following. The Markov model analyzed in the preceding seetions
of this paper provides a good representation of the signal-independent
error phenomena, and reproduces all the gross error statisties. The
extension of the model suggested in this section shows promise of
providing a good representation of the signal-dependent error phe-
nomena, and should reproduce the fine grain error statisties; addi-
tional data are required to determine the parameters and validity of
the suggested extension. Notice that the signal-dependent memory is
realized as a simple Markov process when the source digits are inde-
pendent random variables.

5.2 Switched Telephone Nelwork

We now consider the error model for the switched telephone net-
work. Gilbert! has shown that a two-state Markov model provides a
good approximation to the cumulative error separation distribution
for an individual digital channel, Although Gilbert used a different
model, his theoretical results for error separation are identical in

* McCullough® treats the general class of ternary restricted sum codes for
which the digit sum is bounded (—a = W = b) for every code sequence.
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form to the results of Section IV, that is,
Qn) = @, — P)" + (1 — Py)".

We notice, however, that if we choose @; and P; so that the error
separation distributions are identical, the ‘‘equivalent” binary regenera-
tive channel will have a higher average error rate. When P << hq Gilbert’s
equation (14) becomes

Qln) ~ (1 —7 B )(hq)" + (Q f hq)(l — Py

hg
so that
=&~ 1 — hg
bies P
~_ P
QzNQ_hq
or
ay = Py
hw]—'—QEP1
PP,
p%QzPl
and

1l — Qz & ~ 1— Q? P

1_Q2P1Qz 1_Q2P1 o

In our notation, the parameters for his examples (see Gilbert’s Fig.
3) are

P(l) =~

Channel 1146: Q, =0 P, arbitrary
Q. =1, P, = 54 X 107°

Channel 1296: Q, = 0.816 P, = 0.190
Q. = 0.184 P, = 257 X 107

For an average of many digital channels, a three-state Markov
model can provide a reasonable numerical fit. Q; and P; were deter-
mined for samples of the Alexander-Gryb-Nast,'* Townsend-Watts,
and Kelly?® data on the error performance of the switched telephone
network. Table III lists the parameters, which were determined by
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TasLe III—Markov MoDEL FOR SWITCHED TELEPHONE NETWORK

Qn) = Qi(1 — P)n + Q2(1 — Pa)n - Qa(1 — Pa)n

Alexander-Gryb-Nast Townsend-Watts Kelly
Q1 0.46 0.58 0.75
Q2 0.22 0.10 0.10
Qs 0.32 0.32 0.15
Py 0.544 0.567 0.56
P, 10— 102 103
P, 10— <103 5 X 107

trial and error matching of the Q(n) curves. It should be obvious
that the Q; and P; were quantized rather coarsely. Figure 7 shows
that the maximum difference between the experimental and theore-
tical curves is about =0.05.

Although the numerical fit is reasonably good, it is evident that
the sharp transition of a single independent-error process is not a
good mateh to the gradual slope of the experimental curves at larger
error separations. However, the experimental curves represent an
average over many different channels. The parameters of the model
will vary from channel to channel, resulting in an over-all error process
which contains many states. Each state will have a small probability
of occurrence (Q;) and a slightly different average error probability

08
‘ | ' —— THEORY
'\\ [ —— EXPERIMENT
0.7 \\ == ! 1
05\ N\ | i |
BN | T 1
NN |
0 :\\ ‘& | -._AGN |
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Fig. 7 — Error separation statistics for switched telephone network.
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(P;). @(n) for such an error process will exhibit a gradual slope at
larger error separations.

It is obvious that we could use a larger number of states in the
Markov model, and match the experimental @ (n) curves to any
desired degree of accuracy. At this point we should consider whether
it is an individual channel or an average of many channels that we
wish to mateh. Usually it will be the former, in which case a three-
state (or perhaps even a two-state) Markov model will be satisfac-
tory. If it is the latter, it makes sense to seek a single (noninde-
pendent) error process which provides a better mateh for the gradual
slope observed at larger error separations. A likely candidate is the
Pareto distribution proposed by Berger and Mandelbrot.* They also
give statistical evidence which supports the renewal error process
hypothesis. Sussman® has shown that the Pareto distribution pro-
vides a good fit to the Alexander-Gryb-Nast data. It is interesting
that Sussman hypothesized that the Pareto distribution may be the
limiting form of “the superposition of many unrelated error-causing
events,” which is exactly what our model suggests.

To incorporate the Pareto distribution into our model, we would
represent the cumulative distribution of error separation as

Q) = Q1 — P)" + Qu(n + 1)7°

where « is a parameter which would be chosen so as to give the best
match to the experimental data. It should be recognized that the
above distribution will not be a good approximation for the Markov
error process for very large values of n. As n = oo the Markov dis-
tribution approaches

Q(n) — Qu(1 — Pu)"

where Q, and P, deseribe the channel with the smallest average
random error rate.

In some situations the Pareto distribution may also be a good
representation of an individual channel. We have implicitly assumed
stationary channels. A nonstationary channel whose parameters vary
rapidly with time is essentially equivalent to the average of a large
number of stationary channels, each with different parameters. Such
a model may be appropriate for digital communication systems using
radio links. On the other hand, a slowly varying nonstationary chan-
nel is essentially equivalent to a single stationary channel, since the
parameters will not change appreciably during any message of rea-
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sonable length. This kind of model appears to be appropriate for
digital communication systems using paired cable or coaxial cable.

To summarize, we feel that the Markov model is a good representa-
tion for the error process of an individual digital channel. The Markov
model also explains the observed measurements for the average of a
large number of digital channels, and leads naturally to the idea of
using the Pareto distribution to approximate the behavior of a
Markov error process with many states.
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Quantizing Noise and Data
Transmission

By JAMES E. MAZO
(Manuseript received February 20, 1968)

Methods for calculating the power in the gquantizing moise on digital
transmission facilities have been known for some time. A more difficull
but unavoidable problem is the effect that this noise has on dala signals
intended for analog transmission. This paper demonstrates that to assume
that the noise will behave as a white Gaussian noise process will always
(except for a simple factor) yield an upper bound on the probability of
error when no companding is present. We assume that linear detection will
be used, as for a PAM system, and the result is true whether or not filtering
or demodulation is involved. Results are illustrated by applying them
to @ model of an existing V.SB modem whereby the additional degradations
resulting from data set tmperfections are included as added baseband noise.

A modem operating perfectly would make no errors at all at the higher
transmission levels. For example, with no companding, a set with an eight-
level eye closed by even 30 percent would not yield errors for input powers
down to —15 dBm. Thus quantizing notse 1s not a basic limiting factor in the
error rate for all input levels. A similar rigorous theory is not available for
compandored systems, but for special situations reasonable estimates can
be made. For logarithmic companding and eight-level VSB transmission,
worst case estimales indicale error rales about 10™° for one link of T1
carrier.

I. INTRODUCTION AND SUMMARY

The T1 carrier system is a digital transmission scheme for analog
signals.* Even though the digits in the coded bit stream might be
transmitted without error, when the analog signal (which may in
fact be a data signal designed for analog facilities) is reconstructed
at the receiving terminal, quantizing noise is inevitably added and
can be large enough to cause errors in the customer’s data.

1737
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We show that, under some simple constraints between sampling
rates and bandwidths which are satisfied in practice, and independent
of the particular data signal used, an upper bound on error rates is
obtained if the quantizing noise is assumed to be a white Gaussian
process of power A2/12 and bandwidth 1/27;.* We assume that linear
detection will be used, and the result is true even if additional filter-
ing is done (as one might do with a receiving filter). And it is true
whether or not a demodulation process takes place. Using the model
in Fig. 1 for the digital transmission scheme, results are specialized
to obtain error rates for eight-level VSB transmission (Fig. 2).
Imperfections of the data set are included as added baseband noise.
If it were not for these imperfections, error free transmission would
result over an appreciable range of power levels (see Table I). For
a logarithmic compandor and VSB data, even using worst case esti-
mates, the error rate for one link is quite low, about 10-°.

11. QUANTIZED TRANSMISSION SCHEME

Let us consider a transmission scheme for a single channel that,
for our purposes, typifies the T1 carrier system. As suggested in Fig.
1, the signal to be transmitted is assumed not to have any power
beyond B Hz. The signal is sampled at the Nyquist rate T, = 1/(2B)
and these samples are passed through an instantaneous nonlinear
device with characteristic vone = F (vi). The compressed samples are
then quantized by a uniform quantizer of step size A, and coded into
binary sequences. The binary sequences are assumed to be trans-
mitted without error and the process is reversed: sequences are de-
coded into pulses, expanded according to the inverse function F-*(z)
and the impulses are used to excite an ideal filter of bandwidth B
and amplitude 7.7 A receiving filter G generally follows the ideal
filter and we include this in our deseription, although it would not
be part of a T1 transmission system. If the bandwidth of G is en-
tirely contained in B then one may consider the impulses to excite

TG directly.
To be more specific, we are concerned with two particular com-
pandor characteristics F(z). One is F(z) = z, that is, quantizing

* Here A is the quantizer step size and 1/7% is the sampling rate. Also this
statement is true only modulo a simple factor given in the text.

i The amplitude gain of the ideal output filter for the carrier system is chosen
to be Ty in order that the signal component will undergo no gain relative to
its sampled values at the transmitter.
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TABLE I — QUANTIZING NOISE®

Mean

square

P(dBm) T ux
— 5 0.221
—10 0.394
—15 0.698
—20 1.245
—25 2.21
—30 3.94
—35 6.98
—40 12.45
—45 22.1

* Peak values of quantizing noise as a function of input power P. The noise scale is
such that a perfect receiver would make no errors for flma < 1. The power scale is
such that the quantizer overloads at an instantaneous power of +6 dBm.

without compandoring. The other case is (in normalized units)

F(z) = —F(—x)

_ In(1 + p2)
F@) = i 05%s1 (1)
=1 z>1,

where p, the degree of compandoring, is large. Typically, p = 100
for a good approximation to existing devices.

Finally, when specific values are required, we assume 7 bit coding
to be used for the quantized samples and use A = 1/63.

We hasten to add that quantizing noise is not the only degrading
factor for the existing T, facilities. Apparently mismatch and mis-
tracking of compressor and expandor cause nonlinearities which are
responsible for peculiar behaviors of error rate versus signal power
curves.?

III. GENERAL THEORY

Let us represent the signal I(¢) which is to be sampled and quan-
tized by

I(f) = z() cos wit — y(t) sin w.t, (2)

and the sampling wave as

Y 5t — kT, — ), 3)
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where the random timing phase is uniformly distributed over the interval
0 = 7 = T,. The pulse trains representing (2) immediately after
sampling, compression, and quantization are given by expressions (4),
(5), and (6), respectively.

SUET, + 7)é(t — kT, — 7); @)
zluomp(le + T)a(t - le - T); (5)
Zloemek Ty + 7)8(t — kT, — 7), (6)

where

boomp(B Ty + 1) = F(ET, + 7)]

is the compressed sample value and I,..,(f) is the particular one of the
(2" — 1) levels that the quantizer output gives as the value for I, (f).
If we let the subscript “exp’” stand for the result of operation of the
expandor at the receiving terminal, then the impulse associated with
time (kT + 7) has area

[zaomn(le + T)]exp = Z'I('kT! + 1) 4 e(kT, + 7). )]

Because the expandor has as its input an estimate of the compressed
pulse area, the error term ¢(kT, + ) is not zero but may take any
value in an interval, that is,

) e [:-24@ . %] (8)

The spread A(f) that the quantizing error may take is not neces-
sarily equal to the quantizer step size A when companding is present,
but is given by the formula (see Appendix A)

A
TFO | ©)

In (9), F'[I(¢)] is the derivative of the compressor characteristic
evaluated at that input amplitude of the signal at the time of the
sampling. The error signal generated at the output of the receiving
filter is obtained by econvolving the impulse train

A(l) =

Ze(kT, + 1)t — kT, — 7) (10)
with the impulse response Thg(t) of the receiving filter.* Denoting

* Again, g(t) is associated with the receiving filter of the data set and the
constant 7% is the gain of the ideal output filter of the carrier system,
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this noise by n; () we have
n(t) = T,ZekT: + 7ot — kT, — 7). (11)

To proceed further we make the assumption that the quantizing
error e(f) of the output sample in (10) is uniformly distributed over

the interval
—A(D A
5 v g ||

thus having mean zero and variance A*(£) /12, and that different sam-
ple errors are independent. Notice that the latter assumption is not
the same as assuming that different sample values are independent.

IV. SUMS OF UNIFORM VARIATES

As (11) illustrates, a basic problem which must be dealt with is
the probability distribution of sums of independent and uniformly
distributed random variables. We will obtain an upper bound on the
tail probabilities of interest by applying the technique of the Chernoff
bound.® * This bounding technique states that if a probability den-
sity p(z) has a moment generating function (mgf) M (s), where

M© = [ lew (o) da, (12)

—oo

then
Q = Prob [z = a] = M(s) exp (—sa), sz 0. (13)

Thus to obtain an upper bound one simply multiplies the moment
generating function by an exponential, both evaluated at an arbi-
trary positive s. Actually it is known that there is a best s to choose,
and it is that one, if it exists, which satisfies the equation

d
I In M(s) = a. (14)
Equation (14) assures a stationary value for the right side of (13)
and it can be shown that such an s in fact minimizes M (s)e™*".

For example, for a Gaussian variate of mean m and variance o,
the moment generating function is well known to be given by

M(s) = exp ['ms -+ %]- (15)
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Thus the best s to choose is, using (14),

_ (a — m

o

s (16)

Notice that only if @ = m is this s = 0. Thus, as long as a is greater

than the mean, we have for the Gaussian case

Q = exp [— (GETW)] ; (17)

where (17) results from using (15) and (16) in (13). For the Gaus-
sian variate under discussion the exact answer is also well known to
be given by

(a — m)

@'
where erfe z is the coerror function.® In addition, equation (7.1.13)
of Ref. 5 states that

exp (—2°) £ (m)iz + (2* + 2)}[} erfe 2], (19)

and hence the difference between the Chernoff answer (17) and the
exact answer (18) for the Gaussian case is no more than the multiplicative
factor (m)i[(p)! + (o + 2)!] where ()} = (a — m)/[(2)*s].

We modify this procedure for our problem with the following obvious
lemma.

) = 3 erfe (18)

Lemma 1: If G(s) is an upper bound for the moment generating function,
that is, M(s) < G(s) for all s, then

Q < e "G(s), §=0. (20)

In particular, a positive s = s, which satisfies

d =
T In G(s) =a (21)

is legitimate.

Next consider a random variable x which is uniformly distributed
over [—A/2, A/2]. The variance of this variable is A?/12, and it has a
moment generating funetion M (s) i

J[{S}"nif = oA = Z
2

sinh % . . ‘
(?) @n + 1! (22)
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Now the nth term of the sum in (22) is positive and upper bounded by

IGHE:

o s BG4 - e[ 55) o

Thus we have shown that the moment generating function of a zero-
mean uniform density is upper bounded by that of a zero-mean Gaussian
having the same variance.* If the uniform variable has mean m the
theorem is still true if we use instead the moment generating function
of a Gaussian with mean m.

