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This paper presents a new method for computing the parameters which
determine the differential equations governing a linear time -invariant
system with multiple inputs and outputs. Unlike earlier approaches the
method presented does not involve computation of the impulse response.
One of the main advantages of this method is its easy generalization to the
case when the given data is contaminated with noise.

The identification of multiple input-output linear systems has been
a problem of considerable interest because of its importance in circuit
and control system theory. In circuit theory the problem is that of
synthesizing a linear time invariant circuit to exhibit a prescribed
input-output behavior. In control theory, however, the problem arises
out of a need to model a given linear system with a suitable set of
differential equations, given its input-output behavior. References 1,
2, and 3 deal with the problem of determining the parameters of the
differential equation model from the impulse response. To the best of
the author's knowledge, there is no published method which deter-
mines the impulse response from a finite segment of input-output
data in the case of systems with more than one input and output.
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I. THE "STATE INVARIANT" DESCRIPTION

In most applications of identification techniques, one is given only
a record of input sequences and a record of output sequences, rather
than the impulse response function. In these cases it seems best to
get an internal description of the system directly from these data;
that is, avoid the intermediate step of synthesizing the impulse re-
sponse. In many applications the structure of systems that are being
identified remains the same, while values of parameters change.
Therefore, it is convenient to work in a certain coordinate frame which
is fixed for the given system. Most important of all, a method of arriv-
ing at the values of parameters directly from input-output data is
easier to analyze than the method in which impulse response is syn-
thesized, since the sensitivity of intermediate computations re-
quired to obtain the impulse response matrix need not be analyzed.

The problem is therefore formulated as follows. Let be a linear
system in discrete time modeled by equations (1) and (2) :

x(8 + 1) = Fx(s) Gu(s) (1)

y(s) = Hx(s). (2)

(s) E En (the "n" dimensional Euclidean space) is the state of 1 at
time s; similarly u(s) and y (s) are the m -dimensional input and the
p -dimensional output of F, G, H are real constant matrices of ap-
propriate dimensions. is assumed to be completely reachable and
completely observable (for details about these terms see Ref. 4),
namely

rank of [G, FG, , Fn-1G] = n (3)

and

rank of [H', F'H', , Fin -1H1 = n (4)

where prime (') denotes the transpose. Given a sequence of inputs u(s)
and outputs y(s) for s = 1, 2, , N (where N is sufficiently large),
find a system E of the same dimension as Z namely n such that ±
simulates the input-output behavior of Z.
Remark 1: It is clear that there are some sequences u(s) which will
not be sufficient to uniquely specify E. Theorems, presented in Section
II, give sufficient conditions for u(s) and N which uniquely determine ±.
Remark 2: When ± is uniquely determined it will be shown that the
state of ±. is uniquely related to the state of Z. In fact the F, 0, and
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of E will be related to the F, G, and H of M by a nonsingular trans-
formation such that HFiG = .1-1r 0 which implies that the impulse
responses of and ± are identical. Notice that for any nonsingular T

= HT -1 P = TFT-1 O = TG

implies that

HFIG = O.

The main difficulty in obtaining a direct algorithm is in getting at the
state x(s) from output sequences when the parameters of the system
are not known. When, for example, H in the equation below is identity,
or equivalently the output itself is the state, it is easy to find an in-
ternal description from sequences of inputs and outputs. From writing

this equation as

x(s + 1) = [F G][41
u(s)

y(s) = H x (8) = x(s) ,

it follows that given enough observations one can solve for F and G
from the above equation for most nontrivial input sequences (see

Theorem 2). An easy way is to multiply both sides of this equation
by [il(s) te(s)] and sum from s = 1 to s = N where N is the number
of observations:

lx(s 1)[x'(s) u' (s)]) = [F G]
x(s)][x'(s)

u'(s)]}.
_u(s)

Whenever the matrix multiplying [F G] in the above equation has
an inverse, there exists a unique solution for F and G.

In the case when y (s) is not the state itself but only a linear
function of the state, the problem is much more complex and one
has to select certain appropriate components of the output sequence
for an external description in terms of the observables, namely y (i)
and u(i). The selection of the right components can be done by in-
troducing an operator to be called the selector matrix as defined below.

In describing the theory of the direct identification method, con-
siderable use is made of the input-output description to be detailed
below.

Definition: S will denote the set of k X 1 matrices (k S 1) with the
following properties:
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(i) S = kid where s11 = 0 or 1. (5)

(ii) , s, = 1 for one and only one j, say ji . (6)

(iii) 51 < 52 <  < J. , 5, < 1, i < k. (7)

Examples of matrices belonging to S are

[1][0
1 01 [1 0 01 and so on.

0 0 1 0 0 1

Any matrix S e 8 will be referred to as a selector matrix, because S
operating on a linear space Es transforms it into a linear space Ek by
mapping every vector x E E' to a vector y E Ek by selecting the com-
ponents 51 , , jk of x E

The description presented is an "external" description in the sense
that the dynamical equations are given in terms of quantities which
can be observed from outside, that is, values of input and values of
output.

Consider a completely reachable and completely observable discrete
time system represented as follows

x(s + 1) = Fx(s) Gu(s), (8)

y(s) = Hx(s), H: p X n; F: n X n; G: n X m. (9)

"Completely observable" implies*

p([1?' : H']) (10)

p(A) = rank of A. Therefore, 3 an S c 5, such that

H

S : = T where T is nonsingular; (11)

HP -1_

that is, 77-1 exists. Without loss of generality it can be assumed from
remark 2 that T = I so far as the external description is concerned.
Using equations (8) and (9) repeatedly, it follows that

y(s) = Hx(s),

y(s + 1) = Hx(s + 1) = HFx(s) + HGu(s) (12)

y(s + n - 1) = HF"-'x(s) + HFn-2Gu(s) +  + HGu(s + n - 2).
Let

* [F' : 111 [H', F'H', , F' c" -1)H1.
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V(s) [y'(s) y'(s + 1) y'(s n - 1)], (13)

tr(s) [u'(s) u'(s + 1)  u'(s n - 1)]. (14)

Then, writing equation (12) in vector form, and also using equations
(13) and (14), it follows that

17(8) =

Lett

H
HF

HP -1

x(s) +

0 0 0

HG 0 0

HP -2G HP -1G 0

u(s). (15)

0 0 0 0 0 0

HG 0 0 0 0 0

HFG HG 0 0 0 0

HFG HG 0 0 0
R1 ; (16)

111? -3G HP -1G HF"-5G HG 0 0

_HF"-2G HP -3G HP -4G HFG HG 0_

then multiplying both sides of equation (15) by S, using the comments
given below equation (11), it follows that

Sy(s) = x(s) SR,u(s). (17)

Once again, using equation (9),

x(s + 1) = Fx(s) Gu(s),

which because of equation (17), with s replaced by s + 1, reduces to

x(s 1) = Sy(s + 1) - SR,u(s + 1); (18)

substituting equation (9) for x(s) in equation (17) gives

H

Sy(s + 1) = F(Sg(s) - SR,u(s)) + Sr HF
Gu(s) SR,u(s + 1).

(19)

t The last column of zeroes in R1 is added so that g and 'a may be consistently
defined.
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Since it has been shown that
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(11) ]

= 1, (20)

it follows that

where

Sg(s + 1) = F Sg(s) Ru(s), (21)

HG 0 0 0 0

HFG HG 0 0 0

R -FSR, S HF2G HFG 0 0 0 (22)

0

_1117"'G HP -2G HG_

Equation (21) gives a relation between the input sequence u (i) and
the output sequence y (i) which does not involve the state. It is an
external description in the sense that the variables in equation (21) ,
namely u(i) and y (i) , can be measured externally. From equation
(22) it follows that if R is partitioned as

then

[R0 R, R_,1, Ri : n X in V i, (23)

0

R,,_, = S (24)

HG

It is obvious how one obtains the columns of the second product
in equation (22) . To obtain the contribution from -FSR1, notice from
equation (16) that S times the second column from the end of Ri
is, from equation (24), merely R,1. Therefore, the second column of
FSR1 from the end is simply FRn_i and therefore

t In adding SRfras ± 1) to the second term in equation (20), the last column
of RI may be dropped because it is all zeroes.
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R-2 = -FR-1 S

r" 0

HG
(25)

HFG- -
Now notice that R + FR_i is S times the third column from the
end of R1. Therefore the third column from the end of R is

0

R_, = -FR_2 S HG
HFG

HPG

Continuing in the same way,

n_4 = -PW, - rR, - F3R_, S

and finally

HG

HFG

0

0

HG

HFG

HF2G

HF3G

= R, FR, -1-  ± F-11?_1 . (26)

Now, since it was possible to choose a basis such that

HG

IG,

_HF"-'G]
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one has

G = Ro FR1 -I- Fn -1R,.-1 (27)

Equation (21) may be written in the form

+ 1) = [F
(s)

and may in principle be solved for F and R. Thus from equations
(27) it is clear that if the values for u(i) and y (i) were given and
S were known, one could also solve for one set of values for F; and
since in most cases H is full rank, H can be assumed to be [I 0].

II. THE MINIMAL REPRESENTATION AND THE DIRECT ALGORITHM.

It was shown in Section I that, corresponding to every internal
description of which is completely controllable and completely ob-
servable, there is a description in the form of equation (21). In this
section we show that from the knowledge of the values of u (i) , i = 1,

, N, and y (i), i = 1, , N, one can get the internal description
of under very general conditions on u(i). Central to the discussion
are a few results which are presented in the form of theorems for the
sake of clarity and precision.

Given u(i), i = 1, , N, the inputs to a system of dimension n
which is completely observable and completely reachable, and the
corresponding outputs y (i), i = 1, , N, the following propositions
hold true:
Note 1: It will be assumed in the following that the column dimension
k of the selector matrix is always a multiple of p; further if k = rp,
then

(r - 1)p rp.

It is obvious that there is no loss of generality involved in this assump-
tion. (1 is the row dimension of S.)
Note 2: In the definition of p (s) and is (s) in equations (13) and (14),
the n should be replaced by r defined in Note 1 above.
Theorem 1: Let S be 1 x k (= rp) ; then

H

HF

HF'-1

< 1 (28)
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N-r +1
Sy(s) issingular matrixj [y'(s)S' u (s)] a (29)

r
e -1 a (s) -

for every sequence u(i) , i =
Proof: Multiplying equation
r we have,

S7(s) = S

1, 2,
(10) on

H

HF

HF'

, N.
the left by S and replacing n by

x(s) SRIii,(s). (30)

Because of equation (28) 3 a vector, z 0, and in E such that

H

z'S HF = 0. (31)

HP'
Therefore, multiplying equation (30) on the left by z' gives

z'Sg(s) = z'SR117,(s). (32)

Therefore,

[z' -z,sRi][Sg(s)

which implies that

u(s)
=0 Vs N - r 1 (33)

N-r+1

LI
eel

Sy (s)

ii,(s)

' (s) S' u' (s)] is singular. QED

Theorem 2: If E is completely observable and completely reachable, the
matrices F, G, and 1-1 are n X n, n X m, and p X n respectively; then
3 an S: n X np such that

n+nm

T ° E
8_,

SY(s)1[T(s)S' u(s)] > 0 almost surely (34)
(s)
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where u(i) are random variables having a joint nonlattice distribu-
tion.*
Proof : The first step in the proof consists of establishing Lemma 1.
Lemma 1: T > 0 if and only if

0fsal

Proof of Lemma 1: If T

z1S9-(s)

Since is completely observable,

[x(slx,(s)
t(s)

1 0,

u(s)] > 0. (35)

3 z' such that z' = [zf 4] 0 0, and

z4ii(s) = 0 Vs. (36)

multiplying equation (17)

Sg(s) = x(s) SRifi(s) (37)

on the left by zf one obtains

zfSg(s) = z'x(s) zfS1102(s). (38)

Combining equations (36) and (38),

zfx(s) (6.SR, - = 0

and

Vs, (39)

[zi3OR, - 00;
for if [zI , OR, - = 0, then [zf = 0, which contradicts z 0.

Therefore,

nf [x(slx,(8) few] 0. (40)
720)

Now suppose T > 0. Let

[x(S)ims) 0.
u(s)

Then 3 a z' = [zf 4] 0 0 such that

zfx(s) zN(s) = 0 Vs. (41)

Again multiplying equation (37) by zf and using equation (41), it
follows that

zfSg(s) = -49.7t(s) zfSRifi(s) (42)

*A nonlattice distribution is one in which no nonzero probability mass is
concentrated on a surface less than the dimension of the random variable.
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zfSg(s) (z4 - zfSR,) u(s) = 0 Vs. (43)

Once again [4 , (z - 4SR1)] 0 0 since z 0, which contradicts
T > 0. The proof of Lemma 2 will now complete the proof of Theorem 2.

Lemma 2: If (i) is completely controllable, (ii) u(i) are random
variables with a joint nonlattice distribution, then the (n + nm)
(n + nm) matrix

[x(1)  x(n nm)1

ii(1)  u(n_+ nm)]

is almost surely nonsingular.
Proof : From Lemma A.2 in Appendix A of Ref. 5 it follows that if

z(s 1) = F ,z(s) G N(s) ,

with F1(n nm) X (n nm),

then [z (1) , , z (n + nm)] is nonsingular with probability one, if
F1, G1 is completely controllable. Further, from equations (8) and the
definition of u, it is clear that

(44)

x(s + 1) F G 0

u(s + 1) 0 0 I

0 0

_u(s n)_ _O 0

Therefore, identifying F1 and G1 as

(45)

0 x(s) 0

0 u(s)

0_ _u(s n - 1)_ _I_

u (s n) (46)

rF G 0 0 0

0 0 I 0
and

_0 0 0_ _/_

respectively, equation (44) follows since it can easily be shown that
[F G] controllable implies that [F1 G1] is completely controllable.
Lemma 2 implies that the matrix in equation (40) is positive definite
since in general A nonsingular --> ATA > 0, which implies equation
(34) by (i).
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III. THE COMPUTATIONAL METHOD

The main part of the algorithm, as would be expected from the dis-
cussion in Section II, is to determine the right selector matrix. Once
this has been done it is easy to solve for the parameters. In order to
utilize certain properties of the matrix [F' : H], a class of matrices

C 8 is detailed below since 8 C 8, the number of different selector
matrices one has to try, is smaller than 8.
Definition: is the set of matrices S E 8 such that S is 1 X k; then

(i) k is an integral multiple of p and further, if k = rp, then

(r - 1)P < j: 5_ rp

where ji is as defined in equation (5).

- 2p.

Observe that by (i) there always exists an S E 8 such that equation (11)
holds, since as can easily be proved, if

P([111, F'H', ,F"fil]) = p([H', F'H',  ,F'(""H']) = q
then

paH' , F' H', F'("i) 111) = q j = 0, 1, 2, ;

so that in spite of condition (ii) in the above definition, there exist
an S E 8 such that equation (11) holds.

(iii) The formulas (21) and (27) are still valid for any S e 8 satisfying
equation (11), with n replaced everywhere by r defined in condition (i)
in the definition of $ above.

Now from Theorems 1 and 2 and the above discussion, the direct
algorithm can be summarized as follows.

It can be assumed without loss of generality that: (i) N >= n
(m 1)n; that is, there is a sufficient number of observations to deter-
mine the internal description uniquely. n is the minimal dimension of
the system to be identified. (ii) H has full rank. (iii) n p.
Step 1: Since n < N / (m + 2), let N be the largest integer
-..N/(m--1- 2). Then n < N. In order to arrive at the right S, one starts
with an S E of row dimension N and tests the nonsingularity of

T (1+1)
Sy(s)

L u(s)

for all S e $ and having row dimension N. If T is nonsingular, N = n.
If T is singular, then reduce the row dimension of S by 1 and repeat the
test. Repeat the procedure until T becomes nonsingular. The row di-
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mension of Swill then be n; let r be as defined in condition
definition of s; that is, S is n X rp.
Step 2: Solve for F, R as follows.

(i) in the

(m+i)R
[F = E Sy (s 1)[g(s)S' (s)]}T-1

.-1

Step 3: Solve for G from the following formula.

G = Ro FR1 +  + Fr -1R,-1
where S:n x rp and Ri are the partitions of R such that

R = [Ro R1

and Ri=nXmi= 0, , r - 1. H can be assumed to be [I 0] where
the identity has dimension p.

In the case when is a continuous -time system, the algorithm
presented above applies with appropriate modifications. In the defi-
nitions of g(s) and u(s), s now assumes values in Ca and y(s i) should
be replaced by y(') (s) evaluated at s. The summation signs should be re-
placed by integration over an interval. The formulas for the parameters
become

t+e
[F R] = f Sy' ') (s)W (s)S' u'(s)] ds

T = ft" PYwl[gus' WW1 ds.
L ft (s)

G can be obtained from R exactly as in the above algorithm for the
discrete time case.

In the case when observations are contaminated with noise, this
method can be generalized to yield consistent estimates for the param-
eters (see Ref. 5).
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Uniform Synthesis of Sequential Circuitst
By J. D. ULLMAN and PETER WEINER t

(Manuscript received July 19, 1968)

In this paper we consider the synthesis of sequential machines by
networks of a fixed module with delay. We show that every binary in-
put n state sequential machine has an isomorphic realization using at
most p copies of a module with 2r -I- 1 inputs, where p is the smaller of

2r (n'gr2 4n1+' '4) and r2in/r1. ([x] is the smallest integer x.)
2r - 1

I. INTRODUCTION

The realization of an arbitrary binary output synchronous se-
quential machine by a network of copies of a fixed sequential machine
(module) or copies of a small number of machines is a problem which
has received recent attention.1-5 An equivalent problem has been stud-
ied in Ref. 6. A design of this sort is particularly suited to batch fabri-
cation techniques, because it is possible to mass produce a fairly
complex integrated circuit (the module) and then wire these circuits
together to realize any desired sequential machine.

The machines, so constructed, will be fast; the time between inputs
need not be longer than the time it takes a single module to resolve
its output after a change in input, no matter how many modules are
in the network. The disadvantage of this technique, so far, has been
the large number of copies of the module necessary to realize a
machine; as many as 271 - 2 copies for an n state machine are re-
quired when using the modules of Refs. 1 and 2. These modules are
shown in Fig. 1 for the binary input case.

Not shown in any of our diagrams is provision for initializing the
output of any module to the hot (1) state if desired. Neither is pro-
vision for control of the module by a clock shown in this or any other
module.

t Portions of this paper appeared in the Proceedings of the IEEE 9th Annual
Symposium on Switching and Automata Theory, Schenectady, N. Y., October
1968.

t Princeton University, Princeton, New Jersey.
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INTER -
MODULE
INPUTS

EXTERNAL INPUT

(a)

EXTERNAL INPUT

INTER -
MODULE
INPUTS

Fig. 1- Simple modules.

(b)

DELAY

The modules of Fig. 1 each have two intermodule inputs, that is,
inputs to which either logical constants or the output of some module
will be connected. If a module with two intermodule inputs is uni-
versal (can realize any sequential machine having one binary input),
then there is a unique minimal network composed of copies of this
module realizing a particular sequential machine with a binary
input.1'2 If there are more than two intermodule inputs, there may be
more than one network realizing a given machine. We consider a class
of modules with different numbers of intermodule inputs and attempt
to design small networks consisting of copies of one of the modules
in the class.

The class of modules we use for single input machines is represented
schematically in Fig. 2a. There is a member of the class with 2r inter -
module leads for each r z 1. Let the module of Fig. 2a with a partic-
ular value of r be Mr . Note that M1 is essentially the same as the
module of Fig. la. M2 is shown in Fig. 2b.

In what follows, we restrict ourselves to the design of networks for
the realization of machines with one binary input. The generalization
to the use of machines having k binary inputs is straightforward when
one uses a class of modules represented schematically in Fig. 3.

Notice that conventional designs of sequential circuits, represented
schematically in Fig. 4, require the construction of log2 n Boolean
functions of k log2 n variables, where k and n are the number of
input variables and states, respectively, of the machine. The number
of gates necessary for a two -level realization of several functions of p
variables can be as high as 2', so one would expect, even in the case
k = 1, to require as many as n gates for a realization in the form of
Fig. 4. We cannot show, for fixed r, that all n state machines with
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Fig. 2 - (a) The module Mr; (b) the module M,.
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DELAY Ho

single inputs can be realized by networks of as few as n copies of 317 .

However, we show that the number of copies of Mr needed to realize
any binary input n state sequential machine is bounded above by two
functions of n. These functions, to within a constant factor, are Tir
and 71,1+1°g't

r
LEADS {007

r LEADS
O

r LEADS -
0

k INPUTS

. . .

ONE HOT
DECODER

,
2k

OUTPUTS

Fig. 3 - Generalization of M,.

DELAY
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K INPUTS -

COMBINA-
TIONAL

LOGIC

LOG2 fl
DELAYS

Fig. 4 - Conventional sequential circuit.

II. DEFINITIONS AND BASIC CONCEPTS

A sequential machine will be denoted A = (K, 8, qo, F). K and
are finite sets of states and inputs, respectively. F, the final states, is a
subset of K. It is the set of states for which the output is 1. q0, the
start state is a particular element of K. 8 maps K x to K. It gives
the next state for each combination of state and input symbol. The
function 8 is usually displayed as a flow table, with a row for each
state and a column for each input. The entry in the ith row and jth
column is the value of 8 for the ith state and jth input. The first state
will always be the start state. An example is shown in Table I.

We extend 8 to domain K x r by:t

(i) 8 (q, 6) = q for all q in K.
(ii) 8 (q, wa) =8 (8 (q, w), a), for all q in K, w in V, and a in 1.

The event defined by the machine A, denoted T (A), is {w 18 (qo, w)
is in F). That is, T(A) consists of exactly those input strings which
cause A to go from the start state to a final state. For example, if 3
and 5 are the final states of the machine of Table I, then 110 is in
T (A), since 8(1, 1) = 6, S(6, 1) = 4 and 8(4, 0) = 5. 001 is not in
T(A) since 8(1, 0) = 3, 8(3, 0) = 1 and 8(1, 1) = 6.

Let R be a subset of r for some finite set For each w in V,
define the derivative of R with respect to w, denoted R/w to be set
of strings x such that xw is in R.

t M* is the set of all strings of symbols in M, including e, the string of length 0.
This notion of derivative is "backwards" from that used in Ref. 7. It is

actually the quotient operation of Ref. 8.
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Let A = (K, 8, go, F) be a machine, and let = {0,1). We can
define two "inverses" of 8, denoted /.1.0 and µi . These functions map
sets of states to sets of states by:

µa (G) = fq I
a(g, 0) is in GI,

= {g 18(g, 1) is in G} .

For each subset G of K, let AG be the machine (K, (0, 1), 8, qo, G) .
Let H = p,o (G) and J = (G). If R = T (AG), then R/0 = T(AH)
and R/1 = T (AA. For w is in R/O if and only if w0 is in T (AG).

But w0 is in T (AG) if and only if 8 (qo, w) is a state p such that
8(p, 0) is in G. Equivalently, w is in R/O if and only if 8(go, w) is in
H. The argument for R/1 is analogous.

When talking about a fixed sequential machine, A = (K, (0, 1), 8,

q0, F), we often identify T (AG) with G for each subset G of K. We
use G/O and G/1 for itto (G) and (G). For example, if A is the
machine of Table I and G = {1, 3, 5), then G/O = {1, 2, 3, 4, 5) and
G/1 = {3).

A network of a module M is an interconnection of copies of M
such that each intermodule input is connected to either the output
of a copy of M in the network or a logical constant (0 or 1). The
external inputs of each copy of M (or corresponding external inputs
if a copy has more than one) are connected together and receive the
input to the network. One copy of M is designated the output of the
network; the network accepts an input sequence if the output of the
designated copy is hot (1) after receiving the sequence.

The module M2 of Fig. 2b is repeated as Fig. 5 with certain points
marked. Suppose that this module is part of a network realizing the
event F of the sequential machine A = (K, {0, 1), 6, go, F). Suppose
also, that it has been determined that the output of this copy of the
module must be some event G c K. That is, the output of this module

TABLE I-NEXT STATE FUNCTION
inputs

0 1

1 3 6
2 5 4

states 3 1 5
4 5 6
5 5 2
6 2 4
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Fig. 5 - Points in the module M2.

DELAY

is hot exactly when the sequence of inputs to the network is in the
event G. Thus, when the last input appears at the external input of
this module, point a, the input to the delay, must immediately become
hot if and only if the last input completes a sequence in G.

Observe that point b can be hot only if the last input is 1 and point
c can be hot only if the last input is 0. Thus, immediately before the
last input appears at the external input terminal, point d must be hot
if and only if the previous inputs form a sequence in G/1 and point e
must be hot if anly only if the previous input sequence is in G/0.

The union of the events at f and g must thus be G/1 and the union
of events at h and i must be G/O. We are free to choose the events at
the intermodule inputs subject only to these constraints. For ex-
ample, we could choose the events at f and g to be those strings in G/1
of even and odd length, respectively. However, we restrict our choice
so that the events at the intermodule leads will be representable as
sets of states of A.

Design, using the module Mr, r > 2, proceeds the same way. If a
given copy of the module is to realize the event G, then the lowest r of
the intermodule inputs must be from modules realizing events H1, H2,

, Hr whose union is G/1, the remaining r intermodule inputs must
be from modules realizing events ./- ly J2, , Jr, whose union is G/O.
However, some of H1, Hr or J1, , Jr may be the empty set
or the set of all states, in which case these events are "realized" by
logical constants rather than modules.

The above arguments justify the following reduction in the design
problem for the class of modules M r > 1:

Let A = (K, {0, 1 }, 8, qo , F) be a sequential machine. An M, -syn-
thesis of A is a set 8 of subsets of K having the properties:

(i) F is in S.
(ii) If G is in 8, then there are sets H, , Hr and
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J. , J, , , Jr in 5, not necessarily all distinct, such that

H, = G/1 and U Jr = G/O.

From what we have said concerning the flow of signals in the
module Mn , we may conclude that if 5 is an Mr -synthesis of A, then
there is a network of m copies of Mr realizing T(A), where m is the
number of elements of S that are neither nor K.t We call m the
size of S.

Notice that an Mr -synthesis requires that all modules realize events
which are identifiable with a set of states. Such networks are called
isomorphic to A. There may be networks of copies of Mr which realize
T(A), but are not Mr -syntheses of A. However, in our search for small
networks we shall not consider any networks except those which are
Mr -syntheses. See Ref. 5 for some comments on the existence of non -
isomorphic realizations of sequential machines.

III. CONSTRUCTION OF Mr -SYNTHESES

The purpose of this paper is to show that Mr -syntheses of small
size exist for an arbitrary n -state sequential machine. The first bound
on the size of an Mr -synthesis is straightforward.

Let A = (K, {0,1), S, go, F) be an n state sequential machine. We
may choose r disjoint subsets of K, say K, K, , , K,. , such that
U:_, K, = K and no K, , 1 i < r, contains more than [n/r] states.$
Let S= {F}U {G I G C K, for some i}. To see that S is an Mr -syn-
thesis of A, we have merely to observe that any subset G of K can be
expressed as U., G1, where 01 = G C If, for all i. Thus, for
any H in 5, H/O and H/1 are both the union of r elements of S.

The size of S is no greater than 1 r (21'" - 1), which is almost
r2rniTI. We thus have:

Theorem 1: If A is an n state sequential machine, with a single binary
input, then there is an Mr -synthesis of A using at most l'2 rnirl copies
of Mr.

Notice that Theorem 1 is not dependent upon the assumption that A
has a single binary input. The machine A in that theorem can have
any number of binary inputs. Of course, the appropriate generaliza-
tion of the input module Mr, as given in Figure 3, must be used.

t 4, denotes the empty set.
t We use [x] for "the smallest integer equal to or greater than x."
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Example: We use a technique suggested by Theorem 1 to design a net-
work for the sequential machine of Table I with final states {4, 5, 6).
We generate subsets in a sequential manner, and terminate when no
new sets are required. Let r = 2 and let the states be divided into two
sets K1 {1, 3, 5} and K2 = {2, 4, 6}. Now {4, 5, 6}/0 = {2, 4, 5} and
{4, 5, 6}/1 = {1, 2, 3, 4, 6}. If we intersect {2, 4, 5} and {1, 2, 3, 4, 6}
each with K1 and K2, the inputs to the module realizing {4, 5, 6} must
be connected to modules realizing {5}, {2, 4}, {2, 4, 6} and {1, 3}.
The two derivatives of each of these sets are found among {2, 4, 5}, {6},
{1, 3), {3}, {2, 5, 6}, {1, 2, 4, 5, 6} and c. Intersecting each of these
sets with Ki and K.>, we find that the network needs modules realizing
the events {6}, {3}, {2, 6} and {1, 5}, in addition to the modules
already used. Proceeding in this way, we find that the entire network
also requires modules realizing {1}, {4} and {3, 5}. The completed net-
work is shown in Fig. 6. Modules are labeled with the event (set of
states) they realize. Those modules realizing a set including state 1,
the start state, must initially give a 1 output. Inputs to the module
are shown in no particular order, and inputs not shown are connected
to 0.

The second bound uses the concept of partitions on the set of states
of a finite automaton.° A partition on a set of states K is a set of
disjoint, nonempty sets, called blocks whose union is K. If A =
(K, (0, 1), 8, go, F) is a sequential machine, we can associate with
every string w in {0, 1}* a partition II as follows:

(i) IIc = (fqi}, fq2), , {q,,,}), where K = fg1, q2, ,

(ii) For any w in {0, 1} *, let nu, be (Ki , K2, , Kr). Let
11,0 be the list of nonempty sets G such that G = Ki/O for some i and

be the list of nonempty sets H such that H = Ki/1 for some i.
Example: Consider the machine of Table I. Ile = 1, 2, 3, 4, 5, 6)
no is the list of sets of states that map to a single state under a 0
input. Thus, Ho = (1, 245, 3, 6). Similarly, RI = (14, 26, 3, 5). Pro-
ceeding, we can calculate I100 and 1101 from no by seeing which sets
of states map onto a single block of rio under inputs 0 and 1, respec-
tively. For example, states 2, 4, 5 and 6 are those which map under a
0 input to one of the states 2, 4 or 5. We find 1100 = (1, 2456, 3) and
Rol = (14, 2356). Also, Rio = (1, 245, 3, 6) and 1111 = (145, 26, 3).

A partition II is said to represent a family of sets, namely those sets

t We denote partitions by lists of the blocks. Sometimes it is simpler to repre-
sent each block by a string of states not surrounded by brackets. Thus ({qi, q3),
{q.}) will appear as (cm, qs).
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Fig. 6 - Network suggested by Theorem 1.
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which are the union of some of the blocks of II. For example, 1-10, above
represents the sets (13, {1, 4}, {2, 3, 5, 6} and {1, 2, 3, 4, 5, 6}. Suppose

= (K, , K2, , K,n) and G is the union of j of K1 , K2 , ,

say G = K" U  U K; . Then for a = 0 or 1,

G/a = Kaa U Kaa U  U Kaa is represented by II, and is,
in fact, the union of, at most, j blocks of II, . Armed with this obser-
vation, we prove:

Theorem 2: For every n state sequential machine with single binary input
A = (K, {0, 1}, 3, q0 , F) and r 2, there is an Me -synthesis of A of

size at most 2r2-r 1(n1+1nr2 -I- 4n1+"g").

Proof: Let j = [log,. n]. Define the blocks of those partitions II,, , such
that I w I S jt to be basic events. We will choose 3 to be a set of pairs
(G, w), where G C K, w is in f 0, 11*, and for each (G, w) in 3, G is re-
presented by II,,, . After constructing 3, we construct 8, an Mr -synthesis
of A, from 3 by 8 = { 431 U {G I (G, w) is in 3 for some w}. We con-
struct 3 by:

(i) (F, e is in 3).
(ii) If G is a basic event, then (G, e) is in 3.
(iii) Let (G, w) be in 3, w < j, and let G be the union of k blocks

of . We may choose H1 , H2 , , Hr such that their union is G/0

t iwl denotes the length of w.
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and for each i, Hi is the union of from zero to [k/r] blocks of H 0 . Also,
choose J, , J2 , , Jr such that their union is G/1 and for each i, J.
is the union of from zero to [k/r] blocks of IIio1 . If Hi is not cis or a basic
event, add (H, , w0) to 3. If J is not 43 or a basic event, add (J , wl)
to 3.

We say that each (H , w0) or (J1 , w1) in 5 is in the family of (G, w).
We extend the notion of a family by saying that (G, w) is in its own
family and if (H, x) is in the family of (G, w) and (J, y) is in the family
of (H, x) , then (J, y) is in the family of (G, w). The family of (G, e),
where G is F or a basic event, can be thought of as the set of elements
that must be in 3 because (G, e) is in 3.

We must show that S is an Mr -synthesis of A. If (G, w) is in 3, then
G consists of at most 7.'1'1 blocks of IIw . (Since r' > n, we have ri-1 =
[ri/r] [n/r]; r' = [r' -'/r] > [[n/d/r] and so on.) We may conclude
that if I w I = j, then G would be a basic event, and hence, for no G and
w of length j is (G, w) in 3. If G is a basic event or F, one can, by rule
(iii) find H1 , 112, , Hr and J, , J2 , , Jr such that

G/0= , G/1 = UJi.

For all i, either (Hi , 0) is in 3 or Hi = 4) or Hi is a basic event, and
either (J, , 1) is in 3 or Ji = 4) or Ji is a basic event. In any case, all of
H, , H2, , Hr and J, , J2 y , Jr are in S. If G is in S but G is
neither a basic event not F, then it must be that (G, w) is in
3 and I w I < j. But in this case, it again follows immediately from rule
(iii) that H1 , 112, , Hr and J, , J2 , ' , Jr in S can be found with
U:-.1 Hi = G/0 and U::_, J, = G/1.

We must now put a bound on the size of S. We do so by bounding
the number of elements in the families of all (G, e) in 3. The sum of the
sizes of all these families bounds the size of 8.

Suppose G consists of k states and in = [logrk]. For each i > 0, there
are at most (20' elements (H, w) in the family of (G, E) such that Iwl = i.
If (H, iv) is in the family of (G, e), then H consists of at most rm- I WI
blocks of 1-1, . Thus the family of (G, E) contains no pair (H, w) such
that 01 > in. An upper bound on the size of the family of (G, E) is
1 + 2r + (202 + + (20'. This number does not exceed
(20"1/(2r - 1). But M < 1 + logrk, so (20'

We may conclude that the family of (F, e) consists of at most
2r n1+'''gr2 elements. We must also bound the families of the basic2r - 1

events, and do so by the following argument.
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Let Nk be the number of basic events consisting of exactly k states.
There are 1 2 + 4 -I- -I- 2' partitions IL where 1w1 j. The
number of these partitions is at most 2f+1; the blocks of each partition
have among them a total of n states. Thus:

E kNk n2f+1. (1)
k=1

An upper bound on the sum of the sizes of the families of all the basic

events is

2r N k 2r - 1
4-logr2

Since k does not exceed n in the summation, we have

N k
2r kl+logr2 < 2r

niogr2 E kNk- 2r - 12r - 1 k=1

Using equation (1), we see that the sum of the sizes of the families
of all basic events is bounded above by 2r/(2r 1)704-logr22i+1. Since

j < 1 + log,. n, this bound becomes Sr/(2r - 1)n1+1°g".
Including the family of (F, e), we see that the size of S is no greater

than
2r

2r 2

- 1 (n1+1 °Kr + 4ni'gr4).

We comment that a straightforward generalization of this argument
shows that every sequential machine with p binary inputs (2' symbol
input alphabet) can be realized by a network of at most 22r/(2"r - 1) 
(n1+, logr2 enl+p logr4) copies of the generalization of the module M,. .
Thus, for any number of binary inputs p, and any c > 0, there are
constants r and k such that any n state sequential machine with p binary
inputs can be realized by a network of at most kn' copies of a module
with 2Pr intermodule leads.

Example: Theorem 2 suggests the design of a network of copies of M2
for the machine of Table I with states 4, 5 and 6 final. That machine
has 6 states and [log2 6] = 3. However, in this case the construction of

3 given in Theorem 2 will not require the addition of any pair (G, w)
where I w I > 1. So we may restrict ourselves to consideration of certain
sets represented by the partitions 11, , for I w I < 2. These were calcu-
lated in the previous example:

III = (1 , 2, 3, 4, 5, 6) 1100 = (1;2456,3)

IIo = (1, 245, 3, 6) III, = (14, 2356)
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II, = (14, 26, 3, 5) 1110 = (1, 245, 3, 6)

= (145, 26, 3).

We begin by placing ({4, 5, 6}, e) in 3. {4, 5, 6}/0 is the basic event
{2, 4, 5}, and {4, 5, 6}/1 is the union of three basic events { 2, 6}, {3}
and {1, 4}. These three must be formed into two groups; we choose to
realize {2, 3, 6) and {1, 4}. We place ({2, 4, 5), e) and ({1, 4}, e) in 3,
since these are basic events, but since {2, 3, 6} is not a basic event,
we place ({2, 3, 6), 1) in 3.

{2, 4, 5}/0 = 12, 4, 51 V 161, so (161, e) is placed in 3. {2, 4, 5}/1 can
be expressed as {2, 3, 6} V 151. We thus place ({5}, e) in 3. 11, 41/0 =
{3} and 11, 41/1 = {2, 6}. Each of these are basic events, so ({31, E)
and (12, 61, E) are placed in 3. 12, 3, 61/0 = {1} V {6}. These are basic
events, so we add ({1}, e) to 3. {2, 3, 6}/1 = {1, 4} V 151; these basic
events are each represented in 3 already. Proceeding, we find that the
basic events added to 3 require no new events, basic or not. The re-
sulting network is shown in Fig. 7.

IV. CONCLUSIONS

We have considered the design of synchronous sequential machines
by networks of a fixed module. This design has various advantages,
including speed and ease of production using batch fabrication. It was
shown that there is a family of modules M r > 1, such that any n
state sequential machine with a single binary input can be realized by
a network of at most p copies of Mr, when p is the minimum of r2'n/d

and 2r(ni+ logr2 4n1+logr4).
2r - 1

3

5

6

236

245

26 14

Fig. 7 - Network suggested by Theorem 2.

456
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We feel that the type of design suggested in this paper leads to
many interesting questions. In particular, the bounds expressed
in Theorems 1 and 2 do not seem to be attained, or even approxi-
mated, in most cases. Efficient search techniques will probably yield
much better networks than indicated; there is every reason to sus-
pect that the bounds themselves can be improved, even if we restrict
consideration to isomorphic networks.
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Propagation from a Point Source in a
Randomly Refracting Medium

By R. T. AIKEN
(Manuscript received August 6, 1968)

This paper considers the propagation of scalar (acoustic) waves from
a single -frequency point source imbedded in a medium with random re-
fractive index, in contrast with the usual plane -wave case in which the
source is far removed from the medium. With the index being a statistically
homogeneous and isotropic function of position, but not a function of time,
the average complex field uo(r) = (u(r)) and the spatial covariance
(u; WO; (p) ) of the fluctuation field u; (r) = u(r) - uo (r) are calculated.
Beyond a few correlation lengths from the source, the average field can be
approximated by a spherical wave with the same complex wavenumber
found in the plane -wave case. A near -source wave number is also obtained.
Under an improved far -field condition, the spatial covariance is reduced
to spectral integration formulas for both transverse and longitudinal separa-
tion of the receiving points. These formulas reveal that correlation lengths
are much longer in the point -source case than in the plane -wave case, even
though the relative variances are the same. We illustrate this result with
plots for an exponential index spectrum and for a constant spectrum.

I. INTRODUCTION

For analysis of a detection or communication system which proc-
esses signals from an array of sensors, a convenient postulate is that
the signal field in the vicinity of the array is a plane wave (or perhaps
a finite collection of plane waves in the multipath case). Under such a
postulate, coherent addition of the sensor outputs can yield array
gain and directivity in the presence of ambient noise. However, there
is always some disparity between the predicted performance and the
performance realized in practice. In part, the disparity can be at-
tributed to shortcomings in the signal model, the field not being a
time -invariant plane wave in the vicinity of the array. The output of a
single sensor may not be constant in time but instead is apt to

1129
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fade. Moreover, the outputs of different sensors do not fade "in step";
that is, after the array is steered, the signals do not fade with the
unity correlation predicted by a fading -plane -wave model. Instead,
the signals fade with correlation less than unity. The origin of these
fading phenomena is the subject of this paper.

A simplified model of fading is considered within the framework
of the following assumptions. For a short period of time, the trans-
mission properties of a propagation path are constant; then they
undergo small deviations to attain another constant configuration for
the next short period of time. These short-term deviations are relative
to some nominal or average configuration, as opposed to representing
a slow gross trend of the overall path properties. Such short-term
deviations are modeled here by the effects of random fluctuations of
the index of refraction, which could be associated in the under-
water acoustic case, for example, with the temperature microstructure,
turbulence, and circulatory motion of water masses. Deviations of path
properties associated with fluctuations of a surface of reflection are
not incorporated into the model. Thus, the model is most appropriate
for short-term deviations of the properties of a pure -refracted path.

In the specific situation analyzed below, the acoustic source is a
single -frequency point source suspended far from any boundaries. If
the refractive index were nonrandom and not position dependent,
the acoustic field would be the usual spherical wave. Instead, the re-
fractive index is a random function of position, but not of time. The
average value of the index is not position dependent, so that the aver-
age line -of -sight ray path is straight rather than bent. The spatial
covariance of the index is a function of the magnitude of the position -
difference vector (the index is second -order homogeneous and iso-
tropic). The problem is to find the average and spatial covariance of
the acoustic field.

Much of the literature (for example, Refs. 1-3 and most of Ref. 4)
is concerned not with the above spherical -wave problem but with a
situation in which plane waves impinge upon a half -space with
random refractive index. One essential difference is that the spherical -
wave source is imbedded in the random medium whereas the plane -
wave source is far removed from the random medium. Regardless of
how large the distance from the spherical -wave source to an observa-
tion point becomes, this difference of configuration is preserved.t

t The configurations are called the "radio link problem" (spherical) and the
"radio star problem" (planar) in Ref. 9.
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Some aspects of the spherical -wave case have been treated with the
Rytov method (Refs. 4-5) and other techniques (Refs. 6-8) .

This analysis treats the spherical -wave problem with a version of
perturbation theory previously applied to the plane -wave problem.23
For distances greater than a few correlation lengths, the average
field can be approximated by a spherical wave with the same complex -
valued wave number previously derived in the plane -wave case.2 A
near -source wave number is also obtained. On the other hand, it is
found that the covariance function of the fluctuation field exhibits
much larger correlation lengths in the spherical -wave case than in
the plane -wave case." This conclusion follows from simple integra-
tion formulas for the covariances and is illustrated by plots of the
covariance for special cases.

II. PERI u HBATION THEORY

We consider the propagation of acoustic waves in a random time -
invariant medium for the case of a monochromatic omnidirectional
source. Our model is the Helmholtz equation:

[V2 + (1 + A(r))21c2.1u(r) = -5(r) (1)

deviation of the
index of refraction which is a function of position r, k2o = w2/ c2, c is the
sound velocity for a homogeneous medium if µ were everywhere zero,
w is the angular frequency of the source, u(r) is the complex amplitude
(for example, the displacement potential), and 3 is the Dirac delta func-
tion. The time dependence exp (- iwt) has been suppressed. We assume
the source is suspended far from any boundaries; that is, we consider the
medium to be unbounded.

Our interest is in both the mean field (u) = u, (coherent field) and
the fluctuation field u - uc = ui (incoherent field), where ( ) de-
notes expectation.

We develop a pair of equations for ue and ui as follows. Consider

[L L1 + 2 L2]u = f (2)

where L is a linear deterministic operator, L1 and L2 are linear
stochastic operators, c is a size parameter, and f is a deterministic
forcing function. With µ, in (1) replaced by the correspondence of
(1) and (2) is evident. We put u = + ui into (2) and operate with

( ) to obtain

[L e(Li) 2 (L2)111, = f - (1,0. i) - 2 (L2ui). (3)
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We then subtract (3) from (2) in which u = + ui to obtain

[Dui + E(LlUi - (LiUi)) E2(L211i (L2Ui))]

= -E(L1 - (Li))uc - 2 (L2 - (L2))u, . (4)

Equation (3) shows the source f of the mean field is countered by the
sink 6(Liut) + 62(L2ui) describing the effects of scattering into the
fluctuation field. Equation (4) is not written to exhibit true sources of
ui as much as to exhibit a zero -mean forcing function and zero -mean
terms on the left side. These equations are generalizations of those
derived by Keller [Ref. 2, p. 166, equations (12) through (13)] for
other purposes.

Solution of (3) and (4) can proceed with perturbation theory for
the case of small E. Relative to 6 -> 0, equation (3) exhibits u, = 0(1)
and (4) exhibits ui = (E). Accordingly, (3)-(4) can be rewritten

[L 6(L1) 62(L2)]uc = f - e(Liui) 0(3) (5)

Lu. = -(L1 - + O(E2). (6)

These equations can be partially uncoupled by operating with L-1 on
(6) and substituting into (5) to obtain

[L (L1) 62(L2)1u, = f E2(L1L-1L1)u

2(Li)L-1(L1)uc 0(3) (7)

ui = -EL -1(L, - (Li))uc O(E2). (8)

Equation (7) for the mean field ue is the result obtained by Keller
(Ref. 2, p. 148, equation (10) ), who used a successive -substitution
solution of (2) in conjunction with a crucial, and at -first -glance
mysterious, replacement of L-lf by (u). Equation (1.8) is a version of
Keller's equation (31) on p. 169 of Ref. 2. Thus, we have shown that
these equations arise quite naturally from the pair (3) and (4).

We now specialize (7) and (8) to the case of the Helmholtz
equation (1). Here,

L 02 k20 21.4)k2. L2 1220,pc20
(9)

We assume (p.(r)) = 0; that is to say, we neglect any systematic
dependence of refractive index upon position (the average profile).
We have

r exp (ik0 I r - r' I)
47r I

r - r' I

g(r') dr' , (10)
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where the integral is over all space. The inverse L-1 is an integral
operator with kernel corresponding to the Green's function

G(r,, r') = -exp [ik 0 I r - r' I]
(11)4irlr-r

Thus, the pair (7) and (8) is specialized to

[\72 k:(1 e2(12(0))]tic(r)

= - - 4E200
J

exP47r[jkl°1.1r I] (.(r)1.4r/))u,(r') dr' + O(e3)

(12)

tii(r) = 24: I exp [iko I
r _1 i]

47r I r - gr')11,(r') dr' + 0(e2). (13)

III. THE AVERAGE FIELD

We now develop an approximation of the solution of (12) for the
average field u, . It is assumed that the refractive index is statistically
homogeneous and isotropic. The index covariance function is

r( I r r' I) = (A(r) ii(?)). (14)

Equation (12) becomes

k2,,[1 2r(0)] luc(r)

= - &(r) - vie° f exPLiki°01 p Duc(r p) d p OW).

(15)

We assume an approximation of u0 (r) of the form

exp [ik I r

4irIrI
where k is a constant wave number to be determined (k k.). It will be
found that (16) is not a global solution, because a constant k cannot
exist. Nevertheless, (16) can serve as a useful local approximation of
the solution, with k interpreted as a weak and slowly varying function
of r

If (16) were the solution, then u, would satisfy
2 + eitic (17)

Then (15) and (17) yield

(16)
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fe[1 + ern] - k2111,(r)

- - 4e2k4 f exp [ik I p I]
ra p Duc(r + p) d p 0(e). (18)

47r I p I

The volume integral in (18) can be evaluated by an integration over
the surface of a sphere with radius R followed by a radial integration
from R = 0 to R = 00. For the surface integration, we need only
observe

u,(r + p) dS
iS :I zlirR-

sin kR
u°(r) ,

u,(r) sin klrIexp [ik(R - I r I)]
kR

0 <R<Irl

R > Ir
(19)

where dS is a differential of area on the sphere S = {p: I P I = R}
This mean value theorem follows from (16) and (17) ; see Appendix
A. Then (19) inserted into (18) yields

{k2 - k2,[1 + 2r(0)] }ue(r)

=
420°

u (r)[foI
rl

exp (tikoR)r(R) sin kR dR
k

+ exp (tikoR)r(R) sin k Ir I exp [ik(R - 171] dR1 + 0(e).frl
CO

(20)

If (16) were an exact global solution, then uc(r) could be cancelled
in (20) ; the result would be a relation for the supposedly constant
wave number k. But the integrals in (20) suggest that the relation is
I r I -dependent, which is a contradiction. Nevertheless, (16) will
serve as a local approximation of u0 (r) in regions in which k is vir-
tually constant.

The following manipulations are made upon the integrals in (20).
We run the first integral from 0 to 00 and correct for its contribution
from I r I to 00 by another term in the second integral. We then change
the variable of integration of the resultant second integral. Then (20)
becomes

E00 1'k2 = k(2)(1 + e
4kr(0)) + exp (ikoR)r(R) sin kR dR
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- exp [i(k. - k) I r I] f exp (ikoR) r(I r I + R) sin kR O(Ea)

(21)

The I r I -dependence is now confined to the second integral. The
large -a r I case occurs when we can assume this integral to be negli-
gible, namely

I exp [i(k - k) I r I]1 r(ir I R) < r (R) , R c [0, R.], (22)

where we assume the first integration can run from 0 to Ro with
little error. The condition (22) shows that I r a must be much larger
than a correlation distance; moreover, (22) shows that the increasing
function exp [ (Im k) I r a ] must be taken into account.

Thus, for large I r I, the wave number k satisfies

k2 e,[1 er(0)]

k0 exp (ikoR)r(R) sin kR dR 0(2). (23)
0

This is the relation found by Keller [Ref. 2, p. 151, equation (14) ] for
the plane -wave problem. As expected, the spherical wave solution far

has the same wave number as the
tion.

The small -I r a case occurs when the integrals in (21) nearly cancel
one another; the wave number k is given by

or

k2 kal + E2r(0)] + O(E3)

k ko[1 12r(0)] + o(E3).

(24a)

(24b)

Whereas (24) yields the small -I r I values of k directly, notice that
(23) determines the large -I r I values of k in an implicit fashion.
However, an explicit approximation of the large -I r a value of k can
be obtained. Notice that (23) could be solved by successive sub-
stitutions, the first step employing either le, in the integral below or
employing (24) as follows

46k2k4°f exp (ikR)r(R) sin kR dR
JO

4e2k! exp (ikoR)r(R) sin {141 + 1E2r(0)]R dR
ier(0)] 0
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4e2k: f exp (ikoR)r(R) {sin (k0R) cos koRer(0)R]
0

+ cos (koR) sin ke[2e2I1(0)R] } dR

42k: f exp (tik0R)P(R) sin kJ? dR. (25)

Since terms have been discarded consistently insofar as powers of c

are concerned, approximations (23) and (25) yield

k2 k2o[1 2P(0)]

 462k2o exp (ikoR)r(R) sin k0R dR (me). (26)
0

From (26), it follows that

k ko[1 ler(0)]

 22k2o f exp (ikoR)11(R) sin koR dR (NE.), (27)
0

or equivalently

Re k ko[1 lern] + 2k: F(R) sin 2k oR dR ov), (28)
0

and

Im k ti 2k2o f (1 - cos 2k oR)r(R) dR o(e). (29)
0

If r has a correlation length L. and if koL. >> 1 (a large-scale condition
not yet imposed), then

Im k cf:3 2k2o f r(R) dR. (30)
0

Also, accuracy of the approximation (25) requires the bracketed fac-
tor in the integrand to be equivalent to sin kOR, this holds when

koE2r(0)Lo << 1. (31)

But

fo

and (31) is equivalent to

r(R) dR ti row, ,
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Im k < ko . (32)

When (32) is not met, neither (28) nor (30) can be expected to be
a good approximation. Also, for the successive -substitution procedure
to yield a good approximation at this first step, it appears sufficient
that the first step value (28) be well approximated by the initial
value (24) equivalently,

11(0) >> ko f r(R) sin 2koR dR, (33)
0

which is a restriction on the large -wave number value of an integral
which resembles the spectrum of r.

The approximation (16) for the average field uc(r) together with
(23) and (24) for the large -I r I and small -I r I values of k comprise
the principal results of this section. The further approximations (28)
through (30) for the large -I r I

case are more useful than (23), but
conditions (31) through (33) must be met. When (28) through (30)
are compared with the small -I r approximation (24) , it can be seen
that the spherical wave (16) develops attenuation and a change in
phase velocity as I r I

increases. The transition from small -I r I to
r I

behavior occurs when (22) begins to hold, namely, when
the second integral in (21) begins to become negligible. The order of
magnitude of this transitional value of I r I is a few correlation lengths.

IV. COVARIANCE OF THE FLUCTUATION FIELD

The previous section provides a solution of (7) or (25) for the av-
erage field uc(r) which now can be used in (8) or (13) to yield the
fluctuation field ui(r). Thus, (11) and (13) yield

ui(r) = -2fe, f G(r, r')/.1(rOuc(r') dr' + O(e), (34)

where uo(r') is given by (16) in which k is a weak function of I r' I.
The spatial covariance function (ui(r)u*,(p)) is now computed for the

case in which the medium is statistically homogeneous and isotropic.
Equations (34) and (14) yield

i(r)tt(p)) = 421c20 f f G(r, r')G*(p, p')

 ro r' - p' Duc(rOut(p') dr' dp' 0(e). (35)

It is convenient to change to the following variables of integration
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(with unity Jacobian) :

where

-'2p' x = r' - p' , (36)

r' = y , = Y (37)

Moreover, it is convenient to evaluate the fields at the following
points:

where, by definition,

r = n --2 ,2 ' P =

r p- 2
, = r - P 

(38)

(39)

The relation of the positions (36)-(39) is shown in Fig. 1. The
covariance of the fluctuation field ui is thus

u' (n)14*i(n2 2

= 4200 ff G(n , y :51C* (n 2,y Or(' x I)

ue(y --2)ut(y - dx dy 0(e3). (40)

In words, the second -moment of the fields at observation center 71

with observation position -difference vector comprises the integrated
effect of scattering of the average field by the refractive index at scat-
tering center y with scattering position -difference vector x.

We now approximate the integrand of (40). Although the approxi-

Fig. 1 - Scattering points r', p' and receiver points r, p.
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mations are not valid over all space, they are valid for a region which
can account for the major contribution to (40) in the case to be de-
scribed later. The first approximation involves

exp r - r' 1 - 1 p - p' I)]
G(r, r')G*(p, p') - (41)

(4702 1r - 1.1 p - 13' I

But

= In-yI+ - x)(n -
In-Yi

and

(42a)

1P- P'1= In- - I

=In-YI -
Hx)

(n -
. (42b)

Y

The above expansions in powers of - x) are appropriate for a large
vector n - y as perturbed by the small vectors ±1(E - x). Our approxi-
mation of (41) is

G(n + , y 2/G* (n - , Y -
:yr))

where the relation

exp iko[(77 Y).( x)]
I n - Yl_

'--- (4702 I n - Y 12

exp [ik 5(y) - x)]
(4702 I n - 12

ka(y) = lc° , n Y

(43)

(44)

(45)

defines a scattering wavevector
The second approximation involves replacing the coherent -field factor

ua (y x/2)ut(y - x/2) by a function that locally represents the
fields as plane waves. Thus, it follows from (16) that

uc(y X)u*c(y
exp [i(k

(4702

- k* x
Y 2
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where the wavenumber k is a weak function of position. But

Y

Y 2

leads to the approximation

uc(y Out(y -x

where

1 y ,= 1Y1+ 2 IyIx-t

= 1Y1- 1:2 iyyrx+

X)

- I
12 eik(v)x,

2

k(y) = (Re k)
I Y 1

defines an incident wavevector, and

uc(y) 12 exp (-2 Im k I y I)
(4102 12

Collecting these approximations into (40) yields

ui(n (n )

(47a)

(47b)

(48)

(49)

(50)

ti 4eic: f exp [iks(y).] exp [-2 Im k
I

y I]

(4704 1 n - 12 1 Y 12

f dx x I) exp {i[k(y) - k.(y)] x} (51)

This is the central result of this section. Equation (51) has the
physical interpretation of a volume distribution of sources. The
source at y generates a plane wave at the receiver with correlation
exp [ik,s(y)  e] . The strength of this wave is proportional to I - y 1-2

y 1-2 and to the value of the spectrum

S(I K = f dx ro x exp { iic  x (52)

as evaluated at the local wavevector k (y) - ks (Y) At this wave
vector, the spectrum is a measure of the amplitude of those com-
ponents of refractive index with the orientation and the periodicity
required for constructive interference (Bragg scattering; compare
with Ref. 4, pp. 68-69).
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The physical justification of the above approximations follows from
(40) by noticing the role played by the index covariance r in the in-
tegrand. The weighting introduced by r means that scattering from cen-
ter y depends upon the neighborhood of y with linear extent Lo , where
Lo is the outer scale. First, the local plane -wave approximation (48) is
poorest near the origin where the wavefronts are most curved. With a
criterion of not more than 7r/16 radian departure from plane -wave phase,
Fig. 2 shows that 1 y 1 must be larger than 44,2/X. In fact this usual far -
field condition can be replaced by I y I > 4Lo(L./X)1 which is less re-
strictive when Lo > X. This weaker condition, derived in Appendix B,
follows from an overbound of the phase error in (48) caused by elimi-
nating the remainder of (47). Second, the scattering approximation
(43) is poorest near the observation center n where the phase (and
amplitude) of (41) can experience large excursions as r', p' range over a
neighborhood of linear size Lo . A usual far -field condition is 1

n - y I >
4/1,/X or' n -y I > 4(1 1 .L.)2/X. Again, when Lo > X, only a weaker

condition,

In -YI> E +L0\
E I +LO'

x
(53)

need be met. Condition (53) follows from an overbound of the phase
error in the remainder (52), (see Appendix B).
Strictly speaking, the y -integration in (51) must exclude the near -source
and near -receiver spheres of radius 4Lo(Lo/X)1, and their contributions
must be evaluated separately. In Section V we give a condition necessary
for this contribution to be negligible.

-.0111111Aildllik\

Lo
1 L0/2 /32
2 lyl L0/2

144111ril

OR

4 L

Fig. 2 - Distance for the plane -wave approximation [in fact, only 4L. (L./X)1/2
required] .
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Apart from the excluded regions of integration, the validity of ap-
proximation (51) does not rely upon a "large-scale" condition re-
quiring the wavelength A. to be much smaller than some refractive -
index scale size. But when such a condition is met, (51) yields both
a maximum angle of important scattering and a finite volume of
important scattering. In the approximation (51) , the refractive -index
spectrum (52) is evaluated at the local wave vector,

k(y) (54)

Suppose there exists an inner scale lo such that for I K I > 27r//o the spec-
trum (52) is negligible. Since the maximum magnitude (54) can attain
is of order 47/X, whereas 27r/X >> 27//0 , it follows that the integrand of
(51) is large only for values of y such that

k(y) - k, (y) I < 27r//f, . (55)

Under the assumption that I k(y) I = ko = 27r/X, condition (55) yields
the maximum angle of important scattering. With tht(y) the angle
between k(y) and k, (y), as'shown in Fig. 3, we have

I k(y) - MY) 12 .= 2k: - 2k: cos &(y) = 4k2, sine 1k2(Y) (56)

Then (55) and (56) yield cos 1'(y) > 1 - X2/2/2° or 2/,/X sin 0(y)/2 < 1
or approximately gy) < X/10 .

These conditions may be used to find the region of important scat-
tering. Figure 4 shows cylindrical coordinates with origin at the midpoint
between transmitter and receiver; there is rotational symmetry around
the transmitter -receiver axis. With tan ifr constant, we have

tan = tan (a + 0) = tan a + tan #
(57)1 - tan a tan j

But

tan a b (58)

-2
+a

tan 3 = b (59)

2 - a

Algebraic manipulations which include completing a square yield

a2 (b + 2 tan q/2 - 2 sfin 2
(60)
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k-ks

1143

Fig. 3- Angle of scattering.

Equation (60) is a circle in the a -b plane passing through the trans-
mitter and receiver -center locations, Fig. 5. The slope of the curve is

db a
da

b 2 tan 1/

Thus, near the transmitter,

b db

2
+ a

and near the receiver

db
da-a

-L/2,0)

(L/2,0)

(61)

= tan &, (62)

= tan 4/. (63)

Also, at the midpoint a = 0, (60) yields
L

b
2L\sin1 - tanl 1,1.)

-
2

tan
2

b

Fig. 4 - Coordinates for the region of important scattering.

(64)
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TAN -2--

/ 2

IL TAN*

Fig. 5- Region of important scattering (spherical waves).

The condition for important scattering is

x2

cos > 1 -
,

= cos*. (65)

The volume specified by (65) is enclosed within the surface generated
by rotating the arc of the circle (60) , with ip = around the trans-
mitter -receiver axis. This volume lies within the volume common to
two cones with apexes at transmitter and receiver, each cone with
half -angle %F.

