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Silicon diode arrays for use as the electron -beam accessed target in camera
tubes for the Picturephone® visual telephone set have been fabricated and
their properties evaluated. These targets offer significant advantages over the
antimony trisulfide target commonly used in vidicon-type tubes. But there
are certain potential limitations which must be dealt with in developing
a silicon target. Three of its critical requirements are adequate sensitivity
to visible light, low dark current, and junction uniformity and freedom
from defects across at least 300,000 diodes per square centimeter. Sensitivity
to visible light is expressed here by the efficiency for conversion of incident
photons to electrons in the read-out circuit. Conversion efficiencies exceeding
50 percent in the visible region have been achieved by oxidizing or by diffusing
phosphorus into the light -receiving surface to reduce the surface -recombina-
tion velocity. Diode leakage currents of < 1 X 10-'3 A per diode are re-
quired, and are obtained for target voltages up to about 5 to 7 V. Surface
generated current dominates in the 8-12 diameter diodes of the array, but
this component of current can be reduced substantially by use of (100)
surfaces or by hydrogen annealing. Visible defects in a picture can result
from leaky diodes or oxide pinholes which cause bright spots, and diodes
covered by oxide which cause dark spots. Our best targets show a video
display with only a few defects; processing must be improved to eliminate
defects completely.
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I. INTRODUCTION

A television camera tube with a silicon diode array target has been
reported recently by Crowell, Gordon and their co-workers.1-3 A target
of the general type used in this tube was first proposed in 1951 by
Reynolds,4 later discussed by Heijne,5 and recently analyzed by Wend -
land.° It is similar, but not identical in operation, to the evaporated -
film photoconductive target, typically antimony trisulfide, which is
commonly used in vidicon TV camera tubes.?

A vidicon-type tube is of interest for use in the Picturephone®
visual telephone station set because it is the least expensive and
smallest camera tube that has the required sensitivity and resolution.
The silicon target has certain potential advantages over the evap-
orated -film photoconductive target.

This paper describes the effect of bulk and surface properties on
the performance of the silicon target. The properties that dominate
the conversion of incident photons to electrons in the external circuit
and the diode leakage current are analyzed in detail. These analyses,
together with the relevant processing techniques and resulting be-
havior, have been combined into a description of silicon diode arrays
for image sensing.

The operation of the silicon target is illustrated in Fig. 1. A scan-
ning electron beam charges the diode -array side of the silicon target
down to cathode (ground) potential while the n -region is held a few
volts above ground. This puts reverse bias on the diodes. Light shin-
ing on the other side of the target and absorbed in the n -region gen-
erates holes, some of which diffuse to the diodes and reduce the nega-
tive charge on the p -regions. This reduction establishes a stored
charge pattern. The scanning electron beam returning to the site of
the diode deposits more negative charge, an amount proportional to
the light intensity. The recharging current constitutes the video signal.
Leakage of the charge pattern established by the light is prevented by
the rectifying p -n junction rather than by high bulk resistivity as in
the case of antimony trisulfide. The usual time between scans of the
electron beam at a given diode site is 1/30 second.

The silicon target has several advantages over evaporated -film
photoconductive targets such as antimony trisulfide:

(i) It does not show aging effects (burn -in) by intense light to which
it might be exposed accidentally, or by the electron beam. The absence
of burn -in by the electron beam permits electronic zooming.

(ii) Its photoconductive lag is negligible.
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Fig. 1-Schematic diagrams of silicon target, illustrating principle of operation.

(iii) It does not deteriorate on heating to temperatures sufficiently
high (,-:,-'350°C) for good tube processing required for long life.

There are, however, certain potential problems and limitations
which must be considered in developing a successful silicon diode
array target for a camera tube. Three of these, related to materials
and process factors, are:

(i) The target must have adequate sensitivity to visible light. We
express sensitivity as conversion efficiency ne which is defined as the
ratio of electrons that flow in the external circuit to the number of
incident photons. For photons in the 0.45 to 0.8-,u wavelength range,
a value of 77, > 20 percent would be satisfactory.

(ii) The total dark current should be less than 50 X 10-9 A, which
means diode leakage current for each of the approximately 1/2 million
diodes must be < 1 X 10-'3 A, so that only a negligible amount of
charge will leak off between scans of the electron beam. For camera
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tube applications total diode capacitance is restricted to a rather narrow
range. Preliminary results indicate that a substrate resistivity of 10
ohm -cm, which yields 2000 pF/cm2 at 10 V reverse bias, is close to
the optimum.'

(iii) The whole array must have uniform properties and be free of
defects which can cause bright spots or dark spots in the display -tube
picture.

Tube performance is, of course, the ultimate test of a good target,
but for studies of efficiency and diode leakage it was convenient to
make measurements outside the tube. We demonstrate the relationship
between these measurements and the actual tube performance.

II. TARGET STRUCTURE

The target, as illustrated in Fig. 2, is a thin disk of n -type silicon
with an array of p -n diodes on one side. These are the sensing ele-
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Fig 2 - Details of target structure (660 x 660 array).
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ments. Silicon dioxide covers the n -type silicon between the diodes to
keep the electron beam from landing there. The oxide also protects
the junction edges and reduces surface leakage. In a typical design
the target is 0.850 inch in diameter, 0.5 to 1 mil thick in the light
sensing region, and has a 4 -mil -thick rim for support. The diodes are
8 tt in diameter and are on 20 p. centers in an array of 660 x 660.

Outside the main array are 5 mil p -n diodes which can be probed
for measurements at various stages of processing. There are also gold
dots over the oxide for MOS measurements and gold dots over test
arrays of 8 p, diodes for reverse current measurements which simulate
dark current measurements in the tube. Ohmic contact to the n -region
is made through an annular n+ region which is in the thick ring on
the light -receiving side of the target. The dimensions just given are
representative of many targets which have been made, although larger
and denser arrays are also being studied.

Planar technology is used in the fabrication with the following
deviations from typical device processing:

(i) One-step diffusions are used, with no drive-in.
(ii) There is no postdiffusion reoxidation and therefore no second

photoresist step or reregistration.
(iii) The phosphorus diffusion for ohmic contact is the last high

temperature step, for reasons discussed near the end of Section 3.3.

An additional processing step, the deposition of a semi -insulating
film over the diode side, is usually performed before the target is
mounted in a tube. The purpose of this film is to dissipate charge,
deposited by the electron beam, from the target area between the
diodes. Several films have been developed for this purpose by Crowell
and Labuda.2 Targets described in this paper did not have such films
except in cases where tube measurements are mentioned.

III. CONVERSION EFFICIENCY

3.1 Calculation of Conversion Efficiency

If a silicon diode array target is to replace the antimony trisulfide
target in a vidicon-type camera tube, its sensitivity should approxi-
mate or exceed that of antimony trisulfide targets. We describe sensi-
tivity in terms of the conversion efficiency 7i, which is defined as the
ratio of the number of electrons that flow in the external circuit to
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the number of incident photons. Efficiency of antimony trisulfide tar-
gets is typically 20 percent at 5500 A and falls off toward both ends
of the visible region. For silicon targets the conversion efficiency will
depend on the sample thickness, the wavelength of the light and
several properties of the semiconductor. In order to identify the im-
portant parameters and their effects on the conversion efficiency, the
steady-state, short-circuit current in a one-dimensional model of a
single p -n junction has been calculated.

The most important relation governing distribution of the optically
generated carriers in the semiconductor is the continuity equation.
The continuity equation formulation for the transport of carriers has
been rigorously treated by van Roosbroeck.8 From that treatment the
steady-state, small -signal differential equation for the minority car-
rier density in excess of the equilibrium concentration at zero total
current and electric field in the one dimension x is

4(x) p(x)
Di, - = -G(x), (1)

dx2 Tp

where p (x) is the excess minority carrier density, D, the hole diffu-
sion coefficient, Tr, the hole lifetime, and G (x) the net carrier genera-
tion rate.

At one boundary, the surface at x = 0, the hole flux as determined
by the surface -recombination velocity S must equal the diffusive flux:

j(0) = qSp(0) = q D ck I (2)
dx .-0

The other boundary condition refers to the edge of the junction
space -charge region located at depth x = d from the illuminated sur-
face. For the short-circuit condition, the excess hole density at the
junction edge is zero,

p(d) = 0,
and the short-circuit current density is, is

dp
i.c = -q Dp dx

When the generation rate for carriers is governed by Lambert's
of photon absorption, the net generation rate may be written as

-G(x) - (1 R )Na exp (-ax),



IMAGE SENSING 1833

where R is the reflectivity, N the number of incident photons per
unit time, A the cross-sectional area, and a the optical absorption
coefficient. The conversion efficiency, neglecting absorption in the
junction space -charge region, becomes

dp
iar/q

- Dp
dx x.2- d

tic (6)N/A - N/A

The conversion efficiency may be obtained from equation (1) with
the conditions expressed by equations (2) through (5) and the defini-
tion of equation (6). Since the generation rate G (x) has a dependence
on wavelength through both the reflectivity and absorption coef-
ficient, vc will depend on wavelength. As Section 3.3 describes in detail,
difficulty has been encountered in reconciling the experimental and
calculated 77, for illuminated surfaces that have been etched and aged
in air. The experimental ne for the etched surface is always signifi-
cantly less than the calculated nc, even with very high S, when a sig-
nificant portion of the carriers are generated near the illuminated
surface.

This situation is similar to Wittry and Kyser's°' 10 experiences with
cathodoluminescence in GaAs. Their cathodoluminescence intensity
was less than could be explained by a high surface recombination
alone. They assumed that minority carriers generated between the
surface and a depth 8 are not effective in producing recombination
radiation. Similarly, in the present work it was found necessary to
modify the generation rate given by equation (5) to account for a
"dead layer" at the surface in order to obtain agreement between the
calculated and experimental nc

The effect of a "dead layer" on the conversion efficiency has been
introduced into the analysis by assuming that the carriers generated
within a distance 8 of the illuminated surface cannot diffuse to the
junction and be collected. For a solid in which all the incident pho-
tons, less those lost by reflection, are absorbed in creating hole -
electron pairs, the number of carriers per unit area generated be-
tween the surface and x = 8 is found by integrating G (x) dx between
the limits 0 and S. Thus, there will be (1-R)N[1. - exp (-a8) ] car-
riers generated within a distance 8 of the surface. The number of
holes that may be collected in the absence of a "dead layer" or sur-
face and bulk recombination is equal to the number of absorbed pho-
tons and is simply (1-R)N. If the carriers generated between x = 0
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and 8 are lost and not available for collection, then the carriers
available for collection in the absence of other losses is simply the
difference of these two quantities, (1 -R)N exp (-a). Therefore, a
generation rate of

G'(x) = [(1 - R)N a exp (-ax)1 exp ( -a a) , (7)
A

when integrated from 0 to oo , will give the same number of collectable
carriers as [ (1-R)N /A] a exp (-ea) integrated from 8 to oo : that is,

I G'(x) dx = G(x) dx.a
This formalism, which has been found useful in representing the effect
of the surface space -charge region on optically generated carriers,
permits retaining the field -free continuity equation and the represen-
tation of surface recombination by S. The conversion efficiency for
the generation rate given by equation (7) is

?lc - - (8 tanh (d/L) L/T)
S sech2 (d/L)- [aL, tanh (d/L,,) }(S tanh (d/L) L/ r)

,
exp a(1)

(8)

where the minority carrier diffusion length Li, is given by Li, =
(Dprp)1/2. The efficiency qc will be expressed in percent. To further
describe the "dead layer and delineate the role of bulk and surface
recombination on the target sensitivity, it is necessary to compare the
experimental no variation as a function of wavelength with no calcu-
lated from equation (8).

3.2 Experimental Procedure for Efficiency Measurements

To evaluate the properties of the silicon diode arrays, it was con-
venient to make measurements outside the tube. Targets for this
purpose had large diodes and had received the same processing as
the 8-,k, diode arrays except that the semi -insulating film was omitted.
Figure 3 illustrates the structure used. The pattern with diodes from
5 to 40 mils in diameter was used so that the effect of diode diameter
on no for a given light -spot size could be determined. Because equa-
tion (1) applies only to a one-dimensional problem, one-dimensional
experimental conditions must be achieved. These conditions were
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Fig. 3 - Array of large diodes for studies of conversion efficiency and diode
leakage.

taken to apply whenever further increase in diode diameter did not
increase the conversion efficiency, which occurred for diameters
greater than 30 mils. The 7k measurements reported here were taken
with the 40 -mil diameter diodes.

The experimental arrangement for measuring the conversion efficiency
is illustrated in Fig. 4. Emission from the tungsten 250 W quartz -iodine
lamp was filtered by a Corning filter C. S. 1-69 (heat -absorbing glass)
to reduce the infrared intensity. Plane mirror M1 and spherical mirror
M2 focused the light onto the entrance slit of the Perkin-Elmer model
99 single -prism spectrometer. The light was chopped at the spectrometer
entrance at 37.5 Hz. An Optics Technology band-pass filter was used
at each measurement wavelength to prevent light of undesired wave-
lengths from being transmitted through the spectrometer. The light
from the spectrometer exit slit could be directed to the sample or to a
calibrated thermocouple by the movable mirror. The spherical mirror
M3 focused the radiation onto the thermocouple whose output was
measured with the Princeton Applied Research model HR -8 lock -in
amplifier.

The spot size of approximately 4 X 12 mils on the sample was obtained
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Fig. 4 - Experimental arrangement for measurements of conversion efficiency.

by reducing the height of the spectrometer slits and using M4 , a 90°
ellipsoidal mirror with a 6 : 1 reduction. The short-circuit current was
determined by measuring the voltage across a 100 KU resistor connected
between the n and p sides of the diode. To maintain junction short-
circuit conditions, the light intensity was kept low enough so that
the junction voltage was < 0.1 kT/q(S 0.002 V). Linearity with
light intensity was confirmed with neutral density filters and absence
of significant leakage currents could be demonstrated by linear varia-
tion of junction voltage with load resistance.

In order to make quantitative comparison of the experimental and
calculated n, the absolute photon flux must be known. For this purpose,
a silicon solar cell was calibrated by comparison with several calibrated
thermopiles. Then the calibrated solar cell was placed in the position
of the sample and the spectrometer thermocouple was calibrated. The
absolute photon flux can be assigned an uncertainty of ±10 percent.

3.3 Experimental and Calculated Conversion Efficiency

In this section the control of target efficiency by process variations is

discussed. Experimental efficiency data are compared with calculated
curves, and this permits determination of the parameters Li), S, and
8. Consideration of equation (8) shows that the best discrimina-
tion between Lp, S, and 8 is obtained when d is two to four times Lp.
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Preliminary measurements indicated that a 4 -mil target thickness was
suitable. The wavelength dependence of the absorption coefficient a
was taken from the data of Dash and Newman,11 and the reflectivity
R for an etched silicon surface was taken from Philipp and Taft's
data.12 The hole diffusion coefficient D, was assigned a value of 10
cm2 per second. Given these experimental dependences of a and R,
the wavelength becomes the independent variable for equation (8),
and the variation of no with wavelength is determined by the physical
parameters d, Lp, S, and S.

Initially, consider the data in Fig. 5 for the etched surface aged in
air (the dots). The calculated n, curve for a generation rate expressed
by equation (5) (no "dead layer") is shown by the dashed line. The
diffusion length L, has been assigned a value of 50 ti to produce agree-
ment between the calculated and experimental ?lc in the long wave-
length region. The use of the generation rate of equation (5) is equiv-
alent to 8 = 0 in equation (8) for n, . Even with the maximum value
of surface -recombination velocity Sma. = (k T/271 -m)1 ti 107 cm per
second, the calculated n, does not decrease as rapidly at short wave-
lengths as the experimental 77, . The discrepancy between the calculated
and experimental nc for wavelengths in the visible region leads to
the "dead layer" concept.

Fitting the data in Fig. 5 with a finite 8 in equation (8) does not
lead to unique values of S and 8. However, their values are limited to
a reasonably narrow range. For example, by plotting the experimental
data with the calculated 'lc (lower curve, Fig. 5) it is not possible to
discriminate between values of S = 107 cm per second, 8 = 0.8 p, and
S = 6 x 104 cm per second, 8 = 1.8 The larger 8 value was obtained
with a nonlinear least -squares technique described by Marquardt.13
The high surface -recombination velocity agrees with earlier studies
of Buck and McKim" and Harten15 in which it was shown that S
is normally very high on an etched silicon surface. Harten's15 meas-
urement technique was similar to the one described here. To resolve
this ambiguity in S and 8, experimental data at wavelengths less than
0.45 p, are necessary. Because the efficiency of the diode is rapidly
decreasing and the intensity of the light source is also becoming
smaller, measurements in this wavelength range are not presently
possible. The significant point is that the "dead layer" thickness is
approximately a micron and S is very high.

In order to gain insight into the significance of the "dead layer,"
the surface potential was determined by surface conductivity meas-
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Fig. 5 - Conversion efficiency as function of wavelength for etched and HF-
treated surfaces. Target is 4 mils thick.

urements14 on silicon slices from the same 10 ohm -cm n -type crystal.
The surface was found to be in a condition of depletion with the po-
tential varying from -0.25 V at about 1/2 h after etching to -0.6 V
(energy bands bent upward) after several hours of aging in air. The
variation of potential within the surface depletion region was obtained
from Poisson's equation16 for a donor concentration of 6.0 x 1014
cm -3. Because the electric field in the surface depletion region goes
to zero very slowly it is difficult to define a depletion -region depth.
If, however, the potential from Poisson's equation is approximated
by a simple parabolic potential of the form

V(x) = (V,/x:)(x - x,)2, (9)

where V, is the surface potential, then the depletion layer thickness may
be approximated by x, . The quantity x, is determined by a reasonable
fit from x 0.1x, to x 0.8x, . For a surface potential of -0.25 V,
x. is 0.8 A and for -0.60 V, x, is about 1.1 A. Therefore, the depletion
layer thickness is about the same as the "dead layer."

Because the depth of the "dead layer" and the surface depletion
region are about the same, it is reasonable to attribute the "dead
layer" to the surface depletion region. This assumption suggests that
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the "dead layer" results from the built-in field at the surface whose
direction is such as to oppose the diffusion of holes to the junction.
To test this hypothesis, reversal of the surface field should eliminate
the "dead layer" because the field for holes would be in the same
direction as the diffusion toward the junction. It has been shown14, 15
that a hydrofluoric acid treatment bends the energy bands downward
at a silicon surface temporarily. In the present work a surface poten-
tial of +0.2 V was determined after such treatment. The upper curve
in Fig. 5 shows that the experimental data for an HF-treated surface
may be fitted with the same L,, but no "dead layer" is required. Aging
in air causes a shift in surface potential back to a depletion condition
and a response that requires a "dead layer" correction.

Although a 4 -mil target thickness is useful in efficiency studies for
discriminating among the critical parameters, a target for a camera
tube should be < 1 mil thick for adequate resolution. For a 1 mil thick-
ness Fig. 6 shows two sets of experimental data together with calculated
curves which illustrate the importance of S and S. Consider first the
experimental data for the etched surface (the dots). The L, of 32
was obtained from the ne measurement at a thickness of 4 mils before
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the target was thinned to 1 mil. The values of S = 107 cm per second
and S = 0.8 1.4 were previously shown to be representative of an etched
surface.

The dashed lines are calculated for S = 107 cm per second and
6 = 0 or 0.8 µ to illustrate the effect of the "dead layer" at this thick-
ness. It may be seen that the efficiency in the visible region drops from
10 percent at 0.7 A to 1 percent for high S and no "dead layer," but
drops to 0.1 percent for the 0.8 µ "dead layer." Calculations based
on equation (8) show that when d L, , further increase in L does
not improve efficiency very much. This also means that efficiency is
insensitive to small lateral variations in d which may occur during
etching. However, S and S have a strong influence on efficiency and
these parameters must be substantially decreased. The HF treatment
and other chemical treatments14' lb on the etched surface which reduce
S and S are too unstable for long life in a camera tube.

A more permanent improvement in efficiency can be made by high
temperature oxidation of the surface. Experimental efficiency data
taken after a light steam oxidation (900°C for 10 minutes) are also
shown in Fig. 6 (circles). Oxidation raised efficiency above 10 per-
cent at the blue end of the visible region. Values of S = 3 x 104 cm
per second and 8 = 0 yield a calculated efficiency curve which fits the
experimental points. Values of S for steam oxide with no further treat-
ment have been as low as 103 cm per second which gives an efficiency
of 50 to 60 percent. The 800 A oxide also serves as an antireflection
coating which contributes an additional slight increase in efficiency.

Experimentally determined reflectivity of the oxidized surface was
used in equation (8) to obtain the solid curves shown in Fig. 6. No
"dead layer" correction was needed for the oxidized surface. This is
attributed to the fact that the oxidized surface is more n -type than
the bulk; the energy bands are bent downward at the surface, elimi-
nating the depletion layer. The HF soak eliminated the "dead layer"
temporarily for the same reason, that is, it bends the bands down at
the surface.

It is assumed that oxidation reduces S both by reducing the density
of recombination centers and by shifting surface potential, although
the data to confirm this are not complete. Surface potential is shifted
from about -0.6 V, the previously mentioned depletion -layer con-
dition for an etched surface, to +0.2 V (bands bent downward). Fast
state density is not known for the etched surface but is 3 x 1011 cm -2
eV -1 for the oxidized surface. The S values of 103 to 3 x 104 agree
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reasonably well with values for oxidized surfaces reported by Rosier17
but not with the 5 to 10 cm per second values reported by Grove and
Fitzgerald.18 However, approximate agreement with the Grove and
Fitzgerald values is obtained for an oxide which has been through
boron and phosphorus diffusions, as discussed in Section 4.2.

Oxidation can thus provide satisfactory efficiency, but there are
two rather serious objections to oxidation for this application:

(i) The oxidation must be done after the target is otherwise com-
plete, and at this stage it frequently causes an increase in diode leak-

age current.
(ii) Vacuum bake -out of the tube and target at 350°C, which is

desirable for good tube processing, may increase the interface state
density and the recombination velocity.

Although both of these problems could be overcome by improved
control of the oxide, an alternative procedure was found which ob-
viated the final oxidation step for low S. Figure 7 shows the improve-
ment in efficiency caused by a phosphorus diffusion on the light -

receiving surface of a 4 -mil thick target (circles). The phosphorus
was diffused at 925°C for 10 min in PBr3 vapor, yielding a depth of
about 0.4 This reduced S to a nominal value of 50 cm per second
and the diffusion length was increased to 52 /.4, yielding an efficiency
of about 20 percent. The efficiency has been 50 to 60 percent on 1 -mil
thick targets.

Equation (8) is rather insensitive to surface -recombination velocity
for S < 200 cm per second, and 50 cm per second is only given as an
approximate value. The phosphorus data in Fig. 7 were obtained with
the phosphate glass on the surface. Removal of the glass did not change
the response. When the diffused phosphorus layer was removed, the
efficiency dropped to the original level for an etched surface, except
for an upward displacement at long wavelengths resulting from the
improved bulk lifetime. In some cases L, has been increased to 100 II
(T = 10 uses). The effect on S is evidently due to the built-in field of
the diffused phosphorus layer which repels holes from the surface
and causes a low recombination velocity. The principle of surface
doping to reduce S was proposed by Moore and Webster' but we are
not aware that a demonstration of it has been published. The slight
droop in the phosphorus curve at about 0.5 ,u, requiring a "dead layer"
correction of 0.1 /2, seems to result from diffusion damage. At present
the best conditions that have been found to minimize this effect are
850°C for 30 minutes.
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These results were all obtained on targets with large diodes, out-
side the tube. Results for a silicon target in a tube are shown in Fig.
8 where it is compared with a standard vidicon, and with the ideal
case of unity conversion efficiency. Efficiency is expressed in units
commonly used for vidicons, microamps of output current per micro -
watt of incident radiation. The curve for unity efficiency slopes
upward because at longer wavelengths there are more photons per sec-
ond per microwatt of radiation, with each photon capable of excit-
ing an electron -hole pair. Efficiency of the silicon target is more than
twice that of the vidicon in the middle of the visible region, and the
sensitive range is much broader. The conversion efficiency exceeds 50
percent at a wavelength of 0.7 p..

The diffused layer of phosphorus provides a very stable reduction
in S which is unaffected by vacuum bake -out or deposition of anti -
reflection coatings. Furthermore, the phosphorus treatment does not
harm the diode characteristics; instead, it improves them as discussed
in the next section. The phosphate glass must be removed from the
p -type islands by a brief etch, but this requires no remarking.
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IV. DARK CURRENT

4.1 Bulk and Surface Generated Current

Low dark current is another important requirement for this target.
Current, in the absence of illumination, should not exceed 1 x 10-13
A per diode at 5 to 10 V reverse bias, or about 50 x 10-9 A for the
whole array. Currents slightly above this range reduce the dynamic
range of the camera tube or the available picture contrast. Currents
five times greater prevent integration of the incident light flux over a
full television scan period. The most readily observable effect of ex-
cessive dark current (more than 100 x 10-9 A) is "whiting out" of the
picture on the display tube.

The dark current required for good performance is considerably
lower than for most silicon devices. The reverse current in a target
array can be separated into the two general categories of bulk gen-
erated current and surface generated current. An estimate of the bulk
current can be obtained from the expression by Sah, Noyce, and
Shockley" for current generated in the space -charge region:

- Ei + 2

(T 9-1I = gAwn,{2(7-,7-01 cosh [Elei (10)
kT

In equation (10) w is the depletion width, ni the intrinsic carrier con-
centration, Tp and T the hole and electron minority carrier lifetimes
on their respective sides of the junction and Et - Et the energy dif-
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ference between an assumed single recombination -generation level
and the intrinsic Fermi level. For an 8 p. diode at 10 V bias with the
common simplifying assignment of Et = Et and r = 0.1 psec > Tn as
lifetime values representative of diffused structures, the current would
be predicted by equation (10) as approximately 3 x 10-12 A. Since
this estimate of bulk current alone exceeds the permissible dark cur-
rent, diode leakage current was regarded as a potential source of dif-
ficulty for this device.

Of several diffusion conditions tried, those which yielded the lowest
bulk generated reverse currents were 1140°C for 20 minutes with a
BBr3 source. These conditions gave a sheet resistance of 5 to 6 ohms
per square and a junction depth of 2 p.. A subsequent phosphorus dif-
fusion, which is required for ohmic contact and low S on the light -
receiving surface, is an important part of the process. As a result of
this treatment, the diffusion length was typically improved by a factor
of three, while the reverse current, as measured on the 5 -mil test
diodes on the actual targets, was reduced by an order of magnitude to
a median value of 10-12 A. In addition, the exponent in I cc V" was
reduced from -1.0 to -0.5.

The improvement in both the diffusion length and dark current by
the phosphorus diffusion is presumably caused by a gettering action
by the phosphate glass on impurities, such as gold and copper. A get-
tering effect has been suggested in several reports in which phosphorus
treatments have improved silicon diode reverse characteristics21-28 or
minority carrier lifetime."' 25 The improvements in reverse current
already described are quite similar to those reported by Ing and his co-
workers about p+n diodes of 0.952 -cm material." In our work, neutron -
activation analysis showed that a boron diffusion increased the gold
concentration from approximately 4 X 1012 cm -3 to about 2 X 1013
cm -3, while the phosphorus diffusion reduced it again to 4 X 1012 cm -3.
Insufficient sensitivity obscured any similar effect on copper if it was
present. Cleaning the substrate with nitric acid or aqua regia before
diffusion gave better post -boron I -V characteristics than did cleaning
treatments without a strong oxidizing acid. The phosphorus treat-
ment then caused further improvement.

The above process was developed using as control information the
results of efficiency and dark current measurements on 5 -mil test
diodes available on target arrays, and also on the graduated -diameter
diodes shown in Fig. 3. In addition to their function as control speci-
mens, the graduated -diameter diodes were used to establish the rela-
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tive importance of bulk and surface currents. This designation is made
by assuming the total current to be a linear combination of an area
and perimeter component:

= ± Is, = aD2 e?D, (11)

where D is the diode diameter. It was possible to estimate a and (P
graphically from a plot of I,./D vs D for the diodes of graduated diameter,
and then calculate the Ia and I0, components for a diode of a particular
diameter. In a typical case for a 5 mil diode, /a was 4 X 10' A and
Is, was 8 X 10-13 A. This corresponds to a bulk current density of
3.15 X 10-9 A per cm', and a perimeter current density of 2 X 10-11
A per cm. The relative importance of /0, becomes greater as the diode
size decreases. Extrapolating to an 8 µ diode, Ia = 1.5 X 10' A
and /6, = 5 X 10-14 A. Total dark currents of targets in tubes have
been 5 to 50 X 10-' A at 5 to 10 V or 2 to 20 X 10-14 A per diode,
thus falling closer to the perimeter dependent limit.

The larger area diodes, which minimize the contribution of the
surface current, permit assignment of Et - Ei in equation (10) . In
Fig. 9 the I -V characteristic of a typical 25 mil diode is shown with
curves predicted by the Sah-Noyce-Shockley theory for different
values of Et - Ei. The reverse current density at 10 V for this diode
was 6 x 10-9 A per cm2. The lifetime Tp of 5 psec was obtained from
conversion efficiency measurements. Also, rj, was taken as much
greater than T and the argument of the cosh was greater than unity.
The depletion -region width in equation (10) was obtained from ex-
perimental capacitance -voltage data and the expression w = e A/C.
It may be seen in Fig. 9 that the reverse current calculated for the
given 5 sec lifetime and the single recombination center at about
an Et - Et of 0.08 to 0.1 eV matches the experimental I -V charac-
teristic.

A quantity called the effective lifetime Teff which is the lifetime
obtained from equation (10) on the assumptions that Et = Ei and Teff
= Tp = 7n , may be used as a figure of merit to compare low leakage
diodes of different resistivities. For our diodes, typical values of Teff
100 sec were obtained. Ing and his co-workers obtained reff between
10 and 40 sec for their gettered diodes just described,22 and Sah cited
a Teff of 28 sec for a high lifetime diode.26

Other measurements on our large area diodes also suggest the re-
verse current is dominated by bulk generation current within the
space -charge region. Inversion layer surface leakage is not observed
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in these diodes, nor is it expected, since charge at the interface is
positive and induces an n -type accumulation layer. The activation
energy of reverse leakage current has been measured as 0.5 to 0.6 eV
in the range 0 to 30°C. Such an activation energy is compatible with
recombination -generation current rather than inversion layer (chan-
nel) leakage or with bulk diffusion current.'-? In addition, the for-
ward I-V measurements are characterized by 1 < m < 1.3 in the ex-
pression I = Io exp (qVimk Sah has found such a value of m for
recombination -generation current.26

The foregoing observations were on relatively large diodes measured
with no field applied across the passivating oxide. These results are
all reasonably consistent with a model of reverse leakage current
dominated by generation in the space -charge region of the metallurgi-
cal junction, and the currents are satisfactorily low when proper dif-
fusion conditions are used.

4.2 Leakage Induced by Electron -Beam Charging of the Oxide
The satisfactory behavior observed for large diodes is a necessary

condition if good arrays of small diodes are to be obtained. How-
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ever, it may not be sufficient if the field induced by electron beam
charging of the oxide leads to high surface -generated currents. In fact,
the reverse characteristics of 8 p. diodes in target arrays, with a field
across the oxide, are more complicated, although currents are still low
enough at 5 to 7 V.

This section shows how surface generation current is influenced by
a field across the oxide on the junction side of the array. At present,
the problem of achieving low dark current in silicon target arrays is
to reduce this type of leakage current. However, if improvement ten
times better than present results is achieved, bulk generated reverse
current will again become a problem.

The electron beam charging of the oxide can be simulated outside
the tube by evaporating gold dots over both the oxide and p -regions
and applying a negative bias. This gold dot structure then represents,
in most respects, the situation in the camera tube, where the electron
beam falls on both the diodes and the oxide. In Fig. 10 the experimen-
tal I-V curves are compared with the maximum allowable current of
50 x 10-9 A and the characteristic obtained for bulk generated current
only. The bulk generated current curve is based on the assumption
that the entire 1 x 10-42 A of reverse current for a 5 -mil test diode is
bulk current.

The top curve (data points given by A) of Fig. 10 is a reverse
characteristic measured by applying a negative bias to a 25 -mil gold
dot which covered 790 of the 8 IL diodes in a test array as illustrated
in Fig. 2. The current was scaled up to 435,600 diodes.

The curve shown by the circles is a dark current characteristic
measured in a tube. This curve shows behavior similar to the gold
dot characteristic. However, the tube characteristics sometimes do
not flatten out, for reasons not yet fully understood, although a few
leaky diodes in the array are responsible in some cases. It may be
seen that for these two curves the current rises steeply with increasing
voltage and then changes slope abruptly between 6 and 10 V. Follow-
ing the model of Grove and Fitzgerald," this behavior can be de-
scribed as current generated by interface states. This current in-
creases, and finally saturates as a depletion layer is induced under
the oxide. In specimens with resistivity more than about 8 a -cm, this
depletion layer may result from the merging under the oxide of the
space -charge regions of the 8 µ diodes, which are less than 12 p. apart
edge to edge.

However, curves like those of Fig. 10 are also observed on targets
with substrate resistivity as low as 0.10 -em. In this case, the deple-
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tion is induced by a field normal to the semiconductor surface result-
ing from the negative bias on the gold dot, as in the gate controlled
diodes of Grove and Fitzgerald." In either case, the entire silicon sur-
face between diodes is in a depleted condition. Every surface recom-
bination -generation center on that part of the target surface not ac-
tually occupied by a diode contributes to the reverse current.

After depletion is established, the subsequent slower increase in
reverse current beyond the discontinuity in Fig. 10 is caused by deep-
ening of the space -charge regions under the oxide and around the
metallurgical junctions. No decrease in current occurs at higher volt-
age across the oxide, as observed by Grove and Fitzgerald," since in
our case the potential on the oxide equals that on the p -region. Under
these circumstances, inversion cannot occur to isolate the surface
states from the depletion region." Grove and Fitzgerald relate sur-
face generation current to the surface -recombination velocity so by
the equation:

40 60 80 100

I = qniso (12)
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Using the current at the discontinuity so is estimated as 24 cm per
second.

The density D88 and electron capture cross section cr, of interface
states on a similar oxide, which had been through the same diffusion
process, were measured by the MIS conductance technique of Nicol-
lian and Goetzberger.28 D,8 was 1011 cm -2 eV -1 near the center of the
energy gap and as was 2 x 10-16 cm2. Using Grove and Fitzgerald's18
definition of surface -recombination velocity for a depleted surface:

= crsvtorkTD. , (13)

so is 16 cm per second with with as 107 cm per second. This value is in
reasonable agreement with the value obtained from the generation
current. In addition, conversion -efficiency measurements on a similar
oxide, that is, one exposed to diffusion conditions, yielded surface -
recombination values of about 50 cm per second. Notice, however,
that the diode leakage and efficiency pertain to different values of
surface potential.

The current at the discontinuity in gold dot I-V curves has been
reduced by two methods. The upper curve in Fig. 10 for a (111) sur-
face can be lowered to the solid triangle curve by hydrogen annealing
at 500°C. The decrease in current by an order of magnitude at the
discontinuity is assumed to result from a reduction in fast state den-
sity expected from this treatment.29-31 A (100) silicon surface with-
out hydrogen anneal produced the curve shown by squares. The cur-
rent at the discontinuity has been lowered to 5.5 X 10-9 A at 2.5 V,
presumably because of a reduction in interface state density.29, 32 This
current corresponds to an so of 1.6 cm per second. Thus, significant
decreases in the leakage current have been made by these simple
changes in processing and further improvement can reasonably be

expected.

V. DEFECTS

A third very important requirement of any camera -tube target is
freedom from defects. For the silicon target this means near perfec-
tion in an array of nearly % million diodes and the demands on
planar technology are obviously severe. Leaky diodes, for example,
can cause bright spot defects, while diodes which are covered and
cannot be contacted by the electron beam, cause dark spot defects.
Pinholes in the passivating oxide may cause bright spots by allowing
the electron beam to contact the substrate directly. Certain dark
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features have been identified with dislocation arrays revealed by etch
pits in a neighboring slice of the crystal.

Not all defects can be explained at present. Figure 11 shows some
which have been identified. They were intentionally introduced dur-
ing the target processing. The picture at the top was taken with the
camera tube viewing a transparency illuminated by tungsten light.
Below it are photomicrographs taken of small areas of the target after
it was removed from the tube. The dark area in the display corre-
sponds to a spot in the array where oxide holes are missing because
high spots in the oxide lifted the mask and allowed exposure of the
photoresist over that area. The bright spot on the left corresponds to
a large hole, revealed in the photomicrographs, which was etched in
the oxide because contamination on the mask prevented exposure of
the photoresist and, therefore, a hole was etched in the oxide. Boron
diffused into that entire area and produced a large leaky diode. In ad -

000 0.
..,0 000 ct

1,00 o.t
P o o p p 4
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. .

Fig. 11- Example of gross defects in target. Top: picture from TV monitor.
Lower right: photomicrograph of target showing spot where oxide holes are miss-
ing, corresponding to dark spot in display. Lower left: photomicrograph showing
large hole in oxide which corresponds to bright spot in picture.



IMAGE SENSING

Fig. 12 - Picture taken with relatively defect -free target.
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dition to defects associated with planar technology steps of target
fabrication, bright spots can also be introduced by the deposition of
the semi -insulating film for dissipating charge from the area between
diodes.

The defects of Fig. 11 were introduced deliberately. Figure 12
shows a picture with only a few small, unintentional, defects visible.
We have not yet made a target entirely free of defects. Substantially
greater improvement in the defect situation has been made by the
group at Bell Telephone Laboratories, Reading, Pa.33

VI. SUMMARY AND CONCLUSIONS

The status of the three important factors efficiency, diode leakage
current, and defects in the array may be summarized as follows.

(i) Satisfactory conversion efficiency has been achieved. Surface
recombination velocity (S) at the illuminated surface is the dominant
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parameter controlling efficiency, and it should be < 103 cm per second.
Sufficiently low S can be obtained by wet chemical treatments or by
oxidation in steam, but the most reliable treatment has been a phos-
phorus diffusion. This provides a built-in field which repels minority
holes from the surface. S values of r-:,50 cm per second, and efficiency
of 40 to 60 percent throughout the visible region, have been obtained
with this treatment. Adequate diffusion length, 30 to 100 µ (7. = 1 to
10 µsec) has also been obtained.

(ii) Diode leakage current is low enough 1 X 10-13 A per diode
or 50 X 10' A total dark current) for satisfactory operation at low
target voltage (< 7 V). Bulk generated current of <1 X 10' A
per cm2 at 10 V is observed in large diodes (5 to 40 mil diameter).
This would yield 4 X 10' A for an 8 µ diode. However, surface genera-
tion complicates the behavior when a field is applied across the pas-
sivating oxide as under a gold dot or in electron beam scanning. This
causes an initial steep rise in current followed, usually, by an abrupt
decrease in slope at 6 to 10 V. The current at which this occurs has
been lowered substantially by use of (100) instead of (111) silicon slices
and by hydrogen annealing.

(iii) Present technology produces targets which are reasonably
defect -free but processing must be improved to eliminate defects com-
pletely. Leaky diodes or groups of diodes and oxide pinholes cause
bright spots, while diodes which are covered and cannot be contacted
by the electron beam cause dark spots. A decrease in average dark
current should reduce the ability to observe fluctuations from diode
to diode.

The emphasis on these three factors is not intended to imply that
they are the only critical problems. Two others, discharging of the
passivating oxide and resolution, have been studied by Crowell and
Labuda.2
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A Charge Storage Target for Electron
Image Sensing

By EUGENE I. GORDON and MERTON H. CROWELL

(Manuscript received April 12, 1968)

A charge storage target consisting of a dense array of silicon photodiodes
has been described as the image -sensing element in a vidicon type of camera
tube for the Picturephone® station set. The target stores a spatially distrib-
uted charge pattern corresponding to an optical image in the form of a
partial discharge of the reverse -bias voltage of the diodes. The discharge
results from leakage current associated with hole -electron pairs created in the
silicon substrate by incident photons during the raster interval. Recharging
of the diodes to the full reverse -bias voltage along a prescribed raster by the
scanning, low energy, electron beam creates the desired video signal.

This paper describes creation of the hole -electron pairs in the silicon
substrate by impinging high energy electrons. Since these electrons, incident
from the side opposite the diode array, create a multiplicity of pairs, charge
gain results. As in photon sensing, the discreteness of the array allows
preservation of detail in the spatial distribution of impinging electrons.
Measurements of charge gain as a function of electron energy and target
resolution are presented.

Applications in scan conversion, low light level TV, X-ray image
intensification, and electron microscopy are indicated.

I. INTRODUCTION

 The subject of this paper is the use and properties of a self-sup-
porting silicon wafer containing an array of about one-half million
diodes in an area of 12.5 millimeters on a side. See Fig. 1. The thick-
ness of the substrate under the diode array is in the range 10-25 microns
depending on the application. The wafer perimeter which is consider-
ably thicker, provides increased physical strength. As an image sensing
target in a vidicon type of camera tube,1 developed for the Picture -
phone® station set," it converts incoming photons that are absorbed
in the n -type conductivity substrate into hole -electron pairs.

1855
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Fig. 1- Cross section of active target area illustrating the substrate, diodes,
oxide mask, resistive sea, and scanning electron beam.

Except for those holes created within a surface layer, a few thou-
sand angstroms thick opposite the diodes, there is virtually unity
probability that any minority carrier hole can diffuse to the deple-
tion region of one of the normally reverse -biased diodes. The hole is
swept across the depletion region to the diode p -type conductivity
region and contributes to the total leakage current of the diode. The
totality of holes reaching the diode during a raster interval, partially
discharging the diode, constitute a stored charge proportional to the
integrated local intensity of the photon flux. Recharging of the diode
by a scanning, low energy electron beam creates a current in an ex-
ternal circuit which constitutes the desired video signal. The re-
charged diode is primed for integration of the hole flux during the
next interval by the same process. Figure 2 illustrates the performance
on one such target illuminated by a conventional TV test pattern and
scanned in a 525 -line raster with a frame interval of 1/30 second.
Other forms of radiation will create hole -electron pairs in a silicon
substrate. Figure 2 therefore indicates the potential performance for
imaging these as well.