We are now ready to write down a whole class of random variables
which have moment generating functions upper bounded by those of a
Gaussian of the same variance. Suppose the result is true for two inde-
pendent random variables, £ and y, of variances o2 and ¢, namely

2 2
M.(s) = exp [s;’:l

M,(s) < exp [S';’"]-

Then using the theorem that the moment generating function of a
sum of two independent random variables is the product of their
individual moment generating functions, we have

MM < exp [ | e [ 2]

2 2 .2
— e[S+ )| = e [T2],

Henece

(24)

M..(s)

where

G'iﬂ,- = U': + 9'3
is the variance of (z + y). Thus the moment generating function of
a sum of any number of independent uniforms of arbitrary means
and variances is upper bounded by the appropriate Gaussian one
(same mean and variance as the sum), and thus use of (17) through
(21) provides a rigorous upper bound for tail probabilities of the sum.

* A similar theorem was discussed by Saltzberg for the case of equally spaced
delta functions® We have followed his method of proof here.
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V. FURTHER ANALYSIS WITHOUT COMPANDING

When no companding is present, the independent random variables
e(kT, 4+ 7) have variance A’/12 and the variance of the noise (11) is
o = (i) = T 1"'“2 S Gt — kT — 7). (25)
k=—w
We evaluate the infinite sum in (25) by using the Poisson sum for-
mula, namely

> U=k —1) = 7 m:m oxp [Mg_—ﬂ]c}( 331’) (26)

k=—c0

where (@ (w) is the Fourier transform of ¢2(#). Now since the band-
width of the filter G is assumed not to exceed 1/2T; Hz, only the
m = 0 term of (26) contributes and we obtain

oy = T,- G’ 2(0). (27)

Equation (27) implies that the noise power measured before the
receiving filter is A%/12. This result has been obtained by Bennett’
who also showed that the spectrum of this noise is flat across the
band. Further, equation (27) is consistent with filtering white noise
since

G.0) = [ : ) dt = - : | Gw) | de. 28)

An important fact about (27) is that the received passband noise
power without companding is independent of many properties of the
signal. Thus it is independent of signal power and multilevel struec-
ture. It is not independent of rate, however, since this enters implicitly
into the factor G.(0), and likewise it is not independent of roll-off,
By halving the speed and doubling the number of levels, one decreases
the noise by 3 dB, but loses 6 dB in noise margin, thus leaving one
with a net loss of 3 dB in noise margin. Thus it is best to use as few
levels as possible consistent with given speed objectives, at least if
the quantizing noise behaves anything like Gaussian noise.

Let us discuss further some statistical aspects of the quantizing
noise at baseband. The “line” signal must be demodulated as in VSB
transmission by multipling the (filtered) received signal by cos wet
and eliminating double frequency components. We represent the
impulse response ¢(t) of the passband receiving filter G' by

g(t) = g.(l) cos w.t — g,(1) sin w,d. (29)
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Further we specialize to the practical constraints* o, > B; and 2x/T
> 2(w, + B;). The demodulated noise is

n,(f) = %1 Ze(kT, + n){g.(t — kT, — 1) cos (wkT) + w.7)

+ g,(t — kT, — 7) sin [w kT, + w.T]}. (30)

The general expression (29) can be simplified for a VSB receiving
filter which is symmetric about midband frequency w;, and linear
phase characteristic, by writing

g(t) = g:.(1) cos w i (31)

w, — w = TI'I:IQT,

where 1/T is the symbol repetition frequeney. Of course a g. and a g,
may be immediately written down from (31).

From (30) we derive in Appendix B, equation (32) for the baseband
variance o;(1):

i) = L 3 S)1 6.0 + 6,01 (32)
3 2 \4 12 1172: T2y '

where Gy:(w) is the Fourier transform of ¢3(f). We now will show that
this result is identical to the baseband noise power that would appear
if flat Gaussian noise of power A®/12 were on the line. We do not regard
this as obvious; in fact it is not true that the signal power at baseband
is the same as if one had Gaussian noise of the same power and spectrum
on the line that the signal has. The proof depends on a few simple
observations. If passband Gaussian noise is represented by

n(t) = n.(f) cos wi — n,(l) sin w.t, (33)
then
ol =) = (ny) = (ny), (34)

and so baseband noise power is ¢, /4. Next we notice that white Gaussian
noise, having same total power as quantizing noise over the band
(—=1/2T,, 1/2T,) Hz, has two sided spectral density

N(w) = No/2 = %'Tl watts per cyele. (35)

* By is the bandwidth of g«(#),7 = =, .
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Thus the Gaussian noise power out of the receiving filter G would be

'___A_e_ wd__w y 2
=13 f__, o | GO |
Al g .
oE [ O

=2 T‘[ [ RS P g X UR=T -CNPYP

@ — =

4 [ " o Dp v Bt a’ﬁ:|- (36)

Since neither g,(f) nor g,(f) are assumed to have any frequencies as
high as w, the last two integrals above vanish. The final remark that
completes the proof is

[ " G0 dt = Gu(0).

Thus noncompandored quantizing noise behaves, at least concerning,
its power, as zero mean white Gaussian noise, flat over the band
(—1/2T,, 1/2T,) Hz, and total power A?/12. This statement is true
with or without demodulation,

One would like to go further and treat the baseband noise as zero
mean Gaussian of variance given by (32). There is a justification
for making this additional step. Recall the result of Section IV, which
stated that if

z = ZA;
@ = =(A,) (37)
¢ = varz = TsSA}

is a sum of independent and uniformly distributed variates A, , then
(provided ¢® = 1/12ZA? < =) for all A such that A > Z(A,),

Prob (z > 4) = (M) (0 + (0 + 2)11P,(4). (38)

In (38), (p)* = A/[(2)%c], and P,(A) is the probability that a
Gaussian variate of the same mean and variance as z is greater than
A. Since P,(A) depends exponentially on p, the coefficient structure
in (38) is not nearly as important as P,(4). We would like to argue
(but not prove) that ignoring the coefficient in (38), that is, simply
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assuming Gaussian behavior, is quite accurate for the baseband noise
(30) for the error rates of practical interest.

Thus consider eight-level, 50 percent roll off, transmission over
our hypothetical “noncompandored T,” transmission facility. From
(30) and (31)

nalt) = % 3 (kT + (e = BT — )

o8 [(w. — w)(t — kT, — 7) + (T, + 7)1,  (39)
where, according to an appropriate normalization,

POSW_t
4, T
h(t) = F — o (40)
1= (?)

Notice that since h, =~ 1/£, ¢ large, the sum in (39) is bounded.
A computer study of (39) for various values of ¢ and 7 shows this bound
to be not too sensitive (about 5 percent variations) to choices of ¢ and r.
Numerically we find

T, s
o | = 28 (26530, an

From the sum formula (26) the variance of (39) is obtained. We
caleulate

S

. 1A’ Tw
Oy = S 1o

412 T

Thus a peak-to-mean square ratio of the baseband noise power may
eagily be shown to be 15 dB. To obtain some insight from this value,
consider the question of how many () identical independent, zero-
mean uniform densities one would have to convolve to get a peak to
rms value of 15 dB; the answer is N = 10. Ten uniforms generate,
we feel, a reasonable approximation to a Gaussian curve. As a check,
consider that our ten uniform densities each have range [—0.5, 0.5].
To check (not prove) the approximation on the tails we caleulate
Prob [sum = 4.5] = 1_167 =275 X 107",
The Gaussian assumption gives 4.46 X 10~". Thus we will assume
that for error rates > 107 the Gaussian assumption will yield rea-
sonably accurate answers, not just being a bound in the sense dis-
cussed above.

(42)
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The above theory showing that noncompandored quantizing noise
may be considered to be additive white Gaussian noise with zero
mean, variance A%/12, of 4 kHz bandwidth has been compared with
the experimental results of Gustafson on the performance of the VSB
(203) data set which operates at 5400 bits per second. Fortunately
an experimental curve is available for error rate versus signal-to-
noise ratio without companding and this is shown in Fig. 3 along

102 |
THEORY '
(UPPER BOUND) |
: |
[
1073
—al |
w10
W
s
[ THEORY |
@ GAUSSIAN
o s
& MEASURED
w g=5— f — —_—
X ‘/
1o-8 \ % _
-
|
1077

o] -10 =20 =30 —-40
AVERAGE INPUT POWER IN dBmM

Fig. 3 — Comparison of experimental and theoretical error rates for one link
of noncompandored transmission. Theory neglects overload distortion. Instan-
taneous input power of 46 dBm is the onset of overload.

with the results of present theory* (for one link of T1.) The rise in
the experimental curve at high input signal power results from over-
load distortion of the quantizer which has been neglected for the
present analysis. Overload occurs at a peak power of +6 dBm on the
scale used in Fig. 3, and thus the peak power to average power for
the eight-level VSB set (including pilot tones) appears to be around
11 dB. In general the observed error rate is higher than the theoret-

*To model the performance of the actual 203 receiver, an additional noise
source is included at baseband, as suggested by Saltzberg® and shown in Fig. 2.
The baseband S/N for this noise is chosen to be 2808 dB. This noise alone
would yield an error rate of 2.5 x 10-°,
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ical prediction, and for low P, is even higher than the theoretical
upper bound. Perhaps this is caused by other distortions in the system
not considered here.

For multiple links of transmission one should take the quantizing
noise to have the same properties as ahove, but the total noise power
is N - A*/12, where N is the number of links.

We wish to emphasize that the curve drawn in Fig. 3 does not
represent any theoretical ideal; we have tried to understand the
performance of an existing data set and its imperfeetions. Actually,
if the data set were functioning perfectly, there is a range of input
power where no errors would be made. We have normalized units so
that no errors can be made if the baseband noise is less than unity
in magnitude. Table I shows the peak value of quantizing noise cal-
culated from equation (41) as a function of input power measured
in the same units as in Fig. 3. An input power of —15 dB would be
near typical operating levels. If the data set were imperfect but the
eight-level eye were no more than 30 percent closed (but one had
perfeet timing), then one would still not make errors down to —15
dBm. In general we see that quantizing noise is not a basic limiting
factor on the error rate for all input power levels.

VI. ANALYSIS WITH COMPANDING
Equation (9) indicates that the derivative of the compressor char-
acteristic is an important quantity. For the logarithmie curve given
in equation (1),
“ 1 .
In(1+wl+ulx]
The average of A®(t) now is not A?/12 but is

2 2 AE )
o = (A%(0) = E<IT‘(T:)—|>

A In(1 ’ 3
2[4 o+ P, (44)
where the average power P = (2?). Now {|z|) cannot be less than zero

nor more than (P)%. Hence

k(1 + 4°P) < Taw = x[1 + #(P)l]a (45)

F'(z) = (43)

where

_ A+
xk12|i p :| (46)
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The lower and upper bounds in (45) indicate that for large u(P)}
the average noise power is not a sensitive function of the probability
density of the input signal. The knowledge of ¢., cannot be used here
to obtain a strict upper bound for the probability of error as was done
in the uncompandored case, for the “instantaneous” noise variance is
correlated with signal values. Thus large input signals “see” bigger
step sizes, in effect, than smaller inputs would. One concludes from this
that for multilevel transmission the outermost levels would have the
greatest noise associated with them.

To make exact calculations on this matter is a difficult task, and we
confine ourselves to some estimates of the effects. Estimates can be
obtained by restricting attention to special sequences. Thus for an
eight-level PAM system let an arbitrary sequence consisting only of
the outer levels (47) be transmitted, and compare this with another
sequence consisting of (==5) transmitted in place of (+7). Then the
quantizing noise will be—considering the 4° term in (44) to be of prin-
cipal importance—in the ratio 7°/5°. Thus the outer level will have,
in this circumstance, 3 dB more noise than the next inner level. The
contrast between these levels will be somewhat lessened in a random
sequence using all levels, but it is clear that the 3 dB number quoted
here provides an upper bound to the difference.

Worst case estimates of error rate in the compandored case may be
made by replacing A*/12 in (42) by the upper bound for ¢*, given in
(45), and finally using peak power instead of average power in (45).

For the eight-level VSB system considered previously, operating
on T1 facilities, this procedure yields error rates of 10™® — 107° over
one transmission link (for the interesting ranges of input power).
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APPENDIX A

Derivation of Quantization Error

Equation (9) of the text relating the output sample error A(t) to
step size A, compressor characteristic F(z), and signal amplitude
l(t) at time of sampling is easy to derive if the chain rule is used
to differentiate the relation

FF@)] == (47)
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to obtain
dF(v)

u=F(z) dv

dF[—ul)
du
Now clearly, if the error made when leom, is quantized is small, that is,
if A is small, then

-1, (48)

=z

output drF™!
sample = F (lcumn) + A du u-!ﬂomnr (49)
or
output _ A
mmple = * T FG (50)

where (48) has been applied to (49) to obtain (50}.

APPENDIX B

Dertvation of oy

Squaring (30) and averaging over {e} gives
2 A-
as(l) = ?——E {git — kT, — 7)

-cos’ [wkT, + w.r] + g,(t — kT, — 7)
-sin® [w kT: + w.r] + 2¢.(6 — kT — 7)g,(t — kT, — 7)
-sin [w kT, + w,7)] cos [w kT, + w,7]} (51)

or,

o)) =3 ( 1 12) 2 lg: + @)

+ 5 2 (4’ 12){ > (g2 — g cos [2w kT, + 2w,7]

+ 2 > g.g,8in [20kT, + 2w,.7]}. (52)

All the sums in (52) may be evaluated using the Poisson sum formula
quoted in equation (26). The first term on the right of (52) is simplest
to handle. Since g; has no frequencies higher than 1/27,, the Fourier
transform G,;(w) of ¢*(f) has support contained in [—2x/T,, 2=/T\],
and further, since it is a convolution, Gy:(£2x/T,) = 0. Thus

(4 12) 2@+ (i 12)T‘ [G2:(0) + G5, (0)]. (53)
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The other sums in (52) are all zero, for a typical sum is (where 6 =
20,T,)

> f(t — T — 7) cos [n6 + ¢

ECOS[ITGI—I-«p——:I > it —al — 1) (os(t—nTl—r)T

+Sin|:f'%+tp—%:| 3 f(it — aT — 7)sin (¢ — nT) — T)%‘
(54)

The sum formula is now directly applicable to the functions

f(t) cos 2wt and f(t) sin 2w,t. The functions have Fourier transforms
which, according to the discussion following equation (29), vanish at

@

= +2x/T,-k, where k is any integer, including zero. The results

claimed follow.

REFEREN CES

1.

. McNees, K. G., unpul blished work.
. Chernoff, K., “A Measure of Asymptotic Efficiency for Tests of a Hypothesis

Fultz, K. E. and Penick, D. B,, “The 71 Carrier System,” BS.T.J.,, 44, No.
7 (September 1965), pp. 1405-1451.

Based on a Sum of Observations,” Ann. Math. Stat. 23, No. 4 (December
1952), pp. 493-507.

4 Wozeucraft J. M. and Jacobs, I. M., Principles of Communication Engineer-

ng, New York: John W:ley and Sons 1965, pp. 97-106.

. National Bureau of Standards, Handbook of Mathematical Functions, Wash-

ington, D. C.: U. 8. Government Printing Office, 1964, Chapter 7.

. Saltzberg, B. R., “Intersymbol Interference Hrror Bounds with Application

to Ideal Bandlimited Signaling,” TEEE Trans. Inform. Theory, 14, No. 4
(July 1968), pp. 563-568.

. Bennett, W. R, “Spectra of Quantized Signals,” BS.T.J., 27, No. 3 (July

1048), pp. 446-472

i Snltzberg, B.R. unpubhshed work.






On the Solutions of Equations for
Nonlinear Resistive Networks

By A. N. WILLSON, JR.