For the large-scale case, X << le S Le , a condition necessary for (51)
to be an accurate approximation of the covariance (40) is now apparent.
The volume of important scattering shown in Fig. 5 must be much larger
than the volumes in which the integrand of (51) is a poor approximation
of the integrand of (40). These comprise a near -source cone of axial
length 4g"/X1 and a near -receiver cone of axial length 4(L0 03/2/Xl.
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An equivalent condition is seen to be that the transmitter -receiver
distance must be much larger than the axial lengths of these cones, that
is to say,

L= InI >> 4(Lo -I- I 1)312/X (66)

It remains to observe that the covariance expression (40) is itself
an accurate relation provided that the average field is not severely
attenuated by virtue of scattering into the fluctuation field. The at-
tenuation exhibited in (50), as evaluated throughout the above region
of important scattering, must be small; that is to say,

(Im k)
I

n << 1, (67)

where Im k is given by (30). Combining conditions (66) and (67)

yields an interval for validity of (51). When I E I = 0, this interval is

LY2/X1 « I n I << (Im k)-1. (68)

In other words, the transmitter -to -receiver distance must be (i) suf-
ficiently large so that far -field approximations of the covariance are
valid, and (ii) sufficiently small so that single -scatter perturbation
approximations are valid.

V. REDUCTION OF THE INTEGRATION FOR THE COVARIANCE -

SPHERICAL AND PLANAR CASES

5.1 Spherical -Wave Case
The central result of the previous section is the approximation (51)

of the covariance. The problem remains to evaluate the integral
specified by this approximation. In this section, we introduce a set
of coordinates which simplifies the integration, the result being (77).
Although Section V indicates the extent of the important region of
integration, the result (77) is equivalent to integration over all space
rather than over only the important region. Under the large-scale
approximation, the formula (77) is specialized to (83) and to (85)
for transverse and longitudinal receiver separations.

For simplicity, we first observe that (51) can be replaced by an
expression employing the unperturbed field v, rather than the average
field uc. We need only observe from (7) that

uc = + O(2)
where (L1) = 0. It immediately follows that (8) can be replaced by

u; = + O(2)
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where uo = L-11 is the field that would exist in the nonrandom medium
(e = 0). In our special case,

uo(r)
exp [ilco I r I]

4r I r I '

and accordingly

ui(r) = -2e1c: f G(r, r91.4(r9u0(2.9 dr' + O(2)

can replace (34). Equivalently, (51) can be approximated by

u` \n.)/z*,(n -

4,2k! f d exp Liks(00
Y (410 Y 12 1 n - 12 8(1 k°1) ka(Y) I),

(69)

where the spectrum S is defined by (52) and where = y/I y I. That is
to say, the replacement of uo by uo corresponds to the replacement of
k(y) by kJ.

The volume integration can be carried out with spherical coordi-
nates which have the receiving center n as their origin. In such co-
ordinates, the differential of volume of dcidR R2, where R=In-yI
and cist is the differential of the solid angle. Since k8(y) is a function
only of the direction of an element dn relative to the origin at n, it
follows that (69) equals

4e2
0k4

f exp [ik..6 f dR { I Y i-2 kop - kg(y) I) } (70)
(47

where the factor in braces is to be evaluated as a function of R with
k8 fixed.

The angular integration in (70) will use the coordinates in Fig. 6,
where 0 = 0 corresponds to the direction of the transmitter. The
radial integration in (70) will employ the angle shown in Fig. 7. The
argument of the spectrum is the square root of

1c0 - lc, I2 = k:(2 - 2 cos 1,b) = 41c: sine 12.11 (71)

The law of sines is

Y

sin 0 sin (ir - Ii) sin (ip - 0) '
(72)
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A

(TRANSVERSE)

A

(LONGITUDINAL)

Fig. 6 - Spherical polar coordinates at the receiver.

and thus
0 (73)

(74)

=Lsin
sin

dR , sin 0-= 2
chi/ sin 1,G

The radial integral in (70) is thus

(L sin 0)-1 f chi& S(2k sin 112)
0

and (70) becomes
7r

(75)

dO d4 sin ).
2

(76)exp (ika) ,S(2ko
(470 2 2(47rL) o o

The 0-4/ integration is over the triangle {0 < 0 < 7r, 0 r} =
{0 0 < 0 < 0}, so that interchange of the order of integration
yields

E2k4L
AS(2k0 sin $,) f dO 2

(27)2(47rL) 2 0

f dcc exp (ikaE). (77)

Fig. 7 - Radial variable R related to angle %fr.
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Further specialization of (77) is made to the cases in which the
receiving displacement is transverse and is longitudinal, Fig. 6. In
the transverse case, kse = -k0

I I
sin 0 sin co, and (77) becomes

E2k4oL

2r(47L) 2 Z
ff chi, 42k. sin *) de J0(k0 I I sin 0). (78)

In the longitudinal case, k.,4 = ko j 4 I cos 0, and (77) becomes
6200L

2r(47rL) 2 f d& 4
Z

f2k.sin de exp (ik. I E I cos 0). (79)

Expressions (77) to (79) correspond to integration over all space,
rather than over only the region of important scattering. Further ap-
proximations rely upon the cutoff provided by S(K) for K > 271-//0 ,

where 10 is the inner scale size and 10 >> X. For the transverse case, (78)
becomes

e2k201,
S(x)2 axaK t/ AK I t I),27(47r4

and in the longitudinal case, (79) yields

(80)

e2k2j,

(47rL)2
c) 2

i I E Ik. 2exp (ik 0 I) j dx S(x) f dK exp (81)
I)

The K -integral in (80) can be evaluated in closed form, namely

fy
dK Jo(ic I E p= xJ0(x + xJ1(x I E l)H0(x I E

xJ.(x
I E I)Hi(x I

E I) (82)

where H,. are the Struve functions. Thus, for the transverse case, (80)
is

Elko
dx xS(x)[J 0(x

2L

271-(47rL)2 I) ± 712 Ji(x I 1)1-10(x I)

-721 .1.0(x I E I)Hi(x I E

The K -integral in (81) is related to the Fresnel integrals, namely

fox
dre exp I I K2)

2k0 =

(83)

(R- k0

)1(2)i

r(.21 0,2k0).

r
dt exp (-it2)

('rk 0 )i
O( E Iv I x2

1E 2k0 - is -27-1c0)1- (84)
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Thus, for the longitudinal case, (81) is

e2e,L (r) )x?% 1i
27(47rL)2 exp (ik°

I t I)
dx x S(x)

6(x 2k I2)1 - i4x211! 1)1].
(85)

5.2 Plane -Wave Case

For the spherical -wave case, the spatial covariance (u; (nt/2)u*, (n -
E/ 2)) is given by (77) and its transverse and longitudinal specializations
(80) and (81) or (83) and (85). By way of contrast, we derive the cor-
responding expressions for the plane -wave case.

Approximations (45) and (48) show that the covariance (40) is

approximately

(ui(n )u*,(77

420,, f d- exp [ik ,(y) y12
S( k(Y) - ks(y) I) (86)

(470 1 n -

where k(y) is a constant wavevector, I k(y) I = ko in keeping with
the interchange of 24 and uo, and I uo(y) 12 = 1. Here the integral is
over the volume of a half -space with k perpendicular to the face.

With spherical coordinates centered at the receiving center n, (86)
becomes

(2k2
. f chi exp k - k, I) f dR

70
(87)

where the radial integral has k1 -dependent integration limits correspond-
ing to the half -space interface. Under the large-scale approximation,
X/10 << 1, the radial integral is approximately L. For transverse separa-
tion, (87) is

or

e2k4oL f dO chp sin 0 exp (-ik I
E I sin 0 sin go)S(2k. sin 2-) (88)

3

2

(2702
4 0

E2

271 -la

fr
do sin 0, I 0(k 0 I E I sin 0)42k. sin (89)

0

Under the large-scale approximation, with small angles yielding the
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significant part of (89) the covariance becomes

E2k2*-11 f°3 dx xs(xwo(x E I). (90)r J o

This expression was obtained by Tatarski [Ref. 4, equation (7.64) ]
to be equal to twice the correlation function for either the log -ampli-
tude or the phase fluctuation of the total field. But

2(x) = -47 r dr rr(r) sin sr,
x 0

because (91) is a function of I K I, and

f E ,
dx sin (xr)J 0(x

(r2 - 12)-1/2

0 0

r2 12,

r2 12.

(91)

(92)

Substituting (91) and (92) into (90) and changing the variable of
integration shows that

+ :e:(ui(ri .;(71 - 2)) 22k2oL f dr r(r2 + IT (93)
0

for transverse separation. This is a central result of much of the
literature (for example, in a
simple and novel way.

For the case of longitudinal separation, (87) is

or

21c4.1, f27
(2702 d0 (hp sin 0 exp (ilco E I cos 0)8(2k0 sin --°-) (94)

2

2r
L

d0 2 sin -2 cos -2 exp [iko E

,,2 1c 0 0
(1 - 2 sine ---)13(2k0 sin

(95)

Under the large-scale approximation, the upper limit of the variable of
integration K = 2ko sin 0/2 can be replaced by infinity. Thus,

u; (n)/L*;(77 -2 2

E2r2k2L
exp

.

I) J.
dx x8(x) exp i I

2k
I

o /
x2) (96)

It does not appear possible to simplify (96) by using (91) together
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with the sine -transform of the exponential in (96). However, the
special case

r(r) = exp (-7-2/2/20) (97)

is of interest. Then

S(x) = (271-)3/2/30 exp (- Pox' /2) . (98)

Inserting (98) into (96) and using the variable u = /2°2/2 for integration

yields

1 _
_ - EvLio,70i exp (iko E 1)

u1(77 u n ,
21 + (111

k)oPo

(99)

This expression corresponds to a result of Chernov [Ref. 1, p. 94, equa-
tion (187)] for longitudinal log -amplitude or phase fluctuations. The
magnitude of the last factor in (99) is reduced by 51 when I I = 2ko/2° .

5.3 Comparison of the Spherical and Planar Cases

Notice that the relative variance (zero receiver separation) is the
same for the spherical and planar cases. That is to say, expressions
(80) and (81) yield the same variance, relative to the spherical -wave
power (47TL)-2, as do expressions (90) and (96) , relative to the unity
plane -wave power.

For transverse receiver separation, the planar -case result (90) can
be compared with the spherical -case result (80). The weighting of the
spectral function xS(x) is jo (x I e I) in the planar case; this I I -func-

tion has its first zero at
I e = 2.4/x with subsequent zeros spaced

3.1/x apart. In the spherical case, the weighting is

f0
dK Jo(K

I
I);

this I C kfunction is a mixture of functions with "periodicity" larger

than that of Jo (xe ) . Presumably, correlation lengths would usually
be larger in the spherical case than in the planar case.

For longitudinal receiver separation, the planar -case result (96) can
be compared with the spherical -case result (81). The weighting of xS(x)

is

exp (
x2/

-7.
2ko
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in the planar case; this I E I -function has period 47rico/x2. In the spherical
case, the weighting is

x
0

dic exp (- i
2Ico '

this 16 I -function is a mixture of longer -period functions, and again
correlation lengths would presumably be larger in the spherical case
than in the planar case.

Physical reasoning also suggests that correlation lengths are larger
in the spherical case than in the planar case. First, compare the regions
of important scattering. For the spherical case, this region is sketched
in Fig. 5, where the angle is given by (65). For the planar case, this
region is a cone with half -angle 4, and axial length L (the transmit-
ter -receiver separation being replaced by the distance the receiver is
imbedded into a half -space of random refractive index) , Fig. 8. Com-
parison of the two regions suggests the the fluctuation field in the
spherical case is more directive than the fluctuation field in the planar
case.

Second, consider the implication of a more directive fluctuation
field. The directionality function N can be defined by

(ui(n + Du*, (n

(1 ui(n) 12)
-f dl exp (iksON(k8). (100)

A wave in direction k8 contributes a correlation exp (i1c86), and the
total correlation is a weighted average of such constituents. The form
(100) is exhibited by (70) in the spherical case and by (87) in the
planar case. An idealized directionality function would be constant
with les 71 above a threshold and would be zero elsewhere. That is to
say, (100) would be

L

Fig. 8 - Region of important scattering (plane waves).
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1
c/676 La S2 exp (ik,0 (101)

where AO is a small cap on the unit sphere of size 2r(1 - cos 0) ti rOa.
When t is transverse, (101) becomes

0 r.27r

[211-(1 cos dO dca sin 0 exp (-iko I I sin 0 sin go)f
0

(102)

(1 - cos 0)-1 f dO sin 0J0(ko E I sin 0).
0

Under the small -angle approximation, (102) yields

2J j(ko

ko I I e

The correlation function (103) is unity at I t I = 0, is 0.88 at I t
I

=
X/270 0.16 X/O, and is zero at It I 0.61 A/O.

When E is longitudinal, (101) becomes

[27r(1 - cos C))]-1 f e 27,

dO dcp sin 0 exp (iko I cos 0)

= exp (iko I l)
1 - exp [tiko I I (1 - cos 0)]

iko 1 (1 - cos 0)

1 - exp [-i2k,, IEI 0/4r]
= exp (iko E I) (105)i2k t I AS2/47r

The correlation exp (ik,, I
E I) associated with a plane wave is modulated

by a function having ripple in its numerator with period X(2r/Al2).
The X -dependence exhibited in (103) and (107) must be tempered by

the X -dependence of the angle e. Figures 5 and 8 suggest that e would
be at most X/10 (&2 at most rX2//20) for equivalence of the idealized and
true directionality functions. For the transverse case, the null of (103)
would be at I t I = 0.61 l or more; the X -dependence disappears as in
(80) and (90). For the longitudinal case, the period in (105) would be
at least 2/20/X; this period is to be compared with the width of the last
factor in (99) for the plane -wave gaussian-index correlation case.

Both (103) and (105) exhibit the fact that correlation lengths are
inversely proportional to Aft, the width of the directionality function.
But the scattering volumes depicted in Figs. 5 and 8 show that this
width is smaller in the spherical case than in the planar case. This

(103)

(104)



1154 THE BELL SYSTEM TECHNICAL JOURNAL, MAY -JUNE 1969

physical reasoning corroborates the previous interpretation of the
integration formulas which showed larger correlation lengths for the
spherical case.

VI. EXAMPLES OF TRANSVERSE COVARIANCES

It has been shown that, for transverse receiver separation, the covari-
ance (u; (n E/2)0, (n - /2)) is given by (80) in the spherical case and
by (90) in the planar case. These expressions are now evaluated in closed
form for two illustrative spectra.

Recall that the spectrum 8(K) is related to the refractive index
covariance F(r) by (52) which becomes (91) for the statistically
isotropic case. For convenience, (91) is repeated here, together with
its inverse:

S(K)47r= -f dr rF(r) sin Kr (106)
K 0

1 f
?C

°3

zrr(r) = 2-r, arcOW S111 Kr. (107)

Also, the planar -case covariance (90) is

E2 :201, , ,,
dK KokKpi oks 1)t (108)

and the spherical -case covariance (80) is

, , ,f aK (AK I I) f dx 8(x); (109)
(47L)227

the order of integration has been changed.
The normalization of the spectrum follows from (107) evaluated

at r = 0,

1 = 2-2-1 f dK K2S(K),
7 0

(110)

so that E2 plays the role of the variance of the refractive index.
Our first example is the case of an exponential spectrum:

8(K) = 72A3 exp AK], (111)

r(r) = [1 + (r/A)2]-2 (112)

where A >> X. Then, the planar covariance (108) is
e2k2 br2A

'27r [1 + (I liA)2]-3/2 (113)
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and the spherical covariance (109) is

e2k2oLir2A

(4r/4 22r

The respective correlation functions in (112) to (114) are plotted in
Fig. 9. The correlation length for the spherical case is larger than
the comparable correlation lengths for the planar case and for the
refractive index.

Our second example is the case of a constant spectrum:

1.0

0.8

0.6

0.4

0.2

0
0

A)2] -1 /2

3 Aa

S(K) = 4w'
0, K > 27/ A

F(r) -

0 <K <2rr/A

2r7. 27rr 27rrsin -A - -
A

cos
A

1 (27r)3
3 A

(114)

(115)

(116)

A = "INDEX
I

CORRELATION
I

LENGTH"
1\ SPHERICAL

INDEX

PLANAR

0.5 1 0 1.5 2 0 2.5

NORMALIZED RECEIVER SEPARATION IA

Fig. 9- Correlations for the exponential spectrum.

30
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Then, the planar covariance (108) becomes

2 j (211" I IY
E2k:L 3rA 1\ A /
2r 2 _ I I/A

The correlation function in brackets agrees with (103) with 0 = A/A,
which determines the angular extent of the constant directionality
function. The spherical covariance (109) is

3A 12.1.
2J-i(LrIZ I)

(47rM2 2 °\ A 27r I I/A

ji(27r I I)H (27r I I) (27r I E 1)H. (27r I I)}
\ A / °\ A / A / 1\ A '

(117)

(118)

where H are Struve functions. The correlation functions in (116) to
(118) are plotted in Fig. 10. As before, the correlation length for the
spherical case is larger than the comparable correlation lengths for
the planar case and for the refractive index.

VII. SUMMARY

In Section II, the perturbation theory of Keller is developed in a
novel way.2 This development shows that the nearly uncoupled equa-
tions (12) and (13) arise naturally from the fundamental pair (3) and
(4). In Section III, the equation for the average field (12) is solved for
the case in which the refractive index is statistically homogeneous and
isotropic. The spherical wave (16) is shown to be a good local approxima-
tion of the average field; the wavenumber k is a weak function of position
and satisfies (21). Beyond a few correlation lengths from the source,
the wavenumber is a constant given approximately by (28) to (30).

In Section IV, the equation for the fluctuation field (13) is shown to
imply (40) for the spatial covariance of the field. A useful approxima-
tion of the covariance is (51) which is then justified on physical grounds.
For the large-scale case X << /0 , where A is the wavelength and /0 is the
inner scale for the refractive index, this approximation shows that the
region of important scattering is given by (60) with (65) and lies within
the volume common to two cones with apexes at transmitter and re-
ceiver, each cone with half -angle approximately X//0 . The interval for
validity of (51) is given by (68) which states that the transmitter -to -
receiver distance is sufficiently large for far -field covariance approxima-
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Fig. 10 - Correlations for the constant spectrum.

6

tions to be valid but is sufficiently small for single scatter perturbation
approximations to be valid. In Appendix B, it is shown that a far -field
condition relative to the covariance is less restrictive than a far -field
condition relative to the field itself.

In Section V, the volume integration of (51) for the covariance is
transformed to the angular integrations exhibited in (77). For the
large-scale case, the covariance is given by (80) and (81) for trans-
verse and longitudinal separation of receivers. These expressions for
our spherical -wave model are contrasted with (90) and (96) for the
plane -wave model, showing that relative variances are the same but
that correlation lengths are larger in the spherical -wave case than in
the plane -wave case. This is to he expected on physical grounds, for
comparison of the volumes of important scattering for the two cases
indicates that the fluctuation field is more directive in the spherical
case. But a more directive field has longer correlation lengths; this is
illustrated by (103) and (105) for transverse and longitudinal sepa-
rations under the idealized directionality function in (101). In Sec-
tion VI, two special cases of refractive -index correlation which cor-
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respond to an exponential spectrum and a constant spectrum are
considered. For transverse separation, the covariance functions are
derived in closed form. Plots of the correlation functions show that
correlation lengths for the spherical wave case are larger than the
plane -wave correlation lengths, which are comparable to the correla-
tion lengths of the refractive index.
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APPENDIX A

A Mean -Value Theorem

We show that any solution of
2 +

satisfies the mean -value relation

4 R2
f dS u(r

sin kR
u(') kR

sin kR sin k(I r j - R)
u(r)

.

47 1 r I kR '

(119)

0 <R <
(120)

R> Ir
where the integration is over the surface of the sphere fp: I p I =
In particular, when u(r) is of the form (16), then (120) becomes (19).

Introduce a function j (r) that satisfies

[V2 + le]t(r) = -6(r - r.). (121)

Then (119) and (121) imply that

V  (OVu - uVO) = u6(r - r.) - OH. (122)

For the sphere fr: I 7' - 7*,, I = RI with the outward unit normal p =
(r - ro)/I r - ro I, the divergence theorem yields

fdS (OA Vu - up  V 1,0

u(r), 0 < R < I ro I,

u(ro) - 1/,(0), R > I r I .

(123)
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We choose ' to be a linear combination of

exp (±ik I r - ro I)

4r I r - ro I

such that ' is zero on the surface of the sphere and satisfies (121).
This choice is

(124)

sin k(I r - ro I - R)
4r I r - ro I sin kR 

(125- )

The radial component of the gradient of (125) evaluated on the sur-
face of the sphere is

kR
A. V4, = 4rR2 sin kR

Then (125) and (126) in conjunction with (123) yield (120).

APPENDIX B

(126)

An Improved Far -Field Condition
The kernel (41) used in the integral (40) , yielding the covariance, is

G(r, r')G*(p, p') =
(47)2 r r/ I I

p

With the definitions and inverse relations (36) to (39),

the kernel is

exp [il:( I r - I - I P I)]

r p

- 2

r' + p'

r = n

= r - p ,

x = r' - p',

r' = y + Tj , Y -

exp - -41- In-y- -
(4r)2 I - '3/4( - I n - - - 41

The far -field (Fraunhofer) approximation arises from the series

(127)

(128)

(129)

(130)
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expansions (42)

I n- y + I = In-Y1+1 Y )2 lin- 'II x * * *

(131)

In-YI-2
1

n

n-yy l(-x)+
and the approximation kernel (44) is

exp iket Y  (t -
(4702 I n- Y 12

(132)

A usual condition for the validity of a far -field approximation is

I Y I >> -!' (133)

where L, is an outer scale of the scatering medium. This condition is
relative to approximation of the field. But relative to approximation
of the covariance of the field, the condition of validity is

I n-yI >> LoV. (134)

In the case L. >> X, condition (134) is considerably less restrictive than
condition (133). The reason for this improved state of affairs is that,
rather than approximating Green's function G, we are approximating
the kernal GG*. In the computation of the phase of this kernel with
expansion (131), there is cancellation of terms that ordinarily remain
when computing the phase of G itself. Overbounding the effect of all
neglected terms, not just the first one, leads to condition (134).

Our task is to approximate the phase in (130) , namely, the argu-
ment of the exponential. We put

so that
= -

I r - r' 1 = 1 Y + I,

IP-PSI=IY-ZXI
Then, we observe

Y.X X2 \
Y2 4 Y2

X = - x, (135)

(136)

(137)
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so that
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YX /f2
a= Y2 ; = 4Y '

I r - r' I=IYI (1 ± a ± 0)4,

I P 13' I = Y (1 a +
The next step is to assume I =L.- a + fl I < 1 and expand I r-r' I and

I p-p/ I with a binomial series. Then,

(138)

1.1
(1 ± + (3)1 = 1 + 1(±a + 0) - -2.4 (±a + 0)2

(139)

1.1-3+ 2.4.6 (±a + 0)3
1.1.3.5 (±a 13)4 + . (140)2.4.6.8

In the above expression, only terms with differing signs contributed to
the difference I r-r' I- I p-p' I. Thus,

( ± a + )3)i - (1 - a +
1.1 1.1.3 3 1.1.3 R2

a - 2 2aI3 2 2.4-6 a 2.4.6 "(4'

where the remainder R has the series expansion

R = -1.1.3.2.4-6.85 [(a + 0)4 - (-a ± 0)4]

(141)

1.1.3.5.7+ 2.4.6.8.10 [(a + 0)5 - (-a + 0)5] - (142)

The series is readily "majorized," with the result

I R I < 2 2.1.6.3.5
.4.8 (i a 1 + 1)4

1-1.3.5.7
+ 2-4.6.8-10 (i aI + 10 1)5 + 

or,withy=lal+1/3 land° < -y < 1,

/DI
2

<
128
5-y4 [1

--I- -7-y + 7.9
10 10 -12

, (143)

(144)
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But the series in brackets is overbounded by

1 - 1 + 7 + 72 + 1 -7 (145)

Thus, y < implies

IRI < L74 = (I cel-Fig I)4 (146)

The above calculations show that

r - - I P

where

The conditions

and

YX 1 YX X2
=1 1 IL 172 8 Y2 Y2

8 \ Y(YX)3 128 Y 2
3 Y  X

\
( X2\2

, (147)
2

IR < Y  X
Y2

Y  X X2±
Y2

+4
Y2

X2 )4
T

4 Y2
(148)

< 1 (149)

I 1
(150)

Y2X I 4 /72

have been imposed. Since condition (150) implies (149) it is clear
that both are met when

I X I

Y

1

3
(151)

The far -field approximation of the kernel employs the leading term
of (147) ; that is to say, the Fraunhofer phase is

2r n - ykei
YI

X
X YI

- (E -x).

The phase error is then

{LX1  X X2

° 8 IYIIXI.Y2
El yX )2 3X2

\IYIIXI/ -176Y2

(152)

Y I R}. (153)
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Our task now is to overbound the magnitude of the phase error.
We impose I X I < Lo , an outer scale of the refractive -index correlation
function r. This is appropriate for zero receiver separation, It I = 0;
later, Lo could be replaced by I I + Lo for nonzero receiver separation.
Apart from the remainder, (153) is seen to be a function of the cosine
u  v, with u= X/1 X I and v= Y/1 Y 1, and of the ratio w= 1 X 1/1 Y 1.
We overbound the product in (153) by a product of overbounds in which
u  v has distinct values, and overbound the second factor by unity (unity
is greater than both the largest positive value 1 - -he and the largest
magnitude, 2-6w2, of negative values, since w < 1). It follows that the
magnitude of the phase error is overbounded by

k0(L20

8Y2+ 1 Y1 1R1) (154)

We now overbound our previous estimate of I R I. We assume 1 Y 1

> L, , even though tighter overbounds can be obtained under 1 Y I >
3Lo as previously assumed. Then, (148) yields

51 Lo L20)4 5 ( 5L0 )4

I

<32\I 32 VI 1 Y1/ '
or

We use

(155)

1 25 L o

I R I < 170
( )3(IYI)i<

0.382() /° I)4. (156)

IR <25 (Iii; 1)4.

The above phase -error bound (154) is less than

which is less then

Lo (1 16 Lo
° 8 Y- \ 5 I Y 1)

k0/4 21 5 k0/4
8Y2. 5 8 Y2 

(157)

(158)

(159)

All of the above calculations required I Y I > Lo. With the stronger
condition 1 Y 1 > 440, the next -to-last calculation becomes

L3 (1+ 16 Lo koL30 9
(160)

8Y` 5 I Y 1/ 8 Y2 5
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This overbound is less than

kL30

4Y2*
(161)

Suppose we impose the condition that the phase error be less than
7r/32 and we ask what value of I Y I, the scattering range, is required.
The last overbound yields

yIn-y1=IYI>4(7: (162)

This is a less restrictive condition than one specifying the far -field range
to be much greater than L20/X. When Lo >> A, it is a considerably weaker
condition. On the other hand, with Lo > A (but now Lo ti A), the con-
dition (162) still implies the assumption I Y I < 4L0 under which it was
obtained. When Lo < A, the results are valid but vacuous, since the
pertinent condition is then I Y I > 4L0 .

We turn to the approximation of the coherent -field function (46) ,

u +
2-

c(?) - x)
2

exp [i(k

(47)2

- k*

-

y -
2

2

in which k is a weak function of position. With the identification y =
Y, x = X, the previous analysis is applicable. The approximation (48)
to (50) is

exp (-2 Im k I y I) exp [i(Re k) Y xl
tY

(4702I Y 12

with a phase error less than

Re kL30
4 I y 12

In view of the interchangeability of k and ko, the phase error (165)
is comparable to

(164)

koV,
4 I y 12.

Then, a phase error in (164) less than 7r/32 requires that the source -
to -scattering distance I y I satisfy

I y I > 4L0(Lo/X)4. (167)

(165)

(166)
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Our calculation is similar to one by Lahti and Ishimaru, but the
calculation (and result) is simpler and the final conditions are less
restrictive." Simplicity is obtained in part because we use variables
with symmetric form, (128) and (129), and we overbound a quartic
remainder rather than modify a cubic remainder. Our quartic-re-
mainder overbound also yields less restrictive conditions, say I Y I >
4L0(Lo/A)+ implying a phase error less than it/32 in comparison with

Y I > 7Lo(Lo/A.)1 yielding an error less than 77110.
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Response of Delta Modulation
to Gaussian Signals

By M. R. AARON, J. S. FLEISCHMAN, R. A. McDONALD,
and E. N. PROTONOTARIOS

(Manuscript received October 30, 1968)

Analytical, experimental, and computer simulation results are given for
the error spectrum of a delta modulator when probed by stationary, band
limited, gaussian noise. These three complementary methods are used to
increase our quantitative understanding of the nonlinear system with mem-
ory. The error is conveniently split into two components: one linearly
dependent on the input signal and one linearly independent of the input
signal. In order to isolate these two types of errors we use two measurement
techniques. For purposes of analysis we show that the delta modulator can
be replaced by an equivalent linear system with additive noise at its output
which is linearly un correlated with the input. The equivalent linear system
may be approximated by using methods involving statistical linearization
or the deterministic describing function. Alternately, the equivalent linear
system may be obtained from computer simulation.

I. INTRODUCTION

1.1 General Background and Broad Objectives
Delta modulation (DM) has been known for almost two decades;

yet, little has been published comparing experiment with theory par-
ticularly for random inputs.f On the surface this might seem strange
because of the apparent simplicity of the delta modulation system
blocked out in Fig. 1(a). The waveforms depicted in Fig. 1(b) and
the mathematical model in Fig. 1(c) should suffice to explain how the
system operates. The principal difficulty of the analysis is the ab-
sence of general tools for handling random processes in nonlinear sys-
tems with memory. From this viewpoint the simplicity of the delta

t The first reference to delta modulation appeared in French patent literature
(see Ref. 1) in 1946, but the first readily available description in English ap-
peared in 1952 (see Ref. 2).

1167



1168 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1969

modulator is deceptive. However, if we make some inroads into the
quantitative understanding of this seemingly simple case, it may give
us courage to go on to more complicated situations.

In this paper we concentrate on the development and exploitation
of analytical, experimental, and computational techniques to enhance
our understanding of the objective performance of delta modulation.
We do not consider the correlation of objective measures with sub-
jective effects for applications to either voice or video; rather, our
main aim is to correlate what is known in theory, including our own
developments with what has been achieved experimentally.

Renewed interest has come from at least two sources. First, differ-
ential systems of which delta modulation is the simplest member,
have long been known to be well suited to handling signals whose
spectra fall off at high frequencies.3-5 This is particularly true of
black and white video; there is substantial interest in transmitting
such signals digitally.° Interest also has been generated by the desire
to produce inexpensive time division switching and transmission sys-
tems for voice.? In this application, delta modulation is attractive be-
cause of its simplicity and great compatibility with the emerging in-
tegrated circuit technology.

1.2 Use of the Random Noise Probe

Reasons for characterizing a delta modulator with a random noise
probe are twofold. First, the envelope of a scanned video signal has
a power spectral density that is close to that obtained by passing gaus-
sian noise through an RC filter.- Therefore objective performance
measures obtained in response to this signal bear some relationship to
subjective performance. Second, use of the established noise -loading
procedure for determining the spectrum of the noise in a nonlinear
system yields a "signature" that is useful for verifying that the delta
modulator is performing as designed. Verification of prescribed per-
formance is an essential prelude to careful subjective testing as well
as an absolute necessity for production control. To avoid measure-
ment problems that result from the low spectral density of the RC
noise source at the upper end of the band, we deal with flat band -
limited white noise almost exclusively.

1.3 Chronology and Summary
At the start of our work the signal-to-noise ratios obtained by

computer, experiment, and analysis disagreed substantially, partic-

t We use the terms power spectral density, power spectrum, and spectrum in-
terchangeably throughout.
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ularly when the signal was changing more rapidly than the delta
modulator could follow. In this region, known as the region of slope
overload, two methods of computing slope overload noise differed
markedly.6.8 Reference 9 gives a reconciliation of the differences and
the development of an analytical expression for the mean square
value of the slope overload noise. By using the best features of the
previous conflicting theories, an analytical result was obtained that
yielded good agreement with computer results.9 Granular noise, as
computed from Van de Weg's approach, agreed with both simula-
tion and experiments.10 Results obtained by noise -loading experi-
ments continued to disagree with both theory and simulation in the
slope overload region. It quickly became apparent that the differ-
ence resulted from the fact that this measurement procedure did not
measure the noise as defined by theory.

To clarify the differences it is desirable to consider the spectrum of
the noise introduced by the delta modulator. Two definitions of noise
are possible; the simplest is that the noise is the error, that is, the
difference [x(t) - y (0] between the input signal and the local out-
put signal as defined in Fig. 1. This error is correlated statistically
with the input signal. In other words, the error may be considered to
be made up of two components, one linearly dependent on the input
signal and one linearly independent of the input signal. The linearly
dependent component may be regarded as being caused by passing
the signal through a noise -free linear filter.

This equivalent linear filter does not introduce noise but merely
introduces frequency distortion, as for example in producing selective
attenuation and phase shift, particularly for the higher frequency
components of the signal that the delta modulator cannot follow. The
noise component linearly independent of the signal may be viewed as
equivalent to additive uncorrelated noise just as in the case of a non -
feedback type of pulse code modulation quantizer.11 When the noise
is split up this way, the components have distinctly different subjec-
tive effects and are thus meaningfully studied separately. In fact the
spectrum of the uncorrelated component of the noise is measured by
the noise -loading test pictured schematically in Fig. 2. This test
procedure is commonly used to test transmission systems, primarily
for nonlinear distortion, in this manner.12 With the switch in the
upper position, the colored gaussian noise is passed through a narrow -
band elimination filter prior to exciting the system under test. At the
system output, noise generated by system nonlinearities is measured
by the bandpass filter in the receiver of the noise -loading set. This
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Fig. 1- Delta modulation : (a) delta modulation system, (b) waveforms, (c)
mathematical model.

filter passes only those frequency components eliminated from the
input signal. This differs from the total noise as computed by analysis
and simulation.

Two approaches were taken to reconcile measurements with the
paper and pencil results. First, we used a straight -forward, but tedious,
measurement procedure called the cancellation test to measure the
total noise as defined by theory, that is, the difference between output
and input. The results achieved substantiated the theoretical results.
Unfortunately the cancellation or "feed -around" technique, as dis-
cussed in detail in Section IV, is tedious and difficult to perform ac-
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curately. This made it necessary to rely on the more convenient noise
loading measurements. To compare theory and experiment it became
necessary to remove the correlated components of the noise as ob-
tained from theory and simulation. It was not possible to do so for
the purely theoretical approach, but the results of the simulation were
modified, as described in Section III, to agree with the measurement
made with the noise -loading technique.

The equivalent linear filter, defined in Section 1.4, cannot be ob-
tained analytically, but it may be determined using computer simula-
tion. An approximate analytical method for arriving at the equivalent
linear filter is statistical linearization to replace the quantizer (signum
function, threshold circuit) of Fig. 1 with a "suitable" linear gain.
This approach is discussed in Section 2.2 where comparisons are made
of the equivalent linear filters obtained by the statistical linearization
and simulation approaches. Most of the manipulations regarding the
statistical linearization are relegated to Appendix A. Section 2.3 is
concerned with harmonic analysis useful in its own right as well as
a part of the cancellation test. The prelude to the Fourier analysis
relevant to the sinusoidal response in the overload region is given in
Appendix B.

In Section III we cover the highlights of the simulation program
with emphasis on the spectral calculations. Estimates of accuracy are
given in Section 3.2. Section IV is devoted to a discussion of the
techniques used for measuring the spectrum of the error. We also show
how the delta modulator parameters are measured and discuss the
realization of a laboratory model delta modulator. Throughout the
paper we compare experiment with theory and simulation. In Section
V we make some general comments about the various sets of results.

1.4 System Definition, Terminology, and Symbols

The following are the terms and symbols used. Our input signal
x(t) in Fig. 1 is chosen from a stationary, zero mean, gaussian random
process, band -limited to fb . Its correlation function is R..(7) and cor-

BAND
ELIMI-
NATION
FILTER

NOISE LOW

SOURCEPASSFILTER 0

DIFFERENTIAL
PULSE CODE SAND -PULSE PASSMODULATION FILTERSYSTEM

TUNED
DETECTOR

Fig. 2 - Noise loading test: When the switch is at A the uncorrelated noise is
measured; when at B the signal plus total noise is measured.
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responding spectral density Sr('').r The delta modulator is characterized
by the step size k of the quantizer, sampling frequency f, or normalized
sampling frequency fs/ft, = F, and an ideal integrator with transfer
function 1/s.t Clearly the maximum slope that the delta modulator
can follow is kf. = xo , which corresponds to a string of one's at its out-
put. As k approaches zero with xf, fixed, the granular noise tends to zero
and the noise primarily results from slope overload. Under these con-
ditions it will be convenient and quite accurate to represent the delta
modulator as a continuous feedback loop with a step size xa . We make
this assumption in much of the analysis to follow.

Throughout we use e (t) for the total noise, n(t) for that component
of the noise uncorrelated with the input signal, z (t) for the unsampled
output of the threshold circuit, and y(t) for the output of both the
local integrator and the remote integrator (error free transmission).
Other symbols are defined as needed.

II. DEFINITION OF THE UNCORRELATED NOISE -AN EQUIVALENT

LINEAR SYSTEM

2.1 General
In this section we define an equivalent linear system and an addi-

tive uncorrelated noise which produce statistical behavior identical
with that of the delta modulator up to second moments. Notice that
any time invariant linear transformation of the input signal contained
in the output may be considered as useful signal because, at least in
principle, the input may be recovered by passing it through a fixed
linear filter corresponding to the inverse linear transformation.

Definition 1: Equivalent Linear System. We compare the output
of the delta modulator y (t) with the output of an "equivalent linear
system," defined by Figure 3, whose impulse response g (t) is defined
such that the difference

y(t) - g (t)*x(t) A n(t) (1)

is uncorrelated with the input x(t) ; that is,

iir(T) = (x(t 7-)n(t)), = (x(1 + T) [y(t) - g(t)*x(t)]), = 0 (2)

where * denotes convolution.
Definition .: Additive Uncarrelated Noise. The difference n(t)

t In Section 22 we consider the more practical case of a leaky integrator with
transfer function 1/(s + a).
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given in equation (1), with equation (2) satisfied, is defined as the
additive uncorrelated noise. Equation (2) is satisfied when

Rzz(r)*g (- 7) = Rx,(r). (3)

Taking the Fourier transforms of both sides of this equation and then
the complex conjugates we get

S.(w)G(jw) = - 1
8..(co)
-1 { Re [S=e(w)] - j Im [Sie(co)]) . (4)

We remark here that the transfer function G(jw) does not have to be
causal; that is, g (t) may be nonzero for t < 0.

Applying the orthogonality principle we can see that g (t) , thus
found, also satisfiest

([y(t) - g(t)*x(t)r)s, = minimum.
Notice that from Fig. 3, we can write

S(co) = IG(jw) 12 Szz(co) S.(co).

If the input process [x (t) ] has a spectrum S,x (co) such that

Sxx(co) = 0 for
Act) Al

w E {w° T w° ±co-2-

(5)

(6)

where coo is a given radian frequency and ow a small radian frequency
slot, then applying (5) we get

Sn(co) = S(co) for w E {W. - Acowp

Ace

So that for the noise power in this frequency slot we will have

(7)

1
..+Aw/2

S (co) dco dw. (8)w -p/2hqr f .. G71- fw.-Pw/2

The noise -loading measurement described in Section I applies the
technique mentioned here. Thus the noise spectrum and noise power
measured are S7, (co) and (n2 (t)),. In order to compare experiment
and analysis we have to find G (jco) and (70 (t) )av When we are slightly
in slope overload, G(jw) is practically equal to 1 and all noise defini-
tions so far used are equivalent. When well into slope overload,

t Kazakov used this approach to obtain g(t) or equivalently G(jw) in equation
(4) in 1960.13 We were unaware of his work at the time we conceived of the
additive uncorrelated noise approach which for our purposes has real physical
appeal.
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Fig. 3- Equivalent linear system.

(b)

G(j(0) deviates markedly from unity, thus accounting for the differ-
ences between experiment and analysis. To find G(j(0) we need the
cross -spectrum Sys (w)which is not presently available analytically.
We can find Si,(0)) using computer simulation; this is what is done
in Section III.

2.2 The Method of ;Statistical Linearization
Even though the equivalent transfer function G(jto) cannot be

found analytically, it may be approximated through the method of
statistical linearization.14 Statistical linearization can be applied to
the corresponding continuous system (without sampling) as shown in
Fig. 4. The study of the slope overload noise corresponds to the
study of this feedback loop, with the nonlinear element in the forward
path being a hard limiter with saturation levels -±kf8. The use
of the continuous system is not a substantial limitation since the cor-
related component of the overall noise e(t) is conjectured to be mainly
overload noise.

The nonlinearity in the loop will be replaced by a linear gain K
chosen according to criteria given in this section and in Appendix A.
Independent of the choice of criterion, the equivalent linear system
will have the form,

0 - LOW
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FILTER 0 e (t)
0

a -
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y (t)

z (t)

S

INTEGRATOR

S

y())

INTEGRATOR
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Fig. 4 - Continuous feedback system for the study of slope overload noise.
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H(f) = A/ (s + A)
or

(9)

1H(f) - (10)
1 + i(f/f.)

where f 0 is the corner frequency (3dB frequency) of the filter (f, =
K/27).

In a real system, we generally have a leaky integrator whose trans-
fer function is of the form 1/(s + a). Then it is easy to show that

H(f)H(0)- (11)

1 + j -f
f.

where

H(0) - and fc - K
K + a ' 2ra

The variety of ways by which one can determine the equivalent
gain K, are presented in detail in Appendix I. Let us call K1 the
equivalent gain found with the assumption that the input to the non -
linearity is gaussian with variance 0-2 equal to the overload noise
power. Denote by K2 the equivalent linear gain when the gaussian
assumption is removed. Let K, be the equivalent gain determined
under the requirement that the difference between the overload error
and the input to the linearized element be uncorrelated (for r = 0)
with the input signal. In order to compare the equivalent linear filter
transfer functions with the computer simulation results we plot the
magnitude I G(j(a) I of the transfer function [calculated using equa-
tion (4) and the computer generated cross -spectra] for kf8/fb = kF8 =
2 and 4 in Fig. 5. From these figures we find that the equivalent linear
system may be approximated by a one -pole tranfer function with
corner frequency, f, = 0.358 f b and 0.94 fb, respectively, and cor-
responding dc gains (caused by the small leak in the integrators)
H (0) = 0.89 and 0.98. The results of the comparison are summarized
in Table I. Thus there is reasonable agreement between the equivalent
linear system transfer function obtained from computer simulation
and all the approximate statistical linearization methods.

2.3 Describing Function Method

In Appendix B a method is outlined for obtaining an equivalent
frequency dependent complex gain for a delta modulation system with
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a leaky integrator, subject to a sinusoidal input of amplitude X. and
frequency co. , under pure slope overload conditions. This complex gain
is defined to be the ratio of the complex amplitude of the fundamental
of the output to the complex amplitude of the input sinusoid. This deter-
ministic equivalent linearization method is well known as the describing

TABLE I -PARAMETERS OF EQUIVALENT LINEAR SYSTEMS

kF. = 2 kF. = 4

Kila
Equivalent
linear gain

felfb
Corner

frequency

Klfb
Equivalent
linear gain

fafb
Corner

frequency

Computer Ko = 2.10 0.358 Ko = 5.90 0.94

Gaussian assumption K1 = 2.34 0.398 K1 = 7.13 1.13

Without gaussian
assumption K2 = 1.48 0.262 K2 = 4.00 0.64

Correlated noisef
Approach K3 = 2.70 0.43 K, = 5.90 0.94

f The leaky integrator effect is neglected; if taken into account the results would
be somewhat smaller. For kF, = 4, the effect of leak is negligible.
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function method. The corresponding magnitude of the equivalent gain
is given as a function of "normalized" frequency (cdoX0/xL) in Fig. 6 when
the leak in the integrator goes to zero. For xo = kF, = 2 the 3 dB point
(corner frequency) is at f, 0.4 fb , which is in good agreement with the
results in Table I. -Measured values of equivalent gain shown on Fig.

6 agree well with theoretical predictions.

III. COMPUTER SIMULATION TECHNIQUE

3.1 Basic Concepts
Computer simulation provides a convenient method of studying the

characteristics of delta modulation systems without actually building
them. The computer can also provide accurate numerical results
against which to compare experimental results from laboratory or
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1178 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1969

production models. Computer simulation is a compromise between
laboratory techniques and analytical techniques in that it is easy to
change the program in order to study a variety of system parameters
or to introduce defects similar to those expected in practical systems.
On the other hand, the simulated system is an idealized abstraction
which does not represent the practical system in full detail.

The BLODI programming system, used for the simulation, results in
a program which processes a sequence of samples by whatever set of
mathematical operations may be specified by a block diagram.15 BLODI
flexibility allows the use of FORTRAN for such things as computing
estimates of signal statistics, for which FORTRAN is more efficient. Fig-
ure 7 indicates the basic philosophy: a FORTRAN program supervises
the entire operation calling the various subprograms as needed. By
structuring the simulation programs as a hierarchy of modules,
changes in one area of the model could be effected without involving
the entire program. The program was purposely written with exten-
sive use of subroutines. This for example, makes it applicable to dif-
ferential pulse code modulation (DPCM) by simply changing the
subroutine for the quantizer. The actual programs are of interest to
only a few people, and are not listed here. Appendix C gives a discus-
sion of the computational formulas used to estimate correlation func-
tions and spectra.

3.2 Accuracy of Computer Estimates of Spectrum of Error
In order to estimate the expected accuracy of the spectrum esti-

mates from the computer simulation, the following example is given:
In the simulation the estimate Se (k) is made on the basis of 10,000
input samples. Here k is an integer index related to frequency, and

r
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FORTRAN
PROGRAM

-t
4

PSEUDO
RANDOM
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DIFFERENTIAL PULSE
CODE MODULATION

SYSTEM

ARRAYS
INPUT,
ERROR

FORTRAN
CORRELATION
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Fig. 7 - Computer simulation.
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the subscript e refers to the total noise e(t). In one particular run,
ten intermediate estimates based on 1,000 input samples each were
made. Using the notation Sei (k) through Selo (k) for these we have

sample mean = S. (k) = 117 [S.1(k) +  + Soio(k)] (12)

E[S.(k)] = bt,

sample variance = var = [S,,i(k) - So(k)12 + 

[S,o(k) - S.(k)n . (13)

One can then show that the variance of the estimate So (k) relative
to p. is estimated by

Ef[S,(k) - 1.1]2) = e var. (14)

For the cancellation technique and one particular value of k, rep-
resenting a low frequency point in the spectrum, a numerical computa-
tion yielded:

var)1
86(k)

- 0.066.

Although the result may in general depend on k, spot checks at other
points yielded similar results.

Assuming the estimate is a gaussian random variable with 0.066 =
the ratio of standard deviation to mean, the result indicates that the
estimate is within -±-1/, dB of the true mean with probability 0.9.

Other sources that could contribute errors in the results of the simula-
tion include: (i) random error in measurements caused by finite averaging
time constant, estimated as ±1 dB, (ii) round -off errors in computation,
which are most significant in the region of high noise, and (iii) syste-
matic error resulting from differences between the spectral shape of the
simulated input and the output of the laboratory noise generator used
in the experiments.

IV. EXPERIMENTAL TECHNIQUES

The extensive analytical and computer work that has been presented
was undertaken to a large extent to gain a better understanding of an
actual laboratory delta modulation system.

4.1 Description of the Delta Modulator
The delta modulator used for the measurements is a variable pa-

rameter system in which the step size, leak, and sampling rate are
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independently variable. Figure 8 is a block diagram of the encoder.
The difference between the input and the local integrator output is
amplified and presented to the threshold detector. This circuit con-
trols the output of the pulse generator.

The local integrator has circuit elements which can be changed to
vary the important parameters of the system. The capacitor C con-
trols the step size; since the amplifier has a high input impedance, the
resistor RL controls the leak.

The decoder consists of a regenerator for amplitude and phase re-
generation and a decoder integrator which is a duplicate of the local
integrator. The system was operated at a 12.5 MHz sampling rate.

Waveforms in a delta modulator are rather simple; nevertheless,
some are shown in Fig. 9 to illustrate the actual operation of the
system. Figure 9a indicates the output of the decoder and the pulse
output of the coder when no input is presented to the system. A delta
modulator should change state every clock period with no input; the
photograph illustrates this. This waveform can be used to measure
the step size.

Figure 9b illustrates the output of the system when it is in over-
load. The slope of the input sinusoidal signal is greater than the
slope that the delta modulator can follow. Therefore, the output is a
triangular wave whose slope is a measure of the normalized step size.
An interesting feature can be seen by observing the slopes of the flat
steps in this picture. In the lower half, they slant upward and in the
upper half they slant downward, illustrating the leaking off of the
capacitor voltage.

Figure 9c illustrates the response of the delta modulator to a sine
wave whose amplitude is below overload. The rather blurred trace
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AMPLIFIER
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IN PUT
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PULSE
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Fig. 8-Delta modulator encoder.
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Fig. 9- (a) Analog output y(t) and digital output with no input (100 ns/em);
(b) y(t) with system in overload (400 ns/em) ; (c) y(t) with system not in

overload (2 As/em).
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results because the frequency of the sine wave is not a submultiple
of the sampling frequency.

4.2 Noise Loading Test
The use of the noise loading test to measure nonlinearities in a

transmission system has been mentioned in Section 1.3. In this test,
as shown in Fig. 2, a wideband of gaussian noise is applied to a low-
pass filter to band limit the input to the delta modulator. With the
switch in the upper position, a narrow band of noise can be elimi-
nated from the input signal. Several band elimination filters are
available to cover the input spectrum. This signal is fed into the sys-
tem and only that band from which signal has been eliminated is
allowed to pass to the tuned detector. With the switch in the upper
position, only noise introduced by nonlinearities in the delta modula-
tor and uncorrelated with the input is passed into the detector. The
power spectrum of the uncorrelated noise component n(t) can be
measured by changing the center frequency of the band elimination
and bandpass filters. With the switch in the lower position, the full
signal enters the system and the tuned detector reads signal and noise
within the passband.

4.3 Cancellation Technique
To measure the total noise output, e(t), and its spectrum, the ar-

rangement shown in Fig. 10 was set up. The signal is fed to the delta
modulator and the output of the delta modulator and the attenuated
and delayed input are compared, their difference being the noise in-
troduced by the system.

The immediate problem encountered in this technique is the ad-
justment of the variable attenuator and the delay to cancel the signal
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component at the output of the delta modulator. The delay is not
the same for all frequencies and will have more of an effect at high
rather than low frequencies. A sine -wave input whose amplitude was
less than that required to overload the system was used to correctly
null the system, making the equivalent gain unity. The frequency was
chosen as high as conveniently possible (within the signal band) so
that the effects of delay could be observed on the nulling procedure.
Attenuation and delay were adjusted to produce a null at the input
frequency at the tuned detector. Then the noise source was used to
replace the sine wave and the output noise measured as a function of
frequency by the tuned detector. The gain and delay should be ad-
justed at each frequency where the noise spectrum is measured. The
rather broad null, particularly at the lower frequencies, makes this
measurement both tedious and inaccurate. Consequently only the
high -frequency approach was used.

The noise -free output signal is measured by removing that input
to the difference amplifier that comes from the delta modulator.

4.4 Accuracy of the Measurements

The tuned detector used to measure the noise in these experiments
was a 37B transmission measuring set. It has a frequency window of

about 400 Hz. Therefore, when the noise is measured at a particular
frequency, a 400 Hz band is actually measured and the meter reading
must be averaged, ignoring peaks. It is estimated that the readings are
accurate to about ±0.5 dB.

Another source of error arises in the determination of the normalized
step size kF8. As mentioned above kF8 can be found from direct meas-
urement on an oscilloscope, or by using a square wave input that over-
loads the system. A small error in this measurement is equivalent to
a displacement in the noise curve (or signal-to-noise ratio) when
plotted against kF8. The noise changes in the overload and granular
regions about 1 dB for every dB change in kF8. Furthermore, the
spectrum in overload also changes very rapidly with kF8.

Therefore, it is fair to conclude that the experimental results in Section
V are accurate to about ± 1 dB.

V. RESULTS

5.1 Noise Loading Results-Uncorrelated Noise Component
In Fig. 11 we have plotted the spectrum of the signal uncorrelated

component of the noise as obtained by the noise loading test for three
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values of kF8. For kF8 = 8 and 16 notice that the noise spectrum is
flat, as expected, since granular noise is predominant. When kF8 = 2,
overload noise is controlling, and the noise spectrum is largest at low
frequencies. Agreement between the computer generated spectrum
and the measured spectrum is good except where the granular noise is
small. In this region, it is believed that round -off errors in the com-
puter simulation account for the discrepancy. Integration of the noise
spectrum yields the signal to noise curve of Fig. 12 plotted as a func-
tion of kF8.

5.2 Cancellation Technique-Total Noise

Noise spectrum measurements obtained by the cancellation tech-
nique are compared with computer results in Fig. 13. As before, for
kF8 = 8 and 16 the spectrum is flat and nearly identical in level with
the noise loading results. When well into overload (kF8 = 2) , the total
noise spectrum peaks at the high frequency end. This behavior is
readily explained in terms of our equivalent linear system. Consider
the difference e(t) between the input signal and the output of the
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equivalent linear system of Fig. 3

e(t) = x(t) - y(t) = x(t) - n(t) - g(t - r)x(r) dr (15)

or

e(t) = f [o(t - T) - g(t - r)]x(r) dr - n(t). (16)

Since n(t) and x(t) are uncorrelated by definition, it is an easy mat-
ter to show that the error spectrum of the total noise is

S.,(w) = Snn(w) + I 1 - G(jw) 12 Sxs(co). (17)

Substituting H(50, obtained by statistical linearization and given in
equation (10) for the equivalent linear system function G(5w) in equa-
tion (17), we get

2
CO

2

Se,(0)) = Snn(W)
CO,

2 Szx(CO (18)
1 +

From either equation (17) or (18) we can see that when G(50) is es-
sentially unity (in the granular region) that the total noise is given
by Sn M. On the other hand, when well into overload, the low fre-
quency portion of the total noise is determined by Snn (0)) and the
noise at high frequencies increases due to the second term in equation
(18), the term linearly dependent on the input. Indeed, we can use
the measured noise spectrum in Fig. 13 for kF, = 2 along with equa-
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tion (18) to determine the corner frequency for the equivalent linear
system. The f, so obtained is about 0.4 f b in agreement with the
analysis.

For completeness, we present in Fig. 14 the signal -to -total -noise
ratio obtained by integrating the curves of Fig. 13. In addition, we
have noted the corresponding analytical results obtained by using the
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Fig. 14- A -mod signal to error ratio, cancellation technique, F. = 8.
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results of Refs. 9 and 10. Agreement is good except when far into the
overload region where it is known that the mean square value of the
total noise obtained analytically is a coarse upper bound.
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APPENDIX A

Statistical Linearization

A.1 General
In this appendix we consider the delta modulation system under

pure slope overload conditions. Our objective is to replace the hard
limiter in the encoder loop with a linear amplifier. We give three
methods for the determination of the gain in this linear approxima-
tion.

A.2 Conventional Statistical Linearization-Gaussian Assumption

First, we use the statistical linearization method attributed to
Booton." We isolate the hard -limiter in Fig. 4 with input e (t) and
output z[e (t)] in order to replace it with an ideal linear amplifier of
gain K. This gain factor is chosen such that Ke (t) differs least in
the mean square sense from z [e (t)] . It is readily shown the optimum
K satisfies

K. = 2

(e )av
(19)

For the hard limiter, under the assumption that e (t) is gaussian, we
get the well known result"

.K6g = x.(7r(e2).v)4 - K1 (20)

A.3 Removal of Gaussian Assumption
In general, e (t) will not be gaussian; though this is commonly as-

sumed in all references to the statistical linearization method. We
remove this assumption in this section since we can determine both
(ez)., and (e2)., using the approach given in Ref. 9. Since (e2), was
found in that reference, we need only consider (ez)ay = R(0).
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Notice that when

and where

Hence

e(t) > 0, z(t) = x:

e(t) < 0, z(t) = -x:
(21)

(ez),,, = e(t) = xo ave [e(1)] IP.b. (22)

that is, the average of e (t) over the positive bursts (p.b.) only of the
slope overload noise.

Following the procedure developed in Ref. 9, we obtain

x6(I e(t) 1),, = ;TA - -1 bt [311
exp

[ (XP2

2b1) ]g(X1)

where

xf,,N12-
a-(6;yi

/ 2 \

0(x) = 1 (1 ,CD exp21 - x:143(X1)

z21
(1)(xl) = exp dz

xi

b = f co'Sx,(w) df.
-fo

In Ref. 9 it was found that

(e2(t)),,,, -
1 ( g\(3bt)5 (xt))2

4(20 b2Axic, exp {-[2b, ]}`1(x)

(23)

(24)

(25)

where A (x) is given in equation (66) of Ref. 9. Hence

K 2)(b2)/(x6 )3
A()x1 ±- K2 . (26)e. = r);

A.4 Equivalent Gain from, Definition of Equivalent Linear System.
Among the many other viewpoints that might be adopted to find

K,, we single out one that makes use of the definition of the equi-
valent linear system given in the text. Recall that

Svx(co) Sex(co)
G(jc0)

S==(w) (0)
(27)
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01'

S,,z(co) = Szz(co) - G(3(o)S..(0)) (28)

If we integrate equation (27) over (- 240 to +27rfa) and choose G(jc0) =
K3/K3 jw, we obtain the following equation defining K3 .

(x(t)e(t))., = Rar(0) = (x2(t))av -
2 71.0 S xx(co)

271. .1-27. Jo + 4
J K.3

that Sxx (o) is an even function of (,), using

F(f) = 2Sr.r(27rf) for f > 0, (30)

and defining f = K3/27r, we get

fof° F(f) 2 ( (x(t)e(t))., . (31)

1 +

The left side of equation (31) is a function of f, only, and hence of K3 ,
while the right side of equation (30) is known; a formula for (x(t)e(t)),,,,
has been found." Equation (31) can be shown to always have a solution.

A little reflection will convince the reader that equation (31) could
have been obtained from scratch by preselecting the form of the equiva-
lent linear system, and requiring that x(t) be uncorrelated with n(t)
at T = 0. The approach we have taken could be generalized to match
various spectral moments of the processes under consideration. This
would entail multiplying equation (28) by co' prior to integration and
choosing the number of parameters in G(jco) equal to the number of
moments matched. In general a set of simultaneous nonlinear equations
would have to be solved and quantities such as (crx(t)/dre(t))v obtained
using the techniques of Ref. 9. Fortunately, no such generalization is
required. As we see below and from Table I all of the techniques used in
this Appendix give good agreement with computer simulation.

Example: Application of equation (31) to flat band limited signals

(x2)0v = 1, fo = 1 gives

h(fc) =
1,1

- f, tan -1 (-1) = 1 - (xe), (32)

J° 1 + (f)2 fc
fr
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APPENDIX B

Harmonic Response of a Delta Modulator with a Leaky Integrator
Under Pure Slope Overload Conditions

B.1 Introduction

Consider the single -integration delta modulator with a leaky in-
tegrator under pure slope overload conditions. The problem is to find
the steady-state response of this nonlinear system to a sinusoidal
input. The analysis is applicable to differential pulse code modulation
and delta modulation with a more complicated linear network in the
feedback path.

Consider a sinusoidal input signal:

x(t) = X,, cos coot (33)

with

(A) = 2rf. . (34)

In the steady-state the output y (t) will be a periodic function of t
with period 1/fo. The maximum value of the magnitude of the slope
of the input sinusoidal signal is clearly equal to (.00Xo so that if

co X0 0 < 1
xo

(35)

the output will follow the input and we will have

y(t) = x(t) = X0 cos coot. (36)

Suppose now that x!, < wX . In this case slope overload occurs.
Calls the value of coot-2n7r (where n is a positive integer) for which slope
overload occurs for the first time after the beginning of the nth period.
Assuming that we have reached the steady-state, the value of 4, will
be the same for all periods.

Clearly 0 < < r/2. The slope of the input signal at the transition
point A (Fig. 15) will be negative and equal to - Xocoo sin O. (The second
derivative at A is also negative and equal to - Xoo? cos cp.)

For slope overload to begin at A we should have;t -cooXo sin cb =
so that

x'sine = (37)

t A similar analysis may be made in the asymmetric case, that is, when the
positive overloading slope is not equal to the negative overloading slope.
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At this transition point the output signal begins to follow an exponential
curve such that

1 - exp (- a
coot - - nr)

coy(t) = X. cos 4) - o

a
(38)

as long as y (t) exceeds x(t). The exponential segment ends when
y (t) and x(t) once again become equal as shown in Fig. 15. For small
leak, the response in overload is clearly linear in time. As long as I 0

< cf) we have for all n

y(1) =

X. cos coot for 0 + nir < coot < ct.

1 - exp (-a coot
(I)

(-1)nXo cos (/) (-1)"""e0
coo

a

for 4) coot < 0 +
(39)

It it easy to show that the region where equation (39) is true may
be translated to the condition

ix° i .7,2

1 , , 1 ± 4-
ary1 - exp (- -
coo

air
coo S.

