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We consider the problem of the transmission of discrete -time analog data
with a variety of fidelity criteria. The outputs of the analog source are as-
sumed to belong to abounded set. Bounds on the minimum achievable average

distortion for memoryless sources are derived both for the case where the

coding delay is infinite (an extension of the Shannon Theory) and also for
some cases where the coding delay is finite. Several examples are given, for
which the upper and lower bounds coincide.

Further, we discuss the case where the assumption of the existence of a
probabilistic model for the source is dropped. We adopt as our fidelity
criterion the supremum over all possible source -output n -sequences x, of

the conditional expectation of the distortion given x ("guaranteed distor-
tion"). The Shannon Theory is not directly applicable in determining the
minimum guaranteed distortion. We do obtain results for two important

cases. Some generalizations and applications are also discussed.

I. INTRODUCTION

In this paper we are concerned with communication of discrete -time
analog data over a communication channel with a variety of fidelity
criteria. The central assumption about the analog source is that its
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outputs belong to a bounded set, typically the interval [-A/2, A/2].
We begin with a rough outline of our results, leaving the precise formula-
tion and statement to Section II. Proofs are found in Section III.

Suppose that we have a data source which emits a sequence of sym-
bols x, , x, , £ DC (an arbitrary set) at a rate of ps per second. This
sequence is fed into an "encoder" which assigns to each successive block
of n source symbols, say x = (x1 , x2 , , x), a channel input of dura-
tion n/ps = T seconds. At the receiving end of the channel, the T -
second output is transformed by a "decoder" into an n -sequence, say

= (&1 ±.2 / &/3 which is delivered to the destination. The "dis-
tortion" between the source output sequence x and the received sequence
it is defined as dnx, = n-1 d(x,, , 4), where d(x, 0 is
an arbitrary function.

The classical problem is that of a "memoryless" source, where suc-
cessive source outputs are statistically independent with identical
probability distribution. In this case it is meaningful to let the system
performance criterion (fidelity criterion) be the statistical expectation
of the distortion d'' (x, it). A quantity of interest is ii*(T), the smallest
attainable value of the fidelity criterion when the coding delay is T
seconds. The Shannon Theory gives the asymptotic behavior of d*(T)
as T co. In many cases this limit is difficult to evaluate analytically.
Theorem 1 (in Section 2.2) considers the case where the source output set

= [-A/2, A/2], and the function d(x, &) depends only on the dif-
ference - x. This theorem gives a lower bound on limitT. C1*(T).

The examples which follow this theorem illustrate the applicability
and utility of the bound.

There are two cases in which we are particularly interested. In the
first, the source set OC = {0, 1, , K - 1} with a uniform distribution,
and d(x, "i) = 0 or 1 according as x = or x 0 &. Thus the fidelity
criterion is the error -rate. For this case let a*(T) = P.(K, T). In the
second case, OC = [-A/2, A/2] with a uniform distribution, and d(x,&)=
0 or 1 according as I x - I < S or I x - I _>_. 8 (where S > 0). In
this case let d*(T) = Q(T, A, (5). It turns out that P. and Q are inti-
mately related. In fact it is a consequence of Theorem 2 (Section 2.2)
that if A/(28) = Ko, an integer, then Q(T, A, 8) = P.(T, Ko). This
result is valid for all values of the delay parameter T. From this result
it can be deduced that the optimal encoder for the analog source OC =
[-A/2, A/2] is a "uniform" quantizer followed by an optimal "digital"
encoder. This is the only known case for which analog -to -digital con-
version is known to be optimal for finite T for the transmission of analog
data from a memoryless source.

We now drop the assumption of a memoryless source. In fact we do
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not even assume that there is a probabilistic model for the source.
Instead of the expectation of the distortion, we adopt as our fidelity
criterion, the supremum, over all possible source output n -sequences x,
of the conditional expectation of the distortion given x. We call this
criterion the "guaranteed distortion". Let ci*(T) be the minimum
attainable guaranteed distortion for a system with delay parameter T.
The Shannon Theory is not directly applicable in determining ci*(T).
We do obtain results for the two interesting cases discussed below.

In the first, X = {0, 1, , K - 1} and d(x,) = 0 or 1, respectively,
when x = or x 0 For this case let ci*(T) = P.(T, K). It is a conse-
quence of Theorem 3 (Section 2.3) that P.(T, K) = limitr,
P.(T, K), which is known from the Shannon Theory.

In the second case, 9C = [-A/2, A/2] and d(x, = 0 or 1, respect-
ively, when Ix - < 5 or I x - x I >= 6. For this case, let c1*(T) =
0(T, A, 6). Theorem 4 (Section 2.3) relates P. and Q by

()(T, A, 6) = P.(T, M),
where M is the unique integer satisfying (M - 1) < A/(25) < M.
Here too, we can deduce the optimality of analog -to -digital conversion.
Theorem 4 is generalized by Theorem 5 (Section 2.4) to apply to an
arbitrary set X with a distance -like measure defined on it (replacing
I x I).

In Section 2.5, we give some applications of the above results. In
particular we obtain some results for the distortion d(x, = I x -

In order to state our results completely and precisely, it is unfor-
tunately necessary to give a rather large collection of definitions and
to introduce a large number of symbols. In order to ease the reader's
burden somewhat, we have included a glossary of symbols in the ap-
pendix.

II. STATEMENT OF THE PROBLEM AND PRINCIPAL RESULTS

In Section 2.1 we define a "channel" (and its "capacity") in a very
general and abstract way. We do this because the nature of the channel
does not figure explicitly in our results (except for the channel capacity),
and we want our results to apply as broadly as possible. In Section 2.2
we describe the communication system which we shall consider, and
state our results for the case of a "memoryless" information source.
The remainder of the results follows in Sections 2.3-2.5.

2.1 Channel and Channel Capacity

A channel is defined as follows. For every T > 0 we have a set WT
of "allowable" inputs and a set 57, of possible outputs. Every T
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seconds some w s WT is transmitted through the channel, and the chan-
nel output z is a member of 5, . The output is related to the input w T

by a probability measure Au, on the set 37, . Thus given that w E WT is
transmitted, the probability that z E B [where B is a (measurable) subset
of ad is Ato(B). For example WT and 5T may be the set of binary se-
quences of length [Tit. The measure ,u, is then a discrete conditional
probability distribution. Another example is the case where WT and
37, are sets of real valued functions defined on the interval [0, T], and
the members of 'CV T have "energy" not exceeding PT.

With T specified, a block code with parameter N is a set of N pairs
{ (wi }1:1-1 , where w, E ek4k7 T are called code words and the
collection of Bi is a set of disjoint (measurable) subsets of 2(T called
decoding sets. If code word w,(1 < i < N) is transmitted, the resulting
error probability is

X, = Pr {z Bi I wi is transmitted} = 1 - µ,(B1). (1)

The word error probability for the code is

X = max X, . (2)
15i6Ar

Let X*(T, N) be the smallest attainable word error probability for a
code with parameters T and N. The channel capacity C is defined as
the supremum of those numbers R > 0, for which

X*(T, [en-) --> 0, as T 00.

Let us define the average word error probability by

- 1
X = E x. .

N

Thus X is the resulting average error probability which results when
each of the N code words are equally likely to be transmitted. Let us
define X*(T , N) as the smallest attainable value of X for a code with
parameters T and N. Since 7. < X for any code, it follows from the
above definition of channel capacity that for any R < C,

x- * [eRT]-) T

Further it is known that for a large class of channels including the mem-
oryless gaussian channel and discrete memoryless channels,'

X*(T, [ecT]) ---* 1, as T 00. (4)

[It is also true that for many of these same channels if R > C,
t Throughout this paper we denote by [x].- and [x1+ the largest integer < x

and the smallest integer > x respectively (0 < x < co).

(3)
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X*(T, [eR T]-) tends to 1 as T , but we do not need this fact here.]
Let us remark here that for a large class of channels (including "mem-

oryless" channels and "finite state channels"), the capacity C is known
to be the supremum of a quantity called the "information". In fact
this equivalence is the essence of the Fundamental Theorem of Informa-
tion Theory. It will not be necessary, however, to explore this equi-
valence further.

2.2 Memoryless Source and Communication With a Fidelity Criterion

Consider the communication system of Figure 1. The output of the
source is a sequence of random variables X1 X2 ,  from an arbi-
trary subset 9C of Euclidean p -space. Assume that these random vari-
ables are statistically independent and identically distributed with
probability density function P8(x), x e X. If we allow impulses in the
density function, then the Xk can be discrete random variables. Say
that the source outputs appear at a rate of p, per second. The encoder
waits T seconds (called the "delay") during which time n = psT sym-
bols, say X, , X2 , , X,, e oc, have appeared at its input. (Assume that
psT is an integer.) Denote the T -second output of the source by the
random n -vector X = (X X, , , Xn) e 9C'.

The channel is defined as above (Section 2.1), so that during the
T seconds which it takes for the n -vector X to appear, the channel can
process an input belonging to the channel input set TV T . It is the task
of the encoder to assign to each possible source output n -vector X = x,
a channel input is(x) e 'W T . The channel output is a member Z of the
channel output set oT , and it is the task of the decoder to assign to
each possible Z = z an n -vector X = f D(z) e Or. Note that the source
and channel statistics define a joint probability density on the random
n -vectors X and X.

Now ideally we would like X = t But this is most often not possible
due to imperfections (for example, noise) in the channel. Thus we define
a fidelity criterion which we use as a measure of the reliability of the
system. Suppose we are given a non -negative distortion function
d(x, defined on OC X X. Typical choices of the distortion function are
d(x, = J x - (s > 0) when 9: is a subset of the reals (that is, the
dimensionality p = 1), or the "Hamming" distance

SOURCE ENCODER
fE (X) CHANNEL

z
DECODER

= f ( z

Fig. 1-Communication system.
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id(x, &) = d(x, &) = 0, x = &,

1, x 0

where X is a discrete (that is, countable) set.
The distortion between the n -vectors, x = (x, , x2 ,

=

dcn)(x, = E d(x,. , 4).

(5)

, xn) and

Our system performance (fidelity) criterion, which we seek to minimize,
is

= Ed (n) (X, ft),

where E denotes expectation (with respect to the joint probability dis-
tribution of X and X). For a given delay T, which corresponds to
n = pa T, let a*(T) denote the infimum (with respect to all encoder -
decoder pairs) of the attainable values of a (for given ps and source -
channel statistics). Although we usually do not know a*(T) exactly, we
do know its asymptotic behavior as T --> co . We proceed as follows.

For 0 < (< 00, define ag((3) as the set of probability density func-
tions p(x, &) defined on X X r which satisfy

(i) f p(x, = Ps(x), the source output probability density
function,
f f d(x, &)p(x, dx #.

The information corresponding to the density p(x, t M(i3) is defined as

I {p(x, &)) = f f p(x, &) log P s'p2(&) dx
'

(6)
P5(x)p2(x)

where p2 (i) = f p(x, dx. It is easy to show that I >= 0 with equality
if and only if p(x, = Pi(x)p2("i). Finally define the equivalent rate
of the source

Re, (13) = inf / {p(x, "i)} . (7)
p(x.i).ag(j)

Re,(#) is usually called the "rate -distortion function". Note that Re,((3)
depends only on l3 and P a(x).

Let us now return to the quantity d*(T). Shannon's well known
theorems tell us the following.' For a given communication system
(as in Fig. 1),
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for all T,

as T ,

(8)

where do is the smallest solution of

p.Req(C10) C,

and C is the capacity of the channel.
Some intuitive insight into the meaning of Shannon's theorem can be

gained by thinking of p.R.,((3) as the equivalent rate in nats per second
of the source (when reproduced with distortion (3). It is reasonable
then to suppose that the minimum attainable distortion do is that
distortion for which the source rate is just equal to the channel capacity
C.

There are two well-known cases for which Rego) is known explicitly.
The first is the case where CC = the reals, P s(x) = (270-1 exp (-x2/20-2),
and d(x, = (x - x)2. In this case, Re,(0) = I log 0-2/02, so that do =
0-2 exp (-2C/Ps).

The second case (which is important in the sequel) is OC = {0, 1, 2, ,

K - 1} (K = 2, 3, ), Ps(x) = Elf:O (1/K)gx - k)[5(x) is the unit
impulse], and d(x, &) is given by equation (5). In other words, the source
output is a sequence of independent random variables, each equally
distributed on the K-ary alphabet {0, 1, , K - 1}. The quantity
a is the average fraction of symbols received in error, and is often called
the "error -rate". In this case, we write (-NT) = P.(T, K), where the
dependence of P. on K as well as T is indicated explicitly. For this
case it is known that2

Rec,(0)

log K - h((3) - 0 log (K - 1), K - 1
(9a)

K '

where

h(0)

0,

= -0 log 13 - (1 - (3) log (1 -

K - 1

(9b)

K '

(3), (0 (i _LC 1).

Shannon's theorem, equation (8), tells us that

P8(T, K) -> -y(K, ps , C), T -> oo , (10a)

where -y(K, ps , C) is the smallest solution of

P .R eq(7) C, (10b)

and C is the channel capacity. A graph of -y(K, ps , C) versus C/Ss for



3146 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969
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C /Ps
3.0 3.5

Fig. 2 --y(K, p8, C) versus C/p9 (K -a parameter).

4.0 4.5

various values of K is given in Fig. 2. Notice that -y(K, ps , C) decreases
from (K - 1)/K to zero as C/ps increases from zero to log K.

Let us also remark that the quantity F, (T, K) is related to X*(T, M)
(the smallest attainable average word error probability). In fact it is
easy to show that

1
- X*(T, P ,(T , K) < X* (T , K")

where n = pitt (assumed to be an integer).
Now, in the general case [arbitrary Ps (s) and d(x, it is usually

not possible to obtain a closed form expression for Re,(13). Theorem 1,
which is stated below, gives a useful bound on R(13) for the case where
P5 (x) is a density and SC is a bounded set. This theorem is an extension
of a result of Shannon.' The proof is given in Section 3.1.

Let OC be the interval [-A/2, A/2], where A(0 < A < 00) is arbi-
trary. Let the source outputs X have density P5 (x), and let d(x, =
r(x - X'), where r(u) satisfies

(i) r(u) = 1'( -U),
r(u) > 0, with equality at u = 0, (12)

r(u) is continuous at u = 0.

Then it can be shown (see Ref. 3, Appendix A) that for 0 < #
1/A 5il/A22 r(u) du, there exists a unique X0(0) which satisfies

A/2 A/2

r(u)e-X.(9),(H) du = e-Xo(0)r(n)
J -A/2 -.4/2

(13)
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Define the probability density gs(x) on OC by
A/2 -1

0(4 = i c-x")r(r) dx e-x"13)r(i) ,

, A/2
(14a)

-

[note that 5 r(x)g5(x) dx = in and let
A/2

/11(0) = - f Mx) log 9a(x) dx, (14b)
-A/2

be the corresponding "entropy".
For A = 00 , equation (13) has a solution in many cases. In particular,

when r(u) = u Is (s > 0), equation (10) has a solution for 0 < 13 < 00 .
Thus g5(x) and H1(0) are meaningful for A = 00 also.

We now state the lower bound on R(0) as Theorem 1.

Theorem 1: For the source defined above, for 0 < 0 _< A-' 5A/A2,2 r(u) du,

Re,(13) >-__ H s - 1110(3), (15a)

where

A/2

II s = f P s(x) log P ,(x) (15b)
-A/2

is the entropy of the source density P s(x), and H, ((3) is defined in equations
(13) and (14). Inequality (15a) also holds for A = c, when r(u.) = I u
(s > 0).

Examples:

(1) Say OC = the reals, and d(x, r(x - &,) = I x - la, where
s > 0 is arbitrary. Theorem 1 is applicable with A = CO . Solving equa-
tion (13), yields X0((3) = (0)-' and

s(a-1)/a

so that

where

go (x) = exp [-
20i/sr()

'Asi3)J,

Re (13) H s -II ,((3), (16a)

- (1)frer' -
1110(3) = -1

s s
log ._,s

and Hs is given by equation (15b).

(16b)
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(ii) Quadratic Distortion: Let t = the reals, and d(x, = (x -
Then from example (i), with s = 2,

Rec,((3) H. - I log 2ire/3. (17a)

Further Shannon4 has given the following upper bound to Re,(13):

IRe,(3) < 2 log (17b)

where a2 = f x213 s(x) dx. Note that when P s(x) = (27cr2)-1 exp (-x2/2),
the upper and lower bounds of inequalities (17) coincide for a2.

[Since Req(j3) is non -increasing, Rea(S) = 0 for /3 > a2.]
Another case of interest is X = [-A/2, A/2](A < co ), P s(x) = A-1,

and d(x, = (x - X)2. In this case Theorem 1 (applied for finite A)
provides a lower bound on R,(0) which is tighter than that of inequality
(17a) and can be evaluated numerically. An upper bound can be found
by computing I[P0(x, i)], where po(x, X), a joint probability density
for X and X.', is defined by the following: The variate X has density
P (x). The variate X = a(X Y), where the Y is a Gaussian variate,
independent of X, with

EY = 0 and EY2 = 13A2/(A2 - 1213),

and

a = (A2 - 1213)/A2.

Note that E(X - .g.)2 = 11 The information I[po(x, X)] corresponding
to po(x, I) can also be evaluated numerically and is an upper bound to
Rec,(0). Figure 3 is a graph of these bounds on Re, (0), and also of do ,
the solution of psReq(do) = C.

(iii) Say X = [-A/2, A/2]. Let P s(x) = and d(x, X) = r(x -
where, in addition to satisfying conditions (12), r(u) satisfies

r(u) = r(v) if u = v (mod A). (18)

[If, for example, A = 2r and X represents an angle, then equation (18)
must hold.] For r(u) satisfying condition (18), the bound (15a) on
Re, (0) of Theorem 1 holds with equality, namely, Re, = H - 11,(13).
(Section 3.1)

(iv) Threshold Distortion: Let X = [-A/2, A/2] and let d(x,
be the "threshold" distortion defined by

d(x, 'X) = da(x, = ra(x - X), (19a)
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0 0.4 0.8 1.2 1.6

C/ps , R (ft )
2.0 2.4 2.8

Fig. 3-Bounds on p/A2 versus R,(p) or do/A2 versus C/pR. upper
bound; (ii) - - - lower bound (Theorem 1) ; - - - - - lower bound
(17a).

where

r,(u) =
0,

u I ?._

I

<S.
(19b)

In this case, the bound (15) of Theorem 1 is

Ret,(13) >= Hs - h((3) - log 26 - 13 log (A/26 - 1), (20)

where h((3) is defined in equation (9b). There is a case where inequality
(20) is satisfied with equality, namely Ps (x) = and A / (26) =
Ko = 1, 2, . For this case, we show in Section 3.1 that

flog K0 - 0(3) - log (Ko - 1),
= -

1
0,

K
0 #

o - 1
Ko '

0
- 1

Ko

(21)
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Notice the striking similarity of equations (21) and (9) for the discrete
K-ary source. We will have more to say about this later.

When A/(25) is not an integer, we show (in Section 3.1) the right
member of (21) is an upper bound to Req(13) with Ko replaced by
[A/25]+ = K.. Thus with inequality (20),

A A
log -,61L5. - h(0 ) - 13 log [ - 1172-i 5_ Re(,3)

log K. - h(/3) - [3 log (K. - 1). (22)

A Result for Finite T for the Threshold Distortion is as follows.
Let oc = [-A/2, A/2], Ps(x) = A', and d(x,) = ±`), the thresh-
old distortion given in equations (19), as in example (iv) above. In the
system of Fig. 1, let J/*(T) = Q(T, A, 5), where the dependence on A
and 5 is indicated explicitly. The results in example (iv) [equation (21)]
and equation (10) imply that for A/25 = Ko , limT, Q(T, A, 5) =

= 7(Ko , Ps , C). This correspondence between Q and
P. is extended to finite T in the Theorem 2 (proved in Section 3.2.) .

Theorem 2: Let K. = [A/25]+ , K = [A/25r. . For all T,

P6(T, K_) < Q(T, A, 5) < P.(T, K.). (23)

The quantities P. and Q are defined, of course, for the same channel and
source output rate ps .

A case of particular interest is A/25 = Ko , an integer, so that K.,. =
K_ = Ko and Theorem 2 yields

Peg', = Q(T, A, 5), all T. (24)

For this case we deduce from equation (24) that (for all T) the optimal
encoder for the analog source is a Ko-level "uniform" quantizer with
quantization levels [(2i - Ko - 1)5]xf, followed by an optimal "digital"
encoder. This is the only known case for which analog -to -digital con-
version is known to be optimal for T < 00 for the transmission of analog
data.

2.3 Case Where The Source Has No Statistics

Suppose that the source output is, as in Section 2.2, a sequence of
symbols from the source alphabet 9C, which appear at a rate of ps per
second. However, in this case, as distinct from above, we assume that
there is no known statistical model for the source. Say that, as in Sec-
tion 2.2, the encoder waits T seconds during which time n = psT source
symbols x = (xi , x2 , , xn) c eCn have appeared. Again, as above,
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the encoder output is f E(x) eWTy the channel output is Z E bT and the
decoder output is X = fD(Z) E X". The encoder -decoder pair and the
channel statistics induce a probability density for I on X" which de-
pends on x (the source output). Denote this density by f(i I x). As-
suming, as in Section 2.3, that a non -negative distortion function
d(x, I) on X X X is given, then the average distortion when the source
output is x is

d(x) = f [1 d(x , ,,)1.0 I x) (25)
Ln n k =1

where x = (x1 , x2 y , xn) and I = 22 , , 310. Since we cannot
take a meaningful statistical average over x, we adopt as our fidelity
criterion, the "guaranteed" distortion

= sup a(x). (26)

Let ci*(T) be the smallest attainable value ofd for a given delay T
(which corresponds to n = psT).

For the special case where X = {0, 1, , K - 1} and d(x, =
dif(x, &) [given by equations (5)] let d* (T) = Pe(T, K) where the de-
pendence on K is made explicit. Consider P, (T, K) (the average error -
rate in Section 2.2). Clearly,

Pe(T , K) Lz. P,(T, K).

The following theorem [taken together with equations (10)] shows that
as T 00 , P. and P. are asymptotically equal. The proof is in Section
3.4.

Theorem 3: For the communication system described above with K-ary
source alphabet, source output rate ps , and channel capacity C,

limit Pe(T, K) = -y(K, ps , c, (27)
T-oco

where 7(K, ps , C) is given by inequality (10b).
A second important special case is X = [-A/2, A/2], and d(x, =

da(x, the threshold distortion given by equations (19). In this case
let ci*(T) = Q(T, (3, A). The quantity Q can be related to P. , and
Theorem 4 (proved in Section 3.3) is analogous to Theorem 2, though
somewhat sharper.

Theorem 4: For 0 < 5 5 A, let M(5) be the integer satisfying

DI
A- 1 :6 < M . (28a)
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Then for all T,

Q(T, A, 5) = Pe[T, M (5)]. (28b)

The quantities P. and Q are defined, of course, for the same channel
and source output rate ps .

In constrast to Theorem 2, this theorem asserts the equality of cor-
responding values of Q and P. for all values of A/(25). Also as in Theo-
rem 2, this theorem implies that the optimal encoder for the source
X = [-A/2, A/2], with d = da [with a fidelity criterion as in equation
(26)] is a uniform quantizer [with M(S) levels] followed by an optimal
digital encoder (see part (i) of the proof of Theorem 4).

Theorems 3 and 4 can be combined to obtain the following.

Corollary: For 0 < S :5_ A, let M(5) be as in Theorem 4. Then

lim 0(T, A, 6) = 7[M(6), ps , Cr], (29)
T -ice

where 7 is given by inequality (10b).

2.4 Generalization to Arbitrary Source Alphabets

In this section we consider the case where the source alphabet X
is an arbitrary space with an arbitrary metric or metric -like function
defined on it. We then give a generalization of Theorem 4. First we give
some preliminary definitions.

Let X be a set and let po(x, be real -valued function defined on
92 X t with the properties

(i) Po (x,= Po (x, x) (30a)

Po (X) j.1) > 0 with equality when x = (30b)

If in addition po(x, &) satisfies

Po(x, Po(x, y) Po(Y, &), (30c)

then po(x, &) is a metric; but we will not require inequality (30c) to
hold. For x X and A > 0, let Sz(A) = e X : po(x, < A} be the
(open) sphere of radius A about x.

A set A C DC is called a "A -covering" (of 9C) if Uze S=(o) contains X,
and A is called a "A -packing" (of X) if S=(o) n Si(A) is empty for all
x, E A, x 0 Let Ma(A) be the minimum number of points which can
constitute a 0 -covering of X, and let Mp(A) be the maximum number
of points which can constitute a 0 -packing. These quantities are related
by the following lemma (proved in Section 3.4).



ANALOG DATA TRANSMISSION 3153

Lemma 1: Let n = po(x, y)/[po(x, z) po(z, y)]. Then for A>0,

lllc(2nz) Mp (A). (31)

In particular, if po is a metric, n S 1. Inequality (31) is of course
meaningful only if n < co .

Now consider the communication system discussed in Section 2.3
with an arbitrary source space Xt. Let Po satisfy expressions (30a) and
(30b), and define the "threshold" distortion d8 (x, "i) by

ido(x, &) = l'
0,

Po(x, ±') 1.

Po(x, ±) < 5.
(32)

Let ci be the guaranteed distortion defined by equation (26) with the
distortion d(x, = ds(x, "i) [given by equation (32)]. Finally, let
O(T, 5) be the smallest attainable value of d for a system with delay T.
(The dependence of 0 on 6 is made explicit.) Of course O(T, 5) also de-
pends on ps as well as the channel characteristics. The special case
treated in Section 2.3 is X = [-A/2, A/2], po(x, = I x - I. In
this case O(T, 6) = 0(T, A, 6).

The following is a generalization of Theorem 4 and is proved in Sec-
tion 3.3.

Theorem 5: Let 111 c(A) and M p(A) be as defined above for the source
alphabet OC [with a po(x, X)]. Then G(T, 5) satisfies

Pe[T, M p(5)] O(T, 6) PAT, M c(6)], (33)

where P. is defined in Section 2.3. Note that P. and 0 are defined for the
same channel and source output rate p s

Theorem 5 reduces to Theorem 4 on noting that for X = [-A/2, A/2]
and po(x, = j x - I,

M,(6) = M c(6) = M(6), (34)

where M(5) is defined by inequality (28a). Let us remark that although
/1//, = Mc , the maximum 3 -packing is not in general identical to their
minimum 5 -covering. For example, when 5 = A/4, M(6) = 3, and the
maximum 5 -packing is unique, namely

{ -2,0,2
} '

t To be precise, we must assume that the space t and the encoder and decoder
functions are measurable.
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which is not a 3 -covering. There are many B -coverings, for example

{ A A
, o, d-}

2.5 Some Applications

2.5.1 Rate at Which Q(T, A, 6) Approaches its Limit

Consider again the source with r = [-A/2, A/2], P s(x) =
and distortion d(x, = do(x, :E) [defined by expressions (19)]. Suppose
further that A/(26) = Ko , an integer and that the channel capacity
C = ps log Ko . In this case 7(Ko , Ps , C) = 0 [see expressions (9) and
(10)], so that from expressions (24) and (10a)

lira Q(T, A, 5) = 0.
T-* Do

We will now obtain a lower bound on the rate at which this limit is
approached. From the first inequality in inequality (11), using n = psT ,

Pe(T , K) > 1 X*(T , ec T).
psT

(35)

For those channels for which expression (4) holds, the right member of
inequality of (35) ti (2ps T)-'. Combining expressions (24) and (35)
we have that

1

T
Q(T, A, .5) 2ps

[1 (T)], (36)

where t(T) -> 0 as T co . Thus for the class of channels for which
expression (4) holds and these parameter values, Q(T, A, 5), approaches
its limit no faster than 71-1. Determination of the similar bounds on the
rate of approach of Q to its limit for other parameters is an open question.

2.5.2 The sth-Mean Distortion

Consider the case where 92 = [-A/2, A/2], and the distor-
tion d(x, x) = I x - (s > 0). When P s(x) = A-1, let the smallest
attainable average distortion d*(T) e(T). For the case of no source
statistics (as in Section 2.3), let the smallest attainable guaranteed
distortion ci*(T) A (T). We establish some properties of it and ia
below.

For any random variable Y (such that I Y I < A), and any 5
54(0 < 5 Sz A),
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(37)

It follows from inequality (37) that for arbitrary 61 , 52 (0 < 31 , 62 < A),

oIQ(T, A, 51) -.5 is(T) 6;[1 - Q(T, A, 52)] + Q(T, A, 62),

(38a)

and

6:4)(T, A, Si) < is(T) - (NT, A, 62)] + A'Q(T, A, 62), (38b)

where Q and Q are defined in Sections 2.2 and 2.3 respectively. Applica-
tions of Theorems 2 and 4 (and Q, Q 0) yields

6:P8(T , K_) i''(T) _5 6; + .(T, K.), (39a)

and

5;15.[T , MOO] es(T) AT.[T, M(52)], (39b)

where K. = [A/262]+, K_ = [A/261]-, and M(6) is defined by inequality
(28a). Thus is and is too are related to the digital error rates P, and P. .

Of course, Si and 62 may be chosen to yield the tightest bounds.

Examples

(i) Since we know the asymptotic value of P. and P. as T -' 00 ,

we can apply inequalities (39) to obtain estimates of the limiting values
eo = e' (T) and Eo = limit,,,is(T). For example, when the
channel capacity C is large, setting A/26I = exp [(C/ps)(1 + Ai)]
and A/262 = exp [(C/Ps)(1 - AI)J(A' , 6,2 > 0), yields, after some
computation,

= exp - - [1 + t1(C)]}
Ps

Eo
SC= exp {-- [1 + E2(C)]}
Ps

(40a)

(40b)

where ti , 6 - 0 as C -> co . Thus for large C, ic; and i; decay roughly
exponentially in C.

Let us remark that parts of inequalities (40) are obtainable by other
means. Specifically, ea > Ki(s) exp [-sC/ps] follows from inequality
(16). Further, e. < exp [- (sC/ps)(1 1)] and .4 < exp [- (sC/ps)
 (1 + 6)] can be deduced from the work of Panter and Dite on quanti-
zation,' Finally the bound 8,; > exp [- (sC/ps)(1 t2)] is new.
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(ii) In this example, we apply the first inequality of (39a) to show the
possible gains (with the sth mean criterion) obtainable by using coding
in a particular (though quite typical) case.

Suppose that the channel is the additive white Gaussian noise channel
with average power Po , one-sided spectral density No , with no band-
width constraint.' To begin with, suppose T = lips , so that n = 1
and there is no "coding", that is, each T -second channel input depends
on exactly one source output. When the source is the K-ary digital source
(with equi-distributed symbols), it is known that the minimum attain-
able error rate is lower bounded byt

KPOT
P (T , IC) eici{[ (41)(K - 2)(2N0)

where
a

43(a) = (2r)-1 e-"212 du,

is the cumulative error function.
We now apply the lower bound of inequality (39a) together with in-

equality (41) to obtain a lower bound on e° (T) when the channel
signal power Po made large, while T = 1/Ps is held fixed. Setting
Sl = , we obtain from inequalities (39a) and (41) and (13(a)
(271-a2)-1 exp (- a2/2) (as a 00), that (with T = pV held fixed)

E8 (T) =
Ps

exp 2N
Pi 0

Ps
[1 + E3(P0)] (42)

1
o

where MP0) 0 as Po ---> co

Now suppose that for a given channel (and a given Po) we allow T
to become large. In other words, we permit "source coding" in blocks of
length n = psT. Since the channel capacity C = Po/No , we have from
equation (40a) that s}

(43)limit E1(T) = = exP 2Nopspo [1 + (P0)]
4

T.co

where 4(P0) 0 as Po --> co .

Now let 0 > 0 be arbitrary, and let P1 be sufficiently large so that
for Po P1 ,

3(1)0) I, I ,t(P 0) I < 0.
Then from inequality (42), with Po > P1 the best attainable mean sth

t This bound follows from Ref. 1 [equation (82)] when the signal energy nP
in that reference is replaced by PoT our signal energy, and M is replaced by K.
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error with no coding is bounded by

ia
(-1 ) exp [

2NPsPo (1 + 0)1
(44)

Ps

The best attainable sth error with infinite delay T is from equation
(43) with Po z Pl , bounded by

eoSexp [ sPo (1 - 61)]
Nops

We conclude that coding with large delay offers a saving of at least a
factor of (2s) in power Po or rate ps (when Po > PO. This of course is
interesting when s > 1. Similar results for s = 2 have been derived by
Ziv and Zakai.7 This result can be generalized to arbitrary n (here we
studied n = 1) and arbitrary channels simply by using appropriate
bounds on P8 (T, K).

III. PROOFS OF THEOREMS

3.1 Proof of Theorem 1 and Related Examples

(45)

3.1.1 Proof of Theorem 1

Shannon [Ref., 2, pp. 155-156] has shown that for a difference dis-
tortion measure d(x, &') = r(x - :g), that

Req(3) Hs - (1'0), (46)

where Hs is given by equation (15b) and 43((3) is the maximum attain-
able entropy H{f(x)} for a probability density f(x) which satisfies

fr(x)f(x) dx LC. 13. (47)

The entropy H If (x)} is defined by

H {f (x)} = -f f (x) log f (x) dx. (48)

A trivial modification of Shannon's argument shows that when 9C =
[-A/2, A/2], inequality (46) remains valid if f(x) is further restricted
to satisfy

f (x) = 0, Ixi>f (49)

Now the density gs(x) [defined by expressions (13) and (14a)] satisfies
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conditions (47) and (49) and bas entropy H1(() [defined by equation
(14)]. We prove Theorem 1 by showing that if the density f (x) satisfies
conditions (47) and (49), then H (x) } H 1(0) .

Let us write go(x) = Be-xr(r) where \ = X0(0) and where

Then

B = e-x0o),co dx1-1
-A/2

A/2

H1(0) = - go(x) log g o(x) dx
-A/2

4/2

= - log B X r(x)go(x) dx = - log B X0.
. -A/2

Since f (x) satisfies condition (47),
A/2

1e1(j3) - log B + X f r(x)f(x)
-.4/2

= -f 1(x) log Bc-xC(') dx = -f f (x) log Mx) .

Thus
A/2

MKT)} - H, (0) -f f(x) log f(x) dx (x) log go (x) dx
-A/2

KO log (18(x) dx < fA/2 /co pl3 (X) 11 = 1 - 1 = 0,
-Al2 f(x) -A/2

where the second inequality follows from log u < u - 1. Theorem 1
follows.

Note that Theorem 1 will hold for A = as long as we can find
g o(x). Examination of the derivation which establishes the existence of
gp(x) (Ref. 3, Appendix A) shows that Theorem 1 is valid in particular
for A = 00 and r(x) = I x s, s > 0.

3.1.2 Determination of R, (0) in Example (iii)

For = [-A/2, A /2], Ps(x) = , and d(x, = r(x - &), where
r(u) satisfies conditions (12); Hs = log A. Theorem 1 implies

R (B) log A - H1(0). (50)

We now show that if, in addition, r(u) satisfies equation (18), then
inequality (50) is satisfied with equality. Let X and X be random varia-
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bles such that the density for X is Ps(x) = A-1(1 x
1

A/2), and S. =
X + Y where the random variable Y is independent of X and has density
gp(y) = Be -x°" [defined by equations (13) and (14a)]. The information
of p(x, the joint density for X, is

/1p(x, 1)1 = H{P2(t)}
A/2

-A/2
P ,s(x)11 {PU 4} dx,

where p0) is the density for 1, p( x) is the conditional density for
g given that X = x, and HI } is the entropy defined in equation (48).

Now p(x, = Ps(x)P(X I x) = so that
A/2 A/2

p,(17) = A -1B e-x°r(1-x) dx = A -1B e-xor(u) du.
LA/2 1-A/2

when 4" 0 this becomes, letting v = u -A and using equation (18)
A/2 A/2

p,(19 = A -1.B co du + A -1B e-xor(u) du
fi-A/2 A/2

A/2 i-A/2
0)e--Xor ( _7= A -1B e-X*r (u) du ± A-'13 aV.

fi-A/2

Hence, since f gp(x) = 1,
A/2

f-A/2
p2(1) = e-"") du = .

For < 0, a similar proof yields p2( x) = Thus H Ip2(±')1 = log A.
Further p(X' 1

x) = gs( - x), and a similar use of equation (18) yields
HI p( 1 x)} = HO), independent of x. Thus we conclude that
I{p(x, :e)} = log A - H1(0). Since p(x, &') c MO), this and inequality
(50) imply Re,(0) = log A - H1(0)

3.1.3 Proof for Example (iv)

We first verify equation (21) for the case A/(25) = K. , an integer.
That Rac,(#) is greater than or equal to the right member of equation
(21) follows from inequality (20) (since Hs = log A) and from Rec,(0)

0. To show that R,,(6) is less than or equal to the right member of
expression (21) we produce a density p. (x, "i) for which I fpo(x, ±')1
equals the right member of equation (21). But first we digress to define
"entropy" for a discrete random variable.

Consider a discrete probability density f(x) = Ei a, - x;). Then
the "discrete entropy of f(x) is defined by

Hpif(x)1 = - E a, log a; . (51)
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Now, say that p(x, is the probability density for two random vari-
ables X, ±, such that X takes values at a countable number of points.
Then the marginal density for S., denoted p2( "i) and the conditional
density for S. given X = x [denoted p(z I x)] are discrete densities. It is
easy to show that the information can be written

I {p(x, &)} = HD {P2M} f Pl(X)11D {p2(±' x) } dx, (52)

where p1(x) is the marginal density for X.
Return now to Example (iv). Let 0 < < (Ko - 1)/K0, and let

po(x, &) be the density for X, g, where X has density Ps (x) = A' and
S. has conditional density po(& I x) given as follows. Partition the
interval [-A/2, A/2] into Ko subintervals { of width 25. Let xi
be the midpoint of I (i = 0, 1, 2, , Ko - 1). Then for x I,

Po(X x) = (1 - /3) a(t - xi) + E 5(& - xi).(K. - 1) so:

In other words, X is an imperfectly quantized version of X. With proba-
bility (1 - fl), S. is the midpoint of the subinterval in which X lies, and
with probability /3, S. is uniformly distributed among the remaining
(K0 - 1) midpoints. Note that Ps(x) and po(& I x) together determine
po(x, &), and that po(x, X') £ MO).

Further, by symmetry, S. is uniformly distributed on the Ko mid-
points, so that

II DI po2(&)} = log Ko ,

where p02(&) is the marginal density for S. [corresponding to po(x, i)].
Also

H D{p.(& I x)} = h(13) f3 log (K0 - 1),

independent of x. Thus equation (52) yields

po(x, &)1 = log K0 43) - log (Ko - 1),

the right member of expression (21). This establishes equation (21) for
0 =< /3 < (K0 - 1)/K0. Since Rea[(K0 - 1)/K0] = 0 and Req(13) is non -
increasing, we have Re, (13) = 0 for /3 (K0 - 1)/K. , establishing
expression (21).

It remains to verify the upper bound of expressions (22). But this
follows immediately on noting that for fixed A and (3, R.,(13) is a decreas-
ing function of 5. Thus decreasing 5 to = A/2[A /25]+ results in an
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increase in R.4). Since A/(25') is an integer, we can apply expression
(21) to obtain the upper bound of expression (22).

3.2 Proof of Theorem 2

Theorem 2 relates the attainable distortions for a digital source and
an analog source when connected to a given channel. The proof is in
two parts [corresponding to the two inequalities in expression (23)],
the second of which uses a bounding technique introduced by Ziv and
Zakai.7

In part (i) we are given an encoder and decoder for the digital source
(with appropriate parameters), which when connected to the channel
as in Fig. 1 results in an average Hamming distortion a = aH . We show
how to quantize the outputs of the analog source (with appropriate
parameters) to essentially simulate the digital source. When this
quantizer is connected to the digital encoder, we show that we attain
an average distortion for the analog source do < dH . This leads us
directly to the second inequality of expression (23).

In part (ii) we establish the first inequality of expression (23) in an
essentially dual way. We begin by assuming the existence of an analog
encoder and decoder. We then show how to modulate the outputs of
the digital source to virtually simulate the analog source. Unfortunately,
this is not as easy as the quantization in part (i), and we have to make
use of an "averaging" argument in the course of the proof.

(i) Let us denote by S. , the analog source whose output is a sequence
X X, , of independent random variables, each uniformly dis-
tributed on the source space DC. = [-A/2, A/2]. The random variables
appear at a rate of ps per second. For this source we use the distortion
d(x,) = da(x, defined by equations (19). Assume first that A/(25) =
K. an integer, and consider the following (uniform) quantizer. Partition
the interval [-A/2, A/2] into K. subintervals { of width (26)
where

I, = (ei,e,,j], i = 0, 1, , Ko - 1, (53a)

and

ei = (26)[(i - K2°)] , i = 0, 1, , Ko . (53b)

To be precise, the first interval to should be closed on the left. The quan-
tizer q is defined by

q(x) = i, if xc
(- A

-
A).

2 2 / (54)



3162 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969

Let us now consider the digital source Sd whose output is a sequence
S, , S2 , of independent discrete random variables, each uniformly
distributed on the Ko-ary set Xd = {0, 1, , K. - 1}. These random
variables also appear at ps per second. (Note that we use Sk instead of
X, as in Section II to distinguish the outputs of 8d from those of 8. .)
Say that the distortion d -= d as defined in equation (5).

Suppose that Sd can be connected with delay T to a channel as in
Fig. 1 with (digital) encoder f and decoder Ad', and average distortion

. 'We now show how to connect the "analog" source So to the
channel [with the help of f and fin to attain an average distortion
da < d,, . Consider the system in Fig. 4. In T seconds the output of
the analog source is an n -vector (n = ps T) X = (X  , Xi). The
"quantizer" output is the n -vector S = (Si , 82 , , Sn), where Sk =
q(Xk) (k = 1, 2, , n). Note that the Sk are independent and uniformly
distributed on {0, 1, , Ko - 1 } , as are the outputs of the digital
source S, . The digital encoder and decoder fr and f are as given
above, and the output of the latter is the Ko-ary vector S =
(R, , , SI.). Thus

Ed' (S, ) = .

The "converter" output is the n -vector X = , /2 , /,,) where

11k= (2:Sk Ko ± 1)6.

In other words if :5", = i, then .g", is the midpoint (ei ei+1)/2 of the
ith subinterval. Disregarding the case when Xk is equal to one of the
endpoints e of the subintervals, (an event with zero probability), it is
clear that I X,, - k (5 if and only if Sk kCk (k = 1, 2, , n).
Thus

It follows that

d, = Edln)(X, 31) = Ed;;') (S, ) = all .

Q(T, A, (5) _134,(T, 27i) , (55)

when A / (26) is an integer. The second inequality of expression (23)
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Fig. 4 - An analog communication scheme.
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follows on noting that Q(T, A, 6) is a nonincreasing function of 3. Thus
decreasing 3 to 6' = A/21K+ does not result in a decrease in Q(T, A, 6).
Since A/(23') is an integer, we can apply inequality (55) to obtain the
second inequality of expression (23). This completes part (i).

(ii) Let us suppose that the analog source S. defined in part (i) is
connected with delay T to a channel as in Fig. 1. The T -second source
output is the n -vector X = (X1 , X2 , , X) and the decoder output
is the n -vector X = (Xi , X, , , X). Say we attain an average dis-
tortion

do = (X,

Letting E[d1") (X, k) I X = x] be the conditional expectation of 41' (X, k)
given X = x, we can write

1=f E[4"' IX = x] -A; dx. (56)
A/2. A/21n

Suppose that (A/26) = Ko , an integer. Let us partition the interval
[ - A/2, A/2] into Ko subintervals of width 23 as in equations (53).
Let 8 be the set of left end -points of these subintervals, that is,

8 fc.r.c1V. (57)

Now consider the n -cube [-A/2, A/2]". Note that the random n -vector
X is uniformly distributed on this cube. The partition of the interval
[-A/2, A/2] defines a partition of the n -cube into Kno subcubes, each
the product of n subintervals. Let the members of n be denoted by the
n -vectors ti , j = 1, , Kno , and let Ci be the corresponding subcube.
(That is, C; is the product of the subintervals whose left end -points are
the coordinates of ti .) Then clearly,

[ A A] n IL"e

'
C j

2 i=1

where E denotes disjoint union. Thus we can rewrite equation (56) as
Kno

dB = E -1 E[dln) I X= x] dx
i=i c( A"
IC" e

1 1= E[4") = do,, (58)
1=1 KO j:C). 25 n k.6

where the second equality follows from the change of variable of integra-
tion to a = x - ti , and the fact that A = 26K0 

Some insight into what we have done may be gained by considering
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the special case where Ko = 2 and n = 2. In this case the n -cube
[-A/2, A/2]" is a square, and there are K(3 = 22 = 4 members of 8"
denoted ti , and 4 . (See Fig. 5.) The subcubes are C1 , C2 , C2 ,

and C4 as indicated.
Let us consider now the digital source 8d defined in part (i) whose

output is the sequence Si , 82 , . We would like to transmit the out-
puts of Sd through a channel (as in Fig. 1) with delay T, so that the
source output must be an n -vector (n = ps T)S, and the decoder output
an n -vector S. The fidelity criterion is

a = Ect;)(S,

Now suppose that we are given an encoder -decoder, f;), f;;), for the
analog source 8 [for which A/(23) = Ko], connected with delay T, to
a given channel. Say this encoder -decoder attains an average distortion
da . We show that there exists an encoder -decoder for the Ko-ary
digital source 8d , connected with delay T, to the same channel such that
the average distortion dH < do . From this we deduce immediately
that for A/(28) = Ko

Pe(T, K0) -5 Q(T, A, 3). (59)

The digital encoder is given schematically in Fig. 6a. The analog en-
coder which we are given is f(;) (x) , x E [ -A /2, A/2]", and is realized in
the right box of Fig. 6a. The function of the "modulator" is to assign to
each n -vector § e {0, 1, , Ko - 1}", a member of [-A/2, A/2]". This
is done as follows. Let 8 be the set defined by equation (57). For s e
{0, 1, 2, , Ko - 1 }, let

e,

28 28

C2

c3

C3

c , C4

Io

A

28

Fig. 5 -A digital encoder.

28

A
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Fig. 6- (a) Digital to analog encoder. (b) Analog to digital decoder. (c) Digital
communication scheme.

g(s) = (2(5)[s - 0
be the sth member of S. For s = (s1 , s2 ,
let

- , s)e {0,1, , Ko -

g(n)(s) = [g(s1), g(s2), , g(sn)].

When the input to the modulator is s, its output is

a + g(n)(s),

where a = (a1 , a2 , , a) E [0, 2o]n is a fixed vector. Thus the digital
encoder is

pEd)(s) =fE)[a + g(n)(s)].

The digital decoder is given schematically in Fig. 6b. The left box is
the analog decoder f;:;`) which we are given. Its output x is a real n -
vector. The right box is a quantizer. When its input is x = , , 4),
its output is g1(i) =s = (:§1 , , gn), where Sk(k = 1, 2, , n) is a
member of (0, 1, , K0 - 1) which minimizes I g k(gk) + ak -

When the digital source 8d is connected to the channel with this en-
coder -decoder pair, the result is schematized in Fig. 6c. (Upper case
X's and S's are used to signify random variables.) The portion of the
system in the dotted lines is precisely the analog encoder -channel-
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decoder which would produce an average distortion do given by equa-
tion (56), if the analog input, X, where uniformly distributed on the
n -cube [-A/2, A/2]". But this is not the case here. In fact, X takes only
one of Kcn, possible values. However, the quantity E[d1")(X, X) I X = x]
is exactly the same in the system of Fig. 6c as in equation (56), for x =
g(n)(s) + a(s £ {0, , K,, - 11").

Let us write an expression for the average distortion di, for the
digital source. Note that Sk only if Igk - [g(Sk) ak] S.

Thus

4)(S, ) cr,")[g(n) (S) + a, X],

and

du = Edil(s, S)

rc,c;E[dnx, ft) I x = g(n)(s) (60)

where E. is the sum over the Kon equally -likely values of s. Let us now
average the right member of expression (60) over all a in [0, 25]", with
a assumed to be uniformly distributed. That average is

dx 1
E[do(X, = (s) a].

f[0.2sin (25)"

If we note that the set { g(") (s) } are in one-to-one correspondence with
the Kno members ti of gn, this quantity may be written as

Kno
1 1

Kg 0,251.
E[do(X, k) X = ti -I- a] da,

1-1 f(

which equals do by equation (58). Since there must be at least one
value of a for which the right member of expression (60) is as small
as the average, we have proved inequality (59).

The first inequality of expression (23) follows from inequality (59)
on noting as in part (i) that Q(T, A, 6) is a decreasing function of S.

3.3 Proof of Theorems 4 and 5

Since Theorem 5 includes Theorem 4 as a special case we need only
give a proof of Theorem 5. Our task is further simplified since the basic
idea of the proof of Theorem 5 is the same as in Theorem 2 (Section 3.2).
Here too we break the proof into two parts. In part (i) we assume that
we are given an encoder -decoder for the digital source and deduce the
existence of an encoder -decoder for the general source (which plays the
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part of the analog source in Theorem 2). In part (ii) we do the opposite.
However we do not have the complications here which necessitated an
averaging argument in Section 3.2.