(Manusecript received December 13, 1967)

Several theorems are proved concerning the solutions of equations that
arise in the study of resistive nonlinear electrical networks. The first, an
existence and unigueness theorem, applies to equalions describing an
interesting class of networks which includes certain active and nonreciprocal
networks for which the existence and uniqueness of solutions has not
previously been established. A method of computing bounds on the location
of the solutions s given, and two ilerative techniques are presented for
computing the solutions. It is proved that the iterative technigues converge
for a subclass of the equations which also includes equations describing
certain active and nonreciprocal networks. Finally, the rate of convergence
of the dteralive lechniques is compared with that of another well-known
tterative technique and some practical computational aspects are pointed
out. Computations for two example problems, not reported here, were carried
out to show the practicality of applying these iterative techniques to the
equations of specific networks.

I. INTRODUCTION

In this paper we consider the solution of the equation

F(x) + Az = B (1)
A

where z = is a point in the n-dimensional Euclidean space E",
¥
f .(.1:1)-

F(x) = is a nonlinear function mapping E" into E", A is an
fa(@a)

17566
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by
n X m matrix of real numbers, and B = is an arbitrary point

bn

in E". We prove (Theorem 1) that there is a unique solution of (1) if:
() Each f; is a strictly monotone increasing function mapping
E" onto E*,
and
(7)) The elements a,; of the matrix A satisfy the inequality

a; > 2 |ayl|, for i=1,---,n.
-

We then demonstrate a straightforward method of computing bounds
on the location of this solution. Finally, we present two iterative tech-
niques for computing the solution; and prove (Theorem 3) that the
two additional assumptions:

(#i7) Either all of the functions f; are convex, or else all f; are concave,
and

() a;; = 01if 2 == j,
are sufficient to guarantee that the iterations converge to the solution.

Equations of type (1) occur often in the study of nonlinear electrical
networks. For example, if a linear n-port containing resistors, inde-
pendent sources, and dependent sources has a two-terminal device
whose V vs I curve is specified by I; = f(V,), fori = 1, --- , n, con-
nected across each port, then the port voltages may often be expressed
as the solution of an equation of type (1). In this case the matrix A
will be the y-parameter matrix of the n-port, the constant vector B
will account for the presence of the independent sources, and the com-
ponents of the vector z will be the desired port voltages.

II. ACTIVE AND NONRECIPROCAL 7N-PORTS

In case the n-port of the above example contains no dependent
sources and the functions f; satisfy condition (i) above, the existence
and uniqueness of a solution of (1) follows immediately from the
well-known result of R. J. Duffin.* In fact, with the additional as-
sumption that the slope of each f; is bounded by positive constants
the computational technique of J. Katzenelson and L. H. Seitelman
may be used to compute the solution.* This computational technique
is based upon a theorem of I. W. Sandberg which relies upon the
contraction-mapping fixed point theorem.?
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Sandberg’s theorem may, in fact, be used to prove the existence
and uniqueness of a solution of (1), and to construct a convergent
iteration process for computing this solution, whenever the matrix
A is positive semidefinite* and the slope of each f; is bounded by
positive constants. Other theorems which do not require that the
slopes of each strictly monotone increasing f; be bounded by positive
constants also exist. (For example, see Ref. 4.) These theorems guar-
antee existence and uniqueness of a solution of (1) whenever 4 is
positive semidefinite but do not specify a procedure for computing it.

Suppose, however, that the matrix A is not positive semidefinite;
that is, suppose the n-port in the above example is active. Then the
above results no longer apply. It may often happen that the matrix
A is not positive semidefinite but still satisfies condition (i) above.

The matrix
d - [1 1} '
5 7

for example, has this property. It is interesting to notice that in this
case the matrix A will necessarily also be nonsymmetric (the corre-
sponding n-port will be nonreciprocal). This follows from the fact
that for symmetric matries 4, condition (i) implies that A is a
dominant matrix® which, in turn, implies that A is positive semi-
definite. It is for this class of active nonreciprocal n-ports that our
work provides entirely new results. Even for the passive case, how-
ever, notice that our computational techniques do not require that
the slopes of the functions f; be bounded. Also, there is reason to
believe that for certain problems our iteration schemes may converge
more rapidly than the ones based upon the contraction mapping
theorem. More is said about this in Section VIL.

III. EXISTENCE AND UNIQUENESS

Before proving the existence and uniqueness theorem we first prove
a lemma which is used many times in this and the following section.
Lemma 1: Let the n X n matriz A of real numbers satisfy condilion
(4%) of Section I. For j = 1, --- , n let p; denote the jth component of
peE" Let ke {1, -, n} be chosen such that |p:| = maz {|p;| : j =
1, -+, n}. Then,

ll* The n X n matrix A is said to be positive semidefinite if (z, Az) > 0 for
all z in E".
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pk>0 = Eakfpiéor

i=1

and
m<0 = 2 ap; 0.
§=1
Proof:
an | pe | Z _Zl]ak:’ [|pe | = Z‘ | aip; | 2 izlaupil‘
:';k ;'v": ik
Thus,
aw | pi | = ﬂ:Z @ip;
ot
But then,
e >0 = aupe 2 _'_E AP = Z ap; 2 0,
oty =
and,

P <0 = —aupe 2 2 ap; = 2 ayp; =0. O
Tk =
Theorem 1: There exists a unique solution of (1) whenever conditions
(i) and (1) of Section I are satisfied.

Proof: We first prove that if a solution exists it is unique. Let 2?
and 22 be solutions of (1). Then,

F(z*) — F(z") = A@z' — 2°).

Forj = 1, -+, nlet z! and 2? denote the jth components of z" and 27,
respectively, and choose k & {1, - -- , n} such that
I.’E:,—(E:l =]]1&X{I:E:—:B?|]= 1' et rn,‘

If 2} > z; then, by Lemma 1,
fulah) — fiulzy) = Z ai(z; — z7) = 0.
i=1

If 2z, < 22 then, by Lemma 1,

n
2

fulzr) — f;.('E:;) = Z ﬂ'ki(x; — xj)

i=1

IIA

0.
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Both of these conclusions contradict the fact that f, is strictly monotone
increasing. Thus, z; = 2} and hence 2} = 2} forj = 1, --- , n. That is,
the solution of (1) is unique, if it exists.

We prove existence of a solution by induction. Fork =1, --- , n let

fi(xy) Ay **° Qg b
Fiu(x) = ' Ap=|reecreres ) B, = |-
REN) Ayt ° Qe s

Clearly, the matrix A, satisfies eondition (#7) of Section I. Also, it is
clear that there exists a unique solution* of F,(z) + 4,z = B, for
every strictly monotone increasing function f, mapping E' onto E'.

Assume that there exists a solution of Fi(z) + A,z = B; for arbi-
trary strictly monotone increasing functions f;, 2 = 1, --- , k mapping
E' onto E'. Then, for every real number x;.,, the equation

@y, k+1
Fk(-'ﬂ) + Az + Ty = B,
@ g1
has a (unique) solution; since for 7 = 1, --- , k the function f,(z;) +
@i ki1Tksq 15 strictly monotone increasing from E' onto E'. Let the
components of this solution be denoted by z; = m;(zys,) fori =1, -+« | k.

We have thus defined & functions m; on £
We now prove that for every w},,, zi,, ¢ E',

| Zher — har | = | my(ai) — my(maey) |, for j=1,--- k. (2

This inequality, incidentally, implies that each m; is continuous.
Let z},,, z;,, ¢ E' and choose l £ {1, --- , k} such that

1 ma(T:H) - m;(&l’.':,ﬂ) 1
= max {| m;(xi.) — mi(xee) | 1f =1, --- , k}.

Assume that | m,(z}.,) — m.(zi.,) | > |2i., — @is, | . Clearly, then,
m(al,,) — my(zh.,) # 0. If my(2}.,) — my(z;,,) > 0O then,

filmi(ai)] — filmi(@iaa)] > 0.

* We take the liberty of using the same dy-mbc:)l z to denote points in any of the
spaces E¥, 1 < k < n. No confusion should arise since the subscripts on F and 4
will make our choice clear.
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Also, since the matrix Ay, satisfies condition (#i) of Section I, letting

pi = mi(xi‘ﬂ) = mi(I:'+l)s fﬂr j= 11 Tty ka
Pr+r — xiu - I}:n '
we have, by Lemma 1,

k
Z ali[mf(x:+1) - mf(xll:+l)1 + at.k+l($:+l = -'E:;n) = 0.

i=1

Thus,
f![ml($:+1)] + 2} ﬂ-n'mf(f:n) + a!.k+lz:+1

k
> fl[ml(zllu-l)] + E] ﬂxfmi($}¢+1) + al.k{-lxiu , (3)
which is a contradietion since the quantity on each side of this inequality
is equal to b, . If m(zi.) — my(2;,,) < 0 then,
filma(zien)] — filmi(zie)] < 0.

By applying Lemma 1 again, as above, one arrives again at (3) with
> replaced by <. This is also a contradiction. Thus, we must have
155:4-1 — Tpa l = 1 m1($:+1) = ml($}:+l) lv

and hence (2) is proved
Now, consider the function

[
Z Qa1 iMi(Trs1) T Brsr w1 (4)

Let zb., , 22, ¢ E' with z},, < %}, . Then.

k
g1, k+1 = 2 I Dy, i l

i=1
implies
2 1
[ (- Tgs1)

3
= Qg+, k+1 |$:+1 - Eiﬂ | = Z (I Qi+, ll 27:+1 == $;+1 |)
=1

But, using (2),
k
ak+l.k+l(z:+! - -T'Ils+l) = E l atu.fIm;(x:ﬂ) - m,‘(xlﬂ)] ]

i=1
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k
z - z Qrer i [mi(2ie) — my(2is)],
which implies

k &
E ak+l,imi(xll:-}l) + ﬂk+1.k+1$l:+l = Z akn,;mf(xkzn) + ﬂvk+1.k+1$:+1 .

i=1 i=1

That is, the function (4) is monotone increasing. Clearly (4) is con-
tinuous, It follows, therefore, that if fi,; is a strictly monotone in-
creasing function mapping E* onto E*, then so is the funection

k
frr(@es1) + E Grer,iMi(Tavr) F Gevrpe1Zier -
j=1

Thus, there exists a unique solution of the equation

x
fer(®esr) + Z Qe ;iMi(Thsr) F Grsr pr1Zerr = Disr -
i=1

If 27., denotes this solution then

n
Tnl(Ik+l)

(1)
0
Tien

is the (unique) solution of

Fra(z) + Az = By
Thus, we have proved that there exists a unique solution of (1). O
IV. BOUNDS ON THE SOLUTION

Having established the existence and uniqueness of a solution of
(1) a natural question to arise is: What can one say about the loca-
tion of this solution? It turns out that we can say quite a bit (again
assuming that conditions (z) and (¢7) of Section I are satisfied). One ean,
in fact, with little effort (compared with the effort required, in general,
to actually compute the solution) determine a finite region R in E",
in which the solution must lie. This region is the cartesian product of
finite intervals I, C E',for7 = 1, - - - , n, each of which has the property
that if
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0
T

0
Ty

is the solution of (1) then 2} ¢ I; and, as

Z l @ij { = 0,

o
the length of I,, I(I,) — 0. Thus, when the off-diagonal elements of
A are small, the region R will also be small.

In many applications it may be sufficient to know only that there
exists a unique solution of (1) and to know the region R in which it
must lie. If, however, one actually does want to compute the solution
by some iterative technique, the knowledge of R should be useful in
determining a starting point for the iteration. In fact, it will be
shown that if the point z* is the solution of

F(I) + dja*g [all; "t a'nn] r = B? (5)

then z* is also in R and thus might be a reasonable starting point
for an iterative computation of z°.

The computation of bounds for the solution of (1) proceeds in two
steps. First, one solves each of the equations

f.'(x.') = b.‘ ’ for 7 = 1, LR (2 (6)
Letting «; denote the solutions of (6), and defining

o =max {|e;|:2=1,+-+,n},

glali]

il

B' = : ,

glansl

Li#n J

one then solves each of the equations
F(z) + diag [ai1, -+ * , Gl @ = B — aB/, (7a)
F(m) + dla'g [‘111: Tttty ann] T B + O’.B’. (7b)
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Denoting the solutions of (7a) and (7b) by
T &
. and &= ,

=
Ml

n” En
I, X -+ X I,, where

respectively, one has R
I.‘ = [ﬂ(,gi], fOl' 1:: 1, cer oy, N

It is clear from the fact that each component of the vector aB’ is a

nonnegative number and from the monotone nature of the left-hand

sides of (7) that z*, the solution of (5), is (as claimed) always in R.
It is also clear that, for7 =1, --- , n, as

n

E | a:;; | — 0,
i=1

i

the 7th components of both B — aB’ and B + aB’ approach b, , and
hence 5; — z* and £; — 2% . Thus, I[(I;) — 0. We now prove that the
solution of (1) is in K.

Theorem 2: If R 1s construcled as described above, then the solution of
(1) s contained in R whenever conditions (i) and (i) of Section I are
satisfied.

Proof: Let z° be the solution of (1) and let ke {1, --- , n} be chosen
such that |z} | = max{|2!|:7 = 1, --- , n}. Then, by Lemma 1, if

z) > 0, 2 ay2? = 0 and hence,

0 = fulzd) + 2 ayz! — by = fu(zd) — b

or fi(z}).< b .

Thus, because of the monotonicity of fy,

IIA

|28 | = 2} S o £ @,

and hence | 2} | < afori = 1, - -+, n. Similarly, by Lemma 1, if 2} < 0,

.
> axa? < 0 and hence,

i=1

fﬁ(x{*)) g bk '
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and thus
|I: = *tzé —a; = a,
and hence | 27| £ «, for ¢ = 1, ---, n. Thus, in any case, |z}] £ o
fori =1, -+, n
Now, for all z with |z;| £ « for j=1, .-+, n, and for each
ie{l, -+, n} wehave,
n n n
“Z\“nw: Zﬂﬂ-n‘f|a) 2 Z}la.-,-.?:j L
j=1 i=1 jm
in¢ i i

which implies

ﬂé!a”lé iaiixi.

i=1

i#i il
and
—a Z | ai; | = Z‘ﬂuﬂ?i .
I;I ;#-’
Thus,

n n n

ai v — a E | @3] = Z a;r; S anti +a E | @i |
=1 i=1 i=1
i ini

In particular, for 2 = 2°, we have

f-('t?) + a,-;:v? -« E |ﬂ‘».'f h =b: = f-(t?) + ﬂ;‘fﬂ:?' + a E l aij l
it i
Comparing this result with (7) we have, as a consequence of the
monotonicity of the functions on the left-hand sides of (7),

5 :
nw=2=¢, for i=1,-,n

Hence, z° e R. O

Since in the above proof it was shown that |z} | £ efor¢ =1, ---,n
it might seem to some readers that the intervals I; might be reduced
in length if we simply define them to be: Iy = [—a, &l M [n:, £:]. This,
however, is unnecessary since it is easily shown that —e = 7 = & = «,
forz =1, -+ ,n

V. EXAMPLE

We now give an example of the use of the above method for the
computation of solution bounds. Consider the equation
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E,(ml)} 4 [ 5 4} H
2(-"5?) -3 4llz
where f; and f, are defined by

(=) _{ -2 % &0

S —1, 2, <0,
and
x, + 9, T, = 3
fa(zs) = 14, —3 <1 <3
L:z =9, T, = —3.

Figure 1 shows the graphs of f, and f, . Since we know that the region
R will be small if the off-diagonal terms of A are small enough, we have
intentionally chosen an example in which these terms are rather large.