Fig. 15-Slope overload for

1 < w°x° <{i 7r2 [1 - exp (--etz-/w0)]2}*
xo' - 4 avAdo

(leaky integrator).

(40)

coot
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In the limit when a goes to zero (no leak) equations (39) and (40)
reduce to results obtained previously by Baikovskii.16 The quantities
0 and (f) coalesce when

cooX0 r2
xo -1 ± 4

a)-r
wo 21' (41)

and the output is made up of segments of an exponential curve as
shown in Fig. 16. From Fig. 16 we see that

and for all n

cos 00 = x"
2aX0

ar)wa

11 - exp (-
J(t) 2a

(-1)"x"1 coo

1 - exp [ - 62We- (coot - -nor)t
a

(42)

Notice that in this case the magnitude of the output depends only
on the frequency of the input sinusoidal waveform and not on its

Wot

Fig. 16-Slope overload for

cox° {i 7r2 [1 - exp -coricoo )]
xo' 4 air/wo

(leaky integrator).
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amplitude. Only the phase of y(t) depends on Xo. Clearly when the
leak goes to zero (a = 0) the response is triangular.

B.2 Harmonic Analysis of y(t)

In all three regions above the output y (t) is a periodic function of
t with period 27/(00 such that

± = -y(t). (44)
wo

Hence y (t) contains only odd harmonics; it is a straight -forward
matter to compute the Fourier coefficients. The complex equivalent
gain is given by the ratio of the coefficient of the fundamental in the
output to Xo. We leave this manipulation to the interested reader
and merely provide a curve of equivalent gain computed for the case
of a perfect integrator (a = 0), in Fig. 6. Experimental points on the
curve are seen to be in close agreement with the analysis.

APPENDIX C

Computational Formulas to Estimate Correlation Function and
Spectra
From the sample sequences xi and ei for signal and error pro-

duced by the simulator, autocorrelation and cross -correlation functions
R0 (j) ,Rx(j) ,Rxc+ (j) , and Rxe- (j) were estimated as the arithmetic
means of emen,+i,sms,+;, e,x.+; and emx,_;, respectively. In the com-
putations, sample sequences of length 10,000 were used. Correlations
were computed up to j = 30. It is easy to show that spectrum estimates
may be obtained by using the correlation estimates as coefficients of
a Fourier series. In the case of the cross spectrum, real and imaginary
parts must be computed. For clarity, the formulas are listed below.
Using the relationship derived in Section 2.1, the uncorrelated noise
spectrum may be estimated by:

2.(i) = S,(j) - sx1(i) ({ Re [S..(i)] 12 ana [S..(i)] )2) (45)

To smooth possible ripples in the spectrum estimates due to time
truncation of the correlation functions, a hanning window function
was used." This smoothing amounts to replacing each spectrum
estimate by a linear sum of the estimate and the two adjacent esti-
mates, with weights 4, and 1.
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Error spectrum:
N-2

S.(3) = Re(0) ± 2 E R.(1) cos 1+ Re(N - 1) cos ix. (46)

Signal spectrum:
N-2 r

Sx(j) = Rx(0) + 2 R=(l) cos Nlj- 1 + Rx(N - 1) cos jr. (47)
z-i

Cross spectrum:

N-2

Re {Sie(j)} = Rx.(0) E [R2.,(1) R=e -(l)] COS N - 1t-i

-1-[Rxe.,(N - 1) + R,(N - 1)] cos jir (48)

N-2
Im Sx,(3)} = E [Rx(1) - Rx(1)1 cos i

1=1
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Delta Modulation Granular
Quantizing Noise

By DAVID J. GOODMAN
(Manuscript received September 25, 1968)

We present a statistical analysis of a single integration delta modulation
system in which slope overload effects are negligible. In defining the delta
modulation signal ensemble, we identify a binary phase parameter and
show that when this parameter is random, the signal statistics are stationary,
provided the input is stationary. Thus the delta modulation correlation
functions depend on a single time variable and have Fourier transforms
that are the power spectra of the delta modulation signals.

After deriving the delta modulation correlation statistics and power
density spectra, we use these functions to investigate the properties of the
delta modulation granular quantizing noise. We demonstrate the ratio of
input signal power to the quantizing noise power of three signals that
approximate the system input. These signals are the integrated delta
modulation signal, the signal at the output of the ideal low-pass interpola-
tion filter usually considered in delta modulation studies, and the signal at
the output of the optimum interpolation filter. We determine the properties
of this filter by referring to the derived spectral density functions.

I. BACKGROUND

Delta modulation (AM) systems are subject to two types of quan-
tizing distortion, generally referred to as granular quantizing noise
and slope overload noise. The overload noise arises when the analog
input to the delta modulator changes at a rate greater than the maxi-
mum average slope of the signal generated in the delta modulator
feedback loop. The granular noise is analogous to pulse code modula-
tion (PCM) quantizing noise; it arises because the AM signal is a
discrete -time discrete -amplitude representation of a continuous -am-
plitude process.

After the discovery of AM in the early 1950's, two statistical analy-
ses of distortion effects appeared.' Van de Weg considered a delta

1197
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modulator, constrained so that slope overload effects are negligible,
and analyzed the effects of granular quantizing noise in a manner that
paralleled Bennett's analysis of quantizing noise effects in a pulse code
modulation (PCM) system constrained to be free of overload.2.3 Zet-
terberg, in 1955, published a study of both types of distortion as part
of an extensive mathematical analysis of the AM process.4 Zetterberg's
expression for granular noise power is less precise than van de Weg's.
His results pertaining to slope overload have recently been revised.5

Eleven years after the appearance of Zetterberg's paper an in-
dependent analysis of slope overload noise was published by O'Neal
whose effort was supported by S. 0. Rice.6 O'Neal used van de Weg's
formula to predict the granular noise power but obtained slope over-
load characteristics that differed from those derived by Zetterberg.
The reason for the two solutions to the same problem is investigated
in a recent paper by Protonotarios.5 This paper gives new expressions
for the slope overload noise that are more accurate than any previ-
ously obtained. Like O'Neal, Protonotarios uses van de Weg's char-
acterization of the granular quantization effects.

Although van de Weg's formula for granular quantizing noise power
has been experimentally verified over an important range of operat-
ing conditions, his statistical characterization is inadequate for cer-
tain analytical purposes. A principal difficulty in this characterization
is the nonstationarity of the AM signal ensemble. Because the sta-
tistics are nonstationary it is not possible to calculate correlation co-
efficients by Fourier transformation of the power spectral density
function, derived by van de Weg as a mean square amplitude spec-
trum.

To admit the techniques of stationary time series analysis to the
study of AM signals, we generalize the signal ensemble by defining a
binary phase parameter. We derive correlation statistics directly as
average products and show that if the phase is random with both
values equiprobable, the ensemble is stationary. Thus we are able to
compute power density spectra as Fourier transforms of the correla-
tion functions and to compare the new formula for granular quantiz-
ing noise with that given by van de Weg. We find that over the range
of operating speeds considered by van de Weg and O'Neal that van de
Weg's formula is a good approximation to the one presented here. For
very low speeds van de Weg's approximations break down while the
formulas we present in this paper are applicable to all AM sampling
rates.

An additional advantage of this analysis is the presentation of
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cross -correlation statistics and the cross -power spectrum of the AM
signal and the analog waveform it represents. We use the cross -power
spectrum to derive the transfer function of the optimal interpolation
filter for AM. We compare the output noise power of this filter with
that of the ideal low-pass filter usually considered in AM studies.
The correlation statistics presented here have also been used in the
synthesis of optimal digital filters.?

II. THE AM SYSTEM

The delta modulator shown in Fig. 1 transforms the continuous signal
y(t) to the binary sequence

, , bo , ,

in which bn may have the value +1 or -1. The modulator generates
binary symbols at T second intervals according to the sign of e(t), the
error signal. This error is the difference of y(t) and x(t), the integrated
AM signal generated in the modulator feedback loop. The term x(t) is
the integral of the binary impulses weighted by the "step size," 6. Thus
x(t) has a step of + 6 or -6 at each sampling instant and is otherwise
constant. At the AM receiver, this integrated AM signal is recovered
by a replica of the modulator feedback loop and an analog signal, p(t),
is generated by means of the interpolating filter with impulse response
h(). The signal y(t) is an approximation to the system input, and in this
paper the fidelity of the AM system will be measured by the mean square
error,

= E{ {Y(t) - :0(t)l2 (1)

in which E{  } is the expectation operator. We assume that the binary
signal processed by the receiver is identical to the one generated at
the modulator. The effects of transmission errors are not considered.

The two AM parameters are T, the sampling interval, and 6, the step
size. The quantizing distortion decreases monotonically with increasing

DELTA MODULATOR DELTA MODULATION RECEIVER

{bn} g(t)SAMPLER IDEAL L INEAR1
INTE- FILTERT

SECONDS' GRATOR h()

IDEAL
INTE

GR ATOR

Fig. 1-The delta modulation system.



1200 THE BELL SYSTEM TECHNICAL JOURNAL, MAY -JUNE 1969

sampling rate, f. = 1/r, while for a fixed rate the value of the step size
determines the mix of granular quantizing noise and slope overload noise
in the quantizing noise signal, y(t) - y(t). In this paper we consider only
the granular quantizing noise; thus we postulate a system in which
is set such that oh-, the maximum average slope of x(t), is exceeded by
the slope of y(t) with very low probability. To serve this aim we follow
van de Weg and establish the condition that 6/r is four times the
root mean square slope of y(t). This condition is analogous to the "4a
loading" assumed by Bennett in his analysis of a PCM system with
negligible overload effects.' For gaussian signals, the probability that the
slope of y(t) is greater than 8/7 is less than 4 X 10-5.

If y (t) is a sample function of a stationary stochastic process, the
stated design condition may be expressed in terms of Syy (f), the power
spectral density of the process. The important parameters of Syy(f)
are its average,

ff2
= lc° Svy(f) df = [Y(t)l2) (2)

the mean square signal, and its effective bandwidth,8

fe
J f2Svy(f) df

f cci S ,,y(f) df
-

The rms slope of y (t) is 2rafe. Thus the condition that the maximum
average slope of x(t) equal four times the rms slope of y(t) may be
expressed as

or

6/r = 8ra-f,

(3)

= Vcr = 8rf,,r = 87r/F (4)

in which we have related the AM parameters to the important signal
parameters. Thus, 13 is the step size as a multiple of the rms signal and
F = fall, is the sampling rate as a multiple of the effective bandwidth.

Equation (4) establishes /3 for each sampling rate; in the analysis
of granular quantizing noise to be presented, it is the sampling rate
that is considered to be the independent variable of the AM system.
Studies of slope overload indicate that for minimal total quantizing
noise, /3F, instead of remaining constant as it does here, should in-
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crease with increasing F.5.° In the numerical examples given by O'Neal
and by Protonotarios, the value of SF that results in minimal total
quantizing noise approximates 8-7r for the highest sampling rate con-
sidered.

III. THE SCOPE OF THE ANALYSIS

The signals processed in the AM system have been analyzed as realiza-
tions of discrete -time (sampled -data) random processes. The transmitted
binary sequence, {b.} , the integrated AM signal, x(t), and the analog
output, p(t), are all determined by the values of the analog input at the
sampling instants, nr (n = , -1, 0, 1,  ). Thus the analysis
reported here consists of derivations of the statistical properties of
[xn = {x(nr)}, the integrated AM sequence and {en} = {e(nr) } , the
error sequence, from the statistics of { yn} = {y(nr) } , the input signal
sequence.

If y (t) is drawn from a stationary process with auto -covariance
function a -2p() [the Fourier transform of S (f) ] , the covariance
coefficients of the AM signals may be expressed as functions of the
statistics, pn = p(711-). The derived covariance functions are E{xix;},
the autocovariance of the integrated AM signal, and E{yix;}, the
cross -covariance of this signal and the analog input. A property of the
definition (in Section 5.1) of the ensemble of sequences {x,,} is its
stationarity in the wide sense. (Van de Weg considers a somewhat
different ensemble, one that has nonstationary statistics.) Thus the
covariances are functions of the single time variable, µ = j - i, and we
denote them r (the autocovariance) and CAA (the cross -covariance) re-
spectively. Also of interest is Q, the error covariance function given by

(2 = E{een.,} = o -2 p - - ck-A.

It is shown in Section 5.4 that the covariance statistics, 43, are pro-
portional to a2pil, the autocovariance of the continuous input. Thus (AA
= 4_ and the error covariance function is given by

Q =,, + - (5)

Because the processes under consideration are stationary, their
power density spectra are Fourier cosine series with coefficients given
by the covariance statistics defined above. The spectra are periodic
in frequency over intervals of 1/T Hz ; they are denoted with asterisks
in keeping with conventions of sampled data analysis. We apply the
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Fourier series representation:

A*(f) = ao + 2 E a. cos 2rnfr
n-1

so that

I./2
an = A*(f) cos 27rnfr df. (6)

0

In the sequel we will denote these Fourier transform relationships be-
tween A* (f) and an by A* (f) Han.

The power density spectrum, Sut(f), of the samples of the analog
input is related to S(f), the power spectrum of the continuous input
signal, by

(r2
1

Sl(f) = E Syy(f nf.). (7)
-co

It follows that if y (t) is bandlimited to TV < fs/2 Hz, there is no
aliasing distortion and

-1 S(f), for I f I< fa/2. (8)

The other transform pairs of interest are S,t(f) 4-4 r , Sot(f) 4-4 Q, ,
and Srt(f) . Szt(f) and Set(f) are the power spectral density func-
tions of the integrated AM signal and the error signal, respectively.
84(f) is the cross -power spectrum of the integrated AM signal and the
analog input. Equation (5) implies that the four power density spectra
are related by

8:E(f) = Siff) St(f) - 2St(f). (9)

These spectral density functions and H (f) , the transfer function of
the interpolating filter, determine the value of the output quantizing
noise power defined in equation (1) .1. Thus,

1.12

n = 2r f {St (f) - 2Re [H(f)St(f)] H(f) 12 St(f)} df (10)
0

so that the transfer function of the optimal interpolation filter, that is,
that which minimizes n, is the (nonrealizable) Wiener filter,9,10

t It is assumed here that H(f) processes a sequence of ideal impulses. In Fig. 1
the filter input is a sequence of flat pulses of T second duration so that when a
filter described in this analysis is to be included in a real system, its transfer
function should be weighted to compensate for the aperture effect.3
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8:y(f)
11,,Pt I St (f) for

= 0, for

I f I C fe/2

I f I > f./2.
The associated minimal quantizing noise power is

nmin = 2r j
rfa2

{SW) [881;11((8)12} di 
0

In previous AM studies it was assumed that y (t) is bandlimited
to W Hz and that the interpolation is performed by a perfect low pass
filter with transfer function

1-11,f(f) = 1, for

= 0, for

Ill w
In> TV.

(12)

Equation (10) indicates that the quantizing noise power associated
with this filter is

Tv

nzpf = 2r f [8:ii(f) + (f) 2S ?(f)] df
0

IV

= 2r f See(f) df
0

(13)

Thus the quantizing noise power associated with the low-pass filter
is the portion of the power of the error signal that lies within the band
of the analog input. By substituting the Fourier series with coefficients
Q, into equation (13) we arrive at the formula for the low pass filter
quantizing noise in terms of the error covariance coefficients:

1

nip! =R
sin (-T)

7r72)-

(20 + 2 E Q.
(7r7/

R) -
n =1

(14)

in which R = f 8/2TV is the bandwidth expansion ratio of the AM sys-
tem. It is the ratio of the OM sampling rate to the Nyquist sampling
rate of the input signal. The ratio, F/R, of the two normalized sam-
pling rates is 2W/fc, twice the ratio of the highest frequency spectral
component of y (t) to the effective bandwidth.

IV. PRINCIPAL RESULTS

4.1 Covariance Coefficients
By means of the formulas of the preceding sections, the charac-

teristics of granular quantizing noise may be expressed in terms of
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the correlation statistics p, r, and (A. These quantities depend on
the nature of the analog input and on the normalized sampling rate,
F. Details of the derivations of r, and ci), when the input is drawn
from a stationary gaussian process, are given in the subsequent sec-
tions of this paper. Here we present the covariance formulas and use
them to investigate the quantizing noise properties.

As multiples of the mean square input, the autocovariance coef-
ficients of the integrated AM signal are

ro Pei 647r2 {1= 1 -I- 4 ie exp [ -
/c..1 32 m F2 -5cr2

r, = p,{1 + 4 t exp [-F2k2 64 E
32 F2

k2 exp -
F
32

[ 2k2i}
72

t I-
k mk

[1 + (-1)']
=1

[ F2(k2 + m2 - 2mkpn)1 [ F2(k2 + m2 + 2mkpn)1}
{exp

128
- exp

128

for A even,

r"
1

128 " 1-i'l = p, p{1 -I- 4 E ex [ - + -- E E - (-1
32 F mk

r
Ic..1a k=.1 in.,

F2(k2 + m2 - 2mk,on)] - exp [ -F2(k2 + m2 + 2mkpn)i}
128 128

for p odd. (15)

The cross -covariance function of {x,,) and {y} is proportional to
cr2p, the autocovariance function of {y,,}. Thus

where

= CPA

c = 1 2 E exp [- i
=. 1

F2k2

k

Q, the autocovariance of the error signal, is related to p, r, and
cp. through equation (5) . Therefore

Q0 647r2 {1 v."' 1
F2k2

- F2 3 ,2k2 exp - (18)

(16)

9,
Q

(17)

-
64 r. [1 + (_ir+ki{exp [ F2(k2 + m2 - 2mkp,)]

k-1 m-i mk 128
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F2(k2 + 2mkp,)i}- exp [ -
128

, for µ even,

-i)m expQ, 128 v.' v,'" 1 [ 172(k2 + m2 - 2mkp)
0-
2{

F2 ,=, ink 128

F2(k2 m2

128
2mkp,i)1} for µ odd. (19)

4.2 The Minimal Output Quantizing Noise Power

The proportionality of the autocovariance of the input signal and the
cross -covariance of the input and the integrated AM signal implies that
the related spectra are also proportional: Sz*,,(f) = cSt(f). When this
relationship is substituted into equation (12), the formula for the quan-
tizing noise power at the output of an optimal interpolation filter, the
result is

= 2r
Ii/2

S:(f) 1 - C28:y(f)
Amin

0

[ (2c - 1)S:(f) SW df (20))]

in which equation (9) has been used to substitute for Szt(f). By algebraic
manipulation equation (20) may be shown to be identical to

2 [St(i)12
nmin - 2 {2r f SW) df - 2r f }

(2c - (2c - 1)8:(f) SW) df

(c 1)2 2r f S:(f) df (21)2c - 1
in which the integrals are taken over the set of f in 0 f f,/2 for
which Sit(f) X 0. The third integral in equation (21) is 0-2/2r; if the
input is bandlimited to TV Hz [with Sy*,,(f) X 0 for I f I < IV], the first
integral is that given in (13), ma/27. It follows that equation (21) may
be rewritten as

n.i. - C2 [Set(f)]2
(2c - 1)2 - 2r

.10 (2c - 1)S,,t(f) S,,t(f) di]

- 1)2 2

2c-1Cr (22)

Thus for a bandlimited signal, equation (22) relates the quantizing noise
power at the output of a low pass interpolation filter to the noise at the
output of an optimal filter. As the sampling rate increases, c 1 and
the integral in equation (22), of a quadratic form of the coefficients, Q, ,
becomes negligible relative to ma which is the integral of a linear form.
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Thus for high sampling rates, nmin now , indicating that the transfer
function of the optimal filter is nearly flat over frequencies at which
Syt(f) 0 and is zero where St(f) = 0.

4.3 Approximations
The infinite series in the formulas for the covariance coefficients

converge rapidly, and in many cases of practical interest, entire series
contribute negligibly to the values of the coefficients. For example, if
the input possesses a flat power spectrum, cutoff at W Hz, the effec-
tive bandwidth is W/(3)i and the normalized sampling rate is related
to the bandwidth expansion ratio by F = 2 (3)i R. Thus for R > 12
AM samples per Nyquist interval, the single summations in equations
(15), (17), (18) and (19) consist of powers of a e-54 or less. These
summations are added to 0.25 or to 71-2/3 and thus have negligible ef-
fect on the values of the covariance coefficients. In the double sum-
mations, only the terms obtained with the two indices equal contribute
significantly to the total when F is high. These double summations
may, therefore, be replaced by single sums and we have the following
approximations:

ro 1 ± 647r2

0-2 3F2

256 ' ()"' ( F2k2)
Binh

(F2k2 pu)-,' P + - -1- E(23)a " F 1.... 1 k2
exp 1- 64 / 64

c5, ,,,
c R-" 1 , -2- '''''-' PA (24)

a

Qo rs.,647r2
a 3F2

02/3

Q 256 (-1.ra F2k2) . (F2k2 p
a2 F2 1

L2 exp - smh (25)

If in equation (25) we approximate sinh x by ex/2t and substitute the
result in equation (14) for nip/ , we obtain van de Weg's formula for the
granular noise power. Van de Weg claims its validity for R > 2 samples
per Nyquist interval. Our precise formula for Q,, , equation (19), leads
to noise power characteristics that are valid for all sampling rates.

t This leads to a small but nonzero value of Qµ as -> oo and pi, --> 0. Reten-
tion of the e_x term in the approximate formula for results in Q. = 0 and thus
avoids an anomaly and a source of numerical error in van de Weg's noise power
formula.
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4.4 Signal -to -Noise Ratio Characteristics
In this section we demonstrate the nature of the derived quantizing

noise characteristics by illustrating the effect of the AM sampling rate
on the quantizing noise powers, 77/,,f and 77min and on Qo, the mean
square error at the input to the interpolation filter. In particular, Fig.
2 shows on a dB scale, Sons = 0-2Amin, the output signal-to-noise ratio
of an optimal interpolation filter; Sipf = 0-2 bnpf , the signal-to-noise
ratio of a low pass filter; and So = 0-2/Q0 the signal-to-noise ratio
prior to interpolation. The data in Fig. 2 pertain to the case of a zero -
mean stationary gaussian input with a flat bandlimited power spec-
trum. The signal-to-noise ratios are shown as functions of R, the num-
ber of AM samples per Nyquist interval.

For high sampling rates, equation (25) indicates that Qo is ap-
proximately 82/3, the mean square value of a random variable dis-
tributed uniformly over an interval of length 28. Thus with increas-
ing R, So rises at the rate of 20 dB per decade. At high sampling rates
Sip! and Sopt are nearly identical. Their slope is 30 dB per decade as
indicated by equation (14) which is a linear combination of the error
covariance coefficients (proportional to R-2), weighted by 1/R.

At low sampling rates, So and Sint become very low (-15 dB at the
Nyquist rate) while Sot tends toward unity, corresponding to a filter
that generates zero output (the mean input), and thus has a mean
square error of u2.

V. DERIVATION OF COVARIANCE STATISTICS

Although the AM system considered in this paper is identical to
the one studied by van de Weg and the values obtained for granular
noise power are virtually the same as his over a wide range of trans-
mission speeds, the method of analysis used in obtaining the present
results differs considerably from van de Weg's. Van de Weg formu-
lated the ensemble of integrated AM signals as a nonstationary proc-
ess; he was thus unable to compute spectral characteristics from
derived covariance statistics. Instead of considering correlation prop-
erties, van de Weg began with the amplitude spectrum of a sample
function of the integrated AM signal ensemble. He then calculated
the power density spectrum as the mean square amplitude spectrum.

In the work reported in this paper, the ensemble of integrated AM
signals is stationary in the wide sense, so that the power spectra are
Fourier transforms of the covariance functions whose derivations are
described in the remainder of this paper. The difference between van
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Fig. 2 - Quantizing noise characteristics.

de Weg's signal ensemble and ours lies in the role of the binary phase
parameter defined in the Section 5.1.

5.1 The Integrated 6,111 Signal Ensemble

The integrated AM signal, {x,,} , is a discrete -time discrete -amplitude
function. The signal ranges over values kb (k = 0, ±1, ±2,  ), and
the absence of slope overload implies that x takes on the value of the
allowed quantization level nearest to y . (In overload conditions, x
and y may differ considerably.) At any sampling instant, the set of
allowed quantization levels of a given signal is either the odd -parity
subset of quantization levels,

±6, ±38, ±56, (26)

or the even -parity subset

16

0, ±26, ±46, . (27)

This restriction to a subset of the k8 follows from the AM mechanism
which constrains each sample of {x.} to differ by -±8 from its predeces-
sor. Thus if xo = 2k8, x1 = (2k ± 1)8 and any sample that may be
written x2. (m = 0, -±-1, . . .) is constrained to an even -parity
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value. Similarly the subsequence {x22+1} ranges over the odd -parity
set of quantization levels.

Thus in the absence of slope overload, x is the result of processing
y with a uniform PCM quantizer with quantization intervals of
length 28. Either x is the output of the even -parity quantizer, with
levels given by equation (27) or the output of the odd -parity quantizer
with levels given in equation (26). The input-output characteristics
of the two quantizers are shown in Fig. 3.

In defining the AM signal ensemble, van de Weg assumed that the
"initial condition," x0 = 2k8, applies to all sequences {x}. In van de
Weg's analysis, therefore, all samples in {x.,} are generated by the
even -parity quantizer and all samples in {x2,+1} are generated by the
odd parity quantizer. Thus the probability functions of x2m and x9.-+-1
differ and the ensemble of sequences {x,,} is nonstationary.

We now generalize van de Weg's formulation of the integrated AM

signal ensemble by observing that the AM system may also generate
signals with the initial condition, xo = (2k-1)8. In this event {x2m}
is the output of the odd -parity quantizer of Fig. 3 and {x2m-4-1} is the
output of the even -parity quantizer. We shall refer to the initial con-
dition that applies to a given {x} as the "phase" of the signal. Thus

we define the two phase states:
Al: {x,.} generated by the even -parity quantizer
A2: {x2m} generated by the odd -parity quantizer.

A delay of a signal by T seconds results in a phase reversal from Al

to A2 or from A2 to Al.

2. - 68 -

40
.

28

-58 -38 -8
8

-28

-48

38 58
INPUT

(a)

r a_

58-
0

38

-48 -28
I I

82

-38

-58

48 68
INPUT

(b)

Fig. 3 - Two uniform quantizers: (a) even -parity quantizer, (b) odd -parity
quantizer.
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If we admit signals with both phases to the AM ensemble, the
statistics of the ensemble of {x.} depend on the relative frequency of
occurrence, that is, on the prior probability of the two phases. Van
de Weg's ensemble is a "coherent" one for which the prior probability
function is

Pr {A,} = 1, Pr {Ad = 0. (28)

In this paper we study the statistics of the noncoherent ensemble in
which

Pr {A1} = Pr {A2) = 2. (29)

The correlation analysis begins with the derivation of probability
functions conditioned on each of the two phases. Marginal proba-
bilities may be calculated on the basis of a prior probability func-
tion as

Pr {x, = 1c6} = Pr {Ad Pr ix = k6 1 A11

-I- Pr {A2} Pr fx =Ica I A2}. (30)

When equation (29) is used in the computation of equation (30), the
result is independent of n. Similarly the joint marginal probability of
x. and x+ is independent of n when equation (29) is accepted. When
equation (28) is accepted, as it is in van de Weg's analysis, both the
single and joint probability functions depend on the parity of n and
the covariance statistics are functions of two time variables.

In principle, either equation (28) or (29) may be applicable to the
operation of a particular AM system. In practice, numerical results
based on the two phase conditions are usually quite similar. In analytic
work, there is a considerable advantage offered by equation (28), the
noncoherence assumption. It admits the techniques of stationary time
series analysis to the investigation of questions of interest.

5.2 The Probability Distribution of x.
Here we derive the probability function of a sample, x, of the in-

tegrated AM signal. The probabilities conditioned on Al and A2 de-
pend on whether n is even or odd, but the marginal probability func-
tion is independent of n when Al and A2 are equiprobable.

Under the condition A1, the samples {x2m} are outputs of the even -
parity quantizer so that x,27. = 2k8 when

(2k - 1)6 < y2, < (2k + 1)6.
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If {y} is a sample function of a stationary zero -mean gaussian proc-
ess with variance 0.2, we have

Pr fx,, = 21, 8 I = 0.(2.70i

(2k +1)5

(2k -1 ) 5

2

exp dn.

(31)

Pr fx2, = (2k - =0.
The samples {x2,+1) are generated by the odd parity quantizer so
that

Pr {x2,,, = 21c5 I = 0 (32)

1
2k5 u2

Pr {x2.+1 = (2k - 1)5 I Ad - --fir, \ exp (- du.
akz7r) f(2k-2)3

Under the condition A2, the complementary probability function
applies:

Pr{x2m = 2k6 I A2} = Pr {x2.+1 = (2k - 1)5 I =0,
Pr fx2, = (2k - 1)5 I Ad = {x2.+1 = (2k- 1)5 I Ail

Pr ix2.4.1 = 2k5 I Ad = Pr fx2m = 2106 I Ad

By combining equations (30) to (33), one may demonstrate
Pr{xn, = kS} depends on n (in particular on whether n is even or odd)
for all prior probabilities of Al and A2 except the equiprobable pair
given in equation (29). Thus equation (29) is a necessary condition
for stationarity. When this condition is imposed and ,& = 8/u incor-
porated, the formula for the marginal probability of x,, becomes

(k+1)p

Pr {xn = kb} -
2(271)t (k -up

exp (- du.
2

(34)

From equation (34), the moments of xn. may be calculated. We have

= ---1 E u2
exp (- 27) du = 0 (35)

8
(k+1)/3

2(27r)' i=-00 f 1,-1)

and
8213

E = = TTI-Tr)

(33)

1

2
k2 exp [- (v k)2] dv, (36)

0

which is equivalent to the form of ro given in equation (15). The
derivation of equation (15) from (36) is demonstrated in Section A.2
of the appendix.
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5.3 The Joint Probability of xn and xn.,
For each phase condition, the expression of the joint conditional

probability of x and xn+ depends on the parity of n and the parity
of tz. For phase A1, x and x+ are both generated by the even -parity
quantizer when n and p, are even numbers. Thus the conditional
probability that xn = 2k8 and xn+ = 2/8 is the probability that

(2k - 1)8 < y < (2k + 1)8 and (2/ - 1)3 < y, < (21 + 1)8.

Thus for n and p, both even,

Pr {:en = 2kb, x+ 21(5 I A1}

1
r(2k+l)a (21+1)3

J (

2exp
[ u2 v2 - 2Thluvidudv

2ra2(1 - p201 (2k-1)3 2i-1)5
20. p:)

Pr {x = (2k - 1)8, x+ = lb I Ai}

= Pr {x = k8, xn, = (2/ - 1)(5 I = 0. (37)

Similarly we derive conditional probability expressions for the
eight cases listed under step 1 in Table I. The four marginal proba-
bilities indicated under step 2 are calculated as

Pr {x = kb, x, = lb) = 2 Pr fx = kb, x, = lb I Ad

+ 2 Pr {x = kb, x÷ = lb I A2} (38)

Among the four cases there are only two different formulas. One is
applicable to even values ofµ and the other to odd values of /A. When
p, is even, x and xn+, are generated by the same quantizer and when
p, is odd they are generated by different quantizers. The marginal
joint probability function is independent of n. It may be expressed in
terms of the double integral expression

r(k+i)p
1 v2)

p(k, 1, p) exp (- -2
47r(1 - P201 Ja-1)P

f(14-1)p - vp,)2]

(I -up exP L 2(1 -
du dv (39)

as

Pr {x = kb, x+ = 10} = p(k, 1, it) for k + 1 + µ even

= 0 for k-}- 1 + µ odd.
(40)
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TABLE I-STEPS IN DERIVING Pr { x = k6, x, = 16}

Step 1
Conditional
probabilities

obtained for cases

Step 2

Marginal
probabilities

Step 3
Identical

expressions except
for cases

n even, A even A,

n even, A even A2
n even, A even

A even
n odd, A even Al

n odd, A even A2
n odd, A even

n even, A odd A1

n even, A odd A2
n even, A odd

A odd
n odd, A odd Al

n odd, A odd A2
n odd, A odd

1213

The autocovariance coefficient, is the expected product of xn and

co

T = E E (1c6)(16) Pr fx = k6, = 131. (41)
k=-co 1=-co

Substitution of equation (40) into (41) results in

r = 62 E E (2k)(2/)p(2k, 2/, IL)
k=-co 1=-00

00 00

± 62 E (2k - 1)(2l - 1)p(2k - 1, 21 - 1, ,u) for ,u even
k=-oo 1=-co

= 262 (2k)(21 - 1)p(2k, 2/ - 1, µ) for ti odd.
k --co 1=-co

(42)

Section A.3 of the appendix outlines the derivation of equation (15)
from (42) and (39).

5.4 The Joint Distribution of yn and xn.
Here we consider the joint probability function of a discrete random

variable, xn+A and a continuous random variable yn. Once again the
marginal distributions are independent of n when the two phases are
equiprobable. For IL = 0, the marginal probability function is
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1Pr fy = u, xn = /al =20-(27) exp (- du

for (k - 1)a 5_ u < (k+ 1)
= 0 for other values of u.

The expected value of x,,y,, may be computed as

(43)

(k+1)19 2

E Ixy -= = 10`" E kf
2k-1)fi

u exp (- ) du (44)
(

which is shown in Section A.4 of appendix to be co -2, with c given by equa-
tion (17).

For other values of the conditional probability function of u and
kb is the probability that yn = u and (Ic - 1)5 < y,,+ < (Ic 1)(5,

provided k is an output level of the quantizer that processes y . The
marginal probability function may be written as

Pr {y = u, = la}

1
r(k+1)5 u2 v2 2uv

2

p
exp - "1 dv du (45)

47ra(1 - P204 (k -1)E 20'2(1 - pp)

from which cross -covariance coefficient 43 may be calculated as

= E la u Pr {y = u, xn = kb} . (46)
--co

If equation (45) is substituted into (46) and the integration with
respect to u is performed first, the result is

00 (k+1)ft

PP6c k v exp (- 22-) dv (47)
(I)P

= 2(20 L.._ co

fk-1)p
2

which is equation (44) multiplied by pµ.

APPENDIX

Applications of the Poisson Sum Formula to the Derivation of
Covariance Coefficients

A.1 Basic Formulail

f (x , t) = exp [ 1(x + n)2]. (48)

f (x, =
ao

(- 72k2) cos 2714CX1 (49)[1 +2 exp
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A.1.1 Even Terms

g(x, t) = t exp t(x 2n)2J = f , 41) (50)

g(x, t) = 2- (01[1 + 2 exp (- Se2) cos dcx] (51)

A.1.2 Odd Terms

h(x, t) = E exp [- t(x + 2n - 1)2] = f(x, 1) - g(x, t) (52)

h(x, 1) = (01[1 + 2 et (-1)k exp (- 7-21) cos rkx] (53)

A.2 Mean Square Value of x.
Equation (36) may be developed in terms of the partial derivatives

of equation (48) :

and

f,(x, 1) = - E (x n)2 exp [ -1(x + n)2] (54)

fx(x, t) = -2t E (x + n) exp [-1(x n)21. (55)

Equations (54) and (55) may be combined to form

et n2 exp [-t(x n)2] = x2f(x, t) x- f (x t) - f (x 1) (56)
n-oo

If the order of summation and integration in equation (36) is reversed,
the resulting integrand is identical in form to the left side of equation
(56). Thus equation (49) may be substituted into the right side of equa-
tion (56) and the three terms integrated over 0 < x 1. The result is

2n exp [-1(x ± n)2] dx

7) [1 + 4 et exp (-t 2)]
k=1

±(Eyr+ ,()
t 3 k_i 7-7c2 exp r2t1c2)].,

The variable, t, in equation (57) is related to equation (36) by t =

(57)
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#2/2 = 3272/772r ; when this latter form is substituted for t, the form
of r0 given in equation (15) results.

A.3 Autocovariance Coefficients

In order to illustrate the derivation of equation (15) for rp, from
equation (42), we consider odd values of p.. By substituting into equa-
tion (42) the form of p (k, 1, p,) given in equation (39) we write

(2k+1)o ,,2

r, = ,i252
2

E 2k exp (- )0(v) dv, (58)
Li7r -p,,) k= -co (2k-1 2

in which we have defined

-vppio
G(v) = # E (21_ 1) (32(x ± 21 - 1)2]

dx. (59)-1-,83 2(1 - p2)

The integrand in equation (59) is related to the infinite series in equa-
tion (52) and its partial derivative with respect to x by

(2n - 1) exp [- t(x + 2n - 1)2] = -xh(x, t) - t),

(60)

(60) we substitute
the form of h(x, t) given in equation (53) and perform the integration
required in equation (59). The integral of the second term is zero so
that G(v) is # times the integral of the first term of equation (60). Thus
equation (58) may be written in the form

G(v) [2r(1 -

w 1
(61)xp sin ;

# m-i irm 2#

which must be weighted by exp (-v2/2) and integrated according to
equation (58).

Equations (58) and (61) thus show r,,, to be the sum of two terms.
The first term consists of a constant, pg8/ (27r) multiplying the sum

co (2k+1)P
V2

00 (42

E 2k v exp (- -2) dv = 2 E exp [- (2k - 1)2]f2k-UP
2

(62)

This latter summation is in the form of equation (52) with x = 0, t =
#2/2 so that with the application of equation (53), (62) becomes
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, 112-) = `
(`,A
=9-13 [1 + (_1)k exp ( (63)

I

The second term in the expression for r, may be written in the form,

(52(2)1 E exp
7 m- rm

71.2m2(1

202

1217

ao (2k+1) 2\

 E 2k exp (-v sin IrniP"v dv. (64)
k --co (2k-1) 2 IB

If the sine in this expression is developed in exponential form, the
summation, ranging over k, in the above expression, has a form
similar to the integral and sum in equation (59). If it is analyzed in
the manner that G (v) was reduced the following identity may be
demonstrated:

00 (2k+i)fi ( v2) irni/gypmVE k exp --2 sin dv
k --co f2k--1)13la

(;)1 exp 7r2;322194) [7r 1 + 2

X exp (- 7r2k2 sink (71-2kMP")]
202

#2

Thus equation (64) becomes

2p,0.2 exp (- 72;2) + 262 r(-2km1)
m=1 k =1 m=1

(-1)k
k1 Irk

(65)

721702

 exp [-
202

sink 02 (66)

so that r, for itt odd, the sum of (66) and pA4743/ (270 1/2 times (63), may
be expressed as

r, = po-2[1 + 4 27r2k2\
262

00

is=1
et') (-ir2 )

ns..1 7r2km
lexP

ic=1

e
7,2(k2

2
s inh ('r2 (67)xp

02
02

If 8771F = 32 is substituted in equation (67) the result is equation (15).
Similarly the formula given in equation (42) for r, when /.1. is even

may be developed to demonstrate its identity to the formula in equa-
tion (15).
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A.4 Cross -Covariance

Performing the integration indicated in equation (44) we have

ckp = 2(270-
t p2

. exp [- -"T (k - 1)2] - exp [- (k 1)21

= 3cr exp [-
2

k2 (68)
(270

which is equivalent to equation (48) with x = 0, t = /32/2 = [32 72/
F2]. Thus equation (49) may be substituted with the result given in
equation (16) :

7r2k2
cko = 0-2[1 +2 cE exp (-2

o2
)]

k=1
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A System Approach to Quantization
and Transmission Error

By M. M. BUCHNER, JR.

(Manuscript received October 10, 1968)

In a system designed to quantize the output of an analog data source and
to transmit this information over a digital channel, errors are introduced by
the quantization and transmission processes. Quantization resolution can be
improved by using all positions available in a data stream to carry informa-
tion, or transmission accuracy can be improved if some of the positions are
used for redundancy with error -correcting codes. The problem is to deter-
mine, from a system viewpoint, the proper allocation of the available posi-
tions in order to reduce the average system error rather than concentrate
exclusively on either the quantization problem or the transmission problem.

We develop a criterion for the performance of data transmission systems
based upon the numerical error that occurs between the analog source and
the destination. The criterion, termed the average system error, is used to
evaluate and compare possible system configurations. Significant -bit packed
codes are defined. These codes are useful because their protection can be
matched to the numerical significance of the data and their redundancy can be
sufficiently small to maintain good quantization resolution. The average sys-
tem error resulting from representative system designs is numerically
evaluated and compared.

I. INTRODUCTION

When designing a system to sample the output of an analog data
source and to transmit the samples over a digital channel, the usual
approach is to consider the errors introduced by quantization and
transmission as separate problems. However, from a system view-
point, a conflict arises. On the one hand, the quantization resolution
can be improved by using all of the available positions in a data
stream to carry information. Alternatively, the transmission accuracy
can be improved if redundancy and error -correcting codes are intro-
duced by converting some of the information positions into parity

1219
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check positions. The problem then is to determine the proper alloca-
tion of the available symbols in order to reduce the average system
error rather than concentrate exclusively on either the quantization
problem or the transmission problem.

We consider a data transmission system with uniform quantization.
The average absolute error that occurs between the analog source
and the destination is used as the criterion of system performance.
The criterion, termed the average system error (AsE) , is used to evalu-
ate and compare the effectiveness of various systems.

Some work has been done on the design of error -correcting codes
which provide different amounts of protection for different, positions
within a code word. In Ref. 1, the general algebraic properties of these
codes, referred to as unequal error protection codes, were investigated.
In Ref. 2, significant -bit codes (which turn out to be a subclass of un-
equal error protection codes) and a criterion for evaluating the per-
formance of codes for the transmission of numerical data were devel-
oped.

In this paper, we define packed codes and significant -bit packed
codes, we analyze their performance, and we numerically evaluate the
average system error resulting from the use of representative quatiza-
tion resolutions and coding schemes.

II. PRELIMINARIES

We consider a binary symmetric channel in which the errors are
independent of the symbols actually transmitted. In the numerical
examples, we further assume that the errors occur independently
with probability p = 1 - q. The error -correcting codes to be discussed
are binary block codes in which the code vectors form a group under
component by component modulo 2 addition. Let n denote the block
length and k denote the number of information positions per code
vector. The notation (n, k) is used to denote such a code. A complete
discussion of these codes is contained in Ref. 3.

The encoder receives k binary information symbols [called a mes-
sage and denoted by (vk, vk_i, , v1) ] as an input and deter-
mines from the message (n - k) binary parity check symbols. The
decoder operates upon the blocks of n binary symbols coming from the
channel in an attempt to correct transmission errors and provides k
binary symbols at its output.

Let H denote the parity check matrix for such a code. An n-tuple u
is a code vector if and only if
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uH = 0 (1)

where 17 is the transpose of H. The matrix H can be written in the form

H = (Ck , Ck-i , ,Ciin-k)

where Ci (1 < i < k) is the column of H in the position corresponding
to information position vi in a code vector and is the (n - k) X
(n - k) identity matrix.

When the integer s is to be sent, the message used is Bk (s) such that*

where
Bk(S) = (Vk , Vk-1 , v1)

S = E .

i

The parity check symbols E (s) are chosen so that the code vector
C (s) = Bk (s) I E (s) satisfies equation (1) where the symbol I indi-
cates that C (s) can be partitioned into Bk (s) and E (s).

III. PACKED CODES

A model of the data transmission system is shown in Fig. 1. Let us
assume that each quantization step is of equal size and that there are 21

ANALOG
DATA

SOURCE

UNI FORM
QUANTIZ ER

DESTINATION

SOURCE SCALE
TO BINARY
CONVERTER

BINARY TO
SOURCE SCALE

CONVERTER

ENCODER

BINARY
CHANNEL

Fig. 1- System model.

DECODER

quantization levels. For many applications, the quantizer uses a rel-
atively small 1 (perhaps 15 or less). In addition, coding schemes must
have low redundancy; otherwise so many information positions are
converted into check positions that the quantization error becomes too
large. These requirements lead us to define "packed" codes in the follow-

*13i(j) denotes the i-bit binary representation of the integer j where 0 < j
2' - 1.
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ing manner. Consider an (n, k) binary group code in which a samples
are packed into each code vector. If each sample consists of 1 bits, then
k = al. Let sm denote the integer that is transmitted for the mth sample
in a code vector where 0 < s. < 2' - 1 and 1 < m < a. Accordingly,
the code vector actually transmitted is

where

C(s) = Bt (S«) I Bi(sa-i) I I Bi(si) I E(s)

s = E 2(m-ws.
n1-.1

(2)

A packed code vector is shown schematically in Fig. 2.
Two examples are in order. In the first, a (7, 4) perfect single error -

correcting code is used to form a packed code with a = 2 and / = 2.

1 1 1 0

H= 1 1 0 1 I,

,1 0 1 1

s2 positions_t SiL positions

In the second example, the idea behind significant -bit codes is applied
to packed codes and results in what will be referred to as a signifi-
cant -bit packed code.2 Specifically, the basic (7, 4) code can have its
protection capabilities arranged to match the numerical significance of
the bit positions; that is, to protect the most significant bit of each of
four samples (a = 4 and 1 = 2).

1 0 1 0 1 0 0 0

H= 1 0 1 0 0 0 1 0 I,
1 0 0 0 1 0 1 0 ,

s4 positions--t Ls, positions

s3 positions --s, positions

Notice that the significant -bit packed code requires only half as many
parity check positions per sample as the packed code.



TRANSMISSION ERROR

k BITS

11 BITS

B
L

(sa) B (s 1)   Bz(s1) E (s)

BITS -4.116--/ BITS -41

Fig. 2- Packed code vector.

n -k
BITS -
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Many packed codes can be designed to provide desired levels of
protection and redundancy. Numerical data concerning the effective-
ness of representative packed codes are presented in Sections VI and
VII.

IV. FORMULATION OF A CRITERION OF SYSTEM FIDELITY

In this section, we develop a criterion of system fidelity as a func-
tion of the number of quantization levels and the capability of the
error -correcting code. This is clone for packed codes because of their
generality.

Let :r, denote the output of the analog source that results in s,
being transmitted. It is assumed that x, is a random variable that is
uniformly distributed on the interval (X1, X2). The probability
sity function for x, is

If

f(x,) - 1 for X, < x, X,X, - X,
= 0 for x, < X, or x,,, > X2 

X1\ (X, - X-1
X, s

2,
-)) < x, < (s, 1)

(3)

then the output of the quantizer is

X, (sn, 1)(X2 1(1)

The "source scale to binary converter" receives

1)(X, X1)

from the quantizer and delivers B,(s,n) to the encoder. After a samples
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are received by the encoder, the message

Bk(s) = Bi(s.) I Bi(s.-1) I I

B1(s1)

is encoded to form the code vector C(s) = B (s) I E (s) where the
value of s is determined from equation (2). At the destination, the
decoder attempts to correct errors and provides the message

Bk(r) = Bi(ra) I Bz(ra-i) I

I B1(r1)

at its output where 0 < r, < 21 - 1 for 1 < m < a and
a

r = E m (4)
m-1

The "binary to source scale converter" receives Bt (rm) and delivers

X1 + (r. )3(2 xi)

to the destination. Because uniform` quantization is used, a useful
measure of the numerical error that occurs as a result of the quantiza-
tion and transmission of x.m is

x. - [X, 1)(X2 "X-1)]

where y > 0. The appropriate value of y will depend upon the nature
and use of the signal. For this paper, let y = 1.

For the mth sample position in a packed code, let Pr.{r. I s.}
denote the probability that r,,, is received when s,,1 is sent. Accordingly,
the average system error for the mth sample (AsE.) is

7

2,-1 2,-1 (2C.-Xi)/2' (X2 X
2
-i)

r.-0am-0 Xi-Fam(X.-X.)/2,

Pr. fr. I s.jf(x.) dx. . (5)

It is desirable to express Pr,{r, I s,} in terms of the properties of
the error -correcting code. Let Pr {r I s) denote the probability that r
occurs at the output of the decoder when s is the input to the encoder.
As shown in Appendix A, for a channel in which the errors are inde-
pendent of the symbols actually transmitted,

2,-1 21-1 (a
Prm {rm I 8.} = E  E Pr E 2( --)it.,

to -0
excluding tm

o}
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where B1(t,,,) = Bi(r,) e Bi(sm).* This expression is interesting be-
cause it permits us to compute Pr,,, {r,,, I s,} from the properties of the
code. Specifically, it is necessary to determine the probability that
each possible sequence of a samples, in which the mth position equals
tm, is received, given that zero is transmitted for each sample, and
then to sum these probabilities.

For the case in which one sample is transmitted per code word (that
is, a = 1 and l = k) and all samples are equally likely to be trans-
mitted, the average numerical error (ANE) that occurs during trans-
mission has been defined as2

1
2k-1 2k-

ANE = E Elr-sIPr{rIs}.
r.0

The average numerical error is the average magnitude by which the
output of the decoder differs numerically from the input to the en-
coder and thus provides a measure of the performance of the channel
and the code. This concept can be generalized by defining the average
numerical error for the mth sample as

1 21-1 21-1
ANE, El rm - s, I Pr,,, trm I s,) (6)

r...0 sm..°

By reasoning analogous to that in Theorem 1 of Ref. 2, for a binary
group code used with a binary symmetric channel, equation (6) can
be reduced to

2,-1
ANEm = E 21-i E Prm {rm 10}.

With this definition of ANE,,,, the probability density function in
equation (3), and the steps shown in Appendix B, the average system
error for the mth sample, as given in equation (5), can be expressed as

ASEm =
(x2

2'
- xi)(ANEm

Prm {0 I 0}).\
One feature of packed codes is that the protection afforded various

samples against transmission errors can be unequal. If this occurs,
different positions will have different system error. Therefore, in
general, the average system error per sample (AsE) is

1ASE = - E ASE,n
tit..1

* The symbol C) denotes component by component modulo 2 addition of vectors.
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The range of the analog source is specified by X1 and X2. When con-
sidering system design, it is convenient to let X2 - = 1 (or to con-
sider a normalized average system error). Accordingly, in the re-
mainder of this paper, we shall be concerned with the expression in
equation (7).

ASE _-1 E 11 (ANE, Pr. {0 I 0})] (7)
a m-1 zi

For a system in which one sample is transmitted per code word (that
is, a= 1 and 1 = k),

ASE =
2

(ANE + 4 Pr {0 I 0}) (8)

where ANE and Prf0 I 0) are for the entire code.
For error -free transmission, Pr,{0 10) = 1 and ANEm = 0 for all

coding schemes including uncoded transmission. In this case, ASE =
2--(l+2). Thus, the system error is independent of the particular code,
is minimized by maximizing 1, and cannot be reduced to zero but is
bounded by the quantization error.

V. THE AVERAGE SYSTEM ERROR FOR UNCODED TRANSMISSION

Before examining the role that error -correcting codes can play in
reducing the average system error, it is advantageous to consider sys-
tem effectiveness when uncoded transmission is used with a memory -
less channel. In the system model, uncoded transmission is charac-
terized by a = 1 and 1 = k = n. Let ASNuc denote the average system
error for uncoded transmission. From Theorem 2 and the comment
following the proof of the theorem in Ref. 2 (these are summarized
in Appendix C), the average numerical error for uncoded transmis-
sion is

ANEuc = P

1 - 2ql
=

s -1 1 -
2

The probability of correct transmission is q1. Therefore, from equa-
tion (8)

q
ASEijc = t _ +

4lf
(9)
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Figures 3 and 4 present the average system error for uncoiled trans-
mission for representative values of / and p.

For each value of 1, notice that as p 0, ASEUC --> 2-(l+2) which is
the limitation imposed by the quantization error. Also, ASEUC increases
monotonically with p for 0 < p < 1/, (see Appendix D). For a given
value of 1, how large must p become so that ASEue deviates appreci-
ably from 2--(1+2) (that is, for what values of p does the transmission
error make a significant contribution to the system error?)

For small p, equation (9) yields
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Fig. 3- Average system error for uncodeci transmission (AsEuc) for various 1.
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This expression can be broken into two components; the term

[21 - 1 -
141

and the term 2--(1+2). These components are shown in Fig. 5 for / =
15. In Fig. 5, the terms intersect at a probability of error denoted by
pc where

1
Pe_

4(2i - 1 - )
4

Notice that pc is the value of p for which the transmission error equals
the quantization error [within the approximations leading to equa-
tion (10)]. Accordingly, for p = ASE 2-"+'). In Fig. 6, p. is
given for various 1. From p it is possible to obtain an estimate of the
general region in which ASE begins to deviate from 2-(1÷2) because of
transmission errors.
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An additional feature of Figs. 3 and 4 is that, for a given value of /
and for p greater than the appropriate pc, ASEuc is approximately equal
to p. This causes the converging of the curves as p increases and im-
plies that systems with different / will have essentially the same
performance. Let us consider qualitatively the cause of this phenome-
non.

For p > pc, the transmission error is significantly greater than the
quantization error and, thus, the average system error is largely deter-
mined by the transmission error. If a single error occurs in a sample
and if it occurs in the most significant position, on the average, a
numerical error of 1/2 will result for any 1. For values of p that are of
practical interest, the probability that this occurs is essentially in-
dependent of 1 and equal to p. Similar reasoning can be applied to the
less significant positions although the numerical error that results
will, of course, be less than 1/2. The point is that the probability that

U

L1J

cn

10-3
8

6

4

2

jo- 4

8

6

4

2

10-5
8

6

I

.

/
//

/////
//

/ASEuc - //
/

/
// 2'5-4.75//, 215

P

/////
-FACTOR OF 2.4,7'1

/
/

10-6 810-5 2

P

6 8!0-4 4
10-3
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these single errors occur and the numerical errors that result are es-
sentially independent of 1. This implies that the transmission error
(and thus the average system error) will be relatively insensitive to 1.

Notice that pc decreases as 1 increases. The reason is that the quanti-
zation error decreases as 1 increases whereas the transmission error is
approximately independent of 1. Thus, the value of p where the trans-
mission error becomes a significant portion of the system error de-
creases.

From equation (10), no system using uncoded transmission can
have an average system error significantly less than p no matter how
large 1 becomes. This leads to the problem of how to make the average
system error less than p.

Suppose that the a most significant positions per sample are pro-
tected by coding and that the remaining (1 - a) positions are not pro-
tected. Further, assume that sufficient protection is provided so that
the probability of error in the protected positions is substantially
less than p. Under these conditions, the transmission error is deter-
mined primarily by errors in the least significant positions and we
can consider the protected positions to be free of errors. Then, from
Theorem 2 of Ref. 2 (summarized in Appendix C),

1
1- e

ASE = 2t CE + le-a)

For values of p that are of practical interest,
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- (7) 1
ASE - 1 - p .

Accordingly, for p in the range where transmission is the major source
of system error, the average system error can be reduced by a factor
of approximately 2-a from the average system error for uncoded trans-
mission. This implies that we should seek codes that can both protect
the significant positions of each sample and maintain quantization
resolution by requiring small redundancy. The above requirements
provide the motivation for significant -bit packed codes.

VI. SOME EXAMPLES OF SYSTEM PERFORMANCE WITH CODING

In this section we assume that a predetermined number of positions
(denoted by $) are available to transmit each sample. By numerical
evaluation, the average system error that results from the use of
representative coding schemes (fore = 7 and $ = 15*) is determined
for various values of p. The examples illustrate that system perform-
ance depends upon p and upon the manner in which the $ positions
are allocated between information bits and redundancy for error
control.

Let ASEIjc denote uncoded transmission. First, consider codes in
which one code vector is used per sample (« = 1). Listed below is a
brief description of each code. The codes are indexed by the notation
used for their average system error in Fig. 7 ($ = 7) and Fig. 8 (4
= 15).

AsE(3,i): A (3, 1) perfect single error -correcting code is used to pro-
tect the most significant position.

=7: a = 1 1 = 5

=15: a=11 = 13

AsE(s.1), (3,1): Independent (3, 1) perfect single error -correcting codes
are used to protect the two most significant positions.

= 7: a = 1 / = 3

= 15: a = 1 / = 11

* These values were selected because in each case it is possible to construct a
perfect single error -correcting code and thus to compare uniform protection
with protection that is heavily weighted in favor of the most significant bit per
sample.
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Fig. 7 - Average system error (Ass) with representative codes; 7 positions per
sample (e = 7).

AsE(7,4): A (7, 4) perfect single error -correcting code is used to pro-
tect the four most significant positions.

t = 7:
t = 15:

a = 1

a = 1

/ = 4

/ = 12
AsE(15,11) : A (15, 11) perfect single error -correcting code is used to

protect all 11 positions.

= 15: a = 1 1 = 11

Although many significant -bit packed codes can be constructed, we
consider only three examples. They were selected because the codes
should protect the most significant positions of each sample and
because a small number of parity check positions per sample should
be used so that we can reasonably consider 2/ quantization levels.
The codes illustrate the general capabilities of significant -bit packed
codes and are easy to implement. One prime is used in the average
system error notation to indicate that the most significant position
of each sample is protected and two primes to indicate that the two
most significant positions of each sample are protected. Let p de-
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note the number of parity check positions per sample where p =
(n-lc) /a. Let R denote the code rate where R = k/n.

AsE15,11, : A (15, 11) perfect single error -correcting code is used in

a significant -bit packed code to protect the most significant position
of each sample.

=7: a = 11 1=7p = 0.36 R = 0.950

= 15: a = 11 1 = 15 p = 0.36 R = 0.976

ASE .) : A (31, 26) perfect single error -correcting code is used in
a significant -bit packed code to protect the most significant position
of each sample.

=7: a = 26 1 = 7 p = 0.19 R = 0.974

=15: a = 26 1 = 15 p = 0.19 R = 0.987

AsEg1,26) : A (31, 26) perfect single error -correcting code is used, in
a significant -bit packed code to protect the two most significant
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Fig. 8- Average system error (AsE) with representative codes; 15 positions per
sample = 15) .



1234 THE BELL SYSTEM TECHNICAL JOURNAL, MAY -JUNE 1969

positions of each sample.

=7: a = 13 1 = 7 p = 0.38 R = 0.948

t = 15: a = 13 1 = 15 p = 0.38 R = 0.975

We can make the following observations concerning system per-
formance when codes are used. In all cases, as p -> 0, ASE 2-(z+2)
which is the limitation on system performance because of quantiza-
tion. As 1 increases, the quantization error decreases. Thus, the value
of p for which the transmission error becomes a significant portion of
the system error decreases. In other words, if you design for good
quantization resolution, then you need a good channel. This implies
that, as the number of positions per sample increases, codes are use-
ful for smaller values of p in order to bring the channel up to the
required quality.

Because all a = 1 codes necessitate a sizable reduction in 1 to al-
low for redundancy, they are only attractive for larger p where con-
siderable coding capability is required. For these p, we have demon-
strated that system performance can be improved (by an appreciable
amount in some cases) by sacrificing quantization resolution for an
improvement in transmission fidelity. However, because significant -
bit packed codes provide protection for the most significant positions
without the large penalty in quantization resolution required by the
a = 1 codes, significant -bit packed codes are effective for considerably
smaller values of p than are the a = 1 codes.

Notice that ASElm .26) and ASE lb, are nearly equal. The reason is
that although the significant -bit packed code using the (31, 26) code
provides less error protection than the significant -bit packed code based
on the (15, 11) code, in each case the protection provided for the most
significant position is "sufficient" and, thus, the errors that hurt are
coming in the less significant positions.

On the other hand, ASEM.26) is less than either AsE3,,26) or ASE'8,11)
for the values of p where significant -bit packed codes are preferable.
The reason is that errors are now nearly eliminated in the two most
significant positions in each sample. Further reductions in system error
could be achieved by using significant -bit packed codes which protect
three or more positions per sample. However, we must be careful not to
go too far or we should begin to charge the redundancy against quan-
tization resolution.

Significant -bit packed codes achieve an effect similar to interleav-
ing. Thus, although the computations herein have been for independ-
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ent errors, significant -bit packed codes could prove useful for a channel
with clustered errors.

VII. SIGNIFICANT -BIT PACKED CODES FOR DIFFERENT 1

Several interesting points are illustrated in Fig. 9. Indexed on the
left are the four values of 1 considered. For 1 = 15, AsEuc is shown.
For 1 = 15, 14, 13, and 12, ASE'(,,,) and AsE'(L .2.) are given.

The following observations concerning Fig. 9 can be made. For
small p, the 1 = 15 schemes are best. This is to be expected because
quantization is the major source of system error for small p.

However, for larger p, the significant -bit packed codes with 1 < 15
have less system error than uncoded transmission for 1 = 15. This is
particularly interesting because, in these significant -bit packed codes,
more positions are saved by reducing 1 than are added by the parity
check positions. For example, in the 1 = 13 system that results in
ASE', 26 a = 26 and n = 343. If uncoded transmission with 1 = 15 is

w
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Fig. 9 - Average system error (AsE) with significant -bit packed codes.
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used to send these 26 samples, 390 positions are required. Thus, for
p > 4.5.10-a, this significant -bit packed code reduces system error
and saves 47 positions every 26 samples. Similar behavior can be noted
for other significant -bit packed codes considered in Fig. 9.