(i) We prove here that O(T, 6) Mc(6)], the second inequality
of expression (33). The proof parallels that of part (i) in Section 3.2.
Instead of the analog source space X. we have here a general space X.
The distortion is d, (x, 1') with I x - x I replaced by po(x,

To transmit the source outputs which belong to I we use the system
in Fig. 4. The digital encoder -decoder is for a Ko-ary source where
K0 = M c(6). We assume that it attains a guaranteed distortion
The quantizer is defined as follows. Let { 110"' be a minimum 6 -cover-
ing of X. For x E r, let q(x) be the smallest i(0 < i 5 Ko - 1) such that
x E 4(0). Then if x = (x1 , x2 , , xn) E x' is the source output, the
quantizer output is s = qn(x) = [q(x1), q(x2), , q(xn)]. The output
of the digital decoder is S = , S2 , , An) and the converter output
is X = (ti , , It.), where g k = when Sk = i. Clearly, if Sk = ,

then po(X k , Xk) < 6. Thus for any source output x,

(x) di/ [q (1') (x)] (111

so that the overall guaranteed distortion do < dll , from which part (i)
follows.

(ii) We prove here that P e[T , 111,(6)] O(T, 6), the first inequality
of expression (33). As in part (i), the proof of part (ii) parallels that in
Section 3.2. Again DC. is replaced by X and I x - x I by p0 (x,

As in Section 3.2, we assume that we are given an encoder -decoder
for the general source with guaranteed distortion cis . We set Ko = MP(6)
and use the system of Fig. 6 to transmit the outputs of the Ko-ary digital
source. The modulator is defined as follows. Let {f3, rf.:(71 be a minimum
6 -packing of X. If source output is s = (s1 , 82 sn), then the modula-
tor output is g(n)(s) = (0.13 , , (38.). The output of the decoder is

= (±i , , .t), and the quantizer output is S = , SZ , , An),

where & = i when k E S(S). If Xk 1 SS; (6) for all i (0 < i :5- Ko - 1),
then Agk, = 0.

Clearly, if po(Xk , k) < 6, then Sk = :Sk . Thus for any source output
s, the conditional expectation

(s) doigns)] 6 do

Thus the overall guaranteed distortion is di, do , completing the proof
of part (ii) and the theorem.
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3.4 Proofs on Packing and Covering

In this section we give a proof of Theorem 3, the main part of which
is a lemma on covering of the K-ary n -cube. We also prove Lemma 1
relating packing and covering in Section 2.4.

3.4.1 Proof of Theorem 3

We first establish the following lemma.

Lemma 2: Let 0(0 < B < (K - 1)/K) be arbitrary, and let r satisfy

Re4(0) < r < log K,

where R8 (X) is the equivalent rate for the K-ary source given by expressions
(9). Using the terminology of Section 2.4, let X = {0, 1, , K - 1}n

(the K-ary n -cube) and po(x, it) = dj7) (x, 5i). Then for n sufficiently large,
there exists a 0 -covering of with Al = ern points.

Proof : Let fx; be a set of K-ary n -vectors. Let F(x, , x2 , , xm)
be the number of members x of 9C such that d' (x; , 0 for all
i = 1, 2, , M. If F = 0, then {x1}1,1' is a 0 -covering of EC. We can. write

F(x, , , xm) = E 4(*, x, , , 3CM),
REX

where

43(1, x - , xm) =
11 if d;.;' (x; , 0, all i = 1, 2, , M,

-10 otherwise.

Now consider an experiment in which Al = ern n.vectors X, }4:f are
chosen at random from OC independently with identical (uniform) dis-
tribution

Pr {Xi = x}

Then F(X, , X2 , , XM) is random variable with expectation

EF = E Eck, xi , X2 , ,XM),
itx

where, as indicated, Eris computed with x held fixed. Now for a given

X , Xm) = Pr {43 = 1}

= Pr n Ice;)(x, X,) >= 01
-1

= [Pr Idr)(it, X1) > Onm,
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where the last equality follows from the independence and identical

distribution of the random vectors { X1}. Letting an = EDSi<On
3

(K - 1) i1C-n be the probability that dil(it, X;) < On, we have

E 1(x,c X1 , , Xm) = (1 - an)m C Can m,

independent of x. Thus

EF Me-am

Now it is well known (see for example, Ref. 8, p. 173) that for 0 <
0 < (K - 1)/K, as n co ,

a = e-nReq(o)+.(n)n

Thus since M = 2nn and r > R,(0),

E(F) < Me-anAf = ern exp {-eir-R"(e)1"°(n)} 0, as n 00 .

Now, there must be at least one particular set fxdr such that

F(x1 , x2 , , xm) < EF.

Thus if we choose n large enough so that E(F) < 1, F (xi ,  xm) = 0
(since F is an integer valued function). Thus {xi } if is the required
covering.

The proof of Theorem 3 now follows the standard proof of a source -
channel coding theorem, with Lemma 2 playing the role of the source
coding theorem. (See Ref. 2.) Roughly speaking the proof is as follows.
When 7(K, ps , C) = (K - 1)/K, the entire theorem is trivial, since
we can attain a guaranteed distortion of (K - 1)1K without even using
the channel by simply letting the decoder outputs take the value
i(0 < i K - 1) with probability 1/K. Thus assume that 0 < -y <
(K - 1)/K.

The channel can transmit eRT (where R < C, the channel capacity)
in T seconds with arbitrarily high reliability (see Section 2.1). By the
definition of 7 = y(K, ps , C) [expression (10b)],

Reg()) C/Ps (61)

Let e > 0 be arbitrary. In Lemma 2, let r = C/ps - el , where el > 0
will be chosen below. Then approximate the T -second source output
(a Ko-ary n -vector, n = ps T) by a (covering) set with ern = erP8T mem-
bers. Since rps < C we can transmit these n -vectors through the channel
with arbitrarily high reliability. Further, with e > 0 arbitrary, and if

r > Re, (7 + ), (62)
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we have from Lemma 2 that the error in making the approximation
will always be less than or equal to (y e) for T sufficiently large. In
fact, if we set

\e
E = Req (7) - Req(7 + > 0

[since R(y) as defined in equation (9) is strictly decreasing for y <
(K - 1)/K], then [using inequality (61)]

r = - - e, = - - Re,,(7) Re(7 +
2Ps Ps

Rocky ± > Re(y e)

and condition (62) is satisfied.
We conclude that for T sufficiently large, we can make

dir + E

for arbitrary e > 0. Thus

limit P e(T , K) e 7, as ,

T--000

which is Theorem 3.

3.4.2 Proof of Lemma 1

We say that A C OC is a "maximal 0 -packing" if A is a k -packing,
and if for all v ;I A, the union {v} U A is not a A -packing. We establish
Lemma 1 by showing that every maximal 0 -packing is a (2nA)-cover-
ing. Let A be a maximal 0 -packing. If A is not a (2n0) -covering, then
there exists a vo E 9: such that po(vo, u) > 2nA, for all u E A. From con-
dition (30b), vo A. We claim that {vo} U A is a 0 -packing, con-
tradicting the maximality of A. If w E Spo(A), then for all u E A (using
the definition of n)

so that

po(vo , -5 nrpo(vo , w) po(w,

Po(w, u) > Po(Vo , u)
Po(Vo , w) > 2nD - A = A.

Thus w Sii(A) and {vo} U A is a A -packing, establishing the lemma.
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APPENDIX

List of Symbols

the source output space
P ,(x) the source probability density function
Ps source output rate (symbols per second)
x, (x. E X) the ith output of the source
x (x1 , x2 :E0 E OCn

RC'T set of "allowable" channel inputs
37, the set of all channel outputs

the coding delay
psT

f E (x) the encoding function, fB(x) E T

f p (2) the decoding function, fD(z) E DC"
the decoded n -vector, z = fp(z) E

N number of code words in a code
R =11T log N, the rate of a code
A the word probability of error
A* ( T, N) smallest attainable word error probability for a code

with parameters N and T
X average probability of error
d(x, the distortion function

dH(x,
1, x

d"(x, I) = 1/n El., d(xic , :fK)
d = Ed' (x,
a*(T) the smallest attainable d for a given delay T

1 x <
da(x, &')

{0 x - I 3

a(x) the expectation of dn(x, I) given x
= sup., d(x)

ci*(T) the smallest attainable value of d for a given delay T
Q(T, A, 3) d*(T) for da(x, and x E [ -A /2, A/2]
Q(T, 5, A) cl*(T) for da(x, 'X') and x E [ -A /2, A/2]
P.(T , K) the minimum attainable per symbol error rate for an

equiprobable K-ary memoryless source
ps , C) = limr_.. K)
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C the channel capacity
P. (T, K) the minimum attainable guaranteed per symbol error rate

for a K-ary source
G(T, 15) generalization of Q, defined in Section 2.4
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On Digital Communication Over a
Discrete -Time Gaussian Channel

with Noisy Feedback

By AARON D. WYNER
(Manuscript received April 21, 1969)

We consider the problem of transmission of digital data over a discrete -
time Gaussian channel with the use of a Gaussian feedback channel. We
are particularly interested in the case where the signal-to-noise ratio in the
feedback channel is finite. By making use of simple extension of P. Elias'
scheme for transmitting analog data over this channel with feedback, we
show that it is possible at some transmission rates to increase the error -
exponent (reliability) compared to the error -exponent found by C. E.
Shannon for the one-way channel. In particular at transmission rate zero,
we show that the error -exponent can be improved by a factor of 1 +
[0/(1 + p)], where p and P are the forward and feedback signal-to-noise
ratios respectively.

I. INTRODUCTION

We consider the problem of transmission of digital data over a dis-
crete -time Gaussian channel with the use of a Gaussian feedback channel.
We are particularly interested in the case where the signal-to-noise
ratio in the feedback channel is finite.

In Sections II and III we consider Elias' scheme and a simple exten-
sion for transmitting analog data over this channel with feedback.'.2
In Section IV we apply this extended Elias scheme to the digital trans-
mission problem. The main result is that for any rate R < R*, a number
less than the channel capacity, it is possible to transmit digital data at
a rate R with error probability

P. = exp [-E*no o(n,,)], as no co,

where n, is the encoding -decoding delay, and E* > El , the "one-way"
exponent estimated by Shannon.' In particular, when R = 0, El = p/4
and E* = (p/4)[1 0(1 + p)1, where p and 0 are the forward and

3173
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feedback signal-to-noise ratios respectively. Finally, we suggest a
modfication of this scheme which will probably permit extending R* to
capacity.

Stimulated by the work of Schalkwijk and Kailath, a great deal of
research has been done on this problem (see for example Refs. 4-11).
To the present author's knowledge, however, the result in this paper
is the first to show that a noisy feedback channel can improve the error -
exponent for digital communication on a band -limited channel. (Ref-
erences 4 and 8 treat the infinite band case.) Like the optimal coding
schemes for the one-way channel, our scheme is not constructive. Let
us remark here that this discrete -time channel is a model for the con-
tinuous -time Gaussian channel with a bandwidth constraint. (See Ref.
12 or 13.)

II. STATEMENT OF ELIAS' PROBLEM

We define a Gaussian channel as follows. The input is a real number
x and the output is a number y = x z, where the "noise" z is a Gaussian
variate with mean zero and variance a.2 and is independent of x. We
assume here that the channel input x is a random variable, and require
that the expectation Ex2 < P, the "signal power".

To begin with, let us suppose that we wish to transmit the value of a
random variable 0 with the use of N transmissions over a Gaussian chan-
nel (with parameters P and_a.2) . Assume also that a feedback Gaussian
channel (with parameters P and 6'2) is available which we may use
(N - 1) times alternating with the N forward uses. We assume nothing
about the statistical nature of 0 except that the expectation E02 = 0-e .

Our goal is to obtain an unbiased estimate 9 of 0 with minimum possible
mean -squared error. Further, we restrict ourselves to linear processing
of all data. We now state the problem and constraints precisely.

The forward and feedback channels are memoryless Gaussian channels
with signal power P and P respectively and noise power o2 and 62
respectively. Thus for the nth use of the forward channel the input is
xr, and the output is yn = x. , where Ex2 = P and zn is a Gaussian
variate (independent of xn) with mean zero and variance cr2. For the
nth use of the feedback channel the input is 'thn and the output is r, n =
in ± gn where EA', = P and is a Gaussian variate (independent of
43 with mean zero and variance 62. We assume that the random varia-
bles { 0, zn , gn} are independent. The condition requiring "linear process-
ing" means the following. The input xn to the forward channel (at the
nth use) is given by



= al0 , x = a0

NOISY FEEDBACK

n-1

bn4k

3175

n = 2, 3, , N. (1)

The input to the feedback channel (at the nth use) is given by

IL == en/4/kkl n = 1, 2, , N - 1. (2)

Finally, the receiver's estimate after N uses of the forward channel
(and N - 1 uses of the feedback channel) is

0 = E dny . (3)

We require that .0 be unbiased, that is, that given that 0 = 0o , the
conditional expectation of B is

Ece 0 = = eo . (4)

The mean squared -error, which we wish to minimize is

= E(0 0)2. (5)

Let 720 be the minimum attainable value of 72 (over all choices of
the coefficients an , bnk , c, , d.). It is easy to show that

(i) 72. depends on P and cr2 only through their ratio p P / a2
(the forward "signal-to-noise" ratio), and on P and erg only through
13s p

(ii) for a given N, p, and p 72,,,. is proportional to .

Thus we can write
2 2 2 f AT\

'YOPT = (TOEOPTO, Pi Ai' ),

and our problem reduces to the determination of E26(p, p, N) (which
can be thought of as a noise -to -signal ratio).

Let us observe that from the linearity assumptions (equation 1, 2,
and 3) it follows that

= a0 t, (6)

where a is a constant and t is a Gaussian variate independent of 0. From
equation (4) it follows that a = 1 and Et = 0, and from equation (5)
EE2 = 72. Thus we can rewrite equation (6) as

0 = 0 t, (7)

where t is a Gaussian variate (independent of 0) with mean zero and
variance 72. The important point here is that the entire process may
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be thought of as reducing the N uses of the forward channel (and the
N - 1 uses of the feedback channel) to a single one-way Gaussian channel
with signal-to-noise ratio (E02)/(R2) = 4/72.

III. ELIAS' RESULT

Elias solved our problem for the special case N = 2, where two uses
of the forward channel and one of the feedback channel are permitted.' '2
In his solution Elias admits the possibility that for the two uses of the
forward channel, the signal-to-noise ratios are pi and p2 respectively,
where pi is not necessarily equal to p2 . His result is that the smallest
attainable mean -squared error is given by

72E = 04P P2
P2)

id (8)P, P20

As discussed at the end of Section II, we can consider the entire process
as a single one-way gaussian channel with signal-to-noise ratio v:/ -y; .
We now turn to our problem, and note that we can obtain a (suboptimal)
solution by applying Elias' technique recursively. For N = 2 we can, by
setting pi = p2 = p in equation (8), obtain a signal-to-noise ratio
S2 = {2p + p',6/[(1 p)2 AD. For N = 3 we can, by setting pi = 82
and p2 = p, obtain a signal-to-noise ratio S3 given by

82 = [S2 p
pi3S2

(1 ± 82)(1 0]

-1

and for arbitrary N we can obtain a signal-to-noise ratio SN given by the
recurrence

PASN-1SN = SN-1 P (1 ± SN-i)(1 p)

with initial condition

= p.

(9a)

(9b)

Although equation (9) is difficult to solve explicitly we can obtain
an approximate solution valid for large N. From equation (9a)

SN-1 P SN 5 SN-1 P (10)
(1 13)

so that

pN SN (p 1" N. (11)
p
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We will show that as N co , S, is asymptotic to the right member of
inequality (11). Let us rewrite equation (9a)

SN+1 SN + P PA [1 + 1 ± P Ail
(1 + p) (1 ± p)SN

(12)

Let SN = [p pp/(1 p)]N , and expand the last term in equa-
tion (12) into a power series in (1 + p A)/M. p)Sid. We then obtain,
after cancelling terms,

8N+1 = 8N +
P [ (1 + P + + (1 + + i3)2 + ] (13)

(1+p) (1 p) S N (1 ± p)2 S2N

From equation (11) we have that SN = 0(N), so that equation (13)
becomes

SN+1 - SN = -0(1/N), (14)

and therefore

a, = -0(log N). (15)

Thus we conclude that

SN = [p
(1

PAP) 111 - 0(log N). (16)

An exact solution for SN for various values of p, A, and N is given in
Table I. S;;-,1 provides an upper bound to 7,PT

Elias also found a lower bound to 4pi.

E0,> 1/[pN 15(N - 1)]. (17)

This is the mean -squared error which results when the feedback chan-
nel is reversed and used in the forward direction, and we are allowed
to use the forward channel N times and the feedback channel (N - 1)
times. Combining these results we have that

/5)N]-1 0PT p PA 0(log N)])N
-1

(18)-
1 p

Let us remark here that the recurrence (9) can be solved exactly for
the special case p = 00. In this case equation (9a) becomes

SN = SN-1(1 + p) + 13) (19)

and the solution is

SN = (1 + p)N - 1. (20)
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TABLE I -THE EXTENDED ELIAS SCHEME

FORWARD SNR = p,
PAASYMP. SNR = SN

7- f p ±

FEEDBACK SNR = A

ASYMP. E(0) = E*(0 )

FORWARD SNR = 0.01
ASYMP. SNR = 0.010099

FEEDBACK SNR = 0.01
ASYMP. E(0) = 2.52475E -03t

N EQ. SNR = SN EQ. E(0) = EN(0) CAPACITY = ch.

1 0.01 0.0025 4.97516E-03
2 0.020001 2.50012E-03 4.95089E-03
3 3.00029F,02 2.50024E-03 4.92693F,03
4 4.00058F,02 2.50036E-03 4.90328E-03
5 5.00095E-02 2.50048E-03 4.87992F,03
6 6.00142F,02 2.50059E,03 4.85686F,03
7 7.00197E-02 2.50071E-03 4.83408E-03

8 8.00262E-02 2.50082E-03 4.81158E-03
9 9.00334E-02 2.50093E-03 4.78935E-03

10 0.100042 2.50104E-03 4.76740E-03

FORWARD SNR = 0.01
ASYMP. SNR = 1.09901E-02

FEEDBACK SNR = 0.1
ASYMP. E(0) = 2.74752E-03

N EQ. SNR = SN EQ. E(0) = EN(0) CAPACITY = cN

1 0.01 0.0025 4.97516E-03
2 2.00089E-02 2.50112E-03 4.95284E-03

3 3.00266E-02 2.50222E-03 4.93078E-03
4 0.040053 2.50331E-03 4.90895E-03
5 5.00878E-02 2.50439E-03 4.88738E-03
6 6.01309E-02 2.50546E-03 4.86604E-03
7 7.01823E-02 2.50651E-03 4.84493E-03

S 8.02417E-02 2.50755E-03 4.82405E-03

9 9.03091E-02 2.50859E-03 4.80340E-03
10 0.100384 2.50961E-03 4.78297E-03

20 0.20154 2.51924E-03 4.59009E-03
30 0.303354 2.52795E-03 4.41569E-03
40 0.40574 2.53587E-03 4.25704E-03
50 0.508622 2.54311E-03 4.11197E-03

100 1.02871 2.57178E-03 3.53701E-03

150 1.55532 2.59219E-03 3.12725E-03
200 2.0861 2.60762E-03 2.81727E-03

250 2.61979 2.61979E-03 2.57283E-03

300 3.1556 2.62967E-03 2.37410E-03

350 3.69305 2.63789E-03 2.20869E-03

400 4.23179 2.64487E-03 2.06844E-03

450 4.77156 2.65087E-03 1.94771E-03
500 5.31219 2.65609E-03 1.84248E-03

t The notation "3E-5" means 3 X 10-5.
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FORWARD SNR = 0.01
ASYMP. SNR = 0.019901

FEEDBACK SNR = 1

ASYMP. E(0) = 4.97525E-03

N EQ. SNR - SN EQ. E(0) - EN(0) CAPACITY ..eN

1 0.01 0.0025 4.97516E-03
2 2.00495E-02 2.50619E-03 4.96279F,03
3 3.01483E-02 2.51235E-03 4.95045E-03
4 0.040296 2.51850E-03 4.93816E-03
5 5.04925E-02 2.52463E-03 4.92591E-03

10 0.102197 2.55493E-03 4.86529E-03
15 0.155082 2.58470E-03 4.80572E-03
20 0.209115 2.61394E-03 4.74722E-03
40 0.436077 2.72548E-03 4.52394E-03
60 0.678846 2.82852E-03 4.31755E-03
80 0.935508 2.92346E-03 4.12731E-03
100 1.20434 3.01085E-03 3.95214E-03
300 4.31176 3.59313E-03 2.78320E-03
500 7.79234 3.89617E-03 2.17388E-03
700 11.4295 4.08196E-03 1.80005E-03
900 15.1502 4.20840E-03 1.54552E-03

FORWARD SNR = 1

ASYMP. SNR = 1.05
FEEDBACK SNR = 0.1
ASYMP. E(0) = 0.2625

N EQ. SNR = SN EQ. E(0) = EN(0) CAPACITY = c.s.

1 1 0.25 0.346574
2 2.02439 0.253049 0.276677
3 3.05731 0.254776 0.23342
4 4.09453 0.255908 0.203521

5 5.13433 0.256716 0.18139
6 6.17584 0.257327 0.164227
7 7.21857 0.257806 0.150457
S 8.26222 0.258194 0.139122
9 9.30658 0.258516 0.129599

10 10.3515 0.258788 0.121468

FORWARD SNR = 1

ASYMP. SNR = 1.5
FEEDBACK SNR = 1
ASYMP. E(0) = 0.375

N EQ. SNR = SN EQ. E(0) = EN(0) CAPACITY = cN

1 1 0.25 0.346574
2 2.2 0.275 0.290788

3 3.4973 0.291441 0.250579

4 4.84722 0.302951 0.220746
5 6.22905 0.311453 0.197811
6 7.63202 0.318001 0.179623
7 9.04989 0.32321 0.164826
S 10.4788 0.327462 0.152531
9 11.9162 0.331005 0.142138

10 13.3603 0.334007 0.133223
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TABLE I -(Continued)

FORWARD SNR = 1

ASYMP. SNR = 51
FEEDBACK SNR = 100
ASYMP. E(0) = 12.75

N EQ. SNR = SN EQ. E(0) = EN(0) CAPACITY = cN

1 1 0.25 0.346574
2 2.96154 0.370192 0.344158
3 6.70566 0.558805 0.340326
4 13.5159 0.844743 0.334405
5 24.9907 1.24954 0.325774
6 42.434 1.76808 0.31427
7 66.142 2.36222 0.300486
8 95.3736 2.98042 0.285515
9 128.952 3.58201 0.270398

10 165.782 4.14455 0.255834
50 2073.46 10.3673 7.63746E-02
90 4079.34 11.3315 4.61885E-02

200 9646.14 12.0577 0.022936

FORWARD SNR = 100
ASYMP. SNR = 100.99

FEEDBACK SNR = 1
ASYMP. E(0) = 25.2475

N EQ. SNR = SN EQ. E(0) = EN(0) CAPACITY = cN

1 100 25 2.30756
2 200.98 25.1225 1.32704
3 301.965 25.1638 0.95227
4 402.952 25.1845 0.750162
5 503.94 25.197 0.622444
6 604.928 25.2053 0.533897
7 705.916 25.2113 0.468637
8 806.905 25.2158 0.418403
9 907.894 25.2193 0.378457
10 1008.88 25.2221 0.345879

Since the capacity, 2 log (1 ± SN), of the equivalent Gaussian channel
(with signal-to-noise ratio SN), cannot exceed N times the capacity,

log (1 p), of a single channel (with signal-to-noise ratio p), SN as
given by equation (20) is in fact optimal. Thus

opT(P, co, N) = [(1 p)g - (21)

which is an exponential in N.

APPLICATION TO DIGITAL COMMUNICATION

4.1 Schalkwijk-Kailath Technique

Suppose we wish to transmit one of M equally likely messages over
a Gaussian forward channel with signal-to-noise ratio p with the aid of
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FORWARD SNR = 100
ASYMP. SNR = 199.01

FEEDBACK SNR = 100
ASYMP. E(0) = 49.7525

N EQ. SNR = SN EQ. E(0) = EN(0) CAPACITY = crt

1 100 25 2.30756
2 297.078 37.1347 1.42434
3 495.429 41.2858 1.03457
4 694.043 43.3777 0.817997
5 892.77 44.6385 0.679545
6 1091.56 45.4816 0.583023
7 1290.39 46.0853 0.511677
8 1489.25 46.539 0.456669
9 1688.12 46.8923 0.412887

10 1887.02 47.1754 0.377164

FORWARD SNR = 100
ASYMP. SNR = 1090.1

FEEDBACK SNR = 1000
ASYMP. E(0) = 272.525

N EQ. SNR = SN EQ. E(0) = EN(0) CAPACITY = cN

1 100 25 2.30756
2 1092.78 136.597 1.74935
3 2173.1 181.091 1.28073
4 3258.25 203.641 1.01116
5 4345.00 217.253 0.837702

10 9786.78 244.669 0.459444
15 15232.7 253.878 0.321.042
20 20680.1 258.501 0.248424
40 42474.8 265.467 0.133209

60 64272.6 267.803 9.22575E-02
80 86071.7 268.974 7.10184E-02

100 107871. 269.679 5.79435E-02
120 129672. 270.149 4.90532E-02
140 151472. 270.486 4.26006E-02
160 173273. 270.738 3.76957E-02
180 195073. 270.935 3.38365E-02
200 216874. 271.093 3.07177E-02

a Gaussian feedback channel with signal-to-noise ratio A, using the
forward channel N times and the feedback channel N - 1 times. Fol-
lowing Schalkwijk and Kailath,' we assign to message i (i =
1, 2, , M) the number 0 = 0; = i - (M + 1)/2. Thus the M mes-
sages are equally spaced on the interval [- (11/ - 1)/2, (111 - 1)/2] at
distance 1 apart. We can now apply the results of Sections III and IV
to transmit 0. The expectation E02 = a', is

028 = (M + 1)(M - 1)/12, Ill = 1, 2, 3 . (22)
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When message i is transmitted, the output of the system is 8 =
where is a zero mean Gaussian random variable with variance 72. We
select as the decoder output, that j(1 < j < M) which minimizes
a - O I, so that we make an error only when I > 1. This event has

probability

P, = 2cI)(-1/27), (23)

where c13(x) = 1/(27)1 f (-x2/2) dx is the cumulative error
function. Thus the smallest error probability attainable using this
scheme (with parameters N, p, A) is

1p = 9eop,r(p, /3, MO] (24)

where o is given by equation (22) and eopr in Section II. The bounds
on 0, in Section III immediately yield bounds on Pc.op T 

Let us assume that every T seconds, a digital message source emits
one of M eRT equally likely messages (R is the message "rate").
Further assume that N = aT (for example, if the "physical" channel
has bandwidth W cps, then a = 2W). Consider two cases: A = oo, A < co .

(1) When A = co , it follows immediately from equation (21) and
(22) that as T ->

1 (1 + p)"Tv e(C-R)T
2E0PT(P, C° N)o9 eRT

(25)

where C = (a/2) log (1 p) is the channel capacity in nats per second.
Thus, provided R < C, as T co the argument of cIc. in equation (24)
becomes infinite and P6.0pT -> O. In fact, (since 013(x) ti (274-1 exp
(-x2/2), as x 00)

P., OPT = exp [e2(c-R)''`n], as 7' co (26)

a double exponential decay. This is the celebrated result of Schalkwijk
and Kailath.1°'11

(ii) If we try to apply the same scheme when the feedback signal-
to-noise A < oo , then from equation (18) (260p To -8)-1 0 as T -> 00 .
Thus it is not possible using this scheme to obtain vanishingly small
error probability as T -> co with fixed signal-to-noise ratios in the
forward and feedback channel. This is so no matter how large A may
be, provided it is finite. For finite T however, equations (18) and (24)
yield useful estimates of attainable error probabilities.
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4.2 Improving the One -Way Error Exponent

Suppose that, as in Section 4.1, we wish to transmit one of M = eRT
equally likely messages in T seconds. Suppose that we use only a for-
ward Gaussian channel (with signal-to-noise ratio p) n. = aT times.
Then it is well known that one can attain an error probability

P. = exp [-E1(11- , p)aT + 0(T) 00 ,, as T
a

(27)

where Ei(R/a, p) > 0, if R < a/2 log (1 -I- p) = C, the channel capacity.
As indicated, the quantity Ei(R/a, p) depends on R and a only through
their ratio. Although E1 is not known exactly, estimates are given in
Ref. 3.1. In particular, E1(0, p) = p/4 and Ei(C/a, p) = 0.

Now suppose we have a Gaussian feedback channel available with
signal-to-noise ratio A. Let us divide the no forward channel uses into
v = no/N groups of N forward channel uses. In each of these groups we
use the extended Elias scheme, (of Sections III and IV, with N uses of
the forward channel and N - 1 uses of the feedback channel) to gen-
erate an equivalent forward Gaussian channel with signal-to-noise ratio
SAT given by the recurrence (9). We then use a one-way coding scheme
with v = no/N = (a/N)T uses of the equivalent forward channel.
With N held fixed as T , we can attain an error probability as in
equation (27) with a replaced by (a/N) and p replaced by SN-namely,

P, = exp a , o(T)]

Thus the new error -exponent is

ENW P, i3) = kEip- , SN)

Since N is arbitrary, we can state our result:

Theorem: Given a forward and feedback Gaussian channels which can
each process a inputs (independently) per second, with signal-to-noise
ratio p and A. respectively. Then it is possible to transmit digital data at a
rate R vats per second with error probability

P. = exp [-E*aT o(T)], as T -* 00, (30a)

t The conventional power constraint for a one-way channel is that the time
average of the square of the inputs must not exceed P. The power constraint used
here is that the statistical expectation of the square of each input not ex-
ceed P. Nither of these constraints imply the other. However, it is not hard to
show that the estimates of El (in Ref. 3) are valid for both constraints.

(28)

(29)
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where

(I?
P,

to) I. (RN
SN) (30b)aisN<cc. igN<co N a

SN is the solution to the recurrence (9), and E1 is the reliability (error -
exponent) for the one-way Gaussian channel as in equation (27), and T
is the encoding -decoding delay.

Remarks:

(i) Since S1 = p and E,(R/a, p) > 0 for R < a/2 log (1 p) = C,
then E*(R/a, p, /3) > 0 for R < C.

(ii) Since E1(0, p) = p/4,

1 (RN ) SN
EN(0, p, 1.3) = E1 S = -

N a ' N It..0 4N

so that from equation (16),

E*(0 p, p') Kr4SN 4(1)1 p

In fact, since SN/N can be shown to be non -decreasing, E*(0, p, /3) is
in fact equal to this quantity. Thus the use of the feedback channel
represents an improvement of a factor of [1 + A/(1 p)] in the error -
exponent at zero rate.

(iii) We can get a rough idea of the behavior of E*(R/a, p, A) as
follows. Let r = R/a be the rate in nats per channel use. Let us crudely
approximate the one-way exponent El(r, p) as r varies from 0 to c =
C/a (the capacity in nats per channel use) by a straight line connecting
(r = 0, E1 = p/4) and (r = c, E1 = 0). See Fig. 1.
Then E2 has r = 0 intercept at

S2

4
p

p2

E2(0, p, p) = = -+2.4 8[(1 p)2 + A] > 4 '

and E2(r, p, A) = 0 at r = c2 (1/2)(1/2) log (1 + 82). Similarly, EN
has r = 0 intercept at

, as N --> oo

SN SN
ENO, P; - 4N ' 4(N - 1) '

and EN(r, p, A) = 0 at r = cN A (1/2N) log (1 + SN). From Fig. 1,
we see that for each value of r > 0, there is a value of N(1 < N < co)
which maximizes EN(r, p, A) to achieve E*(r, p, P"). Values of EN(0, p, A)
and cN are tabulated for various values of p, p, and N in Table I.
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(iv) We see from Fig. 1, that the feedback scheme offers no improve-
ment over the one-way scheme (that is, EA, < El , for N > 2) for r*
r < c where r* is the solution of B2 = B1 , that is,

1E1(2r*, = E, (r*, p).

However, the rate r* c as /3 ----> 00 .

Actually, it is probably possible to improve on our results substantially
and in particular bring about an increase in the error -exponent for all
r < c. Let AT, , N2 , , } be a set of positive integers (not neces-
sarily equal). Then divide the no = aT forward channel uses into v =
no/(N1 + N2 + Nk) uses of an equivalent channel which is the
parallel combination of k Gaussian channels with signal-to-noise ratios
SN, SN , SN, . These k Gaussian channels are generated by
N, , N2, , Nk iterations, respectively, of the Elias scheme. One
must then compute the error -exponent for a parallel combination of
channels to obtain a new improved exponent." We leave this task as an
open problem.

(v) Let us finally remark that although the expectation of the channel
input power x2 is constrained, the quantity x2 is in fact a random vari-
able distributed on the interval [0, 00 ). This is in contrast to the one-way
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schemes where the channel input is bounded. This point is discussed
in Ref. 13.
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Mode Conversion Caused by Surface
Imperfections of a Dielectric

Slab Waveguide

By DIETRICH MARCUSE
(Manuscript received May 8, 1969)

This paper contains a perturbation theory which is applicable to the
scattering losses suffered by guided modes of a dielectric slab waveguide as a
consequence of imperfections of the waveguide wall. The development of
the theory occupies the bulk of the paper. Numerical results appear in
Sections VI and VIII to which a reader less interested in the theory is
referred.

The theory allows us to conclude that random deviations of the waveguide
wall in the order of 1 percent, for guides designed to guide an optical wave
of X. = 112 wavelength, can cause scattering losses of 10 percent per centi-
meter or 0.46 dB per centimeter. A systematic sinusoidal deviation of the
waveguide wall can cause total exchange of energy from the lowest order to
the first order guided mode in a distance of approximately 1 cm if the ampli-
tude of the sinusoidal deviation from perfect straightness is only 0.5 percent
of the thickness of the guide. An rms deviation of one of the waveguide walls
of 9A causes a radiation loss of 10 dB per kilometer (index difference
1 percent, guide width 2.4).

I. INTRODUCTION

The problem of how to transmit laser light over large distances or
carry it short distances inside the laboratory has renewed the interest
in dielectric waveguides.'s Such waveguides usually used in the form
of clad fibers or as strips of a medium of larger dielectric constant
embedded in another dielectric medium are capable, in principle, of
guiding electromagnetic radiation. By proper dimensioning, a dielectric
waveguide can be made to transmit only one guided mode. In this
respect mode guidance by dielectric waveguides resembles mode guid-
ance by hollow metallic waveguides. Hollow metallic tubes can be
constructed to allow only one mode to propagate so that mode conver-

3187
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sion (except for conversion to the reflected dominant mode) becomes
impossible. Such truly single mode operation is impossible for dielectric
waveguides since these guides can always lose electromagnetic energy
to the continuous spectrum of unguided modes.

The possible solutions of Maxwell's equations for a dielectric wave -
guide consist of a discrete spectrum of a finite number of guided modes
plus a continuum of waveguide modes.' The guided modes have field
configurations which concentrate the electromagnetic energy inside
and in the immediate vicinity of the structure. The continuum of un-
guided modes extends to infinite distances from the waveguide and
consists of a superposition of incident and reflected waves. A convenient
way of visualizing the physical significance of the continuum of unguided
modes is as follows. If a plane wave is incident on the dielectric wave -
guide at an arbitrary angle, part of it penetrates the dielectric structure
while some portion is reflected. The resulting superposition field of
incident and reflected waves satisfies Maxwell's equations and the
boundary conditions at the dielectric waveguide and as such can be
viewed as a mode of the structure, but the energy of this mode is not
concentrated near the waveguide and there are no specific restrictions
on the projection of the propagation vector in the direction of the guide
axis.

A perfect dielectric waveguide can transmit any of its guided modes
without converting energy to any of the other possible guided modes
or to the continuous spectrum. But any imperfection of the guide, such
as a local change of its index of refraction or a deviation from perfect
straightness or an imperfection of the interface between two regions
with different index of refraction, couples the particular guided mode to
all other guided modes as well as to all the modes of the unguided con-
tinuum. Imperfections of this type are unavoidable. They transfer
energy from the desired guided mode to unwanted guided modes and
the radiation field of the continuum of unguided modes, thus increasing
the loss of the desired guided mode.

This paper gives a simple, approximate theory of the losses of di-
electric waveguides, caused by imperfections of the boundary between
the inner region of higher dielectric index and the surrounding outer
region of the dielectric waveguide. Even though the method of analysis
used here can be used to describe any arbitrary dielectric waveguide,
we limit the discussion to a simple case. We describe the effects of mode
conversion for a dielectric slab surrounded by vacuum, assuming for
simplicity, that there is no variation of the dimensions or properties of
the rod as well as the field distribution in one co-ordinate direction. The
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restriction of demanding 0/0,, = 0 for one of the co-ordinates y is no
limitation on the method of analysis but is imposed strictly for con-
venience. It simplifies the analysis considerably without drastically
changing the conclusions. The tolerance requirements based on our
analysis are rather stringent. They show the order of magnitude of the
losses which can be expected from deviations from perfect geometry.
Additional variations in the direction considered perfect in this paper
is unlikely to improve any of the loss predictions.

II. TE MODES OF A DIELECTRIC SLAB

Let us consider the transverse electric modes of the dielectric slab
of Fig. 1. True to the simplifying assumption discussed in Section I,
we assume

a = o
av

(1)

with y being the co-ordinate perpendicular to the x and z directions, but
parallel to the slab. The only nonvanishing field components are E ,
H, , and H, .

Leaving the z and time dependence

(2)

understood, we obtain the following modes of the ideal structure as a
solution of Maxwell's equations satisfying the boundary conditions.

= co

Fig. 1- Geometry of a dielectric slab waveguide.
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2.1 Even Guided Modes

For even guided modes

8, = A(') cos K X for x I < d, (3a)

8, = A (e) cos Kde-7') for x > d, (3b)

3C, = (2§in (4)
(.0/2 '

a8= - (5)
z '

The field component 8, satisfies the wave equation
2 028

n201c2 8 = 0. (6)
OxLi

The value of the index of refraction no is different inside and outside of
the dielectric slab. For simplicity, we assume

no = 1 for I x I > (7)

The other constants are related as follows

k 2 = co2fo,uo (8)

K = (n2 k2 - (9)

(02 (10)

The propagation constant $ is obtained as a solution of the eigenvalue
equation

tan Kd = 7K-
The mode amplitude A can be expressed in terms of the power P carried
by the mode.

P = a Re f (- MCI') dx = f' 1 g 12 dx. (12)
01 o

P is the power per unit length (unit length in y -direction) flowing along
the z-axis. We obtain for the amplitude coefficient

A.,ep 2cop,

$d +
7

(13)
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2.2 Even Modes of the Continuum

The continuum of unguided modes of even symmetry is given by the
equations:

8,, = B`e) cos ax for I x I d,

8 = C(e)ei" D(e)e-i" for x > d.

(14a)

(14b)

The other field components follow again from equations (4) and (5)
and 6,, is a solution of equation (6). The constants are related to each
other by the equations

a. = ('n2k2 - 02)1,

P = (k2 - 02)1

(15)

(16)

The radial propagation constant p can assume all values from 0 to co .

The continuous mode spectrum starts at = k and continuous to )3 = 0
at which point we have p = k. Larger values of p are obtained for
imaginary values of (3 corresponding to modes of the continuum exhibit-
ing a cutoff behavior.

The boundary conditions do not lead to an eigenvalue equation for
)3 but they determine C(`) and D(`) in relation to B(').

C") = 1B(e)e-1Pd(cos ad i - sin ad) , (17)

D(e) = C(')*, (18)

(the asterisk indicates the complex conjugate quantity).
The normalization of the modes of the continuum involves a 3 -func-

tion. Instead of equation (12) we use

P (i) - p') = 8(p) (19)

With this normalization we get

B(a" - 2co,uP
(20)2

7r(3 cost ad + v2sin' ad)
p

2.3 Odd Guided Modes

In a manner similar to that for obtaining the preceding equations we
obtain the equations for the odd guided modes

gi, = A') sin Kx for x 15_ d, (21a)
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gu = A`°) sin icde-7(x-a) for x > d. (21b)

Equations (4) through (10) apply to the odd modes unaltered. The
eigenvalue equation is given by

tan icd = -11
1' '

and the mode normalization is

Aco). 2W14 P.
fld + /1

7

(22)

(23)

2.4 Odd Modes of the Continuum

As in Section 2.3 we obtain the equations for the odd modes of the
continuum

8,, = B(°) sin ox for I x I :C. d, (24a)

gu = C'ej" D(° )e-'" for x ?__. d, (24b)

C`°) = -1--B(0)e-i'd(sin ad - i -- cos ad) , (25)
P

Do) co)* (26)

B(°"
2co,uP

(27)
Gr2

713(sin2 cd +
P

cos2 ad)

All these modes are orthogonal to one another. The even modes are
orthogonal to all the odd modes, the guided modes are orthogonal to
all the modes of the continuum, and all guided modes as well as all
modes of the continuum are orthogonal among each other. The or-
thogonality of the modes of the continuum among each other was
already expressed by equation (19). Labeling the discrete modes by
indices and dropping the vector component label y we can express the
orthogonality of the discrete modes by the equation

P 8, = -7'- f 8 8,11 dx. (28)
2wµ n

III. MODE COUPLING CAUSED BY IMPERFECTIONS

We want to study the losses which the lowest order guided mode
suffers because of imperfections of the waveguide wall. A dielectric
waveguide with wall imperfections is shown in Fig. 2.
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Fig. 2 - Dielectric slab waveguide with wall distortions.
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The waveguide with wall imperfections is mathematically described
by a refractive index distribution

n2(x, z) = n(2,(x, z) + An2(x, z). (29)

The index distribution
2

n(2)(x, z) = ing
1

1 x I < d

Ix' >d
(30)

describes the ideal dielectric waveguide whose TE modes were given in
the Section II. The additional term .n2 describes how the guide deviates
from its perfect shape. Consider a deviation shown in Fig. 3. The
corresponding distribution One is (n, = index of refraction of the di-
electric material of the guide)

oix < d if d < f (z)

x < f(z) if d > f(z)

74 - 1 d < x < f (z) if d < f (z)

- (n2c, - 1) f (z) < x < d if d > f(z)

0

ix > f(z) if d < f (z)

x > d if d> f(z)

Ong = (31)
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= f (z)

2d-41

X

x = d

Fig. 3-Illustration of the wall distortion function f (z).

The field distribution E, of this waveguide is a solution of

+ An2)k2E =0
ax az

(32)

with .1-1,r and HZ given by equations (4) and (5). The modes of the perfect
waveguide form a complete orthogonal set for all TE modes with no
variation in the y -direction. It is, therefore, possible to express any
field distribution on the waveguide with imperfect walls by the expansion

E, = E cn(z) E f g(p, z) 8(p) dp. (33)

The first summation extends over all even and odd modes of the discrete
spectrum of guided modes. The integral extends over all modes of the
continuum, and the summation sign in front of the integral indicates
summation over even and odd modes. The expansion coefficients Cn
and g(p) are unknown functions of z.

To obtain a coupled system of differential equations for the expansion
coefficients we substitute equation (33) into equation (32). Multiplying
the resulting equation by

8*
2c..),u

integrating over x from -co to + co , and using the orthogonality rela-
tions and the fact that gri and 8(p) are the (discrete and continuous)
modes of the perfect guide leads to

a2C . as-20az. = '(z)
(34)
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k2 )P, (z) = -,'"., [ E c (z) ' 8;!c, One 8 da
w/-  _

+ E
i. .

(1 py(p, z) J 8! One 8(p) clxi (35)
) co

Similarly multiplying by

8*(P')
2coµ

leads to

a2g(P') 20' ag(P') - G(p'z)
az az

with

(3'k2
G(P' z) = -2,01.1p[ cn(z) 8*(p') Ant 3 dx

(36)

+ E dpg(p, z) f 8*(p') An2 8(p) dd (37)
0

No n -label on the power term P is necessary since we assume that all
the normal modes are normalized to the same amount of power. The
actual power carried by each mode relative to the power of the other
modes is given by the C coefficients. Solutions of equations (34) and (35)
with appropriate initial conditions provide us with exact solutions of

the imperfect waveguide. It is interesting to note that this method of

solution does not require the consideration of boundary conditions.
The normal modes 8 and 8(p) were assumed to have the time and

z -dependence of equation (2); this means they represent waves traveling
in the positive z -direction. However, the solutions of equations (34) and
(36) introduce waves traveling in positive as well as negative z -direction.
To see this, let us assume that One = 0 so that F(z) = 0. The equation

a2c7, - (38)
az2 1' az

C(z) = A + Be2ifinz (39)

with constant A and B. The product of A with 8 results in a wave
traveling in the positive z -direction but the product of B exp (2i0z)

has the solution
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with 8 results in a wave traveling in the negative z -direction. So, even
though we started out with waves traveling in the positive z -direction
the expansion (33) contains partial waves traveling in positive as well
as negative z -direction.

For the purpose of obtaining perturbation solutions of equations
(34) and (36), an integral form of these equations is more useful. Treat-
ing equations (34) and (36) as inhomogeneous differential equations,
we can immediately write the following integral equations

1 fzi - 17.(i")Cm = Am + B,e2ifir's -r (40)

g(p', z) = C(p') D(p')e"'' 27-73,1 [e2ir (z -r) - l]G(p' , 4.

(41)

It is important to know which part of equations (40) and (41) is as-
sociated with waves traveling in the positive or negative z -direction.
Therefore, we introduce the notation.

Cm = c!,.) + (42)

with
z

C;,7)(z) = - Fm(r) (43)

C)(z) = {Bm 4- -, Jo e-"-T,(t) c4-}e2iPmz (44)

The superscript (-I-) indicates the coefficient which after substitution
into equation (33) produces waves traveling in positive z -direction,
while (-) indicates the part which produces waves traveling in negative
z -direction. A similar notation and resulting equations is used for g(p', z);
however, the corresponding equations are obvious and are therefore
omitted.

The constants Am , B and so on, occurrng in equations (43), (44),
and the corresponding equations for g(p', z) must be determined from
initial conditions. We always assume that the lowest order guided mode
is incident on the imperfect waveguide at z = 0. Using the subscript 0
for this incident mode we get immediately from equation (43)

C`,4-) = 0 for m 0 at z = 0
or

Am = 0 for m 0, (45)
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but

A , = 1. (46)

We imagine that at z = L the waveguide is connected to a perfect guide
so that at that point there are no waves traveling in negative z -direction.
This leads to the condition

B ,n = 1 1 e-2sPr P ,n(r) d r
22(3,,, 0

(47)

for all values of m. The power loss AP of the incident mode due to mode
conversion is given by

AP = E [I C " (1)
I2 + 1 (0) 11E

1

E f[I
g(+)(p, L) 12 + I g( -)(p, 0)2] d (48)

0

Equation (48) states that the total power lost by mode conversion from
the incident mode escapes at z = L in spurious modes traveling in posi-
tion z -direction and at z = 0 in spurious modes traveling in negative
z -direction. The factor P is the normalized power factor of equations
(12) and (19); it is the power incident in mode 0. Notice that because
of equations (45) and (47) only the integral terms of equations (43) and
(44) (taken from z = 0 to z = L) enter into equation (48).

The integral equations (43) and (44) can only be solved approxi-
mately. We perform first order perturbation theory by using Cm(0)
instead of Cm(z) and g(p, 0) instead of g(p, z) in equations (35) and (37).
Furthermore, we realize that C," (0) for all m is a quantity of first
order and will therefore be neglected in equations (35) and (37). The
same is true for C," (0) with m 0. In the spirit of first order perturba-
tion theory we use therefore

and

Cm = S0m

g(p) = 0

(49)

(50)

in equations (35) and (37).
The perturbation theory is feasible not only when n20 - 1 << 1 but

also when n: - 1 is arbitrarily large but the geometrical deviation of
the guide walls from perfect straightness is slight. In either case we
obtain from equations (35) and (37) the simple approximations
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F,(z) - (n2 - 1) [f(z) - d] 80(d, z) g:(d , z)

- [h(z) d]go(-d, z) 8),`,(- d , z) } , (51)

OleP
G(p, z) = (n: - 1) { [f (z) - d] g*(p, d , z) 8,,(d, z)

2wA

- [h(z) d]8*(p, - d , z) g(-d, z)} . (52)

The function f(z) describes the dielectric -air interface in the vicinity
of x = d, while h(z) describes it near z = -d. We assumed that f(z)
and h(z) depart so little from x = d and x = -d that the functions
8(x, z) could be replaced by g(±d, z).