The computation of @ by solving (6) may be done by inspection for
this example. One finds that 4** = 17 implies that «, is slightly greater
than 2, and since a; = 4 we have « = 4. Using this result in (7) one

readily computes
0 2.23
ol
0.125 3.2

Filzy) f‘z(Iz'}

Fig. 1 — The nonlinear functions f, and f: for the example.
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Actually, it is easily verified that the solution of this example is z° = (;)

Vi. COMPUTATION OF THE SOLUTION

Fori = 1, --- , n we denote by f/(z,;) the right-hand derivative of f; at
the point «; ¢ E'. For each z £ E" we denote by F’(z) the following matrix:

F'(x) = diag [fi(z,), -+ , fr(za)].

It is easy to prove that if F satisfies condition (7) of Section I then
F'(z) exists for all = £ E". Also, it is clear that each element of the main
diagonal of F'(z) is nonnegative for all z ¢ E". (Each element is in
fact positive if, in addition, F satisfies condition (#7Z) of Section I.)
Finally, we note that

fi ()
Fy) = | -
12w

is defined for all y & B", assuming again that F satisfies condition (z) of
Section 1.

The following two iteration schemes are proposed for the computation
of the solution of (1):

Scheme 1: For given z' £ E" the sequence z', z°, 2%, - - - of points in E" is
constructed by use of the formula

' = [F'(a") + A]'(B — F(") 4 F'(z")a"). (8)
Scheme 2: For given z' ¢ E” the sequence z', z°, 2°, - - - of points in E” is

constructed by use of the formula
Y= [FPETYN +AITB -y + FETIGNDFTE), O

where ¥ = —Az* + B.

In order to explain the origin of (8) and (9) we make the following
observations: If for 7 = 1, -+ , n (2%, 4 is a given point in E*, and
if we draw the graph of each of the functions f; , then each of the points
in the sets { (2%, f:(z})):¢ =1, ---, n} and {(f7'@2), y0):i = 1, -+~ ,n}
lies on the graph of the corresponding function f; . Suppose we now
replace (approximate) each f; by the straight line which is tangent to
it at the corresponding point in one of the above sets.* Choosing the

* Qur definition of tangent coincides with the usual one, except that the right-
hand derivative is used at those points where the derivative fails to exist.
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first set of points we approximate F' by
Fz) = F'z)z + F(z*) — F'(z")2".
Choosing the second set gives

F@) = FE'@Ne + 4 — FFEGNFGH.
If we now define y* = — Az* + B and compute the solution of the
equation

F(z) + Az = B

and call it 2%+!, we obtain (8). Calling z*+* the solution of
F@) 4+ Az = B,

yields (9).

The above remarks have a very meaningful interpretation for problems
arising from nonlinear electrical networks of the type described in
Section I. Iteration Scheme 1 implements the following procedure:
Given the vector «* of port voltages for the linear n-port, replace each
two-terminal nonlinear device with a linear Thévenin’s “equivalent”
circuit whose V vs I curve is a straight line, tangent to the given curve
at the point (2%, f:(z})). Compute the port voltages in the resulting
linear network to obtain z**'.

Tteration Scheme 2 has a similar interpretation; this time, how-
ever, the vector of port currents, y* = —Az* + B, is used to determine
the linear equivalent circuit replacing the nonlinear devices at each
step.

In view of the above remarks it is apparent that if one has some
facility for solving linear network problems (a computer program, for
example) then it might easily be adapted to solve many nonlinear
problems as well.

We finally remark that the use of the first iteration scheme is, in
essence, the same as using the Newton-Raphson technique to compute
the root of (1).

We now prove a theorem which specifies conditions which are suf-
ficient to ensure convergence of each of the above iteration schemes.
We emphasize, however, that these iteration schemes will converge
for many problems in which the conditions of the theorem are not
satisfied—especially if a good enough starting point is provided.

In the following we denote the origin in E" by 6 and, for the points
z, y ¢ E", the notation z < y means z; = y; for? = 1, --- , n. The
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relations ¢ < y, = y, * > y are defined similarly. We also make use
of the concept of a matriz of monotone kind.® The matrix A4 is said to
be of monotone kind if z ¢ B, Az = 8 = x = 6. It is easy to show that A
is of monotone kind if and only if A™' contains only nonnegative
elements. It is also easy to show that if A is of monotone kind and
z, y ¢ B with Az < y, then z £ A™'y. Ref. 6 shows that if the strict
inequality > holds in condition (7z) of Section I, then conditions (%) and
(i) are sufficient to ensure that A is of monotone kind.

Theorem 8: For an arbitrary starting point z*, both of the above
iteration schemes will converge to the solution of (1) if conditions
(1) through (iv) of Section I are satisfied.

Proof: We give here only the proof for the second iteration scheme,
assuming that all of the functions f; are convex. The other three
cases are quite similar and it will be apparent to the reader how
this proof may easily be modified to take care of them.*

We first remark that the iteration scheme is well defined. The fact
that for every 3* ¢ E", F/(F~'(y")) is a diagonal matrix containing all
positive numbers on the main diagonal, and the fact that A satisfies
conditions (#7) and (i) of Section I, assures us that the matrix
[F'(F7'(4*) + A] is nonsingular (it is, in fact, of monotone kind—see
Ref. 6, p. 376).

Let z' be an arbitrary point in E". Then, since forz = 1, --- , n
and &t = 2, 3, 4, - each of the points (2% , ¥%) lies on some straight
line, tangent to the corresponding function f; , and since each §, is strictly
monotone increasing and convex, we have that F7'(3*) < 2* for k =
2,3, 4, --- . We now show that F~'(3*) = 2* implies that z**' < 2*
Obviously,

F'(F () — F7'(y) =z e
But, by definition, Az* + y* — B = 6; hence,
FIF' NG — F'@Y) + 4" + 4" — B 2§,
which implies
(F'(F"' ") + AR* =2 B — y* + F'(F'@"))F ().
But then, since [F'(F*(y*)) + A] is a matrix of monotone kind,

* After this manuscript had been completed, the author became aware of
J. 8. Vandergraft’s paper (Ref. 7). With a certain amount of reformulation, the
(monotone) convergence of the first iteration scheme, when all fi are convex,
can be shown to follow, in essence, from his Theorem 5.1.
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= [F'(F'0N) + AT'(B — " + F'(F'")F' (M),
or, z* = z**'. Thus, the sequence z°, z°, z*, - - - has the property
fzzatz -
We now show that fork = 2, 3,4, --- , 2" = 2°, where 2° is the solu-
tion of (1). For each 2", k = 2, 3, 4, --- , there is some point pe k"
(p = F7'(y*")) such that

Az* — B = F'(p)p — F'(p)z* — F(p). (10)

Furthermore, from the convexity of each f;, it is clear that for every
pair of points ¢, g* € E*,

F(g") =z F(@") + F'(¢)(d — 0.
In particular,

F@&@') =z F(p) + F'(p)@® — p).
Hence,

I

F'(p)p — F(p) + F(z°) 2 F'(p)a’
which implies
P'(p)(p — 2*) — F(p) + F&*) = F'(p)(x® — 2¥).
Using (10) we have, therefore,
Az* — B + F@") = F'(p)(a® — z¥).
But, F(2°) = — Ax® + B, hence

A" — 2 = F(p)a® = =)
or,
[F(p) + Al — 2°) = 6.

But then, since [F’(p) + A] is of monotone kind, 2* — 2° = 6, or2* = 2°.
Thus, we have shown that each sequence z3, 2%, z}, --- is a bounded
monotone sequence and hence the sequence z°, 2°, 2%, --- converges
to some point z* in E". We now prove that z* = z°; that is, we show
that 2* satisfies (1).

Let y* = —Ax* 4+ B. Then, as k — «, 2" — z* and 3* — »*. Thus,
F'(*) — F~'(y*) and each element of the matrix F'(F " (y*)) approaches
the corresponding element of F'(F'(y*)). Now, from (9), we have

Az + PR ()t = A2* + FI(F' )P0
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which implies
FFG)NE' @) — 27 = A — )
and hence
FEGNEEH — o* = AG™ — ) — PE'GNE* — ).
But as k — =, (z**' — 2*) — 6 and hence A(x""' — 2") — 6; also,

(z* — 2**') — 0 and hence F'(F~'(y"))(a* — 2*") — F'(F'(y*))8 = 6.
Thus, as k — o,

FFGNE @) —2*) — 6
which implies
F@y") —z*— 6
or
F@") — =

and therefore
y* — F(z*).
Hence, y* = F(z*), and thus,
F(z*) + Az* = B.

Thus, the iteration converges to the solution of (1). O

Although Theorem 3 states that both of our iteration schemes will
converge for the same class of problems, only one of the schemes
might converge for some problems for which all of the conditions
(1) through (i) of Section I are not satisfied. Also, for some problems
a prior knowledge of the region in which the solution lies might dictate
the choice of one iteration scheme over the other. For example, if it
is known that some of the functions f; are quite steep in the neighbor-
hood of the solution then perhaps F-* may be evaluated in this region
more accurately than F. In this case Scheme 2 might be preferred
to Scheme 1.

VII. SPEED OF CONVERGENCE

Section IT mentions that in certain situations our iteration schemes
may converge to the solution of (1) more rapidly than those based
upon the contraction-mapping fixed point theorem. To illustrate this
property we have chosen to compare the rate of convergence of
Sandberg’s iteration scheme to that of our schemes.®
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If we define the operator G mapping E* into E" by
G(x) = F(x) + A=,

then, as a special case of Sandberg's Theorem I, we have the result:
If there are positive constants k&, and ks such that

G) — G,z — )z kllz =yl (11)
and
[|G@) — G |I* = k|| 2 — w ]I, (12)

for all z, y ¢ E", then there is a unique solution of (1) and the solution
is given by lim z*, where z' is an arbitrary point in E", and

k-+0
=BG+ 2,

for k = 1,2, 3, -++ . The proof of this theorem consists of showing

that the mapping
k
H(z) = k_l B — G@)] + =
2
is a contraction.
Tt is interesting to observe that if the inequalities (11) and (12)
are satisfied then positive constants ks and k4 exist, such that

G) — Gz —y) S ks llz — vy (13)
and
|G@) — G |I* = k|l z — I, (14)

for all z, y ¢ E". In fact, a simple application of the Schwarz inequality
to (11) and (12) yields (13) and (14) with ks = (k,)! and k, = k.
Now (13) and (14) are of the same form as (11) and (12), except that
the inequalities are reversed. Thus, if one uses (13) and (14) in the
proof of Sandberg’s theorem, reversing all inequalities, one obtains:

||H@) — Hy [Pz K|z -yl
where,

K=1- g(kf/kz)! + (kz/kz)z-

It is readily seen that if 4k? < k, , then K is positive. If we let 2° denote
the solution of (1), and hence H(z’) = 2°, we have, fork = 1,2, ---,

|a* = 2" |I* = [[HE") — H@) ' 2 K ||2* — 2° |
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Thus, (K)! represents, in this case, a lower bound on the rate of con-
vergence of the iteration scheme. It is true that (K)} is always in the
interval (0,1), for indeed Sandberg has proved that the sequence
2* does converge to z°. However, as k, becomes small, and as k, becomes
large, K approaches 1 and the sequence converges quite slowly. For
(1) the largest value that may be used for &, and the smallest value that
may be used for k, will many times be dictated by the positive constants
which are bounds on the slopes of the functions f; . If, for example,
the slopes of the f; become so large for large z; , and so small for large
negative z; that one must choose k, = 107" and k, = 10% then one
easily computes (K)* ~ 0.99. Thus, no matter how close any iterate
is to the solution, the next iterate will be no more than about one per-
cent closer.

It is of course true that Sandberg’s iteration scheme is applicable
to a much more general class of problems than we consider in this
paper. If, however, for any problem to which it is applied, the con-
stants k&, and k., must be restricted such that k,/k. is quite small,
then the rate of convergence will always be adversely affected. In
the Katzenelson-Seitelman application of Sandberg’s iteration scheme,
their “heuristic refinement” (see Ref. 2) attempts to overcome this
difficulty.

Although the classes of equations to which our iteration schemes
and the Katzenelson-Seitelman algorithm may be applied are not
identical, in those cases where both techniques may be used the ad-
vantage that our schemes offer is now clear. From (8) and (9) one
easily obtains

=2 = [F'@) + AT'(FG) — PG — FH6E — ),
and

xk+1 _ :ﬁu =
[F(FGY) + AT (FE) — ¥ — F'E'G)E — FO),
respectively. These equations show that || 2" — 2°|| will be small
(even if || * — 2° || is rather large) so long as for¢ = 1, +-- , m,

fi(@d) — £&0) i
2 — 2 fi(@d),

for Scheme 1, or

1@ = U5 g1
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for Scheme 2. That is, as soon as the kth iterate comes close enough to
the solution that each of the functions f; is approximately linear, the
rate of convergence of our iterations becomes quite rapid. In fact, the
rate of convergence increases without bound as the iterates approach
the solution. It is also clear that if each of the functions f; is piece-
wise linear then our iterations will converge in a finite number of
steps.

From the standpoint of computational efficiency it is, of course,
the amount of time required to compute an approximate solution
that is the major concern. For those problems to which both our
iteration schemes and the Katzenelson-Seitelman algorithm may be
applied, it can happen that our methods might still be slower than
theirs even in the case when the convergence rate of our methods is
faster., This can happen because, for some problems, the equation
with which we are concerned may be of a higher order than theirs,
and also because we must compute the inverse of a matrix at each
iteration step. On the other hand, it is clear that for many problems,
even from the standpoint of total computation time, our techniques
will be more efficient.
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Convergence Criteria for Transversal

Equalizers

By D. W. LYTLE*
(Manuseript received March 22, 1968)

Two basic problems in the equalization of data channels using pulse-
amplitude modulation are considered. The first of these is to determine just
what pulses can be equalized and what the general equalization solulion is
when using a transversal filter. The second problem is to determine if a
simple ilerative search routine will converge to a solution if ils exists.

The unequalized channel impulse response is represented by a polynomial
whose coefficients are the sample values of the impulse response. If no
roots of this polynomial lie on the unit circle, the channel can be equalized.
The transversal filter which equalizes the pulse has tapweight values given
by weighled sums of powers of the polynomial roots.

Various mecessary and sufficient conditions for ileralive convergence
are developed. Tterative convergence can be guaranteed if the proper linear
wetghting of the output sample errors is used in adjusting the tap-weights.

I. INTRODUCTION

This paper is concerned with certain aspects of the automatic equal-
ization of low-noise, linear channels which are to be used for multi-
level pulse-amplitude modulated (PAM) signals. The purpose of the
equalizer is to compensate for the channel transfer characteristics in
such a way that the over-all impulse response of the channel is a
Nyquist-I type of pulse, * ® that is, as is illustrated in Fig. 1, a pulse
with a central peak and uniformly spaced zeros with period T'. If
such an impulse response is achieved, a sequence of amplitude modu-
lated impulses with period T can be transmitted and the sequence of
amplitudes can be recovered at the receiver by simply sampling in
synchronism with period 7.