For p = 10-3, the three systems with v = 1 converge to approximately
2-1 Antic and the three systems with o = 2 converge to approximately
2-2 ASEuc even though the systems use different quantization resolu-
tions. However, for p = 10-6, the convergence is determined by 1. This
clearly demonstrates the two extreme cases in system behavior: limita-
tion by transmission error and limitation by quantization error.

VIII. THE SYNTHESIS PROBLEM-AN EXAMPLE

Suppose that the probability of error and the maximum allowable
average system error are specified. Let these be denoted by P. and
ASE respectively. From equation (11) , a and 1 should be chosen to
satisfy the relation

ASE, > 2-crp. + 2- (1+2) (12)

where a- represents the number of protected positions per sample.
Because equation (11) is an approximation, values of 1 and a that
satisfy equation (12) cannot be guaranteed to provide a system with
an ASE ASE.. However, as a- decreases compared with 1, equation (12)
becomes increasingly reliable.*

Notice that 1 and Q appear as negative exponents in equation (12).
Therefore, for a given p8, a wide range of values for the ASE, can be
achieved by varying 1 and u. Also, equation (12) frequently can be
satisfied by several pairs of values for 1 and Q. For each pair, there
may be several possible coding schemes. The system designer must
then choose the final system configuration from these candidates on
the basis of such items as the cost of implementation or the number
of positions in the data stream per sample.

As an example of system design, consider a telemetry channel in
planetary space missions. This channel can often be modeled satis-
factorily by the memoryless binary symmetric channel and typically

* A major assumption leading to equation (11) is that all of the average nu-
merical error comes from the unprotected positions. However, if a is large, then
errors in the protected positions result in a much larger numerical error than
errors in the unprotected positions. Therefore, even though errors in the pro-
tected positions are less likely, a significant portion of the average numerical
error can come from these positions,
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has a bit error rate of 5-10--3. Thus, equation (12) becomes

ASE, > 5-10-3.2-1+2' '2).

1237

(13)

If uncoded transmission is a system requirement, then a = 0 and

ASE, > 5 10-3+2-(1+2).

Notice that successive increases in / result in successively smaller
reductions in the average system error and that the average system
error can never be less than 5.10-x. From Fig. 4, all systems with
/ > 8 have essentially the same average system error and, thus, little
is gained by using / > 8.

A more interesting situation exists if the system designer is per-
mitted to choose / and the coding scheme. If ASE8 > 5.10-3, it is pos-
sible to design a system using uncoded transmission although coding
could prove effective as ASE8 approaches 5.10-8. However, if ASE8 <
5.10-8, some form of coding is mandatory. Conversely, from equa-
tion (13) , if coding is used, the system error can be made small by
choosing appropriate values of / and Q. In Table I, the approximate
average system error is given for representative / and a. The informa-
tion in Table I was computed by using equation (11) and, thus, is
subject to the assumptions and approximations leading to equation
(11) . However, from Table I, the improvements in system performance
that can be achieved by coding are evident .

TABLE I-APPROXIMATE AVERAGE SYSTEM ERROR (ASE) FOR
REPRESENTATIVE / AND Q; p = 5  10-3

a Approximate Aee

1

9

3

4.4.10'3
3.2-10'3
2.5-10-3

S 1

2
3

3.5-10-3
2.2.10'3
1.6-10-3

9 1

2
3

3.0-10-3
1.7.10-3
1.1-10-3

10 1

2
3

2.7.10'3
1.5.10-3
8.7.10-4
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Consider the following specific example which illustrates certain
alternatives in code selection without requiring extensive computational
effort. Suppose ASE, = 4.10-3. From equation (13) or Table I, we can
use a = 1 and / 8 or a = 2 and / Z 7. The minimum values of / will
be used. Several coding schemes are possible in each case. The codes,
indexed below by the notation used for their average system error in
Fig. 10, follow the ideas in Section VI. Thus, the parity check matrices
are not presented.

For cr = 1, / = 8:

AsE(3,i) : A (3, 1) perfect single error -correcting code is used to pro-
tect the most significant position.

a= 1 1 = 8

Asem.): A (15, 11) perfect single error -correcting code is used in
a significant -bit packed code to protect the most significant position
of each sample.

a = 11 1=8
ASEfoi .) : A (31, 26) perfect single error -correcting code is used in

a significant -bit packed code to protect the most significant position
of each sample.

a = 26 / = 8
For a = 2, 1=7:
AsE(3,1),(3,1): Independent (3, 1) perfect single error -correcting codes

are used to protect the two most significant positions.

a = 1 / -= 7

AsEg,,) : A (31, 26) perfect single error -correcting code is used in
a significant -bit packed code to protect the two most significant
positions of each sample.

a = 13 / = 7

The design objective, denoted by an asterisk in Fig. 10, is satisfied
by each system although the systems vary somewhat in performance
for other p. Notice that the systems differ in the coding equipment and
quantization resolution required for implementation. Also, notice that
the systems vary in the number of positions per sample in the data
stream [from a low of 7.4 for AsEg") to a high of 11 for ASE____(3.1),(3,1)].

Which system would actually be selected would thus depend upon the
details of the specific application.
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i
--- - L = 7 SYSTEMS ASE (15,11),

/
1

//Z. = 8 SYSTEMS

AS E'(3 t,26)

/
7/

1,
-ASE (30)

/

-ASE ' VASE(30 ) (3, )'it',s
AS E1"(31,26)

t
Ps

1

1

i

2 4 6 810-3 2 4

p

6 810-2 2 4 6 810-1

Fig. 10 - Systems for space telemetry channel.

IX. CONCLUSIONS

A general formulation of the error introduced by quantization and
transmission has been developed for the data transmission system
shown in Fig. 1. It has been shown that system performance is in-
fluenced by both the quantization resolution and the channel error
characteristics, that certain levels of performance cannot be achieved
without the use of coding no matter how fine the quantization, and
that performance can, in some cases, be improved by sacrificing
quantization for redundancy and error control. In general, when
coding is used, it is beneficial to use codes that match their protection
to the numerical significance of the information positions. Significant -
bit packed codes are particularly useful because they provide protec-
tion for the most significant positions without incurring a large penalty
in quantization resolution. The problem of determining the coding
capability and the number of quantization levels required to achieve
a specified average system error has been considered.

The specific results are based upon the choice of y = 1 in Section
IV. However, varying y simply changes the "cost assigned to the
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numerical errors and, thus, the general ideas presented here are ap-
plicable for any -y > 0: for example, the desirability of the system
approach to quantization and transmission error, the possibility of
improving system performance by sacrificing quantization resolution
for redundancy, and the use of codes that concentrate protection on
the numerically most significant positions. Actually, it appears that
as y increases, the desirability of protection for the most significant
positions also increases.

Because of the unit distance properties of Gray codes, it is natural
to inquire whether Gray codes could prove useful in the system dis-
cussed in this paper. It can be shown (for -y = 1) that a Gray code
with 2' levels gives exactly the same average numerical error and
average system error as the natural binary numbering with 21 levels
even when error -correcting codes are used.

APPENDIX A

Derivation of an Expression for Prm {rm I sm}

Let Pr, {r, I s,} denote the probability of receiving r, when s, is
transmitted using a packed code. Let Pr I sil (1 < i < a) denote the
probability that si is transmitted. Then

21-1 21-1 21-1 21-1

Pr,,, {r, s,} = EEE E Pr {rl s} Pr {sa}  Pr {Si}
ri.0,0 a a,.0

excluding r, and s, excluding Pr {sm}

where the values of r and s are determined from equations (4) and (2),
respectively. However, Pr {s, } = 2' for 1 -.5_ i < a, i m. Thus,

21-1 21-1 21-1 21-1

Pr, {r,,, I s,} - 2(a_i)/ E  E E EPr {r Is).
Ra-o 11-0(14)

excluding r, arid s,

The expression in equation (14) can be simplified. From equations
(2) and (4), equation (14) can be written as

1
21-1 21-1 21-1 21-1

{r.
I

sm} E - E E  E
..-o ra r.

excluding r, and sm

Pr,

 Pr E
m-i

By Lemma 1 of Ref. 2, for a binary group code used with a binary
symmetric channel in which the errors are independent of the symbols

E 2( --"ism, (15)
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actually transmitted,
a

Pr E = Pr { E 2(m-1)irm,
a

E2(m'-1)
1S

where Bi(t,,) = .131(rne) ® Bi(s,,). By Lemma 2 of Ref. 2, equation
(15) can be written as

Pr, s,}

1
21-1 21-1 21-1 21-1 a

= E   E E  E Pr E 2("1-1"ins,
2('-'" ..-0 81-0 ta,-0 iv.° m'..1

excluding s, and t,

which reduces to
221-1 1-1

Pr, {rmI s,} = E  E Pr E
ta-o ti -o m'-1

excluding t,
0}

APPENDIX B

Reduction of the Expression for the Average System Error

By substituting equation (3) into (5) and rewriting,

1
21-1 21-1

A SE - v. \ E E Pr, {rm1 s,)
m (ti. 2 - X1) r.-0 ow.°

X1+(am+1)(X2-X1)/21

X 14-a.(X.-X0/2i

However,
JXi+(am+1)(X.-X1)/21

1+sm(X.-X1)/21

where

Thus,

x,--- (rm D(X2 x1) dx,n

xji)(- X, - (r
X2 X1),, dxn,

(X2 - X1)2
21 (I r. - s. I Or...)

= 1 for r, = s,
= 0 for r, s,

2:-1
21-1X2 -

ASE. = 221 E E I r, - sn, I Pr, {rm
1..2..0 ns

Ism}

X2 - 21-1 21-1

-I- 4.221 E E Prm fr. 5.) or.
,,n-0
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The average numerical error for the mth sample was defined in equa-
tion (6) as

21-1 21-1
ANE, = iTTE E r,,, - Pr, {r, s,).

4.

In addition, it can be shown that for a channel in which the errors are
independent of the symbols actually transmitted,

21-1 21-1
E E Pr {r

I

s,} , = 21 Pr, {0 I 0}.

Therefore,

ASE. - (X2
2

)(ANE, Pr, {0 I O}).

APPENDIX C

Theorem 2 of Reference 2

A significant -bit code is a code in which the (k-ks) most signifi-
cant positions are protected by what is referred to as a base code and
the remaining ko positions are transmitted unprotected. For the base
code when used alone, let PrB{0 I 0) denote the probability that the
output of the decoder is the zero message when the input to the en-
coder is the zero message. Also, let ANEB denote the average numerical
error of the base code. The average numerical error for the signifi-
cant -bit code is given by Theorem 2 of Ref. 2:

Theorem 2: Let the base code be defined as above. For a binary sym-
metric channel with independent errors and when all messages are
equally likely to be transmitted,

k

ANE Eis = PrB {0 I 0}P 2"ANEB

Uncoded transmission is the special case where k = k0. Thus, the
average numerical error for uncoded transmission can be obtained by
letting ANEB = 0 and PriA0 0) = 1 when k = k0.

APPENDIX D

Proof that the Average System Error for Uncoded Transmission In-
creases Monotonically with p

In Section V, equation (9) gives the average system error for un-
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coded transmission as

ASE =

After differentiating with respect to q and grouping terms,

1-1dAsEu, 1 .-1 1-i-1
dq - -2z - / - -1)q1-1 - E (/ - i)(2i - 2' )q

4

For 2 < q < 1,

dAsEu,
< O.

dq

Thus, ASEUC decreases monotonically as q goes from 1/2 to 1 or, alter-
natively, ASEUC increases monotonically as p runs from 0 to 1/2.

APPENDIX E

Parity Check Matrices for Codes Considered in Section VI

AsE(3,1): A (3, 1) perfect single error -correcting code to protect the
most significant position.
6 = 7:

H=
[10 0 0 0

.1.2 a = 1 1 = 5
10000

e = 15:

H= 100000000000012 a = 1 1 = 13
1 0 0 0 0 0 0 0 0 0 0 0 0

AsE(3,1),(3,1): Independent (3, 1) perfect single error -correcting codes
to protect the two most significant positions.

= 7:

1 0 0

H 1 0 0
L, a = 1 1 = 3

0 1 0

,0 1 0



1244 THE BELL SYSTEM TECHNICAL JOURNAL, MAY -JUNE 1969

e = 15:

1 0 0 0 0 0 0 0 0 0 0

10000000000H= 1.4 a = 1 1 = 11
0 1 0 0 0 0 0 0 0 0 0

1/40 1 0 0 0 0 0 0 0 0 0 ,

AsE(7,4): A (7, 4) perfect single error -correcting code to protect the
four most significant positions.

= 7:

H=

= 15:

1 1 1 0

1 1 0 1 1 3 a = 1 1 = 4

1 0 1 1

1 1 0 0 0 0 0 0 0 0 0

H= 1 0 1 0 0 0 0 0 0 0 0 /3 a = 1 1= 12

0 1 1 0 0 0 0 0 0 0 0 ,

AsE(15,11): A (15, 11) perfect single error -correcting code.
= 15:

1 1 1 1 1 1 1 0 0 0 0

1 1 11000111()H= 14 a = 1 1 = 11
1 1 0 0 1 1 0 1 1 0 1

10101011011
: A (15, 11) perfect single error -correcting code in a sig-

nificant -bit packed code.

= 7:

H

1

1

1

,1

a= 11 1=7 p = 0.36 R= 0.950

1 1 1 1 1 1 0 0 0 0

06
10

g

1
0 g

10
g

On On
06

OA
g

10
g

1
0 g

1
0 g

0
06

1 0 0 1 1 0 1 1 0 1

0 1 0 1 0 1 1 0 1 1
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t = 15:

1 1 1 1 1 1 1 0 0 0 0

H = lA 1
014 .114

1
014

O O O 1
014 014 014 014

1A 1A On
014 t/14 U14 U14

7.

1 4

1 1 0 0 1 1 0 1 1 0 1

1 0 1 0 1 0 1 1 0 1 1

a = 1 1 1 = 15 p = 0.36 R = 0.976

ASEI01.26) : A (31, 26) perfect single error -correcting code in a signifi-
cant -bit packed code.

= 7:

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 06 1 06 1 06 1 06 0 06 0 06 0 06 0 06 1 06 1 06 1 00 1 06 0 06 0 08

1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 0 0 0 0

0 Oo 1 06 1 06 1 06 1 06 0 06 0 00 0 06 1 06 1 00 1 06 0 06 I,

0 1 1 0 0 1 1 0 1 1 0 1

1 1 0 1 0 1 0 1 1 0 1 1

a = 26 1 = 7 p = 0.19 R = 0.973

t = 15:

1 1 1 1 1 1 1

1 1 1 1 1 1 1

H = 1 0'4 1 014 1 0,4 1 014 0 014 0 0110 014

1 1 0 0 1 1 0

1 0 1 0 1 0 1
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1 1 1 1 1 1 1 1 0 0

1 0 0 0 0 0 0 0 1 1

0 014 1 014 1 014 1 014 1 014 0 014 0 014 0 014 1 014 1014

0 1 1 0 0 1 1 0 1 1

0 1 0 1 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0

1 014 1 014 0 014 0 014 0 014 1 014 1 014 1 014 0 014 15

0 0 1 1 0 1 1 0 1

1 0 1 0 1 1 0 1 1

a = 26 l= 15 p = 0.19 R= 0.987

ASEgi .26) : A (31, 26) perfect single error -correcting code in a significant -
bit packed code.

= 7:

11 11 11 11 11 11

11 11 11 11 00 00

H= 11 0, 11 0, 00 05 00 05 11 05 11 0,

11 00 11 00 11 00

10 10 10 10 10 10

11 10 00 00 00 00 00

00 01 11 11 11 00 00

00 05 01 05 11 05 10 05 00 05 11 05 10 05 /5

11 01 10 01 10 11 01

10 11 01 01 01 10 11

a= 13 1 = 7 p = 0.38 R = 0.948



= 15:
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_11 11 11 11 11 11

11 11 11 11 00 00

H = 11 013 11 013 00 013 00 013 11 013 11

11 00 11 00 11 00

10 10 10 10 10 10

11 10 00 00 00 00 00

00 01 11 11 11 00 00

TT

00 013 01 013 11 013 10 013 00 013 11 013 10 013 /3

11 01 10 01 10 11 01

10 11 01 01 01 10 11

= 13 l= 15 p = 0.38 R = 0.975
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The Chirp z -Transform Algorithm
and Its Application

§. By LAWRENCE R. RABINER, RONALD W. SCHAFER,
and CHARLES M. RADER*

(Manuscript received November 21, 1968)

We discuss a computational algorithm for numerically evaluating the z-
transf orm of a sequence of N samples. This algorithm has been named the
chirp z -transform algorithm. Using this algorithm one can efficiently
evaluate the z -transform at M points in the z -plane which lie on circular
or spiral contours beginning at any arbitrary point in the z -plane. The
angular spacing of the points is an arbitrary constant; M and N are
arbitrary integers.

The algorithm is based on the fact that the values of the z -transform on a
circular or spiral contour can be expressed as a discrete convolution. Thus
one can use well-known high-speed convolution techniques to evaluate the
transform efficiently. For M and N moderately large, the computation
time is roughly proportional to (N M) log2 (N M) as opposed to
being proportional to N  M for direct evaluation of the z -transform at M
points.

Applications discussed include: enhancement of poles in spectral analysis,
high resolution narrow -band frequency analysis, interpolation of band -
limited waveforms, and the conversion of a base 2 fast Fourier transform
program into an arbitrary radix fast Fourier transform program.

I. INTRODUCTION

In dealing with sampled data the z -transform plays the role which
is played by the Laplace transform in continuous time systems. One
example of its application is spectrum analysis. The computation of
sampled z -transforms, which has been greatly facilitated by the fast
Fourier transform algorithm, is further facilitated by the "chirp
z -transform" algorithm described in this paper.1.2

* Mr. Rader is with Lincoln Laboratory, Massachusetts Institute of Tech-
nology, Lexington, Massachusetts. Lincoln Laboratory is operated with support
from the U. S. Air Force.
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The z -transform of a sequence of numbers x is defined as

X(z) = E xnz-n, (1)

a function of the complex variable z. In general both x and X(z)
could be complex. It is assumed that the sum on the right side of equa-
tion (1) converges for at least some values of z. We restrict ourselves
to the z -transform of sequences with only a finite number N of non-
zero points. Therefore, we can rewrite equation (1) without loss of
generality as

N-1
X(Z) = E xnz-ft (2)

where the sum in equation (2) converges for all z except z = 0.
Equations (1) and (2) are similar to the defining expressions for

the Laplace transform of a train of equally spaced impulses of magni-
tudes x. Let the spacing of the impulses be T and let the train of
impulses be

E :en - nT).

Then the Laplace transform is

Exne--r
which is the same as X (z) if we let

Z eET . (3)

For sampled waveforms the relation between the original waveform
and the train of impulses is well understood in terms of the phenomenon
of aliasing. Thus the z -transform of the sequence of samples of a time
waveform is representative of the Laplace transform of the original
waveform in a way which is well understood. The Laplace transform of a
train of impulses repeats its values taken in a horizontal strip of the
s -plane of width 27r/ T in every other strip parallel to it. The z -transform
maps each such strip into the entire z -plane or, conversely, the entire
z -plane corresponds to any horizontal strip of the s -plane, for example,
the region -00 < o < co , / T < w < ir/T, where s = a + jcu.

In the same correspondence, the jw axis of the s -plane, along which
we generally equate the Laplace transform with the Fourier transform,
is the unit circle in the z -plane; the origin of the s -plane corresponds to
z = 1. The interior of the z -plane unit circle corresponds to the left
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half of the s -plane; the exterior corresponds to the right half plane.
Straight lines in the s -plane correspond to circles or spirals in the z -plane.
Figure 1 shows the correspondence of a contour in the s -plane to a
contour in the z -plane. To evaluate the Laplace transform of the im-
pulse train along the linear contour is to evaluate the z -transform of
the sequence along the spiral contour.

Values of the z -transform are usually computed along the path
corresponding to the jce axis, namely the unit circle. This gives the
discrete equivalent of the Fourier transform and has many applications
including the estimation of spectra, filtering, interpolation, and corre-
lation. The applications of computing z -transforms off the unit circle
are fewer, but one is presented in this paper, namely the enhancement of
spectral resonances in systems for which one has some foreknowledge
of the locations of poles and zeros.

Just as we can only compute equation (2) for a finite set of samples,
so we can only compute equation (2) at a finite number of points,
say zk

N-1

X k = X(zk)n= E xnzk (4)

The special case which has received the most attention
points equally spaced around the unit circle,

zk = exp -2r k) , k = 0, 1, , N - 1 (5)

s -PLANE

Fig. 1- The correspondence of a z -plane contour to an s -plane contour through
the relation z = e'r
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for which

N-1

X k = E xn exp (-j -1-r2 nk) , k = 0, 1, , N - 1. (6)
.-0

Equation (6) is called the discrete Fourier transform. The reader may
easily verify that, in equation (5), other values of k merely repeat
the same N values of zk, which are the Nth roots of unity. The discrete
Fourier transform has assumed considerable importance, partly be-
cause of its nice properties but mainly because since 1965 it has be-
come widely known that the computation of equation (6) can be
achieved, not in the N2 complex multiplications and additions called
for by direct application of equation (6) , but in something of the
order of N log2 N operations if N is a power of two, or N mi opera-

;

tions if the integers mi are the prime factors of N. Any algorithm
which accomplishes this is called a fast Fourier transform. Much of
the importance of the fast Fourier transform is that the discrete
Fourier transform may be used as a stepping stone to computing
lagged products such as convolutions, autocorrelations, and cross cor-
relations more rapidly than before.3,4 The discrete Fourier transform
has some limitations which can be eliminated using the chirp z -trans-
form algorithm which we describe. We also investigate the computa-
tion of the z -transform on a more general contour, of the form

z, = k= 0, 1, , M - 1 (7a)

where M is an arbitrary integer and both A and W are arbitrary
complex numbers of the form

A = A, exp (j21r0.) (7b)

and

W = We, exp (i2irro) (7 c)

(See Fig. 2.) The case A = 1, M = N, and W = exp (-j2r1N) corre-
sponds to the discrete Fourier transform. The general z -plane contour
begins with the point z = A and, depending on the value of W, spirals
in or out with respect to the origin. If W, = 1, the contour is an arc of a
circle. The angular spacing of the samples is 2rgot, . The equivalent
s -plane contour begins with the point

S, = cr. + iC0 = In A (8)
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Z - PLANE

2700Ato=

1253

s- PLANE
s=+tnz

(M-i)tia)

2780
coo= T

a0=-T AnA,

Fig. 2-An illustration of the independent parameters of the chirp z -transform
algorithm. The upper figure shows how the z -transform is evaluated on a spiral
contour starting at the point z = A. The lower figure shows the corresponding
straight line contour and independent parameters in the s -plane.

and the general point on the s -plane contour is

-sk = s k(Acr
1j Acv) = - (ln A - k In W) ,

k = 0, 1, , M - 1. (9)

Since A and W are arbitrary complex numbers we see that the points
sk lie on an arbitrary straight line segment of arbitrary length and
sampling density. Clearly the contour indicated in equation (7a) is
not the most general contour, but it is considerably more general
than that for which the discrete Fourier transform applies. In Fig. 2,
an example of this more general contour is shown in both the z -plane
and the s -plane.

To compute the z -transform along this more general contour would
seem to require NM multiplications and additions since the special
symmetries of exp (j27rk / N) which are exploited in the derivation of
the fast Fourier transform are absent in the more general case. How-
ever, we shall see that by using the sequence Try 2 in various roles
we can apply the fast Fourier transform to the computation of the
z -transform along the contour of equation (7a). Since for W. = 1, the
sequence W"2/2 is a complex sinusoid of linearly increasing frequency,
and since a similar waveform used in some radar systems has the
picturesque name "chirp", we call the algorithm we are about to present
the chirp z -transform. Since this transform permits computing the
z -transform on a more general contour than the fast Fourier transform
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permits, it is more flexible than the fast Fourier transform, although it
is also considerably slower. The additional freedoms offered by the
chirp z -transform include:

(i) the number of time samples does not have to equal the number
of samples of the z -transform.

(ii) Neither M nor N need be a composite integer.
(iii) The angular spacing of the zk is arbitrary.
(iv) The contour need not be a circle but can spiral in or out with

respect to the origin. In addition, the point zo is arbitrary, but this is
also the case with the fast Fourier transform if the samples x are multi-
plied by zo-n before transforming.

II. DERIVATION OF THE CHIRP Z -TRANSFORM

Along the contour of equation (7a), equation (4) becomes
N-1

X k = E xA-nWnk , k = 0, 1, , M - 1 (10)

which, at first appearance, seems to require NM complex multiplica-
tions and additions, as we have already observed. But, let us use
Bluestein's ingenious substitutions

n2 k2 (k - n)2nk - (11)
2

for the exponent of W in equation (10). This produces an apparently
more unwieldly expression

N-1
Exil-nw(n1/2)w(k3/2) w- (k -n) I/2

n-0
Xk =

k = 0 , 1, 1 (12)

but in fact equation (12) can be thought of as a three step process
consisting of : (i) forming a new sequence yn by weighting the x ac-
cording to the equation

y = xA.-nWft1/2, n = 0, 1, , N - 1, (13)

(ii) convolving yn with the sequence vn defined as

vi, = W -n1/2 (14)

to give a sequence gk
N-1

gk = E yvk_n , k = 0, 1, , 111 - 1, (15)
n 0
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and (iii) multiplying g, by to give Xk

Xk = gkWk1/21 k = 0, 1, , M - 1. (16)

The three step process is illustrated in Fig. 3. Steps i and iii require
N and M multiplications respectively; step ii is convolution which may
be computed by the high speed technique disclosed by Stockham, based
on the use of the fast Fourier transform.3 Step ii is the major part of
the computational effort and requires a time roughly proportional to
(N + AT) log (N + M)

Bluestein used the substitution of equation (11) to convert a dis-
crete Fourier transform to a convolution as in Fig. 3. The linear sys-
tem to which the convolution is equivalent can be called a chirp filter
which is, in fact, also sometimes used to resolve a spectrum. Blue-
stein showed that for N a perfect square, the chirp filter could be
synthesized recursively with N1/2 multipliers and the computation of a
discrete Fourier transform could then be proportional to N3/2 (see

Ref. 5).
The flexibility and speed of the chirp z -transform algorithm are

related to the flexibility and speed of the method of high-speed con-
volution using the fast Fourier transform. Recall that the product of
the discrete Fourier transforms of two sequences is the discrete Fourier
transform of the circular convolution of the two sequences; therefore,
a circular convolution is computable as two discrete Fourier trans-
forms, the multiplication of two arrays of complex numbers, and an
inverse discrete Fourier transform, which can also be computed by
the fast Fourier transform. Ordinary convolutions can be computed
as circular convolutions by appending zeroes to the end of one or
both sequences so that the correct numerical answers for the ordinary
convolution can result from a circular convolution.

We now summarize the details of the chirp z -transform algorithm
on the assumption that an already existing fast Fourier transform

Sn

n.o,i,...,N-1
n

Wn2/2

HIGH SPEED
CONVOLUTION

Yn ®W-"12

Xk

W k2/2

k = 0,1,2,... M -1

Fig. 3 - An illustration of the steps involved in computing values of the
z -transform using the chirp z -transform algorithm.
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program (or special purpose machine) is available to compute discrete
and inverse discrete Fourier transforms.

We begin with a waveform in the form of N samples xn and we
seek M samples of Xk where A and W have also been chosen:

(i) We choose L, the smallest integer greater than or equal to N +
M - 1 which is also compatible with our high speed fast Fourier
transform program. For most users this will mean L is a power of two.
Notice that while many fast Fourier transform programs will work
for arbitrary L, they are not equally efficient for all L. At the very
least, L should be highly composite.

(ii) We form an L point sequence y. from xn by the equation

=
A.-"W""xn n = 0, 1, 2, , N - 1

0 n = N, N 1, , L - 1
(iii) We compute the L point discrete Fourier transform of y,ti by

the fast Fourier transform, calling it Yr, r = 0, 1, . . , L - 1.
(iv) We define an L point sequence v by the relation

-w-n./2 0 n llf - 1
v. = IT17-(L-n)2/2 n <L. (18)

arbitrary other n, if any

If L is exactly equal to M + N - 1, the region in which v,z is arbitrary
will not exist. If the region does exist an obvious possibility is to in-
crease M, the desired number of points of the z -transform we com-
pute, until the region does not exist.

Notice that v. could be cut into two with a cut between n = M - 1
and n=L-N+1; if the two pieces were abutted differently, the result-
ing sequence would be a slice out of the indefinite length sequence
W -n212. This is illustrated in Fig. 4. The sequence v. is defined the way
it is in order to force the circular convolution to give us the desired
numerical results of an ordinary convolution.

(v) We compute the discrete Fourier transform of v. and call it
r = 0, 1, . . . , L - 1.

(vi) We multiply Vr and Yr point by point, giving Gr

(17)

G, = VrY,, r = 0, 1, , L - 1
(vii) We compute the L point inverse discrete Fourier transform

gk, of Gr.



Xn

cir"°'o-c--0-c)

N-1

Yn

N-1

Yr

-n2/2

Vn

rc- ARBITRARY

L -1

(a)

(b)

r

(C)

m-i
Vr

L -N +1 L-1 n

L-1 r
Gr

9k

.... ......
f ---NOT USED

M-1

Xk

m-i

(f)

(L)

k

Fig. 4 - Schematic representation of the various sequences involved in the
chirp z -transform algorithm: (a) input sequence x with N values. (b) weighted
input sequence = 12x . (c) discrete Fourier transform of N. (d) values of
the indefinite sequence W-.2 /2. (e) sequence vn formed appropriately from segments
of W-32 12. (f) discrete Fourier transform of v.. (g) product Gf = Y,.. V. . (h) inverse
discrete Fourier transform of G. (i) desired M values of the z -transform.
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(viii) We multiply gk by Wk"/2 to give us the desired Xk :
Xk = Wk2/2g, , k = 0, 1, 2, , M - 1.

The gk for k z M are discarded.

Figure 4 represents typical waveforms (magnitudes shown, phase
omitted) involved in each step of the process.

III. FINE POINTS OF THE COMPUTATION

3.1 Operation Count and Timing Considerations
An operation count can be made, roughly, from the eight steps just

presented:
(1) We assume that step i, that is, choosing L, is a negligible opera-

tion.
(it) Forming y from x requires N complex multiplications, not

counting the generation of the constants A-nTr2/2. The constants may
be prestored, computed as needed, or generated recursively as needed.
The recursive computation would require two complex multiplications
per point.

(iii) An L point discrete Fourier transform requires a time kFFTL
log2L for L a power of two, and a very simple fast Fourier transform
program. More complicated (but faster) programs have more com-
plicated computing time formulas.

(iv), (v) The value of v is computed for either M or N points, -which-
ever is greater. The symmetry in W-"1/2 permits the other values of v.
to be obtained without computation. Again, v can be computed re-
cursively. The fast Fourier transform takes the same time as that in
step iii. If the same contour is used for many sets of data, V,. need only
be computed once, and stored.

(vi) This step requires L complex multiplications.
(vii) This is another fast Fourier transform and requires the same

time as step
(viii) This step requires M complex multiplications.
As the number of samples of xn, or Xk grows large, the computation

time for the chirp z -transform grows asymptotically as something
proportional to L log2L. This is the same sort of asymptotic depend-
ence of the fast Fourier transform, but the constant of proportionality
is bigger for the chirp z -transform because two or three fast Fourier
transforms are required instead of one, and because L is greater than
N or M. Still, the chirp z -transform is faster than the direct corn-
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putation of equation (10) even for relatively modest values of M
and N of the order of 50.

3.2 Reduction in Storage

The chirp z -transform can be put into a more useful form for com-
putation by redefining the substitution of equation (11) to read

nk - - N.)2 k2 - (k -n NO2 ± 2N °k
2

Equation (12) can now be rewritten as
N-1

X wk./2wNek xnA_nw(n_No,./2w-,k_n+N.,./2.
nO

The form of the new equation is similar to equation (12) in that the
input data x are preweighted by a complex sequence (A.-"W`n-N°)"),
convolved with a second sequence (W (n-N*)2/2), and postweighted by a
third sequence (Wk "WN°k) to compute the output sequence Xk

However, there are differences in the detailed procedures for realizing
the chirp z -transform. The input data x can be thought of as having
been shifted by N. samples to the left. For example, x° is weighted by
le02/2 instead of W°. The region over which W-n312 must be formed, in
order to obtain correct results from the convolution, is

By choosing N. = (N - M)/2 it can be seen that the limits over which
W -n'/2 is evaluated are symmetric; that is, W-112/2 is a symmetric func-
tion in both its real and imaginary parts. (Therefore, the transform of
W -n'/2 is also symmetric in both its real and imaginary parts.) It can
be shown that by using this special value of N. only (L/2 1) points
of W-712/2 need be calculated and stored, and these (L/2 + 1) complex
points can be transformed using an L/2 point transform*. Hence the
total storage required for the transform of W -n" is L + 2 locations.

The only other modifications to the detailed procedures for evaluating
the chirp z -transform presented in Section II are:

(i) following the L point inverse discrete Fourier transform of step
vii, the data of array gk must be rotated to the left by N. locations,

(ii) the weighting factor of the gk is Wk"WN°k rather than Wk".

* The technique for transforming two symmetric L point sequences using one
L/2 point fast fourier transform was demonstrated by J. Cooley at the fast
Fourier transform workshop, Arden House, Harriman, New York, October 1968.
The appendix summarizes this technique.
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The additional factor W" represents a data shift of N. samples to
the right, thus compensating for the initial shift and keeping the
effective positions of the data invariant to the value of N. used.

Now we can estimate the storage required to perform the chirp z -
transform. Assuming that the entire process is to take place in core,
storage is required for V, which takes L + 2 locations, for y, , which
takes 2L locations, and perhaps for some other quantities which we wish
to save, such as the input or values of Tr" or A'Wn".

3.3 Additional Considerations

Since the chirp z -transform permits M N, it is possible that occa-
sions will arise where M >> N or N >> M. In these cases, if the smaller
number is small enough, the direct method of equation (10) is called
for. However, if even the smaller number is large it may be appropriate
to use the methods of sectioning described by Stockham.3 Either the
lap -save or lap -add methods may be used. Sectioning may also be used
when problems, too big to be handled in core memory, arise. We have not
actually encountered any of these problems and have not programmed
the chirp z -transform with provision for sectioning.

Since the contour for the chirp z -transform is a straight line seg-
ment in the s -plane, it is apparent that repeated application of the
chirp z -transform can compute the z -transform along a contour which
is piecewise spiral in the z -plane or piecewise linear in the s -plane.

Let us briefly consider the chirp z -transform algorithm for the case
of zk all on the unit circle. This means that the z -transform is like a
Fourier transform. Unlike the discrete Fourier transform, which by
definition gives N points of transform for N points of data, the chirp
z -transform does not require M = N. Furthermore the zk need not
stretch over the entire unit circle but can be equally spaced along an
arc. Let us assume, however, that we are really interested in comput-
ing the N point discrete Fourier transform of N data points. Still the
chirp z -transform permits us to choose any value of N, highly com-
posite, somewhat composite, or even prime, without strongly affecting
the computation time. An important application of the chirp z -trans-
form may be computing discrete Fourier transforms when N is not a
power of two and when the program or special purpose device avail-
able for computing discrete Fourier transforms by fast Fourier trans-
form is limited to when N is a power of two.

There is also no reason why the chirp z -transform cannot be ex-
tended to the case of transforms in two or more dimensions with simi-
lar considerations. The two dimensional discrete Fourier transform
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becomes a two dimensional convolution which can be computed by
fast Fourier transform techniques.

Caution: For the ordinary fast Fourier transform the starting point
of the contour is still arbitrary; merely multiply the waveform x by
A-'& before using the fast Fourier transform and the first point on the
contour is effectively moved from z = 1 to z = A. However, the con-
tour is still restricted to a circle concentric with the origin. The angular
spacing of zk for the fast Fourier transform can also be controlled to
some extent by appending zeros to the end of xn before computing the
discrete Fourier transform (to decrease the angular spacing of the
zk) or by choosing only P of the N points xn and adding together all
the x,, for which the n are congruent modulo P; that is, wrapping the
waveform around a cylinder and adding together the pieces which
overlap (to increase the angular spacing).

IV. APPLICATIONS OF THE ALGORITHM

Because of its flexibility, the chirp z -transform algorithm discussed
in the Section III has many potential applications.

4.1 Enhancement of Poles
One advantage of the chirp z -transform algorithm over the fast

Fourier transform is its ability to evaluate the z -transform at points
both inside and outside the unit circle. This is important in the investi-
gation of systems whose transfer functions can be represented as ratios
of polynomials in z; that is, in finding poles and zeros of a linear sys-
tem. By evaluating the transform off the unit circle, one can make the
contour pass closer to the poles and zeros of the system, thus effectively
reducing the bandwidths and sharpening the transfer function.

For example, a five -pole system was simulated at a 10 kHz sam-
pling frequency. The poles were located at center frequencies of 270,
2290, 3010, 3500 and 4500 Hz with bandwidths of 30, 50, 60, 87 and
140 Hz, respectively. The z -plane pole positions are shown in Fig. 5.
(Those familiar with speech will recognize these numbers as resonance
positions appropriate for the vowel i in the word beet.) The input to
the system was a periodic impulse train of period 100 samples; that is,
100 pulses per second. Impulse invariant techniques were used to
simulate the system.° The z -transform of one period of steady state
data (100 samples) was evaluated on two spirals outside the unit
circle, one on the unit circle, and two spirals inside the unit circle.
Figure 6 shows the five contours as they would appear in the s -plane
and the s -plane pole positions. The contours are seen to be equi-
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Fig. 5 -Representation of the z -plane locations of the poles of the linear sys-
tem simulated in the text.

angularly spaced. The five sets of magnitude curves are shown in Fig.
7. The transform was evaluated at 50 equally spaced points from 0
to 4900 Hz, corresponding to ro = - 1/100. The sharpening of the
magnitude response in the region of the poles is quite pronounced.
Figure 6 indicates that contour 5 should be near optimum since it
intersects three of the poles.

This example is a somewhat idealized case in that spectral samples
were taken every 100 Hz; that is, at the harmonics of the funda-
mental frequency. Figure 8 shows the case for spectral data taken
every 25 Hz on contour 5 of Fig. 6, along with the case where the
spectral resolution is the same as shown in Fig. 7. This figure places
in evidence the true nature of the z -transform of a finite number of
samples. It is clear from equation (2) that X(z) has no poles any-
where in the z -plane except at z = 0. There are instead N-1 zeros
which manifest themselves in the ripples seen in the upper curve of
Fig. 8. In many cases the poles of the original system which generated
the samples are still in evidence because the zeros tend to be arrayed
at approximately equal angular increments except at the locations of
the original poles. Hence a pole usually manifests itself by an absence
of zeros in the vicinity of that pole in the z -plane. Zeros of transmis-
sion are often masked by these effects when only a finite number of
samples are transformed. Examples of this effect are given after equa-
tion (23) .

It is of interest to examine the ability of the chirp z -transform
algorithm to determine the bandwidth of a pole as well as its center
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frequency. To investigate this point, synthetic samples were generated
with the bandwidth of the lowest pole (B1) variable from 10 to 320
Hz by factors of 2; all other bandwidths and center frequencies were
held at values used in the previous example. Again a fixed 100 pulse
per second source excited each of the systems. Figure 9 illustrates the
six sets of poles and three contours used in the investigation. Contour
3 extends into the right half -plane (spiral outside the unit circle) and
is only close to the lowest pole. Contour 2 corresponds to the unit circle
in the z -plane (that is, the discrete Fourier transform). Contour 1 is
an appropriate left -half plane contour (spiral inside the unit circle)
used for investigating this system. The resulting set of 18 magnitude
curves (six different sets of poles and three contours) are shown in
Fig. 10. The rows of Fig. 10 show magnitude curves with a fixed band-
width and variable contour, whereas the columns show curves on the
same contour with variable bandwidths. There are 801 points plotted
in each curve in the range 0 to 5,000 Hz.

Looking down any column it is seen that as B1 increases, the level
of the first resonance decreases steadily. The variation in fine spectral
detail resulting from the distribution of zeros in the neighborhood of
the poles of the original system is seen clearly in column 1. For ex -
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ample, the fifth resonance at 4,500 Hz is difficult to find in the upper
plots and almost missing in the lower plots, because of the presence of
a zero at the pole position. Furthermore, the frequency at which the
magnitude is minimum, that is, the closest zero to contour 1 shifts
from 2,500 to 2,700 to 800 to 1,100 Hz as bandwidth increases.

The plots in columns 2 and 3 show little or no variation from about
2,000 to 5,000 Hz where the appropriate contours are generally far
away from the zeros of the distributions. The resonance at 4,500 Hz
is always easy to locate on these plots, thus indicating the desirability
of both detailed close-up examination of the transform (as on con-
tour 1) and less detailed, further away looks at the magnitude curve
(as on contours 2 and 3). The magnitude curves in the regions 0 to
2,000 Hz are still fairly sensitive to the exact zero distribution for
contour 2, and slightly sensitive for contour 3. It would appear from
Fig. 10 that there are cases when bandwidth can be determined either
from the width or the magnitude of the resonance. Further investiga-
tion is necessary before quantitative techniques for determining band-
widths are available.

The choice of the optimum contours is highly dependent on the
locations of the poles of the original system. In general there is no
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single contour on which all the poles are located since these contours
are essentially lines of constant Q = (center frequency) / (bandwidth).
Hence the choice of contour is highly dependent on which of the sys-
tem poles is of most interest in the particular problem. However, some
interesting observations can be made from studying magnitude curves
for systems whose poles are constant Q poles. Such a system was
simulated by keeping the pole center frequencies at the values used
previously and setting the Q of each of the poles to 20. A 100 pulse
per second impulse train was again used to excite the system and one
period of steady state data was analyzed along contours 1 to 7 shown
in Fig. 11. The pole positions of the system are shown in this figure
and are seen to coincide with contour 6 exactly. The magnitude curves
for these seven contours are shown in Fig. 12. These are high resolution
spectra containing 801 points from 0 to 5,000 Hz. Notice that both
magnitude curves 5 and 6 accentuate the poles equally except in the
region of the fifth pole where curve 5 appears slightly better than
curve 6. The fact that this occurs is not surprising in view of the fact
that the pole is really manifested by an absence of a zero in an array
of zeros of approximately the same magnitude and angular spacing.

Another anomaly which can be attributed to the way in which the

5000

4000

3000

2000
cc
U-

1000

0
-300 -250 -200 -150 -100

FREQUENCY IN Hz
-50 0

Fig. 11- The s -plane locations of constant Q poles and contours on which the
z -transform was evaluated.
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Fig. 12 - Magnitude curves for contours of Fig. 11 (constant Q poles).

zeros are distributed is evidenced by comparing curves 5 and 7. Based
on the relative positions of the two contours with respect to the poles
we would expect the magnitude curves for these contours to be identi-
cal, but the comparison shows that this is not the case in actual com-
putation. This is the result of the fact that the zero distribution is not
exactly symmetric so that contours which pass very close to the zeros
may look considerably different from one another.

A final point of interest in Fig. 12 is the linear component in the
last three curves which dominates at high frequencies. This effect is
also shown in Fig. 14. Figure 13 shows the five contours used in ob-
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taining the log magnitude plots in Fig. 14. It is clear that when the
contour passes inside the original pole locations (and therefore inside
the array of zeros in the z -plane), the log magnitude function exhibits
a definite linear component. This effect is easily explained when X(z)
is written in the form

N-1

X(z) = ( 1 - a, 1z). (19)
r = 1

where the ar's are the zeros of X(z). If we evaluate equation (19) at
z = Wok exp (-janpk) we obtain for the magnitude

N-1

IXkl= k exp (-jariook)] I. (20)
r-1

For plotting in dB we define

20 log,0 I Xk I = 20 log,,, I D I + 20(N - 1)k logo W.
N-1

E 20 log10I [1 --a,71W;k exp (-j2riook)] I . (21)
r

In the examples we have shown, almost all of the zeros ar have mag-
nitudes slightly less than 1. Thus for contours inside these zeros (cor-

-400 -300 -200
FREQUENCY IN HZ

-100 0

Fig. 13- Contours and pole locations used to study the effect of passing in-
side the pole locations.
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curves for a large linear
component resulting from the N - 1 poles of X(z) at z = 0.

responding to contours 2 through 5 in Fig. 13), Wo is greater than 1.
Thus each term in the sum on the right side of equation (21) tends to
decrease as k gets larger. In contrast, the second term on the right
side of equation (21) represents a linear component with slope equal
to 20 (N -1) logioWo

In Fig. 14, the mth curve corresponds to a value of Wo = e4,rm/10,000,
m = 1, 2, 3, 4, 5. The value of cOo is - 1/100, N is 100, and the sam-
pling rate is 10 kHz. Thus the frequency going from 0 to 5 kHz cor-
responds to k going from 0 to 50. For example, in the fifth curve W0 =
e20' 110,000 and the slope should be

20(99)20r logy e
20(N - 1) logo Wo = - 5.4. (22)

10,000

Thus the total dB change in going from 0 to 5 kHz should be on the
order of 50(5.4) = 270 dB. In Fig. 15a we show this case again. In
Fig. 15b we show the result of evaluating

0

Ezi.,,,_,z-- = z(N-1)xw, (23)
n.- (N-.1)
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using the same value of Wo and coo. Notice that this should remove the
second term in equation (21) leaving the other terms unaffected. This
observation is substantiated by Fig. 15b since the value at 5 kHz is
very nearly 270 dB less than in Fig. 15a. Notice also that some of the
resonances are still in evidence although not as clearly defined because
the contour is passed relatively far inside the zeros of X (z) .

Another interesting question was investigated using this technique.
As shown above, when the response of a linear system is truncated by
repetitively pulsing the system and transforming a finite number of
samples, the z -transform has only zeros except for poles at z = 0.
However, the poles of the original system function can still be located
in magnitude response curves by the absence of zeros in the ap-
propriate regions. The question arises about what happens when the
system function contains zeros. Suppose h (nT) is the impulse response
of a linear system with both poles and zeros in its z -transform H (z) .
Since H (z) has poles, h (nT) will be an infinite sequence. There is
clearly no reason to expect that the transform of only N of these
samples will have zeros at the same location as the zeros of H (z) .
However, the system zeros can be expected to have an effect on the
distribution of zeros of the truncated z -transform.

To illustrate this point, the system response used in the above ex-
amples was modified by passing the output waveform through a sys-
tem whose transfer function consisted of a complex conjugate zero
pair. A periodic 100 pulse per second source was again used to excite
the system and one period of steady state data was analyzed. The
system pole -zero pattern and the contours of analysis are shown in

360

280
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40
80

60
(b)

40 -
20

0 1000 2000 3000 4000 5000
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Fig. 15- Magnitude curves obtained by evaluation of the z -transform on
contour 5 of Fig. 13: (a) with the effect of the N - 1 poles at z = 0; (b) with
the N - 1 poles removed by shifting the sequence x. by N positions to the
left.
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Fig. 16. In one simulation a zero was placed at point A (500 Hz, 12.5
Hz), and in a second simulation the zero was at point B, (2,500 Hz,
60 Hz). The analysis was made at 801 points from 0 to 5,000 Hz along
these contours. The resulting magnitude curves, along with a set of low
resolution curves where the magnitude was computed every 100 Hz
from 0 to 5,000 Hz, are shown in Figs. 17 and 18. The data of Fig. 17
are for the case where the transmission zero was at 500 Hz whereas
for Fig. 18 the zero was at 2,500 Hz.

The high resolution data of Fig. 17 show no strong indication of
the transmission zero; whereas the transmission poles are still very
much in evidence. The low resolution data (evaluated at harmonics
of the source) does indicate the presence of a zero along contour 1,
but along the other contours the case is not so clear. The most unusual
observation is that along contour 3, the contour closest to both the
transmission zero and the poles, there is little or no indication of the
zero; whereas the poles are still strongly in evidence. Along contour
4, at the high frequency end, there is noise in the magnitude spectrum.
The source of this noise is discussed in Section V.

The indications from Fig. 17 are that a transmission zero can be
more easily located on contours which are far from the zero than on

N

z 3000
>-

z
w

tvC/ 2000

LL
cr

-150 -120 -90 -60
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-30 0

Fig. 16 - The s -plane locations of poles and zeros (at A and B) and contours
used in studying the effect of zeroes on the magnitude curves.
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Fig. 17 - Magnitude curves for a zero at 500 Hz (position A in Fig. 16).

contours which traverse it. Furthermore it is much easier to locate on
a low resolution spectrum than on a high resolution spectrum. Hence
zeros, unlike poles, are not generally easy to locate from spectra.

The zero of Fig. 17 was at 500 Hz and in a region where the high
resolution spectra displayed a large amount of ripple from the trunca-
tion zeros of the data. Figure 18 shows similar magnitude curves for
the zero at 2,500 Hz, a region with much less ripple in the spectrum.
The magnitude response curves show effects entirely similar to those
of Fig. 17. The zero is most easily locatable for contour 1, the stand-
ard fast Fourier transform. In contour 3, which again passes through
the zero, there is no indication of the zero. Also the low resolution data
tends to show the zero better than the high resolution data. One im-
portant implication of these results is that one could not use these
techniques to accurately find the position of complex transmission
zeros. In many cases it would be difficult to differentiate between dips
in the spectrum between poles and dips caused by complex zeros, thus
indicating the difficulty of locating even the center frequency of a
zero.

The chirp z -transform algorithm has been applied to the spectral
analysis of speech in order to aid in automatic detection of the time
varying resonances (poles or formants) of speech. Voiced speech can
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Fig. 18 - Magnitude curves for a zero at 2,500 Hz (position B in Fig. 16).

be modelled as the convolution of a source waveform with a vocal
tract impulse response. The vocal tract impulse response is essentially
a sum of damped exponentials, each exponential corresponding to a
mode or pole of the vocal tract transfer function. It is of interest to
speech researchers to detect these time varying resonances. The chirp
z -transform algorithm has been applied to individual periods of voiced
speech with a high degree of success. Figure 19 shows the result of ap-
plying the chirp z -transform algorithm along the two contours shown
at the upper left of the figure, to a period of voiced speech. The upper
contour corresponds to the standard fast Fourier transform contour;
the lower to a suitably chosen spiral contour. The magnitude function
along the upper contour indicates a single wide peak in the region
2,000 to 2,500 Hz, whereas the magnitude along the lower contour
shows two isolated peaks in this region corresponding to the physical
knowledge that there actually are supposed to be two peaks in this
region. Variations on the chirp z -transform algorithm for spectral
analyses of speech have been studied and will be reported on in a
subsequent paper.?

4.2 High Resolution, Narrow Band Frequency Analysis

One very useful application of the chirp z -transform algorithm is the
ability to efficiently evaluate high resolution, narrow frequency band
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spectra. Using standard fast Fourier transform techniques, in order to
achieve a frequency resolution of < AF, with a sampling frequency of
the data of 1/T, requires N z 1.1(T  AF) points. For very small AF,
this implies very large values of N. The crucial issue is that what is
often required is high resolution for a limited range of frequencies and
low resolution for the remainder of the spectrum. An example of such a
circumstance is the design of band-pass or low-pass filters. Usually
what is desired is a microscopic look at details of the frequency response
in the pass -band and only a gross look outside the pass -band.

The chirp z -transform algorithm is extremely well suited for such
cases since it allows selection of initial frequency and frequency spac-
ing, independent of the number of time samples. Hence high resolu-
tion data over a narrow frequency range can be attained at low cost.

To illustrate these points, simple rectangular band-pass filters were
simulated by symmetrically truncating a delayed impulse response.
The impulse response used was

h(nT) = a sin [r(I - Fi)(n - 2 - m)T]
 cos br(F2 F,) (n- 2 - 0 < n 2m (24)

40
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Fig. 19- Magnitude curves from evaluation of the z -transform of one period
of natural speech. The contour for the upper plot is the unit circle in the z -plane
while the contour for the lower curve is a spiral inside the unit circle.
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where

2m = number of terms in the truncated impulse response
1/T = sampling frequency = 10,000 Hz
F1 = lower cutoff frequency in Hz
F2 = upper cutoff frequency in Hz.

Values for m of 100 and 500 were used with F1 = 900 Hz and F2 =
1,100 Hz. Figure 20 shows plots of equation (24) for these two cases. A
standard 1,600 point fast Fourier transform was calculated and the
magnitude response for in = 100 is shown in the upper half of Fig. 21.
In order to investigate the pass -band and transition region more care-
fully the chirp z -transform algorithm was used to give a 1.25 Hz
resolution over the band from 500 to 1,500 Hz. The contour used was
identical to the contour for the fast Fourier transform. The resulting
magnitude response curve is shown in the lower half of Fig. 21. To
achieve this high a resolution would have required an 8,000 point
fast Fourier transform, instead of the 1,000 point transforms actually
used. (Similar expansions of regions of the phase curve were made for
this filter but are not shown.)

Figure 22 shows similar effects for the case m = 500. The applica-
bility of the chirp z -transform algorithm for such frequency expan-
sions is a powerful tool for close examination of small frequency
bands, as well as for debugging implementations of digital filters.
For example, one could easily check if a desired filter met its design
specification of in -band ripple, transition ratio, and so on.8

One situation where the chirp z -transform algorithm may be quite
useful is when we are confronted with an extremely long sequence for
which we desire a fine grained spectrum over a narrow band of fre-
quencies. Suppose we have a sequence of P samples and desire M
spectral samples where M << P. That is, we wish to evaluate

P-1
Xk = E xn.A.-"W"k , lc = 0, 1, , M - 1. (25)

The sum in equation (25) can be broken up into r sums over N points
as follows

r-1 N-1

Xk
E k M - 1

0

(26)

where rN P. Each of the r sums in the brackets can be evaluated
using the chirp z -transform algorithm, requiring storage on the order of
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Fig. 20 - The impulse responses of simple band-pass filters.

3(N M - 1) locations. In addition we require 2M locations in which
to accumulate the M complex values of the transform. Although 2
fast Fourier transforms and 2M complex multiplications are required
for each of the r transforms, it is quite possible that a saving in total
time may result from this method as opposed to evaluation of a P
point transform using auxiliary storage such as drum, disk or tape.
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Fig. 21 - Frequency response curves for upper impulse response (200 samples)
in Fig. 20. Upper curve obtained with 1,600 point fast Fourier transform (resolu-
tion 6.25 Hz). Lower curve obtained with chirp z -transform algorithm (1.25 Hz
resolution).

4.3 Time Interpolation or Sampling Rate Changing
The flexibility of the chirp z -transform algorithm for obtaining high

resolution in frequency has been explained and illustrated in Section
4.2. A similar procedure applies to interpolation between samples of a
bandlimited time function using samples of the frequency spectrum.9
In this section, we discuss how the discrete Fourier transform can be
used to perform interpolation on a set of samples and the advantages
and disadvantages of using the chirp z -transform algorithm for this.

4.3.1 Bandlimited Interpolation Using the discrete Fourier transform
Assume that we have available N samples x(nT) , n = 0, 1, 2, . . . ,

N - 1, of a bandlimited waveform x(t). The sampling interval T is
assumed less than or equal to the Nyquist interval. The total time in-
terval spanned by these samples is therefore NT seconds. We wish to
obtain equally spaced samples of x (t) at a sampling interval T', where
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T' is less than or equal to the Nyquist interval. These samples are
denoted by x(mr) , m = 0, 1, . . . , N' - 1, where N'T' = NT. (Notice
that we are assuming N' is an integer. This assumption will be dropped
later.)

If all the samples x(nT) are available, the samples x(mT') can be
obtained from

sin 5; (mT' - nT)
x(mT') = E x(nT)

(mT' - nT)- co

(27)

Thus the interpolation can be viewed as the result of convolving the
interpolation function [sin (irt/T) ] /[ (1r/T) t] with the samples x(nT)
and then resampling with period T'. It is well known that convolution
may be done using the discrete Fourier transform, and we will show
how the resampling can also be affected by properly augmenting the
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Fig. 22 - Frequency response curves for lower impulse response (1,000 sam-
ples) of Fig. 20. Upper curve obtained with 1,600 point fast Fourier transform
(resolution 6.25 Hz). Lower curve obtained with chirp z -transform algorithm
(1.25 Hz resolution).
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transform with zeros. Because the discrete Fourier transform uses only
a finite number of samples, we shall encounter errors similar (but not
identical) to using only N terms in equation (27).

The discrete Fourier transform of the given samples is

N-1 . 2rXN(k) = E x(nT) exp (-2 knT) ,

0

k = 0,1, , N - 1. (28)

(Notice that we have changed notation in this section in order to make
explicit the number of samples and the sampling period.) We define

X = X ,v(k)H N(k), (29)

where HN(k) is the N point discrete Fourier transform of the inter-
polation function to be convolved with the samples x(nT). [Notice
that this convolution is equivalent to cyclic convolution of a periodic
impulse response h(nT) with the samples x(nT) .]

In order to change the sampling to period T', we split X,f,(k) about
k = N/2 and expand (by inserting zeros) or contract (by discarding
zeros) the transform according to the following equations

X{0 k < N'/2 N' < N
v, (k) = X,;,(k) (30a)

0 k < N/2 N' > N
= 0 k = N'/2 N' < N (30b)

= 1X1y(k) k = N/2 N' > N (30c)
= 0 N/2 < k < N' - N/2 N' > N (30d)

= -1Xfv(k - N' N) k = N' - N/2 N' < N (30e)

Xfv(k -N'N) N'/2 < k < N' N' < N
(30f)

- N/2 < k < N' N' > N
Equations (30b) , (30c), and (30e) are required only when N' and N
are even integers and equation (30d) is required only when N' > N.

The N' point inverse discrete Fourier transform of X;, (k) is defined
to be

1
N ' -1 2rx'(mT') =

iv
-AT E X; 4,(k) exp NTkinT') ,

kmo

m = 0, 1, , N' - 1. (31)
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For example, if N is even and N' > N, we can show using equations
(28), (29), and (30) that

x'(mT') =
17' k -N/2

HN(k)[Y
N'

x(n) exp -j NT knT)]

27r
 exp kmT') (32)

where m = 0, 1, , N' - 1, and the terms corresponding to k = ±N/2
are understood to be multiplied by 1/2 since N is even. By interchanging
the order of summation and using the fact that N' T' = NT, we obtain

N N-1
x'(mT') = E x(nT)h(mT' - nT)

1V n.-0

where

(33)

1

k

(2
2_,:

27rh(mT' - nT) = H v(k) exp [j NT k(mT' - nT)i (34)
---N/2

Notice that equation (33) has the desired form for interpolation [see
equation (27) ], however the values of x' (mT') are clearly not exactly
equal to the desired interpolated values x(mr). This is so because
only N samples are used and because of the form of h (mT - nT). As
an example, suppose

HN(k) =
-N/2 < k < N/2.

2 k = ±N/2
(35)

(This is equivalent to splitting XN(k) at k = N/2 and inserting N' -
N zeros between the two halves of the transform) . If we evaluate
equation (34) for this case, we obtain

h(mT' - nT) -
sin 7, (mT' - nT)

N tan (mT' - nT)

This function is plotted in Fig. 23a where 0 = (mT' - nT)/ T, and
N = 8. Clearly

(36)

sin 71- (mT' -nT)
h(mT' - nT)

(mT' - nT)
(37)
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Fig. 23 - An illustration of bandlimited interpolation using the discrete Fourier
transform : (a) the periodic function which is convolved with the original sam-
ples; (b) a bandlimited time function showing samples with spacing T; (c) How
the interpolated values x'(mT') are formed.

when 71-(m? - nT)/NT is small, that is, in a region where h(mT' - nT)
is significantly different from zero. Figure 23b shows a segment of a
waveform x(t) and samples x(nT). In Fig. 23c, we have shown just
two of the terms in equation (33). This figure places in evidence the
nature of the interpolation which is performed. The errors are likely
to be greatest at either end of the segment, since the interpolated values
at one end depend on the samples at the other end in a way which is
not at all consistent with equation (27). The error caused by this
effect will be most significant in the regions 0 < 2T and
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T(N - 2) ._c_ mT' 5 TN. The remainder of the values will have es-
sentially the same error associated with using only N terms in equa-
tion (27).