In this paper the radiation of interest is energetic electrons. An
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energetic electron, impinging on silicon will create 286 hole -electron
pairs per kiloelectron volt of kinetic energy.3 When the holes can dif-
fuse to the nearest diodes with high probability, the resulting charge
exceeds the charge incident on the target and amplification results.
Thus the target, in conjunction with scanning, video processing, and
display is an electron image transducer. It has the potential of being
useful in any one of a large number of systems or devices in which it
is desired to convert spatial intensity variations in incident radiation
into a visible image. For example, image intensifiers transduce an
optical image into an equivalent electron image by absorbing the in-
cident light on a large area photocathode. The resulting low energy
electron image is refocused at high energy onto a second plane by an
appropriate electron -optical system. A phosphor screen transducer
placed in this plane produces an intensified optical image. The elec-
tron image in an electron microscope similarly is viewed by a phosphor
screen transducer. The addition of a transducer for X-rays to light

Fig. 2 - Monitor display illustrating performance of diode array target in
a camera tube.
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at the front end of an image intensifier allows X-ray image intensifica-
tion. The transducer would be a phosphor screen photon -coupled to
the photo -cathode of the image intensifier.

In all of these applications it is becoming common practice to view
the output phosphor screen with a closed circuit TV system. This
allows observation of a magnified, bright image with the ability to
perform video processing and to produce a permanent record on video
tape. In these cases, especially when a direct visual output is not
really necessary, a single stage electron -to -video transducer with
charge amplification replacing the output phosphor screen, lens, and
pickup tube would effect a considerable simplification in the system
with savings in volume and cost and would afford the possibility of
better performance.

Indeed in a class of pickup tubes exemplified by the secondary
election conduction (SEC) camera tube,4 the fundamental image
sensor is a photocathode, and the electron image is focused at high
energy onto a charge storage target with charge gain. The target is

scanned in a vidicon fashion to produce the video output. In this case
the target is an insulator, KC1, evaporated onto a thin metallic back -
plate. The charge in this case is created in a region of high electric
field, and the resulting electrons are swept out. The remaining posi-
tive charge is immobile and constitutes the storage mechanism. Such
a target is similarly an electron -to -video transducer with charge gain
and has been used in the applications suggested above.

In a second class of applications exemplified by double beam
storage tubes, Fig. 3, the input electrons are produced by a writing
gun and form an amplified, stored charge pattern. The stored pattern
could represent, for example, a video display, as in a scan conversion
device,5 an oscilloscope trace for highspeed, nonrepetitive events° or
a closed, nonintersecting path for variable delay of analog or digital
signals.?

The double -beam device of Fig. 3 has been chosen as the vehicle for
study of the target imaging characteristics under electron bombard-
ment. The target has also been studied under conditions which allow
multiple readout of the stored charge. In what follows the double -
beam device will be referred to as a scan converter.

II. THE SCAN CONVERTER

13y way of introduction and for comparison, it is worthwhile to
review some aspects of the target optimized for use in a camera tube.
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Fig. 3 - Scan converter. Notice back-to-back gun structure.

The array of reverse -biased diodes stores positive charge, created in
the form of minority carrier holes by photons incident on the n -type
silicon substrate from the side opposite the diode array. The holes
diffuse to the diode depletion region and are swept across to the p -
region or island of the diode. The stored charge is manifest as a partial
discharging of the diodes from their full reverse -bias voltage, which
equals the fixed potential of the target substrate, VT, relative to the
potential of the electron beam cathode. The scanning, low energy
electron beam, landing on the exposed p -islands, periodically charges
them toward cathode potential. Full recharging brings the potential
of the p -islands down to cathode potential at which point the elec-
trons can no longer land on the surface. This reestablishes the full
reverse bias across the diodes.

Since the substrate potential is held fixed, the p -islands of partially
discharged diodes exhibit a positive potential variation on the sur-
face facing the electron beam. These islands are charged back to
cathode potential on the next pass of the scanning electron beam.
The recharging current constitutes the desired video signal and is
proportional to the number of holes collected by the diodes at the posi-
tion of the scanning beam. Since the number of holes stored by these
diodes is proportional to the number of photons incident during the
preceding frame period, the video current measures the integrated
light intensity at the position of the diodes. The use of a discrete diode
array preserves the spatial integrity of the incident light pattern to
the extent that lateral diffusion of the holes is negligible and spatial
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frequencies with periods comparable to or smaller than the diode
spacing are not important.

In the design of the camera tube target the proper choice of diode
capacity is important as can be seen by the following example. Sup-
pose that the peak video signal is set at 200 nanoamperes and the
scanned area has 670,000 diodes. The scan time is approximately
1/30 second. The maximum charge restored to the diodes during
scanning is 2 x 10-7 amperes x 1/30 second = 6.7 x 10-° coulombs
or 10-14 coulombs per diode. The voltage swing of a p -island should
never be more than about 5 volts since the beam may be pulled,
producing landing errors for greater values. Thus the minimum re-
quired diode capacity is approximately 10-14 coulombs/5 volts =
2 x 10-15 farads.

Under the conditions specified, the scanning beam current required
to recharge the diode to a major fraction of the full reverse -bias
voltage (during the submicrosecond interval the beam is incident on
the diode) is 1 to 2 pamperes. Beam currents below this value lead
to image lag resulting from incomplete recharging of the diode and
reduced video signal levels. If the diode capacity is doubled relative
to the minimum value, keeping everything else fixed and neglecting
the dependence of capacitance upon reverse -bias voltage, the voltage
swing of the diode is halved.

The beam current required to recharge the diode to the same ex-
tent as in the previous case is increased significantly, possibly more
than a factor of two, because the beam landing efficiency is a strong
function of the landing energy and is significantly reduced if smaller
voltage swings are used. (The beam landing efficiency is defined as
the ratio of the surface charging current to the incident current. It
is less than unity because of secondary emission and elastic reflection
of electrons.) Large beam currents are not desirable and in general
not practical; hence the diode capacity must be critically controlled.

For the diode geometry used in the camera tube the silicon resis-
tivity to achieve the appropriate capacitance range is about 10 fl -cm.
The optimum capacity may be achieved by adjusting the potential
of the target substrate which varies the full reverse -bias voltage.

A major requirement on the diode performance is the ability to
sustain the reverse bias for an interval that is long compared with
the scanning interval. With a diode dark current of 10-18 amperes,
the time for the diode reverse bias to decay to less than half its
original value without recharging is about one second, which is sig-
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nificantly greater than the usual 1/30 second recharging interval. The
ability to hold the diode leakage current well below 10-13 amperes at
room temperature over the necessary range of target voltage represents
one of the major accomplishments of the target development pro-
gram for the camera tube. Leakage current for the full array is usually
well below 50 nanoamperes. A major requirement on the substrate is
that volume and surface recombination rates of minority carrier holes
be reduced to the point that a large fraction of the holes created by
incident radiation can reach the diode depletion region.

The scan converter device is based on the charge storage and elec-
tron beam readout properties of the target. The ability to create
hole -electron pairs in the target substrate by bombardment with
energetic electrons forms the basis of the writing function. Writing is
accomplished with a CRT type of electron beam, current modulated
with the incoming video signal and incident on the side opposite the
diode array (Fig. 3). Each incident electron creates a multiplicity
of hole -electron pairs, some of which discharge the diodes, creating a
pattern of stored charge just as in the camera tube. The charge stored
in the diode array actually can be greater than the charge deposited
by the incident writing beam, requiring however that the number
of hole -electron pairs created per incident electron times the proba-
bility of collection for the hole, be greater than unity. The ratio of
stored charge to incident charge will be called the charge gain.

Despite a possible difference in scanning rates, in equilibrium the
current level of the video signal generated by the reading beam will
be larger than the current in the writing beam by just the charge
gain factor. (Application of the concept of charge conservation will
indicate the validity of the statement.) On the other hand, the reading
beam current is required to be greater than the video signal because
the beam landing efficiency is substantially less than unity. Hence
the writing beam will usually have much lower currents than the
reading beam. In addition, the writing beam electrons will land with
energies in the kiloelectron-volt range while the reading beam elec-
trons will land with energies in the range 0-5 electron -volts. The
result is that the writing beam may be much more finely focused
than the reading beam. Since the penetration range of the writing
beam electrons in the silicon substrate is normally under one micron,
the resolution of the scan converter should be essential identical
to that of the camera tube for very short wavelength light which
is absorbed close to the surface.
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Figure 3 indicates that some of the writing beam current could

return to the writing beam cathode through the target resistor,
creating an undesirable video signal. In actual fact, the potential
of the mesh immediately preceding the target is adjusted to such

a value that the effective secondary emission coefficient of the sur-
face is almost exactly unity. This balance is achieved almost instan-
taneously so there is virtually no net writing beam current to the
target (but rather the current is to the mesh) and virtually no cross-
talk. In case the precise secondary emission balance cannot be achieved
uniformly over the target, the secondary emission reduction in writ-
ing beam current to the target coupled with the charge gain for the
desired video signal brings the crosstalk signal down to a tolerably
low value.

The writing beam is scanned at a rate appropriate to the incoming
video signal. On the other hand, the reading beam may be scanned
at any rate desirable. Scanning the reading beam more rapidly than
the writing beam produces a multiplicity of time -compressed frames
as would be required for slow scan TV.

There is a technique for achieving multiple readouts while preserv-
ing the full gray scale. During the early stages of the development
of the camera tube, it became clear that it was difficult, if not im-
possible, to obtain a stable video response unless the silicon dioxide
(which covers the area between diodes and prevents beam electrons
from landing on the substrate as well as protecting the diode junc-
tions) was provided with a charge leakage path of some kind. With-
out the charge leakage path it was not possible to control the surface
potential of the oxide and a great many deleterious effects resulted.

The scheme adopted to provide the leakage path has come to be
known as "the resistive sea" and is simply the formation of a thin
resistive film over the entire array. The sheet resistance of the film
is chosen to allow surface leakage with a charging time constant
of order one second which allows control without causing loss of

resolution through lateral spreading. Additional constraints on the
dielectric relaxation time and thickness of the film are required to
allow complete charging of the diodes to avoid lag. These same
parameters can be optimized to allow multiple readout.

Consider Fig. 4 which illustrates the target with a resistive sea
and some lumped circuit equivalents for the various parameters of
interest. The diode has a capacity Cd. A pulsed current source id
accounts for the partial discharging of the diode when the writing
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Fig. 4 - Schematic of lumped circuit equivalent for diode and resistive sea. RFCF =

p < TF = 1/30; Cd/CF << 1 low lag; Cd/CF >> 1 for multiple readouts.

beam is incident on the substrate adjacent to the diode. Assuming a
frame compression ratio of N is desired, the video signal must be
created N times for each scan of the writing beam. To maintain
adequate signal-to-noise ratio the video output current must be at
a level comparable with that achieved in the camera tube. This re-
quires N times as much charge storage; hence the diode capacity
must be about N times larger than the equivalent capacity of the
diode in the camera tube. The most direct way of achieving the
increased capacity without changing the diode geometry is the use
of N2 times higher conductivity in the n -type silicon substrate than
might be desirable for conventional camera use.

The thickness and resistivity of the resistive sea is arranged to
allow negligible leakage from one diode to the next during the 1/30
second between scans of the reading beam. Thus the lateral or spread-
ing resistance of the film will be ignored as well as the shunt capacity.
This considerably simplifies the discussion. The leakage resistance
Rf and film capacity Cf must have an RC time constant much less
than the 1/30 second between successive scans of the beam, yet long
compared with the approximately 10-7 second or less that the reading
beam is incident on the diode. For this particular geometry the RC
time constant is about equal to the dielectric relaxation time constant,
pEE0, of the film material (p is the resistivity, E the dielectric constant
and ea the permeability of free space). Assuming e 10 and choosing
pee0 5 X 10-3 second yields p ti 6 X 10312 -cm.

The ratio of diode capacity to film capacity Cd/Cf should be about
equal to N - 1, for reasons which will become clear shortly. Thus
the film capacity should be about the same as that of the camera
tube diode, 2 x 10-15 farads, requiring a film thickness of about 2
microns over the 8 micron diameter diodes. The sheet resistance of
the film is about 3 x 10-15 ohms per square which for a 1/30 second
frame is adequate to control surface charging without reducing
resolution.



1864 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1968

The substrate potential is held at VT the target bias supply voltage.
In the absence of stored signal the reverse -bias voltage of the diode
equals VT , the voltage across the film is zero, and the surface potential
of the film equals the cathode potential, that is, zero. Reading beam
electrons incident on the surface have a landing efficiency of essentially
zero and no further negative charging of the surface can occur.

Suppose now that writing beam electrons are incident on the substrate,
producing hole -electron pairs and that a fixed fraction of these with total
charge Q. diffuse to the diode, discharging the diode by a voltage
AV. R.,' Q./Cd . The charge Q. will be referred to as the signal charge and
AV. as the signal voltage. It is assumed for the purpose of discussion
that AV. << VT so that the diode capacity Cd is constant and has a value
appropriate to VT . In practice the film surface has negligible capacitance
to ground so that no displacement current need flow through the film
capacitance when the interface potential rises and the voltage across the
film therefore remains at zero. Thus the film surface is brought to a
potential AV. . The maximum value of AV. is about 5 volts to avoid
beam bending as in the camera tube.

When the reading beam comes to the diode, the surface of the film is
charged down essentially to cathode potential. Thus the series combina-
tion of capacitors C, and Cd is recharged by an amount AV. , requiring
that the reading electron beam place a charge on the film surface

= AV./(1/Cd 1/C,)

= Q./(1 Cd/Cf) 

(The reading beam current is set at a value high enough to provide
the charge, iQ1, during the short reading time interval. During this
interval, conduction current through the film is negligible compared
with the displacement current.) The charge AQi flows through the
target resistor RL producing an output voltage proportional to the
signal charge Q0. The signal charge stored in the diode capacitance,
originally Q0, is reduced by the amount AQi to a value

Q, = Q0/(1 C//"d)

The voltage across the diode, originally VT - AT70, is now V.. -
AV,/ (1 + Cf/Cd). The voltage across the film is AV0/ (1 + Cf/Cd)
which, because of the short RC time constant of the film, decays to
zero before the next return of the reading beam. The surface poten-
tial therefore achieves the value
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= AV0/(1 Cf/Cd)

as compared with to the original value AV° immediately preceding the
first read. The process is then repeated. At the nth reading after the
original signal charge Q0 was established by the writing beam, the
output voltage is proportional to

Aqs = (20/(1 cd/cfr
and the film surface potential at the instant preceding the nth read is

AVo = AV./(1 Cf/Cd)n-1.

Since by design Cf/Cd is uniform over the target, the relative gray
scale is preserved, the output signal is linearly proportional to the
input signal and the output signal decays from one read to the next
in a well-defined exponential fashion. The exponential time constant is

T = TA]. + Cd/Cf)

in which rf is the reading frame time. Thus for a compression ratio of N
an appropriate value might be Cd/Cf = N - 1 which implies that the
signal decays to 1/e in one writing frame time. For this case AQi = Qo/N
which establishes that the signal level is the same as that in the camera
tube. Since AQ1/1V0 = CAN - 1)/N this establishes the correctness
of the choice of Cf about equal to the capacity of the camera tube diode
(at least for N >> 1).

Incidentally, in the camera tube and in many other applications,
it is desirable to read virtually all of the signal stored in the diode
on the first read (that is, one wants N = 1). This is accomplished
by making Cd/Cf as small as possible. Thus the film thickness in a
low lag target should always be under 0.1 micron as compared with
2 microns in the scan converter example above.

III. EXPERIMENTAL RESULTS

Figure 5 shows the scan converter. The tube is two one -inch vidicon-
type guns facing opposite sides of the diode array target. The read-
ing gun has a close -spaced decelerating mesh, as required for good
resolution, while the writing gun mesh has been spaced back about
one inch. This space permits light to be directed onto the target for
measurement of the collection efficiency for holes generated by photons
as in a camera tube,
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Fig. 5- Scan converter. The diameter of the glass envelope is one inch. The
large spacing allows optical measurements to be made on the target.

Most of the targets used to date are identical to those used in
the camera tube; hence they have not been used for multiple readout.
However, the validity of the capacitive subdivision of the available
signal and the multiple read capability has been established with at
least one target.

The resolution of the scan converter target is measured as follows.
Both the writing gun and the reading gun are normally operated
with magnetic deflection and focus. The writing beam current is
modulated sinusoidally in time at frequencies locked to the horizontal
scan rate producing a fixed sinusoidal charge pattern on the array.
Feed -through is eliminated by adjusting the potential of the writing
beam mesh as described earlier. The reading beam scanning rate is
locked to that of the writing beam to avoid fluctuations in the rela-
tive number of reads per write. The reading beam scans over the
fixed charge pattern producing a sinusoidal output signal. The meas-
ured peak -to -peak amplitude of the signal normalized to the value
measured at low spatial frequencies is called the contrast ratio or
modulation transfer function (MTF) .

The MTF as a function of spatial frequency in cycles per inch
of target is shown in Fig. 6 for a target with a substrate thickness
of 20 microns and a diode spacing of 20 microns. Notice that the
MTF is 55 per cent at 300 cycles per inch or 12 lines pairs per mm.
The falloff may be attributed to four sources: (i) writing beam size,
(ii) reading beam size, (iii) finite number of diodes, and (iv) lateral
diffusion of holes. For the particular target the first two are least
significant since under magnetic focus the reading beam is capable
of resolving individual diodes and the writing beam has even greater
resolving power. The third source of falloff may be appreciated by
noticing that the linear diode density is 50 per mm, which means
that there are about four diodes per spatial period at 12 cycles per
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Fig. 6- Measured modulation transfer function for the scan converter target.

mm. This is barely enough and a part of the falloff may be attrib-
uted to this fact.

Most of the falloff results from lateral diffusion of the holes which
under the conditions of the measurement are produced within 1/10
micron of the substrate surface. Therefore, those that are collected
must diffuse a distance of about 15-20 microns perpendicular to the
surface. Since the lateral diffusion distance can be of the same order
or greater, any detail requiring a spatial frequency of greater than 25
cycles per mm is effectively destroyed. The precise nature of the MTF
falloff for the target depends on the target thickness, the diode geom-
etry, and the volume recombination length and surface recombination
velocity for holes. We plan a detailed discussion for a future paper.

The MTF at high spatial frequencies can be increased considerably
by using thinner targets and increasing the diode density. Figure 2
illustrates a target with a substrate thickness of 10 microns and diode
spacing of 15 microns corresponding to 67 diodes per mm. For this
target the MTF is 100 per cent out to 280 cycles per inch and falls to
50 per cent at well over 400 cycles per inch. For this target the read-
ing beam contributes substantially to the falloff in resolution.

The effective charge gain, of course, is a function of spatial fre-
quency and its relative dependence on spatial frequency is the MTF
shown in Fig. 6. However, the absolute charge gain for uniform storage
patterns is a parameter of importance. Large values of gain are not
really required or desirable for the scan converter; values of order 10
are useful. Values of order 103 or greater are desirable for some of
the other applications.
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The charge gain is measured in the following way. The unmodulated
writing beam is scanned over some small area of the substrate at a
current level sufficiently low that the resulting holes do not completely
discharge the diodes. This can be checked by varying the writing beam
current. The writing beam mesh is held negative relative to the sub-
strate to suppress true low energy secondary electrons but not elasti-
cally reflected primaries. The redistributed secondary electrons, which
land at much reduced energies compared with the primary beam, pro-
duce few, if any, hole -electron pairs. With the reading beam turned
off, the current in the target lead measures the incident current in the
writing beam that penetrates into the target. The charge gain in this
case is effectively zero since the diodes are discharged and the hole -
electron pairs are forced to recombine. The reading beam is turned on
and scanned over an area which includes the area scanned by the writ-
ing beam. The increase in time average current measured in the target
lead measures the arrival rate at the scanned diodes of all the holes
generated in the substrate. The thermal part of the hole generation
(the diode dark current) is determined by turning off the writing beam.
The net current divided by the writing beam current penetrating the
target is called the charge gain. A preliminary discussion of the ex-
pected results is appropriate at this point.

The charge gain should be describable by the expression

L

G(V) = (x)
.dP (x , V)

dx
dx (1)

0

in which 77(x) is the probability that the hole, created at a distance x
from the surface upon which the electrons are incident, will reach the
diode space charge region and be collected, dx(dP/dx) is the number
of hole electron pairs created between x and x + dx for an electron
incident normally with kinetic energy V electron volts, and L is the
substrate thickness. The function

P(V) = dP(x, V)
fo dx

dx (2)

which defines the total pair production per incident electron is given by

P (V ) V/3.5 (3)

(corresponding to the fact that it takes on the average 3.5 eV to create
one hole -electron pair). Writing
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G(v) = p(v)[fL x
)dP('' V) dx/r** dP(x, V) dx]

dx dx
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(4)
= P(V)n( V)

combines the effects of a variety of different phenomena into the function
n(V) which will be called the effective collection efficiency.

A number of different target fabrication procedures have been studied
to optimize the effective collection efficiency. The best to date is similar
to that used for optimizing the sensitivity of the target for visible light
and consists of a thin n+ layer formed on the writing beam side of the
target. The n+ layer is formed by a shallow phosphorous diffusion into
the n -type conductivity substrate. The effect of this layer is discussed a
few paragraphs further on. The measured collection efficiency n(V) =
3.5G(V)/V as a function of electron energy is shown in Fig. 7. The
collection efficiency approaches 0.5 for electron energies of order 10 KeV
but falls well below 0.01 for energies below 2 KeV. Indeed in the energy
range under 2 KeV the measured effective collection efficiency of a target
for which the phosphorous diffusion was eliminated (the surface was
merely etched) was higher at a constant value of 0.016.

An understanding of the measurements requires a knowledge of n(x).
However, a theoretical evaluation of n(V) is complicated by the fact that
dP(x, V) /(ix is not negligible very close to the surface and n (x) near the
surface is strongly dependent on the surface properties of the silicon
crystal. Aside from the surface complication n(x) may be accurately
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Fig. 7 - Measured effective collection efficiency for holes created by electrons of
incident electron energy V. The effective collection efficiency n( V) is determined from
the measured charge gain G(V) by the relation n(V) = 3.5G( V)/V.
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evaluated on the basis of a model in which only the bulk recombination
lifetime T, the surface recombination velocity S at x = 0, the diffusion
coefficient D, all for the minority carrier hole, and the substrate thickness
L are relevant,

sinh (x//) (D/1S) cosh (x//)
n(x) - sinh (L/1) (D/ls) cosh (L//)

1 = (Dr)1,
(5)

which follows from a one-dimensional Green's function solution of the
diffusion equation for excess holes. In fact (1) might be considered to be
the normalized Green's function solution for hole current through the
plane at x = L.

Quite generally n(x) increases with increasing recombination length 1
and the target fabrication is optimized to make 1 as large as possible.
Typically 1>> L and it is appropriate to make this assumption. Thus (5)
becomes

1 Sx/D
n(x) (6)

1 SL/D

For an etched silicon surface S Er:), 10'cm per second while D = 10 cm2
per second. Thus for L = a minimum
practical value, SL/D 102. It can be appreciated that 97(x) will be
quite small for x << L unless S is substantially reduced. Thus for low
beam energies corresponding to small penetration depths n(V) n(0) =
(1 ± SL/ D)' 10-2 which is consistent with measurements on etched
targets. As mentioned above, the most relevant technique among those
that have been tried to reduce S for this application is a shallow phos-
phorous diffusion into the surface upon which the electrons are incident.
This produces an n+ layer which repels holes diffusing toward the surface
resulting in an effective value of S 102cm per second. As a result the
x -dependence in (6) is relatively small. Unfortunately the phosphorous
diffusion drastically increases the recombination rate of holes in the n+
layer and the layer can be characterized as dead. As a result n(x) is not
well known for very small x.

The uncertainty in interpretation of the experimental results intro-
duced by the dead layer makes it desirable to study also the collection
efficiency for holes produced by incident photons. For this case the initial
distribution of holes created by the photons is accurately known. A corre-
sponding effective collection efficiency function n(X) can be defined for
pair production by photons of wavelength A,
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n(x)ae-az dx
n(x) -

"Co

ae-" dx

0

(7)

in which a(X) is the absorption coefficient for photons of wavelength X.
This formulation is not strictly correct for aL < 1 since light penetrating
to the surface at x = L may be reflected back into the substrate. Also
the distance L is not well defined because of the diodes. If it is assumed
that within the dead layer of thickness 6, n(x) = 0 and beyond the
dead layer n (x) is given by the equation in (6) with x measured from
the edge of the dead layer, then for aL >> 1

n(X) f n (x - 6)ae- az dx

[1 + S/aD1
n(X) exp - (8)

1 SL/D

The measured collection efficiency as a function of wavelength (for
the same target used for obtaining the data of Fig. 7) is shown in Fig. 8.
The data were obtained by admitting light onto the target through the
glass wall of the tube envelope. The data are corrected for Fresnel
reflection losses at the glass surfaces and from the silicon. Curves of (8)
with S = 1.1 X 104 cm per second, D = 10 cm2 per second, L = 20
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microns and S = 0 and 0.21 microns are also shown. The calculation is
not carried beyond X = 0.65 microns since for longer wavelengths the
target does not absorb all of the light transmitted past the surface. In
fact, the slight falloff in collection efficiency above 0.7 microns may be
attributed to this. Notice the good agreement with the curve correspond-
ing to 6 = 0.21 microns indicating the approximate validity of the
simple model of the dead layer. The dead layer thickness corresponds
roughly to the phosphorous diffusion depth.

In the range 0.4 < X < 0.65 microns the absorption depth for photons'
corresponds very roughly to the penetration depth for electrons in the
energy range 4 < V < 10 KeV. The penetration depth increases
monotonically with X or V to a maximum value of a few microns.
Although the distribution of created holes for any value of X is not the
same as the distribution for any value of V, it is not surprising that the
range of measured values of n(X) and n(V) are quite similar. In either
case a reduction of S to 103 cm per second, which is the more typical
value observed in camera tubes, would increase the collection efficiency
to close to unity over most of the range. A shallower phosphorous
diffusion would also improve matters for low V or X.

To date the only feature of the target which causes some concern
about its future applicability is a slight burn -in or aging phenomena
associated with the writing beam. It shows up as a decrease in charge
gain over very heavily scanned areas. The rate of aging increases with
writing beam current. It is not yet known whether the aging effect
saturates, or whether it even occurs at all for low writing beam cur-
rents typical of most applications. The aging may account for the
larger values of S observed in these targets as compared with camera
tube targets.°

IV. CONCLUSION

A charge storage target for low energy scanning beam readout has
been described with respect to its ability to produce a video represen-
tation of an electron image. Measurements of resolution and charge
gain have been described. The target has general application in devices
requiring an electron -image -to -video transducer and in scan conver-
sion devices.

V. ACKNOWLEDGMENT

The authors are greatly indebted to E. J. Zimany, Jr., who has per-
formed all of the experimental measurements and designed and con-



CHARGE STORAGE TARGET 1873

strutted the test racks, as well as E. J. Walsh and R. P. Haynes who
executed the mechanical design of the tube. The tubes were vacuum
processed by E. J. Zimany, Sr. J. V. Dalton supplied the silicon diode
array targets and N. C. Wittwer fabricated the resistive seas. E. F.
Labuda participated in informative discussions.

REFERENCES

1. Crowell, M. H., Buck, T. M., Labuda, E. F., Dalton, J. V., and Walsh, E. J.,
"A Camera Tube with a Silico Diode Array Target," B.S.T.J., 46, No. 2
(February 1967), pp. 491-495.

2. Gordon, E. I., "A 'Solid -State' Electron Tube for the Picturephone® Set," Bell
Laboratories Record, 45, No. 6 (June 1967), pp. 174-179.

3. Miyazaki, E., Maeda, H., and Miyaji, K., Advances in Electron Physics, Vol.
22A, New York: Academic Press, 1966, pp. 331-339. This work is relevant
and provides a number of earlier references. In all previous measurements
significant charge gain is observed only when the hole -electron pairs are
created in the uniform depletion region of a large area diode.

4. Goetze, G. W., Advances in Electronics and Electron Physics, Vol. 22A, New
York : Academic Press, 1966, pp. 219-223.

5. Crowell, M. H. and Gordon, E. I., 1967 International Electron Devices Meeting,
"A Television Scan Converter Tube Using a Silicon Diode Array Target,"
Paper No. 102, Washington, D. C., October 1967.

6. E. D. Niper, unpublished work.
7. Danielson, W. E., unpublished work.
8. Runyan, W. R., Silicon Semiconductor Technology, New York: McGraw-Hill,

1965, pp. 187-201.
9. An increase in the surface recombination velocity of silicon surfaces covered

with thin layers of oxide has been reported by E. H. Snow and D. J.
Fitzgerald, "Radiation Study on MOS Structures," Fairchild Semicon-
duction, Scientific Report No. 4, AFCRL-68-0045.





Hologram Heterodyne Scanners

By L. H. ENLOE, W. C. JAKES, JR., and C. B. RUBINSTEIN

(Manuscript received April 1, 1968)

Several techniques are proposed in this paper which use a scanning
coherent light beam to produce an electrical signal which corresponds to a
scanned hologram. The hologram itself is not formed at the transmitting end
of the system as a physical entity, rather the modulated electrical carrier
frequency corresponding to the spatial carrier frequency of the hologram is
generated by heterodyning. An advantage of the hologram heterodyne scanner
is that it reduces the spatial resolution required of the camera tube in a
holographic television system by at least a factor of four.

I. INTRODUCTION

In principle, it is possible to conceive of a holographic television
system, but a practical system hinges on removing a number of
formidable roadblocks. Among these is transducing the holographic
information into a relatively narrowband electrical signal by means
of a camera that has limited spatial resolution. This problem is shared
by both a three-dimensional and a two-dimensional holographic sys-
tem, but with present technology the 3-D system certainly presents
many more problems. The two-dimensional system becomes much
more tractable if the camera resolution problem is overcome. It is to
this problem and our proposed solution that this paper addresses itself.

Consideration of this problem is not new, as evidenced by the
early outline of the bandwidth requirements of a holographic televi-
sion system by E. N. Leith and others in 1965.1 There have also been
reports of experiments involving the transmission via television of a
Fresnel type of hologram in which the original object was a trans-
parency.2, 3 The difficulties encountered in these transmissions illus-
trate the crux of the problem.

A hologram consists of low spatial frequency information (dictated
by the spatial information content of the object) which has been
modulated onto a high spatial carrier frequency derived from the
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interference of the reference and object beams. Conventionally, a
television camera converts a spatial display, which in this case is a
hologram, into an electrical signal by scanning it with an electron
beam. However, the camera has a spatial frequency response that is
low-pass in nature and limited in extent. Hence, the spatial carrier
frequency rests out on the skirt of the passband, and the positive and
negative sidebands are thus treated differently, producing distortion.
We have so far lacked a feasible technique which would allow the
effective use of the available bandwidth. That is to say, we need a
technique which would allow the hologram information to be low-
pass in nature until after being processed by the photosensitive sur-
face of whatever transducer is used. The method we propose, which
we call the heterodyne scanner, does exactly this. As a consequence,
the required spatial resolution is reduced by at least a factor of four
compared with the transmission of a conventional off -axis reference
beam hologram.

The technique we propose envisions a scanning coherent light beam
to produce an electrical signal which corresponds to a scanned holo-
gram. In contrast with conventional methods, the hologram itself is
not formed at the transmitting end of the system as a physical entity;
instead the modulated electrical carrier frequency corresponding to
the spatial carrier frequency of the hologram is generated by hetero-
dyning.

These heterodyne scanners have important potential advantages
over conventional methods of scanning. First, the nuisance terms
corresponding to the direct beam in the. reconstruction of a conven-
tional hologram are not transduced. This halves the scanning beam
aperture's resolution requirements. Second, the necessity for resolving
the spatial carrier frequency of the equivalent hologram with the
scanning beam is circumvented. This halves again the scanning beam
resolution requirements, thus reducing resolution requirements to a
quarter of the original requirements.

Let us briefly review the formation of a conventional hologram in
order to point out the terms involved in the formation and reconstruc-
tion. We will then be in a better position to discuss the desired re-
duction and the means for accomplishing it.

II. CONVENTIONAL HOLOGRAM

Figure 1 depicts a typical holographic situation, showing an ob-
ject beam

E0(x, = Ao(x,
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Fig. 1- Formation of a conventional hologram. Object and reference beams
impinge on hologram plane P.

and a reference beam

Er(s, y) = Arei[wri -ax-Or,

impinging upon a hologram plane P. The intensity is given by

I A c.(x , y)2

2ArAc.(x, y) cos Kwo - wr)I ,950(x, ax Or] (1)

For the formation of a conventional hologram the two beams must be
at the same frequency, that is*, CJJ, = CO., so that equation 1 becomes

I = + A0(x, y)2 2ArAo(x, y) cos [00(x, y) ax Or]. (2)

During reconstruction, the first two terms of equation 2 form the direct
beam and are unimportant except that they tend to obscure the recon-
structed image which comes from the third term. Notice that the third
term is a spatial carrier wave which is amplitude and phase modulated.
If the spatial bandwidth of the wave to be reconstructed, A (x,
is 2 W, then the bandwidth of the direct beam, A2,. A0(x, y)2, and the
bandwidth of the desired term, Aril 0(x, y) cos kh(x, y) ax cbr], will
each be 4W, as shown in Figure 2. Thus if angular overlap between the
direct beam and the desired reconstructed wavefront is to be avoided, we
require that the spatial carrier frequency a of the desired third term in
equation 2 be at least 3W. This results in a total spatial bandwidth of 8W.

* There are exceptions. See Ref. 4.
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Fig. 2 - Spatial spectra of a conventional hologram signal. This representa-
tion is only intended to convey the limits of the spatial spectra and not the
explicit form of the function.

III. ELIMINATING TERMS CORRESPONDING TO THE DIRECT BEAM

Since the third term in equation 2 is all that is necessary to recon-
struct a hologram, it is desirable to eliminate the generation of the
direct beam. The spatial carrier frequency a could then be reduced
from its present minimum value of 3W to W, reducing the minimum

bandwidth which must be transduced from 8W to 4W.
We are able to accomplish this rather easily with the heterodyne
techniques discussed in this paper.

If equation 2 represents the intensity formed on a television camera
tube, the camera output current will be proportional to the intensity
being scanned by the electron beam. For an x -direction scan, the
amplitude and phase modulated spatial carrier frequency is con-
verted to a correspondingly modulated electrical signal. Notice that
precisely the same electrical signal can be obtained by using a photo -
multiplier or other large area photodetector with a pinhole aperture
placed just in front of the photosurface, the pinhole being scanned
over the photosurface in a raster -like fashion in the same manner that
the electron beam scans the photosurface in a camera tube. The out-
put current from the photodetector would be proportional to the in-
tensity of the light sampled by the pinhole.

A more desirable transducer is obtained if one shrinks the ref er-
ence beam into a small pencil beam of pinhole dimensions which is
then scanned over the photosurface. The pinhole aperture is now
superfluous and can be removed, thereby gaining a distinct advantage.
The intensity of the light on the photosurface contributed by the
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object beam acting alone and the reference beam acting alone is now
constant as a function of time. Thus, the nuisance terms correspond-
ing to the direct beam in the reconstructed hologram, that is, the
first two terms of equation 2, are not transduced as time varying
currents. The only time varying term is produced by the interaction
of the pencil reference beam with the object beam as it scans out the
raster. This time. varying signal is proportional to the desired third
term in equation 2 which represents the useful information. Thus,
the carrier frequency (dictated by the angle between the reference
and object beams) can be reduced from 3W to W, which cuts in half
the resolution requirements of the aperture of the scanning beam.
(See Fig. 2).

IV. ELIMINATING THE SPATIAL CARRIER FREQUENCY

In the situation discussed in the previous section, spectrum over-
lap in the electrical signal is prevented by adjusting the angle be-
tween the object and reference beams to provide a sufficiently large
spatial carrier frequency. As a consequence, the aperture of the
scanning beam must resolve the highest spatial sideband frequency
associated with this spatial carrier frequency.

As an alternative to generating the electrical carrier frequency by
scanning a corresponding spatial carrier frequency, it is possible and
indeed advantageous to generate the electrical carrier by heterodyning
the object beam with the reference beam. This can be done in such a
manner that it is unnecessary for the scanning aperture to resolve an
equivalent modulated spatial carrier frequency. It must resolve only
those spatial frequencies present in the complex field of the object
beam itself, that is, it must resolve only a spatial bandwidth of 2W.
This realizes a subsequent reduction in the resolution requirements
of the scanning beam by a factor of two over and above the reduction
discussed in Section III.

For convenience, let us rewrite equation 1,

I = Ao(x, y)2

2A,110(x, y) cos [(We - cor)i + 0.0(x, y) + ax Or], (1)

which represents the intensity of the light incident on the photodetector
when the object beam and reference beams are at different frequencies
coo and co respectively. Conceptually, these two frequencies can be
sidebands produced by modulation, or can be two plume -locked modes of
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the same laser, or produced by two phase -locked lasers, to name just a
few methods.

In the present situation, the scanning pencil -like reference beam
has an amplitude which may be written as a delta function, A,. =
8 (x - ut) 8 (y - vt), where u and v are the horizontal and vertical
scanning velocities, respectively. When this is substituted into equa-
tion 1 and integrated over the surface of the photodetector to find the
output current, we obtain for the time varying component:

i(t) = 2A0(ut, vt) cos [(co. - car au)t .rtio(ut,vt) Orb

We see that the frequency difference w, - co,. has been added to the
electrical carrier frequency au produced by scanning the spatial carrier
frequency a. Thus, we may use a spatial carrier frequency of zero and
avoid spectrum overlap (which produces beam overlap problems at
reconstruction) by controlling the frequency difference between the
reference and object beams. This means that the aperture of the scanning
beam need resolve only those spatial frequencies present in the complex
field of the object beam. For example, in Fig. 2 it need resolve only the
spatial spectrum of A,,(x, y)e")*(z.v). Thus, the total spatial bandwidth
required has been reduced by a factor of four.

V. ADDITIONAL CONSIDERATIONS

It might be appropriate to speculate on other aspects of the holo-
gram heterodyne scanner. One might consider other means of im-
plementing this technique. For example, one could replace the large
area photodetector with a small area or point detector such as a
photodiode. Rather than deflecting the pencil -like reference beam
relative to a fixed object beam, the object beam is deflected relative
to a fixed pencil reference beam. This allows one to reduce the size
of the photodetector from that equal to the size of the equivalent
hologram to that equal to a point. The price paid for this simplifica-
tion is the difficulty associated with deflecting the information -bear-
ing object beam without introducing excessive distortion. This will,
of course, be more difficult than deflecting a pencil -like reference
beam.

Another aspect of the use of the. hologram heterodyne scanner is its
potential sensitivity. Heterodyning is a well known technique for
converting a weak light signal into an electrical current whose signal-
to-noise ratio is determined by the fundamental quantum nature of
light.5 The heterodyne scanner should have potentially the best sensi-
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tivity obtainable by any technique which does not use charge storage.
Without reported experimental verification of the hologram hetero-

dyne scanner, it would not be especially fruitful to spend much time
at this point speculating on possible display devices. There are a
number of possible approaches to this problem but they are admittedly
speculative. These include the Swiss Eidophor System* as a direct
recording medium for the holographic electrical signal, or the use of
photochromic materials for recording the output of a laser beam
modulated by the holographic electrical signal and raster scanned
over the photochromic surface. Both these methods have been referred
to by E. N. Leith and his colleagues.

VI. COMMENTS AND COMPARISONS

Let us compare the hologram heterodyne scanner to the method
proposed by C. B. Burckhardt and E. T. Doherty.? An extension of
their technique* reduces the spatial resolution required of the camera
tube by the same factor of four as the hologram heterodyne scanner,
but even in its improved version it still requires a 50 percent greater
electrical information rate than the scanner. However, the technique
can be implemented with present technology.

A technique has been reported by L. H. Lin which involves spatial
frequency sampling to reduce the information content of the holo-
gram.8 This is accomplished by an iterative Fourier transform tech-
nique. It is possible to augment Lin's technique with the. hologram
heterodyne scanner to increase the bandwidth saving. The transla-
tion of the hologram peculiar to Lin's technique can be carried out at
the receiver. K. Haines and D. B. Brumm have also reported on a
technique which can be used to reduce the information to be trans-
duced and is compatible with the hologram heterodyne scanner.*

The hologram heterodyne scanner is a general technique that would
apply to three-dimensional objects or two-dimensional transparencies.
However, this does not mean that the implementation of this technique
presents the same difficulties in each case. The spot size of the scan-
ning reference beam and the speed of scan are directly influenced by
the type of object to be transduced. The requirements are more
stringent for the three-dimensional object if reasonable parallax is
to be observed. Advances are currently being made in laser scanner
technology which will help alleviate one aspect of the problem. A. B.

* The technique presented in Ref. 7 has been extended by C. B. Burckhardt
to apply to TV transmission but this specific aspect is unpublished.
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Larsen of Bell Telephone Laboratories is conducting experiments
implementing the hologram heterodyne scanner technique. Many of
the concepts of this paper have been improved and extended by him
and will be reported in the near future.
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Analysis of Thermal and Shot Noise
in Pumped Resistive Diodes

By CORRADO DRAGONE
(Manuscript received April 8, 1968)

This paper discusses certain important aspects of the noise behavior
of a pumped resistive diode containing shot and thermal noise sources.
The derivation of the following result has a central role in the discussion.
It is shown that the noise behavior of a pumped diode which does not contain
1/f noise sources can be derived in a very simple way from Nyquist' s
theorem. This follows from the fact that the small -signal terminal behavior
of such a diode can always be represented, in the frequency range of practical
interest, by means of a connection of two linear and time -invariant net-
works of which one is noiseless and the other is dissipative, contains only
thermal noise sources and is held at a uniform temperature.

I. INTRODUCTION

The process of frequency conversion and its applications are well
known and are extensively treated in the literature.1-22 This paper con-
siders the special case of a resistive diode frequency converter. An im-
portant limitation on the minimum noise figure of such a frequency
converter is imposed by the noise generated by the diode, and it is the
main purpose of this paper to study the properties of this noise.

Until a few years ago, much of the noise generated by the diode was
1/f noise. Therefore, since very little was known about this type of
noise, the early theories of frequency converters using positive resis-
tance diodes paid little attention to the noise performance, and some-
what later theories accounted for noise only in a very approximate
way. However, as the semiconductor craft has developed, 1/f noise
has been subject to considerable reduction and, even though its exact
mechanism has not yet been completely established, in present diodes
it appears to be important only at very low frequencies.23 Therefore,
the study of shot and thermal noise in pumped diodes is of great prac-
tical importance.
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Strutt showed the method of treating shot and thermal noise in a
pumped diode many years ago.6 Since that time the method has been
applied to tunnel diode frequency converters by a number of au-
thors16-2° However, in the case of a frequency converter using a posi-
tive resistance diode, it is normally believed that, in order to calculate
its noise figure, a detailed analysis of the noise behavior of the diode
is not necessary.10, 12-14

Consider a positive resistance diode which does not contain fre-
quency dependent noise sources. That is, assume that, for any fixed
voltage v applied to its terminals, the small -signal terminal behavior
of the diode is equivalent to that of an ordinary resistor held at a uni-
form temperature T. The conductance g of this resistor is equal to the
differential conductance of the diode and T is the so-called equivalent
noise temperature of the diode. Since in a frequency converter the
diode is pumped periodically by the pump, v varies with time. There-
fore, g and T also vary with time, because they both depend upon v,
and one can write g = g (t) and T = T (t) .