Certain obvious questions such as how to achieve synchronism and

* University of Washington, Seattle.
1775
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4~ ~ —CENTRAL SAMPLE VALUE

Fig. 1 — A Nyquist-I pulse with central sample and zeros at periodic sample
times.

the effects of sampling jitter, nonlinear distortion, and additive noise,
although of great importance, are neglected in this presentation in
order to concentrate on the methods of adjusting the equalizer. Thus,
we assume a perfectly synchronized, noiseless, linear channel with
an ideal sampler. Some further constraints which should simplify and
clarify the presentation are as follows, We specify that the equalizer
is to be a transversal (tapped delay-line) filter with tap weights {e}
which can be adjusted. If the input to this filter, illustrated in Fig. 2,
is B(t), then the output, y (), is

N

y(t) = 22 ea;B(t + iT). 1

i=-n

Notice the tap-weight numbering convention and the treatment of
the delay-line as being composed of negative as well as positive delay.
These conventions will simplify the notation in future derivations.

Although the equalizer may be placed at many points within the
communication system, for convenience we will consider it to be the
final component other than the final sampler. Thus, the objective is

po—et 1 1 21 1 101

Fig. 2 — A transversal filter with input g{¢), tap weights a;, and output (¢).
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to adjust the tap weights so that the output, y(t), is a Nyquist-I
pulse when the input, 8(t), is the impulse response of the system be-
fore equalization.

As a final simplification we assume that the tap-weight adjust-
ment is to be carried out when the impulse response is available at
the input. This “training period” assumption avoids the added com-
plexities of extracting channel characteristics when data are being
transmitted.* However, the properties to be developed can be readily
extended to continuously adaptive equalization.

II. TIMING AND THE ROOTS OF THE IMPULSE RESPONSE

Since the output of the equalizer is to be sampled, we need con-
sider only its effect on the output sample values {y;}. Ideally, with
an impulse applied to the channel input, one of the output samples,
say yo, should have unit amplitude while all the others are zero. The
tap weights are to be adjusted in order to approach this goal. An ad-
ditional parameter which will affect the equalization is the timing.

Let the sample values of the impulse response at the equalizer
input be the set {8;} where

B; = BGT) (2)

and

B(t) = h(t + ). @)
Equation (3) is to indicate that the sampling times are arbitrary.
This is, if A(f) is the channel response to an impulse applied at £ =
0, then the sample set {8;} is a function of the factor r. Notice that
our assumption of perfect synchronization means that the periodicity
factor, T, in equation (2) is the proper value. But it does not imply
that = is preseribed. We shall see that the operation of the equalizer
depends very strongly upon the value of .
This impulse response is to be equalized by the transversal filter
with tap weights {a;}. The transversal filter output sample set is
{v#} where

T = Z @By (4)
b
The sample set {#;} will be considered finite in extent, that is,
;=0 for j< —m and j> M. (5)

This is a reasonable approximation for any actual channel.
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This sample set may be treated as the coefficients of a polynomial
B(z).

B(z) = Ba2™*™ + Bar—1z™ ™™ 4 oo
T+ Boz" + -+ Bomiiz + Bom. (6)
In factored form B (z) may be written as

B(e) = Bulz— )z — 02) - (2 — 0z — ¢}z — ) -+~ (2 —¢a) (7)
where the roots inside the unit-cirele are denoted by the @ values and
the roots outside by the ¢ values.

o]l <1< |¢] )]
I4+9Q=M+m (9)

As we have noted, the sample set {8;} is a function of the factor .
Thus, for any particular channel, the roots of equation (7) will
wander as = is varied. Each root will wander on some ecyelic path
which has a period 7. That is

8,(r + nT) = 6,(r) (10)

This is illustrated in Fig. 3 where a pulse shape is shown and in Fig, 4
where the root loci are shown for variations in r. Notice that as r in-
creases from 0 to 7', at least one of the roots, regardless of the pulse
shape, will cross the unit circle.

Perhaps the periodicity of the roots can be better understood if
the sampling is thought of as multiplication by a comb of impulses
with spacing 7. Each impulse has associated with it a power of z. For
example, in equation (6), we see that the impulse yielding the earliest
nonzero sample (8_,) is associated with the zero power of z, the next
impulse yielding 8, is associated with the first power, and so on.
As the comb is moved relative to the pulse, 8(t), the impulses produce
different samples and when moved a whole period T, the comb will
reproduce the original samples again. However, each sample would
be paired with a one-higher or one-lower power of z than previously.
Thus, for example, if the comb were shifted by T' so that the powers
of z were one higher, the factorization of equation (7) would be ob-
tained with the same roots except for an additional root at z = 0
since the original polynomial is multiplied by the first power of z.
As the comb is shifted along, the additional root, which must even-
tually go to z = 0, comes in from z = o and at some particular shift
crosses the unit circle.
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20 z! z@

| ——

Fig. 3— A pulse and four nonzero sample positions which yield a polynomial
with roots marked 1 in Fig. 4. Nine additional sets of roots are obtained by mov-
ing the positions above to the right in increments of 7'/10.

LIMAGINARY AXIS

_—UNIT CIRCLE

2
. [
2 1 0. 14l 3 3| 4 5 8 ' 7,5 9, 4
_5 -3 i \o/, 10 1 3 5
1
2 REAL AXIS—
2 PLANE

Tig. 4— Root loci for pulse of Fig. 3. Scale inside circle is magnified four times.
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11T, IDEAL TAP-WEIGHT ADJUSTMENT

Let us now consider the problem of foreing the y; to zero. The
desired conditions are

Yo = 2 aify =1 ay

and '

i = 2 @B =0 k0. (12)
Equations (11) and (12) in the form of a matrix array is as follows.
We shall assume temporarily that the number of taps is infinite.

00 By e e B2 B Bn B .8—2 """ 8- 0
008y -+ Bs 3251503—15—2"'"'ﬁ—mo"'
0 B‘" e .63 ﬁp IBI ﬁﬂ ﬁ_l ﬁ_g ...... ﬁ*m 0 .ee
0By -+ Bas Bz Br Bo By Bn +o - B <
(0] 0
oy 0
. a3
@y 0
Q_p 0
g 0
L] L
Now let us consider a typical equation of the form,
M-k
; hZ_k @ifrs; = 0 (14)

where we will take either the case where & < —m or k > M. If these
conditions on k are satisfied, then equation (14) involves « values with
only positive subscripts or only negative subseripts. Equation (14) is
a linear homogeneous difference equation in the variable «;. Such
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equations have solutions of the form

a; = zi. (15)
Substitution of equation (15) into equation (14) yields

ﬁarzn_k + ﬂM—ﬁM-k—l + v 4 !5'131"!
+ Boe™t & BT A ™
= 2" Ba™ " A BT A+ e B+ Bl
= 2"""B(?) = 0. (16)
Equation (16), and hence equation (14), will be satisfied for z
equal to one of the roots of the impulse response polynomial B (z).

And since we have a linear homogeneous equation, any linear com-
bination of solutions is a solution. Thus, the general solution is

a; = Clﬂ}"f'CzB;"f"' +C!B}+Dl¢;+ e +Dg¢§1 (17)
The constants, Cy, Ca, ..., C;, Dy, Ds, . .., Dqa, are arbitrary and
will be adjusted to meet the boundary conditions. One boundary con-
dition which should be imposed is the following. Eventually, we must
approximate this infinite delay line with one of finite extent. This
truncation should throw away only taps of small magnitude, and thus
the tap weights should decrease in magnitude away from the eenter
tap. Consequently, we demand that a; — 0 as |j| = . Thus,

C, =Cp =+ =0 =0 for jnegative.

D, =D;=:-- =Dy, =0 for jpositive. (18)

In effect, we have two solutions; one for taps with negative sub-
seripts and one for taps with positive subseripts.

a; = C\0l + Cobi + --- + C,8] for >0

a; = Db + Dudi + --- + Dggiy for j < 0.

The region of overlap in equation (13), that is, the region where
the equations involve tap weights with both positive and negative
subseripts, will determine the arbitrary constants. To illustrate this,
let us consider the impulse response of Fig. 2. For one set (No. 8) of
samples, the samples are —2, 3, 11, —6 and the roots are 0.5, 3, —2.
Thus

(19)

C,(0.5)" for §>0
D,(3)! 4+ D,(—2)' for j<O.

aj

(20)

o
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Now, C;, D,, and D, may be found by using equation (20) in equa-
tion (13). However, first we must assign an origin in our pulse. That
is, we must decide whether —2, or 3, or 11, or —6 is to be called B,.
Solutions exist for each of these possibilities, but only one of these has
certain desirable properties which we will discuss later. In this case,
Bo should be the sample of magnitude 11. With this assignment, equa-
tion (13) may be written

—2[C,(.5)"] + 3[C.(.5)°] + 11[C,(.5)°] — 6[C:(:H)] = 0 (21a)
—2[C,(.5)"] + 3[C,(.5)] + 11|C,(.5)] — by = 0 (21b)
—2[C,(.5)°] + 3[C.(.5)] + 1lay — 6[D,(3)" + Dy(—2)""] = 1 (21¢)
—2[C,(.5)] + Bay 4+ 11[D,(3)™" + Dy(—2)""]
—6[D,3) + DJ(—2)*] =0  (21d)
—2a0 + 3[Di(3)”" + Do(—2)7'] 4+ 11[Di3) " + Dy(—2)7"]
—B[D@B) "+ Dy(—2" =0  (21¢)
—2[D,(3)" 4+ Du(—2)7"] + 3[Di(3)7" + Do(—2)77]
+ 11[D,3)" + Do(=2)7°] — 6[D(3) '+ D(—27' =0 (21

Equations (21a) and (21f) and all others above and below these two
are automatically satisfied for any choice of Cy, Dy, D,. Consider
equation (21b). In order for it to be satisfied, ap must be equal to C,
(0.5)°. Similarly, for equation (2le) to be satisfied, ap must equal
Dy(3)° + D2 (—2)°,

C] = Dl. + -D2 = (22)

and equation (21) yields the following values for the C' and D con-
stants.

D, = 2/95
D2 = 5/9-5 ,60 = 11. (23)
C, = 7/95[
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If we had chosen to let 8y be the sample of magnitude 3, we would
obtain

D, = —10/95
D, = 15/95¢8, = 3. (24)
C,=  5/95

If the sample of magnitude 2 is made S8, then

D, = 9/25
D, = 4/25:8, = —2. (25)
C, = 1/50[

In these last two examples, the solutions may be considered inferior
because the tap weights away from the center tap will be larger than
in the first example. However, stronger objections to the last two
choices for 8y will be raised shortly.

A point of considerable interest is apparent in the development
above. If any of the roots fall on the unit circle, then no solutions
exist in which the tap weights decay in magnitude in both directions
away from the center tap.

IV. TRUNCATION EFFECTS

In any practical equalizer, the number of taps available is not
infinite. Thus, we must investigate the effects of limiting the number
of taps to some reasonable finite value. For example, let us suppose
that we have N + n + 1 taps.

@ =0 for {3 <, (26)
j> N
Let us consider two schemes for setting the truncted tap weights.
A more or less obvious way is simply to take the infinite solution
[for example, equation (23)] for all available taps. This can be rep-
resented in matrix form:

[Bollar] = K] (27)

The matrix [B..] is the infinite matrix of 8 values shown in equation
(13). The truncated tap set is [ar],
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ay

Qy—q

laz] = | ao (93)

and [y] is the matrix of output sample values. Notice that [ar] may
be written as

[ar] = [aw] — [a] (29)
where [«,] is the infinite set of tap weights which give us the desired
output and

B
Ay ia

QN1

] =] 0 | (30)

[ S|

A_y—2
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Thus, equation (27) becomes

[B.llar] = [B.lle.] — [B.lle] = [u] — [e]. (31)

The desired output [p], all zero samples except the central one with
unit magnitude, is given by [B.][a.] while the error set [e] is given
by [Ba] [a].

It is possible to ealeulate this error set exactly, but an approxi-
mate bound should suffice. Assume that N and n are large so that the
« values in [e;] depend only on the roots which are the nearest to the
unit eirele. Let the magnitude of nearest inside and outside roots be
8, and ¢,. Then approximately

0, for j> N )

I

oy (32)
¢ for j < —n

Consequently the largest component of any error term in [e] will be

about

Max ecomp 2 fuu Cufls ' 2= Brae Dugpa™™' (33)

and each error term is the sum of less than N + n + 1 components.
Thus, an upper bound on the error terms is

| ewne | < | (N +m)Cu6"" | = [ (N + n) Dugl™™'| (34)

which vanishes as NV and n are made very large.

V. A SECOND METHOD OF TRUNCATION

This second method offers no improvement in ultimate equaliza-
tion over the method just discussed. However, it does lend itself to
iterative adjustment techniques whereas the first method tacitly as-
sumes a computation which provides the proper infinite solution to
begin with. In this second method we require that all the output sam-
ples (excluding y¢) corresponding to the N + n 4+ 1 taps, that is,
YNy YN-1y -+ = 3 Y2y Y1y Y15 Y=2, « « - 3 Y-n+1, Y-n, b€ zero. This criterion
may be called the Lucky criterion since it is the one R. W. Lucky
has used in his work.s

What does this criterion mean in terms of the solutions (powers of
impulse response roots) we discussed for the infinite tap case? We are
essentially constraining our system further by another set of boundary
conditions. We will call these boundaries the positive boundary at ay
and the negative boundary at «,, in addition to the central boundary
around ap where we have already discussed satisfying boundary con-
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ditions (those specifying Cy, Cs, ..., Dy, Da, ... ). As an example,
let us consider the equations at the positive boundary.
Boay + Boroyy + v een + Boway—m = Vv =0 (35a)

Blan\' + Bﬂaa\f—l + e + B—maN—(m+l) = Yn-1 = O (35b)

Bu—an + Bru—say—1 + +++ + Bonly—tmes—1y = Yv-r-n = 0 (35¢)

Bucay + Bu—ay—y + o0 - T+ BonlOn—tmiary = Yn-u = 0 (35d)
Equation (35d) can be satisfied with the solutions determined by
the central boundary, that is

a; = Ci6] + Cui + -+ + Ci6; . (36)
However, this solution will not satisfy the M equations above equa-
tion (35d) since the complete set of 8 values is missing in these equa-
tions. The exponentially growing solutions which were discarded
earlier must be used now. Thus,

a; = C0i + -+ 4+ Ci8] + ¢80 + .00 4 -+ + eotiy for j>0
(37)

a; = Digl + -+ + Dogh + di6} + oy + -+ + di6] for j<0
(38)
must be used in order to satisfy all the boundary equations. If & = M,
then the lower case ¢’s in equation (37) provide just enough con-
stants to satisfy the M equations of equations (35a through c¢). Fur-
thermore, I will equal m and the I lower case d's will provide just
enough constants to satisfy the m boundary equations at the nega-
tive boundary.

To illustrate the preceding discussion, let us return to the specific
example discussed previously. We use the results of equation (23)
with

.BI = —'2, re.l = 3: )60 = 11| IS—-'I. = —6. (39)
The positive boundary equations are

11[C(5)" + e®)" + co(—2)"]

- 609" +e@ +a(-2" =0 0

3[C.(.5)" + e(3)" + e.(—2)"] + 11[CL(B)V + es(—2)" ]

— B[C(5)" "+ aB) "+ a(—2)" "1 =0
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[ 3133 — 6) —gf-i_omn. . g }[ﬂ
3V%27 + 33 —6) —2"7%(12 — 22 — 6) JLc.
m N
_ L S%11 — 12)C, } (1)

53 + 22 — 24)C,

If we assume that N is large enough so that the value of the C
and D variables are unaffected by inclusion of the other roots, then
these C and D values may be used to determine the ¢ and d values.
With C; = 7/95, equation (41) becomes

E
6 —4]leh e

where
¢l = 3%, el = (—2)% g = (%)(.5)”. (43)
Thus,
e = €/12 e = —€/8
T\ oo TN v
@3)" ) (—2)"

Similarly, d; can be found by the single boundary equation at the

negative boundary.
{2(9%)@‘“ + 9(5%)(—%"}

12

(.5)". (45)

The results worked out above can be roughly represented graphi-
cally as in Fig. 5 where the magnitudes of the roots to the tap-number
power are illustrated. This figure shows what will be called a “good”
solution. That is, the deeaying solutions predominate with the grow-
ing solutions contributing only a small amount at the positive and
negative boundaries. The residual errors, that is, the y; values for k >
N and k < —n, will be of the same order of magnitude as those of
the first truncation method.