Notice that equation (36) is not the only interpolation function
which can be used. Other choices of HN(k) may lead to interpolation
functions which are in some sense more desirable. For example, Fig.
24 shows four different choices for HN(k) and their associated inter-
polation functions or impulse responses. (The impulse responses were
shifted modulo N' as an aid in plotting.) It can be seen from Fig. 24,
that removing the sharp cutoff in HN (k) greatly shortens the effective
duration of the impulse response, thus tending to minimize the end
effects discussed previously. Clearly the approximation to (sin wt)/irt
interpolation is not as good as equation (36), but in many cases such
smoothing of the interpolated values may not be objectionable.
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Fig. 24 -A set of four simple frequency responses and corresponding im-
pulse responses which could be used for interpolation.
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4.3.2 Computational Considerations in Bandlimited Interpolation
In Section 4.3.1 we discussed a method of bandlimited interpolation

based on the discrete Fourier transform. The operations involved are
summarized in Fig. 25. The sequence (XN(k) } may be evaluated using
the fast Fourier transform. In this case, N will be restricted to a value
compatible with the available fast Fourier transform routine, for ex-
ample, N would be highly composite. The transform is then multipled
by HN(k) and expanded or contracted according to equation (30).
Then we must compute the inverse discrete Fourier transform with N'
points. This can be done using the fast Fourier transform provided
that

(i) N' = NT/T' is an integer and compatible with the available fast
Fourier transform routine.

(ii) Enough high speed storage (a minimum of N' locations) is

available.

[Notice that i applies for either N' > N or N' < N while ii will probably
not be a problem except when N' >> N.]

In many cases it may not be possible to meet one or both of the
above conditions; then the chirp z -transform algorithm can be very

point inverse discrete Fourier transform may be com-
puted using Wo = 1 and so = 1/N', where N' need not even be an
integer. Thus we can compute M interpolated values using

N/2

x'(mT) = -'Wm"[Xf()TV"]W-("-'1"
N

[per (38)

where XA6,(k) is determined by equation (30) and

= X;41 -(N' - k), k = 1, 2, , N/2. (39)

s(nT)

DISCRETE
FOURIER

TRANSFORM

H N (k)

x N (k)

N'

X'N (k)

EXPAND
OR

CONTRACT XiNr(k)

INVERSE
DISCRETE
FOURIER

TRANSFORM x'(mT')

n=0,1,...,N-1 m=o,1,...,N-I

Fig. 25 - Illustration of the steps involved in bandlimited interpolation using
the discrete Fourier transform.
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Assuming that the transform of TV -v/2 is available, equation (38)
can be evaluated using two L point fast Fourier transforms where L
is the smallest integer which is greater than N M - 1 and which is
compatible with an available fast Fourier transform routine.

Alternatively we can evaluate
N/2

y'(mT') 1 Wm./2 E [rcr(k)wki,Tv_,-k).,2 (40)
n-0

where

= {Xic(k) k = 0
(41)

2.7f1,,,(k) 0 < k N/2
It can be shown that

y'(mT') = x'(mT') - (42)

where ±y(mT') is the inverse discrete Fourier transform of

N, (k) = j sgn, (k)  X'N,(k)

and

(43)

0 k = 0, N'/2
sgnN, (k) = 1 0 < k < N'/2. (44)

-1 N'/2 < k < N' - 1
From equation (41) and (44) it can be shown that '(mT') is an approxi-
mation to the Hilbert transform of x'(mT). In this case we require at
least (N/2 M - 1) point transforms to compute M interpolated
values. This is at the expense of not being able to do two interpolations
at once as is possible with equation (38) (obtaining one interpolation
as a real output and one as an imaginary output); however we do obtain
an approximation to the Hilbert transform of x'(mT') which may be of
value in some applications.

If sufficient core storage is not available to compute an N' point
fast Fourier transform, we can compute the interpolated values in
sections and piece these sections together as is commonly done in high
speed convolution. The chirp z -transform algorithm allows us to com-
pute as many as 2M interpolated points at a time, where M can be
chosen so that the fast Fourier transforms can be done using only core
storage. Probably the most significant advantage, though, is the
ability to efficiently interpolate to arbitrary sampling intervals.
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As an example of the ideas discussed in this section, consider the
waveforms shown in Fig. 26. Figure 26a shows 500 samples of a speech
waveform where the sampling rate was 20 kHz. (T = 5 x 10-5 sec-
ond). The samples are connected by straight lines in the figure. Figure
26b shows the 500 samples of the waveform in (a) after filtering with
a nonrecursive filter of the type shown in Fig. 24, whose gain was zero
after 3.2 kHz. Figure 26c shows 160 samples of the result of a change
of sampling rate from 20 kHz to 6.4 kHz. The value of N was 700 and
N' = (6,400) (700) /20,000 = 224. It is difficult to judge quantitatively
from such a figure the accuracy of the interpolation. It does seem safe
to conclude that the error is not extreme. Our experience has been that
there is significant error only in the first and last few samples of the
N' output samples. Using the chirp z -transform algorithm, these "bad"
samples need not ever be computed, for example, only M "good" values
need be computed.

0 5 10 15

TIME IN MILLISECONDS
20

(a)

(b)

(c)

25

Fig. 26 - An example of interpolation for the purpose of changing the sampling
rate: (a) 500 samples of speech at 20 kHz sampling rate; (b) 500 samples of (a)
after low pass filtering to 3.2 kHz; (c) 160 samples of (a) after changing the
sampling rate to 6.4 kHz using the chirp z -transform. (In all cases the samples
are connected by straight lines).
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If one wishes to low-pass filter a waveform and then go to a lower
sampling rate, the filtering and interpolation can be combined if we
use a nonrecursive filter. That is, the discrete Fourier transform of the
filter impulse response can be simply combined with HN (k).

V. LIMITATIONS

Several times we have pointed out shortcomings of the chirp z -trans-
form algorithm. One limitation in using it to evaluate the z -transform
off the unit circle stems from the fact that we may be required to com-
pute Wr" for large n. If Wo differs very much from 1.0, Wr" can
become very large or very small when n becomes large. (We
require a large n when either M or N become large, since we
need to evaluate W"" for n in the range -N < n < M.) For example, if
Ivo = e-2.5/10.000 0.999749, and n = 1,000, W: n" = e'25 which
exceeds the single precision floating point capability of most computers
by a large amount. Hence the tails of the functions Wt"" can be
greatly in error, thus causing the tails of the convolution (the high fre-
quency terms) to be grossly inaccurate. The low frequency terms of the
convolution will also be slightly in error, but these errors generally are
negligible.

An example of this effect is shown in Fig. 27. The contour for the
five curves in this figure was held fixed (contour 5 in Fig. 6) and the
number of frequency points in the range 0 to 5,000 Hz was increased
in steps of 2 from 50 to 800. Spectral samples are plotted every 100 Hz
for comparison. (This example was programmed using single -precision
floating-point arithmetic on a GE 635 computer with a 36 bit word
length.) It is seen that as the number of output points increases, errors
in the high frequency region become large and completely mask the
fifth resonance for the 800 point case. The effects of the inaccuracy in
W±n" can also be seen at low frequencies. For example, the spectral
magnitude at 0 Hz goes from about 120 dB to 134 dB as the number of
points goes from 50 to 800. These small errors generally do not affect the
gross spectral characteristics as seen in Fig. 27. The resonances are
easy to locate in all cases until the errors get exceedingly large. One
can push the maximum point limit higher than 800 (in this case) by
using double precision arithmetic.

The limitation of contour distance in or out from the unit circle is
again the result of computation of W±"2. As Wo deviates significantly
from 1.0, the number of points for which Wt"" can be accurately
computed decreases. It is of importance to stress, however, that for
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Fig. 27 -A comparison of magnitude plots for varying number of points on the
same spiral contour. The fifth plot shows the effect of errors in evaluating Wn2/2 for
large n. (Points are plotted every 100 Hz in each curve to aid in comparison.)

W. = 1 there is no limitation of this type since W±n2/2 is always of
magnitude 1.

The other main limitation of the chirp z -transform algorithm stems
from the fact that two L point fast Fourier transforms and one L/2
point fast Fourier transform must be evaluated where L is the smallest
convenient integer greater than N M - 1 as previously mentioned.
We need one fast Fourier transform and 2L storage locations for the
transform of xA-nWn'i2; one fast Fourier transform and L+2 storage
locations for the transform of W-1'2; and one fast Fourier transform
for the inverse transform of the product of these two transforms. We
do not know a way of computing the transform of W-"2" either re-
cursively or by a specific formula (except in some trivial cases.) Thus
we must compute this transform and store it in an extra L + 2 storage
locations. Of course, if many transforms are to be done with the same
value of L we need not compute the transform of 147-'2 each time.

We can compute the quantities A -"W"2/2 recursively, as they are
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needed, to save computation and storage. This is easily seen from the
fact that

A -(n+1) w(n+ 1) 2/2 -"w"1/2) wnwiA -1

If we define

and

then

and

(45)

= /1-"W"2"2 (46)

= WITT/A-I (47)

Dn+1 = TV  D,, (48)

Cn+, = C. Dn . (49)

Setting A = 1 in equations (45) through (49) provides an algorithm
for the coefficients required for the output sequence. A similar recursion
formula can be obtained for generating the sequence A-"W (n-No ) 2/2.

The user is cautioned that recursive computation of these coefficients
may be a major source of numerical error, especially when W. 1

or (po ti 0.

VI. SUMMARY

We give a computational algorithm for numerically evaluating the
z -transform of a sequence of N time samples. This algorithm, the
chirp z -transform algorithm, enables the evaluation of the z -trans-
form at M equiangularly spaced points on contours which spiral in or
out (circles being a special case) from an arbitrary starting point in
the z -plane. In the s -plane the equivalent contour is an arbitrary
straight line.

The chirp z -transform algorithm has great flexibility in that neither
N or M need be composite numbers; the output point spacing is
arbitrary; the contour is fairly general and N need not be the same as
M I. The flexibility of the chirp z -transform algorithm comes from being
able to express the z -transform on the above contours as a convolu-
tion, permitting the use of well-known high speed convolution tech-
niques to evaluate the convolution.

Applications of the chirp z -transform algorithm include enhance-
ment of poles for use in spectral analysis, high resolution narrowband
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frequency analysis, and time interpolation of data from one sampling
rate to any other sampling rate. These applications are explained in
detail. The chirp z -transform algorithm also permits use of a radix 2
fast Fourier transform program or device to compute the discrete
Fourier transform of an arbitrary number of samples. Examples were
presented illustrating how the chirp z -transform algorithm was used
in specific cases. It is anticipated that other applications will be found.
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APPENDIX

Fast Fourier Transforms for Two Real L Point Sequences

The purpose of this appendix is to show how the fast Fourier trans-
forms of two real, symmetric L point sequences can be obtained using
one L/2 point fast Fourier transform.

Let x;, and y be two real, symmetric L point sequences with corre-
sponding discrete Fourier transforms Xk and Yk. By definition,

xn = XL-. n = 0, 1, 2, , L - 1;
yn = YL-n

it is easily shown that Xk and 177,-, are real, symmetric L point se-
quences, so that

Xk = X L-k

Yk = Y L-k

Define a complex, L/2 point sequence un whose real and imaginary
parts are

k= 0, 1, 2,  ,L -1.

Re [un] = x2. - Y2.+1 y2.-1}

IM [Un] = Y2. + X2n4-1 X2n-1

n = 0, 1, , L/2 - 1.

The L/2 point discrete Fourier transform of un is denoted Uk and is
calculated by the fast Fourier transform. The values of Xk and Yk may
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be computed from Uk using the relations

Xk ----- if Re [Uk] + Re [UL/2-k] I

1291

1
{Re [Uk] - Re [UL/2-k]i

. 27r
4 sm -L k

Yk =Im[Uk] Im [UL/2-k]

1
{ Im [Uk] - Im [UL/2-k]

sin L4 sm k

for k = 1, 2, , L/2 - 1.
The remaining values of Xk and Yk are obtained from the relations

L-1

X. = E xn

L-1

Y. = E Y.-0
L-1

X L/2 = E (- 1) x
n.0

L -I

17,2 = E (- i)"Yn
n_i
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Some Network -Theoretic Properties of
Nonlinear DC Transistor Networks

By I. W. SANDBERG and A. N. WILLSON, JR.
(Manuscript received September 9, 1968)

This paper extends, in several directions, some of the results of earlier
work concerned with the existence and uniqueness of solutions of the dc
equations of nonlinear transistor networks. In particular, here we
develop techniques which enable us to deal directly with a more complicated
transistor model.

I. INTRODUCTION

Several results are presented in Ref. 1 concerning the equation

F(x) Ax = B (1)

(with F () a "diagonal" nonlinear mapping of real Euclidean n -space
E" into itself, and A a real n x n matrix) which plays a central role
in the de analysis of transistor networks. In particular, a necessary
and sufficient condition on A is given such that the equation possesses
a unique solution x for each real n -vector B and each strictly mono-
tone increasing F () that maps En onto itself. Several circuit -theoretic
implications of the results are also described in Ref. 1; for example,
it is shown that the short-circuit admittance matrix of the linear
portion of the do model of an interesting class of switching circuits
must violate a certain dominance condition.

In Ref. 1 the word transistor was used to refer to the three -terminal
device whose de equivalent circuit is shown in Fig. 1(a) . Although
this equivalent circuit is frequently used in the design and computer
analysis of transistor networks it is, from a physical standpoint, some-
what incomplete. A more exact dc model of a physical transistor is
that of Fig. 1(b) in which the presence of series resistance in each
of the transistor's leads has been accounted for.

In this paper we report on several extensions of the previous results.
The motivation for much of this work was to enable the model of
Fig. 1(b) to be taken into account. In addition, we present here

1293
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further material concerning cases in which (in accordance with stan-
dard assumptions) the nonlinear functions of Fig. 1(b) do not map
El onto itself. Finally, we prove a considerably stronger result than
that of Ref. 1, to the effect that a certain class of networks cannot
be bistable.

We now summarize some of the material of Ref. 1 that will be
needed in the sequel:

For each positive integer n, we let denote that collection of map-
pings of the real n -dimensional Euclidean space En onto itself defined
by: F E an if and only if there exist, for i = 1, , n, strictly monotone
increasing functions mapping onto El such that,t for each x
(xl , , xn) E En, F(x) (fi(x,), , fn(xn))`.

The origin in En will be denoted by 0. Throughout this article we
consider only matrices whose elements are real. If D is a diagonal matrix
then D > 0 (D > 0) means that each element on the main diagonal of D
is positive (nonnegative).

The classes of matrices P and Po have been defined by M. Fiedler
and V. Ptak in Refs. 2 and 3. They prove that these classes can be
defined by any one of several equivalent properties. We shall need only
the following characterization of the classes P and Po : A square matrix
A is a member of the class P (Po) if and only if all principal minors of A
are positive (nonnegative). In the appendix it is proved that A a Po
if and only if det [A + D] 0 for every diagonal matrix D > 0.

t If M is an arbitrary matrix, then the transpose of M is denoted in this article
by M'.
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The following theorem is proved in Ref. 1:

Theorem 1: If A is an n X n matrix then there exists a unique solution
of (1) for each F E an and each B E E" if and only if A c Po .

We say that an n X n matrix A is strongly (weakly) row -sum dominant
if and only if the elements a,, of A satisfy

a;;>(>)E I (41 I, for i = 1, , n.

Similarly, a strongly (weakly) column -sum dominant matrix is one that
satisfies

a;,>(>)E a,, , for i = 1, ,n.

The square matrix A is said to be dominant (strongly dominant) if and
only if A is weakly (strongly) row -sum dominant and symmetric.

If a square matrix A is strongly column -sum or row -sum dominant
then A is nonsingular, in fact A E P.

The following theorem is also proved in Ref. 1:

Theorem 2: If the square matrix A satisfies a strong column -sum domi-
nance condition and if the square matrix B satisfies a weak (strong) column -

sum dominance condition, then A-113 E Po (P).
An analogous theorem involving row -sum dominant matrices is also
true, and can be proved with trivial modifications of the proof of
Theorem 2 given in Ref. 1.

II. FURTHER RESULTS CONCERNING THE EXISTENCE AND UNIQUENESS OF

SOLUTIONS

The proof of Theorem 1 given in Ref. 1 exploits the fact that the
straight line described by the equation y = -ax b has exactly one
intersection with the graph of each strictly monotone increasing function
f (x) which maps E' onto E' if and only if a >= 0.

It happens that a useful result that is slightly more general than that
of Theorem 1 can be proved easily if use is made of a proposition that is
similar to, but stronger than, the elementary fact mentioned in the
preceding paragraph. That proposition is stated below.

Definition: For all a, )3 with - co < a < (3 < co , let I(a, 13) denote
the interval I(a, (3) = fx : a < x < (31.
The following proposition is quite easily verified:

Proposition: For -co < a < /3 co , the straight line described by the
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equation y = -ax b has exactly one intersection with the graph of
each strictly monotone increasing function f (x) which maps I (a, 13)

onto E1 if and only if a > 0.

Definition: For each positive integer n and each pair of n -vectors a, /3
whose components ai , 13, lie in the extended real number system, with
a < 13 (that is, with - co < ai < co for i = 1, , n) let
ffn(a, /3; En) denote that collection of mappings of , 01) X  X
I ay, , fin) onto En defined by: F c gn(a, /3; En) if and only if there exist, for
i = 1, , ii, strictly monotone increasing functions fi mapping
(ai ,13,) onto El such that for each x = (x1, ,x,,)t cI(ai (31) X  X
/ (an , /3.),

F(x) i(xi), f .(xn))` 

Let the collection of strictly monotone increasing mappings of En onto
gal,01) X X /(an,i3n) be similarly defined, and denoted by
5n (En; a, (3). Note that F E gn (a, /3; En) if and only if F-1 exists and

E 5n(En; a, /3). Also, in case I(a1,01) X X 1(an,(3.) = En,
then 5n(a, (3; En) = an(En; a, 13) =

Using the above proposition it is now easy to prove:

Theorem 3: For the n -vectors a < /3 whose components lie in the extended
real number system, if A is an n X n matrix then there exists a unique
solution of (1) for each F c 5n (a, /3; En) and each B E En if and only if
A c Po .

Proof: (if) The proof of this part of the theorem is identical to the
proof (given in Ref. 1) of the corresponding part of Theorem 1 with
the exception that appropriate use is made of the above proposition.
Since the necessary modifications are quite obvious we omit the details.

(only if) Suppose A Po . Then there exists a diagonal matrix
D = diag [di , , dn] > 0 such that det [A -I- D] = 0. Let x° be an
arbitrary point in /(a, , /3,) X  X Ilan , (3n) and let y° be an arbitrary
point in En . Let

B = + Ax°.

Let 8 > 0 be chosen such that

< x? - S < + a < )3 for i = 1, , n,

and choose F = (fi(), , fn(  ))` in F'(a, f3; En) such that for
i= 1, , n, and for x? - 6 < xi < x? + 6,

f i(xi) = di(xi -
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Thus, F(2) = y° and hence, x° is a solution of (1) for this choice of F.
Since det [A + D] = 0, there exists some n -vector x* 0 having the

property that

Ax* Dx* = 0.

Thus, for each real number E,

y° Mx* + A (x° Ex*) = B.

In particular, if e 0 is chosen such that 1E1 is sufficiently small, then
1 ex? < .3 for i = 1, , n. Hence, for such E, if x = + ex*, F(x) =
y° D EX* and therefore x 0 x° is also a solution of (1). 0

An important special case of Corollary 3 of Ref. 1 is:

Corollary 1: For the n -vectors a < 13 whose components lie in the extended
real number system, if A is an n X n matrix then there exists a unique
solution of (1) for each F c V(E"; a, (3) and each B E En if A E P.

Theorem 3 may be used to prove a sharper (and, from the viewpoint of
transistor networks, a more useful) result than Corollary 1. We have:

Theorem 4: For the n -vectors a < Q whose components lie in the extended
real number system (in the real number system), if A is an n X n matrix
then there exists a unique solution of (1) for each F £ 5"(E"; a, () and each
B E En if (and only if) A £ P. and det A 0 0.

Proof: (if) As pointed out in Ref. 1, A £ P. and det A 0 0 imply that
E Po . Also, exists and £ an(a, (3; En). Now x satisfies (1)

if and only if y satisfies

F -1(y) = A -1B, (2)

where y = F(x). But, according to Theorem 3, there exists a unique y
which satisfies (2).

(only if) We assume here that the components of a and $ are real.
Suppose A 0 Po . Then, in a manner similar to that used in the proof of
the "only if" part of Theorem 3, we can choose a mapping F c (E"; a, (3)

and a point B c E", such that the solution of ( 1 ) is not unique.
If, on the other hand, det A = 0, then there exists x* 0 0 such that

Atx* = B. Assume that (1) has a solution x for each B c E". Then,
since (x*, Ax) = 0 for all x, we have

(x*, F(x)) = (x*, B),

for each B £ En (and the corresponding x). It is clear, since the com-
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ponents of a and # are finite, that there exists some constant M such
that

(x*, F(x))1 M

for all x E En. But B can certainly be chosen such that (x*, B) > M.
This contradiction completes the proof of the theorem. El

The following theorem provides an alternative method of characteriz-
ing the class of matrices that are in Po and are nonsingular (compare
with the theorem of the appendix).

Theorem 5: If A is a real square matrix then A c Po and det A 0
if and only if det [A + D] 0 for every diagonal matrix D > 0.

Proof: (if) It is clear, by the theorem of the appendix, that A E Po I

since det [A + D] 0 for all diagonal D > 0. Moreover, det A 0,

by hypothesis.

(only if) It is shown in Ref. 1 that, for each A E Po and each diagonal
D > 0, A + D E Po . It suffices, therefore, to show that if
Di = diag [0, , 0, di , 0, , 0] with di > 0, and A E Po with det A
> 0, then det [A + Di] > 0. Letting A; denote the principal sub -
matrix obtained from A by deleting the ith row and the ith column,
we have

det [A + Di] = det A + di det A; .

But det A > 0 and di det Ai > 0. 0

III. APPLICATION TO EQUATIONS FOR TRANSISTOR NETWORKS

In the analysis of a transistor network one could account for the
presence of series lead resistance, while using the model of Fig. 1(a)
to represent the transistor, by including appropriate additional resis-
tors in the rest of the network. Indeed, there is at least one good
reason for doing this. When treated in this manner, the presence of
nonzero series resistance in the base, collector, and emitter leads of
each transistor ensures that the y -parameter matrix exists for the
circuit to which the transistors are connected-and hence ensures that
the transistor network can be described by an equation having the
form of (1). On the other hand, there are also good reasons for rep-
resenting the transistor, for analysis purposes, by the model of Fig.
1(b) . Using this model it will be shown, for example, that it is often
possible to determine that there is a unique solution of the equation
describing a given transistor network regardless of the (nonnegative)
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values of the transistors' series lead resistances. Since these resis-
tances are usually parasitic and unavoidable in nature it is significant
that one might be able to show that their introduction in, say, a cer-
tain monostable circuit will not cause the circuit to become bistable.

Using the model of Fig. 1(b) it is quite easy to see that the port
variables for the transistor, when considered as a nonlinear two -port
network, obey the following relationship

[ 1 -a121 [f1(V1)1

i2 -a21 1 f2 (V2)

where

[v,

V2

= Di

132

7.. -I- rb rb

rb r. -1- rb

il

i2

As in Ref. 1 we assume that 0 < a12 < 1, 0 < «21 < 1, and that both
of the functions f, and 12 are strictly monotone increasing mappings
of V. into V.

Suppose an electrical network is synthesized containing transistors,
resistors (that is, linear resistors having nonnegative resistance), inde-
pendent voltage and current sources, and nonlinear resistors which are
described by strictly monotone increasing conductance functions (and
which shall henceforth be called "diodes"). Suppose the network con-
tains n transistors and d diodes (n d > 0). For k = 1, , n let
x2k-1 X2k y X2k-1 X2k Y2k-1 , and y2k denote the voltage and current
variables v, , v2 , v v2 , i and i2 , respectively, for the kth transistor.
For k = 1, , d, let x24.k and Y2n+k denote the voltage across, and the
current through, the kth diode; also (for k=1, , d) let rg 2n+k = X2n+k 

Let these variables be related by I/,2n+k = f2n+ k(X2n+ k) Then, if x =
(x1 , . .

, x24+d) I I = (171 X2rs+d)e, and y = (yi , , y2n+d)1,

we have

y = TF(x), x = z - Ry, (3)

where T = diag[Ti, T2], with T1 a block diagonal matrix with n
2 X 2 diagonal blocks of the form

[ (k)
-a21

1
(4)

and T2 the d x d identity matrix. Also, R = diag[R1, R,d, with R1
a block diagonal matrix with n 2x2 diagonal blocks of the form
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r(iik) r,(,k) (k)
rb

(k)
r b ]r!" + 4,k)

(5)

and R, the d X d null matrix.
Consider now the (2n d) -port network of resistors and independent

sources which is formed from the original network by removing the
transistors and diodes. If the y -parameter matrix G of this (2n d) -port
exists then we have the additional equation relating the vectors g and y:

y = -Gt (6)

where ft is some vector of constants that is, in general, nonzero since
sources are present in the (2n + d) -port.

The vectors g and y can easily be eliminated from (3) and (6), re-
sulting in the equation

TF(x) + [I + GR]-1Gx = u, (7)

where we have defined the vector u by

u = [I +
According to Theorem 6, below, the matrix [I + GR] must be non-
singular.

In case the matrix R contains all zeros (that is, in case all series
lead resistors are omitted from the transistors) (7) reduces immedi-
ately to the equation which was studied in Ref. 1. Even when R
does not contain all zeros, however, the results of Ref. 1 can be ap-
plied directly to (7). By applying Theorem 2 we have: If the matrix
[I + GR]-1 G is dominantt then, there is at most one solution of (7).
If, furthermore, F maps En onto E", or if [I + GR]-1G is strongly
dominant, then there exists a unique solution of (7).

Making use of Theorem 4, we also have the stronger result: There
exists a unique solution of (7) if [I + GR]-'G is dominant and G is
nonsingular.

Although it is not, in general, true that the inverse of a strongly
column -sum (row -sum) dominant matrix is strongly row -sum (col-
umn -sum) dominant, the statement is true when the order of the
matrix is less than three. This elementary observation turns out to
be quite useful in the proof of Theorem 6, which yields results that
focus attention on the properties of G, concerning the existence and
uniqueness of a solution of (7).

For symmetric matrices the properties (i) weak column -sum dominance, and
(ii) dominance, are identical. Since it is easily verified that for symmetric G and
R, [I + GR]-1G is also symmetric, we simply specifiy, that [I + GR]-1G be
dominant.
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Theorem 6: Let A (B) be the direct sum of n 2 x 2 and d 1 x 1
strongly column -sum, (weakly row -sum) dominant matrices. Let B
be symmetric and let C be a square matrix of order 2n. + d. Then:

(i) det [I + CB] 0, provided that C is positive semidefinite,
(ii) A-11 + CB] -'C E Po , provided that C is dominant,

CB] -'C E P, provided that C is strongly dominant.

Proof: (i) Here C is positive semidefinite. Let ./31 be the symmetric
nonnegative square root of B, so that I + CB = I + C/31/31. Since
(see Appendix A of Ref. 4) det [I -I- CBIB1] = det [I + BIC/31], and
since I + 131C B1 is positive definite, we have det [I + CB] > 0.

(ii) Here C is dominant (which, as is well known, implies that C is
positive semidefinite and hence, by (i), implies that [I + CB]-' exists).
Suppose A"[I CBJ"C Po . Then, by the theorem of the appendix,
there exists a diagonal matrix D > 0 such that A'[I CB] -1C D

is singular. But

A"[I CB] -1C D = 21-1[I CB]"[C(D"A" B) I]AD,

which means that C(D-1A-1 + B) I must be singular. Since A is a
direct sum of 1 x 1 and 2 x 2 strongly column -sum dominant ma-
trices, it follows that A-1 is a direct sum of 1 x 1 and 2 x 2 strongly
row -sum dominant matrices. Thus, D -1A-1 and hence D -1A-1 + B is
strongly row -sum dominant. Therefore, (D-1,4-1 + B) is nonsingular,
and (D -1A-1 + B)-1 is strongly column -sum dominant. But,

C(D"A" B) I = [C (D"A" B)1(D"A" B)

in which the right-hand side is nonsingular since C + (D -1A-1 +
is strongly column -sum dominant, which is a contradiction.

(iii) Here C is strongly dominant. Since C(/ + BC) = (I + CB) C,
we have det(/ + BC) > 0 and

(I + CB) -1C = C(I BC)".

Suppose that there is no constant 8 > 0 such that C(I BC) -1 -
8I E PO . Then, for each 8 > 0 there is a diagonal matrix D > 0 such that

C(I BC)' - 81 D is singular. But,

+ BC)" - (51. D

= A'{C - SA(I + BC) + ..-1D(I BC)](I

= D{I + BC + D-1 A'[C - SA(1 + BC)])(I

= (D + [DB + - 5(C-1 + B)]Cl(I ,
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-which leads to the conclusion that for each 5 > 0 there is a D > 0
such that D + [DB + - 6(C" B)]C is singular. We now es-
tablish a contradiction:

For all x E E", let I I x I I= max I xi I. If x, y c En such that II x II = 1
and

[DB + = x

then it is easy to show that

y II 5_ max
k akk E1 a/c;jp&k

in which the akj are the elements of A-1. Thus, the norm of [DB + A-1]-1
can be bounded from above uniformly in D > 0. Therefore,

D + [DB + A-1 - 8(C-1 B)]C = (DB + Al [(DB + A -1)-1D

+ [I - 6(DB A -1)-1(C-1 B)]C}

in which 6 > 0 can be chosen so small that [/- B A-1)" (C-1 + B)]C
is strongly column -sum dominant for all D > 0. Since (DB + A. -1)-1D
is also column -sum dominant, we have a contradiction. It follows that
for some 6 > 0, A' (I + CB) -1C - 31 c Po and hence, by Theorem 1
of Ref. 1, A-' (ICB) -'C c P. 0

The matrices T, I?, and G of (7) satisfy the hypotheses on A, B, and
C, respectively, of Theorem 6 if it happens that G is dominant (strongly
dominant for (iii)). Thus, we have the result: If the y -parameter matrix
G is dominant then there is at most one solution of (7). If, furthermore, F
maps En onto En, or if G is strongly dominant, then there exists a unique
solution of (7).

Making use of Theorem 4 and since det C 0 implies det [A'
(I + CB) -1C] 0, we also have: There exists a unique solution of (7) if
0 is dominant and nonsingular.

These results show that if the solution of the equation

TF(x) Gx = fc, (8)

describing a given transistor network (with the transistors represented
by the model of Fig. 1(a) is shown to (exist and) be unique by showing
that the y -parameter matrix G is dominant (and det G 0, or that
F maps En onto E"), then any other network obtained from the original
by adding arbitrary (nonnegative) resistances in series with any of the
transistor leads will be described by (7) and, furthermore, the solution
of (7) will also (exist and) be unique. Thus, the addition of series lead
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resistance does not affect the existence and uniqueness of the solution,
provided G is dominant.

We now prove another result concerning the relationship between the
existence and uniqueness of solutions of the two equations (7) and (8).

We prove that, roughly speaking, whenever (8) has a unique solution
for all transistors and diodes then so does (7). More precisely, let us
define, for a given transistor network, the class of matrices 3:

Definition: Let (8) describe the given network for some choice of
transistor parameters ce,2 «2, , for each transistor. Let 3 then denote
that class of matrices T obtained by considering all possible combina-
tions of values of a1, , «21 (0 < «,2 < 1, 0 < ce2, < 1) for each transistor.

We then have:

Theorem 7: If (8) has a unique solution for each T e 3, and each
F c (En; a, )3) for all a < whose components lie in the extended real
number system then, for each I?, so does (7).

Proof: The hypotheses imply (using Theorem 4) that T -1G c Po and
det [T'G] 0 for each T c 3. Thus, G-1 exists. Letting

H = [I ± GR]'G,

exists and,

= + R.

As pointed out in Ref. 1, since det [71-1G] 0, 71-1G E Po for every
T E 3 implies that G-1 T e Po for every T E 3. Hence

det [G -'T D] > 0,

But then,

det [G-1 + DT -1 > 0,

for all T c 3 and all D > 0.

for all T c 3 and all D > 0.

Now, due to the special structure of the matrix R (that is, block di-
agonal with dominant blocks that are "compatible" with T-') it is
clear that, for any such R, any diagonal D > 0, and any T E 3, there
exists a diagonal A > 0 and some ill E 3, such that R D = .6,111-1

Hence, it is clear that

det [G' R DT -1] > 0, for all T c 3 and all D > 0.

It easily follows that T c Po and hence T -1H e Po for all T c 3.
Applying Theorem 4, we thus have that there exists a unique solution
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of (7) for each T E 3, and each F E 5"(E"; a, (3) for all a < /3 whose com-
ponents lie in the extended real number system. I=1

It is not difficult to show that there exist transistor networks for
which [I ± Gli]-iG is dominant while G is not, and also networks for
which G is dominant while [I + GM -1G is not. For the first case, pick
any network for which G is not dominant and det G 0. If the values
of the series lead resistors in each transistor lead are then allowed to
become large, since

± -1G

and since each element of R-1 approaches zero as the lead resistor
values approach infinity, we see that [I + GR]-1G R-1. But R-1 is
strongly dominant and hence there certainly exist sufficiently large
values for the lead resistors such that [I + GR] -1G is dominant. The
network of Fig. 2 is an example of the other case. For this network,

1 0 -1 0 9 9 0 0

G= 0 1 0 -1 R
9 9 0 0

-1 0 1 0 0 0 9 9

0 -1 0 1_ _0 0 9 9_

while

19 -18 -19 18

-18 19 18 -19
,[I ± GRF G = 37 -19 18 19 -18

18 -19 -18 19_

IV. A SPECIAL CLASS OF TRANSISTOR NETWORKS

Transistor networks in which the base terminal of each transistor is
connected to a common node are considered in Ref. 1 using the model
of Fig. 1(a) to represent the transistor. It is shown there that there is
at most one pair of base -collector and base -emitter voltages for each
transistor in such a network-even in the cases in which the network is
not described by an equation having the form of (1).

In this section we show that the class of common -base transistor
networks is but a subset of a considerably more extensive special class
of transistor networks for which the same statement is true. We show
that there is at most one pair of base -collector and base -emitter volt-
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Fig. 2- A two -transistor network.
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ages for each transistor in any de network which has the structure shown
in Fig. 3. The box at the top of Fig. 3 represents, assuming that there
are n transistors, any (2n -I- 1) -terminal network consisting of inde-
pendent voltage and current sources, resistors (that is, linear resistors
having nonnegative resistance), and diodes (that is, nonlinear resistors
which are described by strictly monotone increasing conductance
functions). Each of the n boxes at the bottom of Fig. 3 represents an

T

Fig. 3 -A special class of transistor networks.
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arbitrary 2 -terminal network consisting of independent sources, resistors,
and diodes. Each of the transistors in Fig. 3 is represented by the model
of Fig. 1(b), in which the value of each of the resistors rb , r r, may
be any nonnegative number. In this regard, we note here that it suffices
in what follows to show, for each transistor, the uniqueness of the
voltages v, and v2 (in Fig. 1(b)) since, clearly, the voltages Vi and V2
are then uniquely determined.

As in Ref. 1 we assume, temporarily, that no diodes are present in
the network. This assumption allows each of the n boxes at the bottom
of Fig. 3 to be replaced by either a current source or else a Thevenin's
equivalent circuit in which the value of the Thevenin's resistor is not
infinite. Let us temporarily ignore the possibility that any of these
boxes is equivalent to a current source. Following the technique pre-
sented in Section IX of Ref. 1, we may then consider the network of
Fig. 4 instead of that of Fig. 3. In Fig. 4 we have explicitly shown the
base, emitter, and collector resistors of each transistor, and we consider
the Thevenin's resistor of each base circuit to be lumped in with the
corresponding base resistor. The rn-vectors v* and i4' (m 2n) and
the 2n -vectors v' and i' are related by the four equations:

vr',`
lam

Hilt -

Fig. 4 - Network derived from that of Fig. 3.
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i* = -Gv* b,

i* = Qi',

v' = Q`v* c,

= TF(v' - c - Ri'),

(9)

(10)

(11)

(12)

in which b, c, and e are vectors whose elements are constants, G is a
dominant matrix, Q is an in X 2n matrix having the property that
whenever the 2n X 2n matrix M is strongly column -sum dominant
then so is the m X in matrix QMQ`, T and R are 2n X 2n block di-
agonal matrices having 2 X 2 diagonal blocks of the form (4) and (5),
respectively.

We now show that the vectors v*, i*, v', and i' which satisfy (9)
through (12) are unique (if they exist). Let {vt , , v',1 i4} and
{vt2 it2 /42,} denote two sets of vectors, each of which satisfies
(9) through (12). Subtracting corresponding equations, and observing
the strictly monotone character of F, we see that there exists a diagonal
matrix D > 0 such that:

**
,11) 2(2)

2(1) 2(2)

V(1) -

1(1) 2./(2)

= -G v(l) - 1,120,

= Q(1(1) -

= (2`(111) -

= TD(vm - 2''(2) - RW1) - 1'(2)))

But (15) and (16) imply

[I TDRK) - = TDVen - vt2))
However, since

[I + TDR] = T[T-1 + DR],

in which T is strongly column -sum dominant (T-' is strongly row -
sum dominant), and DR is weakly row -sum dominant, we have
det [I + TDR] X 0, and hence,

2(1) - 2(2) = TDRV'TDV(11,) - VC))). (17)

Substituting this into (14) and then (13), however, yields:

{(2[/ TDR]-1TD(2` G)(111) - v10 = 0.

Now if Q[I + TDRI1TDV G can be shown to be nonsingular
then vti, - v1`2, = 0 and hence, by (13), (15), and (17): itI) - it2) = 0,
1),) - = 0, and - = 0, which, together, show that the
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vectors which satisfy (9) through (12) are unique. Since G is dominant
it suffices to show that [I+ TDR]-1TD (and hence Q[1.+TDR]-1TDO
is strongly column -sum dominant. But

[I + TDR]-1TD = [D-1 T-1 + R]-1,

which is the inverse of the direct sum of 2 x 2 strongly row -sum dom-
inant matrices and is, therefore, strongly column -sum dominant.

Let us now consider the case in which diodes are present in the box
at the top of Fig. 3. In this case, arguing as in Section IX of Ref. 1, if
the set of base -emitter and base -collector voltages for Fig. 3 was not
unique, we could replace all of the diodes by an appropriate series
combination of a voltage source and a (nonnegative) resistor and
thus synthesize a network of the type just considered, for which the
set of base -emitter and base -collector voltages is not unique. This is
a contradiction, and hence establishes that the set of base -emitter and
base -collector voltages fox the network of Fig. 3 is unique even when
diodes are present in the top box.

A somewhat similar argument may now be used to show the unique-
ness of the voltage across each of the diodes in the box at the top of
Fig. 3. Assume that there exist two sets of branch voltages and currents,
Si and S2 , which satisfy Kirchoff's and Ohm's laws for the network of
Fig. 3. Since we have just proved the uniqueness of the base -emitter and
base -collector voltages of each transistor, the elements of Si and S2
which correspond to any such voltage must be identical. Thus, if each
transistor is replaced by, say, an appropriate pair of voltage sources,
the sets 5, and 52 still satisfy Kirchoff's and Ohm's laws for the modified
network. Let us now choose (arbitrarily) any diode in the network and,
as in the previous argument, replace all other diodes by a series combi-
nation of a voltage source and a (nonnegative) resistor, thus obtaining
a new network, containing only one diode, for which the sets Si and 82
still satisfy Kirchoff's and Ohm's laws. Suppose this remaining diode is
characterized by the equation i = f(v). The (now linear) network to
which this diode is connected contains only independent sources and
nonnegative resistors, and hence is characterized by one of the equations:

= gv , v = Vo , where g > 0, Io , and Vo are constants. Due to
the strictly monotone increasing character of f, however, the graph of
either of the above equations can intersect the graph of f in at most one
point. Thus, the elements of S, and S2 that specify the voltage across
this diode must be equal. We can therefore conclude that the corre-
sponding elements of Si and 82 which specify the voltage across any



NONLINEAR DC TRANSISTOR NETWORKS 1309

diode are equal. That is, the diode voltages are unique for all diodes
in the box at the top of Fig. 3.

We now consider the case in which some box at the bottom of Fig. 3
is equivalent to a current source. Let Ib denote the value of this current
source (with reference direction chosen to be out of the base of the
associated transistor). In this case, using the notation of Fig. 1(b),
the variables v, , i v, , and iz , for the associated transistor, are con-
strained by the relationships:

(1 - ai2a21)f1(VO crizrb-
(1 - a12)

- 2CY2i)f2(V2) anib
.62 -

a21)
(18)

Thus, this transistor can be replaced by a pair of diodes (each in series
with one of the resistors re, re) whose nonlinear conductance functions
are specified by (18). We may now consider these diodes, these resis-
tors, and the current source, all to be components of the box at the
top of Fig. 3. We have thus shown, in summary, that when one (or
more) of the boxes at the bottom of Fig. 3 is equivalent to a current
source, the base -emitter and base -collector voltages of each transistor
are still unique, since the network is then equivalent to a network of
a type already considered.t

By use of the same type of argument that was applied to the case
in which diodes are present in the box at the top of Fig. 3, the above
results may, finally, be shown to be valid when diodes are present in
the boxes at the bottom of Fig. 3.

The above results show the validity of the following statement con-
cerning bistable networks: One cannot synthesize a bistable network
which consists of resistors, inductors, capacitors, diodes, independent
voltage and current sources, and an arbitrary number of (Fig. lb)
transistors, and which has the structure of Fig. 3 when all capacitors
are open -circuited and all inductors are short-circuited.

APPENDIX

In this appendix we give the proof of a theorem which is used here
and which is implied in Ref. 1 but is not stated explicitly there.

Theorem: If A is a real square matrix then A E P. if and only if
det [A ± D] 0 for every diagonal matrix D > 0.

t Here, of course, we use the proposition, proved above, that the voltage across
each diode in the box at the top of Fig. 3 is unique.
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Proof: (if) Suppose A Po . If det A < 0 then for sufficiently small
> 0, det + A] < 0. For sufficiently large however,

det A] = r  det -r1 A] > 0.

Thus, since det + A] is a continuous function of r, there exists
some value of > 0 such that det I + A] = 0. For this value of
let D = I.

If det A z 0 but, for some positive integer k< n, A has a k X k
principal minor which is negative we may, without loss of generality,
assume that A is partitioned as

A = Al Al
A3 Ag

where Al is a k x k matrix with det Al < 0. This is so because
det [D + A] is not altered if any two rows and then the correspond-
ing pair of columns are interchanged. Let D(1) = diag[d1, , cin]

with d1 =  = dk = e, where > 0 is chosen so small that det[$/ +
A1] < 0. Then, with dk±i =  = d,1 = C > 0, we have

det [D(1) + A] = det + A, A2

= r-Ldet

A3 + Ag

I+ A1 A2

-I A, I + -1 A4
_

Thus, for C > 0 chosen to be sufficiently large, det[D(1) + A] < 0.
Now, if D(2) = 7,1, for n > 0, then it is clear that for n chosen suffi-
ciently large,

det [D(2) + A] = n".clet [/ 1 A] > 0.

Thus, if

D(e) = ED") + (1 - e)D(2) ,

it is clear that there exists a value of e, 0 < e < 1, such that
det [D(e) + A] = 0.

(only if) By Theorem 1 of Ref. 1, since A e Po and D > 0, [D A] E P.
Thus, det [D A] 0. 0
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Measuring Frequency Characteristics
of Linear Two -Port Networks

Automatically

By JAMES G. EVANS

(Manuscript received November 2, 1968)

This paper presents a new automatic technique for complete linear
characterization of transistors and general two -port devices from standard
insertion and bridging measurements. This technique includes a calibra-
tion sequence and mathematical transformation to provide parameters inde-
pendent of actual test set impedances, as well as a special hardware design
which allows for convenient self -measurement of the test set impedances.
Knowledge of these impedances is used to reduce the measured quantities
to arbitrary device parameters referenced entirely to a set of calibration
standards. This independence of the parameters from the measuring set
impedances allows for considerable reduction in the design constraints on
the test set impedances and device connecting jigs.

I. INTRODUCTION

In implementing a linear two -port device characterizing facility
on the computer operated transmission measuring set, several factors
had to be considered.1 First, the advantages of automated measure-
ments could be retained only if the switching required to obtain four
independent measurement configurations were done automatically.
Second, the implementation must be broadband to take advantage of
the 50 Hz to 250 MHz frequency range of the measuring set. Finally,
the measurement method must be inherently capable of utilizing the
high accuracy of the measuring set. An implementation was chosen
which uses standard insertion and bridging measurements.2-4 This
choice is particularly compatible with the above factors.

Insertion and bridging measurements are made with the unknown
terminated in a nominal impedance environment, in the present
instance 50 ohms. At this impedance level, broadband, solenoid-oper-

1313
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ated coaxial switches are available which introduce only minor re-
flections in 50 ohm transmission circuits. In the computer operated
transmission measuring set such switches are extensively used to
provide automatic commuting of the unknown among the four inde-
pendent configurations in which measurements are made. By arranging
relay switching so that de bias can be continuously maintained when
measuring active unknowns such as transistors, multiple warm-up
periods are eliminated and thermal equilibrium must be reached only
once. Another advantage of the 50 ohm environment surrounding the
unknown is that transistors and other active devices tend to be stable
when terminated resistively.

If the terminal impedances deviate from the 50 ohm nominal,
measurement data which assumes 50 ohm impedances will be in error.
In the past, these errors were minimized to the best degree practical
by controlling the impedance environment around the unknown. Even
so, the lack of ideal circuit elements meant that significant errors
remain in linear characterization data. In the computer operated trans-
mission measuring set, the circuit elements are even less ideal because
of impedance deviations resulting from the large number of coaxial
relays used. The impedance control problem is further aggravated by
the difficulty of designing low reflection dc bias networks to operate
over several decades of frequency. For the latter reason the frequency
range of measurement for devices requiring dc bias is confined to be-
tween 50 kHz and 250 MHz. The total measurement errors that could
conceivably result from the residual impedance deviations would
prevent meeting our accuracy targets.

A solution to this problem, which represents an advance over past
practice, was to endow the measurement facility with the capability
to self -measure the source and load impedance deviations around
the unknown, thereby permitting measurement data to be corrected
for the residual mistermination.

The effect achieved in the execution of this technique is to refer the
corrected data to a set of calibration standards. It is not necessary to
have carefully controlled terminal impedances, and high accuracy
characterizations are obtainable using device -connecting jigs with
poor terminal impedances.

A further advantage of the new technique lies in the greater analytical
ease of converting measured data to two -port characterization sets of
most direct interest to the designer. In past measuring arrangements,
measured insertion ratios e" and eel' are related to relevant param-
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eters by the equations3'4

e4,2, = 1 - 822pL - siiPo - PgPL(si2s21 - slis22)
821(1 - PgPL)

and

1315

e4,9 1 - si,PL - 822P, - P1Pd812s21 - s,,s22)-
812(1 - PgPL)

where the generator and load and reflection coefficients, p, and pL, and
the scattering parameters are referred to the nominal design im-
pedance, generally 50 or 75 ohms in earlier cases. Similarly, expres-
sions can be derived for the measured input and output reflection co-
efficients in terms of all four of the desired parameters and the
terminating reflection coefficients. Even if the test set reflection coef-
ficients could be determined by independent measurement, the de-
sired parameters cannot be obtained without recourse to a difficult
mathematical inversion or a lengthy iterative calculation upon four
coupled equations.

One of the important attributes of the new approach discussed in
this paper is that the desired S parameters are explicitly dependent
on known quantities and hence easily evaluated. This is made possible
by initially finding the scattering parameters of the unknown, re-
ferred to the actual test set source and load impedances, as described
in Section II.

II. MEASUREMENT AND IMPLEMENTATION

2.1 S Parameter Representation
The insertion and bridging measurement data are closely related to

scattering parameters. (See Appendix A.) It should be recalled that
there are several types of scattering parameters.5-7 The calculations
which follow deal exclusively with voltage scattering parameters. In
the present context, these parameters are defined with respect to the
terminal impedances which actually prevail in the test set. The
voltage S parameters along with their normalizing impedances can
be transformed to any other parameter representation by well known
transformations.5

2.2 Measurement of s12 and s21

The transmission S parameters, si2 and s21, are obtained almost
directly from the insertion measurement illustrated in Fig. 1. With
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SOURCE
STRAP

(REFERENCE NETWORK)

H2
X

UNKNOWN

DETECTOR

Fig. 1- Model of SI., S. measurement. Circuit shown for 321 measurement;
detector and source interchanged for 212 measurement.

the unknown inserted in the measuring network the detected voltage
V is directly proportional to .321 of the unknown defined with respect
to the normalizing impedances Z1 and Z2. (See Appendix A.)

18211 Zi ,Z. = {R21  V} X (1)

The constant of proportionality R21 can be determined by inserting a
reference network with known sR21

Vx
1521}zi.z, = IsR21}zi,z (2)

Typically the reference network is a coaxial line of known electrical
length. When ports 1 and 2 can be directly connected the line is of zero
length for which SR21 takes the simple form

2  Z2
ISR21} Z.,Z1 Z1 + Z2 (3)

This result can be seen directly or derived from equation (31) in
Appendix C. The results for a reference line of finite length are de-
rived as an example in Appendix C.

The hardware implementation is such that the impedances seen to
the left and right of the unknown are essentially the same for .312 and
s21 measurement. This invariance of the terminal impedances, with re-
spect to interchange of the source and detector, is accomplished by
using a pair of judiciously located 20 dB pads. The hardware details
are described in Section 2.5. The measurement of s12 is similar to that
of 821. For this case,

V x
{Su} 22.Za = 181i12} ZI.Zs v (4)
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2.3 Measurement of sll and s22
The quantity s11 of an unknown device is obtained indirectly by a

bridging measurement. For this measurement the source and de-
tector are directly connected as illustrated in Fig. 2. The device
to be measured, as well as the calibration standards, are successively
bridged across the source -detector interconnection. The implementa-
tion is such that the impedance seen at terminal 2 is Z2, the same
impedance as for the previously described s12 and 821 measurement.

The quantity s11 is determined by making four measurements of V.
Three consist of calibration measurements using open, short, and
reference impedance standards. The fourth measurement is made with
the unknown connected. These measurements can be combined to
obtain a reflection coefficient

closely related to the desired
lsrdzit,z,

i} zi . z,

1St ilzz
(V, - VR)(V. - V0)

' (V. - VR)(V, - V0) + VR - VoX V. -
The term

(5)

Isii1ZR,Z2

does not have the desired impedance normalization on port 1. The
desired result is obtained through the transformation

where

I Sid zi za -
s11 - r,-

ZR-
Z1 + ZR

(6)

(7)

is obtained from an additional measurement described in Section 2.4.
Notice that Ti is the reflection coefficient of Z, normalized with respect
to ZR . Hence, once Z, becomes known, all of the information is avail-
able to compute the value of {s1, . The quantity s22 is determined
in an analogous manner. In this case the hardware implementation is
such that the impedance terminating port 1 of the unknown is Z, , the
same impedance as in the s12 and 821 measurements; it is seen that the
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MEASUREMENT OF: S11
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REFERENCE
STRAP
(FIG. 1)

z,
(FIG.1) (FIG.1)

-MA,- -1MA,-
r2 r,

Fig. 2 - Model of Su, S r1, and r2 measurement.

measured data this time yield 822 with respect to Z1 at port 1 and ZR at
port 2. The term { s22 } z, z, is then determined as before, as a function of
the four measured detector voltages and r2 , where

Z2 - ZRr2 - ± ZR
(8)

(Appendix B shows that the equations of Section 2.3 are general and
apply for any linear network interconnecting the source, the detector,
and the unknown.)

The above discussion has described a procedure for determining the
four voltage scattering parameters { z,,z, . This set can be transformed
to a more useful parameter representation only if Z1 and Z2 or equiva-
lently r, and r2 can be determined. Section 2.4 discusses the procedure
for determining r, and 1'2

2.4 Measurement of r, and 1'2

The measurement procedure for determining r2 is similar to that for
evaluating s . With the reference transmission strap used in the s12 and
s21 measurements inserted in the bridging configuration of Fig. 2 and
terminated in Z2 , the detected voltage is Vr, . The reflection coefficient
computed from equation (5) with Vg replaced by Vr, is the reflection
coefficient of Z2 , with respect to ZR , as viewed through the reference
strap, which has known transforming properties. When ports 1 and 2
can be directly connected the line section is of zero length for which the
transformation is unity. In this event the reflection coefficient corn-
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puted from equation (5) is equal to r, . The term r, is evaluated in a
similar manner using the 822 bridging configuration.

Notice that Zi and Z. can be determined on a broadband basis
simply with two additional calibration measurements. It is important
to realize that this is possible only because of the particular physical
embodiment which results in the network being terminated in Z2 on
port 2 during the s12, 821, and sii measurements and in Zi on port 1
during the s12, s21, and 822 measurements. Section 2.5 describes the
hardware arrangement. Notice that for an arrangment in which the
terminal impedances remain invariant under all four S measurement
conditions these two additional measurements are redundant. In this
case, the terminal impedances can be determined from the open, short,
and standard impedance measurements. (See Ref. 8.)

2.5 Physical Embodiment
Figure 3 is a simplified schematic diagram of the 2 -port linear char-

acterization facility. The components Li , Ci , L2 and C2 comprise the
bias networks necessary for supplying dc bias to devices such as tran-
sistors. The attenuators Pi and P. have an insertion loss of 20 dB.
These attenuators play a critical role in maintaining the terminal im-

The coaxial switch closures and the circuit paths of a 821 measure-
ment are specifically shown in Fig. 4. The terminal impedances seen
to the left and right of ports 1 and 2 are Z1 and Z2, respectively. A
simple examination of Fig. 3 will reveal that the switch closures and
paths inside Pi and P2 are identical for the s12 and 821 measurements.
The switching necessary to convert to the s12 measurement changes the
reflection coefficient seen looking to the left of Pi and right of P2 by
less than 0.1. These changes are attenuated by Pi and P. so that the
changes in r, and r2 seen at the terminals 1 and 2, respectively, are
less than 0.001. Within the bounds of neglecting a possible 0.001
change, r, and T2, and therefore Zi and Z2, are invariant under the
change from the s21 to the S12 measurement.

Figure 5 illustrates the switch closures and circuit paths of an s22
measurement. Attenuator P2 has been eliminated from this measure-
ment to prevent a loss in measurement resolution. Notice that all
switch closures and circuit paths between terminal 1 and attenu-
ator Pi are the same as in the 81, and 821 measurements. The re-
flection coefficient seen to the left of Pi has changed less than 0.1 in
switching into this measurement mode. Therefore, the reflection
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(FIG.1, 2)

MEASUREMENT PLANES

1 522)

S22

50

(s12,
)

50

2

Fig. 3 - Simplified schematic of transistors measurement unit. Signal routing
required to set up measurement paths for the determination of Su, Sm., Su, or 322
are shown for each switch.

coefficient seen looking into terminal 1 cannot differ from r, by more
than 0.001, a negligible amount. A similar analysis of the s11 measure-
ment mode reveals that the reflection coefficient seen looking into
terminal 2 cannot differ from r2 by more than 0.001.

2.6 Other Parameter Representations

The set {s zi z Z1(r1) and z2(r2) is a well defined voltage scatter-
ing parameter representation of the linear characteristics of the 2 -port
unknown. This representation has no practical application, but it can
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be easily converted to a more useful representation by well known
transformations (Ref. 6). One particularly useful and easily obtained
parameter set is the voltage scattering parameters normalized to 50
ohms (ZR = 50 ohms). This set is obtained from the measured set by
use of the transformations of Appendix C:

1311) ZR,ZR
r1 + s11 + r1r2s22 + r2 As
1 + ris + r2s22 + rir2 As}z2,z,

812(1 - r1)(1 + r2)
18,2i ZR,ZR {1 + risi, + r2822 r1r2

(9)

(10)

Fig. 4 - Path through transistor measurement unit for S21 evaluation.
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50

Fig. 5 - Path through transistor measurement unit for AS= evaluation.

1,681z2.za = 1811822 - 8i282i)z..za (11)

The transformations for s22 and s21 are found by transposing subscripts
in the above equations. It is useful to realize that since the transformed
S parameters are normalized to equal real impedances they are nu-
merically equal to the current and power scattering parameters with
the same normalization.

The transformed parameters are independent of Z1 and Z2, depend-
ing only upon the open, short, ZR, reference network calibration stand-
ards and the loss and phase measurement accuracy of the test set. This
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independence from Z1 and Z2 allows for useful freedom in the design

of the measuring apparatus terminal impedances.

HI. SPECIAL CALIBRATION FEATURES

In Section II a measurement technique has been presented in which
the linear characteristics of a 2 -port unknown are determined relative
to four calibration standards. An idealized set consisting of an open,
short, standard impedance and a zero length line were treated for
mathematical simplicity. The calibration standards used with the
automated facility deviate considerably from this idealized set over
the broad frequency range of interest. A failure to compensate for
these deviations would adversely affect the accuracy of linear char-
acterization. Compensation is accomplished by modeling the devia-
tions as a function of frequency and then computationally accounting
for them in the data reduction program.

3.1 Compensation for a Transmission Reference Line of Nonzero Length

Physical constraints often make it impossible to directly inter-
connect ports 1 and 2 for the measurements needed for the deter-
mination of 812, S21, r1 and r,. Interconnection is achieved in these
cases by using a short transmission line with a characteristic im-
pedance equal to ZR and an electrical length equal to O. For this net-
work

ISR12)ZR.ZR = ISR211211,zn =

where 0 is computed from the line constants and length.
For determining 1'1 and 1'2 this line has a particularly simple trans-

forming property. r, and 1'2 when viewed through the line appear as
Pte -1" and r,e-'2A, respectively.

In the actual measurements, determining si, and s21 of the unknown
require 5R12 and sR21 of the line normalized with respect to Zi and Z2 .
These quantities are obtained by transforming from the (ZR , ZR) im-
pedance normalization to the (Z Z2) impedance normalization as
illustrated in Appendix C. The data reduction program allows for
reference lines of arbitrary length.

3.2 Compensation for Nonideal Bridging Calibration Standards
Typically high quality standard impedance (ZR) terminations are

available whose deviations from nominal are negligible. This is not
true for the open and short calibration standards. Mechanical consider-
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ations sometimes require that the short and open reference planes be
displaced from the measurement plane by a section of transmission
line. In addition, the "open" differs from ideal by a fringing capaci-
tance. For small reactive perturbations or arbitrary displacements in
a transmission line of characteristic impedance ZR, the actual open
and short circuit reflection coefficients are of the simple form

roc, IzE, = e'lt" (12)

ro 1z = -e -21T" (13)

where 1-0, and To are the time delays for the lengths of line involved,
including a correction for fringing capacitance at the end. The linear
dependence of the reflection phase angles on frequency facilitates
broadband computational correction. In the data reduction program a
more general bridging equation than equation (5) (see Appendix B) is
programmed to allow for calibration standards of the above form.

3.3 Measurement Plane Translations

For some unknowns it is desirable to define the reference planes of the
S parameters translated down 50 ohm transmission lines from the
measurement planes. Examples are the air line measurements in Sec-
tion 5.1, and the case of measuring an integrated circuit connected
to the test set by 50 ohm microstrip transmission lines of significant
electrical length when information about the chip alone is sought. (An
alternative approach to characterization would be to develop integrated
circuit standards so that calibration could be performed at the chip
interface.) Analysis shows that the presence of transmission lines of elec-
trical length a are accounted for within the previously developed mathe-
matical framework by entering the translated angles - corc., ± 2a,
-coro + 2« and 0 2« instead of the physical angles - wro, - coro
and 0 into the data reduction program. The alternative approach,
requiring additional programming, would "remove" the transmission
lines by_ appropriate matrix manipulations.

IV. STATEMENT OF ERRORS IN 850,50 PARAMETERS

This section gives the results of an approximate worst case error
analysis for S50,50 parameters. The analysis was performed on these
parameters because of the mathematical simplifications resulting from
their similarity to the measured quantities. The results are derived by
assuming that r, , 1'2 , and the fundamental error terms are small com-
pared with unity. This approximation allows for simplification of the
equations presented in the earlier sections. The fundamental error terms
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are added on a worst case basis to obtain overall error bounds. The
lengthy analysis has been omitted for brevity.

4.1 Bound for the s11 and s Measurements

The errors in the s11 and s22 measurement arise from two principal
sources, those associated with the bridging technique and those from
interaction with the termination of the unknown. For an unknown with
1812.821 I << 1 the latter error source is negligible and the bound for
errors in the determination of s11 is,

1 Asil 150.50 < {0.0023 + 0.0023 I 1 - 41 I + 0.0013 I
s11

1 1 1 + sii 1

+ 0.0013 I sit I I 1- sii I+ I r. I I 1- s11 II 50.50 (14)

Implicit in equation (14) is the assumption that the uncertainties in
the phase angles of the open and short circuit standards are less than
0.02 degree.

ZR - 50r. - (15)
ZR + 50

r8 is the reflection coefficient of ZR with respect to 50 ohms, which
independent measurements have shown to be less than 0.005. Notice
that certain terms in equation (14) disappear when s11 equals 0, -1,
and 1. This reduction of the error bound occurs when the bridging
measurement of the unknown reduces to a differential comparison of
the unknown with either the 50 ohm, short, or open standard.