Normally it is convenient to represent the small -signal terminal be-
havior of the diode by means of a linear and time -invariant network
with several separate terminal pairs, one for each frequency of inter-
est. A study of the noise behavior of this equivalent network generally
requires that the self- and cross -power spectral densities of its short-
circuit terminal currents, or of its open -circuit terminal voltages, be
determined. Normally, however, the difficulty in determining the statis-
tics of these noise terms is overcome by making the assumption that
the equivalent network may be treated as an ordinary time -invariant
dissipative system which contains only thermal noise sources and is
held at a uniform temperature L. L is normally assumed to be equal
to a certain time average of T (t) .

Even though no general proof has yet been given for this representa-
tion, it is widely used, mainly because it greatly simplifies the treat-
ment of the noise performance of a frequency converter. However, it
is often viewed with reservations for several reasons." One very im-
portant reason is that it is generally applied to cases, in which one can
easily show that it is not applicable, such as cases in which significant
1/f noise is generated by the diode. Another reason is that its validity
is not obvious even in the limiting case where the noise power available
from the diode is frequency independent and does not vary with the
applied voltage. In fact, even in this limiting case, it is often considered
to be not strictly valid,
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However, in this paper it is shown that, besides being valid under
certain limiting conditions, such a representation can also be used for
formulating and interpreting in a very simple way the noise behavior
of a pumped diode under quite general conditions, including a negative
resistance diode.

In the following discussion it is assumed that the diode does not con-
tain frequency -dependent noise sources, so that its small -signal term-
inal behavior may be completely specified by the two time -varying
parameters g(t) and T(t). Then it is shown that, in the limiting case
where T is a constant, the following theorem is true:

Theorem 1: If a pumped resistive diode is characterized by a time -
invariant equivalent noise temperature T, then its small -signal termi-
nal behavior can be represented by means of a time -invariant equi-
valent network which contains only thermal noise sources and is held
at a uniform temperature Tx = T.

From this general theorem, which is already known to be valid un-
der certain particular circuit conditions,22 a number of interesting re-
sults can be derived. One important result is of course that, in a fre-
quency converter which is bilateral and in which the noise temperature
of the diode has negligible variations with time, the noise figure can be
readily calculated. In fact, under these limiting conditions the noise
figure can be related in a very simple way to T and to the dissipation
characteristics of the circuit.10, 12-14

Another important result is that, also in the general case where T (t)
is not a constant, the terminal behavior of the diode can be readily
derived from theorem 1. This is a consequence of the following gen-
eral property, which follows directly from the definition of T(t) and
is stated as a theorem for emphasis:

Theorem 2: Consider a pumped diode characterized by the time -vary-
ing parameters T (t) and g (t) . Its short-circuit noise current Sn (t) is
identical to that of a second diode characterized by a time -invariant
temperature T. and a differential conductance I g(t) I T(t)/T2.

According to theorem 1, this second diode can be represented by an
equivalent network held at a uniform temperature T2. Therefore, by
applying to this equivalent network the generalized form of Nyquist's
theorem derived by Twiss,24 the correlations between the various fre-
quency components of 8n(t) can be readily determined. One finds that
these correlations are simply equal to the Fourier coefficients of g (t) .
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This property is already known to be valid under certain particular
circuit conditions.16-2°

Now, consider a linear, reciprocal, passive and time -invariant one -
terminal pair network containing different elements held at different
temperatures. It is well known" that at a given frequency co, the effec-
tive noise temperature of this network can be expressed as a weighted
average of the various temperatures of the lossy elements. The weighting
factors in this weighted average are simply equal to the amounts of
power that are dissipated by the various lossy elements when the net-
work is connected, at its two terminals, to a generator delivering a
unit amount of power at the considered frequency w, . This result is
extended, in Section VIII, to a reciprocal and linear network containing
a time -varying resistance, by introducing the concept of average tem-
perature T., of a pumped resistive diode. The significance of this param-
eter is best illustrated by the following example.

Suppose that one wants to calculate the noise power available from
the output terminals of a frequency down -converter. It is shown that,
if the frequency converter is bilateral, this power can be calculated
by replacing the diode with one having the same i-v characteristic and
a temperature equal to Tao, where Tao is given by the relation

T a - (P(t)T(t)).s,
(P(t))av

where ( )., indicates the time average and P (t) is the instantaneous
small -signal power dissipated by the differential conductance of the
diode when a small -signal generator is applied to the output terminals
of the frequency converter. It is important to point out that Tao de-
pends, in general, both on the characteristics of the diode and on those
of the circuit connected to it.

II. SMALL SIGNAL EQUATIONS OF A NOISELESS PUMPED DIODE

(1)

Let the diode current i be a nonlinear function f (v) of the terminal
voltage v. It is assumed that the diode is pumped by a strong periodic
source at a frequency W. and its harmonics. Therefore v and i contain
large components vc(t) and is (t)of the type:

00

vc(t) = E v, exp j of (2)
1,-co

co

ic(t) = E Ik exp jkwat. (3)
-00
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It is assumed that v and i contain, in addition, small components 8v (t)
and SW) and it is desired to derive the relation between 8v(t) and
81(t), for the limiting case 8v(t) - 0 and 8i(t) -> 0. Thus let

v = v(t) = vc(t) + 6v(1), (4)

i = i(t) = ic(t) WO. (5)

The differential conductance of the diode is equal to the derivative of
f (v) . Let it be denoted by gd(v) and let

g(t) = gd[vc(t)]. (6)

Since 7),(0 is periodic, also g(t) is periodic and therefore it can be
written in the form

g(t) = gk exp jkcoot. (7)
k=-co

Since i = f (v) and gd(v) is the derivative of f (v), from equations 4, 5,
and 6 one has:

5i(t) = g(t) &v(t) (8)

in the limiting case Sv (t) 0. This relation completely describes the
small -signal terminal behavior of the diode, in the absence of internal
noise sources.

III. SMALL SIGNAL EQUATIONS OF A NOISELESS DIODE IN THE

FREQUENCY DOMAIN

From equations 7 and 8 the relations between the different frequency
components of &v(t) and 5i(t) can be readily derived'''. In fact, assume
that both &v(t) and 5i(t) contain components at only the pairs of side -
frequencies kw, p and ko) - p (I k ( = 0, 1, 2, etc.; 2p < coo). Then
52)(0 and 5i(t) can be expressed as follows:

&v(t) = 2(Re) E V ak exp j(p kcoOt E vs, exp j(p - kcoo)ti (9)
k=1

Si(t) = 2(Re) [ E iak exp j(p kto.)1 E ifik exp j(p - kw.)11 (10)
k=0 k=1

and, on substituting equations 9, 10, and 7 into equation 8, one obtains
the following relations between the Fourier coefficients of the various
frequency components of 8v (t) and 81(t):

iar = E gr_kvak + E gr+k.17 Pk (r = 0, 1, etc.) (11)
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co

jar = E rh_,Yfik E (1. = 1 , 2, etc.) (12)
k=0

which can be written in the form:

la]] [[G a] [(;sr 1]]
_ja] [Gs.] [Gos]_ _1 oil

where the matrix notation is defined as follows:

la] =

_ _

1,91 =

Fro, -

1133

v.() Vs,

ira] =
V.,

Vat
Vs] =

17/33

1753

and the elements of the matrices [Gaa], [Gain, etc., are

(Gaa)r.k = gr-k k = 0, 1, etc.)

(Gaa)r.k = gk-r (r, k = 1, 2, etc.)

(GoOr.k = 97+k (r, k -1 = 0, 1, etc.)

(Gsa),,k = (r - 1, k = 0, 1, etc.).

(13)

(14)

(15)

(16)

(17)

(18)

Equations 13 through 18 completely specify the terminal behavior
of the diode at the frequencies p ± kcoo in the absence of internal noise
sources.

IV. SMALL SIGNAL TERMINAL BEHAVIOR OF A NOISY DIODE

Up to this point the noise generated by the diode has been ignored.
In the general case of a noisy diode equation 8 has to be modified as
follows:

= g(t) 8v(t) 3n(t) (19)

where 8n(t) is the equivalent short-circuit noise current of the diode.
Equation 19 corresponds to the equivalent circuit shown in Fig. 1 in
which the spontaneous fluctuations of the diode are ascribed to a cur-
rent generator of infinite internal impedence, acting in parallel to the
differential conductance of the diode.

Now, consider the components of (In(t) occurring in an infinitesimal
frequency range between w - (6.1)/2 and w + (clw)/2. It is convenient
to account for these components by means of a single pseudosinusoid
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8n(t)

Lit)

S v(t)

Fig. 1- Equivalent circuit of a time -varying conductance containing noise
sources.

with random complex amplitude26-28. Then, let Nak and Nor (k =
0, 1, 2, etc.; r = 1, 2, etc.) be the complex Fourier amplitudes of the
pseudosinusoids relative to the frequencies p kwo and p - kw. ,

respectively. Noise components occurring at frequencies different from
these will be neglected since they have no effect on the small -signal
terminal behavior of the diode at the frequencies p ± kwa . Then

5n(t) = 2(Re){i Nak exp j(p kcoo)t Arp, exp j(p - kco)t} (20)
k=0 k=1

and from equations 13 and 19 one obtains:

where

Na] =

[Ga a] [Gaol

[iGoa]

N,
Nal

and No] =

_Ars]]
(21)

(22)

Equation 21 completely specifies the small -signal terminal behavior
of a pumped diode containing noise sources. Its physical interpretation
is often facilitated by introducing the equivalent circuit of Fig. 2. In
this equivalent circuit the diode is represented by a linear and time -
invariant network in which the terminal voltages and currents occur
at the same frequency. Their Fourier coefficients are equal to those of
the various frequency components of 6v (t) and Si(t).

The network of Fig. 2 is completely specified with respect to its ter-
minal pairs by its admittance matrix

[G] = [G..] [G.0]

-Vs. [Gas ]-

(23)
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0

N]

[G]

D

Fig. 2- Time -invariant equivalent network of a pumped diode.

and by the noise column matrix

N] =
[Na]

which represents the complex Fourier amplitudes of its short-circuit
terminal currents. The self- and cross -power spectral densities of these
noise currents are

(24)

(A rakN1:,) (NpkArt) and (ArakNlir) (25)
df ' df ' df

where ( ) indicates the statistical average. They are conveniently rep-
resented by the matrix
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-1 (ATJAT]t), (26)df

where superscript' denotes the Hermitian conjugate.
Now let the properties of the equivalent network of Fig. 2 be briefly

examined. Since gk = glrk (k = 0, 1, 2, etc.), from equations 15 through
18 one has that the admittance matrix [G] is Hermitian, that is:

[G] = [G]t. (27)

It is interesting to note that this condition is equivalent to the condition
that

(IM)(V]t[G]Vp = 0 (28)

for all V], which requires that the total reactive power flowing into the
nonlinear resistance at the various side frequencies p ± kwo (k =
0, 1, etc.) be always zero. This property is a direct consequence of the
general energy relations derived by Manley and Rowe for nonlinear
resistors." Because of equation 27 the average small -signal power dis-
sipated in the admittance g(t) can be expressed as

(15v(t)2g(t)), = V]t([G] [G]t)V] = 2V]t[G]V]. (29)

Therefore, if

g(t) > 0 (30)

at all times, then [G] is both Hermitian and positive definite and the
equivalent network is dissipative.

Now, consider a linear and dissipative network which contains only
thermal noise sources and is characterized by an admittance matrix
equal to [G]. If such a network is held at a uniform temperature T,
then the various spectral densities of its short-circuit terminal currents
are simply given by the elements of the matrix

kT([G] [G]t).

From this generalized form of Nyquist's Theorem, proved by Twiss,24
and from equation 27 one has that, if condition 30 is satisfied and the
matrix 26 satisfies the relation

(N1AT]t) = 2kTdf[G], (31)

then the small -signal terminal behavior of the diode can be represented
by means of an equivalent network which contains only thermal noise
sources and is held at a uniform temperature T.
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Of special importance is the particular case in which the circuit con-
nected to the diode is resistive at the harmonics 2w. , 3w. , etc., of the
pump frequency and, at these frequencies, does not contain generators.
Under these conditions it is always possible to choose the origin of time
in such a way as to make v.(t), ic(t) and g(t) even functions of time.'
In this case, since all of the coefficients gk (k = 0,1, etc.) become real,

gk = g_k (32)

and therefore [G] becomes a real symmetric matrix, because of
equations 15 through 18. If, in addition to equation 32, condition
30 is satisfied, then the equivalent network of Fig. 2 can be realized
by means of an ordinary resistive network.2

Of course, in the general case where the origin of time cannot
be chosen to make all the coefficients gk real, the diode cannot be
represented by a reciprocal (bilateral) network.

Condition 31 is never satisfied if g(t) becomes negative for some
values of t. In fact in this case [G] is indefinite, while (N]N]t) is
always a positive definite or semidefinite matrix. On the other hand, if

g(t) < 0 (33)

for all values of t, then [G] is negative definite and of special interest
becomes the condition

(N]N]t) = -2kT clf[G]. (34)

In fact, consider a pumped negative resistance diode which satisfies
this condition. If a frequency converter is made from such a diode
by imbedding it in a lossless network, then its noise measure, defined
by Hauss and Adler,3° is independent of the characteristics of the
lossless network and is simply equal to T/To, where To is standard
temperature, 290°K. Therefore, if Go is the exchangeable gain of such
a frequency converter, its noise figure F is simply equal to

F = 1 + T/T (1 - 1/G.). (35)

V. SHOT NOISE IN A PUMPED DIODE

Assume that the diode only contains shot noise sources and that
in the frequency range of interest transit time effects can be neg-
iected.6, 11, 26, 31, 32

Assume for the moment that the voltage v applied to the diode
is time -invariant. Then Sn(t) can be treated as white noise over the
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frequency range of practical interest. Therefore, if S denotes its spec-
tral density, it can be expressed as

ten(t) = Slx(t), (36)

where x(t) is white noise with unit spectral density. S will in general
depend upon the voltage v applied to the diode and it is convenient
to express this voltage dependence in the following form:

S = Sd(v) = 2kTd(v) gd(v)
I

(37)

where kT d(v) /2 represents the exchangeable noise power at the
diode terminals, per unit bandwidth. In equation 37 the occurrence
of the factor 2, in place of the usual factor 4, results from the fact
that here both positive and negative frequencies are considered.

Now, consider the general case where v is not a constant and let
the concise notation

T(t) = Td[ve(t)]

S(t) = Sd[vc(t)] = 2kT(t) I g(t)

be introduced. Then 87t(t) results from the superposition of statis-
tically independent random disturbances whose probability of occur-
rence is proportional to the deterministic and periodic function

h(t) = [S(t)].1 (39)

Since it is assumed that the duration of these disturbances is much
smaller than the reciprocal of the highest significant frequency
of h(t), equation 36 is still applicable and therefore

(38)

Sn(t) = h(t)x(t). (40)

Now let consideration be restricted to the fluctuation components
occurring in infinitesimal frequency intervals of width df, centered at
the frequencies p ± kwo . Then, since x(t) is white noise with unit
spectral density, from equation 40 one has that Sn(t) can be expressed
as follows:6'"

M(t) = h(1) E 2(df) cos [(scoo pt) <pa] (41)

where are statistically independent random phase angles distributed
uniformly over the range (0, 27).



1894 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1968

Let h(t) and S(t) be represented by the Fourier series
ao

S(t) = Sk exp jkcoot (42)

00

h(t) = Hk exp jkcoot. (43)

From equation 39 one has that Sic and HI, are related through the
relations:

00

Sr E .

k--oo

Introduction of equation 43 in equation 41 gives:

5n(t) = (df)1 E exP r)coot + Pt +v.]

exp - s)coot - Pt - yoan
00

= (dj) E ± Hk_. exp jco, exp j(kw p)1

H 1-k exp -isos exp p)t

= 2(Re){(df)/ E E Hk,_. exp jco, exp j(kco p)t}.

From this last relation and from equation 20 one obtains

Hence, since

(44)

(45)

Nak = (c/D' E k-e exp icas (46)
- 00

co

N pk = (dDi E H -k- s exp jcP. (47)

{1
r = s

(exp jcos exp -j,0,.) = ' ,

0, r s

from equations 46 and 47 one obtains:

(NakNt.)
4,_, LA k- e-rdf

= Sk-r
(48)
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(N kArtr) H k-sH ,
df 8=-00

= Sk+r 
(49)

Now, consider a time -varying conductance equal to S(t) and let
[S] denote its admittance matrix. Then [S] is obtained from equations
15 through 18, and 23 by formally replacing gk and G with Sk and S
throughout. Therefore the elements of [S] are equal to the various
Fourier coefficients Sk and, from equations 48 and 49, one obtains
the final result

(NMI) df[S]. (50)

VI. NOISE BEHAVIOR OF THE DIODE

The preceding section showed that if a diode contains only shot
noise sources, then the self- and cross -power spectral densities of
its short-circuit terminal currents are simply equal to the Fourier
coefficients of 2kT (t) Ig (t) I, over the frequency range of practical
interest. Let us examine the significance of these relations, which
are valid even if the diode contains thermal noise sources.

First, consider the special case of a positive resistance diode char-
acterized by an equivalent noise temperature Td (v) which is ap-
proximately constant over the range of voltages of interest, so that
the approximation

Td(v) = T = constant
can be made. In this case since equations 38 give

Sk = 2kTgk ,

one has

[S] = 2kT[G]

and therefore from equation 50 it follows that the spectral density
matrix satisfies condition 31. One concludes that, if Td(v) is inde-
pendent of v and condition 30 is satisfied, then the small -signal
terminal behavior of the diode can be represented by a time -invariant
dissipative network held at a uniform temperature T, as stated in
theorem 1.

Thus, in the limiting case (51) and under the restriction g (t) > 0,
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equation 50 can be interpreted as a direct consequence of theorem
1 and Nyquist's theorem. Now, a little reflection shows why equation
50 also is valid in the general case where T (t) is not a constant
and the restriction g (t) > 0 is removed. In fact, two diodes having
the same S(t) have the same short-circuit terminal currents, no
matter what their differential admittances may be. Notice that from
this rather obvious property theorem 2 follows at once. That is, the
short-circuit terminal currents of a diode characterized by an equi-
valent noise temperature T (t) and by a differential conductance
g (t) are identical to those of a diode characterized by a constant
temperature T2 and a differential conductance

g(t) I [T(O]! 112, (54)

where T2 is an arbitrary temperature. It is important to point out
that, even though the foregoing two diodes have the same short-circuit
terminal currents, they are not equivalent since they have different
conductances. On the other hand, the terminal behavior of a diode
characterized by a voltage -dependent temperature Td (v) and a con-
ductance gd (v) is equal to that of the parallel connection of the two
diodes (see Fig. 3) with voltage -independent temperatures T1 and
T2 and with the differential conductances gai (v) and gd2 (v) defined
by the following equations:

gdl(v) gd2(v) = gd(v) (55)

g di(v)T gd2(v)T 2 = gd(v)Td(v)

where T1 and T2 are subject to the only condition

(56)

T1 < Td (V) < T2 (57)

which guarantees that go. (v) gd2(v) and gd(v) have all the same
sign. Notice that the equivalent circuit of Fig. 3 and the original
diode have the same short-circuit terminal currents because of equa-

1Td(v), gd(v) T119d1 (V) 2 , gd2 (v)

Fig. 3- Representation of an arbitrary noisy resistive diode by means of two
diodes with voltage -independent noise temperatures T1 and T2.
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tion 56, and have the same differential conductances because of
equation 55. An important feature of this equivalent circuit is that
theorem 1 is applicable to both diodes and it can therefore be studied
by standard techniques. Particularly interesting is the limiting case
T1 = O. In fact in this case one of the two diodes becomes noiseless
and the other has the time -varying conductance

g2(t) = g [v (0] = g (t)[T (t)] / T , (58)

when the pump voltage vc(t) is applied to it. Hence, by comparing
equation 54 with equation 58 one obtains the following result. If
g(t) > 0 and T2 > T (t) for all values of t, then, by connecting a
noiseless diode having the conductance

g1(t) = gdjvc(t)] = g(t)[T2 - T(t)]1 T2 (59)

in parallel with the second diode of theorem 2, one obtains a circuit
completely equivalent to the original diode.

Now, consider the case where g (t) < 0 for all values of t and
suppose that condition 51 is satisfied. Then

[S] = -2kT[G] (60)

and from equation 50 one has that condition 34 is satisfied. Hence,
the remarks about this possibility at the end of Section III apply.
In general, where T (t) is not a constant, equation 35 is not valid.
However, if T1 and T2 are the minimum and maximum values of
T (t) , so that

T T (t) T (61)

then one can say that the noise performance of the diode will be
bounded by the two limiting values obtained from equation 35 for
the two limiting cases T = T1 and T = T2.

VII. TERMINAL BEHAVIOR OF THE DIODE IN THE IMPEDANCE -MATRIX

REPRESENTATION

In some cases it is convenient to use the impedance -matrix rep-
resentation, rather than the admittance -matrix representation, for
describing the terminal behavior of the diode. Let

r(t) = 1/ g(t) = rk exp jiccoot (62)

be the differential resistance of the diode. Then the impedance -matrix
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representation of the small -signal terminal behavior of the diode can
be written in the form

V] = [R]I] + N,] (63)

where the relations between the elements of the impedance -matrix
[R] and the coefficients rk are identical to those between the elements
of [G] and gk (see equations 15 through 18). The column matrix
Nv] consists of the amplitudes of the open -circuit terminal voltages
of the diode. If

0(t) = 2kT(t) J r(t) I = E Ok exp jkcoot (64)

then one has

(N,]N,]t) = df[0] (65)

where [0] can be obtained from equations 15 through 18, and 23
by replacing G and gk, with 0 and Ok throughout. Notice that equa-
tion 65, which is analogous to equation 50, follows from theorem 1,
Nyquist's theorem" and the fact that two diodes having the same
0(t) have the same Nv], no matter what their differential resistances
may be.

VIII. AVERAGE TEMPERATURE OF A PUMPED DIODE

Consider a linear, reciprocal, passive and time -invariant one -terminal
pair network containing different elements held at different tempera-
tures. It is well known' that at a given frequency col the effective noise
temperature of this network can be expressed as a weighted average of
the various temperatures of the lossy elements. The weighting factors
in this weighted average are simply equal to the amounts of power that
are dissipated by the various lossy elements when the network is con-
nected, at its two terminals, to a generator delivering a unit amount of
power at the considered frequency col . This result is extended, in this
section, to a pumped diode.

The concept of average noise temperature T, of a pumped diode
is introduced in this section. Consideration is restricted to the case
where g(t) > 0 and condition 32 is satisfied, so that the equivalent
circuit of the diode is passive and bilateral. It is shown that T, de-
pends, in general, both on the characteristics of the diode and on those
of the linear and time -invariant circuit connected to it. However, if
certain conditions are satisfied, then it only depends on the diode
characteristics.
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Consider a one -terminal -pair network N consisting of a pumped
diode imbedded in a linear, time -invariant and bilateral two -terminal -
pairs network N' (Fig. 4). Assume, furthermore, that the network
N can exchange power at a single frequency oil , at its terminals. Then
the average temperature T., of the diode is defined in the following
way

T, is such that the noise power available from the terminals of
the network N does not change if the actual temperature -voltage
characteristic Td(v) of the diode is replaced with a constant tem-
perature equal to Tay

Now let a small -signal generator of frequency wi be connected to
the terminals of the network N, and let Si(t) and Sv (t) be the small
signals produced at the diode terminals. It will be shown that

Si(t) Sv(t)T(t) dt
TB,.- ° (66)

SW) Sv(t) dt

Notice that this equation is equivalent to equation 1.
Proof: It is convenient to represent the circuit of Fig. 4 by means of the
equivalent circuit of Fig. 5, where the network D represents the small -
signal terminal behavior of the diode and each terminal pair of D
exchanges power at only one frequency. Notice that in Fig. 5 the net-
work N' has been represented by means of several separate equivalent
circuits, Ni , N; , etc., one for each frequency of interest.

The network D can be decomposed into two separate networks
D1 and D2, each held at a uniform temperature.

In fact, let the diode of Fig. 4 be replaced by the two diodes shown
in Fig. 3 and let Sil (t) and Sin (t) be the small -signal currents of the

N

SL

- -1

Td(V)

gd(v)

Fig. 4 - Diode imbedded in a linear, time -invariant and bilateral network N'.
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P

D

DIODE
EQUIVALENT

NETWORK

Fig. 5 - Equivalent circuit of the network N of Fig. 4.

two diodes. Then, from equation 56 one has:

30) oti(t)T(t) = Sv(t) 6i,(0171 ov(t) oi2(t) T2

which gives:

(5v(t) oi(t)T(t)), (av(i) (8v(1) 8i2(t)),,,,T2

(av(t) 641))a, (3v(t) ago,
Since theorem 1 is applicable to both diodes of Fig. 3, it is clear
that the network D of Fig. 5 can be represented by the parallel
connection of two networks (D1 and D2) of which one is held at a
uniform temperature T1 and dissipates an average power equal to
(87) (t) Sil (t)).,, and the other is at T2 and dissipates (8v (08i2 (t))aT 

Now, since both D1 and D2 are bilateral, the noise power available
from the network N of Fig. 5 does not vary25 if the temperatures
of D1 and D2 are changed so that they become equal to

(3v(t) oi,(t)).,Ti 01)(0 Si2(1))-T2
(6v(0 5il(0)av (5v(t) 5i2(0)-

which, together with eq. 67 gives eq. 66.
Equation 66 is of particular interest when Oh = p, since in this case

it corresponds to the example considered in the introduction. Notice
that T., is not, in general, a function of the diode characteristics alone.

(67)
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In fact, it also depends both on the particular characteristics of the
network N' in which the diode is imbedded and on the value of the
frequency w, at which T., is defined, unless T(t) is constant.

Under conditions of practical interest T always varies with time and
consequently a direct application of theorem 1 is never strictly valid.
Equation 66 shows, however, that if certain conditions are satisfied,
then T., is little affected by the particular choice of co, and N', and
consequently a direct application of theorem 1 may not introduce
significant errors. More precisely, suppose that either

1

v)
g d(v) 0 or

g
0 (68)

d (

for some values of v and that

Td (v) T' = constant (69)

over the range of voltages for which conditions 68 are not satisfied.
Under these conditions either T(t) T' or 6v (t) (t) ti 0, for all values
of t, and consequently from equation 66 one obtains T., T'. There-
fore in this case, and only in this case, T., can be regarded as a function
of the diode characteristics alone and theorem 1 is applicable, with T
replaced by T'.

An important application of the preceding result is given by an
ideal Schottky barrier diode. In fact, the relations derived in Ref.
22 between the noise figure and the conversion loss of such a diode
imply that its junction can be represented, under certain particular
conditions, by means of an ordinary resistive network held at half
the temperature T, of the junction.
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The Analysis of Circular Waveguide
Phased Arrays*

By N. AMITAY and VICTOR GALINDO
(Manuscript received July 9, 1968)

In this work, a planar phased array of circular tvaveguides arranged in
an equilateral triangular grid is analyzed. The boundary value problem is
first formulated rather generally in terms of a vector two dimensional integral
equation for an array of elements that are arranged in a doubly periodic grid
along two skewed (nonorthogonal) coordinates. Dielectric plugs, covers, and
loading, as well as thin irises at the aperture, are accounted for in the
formulation. Numerical solutions are obtained by using the Ritz-Galerkin
method to solve the integral equation. Excellent agreement with experimental
measurements using a waveguide simulator is observed. The existence of
forced surf ace wave phenomena in equilateral triangular grid arrays and
their strong dependence upon the mode of excitation is also demonstrated.
These phenomena are shown to exist at isolated points in the scan co-
ordinates. Reflection characteristics as well as the polarization characteristics
of the radiation pattern are illustrated at selected planes of scan for both
linear and circular polarization excitation.

I. INTRODUCTION

The requirements of modern radar and communication systems have
stimulated considerable activity in the design and use of phased
array antennas. To date, the design information required for their
development has been obtained from the analysis of simplified array
models and from experimental data. The great speed and storage
capacity of present day digital computers, however, have now made
it possible to solve the planar phased array boundary value problem
very accurately.1' 2

A general formulation of the planar phased array boundary value
problem may be found. A vector two dimensional integral equation

* The work reported in this paper was supported by the U. S. Army Materiel
Command under contract DA -30 -069 -AMC -333(Y).
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for the tangential aperture field (that is, the tangential field at the
planar interface between the waveguides and free space) can then
be derived.

In its most general form the array elements are assumed to be
arranged in a doubly periodic grid along two skewed (nonorthogonal)
coordinates; and dielectric loading, covers, and plugs, as well as thin
irises at the aperture plane, may be accounted for in the analysis.
The possibility of multimode excitation of the array has also been
included. The Ritz-Galerkin method is applied to obtain a solution
for circular waveguide arrays.

Numerical solutions for the reflection characteristics of dielectric -
free planar arrays of circular waveguides hexagonally arranged in a
conducting ground plane have been carried out. Experimental meas-
urements have been made which compare favorably with the results.
Forced surface waves3-11 are found to occur at isolated points in the
scan coordinates and can be related to certain vector and geometrical
symmetries for an equilateral triangle grid array. These surface waves
(or resonances) are often difficult to locate experimentally by the use
of waveguide simulators'" -11 or small test arrays. The strong depend-
ence of these forced resonances upon the mode of excitation is also
demonstrated. The reflection characteristics as well as the polarization
characteristics of the radiation pattern are illustrated for various
combinations of linear and circular polarization excitation of the
array.

II. ANALYSIS

An infinite planar array of waveguide elements, Fig. 1, is imbedded
in a conducting ground plane at its interface (plane z = 0) with free
space. The elements are arranged in a periodic grid along the skewed
(nonorthogonal) coordinates si and s2. The x and si axes coincide
while the s2 axis makes an angle a with respect to the x (and si)
axis. The element location is defined by two indices (p, q) correspond-
ing to a physical location

09. = pbQ1 qde2 (1)

where gi and '8'2 are unit vectors along the s1 and s2 axes, while b and d
represent the basic periods of the two dimensional grid. A basic
periodic ce11,15 the parallelogram shown in Fig. 1, is thereby defined.
If the array elements are excited uniformly in amplitude with a linear
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Fig. 1- Circular waveguide array geometry.

phase taper such that the phase of the (p, q)th element is

Ana = p4',, (2)

then the resulting electromagnetic fields in the (p, q) th and (m, n) th
cells satisfy the following periodicity relationship

E(0,,) = E(e,) exp [i (m - p)1,& (n - q)11.}] (3)

where E(e) may designate the electric or magnetic field at the (p, q)th
periodic cell of the grid.* Therefore, except for a phase factor, the fields
in all the cells are identical.

In order to solve the boundary value problem, the exterior (free space)
fields are expressed in terms of a complete set of Floquet type solutions
of Maxwell's equations exp ± i.137z}. These vector modes, which
are functions of the steering phases 4',, and 4 are derived in Appendix
A. The interior (z < 0) fields are expressed in terms of the appropriate
waveguide complete orthonormal set of vector modes [(Di exp ± iriz).t
The boundary value problem is expressed in terms of an integral equa-
tion which includes the necessary continuity conditions. This equation
is formulated' by satisfying the continuity of the transverse (to z)

* The parallelogram in Fig. 1 defines the (p = 0, q = 0) cell. The (p, q)th cell
is translated by pb and qd along the si and s, axes, respectively.

t The waveguide modes are real functions and in general consist of both TE
and TM modes with double subscripts. However, one can always systematically
relabel these modes with a single subscript according to the increasing values of
the eigenvalues.
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electric and magnetic fields within a single periodic cell. As shown in
Appendix B, the periodic cell consisting of the parallelogram CDEF of
Fig. 2 can be replaced, without a loss of generality, by the parallelogram
GHIJ (or any other periodic contiguous cell containing a complete
single waveguide aperture).

Fig. 2 - Periodic cell in skewed array geometry.

The tangential electric and magnetic fields at the array interface
(E and H at z = 0) can be expressed in terms of a Fourier series of the
complete orthonormal set of waveguide modes {43i } for z 0 and by the
set of Floquet type modes { 'm} for z > 0. Let the waveguides be
excited by any linear combination of their propagating modes* with
amplitudes At (j = 1, , J for J propagating modes) and let the
coefficients Ri represent the amplitudes of the corresponding reflected

*It is straightforward to include, if desired, any linear combination of both
propagating and evanescent modes.
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modes.* Let the coefficients Di represent the amplitudes of the reflected
evanescent modes which are generated at the aperture. Then, in terms
of the waveguide modes, the electric field at z = 0 is given by

E_ =

oo

E (Ai + R;) fitE Ditto; (over the waveguide aperture)
i-1 i-J+1 (4)

0 (over&the_rest_ofg.the periodic cell).

The corresponding magnetic field is

-H_ =

J oo

E Yi(A.i -R i)(I) - E
(over the waveguide aperture)

_0 (over the rest of the periodic cell).

where the modal admittances { Y;) are real for propagating modes and
pure imaginary for evanescent modes. These admittances are given by"

r .Y = for TE modes;,

(5)

Y. = r for TM modes (6)
,

for an exp [-Ad] time convention with the r, (the z propagation con-
stant) being positive imaginary for evanscent modes. The tangential
electric field at z = 0+, expressed in terms of the Floquet type modes, is

2

= E E E (over the periodic cell) (7)
v-1 (m) (n)

where the superscript p designates TE(p = 1) or TM(p = 2) modes.
The magnetic field is correspondingly given by

2

-H. = E E E Fmvprnnvn,,
v-i (m) (n)

where the modal admittances Y,' are given by

mnlwe; 17:nn2 - Bm:

(8)

(9)

From the orthonormality of the sets ftbi } and {AFL} it is clear that

(E_ 401) =fJ E_
.
(Di da =

A.1 + R1 for j < J(10)
A D, j>

* Actually {R,} can represent the reflection coefficients once {Ai} are properly
normalized.
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where A is the waveguide aperture, and

(E+ , =
JJ

E+  (q''%)* da = ff E+ . (W77:,.)* da = (11)

periodic cell A

where the symbol * denotes the complex conjugate. Notice that E+
vanishes on the conducting ground plane. To insure the continuity
of the tangential fields across the aperture at z = 0, one requires

E+ = E_ = E, over the aperture and the periodic cell (12)

while

H+ = H_ = H, over the aperture only. (13)

Using the various relations, (4) through (13), one obtains an integral
equation for the tangential electric field E, at the array interface

2 E AiYii); = E y;4), da
A

2

E E ff (ira,')*E, da. (14)
v-1 (m) (n)

A

Similarly, one can obtain' an integral equation for H, which is defined
over the entire periodic cell. Under certain conditions' it is possible to
interchange the order of summation and integration in (14) and thereby
obtain the usual form of Fredholm integral equation of the first kind.

A useful method of obtaining a solution to (14) is by the application
of the Ritz-Galerkin method," whereby the integral equation is reduced
to a linear matrix equation. Substituting (4) in (14) for E, and taking the
moments of (14) with respect to the set { (Di}, while using (10), leads to
the following matrix equation

-
171,1-A 1

-A R,

2

0

= IKI A, + R,
Dj+i

(15)

where I KI is a square matrix with the (i, q) th element given by
2

ki, = Y 318 E E E rn.Cfnniefntg -

p=i (m) (n)
(16)
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In (16) Si,, is the kroenecker delta

S
1 if i = q

ig =
0 if i q

and

(17)

C:, = FP,:n.4), da (18)

A

is the coupling coefficient between the designated interior and exterior
modes.*

The practicality of an accurate numerical solution or approximate
analytical solution often hinges upon obtaining C:, in closed form.
Recently the authors° have obtained closed form expressions of these
coupling coefficients for circular as well as coaxial waveguides.

A solution for the aperture field in terms of the coefficients of the
waveguide modes is given by

=2IKl-'

A1Y1

11J YJ

0

(19)

The solution vector can be obtained by matrix inversion or by rapidly
convergent iterative methods.5' A similar procedure should be followed
to obtain H, except that the aperture field and the moments may be

taken with respect to the set { xr}
Once the aperture electric field is obtained, the input impedance

and radiation properties of the array, as a function of scan, are easily
obtained. The reflection coefficients are obtained directly from (19) ,
as are the amplitudes of the evanescent modes in the waveguides. The
radiation pattern of a single element in the array environment, includ-
ing its polarization characteristics, can also be easily obtained.21, 22

The addition of either a dielectric sheath or plug or both to the
* Notice that other sets of functions ( t1) can be used to reduce (14) by the method

of moments. However, the integrability of
ff (A) oa tz and ff ) Ir.,'  t

may prove difficult depending on ti . The convergence properties as a function of
the order of K will also be influenced by the choice of ( til.
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array, Fig. 3, does not alter the functional form of the integral equa-
tion (14) . As was shown by Galindo and Wu,3' 23 only the modal
admittances in (14) have to be replaced. For the case when dielectric
plugs are used, Y5 is replaced by

yi - iyi tan 7it1
Yi Yi

Yi y tan 7.4 (20)

where yi and -y5 are the modal admittance and propagation constants,
respectively, of the tbi mode in the dielectric and t1 is the dielectric plug
thickness. The relation between the reflection coefficients of the propa-
gating modes in the dielectric -free region () and the aperture field is
given by

Ri =

y5 ff Et .43; da - A, exp(-irit1)[y5 cos Tit, i Yi sin 75t1]

A

(21)

the phase of R5 being referred to the aperture. Similarly, for the
exterior dielectric sheath covering the array, the modal admittances
are replaced by

exp(irit,)[yi cos 'y; t1 - iYi sin ^y; t1]

17; - iy; tan ,3,g: --> ;1Jinv ymnp - tan mn
(22)

where y,n' and f3mn are the modal admittance and propagation constants,
respectively, of the ir, mode in the sheath, and tf is the sheath thick-
ness. The coefficient of the mode lir, in the free space region above the
sheath, F, , is related to the aperture field by the following relation:

ex-iB,tf)y',,"
JJFmnp - E I  ir,*,; da, (23)y,, cos 04ti'- sin /3int;

periodic
cell

the phase of F, being referred to the aperture plane.
The integral equation formulation can be extended to the case when

thin metallic irises are present at the waveguide aperture for matching
purposes (see Fig. 4). The integral equation for the aperture electric
field, (14), is still valid except that the integral has to be defined over the
effective aperture with the result that the orthogonal relations of (10)
and (11) cannot be used for the Ritz-Galerkin method of solution.*
The modal coupling coefficients, (18), are still integrable in closed form

* An integral equation for the magnetic field is not valid in this case because of
the discontinuity of Hg across the iris.
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Fig. 3 - Dielectric sheath and plug geometry.

over the effective aperture if the iris is circularly symmetric. However,
the matrix elements, as given by (16), do change in form when an iris is

present at the aperture. As a result of the 41, not being orthogonal over
the new effective aperture, the term Y; S;, in (16) is replaced by an infi-

nite sum.
Multimode excitation of waveguide antenna fields has been used for

primary pattern control. Such excitations may prove useful for the
reduction of mutual coupling effects.' They also may be used to obtain
circular or elliptical polarization from two linearly polarized modes and
improve the polarization characteristics of the array. In the circular
waveguide array, the horizontal TE11 (4'0 and vertical TE11 (412) modes
are degenerate (that is, they have the same z -directed propagation
constant and impedance). In order to obtain a linear, elliptical or
circular polarization excitation of the waveguide, one may redefine the
first two modes as (Dor and 4)2N!

A1 A,
(1)1N - 4:13 2 413

(I Al
12 1 A2 12)1 1 (I

Al
12

I

)i 2 (24)

EFFECTIVE___
APERTURE

THIN IRIS

eo eo eo

Fig. 4 - Aperture iris geometry.
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1 A2 1

At 1 A2
432N A4) 1 +

2

. (25)
Al 12 12)At(I A1 12 + I A2 12)'

This redefinition of the first two modes preserves the orthonormality
and completeness of the set of waveguide modes while allowing the
flexibility in adjusting the desired array excitation. The reflection
coefficients which correspond to these redefined modes are RiN and
R2N . The polarization characteristics of the radiation pattern may
be determined from the B and components of the radiated field,
E0 and E4), respectively. After proper normalization of E9 and Ed, one
may obtain the corresponding transmission coefficients19

To -
(17602)1 1rrr

Et  (1FL)* da (26)
Y, / (1 - - TD1

(aperture)

L=-(vtYff Et  or,',,,)* da (27)

(aperture)

where T2, and Tv define the scan angle directional cosines. When the
first two waveguide modes are the only propagating ones and while
only a single lobe propagates in the free space, equations (24) through
(27) are related by the conservation of energy relation:

1 RIN 12 ± 1 R2N 12 + 1 TO 12 + 1 TO 12 = 1* (28)

For more than one lobe in free space or additional propagating modes
in the waveguides, (28) has to be accordingly modified.

III. NUMERICAL AND EXPERIMENTAL RESULTS

In order to obtain a numerical solution for the aperture field, the
infinite dimensional matrix of equation (15) must be truncated and
cast in a finite dimensional form. In other words, the electromagnetic
fields will be approximated by a finite Fourier series of the waveguide
and free space modes, and consequently the solution of the problem
as given by (19) , is finite dimensional as well.

In numerical solutions of problems of this type, various ways of
ascertaining the validity and accuracy of the solution are desirable.
One obvious way is to increase the number of waveguide and free
space modes and check the convergence of the solution as a function
of the number of modes used in truncating (15). However, for the
type of kernel involved in this problem, monotonicity of the conver-
gence is not assured. Nevertheless, convergence is an important check
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since this numerical solution is variational or stationary for the im-
pedance.12' 24 Iterative methods and error estimates5' 20 may also be
used for checking the convergence of the solution. Special symmetries
of the reflection coefficients versus the scan angles which are dictated
by the array geometry and mode of excitation can serve as a semi-
independent check. An important independent check in which the
reflection and transmission coefficients can be measured at special
scan angles with the aid of a waveguide simulator is used as well.

The numerical results will in general be presented as a function
of scan angle. For convenience, however, the differential phase shifts
between elements will be used as the independent variables. These
quantities are in the s -direction and th, in the y -direction. Further-
more, since we limit ourselves to radial planes of scan, we introduce
the quantity tp,-. These quantities are related to the directional cosines
as follows:

2b= -X ; v - 27dxsin a Tv ; = + 01. (29)

The amount of computation can he reduced when one recognizes that
the following symmetry in the aperture field as a function of scan
exists:

Ef (P.) th) = -th). (30)

Convergence tests as a function of the number of waveguide and
free space modes indicated that 18 waveguide modes and 338 free
space modes yield several percent (usually less than 2 percent)
accuracy in the magnitude of the reflection coefficients, Ri, except
near sharp changes of R.; where the position of the sharp changes is
accurate to several degrees in tp,..