In order to have a good solution as demonstrated above, the proper
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Fig. 5 — Solution behavior for truncated equalizer.

number of arbitrary constants must be available to satisfy the posi-
tive and negative boundary equations. The number of equations at
the positive boundary is M, and the number of available constants
(outside roots) is @; similarly, there are I constants (inside roots)
available for the m equations at the negative boundary. Thus, the
necessary conditions for a good solution are

no. outside roots = @ = M = no. of samples following ,80}_ (46)
no. inside roots = I = m = no. of samples preceding 8,

We may use the same simple pulse to demonstrate a “bad” solu-
tion. If we go back to equation (24), we see that an infinite (non-
truneated) solution exists for the situation in which we decided to let
Bo = 3. The number of inside and outside roots remain the same in
this case, but M and m are both changed. Now M = 1 and m = 2,
and equations (46) are no longer satisfied. All the boundary condi-
tions can still be satisfied, but not in such a simple manner. That is
to say, in the preceding example, satisfying equations (46), a sepa-
ration of solutions is possible. The central boundary specifies the
values of the upper-case constants, then the lower-case constants are
set to compensate for the truncation effect at the positive and nega-
tive boundaries. Since the necessary compensation is small, and since
the effect of the lower-case constants dies out towards the central
boundary, only minor or negligible corrections to the upper-case con-
stants are necessary to keep the central boundary conditions satisfied.

Now let us consider what takes place when this step-by-step solu-
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tion is attempted when equations (46) are not satisfied. Suppose Cj,
D,, and D, are set to satisfy the central boundary according to equa-
tion (24). At the positive boundary, only one of the lower-case ¢’s is
needed so no difficulty arises and the positive tap solutions will, to this
point, be little different from that illustrated in Fig. 5. However, at
the negative boundary, the single available arbitrary constant d, is
not enough to satisfy the two boundary equations which occur in this
case. All the upper and lower case d-constants can be adjusted to
satisfy the negative boundary conditions, but this will destroy the
equilibrium of the central boundary solution since any change in the
upper-case D’s does effect the central equations. If one of the upper-
case D’s is constrained by the negative boundary, then the remaining
unused lower-case ¢ can be brought in to provide enough arbitrary
constants to satisfy the eentral boundary conditions. The net effect of
all this will generally be that a growing solution must be made to
have a nonnegligible contribution at the central boundary. Conse-
quently, it will be large at the positive boundary. This is illustrated
in Fig. 6.

When the situation discussed above and represented in Fig. 6 oc-
curs, the residual values of v, outside the equalization region will be
large and will generally grow larger as the number of taps is increased.

As an actual example of a bad solution of the type discussed above,
consider the pulse illustrated on page 563 of Ref. 5. The polynomial

- J
_———IC487I
¥
J
lcygdl—~_
N
|C2¢’é¥‘\

Fig. 6 — Typical solution behavior when the conditions of equations (46) are
not satisfied.
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which represents this pulse with g, set as the peak value is
B(z) = 152° — 202" + 402° — 602° + 02* + 1152°
+ 602* 4+ 20z + 10. (47)
Notice that with this choice for 3,,
M=5 m=3. (48)

The root locations for this polynomial are illustrated in Fig. 7. There
are four inside roots (I = 4) and four outside roots (@ = 4). Con-
sequently, equations (46) are not satisfied and no good truncated
solution exists. This is verified by the fact that when Lucky at-
tempted to equalize this particular pulse, the equalizer gave an output
pulse with large yx, & > N. This indicates that a solution such as that
shown in Fig. 6 has been approached.

i

\
\
.
L\~

- 2
e =Re(Z)
TS
M N
) To
UNIT CIRCLE—
|
I

f

Fig. 7— Root locations of pulse page 563 of Ref. 5. B(z) = 1528 — 2027 4 40z° —
6025 + 0z¢ 4 1152* + 6022 + 20z + 10 6, 6,* = 0.404 £ =+ 89.8° 8y, £.* = 0.652
Z £ 169.9% ¢y, ¢1* = 1.642 £ = 27.7° by, pe* = 1.804 £ =+ 94.4°,

b Im(2)
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If 8, were shifted (delayed) one sample so that it would be the
coefficient of the fourth-degree term of B(z), then equations (46)
would be satisfied and a good truncated solution would exist. Notice
however, that in this case 8, would be zero which presents a severe
problem in iteratively searching for this good solution.

V1. ITERATIVE SEARCH FOR EQUALIZATION

The diseussion has indicated that, except for singular cases where
one or more roots of B(z) are on the unit cirele, equalization solutions
exist (for the infinite tap case) in which tap weights decrease expo-
nentially in both directions from the center tap. Furthermore, good
trunecated solutions exist which force all v (—n < k £ N, k = 0)
to zero if B, is selected to satisfy equations (46), which can always
be done. The question which now arises is whether a simple iterative
search routine will lead to a desirable equalization.

When presented with an impulse response to be equalized using a
truncated equalizer and the Lucky ecriterion of forcing output samples
to zero, a hierarchy of questions must be considered:

(¢) Is the pulse equalizable? That is, are all the roots off the unit
circle? (If there are roots on or very close to the unit circle, a change
of timing, that is, varying = in equation (3), will usually move the
roots off the unit cirele.)

(i) If the pulse is equalizable, does a good truncated solution exist?
A shifting of 8 subseripts can always guarantee the existence of a good
solution by satisfying equations (46), but will sometimes create con-
vergence problems.

(117) If the pulse is equalizable and a good truncated solution exists,
will a simple iterative search find this solution?

The iterative method of searching for a solution which we consider
first consists of measuring the value (yz) of the kth output sample,
then subtracting some part of this from the kth tap weight.* That is

air-!-l) _ |:l':,ir) _ A’}':,” (49)

where the superseripts indicate the iteration number and A is a posi-
tive number less than one. This iterative process is not identical to
the method presented in Ref. 5 which increments the tap according

* This is not the only possible iterative search method, but it is one of the
simplest.
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to only the sign of y,.

a"" =" — Asgn [y"].

(50)

However, the two methods are very similar, and convergence of one

will almost always guarantee convergence of the other,

In matrix notation, the linear iterative search of equation (49) can

be written as

where
P [0
0
Qy_y :
0
a=|" p=11]
X 0
Cl’.:.l 0
LO—p ] o
By By Bug +eeviereee .. 0 0 0
Bi Bo Boi Bz s B
Bz Bi Bo By Boo e B
s B Bi Po Boi Bog ceieeeeeees B
B = By
Bo
Bo

(51)
(52)

8.

(53)
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Equation (52) ean be modified by using equation (51),
E(r) = B[a(r—ﬂ _ Ae(f—'l)] — u
= (I — AB)¢"™"
= (I — AB)¢” (54)
where I is the identity matrix.
Clearly, the iterative routine will converge if
lim ¢ = 0. (55)
However, it does not quarantee convergence to a good solution as
illustrated by the pulse of equation (47) and Fig. 7. There, con-
vergence does occur as was illustrated in Ref. 5 and hence, equation
(55) is satisfied but convergence is to a bad solution. In that case
no good solution exists to which the routine can converge.
The necessary and sufficient condition for convergence is that
lim (I — AB)" = 0. (56)
The matrix of equation (56), that is, the matrix I—AB will converge to
zero if and only if all its eigenvalues are less than one in magnitude.®
This is equivalent to the condition, illustrated in Fig. 8, that the
cigenvalues of B lie within a circle of radius 1/A centered at 1/A on

the real axis. Assuming that A can be made as small as necessary, a
necessary and sufficient condition for iterative convergence is that all

W
>
<
>
x
<
Z
(e}
<
b
REAL
0 AXIS

Fig. 8 — Necessary relation of A to loeation of eigenvalue in complex plane.
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eigenvalues of B should have a positive real part. 1f this condition is
not satisfied, (I—AB)" will diverge, and even if the initial error vector
€@ ig very small, the final error vector will grow without bound.

The italicized condition above, coupled with the root location con-
dition of equation (46), guarantees convergence to a good solution.
Certain other more restrictive sufficient (but not necessary) condi-
tions can be derived. These conditions may be easier to check for a
channel impulse response.

6.1 Necessary and Sufficient Condition for Monotonic Convergence.

The convergence of the iterative process will be called monotonic
if for any starting error vector ¢'°’, the following inequalities hold (a
superseript ¢ indicates the transpose of a matrix).

He® N> e N> e > > e[ > [ ] > -

(67
~
1€ )] = €™ = 3 (7T (59)
Since
Y = (T = AB)e™, (59)
it follows that
[ €77 || = ™" = (I — AB)'(I — AB)e™
= MM 4 A*[Be")[Be] — Aemr[B‘ + Bl
= 1€ [+ 4[| B || — Ac™B' + Ble”.  (60)

Thus, equation (57) will be satisfied for all possible initial error vec-
tors if an only if

¢[B' + Ble > A|| Be|| = A(Be)'(Be). (61)

Since the right side of the inequality is always positive, the inequality
can be satisfied for all possible nonzero ¢ only if [B* + B] is positive-
definite. If this is true and

min 5e
. €

then equation (61) will be satisfied for all ¢« and the iterative process
will be monotonically convergent.

> A (62)



EQUALIZER CONVERGENCE 1795

If [B* + B] is not positive-definite, convergence can still occur.
However, stating the conditions for convergence becomes more dif-
ficult. For example, if [B'+B] is not positive-definite then for some
vector, say ™1,

E(rvl}l[Bl + BIGU_” < 0 (63)

and

H Etr—l) H < H E!r) H ) (G_})
But if for e = "

(BY'[B' + Bl(Bo > ~ 1A' || B'e || + 247 || Be |
+ A7 || [B' + Ble || — 2A¢'(B' + Ble}  (65)

then

H e[:-—H H > H E(:u-l “ . (66)
Very roughly speaking, equations such as (65) which can be developed
indicate that [B*+B] should yield a predominantly positive quadratic
form in order to have convergence. What we mean by this can best
be illustrated graphically, as in Fig. 9.

6.2 FPurther Sufficient Conditions for Monotonic Convergence

The positive-definiteness of [B'+B] is a necessary and sufficient
condition for monotonic convergence. Being somewhat more restric-
tive will yield other sufficient (but not necessary) conditions. We
notice that [BY + B] is a Toeplitz matrix, that is,

[Bx + B] = [biII! bli = bli—il = 6“'-1') + B(i-l) v (67)

i

etigtrmye

~ — NEGATIVE REGION

VARIATION IN DIRECTION OF VECTOR € WITH
ITS MAGNITUDE ||€|| HELD CONSTANT

Fig. 9 —Tllustrating a predominately positive quadratic form.



1796 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1068

Thus, it has some of the necessary attributes of a correlation matrix.
A correlation matrix is positive-definite, so if we can show that
[B4B] is a correlation matrix, then this is sufficient for positive-
definiteness. If [B' + B] is a correlation matrix then the polynomial
B(z) + Bt(z) = P(z), where

B(z) = Buz""™™ + +++ 4+ B_.

B'(z) = B2 + -+ + Bue" ™ (68)
must have no odd order roots on the unit circle. Root locus methods
may be applied here, that is, the loci of

o= (69)
must not eross the unit circle. Notice that this is a necessary condi-
tion that [B' 4+ B] be a correlation matrix and it is sufficient but not
necessary for [B' + B| being positive-definite.

A more restrictive condition leads to another sufficiency condition.
If (Lucky condition, Ref. 5)

B> 2| 8|, thatis, D, <1 (70)
k=0

then it is easy to see that B'(z) + B(z) has no roots on the unit
cirele and thus [B' + B] iz a correlation matrix and positive-definite.
Notice that equation (70) iz not a necessary condition for [B' + B]
being a correlation matrix.

The various conditions discussed above are summarized in Fig. 10.

_-— SPACE OF ALL B MATRICES

-
’,/ //,'5'0 SATISFIES ROOT-LOCATION CRITERION, Eq.(46)
¥ i
r =} -+ — CONVERGENT REGION
L~ == WHERE Re (M) >0
7

—=— 11— MONOTONIC CONVERGENCE
WHERE (Bt+B) IS
POSITIVE — DEFINITE

~|-|- (B*+8)1S CORRELATION
MATRIX

T —INITIAL ABSOLUTE DISTORTION Dg <t

Tig. 10 — Illustrating the different convergence regions.
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VII. MODIFIED ITERATION PROCESSES

In the sample iteration process which has been discussed to this
point, the change in tap weight «; depends only on the output sam-
ple value y;. Let us generalize o that the change depends on a linear
combination of output samples.

Ba'” = 4
¢’ =" — = Ba" — pur- (71)
a"t =o' — ATV J
That is to say, the (» 4+ 1)st value of tap j is
a;”“ = ﬂf:"r] — A :;Z l’sn-flf-rl- (72)

Manipulation of equations (71) leads to a result similar to equation
(54)

¢” = [I — ABVT ™. (73)

Consequently, all the sufficient and necessary conditions which have
been developed on the previous pages can now be applied to the
matrix BV. Now, however, we have considerably more latitude since
we are free to speeify V.

As an example, let us suppose that V is chosen to equal Bf. Then

BV = BB' = positive-definite (74)

and monotonic convergence is guaranteed. This is a particularly ap-
pealing way of selecting V since the sample weighting can be deter-
mined directly from the initial channel impulse response.

Vg = Vi = Bay . (75)

It is very interesting that the weighting suggested above is very
nearly equivalent to inserting a tapped-delay-line matched filter
ahead of the equalizer. A matched filter, whose tap weights are equal
to the A values in reverse order, will yield an output whose samples
will form a B matrix which is a correlation matrix. Thus, the itera-
tive search will be monotonically convergent in this case also. The
weighting suggested above yields the same matrix except for “edge
effects.”

This can be illustrated by the following example. Suppose there
are just three g values: 4 =1, By = 2, 1 = —2. Then, with V set
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equal to B!, and assuming a six-tap equalizer so that B is a 6 X 6
matrix, we obtain

5 —2 —2 0 0 0
-2 9 =2 =2 0 0
-2 -2 9 -2 -2 0

0 -2 -2 9 —2 =2

0 0 -2 —2 9 =2
Lo o o0 —-2 —2 8l

BV = BB' = (76)

On the other hand, the modified B matrix following a matched
filter would be

9 -2 -2 0 0
—2 9 -2 -2 0 0
-2 -2 9 —2 =2

0 —2 =2 9 -2 -2

0 0 -2 -2 9 -2
L O 0 0 -2 =2 9

Setting V = B! will guarantee monotonic convergence. However,
sinee in most eases B is such that [B + B] is close to being positive-
definite, it is probable that a less extensive V would be sufficient to
guarantee monotonic convergence. As an example, suppose that V
is chosen to be a small deviation on the standard iteration of equa-
tion (58)

V =1+ 8B, 6> 0. (78)

Now,
BV = B 4 8BB' (79)

will have a quadratic form which is greater for every vector e than
the quadratic form for the matrix B alone. Thus, if the negative re-
gion such as is illustrated in Fig. 8 is small, then BV can become posi-
tive-definite for relatively small 8.