When the product si,>soi is not negligible, errors that occur in
determining the reflection coefficient of the termination, r2 for the sit
measurement, are transformed through the unknown to increase the
error of the sii determination. If Ore is the error in determining F2,
the term

I r2 I I S12 S21 150,50 (16)

must be added to equation (14) to account for this second error source.
Since r2 is determined from a bridging measurement, the bound on
Ar2 can be computed directly from equation (14) for r2 << 1.

or2I<0.005+IraI<0.01. (17)

If r2 were not determined by measurement, then Ore in equation
(16) would have to be replaced by the worst case estimate of the
value of r2. From Fig. 6, ro is seen to be as large as 0.08. The error
term of equation (16) is eight times larger in this case.

The relationship for As,), is found by changing subscripts.
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Fig. 6 - Test set port 2 reflection coefficient defined with respect to 50 ohms.

4.2 Error Bound for the s12 and s21 Measurement
The worst case fractional error in the determination of sit is

AS12

S12
< {0.0013 + 0.0013/1 s12

1

50.50

+ 1 AO 1 + Arl 1* 1

sii I + 1 A172 1* 1822 1}50,50 (18)

The term that increases as 1 s121 decreases shows the intuitively
appealing result that the relative error bound increases as the signal-
to-noise ratio decreases. The term AO is the uncertainty in the elec-
trical length of the reference network (zero line). The value of AO
is less than 0.001 radians for the typical reference transmission line
network. When direct interconnection of the measurement ports is
possible, 0 and therefore AO, equals zero.

The terms ar, and ore arise from the uncertainties in the knowl-
edge of the terminating reflection coefficients, r, and ro. The terms
or, and Ar2 are less than 0.01, as described in Section 4.1.

If r, and r, are not determined by measurement then Ari and An,
in equation (18) must be replaced by worst case values for r, and
F2. From Figs. 6 and 7, r, and r2 are as large as 0.08 resulting in an
eight fold increase in the mistermination terms of equation (18).

V. MEASUREMENTS TO CONFIRM ACCURACY

The two -port properties of a precision air -line, a precision atten-
uator, and a common base transistor were measured. These unknowns
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are useful for demonstrating the accuracy of small signal characteri-
zation over a wide range of test parameter magnitudes.

5.1 Characterization of a Precision. 30 -cm Air Line
A General Radio 900-L30 precision 14 mm air line was measured

on the automated facility and the data processed to yield scattering
parameter data. The calibration standards consisted of a General
Radio 90-W50 coaxial 50 ohm standard, a General Radio 900-WN
coaxial short circuit, a coaxial open circuit, and a zero length line. The
test set measurement ports (General Radio 900) were at the ends of
flexible cable, thus allowing direct interconnection for the reference
insertion ("zero -line") measurement. The open circuit standard, con-
sisting of an unterminated General Radio 900 connector, was corrected
for 0.16 pF of fringing capacitance by the techniques of Section 3.2.

The s50,50 ohm parameters of the line were computed. This matrix
is symmetrical and therefore only s11 and s12 data are presented in
Figs. 8 through 11. The results for an ideal air line are sii = 0 and st2
= e-luir, where COT equals 90° at 250 MHz. To expose the errors of meas-
urement, the reference plane translation technique of Section 3.3 was
used to remove the linear phase component from all the S parameters.
Alternatively, the translation is equivalent to multiplying each matrix
element by e1". For an ideal air line the resulting s50,50 parameters are
sii = 0 and s12 = 1. The data in Figs. 8 through 11 indicate how the
actual air line deviates from these ideal values.

The deviations can be accounted for by skin effect losses. The high
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0

104 105 106 107 108 109
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Fig. 7 - Test set port 1 reflection coefficient defined with respect to 50 ohms.
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Fig. 8 - Magnitude of 51150.50 for a precision 30 cm airline with the linear
phase component subtracted.

frequency (1 MHz or greater for this example) s50,50 parameters for
a transmission line deviating from the ideal because of skin losses are
derived in Appendix D. Multiplication of these parameters by ebYr
converts them to a form compatible with the figures.

Is11150,50 = X(zwr)1(
LO

sin CJ TI
(Fr/ 4) (19)

T
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Fig. 9 - Phase of S1150,50 for a precision 30 cm airline with the linear phase
component subtracted.
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Fig. 10- Magnitude of S1250,60 for a precision 30 cm airline with the linear
phase component subtracted.

{s12150.50 = exp [-X(cor)t] exp [-jX(cor)4] (20)

where is a frequency independent, skin effect parameter dependent
on surface conductivity as well as other line parameters. The value of

was determined to be 0.0016 by fitting the magnitude of 812 from
equation (20) to the measured results. The smooth curve in Fig. 10
shows that the fit to the magnitude of s12 is typically better than 0.002
dB. Using this value of A, the phase of s,2 and the magnitude of s11
were computed. The results are plotted in the Figs. 8 and 11.

The deviations of the measured results from the theoretical skin
loss curves are estimators of characterization accuracy. Most of the
deviations result from the sensitivity limits of 0.001 dB and 0.01°.
The observed deviations are an order of magnitude smaller than the
worst case errors predicted by the equations of Sections 4.2 and 4.3.
If the mistermination corrections were not performed, the errors in
s11 and s22 would be substantially larger. For example s,1 would be
virtually equal to r2, the reflection coefficient of port 2. The values of
r2 are plotted in Fig. 7, showing that the resulting error in sn could be

as large as 0.08.

s.2 Characterization of a Precision Attenuator

A General Radio 900-G6 precision 14 mm 6 dB attenuator was mea-
sured and the data processed to obtain 850.50 parameters. The true value
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Fig. 11 - Phase of 512.0,6. for a precision 30 cm airline with the linear phase
component subtracted.

of these parameters are not sufficiently well known for the attenuator
to be used as a measurement standard. However, its measurement is
useful in verifying characterization accuracy by comparing 812 and s21
The terms {s,2 1 50. 50 and {821 50,50 must be equal for a reciprocal net-
work; {S12 } Zi Z. and {S21 } Zi Z2 are in general not equal since typically
Zi Z2 . Therefore, the agreement between the 50 ohm S parameters
is a measure of the success to which {s12} zi.z2 .321 Zi , Z. Z1 and Z2
have been determined.

The magnitudes of s12 and s21 are plotted in Fig. 12 for comparison.
The midfrequency values for s12 and s21 are close to the de measured
value of - 6.0151 dB. The attenuation bump below 104 Hz is from a
poorer test set audio frequency signal -to -interference ratio. The agree-
ment between 812 and s21 over most of the 400 Hz to 250 MHz range is
better than a few thousands of a dB. In Fig. 13 the difference between
the phase angles of these two parameters is plotted. The typical agree-
ment is again excellent, better than several hundredths of a degree.
The above differences are well within the 0.035 dB and 0.23° fractional
error bounds on s12 and 821 computed from equation (18)

5.3 Common Base Transistor Measurement
A medium -power silicon transistor was measured in the common

base configuration. The measurement data were then processed to
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obtain common emitter h parameters by way of illustrating the flexi-
bility of the data reduction program. The parameter h21 (or (3) with
and without mistermination errors is shown in Figs. 14 and 15. Differ-
ences between the corrected and uncorrected data as large as 5 dB and
20° are readily apparent. Discrepancies of this magnitude result from
the #2 multiplication of errors which occurs when converting common
base parameters to common emitter parameters. Notice that the dis-
crepancies decrease as the magnitude of S decreases. The agreement
between corrected common emitter p curves derived from measure-
ments in the common base, common collector, or common emitter
modes is typically better than 1 dB and 5°. (See Ref. 1, Fig. 25.)

VI. SUMMARY

Complete device characterization can be rapidly and accurately
achieved by the measurement method described in this paper. Loss
of accuracy caused by nonideal test set terminations is virtually
eliminated by measuring the deviations from ideal. The errors that
arise are now the result of the smaller inaccuracy in measuring the
deviations rather than to the gross deviations themselves. The self -
measurement of the termination deviations is done at any frequency
by two extra calibration measurements.

All measurements refer to a set of calibration standards, thereby
making the derived parameters independent of the impedance prop-
erties of the test set. This attribute should facilitate the measurement
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Fig. 15 - Common emitter h21 parameter computed from a common base
measurement configuration. Mistermination errors are removed from the dashed
curve and not from the solid curve.

of integrated circuits, for only the integrated calibration standards
and not the connecting jig determine the accuracy of measurement.
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APPENDIX A

Voltage Scattering Parameters

A network can be characterized in terms of traveling waves at
selected reference planes rather than in terms of currents and voltages.
Voltage scattering parameters are one such traveling wave representa-
tion. These parameters relate the reflected voltages from a network
to the incident voltages. The matrix notation for this relationship for
a two -port network is

V1V2r

811 812

-821 S22

V1 it.

V21

(21)
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ZI,Z2

+
V2r V2 L

02

Fig. 16 - Scattering coefficient representation of a two -port network.

V1, and V2ti are the incident voltage waves appearing at the port 1 and
port 2 reference planes, respectively. V1,- and V2r are the respective
reflected voltage waves. The S parameters relating to the incident and
reflected waves are defined with respect to the incident waves source
impedances, Z1 and Z2.

The incident waves are related to the source potentials V01 and
T702 (see Fig. 16) as follows,

V1 = V01/2 V2, = V02/2. (22)

The conventional voltages appearing at ports 1 and 2 are

V, = Vii + VD. V2 = V2i V2r

From equations that

V2 = {(Voi/2)s21} zz, (24)

when V02 = 0. Therefore V2 is directly proportional to
{S21 zi z, when the network is inserted between a source of impedance
Z1 and a load of impedance Z2 . Also when V02 = 0 the reflection co-
efficient defined as Vi,./Vi, is equal to
{s11 }z,,z,

APPENDIX B

(23)

The Bridging Technique

The bridging technique is one method of determining the input and
output scattering parameters of a device. This technique requires an
oscillator, a detector, three impedance standards and an arbitrary
three -port linear network. The judicious selection of this network will
lead to better measurement sensitivity.

The essentials of a bridging measurement are illustrated in Fig. 17.
Z and E03 comprise the Thevenin's equivalent circuit of port 3, the
measurement port. An analysis shows that the detected voltage V
remains unchanged if the unknown impedance Zx is replaced by the
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load and controlled source combination shown.

Zx -ZF -
Zx Z

Since the interconnecting network is linear,

and

V = A E BrE03

E03 = C.E.

(25)

(26)

(27)

A, B, and C are system constants. Equation (26) is therefore seen to
reduce to the form

V = a br (28)

where a = AE and b = B  C E.
This equation has three unknowns, the two constants a and b, and the
normalizing impedance Z. These constants are determined by three
independent measurements made with Zr (see Fig. 2) replaced with
three calibration standards.

Three standards that are readily obtainable and which lead to com-
putational simplicity are an open, short, and termination (R) ; the
reflection coefficients defined with respect to Z are 1, - 1, and rR, re-
spectively. A somewhat lengthy computation reveals that

( V, - VR)( - Vo)r = (lc VR)(Vx V0) (VR V0)(V.0 VIC)

Cr R is the reflection coefficient of Zx normalized with respect to R.

THE'VENIN'S
EQUIVALENT CIRCUIT

r
-11= E03

r 03

Fig. 17- Simplified schematic of bridging measurement.

(29)
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APPENDIX C

Change of the S Parameter Impedance Normalization

The voltage S parameters will describe the traveling wave properties
of a network terminated in a particular impedance environment. In
a different environment the description is no longer valid. Therefore,
for example, it is not possible to measure the S parameters of a net-
work in a 50 ohm test set and then use these parameters directly to
describe the network performance in a 75 ohm system. It is possible
to transform S parameters with one impedance normalization to those
of another impedance normalization. These transformations are:

ri + sii + rir2s22 + r2 As-1 A+ rloll + 2022 + J. 1 2 ,-10}Zos ,Zoi

312(1 - r1)(1 + r2)isl2fzi,z. + rlsll + r2s22 + rir2 AsIzos.zoa

I AS) ZoiZos = 1811822 - 812S21 Zot.Zos

ZOI Z02 - Z2ri - r2 -
Lin "7- zi zi 02 Z2

(30)

(31)

(32)

(33)

where s.i and s92 are found by transposing subscripts.
These transformations are useful in computing s12 of a uniform

transmission line normalized with respect to two arbitrary impedances
Z1 and Z2. The voltage S parameters of a uniform transmission line,
normalized with respect to the characteristic impedance of the line,
are s11 = s22 = 0 and s12 = s2.1 = e-40. Then from equation (31),

18121 zi.z. = e-"(11:rr:r)2(e1_,±2, r2)

APPENDIX D

(34)

S Parameters of a Nonideal Transmission Line

The primary deviation of a physical uniform airline from an ideal
airline is caused by the skin effect. The nonideal line is modeled as an
ideal line with the added series skin effect resistance of Row(1 j)
ohms per unit length. The characteristic impedance is

Z = Zo 1 + (35)
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The propagation constant is

= -jcieoZ. (36)

The quantities used in the above expressions are defined as:

co = angular frequency

Lo = series inductance per unit length of an ideal line

Co = shunt capacitance per unit length of an ideal line.

The term Zo = (Lo/C0)4 = characteristic impedance of an ideal line.
The voltage scattering parameters of the nonideal line of length 1
normalized to two impedances equal to Z are of the simple form

Sit lz,z = 822 I z z = 0 (37)

ts121z,z = is21lz.. = e7z (38)

The more useful sizo,z. parameters are easily obtained using the
transformations of Appendix C. From equation (33) one obtains

Z - Zor, = r2 - (39)Z + Zo

For a practical airline [RocoYLoco = 2z << 1, allowing for the simplifi-
cation of expressions (38) and (39) to

and

r, = r, (i - D (40)

= {S21}Z,Z = e-wrge-"7"+s), (41)

wr = coCoZol is the electrical length of the ideal airline. The application
of the Appendix C transformations to the is } z,z parameters, assuming
that the line is electrical short (that is, zwr << 1), yields the desired
{311}z., z. parameters.

For 1/X2 >> co- >> X2

Sin wr e-iopr-i-i(T/4)= Is221z-ze X(2cor)i
COT

tsidzo.z. = e-x(")1e e-lx('T)l-i.7

(42)

(43)

X = z(cor)1 is a frequency independent constant of the nonideal line.
(See also Ref. 9.)
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A 50 Hz -250 MHz
Computer -Operated Transmission

Measuring Set

By W. J. GELDART, G. D. HAYNIE and R. G. SCHLEICH

(Manuscript received November 27, 1968)

A computer -operated transmission measuring set has been developed for
the 50 Hz to 250 MHz frequency range. Use of the computer in this system
has significantly effected the test set design and the measurements obtainable.

Compared with previously available transmission measuring sets, the
computer -operated set increases speed more than 300: 1. This speed, along
with state-of-the-art accuracy and increases in operating range, flexibility,
and convenience, enables the set to be used for types and quantities of
measurements previously not practical. It has already been applied to
laboratory and production testing with resulting improvements in the quality
and reliability of manufactured product designs.

In addition to the directly measured quantities of insertion loss and phase,
the set provides insertion delay, impedance, and two -port parameters as
derived quantities. The two -port data conversion program provides H, Y, Z,
G, T, s, ABCD and ABCD-1 parameters with a number of useful options.
Results of transmission measurements, impedance measurements, and
two -port measurements are presented. Some of the error mechanisms and
means of measuring them are discussed. Further development of centralized
measuring facilities, with the computer operated set as a basic element, is
discussed.

I. INTRODUCTION

The development of communication systems for the Bell System
has, in the past, required large numbers of transmission measurements.
These measurements have been costly and time-consuming. With the
trend toward more complex systems, the volume and accuracy of
measurements must be increased. At the same time, the increased
use of computers in modeling and design requires flexibility in the

1339
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types of data obtained. For example, two -port characterization of
devices such as transistors is becoming particularly important.

This paper describes a computer -operated transmission measuring
set developed for laboratory use in the 50 Hz to 250 MHz frequency
range (see Fig. 1). Compared with previously available sets, this set
provides increased speed, operating range, accuracy, flexibility, and
convenience, and the capacity for types and quantities of measure-
ments previously not practical.

The computer -operated measuring set is a part of the centralized
measuring facilities being developed for Bell Laboratories. With the
addition of various appliques now being developed, the measurement
centers will provide additional measurement facilities in the 50 Hz
to 250 MHz range, with environmental control, and in the three
microwave radio bands at 4, 6, and 11 GHz. The set is also being
used for production testing by the Western Electric Company.

II. MEASUREMENTS SET CHARACTERISTICS

2.1 General
The small, general-purpose digital computer with fast and precise

digital -analog components and with broadband analog components
has had a significant effect on the measurements obtainable.

Increased operating speed results from the use of computer control,
memory, and computation as well as fast measuring set components.
The operating speed is 10 to 300 times faster than manual test sets
(per measurement point), depending on the output media and the
test frequency.

Computer control also makes wide operating ranges practical. By
automatic control of test set level patterns, insertion loss can be
measured over a range from -40 to +100 dB. By automatic control
of signal sources and frequency dependent elements, operation over
nearly seven decades is obtained. This frequency range previously
required three separate test sets.

Accuracy is, of course, limited by accuracy of the test set standards.
Computer operation, however, does play a significant part in the
test set accuracy. First, test set errors can be comprehensively eval-
uated to a degree only practical with a high speed set. Second, the
speed, memory, and computation capability permits the correction of
data for known errors and the averaging of random errors. Correc-
tion of "zero line" errors is particularly important with the complex
transmission paths used in the test set. Finally, the operating rules
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Fig. 1- Computer -operated transmission measuring set.

are set up so as to maintain near optimum levels during the measure-
ments. In this way, tolerable compression errors can be deliberately
introduced to improve signal-to-noise ratio.

The computer -operated set provides flexibility in a number of ways.

(i) By using software rather than hardware control, operation of
the set can be readily changed.

(ii) Special measurements can be made which include system main-
tenance tests and periodic measurement of test set error sources.

(iii) Measured data can be converted into more useful forms. For
example, meaningful acceptance criteria, which may be too complex
for manual application, can be used for GO, NO GO tests of measured
networks.

The computer -operated set is convenient in the ease of setting up
measurements, particularly repeated measurements, and in the ability
to yield measured or derived parameters on various output media.

2.2 Transmission Measurements
The basic quantities measured by the transmission -measuring set

are insertion loss (or gain) and insertion phase shift as a function
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of frequency. Internal switching provides for direct measurement of
insertion loss and phase at a number of impedance levels. Insertion
delay is automatically obtained by calculation from two phase mea-
surements separated by an appropriate frequency interval.

Table I summarizes test set performance.

2.3 Impedance Measurements
Fixtures are provided to permit connection of one port (or ter-

minated two -port) networks into the transmission measuring circuits.
By measuring suitable impedance standards (three needed) along
with the network and processing data on a computer, the impedance,
reflection coefficient, or return loss can be obtained.1 With a change
of program, the test set computer can be used for processing the data.
In this case, the derived parameters can be output on the test set
output equipment.

Measurement accuracy is a function of the impedance measured
but will be better than 1 percent over an impedance range of 104.
Section 5.2 has a more detailed discussion of impedance measure-
ment accuracy.

2.4 Two -Port Characterization Measurements
Coaxial terminals, coaxial fixtures, and de bias supplies are pro-

vided which permit the linear characterization of two -port networks
and of devices such as transistors. For unbiased networks, the fre-

TABLE I-TEST SET PERFORMANCE

Characteristic Range Best accuracy

Test frequency

Gain measurements
Loss measurements
Phase measurements
Delay measurements f

50 Hz to 250 MHz,
adjustable to 0.01-
0. 08 Hz

0 to 40 dB
0 to 100 dB
0 to 360°
39.999 ms to 39.999
nsec, full scale

3 parts in HP

0.001 dB
0.001 dB*
0.01°
55/AfAsec

Impedance levels: 50, 75, 135 (balanced or unbalanced), 600 (balanced or un-
balanced), arbitrary Z, and probe mode.

* Loss and phase accuracies decrease as loss or gain increases. For example, the
random error in loss measurement is 0.001 (1 + 0.2 X 10L/20) dB for losses <40 dB
and 0.01 (1 -I- 0.2 X 10(L-40/20) dB for losses >40 dB.

t Computed from two phase measurements separated by Of Hz.
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quency range is 50 Hz to 250 MHz and for biased networks the range
is 50 kHz to 250 MHz. Two -port characterization data, including
calibration data, is processed by computer (such as the IBM 7094)
to provide any of the standard two -port matrix representations such
as H or Y parameters. Accuracy of the output parameters is parameter
dependent but errors in s parameters will be less than 0.02 for most
unknowns. Section 5.3 has a more detailed discussion of parameter
accuracy.

2.5 Test Set Input -Output
Figure 2 is a simplified block diagram of the computer operated

test set from the human operator -test set interface. Information re-
quired by the computer to control a particular set of measurements
is contained in the computer memory, in switch positions on the op-
erator control panel, or possibly on punched paper tape. The informa-
tion in computer memory is inserted either with the tape reader or
the typewriter. The operator control panel can be used both to set
up and start the desired set of measurements or to modify the se-
quence after it has started.

Outputs are selected on the operator control panel. Visual readout
is always present, and the typewriter, tape punch, and X-Y plotters
can be independently selected. Plotting parameters are part of the
input data, and output readings are scaled by the computer. Points
are plotted to an accuracy of about 0.1 percent. If no output is selected

NETWORK OR
TRANSISTOR

TRANSMISSION
MEASURING SET

COMPUTER -TEST SET COUPLING UNIT

OPERATOR
CONTROL

PANEL

DIGITAL COMPUTER

TAPE
READER

TYPE-
WRITER

1

TAPE
PUNCH

X -Y
PLOTTERS

Fig. 2- Operator -test set interface.

VISUAL
READOUT



1344 THE BELL SYSTEM TECHNICAL JOURNAL, MAY -JUNE 1969

or if the output switches are turned off during a measurement se-
quence, the test set will provide continuous loss and phase measure-
ments with the test frequency kept constant.

2.6 Test Set Speed
Measurement speed varies with a number of factors, particularly

the number of measurements averaged to reduce random errors. How-
ever, Table II gives a useful summary of typical measurement times.

III. BLOCK DIAGRAM DESCRIPTIONS

3.1 Overall Description

Figure 3 is a simplified block diagram of the measuring set and
connections to the computer. At this interface, control and readout
of the measuring set is entirely digital.

Under computer control, the signal oscillator supplies the test
signal to the comparison unit for excitation of the circuit to be mea-
sured and to the reference path frequency converter. The local oscil-
lator provides the proper frequency to the measurement path and
reference path converters for translating the test frequency to a fixed
intermediate frequency. The loss standard is adjusted to have a loss
equal to that of the measured circuit using error signals provided
by the loss detector. The phase meter provides a measurement of the
phase difference between the measurement path and reference path
inputs. With suitable switching, the difference between two readings
provides the desired phase measurement.

The measuring set block configuration is similar to others pre-
viously reported.2' 3 However, when the elements in the configura-
tion are realized with the components to be described and then
controlled by a computer, the advantages cited in Section I result.

3.2 Gain -Loss Measurements
Figure 4 shows the loss measuring circuit with details added which

are esential to the discussion.

3.2.1 Comparison Circuit
The comparison circuit rapidly interchanges the unknown path and

standard path between the signal source and the heterodyne detec-
tor. This produces amplitude and phase variations in the signal at
the switching rate which correspond to differences in transmission
between the unknown and standard paths. The unknown path con-
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TABLE II - TYPICAL MEASUREMENT TIMES

Type of output
Time per point

(seconds)

Magnetic core
X - Y plotters
Paper tape
Typewriter

(Freq. <2 kHz)
2
2
3
9

(Freq. >2 kHz)
0.2
0.2

1

7

tains either the switching unit for two port characterization measure-
ments or a path connecting the network for insertion loss and phase
measurements. Additional switches, not shown, provide connections for
the various impedance levels.

The standard path contains either a low loss transmission line or
a 40 dB pad. The 40 pad is always inserted in the standard path when
the unknown path is being measured. When the standard path is being
measured, the transmission line is inserted for losses less than 40 dB.
For losses equal or greater than 40 dB, the 40 dB pad is inserted in
the standard path and a 40 dB preamplifier is inserted in the level
adjust unit.

Use of the 40 dB pad and preamplifier in this way has several

DIGITAL
CONTROLLED

SIGNAL
OSCILLATOR

NETWORK OR
TRANSISTOR
0 0

COMPA-
RISON

UNIT

DIGITAL
CONTROLLED

LOCAL
OSCILLATOR

TRANSMISSION MEASURING SETH

MEASUREMENT
PATH

FREQUENCY
CONVERTER

REFERENCE
PATH

FREQUENCY
CONVERTER

DIGITAL
CONTROLLED

LOSS
STANDARD

DIGITAL
LOSS

DETECTOR

DIGITAL
PHASE
METER

DIGITAL COMPUTER

Fig. 3 - Simplified block diagram of measuring set.
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Fig. 4-Loss measurement.

advantages: the crosstalk requirement in the comparison switches is
reduced by 40 dB and the required dynamic range of the measurement
path frequency converter is reduced by 40 dB. Use of the preamplifier
also improves the system noise figure by about 20 dB.

Since the 40 dB pad has a significant frequency characteristic, some
method of correction is necessary. This is conveniently accomplished
by initiating an additional comparison cycle whenever the 40 dB pad
is used. During this cycle, the two elements in the standard path
are compared and the difference is measured on the IF loss standard.
The 40 dB pad is, therefore, a transfer standard.

3.2.2 Signal and System Level Adjustments
The attenuators following the signal oscillator adjust the signal

level into the measurement circuit. The attenuators are switched by
the computer under manual or program control. In either case, if the
unknown has enough gain to overload the test set detector, the signal
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level is automatically reduced and the signal level actually used is
typed out.

The level -adjust circuit adjusts the level into the measurement
path converter to minimize certain errors. When measured loss or
gain is low, the level into the converter is maintained for best signal-
to-noise ratio consistent with 0.001 dB linearity. At high loss, the
level into the converter (not yet programmed) is increased to improve
the signal-to-noise ratio without producing significant linearity errors.

3.2.3 IF Loss Standard and Detector

Amplitude and phase variations produced in the test signal by the
comparison unit are linearly translated to the final IF of 27.777 kHz.
Here the loss standard is switched in synchronism. For loss, the IF
loss standard and the unknown are switched out of phase and for gain
they are switched in phase.

The loss standard contains relay switched, precision attenuators
ranging from 0 to 59.99 dB in 0.01 dB steps. Complementary gain is
provided in the common output path so that the output is constant
(±1 dB) when the standard is correctly balanced. Hence the loss
detector and phase detector are operated at nearly constant levels.

The amplifier -detector in the loss detector has a logarithmic char-
acteristic which provides a de output proportional to the input amplitude
in dB. During the balance sequence, a measure of the difference in loss
between the loss standard and the measured network (loss unbalance)
is obtained from the difference of two readings with the analog-digital
converter. After the loss balance is completed, the analog-digital
converter readings provide the 0.001 dB decade indication to the
computer for automatic readout.

In order for the analog-digital converter to have ± 20 dB balancing
range and yet provide the ±0.001 dB indication, the equivalent of 16
bits is required. This was achieved with a 13 bit converter and a switched
(5X) preamplifier. For loss standard balancing, the amplifier is out
and the least significant bit is 0.005 dB. When a balance is achieved,
the amplifier is switched in and the least significant bit is 0.001 dB.

3.3 Phase Measurements

Figure 5 is a block diagram of the phase measuring circuit. The phase
changes produced by comparison switching are the changes between
the unknown and standard paths at test frequency and between the
loss standard and "strap" at intermediate frequency. The net change
in phase is the change between the unknown and standard paths since
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Fig. 5-Phase measurement.

the two paths at intermediate frequency are adjusted to have phase
differences less than ±0.002°. The reference path signal provides a
constant phase reference during the switching cycle.

The phase measuring technique used cannot measure phase at exactly
0°. Phase equalization of the measurement path and the reference path
over the 250 MHz frequency range is not possible with fixed networks.
The quadrant select circuit together with the 180° and 90° networks
select a quadrant such that the relative phase into the phase measuring
circuit is within 180° ± 135° for both positions of the comparison



TRANSMISSION MEASURING 1349

switch. Operation of the quadrant select circuit does not add to the
measurement time since it operates during an early portion of the
switching cycle before transients have settled to the point where precision
phase measurements can begin.

The pulse generators produce pulses on the positive zero crossing
of the IF signals. The pulse from the measurement path generator
starts the time interval meter measurement and the reference path
pulse generator stops the time interval measurement. The time in-
terval is measured by counting the number of pulses from a 100 MHz
source that occur between the start and stop pulses. In a single period
the time interval meter can resolve. 0.1°

(that is, 27'777 kHz - period)
100 MHz 3600

The opportunity for increasing the resolution exists in the system.
(See Ref. 3 and the Appendix.) By locking the 100 MHz source to the
1 MHz crystal source in the frequency synthesizer, by a proper choice
of the intermediate frequency, and by taking 100 readings, resolution
can be increased by a factor of up to 100. Because of compromises in
this system, resolution was increased by a factor of about 20, to 0.005°.

The time interval meter control provides gating and reset signals
so that 100 readings can be taken and provides timing signals to the
computer. Level dependence of the phase meter is not a problem
since the loss balance made before phase measurements is within 0.01
dB and the level -to -phase conversion of the pulse generators is less
than 0.03° per dB.

3.4 Signal Frequency Generation and Conversion
Automatic control of signal sources and frequency converters pro-

vides operation over nearly seven decades. Fig. 6 is a simplified block
diagram of the elements, including switches, for signal generation
and conversion.

3.4.1 Signal Oscillator and Local Oscillator
The signal oscillator provides a sinusoidal (harmonics less than 40

dB) test signal to the measurement and reference paths, and the local
oscillator provides the signal to tune the heterodyne detector. Each
oscillator is composed of a frequency synthesizer and a frequency
multiplier (including filters) which together produce output fre-
quencies from 50 Hz to 250 MHz in response to digital signals. Be-
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Fig. 6-Frequency generation and conversion.
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low 50 MHz, frequencies are set to a precision of 0.01 Hz within 1 ms
after signalling. Above 50 MHz, frequencies are set to a precision
ranging from 0.02 to 0.08 Hz within 10 ms. Absolute accuracies of the
output frequency, frequency changes of either oscillator, and frequency
differences between the two oscillators are all within 3 parts in 108. The
accuracy of these oscillators eliminate test frequency uncertainty as a
source of measurement error and permit the use of very narrow detec-
tion bandwidths to reduce errors caused by noise. In the test set
operation the oscillators are tuned while the previous data point is
being read out so the 10 ms tuning period is negligible.
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3.4.2 Frequency Converters

The frequency converters must provide linear translation of the
50 Hz to 250 MHz test signal to a fixed intermediate frequency of
27.777 kHz and maintain a satisfactory signal -to -interference ratio at
the output.

Since level differences produced by the comparison unit (up to
GO dB) are transmitted through the converters, all elements in the con-
verters including amplifiers and filters must be linear within 0.001 dB.
To measure 20 dB loss to ±0.001 dB, the converter noise must be
100 dB and spurious products SO dB below the maximum linear output
level.

In order to achieve this performance, four bands were used. When
two stages of conversion are used, the second local oscillator frequency
is derived from the 1 MHz standard in the frequency synthesizer. This
provides a final IF accurate to 3 parts in 108 and a precision within
±0.04 Hz, the precision required for the phase measuring circuit.

3.5 Impedance Measurements
Impedance and return loss measurements on one port (or terminated

two port) networks can be obtained by making the appropriate con-
nections, making the required sequence of measurements, and proc-
essing the measurement data. The frequency range for these measure-
ments is from 50 Hz to 250 MHz.

The three practical connections used for impedance measurements
are shown in Fig. 7. The connections are implemented with such net-
works as a coaxial tee, connector boxes furnished with the test set, or
other means such as hybrid networks.

The measured transmission obtained when the network is connected
has been shown to be a bilinear function of the network impedance.4
If four measurements are made, one with the measured network and
the other three with "known" impedance standards, the impedance
of the network can be determined in terms of the impedance stand-
ards.

The equations relating the measurements and the standards are:

T - Detector voltage, switches in upper path
Detector voltage, switches in lower path

Zx connected

T - "T Z d -T° -Z T To T. - To
Zx Zi 2 2
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SHUNT CONNECTION

SERIES CONNECTION

HYBRID CONNECTION

Where:

T. =T=

ONE
PORT

Fig. 7-Impedance measurements.

T. = Tx
Z.-0

DETECTOR

Zz - Zi
Ps' Zz Z;

If an impedance standard Zs is used and T, = Tx Izz-z.

Zx = Z, (T0- Tx)(T. - T.)
(Tx - T.)(To - T.)

and

Zx - Zs (Tz -T ,)(T. - To)
P Z. (T. - Ta)(Tz - T.) (T. - T0)(T. - Tx)

Accuracy of the method depends on the accuracy of the standards
and on the accuracy of the individual transmission measurements. As
indicated in these equations, the expressions for impedance and
reflection coefficient involves differences in measurements, and the
error in the computed result is a function of impedance as well.



TRANSMISSION MEASURING 1353

Processing of the impedance measurement data can be done on the
system computer (PDP-7) by replacing the operating program with
one of the available conversion programs. These programs permit
computation of real and imaginary components of impedance and the
reactance for a series or parallel equivalent (two element) circuits.
Angle and magnitude of reflection coefficient with respect to an
arbitrary reference impedance can also be computed. Output from
the program can either be on tele-typewriter or X -Y plotters.

Some impedance measurement results are discussed in Section 6.2
and illustrated in Figs. 21 through 23.

3.6 Two -Port Measurements

3.6.1 General
Linear characterization of two -port networks can be obtained by

connecting the device (for example, the transistor) to the appropriate
jig or coaxial cable, making the required sequence of measurements,
and processing the measurement data. Devices not requiring bias can
be measured from 50 Hz to 250 MHz and devices requiring bias can
be measured from 50 kHz to 250 MHz. The bias can be voltage -reg-
ulated from 0 to 150 volts or current regulated from 0 to 1 ampere.
Transistor case temperatures can be controlled from 0° to 95° C for
dissipation up to 10 watts.

To the extent that the imperfections in the calibration standards
and the capacitance added by the temperature control unit are ac-
curately known, it is possible to reduce the measurement data to
device parameters which are independent of the measurement en-
vironment.5' 6 The data reduction program provides H, Y, Z, G, T, S,
ABCD and (ABcD)-1 parameters with any one of the three device ter-
minals grounded. The terminal grounded in the output parameters is
not necessarily the same terminal which was grounded during the
measurements.

3.6.2 Measurement and Calibration Techniques
The technique which is used to characterize two -port networks is

obtained from four transmission measurements which are a com-
bination of two ordinary transmission measurements and two im-
pedance measurements (shunt connection) as described in Section
3.5. Figure 8 shows the four connections needed for the measurements
of forward and reverse gain and of forward and reverse bridging loss.
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Fig. 8 - Transistor measurement technique.

In automating this sequence of four measurements, the constraint was
applied that de bias paths through the measured device must not be
interrupted during the sequence. This means that the minimum net-
work which can be measured when characterizing a transistor is that
shown between ports 1 and 2. Even with an accurate test set, accurate
device measurements can be made only if the complete network be-
tween the test set terminals is characterized or if the reference plane
(ports 3 and 4) can be characterized.

Each approach has been used in a previous implementation. In
the first case, available 7 mm coaxial standards were used to calibrate
ports 5 and 6 (Fig. 8).1 Then four jigs containing an open circuit, short
circuit, reference impedance, and the measured device were succes-
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sively plugged in to obtain the necessary measurements. The dis-
advantage of this technique is that symmetry in the jigs must be
assumed and that the device bias must be set four times.

In the second case, 21 mm coaxial standards are used to calibrate
ports 1 and 2 (Fig. 81.7 Other coaxial standards (0.054 -inch bore)
are used to characterize the network between ports 1 and 3, and 4
and 2 at specified frequencies. When the device is inserted, the total
network between ports 1 and 2 is measured and the device charac-
teristics are extracted by calculation. The disadvantages of this tech-
nique are that calibration data is only available at the specified fre-
quencies and that the network must be manually connected for each
of the four measurements.

3.6.3 Implementation of Automatic Two Port Measurements
In order to automatically switch the network into the four meas-

urement configurations, considerable coaxial relay switching was
required. The return losses that these relays present are low enough
so that, when "seen" from the measurement ports 3 and 4, appreciable
errors will occur if corrections are not made. It, is also desirable to
be able to measure at any frequency in the range thus ruling out
calibration at a fixed number of points.

It was decided to fabricate "small bore" standards to calibrate ports
3 and 4. Short circuit and 50 ohm standards were developed and the
open circuit "standard" is obtained by open circuiting the ports and
correcting for fringing capacitance. A 50 ohm "strap" was developed
to give "zero line" measurements for the forward and reverse gain
measurements. The "strap" also is used to measure the impedance
into port 3 with port 4 and vice -versa. Table III lists the measure-
ment and calibration sequence for characterization of a device.

The same technique is used for coaxial unknowns (for example, 14
mm connectors) . Open, short, and 50 ohm standards are commercially
available and the strap measurement is simply made by connecting
the cables from the two terminals together.

3.6.4 Data Reduction
Reduction of the data obtained in the measurement sequence just

described is a sizable data reduction problem. At present, measure-
ment data is processed on the IBM 7094 computer.

The data reduction program first computes scattering parameters
referred to the physical test set impedances. The next step is to trans-
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TABLE III - TRANSISTOR MEASUREMENT AND
CALIBRATION SEQUENCE

REQUIRED ELEMENTS
Transistor sample and jig
"Small bore" coaxial standards:

50 ohm termination
Strap
Short
Open

MEASUREMENT PROCEDURE

Test set calibration

Insert Measure
Number of

measurements

Strap
FWD (SL REV gain,

FWD & REV bridging 4

50 ohm in port 1
50 ohm in port 2
Short in port 1
Short in port 2
Open in port 1
Open in port 2

Bridging*

2
2
2
2
2
2

Transistor measurement

Insert transistor, set bias FWD & REV gain
FWD & REV bridging* 6

* Bridging measurements made with and without quarter wave networks inserted.

form to scattering parameters referred to 50 ohms. This sequence is
considerably simpler than initially calculating 50 ohm scattering pa-
rameters. The 50 ohm S -parameters can then be transformed into
H, Y, Z, G, T, S, ABCD or (ABCD)-1 parameters.

A number of useful options are also included. The measurement
plane for a measured device can be translated through an arbitrary
length of 50 ohm transmission line. Capacitance in shunt with any
pair of terminals (for example, the transistor temperature control
unit adds about 3 pF from case to ground when used) can be removed
by computation and either of the noncommon terminals in the meas-
urement can be made the common terminal in the output data.

The derived parameters can be output in cartesian or polar co-
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ordinates or in magnitude (dB) and angle. The output data forms
include both tabulated and plotted data. Some two -port measure-
ment results are discussed in Section 6.3 and illustrated in Figs.
24 and 25.

IV. OVERALL CONTROL DESCRIPTION

4.1 Operating Description
As Fig. 2 indicates, the primary means of input are the operator

control panel (mode selector) , the tape reader, and the typewriter.
Inputs are also made from the computer console when loading tapes
and in special instances such as maintenance tests. Output is obtained
from the visual readout, X -Y plotters, tape punch, and typewriter.

In some of the operating modes, information previously entered
via the typewriter or tape reader is stored in computer memory and
can be used to make or repeat a measurement sequence. In other
modes, the information is not stored and must be reinserted for each
measurement sequence.

4.1.1 Operator Control Panel
The operator control panel, or mode selector, is shown on Fig. 9.

Switch positions provide for selecting the desired measurement and
readouts. The panel also provides for operator interaction during a
measurement.

The frequency selection switch selects the method by which test

Fig. 9 - Operator control panel.
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frequencies are chosen. The frequencies may be a sequence read from
punched tape, a linear or logarithmic sequence generated by the com-
puter, a list of frequencies internally stored, or single values entered
on the typewriter.

The RECORD switches are used to select the parameters to be meas-
ured. This provides independent selection of loss -gain measurements
and phase or delay measurements. In the usual case the measured
values are displayed on the output media. In the PROTOTAPE mode,
the displayed values are the measured values minus the values stored
in the paper tape. This, of course, provides the means to compare a
measured network with either a previously measured physical proto-
type or a "mathematical" prototype.

Visual readout is always provided. The OUTPUT MEDIA switches are
used to select other desired readouts. The TAPE, TYPE, and PLOT switches
provide output on the punched tape, typewriter, and X -Y plotters,
respectively. The CORE switch provides output to the computer mem-
ory. On any measurement run, the contents of the core can be sub-
tracted from the run being made by operating the SUBTRACT CORE DATA

switch. This is a very useful option. Some of its uses are illustrated
in Sections 5 and 6 on measurement results and on measurement of
test set errors. If none of the output media switches are operated, a
state is produced where continuous measurements are made at the
prevailing test frequency.

Precision of the output data is controlled by two switches. The
switch labeled coNsT-F (L) determines whether the measurement pre-
cision is to be variable or constant. In the F (L) position, the output
loss and phase data are the average of from 1 to 1024 readings. The
number of measurements averaged is controlled by an input param-
eter. The precision in this case is variable and depends on the test
signal level, the loss (or gain) of the measured device, and the number
of measurements averaged. If CONST precision is desired, the maxi-
mum precision switch is used to select the loss precision. In this case
the test set must average enough measurements to achieve the de-
sired precision (1, 0.1, 0.01, or 0.001 dB) and total measurement time
will vary according to the number of measurements averaged. If the
necessary averaging exceeds the allowed limit of 1024 measurements,
the estimated precision will be typed out.

The LEVEL switch provides manual control of the signal level into
the device being tested. A programmed position is also provided to
permit program control of signal levels.

The START -RESTART, RUN, and REPEAT switches provide control over
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the program. The switches permit the measurement run to be stopped,
to be resumed, to return to the beginning with or without new param-
eter entry, and to repeat the measurement run one or more times.

4.1.2 Parameter Insertion
The parameters required for a measurement depend on the settings

of the mode selector switches. For example, if a linear frequency
sweep is selected, the minimum frequency, frequency increment, and
maximum frequency must be stored in the computer. If plotting is

to be done, scaling parameters must be stored.
The initial input of a set of parameters is usually made with the

typewriter. If a parameter change is being considered, the parameter
code is typed in and the current value is automatically typed out.
The parameter is either changed by typing in a new value or retained
by typing the appropriate symbol. Typing the list request code will
cause the entire parameter list and current values to be typed out.

A parameter list can be retained for later use by typing in a "dump"
code. The list is then stored on punched paper tape. When the meas-
urement is repeated, the list can be read in on the paper tape reader
by typing in a "read tape" code. This appreciably reduces the meas-
urement set-up time.

4.2 Program Description
The stored program in the computer provides the necessary control

for data input, processing, and output; for operation of the transmis-
sion measuring set; and for dialogue with the operator. The dialogue
occurs when parameters are being entered, when networks are being
connected for two -port measurements, and when trouble indications

occur.

4.2.1 Data Input, Processing, and Output
Figure 10 is a block diagram showing the input-output options

available for data used in the operation of the set. Measurement
parameters are entered with the typewriter or tape reader. In a later
stage of development, measurement parameters will also be entered
from punched cards or magnetic tape.*

The test frequencies are generated by the program from stored
measurement parameters, stored test frequencies, or from specific
frequencies entered by typewriter, card reader, or tape reader.

* Dashed lines indicate not yet operational.
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After each measurement, which may include delay calculations,
core data is subtracted if indicated by the mode selector. Prototype
values on tape or cards can also be subtracted before data is output.

Output is always obtained visually and can also be obtained in core
and on paper tape, typewriter, X -Y plotters, and magnetic tape. After
output, the loop control returns the program to obtain new parameters
or set a new test frequency.

LOSS -PHASE SECTION TRANSISTOR SECTION

( START)

INPUT
PARAMETER

PARAMETER
VERIFICATION

LOOP
CONTROL

FREQUENCY
INITIALIZATION

MEASUREMENT

FREQUENCY
UPDATING

OUTPUTS

( START)

ENTER
PARAMETERS

PERMANENTLY STORED
PARAMETERS

CALIBRATE

YES

OPEN CIRCUIT (4)

SHORT CIRCUIT (4)

NO

PORT 1 (2)

5012 STANDARD, PORT 2 (2)

5012 STRAP (4)

INSERT UNKNOWN

LOOP
FOR N
FREQU-

ENCI ES

INPUT IMPEDANCE (2)

REVERSE TRANSMISSION

FORWARD TRANSMISSION

OUTPUT IMPEDANCE (2)

END OF MEASUREMENT

Fig. 11-Control program.
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4.2.2 Control Program for Test Set Operation
Figure 11 is a flow chart of the test set control program. Selection

between the loss -phase section and the transistor section is made by
choice of program starting address. The loss -phase section provides
the subroutines for parameter entry, measurement, and data output.
Notice that the frequency updating (change to a new frequency) oc-
curs before data output. This gives a maximum time for the measured
circuit to reach steady state before the next measurement.

The transistor section of the program provides the necessary con-
trol of switching, generates instructions for the operator, and pro-
vides the necessary connections to the subroutines in the loss -phase
section. After entering the transistor section, there is the option of
using permanently stored parameters or manually entering param-
eters. The next option is that of calibrating or not. Calibration is
required if maximum accuracy is needed but adds 16 measurements
at each frequency. With either option, the typewriter types instructions
to indicate the standard or unknown network to be inserted and the
particular connection to be made. The computer also makes the
necessary connections in the measuring circuit. When the unknown
is connected, six measurements are made (only four independent)
and the four which provide the most accurate data are saved. Data
is normally output on punched tape for subsequent processing to pro-
duce corrected, two -port parameters.

V. MEASUREMENT ERRORS

Measurement errors are evaluated in two complementary ways.
The first is to directly evaluate each error -producing element in the
system. The second is to measure networks with predictable properties.
If the second group of measurements gives satisfactory results, con-
fidence is gained that all of the important elements were evaluated in
the first group.

5.1 Test Set Errors
The error sources in the test set that must be considered are: spu-

rious signals, amplitude compression, mistermination errors, errors in
standards, errors in detectors, circuit drifts, switching transients, and
quantization errors. In order to measure these error sources efficiently
and to approach the ideal of complete self -testing as closely as pos-
sible, measurements are made automatically on the test set wherever
practical.



TRANSMISSION MEASURING 1363

One example of automatic measurement of error sources is in the
measurement of spurious signals. Any spurious signals present at the
inputs of the loss detector or phase detector and some types of spu-
rious signals at the inputs to nonlinear system elements can cause
measurement error. Spurious signals considered are crosstalk, noise,
modulation products, power frequency pickup, and test signal har-
monics.

By the introduction of several auxiliary circuit elements in the
test set transmission paths (Fig. 12) , spurious products such as cross-
talk, noise, 60 Hz harmonic pickup, and IF carrier leak as small as
100 dB down can be automatically measured and plotted as a func-
tion of frequency and level configuration. With the connections, A-A',
the converter and IF circuits are evaluated; with the connections
B-B', the RF circuits are evaluated.

Figure 13 plots the detector signal to interference ratio for a partic-
ular system configuration. For the range where the ratio is above 80
dB, random and systematic errors for low losses will be less than
0.001 dB and 0.01° (neglecting other error causes). Techniques have
also been devised to automatically measure the other listed error
sources with the test set.

5.2 Impedance Measuring Errors
Accuracy of the impedance measurements derived from transmis-

sion methods (Fig. 7) depends upon test set accuracy and accuracy
of the impedance standards.

An error is made by the test set when each of the four transmission

1 B

AUXILIARY
OSCILLATOR

LOSS
DETECTOR

F -FA

AUXILIARY
AMPLI F I ER

Fig. 12 - Measurement of spurious products.
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measurements (that is, unknown and three standards) is made. These
errors depend on the impedance of the unknown and are caused
primarily by test set noise and finite measurement precision. The
expression for the error in the calculated reflection coefficient resulting
from test set errors is given in ref. 6. For the case of measuring a small
reflection with a coaxial tee, the error, Op, is typically less than 0.004.

The unknown is defined in terms of the standards used. Imperfec-
tions in the standards therefore cause errors unless the standards are
adequately characterized. At high frequencies, characterization of the
standards includes making a precise definition of the measurement.

When appropriate coaxial connectors are used to connect coaxial
unknowns and standards, the reference plane and the measurement
are well defined. In the case of unknowns with pig tail leads, the meas-
urement is not well defined unless the unknown and the standards
have precisely the same geometry so that field patterns are identical
in the four measurements. If the geometries are not uniform, the un-
known and standards can be placed in a shield but then the resulting
parasitics must be estimated.

5.3 Two -Port Measurement Errors
Errors in determining two -port parameters include errors in meas-

uring impedance as well as errors in measuring transmission. In the
data reduction program used, two -port measurement data is always
reduced first to s parameters (50 ohm reference). The first order error
expressions for the s parameters are given in Ref. 6.

A worst case error for the s parameters of a precision air line
would be:

"11(50, 50) = °822(50, 50) < 0.004

321(50, 50) "12(50, 50)

321(50, 50) 812(50, 50)
0.002.
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Estimation of errors in the s parameters is tedious, even when using
a worst case estimate. The most promising approach advanced so far
is to calculate errors by modifying the data reduction program. In the
modified program each measured value obtained in the measurement
sequence would be perturbed a small amount to obtain the parameter
sensitivities to the measurement. Then the known systematic errors
and the calculated random error (a standard test set output) would be
applied to the sensitivity factors already obtained. Proper summing
of the error terms would then give a good estimate of the parameter
error expectation.

Two -port measurement data obtained so far indicates errors that
are perhaps one fourth of the worst case errors indicated by the
formulas just referred to.

VI. MEASUREMENT RESULTS

As indicated previously, the basic quantities measured by the
transmission measuring set are insertion loss (or gain) and insertion
phase shift as a function of frequency. Insertion delay, impedance,
and two -port parameters are quantities derived from transmission
measurements.

6.1 Transmission Measurements
Ideally, transmission measurement accuracy would be confirmed

with measurement standards whose properties were precisely known.
No complete set of standards exist, but some networks are available
where knowledge of their behavior gives reliable indications of the
test set precision and accuracy.

6.1.1 Precision Coaxial Attenuators

The uniform transmission properties of precision coaxial attenuators
over the low frequency range makes possible meaningful comparisons
between de and ac measurements. A 6 dB and 14 dB attenuator were
measured individually and in tandem on the test set and compared with
measurements made on a de ratio bridge capable of 0.0001 dB accuracy.

Results of the measurements are given on Figs. 14 through 17. Figure
14 shows the discrepancy between two measurements of the same 6 dB
attenuator taken 15 minutes apart. Figures 15 and 16 give the data
for the individual measurements on the 6 dB and 14 dB attenuators.
In midband, discrepancies between ac and dc loss values are less than
those which occur with a 2°F change in ambient temperature. Midband
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Fig. 14 - Repeatability of 6 dB pad measurements.

phase shift of the attenuators is within ±0.01° of zero. Figure 17 shows
the discrepancy between the sum of the 14 dB and 6 dB measurements
and the measurement of the two attenuators in tandem.

Errors are seen to increase at the low frequency end of the test set
range. The error magnitudes correspond to signal -to -interference ratios
measured over the same range by the method described in Section
5.1.2. The deviations at the high frequency end in Figs. 15 and 16 result
primarily from changes in the insertion loss and phase of the attenuators.
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6.1.2 Precision 30 cm Air Line

A well -made precision air line is essentially ideal up to 250 MHz
except for skin effect loss. The 30 cm line was first measured at a list
of frequencies for comparison of measured loss and phase shift with
theoretical values. Table IV gives this data. The discrepancies above
100 MHz are within the variation which could be caused by the ±0.02
cm tolerance in line length.
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Fig. 17 -14 dB and 6 dB coaxial pad addition.
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TABLE IV - PHASE MEASUREMENTS ON PRECISION
30 CM AIR LINE

Frequency
(Hz)

Phase

Be - Bm
Measured

Om (degrees)
Calculated*
0, (degrees)

27,777.77 -0.01 0.0115792 0.02
55,555.55 0.02 0.0222333 0
83,333.33 0.04 0.0327353 -0.01

111,111.11 0.05 0.0431584 -0.01
138,888.89 0.05 0.0535312 0

166,666.67 0.06 0.0638682 0
194,444.45 0.09 0.0741732 -0.02
222,222.23 0.07 0.0844666 0.01
250,000.01 0.08 0.0947376 0.01
277,777.79 0.12 0.1049939 --0.02

277,777.78 0.09 0.1049939 0.01
555,555.56 0.21 0.2070624 0
833,333.34 0.29 0.3086497 0.02

1,111,111.12 0.41 0.4099878 0
1,388,888.90 0.51 0.5111667 0

1,666,666.68 0.62 0.6122325 -0.01
1,944,444.46 0.70 0.7132126 0.01
2,222,222.24 0.80 0.8141248 0.01
2,500,000.02 0.91 0.9149817 0
2,777,777.80 1.02 1.0157921 0

2,777,777.78 1.02 1.0157921 0
5,555,555.56 2.02 2.0223333 0
8,333,333.34 3.02 3.0273524 0.01

11,111,111.12 4.04 4.0315841 -0.01
13,888,888.90 5.04 5.0353121 0

16,666,666.68 6.02 6.0386825 0.02
19,444,444.46 7.04 7.0417819 0
22,222,222.24 8.04 8.0446667 0
25,000,000.02 9.06 9.0473762 -0.01
27,777,777.80 10.05 10.0499389 0

27,777,777.78 10.06 10.0499389 -0.01
55,555,555.56 20.08 20.0706242 -0.01
83,333,333.34 30.09 30.0864966 0

111,111,111.12 40.09 40.0998777 0.01
138,888,888.90 50.13 50.1116667 -0.02

166,666,666.68 60.15 60.1223247 -0.03
194,441,444.46 70.17 70.1321258 -0.04
222,222,222.24 80.20 80.1412484 -0.06
250,000,000.02 90.22 90.1498166 --0.07

* e, = 90/250 FMliss + 0.134 (Fmll./200)i.
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The same line was remeasured in tandem with 20 dB and 40 dB of
loss. Figure 18 shows the effect of loss on the fixed and random phase
errors. Figure 19 shows a curve of the measured delay of the line. The
±0.01 nsec variation in the measured value corresponds to a ±0.01°
phase error with the 5 MHz frequency interval used.

6.1.3 9 MHz Band Pass Crystal Filter
Networks with especially "difficult" properties also provide useful

information on the test set capabilities. Phase measurements in the pass -
band of a 9 MHz filter with a 3 kHz bandwidth are especially sensitive
to FM in the signal source.
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The upper curve on Figure 20 shows the measured delay of the filter
with an in -band delay of about 0.5 ms. The lower curve shows the
difference of two successive delay measurements. Mid -band values
repeat to ±0.001 ms, or ±0.02° with the 100 Hz frequency interval used.

6.2 Impedance Measurements

Resistors, capacitors, and inductors were measured to confirm the
accuracy of impedance measurements. In the results given, the 50
ohm terminals and a 50 ohm impedance standard were used. The
results were compared with measurements made on precision bridges.

Resistor measurements were made from 2 kHz to 10 MHz. For resis-
tors (pigtail) of 100, 400, and 2500 ohms, the measurements are as
shown in Fig. 21. The maximum deviation from the de value of the
resistors is less than 0.1 percent.

Capacitors with nominal values of 10, 100, 1000, and 10,000 pF
were measured in the 2 kHz to 3 MHz range which provided a re-
actance range from 50 ohms to 500 k ohms. These results were com-
pared with bridge measurements made at 100 kHz (less than 0.1
percent error) and the results are shown in Fig. 22.

Inductors with nominal values of 0.3, 1, 10, 100, and 1000 /AI were
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Fig. 20 - Measured delay of narrow band crystal filter.
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measured in the frequency range from 3 kHz to 10 MHz over an
impedance range from 0.006 to 600 ohms. The results are shown in
Fig. 23 with the indicated deviations being from bridge measurements
(less than 0.05 percent error).

Typical agreement between impedance measurements on the set
and the bridge is within 0.2 percent in favorable impedance ranges
and the worst errors are less than 1 percent.
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6.3 Two -Port Measurements
As an example of two -port characterization of a precise network,

a precision 30 cm air line was measured.6 Deviations of the measured
characteristics from an ideal line result from measurement errors
and skin effect. To emphasize these deviations, the characteristics of
an ideal 30 cm line were mathematically removed from the measured
data during processing. Figures 8 through 11 of Ref. 6 show the
measured characteristics (normalized) compared with theoretical
values. The S12 curves show the 0.001 dB and 0.01° resolution of the
test set. Figure 24 shows curves of 1S11 and I S121 for the same air
line. The solid lines are the same as in the previous curves and the
broken lines show the results that would be obtained if corrections
were not made for test set misterminations.

Transistor characterization data is shown in Fig. 25. In this case, the
transistor was measured in the common emitter, common base, and
common collector modes and data from all three sets of measurements
were transformed to common emitter h parameters. The curves shown
are for magnitude and angle of h21 (beta).

VII. FURTHER DEVELOPMENT

The speed and flexibility of the computer operated transmission
measuring set offers the opportunity for further development in a
number of areas. Those being considered include increasing the fre-
quency range, provision for measurements under environmental con-
trol and at remote locations, development of fault detection and loca-
tion tests, and provision for interaction with a larger computer.
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Fig. 23 - Deviations of measured inductance from bridge measurements.
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Fig. 24 - Normalized S parameters of precision 30 cm air line normalized to
an ideal line of zero length (a) with and (b) without corrections for mister-
minations.

7.1 Additional Measurement Capabilities

One applique now under development will measure networks placed
in an environmental chamber having temperature and humidity con-
trols. After the environmental conditions have stabilized, computer
control will transfer the necessary portions of the basic test set to the
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applique for making measurements during idle periods on the basic set.
The applique will have a 50 Hz to 250 MHz frequency range.

Other appliques are being developed to provide transmission meas-
urements in the three microwave radio bands at 4, 6, and 11 GHz.
These appliques will provide the microwave sources, control and
switching, and down -converters. In the applique mode, about 80 per-
cent of the basic set hardware is used.

Figure 26 is a block diagram of the 4 GHz applique which was
recently completed.

A remote unit has been developed to permit transmission meas-
urements hundreds of feet away from the basic set. Capabilities are
not fully evaluated but 0.01 dB accuracy has been obtained over a
100 kHz to 100 MHz band at a distance of 275 feet from the basic
set. Capabilities of the environmental applique and microwave ap-
pliques are estimated to be about 0.005 dB and 0.03°.

In the completed measurement center consisting of the basic set
and appliques, it is planned to store data and control programs on a
magnetic tape system. Then operation can be transferred from one

--applique to another in a few seconds.

7.2 Maintenance Tests
The question of test set accuracy is raised not only when a test

set design is proven, but is a continuing question. The increased work
load on the measurement center and the increased complexity of the
total system inherent in the applique approach makes rapid and
reliable fault detection and location vital. It is planned that the com-
puter will enter an automatic test sequence whenever the measuring
sets are idle. The test sequence would include tests for the computer
as well as for the measuring sets.

7.3 Frequency Extension
Modular components are now available which will permit extension

of the basic set operation up to 1000 MHz. Transmission circuits and
frequency multipliers have been modified to operate to 1000 MHz,
and a frequency converter to operate from 5 to 1000 MHz is being
developed.

7.4 Computer Interaction
Coupling the measurement center to a larger computer via a data

link is being considered. Two benefits of this connection are apparent.
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Fig. 26 - Extension of automated measurements to microwave frequencies.

The processing of two -port parameters now involves a considerable
turn -around time. Direct connection to a larger computer could
provide processed data in a few minutes. The problem of adjusting
networks (particularly with interacting adjustments) might be sub-
stantially simplified if measurement data could be processed by a
larger computer and adjustment information be returned to the test
set.

VIII. SUMMARY

The computer -operated transmission measuring set provides high
accuracy over a wide range of levels and frequency. The memory,
control, and data processing capabilities of the computer provide the
means to improve accuracy, operate at high speed, and provide
versatility in the forms of output data.

The measurement capability of the set will make measurements an
increasingly important part of the transmission system design process
and, along with design aids such as computer analysis and modeling,
improve the quality of systems being developed.

The flexibility inherent in the computer -operated set provides the
opportunity for further development to increase its capability.
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APPENDIX

Increased Resolution in Time Interval
Method of Phase Measurements

A.1 Basic Measurement

A simplified block diagram of the time interval method of phase
measurement is shown in Fig. 27. The measurement desired is 02 - 01
The pulse generators detect zero crossings; the first zero crossing occurs
at 1, = 01/w1 , the second at t2 = 02/w1 . The exact time interval, At, is

-At = - ti - 02 Oi

(el

or in degrees

At -
360f,

To measure the interval At with a counter using the pulse source F,,
the number of pulses, n, gated into the counter are: 27(n ± 1) = wait.

e 1
Si (f, 0,)

PULSE
GENERATORS

O
32(f,02) FS(fS, OS)

COUNTER

fs » f,

Fig. 27- Time interval method of phase measurement.
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Then:

CP2 - (P1 = 360 (7/ ± 1)°.