IV. EVALUATION OF THE SPURIOUS MODE AMPLITUDES

We begin the discussion of the consequences of our scattering theory
by calculating the coefficients C,(+) and g(+). We obtain [from equations
(43) and (51) with the help of equations (3a) and (13) for the even
modes] the following

C;:)(L) = -Lk
22

2 (n,, - 1)
cos Kod cos K,d ((P, - (53)

[(God 1!)(13,d

The coefficients (pm and ,fr, are defined by

1 r'
co- = L [f(z) - (14-13m) z dz (54)

and

1
r.

,p = _L [h(z)
(ne- (fi.-i9m)s dz. (55)

These are the Fourier coefficients of the functions f(z) - d and h(z) d

which are expanded in a domain

0 z L.

The amplitude of the ?nth even mode depends on the Fourier components
of the wall function whose "spatial frequency" r is

2r
rm - 01) - 0 111

Am
(56)

The corresponding expression for the even modes of the continuous
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spectrum is:

Le 2 cos Kod cos o-4,0(3) - ti,(0)](,) ,
fie (P' 14 276Tr)2(n° - 1) [( 0 2 I

00d + :')i3(COS2 ad ±; sing ad
'Yo P

with [fi = 13(p) see equation (16)]

1L
c.,((3) =

L JO
[f (z) - d]c-1(13°-$)z dz, (58)

1
4/(0) = 1,7 [h(z) d]e-i(s*-fl)z dz. (59)

The corresponding expressions for the odd modes are

L k2 cos Kg/ sin Kd
C,;(4, )(L) = - 1) ccon + ,fr), (60)

22
[(3,4 20d .yt)T

Lk2 cos 'cod sin ad[iP(13) 1P(0)]
g(r ) (p, L) = 21604 (n2, - 1) 2

[ (00d + &')0(sin2 cost 0-d)11
"Yo

(61)

The Fourier coefficients so and are given by equations (54), (55),
(58), and (59) except that On and (3 are now the propagation constants
of the odd modes.

The corresponding expressions for C(-) and g(-) are obtained by
replacing 13, with -13m and (3 with -0 in equations (54), (55), (56), (58),
and (59).

V. SINUSOIDAL WALL DEFLECTIONS

As a specific example, let us assume that the wall imperfections have
sinusoidal shape. Then

f(z) - d = a sin Oz (62)

and

h(z) d = -a sin (Oz a). (63)

The phase factor a allows us to consider either a waveguide whose width
varies sinusoidally

a = 0, (64)
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or one whose direction changes sinusoidally

a=ir.
We obtain from equation (54) with

0=00-Nm
the Fourier component

a
(P. = 2i

and from equation (55)

(65)

(66)

(67)

a e" . (68)
2i

A term of the order alL << 1 was omitted in equations (67) and (68).
It is apparent that only one spurious mode is excited by the sinusoidal
wall deflection since condition (66) can be satisfied for only one value
of 13, . If condition (66) is not satisfied, con, and IA. are of the order of
a/L << 1. The fractional power scattered into one spurious guided
mode due to a sinusoidal wall irregularity is [from equations (48), (53),
(67) and (68)]

L2 .2
2 d c 2

KCOS Ko OSKmdru(n2 1)2 cost (69)
4 °

(i3od -&)(3,c/ + 112) 2
'Yo

for even modes or [from equations (48) and (60)]

(AP)
\P /00

L'a2k2
4

(n 1)2
cost !Cod Skl2 Kmd

(70)

(00d ± 11)(3,nd sin2
'Yo

for odd modes. However only one even or one odd mode can be excited
by one particular sinusoidal wall deviation since it is impossible to
satisfy the "resonance" condition (66) for more than one mode simul-
taneously.

If a = 0, that is if the width of the guide changes sinusoidally, only
even modes can be excited while sinusoidal deviations from straightness
(a = 7r) couple the even fundamental mode only to odd spurious modes.
It must also be noticed that for a long period length

2rA= 7 (71)
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equation (66) can be satisfied only for forward scattering modes. To
couple to backward scattering modes, the period length D must be
approximately equal to half the wavelength of the guided modes.
The fact that only one spurious mode is coupled to the incident mode by
sinusoidal wall imperfections (it can be shown that the coupling to the
continuous mode spectrum is also weak if one guided mode can couple
strongly) allows us to give a much better description of the coupling
process.

Since the mode amplitudes Cm can change only slowly in the distance
of one wavelength we can neglect the second derivative of C, in equa-
tion (34). Labeling the incident mode 0 and the one coupled spurious
mode 1 we can write the equation system (34) in the following form

co_ = -KoiCl
aZ

acl
= Kp1-,

aZ

with

k2a 2Koi = -2 (no - 1)
cos /cod cos Kida

(i, cl)exp
2 2

cos

[(Sod + :31720)(13,d 713:)]

(72)

(73)

(74)

The coupling coefficient Ko, of equations (74) holds for coupling from
an even mode 0 to an even mode 1. The case of coupling from an even
mode 0 to an odd mode 1 can be treated similarly. In fact, except for
an unimportant phase factor, we get it from (1/L)[(AP/P)]+ of equa-
rion (70). In equation (72) we omitted a term with Co on the right-hand
side, and similarly a term with C1 was omitted in equation (73). These
terms would be multiplied by sinusoidally varying functions and would
describe the local change of phase velocity as the guide dimensions vary.
These terms give no contribution if we use an average over Co and C1
over the mechanical period length of equation (71).

Assuming Co = 1, C, = 0 at z = 0 the equation system (72) and (73)
has the solution

Co = cos I K01 I Z,

CI = (C -4Y Isin K01 I z.
Koi

(75)

(76)

Total exchange of energy is possible between the two coupled modes.
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The distance D over which all the energy is exchanged is given by

D =
I K01 I

(77)

Finally, we need the power loss to the modes of the continuous spectrum.
From equations (48), (57), (61), (62), and (63) we obtain

(AP) a2k" ., COS2 Kd

P e r
= --

g
(n- -

0Sod + -
'Yo

fx

2 2 a
cos (TO cos -2

+
sin2 ad sin2 cl

2
T2 0.2

S(C0s2 crd + mi sin2 ad) 13(sin2 ad + -i cost ad)
_ P P _

sin2 [0 - (00 - 0)]

[0 - (00 -a)]2
d p. (78)

The integration can be performed easily if one realizes that for large
values of L only a very narrow region in the range near 13 - 130 - 0
contributes to the integral. We consider all functions in the integrand
as constant in this very narrow range and take them out of the integral
with the exception of

21sin[0 - (130 - 13)] t1

1 0 - (30 - 13) f

This remaining integral can easily be performed if we use equation (16)

to obtain

dp = d0.

Following this procedure yields

(API, ), La22k4 cost Kd

Ood
.&)

70

ap
cos2 o -d cos2 p sin2 ad sin2

2

p2 cos2 ad
2 sine +ad sin2 ad + 02 cos2 od

(79)
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The parameters a and p follow from equations (15) and (16) with

= 00 - O. (80)

Equation (79) holds only for 13 < k; we get AP/P = 0 for 13 > k. The
most interesting aspect of equation (79) is its linear dependence on L.
The scattering loss due to the modes of the continuous spectrum acts
like a true loss process. By contrast, the corresponding equation (69)
for the loss to guided modes is proportional to L2 because coupling to a
guided mode does not result in loss of energy but results in energy ex-
change between the two coupled modes. Energy loss to one of the guided
modes is followed by energy gain when the energy exchange has reversed
itself.

VI. NUMERICAL EXAMPLES FOR SINUSOIDAL IMPERFECTIONS

A few numerical examples resulting from equations (74) and (77)
are listed in Table I. Two different values of the index of refraction n,
have been assumed, and for each value of the index three different
values of kd = 2ir(d/Xo) have been chosen so that one, two, or three
guided modes can exist simultaneously. The mode with 13,,, is the lowest

TABLE I - NUMERICAL EXAMPLES FOR SINUSOIDAL IMPERFECTIONS

no kd pod put t92d

aD
d2 Remarks

1.5

1.3 1.729 - - - Single mode
operation

1 . 8 2.495 1.916 - 6.98 0 - 1 coupling
a = 7i

3 . 0 4.336 3.831 3.051

6.17 0 - 1 coupling
a =7

5.52 0 - 2 coupling
a = 0

1.01

8 . 0 8.041 - - Single mode
operation

15.0 15.113 15.022

23.002

42.54 0 - 1 coupling
a = 7

23.0 23.199 23.112

36.28 0 - 1 coupling
a =7r

43.69 0 - 2 coupling
a = 0
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order even guided mode which is assumed to be incident on the wave -
guide with sinusoidal wall imperfections. This mode couples to the first
odd mode with X61 or the next even mode with 02 . The values for the
normalized, dimensionless quantitity (aD)/ d2 [a = amplitude of the
sinusoidal wall deviation according to equation (62) and (63), d = half
width of the guide, and D = energy exchange length] have been ob-
tained with the assumption that equation (66) is satisfied for the two
modes which are coupled together. Coupling from mode 0 to mode 1 is
considered only for the case of sinusoidal straightness deviations of the
waveguide (a = 7) while coupling between even modes 0 to 2 is con-
sidered only for sinusoidal changes of the thickness of the waveguide
(a = 0). It is immediately apparent from Table I that the energy ex-
change length D is shorter for a guide with larger values of the refractive
index.

To obtain a feeling for the numbers involved in this mode coupling
phenomenon, let us assume that nD = 1.5 and that the free space wave-
length is X0 = 1,u. The value of kd = 1.8 corresponds to d = 0.286g.
To achieve total exchange of energy between modes 0 and 1 in D = 1 cm
requires the extremely small amplitude a = 5.72 10-5g or a = 0.572 A !t
The length of the mechanical period in this example is A = 3.1g.

Next, let us assume that the index of refraction is ng = 1.01. Using
again, X0 = 1g, we obtain from kd = 15.0 the value d = 2.39g for the
half width of the waveguide. Requiring again, D = 1 cm, we find a =
243 A.

We can look at this problem in a different way. It is unlikely that any
optical waveguide has a strictly sinusoidal deviation from perfect
straightness. In fact, the numbers just presented show that it would
be impossible to produce such a waveguide intentionally. However, we
have seen [equation (53)] that the mode conversion between two guided
modes is produced by a Fourier component of the actual deviation func-
tion. It is therefore not necessary to have a strictly sinusoidal straight-
ness deviation. Any arbitrary deviation from straightness can be de-
composed into a Fourier series and the Fourier component at the
mechanical frequency which satisfies equation (66) is responsible for
the coupling. In the more general case of arbitrary straightness devia-
tions, there can be no complete exchange of energy between any two
modes since power loss to other guided modes and the continuous

t A mechanical period of a fraction of an Angstrom is somewhat unphysical due
to the granular nature of matter. However, this result can be restated to say that
complete power conversion occurs in 0.1 mm if the amplitude is a = 57.2 A.
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spectrum of modes compete with each other since all of them are coupled
simultaneously.

We can now ask the question: What amplitude of the mechanical
straightness deviation is required to transfer 10 percent of power from
mode 0 to mode 1 in a distance of L = 1 cm? Again, we use the previous
examples. From equation (76) [or directly from equations (53) and (77)]
we obtain

AP
2

L2

I KO1 1, Li2 =
4

- 2.

ForFor the first example we obtain with ng = 1.5, AP/P = 0.1, d = 0.286g,
and aD/d2 = 6.98 the value a = 0.115 A. t This result shows that if
the Fourier component of the mechanical straightness deviation with a
period length of 3.1g is a = 0.12 A (measured over a distance of 1 cm)
the power loss caused by mode conversion to the first odd mode is
10 percent.

For the second example, we use again n = 1.01, AP/P = 0.1, d =
2.39,u, and aD/d2 = 42.54 and obtain a = 48.8 A. The important
Fourier component in this case has a period of A = 135g. The power
loss to the modes of the continuous spectrum caused by a sinusoidal
change in thickness of the waveguide (which is very similar to its effect
as a straightness deviation) can be calculated from equation (79) with
a = 0.

Let us consider only one case, no = 1.01, kd = 15, A/d = 25. For
these values we obtain from equation (79)

d3 AP
a2L P = 4.6 X 10-2.

Assuming again AP/P = 0.1 for a guide length L = 1 cm, we obtain
with d = 2.39g

a = 5.46 X 10-2g = 546 A.

This number can be compared to the value a = 48.8 A which gave
10 percent loss by conversion to one guided mode. However, for a
meaningful comparison, we must remember that all the Fourier com-
ponents of a Fourier expansion of the guide imperfections scatter power
into the modes of the continuous spectrum. The total loss would have
to be obtained by integrating the scattering loss over the spectral dis-

t Again it is more reasonable to restate this example to say that 10 percent loss
occurs over a distance of L = 0.1 mm if a = 12 A.
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tribution of the Fourier components of the mechanical Fourier spectrum.
Instead of doing this integration we use a different approach in Section
VII.

VII. STATISTICAL TREATMENT OF WALL IMPERFECTIONSt

Equation (48) gives the relative loss of a guided mode caused by
a definite (deterministic) distortion of the boundary of a dielectric
waveguide. A quantity that may be even more interesting is the average
of equation (48) taken over an ensemble of statistically identical sys-
tems.

For simplicity, let us assume that one wall of the waveguide is perfect
while the other is randomly distorted. If both walls are randomly dis-
torted, with no correlation between the distortions on opposite walls
the loss value doubles compared to the case of only one wall being dis-
torted. If the distortions on opposite sides of the waveguide are per-
fectly correlated the amount of loss is at most increased four times.
So to simplify the discussion we assume

h(z) d = 0. (81)

In order to be able to calculate (AP/P)av , we must evaluate

(I co. 12).v =
1

L2
Jdz f dz'R(z - (82)

0 0

We assumed that the correlation function

R(z - z') = ([f(z) - dill (z') - dpav (83)

depends only on the difference between the coordinates z and z' but not
on their individual values.

A change of integration variables allows us to write

L(I (P. 12)av = 1-3)- fo (L - u)R(u) cos (f30 - /3,)u du. (84)

To obtain equation (84) we made use of the fact that R(u) is an even
function.

The particular form of R(u) depends on the statistics of the wall
imperfections. However, all correlation functions have two features in
common. They all have their maximum value at u = 0 and decrease to
zero as u co . If R(u) would not become 0 as u 00 there would be a

t An excellent statistical treatment of random coupling effects in metallic wave -
guides can be found in Ref. 7.
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systematic distortion of the waveguide boundary instead of the assumed
random behavior. To get an idea of what one might expect, we assume
the following form for the correlation function

luR(u) = A' exp (---B-) (85)

A is the rms deviation of the wall from perfect straightness and B is
the correlation length. Using equation (S5) we obtain from equation (84)

2A2 1 f 1 (13° - 13m)2
(I sons I2)., - L + , r17

l
(86)

(00 - 0.)2 + -12- I.- IA(00 - $m)2

where we neglected terms with exp (- L/B) assuming that L/B is
sufficiently large. In fact if

L >> B, (87)

equation (86) can be simplified further:

(I cam
1- 2A2

BL 1
(88)

- 0,)2
32

Using equation (88) we obtain, from equation (53) for the ensemble
average of the square magnitudes of the even guided modes,

A,21cB4L

cos' K,,d cos' Kmd

((30 - 0,)2 + ;3:5..)(130d + 711°-0)(13,d +
Ym

(89)

The corresponding expression for the odd modes is very similar except
that cos' Kmd is replaced by sin' Kmd and Om , Km , and 7, are the param-
eters of the odd modes.

The total loss caused by coupling to all guided modes supported by
the dielectric waveguide is the sum over all (I C. 12), for even as well
as odd modes traveling in positive (Om = -1-113, I) as well as negative
(/3m = -113m I) z -direction. It is noteworthy that equation (89) is pro-
portional to L and not to L2. The conversion to spurious guided modes
by random imperfections appears as a true loss to the incident mode.

The losses due to the modes of the continuous spectrum are obtained
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from equations (48), (57), (61), (81) and (88) (with = 0):

/DP \ A2k4L 2(n,P 27rB f
p cos2 'cod

k (00 - 0)2 + -1-kod + 120)
B2 7

(p2 cost + 0.2
sing

d p2 sing crd + 0.2 cost p.d)1 da . (90)

The relation between )3, a, and p is given by equations (15) and (16)

while 00 , Ko , and -y, are related by equations (9) and (10) and their
value is obtained by solving equation (11). The integral in equation (90)
is extended over 0 from -k to k, the range of real values of the propaga-
tion constant (in z -direction) of the modes of the continuous spectrum.
Equation (90) thus includes the losses due to forward as well as back-
ward scattered radiation. The radiation modes with imaginary values
of 0 can carry power away from the waveguide only strictly perpendicu-
lar to its axis. This power loss, if any, is not included in equation (90).

cost ad sine a -d

VIII. NUMERICAL RESULTS FOR THE STATISTICAL CASE

Figures 4 through 9 show numerical evaluations of equations (89)
and (90). These figures can be grouped into two classes. Figures 4
through 6 are drawn for a dielectric waveguide whose index of refraction
is n, = 1.01. Figures 7 through 9 apply to a waveguide with n, = 1.5.
Within each of these two classes, the kd value was chosen to allow for
three different cases. Figures 4 and 7 apply to waveguides which can
support only the lowest order guided mode. In this case there is power
lost only to the modes of the continuous spectrum. Figures 5 and 8
apply to waveguides supporting two guided modes and Figs. 6 and 9
apply to waveguides supporting three guided modes. Each figure shows
the normalized loss caused by scattering into modes of the continuous
spectrum as solid lines and the loss to the possible guided modes as
dotted lines. Also shown are the ratios of backward to forward scattered
power as solid lines for the modes of the continuum and as dotted lined
for the guided modes. The total power lost to the lowest order guided
modes is the sum of the losses to the continuum and the spurious guided
modes.

Several remarkable features of these loss curves are worthy of a com-
ment. The losses caused by the modes of the continuum as well as by
the guided modes peak at certain values of the correlation length B.
The location of these peaks are different, however, for the continuum
and guided modes.
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Fig. 4 -Normalized radiation loss (d3/A2L) (AP/P) and ratio of backward to
forward scattered power AP- / AP+ as functions of the normalized correlation
length B/d for n, = 1.01 and kd = 8.0. Single guided mode operation (d = half
width of waveguide, A = rms deviation of one waveguide wall, L = Length of
waveguide section, ng = index of refraction of waveguide, k free space
propagation constant.).

The losses to the guided modes increase with increasing number of
guided modes supported by the waveguide. However, the losses caused
by the continuum of modes also increase as an increasing number of
guided modes can be supported. This increase is less rapid, however,
as one might expect because of the dependence of equation (90) on the
fourth power of k. The fourth power dependence on frequency (or inverse
wavelength) is typical for Rayleigh scattering by small particles, and
it is not surprising that we encounter it here.

Finally, it is apparent from the curves showing the ratio of back -
scattered to forward scattered power that forward scattering is pre-
dominant for large values of the correlation length. The ratio of
AP-IAP+ levels off for large values of B. In some of the curves the
leveling of the AP -/AP+ curves occurs out of the diagram but it is a
common feature of all the curves. For small values of the correlation
length there is as much scattering in the forward as in the backward
direction.

For many practical applications, a waveguide supporting only one



3210 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969

5

2

HT'

5

2

lo -2

5

2

io-3

,..\
N

\\\ ,,7--.--
AP-
AP+

\
\
\\

\
\ ....\

\
_......._

d3 AP
P -\

\ ....--.....'

7- ----A2L

\\ /
0.01 0.02 0.05 01 0 2 05 2

B/d
5 10 20 50 100 200

Fig. 5- Normalized power loss and ratio of foreword to backward scattered
power for radiation (solid curves) and spurious guided modes (clashed curves).
Two guided modes (n, = 1.01, kd = 15).

5

2

10-I

5

2

10-2

5

2

lo -3

\
\

\
\ AP-

Apt\ \
2-

/
\ / ,

d3 AP,\
\ \ A2L P ..."

.....1-......

' i ../
,
\

,, .. .
A

/
/ N

r \/
zr `\

0.01 0.02 0.05 0 1 0 2 05 2
B/d

5 10 20 50 100 200

Fig. 6- Similar to Fig. 5. Three guided modes (n, = 1.01, kd = 23).
- - - - two guided mode loss; continuum loss.



5

2

to -1

5

2

10-2

5

2

to -3

MODE CONVERSION IN SLAB WAVEGUIDE 3211

eP-
API-

d3 AP2L

A P

0.01 0.02 0.05 0.1

5

2

5

2

10-2

5

2

10-3

0 2 05 2
B/d

5 10 20 50 100 200

Fig. 7- Similar to Fig. 4. One guided mode (n, = 1.5, kd = 1.3).

--.
AP-

%.-.r. A P

I---

\\
//

+

\A-

\

__..

\

d3
/-7.A2L

AP
P///

// \\ \ \

4

/// \
0.01 0.02 0.05 0.1 0 2 05 2

B/d
5 io 20 50 100 200

Fig. 8 - Similar to Fig. 5. Two guided modes (n, = 1.5, kd = 1.8).
- - - - one guided mode loss; continuum loss.



3212 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969

5

2

to -I

5

2

10-2

5

2

to -3

AP-__Za\\AP+

\/
\

-'\' O3 AP
\\\

\\\A2L P/ \\-- \// ----- ---- --__._\

0.01 0.02 0.05 0 1 02 05 2
B/d

5 10 20 50 100 200

Fig. 9 -Similar to Fig. 5. Three guided modes (n, = 1.5, kd = 3).
- - - - two guided mode loss; continuum loss.

guided mode may be of most interest. Let us assume X0 = 1µ. Figure 4,
holding for kd = 8.0 and n, = 1.01, applies to a waveguide whose half
width is d = 1.27A. Taking the worst possible case of B/d = 9 or B =
11.4A, we find from Fig. 4

d3 AP = 6 X 10-3.A2L P

If we want to know how much rms deviation A of one wall of the guide
would be required to cause a 10 percent loss (AP / P = 0.1) in one centi-
meter of waveguide (L = 1 cm) we find A = 5.85 X 10-2A = 585 A.
The ratio of A over d gives an idea of the relative tolerance require-
ments:

A71- = 4.6 X 10-2 = 4.6%.

If the waveguide were to conform to the conditions of Fig. 6, we would
have for X0 = 1/.4 a half width d = 3.66A. The losses caused by the two
spurious modes are of the same order of magnitude as the radiation losses
caused by the continuous spectrum. For B/d = 10 or B = 36.6A we get
a total loss of
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d3

A2L P 3'4 X 1°-2'

To cause LP/P = 0.1 for L = 1 cm requires that

A = 1.2 X 10-1/1 or .1:" = 3.28%.

The relative tolerance requirements are, therefore, approximately the
same in both examples.

As a last example let us use Fig. 9 corresponding (X0 = 112) to a wave -
guide with no = 1.5 and a half width d = 0.477µ. For B/d = 1.3 or
B = 6.2µ we find for the total loss

d3 APp- = 2.3 X 10-1.

We get tIP/P = 0.1 with L = 1 cm for

A = 2.18 X 10-311 = 21.8 A or
A=

0.457%.

The perturbation theory, strictly speaking, holds only for small values
of AP/P. However, it is reasonable to expect that the power scattered
into the radiation modes escapes sufficiently rapidly so that no appreci-
able amount of power reconversion from the radiation field to the guided
mode occurs. The incremental power loss, AP/P = -aL, is therefore
the same for any section of the guide so that we obtain the total scatter-
ing loss into the continuum of radiation modes P = Poe-". We may
now ask how much rms deviation is required to cause a radiation loss
of 10 dB/km or a = 2.3 km' = 2.3 X 10' cm'. Using B/d = 10,
corresponding to the top of the loss curve of Fig. 4, we obtain the
equation

dX 2.3 X 10-5 = 6 X 10-3

so that (X = 1/2, ng = 1.01, kd = S.0, d = 1.27 X 10' cm)

4 = 6.98 X 10' or A = 8.86 X 10-5 cm = 8.86 A.

This figure dramatizes the stringent tolerance requirements of dielectric
waveguides for long distance optical communications. In fact, such
tolerances seem impossible to obtain. One can only hope that the cor-
relation length can be kept far from the worst possible value of B/d = 10
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(in this example) so that these extremely stringent tolerance require-
ments might be eased.

IX. CONCLUSION

We have analyzed the losses suffered by the lowest order symmetric
mode propagating on a dielectric slab waveguide caused by imperfec-
tions of the waveguide boundaries. The analysis was simplified by assum-
ing that there is no change in either the dielectric slab or the guided and
unguided fields in one direction parallel to the slab. This assumption
causes all our conclusions to be optimistic since variation of the slab
in this direction can only cause additional losses. However, we expect
that the results of this analysis give at least the correct order of magni-
tude of the actual scattering losses.

The statistical analysis was limited to a study of the effects which
an exponential correlation function might have on the waveguide losses.
The actual form of the correlation function may be quite different from
this assumed exponential shape.t Conclusions regarding loss predictions
are further hampered by a lack of knowledge of the expected correlation
length.

However, our analysis does lead one to conclude that scattering losses
suffered by optical fibers or other dielectric waveguide structures may
be very serious. Deviations of the waveguide wall in the order of a few
percent can cause a power loss of 10 percent or 0.46 dB/cm if the wall
imperfection can be described by an exponential correlation function
with a correlation length to guide half width ratio of approximately
B/d = 10. An rms deviation of A = 9 A causes a radiation loss of 10
dB/km if the free space wavelength is Xo = 1/.1 and the guide has an
index of refraction of n, = 1.01 (with vacuum on the outside). The
width of the slab in this last example is 2d =

The mode coupling and radiation loss theory has been experimentally
confirmed at microwave frequencies. A report on these measurements
is given in Ref. 8.

t Several other correlation functions have been tried and it was found that the
results are insensitive to the particular choice of the function for values of B/d
less than the value corresponding to the loss peak. In particular, the maximum
loss value and the position of this loss peak were the same for different correla-
tion functions. However, the loss values for B/d larger than the value correspond-
ing to the maximum of the curve are very strongly dependent on the choice of
the correlation function.
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Mode Conversion Caused by Diameter
Changes of a Round Dielectric Waveguide

By DIETRICH MARCUSE and RICHARD M. DEROSIER

(Manuscript received July 8, 1969)

This paper presents the theory of mode conversion and radiation losses
of the lowest order circular electric mode in a dielectric rod (fiber) wave -
guide and its confirmation by a microwave experiment. The theoretical re-
sults were obtained from a theory whose detailed development has been
presented in an earlier paper.

The microwave experiment was carried out at approximately 60 GHz.
The optical fiber with imperfect walls was simulated by a teflon rod of 1 cm
diameter and 1 m length with a periodically corrugated wall.

Mode conversion was observed in excellent agreement with theory. The
observed radiation losses are somewhat less than the prediction of the
perturbation theory, but the agreement is quite good. The direction and
width of the far -field radiation pattern was observed in agreement with
theory.

I. INTRODUCTION

A theory of mode conversion and radiation losses of a guided mode in
a dielectric slab was described in Ref. 1. The power conversion to spuri-
ous guided modes as well as to the continuum of unguided radiation
modes was assumed to be caused by deviations from perfect straightness
of the air -dielectric interface of the slab. The model of the dielectric
slab waveguide was chosen for its simplicity.

Even though the dielectric slab exhibits all the relevant features of
mode conversion caused by surface roughness and allows one to draw
conclusions as to the order of magnitude of the losses suffered by guided
modes in dielectric waveguides of other geometries, it is desirable to
report the calculations for a round dielectric rod. The results of cal-
culations for the dielectric rod are directly applicable to light trans-
mission along optical fibers. Furthermore, we wanted to test the pre-
dictions of the theory at microwave frequencies where a controlled

3217
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experiment, to check the effect of surface imperfections on mode guid-
ance, is feasible. We present in this paper the theoretical treatment of
the round dielectric waveguide with wall imperfections and its con-
firmation by a microwave experiment.

The mode conversion theory of round dielectric waveguides is only
sketched in this paper since the basic method of calculation has already
been described elsewhere.' The theory is simplified by limiting the
discussion to circular electric modes. In order to avoid coupling between
the circular symmetric and other modes, we assume that the symmetry
of the rod is such that all derivatives with respect to the angle of a
cylindrical polar coordinate system (r, (p, z) vanish (a/av = 0).

We conclude again (as in Ref. 1) that the radiation and mode con-
version losses caused by deviation of the waveguide walls from perfect
straightness are extremely severe, imposing strict tolerance require-
ments on the fabrication of low loss optical fiber transmission lines.

To confirm the basic aspects of our theory we conducted a microwave
experiment. Because of the ready availability of equipment, the fre-
quency range of 50 GHz was chosen. Two teflon rods were used to simu-
late optical fibers. Both rods had 1 cm diameters and a length of 1 m.
One rod was smooth and was used for calibration and reference purposes,
while the other rod was machined with periodic grooves to simulate an
optical fiber with wall imperfections (Fig. 1).

The periodic wall perturbations cause two guided modes to be coupled
together. In fact, it is possible to obtain complete power conversion
between these two coupled modes. We have observed complete power
conversion in agreement with our theory.

In a certain frequency interval, the periodic grooves cause coupling
to the continuous spectrum of radiation modes of the dielectric rod.
The measured results are somewhat lower than the theoretical pre-
diction. The reason for this discrepancy can be partly explained by a

SMOOTH DIELECTRIC ROD

CORRUGATED DIELECTRIC ROD

ke->l
1.93 Cr11

Fig. 1- The smooth and corrugated teflon rods used for the microwave ex-
periment (742 = 2.05).
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certain ambiguity in the value of the effective radius of the corrugated
rod. If we make the assumption that the effective radius is either the
largest or smallest radius of our rod, we obtain two curves which bracket
our experimental results. However, our experimental values are consis-
tently lower than the theoretical predictions based on an average diam-
eter which is the arithmetic mean of the largest and smallest rod
diameter. It is more likely, therefore, that the loss prediction of the
perturbation theory is slightly too large for losses which are as high as
those which occurred in our experiment.

Our theory also predicts the far -field radiation pattern caused by a
strictly periodic wall perturbation.`' We have observed the peak of the
far -field radiation lobe and its width in agreement with theory.

II. TE MODES OF THE DIELECTRIC RODS

Imposing the condition

a =o
ac, (1)

the transverse electric field is composed of the components

,H,.,Hz. (2)

The guided modes have the following form (normal modes of the perfect
waveguide are indicated by script letters)

8, = A.1 i(Kr)e' c w t -anz' for r < a (3a)

J c ,a)8, = An
Hi :(1,7a) /11"(i-ynr)ei("-snz) for r > a. (3b)

The two magnetic field components are obtained from the E, componenta= - E
(4a)

r coil az

i 1 a= - - - (rE,). (4b)
61 r ar

The various symbols used in these equations have the meanings:

a = radius of the dielectric rod,
13 = propagation constant of mode n,
K = (122,k2 - 0234, (5)

= (N2. k2)1, (6)

k = 27r/X0 = free space propagation constant,
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n, = index of refraction of the waveguide (rod),
w = radian frequency,

J1 = Bessel function of order 1, and
HP) = Hankel function of first kind and order 1.

The boundary conditions, requiring that the field components 8, and
X. are continuous at r = a, lead to the eigenvalue equation for /3

7n Ji(tca) . Hin(ilina)
(7)N - -i ( 1)

Kn Jo (Kna) Ho (ryna)

The subscript 0 designates the Bessel and Hankel functions of zero
order. It is convenient to express the mode amplitude An by the actual
power carried by each mode:

f-P = --1 dr (icor gc,3C;.' = 7r -11 r 16, 12 dr. (8)
n 2

f
0 wµ0

The modes will be normalized to the same amount of power (1 watt, for
example) so that we write

Pn = P. (9)

The mode amplitude can now be expressed as

A: - r2°A P
a20 IC( 2

n

1 + -§) I J o(Kna) J 2(Kna)
7n

(10)

The modes of the continuous spectrum are given by the expressions

8, = 13,11(o-r)e"-') r < a (11a)

8, = [Ci I i(pr) + DN i(pr)]e""-sz) r > a. (lib)

The two magnetic components are again obtained from equations (4a)
and (4b). N1 is the Neumann function of order 1 and the parameters
a and p are defined:

0- = (n:k2 - p2)4, p = (k2 - ST. (12)

The normalization of the continuous modes involves the Dirac 5 -
function

P (5(p - p') = ,r (.013-1.1 r r. E c(p)E:(p') dr. (13)
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The boundary conditions at r = a determine the relations between the
constants C, D, and B

C r
= 2 pa(Ji(aa)No(pa) - Jo(cra)Ni(pa)) (14a)

73 =
7

PaV1((la)j°(Pa)
Jo(cra)Ji(pa)) , (14b)

and these coefficients can be expressed in terms of the power carried
by the mode

P = 7-13- (C2 + D2) . (15)
Pcoi2

The actual field of a dielectric rod with imperfect walls can be expanded
in terms of the normal modes of the perfect rod:

E, = C.8 + f g(p) 8(p) dp. (16)
0 0

The remaining caluclation of the power loss to radiation and guided
modes, as well as the energy exchange phenomena between different
guided modes, are exactly analogous to those developed in Ref. 1 so
that their derivation need not be repeated here. In Section III we simply
quote the results of the corresponding calculations.

III. SINUSOIDAL WALL PERTURBATION

It was pointed out in Ref. 1 that a sinusoidal wall perturbation can
couple only those two modes whose beat wavelength

2-
A" (17)

00 - Nn

coincides with the mechanical period it of the wall perturbation. It is
therefore possible to consider the coupling phenomenon between only
two modes with the result that the coefficient Co of the incident mode
and the coefficient Cl of one of the spurious modes obey the relations

Co(z) = cos
I

K01
I Z

C, (z)= -91 sin Koi ,z

with

(18a)

(18b)
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-
(n: - 1) (ka)2

2a(130/31) 4

.110(00.110(1a)

[(1 + ;1)(1 + 71),10(Koa)J(K,a),12(Koa)J2(Kia)
2 2

Here, A0 is the amplitude of the sinusoidal wall deflection

r(z) = a - Ao sin Oz

0 = So - Si
The microwave experiment was conducted with a teflon rod with

meandering grooves cut into it. The depth of the grooves is given by
2b as shown in Fig. 1. The amplitude of the fundamental Fourier com-
ponent of the periodic wall deflection of Fig. 1 is given by

(19)

(20)

A. = 4b (21)
ir

The two modes exchange their power completely over a distance

D -
I.

(22)
2

I Kin I

The radiation loss of the dielectric waveguide of Fig. 1 can be calculated
by the methods of Ref. 1 resulting in the following equation.

24(n4, -1)2a-b()(ka)4
OP L
P a ri30a

4(Koa) J'f(a-,a)
2

(1 ± 1;) Jo(Koa)J2(Koa) I in-') (2m + 1)2[6: (DB:)21

(23)

AP is the power lost to radiation modes on a section of the waveguide
of length L, and P is the power of the incident lowest order circular
electric mode. The meaning of a and b is explained in Fig. 1. The sum
in equation (23) takes account of the contributions of each component
of the Fourier expansion of the distorted wall profile. The Fourier
amplitudes of the function shown in Fig. 2 are

4b
Am - 7r(2m 1)

[the zero component of this expansion appeared already in equation

(24)
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r

b

h
-b

h
2

z

Fig. 2- The wall distortion function with Fourier expansion:
4b 2rr =E-0 (2m ± 1)r sin [(2m 1) -hz]

(21)]. The index in, which has been added to the coefficients B, C, and
D appearing in equations (14a and b) indicates that they must be
evaluated for the following values of

On, = 130 - (2m 1) -27r
'

(25a)
d

= (n:k2 4)4, (25b)

Am = (1c2 - 14)1 (25c)

The physical reason for the occurence of these discrete values of the
propagation constant in the continuous spectrum of modes is the
requirement (derived in Ref. 1) that only those values of are ap-
preciably coupled to the incident guided mode which satisfy the relation

On - = A.
(26)

where Am is the period length of a Fourier component of the wall dis-
tortion function.

IV. THE STATISTICAL CASE

To first order of perturbation theory, the expansion coefficient g(p, z)
appearing in equation (16) is given by

a(p, z) = L k2oi: - 1)(P)'
(2)1i(M)1

sal (K0a)J, (act)

{013)2 NY] (1 + I

j'('''a),I 2 (K0a) I }
(27)
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9 =
1z fo

L

[f (z) - a]e `"4-4'' dz. (28)

It was pointed out in Ref. 1 that the average power loss caused by scat-
tering into the radiation field is given by

k
6,/:' ..P-10/) --= Lk -43(I g 12)av ch 3. (29)
.

The symbol ( )., indicates an ensemble average. The ensemble average
of 1 so 12 is given by

(1 co 12).. ''-; .2{,
JO

1' R(u) cos (tIo - /3.)u du (30)

with the correlation function

R(u) = ([f(z) - al f (z + u) - a]).. . (31)

The relative power loss
from equations (27) and

1 KAP) /An!, - 1)2

L P av 2)30(1 + i)
To

caused by radiation from the rod is obtained
(29)

Alcoa) fk RI co 12)-114(\cra)
I tio(K°4/2(")

I j -k 131)2 (Di- + B

V. NUMERICAL RESULTS FOR THE STATISTICAL CASE

To be able to make numerical predictions, let us
correlation function is given by

so that we obtain

R(u) = A2 exp (-L1-4 I-)
B

2

1,(1 so I)2.
2A- B 1

1030 - /)2 ±

Figure 3 shows a plot of (d/LA2)(AP/P) as aL7function of B,/a for
nt, = 1.01, ka = 23.0 and ng = 1.5, ka = 3.0. Both conditions are chosen
so that only the lowest order circular electric mode can propagate in
the dielectric rod.

To get a feeling for the magnitude of the losses to be expected from
random variations of the rod's radius, we calculate the rms deviation

assume that the

(33)

(34)
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Fig. 3- Normalized radiation loss caused by random wall perturbations with
exponential correlation function, a = radius of fiber, A = rms value of wall
deviation, L = length of waveguide section, k = free space propagation con-
stant. The dimensions shown in the figure were chosen to ensure single guided
mode operation.

A required to cause AP/P = 0.1 for a rod length of L = 1 cm for
n, = 1.01 and the worst possible value of B/a = 2. Assuming X = 1k
we get from ka = 23 the value a = 3.66k for the guide radius. With
(from Fig. 3)

we find

or

3 AP = 0.16

A = 1.5 X 10-2 = 1.5%
a

A = 550 A.

As discussed in Ref. 1, it may be permissible to apply the perturbation
calculation of the radiation loss repeatedly so that from

Al)-= -az,/)

P poe- aL

(35)

(36)
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can be obtained. We can then ask for the rms deviation A of the rod's
radius which causes a loss of 10 dB/km. With the numerical values
used above we find

A = 8.4 A.

Almost the same figure was obtained for the rms deviation of the half
width of the dielectric slab which causes a 10 dB/km radiation loss of
the lowest order (even) guided mode. However, in the case of the slab,
one wall was assumed to be perfect.

VI. THE MICROWAVE EXPERIMENT

The experimental setup is shown in Fig. 4. The microwave signal is
generated by a reflex klystron whose rectangular waveguide output is
fed into a round waveguide by means of a rectangular -to -round wave -
guide transducer. The round waveguide is connected to a section of
round helix waveguide which serves as a mode filter suppressing all
but the circular electric TE,;Ini ) mode. Transition between the TR,"1,
mode of the round waveguide and the corresponding TE., mode of the
dielectric rod waveguide is achieved by inserting the rod into the wave -
guide. This mode launcher is not perfect since a small amount of TE02
mode of the dielectric waveguide is excited. The TEgn) mode of the
round waveguide cannot excite the pure TEoi mode of the dielectric rod
since the field configurations of the two modes are slightly different.
In addition to some residual TE02 mode, small amounts of asymmetric
modes of the dielectric rod are also excited because of imperfect center-
ing of the rod inside the round waveguide.

To probe the field outside of the dielectric rod and detect the con-
version of power from the TE01 to the TE02 mode, we used a probe which

KLYST RON
RECTANGULAR

GUIDE

ATTE NUATOR TRANSDUCER

SQUARE WAVE
MODULATION

HELICAL
SECTION

DIELECTRIC ROD

DETECTOR

oft/
,11111MM

STANDING WAVE
RATIO METER

Fig. 4-Block diagram of the microwave experiment.
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Fig. 5 - Buildup of the TE., mode along the corrugated rod. Groove depth
= 7.6 x 10-3 cm.

consisted simply of an L-shaped piece of RG 98U waveguide which was
mounted on an optical rail, which made it possible to move the detector
parallel to the dielectric rod. The receiver attached to the L-shaped
probe consisted of a single diode detector followed by an amplifier which
was tuned to 250 Hz. The klystron was amplitude modulated at that
same frequency. The periodicity of the grooves of the corrugated
dielectric rod (Fig. 1) was chosen equal to the beat wavelength between
the TE01 and TE02 modes of the dielectric rod as given by equation (17).

Mode conversion from TE0, to the TE02 mode can easily be observed
with our detector arrangement because the TE02 mode extends much
farther away from the rod than the more tightly confined TE01 mode.
Moving the detector to approximately 4 mm from the surface of the
rod made it impossible to observe any trace of the TE01 mode, while
the TE02 mode could easily be detected.

That the corrugation does indeed serve to transfer power from the
TE0, to the TE02 mode is shown in Fig. 5. The measured values of
TE02 power are shown as dots on this figure. Also shown is a plot of the
sine x function which gives the theoretical law of the power increase
according to equation (18b). The slight scatter of the measured points
is caused by interference between the TE02 mode and some other residual
mode which is unintentionally generated by the mode launcher. From
equation (22) we calculate D = 80cm for our particular experiment.
From Fig. 5 we see that the experimental value of the total energy ex-
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change length is approximately 75 cm. The remaining discrepancy be-
tween the theoretical and experimental values can easily be attributed
to the machining accuracy of the rod which was no better than 2.5 X
10-3 cm. Striking proof of the identity of the mode whose buildup is
shown in Fig. 5 is provided by Fig. 6.

Figure 6 was obtained by moving the L-shaped detector transversely
at the end of either the smooth or the corrugated rod. The detector is
thus probing the near field radiation pattern which results as the guided
mode leaves the end of the rod and radiates into space. This near field
radiation pattern is a faithful reproduction of the shape of the guided
mode inside of the waveguide. The solid curve shown in Fig. 6 was
obtained by probing the transverse field pattern of the smooth rod.
This field pattern shows clearly the TE0, mode. There is a slight dis-
tortion in the wings of this mode which is caused by interference between
the TE01 mode and a small amount of TE02 power launched by the trans-
ducer. The dotted curve in Fig. 6 was obtained by placing the detector
at the end of the corrugated rod. We took care to insert the corrugated
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rod so far into the launcher that the section protruding from the launcher
was equal to the total power exchange length shown in Fig. 5. It is
apparent that the TE02 mode (instead of the TE01 mode generated by
the launcher) is present at the output end of the corrugated rod. It is
also apparent that almost complete mode conversion has taken place.
Figures 5 and 6 were obtained from a corrugated rod whose grooves
had a depth of 7.6 X 10' cm. In order to be able to observe radiation
losses, we deepened the grooves in this rod to a depth of 2.3 X 10-2 cm.
The power buildup as a result of mode conversion from TE0, to TE02
on the rod with deeper grooves is shown in Fig. 7. The TE02 mode is

shown to go through two complete power exchanges. The exchange
length is now 25 cm in agreement with theory.

Finally, we observed the radiation of power from the corrugated rod
with the deeper grooves. Equation (26) indicates the relation between
the z -component of the propagation vector of those radiation modes
that couple to the TE01 mode and the period of the periodic corrugation
of the rod. It is clear that the basic Fourier component with length
A0 of the corrugated wall distortion function will contribute predomi-
nantly to radiation loss. Furthermore, since 13 < k is required for all
radiation modes, we see that only very little power can be lost to radia-
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tion unless the relation

Oo k
Ao

(37)

is satisfied. It follows from equation (37) that above f = 51GHz very
little radiation loss is to be expected. Indeed we see in Fig. 7 that com-
plete energy exchange between two guided modes is taking place which
would be impossible if substantial amounts of power had been lost to
radiation. However, below 51 GHz, equation (23) predicts considerable
radiation loss.

The applicability of the radiation loss theory to our experiment is
somewhat questionable. We must not forget that equation (23) was
derived from a perturbation theory under the assumption that only
very little power is lost from the original guided mode. If the radiation
detaches itself from the rod over a distance for which the power loss
of the guided mode due to radiation is only slight, we may be justified
in making the transition to equation (36). However, this procedure
becomes more and more questionable as the radiation losses increase.
Furthermore, the transition to equation (36) is less likely to be ac-
curate if the radiation is directed forward along the rod. It is shown in
Ref. 2 that forward radiation results close to the region where the equal
sign of equation (37) applies.

Finally, there is some uncertainty what value "a" for the rod's
radius should be used in equation (23). Since the radius of the cor-
rugated rod is variable, some suitable average value must be taken.
Figure 8 shows three theoretical curves. The two dotted curves were
calculated using the largest and smallest value of the radius in equation
(23). The solid curve was obtained by using the average value of the
radius. The crosses in Fig. 8 show the results of our loss measurements.
It is apparent that most of these points fall within the two dotted curves.
However, all points lie below the solid curve. These loss measurements
were obtained by comparing the output power at the end of the smooth
and corrugated rod. The accuracy of these measurements is no better
than approximately ± z dB. In view of the discussion of the applica-
bility of the perturbation theory to high radiation losses, the agreement
between theory and experiment must be considered as good.

Figure 9 shows the angle of the far -field pattern of the radiation lobes
caused by power loss due to the corrugated wall. The dots are measured
values, while the curve is a result of the theory of Ref. 2. Again we see
good agreement between experiment and theory.
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VII. CONCLUSION

This paper contains a perturbation theory of mode conversion effects
and radiation losses of a round dielectric waveguide. This theory is
applicable to light transmission in optical fibers. The theory developed
here is limited to the circular electric modes of round dielectric wave -
guides. However, the order of magnitude of the losses for other modes
is expected to be similar.

The theory has been checked by a scaled experiment at microwave
frequencies. The dielectric fiber with wall imperfections was simulated
by a teflon rod of 1 cm diameter which was provided with periodic
grooves. Mode conversion from the TE0, mode of the dielectric rod to
the TE02 mode was observed in excellent agreement with experiment.
The observed radiation losses are in reasonable agreement with theory.
An existing discrepancy can be attributed to the limitations of the
perturbation theory to predict correctly the high losses encountered
in this experiment.

The conclusion to be drawn from our theory for the operation of
optical fibers is a need for very strict tolerance requirements. For ex-
ample, the radiation losses caused by surface roughness of a fiber
designed for single mode operation at 1A wavelength can be as high as
10 dB/km for an rms variation of the fiber wall of as little as 8

REFERENCES

1. Marcuse, D., "Mode Conversion Caused by Surface Imperfections of a Dielec-
tric Slab Waveguide," B.S.T.J., this issue, pp. 3187-3215.

2. Marcuse, D., "Radiation Losses of Dielectric Waveguides in Terms of the
Power Spectrum of the Wall Distortion Function," B.S.T.J., this issue,
pp. 3233-3242.

3. Collin, R. E., Field Theory of Guided Waves, New York: McGraw-Hill, 1960.



Radiation Losses of Dielectric Waveguides
in Terms of the Power Spectrum
of the Wall Distortion Function

By DIETRICH MARCUSE
(Manuscript received July 23, 1969)

In an earlier paper I described a perturbation theory of the radiation
losses of a dielectric slab waveguide. The statistical treatment of the radiation
losses was based on the correlation function of the wall distortion. This
paper discusses the results of the radiation loss theory in terms of the power
spectrum of the function describing the thickness of the slab. We found that
only those mechanical frequencies 0 of the power spectrum contribute to the
radiation loss that fall into the range f3 -k < B < 130 k. = prop-
agation constant of guided mode, k = free space propagation constant.)
The mechanical frequencies near both end points of this mechanical fre-
quency range contribute more to the radiation loss than the region well
inside of this range.

We also discuss the far -field radiation pattern caused by a strictly
sinusoidal wall distortion.

I. INTRODUCTION

In an earlier paper I developed a perturbation theory of the mode
conversion effects between guided modes and of the radiation losses of
a given guided mode caused by deviations from perfect straightness of
the waveguide wall.' For simplicity, the discussion had been limited to
a waveguide in the form of an infinitely extended dielectric slab.

The statistical discussion had been based on the description of the
wall distortion by means of a correlation function. In Ref. 1 an exponen-
tial correlation function had been assumed. However, it has been estab-
lished that the shape of the correlation function has little influence on
the radiation losses.

It is possible to base the discussion of radiation losses not on correla-
tion functions, but on the mechanical power spectrum of the wall dis-
tortion function. This study provides information as to how the various
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mechanical frequencies of the wall distortion function contribute to the
radiation losses.

The analysis of Ref. 1 was based on the use of radiation modes of the
dielectric slab which represent standing waves in directions transverse
to the propagation direction of the guided modes. The question naturally
arises how a superposition of these standing waves can result in radiation
flowing away from the rod. This question is answered by examining
the far field radiation pattern caused by a sinusoidal distortion of one
wall of the dielectric waveguide. This paper gives the relation between
the length of the mechanical period, the wavelength of the guided mode,
and the direction of the main lobe of the radiation.