The energy conservation check, equation (28), is a necessary check
but not a sufficient one in this problem as well as in other interior
type boundary value problems.':, 2 2 ' 33

One of various special symmetry checks is depicted in Fig. 5. A square
grid array in the (x, y) coordinates is excited by the vertical TE11(432)
mode. In this coordinate system the array parameters are represented
in the following way

a = waveguide radius; b = d; a = 90°
(31)

(111N = 4) 2 1 4) 2 N = -4)1

The parameters of the same array, when viewed in the (x', y') coordi-
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Fig. 5- Symmetries in square grid arrays.

nate system, can be alternatively represented as

b' = (2)d' = (2)1d;(11;1 wra' = 45'g

,
431N = -Of ; 412N = frbi

where the reference to the (x', y') system is denoted by primes. The
same results should be found for this array at any scan direction
regardless of the representation. This offers, to a degree, a check on
roundoff error. Numerically, the reflection coefficients differed only
by a fraction of a percent.

An additional symmetry check is given in Fig. 6, where the magnitudes
of the reflection coefficients are plotted versus for a 45° plane of scan.
R1N and R2N correspond to the reflection coefficients of 41N and 42N as
defined by (31). At IA. = 240° (shown by a vertical arrow) the main beam
is grazing, while for IP, > 240° no beam exists in real space and the total
incident power is reflected and divided between the two propagating
modes,'1N and (1)2N . Of special interest is the point Or = 180°
X (2) 255°. At this point = v =fit, = IP" = 180° and the array
excitation is as indicated in the inset of Fig. 6. If the array is to be
simulated at this scan angle, the appropriate waveguide simulator would

(32)
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consist of the square waveguide (solid lines) shown in the inset. It is
clear that the horizontal waveguide mode (42N) cannot be excited. The
numerical results indeed show that I R2N I = 0 at this scan angle.

Figure 7 shows a close agreement between experimental and numeri-
cal results for a rectangular grid array with vertical polarization ex-
citation scanned in the H -plane. The scan angle which corresponds to
steering phases 1//x = = 180° and \G = th, = 0, can be simulated
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0

130 z
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Fig. 7 - Rectangular grid array: computed and experimental results vs fre-
quency at H -plane symmetry point. a = 3.57 cm., b = 16.51 cm., d = 8261 cm.,
and a = 90°.



1916 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1968

Fig. 8 - Rectangular grid array : simulator for H -plane symmetry point.

by the rectangular waveguide (solid line) in the inset. The experi-
mental results were obtained from measurements of an abrupt junc-
tion between a circular waveguide and an L -band rectangular wave -
guide as shown in Fig. 8.

IV. EQUILATERAL TRIANGLE GRID ARRAYS

Let us consider the reflection and radiation characteristics of cir-
cular waveguide arrays arranged in an equilateral triangle grid, and
the strong dependence of the array properties upon the mode of
excitation. Grating lobe incipience or a beam at grazing is designated
by a vertical arrow in the illustrations,



CIRCULAR WAVEGUIDE ARRAYS 1917

Figure 9 shows the reflection coefficient of an array in the E -plane
scan, with vertical polarization excitation. In this plane the hori-
zontal mode is not excited because of symmetry so that R2N = 0. As
can be seen, the slope of both the magnitude and phase of RiN is dis-
continuous and singular at a grating lobe incipience, which parallels
previous observations in rectangular waveguide arrays.26' 27 This is
related to the asymptotic decay of the coupling coefficients. A forced
surface wave resonance can be seen around grating lobe incipience
where I RiN = 1.0. Notice that this forced surface wave resonance
is extremely sharp and consequently may not be observed in small
finite arrays.

The corresponding transmission coefficient To is shown in Fig. 10.
The plot of the transmission coefficient is actually the radiation pat-
tern of a single element in the array environment and it exhibits the
null which corresponds to a total reflection. Notice that the phase
of the transmission coefficient will exhibit a 180° discontinuity when
the magnitude has a zero. The magnitude of the reflection coefficients
of the same array, in a 60° plane of scan, are shown in Fig. 11. Again,
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Fig. 9 -E -plane scan of Ri.v vs Vir (a = 0.48,
b = 1, d = 1, X = 1.4 and a = 60°).
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the singular slope at grating lobe incipience can be observed. As can
be seen, the distribution of the reflected power between the two modes
is a function of the scan angle.

An interesting phenomenon can be observed in the corresponding
transmission characteristics which are shown in Fig. 12. The trans -

1.0

C. 8

PLANE OF
SCAN

ITo I

36 72 108 144 180 2!6 252 288 324 360
Or IN DEGREES 9=9C°

Fig. 12 - IT01 and IN vs ,pr in the 60° plane of scan (a = 0.48, b = 1, d = 1,
X = 1.4, and a = 60°).

mission coefficient, To, vanishes prior to grating lobe incipience (the
positions of the vertical arrows). The vanishing of To at this scan
angle can be directly related, when coupled with the vector symmetries
in the array excitation and geometiy, to a forced surface wave reson-
ance. If the array excitation consists of the sum of the two modes
(equal in phase and magnitude) indicated by the solid arrows in
Fig. 13, then in the 60° scan plane To = 0 by symmetry considerations
and To vanishes as shown in Fig. 12. Since the vectorial sum of the
two solid arrows in Fig. 13 is the clashed arrow, zero transmission or
a forced surface wave resonance will occur in the H -plane of this
polarization. Figs. 14 and 15 indeed show this effect in the H -plane
scan where I RIB. I and I To I attain unity and zero respectively prior
to grating lobe incipience.*

Since the forced surface waves are related to the vector symmetries
just mentioned, one may anticipate that the scan points at which they
occur are isolated. Figure 16 indeed demonstrates that the forced reso-
nances in the B and H planes occur at isolated points. The scan around

* The difference in the values of 1pr at which these phenomena occur is inherent
in the definition of tfrr, equation (20).
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the grating lobe circles in Fig. 17 shows that the peak of the total reflec-
tion I RT I = (I RIN 12 + I R2N ( 2)1 varies from unity in the H plane
(3 = 0), gradually decreases, and then increases again and reaches unity
in the E -plane (6 = 900). The anomalous behavior near grating lobe
incipience is eliminated when the polarization of the excitation is changed
to horizontal, as shown in Fig. 17, indicating thus the strong dependence
of the forced surface wave resonances upon the mode of excitation. Over
the frequency band given by 1.3 X < 1.5, qualitatively similar
behavior of the radiation and reflection characteristics of the array was
observed.

Figure 18 shows the reflection characteristics of the array under
circular polarization excitation. In this case

1
tb.N = + icD21 11 2N = {(1)1 i42}. (33)

The incident mode is (1)1N.
Again the singular slope of these curves at grating lobe incipience

can be seen. The division of the reflected power between the two
modes as a function of scan may be observed as well. Fig. 19 shows
the polarization characteristics of the radiation pattern of an array
element. The axial ratio, denoted as A.R., is the ratio of the minor
to major axis of the polarization ellipse while the tilt angle of the
major axis, 7, is taken with respect to the 0 axis. As indicated by
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the plot, the element (or the array) far field pattern is circularly
polarized around broadside, A.R. = 1.0. It deteriorates to linear
polarization, A.R. = 0, at two points prior to grating lobe incipience.
The linear polarization at or = 203.5° with r = 90° results from the
H -plane forced surface wave resonance of Figs. 14 and 15 where
To vanishes. The null of the axial ratio at = 207° (with r = 105°)
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a = 60°).
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is caused by the difference between the phases of T0 and To causing
the and a components of the far field to be in phase.

The reflection and polarization characteristics in the 30° plane of
scan are shown in Figs. 20 and 21, respectively. In this case the
single null of the axial ratio at grating lobe incipience results from
the E -plane forced surface wave resonance of Figs. 9 and 10. For
planes of scan between 0° and 30° the results corresponding to one
plane change gradually to those of the other plane. Around grating
lobe incipience the axial ratio drops appreciably (to around 0.1) but
does not reach zero. From the circular symmetry of excitation and
six -fold symmetry of the array geometry, a 30° sector of scan com-
pletely specifies the array reflection and radiation characteristics.

V. CONCLUSIONS

A general formulation of the planar phased array boundary value
problem has been given in terms of a vector two dimensional integral
equation. The solution of this equation by the Ritz-Galerkin method
closely agreed with experimental results.

Equilateral triangle phased arrays of circular waveguides were
numerically analyzed. It was found that forced aperture resonances
or forced surface waves, manifested by total reflection and no radia-
tion, do exist for these arrays even in the absence of dielectric ma-
terials. These effects were observed over a 15 per cent frequency
band. The forced aperture resonances occurred prior or close to grat-
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Fig. 20- I Ri.v1 and IR24I vs ¢r in the 30° plane of scan. Circularly polarized
excitation (a = 0.48, b = 1, d = 1. X = 1.4, and a = 60°).
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ing lobe incipience in the E and H plane of scan for vertical polariza-
tion excitation. These resonances were found to occur at isolated
points as a function of the scan variables and are strongly influenced
by the mode of excitation. The resonances vanish when the polariza-
tion of excitation changes from vertical to horizontal.

The polarization characteristics of the radiation pattern (or al-
ternatively the radiation pattern of a single excited element in the
array environment) is shown at selected planes of scan for circular
polarization excitation. The degradation of the axial ratio resulting
from the forced surface waves was shown. Total reflection or no
transmission owing to forced aperture resonances were not observed
for circular polarization excitation in the cases presented.

The analysis of coaxial waveguide arrays, as well as the incorpora-
tion of thin, circularly symmetric irises in the aperture of the wave -
guide element, can be carried out along lines similar to those dis-
cussed here.

The effects of dielectric loading of the array as well as dielectric
covers and plugs have also been studied.34
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APPENDIX A

Floquet Type Wave Functions in Skewed Coordinates

Consider the periodic array, Figs. 1 and 2, excited with incremental
phase shifts (steering phases) between adjacent cells along the s1 and

coordinates. A complete set of solutions to the scalar wave equation,
each of which varies periodically, according to Floquet's theorem,
along the s1 and s2 coordinates is

2irml 27rnS exp (iB,z) exp i[
b' b is, exp i[

d dis2 (34)

with the integers m, n = - co , -1, 0, 1, 2, 3, ... , 00. Equation
(34) describes a wave traveling (or decaying) in the z direction with
propagation constant Bnin (exp -icot time convention). The steering
phases Of, and 0,2 are directly related to the beam pointing direction, f,
of a radiated plane wave with a vector propagation constant ko = kof,
so that (34) can be rewritten as

Smn = exp (iB ,z) exp i[ko§1 -arbm 8, exp ko - 2d s2 . (35)

The free space propagation vector ko can be expressed in the cartesian
coordinate system as

ko = ko[Tz + Ti) T (36)

where 71. , Tv and T , are the directional cosines of ko with respect to
that system and i, 9, and 2' are the unit vectors. The quantities

ko.s, = - and ko  s2 = (37)

are the projections of ko on the reciprocal grid (lattice) coordinates t,
and t2 , respectively.15,28-30The unit vectors in the t, and t2 directions
form a biorthogonal set with ,As, and §2 (Fig. 22). To express (35) in
cartesian coordinates it can easily be shown that

si = X - / cot a, s2 = y/sin a, (38)



CIRCULAR WAVEGUIDE ARRAYS

Fig. 22 - Grating lobe diagram in reciprocal lattice coordinates.

so that the substitution of (38) into (35) yields

1927

27rm
AS, = exp (iB,z) exp i[koT, -

b

2
 exp ilkaT - \d si it a b tan7rm all

(39)

The propagation constants of the (m, n)th Floquet mode along the
.v and y directions, kz and kv respectively, are

lc, = 1471,
2T

-m
b '

(40)
2irn 27rm

ku ki) (d sin a b tan al

Since 8, is a solution to the scalar wave equation, it can he shown
that
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B, = (k: - To! -
(41)

{14 [kali 27rm12 [kaT 27rn 27rm )2
b \d sin a b tan a)

where the positive imaginary root holds for (1c.2 kv2) > ko2 (time
convention exp

Each mode, 2, , for which B,,, is real corresponds to a radiated plane
wave of the phased array. The plane wave with the indices m = 0 and
n = 0 is identified with the main beam while m or n 0 corresponds to
a radiating grating lobe. As a function of Tx and T, (or IA, and ifr), a
given B, may become pure imaginary as it goes through a zero, as in
equation (41). In such cases, the related Floquet mode, 8,n, becomes
evanescent or nonradiating. By plotting the curves obtained by setting
the Bnin = 0 as a function of Tx and Ty , one obtains a convenient dia-
gram which illustrates these effects. Setting B,n = 0 yields

[ 2 2mX01+ nX0 mX

d sin a b tarce
:)] = 1' (42)

where Xo = 2ir/ko. As a function of Tx and T, (42) represents a
family of circles with unit radius displaced from the origin. This
diagram of displaced circles constitutes the well-known grating lobe
diagram, Fig. 22.31,32

Notice that the steering phases, 'ti and , are related to Tw and
Ty through equations (36) and (37) . The parallelogram C'D'E'F' of
Fig. 22 corresponds to the range of steering phases

- r r ; - 7 (43)

and is a periodic cell along the t1 and t2 coordinates.
As mentioned in Section II, it is possible to define a complete ortho-

normal set16 of vector modes { 1r.} over the parallelogram CDEF,
Fig. 2. The tangential electromagnetic field at the plane z = 0+ can be
expressed by a Fourier series of this set of modes which consists of both
TE and TM modes (transverse to z). These modes, { WT,E} and { trZtim },
are given by

and

exp i(xkz yky) {k, A kz
mn (bd sin a)1 k,.

x
kr Y

exp i(xkz yky) {kz ky A}

(bd sin a)1 kr x Y , n

(44)

(45)
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with k, = (k d- Ov) si. The quantities kz and k are functions of (m, n) as
given by (40). The orthonormality of this set of vector modes is defined

by the following scalar products:

Nr,,TgE)

where

= If

Omn.Pq

and

APPENDIX B

Parallelogram
CDEF

 (r,T,E)* dx dy = (5,, (46)

{1 for m = p and n = q,

0 otherwise

!T , IFT,m(xr ) = 0

TM 97) o

(47)

(48)

(49)

On the Invariance of the Scalar Product with
the Shape of the Periodic Cell

The orthonormality and completeness of the set { Inn} of Floquet
modes, equations (44) and (45), need not be defined over a specific
periodic cell such as the parallelogram CDEF of Fig. 2. This fact is
especially significant when a periodic cell intercepts parts of more than
one circular (or other type of element) aperture. It will be shown that
the orthonormality of { qr:} can be preserved over a properly deformed
periodic cell which contains only a single waveguide aperture.

Using (37), equation (44) can be rewritten as

- 4, -
d

23-n
82= F(m, n) exp /LP' b2rm si (50)

The scalar product betewen two TE modes is

i mn, IFTGE) =

If
((.'DEF)

If
(CDEF)

tr'ZOF',7)* dx dy

mrT
*inE) sin a dsi d82

= F(m, n)  F(pq)* sin a

(51)
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- ]ff exp -i[27(mb- si 27r(nd s2 d 81 ds2 .

(CDEF)

The integral over the parallelogram CDEF in (51) can be divided
into three (or more) integrals over the triangles CGK and LEI and
the polygon GDLIFK (Fig. 2) :

ff = ff + II + II
GDEP CGK LEI GDLIFK

(52)

Because of the array periodicity, the triangles DHL and LEI are
displaced by b with respect to the triangles CGK and KFJ, respectively,
along the s, direction. Thus, for example, if the s, coordinate of the points
within the triangle DHL is sf given by

s; = s, b with dsf = ds, (53)

then

DHL

ff2,( m p) 27r(n - q)
s2 si[ d) 2 d'1 ds2

 exp -i2r(m - p) if
CGK

_i[271 -(m - p) 27(n -
b

q) 82] ds, ds2

-
tan -(m p) r(n - q)

exp s, S2 ds, ds2

('GK

Similarly

ff
_i[27r(mb- p)

Si
, 27(nd- q)

S21 ds1 ds2

LEI

= ff exp[272-(mb- p)
s,

271-(nd- q) 82]
usi ds2.

KFJ

Thus

s
2/1-(n - ]ff eXp -i[21r(Mb- p)

d
q)

s2 ds, ds2
CDEF

(54)

(55)

= ff
_i.[27r(m

si
- p) , 27r(n -

b
sdds, ds2 (56)

GIIIJ
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and the orthonormality and completeness of the set ( 41, is preserved
over the new periodic cell GHIJ. This is the two dimensional analog of

the single dimensional Fourier series whereby the functions and coeffi-
cients are independent of the initial value of the period. In fact, the two
dimensional periodic cell can be deformed to any shape which contains
a single waveguide provided that the area of the cell stays the same and
the parts of the cell which cause the deformation are translated by b or d
along the si and 82 coordinates, respectively.
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The Effects of Strain on Electromagnetic
Modes of Anisotropic Dielectric

Waveguides at p -n Junctions

By JAMES McKENNA and J. A. MORRISON

(Manuscript received May 22, 1968)

A first order perturbation expansion is carried out in order to analyze the
effect of small spatially uniform strains on the lowest order (even) TE and
TM modes in an anisotropic dielectric waveguide. This generalizes the
results of an earlier paper in which the effects of certain special cases of
uniform strain were calculated. Unlike in these special cases, the perturbed
modes are, in general, neither purely TE or TM, and one effect of two of the
offdiagonal components of the strain is to tilt the plane of polarization and
change the relative phase of the two polarizations. To first order, the modes
arc not exponentially attenuated. Some numerical examples are considered
in order to illustrate the results. It is found that, under appropriate condi-
tions, the effect of the small strain may be quite large in relation to its
magnitude.

I. INTRODUCTION

The concept of a multilayered dielectric waveguide is central to
the theory of the GaP electro-optic diode modulator.' -9 As part of a
detailed study of the properties of electro-optic diode modulators,
Nelson and McKenna4 have investigated the possible discrete modes
which can propagate in a number of such waveguides and have cal-
culated the detailed properties of the lowest order mode of each
polarization.

In the fabrication of a p -n junction a certain amount of strain is
always introduced. Because of the photoelastic effectl° this strain will
induce a change in the dielectric matrix describing the unstrained p -n
junction. In general the strain will be spatially nonuniform, making
it extremely difficult to calculate modes in such a structure. However,
a knowledge of the effect of a spatially uniform strain on the mode

1933
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structure would provide insight into the effects of nonuniform strain.
The effects of certain special cases of uniform strain on the modes of
a simple model of a dielectric waveguide were calculated in Ref. 4.
In the present paper we complete this investigation and calculate the
modes in the same model dielectric waveguide when subjected to an
arbitrary uniform strain. We use first order perturbation theory in a
small parameter describing the magnitude of the strain.

Although the work presented in this paper was motivated by re-
search on the theory of the electro-optic diode modulator, the results
have considerable relevance to the theory of the GaAs injection laser.
Here too, various dielectric waveguide models have been used to
explain the light containment.11-14 The same problems of strain exist,
and the results of this paper give a qualitative picture of the effects
of strain on modal structure. The effect of strain on completely
different types of electro-optic light modulators have been studied by
Kaminow15 and by DiDomenico and Anderson.1°

II. FORMULATION OF THE PROBLEM, AND RESULTS

In Ref. 4 the symmetric step model was used to study the effects
of strain. This very simple model exhibits many of the main features
of interest in dielectric waveguide models.

The model consists of an anisotropic crystalline slab bounded by the
planes x = ± w, whose refractive index is raised uniformly by some
constant amount, the physical origin of which is still obscure, and which
is embedded in an isotropic medium of relatively lower index of refrac-
tion. The central slab represents the junction region whose anisotropy is
caused by the junction field E, acting through the electro-optic effect.'
The direction of the x-axis is always taken parallel to E. The isotropic
medium represents the normal GaP.

The mode] is determined by its dielectric matrix, which in the absence
of strain and for certain orientations of Ej with respect to the crystal
axes can be diagonal in a coordinate system having its x-axis parallel to
E. For such orientations of Ej, the diagonal matrix elements of the
dielectric matrix IV°)(x), a = 1, 2, 3, depend only on x. (We use x, y, z
for the coordinates rather than xi, x2, x3.) The matrix elements in the
absence of strain are then defined by the equations

KT)(x) = ,

Kns) = K0 ,

where a = 1, 2, 3 (see Fig. 1).

1271<w

Ixi>/v
(1)

(2)
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Fig. 1- (a) The coordinate system used in the symmetric step model. (b) A
graph of Ka(x).

There are two orientations of Ej of particular interest which allow us
to diagonalize the dielectric matrix in the desired coordinate system.
If E. is in the [111] direction, then the x, y, and z axes can be taken in
the [111], [110], and [112] directions, while if Ej is in the [100] direction,
the x, y, and z axes can be taken in the [100], [011], and [011] directions.
The set of axes determined by the unstrained model will be used in all
the strain calculations and the dielectric matrix will always be referred
to these axes. See Ref. 4 for further details of the model.

In the presence of a uniform strain, the dielectric matrix is in
general no longer diagonal, and we can write for the dielectric matrix
elements Ka (x),

K««(x) = If(c,°)(x) nS , a= 1, 2, 3 (3)

Kap(x) = nScip , a 13. (4)

The symmetric matrix (00) is the contribution of the photoelastic
effectl° which we have written in this form for convenience in the
perturbation analysis. The matrix elements Sa are spatially constant.
We assume that n-28,0 is of order unity, where n is the index of refrac-
tion of GaP and n is a small parameter. In Section II we express riSap
in terms of the strain matrix and give estimates for the size of n.

We now seek solutions of the Maxwell curl equations

V X E = - (5)
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of the form

V X H = eoK(x)E, (6)

E = e(x) exp i(wt - 13kz),

H = h(x) exp i(wt - Okz).

(7)

(8)

These solutions correspond to waves travelling in the positive z direc-
tion, where k = co(12,,e0)1 = 271-/X is the free space wave number and X the
free space wavelength of the light.

In the strain free cases (77 = 0), there are both TE and TM modes
and these modes can be either even or odd functions of x. At most
only a finite number of modes can exist, and Ref. 4 shows that for the
typical parameter values encountered in GaP diode modulators only
the lowest order even TE and TM modes can exist. For that reason
we confine ourselves here to solutions which in the limit of zero
strain (n = 0) reduce to even modes. However, the perturbation
technique used here applies equally well to solutions which in the
limit 77 = 0 reduce to odd modes.

When 0 0, we seek solutions of Maxwell's equations of the form

ea(x) = 261a exp -kp(x - w)

B a exp g(x - w) , x w (9)

= Ca exp kr(x w) exp lcs(x w) , x < -w (10)

= Fa exp ikfx Ga exp -ikgx

+ La exp iklx Ma exp -ikmx, I x I < w (11)

for a = 1, 2, 3. The general solution in each region is a sum of four
linearly independent solutions, but in the regions I x I > w, the bound-
ary conditions at infinity eliminate two of these solutions. The expres-
sions for ha(x) can be obtained from equation (5). The various coef-
ficients and parameters A.. . . , p, . . . can be expanded in powers of 71

A = Aa") nA.a" + , (12)

p = po npi + and so on. (13)

In Section III we list the terms in these expansions of order zero and
one in 77, and in Section IV we outline their derivation. In this section
we merely discuss some of the features of the solutions.

We refer to solutions which in the limit as 17 0 reduce to even
TE modes as "perturbed TE modes"; similarly, we refer to "perturbed
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TM modes." Expressions for the unperturbed TE and TM modes
(n = 0) are given in equations (25) through (32).

Although the expressions we have obtained for the coefficients and
parameters are quite complicated, several features of the perturbed
modes stand out. If 812 0 or S23 0, then the modes cannot be purely
TE or TM. In general an important effect of the strain is to tilt the plane
of polarization. This tilt is in general a function of x but not of z. Since
the coefficients A a, ... are complex in general, the relative phase
between E,, in the perturbed TE mode and By in the perturbed TM mode
is a function of x. This relative phase at x = 0 cannot be determined
unless the method of excitation is known, since all the A a cannot be
determined, as is shown in Section IV. Ref. 4 considers the special case
where S12 = 823 = 0, 813 0 and shows that the modes are rigorously
TE or TM. That paper calculates only such parameters as 13 and p, not
such coefficients as A a and B a. The parameters are expanded in two
small quantities 8 and A describing the unstrained dielectric matrix. If
we expand the expressions for the parameters in this paper to first order
in the same small quantities S and A (to second order for (3) complete
agreement is obtained with the Ref. 4 results.

In the absence of strain, the surfaces of constant phase for both
TE and TM modes are the planes z = constant. However, in the
presence of strain, the surfaces of constant phase are no longer planes,
and are different for the perturbed TE and TM modes.4

Finally, flo + ifii is real in all cases. Thus at least to first order in
i the modes experience no exponential attenuation as they propagate.

In order to get some feel for the magnitude of the effects involved,
we consider several numerical examples. We first estimate the order
of magnitude of 77 by relating it to observable phase differences.
Consider a plane wave whose free space wavelength is A propagating
over a distance l in a medium of index of refraction n + An. The phase
difference Ace which this wave would experience over the same wave if
the index of refraction were n is

Aco = -2r
1(An). (14)

X

If in is the photoelastic contribution to the dielectric constant, then

= (n2 + nn2)1 - n (15)

Therefore, we have

XL1(r/n/r. (16)
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Now the upper limit of phase shifts observed" in GaP at X = 6328 A
over a length 1 = 0.6 mm is about 7/4. Taking's n = 3.31 this yields
n 0.8 X 10'. This probably represents an extreme upper limit, and
so we will assume n = 10-6 in our examples. Recent X-ray measure-
ments" of strain in P doped Si yield a value of n of about 10-6 when the
concentration of the dope is ND 1.-Zj, 10" atoms per cubic centimeter.9

It can be shown that the matrix (nS,9) is approximately related to the
strain matrix (Eat) by the equations"

3

7184 = -714 Pa,3Epi,
At,v=.1.

(17)

where n is the index of refraction and Pao are the elasto-optical coeffi-
cients. Crystals of class 43m have only three different elasto-optic
coefficients when referred to the crystal axes. (See p. 251 of Ref. 10.)
For GaP these are"

P1, = P44 = -0.074, P12 = -0.082. (18)

Since's n = 3.31 for GaP, and n -'Sap is at most of order one, it
follows that the magnitude of the strain is roughly proportional to n.
In order to obtain the values of the elasto-optic coefficients in the
coordinate system used in this paper, it is necessary to make a trans-
formation of the elasto-optic tensor from its representation in the
crystal axes. We will not do that here; rather we take (9780) as given.
In Table I we define three possible strain contributions to the dielectric
matrix, labelled a, b and c. Matrices a and b were chosen to demon-
strate the effect of the off -diagonal elements Sr, and S93, respectively
(Ref. 4 considered the effect of S13 alone) , while c was chosen to dem-
onstrate a possible effect when all the off -diagonal elements are nonzero.

For a GaP diode modulator we can write'' 4

Ka = n2(1 - 6j, a = 0, 1, 2, 3, (19)

where n = 3.31 is the index of refraction of GaP" and the quantities
8,, a = 1, 2, 3 are functions of the applied bias voltage V. In the original

TABLE I - STRAIN CONTRIBUTION TO THE DIELECTRIC MATRIX*

Type n 811 822 Sn Sn Sn Si,

a 10-6 0 0 0 10 0 0
b 10-6 0 0 0 0 10 0
C 10-6 7.07 7.07 7.07 7.07 7.07 7.07

* Components of the strain contribution, Si) , and the magnitude parameter n.
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symmetric step model SO is independent of V. For Er I [111] Ref. 4
showed that

(5, = -28,

where

82 = 83 = (20)

= - Err n2/(3)1, (21)

and where E., is the (spatial) average junction field, r41 is the electro-optic
coefficient, and n is the index of refraction. For a typical diode (diode
KC46CA of Ref. 9), EJ(measured in V/m) is related to the diode half
width w(measured in m) and bias voltage V(measured in V) by9

Er = (2 - V)/(2w) (22)

The half width can be determined by capacitance measurements8'
and related to the bias voltage by

w(V) = 0.139 X 10-6(1 - v/1.8)0.380. (23)

Using the value 7.41 = -0.86 x 10-12 m/V,* we can now calculate
81,82, and 83 as functions of V.

For this diode, 80 = 1.612 x 10-3. However, it has been shown
that the voltage dependence of the parameters of the symmetric step
model is not correct, and the double walled waveguide much more
closely describes the true voltage dependence.4' We have not used
the double walled model because it is analytically complex. Instead,
since the modes in the single and double walled guides are very similar
in form because they both decay exponentially as functions of x out-
side the guide, we have used the single walled model but simulated
the voltage dependence of the double walled model. This has been
achieved by letting 80 vary with voltage. The voltage variation of So
has been obtained by requiring the equality of expressions (2.33) and
(3.18) in Ref. 4 for the decay constants p, and letting w1 = w (0) and
w2 = w (V). This yields the relation

So = (2.24 X 10-1°)/w. (24)

In Table II we list these basic constants describing the unstrained
diode as functions of V. Using these values, we can calculate from
equations (33) through (37) the parameters of the unstrained TE

* This is the unclamped value of r41 given in Ref. 18. Aftdi, these calculations
were made it was determined that the clamped value ni = -0.97 X 10-12 m/V
should be used. However, since our results supply only qualitative information
about actual diodes, we have not redone the numerical example.
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TABLE II - CHARACTERISTICS FOR A TYPICAL GaP DIODE*

Bias
voltage w

(V) (10-6 cm) 104 61 101 62 10' 6, 1W So

-2 1.87 -1.17 0.58 0.58 12.00
-12 3.04 -2.51 1.25 1.25 7.38
-24 3.85 -3.67 1.84 1.84 5.82

* Given as functions of the applied reverse bias voltage V. The half width of the
junction is w, and the components of the unstrained dielectric matrix are Ki =
n2(1 - Si), j = 0,1,2,3, where n = 3.31 is the index of refraction of GaP.

and TM modes for A. = 6328 A. These values are listed in Table III.
Finally, in Tables IV and V we list the parameters of the correspond-
ing perturbed TE and TM modes respectively. The accuracy of those
terms less than 10-4 is uncertain in case c of Tables IV and V. In
Figs. 2 through 7 we plot some of the components of the perturbed
TE modes correct to first order in n. In Figs. 2, 3, 5, 6, and 7 the
imaginary part of the component is negligible and is neglected, while
in Fig. 4 the real part is negligible with respect to the imaginary part
and is neglected. In all cases the e3 component is negligible compared
to the e1 component. We have chosen the undetermined coefficients
so that at x = 0, z = 0, e2 in the perturbed TE mode and el in the
perturbed TM mode have zero phase to first order in y.

This example illustrates how much tilting of the plane of polariza-
tion, or coupling of the TE and TM modes, is to be expected. The
S12 component produces the main effect, which from Figs. 2 and 3,
is a maximum tilt of the plane of polarization of 3.5°. This effect

TABLE III -UNPERTURBED MODE PARAMETERS*

Type
of

mode

Bias
voltage

(V) (30 Po Jo lo

TE -2 3.308 0.0226 0.1096 0.1180t
TE -12 3.309 0.0195 0.0796 0.1022t
TE -24 3.309 0.0160 0.0641 0.1007 t
TM -2 3.308 0.0259 0.1089t 0.1174
TM -12 3.309 0.0307 0.0759t 0.0994
TM -24 3.309 0.0363 0.0552t 0.0953

* Describing the unstrained TE modes, and the parameters /30, po and /0 de-
scribing the unstrained TM modes as functions of the applied reverse bias voltage V.
The wavelength of the light is 6328 A.

t Derived parameters /0 for the TE modes anclf0 for the TM modes. These derived
parameters appear only in first and higher order corrections to the field.
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TABLE TV -PARAMETERS FOR PERTURBED TE MODES*

1941

Type
of

strain

Bias
ltavo
(17)ge 131

p1 qi

h miRe(pi) Im(pi) Re(0) /m(o)

-2 0 221 -221 0 0 .

a -12 0 257 -257 0 0
-24 0 312 -312 0 0

-2 0 1.51 -1.51 0 0
b -12 0 1.51 -1.51 0 0

-24 0 1.51 -1.51 0 0

-2 1.07 156 -0.3X10-7 -156 -2.14 2.13 -0.4X10-8
c -12 1.07 181 +0.2X10-7 -181 -2.14 2.13 -0.4X10-8

-24 1.07 221 -0.2X10-7 -221 -2.14 2.13 -0.4X10-8

* For all perturbed TE modes fi = = 0.

decreases with increasing reverse bias voltage. However, it should be
noticed from Figs. 4 and 5 that the coupling effect resulting from
So3 increases with reverse bias voltage. The e1 component is roughly
proportional to n, so a doubling of the strain would double the mode
coupling. Mathematically, the existence of this relatively large effect
results from the largeness of the factor c given in equation (64) for
perturbed TE modes and in equation (84) for perturbed TM modes.
The TM modes exhibit a similar behavior.

From Tables IV and V we see that the changes in the parameters,
nqi , 71/31, and so on, are indeed small, which gives us confidence

that the perturbation treatment is reasonable.

III. FORMULAS FOR THE SOLUTIONS

To list the formulas for the coefficients and parameters, A., ,

p, . . . (which appear in the expressions (7) through (11) for the
solutions in terms of the various parameters describing the symmetric
step model and the strain matrix), we begin by writing down the solu-
tion for the strain free (.9 = 0) case for both the even TE and TM
modes. When y = 0, we have for the even TE modes

ei(x) = e3(x) = 0, all x (25)

e2(x) = cos (kf,,x) , I x I < w (26)

= cos (kf ow) exp kpo(w I x I), Ix1 (27)

while for the even TM modes
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Fig. 2 - The relative amplitude of the real part of e1 for the perturbed TE mode.

2.4 36

ei(x) = cos (klox), I x I < w
K,= - cos (klow) exp kpo(w-lxI), lx1?_w
Ko

c,(x) = 0, all x

loK,c:4(x)I30K3sm (k10x), I x I< w

4 8 6.0

(28)

(29)

(30)

(31)

= i (P-1--K1 cos (Now) sgn (x) exp kp0(w - I x I), x > (32)
OoKo

The parameters in these equations are given for the TE modes by
the positive roots of the system of equations for po, /30, and fo

pi; = /3,2, - Ko , (33)

= K2 - , (34)

fo tan(kwfo) = Po (35)

while for the TM modes the parameters are the positive roots of the
system of equations for po, 130, and /0, consisting of equation (33) and

= K3. - (K3/Ki)0g, (36)
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Fig. 5 - The relative amplitude of the real part of e. for the perturbed TE mode.

K010 tan(kw/o) = K3p0. (37)

The expressions for h(x) can be obtained from equation (5).
We now turn to listing the formulas for the coefficients and param-

eters of the solutions for the perturbed TE and TM modes. For both
the perturbed TE and TM modes we have the relations

pl
= (1)#1qi Po

[Ko(822 +S,) ± gS11 - Soo) -I- 2i1DoPoSio]

( 1 ) {{K0(82.? - 833) 13'02(Sli - S33) - 2ip0130Sid2

41C0{130S12 iPoS23]2 (38)

where pi corresponds to the "+" sign and q1 to the "-" sign. It is
also true, at least to first order in 77, that

ea(-x) = ea(x)*, a = 1, 2, 3, (39)

hence we only list those parameters determining the solution in x > -w.
For the perturbed TE modes Po , fo , and ,6o are the positive solutions

of the system of equations (33) through (35) , and 1,0 is then given
in terms of So as the positive root in equation (36). The remaining
parameters are

go = Po ,

go = /0 ,

(40)

(41)
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mo = 10

13i = 822/(200).

(42)

(43)

The quantities pi and qi are now determined by equations (38) and
(43). Next we have

fi = gi = (822 - 2130)31)/(2f0),

1.0

0.8

0.6

a)

Cr 0.4

0.2

0

(44)

V=-24
-12

-2

STRAIN
TYPE C

= 10-5

-6 0 -4 8 -3.6 -2 4 -12 0 12
X (10-4CM)

2.4 3.6 48 6.0

Fig. 7 - The relative amplitude of the real part of e2 for the perturbed TE mode.
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m1

1

2K110
[811(K3 - - vcoos. + 833(K1 - (4) ± 281:31080],

(45)

where lz corresponds to the "+" sign and m1 to the "-" sign, and in
equations (44) and (45) /31 is given in equation 1;43). Notice that
from (43) and (44) , h = gi = 0 for the TE case.

The expressions for the coefficients are

Ai()) = 130(130812 ipoS23) cos (kfow)/[2Kopo(p1 - 0], (46)

A = - q1 cos (kf ow) / (Pi - (47)

2W) = i(130/80)AP), (48)

Br) = - ,
(49)

BT)) = p1 cos (kfow)/(Pi - q1), (50)

B:r) = i(P0/ 00).1r) ,
(51)

(52)

(53)

(54)

=2c [T 82300/0 - S12(K - hi)] , (55)

=

=

G!,°) =

=

0, a = 1, 3

LT) = = 0, a = 1, 2, 3

= , (56)

F3')-
[T 8103010 - 13(K1 - , (57)

GV)

LT = g 10 cos (icwf 0) la 23[28o(K - K0)c -
31,;(31)

Lit)
= (floK3/10K1)Le,

111 = - (130K3/1oK1)MT ,

= 31.1) = 0,

b0 -± -0 S12[2pg(K, -K 3)c - 1]) , (58)
Po

(59)

(60)

(61)
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where

a = [10K0 cos (kwlo) poK3 sin (kw10)]-1,

b = [101C0 sin (kw/o) - PoK, cos (kwio)]

c = (K,K3 - K3i3O - Kiri]) 1,

and pi and q1 are the values appropriate to the TE modes.
Finally, we write down the three combinations

.2C1) = -i(f30/130)[M1) EV]

- cos (1clow)[(P20 - K0)812 + 1730P0823]/(21C0P20),

AT) + 13" = cos (kfow)[n) Gn,

(62)

(63)

(64)

(65)

(66)

AT) + ET' = [F:`," G')] cos (kfow) - G')] sin (kfow)

+ [LT + /1/31'] cos (klow) i[LT - MT] sin (klow). (67)

The coefficients F!1) = and hence AT BT, are arbitrary and
correspond to an overall multiplicative constant. They can be set equal
to zero with no loss in generality. We discuss this point further in
Section III. Moreover, the individual coefficients .11.", AT), .M", and
B,(," cannot be determined at this stage. However, the terms we have are
sufficient to determine each component of the field up through order
one in v.

For the perturbed TAI modes Po, /0, and /30 are the positive solu-
tions of the system of equations (33), (36), and (37), and fo is given
in terms of 130 as the positive root in equation (34). The parameters
qo and po are still related by equation (40), and and /0 by equation
(42), and go and fo by equation (41). The remaining parameters are

131 = [1/(2130)][Ko(K1lo K3P20)..± ?*]-1

 {[Sii13'02/Ki][KoK3A ?.]

[KiS33 1g/10[K3(K3 - K0)P20 g-11, (68)

where

= (kfow))(1C1320 K201O) (69)

With the aid of (68) and (69) for pi, pi and qi are determined by
equation (38), fi and gi by equation (44), and 11 and nt, by equation
(45).
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The expressions for the coefficients are

= cos (kw10)(200(31 - 27)(4), - S22)/[2p0Ko(P1 gi)], (70)

= cos (kw10)(00Se2 ipoS23)/[2p000K0(Pi - q,)], (71)

= K, cos (kw10)(204, - 2poqi - S22)/[2p0Ko(Pi - q,)], (72)

/V) = miff), (73)

where 0, is given by equations (68) and (69), p, and q, are the values
appropriate to the TM modes, and A.°) is related to Ar by equation
(48) and B,r to Br by equation (51). Furthermore,

r°) = G(o) = 0, a= 1, 2, 3 (74)

= Mr = (75)

/,,Y3) = /1/.0) = 0, (76)

= = (10/0/(200K3), (77)

PT) = FT) = G1-1) = G,1) = 0, (78)

= cos (kw10){00aS,2[K, - K3)]

p0bS23[K, + 243;1(K, - Ko)])/(4pot30K0), (79)

Tip
= -1c[S,2 ± /0K0S23/(0o/C3)]

3[;1)
(80)

,(21) B,;" = [PT) + cos (lvfo) 7..[F1) - G,(21)] sin (kwli,)

[L,1" 1.1/:;"] cos (kw10) - 211-.(21)] sin (kw/0), (81)

where

a = [po cos (kwfo) - fo sin (kwfo)] 1,

b = [fo cos (kwio) Po sin (kwfo)]

c = (K2 - to-[3)-1.

(82)

(83)

(84)

Just as in the perturbed TE case, the coefficients cannot all be deter-
mined uniquely. We can with no loss of generality set

= = 0. (85)
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Once this choice is made, we have

Lill = [S13 - /001 - /100 + (Sal - 2/0/1)(10K1/001C3)]/(200/0), (86)

Mil) = [ -S13 - 1031 - m1130 + (833 - 210m1)(10lfi/30K3)]/(2130/0),

(87)

AT) + 131) = l -(S,3p0kw)/110

i[2kw(K30,23S11/K1 K4533/K3 - 21(330#0]/(K300)) cos (kwl0)

(88)

Ail) = -i(fl0/P0)[A1) B:1)] (K1 cos (kwl0)/K0/30p0)

 [-Ko13i/P0 - SoSii(PO - Ko)/(21301C0)

P0O0S33/(2K0) - iPOSia/Kol (89)

A knowledge of these terms is sufficient to determine each component
of the field up through order one in n.

IV. DETAILS OF THE CALCULATIONS

In standard fashion H call be eliminated from equations (5) and (6)
by taking the curl of equation (5) and by making use of the assumed form
of the solutions, equations (7) and (8). There results the system of
equations

de3
3

- 02ei E Klaea = 0, (90)
a=1

3
d2e2de - 132e2 E K2e = 0, (91)

a 1

2e
t

de,
E2423 + i3K3 aea = 0, (92)

where we have introduced the new independent variable

= kx. (93)

The standard boundary conditions' on E and H yield the conditions
that e2, ea, de2/dt, and de3/d ii3ei must be continuous at t = = kw.

The general plan of the calculation is first to consider the equations
obtained by substituting into equations (90) through (92) the expres-
sions for ea in the various regions given by equations (9) through
(11). From these equations, one can determine up through first order



WAVEGUIDE STRAIN 1951

inn all but one of the parameters and some of the coefficients as
functions of the parameter Si. Upon substituting these values into
the boundary condition equations, a set of equations is obtained from
which Si and some of the remaining coefficients can be determined.