Perhaps a more reasonable way of selecting a ¥V which approximates
Bt is to modify equation (75) in the following manner.
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P {6*-* it [Aerlzl (80)
0 if |Bi;| <L

Thus, only the more signifieant values of 8 are used in weighting the

errors. In general such a V will force B towards positive-definiteness.

However, there seems to be no general rule for seleeting the critical

value of L, that is the maximum L which will just permit positive-

definiteness.

VIII. CONCLUDING REMARKS

Virtually all input pulses are equalizable in the sense that there
exist tap-weight adjustments which will force the output samples in
the adjustment interval to zero while the output samples out of the
adjustment interval remain small. Furthermore, the residual samples
outside of the adjustment interval will become smaller as the number
of taps (length of transversal filter) is increased.

There are just two necessary conditions in order for the preceding
statement to hold. The first is that the polynomial representing the
input pulse have no roots on the unit cirele. Although the singular
case where roots are exactly on the unit circle is highly improbable,
roots very near the unit ecircle lead to relatively larger residual er-
rors and greater potential for instability.

The second necessary condition is that the selection of the central
sample value must be such that equation (46) is satisfied.

Although a pulse may be equalizable, the simple first-order itera-
tive search for the proper tap weights given by equations (51) and
(52) may not be convergent. If it is convergent, and assuming the
two conditions above are satisfied, it will converge to the proper tap-
weight settings. If it is not convergent, it will be divergent with in-
creasing errors in the adjustment interval. The convergence or diver-
gence is independent of the initial tap settings. Thus, even though
the tap weights might be set to optimum initially, if the system is in
the iterative search mode and is divergent, it will eventually diverge.

The necessary and sufficient condition for convergence is given in
Seetion VI along with a hierarchy of more stringent sufficient condi-
tions. In general, convergence will be dependent upon the absolute
timing of the sampling. Consequently, a particular pulse which 1is
equalizable for two different timings might be convergent for one
timing and divergent for the other.

If the first-order iterative procedure is divergent, a more complex
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weighting of the output errors in adjusting the tap weights can im-
prove the situation. At least one weighting given by equation (75)
will guarantee convergence.
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On Solutions for Two Waves with

Periodic Coupling

By S. E. MILLER
(Manuseript received January 25, 1968)

An exact solution for the coupling effects between two waves with a
particular complex periadic coupling function is presented; the parlicular
coupling function gives the same wave inleractions as constant coupling but
at a translated value of differential phase constant. A transformation is
given which permits known theory for constant coupling to be applied to the
periadic coupling case.

Approzimate solutions are given for periodically reversed coupling
(stnusoidal or square wave) belween two waves, and calculalions are pre-
sented which indicate the solutions are valid jor arbilrarily long coupling
regions or arbitrarily large integraled coupling strengths. The region of
validity for earlier perturbation theory is defined and proved to include the
cases of interest for multimode circular electric waveguides.

I. INTRODUCTION

This paper describes some solutions for two waves with periodic
coupling. Coupled waves have been important in a wide variety of
communication devices: transmission lines, directional couplers, am-
plifiers, and in deseribing mode interchange phenomena generally.!
Multimode transmission lines have been advantageously described
through coupled wave equations, and a particular situation of im-
portance exists in the circular electric waveguide.

As first shown by H. E. Rowe and W. D. Warters? periodic
straightness variations cause periodically reversed coupling from the
circular electric wave to several other waves, and this interaction
results in the most difficult tolerances on the fabrieation and instal-
lation of the waveguide itself, Publications by H. E. Rowe and
W. D. Warters have provided a comprehensive understanding of the
fundamentals involved and have given explicit expressions based on
perturbation theory for calculating the loss versus frequency varia-

1801
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tion resulting from such periodic mode conversion.® A subsequent
publication by D. T. Young* has indicated how the approximate
solution of Rowe and Warters may be transformed mathematically
to show explicitly the way differential attenuation smooths out the
mode-coupling effects on the loss versus frequency characteristic.
Young's solution depends upon a valid perturbation solution. A
discussion of the accuracy of the perturbation solution is given by
H. E. Rowe;* when the differential attenuation is too small the per-
turbation solution breaks down and it is of interest to know exactly
where and quantitatively how this oceurs.

We show in this paper that a certain periodic coupling function
has exactly the same effect on waves of unequal phase constant as
uniform coupling between waves of identical phase constant. A trans-
formation is given to allow the use of earlier theory for periodically
coupled waves.

Also presented here is an approximate solution for the periodic
coupling distribution sketched in Fig. 2 valid for any value of dif-
ferential attenuation. It is true that known solutions for uniform
coupling, as in Fig. 1, can be applied to Fig. 2 by simplying solving
for the output values at = A,,/2 and using these as the input bound-
ary conditions for the transmission region starting at = A./2. The
resulting exact expression representing conditions at & = A, can be
expressed as a matrix and raised to the n® power to represent the
solution at = n\,. We seek here a simpler form of expression in
which the functional interrelations can be visualized without exten-
sive numerical calculations.

II. EXACT SOLUTION FOR TWO PERIODICALLY COUPLED WAVES

We start with the following equations for two coupled waves:

4 5@ = —viBy + cu@Fs 1)
dizEz(z) = ¢(D)E, — 7.E, (2)

c(z)

Fig. 1 — Constant coupling.
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| c(z)
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- L T
gt
Fig. 2— Square-wave coupling.

in which y; and y. are the complex propagation constants and ¢;2
and coy are coupling functions. Appendix A shows that the coupling
functions

¢ = je, exp (jk.z) = je[cos kz + jsin k2] (3)

and
¢12 = je, exp (—jk.2) = je,[cos kz — jsin k2] (4)
give the same solutions previously found® for k, = 0 provided that
k.= (8. — B:) = AB (5)

where ¢, is a constant and

Yo = @m + B - (6)

When (5) holds, complete transfer of power between waves can

oceur. When (5) does not hold, the resulting wave interactions ecan

be calculated using previously developed theory for k. = 0 and
substituting AB for AB in the k. = 0 solutions, where

AB = A3 + k. (7)
111, PHYSICAL REALIZATION OF IDEAL PERIODICALLY COUPLED WAVES

We describe here a physical realization of waves coupled according
to equations (3) and (4), and cite an advantage in mode selective direc-
tional couplers.

Figure 3 shows a mode-selective coupler between TEZ of rectangular
guide and T'Eg, of round guide. The thin dielectric lining is used to break
the TES, — TM?, degeneracy. The longitudinal magnetic intensity kS
of the TES, wave is coupled to the longitudinal magnetic intensity S
of TEZ in the off-axis longitudinal slots and is also coupled to the trans-
verse magnetic intensity A5 of TE in the 45° slots on-axis. In each case
the magnitude of the coupling is set by the length and width of the slot.
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v
COUPLING
LINING SECTION A-A s5LOTS

I
DIELECTRIC

Fig. 3 — TE"-TE°, coupler using unequal phase constants in the rectangular and
round waveguides,

The phase reversal of the longitudinal A7 coupling is aceomplished
by reversing the slot position relative to the centerline, and the phase
reversal of the transverse A7 coupling is accomplished by reversing the
slant angle of the slot. One set of slots represents the sine term. It is
not necessary that any particular fraction of A, be used in a coupler,
since the coupling is always in the same phase relative to the desired
waves in the two guides. To accomplish the desired mode selectivity
the AB between the TES and TE?, waves is made equal to k, = 27/\,,
as in equation (5).

An advantage of a coupler of this form, compared with one in which
constant coupling is used with AS = 0, is that the waveguides can have
the standard dimensions set by other considerations.

Other illustrations of useful coupling between waves of unequal phase
constants will be given in another paper which the author is preparing.

IV. SQUARE-WAVE OR SINUSOIDAL COUPLING

We present here the results of Appendices B and C which discuss
approximate solutions for the cases in which the coupling is a square
wave as in Fig. 2, or the corresponding sinusoidal

c(z) = sin (2wz/\,). (8)

Both solutions are expressed in the form and notation of a previous
publication® giving the solution when the coupling is constant, and
the boundary conditions E,(0) = 1.0 and E,(0) = 0 are impressed:

E\(z) = 77" {Ae™" + Be™| (9)

SRl i S

2v/

Eyz) = {e"" — e} (10)
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in which
-
A= L% —% = — 2o 1)
)42
B =3+ ! 2 v = (12)
o= ey e/ (13)*

2 2

Vo () - ) - e o
Aa = oy — a3

Ay, = Ao + tAB. .

The wave interactions are deseribed by the above equations provided
the following values of ¢, and AB, given in Table I are used.

TABLE I — VALUES OF ¢, AND AB,

Coupling function
(see Fig. 2) e Ap.

Constant = ¢ c AB = (By — Ba)

Square-wave of 2
e A8 — 2n 1 — Q’E)
}\m ™

magnitude ¢ and
period An

¢ sin 2”)
lﬂl

E ]

2
AB— 22
=

(ST Y

These solutions, equations (9) and (10), have been obtained in Appen-
dix B by relating the rate of transfer of power (that is, transfer over a
short length interval) for the periodically reversed coupling to that for
constant coupling, and noting the effective value of coupling c, and
effective differential phase constant AS, . The solutions are correct
for z equal to an integral multiple of )\,/2, and may be in error by less
than approximately 0.2¢\,/m at intermediate values of z.

There probably should be a correction factor in AB, for sinusoidal

#y, corresponds to the 4 sign and 7. corresponds to the — sign.
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coupling similar to the radical shown in Table I for the square wave
coupling; the work done thus far has not defined what it should be, but
for small ¢, the radical is negligible for most purposes.

The values of AB: in Table I bear marked resemblance to equa-
tion (7); however, because the simple sinusoid or square wave cou-
pling phase is two-valued (versus z) instead of continually progressing
(equations 3 and 4) to provide coupling continuously in step with
the phase changes of waves 1 and 2, there are local maxima® in
coupling effects at other values of Ag for sinusoidal or square wave
coupling. Appendix B shows that the wave interaction effects are
properly described for square wave coupling in the regions near

ABN,, = 2rp a5
p=1,3,5
by the transformations
2 2

88, = 28— p 31 — (%) (16)

m p‘n’

2c

o= 2. a7

Because ¢, drops off rapidly with increasing p the corresponding wave
interaction effects drop off also.

4.1 Numerical Comparison of Approximate and Exact Solulions

A few calculations have been made to find quantitatively the
error resulting from the approximations made in equations (9) and
(10) for coupling as in Fig. 2. An “exact” solution is obtained by
using exact uniform coupling theory on each interval of 0.5 A, the
output of one interval being taken as the input to the next interval.

We take first the simplest case,

Aa = 0.
Then equation (9) becomes

E, |sa-0 = exp [i (ﬂl'g_ﬁz)_‘]

A8,
-{cos [ v %cz] - 2-1(;4;/'”) sinil: v % CZ]JL (18)

*Rowe and Warters noted this in their work recorded in Ref. 3.
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By |aa-o = —exp [z’ Bt BE)"]{ f-sin [\/w f—rcz]} (19)

in which

v = (ﬁ%) +1 (20)

and A, is as given in Table I for square wave coupling. We notice in
passing that for Ag, = 0

E, = cos (7% cz) (21)

B,

% 8in (% cz) (22)

and the power exchanges completely back and forth between the
two waves as a function of z; this is of course identical to the be-
havior in uniformly coupled waves, but with a modified period given
by the 2/= factor.

We take for the first numerical comparison the condition

2, _T
T 2

so that at AB, = 0, B, = 0 and | E; | = 1.0. The additional specific
numbers used are

E, (2) L::rz:
czZ
P S
CAm /
= 71 4
71
/S|
CAm ‘_f '/
T [T S
y) |
-
€
/ |
4 |
| | ——
Am Am
2

Tig. 4— Undriven-wave amplitude versus distance for lowest order square-
wave coupling.
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A = 2 feet

Il

2 1000 feet

c = 2.46740 X 107° ft7'.

Fig. 6 shows a plot of the loss 20 log | E, | (labelled | Aa/c | = 0) versus
AB.\../2 and Table IT shows the comparison of the exact versus approxi-
mate calculations, the latter obtained from equation (9) and associated
expressions. It may be kept in mind that Ag and A, are inversely pro-
portional to frequency in many cases of interest, so that Fig. 6 is a loss
versus frequency plot associated with a particular periodic coupling
component. The radical in the expression for AB, was ignored in the
comparison of Table IT and this might account for the consistent positive
difference (approximate—exact) for AB\,./2 greater than «. Aside from
the pole at ABA,./2 = 7, the two calculations agree to better than 1
percent in dB even when the loss is a few tenths of a dB.

Figs. 6 and 7 and Tables ITI, TV, and V show similar comparisons
for Aa = — | ¢|, Aa = =5 | ¢|, and Ae = —50 | ¢ |. Excellent agree-
ment is obtained in all cases.

Table VI shows a comparison of the phase angle on E, , computed by
the two approaches. For the points shown and for the other points
(not shown) corresponding to the amplitude values of Tables II and V
the agreement is excellent. Fig. 8 shows a plot of the phase, where odd
symmetry about A8, = 0 is understood.

A check has also been made on the accuracy of equation (9) in the
region near A\, = 6, corresponding to p = 3 in equations (15) through
(17). The same parameters were used as in the calculations for Figs.
6 and 7. The results are plotted in Figs. 9 and 10 which represent both
the approximate calculation from equation (9) and the exact caleula-
tion. The differences are on the same order as given in Table II, and
are too small to show in the figures. Figures 9 and 10 may be compared
directly with Figs. 6 and 7 to see the ‘“‘third harmonic’ loss (labelled
E?} in Figs. 9 and 10) in relation to the ‘“fundamental” loss, Figs. 6
and 7.

4.2 Inlerpretation and Further Simplification

Consider first the shape of the loss versus AB, (equivalent to loss
versus frequency) curves, In the limit
| Aa

> 1 (23)
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Ez (2)
ﬁn' T -:lZ //
6 'l —
e /[ —
__C)\m I~ // | 2CZ
o vl 3T —
| -
=
|
= | ! -
Am Am Am
6 2

Fig. 5— Undriven-wave amplitude versus distance for “third harmonic” in
square-wave coupling.