II. RADIATION LOSS AND POWER SPECTRUM

The amplitudes of the modes of the continuous spectrum were derived
in Ref. 1, equations (65) and (69). We have

Lk2 2 p(cos Ko d cos adkp(0) - ik(0)]ge(p, L) - (ny - 1)
(130 d (p2 cost d 0-2 sine a ddl

-Yo

(1)

for the even modes, and

iLk2 p(cos Ko d sin o d)[go(0) + CO]

(130 d 7-13)

for the odd modes. The functions

with

(p2 sin2 Q d cost

L

cp(0) = f [f(z) - d]e-'" dz,

L

0(0) = [h(z) d]e-az dz,

= #

are the Fourier transforms of the wall distortion functions f (z) - d and
h(z) d. [x = f(z) is the boundary of the dielectric -air interface, x = d
describes the wall of the perfect guide, and x = h(z) is the distorted
boundary near x = -d.]
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The meaning of the constants appearing in equations (1) to (5) is:

On = propagation constant of guided mode (propagating in z -direc-

tion),
13 = component of the propagation constant of the continuum mode

in z -direction,
k = propagation constant in free space,
L = length of guide section with wall distortions,
no = dielectric constant of slab,

p
(1c2 - 02)i (6)

= (ni,21c2 - #2)1, (7)
(712A2 -130),K(8)

: ky. (9)

The y -component of the electric radiation field caused by the wall
distortions is given by

Ei, = f [ge(p, L)8,.(p,z) go(p, L)80(p,z)] dp. (10)
 0

The functions go and go are the even and odd radiation modes. The ratio
of scattered power to incident guided mode power is obtained from

AP = (1 Mt), L) 12 1 go(p, 12)0 a$.
-k

For simplicity we assume that one wall of the slab is perfect

h(z) = -d, (12)

so that

4/(0) = 0, (13)

the relative scattering loss, follows from equations (1), (2), and (10)
kOP =
k aL I co(0) 12 I(0) dt3

-

with

(kd)4 2 cost Kid cost ad10) = -4r(n° - 1)2 (pd) [
(pd)2 cost ad ± (o -d)2 sin`'

#0d
70

(14a)

sin' ad
(14b)

(pd)2 sine ad + (o -d)2 cost o -d
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Since co(0) is the Fourier component of the wall distortion function its
absolute square value

1 4°0) 12 (15)

is the "power spectrum" of f(z) - d. It is apparent from equation (14)
that AP /P depends on the power spectrum of the wall distortion func-
tion. Incidentally, equation (14) is not a statistical expression, but holds
for a specific dielectric slab waveguide. We entered the power spectrum
in the combination L I (1012 in equation (14) since this combination is
independent of L for a randomly varying function f(z) - d.

Equation (14) allows us immediately to determine the range of
mechanical frequencies 0 which contribute to the radiation loss. The
integral in equation (14) is extended from -k to k, the 13 range of
continuous radiation modes. The range of mechanical frequencies con-
tributing to the scattering loss is therefore given by

130 - k < e < /30 k. (16)

This is an important result since it states that those parts of the power
spectrum which lie outside of the range, equation (16), do not contrib-
ute to radiation loss.

This last statement must not be misconstrued to mean that a wave -
guide with a sinusoidal wall distortion extending over length L

f (z) = d a sin O'z 0 < z < L (17)

with 0' lying outside the range of equation (16) does not lose power by
radiation. The power spectrum of equation (17) is

sin (0' - 0) -2
140(0) 12 -LL[aa'-6 (18)

A term with 0' + 0 in the denominator has been neglected in equation
(18). The accuracy of this approximation improves with increasing
values of L.

It is apparent from equation (18) that I cp(0) 12 has non -vanishing
values for 0 0 0' so that there is some small contribution to radiation
loss even if 0' lies outside of the range of equation (16).

However, if we consider the limit L co we can approximate the
power spectrum, equation (18), by a 8 -function:

2L a(05(0 - 0')lim 1(P(0) 12 =
L

(19)
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In this special case the expression (14a) for the scattered power becomes
2r (a

2
= j) I (130 0') (20)

The scattering from a dielectric waveguide with a wall distortion func-
tion whose power spectrum is a 6 -function is proportional to /(00 - 0').

The function /((3) is plotted in Fig. 1 for n, = 1.01, kd = 8.0, and
00 d = 8.041. The scattering caused by a wall distortion with a 6 -
function spectrum (a sinusoidal wall distortion of infinite length) is
nearly independent of the value of # = 00 - 0' over most of the 0 -range.
There are two sharp peaks at 0 k and 0 - k. The physical reasons
for the sharp increase in loss at these values is easy to understand if
we consider the direction of the radiation pattern as a function of 0'.
We show in Section III [equation (35)] that the angle a between the
waveguide and the main radiation lobe is given by

00 0'cos a = -k = (21)

The two peaks of the function /(0), or correspondingly of the radiation
loss, are associated with

a 0 and a R..: ir. (22)

This shows that the radiation loss is high when the radiation pattern is

5
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2

0
-10 -8 -6 -4 -2 0
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2 4 10

Fig. 1- Graphical representation of the function 1(p) [eq. (14b)]. n0 = 1.01,
kd = 8.0, pod = 8.041.
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directed very nearly parallel to the surface of the waveguide. The
radiation modes gain more power if the guided mode can interact with
them over a longer distance. An observation of this loss peak is re-
ported in Ref. 2.

A power spectrum with sharp peaks much like that of equation (18)
or (19) is not likely to occur for dielectric waveguides with random
imperfections of the dielectric interface. It is much more reasonable to
expect that such waveguides may have spectral distributions which are
nearly independent of 0 over a certain range of 0 values. In the limit
of a "white" spectrum,

I (P(0) i2 = constant, (23)

the scattering loss is proportional to the integral over the function 10)
shown in Fig. 1. The two peaks contribute very little to this integral.
Numerical integration of (0) of Fig. 1 including and excluding the peaks
resulted in the values:

J$J
1 (0) d0 =

0.011,7.8

I(0) di3 = 0.0096,
-8 -7.8

7.5

and
J

1(0) = 0.0087.
-7.5

This result is reassuring for the use of the perturbation theory which
was used to derive equation (14). The perturbation theory is based
on the assumption that power is converted from the guided mode to
the radiation field but that no power is converted back from the radiation
field to the guided mode. This approximation is certain to yield better
results if the radiation pattern is directed away from the rod. In other
words, the perturbation theory will work poorest in the region of the
peaks of Fig. 1. However, for spectra that do not particularly favor the
regions of these peaks, the contribution of those regions (which at the
same time give the least reliable results) to the total radiation loss is
only slight.

III. THE FAR FIELD RADIATION PATTERN

The far field pattern of the radiation field (that is excited by the
lowest order even guided mode traveling in the dielectric slab with
sinusoidal perturbation of one wall) can easily be calculated from equa-
tion (10). The even and odd radiation modes were given in Ref. 1 (for
lx1 > d)
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E;,`) = [ 2cop.P

r 0(p- cos' od o-2 sir? crd)

X [p cos p(Ix' - d) cos od - o sin p(IxI - d) sin crdle""2) (24)

jc,0) _ 204./P
IxI 7,3(p2 sin' od + a2 cos2 od)11

X [p cos p(IxI - sin crd o sin p(IxI - d) cos MY ('-a'). (25)

With 1,G(0) = 0 and

sin (0' - 0) -2
co(0)

a
iL

exp [1(0 - 21 0, (26)

and with the help of equations (1) and (2) we get from equation (10)

ak2
Ey = (wAP)1(n2, - 1)

cos KOd

(Sod 4- tby
7o

X
p cos o-d[p cos p(x - d) cos crd - a sin p(x - d) sin ad]

J. 0 p2 cos2 crd o-2sin2 od

sin ad[p cos p(x - d) sin ad + a sin p(x - d) cos a -dl
p2 sin2 od + a,2 cos2 ad

sin (0' - 0) -2
X exp [i(0' - 0)

2,1 0' - 0 X cl('-'3') dp. (27)

In the far field with x -) co and z -) co (but L finite) we can obtain an
approximate solution of the integral in equation (27) by the method of
stationary phase.' The sine and cosine functions of argument p(x - d)
can be expressed as sums of exponential functions. The most important
terms of the integrand of equation (27) are, therefore, of the form

exp [-i(t9z ± px)]. (28)

This exponential term is an extremely rapidly varying function of p as
x -) co and z -> 00. All other terms in the integrand vary slowly by com-
parison. According to the method of stationary phase the contribution
to the integral comes predominantly from a region that is determined by

P px) = 0. (29)
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With the help of equation (6), equation (29) leads to the condition

x po- = (30)

or

with

Po = k sin a (31a)

13 = k cos a (31b)

COS a = (x2
+

z2)i
-

r*
(32)

For x > 0 and z > 0 only the + sign in equation (30) is possible. This
is an important point. It shows that even though the radiation modes,
equations (24) and (25), represent standing wave patterns in x -direction
only, the outward traveling part of the decomposition of the standing
wave into traveling waves makes a contribution to the radiation field,
equation (27).

All terms of the integrand with the exception of equation (28) can be
taken out of the integral. The remaining integration can be carried out
using the expansion

1
13z px = k(x sin a z cos a) 2 k cos' a (p - 14)2 4-

f e(13z+p.) dp = .0(7) (101 cos a n- ik (x ain a+z cos a).
(r)

The far field is therefore obtained in the form

= exp 7-r-4) ald(co,uP)/(n: - 1) cos Kod

(33)

L
'

PO sin 20-od - ipoao cos 2crod
sin (0 - 0) -2

 (p.2 + moo) sin 2crod - 2ipocro cos 20.0d 0' - 0

 exp i(0' - 0) L eiped 1 ei(cat-k(z sin a+z cos a))
2 (7P.

[(34)
The index zero was added to 0- to indicate that it must be evaluated from
equations (7) and (8) using Po of equation (31a).

Equation (34) reveals several important features of the far field of



WAVEGUIDE RADIATION LOSSES 3241

radiation. This field is essentially a plane wave traveling in the direction
of a (tan a = x/z, and x and z are the coordinates of the point of ob-
servation).

The field intensity is inversely proportional to the square root of the
distance r from (the sinusoidally distorted) waveguide section. The
dependence on distance is inversely proportional to (r)1 rather than r
because the waveguide is infinitely extended in y -direction (see Ref. 1).

The main radiation lobe occurs at the maximum value of [sin (0' -
0)L/2]/ (0' - 0) that is at 0 = 0' or from equations (5) and (31b) at

cos a,,, - 00 - (35)

= propagation constant of guided mode).
The width of the main lobe depends on the length L of the sinusoidally

distorted waveguide section. The difference in angle between the peak
of the lobe and the first null determines the half width of the main lobe

27r
Acx = for a O.

Lk sin a
(36a)

The width of the main radiation lobe is inversely proportional to L.

toward zero. If the peak of the main lobe is at a = 0, we obtain

Lice = (NI for a = 0. (36b)

The peak amplitude of the main radiation lobe is not strongly dependent
on a. The increase in radiated power in forward direction (a = 0) which
is apparent from Fig. 1 is caused by the broadening of the radiation
lobe with decreasing angle.

IV. CONCLUSION

The radiation loss of dielectric waveguides caused by deviations from
perfect straightness of the waveguide walls depends on the "power
spectrum" of the wall deviation function. A sinusoidal wall perturbation
gives rise to radiation into a particular direction in space. Each Fourier
component of the Fourier expansion of the wall distortion function is
responsible for radiation into a particular direction. The width of the
radiation lobes is wide for scattering directions parallel to the rod so that
those Fourier components responsible for forward and backward scat-
tering contribute more to the radiation loss than those causing scat-
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tering in other directions. However, this preferential loss behavior is not
very pronounced, so that the Fourier components responsible for forward
and backward scattering contribute only a small amount of the total
radiation loss caused by a broad power spectrum.

The coupling between two guided modes of the dielectric waveguide is
also governed by equation (5). Only one component of the power spec-
trum of the wall distortion function influences the coupling between two
guided modes, while the entire range of mechanical frequencies, equa-
tion (16), determines the radiation loss.

The general predictions of this theory have been experimentally veri-
fied. Microwave experiments on a periodically corrugated teflon rod have
shown that the radiation losses are negligibly small if the period of the
corrugation is such that 0 lies outside of the interval indicated by equa-
tion (16).2 However, if 0 falls inside of the interval, equation (16) , con-
siderable radiation losses do occur. The peak of the radiation losses
shown in Fig. 1 and the direction and width of the radiation lobes have
also been observed in agreement with this theory.
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Amplitude Distributions of Telephone
Channel Noise and a Model for

Impulse Noise
By J. H. FENNICK

(Manuscript received June 30, 1969)

The noise waveforms found on voice bandwidth telephone channels are
generally recognized to be non-gaussian in their amplitude distribution.
This paper presents data which suggests that a simple exponential is a
good function to describe amplitude densities in the extreme tails.

A comprehenisve model of impulse noise as viewed on trunk groups is
then presented. The model relates the distributions of impulse noise levels
and impulse noise counts.

I. INTRODUCTION

Noise on telephone channels has been measured for years with in-
struments which are constructed to enable reasonably good correlations
between the reading obtained and the annoyance of the noise during a
telephone conversation.' Fluctuations of the meter pointer during a
measurement are either ignored or mentally averaged by the observer,
depending upon their frequency of occurrence and their magnitude.
With the introduction of data transmission on the telephone network, the
relatively frequent high amplitude excursions of the noise waveform
were viewed as a "new" kind of noise, primarily because they were
generally not annoying in voice communication and it was recognized
that no meaningful measure of them could be obtained with the stand-
ard noise measuring sets. The term "impulse noise" was applied to
these high excursions and new instruments were designed to measure
them.'

The significance of impulse noise in data transmission has given rise
to a great deal of effort devoted to its measurement, characterization,
and evaluation as a transmission impairment.3-6 (For an extensive
bibliography, see Ref. 3.) Several models have been suggested to de-
scribe the erratic behavior and clustering phenomena associated with
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this type of noise. The Pareto model of Berger and Mendelbrot and the
generalized hyperbolic model proposed by Mertz appear to be the best
presented to date." A more mathematically tractible (than the hyper-
bolic) model has recently been applied to error rate data by Fritchman.
He proposed a partitioned Markov chain model which would seem to
show promise in this area although it does not seem to have been ap-
plied to impulse noise data as yet.' The model presented here does not
deal specifically with the intervals between occurrences of noise pulses
but is concerned directly with the number of occurrences per unit
time above any threshold (in decibel) of observation. Extrapolation of
occurrences of noise pulses to errors created in data transmission is a
function of many parameters besides the occurrence of noise and will
not be discussed here although good prediction techniques exist.5

In order to set the background for the discussion of impulse noise as a
separate phenomenon, as opposed to the background noise or as a part
of the composite noise waveform on a channel, data are first presented
on the amplitude probability density function of the noise as observed
and comparisons made with gaussian noise. The data reflect only the
range of variables encountered and should not be considered as statis-
tically describing the amplitude distributions of noise on telephone
channels.

II. IMPULSE NOISE AS A DISTINCT PROCESS

Typical oscillograph noise waveforms from a random noise generator
and from a telephone channel are shown in Fig. 1. Each trace is 200 ms
long and both have the same rms value. The upper one is from the noise
generator, the lower one from a telephone channel. The occurrence of
two "impulses" are shown near the left end of the lower trace. It is
primarily the occurrence of such "pulses" that make real channel noise
decidedly different from band -limited white gaussian distributed noise
(the upper trace).

Figures 2a and b show two such impulses extracted from a noise
recording, sampled at a 15 kHz rate and analyzed to determine their
amplitude and phase characteristics in the frequency domain. In both
cases, the phase characteristic is shown to be relatively smooth, but the
frequency content highly variable. Similar analyses on about 2000 noise
pulses verified these observations. However, if a large sample of pulses,
on the order of 200, is taken from a given channel, the average spectrum
appears to be approximately the shape of the channel gain -frequency
characteristic-not a very surprising result. Such an averaging is shown
in Fig. 3.
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Fig. 1- 200 ms samples of random noise and telephone channel noise with
equal rms levels.
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Fig. 3 - Average spectral content of about 200 impulses from a single tele-
phone channel.

Figures 1 and 2 serve as partial justification for treating impulse noise
as a separate phenomenon. The pulses shown in Fig. 1 do not rise to
strikingly high amplitudes compared to the rest of the noise waveform.
Those in Fig. 2, however, are so large that the scale prohibits viewing the
background noise waveform which continues beyond that shown. This
extreme peaking will become more apparent in Section III.

III. PERCENT OF TIME WAVEFORM IS WITHIN AN INTERVAL

The percentage of time that the noise is within a given interval
(±0.5 dB in this case) is a useful means of describing a random wave-
form. Data in the form of histograms were obtained by sampling, at a
10 kHz rate, 30 minute tape recordings of telephone channel noise.
Equipment limitations imposed a usable dynamic range of 30 dB, so
the apparatus was adjusted to examine only the extreme peaks of the
noise. In practice this usually required that the noise be examined at
levels corresponding to percentages of 10-2 or less. This approach was
also consistent with the nature of the problem-the relatively high noise
amplitudes were of greatest interest. Logarithmic compression and
decibel scaling were used and resulted in a unique presentation of the
data. Instead of the usual scaling in voltage, the abscissa is scaled in
decibels removed from the rms value of the noise. A negative sign pre-
ceding an abscissa value refers simply to one polarity of noise waveform,
a positive sign refers simply to the opposite polarity. Zero on the ab-
scissa corresponds to the rms value of the noise waveform. For con-
venient comparison, the equivalent data for a gaussian distribution
are also shown in each of the figures presented. The ordinate, proportion
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of time the waveform is within ±1 dB of the indicated level, is presented
in powers of 10 from 10-2 to 10-8.

Figures 4 and 5 show the histograms as measured on two different
channels. Figure 4 was taken from data recorded on a coaxial cable sys-
tem and Fig. 5 from a microwave radio system. The striking departure
from a stationary gaussian process is obvious. The sampling rate of
10 kHz over a 30 minute period resulted in 18 X 108 samples. Values
on Fig. 4 of 5.5 X 10-8 represent one sample in 18 million and can
hardly be considered significant. The values of 10-8 shown on Fig. 4
represent voids in the data. Figure 6 shows a histogram constructed by
combining seven 30 minute recordings, and so represents an "average"
histogram over 3.5 hours of real time. The result is surprisingly linear
for values below about 5 X 10-5 and suggests that the tails of the am-
plitude distribution of real channel noise are approximated quite well
by a simple exponential.

A total of 37 half hour recordings were analyzed in this fashion.
Seventeen of these were taken from microwave radio channels and 20
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Fig. 4 - Histogram of telephone channel noise amplitudes compared with
gaussian distribution. Sample from a coaxial transmission system. Proportion of
time that the noise waveform is within ±0.5 dB of abscissa value. Abscissa is
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from various types of cable or coaxial carrier systems. The variability
observed on the microwave systems is much greater than that on cable
systems so the two sets of data are treated separately.

Since no data are available on the amplitude histograms at values in
excess of 10', it is assumed here that the histogram for such values is
represented by a truncated normal function. The observed data suggest
that, if the noise is stationary, its amplitude density function then may
be written:

0;

cekx j

x < -b
-b -. x . -a

p(a)= cf);

ce ,

0;

-a < s < a
a ' . v - b

x > b

(1)
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±b = realistic bounds on the voltage waveform (channel saturation),
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Fig. 5 - Histogram of telephone channel noise amplitudes compared with
gaussian distribution. Sample from a microwave radio system. Constructed as
in Fig. 4.
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Fig. 6-Histogram of noise amplitude from cable and coaxial systems taken
over 31/2 hours. Constructed as in Fig. 4.

±a = points of departure of the density function from an assumed
underlying Gaussian,

= gaussian density truncated at ±a.
c, k = parameters describing the exponential density function.

The value of b ranges from about 30 to 50 dB*, the value of a ranges
from about 10 to 15 dB*, and k may be negative as illustrated in Fig. 5.
The variable c ranges over 14 orders of magnitude from 10-7 to 107.
No significant correlations were found between any of the variables
in the data analyzed. The point of departure from the assumed under-
lying truncated gaussian distribution a is given by the positive solution
of the quadratic

a = k - 2 In [c(2701]11.

Some values of k and c are given below.

3.1 Histograms on Cable and Coaxial Carrier Systems

As stated earlier, the histograms on cable and coaxial carrier systems
showed less variability than those on microwave radio systems. In fact,

* That is, above the rms value.
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two of the 20 observations tracked the assumed gaussian distribution
to within less than z dB over the entire range from 10' to 10-7. These
two observations lend credence to the assumption of an underlying gaus-
sian process and also show that at least two channels had no impulse
noise in the sense of the term as defined in Section I.

The data are summarized in two ways. First, the values of the vari-
ables k and c were examined, and then the intercepts (abscissa values)
for various values of proportion were studied.

For cable and coaxial carrier systems (20 samples)* the mean of k
was 0.45 and the estimated standard deviation s was 0.46. Because of
the extreme range of c, as mentioned in Section III, only the median
appears to be of interest; it was found to be 0.0028. A probability density
function using the mean value of k and the median of c is shown in Fig.
7. The resultant exponential departs from the guassian distribution at
about 4.5 X 10-a on the ordinate.

The second method of examining the data is considered to be more
meaningful in terms of a representative average. The intercepts at
proportion values of 10-4 to 10-7 were studied. The mean (x) (in dB),
estimated standard deviation s, median, and 90 percent confidence
intervals (CI) about the mean, are shown in Table I. The average and
median functions so derived are also shown in Fig. 7. The distributions
of intercepts were found to be very nearly log -normal for all four pro-
portion values (10-4 through 10-7). This explains the differences between
the means and medians as in Table I and Fig. 7. A skew distribution of
the intercepts is of the form to be expected. A lower bound on the inter-
cept is imposed by the gaussian assumption and a gradual tailing off of
the values at the high range might be expected.

Taking the median value of the exponential distribution as being a
representative value of conditions on cable carrier systems, it is of
interest to compare tail values of the resultant cumulative distribution
function (CDF) with the gaussian distribution. The median exponential
intercepts the gaussian at an x value 12.6 dB above the rms. This cor-
responds to the log -1 (12.6/20) = 4.26a point. If the noise amplitude
were truly gaussian, only 0.004 percent of the waveform would liebeyond
the ±4.26a points. However, 0.0134 percent of the area lies below the
exponential portion of the density function, nearly a full order of magni-
tude difference. This sheds some light on the predicted performance of
data systems, for instance, in the presence of gaussian noise, a typical
analysis situation, and that actually observed in a working version of
the system over real channels.

* Each "sample" is 30 minutes of time.
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3.2 Histograms on Microwave Radio Systems

The data for the microwave systems were analyzed in the same way
as the second method for the cable systems. The individual values of
k and c were not computed because of the dubious value of such an
effort. Averaging over the intercepts for constant values of density
(method 2) illustrates the greater variability in the microwave systems.
The results, presented in Table II, show this by the larger estimated
standard deviations and wider 90 percent confidence intervals about the

TABLE I-ESTIMATED PROBABILITY DENSITIES FOR CABLE
AND COAXIAL CARRIER SYSTEMS

Probability
Density

(x),,,,
(dI3)

s
(dB)

Median
(dB)

90% CI
(dB)

10-5 19.3 4.4 15 1.5

10-6 24.6 4.9 23 1.8

10-7 30.2 5.5 28 2.0
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TABLE 11-ESTIMATED PROBABILITY DENSITIES FOR
MICROWAVE RADIO SYSTEMS

Probability
Density

(x) ,
(dB) 8(dB)

Median
(dB)

90% CI
(dB)

10-4 17.7 10.7 12.6 5.5
10-6 23.2 12.8 18.5 5.2
10-6 24.7 9.7 22 4.1
10-, 29.6 9.4 27 4.1

estimated means (compare with Table I). The median function so
derived is shown in Fig. 8. The distributions of intercepts were again
found to be closely approximated by the log -normal distribution and
the median curve examined as for the cable carrier systems. The median
exponential intercepts the gaussian distribution at 11.6 dB above the
rms value. This corresponds to (11.6/20) = 3.8a, or 0.0165 percent
of the noise waveform that would lie beyond ±3.8a. of a gaussian dis-
tribution. The values of k and c for the median curve on Fig. 8 are 0.48
and 0.042. Integration of the resultant exponential function over the
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appropriate intervals yields 0.068 percent of the median waveform in
excess of the 3.8a points of an assumed gaussian. In this case, the median
difference is about a factor of four.

IV. FORMAL DEFINITION OF AN IMPULSE AND SOME PULSE LENGTH DATA

In the process of impulse noise analysis a formal definition is required.
The definition is illustrated in Fig. 9 and was first proposed by Kaenel,
and others.' The waveform illustrated in Fig. 9 represents an ideally
rectified noise waveform being sampled by an A/D converter. All
portions of the noise waveform that remain below a variable slicing
level, designated level 2, are considered as part of the underlying band -
limited white gaussian or background noise until level 2 is exceeded.
Once level 2 is exceeded, the noise pulse, or impulse, is measured starting
at the point where level 1 was exceeded as indicated in the figure until
it returns below level 1 and remains for a specified amount of time
referred to as a guard interval. The function of the guard interval is
to distinguish between nodes of a single impulse and two impulses which
occur close together in time. Various guard intervals have been used in
the analysis of voiceband impulse noise, from 0.3 ms to 0.8 ms. The
choice is somewhat arbitrary, but on the basis of the author's unpub-

optimum
value. This is preferred because interpulse gap length histograms com-
monly exhibit a null at about 0.6 ms. The adjustment of levels 1 and 2
vary, but level 1 is typically 10 dB above the rms value, and level 2

VOLTAGE
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4
THERMAL TYPE
NOISE IGNORED

3 rr --BURST LENGTH --

_- IMPULSE TYPE NOISE
BURST CONSIDERED

- - LEVEL 2

- LEVEL I
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Fig. 9-Ideally rectified noise waveform illustrating definition of pulse length.
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from 13 to 16 dB above rms. In the context of this formal definition,
the impulse has been referred to as a burst.'

Under the rules of the definition, just given, frequency functions were
constructed for the lengths of several thousand impulses. A set of these
are shown in Fig. 10; the set is shown as "envelopes of all the observed
frequency functions." Only two points appear to be significant. The
modes of the functions occur at about 1.2 ms, and lengths in excess of
10 ms are almost never observed. The remainder of this paper discusses
an impulse noise model.

V. A MODEL FOR IMPULSE NOISE ON TELEPHONE CHANNELS

This section describes impulse noise as viewed on a trunk group as
it is used by a switched network subscriber. The distributions of the
peak amplitudes of individual impulses have been of interest for some
time, and extensive data concerning them have been collected.'''
Methods of relating such distributions to data system performance have
also been derived.'

The data are most frequently collected by means of simple threshold
detectors. Excursions of the noise waveform above the threshold are
recorded on electromechanical counters.' Such measuring devices have
finite counting rates which may be exceeded at times by the rate of
occurrence of impulses in clusters. For this reason, from this point on,
"counts" referring to values recorded by the instruments will be used
instead of the word "impulse." The count process necessarily differs
in some respects from the impulse noise process for the reasons just
cited.

5.1 Terminology and Definitions

Some jargon has accumulated in the area of impulse noise studies;
it is sometimes conflicting as well as confusing. The following termi-
nology is adopted here.
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Fig. 10 - Envelopes of length density functions derived under definition of Fig. 9.
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(i) Count-Refers to a number registered on the counter of an im-
pulse noise threshold detecting type of measuring instrument, set at a
specified level, during a specified measurement interval. (The count
may be less than the actual number of impulses which exceeded the
measurement threshold during the interval because of the finite maxi-
mum counting rate of the instrument.) Upper case C denotes the random
variable count.

(ii) Impulse Noise Level-A level, expressed in decibels, at which
the recorded count in a specified measurement interval is equal to
some specified count denoted Co .

(iii) Level Distribution-A distribution of levels, expressed in decibels
(dBm, dBrn, and so on), taken across a number of channels, at which a
specified count Co is recorded in a specified measurement interval.
Script "t" denotes the random variable level.

(iv) Count Distribution-A distribution of counts observed in
measurements on a number of channels taken at a specified level.

(v) Log -Count Distribution-A distribution of the logarithms of
counts, expressed in decibels. Upper case "D" denotes the random
variable log -count and is defined: D = -10 logic, (C/C,,), where Co is an
arbitrarily "specified reference count" greater than zero. Co is arbitrary,
but once picked it must be held constant for its associated level distribu-
tion.

(vi) Amplitude Distribution-A cumulative distribution of the peak
amplitudes of individual impulses on a single channel. The average
complementary distribution is linear on semi -log paper for counts in
the range of interest; that is; C < c:300 in 30 minutes.

(vii) Slope-When spelled with "S", Slope refers to the slope of the
peak amplitude distribution. Through common usage, the number
assigned to Slope is the negative reciprocal of the slope of the peak ampli-
tude distribution, designated "in", and expressed in decibels per decade
of counts.

5.2 General Comments on Level and Count Distributions

Sample level distributions are constructed from data obtained through
the use of multilevel impulse counters which record the number of
counts at several levels, each separated by 2 to 6 dB, occurring during
a prescribed measurement period. Level distributions may be con-
structed from the data depending upon the specific number of counts
Co in which one is interested. Suitable interpolation between the levels
actually observed permits one to estimate the level at which some
specified number of counts Co actually occurred. Thus each level dis-
tribution has a number Cc, associated with it, as well as a specific meas-
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urement interval. The primary data used in this study consists of level
distributions of 15 counts in 15 minutes and 90 counts in 30 minutes.'"

The number of counts observed in a multilevel measurement tends
to decrease exponentially as the level, in decibels, increases. Some de-
partures from this rule are observed in individual measurements, but
the average amplitude distribution taken over a large number of mea-
surements in a single class of trunks appears to be exponential.' The
number of counts C, at any level t, may be estimated from the number
of counts C', at level £', by the empirically derived relation

C = C' exp - t)/ (Mm)]. (2)

where M = (log. 10)-1. Because different types of transmission facilities
exhibit different impulse noise properties, the average noise level and
average Slope vary over an appreciable range as facilities change.
However, within a given type of facility or within a class of trunks,
greater homogeneity is observed.' The model is therefore directed at a
description of the noise as observed within populations of transmission
channels on a single type of facility which are common to some larger
grouping such as a trunk group.

5.3 Assumptions
The following two assumptions, supported by studies of available

noise data, are basic to the model which is presented in Section 5.4.

(i) Level distributions for a specified count Co are normal with mean
4 and standard deviation o, .

(ii) a, is independent of Co within a given trunk class. The first
assumption is the most reasonable in view of the data; there are con-
flicting data concerning the second and it appears to be more valid for
compandored facilities than for noncompandored facilities.'" Under
these assumptions, and one more stated below, it is shown below that
the count and level distributions are completely described by the
parameters associated with one level distribution: Co , 4 , a, , and the
Slope m. The Slope is estimated by the straight line connecting the mean
of the level distributions for different choices of Co .6

5.4 The Model

Any number of level distributions may be obtained from the data by
choosing different values of Co . As Co increases, the corresponding
level 4 will decrease and trace a path in the count -level plane given by
equation (2). A family of such level distributions form a probability
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density surface above the count -level plane with normal cross sections
parallel to the level axis. Such a surface is illustrated in Fig. 11. Under
assumption (ii), lines parallel to the mean Slope are projections of con-
stant probability density with the same functional form as equation (2).
One of two cross sections may be taken which will define a probability
density function. If the cross section is parallel to the count axis, a count
distribution results. To see this more clearly, consider an experiment
where impulse noise measurements are made on a group of similar
trunks. A value for Co is chosen and the associated level distribution
with mean 4 is found. The distribution will be normal with standard
deviation o, . Another value of Co is chosen and a second level distribu-
tion is constructed. It will have the same standard deviation as the first.
The experiment may be repeated any number of times to construct the
family of distributions illustrated in Fig. 11.

In the experiment just described, the noise level I associated with Co
was the random variable. Now suppose one wishes to let the count, or
log -count, be the random variable while holding I fixed. It is noted
that equation (2) is the relationship between the means 4 and Co .
Assume for the moment that equation (2) holds completely and is indeed
a fixed relation between the two possible random variables, I and C.
Equation (2) may be rewritten, with I' = = 0 and C' = Co as this
constitutes an arbitrary shift in the decibel scale to define I' = 0:

PROBABILITY
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Fig. 11- Probability density surface for the impulse noise count process on
trunk groups.
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t = -m log10 (C/Co). (3)

Define D = -10 log (C/C). Then t = Dm/10, and the log -count
distribution, the probability that D is < some value x, is by assumption
1,

1P[D x] = P[t xm/10] - fx:/1° exp (-2/24 dC. (4)

The density function f(x) is found to be

(x) = 100.,(27
2m x2/2000.2d

)
exp [- - oo < x < co . (5)

Thus D is approximated by a normal distribution with mean zero and
standard deviation a, = 100-,/m.*

In the previous derivation, equation (2), a relationship between
expected values was assumed to hold as a mapping between the random
variables t and C or  and D. To check the validity of this assumption
a second experiment can be performed on the data collected in the first.
The level  can be held fixed at , and the count distribution at to
obtained by interpolation as described earlier. The observed log -count
distribution may be compared with that derived in equation (5). This is
done in Section 5.5.

5.5 A Check on the Model Using Count Distribution Data

Figure 13 is an example of count distributions derived in three dif-
ferent ways from a set of data consisting of 127 measurements on non-
compandored carrier facility trunks 1,000 to 2,000 miles in length. The
level distribution for these data, with Co = 15, is slightly skew, the
mean is 6.129 dBrn and the median 61.8 dBrn. The count distribution
at 61.8 dBrn, obtained by interpolation between levels measured, is
shown by the circled points on the figure. A point -by -point mapping
from the level distribution by use of equation (2) is shown, as well as
the log -normal one predicted by equation (5). The coincidence of all
three sets of data is striking.

VI. THE TIME VARIABILITY OF IMPULSE NOISE

An additional check on the validity of this model is provided by its
implications in the time variability of the noise. To see this, one addi-
tional assumption is made, and predicted and observed results serve to

* As a matter of interest, values of 0 calculated from the 1964 Intertoll Trunk
Survey (Ref. 6), are shown in Fig. 12.
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validate both this additional assumption and the preceding model.
Consider making impulse noise measurements on a large number of

channels at a fixed level to and recording the cumulative count on the
ith channel C, at times nT, n = 1, 2, . Now assume that the ac-
crued count is a linear function of time so that each total count Cni
after time nT may be estimated by Cni = nCii , where C1i is the count
in the first interval T on the ith channel. If the same reference count
C,, is retained in the definition of D (log -counts), for all time intervals,
then the mean value of D will increase as log (n) but the variance of the
count distribution (as opposed to the log -count) behaves differently
however, as shown by the following.

Under the assumption that equation (2) holds as a mapping between
 and C, the distribution of C (counts) may also be derived:

P[C < y] = -m log (y/C)]

1

crt(2/01 log v/c
exp (-t2/20.2,) di, (6)

and the density of C is approximated by the log -normal:
2m2

f(y) = 0.11:1 2.7
m

y-1 exp ln2 (y/Co)1

0 y oo

In = loge .
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The rth moment of C is then found to be

E[Cr] = Co exp [r2/(4a)];
M2m2a - n 2 I

Gat an (7)

and the variance, cr = C20(e" - el120) = C:A. Now, as the measure-
ment interval is increased as above, Co is replaced by nC0 and a,2 (nC0) =
n2 C2oA . The variance of the count distribution increases as the square
of time if the mean increases linearly.

Note from equation (7), that the mean of the count distribution is
not equal to the reference count Co which is associated with the level
distribution. The two are related as*

(C)0 = Co exp [0-2,/(2m2/1/2)]

Co(1.027)° D2 . (8)

Thus, the mean of the count distribution at level to is always greater
than the reference count Co . Furthermore, from the definitions of the

* Note from Fig. 12 that trD may be as large as 13.5 so (C), may be as large as
130 times Co.
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level distribution and the quantity D, Co is equal to the median of the
count distribution. Solving equation (8) for up yields

an 8.7 (log (C),, /C,)1,

and an estimate of the variance of the log -count distribution may be
made from the mean and median of the count distribution. This rela-
tion should be very useful in practice.

Now consider measurements of length K2T taken on a number of
channels with the counts recorded after K1T and K2T, K2 > K1 . Let x
be a random variable that takes the value of the count at K1 T, and y
one that takes the value of the count at K2T. If it were true that the
count on each channel is a linear function of time, then for the ith
channel measurement, y; = (K2/K1)xi and the coefficient of correlation
px,, = 1. Such correlation coefficients were calculated for several sets
of data. The results are presented in Table III. T was equal to 5 minutes
in all cases. The notation p, indicates the correlation between the counts
at the end of i 5 -minute intervals with that after j 5 -minute intervals.
The mean ratio of the count after j intervals to the count after i intervals
and the ratio of the variance after j and i intervals is also given. The
expected values, derived from the model, are given in each case (in
parentheses), as well as the observed values. While the correlation coef-
ficients are not all as close to unity as one might hope, especially for the
5 -minute versus 30 -minute measurements (i = 1, j = 6), the mean and
variance do appear to increase directly and as the square of time re-
spectively.

On the basis of the data shown in Table III and Fig. 13, the model
appears to be an adequate description of the observed behavior of the
impulse noise on transmission facilities as viewed through impulse noise
measuring sets.

TABLE III-CORRELATION COEFFICIENTS AND RATIOS
OF MEANS AND VARIANCES*

i, j Pia µi/µi 8,2/.12
Sample

Size

1,2 (1) 0.87 (2) 2.04 (4) 3.70 87
1,2 (1) 0.92 (2) 1.97 (4) 5.00 76
1,2 (1) 0.90 (2) 1.98 (4) 3.98 216
1,3 (1) 0.96 (3) 3.10 (9) 9.90 161
1,3 (1) 0.98 (3) 2.90 (9) 8.50 168
2,4 (1) 0.97 (2) 2.06 (4) 3.60 93
1,6 (1) 0.58 (6) 6.76 (36) 46 161

* For counts observed after i and j 5 -minute intervals. Predicted values in
parentheses are followed by observed values.
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VII. SUMMARY

The following relations and conclusions come from the model pre-
sented and the data upon which it is based.

(i) Level distributions are normal with mean 4 and variance a22, .

(ii) Count distributions are log -normal with mean (C), which is
linearly related to the length of the measurement interval, and variance,
a -c2 , which is proportional to the square of the interval. Equivalently,
log -count distributions are normal with mean proportional to the
logarithm of the measurement interval and variance, cri; , independent
of interval.

(iii) cr, is dependent upon the class of trunk but is independent of
Co , an arbitrary reference count greater than zero.

(iv) al, = 10o-e/m, in is a measure of the slope of the distribution of
noise peak amplitudes.

(v) 8.7(logio (C),/C0)/.
(vi) (C)a, Co (1.027)'D'
(vii) The mean of the count distribution, (C)., = Coe' and the

variance
m2

ill

2
1

V(C) = C:ell ( 2') - 1]; a - 2M = log, 10.
a,

(viii) The median of a count distribution, taken at level 4 , is equal
to Co and the mean (C), , may be 100 times Co . Expected count by
itself is accordingly a very poor statistic for describing impulse noise.
However, the mean and the median completely describe the count or
log -count distributions.

The model helps to explain the apparent erratic behavior of impulse
noise measurements. Any measurement is a sample taken from the bi-
variate sample space illustrated in Fig. 11. The fact that the distribu-
tion of counts is log -normal also accounts for the great fluctuation in
the count observed on successive measurements on a given channel.
It is shown however that the average rate of occurrence is reasonably
constant with time for intervals from 5 to 30 minutes.
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The Determinability of Classes of
Noisy Channels

By LEONARD J. FORYS

(Manuscript received June 30, 1969)

This paper is concerned with the identification of a fairly general class
of nonlinear operators using corrupted measurements. A precise mathe-
matical definition of identification is presented and the relationship between
a priori information and identification is studied. The a priori information
is represented as a subset of a metric space of nonlinear operators. Neces-
sary and sufficient conditions are developed to answer the question "When is
identification possible?"

I. INTRODUCTION

A large body of literature already exists for the problem of identifying
a control system or communication channel with noisy measurements.
In the usual identification problems, a certain structure is assumed at
the outset in order to reduce the identification problem to one of param-
eter estimation. The absence of such parametrization increases the
difficulty of the problem substantially. It is often not clear if identifica-
tion is even possible.

In this paper we are concerned with the determinability (identifi-
ability) of quite general nonlinear operators whose outputs are corrupted
by additive passim noise. We introduce a norm on this space of non-
linear operators and define precisely what we mean by determinability.
Loosely speaking, we say that we can determine an operator H if we
can choose a finite observation interval [0, 7], a test signal with con-
strained peak value over this interval, a finite set of linear measurements
over [0, T], and an estimate A of H which is a continuous function
of our measurements such that ft is close to H in norm with high proba-
bility.

The question of determinability is of course intimately related to the
kind of a priori knowledge one has of the operator. We represent this
a priori information by saying that the operator H belongs to a subset
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5) of possible operators. We derive conditions on 5) which are sufficient
for determinability. We also show that most of these conditions are in
fact necessary for the determination of H.

Our results are motivated by the work on the determinability of
noiseless channels done by Root, Prosser, and Varaiya.' They derive
necessary and sufficient conditions to estimate a noiseless channel
closely with a "one-shot" experiment. These conditions are similar to
those presented here. Some work on the noisy problem has been done by
Root.' His approach and results are fundamentally different than those
presented in this paper. Root investigated a class of stochastic nonlinear
operators represented by a Volterra series whose kernels are gaussian
random variables. He derived necessary and sufficient conditions for
the second moments of the kernels to be determinable.

II. PRELIMINARIES

The types of channels to be considered can be described as follows.
The input signal x and observed signal w are related via the operator
equation

w(t) = [Hx](t) z(t) t c [0, co) (1)

where H is an operator and z is zero mean white gaussian noises with
covariance Ez(t)z(r) = 5(t - r). (The colored noise case will be treated
separately in Section V.)

We constrain our input functions x to have peak value less than s,

t The noise term z(t) in equation (1) must be interpreted symbolically since white
noise cannot be parametrized with a time variable, but must properly be param-
etrized with an element of a space of "testing functions." However, we deal only
with functionals of w(t) of the form

jb

w(t)4(t) dt,

where ¢ E L2(0, b), or with quantities derivable from these functionals. Hence we
can define

to mean

fb

z(t)4(t) dt

fb

OW 4(t)

where ;-(t) is Brownian motion and the operations to be performed are readily
justified.
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that is,

x r L,, (s) = lx I x is a real valued measurable function on [0, cc )

and I x(t) I S s for all t £ [0, co)).

If we let 11 112 denote the norm on L2[0, 00) and define the projection
operator P,. by

[P Tx](1) = x(t) for t < T

= 0 for t > T
then

T

II P Ts 112 = (f x2(t) dl) s(T)1 for all :r £ L,(s).
0

The types of operators which we consider are assumed to belong to
the space 3C. The space 3C is defined: if H £ ae then

(i) H : Lco(s) -> L

where L2, =y I y is a real valued, measurable function on

[0, Gcl), H PTY 112 < cc for all T > 01,

H is causal; that is, for all T > 0, x £ Lec(s), P fix = P P Tx,

(iii) 11 II 11 < co .

Using the usual definitions of addition of operators and multiplication
by scalars, the norm of H, II H II is defined as:

II H 11 = sup i
I PTHx 112

T>0 II P Tx 112
za,..(a)

IIPT.II200

We consider H to be the zero operatort if
I I H I I = 0. It is then easy

to show that 11 11 satisfies the norm axioms. Obviously 11 H II 0 for
all H 3C and 11 XH II =

I

X
I

II H 11 for all scalars X. The triangle in-
equality is also satisfied since

11 H+ K 11 sup I
I PAM: + Ks) 112

sup
11 Prlix + P, U2

II P T1 112 P Tx 12

t The equivalence classes defined in this manner are not unreasonable. In fact,
IIHII =0then11PTHx112 =0forallxcL(s), II PTx 112 0 and all T > 0.

As far as we are concerned this is the zero operator since Ilx is then the zero function
in the L2(0, co) sense.
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LC. sup
[H PTHx 112 + I I PTIfx 112]

HPrx 112

11P rilx 1
5- suP 11 P Tx 11

122 + sup
II PTxIcx 112

11 H 11+ 11 K
T

where the supremums are taken over all T > 0, x E 1,,,,(s), 11 P Tx 112 0.

If we consider the metric induced by the norm II II then 3C is a com-
plete metric space. The proof of this proposition is contained in the
appendix. The completeness property is crucial to Theorem 2 of this
paper.

The space 3C includes many types of operators familiar to those in
communication and control theory. Linear time invariant convolution
operators whose kernels are either in L1(0, 00 ) or L2 (0, 00 ) are in K.
If these operators are cascaded with a memoryless nonlinearity having
bounded slope, the composite operators are also in 3C. Operators des-
cribed by certain nonlinear dynamical systems are also in 3C. Let x E
L,,,,(s) be the input to the following dynamical system and let y be the
output:

i(1) = f(g(t), x(t), t), 2(0) = 0

f : R" XRXR R"

y(t) = g(g(t))

g : R" -

with

Ig(q) 1 5. K1 1 9' 1, 1 f(g, x, 1)1 _5 K2 1 g 1 + K3 Ix 1

for all q E R", Ix' < s, t > 0. Assume also that for each x E L,,,,(s) there
exists a solution to the differential equation. Then, via the Bellman-
Gronwall inequality we see that

1

2(t)
I

K3 f t eK1"-T) 1 x(r) I dr.

Hence,

and

(f.

(f.

1 q(t) 12 dt) < K2K3(f x2(1)
0

1 Y(t) 12 dt)< K1K2K3 II P TX 112

Thus, the operator described is in 3C with norm bounded by K ,K2K3 .
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Subsets of 3C will be used to represent the a. priori information in an
identification problem. We call a subset D of 3C determinable if every
member of D can be identified. The determinability of a subset de-
pends of course on our definition of identification. We would like to
consider only those identification procedures which could theoretically
be implemented in real time. The identification procedures which we are
concerned with must have the following properties. To identify H we
must be able to

(i) choose a finite observation interval,
(ii) select an input function with constrained peak value,

(iii) perform linear measurements on the noisy observations generated
by this input, and

(iv) operate on these measurements to yield an estimate of H which is
a continuous function of these measurements,

so that our estimate of H is close to H with high probability.
The properties of such an identification procedure are physically

very appealing. We obviously must be able to identify within a finite
period of time. The peak value restriction is the usual kind of input
constraint used in communication theory. Linear measurements are
easily implemented and tend to reduce the sensitivity to unknown
biases as does the continuity requirement on the estimate. Finally,
we are usually satisfied to identify to within a small tolerance.

For H e 3C and channel model given by equation (1) we may specify
our definition of identification even further. A linear measurement over
the time interval [0, T] is a finite collection of bounded linear func-
tionalst (pi , w), i = 1, 2, N, pi E L2[O, T] defined when PTw
L2[O, T] and

w(t) = [Hx](t) z(t), 0 t < T

is the received waveform with H E 3C, x E L.(s). We say that a class
C 3C of channel operators is determinable if given arbitrary positive

constants e and n, there exists a finite observation interval [0, T], an
input (test) signal x E L.(s), a linear measurement [(Pi w), (P2 , w), ,

, w)] over [0, T], and a continuous function g : RN -> 3C such that
for each H

Probability (II H - 1 II > ) <
where /I = g[(p, w), (P2 , w), - , (PN , w)]. Thus, if 3) is determinable,

t The symbol (I, h) is used to represent the inner product in L2[0, 7]; that is.
(f. h) = for f(t)h(t) dt.
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we can "identify" any element of D to within any specified accuracy
with sufficient processing and long enough observation time.

The bulk of this paper is related to answering the following question.
What structure must D have in order to be determinable? Theorem 1
derives sufficient conditions on 21 in order to be determinable. The key
condition is compactness. Theorem 2 indicates that this condition is in
fact necessary for determinability. A number of corollaries are given
which interpret these results for the case where I) is composed of linear
convolution operators.

III. SUFFICIENT DETERMINABILITY CONDITIONS

Despite the generality of our class of operators and the rather rigid
nature of allowable identification schemes only two conditions guarantee
the determinability of a subset of operators. Both conditions are some-
what obvious. One condition insures that the class may be approximated
closely by a finite number of elements; the other insures that a test
signal exists which will produce sufficiently dissimilar responses for
dissimilar channels. These conditions are rigorously stated in Theorem 1.
Theorem 1: Let 21 be a subset of 3C having the following properties:

(i) the closure of is compact (thus 55 is also bounded; that is, there
exists a constant R > 0, such that H H -K H <R for all H, K E

(ii) given any (3 > 0 there exists an unbounded sequence { T1 } , a sequence
of inputs xi E L.,(S) and a positive number r such that

13,,,(Hxj - Kx;) I I2 > rT,

for all pairs H,KE5 for which HH-KH > S. Then is a determinable

subset of 3C.
Proof: Since the proof of this theorem is lengthy, we give here a brief,
rough description of the key steps involved which the reader may use
as a guide through the mathematical details.