Since the components of the electromagnetic field satisfy a linear,
homogeneous system of equations, it follows that if ea(x), a = 1, 2, 3
is a solution set, then so is (1 + aln + a2772 . . .)ea(x), a = 1, 2, 3,
where the constants al , a2, . . . are arbitrary. For example, if the
coefficients A,,, B., . . . given by expansions of the form (12) rep-
resents a solution, then the coefficients given by expansions of the form

= 2.1(:) n[aiA(:) + +..., (94)

with the same al used in each expansion, represent another solution.
Thus unless the corresponding zeroth order coefficient is zero, the first
order coefficient cannot be uniquely determined. We do, however,
have the arbitrary constant al at our disposal. The multiplicative
constant (1 + arri + . . .) can only be determined from a knowledge
of the excitation of the mode.

If the assumed expressions for e. in t a given by equation (9) are
substituted into equations (90) through (92) we get the set of homoge-
neous, linear equations in A ., a = 1, 2, 3,

(Ko + nSii - 02)A1 77S,2-12 (77813 - OP)A, = 0,

n,S,,Al+ (K0 + n822 + nS23A3 = 0,

(n8,3 - nS23A2 (K0 + n233 + p2)A3 = 0,

(95)

(96)

(97)

plus a similar set of equations with Aci replaced by B. and p replaced
by q. The condition that these equations have a nontrivial solution,
the vanishing of the determinant of coefficients, yields a relation be-
tween /3 and p of the form

D(p, = 0, (98)

where D (p, /3) is a quartic polynomial in p and /3. The second set of
equations involving the B. and q yields the same determinantal equa-
tion with p replaced by q,

D(q, 13) = 0. (99)

That is, q is a second root of the quartic. If p, q, and a are expanded
in powers of 71 as in equation (13), equations (98) and (99) can be
expanded in powers of 77 and the coefficients of the various powers of
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77 can be equated to zero. The vanishing of the lowest order term
yields equation (33) , which is satisfied by both Po and go, thus also
yielding equation (40). The vanishing of the first order coefficients
shows that pi and gi are the two roots of a quadratic which are
given by equation (38). These results are independent of the TE or
TM character of the mode.

Equations (95) through (97) can now be expanded in powers of n
by substituting in the expansions of p, fi, and Aa. The three similar
equations involving q, /3, and B. can be expanded in powers of q in
the same way. Because Po and /30 satisfy equation (33), equation (96)
vanishes to zeroth order in n, while equations (95) and (97) yield

(K, - ADAP) -i130p0A°) = 0, (100)

-00P0AP) + (K0 + PO)Ar) = 0. (101)

The determinant of this pair of homogeneous equations vanishes because
equation (33) is satisfied, so a nontrivial solution exists. The quantities
Br and .IV) satisfy the same equations. Using equation (33), it follows
from equation (101) that A.;°) and yl.°) are related by equation (48), and
./3;°) and 1:3°) are related by equation (51).

To first order in n, equations (95) through (97) are

(K, - g)A1) - i130p0A3c>)

= - [(S11 - 20031)A1°) + 8,24°) + (813 - ipoth - ip1(30)4°)],
(102)

S12AP) (2popi - 2/30/31 S22)A2°) S23i13°) = 0, (103)

-00P0A + (K0 + p,2)) A

= -[(813 - iP001 - im130)AP) S23A-r) ± (S33 + 2p0P0A-3°)]

(104)

With the replacement of A. by B. and p by q in equations (102)
through (104) we obtain the first order equations satisfied by the Ba.
At this stage we must differentiate between the perturbed TE and
TM modes. For the perturbed TE modes we must have

./C°) Bi°) = -413040)[213o) + Br)] = 0, (105)

= cos (kfow),

while for the perturbed TM modes

(106)

AP) + Br) = -i(i3o/P0)[-4°) + = (Ki/K0) cos (k/ow), (107)
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Ar) + Br> = 0. (108)

If we now add to equation (103) the equivalent equation in B a, and
make use of the fact that A?' + B?), a = 1, 2, 3 are prescribed for the
perturbed TE modes, in equations (105) and (106), we get a new equation
involving only AT) and Br'. This equation together with equation (106)
can be solved for A r and Br to yield (47) and (50). Once A ()) is known,
A;°' and AT' can be determined from equations (103) and (48) yielding
(46). We get B1°) and Br) from equation (105). In the same fashion we
determine A?' and B?) , a = 1, 2, 3 for the perturbed TM modes.

Equations (102) and (104) [and the two equivalent equations in ./V
and BM are two inhomogeneous equations whose determinant vanishes.
Thus the left side of (102) is a multiple of the left side of (104), and the
equations are compatible only if the right side of (102) is the same
multiple of the right side of (104). This can be shown to be the case, and
so (102) and (104) provide just one relationship between .A." and 4,,3
There is a corresponding relationship between B1" and g".

By replacing A a, B a, p, q by C., D a, -r, -s, respectively, in the
equations so far obtained, the formulas for the region t 5 -a are ob-
tained. Here -r and -s are the remaining two roots of the quartic
D(p, /3) = 0.

Next, if the assumed expressions for ea in Iti < a- given by equation
(11) are substituted into equations (90) through (92) we get four sets
of three homogeneous, linear equations in Fa , G. , La , and Ma ,
respectively, which hold for both the perturbed TE and TM modes.
These equations are obtained from equations (95) through (97) by
replacing A. and p by Fa and -if, Ga and ig,La and -il, and Ma and
im, respectively.

The determinental equation for each of these four sets of homo-
geneous equations can again be expanded in powers of j, and the coef-
ficient of each power of v separately equated to zero. The vanishing
of the zeroth order coefficients yields equations (34) , (41) , (36) , and
(42) relating fo , go, to, and mo to /30. The vanishing of the first order
coefficients yields equations (44) and (45) relating fl , g1 , /1, and nz,
to /3k.

Each of the four sets of homogeneous equations can be expanded in
powers of n, just as for the equations describing the region t > a. To
proceed further, we must again differentiate between the perturbed
TE and TM modes. For the perturbed TE modes, equations (52)
through (54) must be satisfied, while for the perturbed TM modes,
equations (74) through (77) must be satisfied. These values satisfy the
lowest order equations identically.
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For both the perturbed TE and TM modes, the first order equations
can be written as

(K1 - X) FT) - Oof on) = S, 2F2°'(109)
-Polon) + (K3 - g)fir = 823n) (110)

(K2 -1'6 - ig)n)
= -AS,,F°) - S23F:r - (S22 - 21011 - 2000i)F2°' . (111)

For both the perturbed TE and TM modes, equation (111) vanishes and
yields no information, while equations (109) and (110) have a nonzero
determinant and so can be solved for PT) and PT) yielding the solutions
given in (55), (57), and (78). If we replace Fa and f by G. and -g, we
get equations which can be solved for G11 and G" yielding solutions
given in (55), (57), and (78). The equations obtained when Fa and f are
replaced by La and 1, and Ma and -m, respectively, have a different
character. The two equations in /4" and MT) corresponding to (111) do
not vanish identically and can be solved for L4'' and .1114". The solutions
are given in (61) and (80). The equations in 14" and L3", and X" and

, have a vanishing determinant. In the perturbed TE case, the
equations are homogeneous and yield (59) and (60). In the perturbed
TM case, the equations are nonhomogeneous but compatible, and yield
the relations

(1C313(2)/KOL3"

- (S13 - 1431 - 111,0) - 2 (833 - 21011)(10K 1/00K3) (112)

130101141') (K3130/101Ig'

= -1(Sia 10131 m10.) + 2(S33 - 21.mi)(10K1/tioK3). (113)

We finally turn to the boundary conditions at E = ±a, of which there
are eight, four at each boundary. They can be grouped as follows

= F,e'r° G,e-;°° 1,2el13 1112e -u " , (114)

C2 + D2 = F2e- f + G2ei g + L2e- + 312e' in° , (115)

- pA 2 - qB2 = ifF,elf° igG,e-l" ilL,ei - imM,e-im° ,

re, + sD2 = f° - igG,e'" - im11/12eimu ,

(116)

(117)

A3 + B3 = F3e i + G3e iga M3e ,

fa + G3e1" L3e + Meim° ,C3 + D3 = Fie -;

(118)

(119)
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-1) 1:3 - q13.3 1.13(A + 13,) = i(fF3 (3FI)elf°

i(-m31 0111,)e -in" ", (120)

rC, 81)3 + 10(C' D1) = i(fF3 13F1)e-if' i(-gG3 i3G,)e"'

i(1L3 i3LOCii° + 4-m1113 + j3 ,)e;'"'. (121)

These equations split naturally into two groups, one group involving
only the subscript 2 and the other group involving only the subscripts
1 and 3. These equations can be expanded in powers of 77. The zeroth
order equations are satisfied as long as (35) holds in the perturbed
TE case and (37) holds in the perturbed TM case.

For the perturbed TE modes, the first order expansion of equations
(114) through (117) yields four nonhomogeneous equations in AT) +
B'), CT) + M", PT) and W). The inhomogeneous terms on the right
side of these equations contain the parameter 13,. The determinant of the
equations vanishes, and then the condition that they be compatible
provides an equation from which /3,, given in (43), is determined. Once i3,
is determined, these equations yield (56) and (66). We can now choose
the arbitrary parameter ch-indicated in (94)-so that FT) = 0. Then
from (56) and (66) GV) = AT) + BV) = 0. In addition, since 0, is real,
it can now be shown that r= sl = CT" = A em*, D")) = B(:)*,
and CI" Da") = [A(2) + B(2)]*, a = 1, 2, 3, which justifies equation
(39). Finally, the first order expansion of equations (118) through (121)
can be combined with equations (59) and (60), equation (102), and the
corresponding three equations in and IV), and q"), and
and AI" to form a set of equations from which IQ) + 1311) = [C(2)

Da'']*, and M(:), a = 1, 3, can be determined. These are listed in
(58), (65), and (67).

For the perturbed TM modes the procedure is virtually the same,
except that it is now the first order expansion of equations (118)
through (121) which has a vanishing determinant. The condition
that these be compatible then yields the expressions (68) and (69)
for 131. This set of equations also yields the result that

+ Ac" = 0. (122)

We can now pick the arbitrary parameter a, so that LV = 0, which
combined with (122) yields (85). Equations (112) and (113) now yield
(86) and (87). The first order term of equation (118) then yields (88), and
this result, combined with the equation obtained by adding equation
(102) to the corresponding equation in B yields (89). Finally, equations
(114) through (117) yield expressions (79) through (84) for FT), W),
L1), MV), AV) + BV)
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A State Variable Method of Circuit Analysis

Based on a Nodal Approach

By R. E. PARKIN

(Manuscript received April 12, 1968)

A method which is well suited for implementation on a digital computer
is presented for the solutions of active circuits. Unlike many state variable

approaches the state vector is defined as the set of voltages which exist between

certain nodes and the reference node. An advantage of this approach is that
degeneration in the order of complexity of the network caused by capacitance
loops is handled automatically. Any type of controlled source can be specified.

From the basic algorithm the circuit is specified in matrix form by inspection
using standard nodal methods, and the solution is obtained by a systematic
reduction of this one matrix equation. An upper bound on the order of
complexity of the network is evident from the network topology or the
partitioned form of the original matrix. Inductors are included in this
approach by considering the equivalent gyrator -capacitor combination.

I. INTRODUCTION

State variable techniques presently being used to analyze networks
require a detailed knowledge of graph theory.1-7 Another method of
state variable analysis that is based partly on a nodal approach and
does not require a detailed knowledge of graph theory is very re-
strictive.8 The method presented here performs a nodal analysis on a
transformation of the network in which all magnetic storage elements
have been replaced by gyrator -capacitor equivalents, and nothing
more than a basic knowledge of graph theory nomenclature is re-
quired. The ReLmse network can be transformed to an equivalent

* Resistor, capacitor, inductor, mutual inductor, source and ideal transformer.
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Fig. 1 - Inductor and transformer equivalents.

resistance capacitance source network using the gyrator -capacitor
equivalents shown in Fig. 1. Each gyrator shown in Fig. 1 has the
indefinite admittance parameters

r 0 1 -1 VA

.1"B = -1 0 1 VE ;

_Ic_ _ 0 -1 0_ LVe_

choosing this type of gyrator enables the capacitor value in farads of
the equivalent pair to be equal to the inductor value in henries.

Let the number of nodes of a transformed network be n. Using
Kirchoff's current law, it can be shown that for an n -node RCS net-
work

CV = I - GV (1)

where I is an (n - 1)th ordered column vector representing the currents
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injected into the nodes, V is an (n - 1)th ordered column vector repre-
senting the voltages between the nodes of the network and the reference
node. If the transformed network contains / capacitors then the matrix
C is an (n - 1)th ordered symmetric matrix which contains imbedded
within it / second order indefinite matrices, each having the dimensions
of farads. Similarly G represents the resistors and has the dimensions of
mhos, but G may be asymmetric. Node n is the common or ground node
of the network; for convenience this node is always assumed to have
capacitors connected to it.

The objective is to find an upper bound on the rank of the ca-
pacitance matrix C by partitioning C as described in Section II, and
reducing the matrix equation (1) containing the partitioned matrix
C to the rank of C; this reduction is symbolic and does not take into
account degenerate cases which can occur. It is shown in Appendix B
that for all conditions, for any type of circuit, an upper bound on the
order of complexity of the network (rank of C) can be found from
the network topology.

II. PARTITIONING OF THE CAPACITANCE MATRIX

There are basically four types of voltage source (vs), the independ-
ent vs (Ivs) , the voltage dependent vs (laws), the current dependent
vs where the current is through a resistor (cnvsR) , and the current
dependent vs where the current is through a capacitor (cmrsc) . It will
be shown that the only current source (cs) which can effect the parti-
tioning is the current dependent cs where the current is through a
capacitor (cncsc). As a result, any type of cs will be termed simply
a cs, unless it is a CDCSC.

The method of partitioning makes the reduction of the matrix
equation (1) to its rank a simple process. Generally only the voltage
at a node to which a capacitor is connected can be a state variable
node. However it is possible to choose a node to which a CDCSC or
CDVSC is connected as a state variable node instead of one of the
nodes of the capacitor whose current supplies the dependence, but this
possibility is avoided automatically in the partitioning method pre-
sented here.

The presence of inductors and time -invariant, independent cs's
forming a cut -set in the original untransformed network causes a
linear dependence problem in the transformed network. In the trans-
formed network such a cut -set appears as a capacitor tree with gyra-
tors only connected to the end nodes of the tree as shown in Fig. 1,
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and gyrators and perhaps time -invariant independent c.s.'s connected
to the central node (the GCNODE) ; the nodes of this capacitor tree will
be called the GCSET nodes.

The capacitors in the transformed network can be divided into two
classes, those connected to the reference node directly or through a
vs -capacitor chain (the fixed capacitors), and those not so connected
(the floating capacitors). The m floating capacitor subgraphs are
defined as the m unconnected subgraphs obtained from the floating
capacitor plus imbedded vs graph of the transformed network.

The partitioning of the capacitance matrix will be related to the
example of Appendix A in the discussion that follows. Partition the
matrix C as

n1 n2 n3 n4 n5

n1 C11 C12 C13 0 C15

n2 C21 C22 C23 0 C25

n3 C31 C32 C33 0 C35

n4 0 0 0 0 0

n5 _C51 C52 C53 0 C55._

where

(i) The nodes n1 are all the nodes to which capacitors are connected
omitting the following nodes:

(a) A node for each vs imbedded in a capacitor chain (these nodes are
in the n2 section), but each capacitor must be specified by at least one
node.

(b) A node for each of the m floating capacitor subgraphs (these nodes
being in the n3 section).

(c) A node for each GCSET which is specified in section n2.

In the example in Appendix A, n1 contains nodes 1 -4 9.

(ii) The nodes n2 represent:

(a) A node for each DVS imbedded in a capacitor chain.

(b) A node free of capacitors for each CDVSC and CDCSC free of capaci-
tors on at least one node.
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(c) A node for each GCSET.

In the Appendix A example n2 contains nodes 10 and 11.

(iii) Section n3 contains a node for each of the m floating capacitor
subgraphs.

In the example n3 contains nodes 12 and 13.

(iv) Section n4 contains the nodes to which only resistors and cs's (but
not cpcsc) are connected, including a node for each 'vs, VDVS or CDCSC
free of capacitors, other CDVSC'S or CDCSC'S on both nodes. (The other
nodes of these sources are specified in section n5).

In the example n4 has no entries.

(v) Section n5 contains all the remaining nodes. These are:

(a) A node for each 'vs.

(b) A node free of capacitors for each VDVS or CDVSR free of capacitors
or CDVSC or CDCSC on at least one node.

In the example n5 contains node 14.
The rank of the C matrix is nl, and n1 = 9 for the example of Appendix A.
Notice that the presence of capacitance loops in no way alters the method
of partitioning.

III. REDUCTION OF THE CIRCUIT DESCRIPTION TO A MINIMAL FORM

Theorem: An upper bound on, the order of complexity of a network is the
order of nl.

This theorem is proved in Appendix B, where it is shown that every
row in sections n2, n3, n4, and n5 is linearly dependent on rows in section
n1; the subspace spanned by sections n2, n3, n4, and n5 is contained in nl.

The systematic reduction of equation (1) is accomplished by first
eliminating section n5 by applying the voltage restrictions caused by the
vs's in section n5. Secondly, section n4 is eliminated using the fact that
these nodes are free of capacitors. Next, section n3 is eliminated to
correct the over specification of the floating capacitor subgraphs.
Finally, the remaining dependencies of the system are caused by the
DVS's imbedded in capacitive chains, the CDVSC and CDCSC free of capaci-
tors on at least one node, and a node for each capacitive tree in which a
GCSET has occurred; these dependencies are eliminated with section n2,
yielding equation (9) of Appendix B.

Equation (9) of Appendix B can be written as
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tl = B - Av1 (2)

where

vl

v2

v = v3
v4

v5

and vl is the voltage vector for nodes nl, n2, n3, etc.
An example of a solution based on the problem set by Pottle is

given in Appendix C.

IV. CONCLUDING REMARKS

A state variable technique has been described that offers two ad-
vantages over traditional methods:

(i) The network can be specified completely by inspection using
well known nodal techniques with little skill required, the problem
then becoming one of simple matrix reduction (easily programmed
for a digital computer).

(ii) Capacitor loops present no problem and are not even recognized
as such since the partitioning and matrix reduction are unaltered if
there are any capacitor loops present.

The main disadvantages are that currents must always be ex-
pressed as functions of node voltages and inductors must be replaced
by gyrators and capacitors; inductor cut -sets must be recognized and
the circuit redrawn before inductors are eliminated so that the cut -
set encircles one node. only, and this is sometimes inconvenient.

APPENDIX A

Example of Partitioning

For the example of Fig. 2(a), the transformed circuit without in-
ductors is given in Fig. 2 (b). (This is a theoretical problem and the
circuit has no practical value.) This circuit is described by the equa-
tions
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Fig. 2- Circuit to demonstrate transformation and partitioning.

where and I2 are the unbalance currents due to the vs's and

V14 = Vs .

Notice that except for degenerate cases (for example, if C6 = 0) , the
order of complexity of this network is 9.

APPENDIX B

Matrix Reduction

Consider the partitioned form of equation (1). The section n5 can be
eliminated as follows: for an ivs of a volts connected between nodes k
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and 1 (node k is in section n5, node 1 is not)

Vk = V1 + a.

For a VDVS or CDVSR connected between nodes k and 1, where the vs is
dependent on the voltage vector v, (each voltage of v, is not in section
n5).

Vk = V1 + 13V..

Thus the system can be reduced to

n1 n2 n3 n4

n1 CH C,2 C,3 0- tl i1 G11 G12 G13 G14 vl

n2 C21 C22 C23 0 i2 G21 G22 G23 G24 v2
(3)

n3 C3, C32 C33 0 v3 i3 G3, G32 G33 G34 v3

n4 0 0 0 0_ t4_ _i4_ _G41 G42 G43 G44- v4_

Nodes n4 can be eliminated by first writing part of equation (3) as

v 1

v4 = G-4114 - [G4, G42 G43] v2 (4)

_v3_

Thus

C,1 C12 C13 t 1 it G11 G12 G13 vl G14

C2, C22 C23 1r2 = i2 G2, G22 G23 v2 G24 v4

_C31 C32 C33_ _ i3_ -G31 G32 G33_

-G1i,

_v3_

-
_G34_

(5)
it1 G112 G113 vl

it2 - G12, G122 G123 v2

_it3 _G131 G132 G133_ _v3_

The matrix

C1, C,2 C13

C2, C22 C23

_C31 C32 C33-

has order n1 + n2 + n3 and rank no greater than n1 + n2. The n3
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linearly dependent rows and columns can be deleted from equation (5)
by adding selected rows in the section n1 and n2 to rows in the range n3.
The selection is made as follows: starting with any row in the section n3,
examine the first entry. If it is nonzero add row 1 to this row. Continue
along the row, repeating if necessary, until all the entries are zero.
Proceed for the other dependent rows. Equation (5) can then be written
as

C11 C12 C13

_C21 C22 C23_

and

N:r2 =

itl

it2_

G111 G112 G11:

G121 G122 G123_

vl

v2 (6)

v3 = - [G131GIL] rv11 (7)

Lv2

It is a simple process for the reader to prove to himself that elimi-
nating a node of a floating capacitor subgraph which is part of a
GCSET as described above yields the same result as equating the alge-
braic sum of the voltages across the capacitors in the GCSET to zero
(analogous to the algebraic sum of the currents entering the inductor
cut -set node through the inductors adding up to zero).

Substituting equation (7) and its derivative into equation (6) we
obtain

C2121 G2121[C2,, [V1 [ipli [G211 [v1
(8)

C221 C222 t2_ ip2 G221 G222 v2_

The total number of restrictions have not yet been placed on the
network.

(i) For a DVS imbedded in a capacitor chain or a CDVSC free of capaci-
tors on one node connected between nodes k and 1, where node k is
specified in section n2,

or

Vk = V1 7Vj

Vk = VI ± Uti

where v; is the set of voltages upon which the source is dependent. A
particular voltage of vi may be in any section nl, n2, n3, n4, or n5.
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(ii) For a CDCSC connected between nodes k and 1, the currents
Ik and Il injected into nodes k and 1 with the CDCSC removed must be
modified to

and

- noJl

respectively, where n has the dimensions of farads.
(iii) For a GCSET with node j of the capacitor tree containing the

GCSET specified in section n2, node j is eliminated as follows: examine the
entries of row j of the remaining capacitance matrix. If entry C1,1 0,

subtract C, ,1 times row 1 from row j, where 1 = 1, p; p is the order of
n1 + n2. Thus row j is reduced to a row of zeros.

The system can now be written as

[C]irl = iF1 - [G]v1. (9)

Barring degeneracy, matrix C is nonsingular with rank nl.

APPENDIX C

Example of the Method

For the circuit of Fig. 3 (the example of C. Pottle), nodes 1, 2, and 3
are placed in the n1 section, and node 4 is placed in the n5 section. Thus,
by inspection

C, + C., 0 0 - 2),) - 2G2(v2 - v1)

0 C2 0 0 b2 0

0 0 C, 0 b3 0

- -C4 0 0 C4 - -
G2 + G3 -G2 -G3 0 v,

-G2 G, + G2 0 -G1 v2

-G3 0 G3 G4 0 v3

0 -G, 0 G,

where

v4= E; 2)4 = E.
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G3

2c44,,÷
2

2 G4 (V2 )

Fig. 3 - Example of Appendix C.

C3 G4

The derivative of the source E must be considered if a capacitor is
connected to both of its nodes. Clearing out the voltage terms in the
current array,

C, - C, 0 0 (J,

0 C2 0 0

0 0 C3 0

-C, 0 0 C,_ _v4_

0 G3 - G, G2 -G, 0

0 I -G, G, + G, 0 -G, V2

0 -G, 0 G3 + G2 0 V3

_/, 0 -Gi 0 G, _
-v4-

Eliminating v4 and /54 as described in Appendix B,

C, C.,

o

0

2C.,

C2

0

0

0

C3_

v,

1'12

-C.,E

G1E

0

G3 a,
-G,
-G,

a,
G, + G,

0

- 13

0

G:, GI, V3

This is as far as we can go symbolically and as far as the method
takes us. Normally all that remains is a simple inversion of the re-
maining capacitance matrix, but Pottle chose Cl = C4. This makes
the capacitance matrix singular and so another node must be elimi-
nated. Eliminating node 1,- -

C'2
2C,C,

G3 - G2

2 C4G3
C3 b,-G2-

.1)2 G,E + , ,a, E
3 3

C101 E
_ 3 -G -
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G: G2G,
v2+ G2 + G, - G2 G3 G2

G2G ,
G, 4- G4

G2,
v2

G 3 G2 t..1 2

The vector

[2)21

V3

can now be expressed explicitly.
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Uniform Asymptotic Expansions for Saddle
Point Integrals Application to a
Probability Distribution Occurring

in Noise Theory

By STEPHEN 0. RICE
(Manuscript received June 5, 196S)

The noncentral chi-square distribution occurs in noise interference
problems. When the number of degrees of freedom becomes large, the middle
portion of the distribution is given by the central limit theorem, and the tails
by a classical saddle point expansion. Here recent work by N. Bleistein and
F. Ursell on "uniform" asymptotic expansions is combined and extended
to obtain an asymptotic series which apparently holds over the entire range
of the distribution. General methods for expanding saddle point integrals in
uniform asymptotic series are discussed. Recurrence relations are given for
the coefficients in two typical cases, (i) when there are two saddle points and
(ii) when there is only one saddle point but it lies near a pole or a branch
point.

I. INTRODUCTION

This paper deals with the problem of obtaining asymptotic series
for the complex integral

J = t''-'g(t) exp [xh(t)] dt (1)

when x becomes large. Problems of this sort are quite often encoun-
tered in applied mathematics, particularly in wave propagation. The
material presented here grew out of some recent work by G. H. Rob-
ertson'. on the "Marcum Q -Function." This function, which appears
in the study of radar interference, gives the distribution of the random
variable (noncentral x2)

Z (1/x) E y2

.

n=1

1971

(2)
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Here x is a positive integer and yi , y2, . . . , are independent gaus-
sian random variables with unit variances and mean values which
may be different.

Mr. Robertson has devised an algorithm for computing the Q -func-
tion which may be used for a wide range of the parameters appearing
in the function (that is, in the noncentral x2 distribution). In an
earlier paper on information theory, by working with an integral of
the type in equation (1) , I had obtained an asymptotic (for large
x) expression for the tails of the distribution.2 However, comparison
with results obtained by Robertson showed that my expression failed
badly in the central part of the distribution where the central limit
theorem holds.

The need for an asymptotic expansion which holds uniformly over
the entire range of the distribution led to a study of the recent work
on "uniform" asymptotic expansions of integrals. The first part of
this paper is an exposition, plus extensions and generalizations, of
some of the procedures which have been used to obtain uniform
asymptotic expansions of integrals of the type in equation (1) . The
theory is then applied to the noncentral x2 distribution.

Two procedures are considered. For convenience, we call them the
"Bleistein method"3 and the "Ursell method."4 Although these names
are among the best that suggest themselves, they are not entirely
satisfactory because they contain no hint of the earlier work by
others, especially Olver, Chester, Friedman, and Urse11.3. Here we
have recast the underlying ideas used by Bleistein and Ursell into
forms better suited to our purpose.

Both methods lead to the same asymptotic series. The Bleistein
method gives a compact expression for the coefficients in the expan-
sion. However, from the few examples that have been studied, it
appears that the labor required to reduce this compact expression to
a computable form is at least as great as that required by the Ursell
method.

Section III and Appendices A, B, and C are concerned with a prelimi-
nary change of variable in the integral J. The case, denoted by "X = 1"
for brevity, in which the exponent X is a positive integer, is discussed in
Sections IV, V and VI. This material is applied to the problem of two
saddle points in Appendix E. The case in which X is general, denoted
briefly by "X 1," is discussed in Sections VII, VIII, and IX, and in the
examples in Appendices F, G, and H. The results of Section IX are ap-
plied in section X to obtain the desired type of expansion for the non -
central x2 distribution. Useful results regarding classical saddle point
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expansions are stated in Appendix D. Some of the results given in
Appendix F for the general case of a saddle point near a branch point are
applied in Appendix G to obtain an asymptotic series for the Poisson-
Charlier polynomial, a polynomial of interest in traffic theory.

II. STATEMENT OF PROBLEM

The general problem is to obtain an asymptotic series for the inte-
gral J defined by equation (1) when x becomes large and most of the
contribution to J arises from a (rather loosely defined) "critical re-
gion" around t = 0. The path of integration L' is supposed to start
and end at I tl = co in "valleys" in the complex t -plane where
exp[sh(t) -> 0 as It! -> co. Let the starting and ending valleys be
denoted by S and E, respectively. The path L' starts in S, climbs up
to and passes through the critical region, and then descends down
into E.

The functions h(t) and g(t) are analytic in the critical region;
and one or more saddle points, that is, points where h'(t) = dh(t)/dt
vanishes, lie in the critical region. We assume h(0) = 0 and that x is
real and positive. If x were complex, the factor exp(i arg x) could be
included in h (t) .

The path L' may be deformed into a path D consisting of (i) paths
of steepest descent which pass through some or all of the saddle
points plus possibly (ii) loops around branch cuts and poles. The
path D is independent of x. When x is extremely large, all but a
negligible part of J arises from contributions of very small portions
of D. If t = 0 is a singularity, one portion may lie close to t = 0.
Another portion is centered on the highest (that is, largest exp[xh(t)])
saddle point. If the two highest saddle points are of the same height,
a portion is centered on each, and so on. Thus when x is extremely
large, the asymptotic series for J may be obtained by the classical
or "usual" saddle point method.

However, we may wish to compute J for values of x which, though
large, are not large enough to allow J to be evaluated by the classical
saddle point method. For such x's the highest saddle points and the
singularity (for X 1) at t = 0 cannot be treated separately, that is, their
interaction must be taken into account. If other saddle points of lesser
height lie in the critical region, they must also be considered. This is the
range of x of interest here. Our problem is to obtain the appropriate
expansion of J in descending powers of x. The type of expansion we seek
is shown in equation (46) for J.
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This type and the type shown in equation (15) have occurred in
earlier publications3-0 and have been called "uniform" asymptotic
expansions because they hold uniformly as a saddle point approaches
a singularity or another saddle point.

III. CHANGE OF VARIABLE

In Appendix A it is shown that, in the critical region, h(t) behaves
much like a polynomial of degree + 1 in t. Here p, is the number of
saddle points in the critical region. This suggests changing the variable
of integration from t to v where

F(v) = h(t) (3)

and F(v) is a polynomial of degree µ + 1 in v. When F(v) is known,
solving (3) for v as a function of t gives + 1 branches. The branch
chosen for the change of variable is the one for which dt/dv c through-
out the critical region, c being a constant. That one and only one of the

+ 1 branches has this property is rendered plausible by the discussion
in Appendix A.

Fortunately we do not have to solve equation (3) to obtain the
asymptotic series we desire. However, for some steps we do need the
values of dt/dv and higher derivatives at the saddle points. These
may be obtained by repeated differentiation of (3) .

F(v) is not uniquely determined by h(t). The factors which influ-
ence its choice are reviewed in Appendix B.

The change of variable from t to v carries the integral (1) for J into

where

J = f vx- f (v) exp [xF (v)] dv

f(v) = g(t) (t/v)''-1t"), t") = dt/dv.

(4)

(5)

The path of integration L starts in the v -plane valley corresponding
to valley S in the t -plane, passes through the critical region surround-
ing v = 0, then descends into the v -plane valley corresponding to
valley E.

IV. THE BLEISTEIN METHOD FOR A = 1

For the case A = 1, the integral J becomes
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I = f g(t) exp [xh(1)] dt = f(v) exp [xF(v)] dv,
r,

f(v) = g(t) dt= g(t)t")

(6)

The Bleistein method begins by constructing a polynomial P0 (v) of

degree /.4 - 1 such that Po (vr) = f (v r) , r = 1, 2, . . , p. where v1,

. . . , v, are the zeros, assumed simple, of F' (v). By Lagrange's inter-
polation formula,

f (v ) F ' (v)

P4) = -rvr)F"(v.-)
(7)

where the primes denote derivatives. The polynomial may be written as

f f(r)P(v) 1 f [F,(0 -
P0(v) f (v)

1

- (0 2.7,1: J") - v)F Q.)
(8)

1

27ri
f i(09(),

where Q(C, v) is a polynomial in v of degree - 1,

F,(0-
v

-
,(v)- (9)

and f (v) has been added to remove the contribution of the pole at
= v. The path C is taken in the counter -clockwise sense and encloses
= v and the zeros of F' (t) but no singularities of f (t).
The expression for f (v) obtained from (8) gives

I = f dv f(v) exp [xF(v)]

- OF'(v)(t)
f(r)F'

= dv Po(v) exp [xF(v)] fdv exp [xr kv)i
L,

(10)

In order to simplify interchanging the order of integration in the
double integral, we cut off the tails of L in the usual fashion. The
error introduced by truncation is exponentially small compared with
the terms that remain. Deforming C so that it encloses the truncated
L (in the sense that it encloses the point t = v for all v's on the trun-
cated L), interchanging the order of integration, integrating by parts
with respect to v, neglecting the contributions from the integrated
portions at the ends of L, and reverting to the original order of inte-
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gration carries (10) into

f dv f(v) exp [xF(v)] = f dv Po(v) exp [xF(v)]
L

r i-± -1
1,

dv exp [xF(v)]
d f(i)(- 1)

02X

Incidentally, if the contributions from the ends (say at a and b)
of the truncated L were not neglected, the right side of (11) would
contain the additional term

[NO - Po(v)] exp [xF(O]lb
xF'(v)

The procedure used to establish (11) can be used to show that,
for any function fn (C) analytic inside C, we have

fLdv f(v) exp [xF(v)]

= f dv Pn(v) exp [xF(v)] x fL dv f+1(v) exp [xF(v)] (12)

where

1

f
f(b(-1)

in+°) = 271, 111'(0Q- - v)2

Pn(v)
mi.)[QA;))1

Setting to (t) = f (C) and using (12) repeatedly gives

I = E x-" dv P(v) exp [xF(v)] RN
n = 0 L

f dv f exp [xF(v)]

(13)

(14)

Since Q(t, v) is a polynomial of degree p, - 1 in v, the same is true
of Pn(v) and we write

µ-I

Pn(v) = E pniv', n = 0, 1, 2,
1

µ-1

I= E uz(x) E p,x-n + RN
= 0 n=0

(15)
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where

Ui(x) = f exp [xF(v)] dv, 1 = 0, 1, - , µ - 1. .(16)

The series (15) is the type of expansion we seek. It would he desir-
able to have close inequalities for RN, but none are available at the
present time.

Another expression for P,,(v) may be obtained from (13):

1 r (1?- Q(1', v) 1 f dz f_,(z)(-12)
1'(v)27ri FV) 27ri F'(z)(z -

1 a Q(z,v]
= (lz f,(z)[r(z)

az F'(z))
(17)

27r,

1 al Q(r,v)
27ri= J 1(4

1

F/(i") n r(?)
In the first line C, must enclose the point z = in the z -plane in addi-
tion to the zeros of F' (z). Hence initially Cz encloses C. When the
order of integration is interchanged, the only singularity of the inte-
grand in the c -plane lying outside C is the double pole at C = z. Ex-
pand C until it consists of a circle of infinite radius at co plus a nega-
tive loop around t = z. The contribution of the infinite circle vanishes
because the integrand is a rational function of of 0(C-3) at oo . The
contribution of the pole at C = z gives the derivative.

Notice that the coefficients ma in (15) are independent of the path
L in the v -plane.

The procedure used to obtain the integral (17) for P, (v) may also
be used to show that

1
PI

f ,,(v) = 2-I d f(0(-1)
[_

-7ri c

When A = 1 and F(v) = v2, the polynomial P(v) reduces to
( -1)nf"' (0)/(4"n!) and f+1(v) is equal to [fn(v) --vg(v) - in(0)1/(2v2).

(18)

V. COMPUTATION OF Pi,(v), A = 1: BLEISTEIN METHOD

We shall regard the functions U1 (x) in the series (15) for I as tabu-
lated or easily computed. For example, when p, = 2 the functions
U0(x) and U1 (x) may be expressed in terms of Airy functions. Then
the most difficult step in applying the series is the calculation of the
coefficients pnz, / = 0, 1, . . . , p. - 1, of the polynomial Pn(v). We
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desire an expression for in terms of the values of the functions
g (t) , h (t) and their derivatives at the saddle points t = t,., r = 1, 2,

, /4.
Let t = t (v) denote the change of variable from t to v, and let the

saddle point v = yr in the v -plane [F' (v,.) = 0] correspond to t,. in the
t -plane: t,. = t (v r) . We shall use the notation

14n) = [(di)n g PItYg tr

nt;") = [M t(v)]
dv

r
D= Drr

1, 2, ,

(19)

When convenient, we shall write hr for V) = h(t,.) and g,. for g,.(°) = g(tr) 
First consider the expression (7) for Po (v). As shown in Appendix

B, F (v) is a polynomial of degree /./. + 1,

p+1

F(v) E A iv'
=0

(20)

whose coefficients may be expressed as functions of the hr's. When
this equation for F (v) is used in (7) , the coefficient of v1 in the result-
ing expression for Po (v) gives

Poi = , 1 = 0, 1, , A - 1. (21)
(-1+2 r Fi (V r)

Multiplying the right side of (21) by -1 and changing the limits
of summarion for j from 1 + 2, p, + 1 to 1, 1 + 1 gives another ex-
pression for poi.

Since f(v) = g(t)t(1) , we also need an expression for trm in terms of g(t)
and h(t) . Differentiating F(v) = h(t) twice with respect to v and using
It;,1) = 0 leads to

f(v,.) = g , t;.]) = [F"(vr)/h,n1. (22)

The sign of the square root is chosen to agree with the constant c in t cv,

the form assumed by the change of variable throughout the critical
region.

Since the Ai's and vr's may be expressed in terms of the hr's, equa-
tions (21) and (22) show that poi depends only on the hr's, gr's and
hroPs.

When n is general, an expression for pni similar to (21) for poi may
be obtained by expanding the derivative in the integral (17) for P. (v)
in partial factions and then using the Cauchy integral theorem. For
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n = 1 it is found that
$4+1

P11 E jA1 E E' 17"(va)F"(vr)r..1 41..1i..14 2

UT
-2-1[L 1(vr) -

2
r(vr) + i"(4) ]

(23)(v.
- Vr) vs vr 2

where the prime on E' denotes that the term for s = r is omitted. The
primes on f (v) and F(v) denote derivatives with respect to v.

The expression obtained for P(v) is of the form

2n+1

Pn(V) = E a`;`).it(--"(vr)/(m - 1)!
r--1 m=1

(24)

where cy?!,) is a polynomial in v. Recurrence relations for the a's may be
obtained with the help of the partial fraction expansion

(g- -vr)-
r(r)

(v, - [ 1 it' (v. -vr)Q
(25)

F"(v.) - vs - vrY+1

The relation E'll/F"(p)] = - 1/1?"(vr) can be used to simplify the
coefficient of (t - vr)'

The nith derivative of f (v) evaluated at v,.,

fon)(vr) E dvr U 1
=t,

(26)

contains derivatives of t(v). They may be obtained by extending the
method used to get trw. Straightforward differentiation of F(v) = h(t)
with respect to v leads to

,(2) 1
341)/42)

1!.3) - 1 [F' - 611(3)1(2)10)2 - h(4) to)4 3h(2) t(2)2ir
4t!1,142)

where the nth derivative F(") of F(v) is evaluated at vr and 11(n),
V") are evaluated at tr.

The values of tu+1) for larger j's may be obtained with the help
of equation (94) , namely

[F(3) h

F(n) E
k -1

(27)

(28)

where c.,1 = 0"), end, = t(1)" and the remaining c's are given by the
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recurrence relation (96) . Setting k = 1 in (96) gives

n -2
c = nt(n- - 1) ft-tit)t in)

rt 2 "t") E t( (

= 2

(29)

for n > 3, the last summation being omitted when n = 3. The term in (28)
for k = 1 vanishes when v = v,., t = tr. Substituting for c,2 its value
given by (29) and solving for tc"-1) leads to the desired result when n > 3:

1 n - 1en -1) n) E h(k)cn,k h (2) E )(.--)0,01 (30)
ntru)hr.(..) v[ -

k =3 m=2 M

The value of Fo (v) is zero for n > 1.

VI. COMPUTATION OF P (v) , A = 1: URSELL METHOD

The Ursell method avoids the evaluation of the derivatives of f (v)
which appear in equation (24) for P (v). Instead, it makes use of
classical saddle point expansions about the individual saddle points
in the t and v planes.

Let µ different paths of integration, LI, L2, . . . , be chosen in (6)
such that the chief contributions (as x co) along the paths correspond-
ing to r, namely L,.' in the t -plane and its mate 1r in the v -plane, occur at
the saddle points t = t,. and v = vr , respectively. Let the classical
asymptotic expansions around tr and v,. be

Ir = g(t) exp [xh(t)] dt ti exp [xh(t,.)] E «,.x-"-1 (31)
.L,, n -O

[Ui(x)],. = f v1 exp [xF(v)] dv exp [xF(v,.)] E . (32)
L, ns..0

Using h(t,) = F(v,.), substituting (31) and (32) in the uniform asymp-
totic expansion (15) with N = co, and equating coefficients of x-"-1 gives

n

arn = E E 13rimPn-m,1
1=0 m=0

A-1 A-1 n

= E 10Pn1 E E
i.0 =0 m=1

(33)

where the second sum in the last line is omitted when n = 0. The
expression (17) for Pn(v) shows that Pn(v) remains the same, irrespective
of the path of integration L, as long as f(v) and F(v), that is, g(t) and h(t),
remain the same. Hence, for n = 0 and r = 1, 2, . . . , p, (33) furnishes p,
simultaneous linear equations which may be solved for poi, 1 =
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0, 1, , /.1 - 1. Similarly when n = 1, (33) determines the pit's, and so
on. It turns out (see equation 39) that #rto = Prifiron . This allows us to
write the simultaneous equations in the form

P0(t)r) = aro/ 0,00 r = 1, 2, ,

P(v) - 7-
NrOU

MV'-1 (Or ni)
Ez_, Pn- , I

=1 1=0 I'r00

(34)

Expressions for cr,. and prim may be obtained from the classical
saddle point asymptotic expansion (103) given in Appendix D. Chang-
ing n to j in order to agree with the notation of Appendix D gives

_2 /4- 1 2i ,,(21-n) n

- E Wr b
ani (7r)' Fr( -7 n=0 (2/ ) -0

where h("), g,.(n) are the derivatives defined in equations (19), and
(x)0 = 1, (x) = x(x + 1) . . . (x + n - 1). The burn's are computed from
the recurrence relation (100), namely

/1 - rit +

b + .714.1 = n /E-1

starting with boo = 1 and using

kak bm ,n- k 1-

2h (k+2)
ak = - = 1, 2, (36)(k ± 2) !