TaABLE II — Exact AND APPROXIMATE CALCULATIONS
oF E, ror | Aa/c| =0

Aﬂ(’“_") 20 log | 2 | Approximate
2 Approximate Exact —exach
x — 0.0157079 — 0.1662db — 0.1680db + 0.0018db
m — 0.01413716 — 0.1389 — 0.1403 + 0.0014
r — 0.01256637 — 0.0094 — 0.0096 -+ 0.0002
r — 0.01099557 — 0.0951 — 0.0960 -+ 0.0009
= — 0.009424777 — 0.4270 — 0.4300 + 0.0030
r — 0.0078539816 — 0.4973 — 0.4999 + 0.0026
= — 0.006283185 — 0.1156 — 0.1161 + 0.0005
= — 0.0047123889 — 0.1260 — 0.1267 -+ 0.0007
= — 0.00314159264 — 1.6530 — 1.6582 + 0.0052
x — 0.0015707963 — 6.4362 — 6.4540 + 0.0178
T — 122.73 — 58.54

= -+ 0.0015707963 — 6.4362 — 6.4184 — 0.0178
= -+ 0.00314159264 — 1.6530 — 1.6481 — 0.0049
= + 0.0047123889 — 0.1260 — 0.1255 — 0.0005
w + 0.006283185 — 0.1156 — 0.1154 — 0.0002
7 + 0.0078539816 — 0.4973 — 0.4949 — 0.0024
r + 0.00042477 — 0.4270 — 0.4243 — 0.0027
m + 0.01099557 — 0.0951 — 0.0944 — 0.0007
r + 0.01256637 — 0.0094 — 0.00964 -+ 0.0002
= + 0.01413716 — 0.1389 — 0.1378 — 0.0011
= -+ 0.0157079 — 0.1662 — 0.1646 — 0.0016
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AB (%) IN RADIANS
Fig. 6 — Driven-wave loss versus AB. near AfAm = 2x (fundamental) for
| Aefe| = 0,1,5.

earlier perturbation theory* has shown that the fractional frequency
interval between half-height points on the loss curve is

Af _ Aﬁ*% _ %
f_A,B_z.Aﬁ (24)
or
BB,y =2 | Aa |. (25)

Table VII shows a comparison between that limiting value and the
true value for the numerical cases ahove, including | Aa/c | from one
to 50. Even at | Ae/c | = 1 there is only a 30 per cent error.
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Consider the limiting case Ae = 0. Then

E, =[1— (B)7 (26)

and nulls in the loss curve oceur when equation (19) representing
E. is zero. This gives

4 2 \2
A.B* Iluuunu]l = —f (’;E) = 1_ (27)

When we also have the perturbation condition, ¢z < 1, equation (27)

a . [ [

61 W%%'% 1
i Il

- . |

|l
o.al_

0.6

04

0.2

o

20 Loc|E}| N DECIBELS

0
o
Q
@©

= 7
- ] ‘. // \\
0.04 - / \

/ N

/ N [

/ AN

0,008 [— / 2,

0.006 |-

I
I
I |
/N
\

o
(o]
o

1 1 |
-08 -06 -0.4 -0.2 Q 0.2 04 0.6 08
A

AB4 (—2—) IN RADIANS

Fig. 7—Driven-wave loss versus Af. near AfAn = 2= (fundamental) for
| Aefc| = 1,5,50.
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becomes

2
AB* ]nall == ;r

(28)

which agrees with previously known perturbation theory.® For this

TaBLE ITI— Exact AND APPROXIMATE CALCULATIONS
oF E, vor | Aafc| =1

A,B(M) 20 log | Ei | Approximate
2 Approximate Exact —exnot
x — 0.0157079 — 0.2898 — 0.2910db + 0.0012db
= — 0.01413716 — 0.3438 — 0.3450 + 0.0012
= — 0.01256637 — 0.4152 — 0.4164 -+ 0.0012
x — 0.01099557 — 0.5452 — 0.5440 + 0.0012
x — 0.000424777 — 0.7300 — 0.7319 -+ 0.0019
x — 0.0078539816 — 0.9601 — 0.9620 + 0.0019
x — 0.006283185 — 1.3106 — 1.3126 -+ 0.0020
= — 0.0047123889 — 2.0216 — 2.0243 + 0.0027
r — 0.00314159264 — 3.3781 — 3.3823 + 0.0042
« — 0.0015707963 — 5.3475 — 5.3523 + 0.0048
T — 6.5701 — 6.5705 + 0.0004
o + 0.0015707963 — 5.3475 — 5.3434 + 0.0041
o -+ 0.00314159264 — 3.3781 — 3.3746 — 0.0035
x + 0.0047123889 — 2.0216 — 2.0194 — 0.0022
= + 0.006283185 — 1.3106 — 1.3092 — 0.0014
7 + 0.0078539816 — 0.9601 — 0.9588 — 0.0013
T + 0.00042477 — 0.7300 — 0.7289 — 0.0011
« + 0.01099557 — 0.5425 — 0.5416 0.0009
r + 0.01256637 — 0.4152 — 0.4146 — 0.0006
r + 0.01413716 — 0.3438 — 0.3430 — 0.0008
r -+ 0.0157079 — 0.2898 — 0.2892 — 0.0006

TaBLE IV— Exact AND APPROXIMATE CALCULATIONS
oF B, vor | Aa/c| =5

A (A_"‘) 20 logio | 21 | Approximate
& 2 Approximate Exact —exact
x — 0.0314159262 — 0.2446db — 0.2452db + 0.0006db
x — 0.01884955 — 0.5337 — 0.5344 -+ 0.0007
2 — 1.6195 — 1.6197 -+ 0.0002
= + 0.01884955 — 0.5337 — 0.5344 -+ 0.0007
= + 0.0314159 — 0.2446 — 0.2445 -+ 0.0001
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TaBLe V— Exact AND APPROXIMATE CALCULATIONS
oF E, For | Aa/c| = 50

20 logiw | Ei |

Aﬂ(,\—m) Approximate
2 Approximate Exact ~exack
= — 0.314159 — 0.0234db — 0.0238db + 0.0004db
7 — 0.1884955 — 0.0523 — (.0525 — 0.0002
L — 0.1724 — 0.1727 + 0.0003
w + 0.1884955 — 0.0523 — 0.0525 -+ 0.0002
=+ 0.210911 — 0.0418 — 0.0421 + 0.0003
case, from (26)
E,~1-1%|E/[
. 2 2
fi [\/(Afi) b1l
1 dr/c Ll

and the loss has the

(29)

-

NEARS

J
|

form (just as in the case of sinusoidal coupling?)

U

(s in a,u) 2

which in our terminology has half-peak loss (with Ag, the variable) at

Aﬁ*g Iaa-u

1.811'_
4

(30)

For the numerical case of this paper, z = 1000 feet and

AByy |aa-0 = 0.00565.

TaBLE VI— PHASE ANGLE OF F, FOR | Aa/c| = 0
Aﬂ()un Angle for Ey Approximate

2 ) Approximate Exact —exact
-+ 0.0015707963 — 67.753° — 67.726° — 0.027°
= + 0.00314159264 — 47.111 — 47.096 — 0.015°
x + 0.00471238891 — 30.086 — 30.092 -+ 0.006°
= + 0.0157079 — 9.085 - 9.104 + 0.019°
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Fig. 8 — Phase of driven wave versus Afe\m/2 near AfAm = 2m for |Aa/c| =
0,1,5.

In Table VII, the calculated value 0.0064 at | Aa/c | = 1 is reasonable,
since D. T. Young’s* work based on the perturbation theory indicates
that the true loss peak is the convolution of the shape for | Aa/c| > 1
with the shape for | Aa/c| = 0.

Consider now the peak loss at A3, = 0. When | Aa/c | > 1, and
e*** & 1, it can be shown that equation (9) simplifies to

E: l =™ (31)

Aa

>1

eﬂnl & 1

AB, = 0
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where

4

s = —sC
™

c

Al (32)

In Table VIII we compare the loss computed from (32) with the
actual loss, and see that even for | Aa/c | = 1 the error is only ~30
percent. A consideration of the terms of equation (9) indicates that these
errors would be approximately constant with increasing z.

A further simplification of the calculation of loss components now
seems justified. For | Ae/ec | = 1 it would appear that (31) and (32) can
be used to calculate the peak loss due to a single square-wave coupling

2 T

-~ /
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" /]

N
/

o o
o oo

20 LOG|E}| N DECIBELS
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2 2
I
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>

o
o
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___—-/

e
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0.006

0.004
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| U |
0.001 |
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-0.04 -0.03 -0.02 —0.0! o] 001 002 0.03 0.04
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Fig. 9— Driven-wave loss versus Af. near ASAm = 6x (third harmonic) for
| Aa/c| = 0,15.



1816 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968

0.2 T |

0.1 = }
0.08
ooel—1 —— 1

0.04 —— —

0.02

0.0!
0.008 [— / \\
0.006 | /

> N

0.002 7 AN

/ AN

0.001 - — ~C

0.008

0.006
-0.8 -0.6 -0.4 -0.2 0 0.2 04 06 0.8

A

LY (T"’) IN RADIANS

20 LoG [E}| IN DECIBELS

Fig. 10 — Driven-wave loss versus Afe near AfAm = 6w (third harmonic) for
| Aafe | = 5,50.

component. And the shape versus AB, can be calculated from the work
of D. T. Young, leading to an over-all attenuation defined by

| Ey| =€ (33)

where
4

Py = ——3¢€
T

1

ﬂ)g
Lot ( Aa*

C

A (34)

in which we require z and Aa/c such that ¢*** < 1, | Aa/c | = 1.

TarLE VII— LmmrriNg AND TRUE VALUES

(e8] (2) (3) .
Ratio of
Ac Col. (3)
l — | Limiting value of AB.1/2 | Caleulated AB.1
c from equation (25) from Figs, 6and 7 Col. (2)
1 0.00493 0.0064 1.3
5 0.0246 0.0265 1.077
50 0.246 0.250 1.016
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TarLe VIII— Loss COMPARISON

AB., =0

Aa
= Loss (dB) from Actual loss (dB)
c equation (32) equation (9)

1 — R.68 — 6.57

5 —1.74 — 1.62
50 — 0.1737 — 0.1727
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APPENDIX A

Coupling Functions

We use the following equations to represent two coupled waves of

amplitude B, and E,:

d
Ez‘E;(z) = —v, B, + ¢ (2)E,

d
d_zEE(z) = () E, — v.E,

where y, = an + jB» = complex propagation constant. Let

ikez

e (2) = jee
Energy conservation leads to:

Cialz) = je,e 't
Also let

E ="V,

E, =¢"V,.
Then (35) and (36) become:

dV‘l . [yi=7a+ikel
= 1c VG Yi—7Fatikels
dz Kale
(_iL = jf.‘- Vle“['rl—'!:*'ii-l:
- .

dz

(35)

(36)

(37)

(38)

(39)
(40)

(41)

(42)
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We now see that the solution for %, = 0 holds for k, nonzero provided
that we make the change

AB:BI_B'2+kc

and put AB in place of A8 = 8; — 8. in the solution for k; = 0.
Complete transfer of power between waves can occur when AB =
0 or

k. = (8. — By). (43)
APPENDIX B

Square-Wave Coupling

We start with equations (1) through (4) representing uniformly
coupled waves with k. = 0 (see Fig. 1). Equations (9) through (14) with
¢, = ¢ and AB, = AB give the amplitude of the output waves at z for
the conditions F, = 1.0 and E; = 0 at z = 0. We apply these equations
to the coupling distribution of Fig. 2 and find that the output amplitude

for the undriven wave at z = \,./2 is:
A,B)”

] oo+ (28 J |

2%

=ams2 — €XP [“7(61 + B2) %

K,

In the ahove, the simplification A« = 0 has been assumed.

Using the output waves at z = \,/2 as input conditions to the
following coupling region (Fig. 2), the amplitude of the undriven
wave at z = ), is found to be:

(52)
v = (1) T
[(2) +1]

-sin® [%‘" \fl + (%ﬂ exp [—i @—j—@- A] (45)

The ratio of the undriven wave amplitude at z = A, to the undriven
wave amplitude at z = \,,/2 is [from (44) and (45) ]

E,
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B 2(%)

Ealmz 7 2
N+ (3)

ssim [‘% Ji+ (f)] exp [—j Gl xm]- (46)

By imposing the condition
CAm ABY T
5 \1+ ( ) =3 (47)

we notice that the magnitude of (46) approaches two for A3 >> 2¢, that
is, for very small coupling. Fig. 4 sketches the undriven wave amplitude
as a function of z during the first two coupling intervals. We will now
express the approximate or average coupling between the waves by
using the linear approximation %.(z) = 2cz/m. We notice that uniform
coupling without phase reversal would have resulted in the relation
E,(z) = cz. We therefore arrive at the transformation

¢ (constant coupling) becomes
2¢/w (for periodically reversed coupling).
(48)

The associated transformation of the condition for maxmium energy
transfer, from (47), is

2 J 2
A.B |mnxlmum converaion }\l 1— (Ek—m) . (49)
m T

We might notice here that the departure of the actual amplitude in
Fig. 4 from the straight-line approximation, shown by e in Fig. 4, has a
maximum value which can be shown to be 0.21(e),,)/7. Thus the devia-
tion between our straight-line approximation and the actual amplitude
becomes smaller for diminished values of coupling per unit A, .

We now specify ¢, and AS, in equations (9) through (14) to represent
the waves with periodically reversed coupling using the average coupling
approach, Since the in-phase build-up of power in the undriven wave is
a maximum for A specified by equation (49), we define a new dif-
ferential phase parameter to give a departure from this condition:

9 a
AB, = A8 — -'\-” \/1 _ (C_\_) . (50)
Nm ™
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By comparison with equation (7), which represents an exact solution
for complex coupling, this definition of AB, seems reasonable. Numerical
checks reported in the text verify this presumption. The value of ¢, is
given by (48).

It has already been noted, near equation (46) that two successive
\./2 coupling intervals give twice the undriven line amplitude com-
pared with the first \,/2 interval, which is just what occurs for small
constant coupling (no reversal) and A = 0. We also find that A8, and
¢, correctly give the wave amplitudes for periodically reversed coupling
at z equal to integral multiples of A,./2, even when Ag is not large com-
pared with 2¢. For example, letting E, at 2 = A,/2 be 0.707 requires
(AB/2¢) = 1 (see equation 44); we maintain equation (47) and (48) as
before. Then, from (45), | E, | becomes unity at z = A, which is also
predicted by AB, and ¢, in (9) through (14) and which is analogous to
the behavior of two conventional 3 dB directional couplers in cascade.

The above discussion represents the changes in wave propagation
introduced by coupling for A8 in the vicinity of the value given by
equation (49).

The perturbation solution® for sinusoidal periodic coupling is known
to yield coupling absorption peaks when

ABN,, = 2mp (51)
p=1,325---.

Similarly, there are other regions of strong interaction for the square-
wave coupling of Fig. 2. For example, consider Fig. 5, which represents
the situation when

o)

Jch, _ ST
5 = 3 (52)
There is another region of A8 defined by
o \/ (c?\ )2
A maximum conversion = 3-— — ___m 53
8 | S W — L5 (53)

where there is a local maximum of conversion. As diagramed in Fig, 5,
the average conversion coefficient is 2¢c/3w. Thus the appropriate values
of AB, and c, for equations (9) through (14) are

_2

* 7 3r

2ar A \2
AB, = AB — 3-T—4/1 — “_m)
B* B }\m 1 (311'

c

(54)



SOLVING COUPLING EFFECTS 1821

More generally there are absorption peaks at

o [T 73 \2
Ag, = A8 — p;\—”\/1 - (;’;—’") (55)
9
c, = Tfr (56)

where p = 1,3, 5, ...
APPENDIX C

Sine Wave Coupling
We start with equations (1) and (2) with the coupling defined

i = €2 = jesin (%E) (57)

Using perturbation theory?, and letting Aa = 0,
¥ g 2rs —iAfs
E,=c¢ | sin ) ds (58)

whiech yields

By = e {2—” - e*"““[z” - (%) + jABsin (2”"')]}
27|' = 2 )\m Am hm )\m
[(r) - Aﬁ}

(59)
Evaluating at Ag = 2=/, and z = nA,,/2 yields
. Am

Ez lAﬁnzwnm = “J‘%% (60)

withn =1,2,38. ...
It ean be verified that A8 = 2x/A,, yields the maximum value of
Eg at z = ﬂkm/z.

Thus the equivalent uniform coupling value for sinusoidal coupling is

¢, =¢/2 (61)

which appears in Table 1.
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