(i) Using (ii) of Theorem 1 we select an input x to give sufficient
separation of outputs over [0, T1] for sufficiently dissimilar channels.

(ii) We then approximate the class 5) to within a judiciously chosen
accuracy by a finite number of elements.

(iii) The actual received signal due to the input selected in (i) of
this proof is correlated over [0, T;] with the calculated outputs of the
channels selected in step (ii) of this proof.

(iv) If one of these correlations is larger than the others by some
amount we select as our estimate the corresponding element of the
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approximating class that yielded this correlation. If there is no such
correlation we assign an arbitrary rule so as to make the identification
procedure a continuous function of the correlated values.

(u) We finally show that as i (and hence Ti) increases, the proba-
bility that there will not be a correlation larger than the others by some
prescribed amount goes to zero. In addition, we show that the proba-
bility that our identification procedure yields an estimate which is
further apart in norm from the actual channel than is desired is vanish-
ingly small as i increases.
The formal statement of the proof follows below.

We may assume that D is closed, since subsets of a determinable set
of channels are determinable. Using assumption (ii) of Theorem 1
with 5 = 3E/4 we have that there exists an unbounded sequence { T, ,

a positive number r, and for each i an input signal xi e L,,(x) such that
for all pairs H, K D with I I H- K I I> 3E/4

I PTi(Hx, - Kx;) 1r, rT1 . (2)

In what follows we will denote the operator which we wish to identify
by H. Since D is closed, by assumption (i) of Theorem 1, it is also com-
pact and hence totally bounded (see for example Ref. 6, p. 22). There-

ro = min {7.1/28, E/4} with centers Ha E D, a = 1, 2, , M to cover D.
There may be operators H, , Hk E {Ha } for which II PTi(HIXi HkXi)112
= 0, in which case retain only the H a's with the lowest subscript. Thus
we have a subset of {Ha} which we label {Hs} for which 11 PT,(HiXi -
Hkxi) 112 > Oi > 0 for some 0, and all H, , Hk E {W. For convenience
order the {Hs} so that 11H - HP 11 3E/4 for 13' = 1, 2, , No - 1

and II II - Its 11 > 3E/4 for (3 = No , No + 1, , N, N S M.
We can now choose an appropriate linear measurement over the

interval [0, T1]. We define the linear measurement m(w) = {f(tv, 1),

f(w, 2), j(w, N)): f(tv, )3) = (w, 2Htlxi), 113 = 1, 2,  N where the
inner product is defined over the interval [0, T1]. Thus for each received
waveform w(t), the linear measurement gives us a point in RN. From
this measurement we will determine an estimator function g : RN

We first partition RN into N 1 disjoint subsets: Al A2 , , AN B,
with

Ai = = (a1 , a2 , as): ai - ak > (if ,x1 1-1 ixi)

- (Hkx, , Hkxi) e;/T; , k = 1, 2,  N, k

and B the remainder of RN,
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A'

B = Ai

The disjointness of the above subsets of RN is easily verified by making
use of the fact that Oi/Ti > 0. The estimator function is defined in
terms of this partition:

g(m) = Hi if ?Lt(w) E Ai

g(m) = E ai(w)Hi if m(w) E B
i=1

wheret

H d(rB(w), Ai)
ai(w) - ioi

d(?2?,(w), A;) H d ( m (w) , A;)
IFi

and

d(x, .4) = inf Ix- y I.
ycA

It is not difficult to show that g is a continuous mapping from RN into
3C. Having given the identification scheme we now show that for any
H c 3C, E > 0

Pf H 11. H >

Recalling the definition of B, Ai and the labeling convention we have
used, we see that

PH I H- g(Ei(w)) H > P m(w)B ± P{711(w)Ecio Aii}
= 423,(W) E n Aci} P{Rt(w) c y A;} (3)

Let us first concentrate on obtaining bounds for the first term on the
right side of equation (3). We rewrite Ai as Al = F ;Or where

Fik = fa = (al , a2 , , aN): ai - ak (Hixi , Hixi)

- (Hkx HA -xi) +

Thus

t It turns out that the form of cei(w) is irrelevant since we show that P[m(w) E B]
vanishes as Ti increases. It is merely included to make the estimator function
continuous.
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n A; = n cu Fik).
j-2 i-1 krfi
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(4)

Applying DeMorgan's rules to equation (4), and after some thought,
we see that

where Di has the form

N (_Nn A; = vD,
i=i

= n F21, n  n FN1N

with X I for all j. We can upper bound Pfm(w) D,} by

Ne i
sup PI- p ix; , - (Hkxi , Hkxi) gw, k) -

(5)

NO.77 (Hkx; , Hkx;) - (H , (6)

To see this, define q(w, k) = f(w, k) - (H , H kxi). Then P fm(w) e Dij
is the probability of the N events q(w, 1) - 0i/Ti , q(w, 2) -
q(w, 12) < 0i/Ti q(w, N) - q(w, 6) < 01/T1 occurring simul-
taneously. Suppose /1 = k. Then consider the two events q(w, 1) -
q(wi , 11) = q(w, 1) - q(w, k) < O./Ti and q(w, k) - q(w, lk) 5 0i/T1.
If lk = 1, then these two events are contained in the event - Oi/Ti
q(w, 1) - q(w, k) S 0,/Ti . If /k = j 1 then consider the three events

q(w, 1) - q(w, k) 0i/T, ,

q(w, k) - q(w, j) 01/T1 ,

q(1 j) - gcw, 1,) 0 /T .

If li = 1, then these three simultaneous events are contained in the
event -61i/T S q(w, 1) - q(w, j) 20i/T, . If li = k, then these three
simultaneous events are contained in the event -O./T S q(w, k) -
q(w, j) S Oi/Ti . Continuing in this fashion we obtain the bound in
equation (6).

Since q(w, k) - q(w, j) is gaussian, we can bound the value of the
expression in equation (6) quite easily.

Let

a = E[q(w, - q(w, j)]

= H PT,(11x, - Hrr,) - II Prfflx, - Hkx.) II: (7)
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and

0-L = Var {q(w, k) - q(w, j)] = 4 II Pri(Hkx, - Hixi) I I2 > . (8)

Hence,

D{_N 1\e
Ti

q(tv , k) - q(w, j) -1-1-,}

= (270-1 exp dz
-(NeaTiQki)-akiicki

exp
NeaTiaki 2

-(Nei/Taki) 2
dz

(27)-4
_(N/2Ti)

exp (-z-9) dz (27r)-1
-(M/27'i)

exp (-- dz (9)
rN/2Ti 2 2

(recall that N < M).
Using equations (9) and (5) we see that

(N -1)T'

13{7n(W) n E Pfm,(w) E Di1
-1 tai

<
Af/Ts

(M - 1)m(24r)-
z2

exp dz. (10)
-(M/Ts)

Since the right side of equation (10) goes to zero as T; increases we can
choose aTE T,1 large enough so that this term is less than n/2. We now
bound the second term on the right side of equation (3):

Recall that

Hence

P{T(W) E Ail = E PIT (w) E Ail. (11)
i=No i=No

A, = (U Fik)` = n pi:,
kj k*i

N

P{m(w) E UAi = EP{ trt.(w) E n F; k}. (12)
i-No j-ive koi

Observe that for all k j

m(w) enri k} S P yz(w) (13)
kOi

= P{q(w - q(1 > (14)
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1
2

1,-77T exp dz. (15)
foi/Ti-aikicrik

Since 5.) was covered by balls of radius ro , there exists at least one inte-
ger k < N. such that 11 H - Th11 < ro < e/4 and hence 11 PT,(Hx, -
Hix,)112 < rose T, . Note also that since 11 Hi -H 11 > 3E/4 for j No ,

II P,(11x, -H ;xi) 112 > rT . Hence,

-a.1k = 11 Pri(Hsi -H Pr ;(11x, - Hai)

rT - r(2,s2T, - i)T, = . (16)

Recalling that was bounded,

("k = 4 II PT;(11,xi - Hai) 11; 5_ 4R2s2T . (17)

Using equations (16) and (17) in equation (15) we see that
o 2

P Ln(w) n F:k P al. (w) F;11 (270-1 exp (--) dz.
LTi4/16Rs

(18)

Hence from equation (11) we see that

P{710) U A;5 3 I ) dz. (19)(270-4 exp (--2
i='No j3* rTil/161te

Thus we can select a T E Ti} so that this term is less than n/2. This
T makes P{11 H - 11 > E} < n for all H t D.

The identification technique proposed in the above proof is not
necessarily a practical technique. Our intent is to indicate the possibility
of identification rather than to derive easily implementable techniques.
Notice, however, that since the measurements are linear functionals on
L2(0, T) they are iterative in nature because of the integral representa-
tion of such functionals.

Theorem 1 gives sufficient conditions for determinability. Theorem 2
indicates that some of these conditions are in fact necessary for identi-
fication.

IV. NECESSARY DETERMINABILITY CONDITIONS

In this section we show that the approximability condition given by
condition (i) of Theorem 1 is in fact necessary. We also show that a type
of separation property is necessary, although it is not as strong as that
given by condition (ii) of Theorem 1.
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Theorem 2: Let 2, be a bounded, determinable subset of 3C, then

(i) the closure of D is compact
(ii) given any (5 > 0 there exists an X > 0 and a positive

number r(8) such that

111).1(M - KR) II: > 1.(S) for all H, K

satisfying 11 H- K S.

Proof: (i) Given e > 0, choose T, i E N. linear measurements and
an estimator g(m(H, w)) so thatt

PHIR - g(r_1(11, w)) I I < e/2) > for all H D.
Since 53 is bounded and the measurements are linear, there exists a
compact ball BT e RN so that

P {Ri,(H , CO) £ < I for all H £ O.

Thus, since g is continuous, g(Bp) is compact. We can therefore cover
Bp by a finite number of balls of radius E/2. If g(13f) D 53 we could
also cover 0 by the balls. We don't have enough information to verify
that g(BT) D D. Notice however that

P{ [co: IIH - g (m,(H , co)) II > E/2] n [w: 74(H , co) E Bt]

= PICO: II H - g(at,(H , 0.))) I I > 6/2} Plco: ri(H , co) E Bfj

9(711,(H co)) II > E/2] U [w: ni(H co) E BI]}

(20)

We conclude that there exists an Cep so that m(H, £ BT and II H -
g(m(H, wo)) II < E/2. We can repeat this argument for each H £ D.
Therefore, 53 must lie within an e/2 neighborhood of g(.13f). By expand-
ing the balls of radius E/2 which cover g(131,) by a factor of two, the
expanded balls will also cover D. Since this argument holds for any
E > 0, 33 is shown to be totally bounded. Since 3C is complete, 5 is
complete; and hence 5 is compact (see Ref. 6, p. 22).

(ii) If 33 is determinable, then the closure of D, 5, is also determin-
able. This is easily shown by noting that any channel in 5 can be
approximated arbitrarily closely by a channel in D. Hence the measure-
ments will be arbitrarily close and because of the continuity of the
estimate, the estimate will be close with high probability.

t Since the measurements are gaussian random variables we have included the
dependence on the sample points w of the corresponding sample space a
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Since 5 is determinable, for every e > 0 there exists an observation
interval [0, T], a test signal x £ 1,,,(s), and an estimator g(m( , w)) so that

P{ II H - g[m(H, w)] II < 6/21 > 4 for all H c D. (21)

Suppose that II PT (H - K1) 112 = 0. Then, the measurements ob-
tained will be the same irrespective of whether H or K were used and
therefore the estimates for K and H will be identical. Since

and

we see that

Piw: II H - g[tr_t(H, co)] II < 6/2} > I

Pk,: II K - g[m(H , w)] II < 6/2} >

PIP: I K - g[m(H , co)] < (5/21

{w: II H - g[tn_(H co)] II < 8/211

= Plco: II K - g[71,(H , < 6/2}

P {co: II H - g[m.(H , (0] II < 8/2}

- P{ [w:
I
I K - g[it,(H,w)]

I I

< 8/21

U lw: H - g[rzt(H co)] II <

- 1 = 2.

Thus there exists at least one sample point coo such that

K - g(nj(H, W0)11 < 8/2

and

II H - g(tri(H, wo)) II < (5/2

which together imply that II H -K II < 8. If H, K c 5 and II H -
K II > 8 then 11 Pgf-H - Kai) 112 > 0.

Note that 5 X 5 is compact in the product topology and hence
C(5) = {(H,K):I1H - a, H,Kc5} is also compact. The func-
tion f(H, K) = II Pf(TH -IU)112 is a continuous map of C(6) into the
real line and hence it has a minimum value. This minimum value cannot
be zero because we have already shown that f (H, K) > 0 for (H, K) £
C(S). As a consequence, there exists a positive number r(6) such that

II P f(11"i - Kt') II2 > 7.(5) for all H, K £ D

satisfying II H - KII > S.
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V. LINEAR CONVOLUTION OPERATORS

When we specialize the results of Theorems 1 and 2 to linear convolu-
tion operators, it is possible to obtain the characterization of the deter-
minable sets in terms of the kernels of these operators. These results
are given in Corollaries 1, 2 and 3 below. We note that the resulting
conditions are similar to those obtained by Root and Prosser for the
deterministic identification problem.'

Corollary 1: If 3C is composed only of causal linear time invariant con-
volution operators H, [HxJ(t) = ft; h(t - T)x(r) dr, h e L,(0, 00) and if

(i) = { h I h E L, (0, .0), HE DI has a compact closure in L, (0, 00),
and

(ii) for each S > 0 there exists an x E L. (s), T > 0 such that II PTHx -
PTKx 112 > 0 for all h, k 53 for whichllh -k 1

I

= h(t) - k(t) Idt>
then 21 is determinable.

Necessary and sufficient conditions for 13 to have a compact closure
are (see Ref. 6, pp. 298-299):

(i) 55 is a bounded subset of L, (0, ),

lim, .1%)
I

h(t - h(t) I dt = 0 uniformly for h E 55, and
limT, f;', I h(t) I dt = 0 uniformly for h E 55.

Proof: We first show that if the closure of 55 is compact then the
closure of O is compact in the respective topologies. Let I I H 11*, H E

denote the usual operator norm, that is,

II H II* = sup
2,1,2(0,c0)

xpd0

Hx 112

x 112

Given any e > 0 there exists T* > 0, x* E L (s) such that

11 HII < e+ 11 PT.11x* 112 < 11 PT*HPT.x* 112 (23)

11 PT.x* 112 = 11 PTx* 112

Note however that Pra* E L2(0, 00); hence II H I I< E IIHI I* for
arbitrary e > 0, so

11 -11 11 11 II 11*. (24)

Using the linearity of H and Holder's inequality we see that

IlHx112 II hit, Ilx, IL
IIHI I* = x cc) 11 x 112 .Ls.7..) 11x112

- 11h 111 (25)
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Thus compactness in L1(0, co) implies compactness in 3C and condition
(i) of Theorem 1 is satisfied.

Given 6 > 0, choose xe , T° so that condition (ii) of Corollary 1 is

satisfied. We have already used the fact that 11 HPT.s. 112 < 11 h lir
II PT.x.II2 . Hence HPTox,, is a continuous linear mapping (that is,
mapping the kernels into time functions) from L1(0, 00) into L2(0, 00).

Thus the image of 5 under this mapping has a compact closure. We can
therefore choose a number T > T° so that

JT
(1113,x° - KPT.x0)2(t) dt < for all H, K c (26)

Define x as follows:

&(t) = x0(1) for 0 < t < T°

=0 for T° < t

= xo(t - i1) for T < T"

=0 for i' + T° < t 2:11

= x(/ - n't) for < T°

= 0 for nil ± T" < t < (n

(27)

Note that x e Lee(s). Following the same line of reasoning as in the proof
of condition (ii) of Theorem 2 we can show that there exists an 7.(S) > 0

so that 11 PT -(11x0 - Kx0) 11,2' > r(6) for all H, K £ 5 for which H h -kill
> 6. We now proceed to show that

11 P13(Hd.', - 11,22 ?_ (28)

where F-(3) = r(o)/4p. Let yo(t) = [HP Toxo - KP Toxo](t) and yi(t) =
y (t - ii1). Then, by linearity and time invariance,

t.

(Ha" - K.V(1) dt = [yo(t) y,(t) ± yi_,(t)r di

and

fJ T"+"f7
dt = ?/(t) di for j

(29)

(30)
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Using these relationships we see that

(yo +  + ;/i)2 dt

>

(i+i)f

ff y2; dt - 2 fif
I Yi 1 (I Yo 1 +  + 1 Yi--1 1) di

fT

Hence

(i+1)0
dt[l - 2 fi ((yo+  + d tf]

1/2, dt[1 - 2 f
T

dti r(8)/2. (31)

2f
I I Pf(H& - 1122 = y(2, dl (yo yl)2 dl +f

7'

rnf
(yo ±  ± y-1)2

nr(5)/4 = r'(6)ni" (32)

We see that this relation implies that condition (ii) of Theorem 1 is
satisfied; thus is determinable.

When ae is composed only of causal linear time invariant convolution
operators we can also strengthen the conclusion of Theorem 2. This
result is given in the following corollary.

Corollary 2: If 3C is composed only of causal linear time invariant
convolution operators and if D is a determinable subset of 3C then

(i) given any 6 > 0 there exists an unbounded sequence T , a sequence
of inputs x L.,(s) and a positive number r(6) such that PT; Kxi) 2 112
> r(S)Ti for all pairs H, K E 5 for which II H -K II > 6.

Proof: As a consequence of Theorem 2 we know that for any 6 > 0
there exists an E Loo(s), T > 0 and a positive number r(6) such that
II 1)1,(H& - If&)2 112 > r(o) for all H, K E 5 satisfying II H - K11 > S.

Obviously, II HP24 112 5_, 11H 1111 -PP& 112 . Hence HP0 is a continuous
linear mapping from 3C into L2(0, 00). Thus the image of 53 under this
mapping has a compact closure. We can therefore choose a positive
number T > 7' so that

47 (H1 - HP4)2(t) dt < for all H, K E (33)
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Proceeding as in the proof of corollary 1 we can easily establish (i) of
Corollary 2.

Corollary 3: If 3C is composed only of causal Hilbert -Schmidt operators H,
[Hx](t) = fsf, h(t, 7)x(7)dt, f o f°,3, I

h(t, 7) 12 dt dr < co , h(t, 7) = 0 for
T > t and if

(i) i = (h I H e 3D1 has compact closure in the Hilbert -Schmidt
metric (II h - k I

I
= f o J.;

I

h(t, r) - k(t, 7) I2 dt dr)

(ii)for each S > 0 there exists an unbounded sequence Ti , a sequence
of Xi E 1.0(s) and a positive constant r(s) so that II PTI(Hx; - KY;) 112 >
r(5)Ti for all h, k E for which II h - k 112 > s.

Thenis determinable.
Proof: As in the proof of Corollary 1 we can show that II H I

I H11*
where

II H 11* = sup
1

I

HX II2

xeL2(0.a0 II X 112

From the Schwartz inequality we see that

Hx II2 = lc° (f
I

2

r)x(r)) dt = (' h(t , r)x(r) (1T )2 dl
. 0 0

r[r-I h(t, 12 (IT 1 (7) 12 dTi

h II H 11::;

which implies that

VI h112

(34)

(35)

Hence, compactness of j implies that D is compact and condition (i)
and (ii) of Theorem 1 are easily verified to hold.

VI. COLORED NOISE

Theorems 1 and 2 were derived for the case when z(t) the additive
noise was a zero mean white stochastic process. The situation when
Ez(t)z(7) = R(t, 7) can be handled in a similar fashion. The only addi-
tional assumptions are:

(i) R(t, r) is positive definite; that is,

foe0 JO
R(t, 2-)w(t)w(r) dt dT > 0 for all w E L2(0, cc)
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satisfying f*:; I w(t) 12 dt > 0, and either

(ii) R(t, r) is Hilbert -Schmidt; that is,

JOB JOB
R(t, 7) 12 dt dr = C2 < co , or

(iii) if R(t, T) = Ro(t - r) then

f: Ro(t) 12 dt = Co < 00

Inspecting the proof of Theorem 1, one sees that the whiteness assump-
tion was only used in equations (8) and (17). If Ez(t)z(T) = R(t, r),
then equation (8) becomes

CIL = Var [q(w,, k) - q(w,, j)]

Ti Ti

= 4
0

r

.10

R(t, r)(Hkxi -H ixi)(t)  (11,xi -H ixi)(r) di dr . (36)

Since Hk and H; were chosen so that II PTi(Hkxi - Hixi) I I > 0, we see
that since R(t, r) is positive definite, ak, > 0. If we choose 0; to be less
than min; .k cric instead of

I
I PTi(Hkxi -H ixi) II; , inequality (9) will

remain true.
Equation (17) is changed as follows. If Ez(t)z(T) = R(t, r), then by

the Schwartz inequality
T.

fT.0-4 = 4 f R(t, r)(H,x, - Hkx,)(t)(H,x, - Hkx,)(r) di dr

4 f
T. Ti

(H ixi - Hai)(r){1.0 R(t, 12 dtY
0

{fTi

(Hix, - Hai)2(t) dt} dr
0

4{fTi
Ti

R(t, T) 12 dt dr} Pri(Hixi - Hai) II:
0 o

4CR2s2Ti (37)

On the other hand, if Ez(t)z(T) = Ro(t - 7), equation (17) is changed
as follows.

20'4 = 4
Ti

R(t - r)(H ix, -H ixi)(t)(H ixi - Hizi)(r) dt dr

Ti Ti

6 4 (Hixi - Hix,)(t) l[f. 1 R(t - r) dr]
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T

(H - Hm)2(T) d7-1 di

T

L IC OR Sal
I

- ixi -H Exi)(t) dtf

 4CoRs(T;)i(fT' C t) fr (I ixi - Hrzi)2(t) dt
0 0

.1c. 4C oRs(T  (T i).Rs(T i)i = CQIV.3211 . (38)

From equation (37) we see that the limit of integration in equation (19)
now becomes 3r21/4RsCl. If we use equation (38), this limit becomes
3r71/16RsC,t . In either case this limit diverges as i increases. Thus
Theorem 1 is still correct if the noise is colored. One can also see that
Theorem 2 is true without any modifications. The whiteness assumption
does enter into the proof in any substantial manner.

VII. CONCLUSIONS

In this paper we have attempted to formalize the notion of identifica-
tion and examined conditions under which the a priori information would
guarantee that the problem of identification was well formulated. Our
purpose has been to indicate when identification was possible and not
to specify a given identification procedure. It is hoped that the condi-
tions derived here may motivate researchers to consider larger classes of
identification problems than have hitherto been examined and also to
indicate for what classes of problems identification is not possible.
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APPENDIX

Proof that the Space 3C Is Complete

In this appendix we show that the space 3C with the metric induced
by its norm is a complete space. If H} is a Cauchy sentence in 3C, we
show that there exists an element H t 3C such that lim.-..ii H H.II = 0.

Let {lin } be a Cauchy sequence in 3C. Then given any E > 0 there
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exists a number N() such that if in, n > N(E), II H - Hm I I < E. From
the definition of the metric,

11 P nx -P TH nix 112
II I-  - II

11 P Tx 112
(39)

for all T > 0, x c Loo(s), 11 PTX 112 0. Using the definition of L.,(s),

es(T) > E II P TX 112 II P T(11.X 11.4112 (40)

for all n, m > N(), T > 0, x E L,(s), II P Tx 112 0. Thus, for each
T > 0, x E Loo(s), II PTx 112 0, [Hx} is a sequence of functions in Lee
and for each T > 0, PTHz is a Cauchy sequence in L2[0, T]. Hence,
for each T there exists at least one time function yT E L2. such that
PTYT E L2(0, 00) and limn, II - PTYT 112 = 0. Furthermore,
YT is uniquely (except for a set of measure zero) specified over [0, T].
Because of this uniqueness, if T1 < T2 then P u- = PT,YT. . Hence
there exists a unique function g E L2, such that PT, 1; = PTYT for each
T > 0. This function can be constructed:

g(t) = yi(t) for 0<1<1
Y2(t) for 1 < t < 2

=y(t) for n-1 <t<n
(41)

For each x EL(s),x 0 we have uniquely specified a function fj E Lee 
For x = 0 we arbitrarily put 9- = 0. Call the operator defined by this
association 17; that is, Hx = 9-. We now show that lim_..11 H 11.11 = 0.

For each T > 0, x E L.,(s), 11 P2a 112 0 we can use the triangle in-
equality to show that

IIPT(fix - lins) 112 <I
I I PTHx

11P Ts 112 HP Tx 112 11P Tx 112
(42)

If H , H, are members of the Cauchy sequence, from our previous
development we know that there exists a number N (e/2) independent
of x and T such that

II PT(Hnx - Hmx) 112 < E/2 for in, n > N(c/2). (43)
11PTx 112
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Since 11 PT(Rx -H ,nx) 112 = 0 we can find another number
N*(E/2, x, T) > N(E/2) such that

II PT(Rx - /1,,x) 112 < e/2 for m > Ar*(E/2, x, T). (44)
I I P Tx 112

Hence for all T > 0, P Tx 0

I I Pr(lix -H x)
11 P Tx 112 <

and if H were causal it follows that 11 e 3C with lim 11P - H II = 0.
The causality of 17- is easily established. For each x E L.(s), T > 0:

11 P TRx -P THP Tx 112

11 PTI7x -P nx 112 -I- 11 P TRP Tx - PTHnx 11, (46)

= II PT(fix - Hx) 112 P T RP TS -HnP TS) 112 . (47)

For n sufficiently large each term on the right side may he arbitrarily
small, hence II PTI7x - PTRPTx 112 = 0 for all x £ Loo(s), T > 0.

If 3C is composed only of linear operators the completeness proof
follows as above except to additionally observe that H is linear.

for n > AT(e/2) , (45)
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The Theory of Cylindrical
Magnetic Domains

By A. A. THIELE

(Manuscript received December 26, 1968)

The theory of cylindrical magnetic domains provides conditions governing
the size and stability of circular cylindrical magnetic domains in plates of
uniaxial magnetic materials together with an estimate of the range of
applicability of these conditions. The results of the theory are directly
applicable to the design of cylindrical domain devices. Computation to first
and second order of the energy variation resulting from general small
deviation in the domain shape from an initially circular shape yields the
conditions governing domain size and stability. The physical origin of
the various terms in the energy expansion is examined in detail. A graph
from which many domain size and stability properties may be obtained
summarizes the results of the energy variation calculation. The minimum
theoretically attainable domain diameter is approximately a171-Al2 , where
cr, is the wall energy density and Ms is the saturation magnetization.
For domains to exist, the effective anisotropy field must be greater than
47M. 

I. INTRODUCTION

The recent development of a technique for the propagation of isolated
magnetic domains in an arbitrary direction in anisotropic ferromagnetic
thin films by P. C. Michaelis created a renewed interest in the use of
domain propagation for device purposes.' The technique used by
Michaelis for propagating domains along the easy axis is quite different
from that used for propagation along the hard axis. During discussions
on the possible application of these techniques, A. H. Bobeck, U. F.
Gianola, R. C. Sherwood., and W. Shockley suggested that for general
symmetrical domain propagation the direction of magnetization must
lie normal to the plane of the film'. The recognition that rare earth
orthoferrites have the required properties came in response to this
suggestion.3 Experimental work on the application of this type of

3287
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domain motion device was then begun. Although at the present time
this work has been largely concentrated on the orthoferrites, there exist
other materials, such as the hexagonal ferrites and manganese bismuth,
having the required properties.

The present work directs attention to structures in which the prop-
erties of the material used require the magnetization to lie normal to
the surface of the plate. The modes of operation of devices constructed
from such structures are classified according to the effect of wall motion
coercivity. In the case of very high wall motion coercivity, the applica-
tion of shaped applied fields determines the initial domain configuration
which is then maintained by coercivity. For very low wall coercivity,
on the other hand, the saturation magnetization, wall energy, plate
thickness and bias field determine the domain size and shape. Between
these two extremes, there is a continuum of intermediate modes. In
either extremal mode, a complete set of operations (logic, memory, and
transmission) may be performed.' The present work concerns only the
low coercivity mode and specifically, right circular cylindrical domains
in plates of uniform thickness and small variations therefrom. When
observed by means of the Faraday effect, cylindrical domains have the
appearance (particularly when in motion) of bubbles and therefore are
colloquially referred to as "bubbles".

The present work largely treats the theory of cylindrical domains with
experiments and applications being considered only briefly. Section II
presents the domain model and mode of description. Section III contains
the calculation of the energy derivatives used in the investigation of
domain size and stability. Section IV contains an interpertation of the
energy derivatives in terms of fields and potentials. Section V discusses
the solution of the domain size and stability equations. Section VI
discusses the range of validity of the domain model used in the previous
sections. It is found that several assumptions implicit in the model are
related, and a requirement on materials suitable for the production of
circular domains is obtained. Appendix A contains a derivation the
properties of certain elliptic integrals appearing in the theory of circular
domains, Appendix B is a listing of the standard forms and series
expansions of the magnetostatic force and stability functions, and Ap-
pendix C is a list of mathematical symbols.

II. THE DOMAIN MODEL AND MODE OF DESCRIPTION

Figure 1 shows the magnetic domain structure to be considered
here.' The isolated magnetic domain is magnetized downward while
the remainder of the plate is saturated upward. The domain will be
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Fig. 1- Magnetic domain configuration.
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considered to be near circular. Examination of the variation of domain
energy under a variation of domain shape from the assumed unper-
turbed shape yields domain stability. Once created, a cylindrical domain
continues to exist if the magnetic configuration meets the conditions
for stable equilibrium. The stability of a given configuration, however,
does not guarantee that it can be produced. The generation of cylin-
drical domains is a separate problem which is not treated here.

2.1 Description of the Domain

A cylindrical (r, 0, z) coordinate system is placed at the center of the
domain with its z-axis perpendicular to the plane of the plate. The
plate is taken to have planar surfaces and a uniform thickness h. Only
the case of a plate of infinite extent, r j = 00 , is considered here. It is
assumed that the material constraints allow the magnetization to lie
only along the z-axis and the magnitude of the magnetization is inde-
pendent of the local magnetic field. The boundary between the two
regions of magnetization, the domain wall, is assumed to be independ-
ent of z (no wall bulging) and to have a width which is negligible in
comparison to the domain radius. It is assumed that a wall energy
density per unit area cru, may be assigned independently of either the
orientation or curvature of the wall. The assumptions about the de-
tailed magnetic configuration (the magnetization magnitude and orien-
tation and the wall energy and shape) are coupled by the material
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properties. Section VI contains a detailed discussion of the validity of
these assumptions and the cylindrical wall assumption. Even though
the foregoing assumptions appear quite drastic and restrictive, experi-
mentally there does exist a region in which the results obtained under
these assumptions are both accurate and useful.

The expansion

rb(0) = E r cos [n(0 - On)]
n=0

of rb (0) in terms of the Fourier coefficients, rn and 0. , describes the
domain shape in the plane. The n value is called the "rotational per-
iodicity." The condition

CO

(1)

17.0 > E n l rn (2)
n=1

assures that the domain is near circular and that the function rb(0)
is single valued and smooth.

It is convenient to introduce the finite variations of the rn and On ,
Arn and L On respectively, in order to describe small variations in
domain size and shape from the strictly circular domain of radius
ro [7.6(0 = ro]. In terms of these variations, a small variation of the wall
shape from rb(0) = 7.0 may be written as

00

rb(0) = ro + Aro + E Arn cos [n(0 - en - A0,)] (3a)
n=1

where, by assumption,

ro I>> I Aro n Arn I. (3b)

Subject to the restrictions stated, equation (3) describes an arbitrary
variation because of the completeness of the Fourier expansion.

The externally applied magnetic field, H, is taken to be spatially
uniform and to lie in the positive z direction. (The presence of a compo-
nent of the applied field in the plane of the plate has no effect to the
approximation that the magnetization lies only along the z-axis.)

The assumed simple forms of the applied field and magnetic con-
figurations permit the use of simple formal expressions for these quan-
tities. The expression for the externally applied field is

H = Hi, (4)

where H is a constant and i, is the unit vector in the z -direction. The
magnetization may be written in terms of the unit step function,



CYLINDRICAL MAGNETIC DOMAINS 3291

JO,

x < 0,

u(s) , x=0,
> 0,

as

(5)

M = izilis {1 - 2u[rb(0) - r]}u(z 1h)u(-z + 1h). (6)

2.2 The Energy Variation

The investigation of domain size and stability proceeds by computing
the first and second variations of the total system energy with respect
to the rn and On . The total energy of the domain is

ET = E1 Ell E M (7)

where Ew is the total wall energy, EH is the interaction energy with the
externally applied field, and E M is the internal magnetostatic energy.
The total wall energy, under the previously stated assumptions, is the
product of the wall energy density cr,,, and the wall area a:

Erg = an, da = haw
0

2 r

a 0
{7.20) +[a12}1f

The interaction energy of the magnetization with the externally applied
field is

dO. (8)

Ell = M  H = -f f fw 111,11r dr dO dz, (9)

and the internal magnetostatic energy is

fr ir d1- ("-
M ' M'

12
V V

am z am'z
1 T2' f2r

aZ az'
ir' dr dO dz dr' dO' dr'2f Jo f0 -ea JO 0

E Sf =

where

(10a)

s2 r2 r,2 2ff' cos (0 - 0') (z - z')'. (10b)

In expressions (9) and (10), V indicates volume and primes indicate
quantities in the second coordinate system used in describing the in-
ternal magnetostatic interaction.
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The variation in the total energy when the rn and 0 are varied is
- F

.._ (aET) Aon]
n=0 Or. 0 a 0

Ij_a2ET
ArnArm

+
2

Ar"A 0,
-F V9r arm ar

.32E7.

(3:2Ea TO,)0A OnA
0,1 + 03 (11)

where the subscript 0 refers to evaluation of the partial derivatives at
the circular domain state, rb(0) = ro , and 03 refers to terms of order
three and higher in the combination of Arn and A6,, . The first partial
derivatives of the energy, (a.ET/arn)o and (aET/aen)0 , are the generalized
forces of the system, while the second derivatives of the total energy
form the elements of the stiffness matrix.

Knowledge of the generalized forces and the stiffness matrix com-
pletely characterizes domain size and stability. It is shown in Section
III that only the energy derivatives, (0ET/Oro)o and the (a2ET/OrDo
are non -zero when rb (0) = ro . The equation obtained by setting the
only nonzero generalized force equal to zero is called the "force equa-
tion." The expansion (1) is a quasi -normal mode expansion since cir-
cular domains are completely metastable with respect to the 0 and the
stiffness matrix is diagonal with respect to the rn

III. CALCULATION OF THE ENERGY DERIVATIVES

3.1 Derivatives of the Wall Energy

The derivatives of the total wall energy are computed by substituting
the wall shape expression (1) into the wall energy expression (8),
noting that

ar, = -E nr sin [n(0 - en)]
a e n=,

(12)

and differentiating under the integral sign. There results

aE w 2 arh .- haw n sin [n(0 -f0 {r, cos [n(0 - 0)] - }
arh a

arbyr do[r2,, (13a)

and
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a2Ew

Or arm
cos [n(0 - on)] cos [m(0 - 0,)]

nm sin [n(0 - O)] sin [m(0 - 0,)]

- {r, cos [n(0 - On)] -ae n sin [n(0 - 0)]}

{r, cos [n2(0 - 001 -
ao

m sin [m(0 - 0.)]}

. ( ar,V1-3)
d 0Ub)

with analogous expressions for

0Ew/a0 , a2Esae ao, , and a2Esarn ao, .

Evaluating equations (13) for a circular domain,

rb(0) = ro and [arbovac] = 0,

the circular domain derivatives are

(gE,1 = 27rhoru,
-7.0

(82E, = - ha n2 1

)0 ro w

n,

3293

(13h)

and all of the first and second derivatives of the total wall energy not
explicitly stated are zero.

3.2 Derivatives of the Applied Field Interaction Energy

The applied field interaction energy is evaluated by substituting the
formal expressions for the applied field (4) and the magnetic configura-
tion (6) into the applied field interaction expression (9), changing the
order of integration, and integrating.

E = -1118H
2

J J Lao
{ 1 - 2u[ri,(0) -

O O

X u(z M)u(-z 4h)r dz dr dO (15a)

Zx

= h11/H[ f r:(0)dOi - constant. (15b)
 0

The infinite constant is independent of the r and 0. and does not
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contribute to the derivatives. Differentiating yields

aL+'rr
= 2h31 ,1I 7., cos [n(0 - Mid° (16a)ar t

and
2lill 2 7

- 21111I .H f cos [n(0 - On)] cos [m(0 - Om)] (10 (16b)
ar arm

with analogous expressions for

aEll/aen , a2E/ar aem , and a2EH/ae aem .

Evaluation of equation (16) for r,(0) = ro yields

(aE
= 4irrohAl ,H , (17a)

\ aro )0

0) = 4rhill ,H , (17b)

(aa2Er: .) = n 1, (17c)

and all the other first and second derivatives of the applied field inter-
action energy are zero.

3.3 Derivatives of the Internal Magnetostatic Energy

The formal expression for the internal magnetostatic energy is ob-
tained by substituting the expression for the magnetic configuration
(6) into expression (10). In dealing with the self -interaction energy,
it is necessary to use two coordinate systems: an unprimed system and
a primed system. Throughout the following calculation functions of
the spatial coordinates (r, 0, and z) are written with primes whenever
they are of the primed coordinates. Thus M, when considered as a
function of the primed coordinates, is written M'. The subscripted r
and 0 are independent parameters and are never primed.

The calculation begins with the evaluation of ailllaz by differentiat-
ing expression (6) and noting that

d
dx

u(x) = 8(x) (18)

where (5(x) is the Dirac delta function. Then

all', =111,kg
az

(19a)
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where

k[7., r,(0)] = 1 - 2u[rb(0) - r] (19b)

and

g(z) = (5(z + 113) - 8(-z + -2h) (19c)

After changing the order of integration, the expression for the internal
magnetostatic energy becomes

E :
1 f2. fo2w

Lr
r kk'gg'rr'= M if° dz dz' de d 0' dr dr' . (20). Le.

The factor g(z)g(z')/s contains the z and z' dependence of this integral.
From expression (19c) it can be seen that this factor consists of four
terms. Application of the transformation (z, z') (-z, - z') to two of
the terms under the integral sign combines these four terms into two
terms. Making the transformation (z, z') -> (z, z), where

z z - z', (21)

on the remaining terms and carrying out the integration over z yields
for the internal magnetostatic energy in terms of an

integral over surface magnetic charges. This expression is

E = I1122
r2 r kk're dO do' dr dr'

f0 Jo J0 0 s
(22)

where Z is an operator defined by

Z1 dz[S(z) - (5(z - h)]{ (23)

s2 7.2 r'2 - 22.7.' cos (0 - 0') + z2. (24)

The factor kk' contains the 7.. and 0 dependence of the integral so
that the derivatives of EM may be calculated by replacing this factor
by its derivatives under the integral. Evaluating the first derivatives
yields

ake arb(ei) k'
ak arb(e)

ar k
arb(ce) ar ari,(0) ar

= k -ak
ak

cos [n(0' - On)] k' cos [n(0 - 0.)] (25a)
Orb arb
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Okk' ak' 3r, (e') ak arb(e)

aen
k

Orb(0') aen
k'

arn(e) 80,,

k'= -k a- nr. sin [n(0' - 0,)] - k' -ak nr,, sin [n(0 - On)]. (25b)
ar, arn

Substituting these derivatives into the integral and exchanging the
primed and unprimed r and 0. The first term becomes identical to the
second. The derivatives of the internal magnetic interaction energy are
thenaE27-1Y = 21112, Z ce .1

f f 27 Lk
arn J0 0 0 0 s Or,,

 cos [n(0 - 0)]er d0' dO dr (26a)
roo r 2r ro0 r2.

a2E - 2m 2zarn armo S
ak' ak

-a2k
arf,

cos [n(0 - On)] cos [m(0 - Om)] +

 cos [n(0 - 0,i)] cos [m(0' - em)] r'r d0' dr' dO dr (2Gb)

with analogous expressions for

aE,,,/aen , a2E m/arn aem , and 82E /aen aem .

For circular domains (rb = r0) the factors k, k', ak/Orb , and ak7ar,
are independent of 0 and 0' so that the integrands are periodic in 0' with
periodicity 2r. The range of integration of 0' may therefore be changed
from [0, 27r] to [0, 2r + 0] so that after making the transformation
(0, 0') -p (0, where

0' - 0, (27)

the range of integration of both 0 and is again [0, 27]. Note that now
82 r2 r,2 2n.' cos z2 (28)

depends only on
Using trigonometric identities, the integrands of the integrals for

the various derivatives are written as a sum of terms each of which is
the product of a factor depending only on 0 and a factor depending on

Carrying out the integration over 0 yields, for rb(0) = ro

\m
)ak= 47r11rf fZ f2' k' r'r dr' dr, (29a)

aro 0 0 s arn



CYLINDRICAL MAGNETIC DOMAINS 3297

= lariz f" a2k akk' - -)r'r dg- dr' dr, (2913)
aro o 0 o arb arb arb

(a2Em) =
9 °

470/Z
JOB

."
0  0

1

( 02k ak' ak
k' -- cos nOr'r di dr' dr, n > 0, (29c)

arb arb arb

while all the remaining first and second derivatives are zero. Note that
by inspection of these integrals and the definitions of k, k', and rb that

and
a Em

ar!)0

(32Em) a (aE,f)
k /0 - aro k aro /0

(30a)

=1 a (aEm) - 1
47r/1/3

2
Z

r T2' alp' ak (1 - cos nO
2 aro aro o 2 0 Jo Jo arb arb

r'r dr' dr, 71 > 0. (30b)

Noting that from expressions (18) and (19b)

ok = -26(r - 7.,,) (31)
arb

and using the definition of the Z operator given in expression (24),
expression (29a) may be integrated with respect to r and z, and the
second term of expression (30b) may be integrated with respect to r, r',
and z. The result after some rearrangement is

(aE)
\ aro /0- (27rh,2) (47r/1128)R2ro/h)

(-8A0 = - (4rh)(4r11128
) ')a(2ro/h

82E. aF(2ro/h)

(32a)

(32h)

a2E ,,\

am
)0- (27rh)(47rA/2 as) R2rdh)

a(2ro/h)

2(h)(472)M -2-1-r:[L4)) - L(0)] (32c)

where renaming r' to r and using expression (19b)

F(2r0) rh , ro , h) - 2B(ro , r0 , 0)

- B(r0 , , h) B(ro 0)], (33a)
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b

B(r0 , rf , z) (p2 z2) -1r dr dt,

p2 = r2 - 2ror cos t,

and where

(33b)

(33c)

L[(z/2r0)2] f [(z/2ro)2 1(1 - cos 6]-1(1 - cos nt) dt. (34)

The 1, functions are reduced to standard elliptic integral form, and
power series expansions are obtained for both large and small values of
the argument in Appendix A. The B function is integrated once after
displacing the origin of the cylindrical coordinate system from 0 to
0' as is shown in Fig. 2. The transformation connecting the (r, t) and
(p, co) coordinate systems is

p sin (p = r sin ?- (35a)

p cos (p = r cos ?- - ro . (35b)

After the transformation

rfp dp dgo

Jo (P2 + z2)

B(ro ,rf , z) =
04' <

1 r-
fro' dp d

4/2 Jo
(p2 z2)i, ro = rf .

Equations (36a) and (36b) are integrated to obtain, in either case,

(36a)

(36b)

r-. r-.
B(ro ,rf , = (p: Z2)1 thp - Izichp (37)

r =o r=0

where Pb is the value of p along the boundary r = rf . For rf = ro Pb =
- 2r0 cos (p so that

Fig. 2 - The r) and (p, co) coordinate systems.
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B(ro , ro , h) = f [h2 (2r0)2 cost (p] d - h I (38a)
T/2

and
B(ro , ro , 0) = 2r0 (38b)

The remaining two terms of equation (33a) must be evaluated as a limit

lim [B(ro , rf , 0) - B(ro ,rf ,h)]
f.0O3

= lirn f -[(Aih2)1 - Pb]
rf-KO 0

Ih
(39)

=rihi
since pb approaches infinity when rf approaches infinity. Combining
these results yields

w/2
2F(2ro/h) = - (2rolh)2{1 [(1112r0)2 sin2 thp - 1 (40)
7r 0

and

aF(2ro/h) 2- (h/2r0) 2F(2ro/h) -
a(2ro/h)

{ [(h/2r0)2 sin2 ,p]-4 (isr} (41)
0

Appendix B lists the standard elliptic integral form of the force
function F and power series expansions for large and small values of
the argument. In Fig. 3 the force function is plotted as a function of the
domain diameter measured in units of the plate thickness

dlh = 2ro/h. (42)

The stability functions S,1 , also shown on this plot, are defined in Sec-
tion 5.1.

IV. THE ENERGY VARIATION-ORIGIN OF TERMS

Summing the results of the last section according to expression
the total energy variation expression (11) is

OB = [27rhcru, 47rrohMaH - (27rh2)(47.11ft)F(2r0/h)] Oro

+ [47rhul - (47rh)(47r31)aaF()(2r
/hh) 2

+ {Ir ho -,,,n2 .H - (27rh)(47r/1128)
aF(2ro/h)

2 ro a(27.0/h)

 (h)(47rM2,,) ?Tr: [L,,((h/2r0)2) - L(0)1}(Ar)2 + 03 (43)

(7),
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Fig. 3-The magnetostatic radial force function F and stability functions.
Sa - Sio, Si = 0, as functions of domain diameter to thickness ratio, d/h.

where F is defined by expression (33) and plotted in Fig. 3, the are
defined by expression (34), and all terms not explicitly stated are equal
to zero. The remainder of this section treats the physical origin of the
terms in the energy variation expression (43).

4.1 The Generalized Forces
The coefficients of the linear variation terms are the negatives of the

generalized forces. All forces except the ro force are identically zero,
which for a circular domain is a consequence of the rotational symmetry
of the system. The first term in the coefficient of Pro is the product of
the wall energy density au, and the rate of change of wall area with re-
spect to ro , 27th. The second term is the product of the external field
interaction energy density 2A1,11 and the rate of change of domain
volume with respect to ro , 27thro . The third term is the rate of change
of the internal magnetostatic energy with respect to ro

The internal magnetostatic force may be identified in expression (43)
and using expressions (32), (33), and (39) may be written in the form

- (aE
= 27rh2(47M20F(2r0/h) (44a)ai0

= (27rroh)(2M 8){471-111

[ r- r- r dr dr rro r dr dq}
h Jo Jo 032 +-11-51 Jo Jo P

(44b)
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where p2 is given in expression (33c). In expression (44b) the first factor
in parentheses is the domain wall area, the second is the change in
magnetization at the wall as the wall moves, and the quantity in braces
has the form of an H field whose origin will now be interpreted by super-
position of sources. The internally produced field arises from the super-
position of the internal field of a plate uniformly magnetized normal
to its surface with magnetization magnitude 31, and two disks of mag-
netic charge of uniform magnetic surface charge density ±232. and
radius ro . The first term within the braces is thus the demagnetizing field
of the infinite plate of uniform magnetization. The second term is the
difference in magnetostatic potential between a point on the edge of a
disk of magnetic surface charge of uniform density 4M, and a point
removed a distance h from this point in a direction normal to the plane
of the charge disk divided by the distance h. This is just the z -averaged
z -component of the field produced along the wall by the two charge
disks since 12(h) - SZ(0)

it H dz = 1
fh

(45)
h az ""z

where SI denotes the magnetostatic scalar potential and z is measured
from the edge of the disk. Comparing expressions (44a) and (44b), the
total internally produced z -averaged z -component of the magnetic field
along the domain wall is

(H m ,), = - (473/a) (h/2r0)F(2ro/h) (46)

so that the total force per unit wall area (averaged over z) is

1 (aET) - 231,(H + (Hm.).0. (47)
27roh aro 0 ro

The first term is the product of the wall energy density and the wall
curvature and always corresponds to an inward directed force. The
second term is the change of magnetization at the moving domain wall
times the z -averaged z -component of the total field at the wall. [The
problem may initially be set up using this fact (Ref. 2, pp. 1922-1925).]
The properties of the force function will now be examined in some detail.
From expressions (43) or (44a) the first order variation in internal
magnetostatic energy, when 7.0 is varied, is

PEA, = -2(r/t2)(47r-111DF(2r0/h)Pro (48)

The plot of F in Fig. 3, and the expansions for large and small values
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of the argument show that the force function is everywhere positive,
is monotonic increasing, and has a negative second derivative. Since
the force function is everywhere positive, the internal magnetic inter-
action energy at all times acts in such a way as to expand the domain.
Section 4.2 treats the effect of the slope and curvature properties of the
force curve on domain size and stability. Substituting the expansion of
the force function for small values of the argument (138d) into expres-
sion (48) produces the energy variation for small values for ro/h,

AEA! = 271-hro2/118(- 47M.) + (47r/1128)16r2o

- (71-112)(47d11202[1(2ro/h)3 - A(2ro/h)5 + ] pro . (49)

(In the remainder of this section frequent reference will be made to the
properties of F and the L given in Appendices A and B.) The inter-
action of the magnetization with the existing field from the infinite
dipole sheet produces the first term in expression (49). This may be seen
by comparison with expression (47) and observing that the field in-
ternally generated in the infinite dipole sheet with no reversals is
- 4rAl . In Fig. 3 a dashed line through the origin with numerical
slope one represents this term and forms the small ro/h asymptotic of F.