The value of arg - 2//t,,(2) ]1 is equal to arg (t - tr) on the portion of /4.
(deformed into a path of steepest descent through tr) leaving tr.

Similarly,

Nrlj = (701[F(r22,1
n=0 (2j - n)! E b,(D,-, (37)

where now the b,'s are computed from (100) with

-2./i'+2) (d Y'ro, ,ak =
(k ± 2) ! .172' ' firn) [Vt.') 1. `2)) = I, r

Setting j = 0 in (35) and (37) gives

an,= (70' F-57]
,

Ort,) = (7)1pr271

po(ivr)arU
=

Wr

t(r1)(7()) = Ayr)

Or00 h

where Cr" and f(vr) are the same as in equation (22). The relation

(38)

(39)
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Po(v,.) = f(v,.) is the starting point for the Lagrange interpolation formula
(7) in the Bleistein method.

Setting n = 1 in (34) and j = 1 in (35) and (37) leads to

a '1
-131(vr) = P "r-,00 t=0 r -r00

arl -2t(1) g(2) g(1),(3) r_h(4) 5h(3)2

i3r00 L h(r2) J1 4 4h(2) g 1_16h") ± 48h(2)2
(40)]

ort, -2-111(1 - 1) lv'F(3) iF-F") 5F(3"
F,2'it 4 v 4r2) v L16F(2) 48P2)2 jj13r00

where the subscript r on the braces indicates that the enclosed g's,
h's, v's, F's have the subscript r.

VII. THE BLEISTEIN METHOD FOR X 1

Here we deal with

J = fLt''-1g(t) exp [xh(t)] dt = f v7-1f(v) exp [xF(v)] dv
, (41)

f(v) = g(t)(t/v)x-1t(1) , = dt/dv.

The origin is now a singularity, and its vicinity may contribute to J just
as the vicinities of the saddle points do. Accordingly, we now require that
the polynomial Po(v) be such that P0(0) = f(0) in addition to Po(vr) =
f(vr), r = 1, 2, . . . , µ. Assume for the moment that F'(0) 5 0,that is,
that the origin is not a saddle point. Starting with Lagrange's interpola-
tion formula and proceeding as in Section IV gives

f (0)01' (v) f(vr)vF'(v)
P 0(v) -

vF'(0) , (v - vr)vrinv,.)

+ 1 f f WvF' (v) d?-
f (v) 27ri J, -

1 f(04Q(i-, v)
2,ri J c a?' (0

' a.) - (v)
(2(?", v) - - v

where C encloses C = v, C = 0, C = v,., r = 1, 2, . . . , p, but no singu-
larities of f (t) . Here P0 (v) and Q (C, v) are polynomials of degree
p, instead of - 1.

(42)



SADDLE POINT INTEGRALS 1983

When the origin is a saddle point, Po(v) is still given by the expressions
in (42) which contain integrals. In fact, we have P,;(0) = AO) (with
primes denoting derivatives) in addition to Po(0) = f(0).

Much as in Section IV, we obtain

IL
dv fn(v) exp [xF(v)]

= dv P(v) exp [xF(v)] + 1 f dv f,,,(v) exp [xF(v)] (43)
L x L

where fo(v) = f (v) and

r dr grx-1) - +
f -+"v) = J t-F'co - 02 '

\ 1 f f(tyjci -,
P" v1 Jc rfiv(r)

Equations (43) and (44) lead to the desired series for J:

J = E x -n f dv P(v) exp [xF(v)] + RN
L

(44)

(45)

RN = vx-i fN.,(v) exp [xF(v)] dv.

When Po (v) is written out we get

P(v) = ANN' , n = 0, 1, 2,

J = E NV i(x) EPnIX-r" N (46)
1-0 o -o

Vi(x) = f vi+x-1 exp [xF(v)] dv, 1 = 0, 1, 2, , A.

Furthermore, the recurrence relation (44) for fo (v) leads to

1 f fn -,(r) [,), a rvr,v)i
2ri rp--(r) 3 a r r(r) j
2Til L mei 1 a 1 Qcr, or -3

r(r) al
xv + v)t-'1 a Ir -= fc dr f(r)(-1)e 1L

n (X
F,(r) _ v) F (r)

(47)
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When A. = 1 the formulas of this section do not reduce to those of
Section IV since they contain the additional condition P (0) = f (0) .
However, (46) gives the same series for J as (14) does for I because
Try (x) can now be expressed as a linear combination of Vo (x) , . . . ,

(x) [which become U0(x), , (x) ] .

The only singularities enclosed by C in the integral (47) for P0 (v)
are poles at t = 0 and at t = yr, r = 1, 2, . . . , p.. Evaluating the
integral by Cauchy's theorem gives the coefficients in P (v) as the
sum of derivatives of f (v) at v = 0 and at v = Vr. The derivatives
at the saddle points may be obtained by differentiating

In f (v) = In g(t) (X - 1) Inv In t11) (48)

with respect to v and using the expressions for t,.(n) developed in Section V.
The derivatives f (n) (0) may be computed with the help of the series

2

t/V = to(2)V
3! (.1)(2)

i(3)
(+

(49)

where gn) denotes the nth derivative of t with respect to v at v = 0. The
W''s may be obtained by differentiating F (v) = h(t) repeatedly with
respect to v and then setting v = 0. If F'(0) 0,

F,;')
=(1) 7(1)

(50)
Fy((:)2) h(2)t,:()1)2

hPl)

where the subscript 0 refers to t = 0 when it is on h and to v = 0
when it is on F. Higher order derivatives may be computed by using
the results of Appendix C in much the same way as in Section V.

It may be verified that

1(0) = g,;°)tV)x (51)

f")(0) = tt(,1"1,,T ± (X -I- 1) g,;°) t2).1

2 t,;" j
where g((,n) is the nth derivative of g(t) with respect to t evaluated at t = 0.

VIII. THE URSELL METHOD FOR X 1

When the origin is not a saddle point, the p, + 1 linear equations
to be solved for the coefficients pni, 1 = 0, 1, . . . , p. in P(v) turn out
to be



Pn(vr) = Ra"
r4'r00
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-
- Nr00 "

E (#0,m)p
pn. = n-g

N000000 1 1+ in 000

r = 1, 2, , µ (52)

(53)

where the summations are omitted when n = 0. The summation condi-
tion / m = q in (53) is also subject to 0 < 1 A, 0 5 m S oo .

Equations (52) are given by the analysis of Section VI for the
case = 1 when g (t) is replaced by to -'g (t) , vt by -W-Fx-1, Jr by Jr
and U1 (x) by Vi(s). The a's and /3's in the rth equation of (52) are
the coefficients in the classical saddle point expansions about tr and vr:

Jr= f tx-ig(t) exp [xh(t)] Cat exp [xh(tr)] E «x -n-4

[Vi(x)],. = v`+x-I exp [xF(v)] dv exp [xF(v,.)] E
Lr

(54)

The a,i in (52) (with j for n) is given by equation (35) for a,1 with
gr"i-n) replaced by 0(2'-n) where

41' (t trr ,(71)= tx-'g(t) =
n!

(55)
n

= e E (,:),!n-k)(-1)'(1 -
P km0 16

The Ali in (52) is given by equation (37) for /30., with 1 replaced by
/ + A - 1 on the right side.

Equation (53) arises from a consideration of the region around the
singularity at the origin. As described in connection with equation (106)
in Appendix D, let Lo be a loop enclosing the branch cut running out
from t = 0, and let Lo be its mate in the v -plane. Then, as x co, the
a's and /3's in (53) are defined by

J0 = f to-Ig(t) exp [111(t)] ( E n-1'
I. 11 n=0

[Vi(x)]0 = vi+x-1 exp [XF (0] dv E#0,,x-m-1-,
fL0

ry
,n-0

(56)

Substituting (56) in the uniform asymptotic expansion for Jo given
by (46) and equating coefficients of x -n -x gives (53).

Using the asymptotic series (106) to determine ao and /3,.,,,, leads to
i n

1

aoi 1) x
o (1) b (X) ,

P000 0 n

(57)
70 (i - n)!
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where the subscript 0 refers to the origin and b, is computed from
(100) with ak, given by

ak -hok+1)/[(k 1)! g1)]. (58)

The value of t(;" is the value of dt/dv at v = 0 determined by the change
of variable from t to v. Similarly,

Owl = bmi(X)m+1+i
13000 V,`," m -o

where, replacing j by n, b, is computed from (100) with

a,, = -FOk.") /[(k 1)! Fn, k 1. (60)

In Appendix 1 the theory which has just been developed is applied to
the case of one saddle point (A = 1, X 1).

So far in this section it has been assumed that the origin is not a saddle
point. Now let the mth saddle point coincide with the origin so that F;"
and 14," vanish. The µ + 1 equations determining p,, 1 = 0, 1, . . . ,

are now

P(vr) = am-
(#rim)P n- Ill . t r = 1, 2, , µ - 1 (61)

13r00 Ill = 1 1 = 0 Nr00

a0 ,2n E E 130,m) (62)
/3000 Q=1 tn+ / =2a $000

1
[ao

n

Pnl =
polo

2n+1
'

/3001Pn0
Q-1

(59)

E #01mPn-12.11 (63)
m+1=24+1

where the summations are omitted when n = 0. The values of 1 and m
occurring in the inner summations in (62) and (63) must also satisfy
0 LC. 1 d0<m< co.

Equations (61) are the same as (52) except that r runs from 1 to
- 1 instead of from 1 to 41.L. The a's and g's in (62) and (63) are the

coefficients in the asymptotic expansions

Jo = tx-lg(t) exp [xh(t)] dt E aoix-"+X) /2
0

[V1(x)]o = exp [xF(v)] dv E 1301mX
LO m-0

-(m+1+X)/2

(64)

where, as discussed in connection with equation (109), the paths 4, Lo
coincide with the paths of steepest descent through t = 0, v = 0 except
for indentations at those points.
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Equation (62) is obtained by substituting (64) in the uniform asymp-
totic series for Jo given by (46) and equating coefficients of a:-(2n+X)/2.

Equating coefficients of x -(2n+1+ X)/ 2 gives equation (63).
Some results for the case of two saddle points, one of which is at

the origin, are stated in Appendix H.

IX. SIMPLE POLE AT THE ORIGIN

When there is a simple pole at t = 0 and one saddle point in the
critical region, a case discussed briefly by Bleistein,3 we have

J = t-' exp [xh(t)] dt. (65)

In the critical region, L' is assumed to coincide with the linear path
running from a - ioo to a + , a > 0.

Let h(t) be real when t is real and in the critical region. Let the saddle
point t1 lie on the real axis. As usual, h. = 0, = 0; and we assume
h1 5 0, > 0. As suggested by example (i) of Appendix 3, we choose

F(v) = v2 - 2v,v, v2 = -h1

where v1 is real. We write

, \I= (-h1)1 0
ti I

in order to make v1 and t have the same sign.
Equation (46) shows that the uniform asymptotic expansion for

J has the form
co cc

vo(x) E + i(x) E Aux-- (66)
n.0

where, with L parallel to, and to the right of, the imaginary v -axis,

V (x)= f exp [xF(v)] dv = - erf (vix,4)]
b

V,(x) = exp [xF(v)] dv = i(ir/x)4 exp (-xv21)
L

2 2

erf (z) = 7f1 f exp ( t2) d t.

Putting A = 0 in the integral (47) for P (v) gives

Pn(v) = pno pniv
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1 r f(?*) ( 1 a yir + v - vi)
27i J, - v, - v,

f(v) = vt")/ t, t") = dt/dv

where C encloses C = 0 and C = v1 but no singularities of f (t). Setting
v = 0 in (67) gives

(67)

P0(0) = Poo = f(0) = 1,

P.(0) = pno = 0, n > 0.

Here the series (49) for t/v has been used to show that f (0) = 1.

Therefore the series for J reduces to
CO

J ti ir(1 - erf [v,A I + i(r/x)/ exp (-xv2,) E pnix-n. (68)

Setting v = v1 in (67) gives

Poi = WV' = ti - ;;1-

1 r f(i-) ( 1 a )n(
Pni = 27ri 28v1" - v1 - n > 0.

(69)

From (22) and F"(v) = 2 it follows that tl" = [2/14211. The integral
for p, may be evaluated in terms of the 2nth derivative of f(v)/v =
t(1)/t = (d/dv) In t(v). Thus, writing t'/(r - v,) as 1 ± v1Q" - v1)-1
and using

( a y
v1)-1 = 1r1 .3 (2n - 1)a- - 991)-2"-', > 0

- v,

leads to

lra) {Vr+1 dr t")1
- 1pni - v

2n+1 (2n) ! L\dvi t

The first of the pi's required in the series (68) for J is given by
equation (69) for poi. The remaining ones may be obtained by using
the Ursell method equation (52). Since poo = 1 and po = 0 for n > 0,

equation (52) gives for n > 0

1
pnl -

V

[
aln OlOn E oiimpn_m.,1 (70)

1Pa100 111.'1
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From equation (55), 0(t) = and its nth derivative at t1 is el'
(-1)nniti-n-1. Replacing g by 0 in (35) leads to

aii = (r)'[-='/L2) E -(-1)nt1-2i+n-1 E bmn(1)1 .+i

where arg [-2/14211 = 7/2 and the b,'s are computed from (100) with
_2/11k+2)/[(k 2)! /421, k 1, 2, (71)

Equation (54) shows that the
,

s are the coefficients in the asymp-
totic expansion of [V1(x) that is, in the asymptotic expansion of an
integral, which has the same integrand as V 1(x) , taken along the
path of steepest descent through the saddle point v = v1. Instead of
obtaining the /3's by the general procedure outlined in Section VIII,
we notice that the "asymptotic" series for V1 (x) consists of only one
term. Consequently /311,,, is 0 when m > 0 and the summation in
equation (70) for pn/ disappears. Moreover, the asymptotic series for
the error function gives, when v1 > 0,

CO

Vo(x) i(7r)1 exp (-xv2,) E (-1)-(1),(xv20---i.
na = 0

When v1 > 0 and x --> oo , Vo(x) is given asymptotically by the con-
tribution from v1. When v1 < 0, the asymptotic expression for Vo(x)
contains the constant term 27i, but the contribution from a path of
steepest descent through v1 is still given by the same expression as
for positive v1. Hence, irrespective of the sign of v1,

010. = i(1r)(-1)In(2),v12m-1

These results enable us to write equation (70) (with j for n) as

(-1y(1), {[r it (I)21+1 21

tn 0Pi' vij +1
E (-11)ft E bmn(j - 1} (72)

for j > 0. Here, to repeat,

I

"
3

( 1)(_hi); 1(1) .1.1
= I t1 I[

-2/11i
1 i V)

(73)
(c)0 = 1, (On = c(c + 1) (c n - 1)

and the bin's are computed in succession from equation (100) with
ak given by (71).
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The first two pi's are

1 v t11)
Poi = - -

v, t,
[i .,1

1 11-vIt;"13
2/4 ti

ti(a2 -1-e-c4)] - 1}

and the b,'s for mil may he read from the table in Appendix D.
When I ti I

is small, the expressions which have been given for N1 are
essentially small differences between large numbers. If the calculation is

being performed on a digital computer it may be advisable to use double
precision. Expanding h(t) about t = t, and then setting t = 0 leads to a
series for -h, which may be used to obtain vT"-' as [t1"/t,]2' times a
power series in ti . Series of this type can be used to show that

Poi = (1-12
t,0(ti)

Pii = --111"(3a3 21a1a2 -1;1.C4) 0(t1)

where ak is given by (71).

(74)

(75)

X. THE NONCENTRAL X2 DISTRIBUTION

Let x be a positive integer and yi, y2, ... , yr be independent gaussian
random variables with unit variances and respective mean values
gi, 172, , gx . Let z be the (noncentral x2) random variable

1z = - y . (76)

It may be shown that the mean value of z is 2 = 1 r and that its
variance is (2 -I- 4r)/x where

x

r = - E ;97, .

x

Furthermore, from Ref. 2 (with a change of variable) the distribution
function of z is

Prob [0 LC. z < s] = exp [xh(t)] dt
7ri f, (77)

where e > 0 and

h(t) = [st - 1n(1 t) r(1 - r]. (78)
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The integral on the right side of (77) is seen to be equivalent to
minus Marcum's Q -function (and also to an expression given by
R. A. Fisher) when (77) is written as

Prob [0 z
2

s] = (z/r)(xR)-1 exp r)/2]. (,/,),[x(reldz.
0

Here I denotes a Bessel function with imaginary argument.
We are interested in computing the distribution of z when x is large.

The equation h(1) (t) = 0 gives two saddle points. However, as pointed
out in Ref. 2, when x is large only the one at

1 + (1 ± 4rs)1ti = -1 +
2s

need be considered. The value of t1 is real and > -1. When s = 1
+ r, ti is zero; and when s increases through 1 + r, ti decreases
through 0.

From equation (68) the desired asymptotic expansion is

Prob [0 < z S s] ti1.{1 - erf [vial}

-1-(rx)-1 exp (- xv) E p ,x-" (79)
n=O

where ma is given by (72). The quantities entering po. are

vl =
tl

(-hoi, h, = h(ti) , tilt = [2 /112)]1

h`n)(t) = (-1)"(n - 1)! [nr(1 + (1 + t) n> 2
(80)

hie = r(1 2-'(1 /0-2

2(-1)A+1 [(k ± 2)r ± ± t,a, = (k + 2)(1 + t,)' 2r + 1 + 11 1' k 1.

The values of poi and pl i may he obtained from (74) by substitution
of the parameter values (80).

When s - 2 = s - 1 - r is small, the central limit theorem in the
theory of probability states that

(s - OD.Prob [0 z - + erf [(4 87,)

This agrees with the approximation given by the error function term in
(79) when it is noted that t, - (s - 1 - r)/(1 + 2r) and -
t2,//,,(2)/2 if s - 1 r is small.
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The ordinary x2 distribution is obtained by setting r = 0 in the
noncentral x2 distribution. In this case we have

1 - sti -
s

tV) =2s

v, - 1 - s - 1 - In sly,
1 1 - 1 \ 2

= -2(-s)k k 1.akk + 2 '

Equations (74) show that the first two coefficients poi,
asymptotic series (79) are now

pil

(81)

in the

2 1
Poi - 1 -

(82)

{(1 (1 -12 s)21Pll = -21 -2 s)Ts

When s is close to its average value 1, equation (75) gives

Poi = 2/3 + 0(t1) (83)

1/135 + 0(0
Setting x = 2c and r = 0 gives

Prob [0 z s]
1 " exp (-u) duf

0

(84)
(cs)" exp ( -cs)

n.1, n!

where c is assumed to be an integer (x even) in the last equation.
These relations may be combined with the foregoing formulas to
obtain asymptotic results for the incomplete gamma function and
the Poisson distribution.

There is reason to believe that the asymptotic expansion (79) for
Prob [0 < z < s] may hold over the entire range 0 < s < co . For exam-
ple, consider the ordinary (r = 0) x2 distribution. In this case the first
two terms in (79) give

Prob [0 < z < s] - erf [vix if}

+ I[rx]-1 2 -[1 -s
1-1 exp (- xv2,) (85)

vi
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where x = 2c and v1 is given by (81). Let c be held fixed at some large
value and consider further the three cases s -> 0, s -> co, and s -p 1. In
all three cases it may be verified that the leading terms in Prob
[0 <= z < s] given by (85) agree with those obtained from the exact
equations (84) and the asymptotic properties of the incomplete gamma
function. The expressions obtained from (84) are

Prob [0 5 z < s] = (27rc)-se [exp c] [1 + 0 (cs) 0 (c- 1)] , s -4 0

Prob [0 < z -5 s] = 1 - (27re)-ls-I[exp (c - cs)][l + 0(s-1) + 0 (c- -1)] ,

s -3 CO

Prob [0 < z 1] = + 3(27c)-1 s = 1.

APPENDIX A

(86)

The Behavior of h(t) in the Critical Region

In this appendix we show that, in the critical region, h(t) behaves
much like a polynomial of degree p, + 1, and we examine the change
of variable from t to v.

First write
p + 1 tihm

h(t) = E + R, (87)

where is the value of (d/dt) ih(t) at t = 0, 11,;"+" is not 0, and R p+1
is 0(t"+2).

One of the distinguishing features of a polynomial in t of degree
+ 1 is that when t is much larger than r, where Itl =r is the smallest

circle which encloses the zeros, the dominant term in the polynomial is
the one containing t'+'. The function h(t) has a corresponding property.
Suppose that the saddle points t t2, . . . , t" all lie within a distance e of
the origin, and for the moment suppose that they may be moved towards
the origin so that E may be made as small as we desire. Also suppose that
11,;"') = A + 0(E) where A 0. We shall show that by making E small
enough we may find a range p<Itl <77 throughout which

h(t) 1)! . (88)

Here n is such that when I t I and e are less than n, the remainder R , in
(87) is negligible in comparison with the (.4 1) term T"+1 = t"-"hrl) /
(.1 1)!. Once n is fixed, p may be chosen to be arbitrarily small, subject
only to p < n.

In order to show that (88) holds when p < I t I < n, notice that by



1994 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1968

repeated differentiation of the representation

(t) = (t - ti) (t - t2) . . . (t - t G(t)

it may be shown that G(0) = VA! + 0(e) and that kV is

O[e"+"14,""] for j = 1, 2, , 11. Hence when I t I > e,

til)h(E = E N,"+"] = (:)( T
.1'

Choosing p to be arbitrarily small, subject only to 0 < p < 77, and then
choosing e so that f/p << 1 establishes (88).

This property of h(t) suggests that some insight into the change of
variable from t to v, specified by F(v) = h(t), may be obtained by
considering h(t) to be a polynomial co(t) of degree + 1. Then a natural
choice of F(v) is F(v) = (p(cv b) where c and b are constants. For
simplicity we take c = 1 and b = 0 so that v,. = t,., r = 1, 2, , A

where v, is the rth saddle point on the v -plane. The equation F(v) = h(t)
goes into v(v) = v(t) which we write as

A+1

v(v) - co(t) = E A.(v' - ti)
Jal

= t)[A, A2(v t) + A ;,(1)2 t t2) + ]
= 0.

The branch used in the change of variable is

v = t (89)

for which dv/dt = 1 everywhere. The remaining A branches, which
are ignored in the change of variable, may be obtained by solving

A, + A2(v -I- A ,,+i(v" = 0 (90)

for v as a function of t. Writing (90) as

G(v, = v(v) v(i) - 0v - t
and expanding G(v, t) about v = t t = t,. shows that, near t = t one
of the remaining branches behaves like v = t,. - (t - ti). On this branch
v = t,. and dv/dt = -1 at t = t,.. Again, let v = D., s = 1, 2, . . . , A - 1,

be one of the IA - 1 roots of G(v, t,.) = 0 which is not equal to t,.. Expand-
ing G(v, t) about v = t = tr shows that near t = tr the correspond-
ing branch behaves like
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(t - tr)2,,o"(tr)v = P. +
2(p' (vs)

and that dv/dt = 0 at t = tr.
The examination of special cases suggests that there is a one-to-one

correspondence between the p. branches of (90) and the p, saddle points
in the sense that dv/dt for a particular branch is equal to -1 at its
corresponding saddle point and is zero at the other saddle points. Thus
it appears that the branch v = t [or its analogue for general h(t)]
is the only one suitable for the change of variable throughout the
entire critical region.

APPENDIX B

The Choice of F(v)
The polynomial F(v) used in changing the variable of integration

will be written as
µt1

F(v) = E Ay' . (91)
i=()

The positions t1, t2, . . . , t, of the saddle points and the associated
values h,. = h(tr) arc supposed known. We require expressions for
the Ai's which are either pure numbers or depend only on the h,.'s.
Although one or more of the zeros v1, v2, . . . , v, of F' (v) = dF(v)/dv
may appear in our final expression for F(v), they will always be ex-
pressed in terms of the hr's.

Since F(v) = h (t), we have the 2p. equations

F(v`) =h (92)
Fi(v,.) = 0, r = 1, 2, ,

relating the 211 + 2 unknowns vi, v2, . p, A0, A1, , A i.i. Con-
sequently we have at least two arbitrary choices (A = 0 is forbidden).
For the case X 1 we shall always require the change of variable to be
such that v is 0 when t = 0 and thus we take A 0 = 0. In some instances
the form of h(t) aids in the choice of the A i's. For example, when h(t) is
an even function of t, we can take F(v) to be an even function of v.

In choosing F(v) it is helpful to notice that in the critical region the
change of variable takes the form t cv, c being a constant. Conse-
quently, from (87),

p+' (cv)ih")
F(v) E (93)
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and it follows that the A zeros, v of F'(v) have nearly the same configura-
tion in the v -plane (except for a possible rotation and magnification
given by arg c and I c I , respectively) as do the zeros, t of h'(t). For the
case X = 1 there may also be a small displacement so that t cv can be

written more accurately as t cv b, or dt/dv c. Furthermore, from
(88), we can take c to be one of the roots of

= 1)!

The following examples illustrate possible choices of F(v).
(i) A = 1, X 1, t1 0. Initially there are 4 unknowns, v,, Ao, A,, A2
related by 2 equations, and F(v) given by

F(v) = A2v2 + A iv + Ao.

We take Ao = 0 (because X 1) and arbitrarily choose A2 = 1 (for
convenience). This carries the two equations into

v2i + A,vl = hi

2v1 Al = 0.

Consequently
F(v) = v2 - 2v,v v2, = -hi.

This case has been considered by Bleistein.3
(ii) = 2, A = 1. Initially there are six unknowns v1, v2, A0, A1, A2, A3

related by four equations, and F (v) given by

F(v) = A3v3 A2v2 + A iv + Ao.

We take A2 = 0 in order to simplify F'(v). The four equations become

F'(v,.) = 3A3v. + A, = 0

3F(vr) = -A iv,. + 3A iv ,. 3A0 = 3h r = 1, 2.
It follows that v2 = -v1, A0 = (h1 h2)/2, A1v1 = 3(h1 - h2)/4.

For the remaining choice we take A3 to be equal to -A1/3 and
obtain,

F(v) - h,) (v3- 3v) + 2(h2 + h,).

Another choice for A3 is -A- which gives

F(v) = - v2iv Eh, +
14 = -1(//3 - hi), v2 = -v 1

This case has been considered by Chester, Friedman and Urse11.8
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= 2, X z 1, t, $ 0, t2 = 0. Here the unknowns and F(v) are the
same as in example (ii), but because of h2 = h(0) = 0 it turns out we
have three arbitrary choices. Since X S 1 we take Ao = 0. Then both
F(v2) = h2 and F' (v2)= 0 are satisfied by choosing v2 = 0 and A1 = 0. This
leaves F(v1) = h1 and F'(v1) = 0 to be satisfied by the remaining three
unknowns v1, A2, A3. Our third choice is A3 = 2. It leads to

F(v) = 2v3 - 3r,r2, vi = -hi .

(iv) µ = 2, X 1, ti, t2, 0. This case illustrates the complication
encountered for the general case when 2. The value of Ao must be 0
and we choose A3 = 1. Then

F(v) = v3 + A 2v2 + A Iv

F (v) = 3v2 + 2 A 2v + A, .

The last equation shows that A2 = - 3 (v1 + v2)/2, Al = 3v1v2. Sub-
stituting in F (v r) = it, gives

v21(-v1 3v2)/2 = h,

0.2(-v2 3v1)/2 = h2 .

Setting a = h2/h1 and p = v2/v1 leads to

p3-3p2-f-3pa-a=0
which has the three roots

pfi = 1 + (1 - C)1[(1 - al)icon + (1 + ai)icen]

where w1 = 1, w2 = i", CO3 = i-4/3 and the star denotes "conjugate
complex." When t1 and 12 tend to zero, one of the pn's tends to 12/1i, and
this is the value of p to be used. The value of vi is equal to 2h1/(3p - 1),
and we have

A2 = -32)1(1 p)/2, Al =

(v) µ = 3. The general case of three saddle points may be handled
by a procedure similar to that used in example (iv). We do not dis-
cuss this case beyond mentioning that when we set v2 = pvi , vs = Qvl
the variable u = (p-i) (a-l) must satisfy the equation

- 2u3 2au - a = 0, a= (hi - 112)/ (hi -/13).
(vi) = 3, t3 = 0, h(t) even. Since h(t) is even we start with

F(v) = -1- A 2v2 + A0
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and find that

F(v) = v4 - 2v202 , vi =
This case has been treated by Felsen.7

APPENDIX C

Derivatives of Composite Functions

A result used in Section V to compute the nth derivative, trw , of t(v)
at v = vr is stated in this appendix. Let the argument u in h(u) be a
function t(v) of v. Then

dvKh[t(V)] = E h(k)c.,, n 1 (94)
k=1

where h(k) stands for (d/du)kh(u) evaluated at u = t(v), and the
coefficients c, k are computed from the recurrence relations

cn .1 = t(n)

m=k(MCn+1,k+1 =
1,(n+l-m)

Um,k

(95)

1 < k < n (96)

in which t(n) denotes (d/dv)nt(v) and (:) the binomial coefficient.

Equation (96) may be proved by induction. Differentiating (94) gives

(1) d
tCn+1,k+1 = Cn,k -r - en k+1

dv ' '

We assume that (96) holds when n is replaced by n-1 and use it to
express cn, k±i as a sum. Then one of the terms in the summand for
d cn,k+i/dv contains d cm, k/dv. From (97), assuming k > 1,

1 <k n - 1. (97)

,(1),
d-vcm'k

Cm+1,k vm,k-1

Equation (96), with (n-1, k -1) for (n, k), lets us sum the terms
containing t(1) cm, k-i with respect to m. Equation (96) follows upon
combining binomial coefficients and using ck, k = t(1)Ck-1, k-l

The recurrence relations may also be obtained by writing the right
side of (94) as a Bell polynomial and using the recurrence relation
for these polynomials.8 Expressions for the cn, k's (up to n = 8) as
polynomials in the t(n)'s may be obtained from Riordan's table of Bell
polynomials given on page 49 of Ref. 8.
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APPENDIX D

Formulas for Classical Saddle Point Asymptotic Expansions

A result useful in obtaining asymptotic expansions of integrals is

J.
T"-'G(T) exp [xH(r)] dr

-v. 1 (-1)(P+i)/P E (71- b,,,r(m + P 1) (98)
i-o v s1-0 n=0 m=0

where x -> cry, Re p > 0, v is a positive integer, and

G(T) = E Tnc. , H(r) = E Tn n . (99)
n=0 n=

The bmn's depend only on H (T) and are computed in succession, start-
ing with boo = 1 and bon = 0 for n > 1, from

n-m+1

bm+1,n+1 n 1
E kakb,_k+i (100)

Here ak = - 11,+k/Hp, k = 1, 2, . . . .

Special values of bmn are given in Table I.
The asymptotic expansion (98) is based upon the gamma function

integral

(-up) du = -1 rCu)
fo

exp

and the expansion

(101)

exp [y ant] = En E b,ym (102)
11=-0

The recurrence relation (100) may be obtained by differentiating
(102) with respect to e, replacing the exponential by its series, and
then equating coefficients of enym-Fl.

TABLE I - SPECIAL VALUES OF b,

n bon bin b2n ban ban bras

0 1

1 0 a1

2 0 a2 a12/2

3 0 a3 ale/2 643/6
4 0 a4 agt3 + 2-1a22 2-'a12a2 a14/24

v > 1 0 an - - - win!
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For an integral, say I,. in equation (31), having a simple saddle point
at t = tr and a path of integration L; which runs up to, through, and then
down from tr , we can use (98) with v = 2, p = 1, T = t - t,., G(T) =

T) and H(T) = h(t,. T) h(tr). The contribution of the saddle
point is obtained by deleting the terms in (98) for which j is odd,
doubling the terms for j even, and taking arg (-1/xH2)4 = arg
[-2/x11.;.2)11 to be equal to arg (t - tr) on the part of L; just leaving tr.
The result is

g(t) exp [xh(t)] dt

_2 2i ) 22

exp [xhr] E (2)xhr_n=0 (22 - n) ! 'n=0
b,,,r(m + 5 + -1) (103)

where the derivatives of g (t) , h(t) are defined in equation (19) and
b, is computed with

211,"k+2)
ak =

(k + 2) ! h;.2)
(104)

The gamma function T(m + j + 1) may be written as / (1),i.i.
For the integral Jo given by equation (56) most of the contribution

comes from the region near the branch point at t = 0. When t = 0 is not
a saddle point, there is only one path of steepest descent {for exp [xh(t)])
leaving t = 0. This path may be taken to be the branch cut in the I -plane
and the path of integration lit; for Jo may be taken to be a positive loop
enclosing the cut. Then the asymptotic series for Jo may be obtained
from (98) by setting v = 1, p = X, T = t, G(T) = g(t), H(T) = h(t) and
using in place of (101) the integral

+f,o+)
u' exp (-u) du = [1 - exp (-i2n)]11(z) 271-i exp ( - iwz)

r(1 - z)

(105)

Here arg u is 0 on the part of the path of integration leaving t = 0.
The positive real u -axis in (105) is a branch cut. The path of integra-
tion starts at u = oo on the top side of the cut, comes in along the
cut, encircles u = 0 in the positive direction, then runs out to u = + co
along the bottom side of the cut.

It is found that



SADDLE POINT INTEGRALS 2001

Jo = to-'g(t) exp [xh(t)] dt
L.,

00 ix±; i
9(iv-n)

i=o xhOl) J .=0 - n)!

b,[1 - exp (-27riX)]r(m + j)

(106)

where arg [-1/x/to")] is equal to arg t on the part of Lo leaving t = 0, and
b, is computed with

h.(k+i)

ak =
(k 1)! h,!,1)

(107)

The last relation in (105) may be used to handle the case in which
is 0 or a negative integer.

When t = 0 is a simple saddle point as well as a branch point, the
path 4; can be taken to coincide with the path of steepest descent
through t = 0 except for an indentation at t = 0. The indentation is
chosen so that a man walking in the positive direction along Lif, would
have the point t = 0 on his left. We put I) = 2, p = A, G(r) = g(t),
H(r) = h(t) in (98) and use in place of (101) the integral

u' exp ( -u2) du = 1[1 - exp ( - irz)] r(6 - exp (-irz/2)

r(i - -2z)

(108)

Here K runs from u = - 00 to u = +00 with a downward indentation
at u = 0, and arg u is 0 on the part of K leaving u = 0. Instead of
(106) we now have

2 (r.)

'

f to-ig(t) exp [xh(t)] dt E (.,)

 E b,1{1 - exp [-ir(X j)])r(m + A-15)
(109)

m=0

where arg [-2/xhnl is equal to arg t on the part of L(') leaving t = 0
and b,n is computed with

21-t,;"2)

(k 2)! h,;')
ak (110)
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APPENDIX E

Two Saddle Points

In order to illustrate some of the results of Sections IV, V, and VI,
we consider the case of two saddle points, 1.1, = 2. This case has been
discussed by Chester, Friedman, and Urse11.4. 6 From (15) the desired
expansion is of the form

f g(t) exp [xh(t)] dt U0(x) E Pnox U1(x)
n=0 n=0

13.(v) = Pno Pniv

where, from example (ii) of Appendix B and equation (16) ,

(, ) = f exp [xF(v)] dv, = 0, 1

F(v) = 3v3 - viv + A0 ,

Ao = 1(h2 110 , vl = 4(h2 - h1), v2 = -v1 
Arg v1 is determined by the correspondence of v1 with t1 which comes
with the change of variable from t to v.

Let L' and the change of variable from t to v be such that L runs
in from v = 00 exp (-ice/3) to the critical region near v = 0 and
then out to 00 exp (i7r/3) (it may be necessary to reverse the direc-
tion of L'). Then

(111)

(112)

U0(x) = 27rix-1 Ai(x1v2i) exp (xAo) (113)

U1(x) = -27rix-1 Ai'(xlvD exp (xAo)

where Ai(z) is the Airy function and Ai' (z) its derivative with re-
spect to z.

From F' (v) = v2 - v2, and equation (9) it follows that Q(r, v) is + v.
Consequently equation (17) for P(v) gives

1 a
1p n(v) = 27-ri fc

1

yi _ yi (114)

Here f(v) = g(t)t(1) in which t(i) = dt/dv is obtained by differentiating
F(v) = h(t) with respect to v. The path of integration C encloses = ±vi
but no singularities of f(0.

From v, = - v1 and

Poo + vrpoi = P.(74) = f(vr), r = 1, 2
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we get

Avi) + g-vi) f(v1) - f(-vi) (115)Poo - 2 '
Poi - 2v,

which may also be obtained from equation (21) for poi.
Putting v = v1, n = 1 in (114) and expanding the integrand in

partial fractions leads to

1 3 1(v = 8vi [f(-vl) - f(v1) 241)(v,) - 2e,f")(v,)]. (116)

Expressions for pi° and pli which agree with equation (23) for pu
may be obtained from (116) by changing the sign of v1 to get P1( - v1)
and using n = 1 in

= Pn(vi) P.(-v1)
2

Pn(vi) - P.(-1'1)
Pnl 2v,

(117)

If we were to continue with the Bleistein method we would have to
evaluate f (n) (vr) by using equations (26) through (30). Instead we
turn to the problem of obtaining P,,(v,.) by the Ursell method. For [t. =
2, equations (34) become

Po(vr) = aro//9r00

= ant -PrO0 na =1

r 1, 2

OromPn-..0 firl.Pn-m .1
PrO0

(118)

where ceri and Xi; are given by equations (35) and (37).
Since g(t) and h(t) in the original integral (111) are quite general, we

use equation (35) for ari as it stands. However, equation (37) for 13,./i
simplifies considerably. This is to be expected since it gives essentially
the coefficients in the asymptotic expansions of Ai(z) and Ai' (z). From
Fr(2) = 2v F,?) = 2, and F,.("1 = 0 for n > 3 we have a, = -1/(3v,),
and ak = 0 for k > 1. It turns out that b, is 0 for m n and b =a7/n!.
When 1 is set equal to 0 in (37), all terms vanish except the one for
n = 2j, m = 2j. When 1 = 1, all terms vanish except those for n = 2j,
m = 2j and n = 2j - 1, m = 2j - 1. It is found that

-7r \ 31 i)
0,00 = ) -

(21
r00 3i

r Vr 91(2,D1

(1 +
- 6jiOrli = Vr

(119)
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Changing Pn(vr) into Pk (vr) in order to avoid confusion with the
n used in Appendix D carries (118) into

2k g2k-n) n

C[11-7 7
; - ; (2k - n)! bm"(1

Pk(vr) = )""
1+ Gm

2m (-1)3-(1)4Pk-n" + 74(1 - 6m)731`-'1.-1 ()! v (120)

Here r = 1, 2; v2 = -v1; and bmn is computed from (100) with a, given
by equation (36). The value of W) is given by

(1) = (41) _ {[-217 (-1)i}
dv

-
v,

(121)

where arg t") is calculated either from (i) the form t cv assumed by
the change of variable in the critical region or from (ii) arg [-2/h,.")] #

and arg (-1/v)1 being equal to arg (t - tr) and arg (v - v,), respec-
tively, on the portions of the paths of steepest descent leaving t,. and
v, . The last summation in (120) is omitted when k = 0. The expression
for P,(v,.) may be written with the help of equations (40).

Equation (120) was checked by using it to obtain the first few terms
in the known") uniform asymptotic expansion for the Bessel function
Hz")(xz) with 0 < z < 1. Here h(t) = z sinh t - t, the saddle points
are at ±t, (ti > 0) on the real axis, and the path of integration runs
from t = - co to t = co If the direction of the path of integration
is reversed [so that (111) gives -Hz")(xz)], the paths L' and L can be
brought into correspondence by a rotation of 120°. In the approximate
form t ti cv of the change of variable, arg c = 272-/3; and v, corresponding
to t1 is v1 = -31i,/2 exp (-i2r/3). Furthermore, f(v) turns out to
be an even function, (114) gives P(-v) = (-1)nP(v), and p2,,
P2n+1,0 are zero for n = 0, 1, 2, .

When t, and t2 approach each other, 142), 142), v, and v2 tend to zero.
In this case the asymptotic behavior of the integral (111) may be
determined with the help of the equation obtained by setting v = 3
in equation (98). However, if one is interested in the behavior of the
coefficients pai , the following relations are useful. Putting v1 = 0 in the
integral (114) for P,,(v) shows that in the limit

Poo = f(0),

Pio = -f(3)(0)/3! ,

Poi = NO),

p = -21(4)(0)/4!
(122)

and so on. The derivatives t(n) appearing in the derivatives of f (v) =
g (t) to-) are now obtained by differentiating 3-1v3 = h (t) repeatedly
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with respect to v. The leading coefficients are found to be

Poo =
[2/w)ii.

9
il)W)2 + (7(10W) i(12) h14)/(11)5/12.

APPENDIX F

Saddle Point Near Branch Point

(123)

Here we apply the theory of Sections VII and VIII to a case discussed
by Bleistein,3 namely, X 1 and 11 = 1. The paths L', L and the func-
tions h(t), F(v) are assumed to be the same as in Section IX where the
singularity at the origin was a simple pole instead of a branch point.
In the critical region L' is parallel to, and to the right of, the imaginary
t -axis. Only the case in which t, and v1 are real and of the same sign
will be considered. When t, and v, are positive the cut associated with
the branch point is assumed to start out from the origin along the posi-
tive real axis, and then quickly bend downward to run out to -ico.
When t1 and v, are negative, the cut starts out along the negative axis
and then bends downward to .

Equation (46) and F(v) = v2 - 2v1v lead to
CID

J 17o(x) E pox-" + 171(x) E p,x- (124)
74.-U n-U

where, with c > 0 and the path of integration lying to the right of
the cut,

c+ico

1'T0(x) = f vx exp [xF(v)] dv = ir.C"
c-ioo

- 2r, :1!)"

n! F (1 - 2

Replacing A by A + 1 gives Vi(x). Vo (x) and VI. (x) are parabolic
cylinder functions (Bleistein,3 and pair No. 740.2 in Campbell and
Foster Table).

P,,(v) = pno + p,v

_ (l f(0e-' [ 1 a in - ri\rx
271 - v, - vi

(125)

where C encloses = 0 and s = v1. Setting n = 0 and using 1(v) =
g (t) (t/v)x-ltm leads to

P0(0) = Poo = f(0) = g0o)0', tV) = -2v,/h,;"

Po(vi) = f(v,), = [2/h1211.
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Setting n = 1 gives

[f(0) - (vi) vii(1)(0)]
2v,

(2) (v

PP:- 1 -2X
[AO) - gvi) vii(1)(vi)] - 4 1) 

2v,

The values of No and pi may be obtained by following the steps
outlined in the first part of Section VIII. Equation (52) and (53)
become

1= a [am. E(010mpn-m.0 + 011.71.-..1)1
/4-100 (126)

1

Pno = [Cton E (30.qPn- q .0 + 130 .1. q-IPn- .1)]
P000 Q=1

The path L1 in (54) is parallel to the imaginary axis and passes
through the saddle point at v = v1. The path Lc, in (56) runs up along
the right side of the cut, encircles the origin in a positive direction, and
then runs down to v = -ioo along the left side of the cut.