For the case where f8 = 100 MHz and fi = 27.777 kHz,

'P2 - col = 0.1/E° ± 0.1°.

This gives a resolution of 0.1°.

A.2 Vernier Technique

It will be shown that if f and fl are suitably related in frequency,
multiple readings will provide increased resolution.

The circuit above can be modeled by integrating the product of two
time functions. The gate opening is represented by f (t) , where

f(t)=
11 Kt,<t<Kt,+zXt

and where

0 Kt, ± At < t < (K 1)t,

T = the total measurement period

71K = 0, 1, 2, : - 1).

The pulse train from the source is represented by g (t) , where:

g(t) = E (5(t - To - MT)
= 0

and where: T = 1/f., and To accounts for the relative phase between
f (t) and g (t) .

The total number of counts into the counter is represented by N,
where

N = f(t)g(t) di.
0

If we let the ratio of ti/T be I and I is an integer, the resolution (as
in Section A.1) will be 360°/I. Integrating the product of f (t) and

(t) we obtain,

( Tit i -1) Kti+At co

N = E E 3(1 - To - mr) dt.
K=0

It is convenient to let m = m' + Kti/T = + ICI, where m' in-
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ilexes the delta function relative to the beginning of each gate opening.

(T/Ir-1) KIr+Ai coN= E E 3(1 - To - (n' KI)T) dt.
K=0 Kir In o

In each integration, the delta functions will contribute when KIT

+ + Kir < Kir + At, or - (r0) /T < (At)/ r, which is
independent of K. Thus the average of multiple readings will be the
same as one reading. An example will illustrate this. If t1/7 = I = 3600
and At = 1.5T(that is, 0.15°), two cases are evident, as shown by Fig. 28.

In the first case there will be one count during each opening and in
the second there will be two counts during each opening. Since the gate
opening is periodic in t1 the count will not vary and the reading will
be At ± 0.5T.

If the ratio of ti/T is varied so that the measurement is periodic in T,
the precision is increased by T/t1 . In this example, during each counting
period the delta function will move (til T)r seconds relative to f(t) or a
total of T seconds during the measurement. This will provide a count
of 1 during half the periods and a count of two in the other half. The
average will be the correct number of 1.5.

To show this in the analysis, we define a slightly different frequency
ff, in the pulse source frequency so that t1/T' = I/(1 s), where s is
a term to give ti/T' a noninteger value. As before, T/t1 has an integer
value. Then

g'(t) = E - To -r')= E - T. - mT(1 s))

f(t)f

0

0 111 0

- - -

0 2T 3T

9(t)

1 A I\ A

It A A A

1--To

t

A CASE I

CASE 2

t

Fig. 28 - Example of average multiple reading being the same as one reading.
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and

T

N' = fo f(t)gqt) dt

rItIr+ At co

(5(t - To - mr(1 s)) dt.
KIT In=o

By substituting m = KI as before and letting s = T/T = ti/(IT)
(T/IT-1) At co

N' = E (t - To -(m'ITKI) (1 + dt.
K=o KIT to=o

The delta functions make contributions when

KIT 5 To + (m' KI) (1 + T < KIT

Solving for the integers m', two inequalities are obtained.

and

-K !!'
Tm'
1 +

At -
T

-K
Tm' <

1 +

For the ranges 0 (To)/T < 1 and 0 < K < [(T/t,) - 1], the values of
in' provided by equation 2 are:

(1)

(2)

(3)

m'>_0 for all K
Tm' = -1 for K S -t,(1 o)

Equation 3 depends on the measured quantity A t and on the counting
period, K. Using the previous example where ti/r = 3600 and A =
1.5 assume that Tit, (the increase in resolution) = 100 and that /To, T

= 0.5.
Then from equation 2,

m' 0 for 0 K 99
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in' -1 for 51 <K-<99.
Then the sum of the integrals yield

N' = 100(1) + 49(1) = 149 for an average of 1.49 counts.
-0 m'--1

As another example let ti/T = 3600, T/ti = 100, (7-0)7- = 0.9, and
(At)/T = 3599.9 (that is, 359.99').

Then from equation 2

m'>_0 for all K
m' -1 for 10 < K < 99.

And from equation 3

m' = 0, 1, , 3598 for all K.

Then the sum of the integrals yield

N = 100(3599) + 89(1) = 100(3599.89)
tn' to 3598 m'--1

K>10

for an average of 3599.89 counts.
In each case the resolution is increased from 0.1° to 0.001°.
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Sun Tracker Measurements of Attenuation
by Rain at 16 and 30 GHz

By ROBERT W. WILSON

(Manuscript received November 28, 1968)

This paper describes an instrument for measuring attenuation statistics
on an earth -space path simultaneously at 16 and 30 GHz; the high attenua-
tions result from heavy rain. The sun is used as a signal source during the
time of day when the sun ordinarily is visible; a measuring range of more
than 30 dB is achieved at both frequencies. The brightness temperature of
the atmosphere also is measured both day and night. At night the antenna
beam is stationary on the local meridian. Daytime brightness temperatures
in conjunction with direct attenuation measurements are used to determine
the equivalent absorber temperatures which are necessary for the reduction
of night brightness temperatures to attenuation values. This paper discusses
the measurements made during the first 12 months of operation and gives
statistics of these measurements and an analysis of errors in the system.

I. INTRODUCTION

The advent of high performance booster rockets makes it possible
to put very high -capacity microwave repeaters in synchronous orbit,
possibly resulting in low cost per channel.' The large bandwidth re-
quired for such a system is in direct conflict with the crowded condi-
tion of the microwave spectrum below 10 GHz. We must therefore
consider the possibility of operating such a system at frequencies above
10 GHz and must assess the magnitude of large attenuations which
may be caused by heavy rain. Estimates based on attenuations for
surface rainfall conditions= and models of the structure of rain storms
indicate that such a system is feasible,3 but direct measurement of the
attenuation statistics is necessary.*

* The overall plan for a system calls for ground -station space diversity, but
that is not discussed here.
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The apparatus described in this paper has been set up at Crawford
Hill, Holmdel, New Jersey, to measure the attenuation statistics of an
earth -space path at 16 and 30 GHz using the sun as a signal source.
At night the same equipment monitors the temperature of the antenna
with the beam in the local meridian. Attenuations up to about 10 dB
can be deduced from these temperatures. Attenuations of greater than
30 dB can be measured in the sun -tracking mode; the output time
constant is two seconds so that even relatively fast fades can be fol-
lowed.f Daily cycling of the equipment is automatic and sun co-
ordinates are stored for a week's unattended operation. The sun
tracker has been measuring at 30 GHz since October 1967 and at both
16 and 30 GHz in almost continuous operation since December 1967.

II. THEORY OF OPERATION

At 16 and 30 GHz the sun is transparent down to the lower chromo-
sphere so the radiation temperature is fairly constant with time and
fairly uniform across the disk of the sun. The value of the disk tem-
perature is about 11,500°K at 16 GHz and 7,500°K at 30 GHz.4

If an antenna is pointed at the sun, the increase in antenna tempera-
ture because of the sun T. is given by the product of the disk temperature
of the sun and the fraction of the antenna's response which the sun
subtends. At 30 GHz somewhat less than half of the response of the sun -
tracker antenna falls on the disk of the sun, so T, 3000°K. If the
remainder of the antenna's pattern is directed to cold space, the total
antenna temperature will equal T.'. If we introduce a uniform lossy
medium of transmission coefficient t and physical temperature T, be-
tween the antenna and the sun, the antenna temperature (T0) will be
changed from T. _to

Tc, tT, ± (1 - t)T, (1)

where radiation from the attenuating medium takes the place of some
of the radiation from the sun. In our case Te is the temperature of
some component of the earth's atmosphere (in particular, rain) and
will be about 270°K; but we are not able to measure it directly. For
attenuations greater than about 12 dB, the second term of equation
(1) will dominate and a simple measurement of antenna temperature
therefore would not provide a linear measurement of attenuation; for
attenuations greater than about 20 dB the errors resulting from the

t If the signal going into a 2 second time constant is rapidly reduced to zero,
the output drops at 2.2 dB per second, whereas if the signal is rapidly increased
the output comes within 2 dB of the final value in 2 seconds.
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unknown value of To would start to be significant. In the sun tracker
these problems are solved by having the antenna's main beam scan
on and off of the sun at a 1 Hz rate with an angular excursion of 2.6°.
When the beam is 2.6° away from the sun, virtually the only radia-
tion is that of the attenuating medium and

T. = (1 - t)T, . (2)

The output of the receiver is sampled during the time the antenna is
pointed at the sun and when it is pointed away from the sun; thus a
difference voltage is generated. By subtracting equation (2) from (1),
one sees that this voltage is proportional to tT8. As long as T8 is con-
stant any changes in the difference voltage can be interpreted as
changes in t; thus, it is not necessary to know T8 in any absolute
sense, just as a reference level at the radiometer output. In the sun
tracker the difference voltage is passed through a logarithmic converter
and presented on a chart recorder so the attenuation can be read di-
rectly in dB.

At night the sun is not available and only equation (2) can be used
as a measure of attenuation. In this case a Dicke switch is used and
the temperature of the antenna is subtracted from the temperature of
a reference termination at about 290°K. The quantity plotted on the
chart recorder is

AT = 290°K - (1 - t) T. .
Uncertainties in the value of To limit the range for which t can be
recovered to about 10 dB in this mode of operation.

An additional output is obtained during the daytime by using the
Dicke switch to connect the input of the receiver to the reference
termination during the transition portion of the scanning cycle, that
is, when the main beam is neither fully on nor off of the sun. A radi-
ometer output similar to that in the nighttime operation is obtained
by comparing the off -sun antenna temperature with the reference
termination temperature. From the simultaneous measurements of
T. and t, To can be calculated.

III. EQUIPMENT

Figure 1 shows the physical layout of the equipment. A five -by -
nine -foot plane reflector is mounted as a polar heliostat to reflect the
sun's rays in the direction of the earth's north polar axis. A four -foot
aperture conical horn -reflector antenna looks south along the same
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Fig. 1-View of sun tracker from southwest showing equipment cab, horn
reflector, and polar heliostat flat.

axis and collects most of these rays. The hour -angle motion for track-
ing the sun during any one clay is provided by driving the reflector
about its polar axis at a 24 -hour per revolution rate. This tracking
motion is automatically started each morning from an approximate
starting position when the read-outs indicate a coincidence between
the antenna beam and the ephermeris positions of the sun for that
day. The seasonal motion of the sun (in declination) is corrected
daily by motion of the reflector about its declination axis at half the
angular rate. A motor -driven lead screw is automatically energized
for a timed interval each morning to provide the required motion. The
declination axis of the reflector is also used for the 1 Hz scanning
motion mentioned in Section II. The upper end of the declination
lead -screw connects to a crank shaft which is turned at about 1 Hz
in the sun tracking mode of operation. A resolver, turned by the same
shaft, generates timing signals for the radiometers.

The output of the horn -reflector antenna is in a circular waveguide.
One linear polarization is split off by a polarization coupler for the
16 GHz receiver and the orthogonal polarization passes through a
waveguide taper to the 30 GHz receiver. Figure 2 is a block diagram
of the radiometer system.
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The balanced Schottky -barrier -diode mixers have broadband input
circuits allowing double sideband response and are directly connected
to transistor IF preamplifiers. The resulting down converter has a
low noise temperature (Tr) which varies somewhat over the IF band-
pass of the system with a broad minimum around 70 MHz. The gain
has a 6 dB per octave slope characteristic of high frequency transistors
operated in the R cutoff region. The equalizer following the second
IF amplifier changes the sloping frequency response of the system to
a weighting function [gain a(710/17,-)2] which minimizes the fluctua-
tion level at the output of the square law detector when referred back
to the input temperature. The weighted average double sideband noise
temperature of the receivers is 840°K at 30 GHz and 1300°K at 16
GHz. The noise bandwidth exceeds 200 MHz in both cases. The noise
temperatures of the receivers are degraded in the radiometer system
by the combined loss of about 1 dB in the calibrating attenuator and
switchable circulator.

The operating cycle of the radiometer, when tracking the sun, is
shown in Fig. 3. The top curve shows the declination of the antenna
beam as a function of time; the second curve shows the resulting out-
put of the square law detector of the 30 GHz receiver. The third
curve shows the drive to the circulator switches which connect the
receiver inputs to the room temperature reference terminations dur-
ing the quarters of the cycle while the declination is changing rapidly.
This switch causes the shoulder in the second detector output. The
fourth curve shows the drive to the main sampling difference detectors.
Positive sampling occurs during the quarter of the cycle when the
beam is closest to the sun and negative sampling during the quarter
cycle when the beam is farthest from the sun. The positive and nega-
tive samples are stored on separate capacitors with a charging time
constant of 0.5 second.

The sampling duty cycle of 1/4 gives a speed of response equivalent
to a 2 -second time constant. The fifth trace shows that the logarithmic
converter (Fig. 2) operates on the output of the 30 and 16 GHz sam-
pling difference detectors alternately during the remaining two quar-
ters of the cycle. The sixth curve shows the drive to the radiometer
sampling difference detector; it samples positively when the receiver
is connected to the room temperature termination and negatively while
the main beam is pointed away from the sun producing an output
proportional to AT of equation (3).

The last trace shows the drive to the automatic gain control sam-
pling circuit. The action of the automatic gain control is to adjust the
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IF variolosser as necessary to keep the output level of the receiver at
a fixed value during the portion of the cycle that its input is con-
nected to the room temperature termination. An integrator in the
automatic gain control amplifier prevents the gain from changing
rapidly. Dead times in the cycle have been exaggerated for clarity in
the figure.

DECLINATION OF
ANTENNA BEAM

OUTPUT OF
SECOND

DETECTOR
(30 GHZ)

SWITCHABLE
CIRCULATOR

MAIN
SAMPLING

DIFFERENCE -
DETECTION

DRIVE

LOG
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INPUT

RADIOMETER
SAMPLING

DIFFERENCE
DETECTION
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GAIN CONTROL
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AND HOLD

DECLINATION L
OF SUN

DECLINATION
OF SUN +2.6°

Ts -I-;+ Tr

Tr + 297° K
Tr + Ta

ROOM
TEMPERATURE
TERMINATION
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CONVERT 30 GHZ

CONVERT 16 GHz

OPEN

SAMPLE
HOLD

2
TIME IN SECONDS

Fig. 3- Switching cycle of sun -tracker radiometers.
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During nighttime operation the antenna beam is pointed to the
meridian at the declination the sun had the previous clay. The switch -
able circulators are operated as Dicke switches at about 2 Hz and
the sampling difference detectors operate as phase sensitive detectors
with blanking at the switching time. Their outputs go directly to the
hold circuits which drive the recorder.

Various parameters of the system are summarized in Table I. The
temperatures quoted refer to the antenna terminals. Room tempera-
ture and liquid nitrogen cooled absorbers are used as temperature
standards at 30 GHz and a noise lamp and a room temperature
absorber are used at 16 GHz.

IV. CLEAR WEATHER ATTENUATION

The antenna temperature (pointed away from the sun) has been
measured as a function of elevation on a typical clear winter day
(+3°C, 60 per cent relative humidity) and again on a hot summer day
(37°C, 52 per cent relative humidity). Values of 8.3° and 17.1° K per
atmosphere at 30 GHz and 4.1° and 7.8°K per atmosphere at 16 GHz
respectively, were found. These correspond to 0.15 and 0.25 dB per
atmosphere at 30 GHz and 0.06 and 0.12 dB per atmosphere at 16
GHz, assuming the absorption took place at 250°K (winter) and
284°K (summer). Attempts to measure these rather small atmospheric
absorptions directly using the sun, under atmospheric conditions simi-
lar to the above, have been frustrated by variations in atmospheric
absorption, solar brightness, or antenna gain during the course of the
measurement. Consistent results have obtained only at low elevation
angles where the thickness of the atmosphere changes rapidly with
hour angle.

The normalization procedure which is normally used on sun tracker
records cancels out clear weather attenuation. Thus attenuations
quoted in other parts of this paper are increases above the clear
weather value.

TABLE I - PARAMETERS OF THE SUN TRACKER

16 GHz 30 GHz

Antenna beam width 0.92 0.54°
Antenna temperature of sun (T.) (30° elevation) 1900°K 3000°K
Receiver double side band noise temperature 1700°K 1100°K
Measuring range on sun (1.5 dB peak error) 30 dB 35 dB
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V. TYPICAL RECORDS

Figure 4 shows tracings of the output of the sun tracker during
two 24 -hour periods. The left two-thirds of both charts is night opera-
tion with antenna temperature presented on linear scales for both
frequencies. The right portion is in the sun -tracking mode with a
scale factor of 10 dB per major division. The sun is behind some
trees during part of the sunrise.

The upper record was taken on a clear day. During the lower record,
several showers with rainfall up to 75 mm per hour occurred near the
site. The high temperature peaks on the night portion of the 30 GHz
record show rounding, indicating that the peak antenna temperature
of about 275°K is close to the temperature of the attenuating rain.
The three peaks of attenuation in the daytime portion of the record

occurred at solar elevation of 8°, 15°, and 18°.
Figure 5 contains tracings of the sun -tracker output on three other

days. Figure 5a is from a 24 -hour period when the sky was heavily
overcast and occasional drizzle occurred. The attenuation did not
exceed 2 dB during this period even for low elevations and was less

than 1 dB most of the time.
The lower records were obtained before the 16 GHz receiver was

installed so that only 30 GHz levels are plotted. During the night
that the lower level record was taken (b) passage of a cold front
produced snow and ground level temperatures fell below 0°C. The next
morning about 1/4 inch of rough ice was frozen on the reflector of the
sun tracker. When the ice was removed from the reflector (at the
right end of b), the signal level from the sun returned to normal.

The following sequence of events is postulated to explain the rec-
ord. As snow fell on the warm reflector it melted to slush. The liquid
water content of the slush has a very high absorption coefficient when
its thickness amounts to an appreciable fraction of a wavelength
above the aluminum reflector; as the slush collected, the antenna tem-
perature approached ambient temperature. After the snowfall stopped,
the antenna temperature remained constant until the air temperature
lowered sufficiently to slowly freeze the slush into ice which is a
dielectric with a low absorption coefficient; thus the antenna tempera-
ture dropped to a value typical of the overcast night (Fig. 5b) . When
the sun rose and the sun tracker started tracking it, however, the
signal level was about 7 dB below normal because of phase perturba-
tions (and a consequent reduction in gain) caused by the rough dielec-
tric on the reflector. Removal of the ice returned operation to normal
(final short segment in b).
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The lower right record (c) was taken on a cold afternoon when
snow fell uniformly for several hours. In 21/2 hours about 21/2 inches
of snow collected on the reflector. When the snow was removed from
the reflector to measure the effect of the falling snow, the signal level
returned to about 1 dB below the normal level. More snow collected
on the reflector, but the antenna temperature was hardly affected in
the night-time mode.

VI. ATTENUATION STATISTICS

At this writing, the sun tracker has been in full operation for more
than a year. On two occasions the attenuation at 30 GHz con-
tinuously exceeded the measuring range of the system (35 dB) for
more than 30 minutes. During one of these periods the attenuation
at 16 GHz exceeded 30 dB four separate times for a total of 15 min-
utes. It is clear from these results that if a reliable communication
satellite system is to be constructed using these frequencies it will be
necessary to have some form of ground -station space diversity for
operation during such periods.

A summary of the percentage of time that the attenuation exceeded
various levels is shown in Tables II and III for 30 and 16 GHz. In
both cases day and night statistics are shown separately since the
measurement technique is different. Figures 6 and 7 are histograms
showing the number of fades exceeding 9 dB at 30 and 16 GHz as
a function of duration of the fade. No attempt has yet been made to
divide this statistical data according to the elevation of the sun. It
is expected that some differences will occur as a function of elevation;
however, one of the two long-term high -attenuation periods, men-
tioned before, occurred when the elevation angle was about 60° and
the other immediately before sunset.

VII. RATIO OF ATTENUATION AT 30 GHZ TO ATTENUATION AT 16 GHZ

If one knew the drop size distribution in an attenuating rain, the
ratio of attenuation at 30 GHz to that at 16 GHz could be calculated.
Using surface drop size distributions, Hogg has calculated that the
ratio will lie between about 3.8 for small drops characteristic of 0.1
mm per hour rain and 2.2 for large drops characteristic of a 100 mm
per hour rain.5 Values over this range have been observed at various
times.

Figure 8 is a scatter plot of attenuation at 16 GHz against attenua-
tion at 30 GHz for various sample times during the first two hours of
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TABLE II - CUMULATIVE DISTRIBUTION OF ATTENUATION
at 30 GHz FOR DAY AND NIGHT OBSERVATIONS

Attenuation at 30 GHz
(in dB)

Percent of total observing times
(3851 daylight hours)

> 3
> 6
> 9

> 15
> 21
> 27
> 33

1.97
1.00
0.55
0.309
0.174
0.105
0.069

(4826 nighttime hours)

> 3
> 6
> 9

> 12

1.148
0.300
0.113
0.052

* December 8,1967 through December 8,1968. The daytime observations include
all elevations from a maximum of 74° down to as low as 2° or 3°. Nighttime observa-
tions are made at a constant elevation varying from 73° on June 21 to 26° on
December 21. Elevation effects may contribute to the differences between day and
night distributions as well as rainfall differences.

the daytime portion of the record shown in Fig. 4 (b) . Except for two
of the points, the clashed line which represents a constant ratio of 3.4
to 1 is a good fit to the data. Figure 9 shows points from a thunder
storm in which the ratio taken from the second order -fitted curve
varies from 3 at high attenuations to more than 4 at low attenuations.
Figure 10 shows points from another thunderstorm during which two
separate observers remarked on the unusually large size of the rain-
drops. The ratio in this case was about 2.2 to 1. The ratio for other
rains has fallen within the range indicated above.

VIII. SUN VERSUS SKY BRIGHTNESS MEASUREMENTS

As explained in Section II a sky brightness measurement is made
at one frequency simultaneously with the measurements of attenua-
tion using the sun. With both attenuation and brightness the equa-
tions of Section II can be solved in either of two ways. In Fig. 11 a
scatter plot has been made of attenuation derived from the sky -bright-
ness measurement using equation (2) against simultaneous attenua-
tion measured in the direction of the sun. It can be seen from this
and other data that if the correct value for T is used (272°K in this
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TABLE III- CUMULATIVE DISTRIBUTION OF ATTENUATION
AT T6 GHz FOR DAY AND NIGHT OBSERVATIONS

Attenuation at 16 Gth
(in dB)

Percent of total observing time*
(3839 daylight hours)

> 1
> 2
> 3
> 5
> 7
> 9
> 11
> 13
> 15
> 20
> 25
> 30
> 33

1.59
0.84
0.45
0.259
0.158
0.112
0.085
0.065
0.049
0.034
0.023
0.013
0.009

(4812 nighttime hours)

> 1
> 2
> 3
> 6
> 9
> 12

0.46
0.13
0.05
0.022
0.016
0.012

* Same dates as Table 11. The daytime observations include all elevations from a
maximum of 74° down to as low as 2° or 3°. Nighttime observations are made at a
constant elevation varying from 73° on June 21 to 26° on December 21. Elevation
effects may contribute to the differences between day and night distributions as
well as rainfall differences.

case) , measured sky brightness values can be interpreted as attenua-
tions with reasonably small scatter up to and perhaps beyond 10 dB.
(Some of the scatter in Fig. 11 is undoubtedly caused by real differ-
ences in attenuation in the two directions.)

A more interesting way of looking at this same data is to invert
the equations and compute the apparent medium temperature Tc. In
Fig. 12 the derived value of T, has been plotted (dots) against meas-
ured attenuation for the same data as used in Fig. 11. At low values
of attenuation the average value of T, seems to be below the ice point
even though the air temperature near the earth's surface was about
295°K during this rain. Super cooling might play some role in causing
this low apparent temperature, but it is more likely that scattering as
discussed in Section IX causes the main effect.

At high values of attenuation the measured value of T, goes up to
as high as 290°K; this is a very definite effect since the measured
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12 24 36 48 60 72 84
DURATION OF FADE IN MINUTES

Fig. 6 - Number versus duration for fades of 9 dB or greater at 30 GHz for
the period December 1967 to August 1968.

brightness temperature rises to 290°K. However, if a plot like Fig. 11
is made using such a high value of To, there is a definite curve at at-
tenuations above 5 dB and the fit is unacceptable by 10 dB. There
are two contributions to the higher values of To at higher attenua-
tions. First, scattering ceases to be very effective in lowering To; in-
stead of scattering radiation from the cold sky into the antenna beam,
the lower drops scatter radiation from upper drops into the beam.
Second, at high values of attenuation only the lower and hotter por-
tion of the rain contributes effectively to the brightness since the lower
drops absorb the radiation from the upper drops and replace it with
their own.

IX. DEVIATIONS FROM SIMPLE THEORY

The output of the sun tracker could depart from the true attenua-
tion in the path to the sun for several reasons:

(i) Nonlinearities and instabilities in the radiometers, are small
enough to be negligible.

(ii) Mispointing the antenna beam as a result of atmospheric refrac-
tion, use of noon solar positions during an entire day, and mechanical
misalignment cause the signal from the sun to decrease more at low
elevations than one expects from atmospheric absorption. These ef-
fects fortunately are quite repeatable from one day to the next so
that clear weather days provide a reference level below which excess
attenuation is measured.
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Fig. 7- Number versus duration for fades of 9 dB or greater at 16 GHz from
December 1967 to August 1968.

(iii) The brightness of the sun may not be constant. Clear weather
records to date show no noticeable variations from day to day, except
for a large increase for 40 minutes during the solar event of July 8,
1968 and increases of 1 dB or less lasting only a few minutes on sev-
eral other occasions.

(iv) Part of the received signal might result from forward scatter-
ing by the precipitation. The scattered energy might therefore be
collected by the relatively broad beam of the antenna and be indistin-
guishable from the direct signal. However, since rain drops are not
large compared with a wavelength, the forward scattering lobe will
be relatively weak and large in angular diameter. Moreover, approxi-
mately equal scattered power will be picked up in the direction of the
sun and in the reference direction 2.6° away. Forward scattered en-
ergy should therefore cancel out, resulting in a proper measurement of
attenuation. In measuring sky brightness at low attenuations, how-
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Fig. 10 - Scatter plot of attenuation at 16 GHz against simultaneous attenua-
tion at 30 GHz for rain with noticably large drops (June 3, 1968).

ever, forward scattering will scatter energy from the cold sky into the
antenna beam; in other words, it will not contribute to sky brightness

the same way that absorption does. The apparent of T, in
equations (1) to (3) will be lower than the actual temperature of the
absorbing water, consistent with the low values shown in Fig. 12 for
small attenuations. The presence of the hot sun in the cold sky does
not alter this conclusion since the sun's contribution averaged over
the upper hemisphere will be much less than 1°K.

(v) In clear weather the transmissivity of the standard atmosphere
will, in general, be different in the directions of the sun and of the
reference region because of the difference in elevation angle of the
two regions. Thus, even when not tracking the sun, the output of
the sun tracker is not zero. At 30 GHz it can be as high as 25 dB
below the sun at the low elevation cutoff of our observations. This
effect does not limit the measuring range of the sun tracker because
the false signal is attenuated as the sun is attenuated. If the high at-
tenuation region caused by rain were concentrated near the sun
tracker, the false signal from the atmosphere would be attenuated by
the same amount as the sun. Also if the high attenuation region had
the same temperature as the rest of the atmosphere, its position in the
atmosphere would not matter; by the same argument the false signal
would be attenuated by the same amount as the sun. In the unlikely
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case that the high attenuation region is beyond the atmosphere, the
effect of the false signal would still be reduced with attenuation, but
the maximum reduction would be the ratio of the average atmospheric
temperature to the difference between the average atmospheric tem-
perature and the temperature of the high attenuation region. In the
actual case, precipitation will at worst be distributed through the
atmosphere and have nearly the same temperature as the atmosphere
leading to the conclusion that the false signal is not a practical limit
to the measuring range of the sun tracker.

(vi) Precipitation collecting on the surfaces of the antenna can
cause attenuation especially if the radio waves pass through a wetted
surface such as a weather cover. This attenuation should not be at-
tributed to the atmosphere. For tests on the effect of water on the
surfaces, a fire truck with a fine spray nozzle was used. At a water
fall rate of 15 inches per hour, 3 dB attenuation was observed at 30
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Fig. 11-Scatter plot of attenuation calculated from sky brightness against
the value measured simultaneously using the sun (16 GHz; T, = 272°K; June
12, 1968).
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4 8 12 16 20 24
ATTENUATION AT 16 GHZ IN DECIBELS

28

Fig. 12 - Apparent absorber temperature derived from sky brightness measure-
ments plotted against attenuation. The dots are experimental points. The dashed
lines show the effect in this plot of 10 dB differences between the attenuation in
the direction of the sun and the reference region. The solid lines show the effect
of 20 percent differences in attenuation. The resulting error in attenuation meas-
ured by the sun tracker is labeled on the curves. A linear change in absorber tem-
perature with attenuation has been assumed in calculating the lines (June 12,
1968).

GHz and 11/2 dB at 16 GHz. Snow is also an offender and measure-
ments during snow have been discarded except immediately follow-
ing removal of the accumulation.*

(vii) The high loss region (for example, a raincell) may not be uni-
form over the 2.6° lobing angle thereby resulting in a difference in
brightness between the medium in the direction of the sun and the
medium in the direction of the reference region. The main salvation in
this case is that the sun produces an antenna temperature much higher
than the physical temperature of the atmosphere. If the transmissivity
of the medium in front of the sun is t1 and in front of the reference
region t2, then on subtracting equation (2) from (1) we will have

* However, as discussed in Section V, an inch or so of dry snow on the antenna
has only a small effect on antenna temperature.
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= (t2/t1 - 1)(Te/ Tag
Since 11,/718 is about 0.1 at both frequencies the maximum over -esti-
mate of ti will be about 0.5 db as T2 becomes much smaller than ti.
In the cast t2 > t1 the second term in the brackets would begin to
dominate if t2/t1 > 10. Thus t2 would be measured instead of t1 for
large ratios. Fluctuations of more than 10 dB in the transmissivity
of the atmosphere over the 2.6° lobing angle would cause a significant
average under -estimate of attenuation in the path to the sun.

The 16 GHz radiometer data plotted in Fig. 12 can be used to esti-
mate the errors in attenuation measurement resulting from actual
differences in attenuation. As shown above, a 10 dB excess of attenua-
tion in the direction of the sun would cause about a 3 dB under-
estimate of that attenuation. The expected apparent values of T, in
this condition are shown as the lower dashed line in Fig. 12. The
upper dashed line indicates the values of T, expected in the equally
probable opposite case where the attenuation in the reference beam
is 10 dB greater than in the direction of the sun. In this case the
total error is only 0.6 dB. It is seen from Fig. 12 that the data ex-
cludes differences which are this great. In both of these cases and in
the one to follow, a linear increase of T, with attenuation has been
assumed, namely from 265° at 0 dB to 285° at 30 dB.

A more realistic model of the fluctuations in attenuation is that they
are some fraction of the total attenuation. The solid lines in Fig. 12
show the apparent values of T, with plus and minus 20 percent differ-
ences in attenuation. These lines come remarkably close to being
envelopes of the scattered points. The error in measured attenuation
implied by this model is shown along the lines at 0.5 dB intervals. The
maximum error of 1.5 dB out of 30 dB is acceptably small for the type
of measurements intended with the sun tracker. The same type of
plot has been made for other rains and with 30 GHz data with similar
results.

If the temperature of the attenuating medium is T1 in front of the
sun and T2 in the reference region, but the transmissivity is a con-
stant value t, on subtracting equation (2) from (1) one obtains

1 - t - 172]
AT,, = tTs[1

t Ts

In this case the temperature difference appears linearly in the correc-
tion term so that positive and negative errors are equally likely. Thus
if there were significant temperature differences over the 2.6° lobing
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angle, one would see periods of zero or negative receiver output during
times of high attenuation. To date, when large attenuations have oc-
curred, this behavior has not been observed and the output has had
the same appearance as receiver noise in the absence of signal.
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High -Power Single -Frequency Lasers Using
Thin Metal Film Mode -Selection Filters

By PETER W. SMITH, M. V. SCHNEIDER, and
HANS G. DANIELMEYER

(Manuscript received December 12, 1968)

In this paper we present the theory of mode selection by use of a thin
metal film in the laser cavity and we derive formulae both by a rigorous
method and by using a lumped -circuit approach. Experiments performed
with a 500-mW argon ion laser showed that 350 mW or 70 percent of the
multimode power could be obtained in single -frequency operation using
this technique. Somewhat lower efficiencies were obtained with a neo-
dymium -doped yttrium aluminum garnet laser. We compare this with
other mode -selection techniques.

I. INTRODUCTION

Troitskii and Goldina recently showed that a thin metal film can be
used inside a He-Ne laser cavity to produce single -frequency output'.
A thin lossy film will favor oscillation on a mode which has a standing -
wave minimum at the film position.

The simplicity of this technique is very attractive. We have, there-
fore, investigated both theoretically and experimentally its efficiency
and its application to high power continuous wave (CW) lasers.

In Section II we develop formulas, both rigorously and using a
lumped -circuit approach, which relate the complex refractive index
of the metal film to its characteristics as a mode filter. We also show
how the complex refractive index of a given metal film can be deter-
mined from measurements of the reflectivity and transmissivity of
the film. Section III describes experiments using this thin-film tech-
nique to obtain single -frequency operation of a continuous wave argon
ion laser; Section IV describes the results obtained with a neodymium-
doped yttrium aluminum garnet laser. In Section V we discuss these
results and the applications of this technique.
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II. THIN METAL FILMS FOR MODE -SELECTION FILTERS

2.1 Optical Properties of Thin Metal Films
The optical properties of a thin metal film can be characterized by

a complex index of refraction and by an effective optical thickness.
The parameters which are easily measured are transmittance, re-
flectance, and average physical film thickness. From these parameters
one can deduce the index of refraction and the optical thickness. This
procedure does not necessarily lead to meaningful optical constants
since thin films often consist of separate islands or of material which
is considerably different from the bulk metal because of special prob-
lems in the deposition process.

Thin metal films can have high losses if the free space transmittance
and reflectance are about equal. This property can be used in optical
mode selection filters. The film is placed in the null of the E -field of
one particular desired mode which experiences little loss because of the
film. Undesired modes with nulls in a different plane are attenuated
and hopefully eliminated. Best results are obtained for the thinnest
film with the highest complex index of refraction. We require that
the film be continuous, that is, that is does not consist of a large
number of separate aggregates. (But see Ref. 2.) Chromium and ti-
tanium are particularly useful materials because they do not tend to
form islands on quartz substrates. Continuous thin films can also be
obtained with evaporated nickel -chromium alloys (Nichrome) since
the high vapor pressure of chromium leads to fractional distillation
during evaporation and consequently gives a base layer of chromium
directly on the substrate. A further advantage of Nichrome is its high
stability with respect to atmospheric contaminants; Nichrome can also
be fully evaporated from a tungsten coil.

2.2 Computation of Reflectance and Transmittance of Thin Metal Films
The notation used in the following computation is shown in Fig.

la. The complex index of refraction of the metal film is N1 = N - jK,
and the propagation constant in the film, p, is given by

2rNi
P - x (1)

where A is the wavelength in vacuum.
The amplitude reflection and transmission coefficients r and S for a

film with thickness D area
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(N2-11r1)(Ni+No) exp (iP-D)+(N2+Ni)(N1-No) exp (-jpD)
(N2-4-N1)(N1+No) exp (jPD)+(N2-N1)(N1-No) exp (-jpD)

(2)

4N2N1-
(N2+Ni)(N1+No) exp (jPD)+(N2-N1)(N1-No) exp (-iPD) (3)

Power reflectance R, transmittance T, and loss A are given by

R = 77* (4)

T = 33*

A = 1 -R - T.

(5)

(6)

For thin films with D « X one can simplify equations (1) and (2)
with exp (±jpD) = 1 ± jpD. In addition we let N2 = No = 1 and
obtain

jpD(1 -
(7)r = + 2N, jpD(1 N;)

= 2N,
2N, + .ipin + (8)

For Ni I > 1 one obtains finally

1r = - (9)21 +
jpDN,

= 1
(10)pN,1 ±jD2

This means that the thin film with I Ni I > 1 can be characterized
by one single physical parameter

jpDN, = j 27D-X N. (11)

These approximations are appropriate when considering infrared
wavelengths. For other cases one has to use the rigorous expressions
of equations (2) and (3).

It is often useful to derive an equivalent lumped -film admittance Y
based on equations (2) and (3) or equations (7) and (8). The lumped -
film, admittance Y isshown- in Fig. lb in a transmission - line with
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admittance Y2 and Yo. The reflection and transmission coefficients are

r - Y2 - Y
Y2 + Y -F Yo

2 Y2a -
Y2 + Y Yo

For Y2 = Yo = 1 one obtains

(12)

(13)

r= - 1

2
(14)

1 +

=
1 y (15)

1+
An expression for Y can be obtained from equations (2) or (3). A
good approximation valid for thin absorbing films can be derived by
using equation (7)

jpD(1 - 1r = +2N,
jpD(1 Ni) 21 +

The result for Y is

jpD(N22 - 1)
Arl jpD

(16)

(17)

The rigorous as well as lumped approach have been used for com-
puting transmittance, reflectance, and loss of the film as listed in
Table I. The film was one used in the experiments reported in Sections
III and IV. The transmittance and reflectance were measured with a
traveling -wave beam external to the laser cavity. By successive trials,
the value of N1 was found which gave the best fit to the experimental
measurements. One can conclude that this film is thin and lossy enough
for using the lumped model.

2.3 Thin Metal Film in Front of a Mirror
A thin film in front of a mirror is shown in Fig. 1c. The high re-

flectance mirror can be considered as a short or open circuit which is
spaced by a length L from the back end of the thin metal film. The
reflectance and loss can be computed from a rigorous expression de-
rived from equations (2) and (3) or from the approximate model
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TABLE I-MEASURED AND COMPUTED THIN FILM PROPERTIES

Film material: Nichrome (80% nickel, 20% chromium)
Film thickness: 50 A
Wavelength: 10645 A

N2 = 1.5 quartz; No = 1.0 air

Transmittance
T

Reflectance
R

Loss
A

Measured 0.78 0.01 0.21
Computed, eqs. (2) and (3),

N - jK = 1.66 - j2.83 0.773 0.0116 0.214
Computed, eqs. (2) and (3)

exp (±jpD) = 1 ± jpD 0.776 0.0115 0.212
Computed, lumped

admittance, eq. (17), 0.777 0.0115 0.211
Y = 0.272 - j0.193

N2 = 1.0 air; No = 1.5 quartz

Measured 0.78 0.08 0.14
Computed, eqs. (2) and (3),

N - jK = 1.66 - j2.83 0.773 0.0832 0.143
Computed, eqs. (2) and (3)

exp (±jpD) = 1 ± jpD 0.776 0.0833 0.140
Computed, lumped

admittance, eq. (17), 0.777 0.0819 0.140
Y = 0.272 - j0.193

N2

INCIDENT WAVE

REFLECTED WAVE

Y2 = N2

I

(a)

Yo = No Y2

No

TRANSMITTED WAVE

r

(b) (c)

SHORT

Fig. 1- Notation used for computing optical film properties: (a) thin metal
film with index N1 = N-jK and thickness D; (b) lumped admittance, Y =
iPD(N12 - 1)/(N1 jpD), and (c) admittance Y in front of mirror.
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with a lumped admittance Y. The rigorous result for r is

E Fr -
G H

(18)

where

E = (N2 - N1) [(NiN0 + NO)ei (N1N0 - ne-llelPD (19)

F = (N2 + N 11V0 - Ng)e (N iN 0 + N,;)e-iPle-"D (20)

G = (N2 + N iN 0 + Ari2))e"3 + (N1N0 - N2o)Cilel PD (21)

H = (N2- N 1)[(N IA T - (N1N0+ 11T,2,)e- (22)

and

271-N ,,L- (23)
X

Reflectance obtained from equations (18) to (23) for a 50-A
Nichrome film at A = 10645 A, and a 150-A film at A = 5145 A is
plotted in Fig. 2. The reflectance is plotted as a function of Ag/2/1-
where /3 = ir/2 + 2irn + A/3 and n is an integer. As $ can be varied ei-
ther by changing the film -to -mirror spacing or by changing the fre-
quency of incident radiation, we have written 0/3 = NoAL/x or
NoLAvic. The values of Na and N2 are chosen to correspond to the ex-
perimental situations in which the films are used. Of particular impor-
tance are the minimum and the maximum absorption listed in Table
II. Note that if the film has no loss and No = N1 = N2, the reflec-
tivity is 1 regardless of the value of L or A.

The data are based on the assumption that the quartz substrate is
lossless and that the surface roughness of the substrate is much less
than the listed film thickness.

Reflectance and loss can also be computed from the thin-film
equivalent circuit of Fig. 1c. The metal film is characterized by the
lumped admittance Y, the mirror by a short, and the distance between
mirror and film by the effective optical length N0L. The short is
transformed into a susceptance Ys in parallel with Y given by

Ys j cot
217-A r

Yo

The reflection coefficient r is

Y2 - Y - Ys
- Y2 Ys

(24)

(25)
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Fig. 2 - Reflectance for mode selectors using 50-A or 150-A Nichrome films
on quartz substrates as a function of their spacing from the high reflectivity
mirror. Notice that the values of N., N2, and X are chosen to correspond to the
experimental circumstances under which each film was used.

Ni - Cr X

Curve (A) (A) N1 No N2

1 50 10645 1.66 - j  2.83 1.5 1 . 0
2 150 5145 1.33 - j  1.30 1.0 1.5
3 100 10645 2.4 - j  3.5 1.5 1 . 0

For the special case Y2 = 1 (air) and Yo = 1.5 (quartz) one obtains

1 - 1.5j cot (7rL/X)-
1 Y - 1.5j cot (NL/X)

The lumped admittance model always gives a minimum loss of zero
because it is based on a limit process in which the film thickness ap-
proaches zero while the product Y jpDNi remains constant.

It is clear from the form of equation (25) that the maximum re-
flectivity comes for 2/rNoL/A. = wir where n is an integer. The fre-

TABLE II -MINIMUM AND MAXIMUM Loss FOR
NICHROME FILMS ON QUARTZ

(26)

Index of refraction
Film Wavelength Minimum Maximum

Ni = N - jk No N2Thickness loss loss

50 A 10645 A 1.66 - j  2.83 1.5 1.0 8.5 X 10-5 0.680
150 A 5145 A. 1.33 - j  1.30 1.0 1.5 1.3 X 10-2 0.841



1412 THE BELL SYSTEM TECHNICAL JOURNAL, MAY -JUNE 1969

quency spacing between reflectance peaks is just c/(2N0L). Thus for
single -frequency operation the film should be situated sufficiently
close to the laser cavity end mirror that c/ (2N0L) is greater than the
oscillation width of the laser medium. It is advantageous to make
NoL as large as possible without exceeding this requirement, however,
since the selectivity of the mode filter decreases as N0L is decreased.

The minimum reflectance and the shape of the filter curve in the
vicinity of the maximum reflectance are important parameters govern-
ing the mode selection properties of the filter. We separate the ad-
mittance Y into a real and imaginary part

Y = G jB (27)

and obtain from equations (4) and (26) for the reflectance R

R = 1 4G

(G + 1)2 + (B - 1.5 cot 11)2
(28)

The minimum reflectance occurs in the vicinity of the nulls of the
cotangent function. Close to maximum reflectance, cot (7L/X) >> 1
and we obtain from equation (28)

R = 1 - 1.78G tan' Ir-L-' (29)
X

For rigorous computations one has to use equations (18) to (23).
Filter curves based on rigorous equations with N1 = N - jK as a
parameter are shown in Fig. 3. The film thickness for all curves is
D = 150 A and the wavelength X = 5145 A.

Notice that we have assumed plane waves in all of these calcula-
tions. In practice, if the flat metal film is situated close to a plane
laser end mirror, this condition will be well satisfied. If a plane metal
film must be situated some distance from the laser end mirrors, the
laser cavity must be designed so that there will be a beam waist at
the metal film.

The problems encountered in practical filter design are often that
films with suitable index of refraction are not stable or vice versa.
Additional protective coatings have to be deposited which may change
the filter characteristics, or a compromise has to be found with one
single stable film or two stable films spaced at an appropriate distance
inside the laser cavity.
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Fig. 3 - Reflectance of a mode selector using a 150-A metal film for various
values of NI = N - jK: (1) 1 - j, (2) 1.5 - j 1.5, (3) 2 - j 2, (4) 2.5 -
j 2.5, and (5) 3 - j 3. The curves are plotted for X0 = 5145 A, No = 1.5, and
N2 = 1.0.

2.4 Film Fabrication
Films for use as mode selection filters are evaporated from a tung-

sten coil in a vacuum of 4.10-7 torr. The coils are made from 4 -strand
tungsten wire with a diameter of 0.015 -inch per strand. The source
to substrate distance for a 150-A film is 3.0 inches and the Nichrome
charge is a 0.010 -inch diameter wire with a length of 0.854 inch.
Total evaporation time is less than 10 seconds. The substrates are
cleaned in isopropyl alcohol, immersed in methanol, and blow dried
with dry nitrogen. It is concluded from separate experiments with a
Tolansky interferometer that the Nichrome material is completely
evaporated from the tungsten coil.

III. ARGON ION LASER EXPERIMENTS

Experiments were performed with a dc -excited discharge tube with
an active plasma length of 60 cm and a 3 -mm diameter bore. A
Brewster -angle prism was used inside the cavity to select the desired
laser transition; the cavity consisted of a 5-m mirror and a flat mirror
separated by 150 cm. The metal film was situated 2 cm from the flat
mirror. With this configuration, no adjustable aperture was required
to obtain fundamental transverse mode operation.

Films of pure nickel or Nichrome were deposited on one side of a
fused quartz plate. These plates were of optical quality suitable for



1414 THE BELL SYSTEM TECHNICAL JOURNAL, MAY -JUNE 1969

their use as Brewster -angle windows for laser tubes. In order to
eliminate the effects of Fabry-Perot interferences between the front
and back surfaces of the plates, an additional plate with an antireflec-
tion coating on one side was contacted with optical matching oil to
the bare surface of the metal -coated plate.

The measurements reported here were made using this composite
plate with an antireflection coating on one side and the metal film
on the other. Virtually the same laser output power was observed
when the simple plate with a metal film on one side, and no coating on
the other, was used in the laser cavity.

Several films of different thickness of nickel and Nichrome were
used for these experiments. The best results were obtained with a
150-A Nichrome film. Because details of the deposition technique
may affect the properties of the film obtained it is perhaps more
informative to list the characteristics of the film measured with an
external (traveling -wave) beam. These were

T = 0.60 ± 0.01, R = 0.13 ± 0.003, A = 0.27 ± 0.01

for the beam incident on the metal film and

T= 0.61 ± 0.01, R= 0.013 ± 0.002, A= 0.38 ± 0.01

for the beam incident on the antireflection coating. These measure-
ments were made at 5145 A. Virtually the same results were obtained at
4880 A. These results were used to find the complex index of refraction
used for the calculations in Section II. Figure 4a shows the laser output
at 4880 A as a function of the distance between the metal film and the
end mirror of the laser cavity. This distance was varied by a ramp volt-
age applied to a piezoelectric ceramic transducer element on which
the laser mirror was mounted. As the relative film position is varied,
different longitudinal modes of the laser find themselves with a
standing -wave minimum at the metal film and thus are able to
oscillate. The overall outline of the pattern indicates the profile of
the gain curve. The side humps are caused by the axial magnetic
field applied to the laser tube.

In order to verify that we had indeed achieved single -frequency
operation, a scanning interferometer was set up to observe the fre-
quency spectrum of the laser output. Figure 4b shows the output
versus frequency for the laser operating without a metal film in the
cavity. This picture corresponds to the maximum available output
of 500 mW at 4880 A. With a 150-A Nichrome film in the laser cavity,
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Fig. 4 - Experimental results using metal -film mode selector in an argon ion
laser oscillating at 4880A: (a) Single -frequency laser output as a function of
separation between metal film and laser end reflector; (b) Multimode output of
laser without mode selector as a function of frequency: total output power 500
mW. The total oscillation bandwidths is =7;6 GHz; (c) Single mode laser output
obtained using metal film as a function of frequency: output power 350 mW.

single -frequency output was obtained at 4880 A as shown in Fig. 4c.
Over 350 mW or 70 percent of the multimode output could be obtained
in a single frequency. At 5145 A, 50 percent of the multimode power
could be obtained in a single frequency, using the same film.

These figures can be compared with those for an interferometric
mode selector of the type described in Ref. 4. A mode selector of that
type was constructed for use with the argon ion laser. It was found
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that with the same type of laser 50 percent of the multimode output
power at 5145 A could be obtained in single -frequency output; 70

percent of the multimode output power at 4880 A could be obtained
in single -frequency output. Thus, for this laser, the two schemes
appear identical in power output.

From curve 2 of Fig. 2 we find that the loss produced by the metal
film is less than the laser gain 25 percent) for a frequency range of
roughly 1.3 GHz. The fact that single -frequency operation was ob-
tained with this film indicates that mode -competition effects must have
extended over this range of frequencies. This is not surprising as the
natural linewidth for the argon laser is about 500 MHz and radiation
broadening will increase this homogeneous linewidth in a laser well
above threshold!' Mode competition effects are expected between
adjacent modes spaced by less than the homogeneous linewidth. Thus
we see that, for the argon laser, single -frequency operation can be ob-
tained with a much lower selectivity mode selector than would be
required if mode competition were not present.

nr.Nd:YAG LASER EXPERIMENTS

4.1 Description of the Laser
The laser system consisted of a 30- by 2.5 -mm neodymium: yttrium

aluminum garnet (Nd:YAG) rod, pumped with a 1 -kW tungsten
lamp in an elliptic cylinder, a high reflectivity plane mirror, and an
output mirror with 10-m curvature and 1.6 percent transmission. The
mirror separation was M = 20 cm which resulted in a longitudinal
mode spacing of 670 MHz. Without insertion of any mode selector,
this cavity configuration gave fundamental transverse mode operation
up to 850-W pump power. Figure 5a shows the output spectrum at that
pump level observed with a scanning Fabry-Perot interferometer. The
total output power was 200 mW with a maximum linearly polarized
component of 130 mW. This component increased to 220 mW at
960-W pump power, but this power was not all in the fundamental
mode, and the amplitudes of individual modes were very unstable.

To obtain single -frequency operation, the plane mirror was replaced
by a fused silica flat 2.5 mm thick (free spectral range 40 GHz) which
was high -reflectivity coated on one side and metal coated on the other.
This arrangement produced stable single -frequency output, as evi-

denced by Fig. 5b, which was photographed from a screen averaging
over 10 scans in one second (the persistance time of the screen). The
output stability was achieved by keeping one particular node of one
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Fig. 5 - Experimental results using metal -film mode selector in neodymium -
doped YAG laser oscillating at 1.06A. (a) Multimode output of laser without
mode selector as a function of frequency. Linearly polarized output power 130
mW. The frequency spacing between modes corresponds approximately to c/2L
for the YAG rod. The upper trace shows the ramp voltage used to scan the
Fabry-Perot interferometer. The output spectrum display repeats itself with the
spacing of the interferometer free spectral range (30 GHz). The total oscillation
bandwidth of the laser shown here is 22 GHz. (b) Single mode laser output
obtained using metal film as a function of frequency: linearly polarized output
power 60 mW.

longitudinal mode close to the film center. Their relative positions
should be within about ±20 A since the nodes corresponding to adja-
cent longitudinal modes are spaced at NoLX/2M = 84 A in the vicinity
of the film. This implies temperature stabilization of the quartz flat
to within ±0.1°C [a(NoL)/LaT = 8 X 10-6/°C], and cavity length
stabilization to within ±1,000 A. In addition, the film becomes in-
efficient if its tilt exceeds one adjacent longitudinal node spacing
across the beam diameter. Thus the quartz flat must be parallel to
about 2 seconds of arc and its flatness should be better than X/20.

4.2 Results
Best results at lowest threshold were obtained with a 50-A nickel -

chromium film. Its transmission and reflection, as measured with a
YAG laser beam, are shown in Table I. A power of 60 mW (maximum
linearly polarized component) could he obtained in a single frequency
which was 27 percent of the maximum multimode power output.
However, the absorption of the film was not sufficient to obtain single -
frequency output up to the pump limit. At 960 watts pump power, the
total (multimode) output power was 150 mW with a frequency range of
4 GHz. Curve 1 of Fig. 2 predicts a 4 GHz range for a net gain of 3
percent (c/NoL = 80 GHz). In addition it was observed that the out-
put was much more stable than that of the free -running laser: the
power in an individual mode was constant to within 20 percent.
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Therefore, inserting a metal film into the cavity is a simple technique
for obtaining a stable YAG laser output in a narrow frequency range.

Several other films have been tried. A 100-A nickel -chromium
film, for instance, had close to zero minimum reflectance according
to curve 3 of Fig. 2. This curve was calculated from the transmission
(48 percent) and reflections (18 percent and 32 percent) measured with
a YAG laser beam. It was verified that the minimum loss was larger
than for the 50-A film since the threshold for oscillation had increased
to 800 W pump power (compared with 600 W for the 50-A film).
Although curve 3 in Fig 2 indicates a higher selectivity for this film,
the maximum single -frequency output was again 60 mW. If the pump
power was increased beyond this point, multimode operation was ob-
tained.

Obviously, the metal film technique works less efficiently for the
YAG laser than for the argon ion laser. The reasons for this are (i)
the apparent lack of mode competition which makes it necessary for
the YAG laser to completely suppress all but one mode (not just to
provide a little more loss for the other modes), and (ii) its low gain
which makes the YAG laser output very sensitive to small additional
losses. Therefore, it is generally much more difficult to obtain a high -
power single -frequency output from a YAG laser than from an argon
ion laser or helium -neon laser.

V. DISCUSSION AND CONCLUSION

The theoretical and experimental results show that it is possible,
under suitable circumstances, to obtain high -power single -frequency
operation of a laser using the metal film technique. In practice, how-
ever, it is not always possible to find a material that has the required
loss in a sufficiently thin film. This is in contrast with interferometric
mode selectors whose selectivities are determined simply by the reflec-
tivities of the elements. For the argon ion laser an interferometric
mode selector has some advantages over the metal film,' however, it
is difficult to apply to the YAG laser because of its much greater
oscillation width (about 100 Gllz). The metal film method described
here does have the advantage of simplicity, however, and the system
is relatively easy to make mechanically stable. The metal film tech-
nique should be of particular interest to people working in the fields
of Brillouin scattering or holography where a narrow bandwidth
source is required. It is relatively easy with a metal film to restrict
the laser oscillation to a few neighboring modes. Thus a drastic re-
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duction in bandwidth can be made, often at little expense in total
output power.
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Microstrip Lines for Microwave
Integrated Circuits

By M. V. SCHNEIDER

(Manuscript received December 2, 1968)

Microstrips, transmission lines of metallic layers deposited on a di-
electric substrate, are very useful for the microwave and millimeter wave
hybrid integrated circuits required for solid-state radio systems because of
their simplicity and planar structure. To design hybrid integrated circuits
with microstrips requires computation or measurement of the impedance, the
attenuation, the guide wavelength, and the unloaded Q of the line. These
parameters can be obtained from the effective dielectric constant and the
characteristic impedance of the corresponding air line. This paper gives
the exact design data for all line parameters for the most important cases.

We report the impedance and attenuation measurements performed on
microstrips. Satisfactory agreement is obtained with theoretical results
based on conformal mapping with logarithmic derivatives of theta functions
and expressions involving the partial derivatives of the impedance with
respect to independent line parameters.

I. INTRODUCTION

Transmission lines and passive lumped or distributed circuit ele-
ments, which are manufactured and assembled from planar metal
conductors or conducting stripes on insulating substrates, are es-
sential basic elements in microwave and millimeter wave hybrid
integrated circuits. The metal strips or microstrips are deposited by
thin-film or thick -film technology on dielectric substrates; the proc-
essing steps are substantially different compared to conventional
coaxial and waveguide circuit technology. Circuits built with micro -
strip transmission lines or microstrip components have three important
advantages:

(i) The complete conductor pattern can be deposited and processed
on a single dielectric substrate which is supported by a single metal
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ground plane. Such a circuit can be fabricated at a substantially lower
cost than waveguide or coaxial circuit configurations.

(ii) Beam -leaded active and passive devices can be bonded directly
to metal stripes on the dielectric substrate.

(iii) Devices and components incorporated into hybrid integrated
circuits are accessible for probing and circuit measurements (with some
limitations imposed by external shielding requirements).

The purpose of this paper is to derive formulas for the electric pa-
rameters which are the impedance, attenuation, propagation constant,
and unloaded Q of the microstrip transmission line. In addition to the
electrical design data, attenuation measurements at 30 GHz are pre-
sented because:

(i) The attenuation is the most important electrical parameter
of a microstrip because it determines the circuit losses of microwave
and millimeter wave hybrid integrated circuits.

(ii) There are many solid-state radio systems for which hybrid in-
tegration looks attractive, such as the radio pole line, high -capacity
domestic -satellite systems, Picturephone® visual telephone distribu-
tion, and mobile telephone systems.1.2 Hybrid integration of circuits is
essential for many other applications in order to achieve small overall
size, minimum weight, and low production cost.

II. DEFINITION AND CLASSIFICATION

A strip line or microstrip line is a parallel two -conductor line made
of at least one flat strip of small thickness. For mechanical stability
the strip is deposited on a dielectric substrate which is usually sup-
ported by a metal ground plane. This basic configuration is shown
in Fig. la.

A parallel two -conductor line of this type may need modification
because:

(i) A radio frequency shield may be required to eliminate radiation
losses. The shield dimensions or the sheet conductivity of the shield-
ing material have to be chosen in such a way that excitation of trans-
verse electric modes, transverse magnetic modes, and box resonances is

suppressed.
(ii) Proximity of the air -dielectric interface with the strip con-

ductor can lead to excitation of plane -trapped surface waves. This
problem can be solved by using a substrate with a low dielectric con-
stant or by choosing a sufficiently small frequency -thickness product
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Fig. 1- Basic types of microstrip transmission lines with one strip conductor
supported by a dielectric substrate: (a) standard microstrip, (b) embedded micro -
strip, (c) microstrip with overlay, (d) microstrip with hole, (e) standard
inverted microstrip, (f) suspended microstrip, (g) shielded microstrip, (h) slot
transmission line.

for the microstrip. It can also be solved by removing the air -dielectric
interface into the far field region as shown in Fig. lb.

(iii) If the substrate is a semiconductor, surface passivation may be
necessary to protect against atmospheric contaminants. This can be
achieved by a thin dielectric film as shown in Fig. lc.
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(iv) Solid-state devices with substantial heat dissipation such as
IMPATT, GUNN, and LSA diodes as well as high -power varactor diodes
have to be shunt mounted in the microstrip in order to achieve a small
thermal spreading resistance in the ground plane. A hole in the di-
electric is required in Fig. ld for mounting a solid state device be-
tween the two microstrip conductors.

IMPATT diodes, bulk sources, and high -power varactors are typical
examples of solid-state devices which are usually shunt mounted in
transmission line circuits. Other solid-state devices or materials
which require shunt mounting are ferrites for circulators and isolators
and high -Q dielectric resonators for microwave band-pass filters.
Shunt mounting is facilitated in inverted microstrips and suspended
microstrips shown in Figs. le and 1f. Solid-state devices which
require a dc bias or a de return have to be mounted by means of a
pressure contact or bonded contacts between the ground plane and the
strip conductor shown in Fig. le. Complete shielding of such a line
is essential because fringe field effects are enhanced by increased elec-
tric field intensities in the dielectric support material. An attractive
solution is to suspend the substrate symmetrically between the ground
plane and the top shield. Such lines have been discussed by Brenner
and have been used for balanced transistor amplifiers and ferrite
circulators.3-6 A major advantage of all microstrip configurations with
an air gap is that the effective dielectric constant is small. This means
that the effective dielectric loss tangent is substantially reduced; also,
all circuit dimensions can be increased, which leads to less stringent
mechanical tolerances, better circuit reproducibility, and therefore
lower production cost.

Figure lg shows a completely shielded standard microstrip and
Fig. lh is a schematic diagram of a slot line which consists of two
conductors deposited on the same side of a high permittivity sub-
strate.7 The slot line can be tightly coupled to the lines of Figs. la
through g by depositing the slot line metallization on one side of the
substrate and the microstrip conductor on the opposite side of the
same substrate. Standard microstrips supporting transverse electro-
magnetic modes and structures supporting slot modes can thus be
combined on one single substrate for obtaining the widest possible
choice of circuits to be built with existing hybrid integrated circuit
technology.
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III. IMPEDANCE, ATTENUATION, AND UNLOADED Q

The electrical parameters of the microstrips of Figs. la through
g which are required for circuit design are impedance, attenuation,
unloaded Q, wavelength, and propagation constant. These parameters
are interrelated for all microstrips of Figs. la through g assuming
that

(1) The propagating mode is a transverse electromagnetic mode, or
it can be approximated by a transverse electromagnetic mode.