The second term in expression (49) is the only thickness independent
term in the expansion and therefore must be identical to the variation
of self -energy of the two disks of magnetic charge which form the ends
of the reversal when ro is varied. Since the interaction with the infinite
charge sheet and the self -energy of the disk have been taken into ac-
count, the remaining terms are the mutual interaction of the magnetic
charge disks.

For large ro/h, an energy expansion in terms of h/ro is appropriate.
Substituting the expansion of the force function for large values of the
argument (138c) into expression (48) yields

AEm = -h2(47r3/2){[l *(h/2r0)2 + 04]

+ [2 - 4(h/2r0)2 + 04] In
A 2ro

h
}pro . (50)

This expansion obscures the identity of both the infinite sheet magnetic
field term and the charge plate self -energy term so that a local (to the
wall) magnetic energy lowering per unit line length description appears
appropriate. However, the energy reduction per unit line length to
lowest order in 2ro/h is
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E m (domain) -E m (uniform magnetization)
o .

h2

= (47r11,12,) In
4 2r-

er' it
(51)

so that the energy lowering per unit line length for the domain of in-
finite diameter is infinite. [Equation (51) is obtained by integrating
equation (50) to lowest order. The integration constant is determined
to be zero by term by term integration of the expansions of F for large
and small values of the argument and comparing at 2ro/h = 1.] The
conclusion that the energy lowering per unit line length for an isolated
straight line reversal may also be obtained by considering the energy
lowering in a strip reversal when the strip width approaches infinity.
The author's intention at the outset of this entire calculation was to
calculate the numerical value of this magnetic energy reduction per
unit wall length. The internal magnetic interaction, however, retains
just enough of its global character when the domain is very large so that
no finite limiting value for this energy reduction exists.

The internally generated magnetic field at the wall of the domain,
for large ro/h is obtained from expression (46). To lowest order it is

(471-11/,) '
In(HA, -

71" 21.0
4e'

2ro

h
(52)

which approaches zero as the diameter approaches infinity as it must,
since for an infinite straight line magnetization reversal, symmetry
requires that the z -component of the field be zero along the reversal.

4.2 The Stiffness Matrix

The second variation of the energy with respect to the Fourier coeffi-
cients describing the domain determines the stability of the domain.
Since the stiffness of the domain with respect to externally applied
forces is proportional to the coefficient of the bilinear form which is the
second variation of the energy, the matrix formed by these coefficients
is called the stiffness matrix. The stiffness matrix is composed of three
independent submatrices. The second derivatives of the energy with
respect to the Fourier amplitudes form the radial stiffness matrix;
the second derivatives of the energy with respect to the Fourier phases
form the angular stiffness matrix; and the derivatives of the energy with
respect to one Fourier amplitude and one Fourier phase form the mixed
stiffness matrix. The derivative of the energy with respect to r and rm
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are called the (n, m) radial stiffness matrix element, with similar nota-
tion for the other submatrices.

All derivatives not explicitly exhibited in expression (43) are zero.
Thus, the angular stiffness matrix and the mixed stiffness matrix are
zero and the radial stiffness matrix is diagonal so that the system is
completely metastable with respect to angle and the amplitudes are
normal modes of the system for small amplitudes.

The (0, 0) radial stiffness matrix element is simply the derivative of
the negative of the radial generalized force so that no further discussion
of it is necessary. It should be noted that the derivative of the internal
magnetostatic term with respect to wall position is not directly related
to the radial field or potential at the wall since the derivative used in
computing the radial field at the wall must be taken with the wall posi-
tion held fixed.

4.2.1 The Radial Stiffness Matrix Elements for n > 1

The diagonal radial stiffness matrix elements, for n > 1, are the sum
of four terms in expression (43). The first term, which always has a
stabilizing effect, is the increase in total wall energy due to the lengthen-
ing of the wall caused by the deviation from a strictly circular shape.
Imposing a sinusoidal variation of amplitude As onto a straight line
produces a relative increase in length of

1 (71t1.)2

The corresponding wavelength in expression (43) is

27rro

Xn n

The wall energy term in expression (43),

(53)

(54)

2

AE wn = 27rroh(r (55)
Xn

is thus the product of the wall energy density, the wall area, and the
variation in wall area per unit area. Notice that the relative variation
in wall length or area is independent of the wall curvature, 1/r0, to
lowest order in the amplitude of the variation.

The second order change in volume of the domain interacting with
the externally applied field produces the second term in the radial stiff-
ness matrix elements while the rate of change of the internal mag-
netostatic forces at the wall produces the third term. The sum of the
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second and third terms is one-half the (0, 0) radial stiffness matrix
element. This factor of one-half relates to the fact that a variation of

, n 1 produces only one-half the mean square variation rb(0)
as is produced by an equal variation in 7-0 . This shape -independent,
second -order variation in energy arises from the variation in the gen-
eralized forces, or fields at the wall, when the domain radius is varied.
[See also the steps leading to expression (30b).]

4.2.2 Translation Invariance

The requirement of translation invariance in the infinite plate com-
pletely determines the (1, 1) radial stiffness matrix element. Consider
a cylindrical domain of radius r, with a cylindrical coordinate system
placed at its center. Under a displacement of the coordinate system of
magnitude s in the 0 = 7 direction, the description of the boundary
in the new coordinate system is

1 82 1 S2
Or,(0)= ro -

4 ro
- - s cos 0 4

4
- -ro c s 20 + 04

Thus, to second order in s, term by term comparison with definition
(3) yields

(56a)

82 1 821pro =
4
-

'

s, and pre
4 7-0
- (56b, c, d)

7-0

The formal change in energy under this displacement (11) is

AE = (17.j)0(-0) (1):2 + (57)

Obtaining (0E/Or0)0 and (02E/04)o from expression (43), and substitut-
ing expressions (84), (85), (86), (100), and (138a) verifies that

(32E7) 1 (aET)
ar2, lo- 2r0 k aro /0"

(58)

The coefficient of s2 in expression (57) is thus zero as required by transla-
tion invariance, and further the (1, 1) stiffness matrix element is zero
whenever the total radial generalized force is zero.

4.2.3 The Magnetostatic Stiffness Terms

The interpretation of the radial stiffness matrix elements for the
higher n values is now considered. As in the case of the generalized
forces, examination of the expansions for small 7-0 allows the self -inter-
action energy of the two charge disks which make up the ends of the
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domain to be separated from the mutual interaction of these charges.
The variation in the internal magnetostatic energy due to a variation
in some r for a circular domain is in general from expression (43)

aF(2ro/h)
h)

h2
2ro[L( :2)

-t-Aro
- L(0)1}(Pr,,),470/2,{- (r

a(2ro/h)

n > 1. (59)

Separating the h independent and h dependent terms of the power
series representation in powers of 2ro/h uniquely separates the above
expression into two parts, one part representing the self -interaction of
the charge disks and the other representing the mutual interaction of
these disks. The h independent terms then represent the self -interaction
forces of the charge disks and the h dependent terms represent the
mutual interaction forces. In the expansion of L for large (h/2ro)2,
expression (129a), all terms of L[(h/2r0)2] are h dependent. Using the
large (h/2r0)2 expansion of F, expression (138d), and the expressions
for L(0), (115) and (116), the thickness independent part of expression
(59) is

n

E 3f (Self) = 471-11/2,r0(8 - 4 E 2. - 1
1

(Or )1, n > 1. (60)

This energy variation contains a term which results from the variation
in the overall size of the disks of charge as well as the shape dependent
terms. The size variation term will now be identified and subtracted
out so that the shape dependent part of the self -interaction energy may
be seen explicitly. From expression (49) and the discussion following it,
the ratio of the variation in energy of two isolated disks to the variation
in disk area is (470128)(16r0/271-). The variation in disk area for a varia-
tion in rn for n > 1 is (7/2)(Pr,)2 so that the change in self -energy of
the two disks, other than that due to their mutual interaction or change
in overall size, is

AE,,(Self-Shape)

TO,

- (47r11/2.)4ro( ,I )(Pr)2,_, 2j - 1 n > 1. ((a1b)

It is not surprising that the variation of ri produces no shape related
energy change, since from expression (56) this variation is to lowest
order a displacement with a size change coming in second order. It is
seen that the terms which remain after cancellation all come from L(0).

n = 1 (61a)
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In expression (59) the first term is independent of n and the
-4rM2.roL,,(0) (Ar)2 term has been identified with the variation in the
self -energy of the charge disks. The term 4r/Ir.roL,,[(h/27.02](Ar)2 must
therefore contain all of the shape dependent part of the charge disk
mutual interaction energy. This term also contains a contribution due to
the variation in the total amount of charge and contribution due to the
shape independent, general smearing out of the charge distribution.
Since the second order change in the total amount of charge is inde-
pendent of n for n 1, these two contributions may be removed from
the mutual interaction energy variation by replacing Ln by Ln - Lon .

The remaining mutual interaction energy variation is specifically due to
the shape of the variation. This energy,variation is

n (Mutual -Shape)

= (47r/11:)ro[L,,(-1112-) -L (47.20-h2 -)1(PrO2 , n 1Ora

9r 2'1+3
= (47r21/2) ro L1/ 2,1(2/11°)2" +2+3()LIl + 

n > 1 (62)

where the final form is obtained using the expansion for Li, , equation
(131), and the /11,, are the constants of the expansion. The interaction
energy of planar multipoles of order n and higher has the form of equa-
tion (62), as it must since the variation in the charge distribution for
each n may be expressed in terms of such multipoles.

The variation in internal magnetostatic energy clue to a variation of
r , in the infinite sheet, for large 2ro/h, to lowest order in h/2r0 , is

PE, = (471-11128)(11=-2
4ro

[ -2112 In 9ro
4

It

using equation (59), the large 2ro/h expansion
Ln(h2/44) - L(0), (105), (116) and (125).

The charge -disk self -interaction energy is not evident in this ex-
pansion because it is exactly cancelled by the leading term of the mutual
interaction energy. In contrast to the energy reduction per unit line
length for a straight line reversal in an infinite sheet (which has no

- 2n2 - 2 -I- (47/2 - 1) t 1 (Ar)2,, 2j - 1

n >= 1 (63)

of F (138c) and of
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finite value), it is possible in the case of this variation of the domain
structure to compute the energy variation per unit line length. In terms
of the wavelength of the variation X, defined in expressions (54) or
(127) and in the limit of ro -* 00, the total variation in energy when rn
is varied is [using expressions (43) and (55) and the limit (128)]

AET 4eX 2- (4r/1/28)7 rh
h

In - 0,0}(A7',)2. (64)
arro

Comparison of expression (64) with expression (53) shows that the
magnetostatic energy variation per unit line length for a circle of infinite
diameter is the product of the magnetostatic energy density constant,
the variation in line length, and the logarithm of a maximum effec-
tive interaction distance, 4eX/ir. (The maximum effective interaction
distance for the magnetostatic energy lowering per unit line length is
proportional to ro.) Hagedorn has computed the magnetostatic energy
variation per unit line length for the case of a sinusoidal variation im-
posed on an infinite straight line reversal.' The calculation was carried
out by considering the energy variation produced by a sinusoidal applied
to a strip domain pattern in the limit of infinite strip width. The result
of this calculation is

E M/(unit length) = - (47318)r In I X/(2.11lh) I (h/X)2(6,7.)2,

which differs from the result for the infinite circle by the constant inside
the logarithm.

4.3 Summary

The physical origin of terms of the energy variation has thus been
traced in the limiting cases of both large and small ro/h. In either of
these limiting cases, it is thus possible to develop intuition with regard
to the behavior of the domains. Since, as has been shown, the inter-
pretation of the meaning of the energy terms in the limiting cases is
qualitatively different, the development of intuition in the transition
region is quite difficult. In many device applications this transition
region is the preferred region of operation, making the use of analytical
and numerical methods a necessity.

V. THE SIZE AND STABILITY OF CYLINDRICAL DOMAINS

The energy variation expansion (43) in principle contains all cylin-
drical domain size and stability information. This section treats briefly
the use of this expression in the determination of domain size and
stability. The only non -zero generalized force in expression (43) is the
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uniform radial force. When this force is set equal to zero (the force
equation), the system is in equilibrium. Thus the condition that the
system be in equilibrium provides, given a material and plate thick-
ness, an equation relating domain size and the applied field. The loca-
tion of the zeros in expression (43) (all terms not explicitly exhibited
are zero) shows that the system is completely metastable with respect
to angle and that the radial stiffness matrix is diagonal. The radial
amplitudes are thus quasi -normal modes, and the study of stability
reduces to the study of the stability of the individual radial amplitudes.

5.1 Normal Form of the Energy Expansion

Before proceeding with the discussion, it is appropriate to introduce
some new notation and to rearrange the energy variation expansion
into what will be called normal form. Since the stiffness matrix is of
interest only when the domain is in equilibrium, the applied field H
is eliminated from it using the force equation. The geometrical de-
pendences of the various magnetostatic stability terms are then com-
bined and normalized to the wall stiffness term by defining the "stability

functions" as

Sold/h) = F(d/h) - d F(d/h) (66a)

and

S(d/h) =
n2

{So(d/h) (d2/h2)[L(h2/d2) - L(0)]},1

1- 27r

n > 2. (66b)

The S1 function is undefined or may be taken to be zero since transla-
tion invariance in the infinite plate requires that the (1, 1) stiffness

matrix element the identically zero whenever the generalized radial
force is zero, as is assumed to be the case here. The Sn functions are
plotted in Fig. 3 up to S. ; they are given in standard elliptic integral
form together with power series expansions for large and small values
of the argument in Appendix B. The domain diameter, d = 2ro repre-
sents domain size in this section. The normal form of the energy expan-
sion is written as a function of the ratios of the three fundamental lengths
of the system: the plate thickness h, the domain diameter d, and the
"characteristic length" defined by

o-,

= 47r/1/2;
(67)
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The characteristic length depends only on the type of material used.
Dividing the energy variation expansion (43) by the normalizing

energy 2(471-M:)(7rh3) and introducing the notation of the preceding
paragraph, the normal form of the energy expansion results:

AE7 [1 d H F(d)] Aro
2(47r/lI) (A') h h 471-111, \h/ /t

(2 o(iA(A;11

n(h)1(Ah rn)z}
G3

(68)
n = 2

In expression (68) the coefficient - [l/h + (d/h)(H14rMe)- F(d/h)]
is the normalized radial force. Setting this force equal to zero yields
the normalized force equation. The remaining bracketed quantities
[l/h - Sn(d/h)] are proportional to the diagonal elements of the stiff-
ness matrix, and are called "stability coefficients." For uniform radial
variation, the stability coefficient has the opposite sign from the (0, 0)
element of the radial stiffness matrix; thus this stability coefficient
is negative whenever the domain is stable. For the other rn variations,
on the other hand, the stability coefficient has the same sign as the
corresponding in the stiffness matrix,
efficients are positive whenever the domain is stable.

5.2 Graphical Solution of the Force Equation

A graphical solution to the force equation

1

h

d-
h 47r ,

-F(d) = 0 (69)
M

may be obtained by constructing a straight line on Fig. 3 whose inter-
cept with the vertical axis is l/h and whose numerical slope is H/4rM , .

The intersections of this straight line with the F curve are then the solu-
tions to the force equation.

As was stated in Section 5.1, (i) the force function has a positive first
derivative and negative second derivative for all nonzero values of its
argument, (ii) it is zero and has a first derivative of unity when its
argument is zero, and (iii) it becomes logarithmic for large values of
its argument. From these properties and examination of Fig. 3, several
properties of the solutions to the force equation may be appreciated.
For negative values of the applied fields, there is only one solution to
the force equation. Examination of the sign of the radial force which
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results when the diameter is varied about the solution diameter while
all other variables are held fixed shows that this solution is unstable.
For small positive applied fields, there are two solutions to the force
equation, the larger diameter solution being radially stable, the other
radially unstable. However, a radially stable solution does not guaran-
tee that the system is stable with respect to all possible deformations,
and this must be investigated separately. As the applied field is increased,
the two solutions move closer together until they coalesce. When the
applied field is increased beyond this point, there are no solutions.
Since the function F is asymptotic to a straight line through the origin
having unit slope, the solutions will always vanish for a value of the
applied field which is greater than 47/11. . Stable isolated cylindrical do-
mains thus exist only in the presence of an applied field having magni-
tude between zero and 47/1f, and polarity tending to collapse the
domain.

5.3 Graphical Determination of Domain Stability

The stability coefficients are determined graphically by constructing
a horizontal line at height l/h on the force stability graph. Metasta-
bility for each normal mode of deformation occurs at the intersection
of this line the stability
functions are monotonic, the diameter of metastability of each normal
mode of deformation is uniquely defined and forms the boundary be-
tween the regions of stability and unstability. The circular domain will
be stable with respect to all variations when its diameter is greater than
the radial metastability diameter and less than the metastability diam-
eter for a variation with a rotational periodicity of two. The normal
variations with rotational periodicity two are referred to as "elliptical"
deformations. When the domain is stable with respect to elliptical
deformation, it is necessarily stable with respect to the variations
of higher spatial frequency since the stability functions of higher spatial
frequency lie progressively (with respect to n) below the elliptical sta-
bility function. The radial stability function So and the elliptical stability
function 82 thus form the boundary of the region of total cylindrical
domain stability. Therefore, given the magnetic material type and
plate thickness, the range of stable domain diameters and the correspond-
ing applied fields may be determined with the aid of these functions.

5.4 Minimum Domain Diameter

For any given value of l/h, the minimum domain diameter is the
collapse diameter determined by So . The domain diameter measured in
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units of the characteristic length is d/l = (d/h)/(l/h) which is the in-
verse of the numerical slope of a line drawn in Fig. 3 from the origin
to the operating point. The line of maximum slope, which both passes
through the origin and contacts the S. curve at at least one point, thus
determines the smallest domain diameter attainable in a given material.
The coordinates of this contact point are d/h 1.2 and 1/h 0.3, so
that the minimum attainable domain diameter is

dmin ti 4/. (70)

VI. RANGE OF VALIDITY OF THE MODEL AND THE QUALITY FACTOR

At the present time, no quantitative evaluation of the range of valid-
ity of the domain structure model used here has been carried out. The
qualitative discussion given here, it is hoped, will provide the reader
with an appreciation of the magnitude of the effects produced by the
relaxation of the various constraints artificially imposed by the model
and the dependence of these effects on the system parameters. It has
been assumed that domain walls are cylindrical, have zero width, and
have a definite energy per unit area which is independent of wall orienta-
tion or curvature, and that the magnetization lies perpendicular to the
surface of the plate. Section 6.1 treats the effect of the relaxation of
the cylindrical wall approximation only. In Section 6.2, the other
assumptions are all shown to be coupled using the simplest uniaxial
material model. A single dimensionless material parameter q, which
complements the characteristic length l in characterizing circular domain
materials, is used to express the results obtained from the simplest
material model.

6.1 The Cylindrical Wall Approximation

The discussion of the cylindrical wall approximation uses the coordi-
nate system and domain configuration of Fig. 1 except that the walls
are allowed to curve as shown in Fig. 4. The radius function, 7-1,(0, z), is
determined by the requirement that it minimize the total energy. The
Euler equation which results from this two dimensional field variational
problem is an integro-differential equation similar to those which appear
in Hartree self -consistent field calculations. No solution of this equation,
numerical or otherwise, has been attempted or is contemplated at the
present time. The Euler equation consists of terms arising from: the
wall energy, the interaction of the magnetization with the applied field,
the self -interaction of the magnetostatic charges at the surface of the
plate, the self -interaction of the charges produced by the slope of the



CYLINDRICAL MAGNETIC DOMAINS

H

Fig. 4 - Cross section of a noncylindrical, near -circular, domain.
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domain wall, and the mutual interaction of the plate surface charges
with the domain wall magnetic charges. Boundary conditions (obtained
from the appropriate transversality condition') require that the wall
surface be perpendicular to the plate surface at all intersection points
(3 in Fig. 4). Physically (since in the model used here the crystal is
assumed to be strain free) the surface cannot interact with the domain
wall, and therefore the wall must intersect the surface at right angles.

Although it is not clear that domains having a roughly conical shape
are ruled out, it will be assumed that the domain has reflection symmetry
through the central plane of the plate and that the radius is a function
of z only, rb(z). In this case the wall must be vertical at the central
plane as indicated at C in the figure so that the single parameter b
represents the magnitude of the wall bulging. Since the Euler equation
requires the curve to be smooth, there must be an inflection point, g,
between C and 3. The wall area, and thus total wall energy, is a quadratic
increasing function of the wall curvature so that the concentration of the
curvature at the center and ends of the wall, produced by the trans-
versality and symmetry conditions, tends to reduce the wall bulging.

The radial field at the domain wall from the charges at the surface
of the plate is directed as shown in Fig. 4. The effect of the interaction
of the magnetostatic charges due to the slope of the wall with the radial
component of the field from the surface charges is destabilizing for
either positive or negative bulging. This interaction produces a negative
quadratic term in the total energy. However, at the plate surface, where
the magnitude of the radial field_ is greatest, the transversality condition
requires that the charge density produced by the wall slope is zero so
that the magnitude of this negative term is small. The z component of
the field from the charges on the surface of the plate determines the
direction of bulging. (The applied field, being uniform by assumption,
need not be considered.) Along an initially cylindrical wall the internal
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field is everywhere directed, so as to make the domain expand, and
attains its greatest magnitude at the center plane of the plate. It there-
fore provides a linear term in the total energy which tends to bulge the
wall in the positive direction as shown in Fig. 4.

Thus, for near cylindrical walls, the bulging is determined by the
interaction of this force (tending to bulge the wall) with the wall energy
(acting to stabilize the wall) and the radial field (acting to destabilize
the wall). The self -interaction of the wall charges enters only as a
higher -order term. It should be noted that the transversality condition
acts both to strengthen the stabilizing term and weaken the destabilizing
term.

The relevant dimensionless wall energy for the wall bulging problem
is 1 / h = o / (h4r111!). Wall bulging is expected to decrease with increas-
ing wall energy. A second independent effect related to l/h may be
appreciated by inspection of the So and 52 curves in Fig. 3. It can be
seen from Fig. 3, equation (68), and the discussion following it that,
since the S,, and 82 curves bound the region in which stable circular
domains exist, d/h must increase with increasing 1/h. By symmetry,
the z -component of the internally generated magnetic field at a cylindri-
cal wall is zero for a domain of infinite diameter and clearly increases
monotonically as the domain diameter to thickness ratio decreases.
Thus, as the plate is made thicker, the bulging force becomes stronger
and the stabilizing force becomes weaker. Since several independent
effects cooperate to increase bulging with increasing plate thickness,
the onset may be quite rapid when it does occur. Domain collapse data
taken at d/h ti 1 is in good agreement with predictions made on the basis
of equation (68) and Fig. 3.8 This then provides some indication that
the cylindrical wall approximation remains valid at this thickness.

6.2 The Quality Factor

The discussion of the approximations other than the cylindrical wall
approximation uses a polar (M., n, v) coordinate system where n is the
polar angle and v is the aximuthal angle to specify the orientation of
M. (See Fig. 5). The polar axis is taken to be the z-axis of the preceding
sections. The domain wall is taken to be planar with its position and
orientation specified by a plane at its center. The axis through the origin
in the direction of the wall normal is denoted by The position of the
central wall plane is denoted by E,, . The orientation angles of the wall
normal are denoted by v,. and ntv, (see Fig. 5).

In the simplest uniaxial material whose easy axis is the z-axis the
magnetic energy density for a planar wall is (Ref. 9, pp. 189-192)
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Fig. 5- Coordinate system for specification of domain walls.
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aE

(71)

where A is the exchange energy density coefficient, Ku is the anisotropy
energy density coefficient, H is the externally applied field, and the last
term is obtained by integrating V  B = 0. For a uniformly magnetized
material in the absence of applied or internal fields, this expression
reduces to pE = Ku sin' n which has absolute minima at n = 0 and
n = 7. The z-axis is thus the easy axis as is required for consistency
with the preceding sections.

The anisotropy energy density coefficient is sometimes expressed in
terms of the effective anisotropy field Ho 21c./Ms. The quality factor
is now defined as the dimensionless anisotropy energy coefficient or
dimensionless anisotropy field

K Ho
q 2r31; 4r3/8 (72)
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6.2.1 The Nucleation Field

When a bias field H is applied in the positive z -direction and demag-
netizing fields are neglected the energy density is

PE = sin' n - HM, cos n (73)

which, for H < H., has a local minimum at magnetization orientation
n = 7 and an absolute minimum for n = 0. When H > H., only the
minimum at n = 0 remains. In a perfect crystal the effective anisotropy
field is thus the field at which the magnetization becomes unstable
with respect to reorientation (assuming it is initially oriented in the
negative z -direction). If a reorienting field is applied locally (local but
over a region whose dimensions are much greater than a wall width so
that the effect of exchange forces can be neglected), then H. is the total
local field required for the nucleation of a domain at that locality. If
the nucleation field H, is understood in this sense, then in a perfect
crystal q is the nucleation field measured in units of 4r/11, :

H, - q.4rill
(74)

In an imperfect crystal H,/47.111, may be either larger or smaller than q.
If it is larger, the material may be expected to have a high wall motion
coercivity.

6.2.2 Susceptibility

When a transverse bias field H, (n = r/2) is applied and demagnetizing
fields are neglected, the energy density becomes

PE = K. sin' n - H,M, sin n (75)

which has stable magnetization orientations

=
sin -1 = (47r111t. 1q) H, < H0;

2'
The transverse susceptibility is therefore

xi
am,- -

H,

(76)

{4rq (77)
(H < H.)

0 (H Ha)

1
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where M, = M. sin is the component of the magnetization in the
direction of H1. Thus, the susceptibility to tipping of the magnetization
by a transverse field is inversely proportional to q.

6.2.3 Wall Energy and Wall Width

Consider now a planar Bloch wall, t  M = 0, between two regions
whose magnetization at points far from the wall lies along the two easy
directions, n = 0 and ir, and again assume that there are no applied
fields or fields produced by boundary surfaces. Under these conditions,
the magnetic configuration is determined by minimization of the wall
energy per unit surface area which in this case is (Ref. 9, pp. 189-192)

00

=
2

a 77 ± 7:1 (78)

Carrying out the minimization results in

for

= 4(AKJ1 (79)

where

- E0 = 1 log tan (11)
7r

(80)

(A \I
(81)

is the wall width. The definition of wall width is somewhat arbitrary
since the wall extends over all space. In this case, following page 191 of
Ref. 9, it is chosen so that the magnetization would complete its entire
rotation of ir radians in a length if the entire rotation took place at
its maximum rate, the rate at the center of the wall.

The ratio of the characteristic length, equation (67), to the wall
width is

1 2

= q'

so that the ratio of the minimum domain diameter, equation (70), to
the wall width is

dr, =4/ 8 q.
1. 1,

The approximation of zero wall width thus improves as q becomes
larger.

(82a)

(82b)
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The approximation that the wall energy is independent of wall curva-
ture is clearly related to the wall width. At large distances from the
planar wall equation (80) becomes

In - nol = 2exp(-7r - iii) (83)

where no is the appropriate equilibrium orientation of the magnetization
at a distance far removed from the wall. Such an exponential relation
will hold for the approach to any stable equilibrium orientation in the
presence of isotropic exchange. The change in energy of the wall due to
overlapping of the tails of the wall as the wall is curved is clearly related
to q, becoming larger as q becomes smaller. In order to solve for the
dependence of the wall energy on curvature it is necessary to solve the
entire (including magnetostatics) micromagnetics problems.'

6.2.4 Summary

The preceding results may be summarized by noting that the higher
the q value, the more closely the simple uniaxial model obeys the con-
straints of the domain model used in the previous sections. It is clear
that, for domains of the type considered to exist at all, q must be greater
than one. For device operation, q should probably have a value greater
than two.

VII. CONCLUSIONS

The theory of cylindrical magnetic domains yields conditions which
predict the size and stability of these domains and provides an estimate
of the range of applicability of the model used. The results of theory
appear to be accurate in a range useful in the construction of circular
domain devices.

The domains considered are isolated right circular cylinders in plates
of uniaxial magnetic material of uniform thickness cut so that the plate
normal is parallel to the easy axis. The first and second order energy
variations which result from a general small deviation from the strictly
circular shape determine domain size and stability. The energy method
was chosen in preference to the magnetostatic field method because of the
uniformity it provides in accounting for the forces in both the equi-
librium and stability problems. The integrals arising from the energy
method are interpreted physically in terms of fields and interacting
charges. The physical interpretation of the integrals is quite different
in the limiting cases of very large or very small domains. The integrals
are related to special cases of the fields of uniformly charged disks
computed by C. Snow and tabulated by N. B. Alexander and A. C.
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Downing."' The present work obtains the needed properties of the
integrals (expansions, recursion relations, and others) directly from the
definitions.

When the energy variation is described in terms of a Fourier decom-
position of the domain radius function, only the generalized force cor-
responding to a change in domain size is non -zero and the stiffness
matrix is completely metastable with respect to angle (phase) and
diagonal with respect to the Fourier amplitudes. Since the Fourier
amplitude stiffness matrix elements are all found to be distinct, the
description is unique and may be described as a quasi -normal mode
description.

The normal mode description is summarized by a single graph from
which many domain properties may be determined by construction.
Cylindrical domains exist only in the presence of a bias field directed
so as to tend to collapse the domains and having a magnitude between
0 and 4r/11a . The uniform radial collapse of the domain and the run -
out of the domain into an initially elliptical shape bound in the region
of stability. The minimum attainable domain diameter in a given
material is dmin ti 4/ occurring a plate thickness of ,---, 4/. It is estimated
that the cylindrical wall approximation begins to become doubtful at a
plate thickness greater than 4/. In order for cylindrical domains to
exist, H. 4rM, and in general approximations such as the approxi-
mation of zero wall width become more accurate for Ho>>4rM,(dmi./1, =
8H./47r2111, where l, is the wall width).

It is interesting to note that since stable cylindrical domains of a
definite size exist in the total absence of wall motion coercivity and may
be freely moved, they form a relative, easily observable, classical model
for illustrating several particle -field concepts. They may be considered
a two-dimensional particle which is produced as a singularity of finite
extent in an underlying three-dimensional field (the magnetization).
Cylindrical domains are particularly useful for demonstrating the con-
cept of identical particles since, while it is possible to put identifying
marks on domain locations, it is not possible to mark individual do-
mains. (Cylindrical domains do exist in two species which may be
distinguished by the direction of rotation of the spins in the domain
wall." All attempts to observe this difference up to the present time
have been unsuccessful.)
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APPENDIX A

Integrals of Cylindrical Domain Theory

This appendix contains the reduction to standard form of the elliptic
integrals which arise in the theory of cylindrical domains in plates of
infinite extent and power series expansions of these integrals. All the
properties of the functions obtained here are used in either the physical
interpretation of the energy variation expansion or in generating the
numerical values of the force and stability functions.

It is convenient to define functions U and V which appear repeatedly
in cylindrical domain theory. The elliptic integrals which appear in the
final results of the theory appear only in the forms U and V, U being a
function of only the complete elliptic integral of the second kind and V
being only a function of the complete elliptic integral of the first kind.
Because of the form of the U and V functions, it has proven easier to
obtain the needed properties, (such as the series expansions) directly
from the integral definitions rather than deducing them from the tabu-
lated properties of elliptic integrals.

The latter half of this appendix treats the properties of the L func-
tions. A recursion relation is obtained and used to reduce the L to
functions of U and V. Power series expansions of the L are obtained
directly from the definition (34).

A.1 Definition of the U and V Functions

The functions are defined in the alternate forms

U(x) [x + 1(1 - cos a)] da (84a)
0

= 2 f"2 (X + sin2 C10 (84b)
0
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= 2

fr/2
(x + 1 - sin2 7)4 d'y

0

= 2(x + 1)4E(1 +1 x)

V(x) = f [x 1(1 - cos a)]-1 da
0

= 2
f7/2

(x sin213)-1 dfi
0

= 2
f7/2

(x + 1 - sin2 -y)-4 d'y

= 2(x + 1) -VC( )1 +
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(84c)

(84d)

(85a)

(85b)

(85c)

(85d)

where the dummy variables are related by /3 = a/2 and 7 = 7/2 - a/2
and where K and E are the complete elliptic integrals of the first and
second kind respectively. The argument of the elliptic integrals is the
parameter m of Abramowitz and Stegun." The parameter m is equal
to the parameter k' of Jahnke and Emde or Groebner and Hofreiter."'1°

A.2 Differential Equations and the Power Series Expansion of U and V

From the definitions (84) and (85)

dU
dx = 2 '

The differential equations obeyed by U and V are

2[(x2 x) cw-d2 + 4-]U(x) = 0 (87a)

and

(86)

2

[(X2 x)
dx

+ (2x + 1) d
c1.7 ixV( x) = 0. (87b)

The U differential equation is verified by substituting in the defining
relation (84a) and then reducing the resulting equation to the indentity

sin a
o = .f: dda [x 4(1 - COS a)il da

x cos a + cos a - - COS2 a

[x 4(1 - cos a))4 da.

(88a)

(88b)
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The V equation is then easily obtained by differentiation of the U equa-
tion.

The roots of the indicial equations of these equations are separated
by 1 [they are 0 and 1 in equation (87a) and -1 and 0
(87b)] so that the series expansion of U is of the form

and

U(x) = E uixi where U1 = U; U;' z In
-0

00

V(x) = E vixi where Vi = V; + TR/ In
;-0

16

16

in equation

(89a, b)

(90a, b)

The form of the logarithmic terms has been chosen with some foresight.
Substitution of the expansions into the differential equations and
comparing coefficients gives the recursion relations

- (i - 1)2 uy, j 1, (91a)
,i(i ± 1)

= j6;1) (j- Dui - -+1)u ,], j 1, (91b)

V;'. (J. ++A2)V;', j > 0, (92a)

V;+1 = - u + 1)2j 11+ 1
2
1v, 1

2

1

1Lv , j
j >= 0. (92b)

The starting values of V; , V;' , U; and U;' are determined directly
from the integral definitions of the functions (84) and (85) and the
differential equation (86) relating U and V. This is quite straightfor-
ward except for V which must be expanded

V(x) = 2 f: c_(32)i 2 T/2 ind% + 2, e, ) (93a)

and evaluated as a limit

lim V(x) = In
z-.0

16 (93b)

The limiting value of V may also be obtained quite easily from equation
(85d) and the tabulated properties of the complete elliptic integral of
the first kind." The expansions of U and V are thus

1 3 365
U(x) = (2 + x

32

2 -
64

x3
24576 2' +76 )



CYLINDRICAL MAGNETIC DOMAINS 3323

1 :3 25
(0

\ 1
m

16
x

(94)

(95)

+ + x -
8

x2 +
64

x3 1024x4+
1024 x,

and

1 21 .2 185 ...VV(X) = + x - 7.7 a, -I-
04 768 

1 9 2 25 3

In(2
I

--2 x + x - ++
x128 .) -2

A.3 Expansion of U and V in Terms of Inverse Powers

Making a Taylor series expansion of equations (84b) and (85b)
respectively and integrating yields the expansions of U and V in terms
of the inverse powers of the argument

and

7r/2

17(X) = 2.r.1 (1 + x-' sin2 0)1 (1/3

r/2
T--(i-i) f= sine' do

fmli 2j - 1 (-4Y(P)2 Jo

-1 [ (2j)12-(i-i)= E
/.0 (2j - 1)(-16)' (j!)2

= rx
44[1

-1 - -32 + 5 x-3 + 
64 56

r/2
V(X) = ar-1 (1 + sin2 so d#

= E 2 (2P! Z,-c;+1) f w/2 Sin2a # d/3
-o (-4)

1 (2j)! 12 ._04.1)

"7f) (- 16)' (P)

= 7TX-1 - X-1 ± X2 -3 +
64 956 x '

(96a)

(96b)

(97a)

(97b)

A.4 Definition of the Functions

The L functions are defined in expression (34) by

La: ± 1(1 -cos a)]1'T

(1 - cos na) da
Ln(r) 0, n 0 (98a)

fo
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or with the change of variable 0 = a/2

L(x) = 4
./2 s n2 nt3

(x sire MI dI3'
x > 0, n > 0. (98b)

It can be seen directly from equation (98b) that for a fixed value of n

di.(x) L,,(03) = 0, and L0(x) = 0. (99a, b, c)
dx

From definitions (84b), (85b), and (98b)

L1(x) = 2[U(x) - xV (x)]. (100)

The higher L functions are determined by means of a recursion relation.

A.5 The L Recursion Relation

The L recursion relation is

1
L+1(x)(x) =2n [4n(2x 1)1,,,(x) - (2n - 1)L_, (x) - 8nx V(x)],

n > 1. (101)

The recursion relation is verified by substituting in the definitions of
L and V, equations (98a) and (85a), and reducing the resulting equation
to the identity

0 =
da
-d {sin na[x + .1(1 - cos «WI daf (102a)

r n cos na[x - cos a)] + sin na sin a da. (102b)
Jo [x + - cos a)]

The initial functions Lo(x) and L1(x) are given by equations (99c) and
(100). Note that for large values of x the recursion relation is unstable
for increasing n.

A.6 Power Series Expansion of the lin Function

The function Lo(x) is identically zero, equation (99c). The series
expansion for L1(x), obtained from equations (100), (94), and (95), is

i(
13 95255Lx) = (4 ± x -
16

22 +
16

3 + )-
12288

xi

± (0 - 2x+4x2 - -15
32

.4

2in
16

x511752

(103)

From the recursion relation (101) and the initial functions (99c) and



' = 2n + 1

where

With the definition
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(100) the general form of L(x) is

Ln(x) = un(x)U (x) vn(x)V (x) (104)

where un(x) and vn(x) are polynominals of order n or less in x. Because
of the form of U(x) and V(x), expressions (89) and (90), an expansion
of the form

where

00

L (x) = >2 L, is' (105a)

L.; = In
16

(105b)

clearly exists.
Expressions for either the coefficients in the polynominals un(x) and

v(x) or the L,1may be determined in closed form by similar methods.
It has, however, proven more useful to use the recursion relation di-
rectly when the complete expression of the form of expression (104)
is desired and the expansion (105) when a power series is desired.

To obtain the Ln the expansion (105) is substituted in the recursion
relation (101) and coefficients of x are compared to obtain a hierarchy,
in j, of recursion relations, each member of the hierarchy being factor-
able and depending only on the preceding member. These recursion
relations are then factored and successively summed.

The coefficient of x' is

1
14nLn - (2n - 1)Ln_1,1 8n[L - V;_,]},

L _ = 0 and I = 0.

Q (2n - 1)[Ln. j]

n >= 0 (106a)

(106b, c)

(107)

the second order recursion relation (106) factors into two first order
recursion relations

Qn+1.i = Q..; + - vi_,), n > 0 (10Sa)
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and
1

Ln+I.i = Ien.1 ,n Qn+1.1; n 1. (108b)

The recursion relations for j = 0 and j = 1 will now be summed.
From expressions (99c) and (105a)

Lo,i = 0 (109)

so that using expression (107)

(21,i = L1,1 . (110)

For j = 0 using expressions (106b) and (106c), the recursion relation
(108b) becomes simply

Qn+1.0 = Qn,0 (111)

By inspection of expression (103) the initial value of Q..° is

Q1.0 = L1,0 = 4 (112)

so that from expression (111)

Q,,,0 = 4, fl 1. (113)

The recursion relation (108b) thus becomes

4L,0 = L_,, n > 0 (114)

which with the initial value of expression (109) may be summed to yield

0, n = 0, (115a)
L,,, = n

1
4 n > 0. (115b)

1_1 2j - 1'
From the form of the expansion (105) it can be seen that

L.(0) = Ln.o , (116)

so that with (99a, b)

1E 2) - 1 L,(,) - L.(0) 0, n 1. (117)-
For evaluating the Q," and L,, sums, two relations are needed:

1

2k - 1 -
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= +)1-(
" 1 n

(118)2k - 1/

and similarly

1 1

8
(2// ± 1)- 2_,

k=1

1

8
(119)

2k 1 2k1 1-
Evaluation of the sums of expressions (118) and (119) is analogous to
integrating xn log x where n = 0 and 1. With sufficient patience the sums
can clearly be carried out for any finite n.

For j = 1, expression (108a) becomes [using expressions (95), (109),
and (115)]

Qn+i.i = (4,1 8n[4 E 1 - In2j - 1
16

X
n > 1 (120)

where the initial function is [using expressions (103), (105), and (110)]

16
Q1,1 = = 1 - ln

Summing [using expression (119)] yields

Qn+1,1 = 1 - In
16
x

= -(2n + 1)2 In

x

rt 8k[4
k = t

1 In
lx6+

16 1

+ 4(2n +
1)2 E ow - 1),

x ,_, 2k - 1

n 1. (122)

(121)

The recursion relation is then

L.+1.1 = L., -I- (2n + 1)[ - In 16 7'+ 4 E - 2n ± 1,
k=i 2k - 1

n > 1 (123)

which may be summed using the initial value of expression (121) and
the sums (118) and (119):

L.+1,1 = 1 - In 16-x [1 + E (2h. + 1)1
A - i

k 71

+ it 4(2k + 1) E 0, - 1 + E (-2k + 1) (124)
/c1 j1 4, j A =1
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0, n = 0.

L', = -2n2(1ln 16
2 x

(125a)

- 2n2 (4n2 -
1'

)
1

kt 2k - 1 '

n > 1. (125b)

It is clear that the procedure leading to expressions (115) and (125)
may be carried onward to lead to an expansion of the form

L (x)- L8(0) = [t (L")(j, k) a In
i=1 k=1

16
L(2)(j,

L(3)(j, k) 1_ i)n2kixi (126)

where the L(P) (j, k) are functions of j and k only. It is clear that in the
limit x 0, n -> 00 an expansion in terms of

h
(127)

xn

may be made where X/h is introduced as the finite expansion parameter.
Replacing the sum in expression (125) by its approximating integral
yields

2lim [L (x)- L8(0)] = -27r2 h2
In

x.0

where

4eX

7rh
-I- 04(0 (128a)

n = irhX-1X-1. (128b)

A.7 Expansions of L in Terms of Inverse Powers
The expansion of L in terms of inverse powers of the argument is

obtained by Taylor expansion of expression (98b) and integrating. This
yields

L8(x) = 4x-1 f
r/2 sin2 ni3

(1 ± sin2)3)i c113

= 4 (_(42)j1)! 2 x_,i+i) f T/2 sin2 of sin2i dfl,
0

where for example

Li(x) = r a° (2.j + 1)f, + 1)

n z 1 (129a)

1 [(21),-(f +4) (129b)(-16)i (j!)2
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By considering the Fourier decomposition of sin' Q it can be seen that
r7,2 r r/2

n13 sin' cif3 = - I sine' d$, n > j
Jo 2 o

(2j)!_ .

4 4'(j!)2'
n > j (130)

(independent of n) so that

L0(x) = 0,
.-1 [(2j)12 o[x-("+i)D,x n> 1 (131a)

Ln(x) = (-16)) (j!) -

or identifying with expression (97)

L(x) = V(x) 0[x- (+1' n > 1. (131b)

Evaluating expression (129a) directly in those cases in which expressions
(129b) or (131a) cannot be used yields

Lo(x) = 0, (132a)

1,,(x) =1/2
64

x-3/2 157 x-5/2 + 0(x-7/2) (132b)

L2(X)
7,x-1/2 x-3/2 157 x-5/2 0 (x-7/2), (132c)

4 128 

Ln(x) = 7rx-1/2 7r x-3/2 97r x-5/2 (132d)
4

-64 0(x-7/2).

A.8 The Gaussian Transformation

In the neighborhood of x = 1, the convergence of the power series
in x or x-1 is rather slow. Either the gaussian or Landen transformations
may be used to transform the U, V, or L, functions into a region of rapid
convergence. In the present case, the gaussian transformation is pre-
ferred since it does not introduce incomplete elliptic integrals as does
the Landen transformation.

The result of the gaussian transformation is

= 4xi(1 x)iR1 x)1

or inversely

x2,

x - 4(1 + x,)1[(1 + x1)1 + 112

(133a)

(133b)
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for the argument and

V(x) = 2T V(x,),

TU(S) = U(X1) -2 V(Xi),

1

TL,(x) = L i(x 1) +
1
+ T2 11'

(134)

(135)

(136)

for the functions where

T = (1 + x1)1 = (1 + x)1 + (137)

APPENDIX B

The Force and Stability Functions

This appendix is a compilation of expressions for the force F and
stability S functions. Each of the functions is written in terms of the
U and V or L. functions of Appendix A. Expressions in terms of the
complete elliptic integrals of the first and second kind (denoted by K
and E respectively) permit the use of tables" or numerical computation
using the Landen transformation or the gaussian transformation.'6
The gaussian transformation is used in Section A.8. The power series
expansions provided are necessary in obtaining numerical values of the
functions for either very large or very small values of the argument and
also provide the asymptotic forms of the functions. The argument of
the functions is the domain diameter to thickness ratio, d/h = 2rdh

B.1 The Force Function

The force function is written in terms of U by comparing the form
of F, expression (40), and the form of U, expression (84b),

F(h) = (9)2[u(n - 2] *

(138a)

This expression is written in terms of the complete elliptic integral of
the second kind using expression (84d)

F(h
) 271. (dt) 2 [ (1 dh22) h2/d2)-1] - 1] (138b)

It is expanded about h/d = 0 using expression (94)

F(h) (dhy
64 \hdi4 24576 CY +
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+ [1- 8 (d)2 + 64 (d')4 1024- " (dh)6+ .-.] 4h

(138 c)

Additional terms may be generated using expressions (89) and (91).
It is expanded about d/h = 0 using expression (96b)

F(h) /di 27 (02 1 (c1) d

+
5 d

4 \hl
3

64 \h/ 256 (h) 7 ± . (138d)

Additional terms may be generated using expression (96a).

B.2 The Radial Stability Function
The radial stability function is written in terms of U and V using the

definition of the radial stability function [equation (66a)], the expression
for F [equation (138a)], and comparing the derivative of F [equation
(41)] with the form of V [equation (85b)],

S0 \h/= 62T7(re)- 2], (139a)

or in terms of L1 using the expression for L1 [equation (100)] and the
expressions for L1(0) [equations (115) and (116)]

It(di \hi)2r
_1 (qr. Li(h2 Lod

L

Expression (139a) is written in terms of the complete elliptic integrals
of the first and second kind using expressions (84d) and (85d),

= (02[(i + d2/7E[(1 h2/d2)1

(h/ 2(1
h2 ) h2/d2)-1 1].

(139b)

(139c)

The expansion about h/d = 0 is obtained using expressions (139b) and
(103).

1 {[ 1 (h)2 9 (11)4 (h)6
s(hg) r 2 32 \di 32 Vi 24576

+
[1 )2 + (1-1c./ - 1024 ( hd )6 + "

In
4d
h

(139d)
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Additional terms may be generated using expressions (139a) and (89)
through (92). The expansion about d/h = 0 is obtained using expressions
(139b), (132b), and (103) to obtain L1 (0)

So \h/
(dhr

2

(dh)3

+
(dhy 11258 (dhy

. (139e)

Additional terms may be generated using expression (129b).

B.3 The Elliptical Stability Function

From the general definition of the S of expression (66b) the elliptical
stability function is

S2
(h) - 31

S0 (h)
21r (t/.1)2{L2(1d1:) - L2(0) (140a)

Using expression (139b) for So , the L recursion relation (101) to reduce
L2 to L, , and V and (103) to obtain L1(0), 82 is written in terms of L1

and V:

S2
1 (d)24

2 h 18r \hl
[1 + 862],(;) 86-qp} (140b)

The function L1 is then eliminated using expression (100) to obtain the
expression in terms of U and V:

= (02{2 - [1 + 8(d)2] U(a2) + [5 62 + 61 V (;2)}

(140c)

which then is written in terms of the complete elliptic integrals of the
first and second kind using expression (84d) and (85d):

S2(0 = 6; (D2{2 - [2 + 1661(1 + 4ER1 h2/d2)1

+ [1062 + 160)1(1 + IK[(1 h2/d2r]. (140d)

The expansion about h/d = 0 is obtained using expressions (140b), (95),
and (103):

82(0 .7j; {[_
96

i!ci\ 2

(1C1/)4 24576
(hd)6

[1. -92 (a)4 + -1100254

(dh)6 .+ In
4d
h

(140e)
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Additional terms may be generated using expressions (140c) and (89)
through (92). The expansion about d/h = 0 is obtained using expressions
(140b), (97b), and (132b):

S
2(h ) = -2 (d)2 1 (d)5 5 (d)7

971- khi ig 256 khi + (140f)

Additional terms may be generated using expressions (140b), (97a), and
(129b).