To get ,1311; we replace / on the right side of (37) by l + h - 1 and
notice that ak given by (38) is 0 for the values of k used in computing
b,. Consequently, the only nonvanishing bffin is boo = 1 and (37)
gives

Oioo = 1111
=

(4)-i (-1 - X + 1)21vf-21.
0100 .i!

The expression for «, obtained by replacing (A2i' in (35) by j'23. -n),
where OW = t''-tg(t), contains [-2/14211 which may be written as it;').

In equation (57) for «04000 we replace b, by b.n to indicate that
6, is computed with ak given by (58) instead of the ak used in computing
«,/0100 . A still different ak , given by (60), is used to compute 004000 
From equation (60) all of the ak's used to compute 0014000 are zero
except a, = 1/(2v1). Therefore b, is zero unless m = n, and it follows
from (59) that

0ozi/0000 = (X)1,2i(210-1-2i/i!.
When all of these results are used in the expression (126) for p we

get, with j for n,

Pio = (2viri "-Pi)
(i-n) n

E g° E
(X)28-1

s! (2v1)
[(X + 2s - 1)pi-..0 + 2MM-so]

217

(127)
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where h(0) = ho = 0, 11, < 0, > 0, v, = t, I t11 -'(-h,) 4 , =
-2v,/141), and t),. is computed from (100) with a, replaced by ak where

ak = -hr" /[(k 1)! k 1.

When j = 0 the summation with respect to s is omitted. Similarly,
P (vi) gives

pit = (-1)1Vrxt11)(2i+i)
d121 -n) kpin

n)! um,Aum+., -

(-1)a(1 - [-X + 2s- s! (2v1)2`v, Pa -..0 - XPi--,11 (128)

where = [2/ hni , (t) = tx- g (1) , and b,,,,, is computed from (100)
with

ak = -2hik+2)/[(k 2)!

It is interesting to notice that when A = 0, (127) and (128) give
values of no and pi which agree with those obtained in Section IX.

When the saddle point approaches the branch point, t, h, , h,;", and
v1 tend to zero. In this case the integral J may be evaluated with the
help of equation (109). The behavior of the coefficient pni may be
studied by putting v, = 0 in the integral (125) for P(v). It is found that

Poo = i(0) Pot = f(1)(0),

Pio = -4(2)(0)/2, Pit = -(X + 1)13)(0)/12

and so on. The derivatives t°' appearing in the derivatives of f (v) =
g (t) (t/v)x-lt(1) are now obtained by differentiating v2 = 11(0 re-
peatedly with respect to v.

For n = 1 and 2,

= [2/N,2)]1, = -hr 4;1)4/6. (130)

Substituting these values in equations (51) for f (0) and f(1) (0) and
using (129) gives the limiting expressions for poo and poi.

APPENDIX G

(129)

Poisson-Charlier Polynomial
In this appendix equations (127) and (128) for no and ni are used

to obtain an asymptotic series for the Poisson-Charlier polynomial
c  (y, a) when y is 0 (1) and both n and a are large and positive.
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Multiplying the generating function
ao

Cm! um(1 - exp (au) = E , c,(y, a) (131)

by u-"--1 and integrating u around a small circle enclosing
a contour integral for cn (y, a). Instead of cn (y, a), we
convenient to deal with the polynomial (in y)

dn(y, a) -
an exp (-a)

cn(y, a).
n!

Setting x = n + 1 and making the change of variable t
the integral for c(y, a) leads to

1 f tv exp (-at)
dn(y, a) = 2ri (1 - t)x dt, x > y 1

1 e exp [xh(t)] dt
2ri J 1_

J = I,
27r2

h(t) = -rt - In (1 - t)
where r = a/s. The ratio r is positive.

We wish to use equations (127) and (128) to compute
the expansion obtained by dividing (124) by 27ri, namely

u = 0 gives
find it more

(132)

=1 -1l in

(133)

Pno, Pni in

dn(y, a) = J ro(x) E pnox-n + fi(s) E pnis n. (134)
n=0

Here fo(x) = Vo(x)/27ri with X = y + 1. Thefunction f1(x) is obtained
from Vo(x) by increasing y by 1.

We have
1

c+ ioo

2ri,fo(x) =
J

v" exp [x(v2 - 2v,v)] dv, c > 0

x-(y+1)/2G[y, vix]

where arg v is 0 at v = c and G(y, z) is the parabolic cylinder func-
tion

1G(y, z) =

= 2-1

c+rte

uv exp (u2 - 2zu) du
-;00

(-2z)n
n=0 (1 - y - n)n! r

2

(135)

(136)
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The function G is related to the function U discussed and tabulated
in chapter 19 of Ref. 10 by the equation

2-"G(y, z) = 2(70i exp (-12) U[-y - z, z2i].

The saddle point t = t, is obtained by setting the derivative h`1' (t) =
-r (1 - 0-1 to zero; and the saddle point v = vi is given by the
relation 74 = -h1 together with the condition that v, and 11 be of the
same sign:

tl = 1 - ,
ti

= - 1 - ln r)1. (137)

The values of the derivatives VI) = dt/dv at v = 0 and v = v1 are

tV) = -2v,N1) - 2vi

r - 1

tr) = [2//z,211 = 2i.

For k > 1 the kth derivative h' (t) is (k - 1) !(1 - 0' and the
coefficients used to compute ,,,n , b,, from (100) are

ak = -k!/[(k 1)! (1 - 7)] = 1/[(k + 1)(r - 1)]
and

uk = -2(k + 1)! rk."/[(k 2)! r2] = -2rk/(k + 2),

respectively.
Comparison of the integral (133) for d(y, a) with the integral (1)

for J shows that g(t) = 1 and X = y 1. Consequently g(t) = tx-ig(t)
becomes OW = tY . For lc > 0 the derivatives are g(k) = 0 and j(k)

- - 1)tu-k.
Setting j = 0 in (127) and (128), and using the results just ob-

tained gives

(2v, r (t,)v (2)1 Poo
Poo = r - 1/ ' Poi = kv rv, v,

(138)

for the leading coefficients in the asymptotic expansion for dn(y, a).
Here t1 and v1 are given by (137). The next two coefficients, obtained
by setting j = 1, reduce to

y + 1)pi
2)Poo[90.

1 1](
(139)

= _ (Li) [
3

(2) IY(Y - 1) ytir /5.21

r - 1 4 2 24 j
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Some idea of the behavior of the series (134) for cln(y, , a) may be
gained from Table II. Equations (127) and (128) were programmed for
calculation on a high speed digital computer. The table lists results for
the typical case x = 30, a = 25, and y = -5. Here Term, =
fo(x)Pnox-n, Term2.+1 = fi(x)pnix-n, and Sm = to + ti + tm 
The "exact" value, 381.02, was calculated by using the recurrence
relation for the Poisson-Charlier polynomials.

No study was made to decide whether the relatively large value of
Term7 results from accumulated round -off error (an accuracy of 1
part in 107 was used) or whether the asymptotic series actually starts
its divergence around m = 5 or 6.

When r is near unity, v1 and tl are small and the individual terms
in the expressions (127) and (128) for no, ni, become large. In this
case considerable cancellation occurs, and a high degree of precision in
the calculations is required to obtain accurate values of no and

An asymptotic series (nonuniform) which is useful when r - 1 is
small may be obtained by a variation of the classical method which is
sometimes used in cases of this sort. Instead of using an expansion
about both t = 0 and t = t1, which is done (in effect) in obtaining the
uniform asymptotic expansion, an expansion is made only about t =
0. Thus, the exponent xh (t) may be written as

xh(t) = [-x(r - 1)t xt2 /2] + (xt2) (t/ 3 + t2 / 4 +  )

Changing the variable of integration from t to u = t (x/2)% and as-
suming that r - 1 is so small that z = (r-1) (x/2)'/' is 0(1) gives

exp [xh(t)] = exp [-2zu u2] exp [u2(2t/3 + 212/4 +  )]
(140)

00

= exp [-2zu u2] E (2/x) n/2 E bW"'+".
n=0 74=0

The last series is obtained from equation (102) with 4 = t = u (2/x)%,

TABLE II-PARTIAL SUMS FOR d29( -5, 25)

m Term. .5.. m Term. S.

0 276.62 276.62 4 0.015 381.03
1 82.82 359.44 5 -0.008 381.02
2 20.19 379.63 6 0.008 381.03
3 1.39 381.01 7 -0.144 380.88

Exact c/29( -5, 25) = 381.02
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y = u2, and an = 2/(n-1-2). The coefficient bmn is computed from the
an's and (100).

Substituting (140) in the integral (133) for d(y, a) leads to
co

dn(Y, ^-/ E (2/x)(""+"/2 E b,K,, (141)
=

where

1
K'1 = u"+" exp (u2 - 2zu du)

271-z

= G(n y, z) = G[n y, (r - 1)(x/2)1].

The recurrence relation

= zK n
2

y K_, (142)

permits K),+ in (141) to be expressed as a linear function of K0 and
K1. Equation (142) is obtained by integrating the derivative

du
u+ exp (u2 - 2zu) = [(n -1- y)u-i + 2u - 2z]un" exp - 2zu)

As r 1 the leading term, (2/x)(u+1)/2K0 , in (141) tends to the
leading term 170(x)poo in the uniform asymptotic series (134). Although
(141) is much simpler than (134), it does not hold for nearly as wide a
range of values of r - 1.

APPENDIX H

Saddle Point at Origin

Here we are concerned with the leading term when X 0 1 and there
are two saddle points, one at t = 0 and the other at t = ti . We assume
that ti is real and positive, and that h(t) is real on the real axis. Further-
more, we assume h, < 0, 421 < 0, > 0 so that the saddle point
at ti is lower than the one at 0, and the paths of steepest descent at 0
and t1 are parallel to the real and imaginary axes, respectively. A cut
extends from 0 to - 00 along the negative real axis.

The paths of integration L' and L are taken to run in from oo
exp (-ir/3), cross the positive real axis in the critical region, and the
run out to oo exp (iar/3). Example (iii) of Appendix B leads us to
choose

F(v) = 2v3 - 3v1p2, v! = -h1 (143)
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with arg v1 = 0. From equation (46), the uniform asymptotic ex-
pansion is of the form

vo(x) E pox-n + V 1(4 E pnix + V2(x) E pn2x-'s (144)
n=0 =() n=0

where

Vi(x) = f v'+' exp [xF(v)] dv, 1 = 0, 1, 2.

Expanding exp(-3xv1v2) and integrating termwise with the help of

gives

I, exp (u3) du = 27ri/[3r(2 -3 13)1

Vo(v) = -3 (2x)_ x/3
(-324)"(x/4)11/3

n=0 X ± 2n)
n! r(i

3

(145)

from which Vi(x) may be obtained by replacing A by A + 1. When A =
1, Vo(x) reduces to the product of an Airy function and an exponential.

Setting n = 0 in the integral (47) for P,1 (v) gives

Po(v) = Poo + Poiv P02v2

1 f [?"2 + 0)2 v1) (2)2 2)12))] dP (146)
27riJ c - 1)

= f(0) NO)v [f(v1) - f(0) -vii1(0)]v2v2.

The values of , 0,2) , t" appearing in f(0), AO), f(v,) are

to
142'1 '

12 - hP)tP"
3he)

[T1127
11

=
6v,

The derivatives 41), t11) are positive and nearly equal when the saddle
points are close together.

When n = 0, the Ursell equations (61), (62), and (63) become

Po(vi) = aio/Oloo

Poo = aoo//l000 (148)

a01 0001
Poi = -

PoloPolo

(147)(147)
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The values of aio, $100 otbained from the leading terms in the asymp-
totic series (54) defining the arn's and prii's give

PA) = 91°)(ti/vi)x-i0 (149)

Similarly, comparing the asymptotic series (64) defining the aols and
floim's with the series (109) leads to expressions which give

Poo = gO°V)x,

poi = {g,1) - (x + i)o,!.°) [3vit,(i)Gitt()2)
toT 71 O(3)

]}4 (1) (X+1)1

The remaining coefficient, poi, in Po(v) may now be obtained by com-
bining (149) and (150) . The coefficients Poi give the leading part of
the desired expansion (144) for J.

(150)

ACKNOWLEDGMENTS

I wish to express my appreciation for the computations made by
Mr. G. H. Robertson to check my first approximations against his
algorithm. I am also indebted to him for values which enabled me
to check the expansion for the noncentral x2 distribution given in
Section X. In addition, it gives me pleasure to acknowledge helpful
comments made by L. A. Shepp and several other colleagues.

REFERENCES

1. Robertson, G. H., "Computation of the Noncentral Chi -Square Distribu-
tion," scheduled to be published in B.S.T.J., 48, No. 1 (January 1969).

2. Rice, S. 0., "Communication in the Presence of Noise-Probability of Error
for Two Encoding Schemes," B.S.T.J., 29, No. 1 (January 1950), pp. 60-93.

3. Bleistein, N., "Uniform Asymptotic Expansions of Integrals with Stationary
Point Near Algebraic Singularity," Comm. Pure and Applied Math. 19,
No. 4 (1966), pp. 353-370.

4. Ursell, F., "Integrals with a Large Parameter. The Continuation of Uni-
formly Asymptotic Expansions," Proc. Cambridge Phil. Soc., 61 (1965),
pp. 113-128.

5. Olver, F. W. J., "The Asymptotic Expansions of Bessel Functions of Large
Order," Phil. Trans. Royal Soc., Series A, 247 (1954), pp. 328-368.

6. Chester, C., Friedman, B., and Ursell, F., "An Extension of the Method of
Steepest Descents," Proc. Cambridge Phil. Soc., 53 (1957), pp. 599-611.

7. Felsen, L. B., "Radiation from a Unia.xially Anisotropic Plasma Half -Space,"
IEEE Trans. Antennas and Propagation, AP -11 (1963), pp. 469-484.

8. Riordan, J., An Introduction to Combinatorial Analysis, New York: John
Wiley and Sons, 1958.

9. Campbell, G. A., and Foster, R. M., Fourier Integrals for Practical Applica-
tions, New York : Van Nostrand, 1948.

10. Abramowitz, M., and Stegun, I. A., Handbook of Mathematical Functions,
Washington, D. C.: National Bureau of Standards, 1964, equation (9.3.37).





Gain Control for Diversity Receivers

By STEPHEN S. RAPPAPORT
(Manuscript received April 18, 1968)

Previous work on optimum gain control is extended to an important
class of diversity receivers used for digital data transmission through fading
media and for radar. As in the single diversity case the optimum gain
(which yields minimum average cost of receiver saturation) is extremely
insensitive to relative costs of saturation at the upper and lower dynamic
range bounds. The sensitivity to relative cost decreases as the order of
diversity increases.

Optimum gain and performance characteristics are given from which
dynamic range requirements for diversity receivers can be deduced.

I. INTRODUCTION

A good part of detection theory literature deals with the determina-
tion of statistically optimum or near optimum receiver structures.
However, in any practical implementation of these receivers the signal
processing must be performed by components of finite dynamic range.
To effectively use the amplitude range of a signal processing chain
it is common to scale the received signal by adjusting the receiver
gain. Optimum gain settings for minimum average cost of excluding
(from a receiver's finite dynamic range) the envelope of a narrowband
signal plus gaussian noise were presented last year.i Here similar
results are presented for an important class of diversity receivers
used for comunications through fading media and for radar. For
the single diversity (M = 1) case, these results reduce to those
given previously.

II. PREVIOUS RESULTS

Consider the problem of determining the normalized attenuation,
a to optimally scale a positive homogeneous functional, e, of the
received signal so that the average cost, 1, of excluding 6 from the
receiver's dynamic range is minimized. It follows from Ref. 1 that

2015
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the average exclusion cost is given by

l= f pw(E) v p.(E) d (1)f
in which d denotes the dynamic range of the receiver (such that D (dB) --
20 logu, d, d > 1), v is the ratio of cost of saturation at the upper dy-
namic range bound to the cost of saturation at the lower, w is a vector
parameter determined by signal noise and channel conditions, and p.
is the probability density function of E. When the optimizing value of a
is a stationary point of 1 it can be found as a real positive solution to

p. (a) = v dp,(ad). (2)

If a3 is the optimum a then the minimum average exclusion cost is
/ = P. (a) v[1 - P. (as d)] (3)

in which Pc, is the cumulative distribution corresponding to N. For
v = 1, 1 becomes the exclusion probability. Ref. 1 considered this prob-
lem in detail for the case in which E represents the envelope of a narrow -
band signal plus gaussian noise received through a Rician fading me-
dium. The results are based upon the solution of (2) for the case in
which p. is the Rician2 probability density function defined by

P., = exP [ -272)/2]/0(7) 7, 0 (4)

where y is a suitably defined signal-to-noise ratio. (ydB = 20 logioy).

III. GAIN SETTINGS FOR DIVERSITY RECEIVERS

In various diversity receivers formation of the test statistic leads
to the generalized Rician probability density function given by

p.(R) = R(R(M)1h)' exp [ - (R2 + -y2 /111)/2]I m_i[TRAM)1] (5)

R, -y,

M = 1, 2,

where I K denotes the modified Bessel function of the first kind and order
K and w is the vector (-y, M). Such is the case for example in square -law
combining M -fold diversity receivers for noncoherent frequency shift
keyed signaling through Rician or Rayleigh (if 7 = 0) fading channels,
in radar receivers using post detection square law integration of M
pulses,t and in partially coherent diversity reception of N-ary orthogonal

t In these cases the functional is the test statistic. More generally however,
the functional used for determining the optimum gain need not be actually
formed in the receiver.
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signals transmitted through M independent slow Rician fading chan-
nels.'''
The probability density function (5) has interesting properties. It

can be shown that (5) is the probability density function of the
square root of the sum of squares of M independent normalized
Rician variates, each variate having a probability density function
of the form (4) with y replaced by y/(M)%. For M = 1, (5) of
course reduces to the Rician probability density function (4), and
if in addition y = 0 it becomes the Rayleigh probability density
function. The density (5) can be viewed as the probability density
function of the square root of a noncentral chi-square variate with
2M degrees of freedom and noncentrality parameter y2. With y = 0
it becomes the density of the square root of a chi-square variate with
2M degrees of freedom.

In many practical cases y2 is proportional to the ratio of the total
specular energy received via the M diversity branches to the sum of
the scatter and noise energy received via any diversity branch (as-
suming that this latter sum is the same for any diversity branch).
Thus y2/.11/ can be thought of as the power signal-to-noise ratio per
diversity branch or per pulse in the case of time diversity if, as is
commonly assumed, the diversity branches are statistically independ-
ent but have identical parameters.

Since (5) arises in various applications, let us consider the canonical
problem. Specifically the solutions to (2) will be obtained in which p0,
is given by (5). Letting a = A (2)1 and a = -y/(M)1 leads to the following
transcendental equation for A:

A2 = A: + [(.M ± 1)/21 Ag [1/ (c12 - 1)]

{ ln (42)1] - In /m, [aA (2)1] }

(6)

in which

2 A In d
'10 d2 - 1 (7)

determines the optimum required attenuation for the Rayleigh case
with unity cost ratio (v = 1) , and

A2 A ln
c/2 1

(8)

For the single diversity case (11 = 1) , (6) reduces to the trans-
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cendental equation encountered previously.1 One is thus led to seek
an iterative solution along the same lines. Before obtaining the
required iteration equations consider some properties of (6). The
equation can be written in the form

A2 = ± MA,2, [1/(d2 - 1)] [ln [(«A d(2)1)'11 m_i(aA d(2)4)]

- (31 - 1) In d2 -In [(«A(2)V-1/21f_1(«A(2)1)]). (9)

Combining the logarithmic terms on the right side of (9) and using
the fact that //c (Z) -> (7,9/2KK! as Z 0 it is seen that the quan-
tity in braces goes to zero as y -> 0. Hence the optimum attenuation
for the chi-square case (y = 0) is determined explicitly by A = Acs
where

A:. .11 A! + MX, . (10)

In the same manner it is seen that if A2,8 = 0, then A = 0 is a solution
to (9) for any y and d. It is easy to show that the right hand side of (9)
is an even function of A having a minimum of A:, at A = 0. The left
hand side of (9) is of course a standard parabola centered at the origin.
These curves (i) do not intersect if A:. < 0, (ii) intersect only at A = 0
if A:. = 0, and (iii) intersect at positive (and negative) values of A if

> 0. Thus meaningful values of A which minimize 1 are stationary
if and only if A2,8 > 0. From (7), (8), and (10) this requires vd2" > 1,
which for M = 1 reduces to the constraint encountered previously.1

The solution to (6) or (9) can be obtained using the extrapolated
iteration scheme described in Ref. 1. The iteration formulas require the
derivative of the right side of (9) which can be found using the identity

d/4 [rin(r)] =
The result is

n = -2, -1, 0, 1, 2, . (11)

Ng\ 7(2)1 {d Ar_2[A da(2)4] I lif-2[Aa(2)4A
2(d2 - 1)A I m_i[A da(2)1- I m_i[Aa(2)T (12)

in which f denotes the right hand side of (9) and the prime denotes dif-
ferentiation with respect to the argument.

For computational purposes it is convenient to define the functions

TA-) 1 (exp iii(0 (13)

which are uniformly bounded on the semi -infinite interval [0, oo ].

For any argument 4 these functions can be readily generated by
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numerical techniques using the recurrence relations and asymptotic
expansions for the modified Bessel functions.

Using (12) and (13) the following iteration formulas to solve
(6) are obtained.

A2,1 = F - i3,(A;! - F,) (3; -1

F = A: [(M 1)/2] Ao

+ A'(2)1 [1/1(d' - 1)] [In lfm_,(Ai da(2)1)]
d 1 x1fm-1(Aia(2)1) (14)

a(2)I lIfif_2"[A da(2)1] 'I'M-2[A,a(2)1]k
- 2(d2 - 1)A, d

Nlim_i[Ai da(2) ] NIfm_i[Aga(2)1]f

13; = G,/(1 - G,) G, 1

The iteration is begun with i = 1, -y small, and A2, = A2c, and stopped
when I (Ai., - Ai)/ Ail is less than the allowable error. By this method
the optimum required normalized attenuation was found for various
values of v, -y, d, and M.

Inasmuch as the optimum attenuation satisfies the nonlinear equation
(6) it will be helpful in interpreting results to find some useful approxima-
tions. Accordingly one notes that for 72/M >> 1 and d >> 1 the second
term in the brackets on the right side of (6) is negligible compared with
the first. Then taking /m(x) exp x leads to a quadratic equation in A
whose solution

2

A - +[ A2, + (111 + 1) A2T (15)
(23f)i d 2M (12 4- 2 °

approximates the required attenuation over the range specified.
For y2/M << 1, on the other hand, one may take /m(x) (x/2)m /M!

in (6). Some further approximations and manipulation lead to the
result

A 1-1,..[1 (-y2/2/1/)11 72//1/ << 1 (16)

which is exact for y = 0.
When the solution to (6) is found for given parameters the mini-

mum average exclusion cost can be determined. For the probability
density function (5) , (3) becomes

1 = 1 - Qm[a, A (2)i] + PQm[a, Ad(2)i] (17)
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where

Qm(x, f t(i-/x)m-' exP [-(c + x2)/2]1.._1(xo 4 (18)

is the generalized Marcum Q-function.3

IV. EFFECT OF COST RATIO ON REQUIRED ATTENUATION

Since one cannot easily decide how much better or worse it is for
the receiver to saturate at its upper limit than at its lower limit, the
ratio, v, is generally difficult to assess accurately. It is interesting (even
fortunate !) that here as in the single diversity case,1 the solutions
obtained using (14) show that the optimum receiver attenuations
for a wide range of cost ratios do not differ appreciably from those
for the minimum exclusion probability case (v = 1) .

For given v, y, d and M one may define the sensitivity, S0, of the
optimum attenuation to the cost ratio by the difference in required
attenuation between the given case and the corresponding minimum
exclusion probability case. Specifically, the sensitivity to cost ratio is

S. (v, -y, d, M) ° 20 log10 A (v, y, d, M)

- 20 log A (v = 1, y, d, M) (19)

in which the functional dependence is shown explicitly. In (19) a positive
value of Sc indicates an increase in required attenuation compared with
the minimum exclusion probability case. It can be shown that (i) the
sign of (19) depends only on v (positive if v > 1, negative if v < 1), and,
(ii) I Se (v) y, d, M) I < I Sc (v, 0, d, M) I . Thus, one can define a maximum
sensitivity

8: ° Sc(v, 0, d, M) ---- 10 log10 A:. - 10 log Mgo (20)

where the second equality follows from (19) and (10) . Using (7)
and (8) , (20) can be written

St = 10 log [1 + (vd,3/2/1/D)] (21)

in which

VcIES 20 log10 v (22)

is the cost ratio expressed in dB. St is an easily calculated bound which
gives, with the correct algebraic sign, the maximum change (in dB) of the
optimum required attenuation from the optimum for the minimum ex-
clusion probability case. Figure 1 is a plot of S. It follows from (21)
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that for cost ratios in the range -MD 5 vdB < 2MD, the maximum
change in required receiver attenuation is less than about 3 dB. Equiva-
lently, with -y, v, and d fixed, the maximum sensitivity, St decreases as
the order of diversity, M, increases.

Since the optimum attenuation is extremely insensitive to cost
ratio for typical parameters, the minimum exclusion probability
case (v =1) is of special import among all average cost criteria of
the form (1) . The numerical results presented in this paper, there-
fore, include only the case v = 1, although the formulas derived apply
more generally and can be used to generate numerical results in an
entirely similar manner.

V. EFFECT OF DIVERSITY ON REQUIRED ATTENUATION

It is interesting to consider how the order of diversity affects the
optimum required attenuation. Accordingly, in a manner analogous
to (19) one can define the difference in required receiver attenuation
resulting from diversity by

S, (v, y, d, M) = 20 logio A(v, y, d, M)

- 20 logio A(v, y, d, M = 1). (23)
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Let

An(v, y, d, M) ° 20 loglo A(v, 7, d, M) (24)

be the required normalized attenuation in dB. Then (23) can be
written

S,,,(v, 7, d, M) = An(v, 7, d, M) - 6,(v, 7, d, 1). (25)

Values of S,(1, y, d, M) were obtained for various y, d, and M
using (14) and (23). These are shown in Fig. 2 where all quantities
except M are in dB. The optimum normalized attenuation 64,(1, y,
d, M) required for the minimum exclusion probability case can be
found using (25). Specifically one finds IS,,, (1, y, d, M) from Fig. 2,
and adds to it the quantity A(1, y, d, 1) from Fig. 6 in Ref. 1.

Notice that in Ref. 1 only the single diversity case (M = 1) was
considered so that the functional dependence of A, on M was sup-
pressed in the notation. That is, o (v, y, d, 1) here is identical to
A (v, y, d) in Ref. 1.

From Fig. 2 it can be seen that if y is sufficiently small (or large),
S, is positive (or negative) so that more (or less) attenuation is
required if multiple diversity is used than would be required if the
same specular energy were concentrated in a single diversity branch

for sufficiently small (or large) y the required attenua-
tion increases (or decreases) as the order of diversity, M, increases.
There is of course a transition region which bridges the above cases
and in which, for y fixed, the differences 8,11 cross one another depend-
ing on the particular values of M, and D (and, in the general case,
v). The curves for 7dB = 15, for example, exhibit this behavior.

Using (10) and (16) it can be shown that for y --> 0

S,(v, y, d, M) rt:.," 10 loglo M

+ 10 logio
[1 ± (vdB/2 MD)1 [1 + (72/2111)+ 10 log. (26)

1 (vas/2D) 1 -I- (2/2)

which is exact for y = 0. For the minimum exclusion probability
case and y = 0 (26) yields Sm (1, 0, d, M) = 10 logio M which is in-
dependent of d. Similarly it can be shown using (15) that

lim S ,(v , y, d, M) = -10 login M (27)

which is independent of v and d. The differences 8,,, for 7dB = ± co
therefore appear as horizontal lines in Fig. 2. One also observes that
over the range of parameters shown, the limit (27) is approached within
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0.5 dB for 7d13 = 30. Noting that for y° < y < -y*, S. is bounded by

S,(v, 7*, d, 31) < S,(v, 7, d, 31) < S,(v, 7°, d, 31) (28)

it follows from (26) through (28) that for the minimum exclusion proba-
bility case all the differences S.(1, y, d, M) lie between two horizontal
lines in Fig. 2 determined only by the order of diversity. I Sm(1, 7, d, M)
10 logio M. The difference between the required optimum attenuation
for dual diversity and that required for single diversity with the same
total received specular energy is less than about 3 dB.

VI. EXCLUSION COSTS FOR DIVERSITY RECEIVERS

The optimum normalized attenuations obtained using the iteration
equations (14) were used to obtain the minimum average ex-
clusion costs (17) for the case v = 1. These are shown in Fig. 3(a)
and for smaller values of D in Fig. 3 (b). The generalized Q function
(18) was evaluated by computer, using relations derived from those
given by Sagon.5

It can be seen that for small values of y, the smallest dynamic range
D required to obtain a given exclusion probability decreases rapidly
as the order of diversity is increased; the most substantial decrease is
obtained in going from single to dual diversity. This trend is lessened
as the available signal-to-noise ratio y increases. As a matter of fact
if y is sufficiently large (for example, y = 20 dB) the dynamic range
required to achieve a given exclusion probability increases as M
increases. However at the large values of y where this latter effect is
apparent, even modest values of D yield extremely small exclusion
probabilities. Moreover on the types of channels where diversity re-
ceivers are useful one would generally encounter small values of y.

Consider a diversity receiver operating in a small signal-to-noise
ratio and let the dynamic range of the components used be such that
the probability of excluding the signal at any point in the receiver is
the same throughout. Then it follows from Fig. 3 and the foregoing
discussion that the dynamic range required of the components used
in the post -combining portions of the receiver may be considerably
smaller than that required of those components used in the individual
diversity branches.

VII. SUMMARY AND CONCLUSIONS

An important class of diversity receivers used for communications
through fading media and for radar is considered. The required gain
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is determined which minimizes the average cost of excluding from a
finite dynamic range the signal appearing in the post -combining por-
tions of the receiver. For the single diversity case (M = 1) the results
reduce to those given previously.

It is shown that the required receiver gain is extremely insensitive
to the relative costs of saturation at the upper and lower dynamic range
bounds, differing at most by about 3 dB from the optimum for the (equal
cost) minimum exclusion probability case for relative costs in the range
-MD S vdE 2MD. One also finds that the sensitivity to relative cost
therefore decreases as the order of diversity increases.

The difference between the required optimum receiver gain for
various orders of diversity M, and that required for a single diversity
receiver having the same total received specular energy is considered.
Exact differences are given for the minimum exclusion probability
case, and it is shown that these are less than 10 log10M dB independent
of other parameters. Bounds on the difference are also given for non -
unity cost ratio.

Performance characteristics derived show minimum exclusion prob-
abilities obtainable as a function of dynamic range for various signal-
to-noise ratios and orders of diversity. For a small signal-to-noise
ratio the dynamic range required of the components used in the post -
combining portions of the receiver can be considerably smaller than
that required of those components in the individual diversity branches
in order to achieve uniform exclusion probability throughout.

Notice that in some applications the normalization assumed in
writing (4) and (5) may depend upon M and y. This fact must be
accounted for if one is calculating the actual required attenuation
from the required normalized attenuation discussed in Sections IV
and V. The optimum exclusion costs however, depend on the normal-
ized attenuation and not on the normalizing factor. The results of
Section VI therefore apply directly.
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Vlultimoding and its Suppression
in Twisted Ring Counters

By W. BLEICKARDT
(Manuscript received March 21, 1968)

Many digital systems, such as PCM systems, data processing and data
transmission systems, use twisted ring counters. Most of these twisted ring
counters are subject to multimoding. This paper develops tools and methods
for predicting all possible modes in twisted ring counters, and derives a
general solution for suppressing the wrong modes. Suppression is ac-
complished by adding a few circuit connections from the output of certain
stages to the input of another stage. The paper derives the number of neces-
sary connection lines and their connection points for the various types of
counters.

I. INTRODUCTION

Twisted ring counters of various types have been used for many
years, and have been described in many publications.1-5 They are
designed for creating a well-defined periodic pulse pattern. But they
all have one problem in common: under certain circumstances they
can multimode, that is, they can create undesired patterns. Each
mode of a counter creates a particular pattern. Only one of these
modes is the desired one, the "correct mode;" the rest are all "wrong
modes" and must be suppressed. To the knowledge of the author,
none of the publications on twisted ring counters presents a rigorous
treatment of the problem of multimoding, although it must have
shown up in many instances and often was solved empirically.5 The
lack of a general theory on possible modes in twisted ring counters
and on the prevention of undesired modes led to this investigation.

Terminology for the characterization of modes, and relations be-
tween the. parameters, make it easy to find the entire set of possible
modes for any twisted ring counter. There is a method for suppressing
all wrong modes by adding a few circuit connections, and a general
formula that indicates these additional connections for any individual

2029
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ring counter. The method for suppressing all wrong modes in any
twisted ring counter is summarized in Section 5.5.

II. OPERATION OF TWISTED RING COUNTERS

A twisted ring counter consists of a shift register whose output is
fed back over a twist to its input in a ringlike manner (Figs. 1, 2,
and 3). An input clock keeps a certain pattern circulating around the
ring. In the correct mode the stages create the desired pattern by
switching on sequentially with subsequent clock pulses, and then
switching off in the same sequence (part a of Figs. 1, 2, and 3) .* With
each clock pulse only one stage is switching. A counter with n stages
creates a periodic pattern with a period of 2n time slots as shown in
the first three figures. Some possible implementations of counter stages
are shown in Fig. 4, using AND gates, NAND gates and set -reset flip-
flops. Equivalent stages can be built by using OR gates and NOR gates,
or any custom -designed circuit.

There are two general types of twisted ring counters: single-phase
counters with one input clock line (example in Fig. 1) , and double -
phase counters with two input clock lines supplying interleaved pulses
(examples in Figs. 2 and 3). Many of the single-phase counter stages,
such as the ones shown in Fig. 4a and b, require short input clock
pulses to prevent racing. The clock pulses must be shorter than the
propagation delay of one stage. An example of a stage that does not
require short clock pulses is shown in Fig. 4c.4 Double -phase counters
permit the use of simple gated set-rerest flip-flop stages (Fig. 4d and e)
without the restriction of short clock pulses. Notice that in counters
with an even number of stages (Fig. 2) the two clock phases are dis-
tributed in a different way from those in counters with an odd num-
ber of stages (Fig. 3).

The problem of multimoding arises whenever more than one mode
can exist. In that case, errors can switch the counter to other (wrong)
modes with undesired patterns. Such errors can be created by noise
transients, aging components, marginal design, and so on. The first
three figures show some examples of wrong modes. In general, the
number of wrong modes possible increases with the number of stages
of a counter, and is higher for single-phase counters than for double -
phase counters. To design reliable circuits, one must prevent un-

* The numbers in parentheses in Figs. 1, 2, and 3 are a symbolic notation for
different modes; they indicate the numbers of time slots a particular counter
stage remains in one state. This notation is explained in Section III.
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desired patterns from circulating for more than a very short time
(typically less than one counter period) .

III. GENERAL CHARACTERIZATION OF MODES

There is a unique way in which a pattern, that is, a sequence of
states 0 or 1, is circulated around the counter ring. Any pattern is
shifted by one stage per time slot, as can be seen from the pulse dia-
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grams in Figs. 1, 2 and 3. The state of the last stage appears in in-
verted form at the first stage in the subsequent time slot. For a
counter with n stages, the pattern, seen as a time sequence at each
stage, repeats itself in inverted form after n time slots; the whole
counter period is 2n time slots long.

This well-defined behavior allows us to reconstruct the entire pulse
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diagram for a particular mode, if we only know the states of all n
stages at any one time, or if we know a sequence of n states at any
single stage. Therefore, a sequence of n binary digits uniquely de-
scribes a mode.

3.1 Definitions

(i) We will call the state of a particular stage in a particular time
slot an element. An element can have a state 0 or 1.

(ii) Elements in successive time slots, or in successive stages that
have the same state, form a logic group.

(iii) The size of a logic group (gi) is the number of its elements.
(iv) The smallest size logic group of a particular mode has gmin

elements.
(v) The positive direction of a sequence of elements corresponds

to the sequence as observed on the positive time axis. This corresponds
to a sequence backwards through the stages. (This can be illustrated
with Fig. lb. The sequence 1 1 1 0 1 appears at stage Si in the time
slot sequence t1, t2, t3, t4, t5, and it appears at time t5 in the stage
sequence25j24,S3,22,S1.)

3.2 Description

For describing one particular mode, it is sufficient to write the size
and sequence of the logic groups g; that are built by n elements. The
following symbolic notation is used:

where

(Y1 d- r12 g3 -F + fir)

E gi = n = number of stages

x = odd number.
For example, (3 + 1 + 1) denotes a mode of a 5 -stage counter, with
three logic groups, the first containing three elements, the second and
third containing one element each (shown in Fig. lb) .

This symbolic notation describes one half of the periodic cycle.
Since each half is always the complement of the other half, the ele-
ments of the first and the last logic group in the mode notation have
the same state. Therefore, the number x of logic groups in this nota-
tion is always an odd number. This is illustrated with a 7 -stage coun-
ter, for which a time sequence of states, as observed on the oscillo-
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scope connected to one of the stages, may look like this:

counter period = 14 states

first half 1 second half
> <------->

time sequence: 0 1 1 0 0 0 0 1 0 0.1 1 1 1 0 1 1 0 0 0

logic groups: 4 1 2 4 1 2

(4+ 1+2)
(1+2 4)

(2 + 4 + 1)
(4 + 1 + 2).

The period consists of 2n = 14 states. Describing this particular mode,
the logic groups built by n = 7 elements can be written in three differ-
ent ways: (4 + 1 + 2) , (1 + 2 + 4) , and (2 + 4 + 1) .

These mode notations are cyclic permutations. Hence they are
equivalent and describe the same mode. The 7 -stage counter could
have another mode with the same set of logic groups. This different
mode can be described by the following three equivalent mode nota-
tions: (4 + 2 + 1) , (2 + 1 + 4), and (1 + 4 + 2). If a certain wrong
mode can exist, all possible permutations can exist also.

The correct mode always is the one with x = 1, that is, with one single
logic group of size n. All other possible modes with x 3 are wrong
modes.

mode notations:

IV. PREDICTION OF POSSIBLE MODES

4.1 Possible Logic Groups
Not all possible partitions of n into an odd number x of logic croups

result in a possible mode, because there are some restrictions in pos-
sible logic group sizes g; for the different counter types.

In single-phase counters, the logic groups can have any even or
odd number of elements, up to n, since in any time slot, either a "1"
or a "0" can be shifted from any stage to the following stage (Fig. 1).
This is not so in double -phase counters.

In double -phase counters with an even number of stages (Fig. 2),
a clock pulse A can shift either a "1" or a "0" to any odd -numbered
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stage from the preceding stage, and a clock pulse B can shift either a
"1" or a "0" to any even -numbered stage from the preceding stage.
This results in the restriction that only logic groups with an even num-
ber of elements can appear in a possible mode.

In double -phase counters with an odd number of stages (Fig. 3), a
clock pulse A can shift a "1" to any odd -numbered stage and a "0"
to any even -numbered stage, and a clock pulse B can shift a "0" to
any odd -numbered stage and a "1" to any even -numbered stage,
always from the preceding stage. This results in the restriction that
only logic groups with an odd number of elements can appear in a
possible mode.

4.2 Examples of Possible Modes
We are now able to predict all possible modes of a twisted ring

counter with n stages by breaking n into an odd number of logic
groups in all possible ways, taking the restrictions of possible logic
group sizes into account. This is shown in three examples.

Example 1: A single-phase counter with n = 6 stages can have six
different possible modes:

(6) correct mode

(4 + 1 + 1)

(3 + 2 + 1)

(3 + 1 + 2) wrong modes.

(2 + 2 + 2)

(2 + 1 ± 1 ± 1 + 1)

In this counter type, the logic groups can have an even or odd number
of elements.

Example 2: A double -phase counter with an even number of n =
6 stages (Fig. 2) has only two possible modes:

(6)

(2 + 2 + 2)

correct mode

wrong mode.

In this counter type, the logic groups can only have an even number
of elements. Because of this restriction, there are always fewer wrong
modes than in a single-phase counter with the same number of stages.

Example 3: A double -phase counter with an odd number of n = 9
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stages has ten different possible modes:

(9) correct mode

(7 + 1 + 1)

(5 3 + 1)

(5 + 1 ± 3)

(5 + 1 + 1 + 1 ± 1)

(3 + 3 + 3) wrong modes.

(3 + 3 ± 1 + 1 ± 1)

(3 + 1 + 3 ± 1 ± 1)

(3+ 1 + 1 +1+ 1 + 1 + 1)

(1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)
In this counter type, the logic groups can only have an odd number
of elements. In general, the higher the number n of stages, the higher
is the number of wrong modes.

4.3 Experimental Verification of Predicted Modes
Many counters of the three types shown in Figs. 1, 2, and 3 have

been built, with various numbers of stages, and with different types of
stages, including all types shown in Fig. 4. All of the predicted modes
for these counters have actually been observed. Any desired mode can
be induced by presetting all stages before turning the clock pulses
on, but only the possible modes will be able to circulate without being
altered.

V. SUPPRESSION OF WRONG MODES

All wrong modes can be suppressed by adding a certain small num-
ber of circuit connections. A general method for finding the necessary
and sufficient additional connections for any twisted ring counter is
to find criteria that are common to all wrong modes but do not ap-
pear in the correct mode. By suppressing these criteria, all wrong
modes will be prevented. To find these common criteria, it is useful
to define the concept of common logic groups.

5.1 Common Logic Groups
For a particular counter, the common logic groups represent the

set consisting of the smallest logic groups (g,i) from each wrong
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mode. For example, the 9 -stage double -phase counter, whose wrong
modes are listed in example 3 of Section 4.2, has two common logic
groups of sizes 1 and 3. Each wrong mode contains at least one of the
common logic groups. Taking the g, -values of all wrong modes as
common logic groups results in the smallest possible set of logic
groups with the property of each wrong mode containing at least one
of these logic groups.

The size of the smallest common logic group (mk) is equal to the
smallest gd-value of all wrong modes, gd d. That is

gmin d = 1 for single-phase counters,
gmin min = 1 for double -phase counters with odd number of stages, and
//min d = 2 for double -phase counters with even number of stages.

The size of the largest common logic group (no) is equal to the
largest gmln-value of all wrong modes, that is, gm*, max

MO = gm in max of E gi = n
1-1

with x > 3 for wrong modes. Every possible partition of the above sum
represents a possible wrong mode with a certain value gmin . The maxi-
mum of this value for all possible partitions is gminmaz . It occurs with
the minimum value of x = 3 and is

gm in max n/3.
The largest common logic group is therefore

mo n/3, (1)

the next possible logic group size equal or less than n/3. This is

mo > (n - 2)/3 for single-phase counters, (2)

mo > (n - 4)/3 for double -phase counters. (3)

This results is only a single /no -value in each case, when the restric-
tions of possible logic group sizes are taken into account. Combining
the latter and expressions (1), (2), and (3) into a single expression,
we get for the largest common logic group mo:

n
3

mo =
3
- - A 05A 1

with A chosen to make mo an integer, and

n = number of stages
p = 1 for single-phase counters

(4)
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p = 2 for double -phase counters
m0 = 1, 2, 3, 4, for single-phase counters
?no = 2, 4, 6, 8, if n = even for double -phase counters.
?no = 1, 3, 5, 7, if n = odd

The set of common logic groups for a particular counter consists
of the smallest and the largest common logic groups and all possible
sizes of logic groups between. It is given in Table I for counters up
to 20 stages. For single-phase counters with two stages and for double -
phase counters with two or four stages there are no common logic
groups, since these counters do not have any wrong mode.

5.2 Suppressing the Common Logic Groups
Suppressing all common logic groups in a counter leads, by defini-

tion, to the prevention of all possible wrong modes, and does not in-
troduce any new modes. This section shows that there is a subset of
common logic groups (Table II) whose suppression is sufficient for

TABLE I - COMMON LOGIC GROUPS
(Common logic groups are all different gmin values of all wrong modes)

Number of
stages

n

For single-phase
counters

For double -phase counters

With even
number of

stages

With odd
number of

stages

2 -
3 1 1

4 1 -
5 1 1

6 21 2
7 2 1 1

8 21 2

9 3 2 1 3 1
10 3 2 1 2

11 3 2 1 31
12 4 3 2 1 42
13 4 3 2 1 31
14 4 3 2 1 42
15 5 4 3 2 1 5 3 1

16 5 4 3 2 1 42
17 5 4 3 2 1 5 3 1

18 6 5 4 3 2 1 6 4 2

19 6 5 4 3 2 1 5 3 1

20 6 5 4 3 2 1 6 4 2
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suppressing all common logic groups and is thereby sufficient for
preventing all wrong modes.

5.2.1 Method of Suppressing a Group
If we want to suppress a particular common logic group of size mi,

we must prevent one of the following two patterns consisting of an
undesired sequence of ones and zeros

0 0 1 1 1 1 1 1 1 1 0 0

or ( 1 1 0 0 0 0 0 0 0 0 1 1  )

j elements

from circulating around the counter ring. The inverse pattern, in paren-
theses, always appears with the first one. This suppression can be
accomplished by preventing stage S. from switching from "0" ("1")
to "1" ("0") whenever stage 5.-1, is in state "0" ("1"). The position
of the patterns immediately before suppression is:

S2_, Sr

0 0 1. 1 1 1 1 1 1 1 0 0

or ( 1 1 0 0 0 0 0 0 0 0 1 1 ).
m; elements

If stage 5 does not switch to "1" ("0") with the next clock pulse, the
logic group of size mi is prevented from passing through stage 5.. It
is sufficient to suppress only one of the two patterns, since the in-
verse of it is then suppressed automatically.

This suppression can be implemented by adding a circuit connection
from the output of stage Sz_i, to the input of stage S. , preventing
Sz from switching from "0" to "1" whenever Sz_,, is in state "0."
This circuit connection, shown in Fig. 5a, bridges mi stages, and there-
fore is called a "bridging connection"; its associated parameter mi is
called a "bridging parameter."

The bridging connection could also be made on the inverse side of
the stages Sx_i_.; and S. , thus preventing S. from switching from
"1" to "0" whenever Sz_i, is in state "1." These two bridging con-
nections are equivalent, and one of them is sufficient. However, if both
connections are applied for each mi-value, a wrong mode is cleared
within half a counter period instead of a full period.
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FLIP -FLOP STAGES:

Sx-4

(a)

BRIDGING CONNECTIONS
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sx

FOUR -GATE STAGES:
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re .61.1 go

* INPUTS FOR ADDITIONAL
BRIDGING CONNECTIONS

(d)

Fig. 5 - Suppression of wrong modes by adding bridging connections, bridg-
ing m, stages. Part a shows the principle; b, c, and d show an example with
the two bridging connections m = 3 and m 1 for counters with different
types of stages.

Sy may be any particular stage of the counter, but it should be the
same stage for all bridging connections (although this is not essential
with many counters). The correct mode is not affected by this inhibition,
since in the correct mode Sz_i_ is always in state "1" ("0") when Sz
is switched from "0" ("1") to "1" ("0") because m, is always smaller
than n.
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5.2.2 Automatically Eliminated Wrong Modes

If we suppress one common logic group of size mi by using the
described method, we prevent the pattern

 0 1 0 
m,

and hence eliminate not only the wrong modes containing the com-
mon logic group mi, but also all other wrong modes that show this
pattern at any one position.

The remaining wrong modes, which do not contain this pattern,
require additional steps for their prevention. It can be shown that if
a mode with < mi satisfies both of the following two conditions,
it does not contain the above pattern and therefore is not eliminated
by suppressing mi:

(i) All possible sums of the elements of an even number 2v of con-
secutive logic groups must be 5 mi for at least one value of v (v = 1 or
2 or 3 ).

(ii) All possible sums of the elements of an odd number 2v + 1 of
consecutive logic groups must be > m, + 1 for the same value of v that
satisfies condition i.

Example: Suppose we have a single-phase counter with 19 stages,
and we suppress the common logic group of size m. = 6 by adding
a bridging connection bridging 6 stages as shown in Fig. 5a. Would
the mode (2 + 3 -I- 3 + 1 + 5 -I- 1 + 4) be suppressed?

We check whether this mode satisfies both conditions. Condition i
is satisfied with v = 1, since all pairs of consecutive numbers in the mode
notation (2 ± 3, 3 + 3, 3 ± 1, 1 ± 5, 5 ± 1, 1 ± 4, 4 ± 2) sum up
to < 6. That is, all sums of the elements of a pair (2v) of consecutive logic
groups are 5 m, . Condition i could not be satisfied with v > 1 in this
example. Condition ii is also satisfied with v = 1, since all triplets of
consecutive numbers in the mode notation (2 + 3 + 3, 3 + 3 + 1,
3 + 1 + 5, 1 ± 5 + 1, 5 ± 1 + 4, 1 + 4 ± 2, 4 ± 2 ± 3) sum up to

7. That is, all sums of the elements of a triplet (2v + 1) of consecutive
logic groups are z m, + 1.

The above mode satisfies both conditions, and therefore would
not be eliminated by suppression of the common logic group of size
m, = 6.
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5.2.3 Sufficient Subset

Suppression of a particular common logic group of size mi generally
does not prevent wrong modes with gmi > mi, but it does prevent
some of the wrong modes with g,o, < mi. In the remaining unsup-
pressed modes with gmin < mi, which all satisfy the two conditions
stated in Section 5.2.2, the largest possible gmtn-value, called g,, max,

follows from condition i:

2.

E g; <ri = or 2 or 3 ).

Every possible partition of this sum delivers a value gmin. The maxi-
mum of these grain -values for all possible partitions is gmin ma,. It oc-
curs with the minimum value of v = 1 and is

grain max mi/2.

This is the next lower common logic group size mi +1 that must
be suppressed:

mi+i mi/2. (5)

m; +, is the next possible logic group size equal to or less than mi/2,
which is

m,,, > (mi - 1)/2 for single-phase counters, (6)

m.+1 (mi - 3)/2 for double -phase counters. (7)

This results in only a single mi +1 -value in each case, when the re-
strictions of possible logic group sizes are taken into account.

Combining the restrictions and the inequalities (5), (6), and (7)
into a single expression, we get for the next lower common logic
group mi +1 that must be suppressed:

mi
mi+i = -2 - - i) 6,

with A chosen to make m, an integer, and

p =
p ---

1

2

= 1, 2, 3, 4,
m,+, = 2, 4, 6, 8, if n
mi+1 = 1, 3, 5, 7, if n

= even
= odd

0 A < 1 (8)

for single-phase counters
for double -phase counters
for single-phase counters

for double -phase counters.
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If we suppress ?n, , it is sufficient to supress ?n,,, as the next lower
common logic group, since suppression of mi prevents all wrong modes
with m, g,, > m, . Recursion formula (8) determines the maxi-
mum spacing of successive common logic group sizes m, to be suppressed
for sufficiently suppressing all common logic groups within the covered
range. By extending this range from the largest common logic group
mo to the smallest common logic group mk , we get the sufficient subset
of common logic groups

mo , ?n, ,  ,mk
that must be suppressed for preventing all wrong modes. mo is de-
termined by expression (4) m, through ?ni, are obtained by expres-
sion (8).

5.2.4 Necessary Subset

The mj-values resulting from expressions (4) and (8)

mo mt , m2 ' , ' Mk

always represent a sufficient subset of common logic groups to be sup-
pressed for preventing all wrong modes. But for some particular counters,
the necessary subset mo , m m2 , , mi may be smaller by a few ?n, -
values. That is, the smallest values ?n,,,  mk of the set are not neces-
sary. There is not a simple expression like (4) and (8) for giving only
the necessary m; -values but, for a particular counter, they may be
found by using the two conditions in Section 5.2.2, which have not yet
been used to their full extent in Section 5.2.3. In a first step, the last
value mk is left off and a check is made whether any wrong mode exists
that could satisfy both conditions for the remaining mi-values. Such
modes can be found by listing all possible combinations of logic groups
that satisfy those two conditions (for 1 < v mj/2). If there is no mode
consisting entirely of these listed combinations, Mk is not necessary. In
the next step, mk_i is left off, repeating the procedure, until the last
necessary value mi is found.

For counters up to 20 stages, Table II gives the. sufficient mi-values
(bridging parameters) according to expressions (4) and (8), with
the unnecessary ones in parentheses.

5.3 Implementation in Different Counter Circuits

Each bridging parameter mj denotes one bridging connection, bridg-
ing mj stages, which has to be added to prevent wrong modes (as
described in Section 5.2.1 and shown in Fig. 5a). Figures 5b, c, and d
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TABLE II - BRIDGING PARAMETERS 712;
(Numbers without parentheses denote the necessary and sufficient bridging

connections.)

Number of
stages

n

For single-phase
counters

ITti

For double -phase counters

With even
number of

stages
m;

With odd
number of

stages
nu

2 * *

3 1 1

4 1 *

5 1 1

6 2 (1) 2
7 2 1 1

8 2 (1) 2
9 3 (1) 3 (1)

10 3 1 2

11 3 (1) 3 (1)
12 4 2 (1) 4 (2)
13 4 2 1 3 (1)
14 4 2 (1) 4 2
15 5 2 (1) 5 (1)

16 5 2 (1) 4 (2)
17 5 2 (1) 5 (1)
18 6 3 (1) 6 (2)
19 6 3 1 5 (1)
20 6 3 (1) 6 2

* No bridging parameters because these counters have no wrong modes.

show the bridging connections for the values m = 3 and 712 = 1 for
counters with different types of stages. In counters with 6 -gate stages,
as shown in Fig. 5d, additional gates are required for proper sup-
pression of common logic groups without impairment of the correct
mode. For not impairing the correct mode, a feedback connection is
required from the output of stage S3.. These counters need one addi-
tional gate if there is one bridging connection or two additional gates
if there is more than one bridging connection.

As an example, we obtain for a 3 -stage single-phase counter only
one bridging parameter m0 = = 1. This means that only one
bridging connection is needed, bridging one stage. Figure 6 shows
three possible locations of the bridging connection. If bridging con-
nections pass the twist, they must also he twisted, as illustrated in
Figs. 6b and c.

For double -phase counters with an odd number of stages, one also
has to make sure that the signal from stage S=..., does not reach stage
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=m I

s,

)

S2

(a)

s,
S3

Sx

s, )

)

(b)

S2

F- S,

m=I

s,
S2

S3

S3 1-411-

(C)

Fig. 6 - Single-phase counter with three stages requiring one bridging con-
nection, m = 1. Parts a, b, and c are three equivalent solutions. If a bridging
connection passes the twist, as in b and c, it must also be twisted.

Ss earlier than the signal from stage Sz_i caused by the same clock pulse.
Otherwise a pattern 1 + 1 + 1 + 1 + 1  might not be prevented
under certain worst case propagation delays of the logic circuits in-
volved. It is easy to assure this timing condition if logic gates are used
that also provide a complementary output (as is the case in emitter -
coupled gates). Figure 7 shows such an example with NOR/OR gates. In
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A
0
0
B m=t

Fig. 7- Double -phase counter with three stages (with NOR/Olt gates). Use
of complementary gate outputs (on output S.0 instead of NOR output S., and
& instead of 82) for increasing the permissible gate propagation delay tolerance
range.

the case of a wrong mode (1 1 1) in this double -phase counter
with three stages, output Si° appears one gate propagation delay later
than 8, upon an input pulse A, and output 820 one propagation delay
earlier than 52 upon the same input pulse A. This is sufficient to meet
the above timing condition. If complementary gate -outputs are not
available, a small delay may be introduced into the bridging connections.
This additional timing condition does not exist in single-phase counters
and in double -phase counters with an even number of stages.

5.4 Experimental Verification
Proper suppression of all wrong modes by bridging connections

determined according to the described procedures has been verified
experimentally with counters of all three types (Figs. 1, 2, and 3),
with different stages (Fig. 4) and with many different values of n.
Counters for which the necessary set of bridging connections is
smaller than the sufficient set resulting from the formulas were
given special attention.

5.5 Summary: Suppression of Wrong Modes
A small number of additional circuit connections (bridging con-

nections) are sufficient for suppressing all wrong modes in a twisted
ring counter. The bridging connections are determined by the bridg-
ing parameters mi, which can be found by the formula:

n 2p A

m 3 3
o = - -  LI

mi
m1+1 = 2 - (p - 1) 

0 1
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with A chosen to make mo and m1+, integers, and

12 = number of counter stages
p = 1
p = 2

mi = 1, 2, 3, 4,

= 2, 4, 6, 8, if n =even
m; = 1, 3, 5, 7, if n = odd

0, 1, 2, 3, , j, , k 

for single-phase counters
for double -phase counters
for single-phase counters

for double -phase counters

Each of the resulting bridging parameters mt denotes one bridging
connection in the circuit, which bridges mj stages (Fig. 5). The
bridging connection can be located anywhere in the counter ring; if
it passes the twist, it must also be twisted. See Fig. 6.

The resulting k + 1 bridging parameters denote a sufficient set of
k + 1 bridging connections in every case. For certain counters, how-
ever, the necessary set of j + 1 bridging connections is slightly
smaller; it can be determined by the procedure described in Section
5.2.4.

Table II gives the k + 1 bridging parameters according to the
above formula for different counter types up to 20 stages. The bridg-
ing parameters denoting unnecessary bridging connections according
to the above procedure are in parentheses.

VI. CONCLUSION

Tools and methods for predicting and suppressing wrong modes
in twisted ring counters have been developed. As a result we have
gained a better insight into the multimoding mechanism and ob-
tained a simple method for preventing multimoding. This method is
summarized, and the required additional circuit connections are given
in Table II for counters up to 20 stages.
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Synthesis of Rational Transfer Function
Approximations Using a Tapped

Distributed RC Line With Feedback
By DAVID A. SPAULDING

(Manuscript received June 26, 1968)

This paper describes a simple procedure for synthesizing an active
distributed RC network which, by using dominant poles and zeros, realizes
a very accurate approximation of an arbitrary stable rational transfer
function. The network uses a single uniformly distributed RC line with taps
spaced along its length. A linear combination of tap voltages is added to the
input signal to form the driving voltage for the RC line; the output signal is
also a linear combination of the tap voltages.

The network offers a number of significant advantages. Since it realizes a
nearly rational transfer function, the approximation problem can be
conveniently solved using readily available results on rational function
approximation. Also, the network uses only one uniform RC line, the transfer
function can be changed simply by changing resistor values, and the frequency
can be scaled by minor connection changes. Thus one standard network with
minor modification is useful for a wide variety of applications.

This paper develops the design procedure and derives the various sensi-
tivity functions of importance. Two example designs are carried out: an
approximation to a second -order low-pass transfer function and an approxi-
mation to a second -order band-pass transfer function with a Q of 100. The
sensitivities for the examples are very reasonable and the measurements made
on laboratory models indicate excellent agreement with theoretical predictions.

I. INTRODUCTION

The progress being made in miniaturizing electronic circuits has
stimulated a continuing interest in the synthesis of networks using
distributed RC components. Numerous techniques are available for
synthesizing transfer functions using distributed RC components in
conjunction with various active network elements.1 Generally, these
synthesis procedures are applicable only if the transfer function has

2051
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a very special form. This form is not a rational function of the com-
plex frequency variable s but involves hyperbolic functions of s. If
the problem posed to the network designer were merely to realize
given transfer functions of this special form using distributed RC
networks, there would be no difficulty.

However, the problem is generally not this but rather to realize a
network which achieves certain system specifications such as band -

limiting or pulse shaping. Thus, a realizable transfer function must
be developed which approximates the specifications (that is, the ap-
proximation problem must be solved) before a network can be
synthesized. Because the transfer functions realizable by distributed
RC networks have a somewhat complicated form, the approximation
part of the network designer's work is more difficult when using dis-
tributed RC networks. This fact has led to a continuing effort to
develop distributed RC networks which realize rational transfer
functions. Since rational functions are easier to manipulate, and many
applicable results are readily available in the literature, the approxi-
mation problem is made much easier. This paper develops a simple
procedure and network for realizing an accurate approximation to a
rational transfer function using an active network incorporating a
distributed RC line.

Available techniques for synthesizing rational transfer functions
using distributed RC networks are documented by Heizer, Barker,
Woo and Hove, and Fu and Fu.'-° Each of these techniques uses the
fact, first demonstrated by Heizer, that some of the immittance
parameters of a distributed RC line can be made rational functions
of s by cutting the conducting layer of the RC line in a particular
manner.

These synthesis techniques have some definite disadvantages. They
require two RC lines with cuts in the conducting layer which depend
upon the transfer function being realized; this is undesirable from a
manufacturing point of view and makes tuning difficult. Also, the
synthesis procedure involves a test to determine that the curve cut
in the conductor satisfies certain restrictions, that is, it does not "at-
tempt" to create a negative capacitance in the line. If it does, a new
try at the design is required. Fu and Fu eliminate this problem at
the expense of a significant increase in circuit complexity.°

Recently techniques have become available for approximating
rational transfer functions by using the dominant poles and zeros of
distributed networks. A few representative approaches are those of
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Kerwin, Bello and Gausi, and Wyndrum. Kerwin's approach, in gen-
eral, requires the use of lumped components.7 Bello and Gausi con-
sider only low-pass transfer functions and use different configurations
to realize an arbitrary transfer function.8 Wyndrum's technique also
deals only with low-pass transfer functions.°

The synthesis technique described here offers advantages over the
other available techniques since only one uniformly distributed RC
line is .used and it is capable of realizing an accurate approximation
to an arbitrary transfer function. In addition, the design procedure
is very simple.

II. TRANSFER FUNCTION OF UNIFORM RC LINE WITH FEEDBACK

Chen and Levine1°. 11 have suggested that filters could be built
using a uniform RC line driven by an input voltage source and hav-
ing the output formed as a linear combination of the voltages ap-
pearing along the line as in Fig. 1. This procedure is useful in some
cases but is not general enough because it synthesizes transfer func-
tions by using zeros of transmission. What is needed in addition to
zeros are poles; poles can be realized by using feedback as in Fig. 2.

The network of Fig. 2 consists of a uniform RC line with taps
spaced along its length. The tap voltages are appropriately scaled by
the infinite input impedance coefficients cti and added to the input
signal to form the driving voltage for the line. The output voltage is
the sum of the tap voltages appropriately scaled by the infinite input
impedance coefficients bi. The RC line is the three -layer structure
shown in Fig. 3, where it will be assumed that there is no voltage
variation in the y direction.

To determine the voltage transfer function of the network of rig.

Fig. 1- Tapped RC line.
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I
Fig. 2 - Tapped RC line with feedback.

2, we first determine the voltage gain Gi(s) from the input of the line
to a point xi meters from the input. The result is1

cosh (1 - xi)(rcs)1
Gi(s) -

cosh l(rcs)1 '

where 1 is the total length of the line in meters, and r and c are the
resistance and capacitance per meter. If the distances 1 and xi are
constrained to be integral multiples* of some fixed length d, , that is,
/ = Ldo and xi = ido , and we let T = rCdo2 Gi(s) becomes

cosh (L - i)(rs)1
Gi(s) - (1)cosh L(rs)

Using (1) the voltage transfer function of the network of Fig. 2 be-
comes

L

E b, cosh (L - i) (Ts)'
G(s) = K

E ci cosh (L - i)(Ts)1
i =0

(2)

where co = 1 and c, = -a, for i . The real constant K is such that
b = 1 for the smallest i for which b, 0. By making the substitution
p = exp (rs)1 and factoring the resulting polynomials in p, it can be

* For any set of xi and 1, a small enough di, can be found that error in this
assumption is negligible.

ao has been set to zero which can be done without. any loss of generality.
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CONDUCTOR

Fig. 3-Uniform RC line.

shown that (2) can be factored into the form

2R -L 11 [cosh (Ts). - Zi]
G(s) = K Li=i

IT [cosh (Ts)' - Pi]
1=1

2055

(3)

where 1 < R < L [unless the numerator in (2) is unity in which case the
numerator of (3) is 2'-.1 and the quantities Pi and Zi are real or occur in
complex conjugate pairs.

Before considering the question of stability, we will determine the
locations of the poles and zeros of G(s). Notice that, in spite of the fact
that (s) is involved, G(s) is single valued. To determine the pole (zero)
locations, we set the denominator (numerator) factors in (3) equal to
zero and solve for s. For a typical denominator factor (cosh (Ts)1 - Pi)
we calculate the s -plane pole positions to be

TSi = 1n2 p, I - (arg p, 2nir)2 + 2j In I pi I (arg p, 2nir) (4)

where n = 0, ±1, ±2, . . . and pi = Pi + - 1)1. The term pi
comes from the solution of a quadratic equation which has two roots.
However, these roots are always reciprocals of one another and, as can
be seen from the form of (4), these two values of pi give the same s, .

Hence, only one of them need be used. A simple check shows that each
of the poles resulting from the single term (cosh (Ts)1 - Pi) as given by
(4) is simple.*

When Pi is real, the si given by (4) are on the negative real axis for
I Pi I <= 1 and occur in complex conjugate pairs for I Pi I > 1. When Pi
is complex, (3) involves a term [cosh (Ts)4 - Pr] which gives poles that
are the complex conjugates of those of (4).

It is easy to see from (4) that the infinite set of poles generated by one

* For P = ±1 double roots occur but not for P = +1 with n = 0.
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denominator factor lie on a parabola given by

=
T

in2 2
W T

4 1112 I pi I

(5)

Figure 4 shows the location of these poles in the normalized, T = 1,
s -plane. The poles due to the term [cosh (Ts)1 - 131] are indicated by
single circles and those due to the term [cosh (Ts)1 - Pt] by double
circles. Similar comments hold in the case of numerator factors in (3).

Knowing the locations of the poles of G(s) permits the question of
stability to be answered easily. For simplicity we assume that in (2)
bo = 0. If this is not the case, G(s) can be separated into the sum of a
constant plus a G(s) which is of the form of (2) where O(s) has the same
denominator as G(s) but different numerator and bo = 0. The constant
gain is stable. With bo = 0, G(s) is stable, that is, its impulse response
remains bounded for large values of time, if all the poles lie in the left

aL= e112 IPLI
ain2IpLI

NORMALIZED S- PLANE

(02

iw

2 tn2IpLI

--(arg PO'

--(arg pi, -27)2

E -

Fig. 4 -S -plane roots resulting from a pair of complex conjugate factors in
G (s) .
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half of the s -plane and those on the jw axis are simple. This result can be
proved by finding the inverse transform of G(s) by using the Cauchy
residue calculus.12

Notice that G(s) is a meromorphic function and G(s) 0 as s ---> co .

The Laplace inversion relation is written as

z7r
g(t) = lim G(s)e't ds.

3 a -

This integral is evaluated by closing the contour in the left half plane
so that it does not pass through any poles of G (s) and encloses a
finite number of poles. The value of the closed contour integral is
determined by the residues of the poles enclosed. As n oo yn 00

and the contours in the left half plane become larger without bound.
Using Jordan's lemma" the integral over the left half plane contour
approaches zero and g(t) is determined. For large values of time the
behavior of g (t) is dominated by that pole with the most positive
real part. The stability requirement follows directly from this.

III. TRANSFER FUNCTION SYNTHESIS

A glance at Fig. 4 shows that, if the n = 0 pole is close to the jco axis,
the response of the network will approximate that of this single pole
alone for values of w near the pole. An examination of (4) shows that this
dominance can always be made to occur by an appropriate selection of T.
From (4) the pole positions in the s -plane are proportional to r-1.
Therefore, by decreasing T the poles become more widely spaced and
hence those near the jco axis become more dominant. Since pi can be
adjusted so as to cause the n = 0 pole to be arbitrarily close to the
s -plane origin, a decrease in T can be offset, for the n = 0 pole, by chang-
ing p, . Therefore, the n = 0 pole can be made dominant. Hence, a
rational transfer function can be approximated by the system considered
here by making its dominant poles and zeros match those of the desired
rational function. To calculate the feedback and feed forward coeffi-
cients of (2) we calculate the P and Zi of (3) by using the desired pole
or zero for s, in

= cosh (Ts;)'
Zi (6)

and multiply the factors in (3).
The scale factor T controls the dominance of the n = 0 poles and zeros;

the dominance improves as T is reduced. A lower limit on practical
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values of r occurs because the network sensitivity generally deteriorates
with reduced values of T. An upper limit on T occurs because the n = 0
poles are restricted to the shaded area of Fig. 5. If T is large enough so
that a desired dominant pole si lies outside the shaded region, the net-
work will realize this pole for a nonzero value of n. It is clear from Fig. 4
that the network will then have an n = 0 pole with a more positive real
part than that of si . This pole can destroy the desired dominance or
cause instability if it lies in the right half s -plane. The region permitted
for n = 0 poles in Fig. 5 is determined from (4) by setting n = 0,
substituting a value for co, and solving for the most negative value of a; .
The resulting restriction is

2 2
Cil i T 7r

0 Cr - 47r r (7)

Except in rather unusual situations T will he much smaller than the
maximum implied by (7).

To synthesize an approximation of a given rational transfer func-
tion, the following simple steps are performed.

(i) 7 is selected so that all the poles of the transfer function lie in
the region shown in Fig. 5, and the resulting n = 0 poles and zeros
realized by the RC line are dominant.

Fig. 5 - Permitted n = 0 pole positions in s -plane,
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(ii) The desired transfer function poles and zeros are used in (6)
to determine the Pti and Zi which, when substituted in (3) and multi-
plied out, yield the feedback and feed forward coefficients for the net-
work.

(iii) The exact response of the network is calculated using (2) or
(3) to verify that a good approximation has been achieved.

As pointed out in the examples in Section VI, a wide range of values
of 7 gives a very accurate approximation. Thus, a little experience
will then make step iii unnecessary. The selection of 7 also affects the
sensitivity of the network; hence sensitivity considerations may de-
termine the best value of T.

IV. SENSITIVITY

One of the most important aspects of any active network synthesis
technique is its sensitivity to various parameter variations. In addi-
tion, sensitivity results are necessary to show how a physical network
may be tuned to achieve an accurate realization of the requirements.
Of the several different sensitivity functions that could be derived,
we have chosen to consider the relative changes of the poles and
zeros with a variety of parameters. These seem to give good physical
insight into the behavior of the circuit and result in reasonably con-
cise expressions. The sensitivity functions derived are the relative
changes of the poles resulting from relative changes in feedback
coefficients, T, tap positions, and tap loading. Similar results hold for
the zero sensitivity functions. The details of the derivations are con-
tained in the Appendix.

If AI is the pole in question and the sensitivity of that pole to some
parameter X is defined as

= a21ax xi
and P, = cosh (TAO % where A, is the qth pole, then we have the fol-
lowing:*

(i) Pole sensitivity to feedback coefficients:

- ai cosh (L - i)(TX;)1
(8)a; -

2L2(TX;)1sinh (TX,)1 JJ(P, - Pk)
Of

* X is assumed to be a simple pole.
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Simple relations for determining the numerator of (8) are given in
Appendix equations (20) and (21).

(ii) Pole sensitivity to RC product, T:

= -1. (9)

(iii) Pole sensitivity to improper tap spacing*

jai sinh (L - i)(TX;)1
Sx1 i L (10a)-

2L-2 sinh (rXi)1 - Pk)

=

k=1

L-1
L E ck sinh (L - k)(TX))1

sinh (TXi)1 (P - Pk)
k=1

(iv) Pole sensitivity to tap loading:

Sp'
g iR cosh (L - i)(TX;)1 E ck sinh (i - k)(TX,.)1

k=0

2"TXi sinh (i-Xj)1 Pk)
k=1
01

where gi is the conductance loading the ith tap and R = dor.

V. SECOND ORDER DESIGN EQUATIONS

(10b)

For the case where L = 2, that is, where the RC line is realizing an
approximation to a second order transfer function H (s) , the design
and sensitivity relations given above take on the very simple forms
below (A and p, which are complex, are the pole and zero positions in
the upper left half s plane) :

P = cosh (TX)1, Z = cosh (r p)1

cto = 0, a1 = 4 Re(P), a2 = - (1 + 2 I P 12)

bo = b1 = 0, b, = 1 for H(s) with no finite zeros

bo = 1, b1 = -4 Re(Z), b2 = 1 + 2 I Z12 for H(s) with finite complex
zeros

* = xi where xi is the distance from the input of the RC line to the ith tap.
Nominally = i.
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bo = 0, b, = 1, b2 = - 1 for H(s) with one zero at zero

ST, = -1

2P Re (P) -(1 + 2 I P 12)

= j(rX)1 sinh (rX)4 Im (P) ' 2j(rX)1 sinh (TX)' Im (P)

-2 Re (P) 2P*
Im (P) ' j Im (P)

sx -g ,RP g2RP*
2,jiX Im (P) ' - jrX Im (P)

2Z2 - 1S:. - -
2:7(7- p) sinksuth. p)1 Im (Z)

for H(s) with finite complex zeros.

For the case where H(s) has two complex zeros, the zero sensitivities are
the same as for the poles with p and Z replacing X and P, except for S:o
which is given. For the case where H(s) has a zero at zero and at infinity,
the sensitivity of the zero at zero is infinite (due to the normalization by
1/p), but unnormalized,

ap ap _2
and

ap = -2R.
ab, ab, r

Other sensitivities not given are zero.

VI. EXAMPLES

Two examples of approximations to second order rational transfer
functions will be worked out and compared with experimental results
achieved with a thin film line. The two functions to be approximated
are, normalized in frequency,

Gi(s)

G2 (S)

(s/ 4)2 + 1
(2)4s + 1

= 0.01 s
s2 ± 0 .01 s 1

(12)

(13)

The first is a noncritical low-pass function with a pair of zeros on the jw
axis and the second is a band-pass function with a Q of 100.

For the low-pass function (12) , sensitivity is not a problem be-
cause the poles are very low Q. Therefore, T can be selected to satisfy
(7) and to insure dominance of the poles. Letting T = 1 we have the
following results:
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X = (-1 + j) / (2)1 , P = 0.646 + 0.313j,

p = +j4, Z = 0.342 + j1.9

as = 0, a, = 2.59, a2 = -2.032

bo = 1, b, = -1.36, b2 = 8.5, K = 0.0544

S"' = 3.33 Z154°, Sa, = 3.65 Z -52°

= 4.12 Z 90°, Si, = 4.6 Z -116°

Sxo, = 1.15g1R Z -19°, SQ, = 2.3g2R Z 109°

= 0.508 Z 125°, = 0.16 Z -137°, AS: = 0.512 L -37°

S7, = 0.359 L90°, = 2.03 Z -170°

S:, = 0.126g,R Z 80°, S. = 0.254g2R Z 100°

Figure 6 shows a block diagram of the experimental circuit, the theoreti-
cal response, and the measured results. Notice that the theoretical
response realized by the RC line and that of the rational function cannot
be distinguished on the scale used for this figure, since they differ by
1 percent at most.

In the case of G2(s) which has a pole with a Q = 100, dominance is
achieved for a wide range of values of r for which (7) holds, and the
selection of T is influenced primarily by sensitivity considerations. The
parameter T affects the sensitivity in a rather complicated way as can
be seen from the various sensitivity relations. An examination of the pole
sensitivity to coefficient variations has shown that Sx., has a rather broad
minimum in the range 2 S T < 14 and that Sx., goes to zero in this range
when a, = 0. Therefore, without an exhaustive study to determine an
optimum value of T, we select that value which gives a, = 0, that is,

= 4.94. With this value of T the following result:

X = -0.005 + j P = j2.34

ao = a, = 0 a2 = -11.95

bo =0, b1 = 1, b, = -1 K = 0.051

=

S'; =

0.452 Z -45° KS% = 2 Z 180°

0.1015g,R Z90° S);, = 0 .203g2R L90°

=
abi b, ag

0 405 L 180° = 0.405R L 180° for the zero at zero.a2
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Fig. 6 - (a) RC line with feedback approximating Gi(s). (b) Gain vs fre-
quency for GI (S) 

The block diagram of the experimental circuit, the theoretical re-
sponse, and measured results are shown in Fig. 7. The difference between
the theoretical gain of the RC line and that of the rational function is
not noticeable since it is approximately 0.1 percent over the frequency
range shown in the figure.

The sensitivity of this network is quite acceptable. S:', can be con-
trolled by the proper selection of impedance levels; /2 , a2 and T can be
stabilized so that the values of S S.', and LS', are satisfactory. /2 should
not change after manufacture; a2 can be made to depend only on the
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Fig. 7- (a) RC line with feedback approximating G2(s). (b) Gain vs fre-
quency for G2(s).

ratio of two resistors which track with temperature and 7 can be stabi-
lized by selecting the temperature coefficients of the resistive and
capacitive materials of the line to be negatives of one another.*

Several final notes concerning the network are in order. By isolat-
ing the taps on the line with emitter followers when necessary, it is
possible to reduce to two the number of operational amplifiers in the
network used for combining and scaling, one for the feedback voltages
and another for the feed -forward voltages. When several of these net-
works are cascaded, one of these two can be eliminated by using an
.operational amplifier from the succeeeding network. One RC line can
be constructed with a large number of taps. Then by selecting the ap-
propriate set of taps, the line can be used for a variety of purposes
and at different frequencies.

* Tantalum resistors on a substrate can be made to track within ± 5 ppm/°C and
RC products can be made to track within ± 30 ppm/°C.
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Although only second -order examples were worked out and built, it
is not unreasonable to expect that advances in building thin film RC
lines and resistors using tantalum may eventually yield the stability
of the various parameters required to make higher -order realizations
possible.

VII. CONCLUSIONS

A network has beeen described which uses a single uniform RC
line with feedback to approximate an arbitrary rational transfer
function. The design procedure is simple as is the physical network.
Theoretical calculations indicate that the transfer function realized
by the RC line is an accurate approximation of the desired rational
transfer function and measurements made on experimental circuits
agree well with the theory.
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APPENDIX

Derivation of Sensitivity Expressions

This appendix derives the sensitivity expressions given by (8)
through (11). The sensitivity of quantity A to parameter a is defined as

ax
Sxa

ax
X

(14)

If s; is a network pole and D (s) is the denominator of (2) , D (s5) =
0. The equation D (sj) = 0 defines s; as an implicit function of the
parameters in D (s). By differentiating the equation D (s5) = 0 with
respect to a parameter a, we can determine the quantity asdact. This
result will hold for general values of the various parameters in D (s) .
For the particular case when all the parameters in D (s) have their
nominal values, s; will in fact be one of the desired network poles,
that is, s; = Furthermore, the factorization used in going from (2)
to (3) can then be used to simplify the expression for ava«. The
sensitivity of A; to a is then determined by using (14). A similar pro-
cedure using the numerator of (2) gives the sensitivity functions of
the zeros.
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A. 1 Sensitivity of Poles to Feedback Coefficients
From (2) the denominator of G. (s) is

D(s) = E ck cosh (L - k)(Ts)1
k =0

(15)

If s; is a root of D(s.,) = 0, we have

a L

D(s;) = 0 = E ck(L - k) sinh (L - k)(rsi)4 las,
ac; k=0 2(T.Si)

T
ac,

+ cosh (L - i)(Tsi)

Setting all the parameters to their nominal values gives s; = X; . As
shown in (18), the term in brackets is nonzero if X is a simple pole and
TX; - n21r2 where n is a nonzero integer. Therefore, solving the above
equation gives

ax,
ac;

cosh (L - i)(TX,)1

E ck(L - k),sinh (L -
k -U (TX/)4

As was done in (3), (15) can be factored, when all parameters have
their nominal values and Pk = cosh (Txk) %, into

D(s) = E c, cosh (L k)(Ts)/ = II [cosh (Ts)/ - N. (17)
k=0

Differentiating this equation with respect to s gives

ck
(L - k) sinh (L - k)(7-8)1

2(78)1

=i
= E such L

2(Ts)
IA [cosh (Ts) - Pk],

in

(16)

and letting s = Ai, we have

.V.L
Ck

(L - k) sinh (L - k) (7 -X;)/ T - 21-2T sinh (TXi)1 (Pi
k -U 2(TXj) (TXi)1 1,=1

(18)

(18) is nonzero provided X, is a simple pole and TX; - nY where n is
nonzero integer.

Using this and aci/aa, = - 1, i X 0, with (16) gives

ai cosh (L - i)(TX,)1
= (19)

21-2(TA) sinh (TX))/ fl (P, - Pk)
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The numerator can be simplified by expressing at, in terms of the Ph
by using (17) and by factoring cosh (L - i) (TA;) 1,6 . The results are

ao = 0

a, = 2 E P,
(20)

a2 = -L - 2 E P -[ E p1

a3 = 2(L - 1)

and

of i

I.
L4 L I,

EP, + 7). E Pi{E PI Ei,_,0 i_i i=1 ,,,,,,,i

cosh (L - i)(rxi)i = 2(L-i-i)
()

cos [ 2k -
2(L - 73 ,

i L. (21)

A. 2 Sensitivity of Poles to Tap Position
The tap positions are directly proportional to the integers k in (15).

If k in (15) is replaced by /k which is no longer constrained to be an
integer and s; is a root of the resulting D(s), we have

D(si) = E ck cosh (//, - /k)(Tsi)i = 0.
k-0

As in the previous section, differentiating with respect to /k, solving
for OWO/k, using the nominal values /k = k so that s; = A), and using
(18), we have

and

ASX1:

iai sink (L - i)(7Xi)1

2L-2 Binh(rXi)i
kml

i L (22)

L

L Eck sinh (L - k)(TX)1
Siii, = k.0

L (22)

2L-2sinh (rXi)1 II (Pi - PO
raj

* Divide ai by 2 if i L.
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Fig. 8 - RC line model for loading analysis.

A.3 Pole Sensitivity to Tap Loading
To calculate the sensitivity of a pole Xi to the loading at the ith tap

by a conductance gi , we assume that all other taps are not loaded, that
is, g, = 0 for j i, and calculate the voltage transfer function from the
input to the various taps. Having found these, we calculate the denomi-
nator of the system transfer function, D(s), and proceed to calculate
ax; /agi in the same way as was done in Section A.2.

To calculate the voltage transfer function we will use the chain matrix
description of the line which is

cosh k(Ts)1 Zo sinh k(Ts)11
[Ak =

Z0-1 sinh k(7-8)1 cosh k(rs)

where Z0 = (r/cs)% and kdo is the length of the line. The line, loaded
by gi at the ith tap, can be considered as the cascade connection of
an RC line of length ido connected to a two -port consisting solely of
gi which in turn is connected to an RC line of length (L - i) do as seen
in Fig. 8. The chain matrix of gi is

A9, =
[1 01.

gi 1

From Fig. 8 and the properties of the chain matrix we have for 0
k < i

Lk]1= Ai_kAA,_,[eL
kJ

and for i < k S L

reki

o Bk[eL
-iL_

= AL-k[eLln Bk[eL
ik -iL -iL

With i1. = 0 the above relations give the voltage transfer functions
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from the line input to the kth tap as

Gk(s) = ek(s)/eo(s) = Bkii/Boti

where Bkii is the (1, 1) element of the matrix Bk -

The matrices Bk for 0 -.1c,<iandi_k_L, are

rf cosh (L - k)(Ts)1

Bk =
g iZ o sinh (i - k)(Ts)i cosh (L - i)(Ts)4

and

B k =

_ {}
cosh (L - k)(Ts)1 { }

{}1

2069

I {
}_

respectively, which give the gains Gk(s) as

Gk s - cosh (L - k)(7 -s)1 g iZ 0 sinh (i - k)(Ts)1 cosh (L - i)(Ts)1
)(

cosh L(Ts)1 giZo sinh i(Ts)4 cosh (L - i)(TO

for 0 < k < i, and for i < k < L

cosh (L - k)(Ts)
Gk(S) -

cosh L(Ts)1 giZo sinh i(rs)1 cosh (L - i)(Ts)
By using these equations in the expression for the gain of the feed-
back structure and multiplying the numerator and denominator of
this expression by Bon , we have the following expression for the
denominator, D (s) .

D(s) = E ckB.,

= E ck cosh (L - k) (Ts)'
k=0

-1

g;Z0 cosh (L - i)(Ts)1 E ck sinh (i - k)(T S)1
k=0

Now proceeding as in the previous sections, let D (s;) = 0 and differ-
entiate with respect to gi to get

as, L ck(L - k)T
ag;k=o 2(7-si)1 sinh (L k)(Ts i)1

-}- cosh (L - i)(Ts ,)1 E c, sinh (i - k)(Tsi)1 gi( ) = 0.
k=0
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With gi = 0, s; = Aj and the above gives with (18)

el - - g iR cosh (L - i)(TX,)1 E c, sinh (i - k)(rXi)1
k=0

L

2L-2TX; sinh (TX;)1 (P -P ,)
k=1

A. 4 Sensitivity to RC Product Changes
It is assumed that the product RC = T of the line is uniform but not

correct. The sensitivity of the poles to changes in T is easily seen to be

S;!' = - 1
since T always appears multiplying s in the transfer function and is
a frequency scale factor.
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