B.4 The General Stability Functions

Using the definition (66b) and the expression for So [equation (139b)],
the S. are written in terms of the L. as

S" \1
1 (d)2 0

- -
1

1 27 kill [-"\
(d'l) h2N- L,6) - L.(0) + L,(0)],

n > 2. (141a)

The leading term of the expansion about h/d = 0 is obtained using ex-
pressions (103), (105), (115), (116), (125), and (126):

n(0
In

4d 4n2 - 1 '÷ j 2n2 + 1 oinh)
h 2(n2 - 1) f:f 2j - 1 2(n2 - 1) A (/

n > 2. (141b)

The expansion about d/h = 0 is obtained using expressions (115),
(116), (129b), and (131a):

1 2 d 2 vn 1 1 j 1

8" - n2 - 1 tr (h) 2j - 1 2 j + 1 ( - 16)i

[C(W1(12i" 02.+3(0}, n2 h >2

APPENDIX C

Symbol List

Numbers in parentheses are defining equations or figures.

A exchange constant (71)
a area
d mean domain diameter, 2r0 (42)
E(x) complete elliptic integral of the second kind (x = in
EH energy due to applied field (9)
Em internal magnetostatic energy (10)

(141 c)

k 2
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ET total energy (7)
Ew total wall energy (8)
F(x) generalized radial force function (33, 138, Fig. 3)
H magnetic field vector
H uniform applied field
H. anisotropy field
HN nucleation field (74)

,),, z -averaged z -component of magnetic field (45)
h plate thickness (Figs. 1, 4)
K(x) complete elliptic integral of the first kind (x = m =

uniaxial anisotropy constant (71)
L(x) integrally defined function (34, 98)
1 characteristic length, o-,c/47rM: (67)
1. wall width (81)
M magnetization vector
M saturation magnetization
n rotational periodicity (1)
0, terms of order k
q quality factor, K./21r111,2, = 11./47rM, (72)
r cylindrical coordinate (Figs. 1, 2)
rf plate radius (Fig. 3)
r nth radial Fourier amplitude (1)
ro mean domain radius (1)
S(x) nth infinite plate stability function (66, 139, 140, 141)
s distance between interacting magnetic charges (10b, 24, 28)

U(x) integrally defined function (84)
u(x) unit step function (5)
V volume
V(x) integrally defined function (85)
z cylindrical coordinate (Figs. 1, 4, 5)
Z operator (23)
z z - z' (21)
AE variation in energy (11, 43)
pr variation in rn (3)
L variation in 0 (3)
8(x) dirac delta function

0' - 0 (27, Fig. 2)
polar azimuthal angle (Fig. 5)

i polar angle of wall normal (Fig. 5)
0 cylindrical coordinate (Fig. 1)
0 nth Fourier phase angle (1)
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wavelength of nth variation (54)
azimuthal angle (Fig. 5)
azimuthal angle of wall normal (Fig. 5)

o wall displacement vector (Fig. 5)
p coordinate in displaced cylindrical coordinate system (35, Fig. 2)
o wall energy density

coordinate in displaced cylindrical coordinate system (35, Fig. 2)
Xe transverse susceptibility
SZ magnetostatic potential
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Physical and Transmission Characteristics
of Customer Loop Plant

By PHILIP A. GRESH

(Manuscript received June 17, 1969)

This report covers the principal physical and transmission character-
istics of the Bell System customer loop plant. Items covered include a
statistical characterization of physical composition, measured and cal-
culated transmission characteristics, and measured noise and crosstalk
performance. A survey conducted in 1964 provided the data base for this
report and comparisons of data obtained from a similar survey in 1960
illustrate that, in many respects the composition of loop plant changes only
slowly with time. Consequently, the 1964 survey results are believed to be
representative of today's plant.

The types of analyses presented in this paper are of increasing interest
to certain Bell System customers because of the increasing number and types
of services provided over local telephone facilities.

I. INTRODUCTION

This report covers the principal results of the 1964 Bell System cus-
tomer loop survey. This survey provides a statistical characterization
of physical composition, measured and calculated transmission char-
acteristics, and measured noise and crosstalk performance of customer
loop plant. Comparisons of data obtained from the 1964 survey and
a similar survey made in 1960 are also presented.

Several of the principal transmission characteristics of Bell System
customer loop plant as defined by the 1960 loop survey were published
in 1962 by R. G. Hinderliter.' Additional published data on the trans-
mission characteristics of Bell System toll connections is available in a
BSTJ article by I. Niise11.2

The 1964 Bell System survey was comprised of two separate surveys
which were merged for analysis and presentation purposes. The basic
survey was the general loop survey which consisted of a simple random
sample of 1,100 main stations selected from the population of all main
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stations (45, 300, 000) as of January 1, 1964. However, since only 3.25
percent of all main stations are served by loops longer than 30 kilofeet,
only 35 samples would have been obtained to define the characteristics
of the longer loops. Consequently, a long loop survey consisting of a ran-
dom sample of 955 main stations served by loops longer than 30 kilofeet
was obtained. The data obtained from the long loop survey has been
used in those instances where characteristics are being expressed as a
function of length to permit better resolution of the characteristics for
the longer loops. In both of these sub -surveys, official telephones, foreign
exchange lines, dial teletypewriter exchange (TWX) lines and special
service lines were omitted as it was felt that their design would not be
representative of customer loop plant.

II. SUMMARY OF RESULTS

Analyses of data obtained in the 1964 loop surveys lead to six general
results.

(i) The average customer loop length is 10.6 kilofeet with only
10 percent of the main stations located beyond 21 kilofeet from their
serving office. The length distributions show a slight trend toward longer
loops between 1960 and 1964, with the average loop length increasing
by 300 feet.

(ii) The average 1 kHz insertion loss of Bell System loop plant is
3.8 dB and 95 percent of all main stations are served by loops having a
1 kHz loss of less than 8 dB. At 3 kHz, the average loss is 7.8 dB and
95 percent of the main stations have less than 17 dB insertion loss.

(iii) The average noise balance of party -line loops is 56 dB, while
the balance for individual line loops is 69 dB. Only 5 percent of the
individual line loops have a noise balance of less than 50 dB while nearly
20 percent of party -line customers are served by loops with less than
50 dB of balance. The substantially lower balance for party lines is
largely due to the inherent circuit unbalancing effect caused by the use
of grounded ringers for party -line service.

(iv) The average metallic circuit noise (C -message weighted) at a
customer's station set is approximately 5.5 dBrnc including the noise
contribution of the central office wiring as well the noise contribution
of the outside plant facilities. Only 8 percent of the individual lines
have noise in excess of the Bell System objective of 20 dBrnc. However,
18 percent of the party -line customers have circuits which have noise in
excess of 20 dBrnc because of the generally poorer circuit balance of
party -line circuits.
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(v) Comparison of measured and calculated transmission char-
acteristics of Bell System loop plant has demonstrated that the outside
plant cable records are sufficiently accurate to permit characterizing
the loop plant transmission performance by theoretical calculations
based on the physical composition of the loops as described in the outside
plant records.

(vi) Main stations served by loops in excess of 30 kilofeet in length
were found to be exponentially distributed as a function of working
length, with the population of main stations reduced by 50 percent with
every 11-kilofoot increase in loop length (see Fig. 6). It is estimated
that 1.5 million Bell System customers (3.25 percent of all customers) are
presently served by loops in excess of 30 kilofeet in length. Due to the
party -line character of longer loops, the 3.25 percent of all Bell System
main stations included in the long loop segment of plant used only
1.7 percent of the working Bell System exchange lines.

III. DESIGN OF THE SURVEY

The first steps in the survey were to define the population to be
sampled and to obtain a complete list of the sampling units. In these
two surveys (that is general loop and long loop), main stations were
selected as the sampling units and all Bell System main stations as of
January 1, 1964, were taken as the population to be sampled. A simple
random sample was chosen as the sampling plan.

The sample size of the general loop survey was selected to provide
data of equal precision to that obtained in the 1960 survey. The design
parameter chosen was the average distance to the sampled main sta-
tions, and the precision was measured in terms of the width of the con-
fidence interval bounding this average distance. The desired confidence
interval (at 90 percent confidence level) of ±450 feet on the average
cable distance to the sampled main stations dictated a sample size of
1,100 randomly selected main stations. The actual confidence interval
obtained was ±476 feet.

In the long loop survey, lack of previous knowledge concerning the
composition of long loops made it difficult to accurately determine
the minimum sample size which would provide sufficient precision. The
design parameter selected for the long loop survey was the average noise
metallic (C -message weighting) measured at the telephone sets of the
sampled main stations to a dialed -up termination. The precision aimed
for was a ±1.0 dB confidence interval (at 90 percent confidence level).
A sample size of 955 main stations was collected, and the confidence
interval obtained was ±0.73 dB.
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The two surveys had satisfactorily wide geographical dispersion, with
every associated company (except Canada) contributing to the survey.
Reference to Fig. 1 will illustrate that the large companies and the
metropolitan areas contributed heavily to the general loop survey and
the rural areas contributed heavily to the long loop survey.

IV. LOOP SURVEY RESULTS-PHYSICAL COMPOSITION

Data obtained in the loop survey included detailed loop schematics
indicating the loop composition of each of the loops sampled in the
survey. All distributions of physical quantities discussed herein were
derived by analysis of these loop schematics. Since similar data were
obtained in the 1960 loop survey, comparison of the physical distribu-
tions obtained in the two surveys has also been made.

Table I gives a summary of the statistics for the principal physical
properties of loop plant. Data are included for both the 1960 and 1964
surveys and significance levels for differences of mean values are pre-
sented when meaningful. Cumulative distributions of these factors are
shown in Figs. 2 through 5. The distribution of working bridged tap
is not given since 82 percent of the sampled main stations were served
by loops having zero working bridged tap and consequently the dis-
tribution is not particularly enlightening.

As indicated in Table I, the estimated average route distance from
serving central office to main station in the Bell System is 10.6 kilofeet
with 90 percent confidence that the true mean value lies within ±476
feet of this estimate. Note that although the estimated mean working
length in 1964 is over 300 feet longer than that estimated in 1960, it is
not statistically possible to claim that the observed increase is indeed

TABLE I - 1964 CUSTOMER LOOP SURVEY SUMMARY
OF MAIN STATION CHARACTERISTICS

Main Station
Mean (ft)

90% Confidence
Limits on Mean (± ft) Sign. Level for

Difference of Means
1960 1964 1960 1964Quantity in Percent

Working length 10,288 10,613 450 476 *

Total bridged tap 2,619 2,478 169 172 *

Working bridged tap 381 228 107 74 95
Airline distance 7,604 7,758 353 386 *

Working length/
airline distance 1.45 1.50 0.02 0.03 98

Drop wire excluded except when individual lengths exceed 400 feet.
* Levels of significance less than 80 percent indicated by asterisk.
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an increase. Reference to the cumulative distribution of working length
depicted in Fig. 3 will, however, show that shifts in the distribution have
occurred since 1960. Note that the percentage of longer loops increased
from 1960 to 1964.

Analysis of the long loop survey data has shown that the Bell System
main stations served by loops in excess of 30 kilofeet are exponentially
distributed as a function of working length as depicted in Fig. 6, with
the main station population diminishing by 50 percent with each 11
kilofeet increase in loop length. Survey analysis indicates that about
1.5 million or 3.25 percent (with 90 percent confidence interval of
±0.2 percent) of all Bell System main stations were located 30 kilofeet
or more from their serving central offices as of the end of 1964. Due to
the party -line character of the longer loops, the 3.25 percent of all Bell
System main stations included in the long loop segment of plant used
only 1.7 percent of the 39,300,000 Bell System lines working in 1964.

Analysis of the survey data has also provided valuable insight into
the type -of -service distribution of Bell System customers and the physi-
cal composition of the plant provided to meet this distribution as shown
in Figs. 7 to 10. The type -of -service distribution was derived as a
function of length to the sampled main station and took advantage of
the pooling of data from the two surveys. To evaluate the physical
composition (type of facility, gauge, and pair size) of the loop plant as
a function of distance, the sampled loops from the general loop survey
were inspected at intervals of 1,000 feet starting at the central office.
Both the general loop survey and the long loop survey were similarly
inspected to define these distributions beyond 30 kilofeet.

The extent of party -line development as a function of loop length
is shown in Fig. 7. Note the rapid increase in eight -party development
for loop lengths greater than 30 kilofeet. Examination of the pair size
distribution as a function of distance from the central office (Fig. 8)
shows rapidly decreasing pair size with distance (at the 50-kilofoot point
50 percent of the sampled loops are contained in cables with fewer than
16 pairs). Similarly, the distribution of gauge shown in Fig. 9 illustrates
a rapid transition to coarse gauge with increasing distance from the cen-
tral office. For example, at 30 kilofeet 60 percent of the sampled loops
are composed of gauges coarser than 22 gauge. Note also (Fig. 10) that
the longer loops are primarily developed with aerial facilities. For
example, 78 percent of all plant is aerial at the 30-kilofoot point from the
central office. For the longer loops where small pair sizes are used, the
pole line costs become a significant portion of the total loop costs and
this factor is one of the reasons for the present trend towards the use
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of buried plant. Since the sampled loops were randomly selected from
all existing plant, buried plant is not as prominent as it would be in a
sample of new construction. Note, however, that beyond 30 kilofeet,
buried facilities in 1964 accounted for approximately 20 percent of the
loops.

v. 1964 LOOP SURVEY RESULTS -TRANSMISSION PERFORMANCE

Data obtained in the 1964 loop survey have provided considerably
more comprehensive knowledge of the transmission performance of
customer loop plant than heretofore available. In the 1960 loop survey
all transmission performance data were developed by deriving equivalent
"T" networks from the information supplied on the loop sketches and
analyzing these networks for transmission performance at nine fre-
quencies in the voice band. Similar analysis has been performed for each
of the sampled loops in the 1964 loop surveys, and in addition trans-
mission measurements were made. The measurements covered noise,
crosstalk, insertion loss at 1, 2 and 3 kHz, and de resistance. The com-
bination of these two sets of transmission performance data (one cal-
culated and one measured) permits three types of analysis:

(i) changes in transmission performance since 1960 by comparison
of calculated 1960 data with calculated 1964 data,

(ii) comparison of measured versus calculated data for the 1964
survey, and

(iii) provision of heretofore unavailable data on the noise and cross-
talk performance of customer loop plant.

Since measured insertion loss data was not obtained in the 1960
survey, comparison of 1960 and 1964 data must be based on calculated
values. Figure 11 depicts the 1 kHz calculated distributions for both
surveys. It can be seen that insertion loss performance has remained
virtually unchanged since 1960.

For those transmission characteristics where measured data are
available in addition to the analytically derived data, minor differences
in performance are exhibited by the two distributions of data (Fig. 12).
In this regard it is important to realize that the measured data should
provide a more accurate estimate of performance. There are several
reasons for greater confidence in the measured data. First, possible in-
accuracies in cable records or errors in transferring data from the records
to the loop sketches can introduce errors in the calculated data. Second,
errors in construction, such as omission or improper connection of load-
ing coils, cannot be detected from the records. Third, use of calculated
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data assumes that all cables exhibit nominal characteristics and con-
sequently do not reflect manufacturing tolerances and environmental
factors.

The cumulative distributions of insertion loss at 1, 2, and 3 kHz for
customer loop plant as derived from both measured and calculated
data are presented in Fig. 12. These insertion loss measurements and
calculations were made with a 900 ohm source and load as depicted in
Fig. 13. Measured loss was found to be consistently higher than calcu-
lated loss across the entire voice frequency band. The absolute dif-
ferences between measured and calculated losses are small however, as
indicated by the differences in mean losses. For example, at 1 kHz the
measured loss was 3.8 dB and the calculated loss was 3.5 dB. This com-
parison of measured and calculated insertion losses demonstrates the
feasibility of characterizing the loop plant transmission performance by
theoretical calculations based on the physical composition of the loops
as described by outside plant records. Still referring to Fig. 12, note
that approximately 95 percent of all Bell System main stations are
served by loops having a 1 kHz insertion loss of less than 8 dB with a
mean loss of 3.8 dB. Similarly, at 3 kHz the 95 percent point is 16 dB
and the mean loss is 7.8 dB. A scatter diagram of the 1 kHz measured
insertion loss as a function of loop length is shown in Fig. 14. This dia-
gram was obtained by merging the data from both the general loop
survey and the long loop survey and indicates that the high loss loops are
not limited to the long loop category. The high losses observed on some
of the short loops generally reflect excessive bridged tap.

An insertion loss measurement of particular interest to designers
of data equipment is the slope of loss versus frequency from 1000 to
2750 Hz. Cumulative distributions of the 2750 - 1000 Hz insertion
loss (insertion loss measured with 900 ohm source and load) have been
provided for all Bell System loop plant and for those loops serving
business customers in Figs. 15 and 16 respectively.

Another important transmission characteristic is return loss, signifi-
cant from echo and singing considerations. Return loss performance was
not available from the measured data; consequently, it was cal-
culated. Table II provides 1964 loop survey return loss results for nine
frequencies and Fig. 17 presents the cumulative distributions and
histograms for the 3 kHz singing return loss and echo return loss (equal
weighting of the 500 to 2,500 Hz band). These data are all developed
on the basis of looking into the customer loop at the central office end
of the loop. The return loss is obtained by matching against a 900 ohm,
2.16 ALF termination at the central office, with the customer end of the
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TABLE II - CALCULATED RETURN LOSS FROM OFFICE
TOWARD STATION*

Frequency (Hz)

1964

Mean (dB)
90% Confidence
Interval (± dB)

200 8.0 0.11
300 10.2 0.12
500 13.4 0.17

1,000 15.4 0.30
1,500 13.1 0.27
2,000 10.9 0.25
2,500 9.1 0.20
3,000 7.7 0.16
3,200 7.1 0.15
Echo 11.2 0.15

* Station end of loop terminated in impedance of "off -hook" station set.

loop terminated in the impedance of the "off -hook" station set. Similar
data on return loss are presented later from the station end of the loop.

The comparison of measured versus calculated loop resistance shown
in Fig. 18 indicates that for general loop plant there is no significant
difference between measured and calculated data but calculated loop
resistance is slightly higher than measured resistance (574 ohms cal-
culated, 567 ohms measured). Measured values may have been in-
fluenced by the fact that measurements were made during the winter.
Calculated resistances were based on an average temperature of 68°F.

Theoretical calculations cannot be made of all transmission perform-
ance characteristics. Two such examples are noise and crosstalk. Since
these characteristics are dependent upon external influences (induction
from adjacent power lines, cable pair balance and the particular pair
assignment), field measurements were made on each of the sampled
loops using a Western Electric Company model 3A noise measuring set.
The noise and crosstalk measurements were made as depicted in Figs.
19 and 20.

It is convenient to analyze loop noise in terms of the two factors
which contribute to the resultant interference. The first of these is the
magnitude of open circuit longitudinal voltage induced from power
lines and the second is the circuit balance of the cable pairs and central
office equipment. The cumulative distribution of the open circuit longi-
tudinal voltage for general loop plant is shown in Fig. 21 for 3 kHz flat
weighting. This voltage is induced in a longitudinal mode, and conse-
quently only that portion of it which is converted to the metallic circuit
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will create an interference problem. The circuit balance reflects the
extent to which the longitudinal voltage is converted to metallic voltage
and is, therefore, a measure of the susceptibility of the telephone plant
to inductive interference such as power -line hum.*

As seen in Fig. 22 party lines are much more susceptible to power -
line hum than individual lines because of the unbalance introduced by
the grounded ringers associated with party -line station sets. On the aver-
age, individual lines have approximately 12 dB better balance than party
lines. Part of this is a result of the shorter length distribution of in-
dividual lines which offers less opportunity for cable pair unbalances
to accumulate; but it is reasonable to expect a balance improvement of
10 dB with ringers isolated from ground.

The combination of the induced longitudinal voltage and the circuit
unbalance produces the metallic noise distribution at customers' station
sets (in off -hook state) as shown in Figs. 23 and 24. For comparison
purposes, the C -message weighted noise to ground (longitudinal noise)
is also shown on these figures. Figure 23 depicts the noise contribution
of the loop plant only, while Fig. 24 includes the noise contribution of
the central office wiring. In both cases the station end of the loop was
terminated in an off -hook 500 -type station set with the transmitter
and receiver replaced by equivalent resistors. The metallic noise has been
measured with C -message weighting to reflect the relative interfering
effects of the noise on voice transmission. The important limits to con-
sider are the Bell System long-term noise performance objective of 20
dBrnc and the immediate remedial action limit of 30 dBrnc. As seen
in Fig. 24, only 8 percent of the individual lines had total metallic
noise in excess of 20 dBrnc. However, 18 percent of the party -line cus-
tomers have noise in excess of 20 dBrnc.

The near -end crosstalk coupling loss characteristics of customer loop
plant as derived from measured data from the general loop survey are
shown on Fig. 25. Along with the overall distribution of crosstalk
coupling loss is shown the distribution for nonloaded loops only (84
percent of all sampled main stations). The nonloaded loop distribution

* Loop circuit noise balance is defined here as

20 logi o
open circuit longitudinal voltage

metallic voltage
where both voltages are measured with C -message weighting. The validity of this
definition depends on the assumption that the longitudinal voltage induced from
adjacent power lines is the only source of metallic noise. This is generally not true
when the noise to ground measures less than 20 dBrnc, and consequently loop
balance for such loops cannot be computed from the measurements.
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can be approximated by a normal distribution with a mean crosstalk
coupling loss of 115 dB and a standard deviation of 12 dB. A comparison
of these two curves indicates that the poorer crosstalk performance of
longer loaded loops dominates the low loss tail of the general loop survey
distribution.

The final transmission characteristic to be discussed is the loop input
impedance as calculated both at the central office and at the station set.
Figure 26 presents the plot of loop input impedance as seen at the
central office as a function of frequency (not including central office
wiring or equipment). For these calculations the station end of the
loop was terminated in an off -hook 500 -type station subset with the
transmitter and receiver replaced by equivalent resistors. Curves have
been provided separately for loaded and nonloaded loops because of
the large difference in their characteristic impedance. Also shown is the
characteristic impedance of the central office matching network as a
function of frequency. The function of this network is to provide high
return loss performance across the voice frequency band by matching
as close as possible the impedance of the various loops. It is apparent
that both the nonloaded loops and loaded loops should have their
highest return losses around 1 kilohertz and that the loaded loops
should perform more poorly than nonloaded loops at the lower fre-
quencies.

Plots of mean input impedances, such as in Fig. 26, are useful for
indicating the general input impedance behavior as a function of fre-
quency. Variations that occur at each frequency, and their effects on
return loss, are best shown as scatter diagrams. Figures 27 and 28
present the loop input impedance at 1 kHz for nonloaded and loaded
loops. Superimposed on all scatter diagrams are return loss circles
referenced to the 900 ohm and 2.16 2F matching network. Any loop
having an impedance lying within a particular circle will have a return
loss, when measured against the specified matching network impedance,
which exceeds the given return loss value. Visual examination of the
scatter pattern as it relates to the return loss circles provides a ready
means of evaluating the return loss performance of various segments of
the loop plant (assuming, of course, that the input impedances of loops
in that segment are known).

The range and shape of the input impedance scatter pattern at each
frequency are of interest because they point up the difficulty of designing
a simple matching network which, at even a single frequency, will
provide very high return losses for nearly all loops. Considering the
characteristics of the nonloaded loops shown in Figure 27 it is evident
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that many of the loops tend to follow a smooth curve, while the others
are scattered about this curve. The smooth curve results from the varia-
tion in loop length, while the scatter is due to the effects of bridged tap,
overgauging, and variations in types of subsets.

Perhaps of particular interest to Bell System customers are the input
impedance characteristics of Bell System loop plant as seen from the
station end of the customer loop. The input impedance of a customer
loop as measured at the station set can vary considerably based on the
type of facility connected to the loop at the central office. Various cir-
cuit connections may involve use of four -wire trunks, two -wire trunks
or intraoffice circuits. In the following analysis a 900 ohm and 2.16 AF
central office termination has been used to represent a four -wire trunk
termination, and the midsection input impedance of 22 gauge 1188
loaded cable has been used to represent a two -wire trunk. For the simula-
tion of intraoffice calls, a Monte Carlo technique was used to select a
random sample of 500 pairs of loops from the 1,100 loops in the general
loop survey. A loop was randomly selected as the sample loop, and then
the input impedance (from the central office) of another randomly
selected loop was chosen for the central office termination.

The 1,100 loops of the 1964 general loop survey were segregated into
two groups (loaded and nonloaded loops) for all but the simulated
intraoffice calls because of the great differences in impedance range of
the two populations. Presentation of scatter diagrams of input im-
pedance from the station set has been limited to 1 and 3 kHz. These
return loss circles were generated assuming the use of a 500 -type station
set and it was further assumed that the 500 set was operating on a cur-
rent equal to the average loop current of 45.5 mA.

Figures 29 through 32 are the input impedance scatter diagrams for
loops with a simulated two -wire trunk (22 gauge 1188 loaded cable)
termination at the central office. The scatter is primarily a result of
overgauging, open wire, and bridged tap or varied end section length.
Smoothed curves of the mean input impedances of loaded and non -
loaded loops with a 22 gauge 1188 cable termination are presented in
Fig. 33. Scatter diagrams for the loops with a central office termination
of 900 ohms and 2.16 µF (simulated four -wire trunk) are presented in
Figs. 34 through 37. The general input impedance behavior of these
loops as a function of frequency is indicated in Fig. 38 by the plot of the
mean input impedances at nine voiceband frequencies.

The scatter diagrams and the mean input impedance curve for the
simulated intraoffice calls are shown in Figs. 39 and 40. The effect of
connecting together two loops, one of which is terminated by a station
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set, and the other whose input impedance is calculated at its station
set, is shown by the mean input impedance curve for simulated intra-
office connections in Fig. 41. This curve has a shape characteristic of
longer nonloaded loops. The mean input impedance curves for non -
loaded loops with simulated two- and four -wire trunk terminations at
the central office are also shown in Fig. 41. The major differences in the
characteristics of these curves are at the low frequencies where the shunt
capacitance of the cable masks the termination less than it does at high
frequencies.
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Radio -Relay Antenna Pointing for
Controlled Interference with

Geostationary Satellites

By C. W. LUNDGREN and A. S. MAY
(Manuscript received July 23, 1969)

We present analytical methods (i) for calculating microwave radio re-
fraction for negative and positive initial ray angles accounting for station
height and (ii) for determining refraction -corrected ranges of antenna point-
ing azimuth within which mutual interference with geostationary satellites
in shared frequency bands is likely.

I. INTRODUCTION

When radio -relay and communication satellite systems share fre-
quency bands, as they do at 4 and 6 GHz, it is necessary to impose
restrictions on both systems so that interference is not excessive. The
CCIR (International Radio Consultative Committee) recommends
that radio -relay antennas maintain a specified angular separation with
respect to the geostationary (stationary equatorial) orbit or, where
this is not practicable, the application of power limitations to terrestrial
radio transmitters involving reception at the satellite. While the above
restrictions protect satellites, designers of terrestrial systems should
be aware of possible interference into radio -relay systems from satellite
radiation arriving at low elevation angles and close to the on -beam
directions of receiving antennas. Because the dielectric constant of the
earth's atmosphere varies with altitude, the radio -relay beam is not
straight, and atmospheric refraction must be considered when computing
the directions of radio beams for which the restrictions apply.

1.1 Simplified Exposure Model

Figure 1 introduces the geometry of the problem and illustrates
significant trends and limits. Radio -relay site P located at North Lati-
tude go degrees is shown as viewed from above the earth. An arc of the
geostationary satellite orbit is also shown. The orbit longitude of point
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Sp and the earth longitude of site P coincide numerically (that is, Sp
is in the direction of true south, PS; , observed from P).

Two radio rays from P intercept the orbit symmetrically at points S.
The controlling geometric relationships are based upon triangles formed
by points S, P, and geocenter 0. Angle 0-P-S is determined by the
elevation angle of the radio -relay antenna including ray bending due
to atmospheric refraction. A special case is depicted in Fig. 1, wherein
unbent intercepting rays PS and also ray PS; are assumed to lie in the
local horizontal plane at P and remain tangent to the earth sphere at P.
Thus, angles S-P-S' are always antenna pointing angles to orbit inter-
ception referred to "true south."

It is instructive to visualize the relationship between latitude 9 at P
and the location of orbit intercepts S, for a given fixed triangle OPS.
As points S approach S, , the constraints imposed above require that
the station latitude cp approach a maximum latitude "visible" to the
orbit. The resulting single pointing direction to orbit intercept is due
south (from P to Sp). Conversely, the maximum separation between
points S and S, obtains when co is zero (for site P located on the equator).
Since both intercepting rays are tangent to the equator at P, the limiting
pointing directions are due west and due east.

Note that a rotation in azimuth of the antenna (about the local
vertical axis at P) between known orbit -intercept directions results in
radio rays PS which fall below the orbit as viewed from P; rotations
beyond these "critical azimuths" result in rays above the orbit.

1.2 Computations

Given the latitude and elevation angle of a microwave radio -relay
antenna, one can calculate the pointing azimuth for which, neglecting
refraction, the main beam axis intercepts the geostationary orbit. This
calculation is repeated to produce screening charts like Fig. 2. Such
charts are adequate for quickly determining a hazard condition, but
often the true critical azimuths must be approached closely while main-
taining tolerable interference levels.

A graphical procedure proposed for the convenience of system plan-
ners provides pointing angle estimates for most stations when caution
is exercised in those steps accounting for atmospheric refraction.' An
analytical technique adaptable to machine calculation is also required
for rapid, accurate screening of large numbers of existing and proposed
radio -relay sites for potential interference exposures. Precise evaluations
are required for cases of unavoidable exposure.

The method described in following sections can be used by the system
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planner to determine critical azimuths and the ranges of azimuths to be
avoided (accounting for atmospheric refraction) for prescribed minimum
angular separations between main beam axes and the geostationary
orbit.

The Central Radio Propagation Laboratory (CRPL) Exponential
Reference Atmosphere is adopted for the generation of microwave
radio refraction curves by accounting for station heights and negative
antenna elevation angles, for several representative refractive indexes.2
Earlier extrapolations are based upon upper limits of the total bending
associated with assumed earth -grazing rays."

A refraction anomaly arising from a temperature inversion, storm,
ducting, or other departure from an assumed representative radial ray -
bending model precludes an absolutely confident evaluation of any given
exposure at a given time. These phenomena are usually localized. How-
ever, the intent of these computations is to protect the geostationary
orbit against continuous interference arising simultaneously from a large
number of terrestrial systems.

Following a development of the refraction model, we derive the critical
pointing azimuth corresponding to orbit intercept. The geocentered
longitude displacement between the radio -relay site and the point where
the refracted beam intercepts the orbit is next determined by spherical
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geometry. Then the apparent slope* of the geometric orbit trace, as if
viewed unbent by refraction from the station, is obtained corrected for
aspect (also dependent upon antenna elevation angle and concomitant
refraction). Using the refraction data converted to geometric elevation
angles (as without ray bending or obstruction), the geometric orbit
is adjusted to the apparent position and shape that would be observed
at the radio site. This apparent orbit is hereafter termed the refracted
orbit. Subsequent sections describe the determination of azimuth zones
to be avoided for prescribed beam-orbit separations and the permis-
sible transmitted power. Appendices are included to: provide means for
estimating initial ray angles from commonly available radio -relay in-
formation when actual antenna angles are unknown; solve by manual
calculation a representative numerical example, giving the applicable
equations for each step; and verify governing equations using a different
analytical approach.

II. DETERMINATION OF REFRACTION FOR POSITIVE AND NEGATIVE ANTENNA

ELEVATION ANGLES

2.1 Ray Tracing Equations

In the following equations 00 is the initial anglet of a ray as it leaves
the earth's surface and T is the total refractive bending corresponding
to 00 . Figure 3 illustrates this relationship and shows the geometric
director with elevation angle E to an intercept with the geostationary
orbit at S. Also shown on an arc through S centered at P is the apparent
position of the intercept Sa and a horizontal reference, zero -elevation
point A. The latter relationships are used in a subsequent section to
describe a method for constructing the refracted orbit.

Angle e is approximately, but in general not identical to, 00 - A
However, this approximation is reasonable for rays between terrestrial
antennas and geostationary satellites well beyond the earth's atmosphere
when relatively small effects of parallax associated with the controlling
portion of the atmosphere near the earth's surface are neglected.'

Figure 4 depicts a ray entering the earth's atmosphere and the result-

* The first derivative with respect to pointing azimuth (azimuth -elevation plot
of the orbit) is more completely defined in Section V.

t go is generally used in ray -tracing equations to denote the initial ray elevation
angle with respect to the local horizontal and is synonymous with a, used in
subsequent sections to denote a radio -relay antenna beam elevation angle
(namely, a in Figs. 6).

t Calculations using equation (5) show that the actual ray angle with respect to
the geocenter differs from that resulting from the assumption e = B, - r by ap-
proximately 1.5 minutes of arc for limiting conditions used herein.
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I 60

LOCAL HORIZONTAL

ORBITAL PLANE IN EDGE VIEW

Fig. 3- Refracted ray.

ing path of the ray due to the refractive gradient. Depending upon the
angle of arrival of the ray when it enters the atmosphere, the refraction
causes it to intercept the earth, graze the earth, or become tangent to a
unique earth -centered sphere at some height above the surface. If the
ray does not intercept the earth it continues out into space again, being
subjected to approximately the same refraction in exit as it encountered
upon entering.

At any point on the ray trace, the angle the ray makes with the local
horizontal at that point is denoted by 0. The angle between the tangents
to the ray at any two points (a, b) is a measure of the refractive bending
between them and is denoted by r(a, b).

The following presentation of refraction is based largely upon equa-
tions given in Refs. 2, 6, and 7 for zero or positive initial ray angles and
as interpreted by the authors for application to negative angles. Appro-
priate uses of the equations and their application to the problem are

T(3,I)

T3
\T2

2

TO S

MEAN
SEA
LEVEL

Fig. 4 - Maximally refracted nongrazing ray.
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explained, but the reader is directed to the references for complete
derivations and limitations including sensitivities to the microwave
frequencies involved.

The radio refractive index n varies with atmospheric pressure, relative
humidity, saturation vapor pressure and temperature. The lower limit
for n is unity-no atmosphere, while the upper limit is determined by
local climatic conditions. For the southeastern section of the United
States, a typical range of n at mean sea level is 1.00025 to 1.0004. In
equations involving refraction it is convenient to express refractivity
as N where N = (n - 1) X 106 or, for this case, N values are 250 and
400 (N units). The average decay of N is approximately exponential
with height and the difference in N between the surface and a height
of 1 km above the surface is given by2

AN = -7.32 exp (0.005577N,). (1)

The subscript s denotes N at the surface. The decay constant with
height is expressed by2

N.C. = In N. ± AN (2)

N at any height h (kilometers above the radio site surface elevation) is2

Nh = N, exp [- Ce(h - h,)], (3)

where h, is the surface elevation above mean sea level corresponding
to N,

N, is sensitive to local elevations and hence, charts of N, for moun-
tainous regions are difficult to use because the N, contours are irregular
and closely spaced. Therefore, obtaining an appropriate value of N,
for use in equations (1), (2), and (3) for a particular site is often dif-
ficult. However, charts are available giving N, reduced to mean sea
level equivalents N, which, in effect, reduce the height -dependent N.
values to a common base.' Since charts of No are more easily interpreted
and a single value of N, usually applies over a large geographical area,
they are used in this paper.

No and N, (h) are related° by N, = N exp (-h/7). Conversely, for a
given value of No , N. for surface height h, above mean sea level is
determined from the expression

N, = No exp (-h,/7), h, ?__- 0. (4)

The N. value obtained from equation (4) is used in equations (1), (2),
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and (3). Figure 5a was generated using equation (4) and, for manual
calculations, is convenient for determining No .

The conversion between No and No above considers only the dry air
effects of temperature and pressure related to the difference in elevation
between mean sea level and the station surface height, whereas con-
stants of the expression given for AN account for all terms contributing
to a change in refractivity of the atmosphere with elevation above the
surface height.

A relationship exists between angle 0, at the point of origin of the ray
and 0 at any other point on the ray trace which is expressed by

(1 -I- N, X 10-6)(a + h3) cos Bo

= (1 + Nh X 101(a h) cos 0 = C, (5)

where C is a constant and a is the earth's radius at mean sea level (in
kilometers). Thus, angle 0 for any point on the ray trace is determined.
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The incremental bending of the ray between closely spaced points
on the trace is given by

7(1, 2) = n' n
cot 0.

n
(6)

As suggested by Schulkin, the term 1/n is taken as unity with an error
of less than 0.0001 in the computed refraction and, for an iterative
solution, equation (6) is expressed as'

An.

T(1, 2) = -f cot 0 dAn.
An,

(7)

Shulkin also shows' that equation (7) is approximated by (Ant
Ant)/0, where An is n - 1 and Om is (01 + 02)/2. Hence the in-

cremental bending between two closely spaced points on the ray trace
is expressed by

2(N, - N2) X 10-6T(1, 2) - rad., 0<00<10°, (8)
+ 02

where N1 and N2 , 01 and 02 are the N values and ray angles (in radians),
respectively, at the closely spaced points.

2.2 A Method for Calculating Refraction
The following paragraphs describe a procedure for calculating re-

fraction curves of the form in Figs. 6 for any values of No which is also
applicable for the direct calculation of refraction corrections.

2.2.1 Zero and Positive Initial Angles (+00)

First assume a value of N , a station height h and an initial ray
angle 00 . Equation (4) is used to determine N, for height h8 and equa-
tions (1), (2), and (3) to determine N for a height h, where h = h. +
Ah*. Equations (5) and (8) then give the ray angle 0 at the incremental
height and the bending 7 in the first increment. For each successive
increment of height, the previously solved -for values of N and 0 become
the initial values for equations (3), (5), and (8). The values of T for each
iteration are accumulated to give the total bending for h. and 00 .
Repeating the above procedure with other values of 00 results in data
points to be used in plotting the refraction curve for the assumed sta-
tion height h,, . A complete repetition of the above, beginning with

* Incremental heights must be small in the lower atmosphere where n changes
rapidly but may increase at the higher elevations. However, for the generation of
Fig. 6, a constant increment of 0.25 km was used to a height of 90 km.
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Fig. 6 - Refraction versus antenna elevation angle for (a) N = 250, and (1))
= 300.

other station heights, results in a family of curves (namely, h,) for
zero and positive initial ray angles.

2.2.2 Negative Initial Angles (-0,)

The calculation of refraction for negative initial ray angles requires
a modification of the technique used for positive angles. Note in Fig. 4
that the bending of the ray from T3 (h3 , -03) to T1 is the same as that
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of the ray from T1 (h1 , 00 = 0) to T3. The latter is determined utilizing
the equations for positive angles but in a slightly different manner.

First, assume a grazing ray (h = 0, 00 = 0) and, using the iterative
method previously described, compute the bending T and angle 0 at
each of the specific elevations h, desired for the chart, that is, in the case
of Figs. 6: 1, 2, and 3 km. The value of T for each height is then added to
the maximum T determined for the same height (when 00 is zero as
found in Section 2.2.1) to obtain the total bending for a ray with the
initial angle, - 00 . In Fig. 4 this is T(T3, T1) plus r(T1, S). Repeating
the above but beginning with h = 1, 2, and so on, provides the data
needed to extend the curves for positive initial angles into the negative
range.

Note in Figs. 6 that all refraction curves terminate on a dotted ex-
tension of the zero -elevation ray representing a maximally refracted
grazing ray. For a given height with an initial angle more negative than
that represented by the point of termination, the ray is intercepted by
the earth.

2.2.3 Direct Machine Calculation

For machine calculations it is desirable to compute the refractive
bending directly without the use of refraction tables. For zero and
positive initial ray angles, the calculation is straightforward as is des-
cribed in Section 2.2.1. However, for a ray originating at a specific height
with a negative initial angle 00 , it is first necessary to determine the
height of the ray where 0 is zero (hi at Ti in Fig. 4). A variation of
equation (5) permits this determination. If the right side of equation
(5) represents point T1 in Fig. 4 and the left the initial station, say T3
at height h3 , then

(1 N T3 X 10-6)(a + hT3) cos 00

= (1 + NT1 X 10-6)(a hTl) = C. (9)

The variables for the left side of equation (9) are all determined and
evaluation yields the constant C. Then, values are assumed for hTl
beginning with zero, NT, determined, and the right side evaluated until
the result is equal to C. After it, is determined, T (T3, T1) and T(T1, S)
are calculated as described in Section 2.2.2 and added numerically
to give the total refractive bending. However, when hTl is assumed to
be 0 for the initial iteration and the right side is larger numerically than
C, the beam intercepts the earth and a solution with angle 00 is not
possible. In such cases it is often desirable to determine the initial graz-
ing -ray angle to the mean sea level horizon, which is accomplished by
incrementing 00 upward until the equation is satisfied.
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2.2.4 Angle from the Transmitting Site to the Radio Horizon

The radio horizon, accounting for refraction and average local terrain,
is determined by a variation of equation (9). Assuming that the height
of a receiving station represents the average terrain height for some
distance beyond, the initial angle all ( = 0.) of a ray which just grazes
the terrain represents the angle to the radio horizon as seen from an
elevated transmitting site. Letting the left side of equation (9) represent
the transmitting location, the right side the receiving location (where 0
is zero), and solving for all yields

[(1 + NR X 10-6)(a + hR)
(1 + NT X 10-6)(a ± hT)

1all = cosrad, hT a,,hR ,0,

(10)

where the subscripts R and T refer to the receiving and transmitting
stations, respectively. NR is obtained by equation (4) and NT by equa-
tions (1), (2), and (3), substituting NE and hR for N. and h. , and hT
for h. (For manual calculations, NR and NT may be determined from
Figs. 5. First enter Fig. 5(a) with hi, ,N. , and read NE from the ordinate.
Then enter Fig. 5(b) with (hT - hE), NE and read NT from the ordinate.)

2.2.5 Refractive Index Limits

We now illustrate the importance of including the effects of refraction
in orbital computations relating to terrestrial radio -relay systems.
Table I (reflecting the use of equations and techniques discussed in
subsequent sections) demonstrates parametrically the sensitivity to
radio refractivity of the orbit -intercept pointing azimuth and the com-
puted terrestrial transmitter power limitation. The 8 dB variation in

TABLE I-INFLUENCE OF REFRACTION

Station Statistics Assumed Values

Path azimuth 103.5 degrees from true north
Station latitude 55.0° north
Station elevation mean sea level
Antenna elevation angle ao 0 degrees

Parametric results Computed values

Radio refractivity N., N units 0 250 400

Geometric elevation angle, eo, degrees 0 -0.555 -1.27
Critical azimuth (from north), degrees 102.6 101.76 100.7
Maximum transmitter power, dBW 47 50.7 55
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the power shown in the table indicates clearly that refraction must be
included in calculations and that limits for refractivity should be care-
fully considered.

World charts of N. in Ref. 8 indicate appropriate limits of N. are
250 and 400. At specific locations and for short time intervals, the index
may not fall within these limits. However, localized conditions will
not affect large numbers of stations at any given time and a wider
range of N. would unnecessarily broaden the restrictive zone for radio -
relay systems.

We suggest that the above limits be adopted for standardized cal-
culations. For a specific case where an antenna pointing angle is close
to the orbit and transmitter power limitations are restrictive, refractive
limits applicable to that locale should be used.

2.2.6 Adjustment of Computed Geometric Orbit Traces for Atmospheric
Refraction

For many solutions, particularly those involving graphical procedures,
it is desirable to "elevate" a computed geometric orbit trace to its
apparent (refracted) position and shape. Such an adjustment yields a
presentation permitting a given, arbitrarily -shaped radio beam power
profile to be related unretracted and hence undistorted to the easily
obtained configuration of the refracted orbit. Figures 7 are charts to
enable this manipulation, produced from Figs. 6 by plotting (a -
versus r, . A method for using these charts is given in Section VI.

III. DETERMINATION OF THE POINTING AZIMUTH TO ORBIT INTERCEPT

Recall that the elevation angle (with respect to local horizontal) of
the geometric director shown in Fig. 3 is denoted by e. Hence, station
geometric elevation angle ec, may be replaced by a - Tao where at, is
the initial antenna beam elevation angle and T. is the corresponding
refraction correction. (A method for determining a. is given in Appendix
A.)

Note that available information for established radio -relay routes
in the United States giving antenna elevations, path distances, and
antenna elevation angles is generally expressed in units of feet, statute
miles, and degrees, respectively; it is necessary to convert these quanti-
ties into kilometers and radians for use in many of the expressions which
follow.

Inspection of Fig. 8 shows that the azimuth displacement from the
meridian through a station located at P to an intercept with the geo-
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stationary orbit is identical to angle A of spherical triangle PES'.
From laws for right spherical triangles

cocos A - tan
(11)

tan 13

where (p is the latitude at station P, and g is the arc equivalent of angle 0
of plane triangle OPS. Note that i3 is numerically equivalent to the
maximum visible latitude for assumed radio -relay antenna beam eleva-
tion angle a, and concomitant total ray -bending angle r..

Angle is determined from triangle OPS using the Law of Sines.
This triangle is redrawn in Fig. 9, where

sin S2 sin (r/2 0)
a

= (K' cos E.), (12)

where 0 is the station geometric elevation angle corresponding to a. ,

a is the earth radius, and R is the orbit radius, R/a = K. From inspec-
tion, fl = r/2 - S2 - eo . Substituting for SZ yields

[3 = cos' (K-1 cos 0) - e . (13)

Substituting equation (13) for Q in equation (11) results in

tan coA = cos' [tan [cos -1 (K' cos (,) - 0]] (14)

IV. DETERMINATION OF RELATIVE LONGITUDE BETWEEN SITE AND ORBIT
INTERCEPT

The earth longitude displacement between radio -relay site P and
suborbital intercept S' in Fig. 8 is side X of right spherical triangle
PES'. From the Law of Sines

from which:

sin X - sin g,sin A

X = sin"' (sin A sin 9), (15)

where 13 and A are found by equations (13) and (14). Note that when
A = r/2, corresponding to co = 0, the maximum visible longitude
displacement is 13.
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V. GEOMETRIC ORBIT TRACE-CORRECTED FOR ANTENNA ELEVATION AND

ATMOSPHERIC REFRACTION

The geostationary orbit and earth's equator are coplanar; hence the
orbit near the horizon normally appears to be tilted with respect to the
local horizontal plane. Were an equatorial orbit sufficiently distant,
as in celestial observations, the angle of tilt would equal the colatitude
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of the observer's position. However, the maximum visibility circle in
Fig. 8 is not a great circle, so the angle of tilt is less than the colatitude
except where the latter circle crosses the equator. In the following para-
graphs, an expression is developed for the tilt of the geostationary orbit
as if viewed from a unique location on the visibility circle. This tilt is
defined hereafter as the apparent slope of the orbit trace (or first deriva-

F,

GEOSTATIONARY ORBIT

Fig. 8 Geometry relating site P and geostationary orbit intercept.
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Fig. 9- Geometry of intercept -determining triangle.
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tive of the orbit trace, in elevation, with respect to direction, in azi-

muth).*
The size of the visibility circle in Fig. 8 depends upon a. and Tao;

for given site latitude (p, the angular displacement in earth longitude X
between site P and point S where the refracted beam intercepts the
geostationary orbit (longitude of suborbital point S') also depends upon
a. and Tao . Hence, the slope 6 of the geometric orbit trace constructed
in Fig. 11 also depends upon ao and Tao .

Note in Fig. 8 that the angle between orbit tangent t0 constructed at
S and the local vertical plane at P through S is angle 4' of spherical
triangle PES'. From the Law of Sines

= sin -1 (si co) (16)
sin 13/

The complementary angle between orbit tangent to and the plane of a
circle generated by radius CS (perpendicular to OP) is denoted by

6' = 7/2 - 4). Substituting equation (16) for 4) yields

S' = cos-i (sin co).
\sin 13/

Angle 6' is viewed in true magnitude from 0 (or S'), but is seen from
radio -relay site P as a smaller angle 6 when rotated through angle SZ
as shown in Fig. 10. Note that tan 5' = y/x and tan S = (y cos 0)/x,
from which

S = tan -1 (tan 6' cos 0).

Combining equations (17) and (18) yields

= tan -1 {tan [cos -1 (sin co/sin (3)] cos 0).

(17)

(18)

(19)

* The orbit trace is envisioned as the locus of all pointing angles to the orbit,
plotted on an azimuth -elevation chart aligned and calibrated according to the
location of the observer.
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Fig. 10 - Development of geometric orbit slope as observed from site P.

VI. CONSTRUCTION OF THE REFRACTED ORBIT

Figure 11 presents the geometry of the problem viewed from a radio -
relay station (similar, but not equivalent to the presentation given in
Ref. 1). Reference to Figs. 1 and 3 may assist in interpretation of Fig. 11,
wherein points A, S, and S. correspond to similar points in Fig. 3 and
intercept S corresponds to the left (easterly) intercept S in Fig. 1. Origin
A is the beam -intercept direction from site P calculated from equation
(14), accounting for atmospheric refraction.

Since the orbit is tilted with respect to the local horizontal plane at
site P, the elevation angle of the geometric director to the orbit con-
tinuously varies as the orbit is scanned in azimuth. The refractive bend-
ing of a ray is a function of the geometric angle, so that the position of
the apparent, or refracted orbit, is above the geometric orbit and it
exhibits a constantly changing slope with respect to the latter.

The bent, refracted orbit is shown through point S. (apparent posi-
tion of interception point S with refraction; also, the antenna elevation
angle a, at the azimuth origin). The straight line labeled "geometric
orbit" is tangent at S (Fig. 8) to a radial projection of the geostationary
orbit on a sphere of radius PS centered at P. The horizontal line shown
through S also represents an arc, in edge view of a great circle through
S, parallel at S to the local horizontal plane at P, on this same sphere.
Hence, the angle 5 obtained from equation (19), corrected for refraction
while retaining the concept of a constant site latitude cp, is also accurately
represented by the apparent slope of the plane -figure geometric orbit
trace at the azimuth origin. Figure 11 illustrates the construction of
the corresponding refracted orbit trace.

The equation of the linear geometric orbit trace through S is

= -tan (3)AA + a. - Tai, , (20)
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where e' is the elevation angle of the geometric orbit trace corresponding
to an arbitrary displacement in azimuth LA from origin A.

Figs. 7 are entered with values of e' derived from equation (20) to
obtain total refractive ray -bending angles T . The refracted orbit
trace in Fig. 11 is then constructed by plotting points with coordinates
(A + PA, a') and connecting these with a smooth curve, where

a' = e' . (21)

VII. AZIMUTH DISPLACEMENT FROM INTERCEPT TO KEEP THE BEAM CENTER

AN ANGULAR SEPARATION V FROM (AND BELOW) THE MINIMALLY
REFRACTED ORBIT (N. MINIMUM)

Figure 11 also illustrates a solution to keeping an angular separation
v between the center of a circular beam and the geostationary orbit.
The circle centered on Sa and labeled "unrefracted beam" is a cross-
section of a conical figure of revolution with apex at antenna site P

(J)
LL1 -

W CC

_J

-1
Zap
<O z

0
Z>

_J

Fc
0

UNREFRACTED
BEAM

DEGREES FROM TRUE SOUTH

REF
p.cc BEAM

CENTER

OR

N

,(A,o)

r

N /*--___REFRACT ED
BEAM

Fig. 11- Orbit geometry as observed from site P.

ao

Tao

eo
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and 2v included angle (locus of all rays having angle v with respect to
the beam center). If elevation angle ao of the antenna is fixed by radio -
relay path parameters, the orbit can be avoided only by an azimuth
displacement of the beam. The required angular separation v between
the orbit and the beam center results when the latter is moved in azi-
muth away from intercept until the unretracted cone is just tangent
to the refracted orbit trace. Note that an identical relationship exists
between the elongated "refracted beam" and the geometric orbit trace.
However, since the former presentation is easier to develop and can
readily accommodate unsymmetrical beam cross -sections, it is pre-
ferred for following analyses.

Figure 12 represents the analytical solution of an illustrative problem
given in Appendix B and is helpful for visualizing subsequent pro-
cedures. From inspection

tan (5 - (a' - - (a. - Tao)' (22)

where a' is any point on the refracted orbit corresponding to arbitrary
displacement M from an azimuth intercept. Note that in the range of
interest M is negative with respect to azimuth , obtained from equa-
tion (14) using Ea = ao - Tao . Within a few degrees of intercept, the
geometric orbit is approximated by a line of constant slope S. Recall that
adjustment of the geometric orbit for refraction results in a refracted
orbit trace having a constantly changing slope with azimuth displace-
ment from the intercept. This displacement for a given elevation of the
refracted orbit is found by solving equation (22) for M:

(a' - T.,) - (a. - Tao)M - (23)
tan

Since the refracted orbit slope varies with elevation angle, no direct
mathematical solution exists for determining that azimuth displacement
providing an angular separation v between the beam center and the
refracted orbit, measured in a direction normal to the latter. However,
it is closely approximated by determining the slope of an orbit segment
including the region of interest. Figure 12 suggests that the refracted
orbit slope is everywhere less than the geometric slope. Hence, two
judiciously chosen points on the refracted orbit having elevations

al = ao v cos 3, a2 = ao v,

always bracket the appropriate segment. Figures 6 and 12 also show
that at these elevation angles the differential refraction is small. This
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supports the assumption that the slope of the small orbit segment in
this region is virtually constant.

The refraction corresponding to elevation angles as , al, and a2 are
calculated or determined from the charts. Substituting a. , 7,i. , al,
and Tai in equation (23) gives the azimuth displacement lifl corres-
ponding to al. Similarly, M2 is determined by substituting aa , Tao,
a2, and Tag . Slope H between the two chosen points on the refracted
orbit is given by

resulting in

tan H = (a2 - al)/(M2 - /1/1),

H = [v(1 - cos 6)/AM], (24)

where AM = M2 - 1111.
Figure 12 shows that azimuth displacement AA necessary to keep

the beam center an angular separation v from the refracted orbit is
Sac (equal to Sao plus oc).* By inspection, oc = v/sin H, od = v/tan H
and Sao = M2 - od. Assembling these into an equation for AA yields

= M2 - v/tan H v/sin H. (25)

7.1 Special Case

If a ray with initial angle aa intercepts the earth, a solution is obtained
by calculating angle air to the radio horizon as is described in Section II.
Then, substituting EH for Eo in equation (14), the orbit intercept for a
grazing ray is determined. When solving for the necessary azimuth
displacement from this intercept, aK and ra H are substituted for a. and
Tao in equation (23). Note, however, that in determining al and a2 for
substitution in equation (23), the use of ray angle ao remains valid.

VIII. AZIMUTH DISPLACEMENT FROM INTERCEPT TO KEEP THE BEAM
CENTER AN ANGULAR SEPARATION v FROM (AND ABOVE) THE MAXI-

MALLY REFRACTED ORBIT (N,, MAXIMUM)

The left side of Fig. 12 shows that the refracted orbit for the case
of maximum refraction falls below the radio horizon with azimuth
displacement from point Amax obtained from equation (14) using ell =
arr - Tag Since the earth intercepts all rays below the horizon, they
cannot affect the orbit and it is only necessary to displace the beam

* Notations such as Sac represent scalar distances between indicated points in
Fig. 12.
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center in azimuth sufficiently to maintain angular separation v from the
horizon intercept. The required displacement is

QA,, = [v2 - (a. - aH)11. (26)

In Fig. 12, all( -0.25°) is the initial angle of a ray which grazes at a
receiving station height of 0.4 km and originates at an assumed trans-
mitting height of 0.5 km.

As demonstrated in Appendix B, little increase in the critical zone
results if it is assumed that the angle to the radio horizon is equal to
the initial ray angle. Therefore, for manual calculations involving small
positive values of ao , these angles are assumed identical so that AA
is simply an angular separation v from the orbit intercept determined
for ao . For values of ao more negative than that for a grazing ray
(determined from Figs. 6 or by calculation), it is necessary to determine
au and the corresponding orbit intercept using equations (10) and
(14). Then equation (26) gives the necessary azimuth displacement.

IX. DETERMINATION OF THE CRITICAL ZONES

9.1 Critical Zones Defined

The critical zones to be avoided at radio -relay transmitting sites to
protect the geostationary orbit are defined:

Zari t = Amax ± AAmax to Amin - AAmin
(degrees from South), (27)

where values for A and PA for maximum and minimum refraction are
obtained as in Sections III, VII, and VIII. These zones are converted
to azimuth zones with respect to true north by subtracting the bound-
aries from 180 degrees for the easterly zone and adding them to 180
degrees for the westerly zone.

Calculations for stations in southern latitudes are identical except
that they are referenced to north rather than south. The easterly azi-
muth zone with respect to true north is obtained directly from equation
(27), while the zone boundaries are subtracted from 360 degrees for the
westerly zone.

9.2 Special Case

At latitudes exceeding go = cos-' (IC' cos if) - it is impossible
for the beam's center ray to be below the orbit with angular separation
v.* Hence, for such extreme northern latitudes, a single critical zone

* Derivation of this equation is given in Appendix C.
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spans south with both easterly and westerly boundaries defined by

Z. ri t = Amax + AA. (degrees from south). (28)

X. DETERMINATION OF MAXIMUM PERMISSIBLE RADIATED POWER

As mentioned in Section I, international agreements exist for maxi-
mum radiated powers.' For 6-GHz radio -relay transmitters whose
antennas point within v = 2° of the geostationary orbit, the power
limitation for separations less than 0.5° is 47 dBW relative to the iso-
tropic case (EIRP), increasing 8 dB per degree to a maximum of 55 dBW
(occurring at 1.5°). This limitation refers specifically to the center of
the major lobe. For this case, only the relationship between the refracted
center ray of the beam and the geometric orbit is considered.

If an existing or proposed path direction is between the critical values
computed as in Section III for maximum and minimum refraction, the
refracted center ray is likely to intercept the orbit for appreciable periods
of time. For such cases the maximum power is 47 dBW.

If the path direction for a system in the northern hemisphere is within
the critical zone but nearer to south (smaller) than Amin , the actual
separation p illustrated in Fig. 12 is

p = (Amin - Ap) sin 3, (29)

where A is the path direction measured from true south.
Conversely, if A exceeds Amax , the separation of the beam center

from intercept of the geometric orbit and the refracted horizon (Fig. 12)
is

where

p- RA, - A,)2 + I eff - 0 12111

ex = cen- - Tax , Eo = ao 'Tao 

(30)

Note that e. in equation (30) represents maximum atmospheric refrac-
tion.

If a ray having initial angle ao intercepts the earth, eo for use in equa-
tion (30) is indeterminate. For such special cases, a conservative ap-
proximation for the angular separation is p = A - Amax .

The maximum permissible effective radiated power P, dBW (EIRP)
is given for separation p according to the following criteria:

p < 0.5°, P, = 47;
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0.5° < p 1.5°, P = S(p - 0.5) + 47; (31)

p > 1.5°, P, = 55.

XI. CONCLUSIONS

A direct analytical method involving few approximations and assump-
tions can be used by system planners for calculating refraction -cor-
rected ranges of pointing azimuth for microwave radio -relay antennas
within which significant interference with geostationary communication
satellites can be expected. Required angular separations between the
refracted beam and the geostationary orbit are translated into required
azimuth displacements of a radio -relay antenna from that calculated
for orbit intercept; conversely, for cases where exposure is unavoidable,
means for determining the maximum transmitted powers permitted
by international agreement are presented.

Since all analytical expressions including refraction corrections are
readily amenable to machine calculation, both speed and improved
accuracy in estimating the pointing azimuths are possible. The sug-
gested refractive index limits are believed to be representative for the
large majority of exposures and useful for a standardized approach to
the problem. For more general applications, where refractive index
variations are known to be different, one may use the same principles
to generate his own applicable correction curves.
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APPENDIX A

Estimation of Antenna Elevation Angles

The initial beam elevation angle for a radio -relay antenna is deter-
mined by the geometry of transmitting and receiving locations, the path
length, and refraction. The final alignment based upon transmission
measurements, if recorded, is preferred for these calculations. The
antenna elevation angle for proposed radio -relay paths can be estimated
using the method given below with sufficient accuracy.
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Figure 13 depicts radio -relay transmitter T and receiver R at eleva-
tions OT and OR above geocenter 0, assuming a spherical earth of radius
ka. Coefficient k is the ratio of apparent earth radius to true earth radius
and accounts for refraction in the lower atmosphere!' The path length
is represented by arc D (great circle length at mean sea level). The trans-
mitting and receiving antenna heights with respect to mean sea level
are denoted by hT and hR , respectively.

Inspecting Fig. 13, 4 = D/ka radians, C' = 2(ka hT) sin (41/2),
and a, E - 4)/2 radians. From triangle TT'R and laws for plane
triangles

(hE - hr) sin (7r/2 - 0/2)tan E -
C, (hR - hT) cos (r/2 - 0/2)

It can also be shown that

(32)

01, = tan-'
hR - hT - D/2ka radians, (33)

[tan (D/2ka) X (2ka hR 117)

where hR , hT , n, and a are expressed in the same units.
Reference 2 provides a formula and a table relating k and N . For

most calculations, a value of k = 4 results in sufficient accuracy' (the

MEAN SEA
LEVEL

ka+hr

1T/2+/2

Fig. 13 - Geometry of antenna elevation angle.
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geometries of radio -relay systems within limits of normal site elevations
require antenna elevation angles which are relatively insensitive to
values chosen for k).

APPENDIX B

Illustrative Calculation

Problem Input for a Particular Radio -Relay Site:

Latitude go 38°N,
Transmitter Height lir- 0.5 km,
Receiver Height hR - 0.4 km,
Path Length D - 28 km,
Path Azimuth A - 97.75° with respect to true north, equivalent

to 82.25° from south towards east,
N. Limits - 250 and 400 N units.

B.1 Antenna Elevation Angle

From equation (33) and using k =

0.5
ac, = tan" [tan [(28/(2.66 X 6373)](2.66 X 6373 + 0.4 + 0.5)

28
2.66 X 6373

= -0.00523 rad, which converts to -0.3°.

B.2 Geometric Elevation Angle for N.. = 250

From Fig. 6a

eo = a, - = -0.3 - 0.59 = -0.89°.

B.3 Azimuth Intercept for N. = 250

From equations (13) and (14)

(3 = cos" [0.1509 cos (0.89°)] + 0.89 = 82.2°,

Amin = cos" [tan (38°)/tan (82.2°)] = 83.86° from south.

B.4 Orbit Slope for N. = 250

From equations (12) and (19)

SZ = sin' [0.1509 cos (0.89°)] = 8.68°,

3 = tan" [tan { c o s [sin (38°)/sin (82.2°)]] cos (8.68°)] = 51.26°.
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B.5 Azimuth Displacement for v = 2° below the Orbit

From equations (23), (24), (25), and Fig. 6(a)

ao = -0.3°, re,. = 0.59°,

al = -0.3 + 2 cos (51.26°) = 0.95°, Tal = 0.35°,

a2 = -0.3 -I- 2 = 1.7°, Ta2 = 0.28°,

1111 = [(0.95 - 0.35) - (-0.3 - 0.59)] ÷ tan (51.26°) = 1.19°,

M2 = [(1.7 - 0.28) - (-0.3 - 0.59)]
31 = tan -1 [2[1 - cos (51.26°)]/0.66}

÷ tan (51.26°) =

=

1.85°,

48.62°,

= 1.85 - 2/tan (48.62°) -I- 2/sin (48.62°)

2.76° toward south from intercept.

B.6 Horizon Intercept for No = 400

From equations (1), (2), (3), (4), (10), (12), (13), (14), and Fig. 6(d)

NB = 400 exp (-0.4/7) = 377.78 or from Fig. 5(a),

AN = -7.32 exp (0.005577 X 377.78) = -60.2,

C,, = in [377.78/(377.78 - 60.2)] = 0.17,

NT = 377.78 exp [-0.17(0.5 - 0.4)] = 371.28 or from Fig. 5 (b),

aff = -cos-1 [1.000377 6373.4] = -0.25°,X
1.000371 6373.5

Taff = 1.22°,

EH = -0.25 - 1.22 = -1.47°,
3 = cos' [0.1509 cos (1.47°)] + 1.47 = 82.79°,

Amax = cos" [tan (38°)/tan (82.79°)] = 84.33° from south.

B.7 Azimuth Displacement for v = 2° from Horizon Intercept

From equation (26)

AAm.. = [(2)2 - (-0.3 + 0.25)2]/

= 1.99° toward north from intercept.

B.8 Critical Zone

From equation (27)
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Z0,.1, = 84.33 + 1.99 to 83.86 - 2.76

= 86.3° to S1.1° from south.

B.9 Azimuthal Zones

True -north azimuths:

93.7° to 98.9° easterly, and

266.3° to 261.1° westerly.

The path azimuth of 97.75° falls within the easterly azimuthal zone.

B.10 Relative Longitude to Suborbit Intercepts

From equation (15)

= sin' [sin (83.86°) sin (82.2°)] = 80.04°,

Amax = sin" [sin (84.33°) sin (82.79°)] = 80.82°.

B.11 Maximum Permissible Radiated Power

Comparing the path direction of 82.25° from south with the critical
zone found in Section B.8 and with A, and Am,. found in Sections B.3
and B.6 reveals that equations (29) and (31) are appropriate for calculat-
ing the angular separation and permissible power:

p = (83.86 - 82.25) sin (51.26°) = 1.23°,

P, = 8(1.23 - 0.5) + 47 = 52.8 dBW at 6 GHz.

B.11.1 Alternate Power Calculation

An alternate calculation is indicated when the path direction is further
from south than A max . Assume that A, is, instead, 85.25° from south
(left side of Fig. 12). The appropriate equations are now (30) and (31).
A value of E. for maximum refraction is required for equation (30).

From Section B.5, Fig. 6(d), equations (30) and (31)

ao = -0.3°,

Tc, = 1.3°,

e = -1.6°,
p = [(85.25 - 84.33)2 + (-1.47 + 1.6)211 = 0.93°,

P, = 8(0.93 - 0.5) + 47 = 50.4 dBW at 6 GHz.
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APPENDIX C

Alternate Derivations of Basic Equations and Critical Latitudes

All following relationships are expressed in terms of latitude (p of radio -
relay site P. shown in Fig. 14 (a constant), and the maximum latitude
for which the refracted geostationary orbit is visible to the antenna
(a constant elevation angle).

PLANE 0 -S-Pv = LOCAL
VERTICAL PLANE THROUGH
SATELLITE S

7
42`?/*to

\rx

4<6sC L.
//

GE0ST Ai- IoNACO
°C1S3

t ORBIT TANGENT AT S

Fig. 14- Angle 0, between orbit tangent and local vertical plane O -S -P,,.
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ca Latitude Limit of Visibility for the Geostationary Orbit

Figure 14 shows that the maximum latitude visible to the geosta-
tionary orbit is

cp, = cos' [K-1 cos (ao - Tao) - ao - Tao

= 11,

where

(34)

ao = known elevation angle of the radio -relay antenna,
Tao = corresponding total ray -bending angle due to refraction in-

ferred from CRPL Exponential Reference Atmosphere' or from Figs. 6
of text, and

K = ratio of orbit radius R to assumed earth radius a.

Hence, equation (34) is a restatement of equation (13).

C.2 Pointing Azimuth to Orbit Intercept

The larger of angles formed by intersection of site latitude circle co
and the visibility circle corrected for antenna elevation and refraction
shown in Fig. 14 is a direct measure of the pointing azimuth to be avoided
for a station located at that intersection (PO. Hence, angle AN between
tangents T, and To is the supplement of pointing angle A given by
equation (14) referred to true south. From the geometry of Fig. 14

A, = cos {-sin [tan" (I (1 - - cos' g)i I)]
sin co

 cos [tan -1
(I (1 - sin" so - cos' 0)/ I)

COS

7r/2 < IAN I < 7r. (35)

Equation (35) yields two pointing azimuths which are of interest;
one in the second quadrant referred to true north, corresponding to a
westerly direction for stations in the northern hemisphere-and one
in the third quadrant, or easterly direction. Reversed directions result
for stations in the southern latitudes.

Figures 15 illustrate changes of variables which simplify the demon-
stration of equivalence between equation (35) and equation (14). Since
cos' (3 = 1 - sin' and cos' cp = 1 - sin' cc,

cpAN = cos' {-sin [tan-' in
(sin2 # - sin' co) i I)
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[ cos tan - (I (cos' - cos' 0)4 1)1}
cos 3

Substituting u and v (Figs. 15) and reducing the result yields

AN = cos' ( - sin /.4 cos v).

Now, substituting forµ and v provides

AN = cos" [-(sin co/sin j3)(cos 13/cos so)]

= cos" (-tantan 13) '

which is exactly the supplement of the angle obtained from equation (11)
in the text.

C.3 Longitude Displacement of Orbit Intercept

The earth -longitude displacement between radio -relay site P, and
suborbital intercept S' in Fig. 14 is also inferred from equation (35):

X = tan" [1 (1 - sin' ccs - cos' 0)1 0 5IXI<ir/2,
cos i3

= sin' (sin A sin 13), (36)

from which first and fourth quadrant longitude adjustments are referred
to the suborbital longitude. The equivalence with equation (15) is
demonstrated using techniques indicated above and identifying angle
uniquely with the maximum latitude for visibility coma. (Section C.1).

C.4 Geometric Orbit Trace

Since the size of the visibility circle in Fig. 14 depends upon a, and
rao , the earth -longitude displacement X between P, and S (same
longitude as suborbital point S') also depends upon a, and Tao . Because

SIN

(a)

cos fl

( b)

cos2 ccs2fl)a

Fig. 15-Change of variables: (a) angle A and (b) angle P.
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the resulting viewing aspect depends upon these parameters, the slope
of the geometrical orbit trace constructed in Fig. 11 also depends upon
a. and Tao as well as (p.

Note that the angle between orbit tangent t constructed at S and the
local vertical plane at P. through S is denoted by 0, . This angle is
observed undistorted at point S', but appears to be a slightly enlarged
angle for an observer at I), (as if point S were visible without ray
bending):

= tan' (tan chi/cos 1). (37)

Hence, complementary angle 3 between orbit tangent t and a line
through S perpendicular to the geometrical line -of -sight SP, and parallel
to the horizontal plane at P. is also the slope of the corrected geometric
orbit trace shown in Fig. 11,

-- cot" (tan fit/ cos 0)

{ tan [sin" (sin (p/sin 3)]= cot' cos {tan' [sin 13/(K - cos 13)] If

= tan" {tan [cos" (sin (p/sin 13)] cos S2I , (38)

for which equivalence to equation (19) is shown using the techniques
incorporated in Sections C.2 and C.3.

C.5 Maximum Latitude Permitting Angular Separation v Below the Orbit

A maximum latitude exists for each antenna elevation angle allowing
the beam -center ray to be below the refracted orbit with prescribed
angular separation v. Figure 16 illustrates the determination of this
critical latitude. Sp is a point on the geostationary orbit having zero
relative longitude with respect to station site I', . A ray emanating from
the antenna with initial vertical angle (r/2 + ao v) must just inter-
cept the orbit. Accounting for refraction, the angle between the geo-

Sp

Fig. 16- Geometry determining the critical latitude.



3422 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969

metric director of the elevated ray and the local horizontal is NI, =
[ao v - r(a.)]. Site latitude co and are related by triangle OP,S, .
From the Law of Sines

sin (r/2 4,) sin 1-2Ra
Letting R/a = K,

SZ = (K' cos *).

Since 4- co r/2 = r,
= (K' cos - 4/.
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An Extended Correlation Function of
Two Random Variables Applied to

Mobile Radio Transmission

By W. C. -Y. LEE

(Manuscript received June 16, 1969)

The definition, properties, and application of an extended correlation
function of two random variables involving two common parameters are
described and applied to mobile radio systems. The correlation functions of
a predetection diversity combined signal (using a scheme of phase equalizing
by multiple heterodyning) and of a directional antenna array signal are
derived with the help of the extended correlation function.

These correlation functions can be used to determine parameter values
giving minimum correlation between two signals desirable for diversity
systems. One can also obtain the power spectra by taking the Fourier trans-
form of these correlation functions. Thus extended correlation functions
promise to be useful.

I. INTRODUCTION

If two random variables depend on only one common parameter,
such as time or distance, conventional correlation formula can be ap-
plied to the two variables. However, if both of these variables involve
not one but two common variable parameters, then the correlation
formula found in the current literature is limited.* Since such cases occur
in some of our mobile radio problems, as we discuss later, we need to
define an extended correlation function and outline its properties and
applications.

II. DERIVATION OF AN EXTENDED CORRELATION FUNCTION OF TWO
RANDOM VARIABLES INVOLVING TWO COMMON PARAMETERS

A conventional normalized correlation function of two random
variables a.' and r2 , both of which are functions of one parameter

* Prior to acceptance of this paper for publication, the author was advised that
a similar concept was discovered independently by A. Papoulis in his recently
published book?
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d[that is, r, (d,) and 72(d2)] can be expressed as2

R,2(d1 , (12) - in,m2
AI 2 ((/ , d2) =

61(72

(r1(di)r2(d2))ar 1)),.# 2(d 2)) ,i,

i(r2i (di)).,- - (r, (d1)),2,]4' [(r(d2)),. - (r2(d2))2avi 4

where m's are the mean values, 0-2's are the covariances, p12(di , d2) is
in the range 0 < P12(di d2) I < 1, and R12(d1 , d2) = (ri(d1)r2(d2))av
is the correlation function.t

Supposing a random variable ri(Di;di) is a function of two parameters
D, and di , and another variable r2(D2 ; d2) is a function of two param-
eters D2 and d2 ; the normalized correlation functions of these two
variables can be deduced from equation (1):

p, 2(D, , D2 ; d 1 , d2)

R12(D1 , D2 ; d1 , d2) - gin, m.2

0-162

(1)

(r1(D1 , d,)r,(D2 , - (r1(D1 d1)).,(r2(D2 d2))-
[(r2i(DI , di))v - (r1(D1 , d1))2.]4[(r(D2 , d2))iir - (r2(D2

(2)

If the problem we are dealing with is a stationary random process for
both of the parameters D and d, then

Ri2(DI , D2 ; d1 , d2) = R12(D1 - D2 ; di - d2),

(rk(Dk , = (rk(0 , 0)),, = mk

(rk(Dk , d k)), - mx = (r:(0 , 0)) - mk = 0-2 ,

where k = 1, 2. Now mk and ak are constants and we may let D = D1 -
D2 and d = d, - d2 . Then equation (2) becomes

1012(D d) =
Ri2(D, d) - m1m2

(3)
0i 2

We call p12(D, d) a normalized extended correlation function of the first
kind. Also we note that p12(D; d) in equation (3) is always smaller than
P12(0; 0) which is equal to one:

p12 (D; P12(0; = 1.

t The terms "correlation function R12(d1, d2) and normalized correlation func-
tion p1:A(4 d2)" are adopted from Ref. 3, p. 59.
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When the difference D is equal to zero, then

P12(0; d) = p,2(d).

Now we should illustrate and extend equation (3). We are going to
find an extended correlation function of the first kind from a function
e(D; d1 , d2 , d3 , , d,) where all the d's are function of D and another
parameter a [that is, d; (D, a) for i = 1, m], then

R,(D; di , d2 , d3 ,
,dm)

= (E[0; di(0, 0), d2(0, 0), d3(0, 0), .)

E(D; di(D, a), d2(D, a), ,

and the normalized correlation function can be derived from equation
(2) as

P,(D; di ,X12 , , d,) - R,(D; d, - , dm) - m2,2

0-E

where

me = (e[0; d1(0, 0), d2(0, 0), d3(0, 0), , dm(0,

(72, = (e2[0; d1(0, 0), d2(0, 0), d3(0, 0), , d77,(0, - Mn; .

If we consider the case d; (D, a) is a constant for all D and a itself is
a constant, then we may assign a new symbol R,(D I dl , d2 , , dm)
which can be expressed as

R,(D I di , d2 , , d,)

- ((0; di , d2 , , dm)f(D; di , d2 d3 , , dm))ftv

R,(D I d d2 , d, , , dm) is a correlation function under a condition
that all di , d2 , d3 , , dm are constants. The normalized correlation is

R,(D  d2 , , d,) - m2,
13(D d2 , ) - d

(4)
0-,

where m, and a, have been defined previously. We call equation (4)
the normalized correlation function of the second kind. As we will show
in the Section III, the extended correlation function of first kind p12(D; d)
and the extended correlation function of second kind P12(D I d) can be
used to obtain the correlation of signals from two diversity scheme re-
ceivers easily.

In order to give physical meaning to these functions, let us consider
the following two cases. Suppose that two base -station multibranch
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diversity receiver arrays are separated by a distance D. The antenna
spacing between branch -antenna elements for the first array is d, and
for the second array is d2 . Both receivers simultaneously receive the
signal from a distant mobile radio unit. We would like to determine
the values of d, , d2 , and D to obtain the least cross -correlation de-
sirable for the best diversity reception of these two received signals.
The extended correlation of first kind pi2(D, d, , d2) may be used in
this case.

The second case assumes that a mobile radio multi -branch diversity
receiver array, with given uniform antenna element spacing d, moves
along the street with a constant speed V. The autocorrelation of a
signal e, received by the mobile receiver, can be obtained from the ex-
tended correlation function of the second kind p,(D I d). Alternatively,
we can also consider a multielement directive antenna instead of the
diversity scheme. In this paper, we only treat the latter case. The
former case can be solved following the same technique.

III. APPLICATION TO MOBILE RADIO PROBLEMS

3.1 Derivation of the Correlation Function of a Signal Received from a
Predetection Diversity Combining Receiver

A multichannel predetection diversity combining system is a scheme
for bringing a number of RF carriers to a common phase by means of
multiple heterodyning. Then a linear combiner at the IF frequency is
used to sum the individual channels.' A signal received from this system
is called a predetection diversity combined signal.

Suppose that a signal consisting of multipath vertically polarized
waves is received by an ill -branch predetection combining mobile re-
ceiver with a 111 -antenna space diversity array. The M -antennas are
spaced by di , d2 ,  dm respectively from an arbitrary common point.
After the array has moved a distance D, the received signal E, which is
the sum of the M individual signal amplitudes received from M indi-
vidual antennas, can be expressed as'''

e(D; d d2 , d3 , , , d.,,) = r,(D; d1) r2(D; d2) r3(D; d3)

-I- -I- rm(D; dm)

= E r,(D; dm), (5)

where all are functions of distance D and antenna spacing dm (see
Appendix A). For a mobile radio signal,'' or a long range fading signal,'
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the rn, are usually Rayleigh distributed. Suppose that all d's are con-
stants, then the autocorrelation function of the signal given in equation
(5) as a function of the separation distance D is an extended autocorre-
lation function of second kind which can be expressed as

RE(D I d d2 , d3 , , )
= ((0, d1 , d2 , d3 d4 ,  )e(D; d1 , d2 , d3 , d4))ftv

i
If

E E r,(0; d,)rn(D; dO)
M = 1 n=1, nv

If AI

= E E Rmn(D) d, - d).

(6)

,n=1 n=1

Using equation (3), this can also be written

RE(D I dl d m) = P.(D I di , , d m) (cD (7)

where

Uf = (62(0; d , dm)) - ))/,

(e2(0; d1 , , dm)), = (( E r,(0; d,))2)
1 a

= E E (r,(0; dm)r(0; d,))8,

(8)

.11 .11

= E E le,  (o; (1, - d). (9)

Substituting equation (8) into equation (7), and combining equations
(6) and (7), we obtain

E E 1?,(D; , - d) - 777
Pe(D d1

" dilf) If 1if (10)

E E R,(0; d, - d,i) - 771,

The terms Rmn(D; dm - d) can be found from equation (3);

Rmn(D; - d) = p,(D; dm - dOcr,a monn (11)

and
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m2, = (e(0; d, dm)):y = rm(0;

= [ (r,,(0; d,)) 2,1
M M

= E E mom-
' I

Hence the correlation function of equation (10) becomes, assuming
Cr ns Cfn

(12)

M M

E E pmn(D; dm - dn)
Pt(D I , , dm) = '11;1 n;1 (13)

E E p,n(0; dm - dn)
m-1 n=1

If all spacings between two adjacent antennas are equal, then dn, -
dn = - n)d1 where d1 is the distance between two adjacent antennas.
We may let d = d1 , and simplify the notation of equation (13) to

M M

E E p,n(D; d)
p,(D

I
d) = nr1 =i (14)

E E pmn(0, d)
m=1 n=1

Equation (14) shows that a normalized autocorrelation function of
an M -branch predetection combined signal is a normalized extended
autocorrelation function of second kind in terms of all individual nor-
malized correlation functions between branches. We notice that

p,(D
I

d) p ,(0
I
d) = 1, (15)

and as stated in Section II

Pmn(0; d) = Pmn(d)

We may also realize that

Pia); d) = P23(D; d) = ,034(D; d) =
and

(16)

p,3(D; d) = P24 (D; d) = p35(D; d) = . (17)

Hence, equation (14) can be further simplified as

p(D d)

M ()lid -(M -1)(1)12H P21)+(111 -2)(P13 -1-P31)+  + Pim+ Pmi
iVI 4+(1 -1)(P°12+ P°21)±(11- -2)(1)013+ P031)+ P0im-F P0m

(18)
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where pnin = pmn(D; d) and PL,(0; d) used in equation (18) are for sim-
plicity (p, and p, are derived in Appendix A). If we let the antenna
spacing d/X = 0, then p, (D 10) from equation (18) represents the
correlation function of two single -branch signals

p, (D 10) = 4(3D) (19)

which agrees with that in Ref. 6.
Several numerical calculations have been carried out for the following

example: Two four -branch diversity receivers, each of them with fixed
antenna spacing d/X = 0.5 or d/X = 1.0, are mounted on the roof of
the mobile unit, as shown in Fig. 1. These two receivers are separated by
a distance D/X (D/X varies from 0 to 4) for two cases, a = 0° and a =
90°. The calculations of the extended correlation function p, (D I d) of
these two signals, obtained from their respective receivers when the mo-
bile unit is moving, are shown in Figs. 2 and 3. Both figures indicate the
values of D/X which give the least correlation between two signals. We
also note that the correlations at a = 0° are higher than that at a = 90°.
Figures 2 and 3 can also represent the auto correlation of a signal re-
ceived from a single four -branch diversity receiver which has its antenna
spacing d/X = 0.5 or 1.0 and moves on a street with a constant speed
V(D = Vt). The power spectrum of such a signal can be obtained by
taking the Fourier transform of its autocorrelation function.

3.2 Derivation of the Correlation Function of a Signal Envelope Received
from a Directional Antenna Array

Signal reception from a directional antenna array with M antenna
elements has been also suggested as a means of overcoming multipath

,r
/ D

d
WHIP ANTENNA ELEMENT

Fig. 1- Coordinate system of a M -branch diversity mobile radio receiver
(M = 4 branches).
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Fig. 2-Normalized autocorrelation function of a four -branch diversity re-
ceiver moving at a = 00.

fading in mobile radio propagation.1°' The derivation of the correlation
function of this signal envelope is as follows.

Suppose that the same kind of signal which consists of multipath
vertical polarized waves as mentioned in Section 3.1 is received by a
directional M -antenna array. The Al antennas are spaced by d, , d2

-C3
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Fig. 3 - Normalized autocorrelation function of a four -branch diversity re-
ceiver moving at a = 90°.
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d3 , , dm respectively from an arbitrary common point. After the
antenna array is moved by a distance D, (see Fig. 4) the received
signal envelope e which is the amplitude of the sum of M individual
signals can be expressed as"

E(D; d1 , (12 d3 , ,dm)

= I s,(D; d1) s,(D; d,) -I- -I- sm(D; dm)

E s,(D; d,)

= I X(D ; di , d, , - , dm) jY(D; di , d2 ,
. , dm) I, (20)

where s, is a complex variable which represents the amplitude and the
phase of an individual signal. X and Y are the real and imaginary parts
of the total signal.

If the spacings between adjacent antennas are equal, then antenna m
and antenna n are separate dyb dm - di, = (m - n)d. Therefore X and
Y of equation (20) are functions of D and d only. Suppose that all d's
are constants, the autocorrelation function of signal envelope e can be
obtained by using the equation:"

(X1(0; d)X2(D; d))2av ± (X1(0; d)Y 2(D, 61))2.,p,(D d) (21)
(V(0; d)),2,

qtr,

WHIP ANTENNA
ELEMENT

Fig. 4 - Coordinate system of a broadside directional antenna array (M = 8
elements).
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pe(D I d) --

where

provided X and Y are gaussian variables, all (X,), are zeros, and
(X,2).,. and (Y,2), are equal, where m = 1 or 2. These facts are shown
in Appendix B. If the antenna spacing d/X = 0, then p. (D I 0) actually
represents the correlation between two single -branch signals, which
agrees with equation (19) and Ref. 6.

The normalized correlation function of a signal received from a
broadside directional antenna array is

[Jo(A1) + Jo(BI) + Jo(A2) + Jo(B2)] }2

T4 [i i V0(A0) + Jo(Bo)J11
..=.1 t,q

MK = T

M + 1
2

for M is even

M for is odd,

(22)

and A, , B, , A2 , and B2 are shown in equation (48). A 0 and Bo are
shown in equation (49).

Several numerical calculations have been carried out for the following
example: Two eight -element broadside antenna arrays, each of them
with fixed antenna spacing d/X = 0.5 or d/X = 1.0, are mounted on
the roof of the mobile unit. These two arrays are separated by a distance
D/X (D/X varies from 0 to 4) for two cases a = 0° and a = 90°. The
calculations of the extended correlation function p,(D I d) between two
signals received from their respective arrays when the mobile unit is
moving are shown in Figs. 5 and 6. Both figures indicate the values of
D/X which have the least correlation between two signals. The extended
correlation curve of d/X = 0.5 is quite different from that d/X = 1.0 in
both figures. The curve of d/X = 0.5 in Fig. 5 shows that the high
correlation and low correlation are about 0.25X apart; however, this
phenomenon does not appear for d/X = 0.5, but rather for d/X = 1.0
in Fig. 6. It can be explained as follows. For the directional antenna
array with spacing d = X/2, most of the energy is contained in the two
major broadside lobes, while for the directional antenna array with
antenna spacing d = X, most of the energy is contained in the two major
end -fire lobes. As the vehicle moves, strong standing waves may occur
when the major antenna lobes lie in line with the motion of the vehicle,
such as for the case a = 0° and d = X/2; or the case a = 90° and d = X.
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D

a =0°

Fig. 5-Normalized autocorrelation function of an eight -element directional
antenna array pointing at a = 0°.

The autocorrelations obtained from these standing waves, then, be-
come oscillatory in nature, as we would expect.

Figures 5 and 6 can also represent the autocorrelation of a signal re-
ceived from an eight -element broadside antenna array which has its
antenna spacing d/X = 0.5 or 1.0 and moves on a street with a constant
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Fig. 6 - Normalized autocorrelation function of an eight -element directional
antenna array pointing at a = 90°.
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speed V (D = Vt). The power spectrum of such a signal can be obtained
by taking the Fourier transform of its autocorrelation function as we
mentioned in Section 3.1.

W. CONCLUSION

The derivation of a general correlation function of two random
variables, each of them involving two parameters, has been obtained.
The terms "extended correlation function of first kind" and "extended
correlation function of second kind" have been defined. The application
of the extended correlation function is demonstrated. The correlation
function of a diversity signal and the correlation function of a directional
antenna array signal are derived with the help of the extended correlation
function in this paper. Several numerical calculations have also been
carried out. From these correlation functions we can obtain the least
correlations between two signals under certain circumstances. Also,
we can obtain the power spectra by taking the Fourier transform of
these correlation functions. Thus, it seems likely that these functions
will find general application.
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APPENDIX A

Finding Normalized Cross Correlation Functions From Individual
Branch Signals of a Predetection Diversity Combining Receiver

It is easy to show that the signal from branch m in equation (5) is

r, = E Au exp [-HOD cos (Bu - a) + j(m - 1)(3cl cos Bu]

= X, jY, I , (23)

where
A u = Ru jSu ,

Xn, = E Ru cos 4)u + Su sin ou ,
u-i

Yu, = E Su cos cku - Ru sin Ou ,
u-1

(25)

(26)



EXTENDED CORRELATION FUNCTION 3435

= OD cos O. - (m - 1) (3d cos O. (27)

(R,, and S. are independent gaussian amplitudes with zero mean and
unit variance). The diversity receiver is located at the point (D, a) in
polar coordinate. The distance D, the angle a, and the arrival of uth
wave at angle 0 are shown in Fig. 1. We assume the N waves are uni-
formly distributed in angle. Now we can average the product of two
components of two branches-branch m and branch n-as

(X,n(Di)Xn(D,

= (X ,(0)X(D)),

= NE{cos [BD cos (O. - a) - (m - n)0d cos MI

= o(a)Jo(b) - I 2(a). I 2(b) 2J 4(a), 4(b)

- 2.16(a)(16(b) ]
= N.1 (a2 1)2)1

where15

(28)

a = SD cos a - - n)13d, (29)

b = i3D sin a, (30)

a2 b2 = (BD)2 (m, - n)2((3d)2 - 2(m - n)32Dd cos a, (31)

and

(X,n(Di)Y(Di D)).,

= (X,(0)Y(D)),,

= NE [sin [(3D cos (0 - a) - (m - n)(3d cos 0.11

= 0. (32)

Also

(X ,2(D i)) = (17 = N. (33)

Substituting equations (28), (32), and (33) into the following equa-
tion''"

p,(D, d) (X ,(0 ; d)X(D; d))2 + (X ,(0 ; d) Y(D; d))!,
(34)

(X,t(0) d)):v

Then we obtain the final result

pm(D; 4[0(31))2 + - n)2 0(3D)2 - 2(m - n)2Dd cos ail
(35)
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and

pmn(d) = p,uu(0; d) = Jg(m - n)i3d]. (36)

We also can show the relations

P12 = P23 = P34 ; P21 = P32 = P43 ,

P13 = P24 = P35 ; P31 = P42 = P53 )

Pmn 0 pun, for m 0 n,

pmn(D; d) = pnm(-D; d).

APPENDIX B

Finding a Normalized Correlation Function From a Real Part and an
Imaginary Part of a Signal Received From a Directional Antenna Array

It is easy to show that a signal consisting of N multipath vertical
polarized waves received from an equal -spaced directional antenna
array at a distance D from a reference position isle

Ez(D; d) = i Auf1 + exp (j) + exp (j24,)

+ exp (j3tP) + + exp [i(111 - 1)C1
 exp (OD cos O.), (37)

where Au was defined in equation (24),

ip = gd sin (a - Ou) ± (5,
d is antenna spacing between two antennas,

M is the number of elements,
a is the normal direction of the array,
a is the relative phase between antennas,

D is the distance measured from the coordinate origin to the center
position of antenna array. (The center position of the antenna
array is assumed always on the axis, that is, at the position
(D, 0).), and

O. is the angle of arrival of the uth wave and is assumed to be uni-
formly distributed.

The coordinate system of a directional antenna array is shown in
Fig. 6. Since the spacings between antennas are equal, we can let the
phase refer to the center point of the array. Then equation (37) can be
simplified by combining the first term and the Mth term, the second
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term and the (M - 1)th term and so forth.' The result becomes

Ez(D; d) = E Au exp (jOD cos au)
t1 = 1

[2 cos ef - 11G/ ± 2 cos - 3 4/)
2

where

 + 20]

(38)

Q = 1 if /II =odd

= cos (11p) if M = even.
Equation (38) can be separated into a real part and an imaginary part as

Ez(D; d) = X + jY

and

(D; d) = Ez(D; d) I = (X' + Y2)4, (39)

where
K N

X = 2 E E [R cos (OD cos 0) - St, sin (OD cos On)]

= 2

mat ti =2 1

K

/=1
XIII

(3/ ± 1 - 2ni
 cos

2

K N

Y = 2 E E [R sin (3D cos au) S cos (3D cos Bu)]
m=1 u=1

± 1 - 2m
 cos

2

K

(40)

= 2 E y, , (41)

where

= M
if X17 is even

= ± 1 if M is odd.
2

(42)
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Since R and 2,, are independent gaussian variables, it is easy to
realize that all xm and y, are independent gaussian variables. Hence
X and Y are also gaussian variables. The mean values of X and Y are
zeros, and the mean squares of X and Y are the same. Therefore equa-
tion (21) can be applied. The following term in equation (21) can be
replaced by

(X1(0;d)X2(D; d)), = x,(0 ; d)1[± xm(D; d)]
m-i m-i
K K

= 4 E E (x,(0; d)x(D; d)) . (43)

The term (X, (0; d) Y 2(D; d)) also can be obtained, and is equal to equa-
tion (43), by replacing x by y . Then equation (20) becomes

pi(D/d) =
K 2 K K

2E E (x,(0 ; d)x(D; d)),1 E E (x (0 ; d)y(D ; d)),
m=1 n-1 m.=1 n= I

, (44)

[ 2(x ,(0 ; d)x(0; d)),1
III = 1 =1

where K is shown in equation (42), and

(x,(0; d)x(D; d)), = (cos (OD cos 0)  {cos [(M + 1 -m - n)0]

+ cos [(m - n),,G] } ,

(x.(0, d)y(D, d)), = --A,jr- (sin (13D cos 0)  {cos + 1 -m - n)1,/,]

+ cos [(m - n)1,//]})., , (45

and

= tld sin (a - O.) + a.

Now we may consider only a broadside directional antenna array,
that is, 6 = 0. Then the following terms can be derived:15

(cos (a cos 0.)  cos [b sin (a - 0.)])av

= 2(cos [(a b sin a)cos 0 - b cos a sin Oth]

+ cos [(a - b sin a) cos 0 b cos a sin 0]),

= i[Jo(A) .1 0(B)i, (46)



where
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A = (a2 2ab sin a + b2)1,

B = (a2 - 2ab sin a + b2)1,

(sin (a cos t9) cos [b sin (a - 0)]) = 0. (47)

Inserting the general formulas equation (46) and equation (47) into
equation (45), it becomes

(x,(0; d)x(D, d)), = [Jo(A1) J0(131) Jo(A2) Jo(B2)1

(x,(0; d)y(D; d))r = 0 (48)

where

A1}
= 2Dd(M 1 -m - n) sin a ± d2011- ± 1 -m 2ii

B.

,B2} = 13[W ± 2Dd(m - n) sin a + d2(m - n)2]1.

From equation (48), we can deduce the results

(x,(0, d)x(0; d)),

= N 1.10d(M + 1 -m - n)] Jo[Ocl(m - n)])

= 000 Jo(Bo)]

and

(49)

(x,(0; d)) = NIJo[f3d(111 + 1 - 2m)] + 1 }. (50)

Then substituting equations (48) and (49) into equation (44), we com-
plete the derivation of a normalized correlation function of a signal
received from a broadside directional antenna array.
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Sputtered Glass Waveguide for Integrated Optical Circuits

By J. E. GOELL and R. D. STANDLEY

(Manuscript received September 16, 1969)

A series of papers which appeared in the September 1969 issue of the
Bell System Technical Journal treated the theory of dielectric wave -
guides and stressed the potential use of such media for optical communi-
cation circuits.' Here we report on the realization of low -loss, thin
glass films which can be used for circuit fabrication. Methods of pre-
paring planar films and waveguides having rectangular cross section are
described along with the techniques used in evaluating their optical
characteristics.

The films we used for waveguide fabrication have been prepared by
RF Sputtering of suitable glasses. The sputtering system used was oil -
diffusion pumped and had five -inch diameter electrodes. Oxygen was
used as the sputtering gas. The best films obtained to date were made by
sputtering Corning 7059 glass. For convenience, in the early stages of
this work, laboratory slides have been used as substrates. Necessary
steps were taken to ensure that the substrates were clean.

The index of refraction of the films was measured to be 1.62 by
determining Brewster's Angle for the films as described by Abeles.' From
the color of the film and by interferometer methods the film thickness
was found to be about 0.3 ium.

The transmission loss of the films was measured by two methods.
Both use prisms to launch a light beam into the film." In method 1 it is
assumed that the scattering centers in the films are uniformly distrib-
uted. A fiber optic probe is then used to measure the intensity of the
light scattered at right angles to the film. In method 2, the intensity of
the output beam is measured as a function of launcher position along
the film. Method 2 appears least accurate due to variations in launching
efficiency as a function of prism movement. Method 1 works well to
losses of the order of 1 db per cm. Below this level, the variability in the
strength of the scattering centers makes reliable measurements difficult.
An increase in film length would partially overcome the difficulty of
measuring low level scattering from random centers.
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Fig. 1- Light scattered from a beam propagating in a Corning 7059 glass film.
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Fig. 2 - Relative scattered power versus length (7059 glass film).



SPUTTERED OPTICAL WAVEGUIDE

Fig. 3 -Section of a rectangular waveguide (x1000).

Fig. 4-Light propagating in a curved section of rectangular waveguide.
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Figure 1 is a picture of the light scattered from a beam propagating in
the film. The intensity of scattered light as measured by the fiber optic
probe is plotted in Figure 2. The average slope is less than -1 dB/cm.
This result is in agreement with measurements made by the second
method. The lack of uniformity of the scattered light intensity is due, at
least in part, to inhomogeneities in the substrate. By using a higher
quality substrate this source of scatter can be eliminated.

Curved sections of rectangular waveguides have been constructed
from 7059 glass films by back -sputtering using quartz fibers as shadow
masks. The waveguides were about 0.3 Am thick, 20 Ara wide, and had a
radius of curvature of about -} inch. A photograph of a typical section is
shown in Figure 3. Figure 4 shows prism -launched light propagating in
such a waveguide. Due to the small size of the waveguide our instru-
mentation will have to be improved before loss measurements can be
made.

Our initial efforts have demonstrated the feasibility of using sputtered
glass films and sputter etching in the fabrication of optical waveguides.
This approach shows promise as a method of producing low -loss optical
integrated circuits.

The authors are indebted to W. R. Sinclair for his valuable comments
regarding the sputtering of glass films and the preparation of substrates,
and to R. R. Murray who assisted in the pPeparation of the films and
waveguides.
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