(ii) Conductor losses in the metal strips are predominant, which
means dielectric losses can be neglected.

(iii) The relative magnetic permeability of the substrate material
is ft,. = 1.

The basic reason for the subsequently explained relationship of
the line parameters is that the inductance per unit length depends only
upon the conductor geometry and is absolutely independent of the
geometry and the dielectric properties of the supporting structure.
The relationship between line parameters is shown in Fig. 2.

Let us assume in Fig. 2a that the conductor geometry is defined
by a stripe width wo, a ground plane spacing ho, and a small stripe
thickness to. Let us also assume that this is an air line with a char-
acteristic impedance Zo, a wavelength A0, an attenuation per unit
length ao, and an unloaded Q0. If the conductor dimensions remain the
same, and if the microstrip is fully embedded in a dielectric medium
with a relative dielectric constant e one obtains the new line param-
eters given in Fig. 2b. If the line is only partially filled with dielec-
tric support material with a relative dielectric constant Er, one obtains
for the line parameters of Fig. 2c

Z

Z. impedance

X = wavelength
(

X.

e. if)

a = ff)/a. attenuation

20r 1Q -Q - in 10 ocX.
ce.X° in dB. (4)

The effective dielectric constant Eeff has to be computed or measured
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as discussed in Section 4.3. The following inequalities are valid for
the standard microstrip in Fig. la and the inverted microstrip of
Fig. le

1 -4- er
Eelf 6- standard microstrip (5)

1 ±
15_ e.ff 6_ inverted microstrip. (6)

If one has to compare the attenuation or the unloaded Q of different
microstrips one has to consider lines which have the same impedance
level. It is also necessary that the electrical length of both or at least
one critical conductor dimension w or h of Fig. 2 is the same. By criti-
cal conductor dimension we mean the dimension which is more critical
with respect to excitation of transverse electric modes or transverse
magnetic modes. Plane -trapped surface waves or hybrid modes are not
considered in this comparison.

Figure 2d gives the line parameters for partial dielectric filling with
reduced dimensions w = wo/(eeff)112 and h = ho/ (Eoll)1'2. This insures
that the electrical dimension of the two basic line parameters is the
same as the electrical dimension of the air line of Fig. 2a. In order
to obtain the same impedance for the partially filled microstrip of
Fig. 2d and the air line one reduces the ground plane spacing ho to
h1 as shown in Fig. 2e such that the characteristic impedance of the
air line is reduced to Zo/(ceff)1/2.

We can now state that:

(i) The microstrip with dielectric material of Fig. 2d and the
microstrip without dielectric material of Fig. 2e have the same im-
pedance.

(ii) If we assume that the current distribution is uniform for the
air line over the width wo on the ground plane and the adjacent bottom
face of the strip we obtain the same unloaded Q for both lines of Fig.
2d and Fig. 2e. The attenuation of the air line is lower by a factor
(cot) 1/2 as given in Fig. 2e.

IV. COMPUTATION OF LINE PARAMETERS

4.1 Exact Analytic Solution for Impedance by Conformal Mapping
The charactreistic impedance of the microstrip of Fig. 2a with

thickness t = 0 can be obtained by Schwarz-Christoffel integrals
which transform the upper half of a complex z1 plane into a rectangle
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in the complex z plane.8-" More specifically, one has to find an ana-
lytic function which maps the two strip boundaries in the z1 -plane on
two opposite sides of the rectangle as shown in Fig. 3. The Schwarz-
Christoffel integral for this specific case can be expressed in terms of
the theta function and 64. Theta functions are well behaved ana-
lytic functions of a complex variable, their properties are well known,
and rapidly converging series have been published.11,12 These func-
tions and their logarithmic derivatives are essential mathematical
tools for solving the following engineering problems:

(i) characteristic impedance of conductors with strip geometries,
(ii) junction capacitance in semiconductor diodes with strip junc-

tions,
(iii) heat flow and thermal resistance from a line source into a

solid, and
(iv) series resistance of bulk devices with stripe contacts.

The conformal transformation zi = z1(z) expressed in terms of the
logarithmic derivative of the theta function and its parameter K =

IMAGINARY
AXIS

Ven MPS

REAL
AXIS

Fig. 3 - Conformal mapping of a microstrip by the logarithmic derivative of
the theta function %(z, K).

2hK alm9i(z, K) (10)z1 - , Z0 -
az eo 2
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K'/K is
2hK a ,

, K)z, = -in tW(7)
7 aZ

where K = K(m) and K' = K' (m) are complete elliptic integrals of
the first kind with modulus m.

The characteristic impedance Z, of the microstrip with width w,
height h, and thickness t = 0 is obtained by solving the following
equations

w - In :9(r K) (8)- 57. 4 ,

dn2(2Kr) = 17. (9)

Z = (iLl
° 2 fo K (10)

E = E (m) is the complete elliptic integral of the second kind, do
the Jacobian elliptic function, p. and co the magnetic and dielectric
permeabilities of free space. With (tto/E0)1/2 = 1207 ohm and x =
K'/K one obtains

Z. = 607rK ohm. (11)

For a very narrow strip w << h and a very wide strip w >> h one
obtains the simple expressions

8hZo = 60 In -w ohm w << h

120w7thZo - ohm w >> h.

(12)

(13)

The exact computation for one important intermediate case by
means of a series expansion for the logarithmic derivative of the
theta function t% is treated in the appendix.

4.2 Impedance Design Formulas
The rigorous solution for computing Z, from equations (8) , (9), and

(10) is not recommended for most engineering applications. Useful
expressions in terms of rational functions or series expansions can be
obtained by generalization of equations (12) and (13) as follows

Z° = 60 In E an (.".)" ohm w <= h (14)
..1
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7Z. - 120
ohm w > h. (15)

E binnil (-1

The number of terms after which the series is terminated determines
the accuracy of the approximations. The following formulas obtained
by rational function approximation give an accuracy of ±0.25 per cent
for 0 < w/h 10 which is the range of importance for most engineering
applications

Z = 66 In (g
v

+4h ohm
1

(16)
t

=
120r ohm -> 1. (17)

h)" h -
h+2.42 -0.4421+ (1 -

The accuracy obtained for strips with w/h > 10 from equation (17)
is ±1 per cent.

Table I compares the impedance obtained with theta functions, the
impedance calculated from the rational function approximations, and
the measured value, with a time domain reflectometer for w/h = 1.
The physical dimensions of the line used for the time domain reflec-
tometer measurement are listed in Table II.

The estimated maximum error for Zo is ±0.7 percent. Measure-
ments for different ratios w/h by the same procedure have also given
excellent agreement with data obtained by means of the logarithmic
derivative of the theta function /94 (C, ic).

Figure 4 is a plot of Zo as a function of w/h. The impedance for the
important case of the standard microstrip of Fig. la is also plotted
for two materials which look attractive for hybrid integrated circuits
in the microwave and the millimeter wave range. These materials are

TABLE I - CHARACTERISTIC IMPEDANCE FOR w/h = 1

Method Zo Ohm

Rigorous solution with theta functions eqs. (8), (9), (10) 126.553
Measured impedance with time domain reflectometer

(Table II) 126.60
Approximation with narrow strip rational function equation (16) 126.613
Approximation with wide strip rational function equation (17) 126.507
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TABLE II - IMPEDANCE MEASUREMENT DATA WITH TIME
DOMAIN REFLECTOMETER

Impedance standard, General Radio
coaxial precision air line

Time domain reflectometer,
Hewlett Packard

Microstrip ground plane spacing h,
width w,
thickness t

Dielectric constant of polyfoam support and polyfoam
cover

Measured impedance for thickness t = 0.001 inches,
dielectric constant er = 1.032

Extrapolated impedance Z for thickness t = 0 from
measurements for t = 0.001 inch, 0.0115 inch,
0.0265 inch, 0.0525 inch and 0.0625 inch

Microstrip air line impedance Zo = (er)iZ

GR 900-L
50 11
hp

1415A
0.750 inch
0.750 inch
0.001 inch

Er = 1.032
124.42 St

124.62 n

126.60 St

200

180

160

140

120

100

80

60

40

20

0

7--
.. .. .

h
..

..... ........... .-.....--.............................

AIR
er=1.0

QUARTZ
et =338

ALUMINA
er = 9.5

0.1 02 0.4 0.6 0.8 1.0
w/h

2 4 6

Fig. 4 -Characteristic impedance of the standard microstrip for Er = 1 and
impedance of the standard microstrip for Er = 3.78 (quartz) and Er = 9.5
(alumina) as a function of w/h.
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fused quartz (Si02) with Er = 3.78 and 99.5 percent alumina (A1203)
with er = 9.5 whose impedance curves are based on computed effective
dielectric constants treated in Section 4.3.

4.3 Computation and Measurement of Effective Dielectric Constant
The electrical parameters of any microstrip can be computed if the

characteristic impedance Zo of the corresponding air line and the di-
electric constant (eff)112 are known. The basic equations required for
this computation are listed in Fig. 2.

The effective dielectric constant .601 is a function of the ratio w/h,
the relative dielectric constant Er, and the geometrical shape of the
boundary between air and the dielectric support material. The effective
dielectric constant can be obtained by starting from the transformation
given by equation (7) , by mapping the boundaries between air and
dielectric into the rectangle in the z -plane of Fig. 3, and by treating
the new geometrical configuration obtained inside the rectangle of the
z -plane as a parallel plate capacitor which is partially filled with di-
electric.

Notice that the fringe field problem is eliminated in the z -plane
because the complete upper half of the plane is transformed into one
rectangle. The procedure is rigorous since conformal mapping pre-
serves the angle of refraction of electric field lines at the boundary
between dielectric and air. If the capacitance of the parallel plate con-
figuration in the z -plane of Fig. 3 is Co without dielectric and C with
partial dielectric filling one obtains

C
Ed" = Gr

The method which is outlined above has been used by Wheeler for
the standard microstrip of Fig. 1a by starting from an approximate
conformal mapping transformation and by using an approximation for
the transformed parallel plate capacitance.13 The square root of the
effective dielectric constant (fell) 1/2 obtained by this method is shown
in Fig. 5 as a function of w/h and Er.

In order to find a function which approximates the set of curves of
Fig. 5 over the total range 0 < w/h < co and 1 S Er < co we define a
function F(e w/h) by

1 e,. 1 -
E

+
.ff 2 2

e -h

(18)

(19)
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--w -

4

2
1.5

0.1 0.2 0.4 0.6 0.8 1.0 2 4 8 8 10

w/h

Fig. 5 - Square root of the effective dielectric constant for the standard micro -
strip. (e,,fr)" plotted as a function of w/h with er as parameter.

From equation (5) we find for the standard microstrip of Fig. 1(a)

0 1.5.= F (er ) 1.
' h

(20)

One class of functions which fulfills this requirement is the class of
irrational functions

(21)

with c being functions of er and m < 0. The set of curves of Fig. 5
can be approximated with m = -0.5 and one single term of the series by

(Er, (1 101/V.
(22)

The final result with an accuracy of ±2 per cent for ceff and an
accuracy of ±1 per cent for (eau) is

er ± 1
2

Er 1 ( 1hy
1 -w (23e'ff - )

2
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Effective dielectric constants can also be obtained by static capaci-
tance measurements or time domain reflectometer measurements. If
the static capacitance per unit length is C with partial dielectric
filling and Co with the dielectric removed, one obtains fel, = C/Co and
from Z = (L/C)1/2 with L = Zo/vo

Z. 1

= ;),WC -'7,51
- (24)

where vo is the velocity of light in vacuum, vo = 3.101° cm per second.
Accurate measurements of cell with a time domain reflectometer re-

quire a precision coaxial connector standard and a good transition
from coaxial transmission line into the microstrip. Baseband transi-
tions up to a few GHz can be made by building an oversize model
of the partially filled microstrip as shown in Fig. 6. The in-
verted microstrip of Fig. 1(e) used for this measurement is sup-
ported by clear fused and polished quartz plates with a dielectric
constant = 3.78. The effective dielectric constant Eelf plotted as a
function of w/h is much lower than Er because only a small fraction
of field lines passes through the quartz. Similar results are obtained
if the line shown in Fig. 6 is completely shielded provided that the

radio frequency energy remains concentrated in the

1.30

1.25

1.20

1.10

1.05

1.00
0

-7--,

n = 0.750"

0.75"

Er =
1

3.78

0.50"

0.25"

1

0.5 1.0 1.5 2.0 2.5 3.0
w/h

35 4.0 4.5 5.0

Fig. 6-Square root of the effective dielectric constant for an inverted
microstrip with quartz substrate. Oversize measurement with strip conductor
thickness t = 0.010 inch.
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air gap between the ground plane and the strip conductor. One con-
cludes from this measurement that all of the electrical parameters of
inverted microstrips are close to the electrical parameters of the air
line. One also concludes that dielectric losses are substantially re-
duced because all the dielectric support material is removed into the
low field region of the microstrip.

4.4 Computation of Conductor Attenuation
The attenuation of any lumped or distributed circuit element is

known if its inductance as a function of the geometrical conductor
parameters can be calculated. Inductance and conductor attenuation
are related because the inductance is the normalized magnetic field
energy of the circuit element and attenuation is proportional to the
magnetic field energy stored in the metal conductor." In order to
calculate the attenuation one has to recede the metal surface by one
skin depth or more generally by a small length Sn normal to the con-
ductor surface. If the corresponding increase in inductance is SL and
if the skin resistance of the metal is R8, then the radio frequency re-
sistance R of the circuit or line element is

R (51,R= /2
(25)

with the skin resistance R. given by

R. = (rm.1/3)1 ohm (26)

where f is the frequency in Hz, p the conductor resistivity in ohm cm,
and p.o = 4-n10-° henry per cm. The skin resistance in ohms as a
function of frequency is plotted in Fig. 7 with p in ohm  cm as a
parameter.

The inductance L and the attenuation cro in neper per unit length of
a microstrip which supports a transverse electromagnetic mode are
given by

L = (e0;20)1Z.

I?ao = 2Z

From equations (25) , (27) , and (28) one obtains

(e)i R. 3Z,ao = - -
A. 2Z. (5n

(27)

(28)

(29)
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0.20

0.10

0.08

M(i) 0.06

O

cc

0.04

0.02

0.01

p OHM CM
10.10-6

810-6
6.10-6

4-10-6
3.,0-6

2.10-6 tlo-6

2 4 6 8 10 20 40 60 80 100
FREQUENCY IN GHZ

Fig. 7-Skin resistance R, of metals as a function of frequency. Bulk resistivity
at de and 20°C for suitable conductors is 1.7 Aohmcm for copper, 1.6 Aohmcm
for silver, 2.3 ,a ohm  cm for gold, and 2.8 µohmcm for aluminum.

The geometrical conductor parameters of the microstrip are width w,
height h and thickness t. Let us assume first that the skin resistance
of the ground plane is different from the skin resistance of the strip,
for example, the two conductor materials are not the same. The at-
tenuation al owing to the ground plane with a skin resistance R.1 is
obtained by receding the metal surface by Sn = Sh

=
(E.)4 R,1 az..

110 2Z. ah
(30)

The strip attenuation cr2 with a skin resistance R82 is obtained by re-
ducing the strip dimensions by 2Sw and 2St as well as increasing the
ground plane spacing by Sh

e R.2 [aZo
aw
az.

at
oz.

a2 2Z0 ah

The total attenuation a,, is

(31)

a. = al a2 (32)

If the conductor materials for the ground plane and the strip are
the same we obtain with R81 = Ra2 = R8
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R az az az
a° (µ°I ( h aw at

It is useful to write the partial derivatives:

az° 1 az
aw (w)

a 7,

az° w az°
ah ,i2 (w)

a 7,

az° aw
at - ' aw at

(33)

(34)

(35)

(36)

with aw/at being the derivative of w with respect to t for constant Zo.
The attenuation ao in dB per unit length is finally

+ -ow
R, OZ. h ata, = -

1 ±

fir in 10 /0 hZ.
aU)

(37)

The partial derivative aw/at can be derived from approximate
expressions published by Wheeler, Caulton, Hughes, and Sobol."'"
They define an effective width weff = w Aw by considering two
different microstrips with the same characteristic impedance Z. and
different dimensions given by w, h, t 0 and w,,ff , h, t = 0. The ap-
proximations are

w 1= weft -w = (1 -I- In 47rw -
2r (38)

=

W 1
Ow = Weff W = 1(1 ln (39)h - 2r

Additional restrictions for applying equations (38) and (39) are
t < h, t < w/2, and t/ Ow < 0.75. Notice also that the ratio Aw/t
obtained from equations (38) or (39) is divergent for t - 0. This does
not present a problem since equations (29) to (37) are only applicable
if the conductor thickness exceeds several skin depths.

Being aware of these limitations, we obtain the partial derivatives
aw/at by computing aweff/at from equations (38) and (39)

aw 1
In

47rw w 1- - _
at r t h = 27r (40)
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3w
= 7r1 In

2h
cal

w 1

h = 27-
(41)

It is convenient for design purposes to define the normalized at-
tenuation A in dB per ohm as follows

w aw
1

hoto 1 az° h atA = --= -
I?. 67r In 10 (w) zo

(42)

a

A is plotted in Fig. 8 as a function of w/h with aw/at as a parameter.
The normalized attenuation A based on the assumption of uniform
current distribution over the width w of the bottom conductor and the
adjacent bottom side of the strip conductor is also shown in Fig. 8 for
comparison. The formula valid for uniform current distribution is

20 h dBA - (43)
In 10 wZ,, ohm

One can show that equations (42) and (43) give the same result for
w/h >> 1 since Z. = 1207rh/w and aZda(w/h) = -1207rh2/w2. This is
expected because fringe fields can be neglected for wide strips. One
obtains a lower attenuation from equation (42) for narrow strips be-
cause currents are flowing on the top and bottom side of the strip and
also because of the beneficial effect of wider current distribution in the
ground plane because of fringe fields. For narrow strips the result is
with Z. = 60 In (8h/w w/4h) ohm

(8h w )(1 howl
10 kw 4hlk w w at IA - - 1. (44)

7 In 10
Z. exp (6Z2

h
0)

For wide strips one obtains from equations (17) and (42)

Z [ 0.44h 61/ h
7L) ale

yA -
7207r2 In 10

1 + 2 + 1 (1 + +
2 2

)WW h at

1. (45)
h

For design purposes it is recommended to read R8 and A from Figs.
7 and 8 and to obtain at, in dB per unit length from

R.Aa. -h (46)
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Fig. 8 - Normalized conductor attenuation A aoh/R. in dB per ohm
for a standard microstrip with Er = 1. The partial derivative aw/at is a function
of the conductor thickness t and given by equations (40) and (41). The con-
ductor attenuation for partial dielectric filling is a = (e.ff)1i2 a, as given by
equation (3).

The conductor attenuation for partial dielectric filling is obtained
from equation (3).

4.5 Measurement of Microstrip Attenuation
Measurements of the microstrip attenuation in the 1 to 6 GHz fre-

quency range have been performed by Caulton, Hughes, Sobol,
Pucel, Masse, and Hartwig.15," Good agreement between theory and
experiment has been obtained in Ref. 15 based on the assumption of
uniform current distribution. Good agreement is also obtained in Ref.
16 based on the assumption of the correct nonuniform current distri-
bution. This can be explained in part because the skin resistance R,
used for the calculations in Ref. 16 is based on the de resistivity of
the copper conductor plus a sizable correction in order to account
for surface roughness. This correction increases R8 by 13 percent at
1 GHz and 33 percent at 6 GHz. From recent work by L. U. Kibler
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one concludes that this correction may be too large even if one takes
into account the fact that the data obtained by Kibler in Ref. 17 are
based on electroformed oxygen free copper without any additional
treatment for improving the surface finish.

The measurement of attenuation at 30 GHz requires a low loss
transition from waveguide into microstrip. Such a transition has been
developed by W. F. Bodtmann.18 Clear fused and polished quartz
substrates are used for the substrate material in order to obtain a low
effective dielectric constant. Evaporated and photoetched nichrome-
gold layers with a thickness of 2µm are used for the conductor ma-
terials on both substrate surfaces. Table III summarizes the proper-
ties of the microstrip.

Table IV gives the attenuation measured for a 3 -inch long micro -
strip line by means of a transmission measurement with two -wave -
guide to microstrip transition at both ends of the microstrip. The
theoretical loss based on the assumption of uniform current distribu-
tion and the theoretically computed current distribution is given in
Table V.

The agreement between measured and calculated data does not
necessarily support the uniform current theory. It indicates as ex-
pected that the radio frequency film resistivity p at 30 GHz is higher
than the de resistance of Table V. The dc resistivity is calculated
from a measurement of the composite nichrome-gold resistance and a
thickness measurement with a Tolansky interferometer.

The attenuation a' per guide wavelength is 0.0609 dB. A value from
0.060 to 0.068 dB has been measured in the 26.5 to 30.5 GHz frequency
range. The unloaded Q is given by

20 ir 1 27.3
Q = 450.

In 10 adto = a'

TABLE III - MICROSTRTP DATA

Type of microstrip
Substrate material*
Substrate thickness h
Conductor width w
Conductor thickness
Metal deposition
Thickness of Nichrome base layer
Line fabrication
Conductor resistivity

standard of Fig. la
clear fused quartz
0.030 inch
0.030 inch
2 Am Nichrone-gold
evaporated
100 to 150 A
photoetching
p = 3.0.10-8 Ohmcm

* 99.8 percent Si02, Amersil Inc., Hillside, New Jersey.

(47)
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TABLE IV -MEASURED MICROSTRIP LOSS AT 30 GHz
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Measured total loss of waveguide to microstrip transitions and
3 -inch long microstrip at 30 GI-Iz

Measured insertion loss for both transitions
(two transitions back to back)

0.88 dB

0.10 dB

Attenuation for line length 1 = 3 inches 0.78 dB

This is believed to be the highest Q obtained for a microstrip in this
frequency range.

V. MODE PROPAGATION IN MICROSTRIPS

Microstrip transmission lines which are fully shielded and com-
pletely filled with dielectric material can propagate transverse elec-
tromagnetic, transverse electric, and transverse magnetic modes. Par-
tially filled and fully shielded lines cannot support these modes
because the boundary conditions at the interface between air and di-
electric cannot be rigorously fulfilled. Zysman and Varon have shown
that a hybrid mode can be found which satisfies all boundary condi-
tions and which can be decomposed into sums of transverse electric
and transverse magnetic space harmonics.19 From their results one
concludes that the hybrid mode propagates at all frequencies and that
it approaches the transverse electromagnetic mode at low frequencies
or for sufficiently small line dimensions.

The problem of hybrid mode propagation has also been treated by
Pregla, Schlosser, Hartwig, Masse, and Puce1.20,21 One concludes from
the results that the frequency dependent behavior or the dispersion
of the propagation constant and the effective dielectric constant is

TABLE V-THEORETICAL MICROSTRIP LOSS AT 30 GHz

Square root of effective dielectric constant for
Er = 3.78 and w/h = 1, equation (23)

Conductor skin resistance for f = 30 GHz
and p = 3.0 X 10-a ohmcm, Fig. 7

Normalized attenuation, uniform current
distribution, w/h = 1, Fig.

Normalized attenuation, nonuniform current
distribution, Ow/at = 2.1, Fig. S

E elf) = 1.68

R, = 0.060 ohm

A = 0.0685 dB per ohm

A = 0.0420 dB per ohm

Attenuation, line length 1 = 3", (eeff)i
uniform current

Attenuation, line length 1 = 3"
Nonuniform current distribution

0.690 dB

0.423 dB
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particularly pronounced for lines with substrates which have a high
dielectric constant, such as alumina with Er = 9.6 and rutile with Er =
104. It is also shown that the frequency of operation has to be lower
than the cutoff frequency fe of the lowest order transverse electric
surface wave which is given by

fc - 75
GHz (48)

where h is the substrate thickness in millimeter.'1 The cutoff frequency
obtained for the line of Table III with h = 0.75 mm and Er = 3.78 is fc
= 60 GHz. For high density alumina with Er = 9.6 the cutoff is con-
siderably lower with f = 34 GHz.

VI. CONCLUSIONS

The electrical properties of microstrips can be derived from the
characteristic impedance of the air line and the effective dielectric
constant if the propagating mode can be approximated by a transverse
electromagnetic mode. Substrates with a low dielectric constant are
useful for circuit applications because dispersion of the line parameters
is less pronounced. Structures with an air gap are recommended if
circuit losses have to be minimized. Complete shielding is essential
for most applications in order to reduce radiation loss and to reduce
the coupling between different circuits.
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APPENDIX

Computing Microstrip Impedance with Theta Functions
The following example gives the numerical procedure for comput-

ing the characteristic impedance of a microstrip. It is convenient to
calculate w/h and Z0 as a function of the modulus m of the complete
elliptic integrals K, K', and E. We assume m = 0.86 for this example
and use equations (8) , (9), and (10)

(i) m = 0.86 modulus of complete elliptic integrals
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K = 2.42093
K' = 1.63058 1 From tables, Ref. 22.
E = 1.13600
K = K' /K = 0.673532.

(iii) Characteristic impedance from equation (10) with (/2,1E0)4 =
12071- ohm

Zo = 607r -K = 126.958 ohm. (49)

(iv) From equation (9) and tables of the Jacobian elliptic functions
we obtain"

dia2(2K) = k = 0.469240 (50)

2KT = arc do = 1.02806 (51)

= 0.212328. (52)

(v) We use the rapidly converging series expansion"

xp- In K) = 2_, sin (2nr (53),1 -e

ex
(-9.1,p

(-2nric)
and obtain for the sum S of the first 10 terms S = 0.124095.

(vi) From equation (10) we obtain

w 2 a
= ;N. 11-119-4U-, K) = 0.992762. (54)

The result listed in Table I is based on quadratic interpolation from
a table made with closely spaced moduli m.
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Experimental Simulation of a Multiple
Beam Optical Waveguide

By D. GLOGE and W. H. STEIER*
(Manuscript received November 7, 1968)

Two mirrors, 15 centimeters in diameter and 25 meters apart, form an
optical delay line which can store two gaussian beams for 342 round trips
or 60 microseconds. This paper reports experiments which studied the
intensity profiles, the phase fronts, and the cross scattering between these
beams after their retrieval from the delay line. In certain respects, the delay
line simulates a multiple beam guide made of 684 mirror periscopes. The
experimental results permit an estimate of the beam capacity, the crosstalk,
and the transmission length of such a guide.

I. INTRODUCTION

The possibility of sending a multitude of gaussian light beams down
a single lens waveguide has recently been suggested as an inexpensive
means of multiplying the capacity of the waveguide.1,2 Though the
beams would overlap along the guide, appropriate optics could separate
them in the receiver.

The density of resolvable beams in the system is determined by
beam distortion and scattering rather than the spread of the ideal
beams. Smooth imperfections of the optical surfaces cause the beam
to deviate from the exact position and distort its profile and cross
section.3 This limits the density of the beams and determines the re-
ceiver size required to secure reception. Surface irregularities that are
small compared with the beam size result in scattering that is collected
by receivers of adjacent channels.4 This crosstalk increases with the
receiver size, the density of beams, and the number of scattering ele-
ments. The purpose of this experiment was to check the amount of
distortion, to determine the receiver size required, and then to measure
the scattering and find out what beam density and transmission dis-

* Formerly with Bell Telephone Laboratories at the Crawford Hill Laboratory.Now with the University of Southern California.

1445



1446 THE BELL SYSTEM TECHNICAL JOURNAL, MAY -JUNE 1969

tance could be achieved with tolerable crosstalk. In a multiple beam
guide, front surface mirrors probably will be preferred to lenses
because, for the large apertures needed, lenses are apt to have imper-
fections within the material. A first simulation of such a mirror guide
was tried here by folding two beams into a two -mirror cavity with a
size comparable to one guide section. The setup was similar to optical
delay lines built previously,5 except that this line was optimized to
exploit its full capacity.1

In a delay line, the folded beam wanders about the mirror surfaces,
being submitted to always new and statistically independent mirror
imperfections, similar to the waveguide situation. The distortion is
therefore equivalent to the distortion in a guide. Two beams launched
simultaneously follow adjacent paths comparable to two adjacent
beams in a multiple beam waveguide. Their cross -scattering is equiva-
lent to the cross -scattering of two neighboring beams in a waveguide.

II. THE FOLDED -BEAM CAVITY

Figure 1 shows the experimental setup with the two cavity mirrors
in the background. Disregard the beam splitter for the moment and
assume that only one gaussian beam, beam 1, is injected at an angle
through the center hole in the front mirror. By introducing astigma-
tism to this mirror, as indicated by the arrows, the beam can be kept
in the cavity for many round trips, writing a Lissajous pattern on each
mirror.5 Careful adjustment of this pattern permits recovery of the
beam through the same hole at a slightly different angle. Figure 1
shows the two -lens telescope used to inject the laser beam and a
little mirror at the focus of the telescope which deflects the output
beam, beam 4, into a photomultiplier.

The delay line was designed so that a maximum number of round
trips could be accommodated in an available 6 -inch conduit, 25 meters
long, with the beam axis never approaching the wall and the center
hole closer than 2.5 beam radii. This clearance ratio is identical to the
density factor k defined in Ref. 1.

Also from Ref. 1 one obtains the possible number of round trips

A4
Ncavity - (1)

4d2X2k4

in a delay line of radius A and length d, using an optical wavelength A.
To allow for a slight misalignment of the conduit sections, we assumed
an unobstructed cross section 12 cm in diameter. For A = 6 cm, d =



MIRROR

OPTICAL WAVEGUIDE

MIRROR
15 Cm DIAMETER

12M FOCAL
LENGTH

342 ROUND TRIPS
BETWEEN MIRRORS

MIRROR
15CM DIAMETER

12M FOCAL LENGTH

FORCES ADDING
ASTIGMATISM

MIRROR

MIRROR

I 4L0ENcrnS

FOCAL
\ LENGTH )

3

DIMTEER
5 MM

4

FOCAL LENGTH
LENS 20CM PHOTO

artMULTIPLIER

OPTICAL
1.1 BEAM SWITCH

SPLITTER

GAUSSIAN BEAM
FROM He Ne LASER

1447

CAMERA

26.1M

Fig. 1 -Injection and recovery of the two beams after 342 round trips in the
delay line.

25 m, and k = 2.5, one obtains N = 335. We chose 342 = 18 x 19
round trips because, for optimum conditions, N must be a multiple
of two consecutive integers.1'5

For this optimum design, Ref. 1 demands a focal length

f - 2 +dit/N} (2)
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for the undistorted mirror and focal lengths

th , - d

2 + NL

(3)

for the astigmatic mirror in the horizontal and vertical planes, respec-
tively. We chose f = 12 m and adjusted the mirror spacing to 26.1 m.
This spacing was critical to within 1 mm. The astigmatic mirror had
focal lengths fh, = 12 m 5 cm corresponding to a surface deflection
of -1=1 micron at the mirror edge when forces were applied as shown in
Fig. 1. Both mirrors were 2.5 cm thick, 15 cm in diameter, polished
spherical within A/10, and coated for high reflectivity at 6328 A, the
wavelength of the He-Ne laser used.

The optimum design requires a beam radius

V
(dX)4

=
(4)

at the input.' For the chosen parameters v = 1 mm. We provided a
center hole with a radius kv = 2.5 mm in the front mirror. The radius
v is also the minimum radius the beam ever has in the cavity. Figure
2 is a photograph taken at the back of the rear mirror. It shows that

40

4P

0

1

Fig. 2- Lissajous pattern of one beam photographed at the back of the rear
mirror.
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the beam size is smallest in the center of the pattern. The beam widens
horizontally when it is displaced horizontally and widens vertically
when it deviates vertically. Consequently, the beams have elliptical
cross sections everywhere except along the pattern diagonals. The
ratio of the maximum to the minimum beam radius is

u =
V it (5)

for the optimum design; consequently u = 5.9 mm.
To recover the beam after 342 round trips without interference

from other paths, the Lissajous patterns on the mirrors must form 18
lines and 19 rows of spots as shown in Fig. 2. The spacing of these lines
and rows decreases toward the pattern edges; the spots overlap as
their sizes increase. In the middle of the pattern, the spots are spaced
center -to -center 6 mm horizontally and 5 mm vertically. The same
spacing holds for the spots around the center hole of the front mirror.
A better output beam was obtained from the rectangular arrangement
shown in Fig. 2 than from one with equal horizontal and vertical
spacing. A possible cause of this is discussed in the Section III.

Figure 2 shows an increase in the pattern brightness from right
to left caused by the nonuniform mirror transmission, which does not
reflect a variation in beam intensity. The total loss for 342 round
trips was 4.0 dB or 0.135 per cent per reflection. This loss is about
three times that of the best mirrors reported.° Unfortunately, the
reflection maximum of the rear mirror was not exactly centered on the
6328 A laser line, and the coating was not completely uniform across
the surface.

The conduit was mounted along the laboratory wall between two
concrete tables which supported the ends. The mirrors were inside the
airtight conduit. Their position and the astigmatism were adjusted
from outside. Without evacuation, convection inside the pipe caused
the beam to drift off the exit hole within minutes. A 1 -inch fiberglass
insulation around the pipe did not improve this situation. After the
pipe had been evacuated to a pressure of 3 torr, the proper alignment
could be kept for hours.

III. BEAM DISTORTION MEASUREMENTS

In a well -aligned perfect cavity, the input and output beams pass
the center hole with the same size and phase front, but with a slight
difference in propagation angle. This permits their separation at the
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focus of the launching telescope. Figure 3 shows a vertical and a
horizontal scan of the output beam. The scans deviate little from the
expected gaussian profiles. The width agrees well with that of the
input beam. Obviously the high quality mirrors do not introduce
appreciable distortion even after 684 reflections. This agrees with
previous observations.3

The mirror imperfections might be large enough, however, to make
the beam stray from its predicted path. The output beam did not
show this deviation, as we could and did correct for it by adjusting
the mirrors. But there was some evidence that this effect is not com-
pletely negligible. Theory predicts that, with perfect alignment,
changing the direction of the input beam only changes the direction
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Fig. 3 - Horizontal and vertical scan of the beam after 684 reflections.
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of the output beam, but both beams stay centered in the hole. Of
course, this operation simultaneously changes the pattern size and
either brings the outer paths close to the wall, or the inner paths
close to the hole. Before we noticed any interference at the wall or the
hole, the output beam would start moving off the hole center when we
changed the input beam direction. Comparable experiments with and
without astigmatism in a system with fewer round trips suggests that
this imperfection is associated mainly with the way the astigmatism is
introduced.

Straying from the designed beam path will cause crosstalk in a
multiple beam guide. To learn more about this effect, the input was
split into a lower beam (1) and an upper beam (2), as shown in Fig. 1.
Beam 2 writes a pattern which is the mirror image of Fig. 2 about the
horizontal axis. Figure 4 shows the composite pattern written by both
beams. The output beams 3 and 4 are separated one above the other
at the focus of the telescope and can be recovered separately or to-
gether by moving the deflection mirror up or down. The profile of
beam 3 is very similar to the one shown in Fig. 3. Figure 5 shows the
interference pattern of the output beams displayed on a card in front
of the receiver. The straight lines indicate that the phase fronts of the
two beams are tilted with respect to each other but are not noticeably
different otherwise.

To avoid too optimistic a conclusion from this result, one has to
investigate the respective paths of the two beams. To every reflection
made by one beam, one can find a reflection by the other which occurs
not more than 6 mm away. The effects of small imperfections add
up in a commutative way. Consequently, the sequence of reflections
is immaterial, and the total distortion of one beam is closely related
to the distortion of the other beam because of their neighborhood in
the cavity. The nature of this neighborhood is the same as with two
beams in a multiple beam transmission system when they are launched
and received 6 mm apart.

IV. BEAM SCATTERING MEASUREMENTS

A better analysis of the light output from the cavity is possible
when light pulses are injected. This was done by pulsing the laser
output at a rate of 1 kHz for intervals of 100 ns using a polarization
switch as shown in the foreground of Fig. 1.7 The pulses were shorter
than the cavity round trip time of 174 ns so that the output from suc-
cessive round trips could be resolved. The total delay of the primary
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Fig. 4 - Composite pattern of both beams at the back of the rear mirror.

Fig. 5 - Interference pattern of the two beams after 684 reflections.
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output pulse was 59.5 I./3, confirming the projected number of 342
round trips.

Much weaker pulses were detected before and after the primary
output pulse at periodic intervals corresponding to 18 or 19 round trips.
By alternately blocking beams 1 and 2, we could attribute some of
these pulses to beam 1 and some to beam 2. Blocking beam 2 avoids
the strong primary pulse in beam 3 so that the weak pulses can be
amplified without saturating the photomultiplier.

Figure 6 shows pulses generated by beam 1 which leave the cavity
along path 2. They were detected by moving the deflection mirror into
this path. The numbers indicate the round trips completed before
detection. Pulse 342 was caused by the primary output pulse which
leaves the cavity along beam 4. Although it is not intercepted by the
deflection mirror, some scattering outside the cavity resulted in a
weak light pulse in the receiver. The other pulses can be attributed to
scattering inside the cavity. Investigation of the Lissaj ous pattern
shows that the beam path tends to approach the center hole whenever
18 to 19 round trips are completed. The occurrence of scattered pulses
with this periodicity suggests that the beams close to the center hole
are responsible for the scattering.

Figure 7 is a sketch of the area around the center hole as viewed
from the back of the front mirror. The numbers indicate the round
trips completed before the respective reflection. The arrows show

Fig. 6 - Pulse train of scattered light received in beam path 2 when only
beam 1 is injected. The numbers indicate the round trips completed before
reception.
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Fig. 7 - The reflections around the exit hole as seen at the back of the front
mirror. The numbers indicate the round trips. The arrows point to the quadrant
where the scattering is picked up. The dB values represent the ratio of total out-
put to scattered light.

in which direction a particular beam scatters, that is, in what beam
path it will be picked up. For example, all dots pointing toward
quadrant 2 were received in beam path 2 and are present in the pulse
train of Fig. 6. The additional pulses not labeled in Fig. 6 originated
from reflections farther away from the hole. They were omitted in
Fig. 7 to avoid confusion. The signal in Fig. 6 was calibrated by
comparing it with the signal from the primary output pulse reduced
by a 40 -dB standard attenuator. The dB values in Fig. 7 represent
the signal -to -crosstalk ratio obtained by calibrated reception in beam
paths 2 and 3.

These observations seem to support the theory that every reflection
scatters a small amount of light into a narrow cone about the primary
beam.' Refocused by the mirrors, this light stays close to the beam;
contributions from successive reflections add in power. This is why,
after 323 round trips, 9 dB more scattering was measured than after
18 trips, though at that time both beams are the same distance from
the hole. Notice that the dB levels indicated in Fig. 7 are related to
the power of the output beam. If we consider the attenuation and re-
late the scattering levels to the beam powers at the respective re-
flections, the scattering is 42.8 dB below that power after 18 round
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trips and 39.2 dB after 323 round trips. The difference is 12.6 dB, that
is, the scattering has increased 18 times from the 18th to the 323rd
round trip, or about proportionally to the number of round trips. If
the scattering could be measured after one reflection, the scattered
power should be 30 dB + 10 log 646 = 57 dB smaller than the total
power of the primary beam.

This, of course, holds only for the specific arrangement shown in
Fig. 7: an output hole 5 mm in diameter and a beam being displaced
by about 5 mm from this hole. If the reflection occurs 1.56 times
farther away from the hole (for example, reflection 341 or 343), the
scattered power intercepted by the hole is about 8 dB smaller. From
this it is concluded that the scattered power density decreases with
about the fourth power of the distance from the hole.

This result is subject to the specific measuring arrangement used,
in particular the directional properties of the receiver. In our case,
because of the deflecting mirror, the receiver collected one -quarter of
the cone of light falling through the exit hole. The observation of a
rapid fall -off of the scattered light around the primary beam agrees
with measurements reported in Ref. 4. The fact that scattered signals
occur even after the primary beam has left the cavity means that the
cone of scattered light, though intercepted partly by the exit hole,
keeps travelling around in the cavity.

V. AN EQUIVALENT MULTIPLE BEAM GUIDE

Envisage the two cavity mirrors to be replaced by a sequence of
thin lenses with the same focal length and spacing. Consider the
beam to be unfolded along this path. Periscopic mirror arrangements
could be used as well as lenses.8 Each periscope consists of two mirrors,
thus there are two reflections at every focuser, twice as many as in
the delay line. Consequently, after traveling through 684 sections,
25 m in length, the beam suffers a loss of 8 dB or about 0.47 dB per km.

In contrast with the delay line, it is not necessary to introduce
astigmatism in the multiple beam guide. If the guide is installed above
ground, the pressure in the conduit will have to be reduced to a few
torr, but evacuation seems unnecessary in an underground installa-
tion.8

The experiment demonstrated that two adjacent beams show neg-
ligible distortion and are fully separated after 684 sections, or 17 km.
A receiver area of 5 mm diameter, the size of the exit hole, is sufficient
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to collect practically all of the beam energy. It might be advantageous
to reduce the detector diameter to 3 mm. Such a detector would still
collect 90 to 95 per cent of the signal light but less of the light scat-
tered from adjacent beams.

A double mirror periscope will cause twice the scattering of one
delay line mirror. A detector with the size of the exit hole at the end
of a 648 -section guide will consequently receive twice the scattering
measured in the experiment, that is, a level of 30 - 3 = 27 dB for
two beams 5 mm apart and 38 - 3 = 35 dB for two beams about 8
mm apart. The contributions from beams farther away decrease fairly
rapidly. If one assumes a decrease with the fourth power of the spacing,
one obtains a crosstalk level of about 27 dB for a beam surrounded by
equal beams with a mutual spacing of 8 mm or 4 beam widths. Re-
ducing the detector diameter to 3 mm should improve this level to
about 31.5 dB.

The level that can be tolerated depends on various aspects of the
complete transmission system, but for a comparative figure, regard
the composite scattering from all beams as gaussian background noise.
Then, with binary envelope detection and no other noise present, a
crosstalk level of 20 dB would guarantee an error rate of 10-9.

With this figure in mind, one might consider increasing the trans-
mission distance to 4,000 sections, or about 100 km, allowing a total
attenuation of 48 dB. This increases the crosstalk by about 8 dB re-
sulting in a signal to crosstalk ratio of 31.5 - 8 = 23.5 dB for a
mutual beam spacing of 4 beam widths and a detector diameter of
1.5 beam widths. Reference 2 calculates a diffraction crosstalk of
about 60 dB for this beam spacing which is completely negligible com-
pared with the scattering effect.

The number of beams that could be transmitted with a mutual
spacing of k = 4 beam widths in a guide equivalent to the investi-
gated cavity is'

74 A4
Ngu i de =

32 d2X2k4
(6)

For a section length d = 25 m, a useful cross section of A = 6 cm
radius, and A = 6328 A, one obtains about 600 beams. Filling the guide
with this capacity, however, requires that the receivers have a better
directional selectivity than the one used in the experiment. On the
other hand, better selectivity would reduce the scattering received
from other beams below what was measured.
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VI. CONCLUSIONS

A He-Ne laser beam was injected into an evacuated 25-m delay line
and extracted with negligible distortion and only 4 dB loss after
342 round trips. This corresponds to 60 tLs delay. The absolute devia-
tion from the ideal path could not be measured, but two beams injected
simultaneously were found to be well resolved after 342 round trips.

The light scattered at every reflection from the main beam traveled
in a narrow cone about this beam. The power density of the scattered
light seemed to decrease with about the fourth power of the distance
from the beam. The crosstalk caused by scattering from earlier round
trips was 30 dB below the signal level.

A multiple beam waveguide equivalent to this delay line would have
mirror periscopes spaced 25 m apart. It could transmit 600 beams over
a distance of 100 km with an attenuation of 48 dB and a crosstalk
level of 23.5 dB.
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A Companded One -Bit Coder for
Television Transmission

By R. H. BOSWORTH and J. C. CANDY
(Manuscript received November 19, 1968)

We compand a one -bit coder by increasing its step size when, a string of
equal bits is detected in the transmitted code. To code and decode each string
we use a weight sequence 1, 1, 2, 3, 5 5, the weight returns to unity when
the string ends. Stability considerations restrict the choice of weights but
those proposed give adequate stability as well as improve the signal-to-noise
ratio about 5 dB. The weighted coder has a wide tolerance to changes of
input, so that a ±3 dB change from the design value is hardly visible to
most observers. Matching weights at the transmitter and receiver is un-
critical because mismatches appear as small changes of contrast rather than
as noise. The circuit is easily implemented because it is tolerant to changes of
component values.

There is a description of an experimental coder and decoder, together
with subjective and objective measures of performance. Signal-to-noise
ratios of 50 dB are reported.

I. INTRODUCTION

Encoding an analog signal to digital form entails quantization of
amplitude. This process introduces a noise into the analog signal
that is recovered from the digits. The magnitude of the noise, relative
to the signal, is determined by the bit rate in the digital representa-
tion and the spectrum of the signal. Successful coder designs make
efficient use of the digits, avoiding worthless redundancies, and shape
the noise to be subjectively least noticeable.

Delta modulation is one of the simplest and best known coding
methods.' It changes its analog output positively or negatively by a
fixed increment at regular instants, as illustrated by V in Fig. 3.
Differential coding is a related method where, at regular instants, the
output changes by any one of a set of prescribed values. Delta modula-
tion is regarded as one -bit differential coding because at each sampling

1459
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time it transmits either of two codes, a pulse or a space, representing a
positive or a negative step, respectively. In general, an m -bit coder
transmits one of 2'n codes at each sample time.

The advantages of one -bit coding are simplicity of circuitry and a
high sampling rate. Thus, for a given bit rate in the digit channel, its
sampling rate is m -times greater than that of a corresponding m -bit
coder. Although the total noise power from a one -bit coder is greater
than that from a multibit coder, much of the power occurs at higher
frequencies where it is out of the signal band. The advantage of
multibit coding is the ability to grade the step sizes to suit the signal
values.2 Thus, some large steps are provided to track large changes
and some small steps are provided to accurately reproduce fine de-
tails. In this respect, ordinary one -bit coders are handicapped by hav-
ing only a single step size.

Theoretical results by J. B. O'Neal show that multibit differential
coders have larger signal-to-noise ratios than delta modulators.8 Prac-
tical measurements confirm this and show that much of the advantage
comes from companding the quantization levels.* We describe a
method for varying the step size of a one -bit coder which has the
advantages of both companding and a high sampling rate.

Several authors have described a method for companding delta
modulators by changing the step size according to the average pulse
rate in the digit channe1.4-7 The steps are smallest when there is an
equal number of pulses and spaces; they increase when there is a
higher proportion of either pulses or spaces for a significant time. This
technique has been used for audio signals to adjust the step size with
loudness and pitch of the sound.

For video signals we usually are directly interested in the time
dependence of the signal and so require means for adjusting the step
size according to instantaneous signal values rather than an average
value. Suitable methods have been described by M. R. Winkler and
J. E. Abate.7'8 They vary the step size when certain pulse patterns
are detected in the digit channel. Thus, steps are increased when a
string of consecutive pulses or spaces are detected. This paper de-
scribes the design, construction, and performance of such a coder. It
differs from earlier coders in the way step sizes increase and decrease
and in that the companding is incorporated in a direct feedback
coder instead of a delta modulator. Direct feedback coding, which is
reviewed in Section II, is an improvement on differential coding.

* Two-bit coders have insufficient levels to permit adequate companding so
they usually are inferior to other coders.
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IL DIRECTING FEEDBACK CODING

Direct feedback coders are described in Ref. 9. They function al-
most the same way as differential coders, but the circuit is arranged
to allow greater flexibility of filter design. Figure 1 is a block diagram
of a one -bit direct feedback coder and Fig. 2 shows some typical
filter characteristics. For television signals the de -emphasis filter Ho
is a short time integrator; the pre -emphasis H1 is a differentiating
filter approximately the inverse of 112 ; and the filter A in the feed-
back loop is a long time integrator.

The feedback acts like a servomechanism trying to make the av-
erage value of the quantized signal y equal to the pre -emphasized
input x. The difference between x and y is accumulated in A and used
to correct the quantized output. The quantized signal in a one -bit
coder is observed to oscillate between a positive and a negative level
in such a way that its average equals x, as Fig. 3 demonstrates. Chang-
ing the pattern of oscillation, the coder interpolates values between
the quantization levels, but low frequency components of the oscilla-
tion appear as granular noise on the output. The filter A is chosen to
make these low frequency components small. High frequency com-
ponents are de-emphasized by the integrating filter 112 whose out-
put steps up or down in response to a pulse or a space as does the
output of a delta modulator. The advantage of direct feedback cod-
ing is flexibility in choosing the deemphasis 1-12 independent of the in-
terpolation process which is controlled by the feedback loop.

Notice in Fig. 3 how the large voltage spike in x overloads the
quantizer by exceeding its quantization level. The coder responds
with a string of pulses which is the largest signal it can transmit. The
resulting distortion of the signal is called slope overload; it is a
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Fig. 1- A one -bit feedback codec,
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characteristic of systems using integrating deemphasis. Usually, the
input to the coder is adjusted to a compromise where there is neither
too much slope overload at edges nor too much granular noise on
"flat" areas.

In the companded coder, overloading is detected by locating strings
of pulses or spaces in the code, and then the step size is increased
both at the transmitter and at the receiver. This increase extends the
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range of the coder but increases the interpolation noise in the vicinity
of sharp changes. The success of the technique depends on the way step
sizes are varied. We have no theoretical criterion for optimizing the
formula, instead practical reasons are given in favor of the proposed
scheme. The strongest arguments are: the system works, it is easy to
implement, and it functions as well as any scheme we have tried for
the Picturephone® see while you talk service, which is approximately
the transmission of a 1 MHz video signal as a 6 MHz binary signal.

III. COMPANDING METHOD

3.1 The Weights
Figure 4 shows a block diagram of the proposed coder and decoder

(codec). It differs from the ordinary feedback coder by the addition
of a weighting circuit in the feedback path at the transmitter and in
series with the receiver. The weighting is controlled by a circuit that
detects strings of pulses or spaces in the transmitted code. The
signal y is then made up of a pulse sequence whose amplitudes depend
on the code. The pulses corresponding to the first two bits of each
string are left unweighted at the smallest step size. For the third and
fourth bits the pulse size is increased two and three times, respectively.
For the fifth bit, and all that follow in the string, the pulse size is
made five times that of the smallest pulse's value. The string ends
when a change of polarity is called for by the appearance of the
complementary binary code; then the weight returns to unity. An
example of a digit stream and its corresponding quantized signal is
given in Fig. 5 which also shows the decoded signal. Compared with
Fig. 3 there is a decided improvement in the reproduction of the
signal because slowly changing signals are reproduced with smaller
steps but the larger signal changes are reproduced with larger steps.
Consider the reasons for using this particular set of weights.

3.2 Choice of Weights

The plan is to increase the step size when the input changes rapidly.
Thus, small steps are used when the differentiated input x is small,
and they are increased as x increases. In this way we take advantage
of the fact that noise in busy areas of a scene is less noticeable than
noise in flat areas.

The step size is left unchanged at its smallest value when no more
than two consecutive bits are the same. Such codes are used to transmit
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Fig. 3 - Waveforms in the ordinary one -bit direct feedback codec.

the slowly varying inputs that represent the flat areas of a picture. The
largest of these codes is 110110  110 and the smallest is 001001.  001.
They correspond, respectively, to values of y whose average is +1 and

of the smallest step size. These codes are generated when x has a
steady value in the range ±-1 of a step.

When x exceeds 1/3 of a step size, codes with more than two re-
peated bits are generated; the weighting circuit then increases the
step size. The signal level in the coder is set so that this occurs only
in busy areas of the picture and at edges. Usually, the larger values of
x appear as spikes of voltage resembling the one in Fig. 3. Therefore,
step sizes should be increased promptly in order to code the transient
in a short time; they should be promptly decreased afterwards. In-
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deed, it is desirable to code sharp changes in video signals in less
time than is used to scan three picture elements, otherwise the dis-
tortion is obj ectionable.9 For Picturephone® visual telephone, the
edges should be coded in less than 1.5 microseconds, that is, with
less than nine bits.

A stability requirement restricts the way weights can be applied.
Consider for example, a poor design using a weight sequence 1, 1, 2, 4, 9

 9 to code each string of similar bits. Figure 6 shows an impulse
in the voltage x and the subsequent behavior of the quantized signal
y: it oscillates continuously between the largest weights after the
impulse instead of falling to unity. This oscillation is undesirable
because it may increase granular noise in the flat areas of the picture.
Figure 6 also shows the response of the proposed coder to an impulse.
There is a small undershoot following the representation of the im-
pulse but the step size assumes its smallest value after taking eight
bits to code it.

A condition for the weights to fall to their lowest value after any
impulse in x is that the weight sequence increase no faster than
1, 1, 2, 4, 8  that is, each weight be no greater than the sum of pre-
vious weights in the sequence. The proposed weights 1, 1, 2, 3, 5 5

satisfy this requirement, giving a safe margin to dampen oscillations.
The weight returns to unity when a string of similar bits end. Then

subsequent weight values are independent of the previous code which
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Fig. 4 - The companded codec.
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Fig. 5 - Waveforms in the companded one -bit codec.

helps to reduce streaking caused by transmission errors. Properties of
a coder are often as dependent on its method of construction as they
are on the philosophy of its design. In order that the evaluations be
meaningful the circuits are described in the appendix.

IV. EVALUATION OF THE CODER

4.1 The Test Setup
For the tests the coder uses a 6.3 MHz sampling rate to code a tele-

vision signal having 1 MHz bandwidth. This signal represents a 271
line interlaced picture, displaying 30 frames a second. All subjective
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y J
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10101111100000111110000
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10101111100010101010101
WEIGHTS 1,1,2,3,5

1 2
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Fig. 6- Responses to an impulse of x using two different weighting sequences.
In normal use the signal will be band -limited so the impulse will be broadened.

tests were carried out using a 51/. by 5 inch display viewed from 3%
feet. The peak luminance was 70 foot lamberts and the room illumina-
tion about 100 foot candles.

4.2 Subjective Tests
Subj ective tests were made by observers who were experienced in

picture evaluation and familiar with the coding process. They com-
pared two displays which they switched alternately onto the monitor
with equal contrasts. One was the coded picture, the other an uncoded
picture with noise added. Each observer varied the noise amplitude
until the displays had equal overall quality for him. At this setting the
ratio of the signal to the added noise power was recorded as his
measure of picture quality. The noise used in these experiments was
approximately gaussian with a flat spectrum from 100 Hz to 0.6 MHz
as shown in Fig. 7.

The first group of tests concern the signal level in the coder. The
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Fig. 7- (a) Noise source used for testing; (b) Characteristics of filters used
for restricting the signal band at the codec input and output.

input amplitude to the coder was varied while a compensating varia-
tion at the output maintained a fixed contrast on the monitor. At
each amplitude setting an equivalent signal-to-noise ratio was ob-
tained as described. Figure 8 shows the graph of signal-to-noise ratio
plotted against signal amplitude into the coder. Results obtained by
four observers are given.

Observers agree with one another for small inputs but differ at
larger amplitudes where overloading predominates. They all prefer
inputs around 70 mV; above this value the quality of the picture falls

abruptly because overloading becomes objectional at edges of the
scene. When the amplitude of the signal is decreased from 90 mV to
30 mV the picture quality falls slightly as there is a subtle inter-
change between overloading and granularity. Below 30 mV the
granular noise becomes objectional. This graph was obtained using a
video signal derived from a back lighted transparency that has un-
naturally high contrasts. Figure 9 is a print of this film.

Figure 10 shows an evaluation of a natural live subject. This test
was difficult to perform because of the high quality of the coded
picture. Observers accept larger inputs (up to 120 mV) because move-
ment makes edge distortion less noticeable. Figure 11 is an evaluation
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of a transparent resolution chart. This has the lowest signal-to-noise
ratio because the peak to root -mean -square value is small, and be-
cause a rapid succession of black and white vertical stripes induced
oscillation in the weights. But these patterns are unlikely to occur in
real scenes: the codes usually transmit pictures of graphic material
with little impairment. All of the graphs demonstrate the wide toler-
ance of the coder to changes of input amplitude.

A result of the second group of tests is shown in Fig. 12 demon-
strating the benefits of weighting step sizes. Curve (a) in Fig. 12 is
a subjective measure of the ordinary unweighted one -bit coder; the
other curves are for the weight values specified on the graph. Notice
that at low signal amplitude, where granular noise predominates, the
weight has no effect. Weighting only improves the response to large
inputs where overloading is important.

The next test concerns the tolerance of the coder to changes of
weight values. The sequence 1, 1, 2, 3, 5 5 was proposed for our
application; an attempt was made to find a better sequence experi-
mentally. Figure 13 compares the proposed weights with the best we
could find; there is little difference. In fact, the choice of weights is
not critical provided they do not cause instability.

The last concerns matching of weights at the
transmitter and the receiver. Figure 14 shows the equivalent signal -
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Fig. 9 - The still picture used for the subjective test in Fig. 8.

to -noise ratio of a coder with a 70 mV input and a weighting sequence
1, 1, 2, 3, 5 5, at the transmitter. At the receiver the weighting se-
quence was*

1, 1, (2 -I- e), (3 e), (5 + e) (5 +
where E is a controlled variable: it is the absissa of the graph. Graphs
for other weight sequences are also given. In all cases the circuit is
unusually tolerant of mismatching the transmitter and receiver. Mis-
matching weights tends to distort the scene in busy areas, rather
than introduce noise. This is discussed in the Section A.2 of the
appendix.

We have not obtained numerical evaluation of the effect of trans-
mission error. The opinion of most observers is that error probability

* This type of mismatch is consistent with the method of construction where
each new weight value is obtained by augmenting the previous one, as shown
in Fig. 22.
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less than one in 106 is hardly noticeable in a live scene. Errors more
frequent than one in 105 were troublesome, but the picture was useful
with error rates up to one in 103. Each error appears as a streak
no longer than 0.6 inches with random amplitude. Synchronizing errors
were not included because the timing signals were sent on a separate
channel.

This subjective measurement is a valuable tool in that it gives more
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realistic evaluation of the coder than any objective measure we have
used. Objective measurement, however, is needed for commercial
evaluations. A useful method is a noise loading test.

4.3 Noise Loading Tests
Because of difficulty in characterizing video signals and human

observers, some theoreticians have considered gaussian noise as the
input when determining a coder's signal-to-noise ratio. Their results
can be tested with a noise loading measurement. Such a measurement
is described here in order to provide a comparison with published fig-
ures for other coders and to provide data for theoretical confirmation.

For these tests, gaussian noise with the spectrum shown in Fig. 7a
was the coder input; the resultant output power was measured in
selected 1 kHz bands. This power comprises a representation of the in-
put with additional noise generated in the coder itself. A band rejec-
tion filter was then inserted before the coder to block the applied noise
in the frequency band where the measurement is made; the measured
power is therefore the noise generated in the coder alone. A signal-to-
noise ratio for the coder can be determined from these two measure-
ments. It is an objective measurement of the coder's properties in the
particular band of frequency chosen.

Figure 15 gives the objective signal-to-noise ratio at 14 kHz for
various weighting. These curves show that the weights have little ad-
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vantage for coding this noise. This is not surprising because the
weights were chosen to suit the characteristics of video signals-
especially the property that large values of the signal derivative oc-
cur as a by relatively
whereas the derivative of the noise has a gaussian distribution. Figure
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16 shows how the signal-to-noise ratio depends on the frequency at
which the measurement is made. By combining this result with the
known spectrum of the input, it can be shown that the net signal-to-
noise is about 22 dB.

Figure 17 shows signal-to-noise ratios obtained in the same way as
those in Fig. 15, but using a video signal as input. These curves more
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Fig. 16 - Loaded signal-to-noise ratios in 1 kHz slots at various center fre-
quencies.
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Fig. 17-Objective signal-to-noise ratios at 14 kHz with video input, using
the same weights as in Fig. 13.

nearly resemble the subjective results in Fig. 12. Notice that Fig. 12
refers to peak signals and Fig. 17 to root mean square signals; this
accounts for the 11dB difference in the ordinates.

V. CONCLUSIONS

Weighting the step size of a one -bit coder improves the quality of
the transmitted signal and broadens its tolerance to changes of input
amplitude. The weighting is easily implemented with integrated cir-
cuits; in fact, the whole codec need be more complex or expensive than
a simple radio receiver. The circuit tolerates up to -1730 percent mis-
matching of the transmitter and receiver (that is, e = 0.3 in Fig. 14) .

This is an important property for network applications where each
transmission is available to many receivers.

The coder has been presented as a useful circuit for a particular
application. No theoretical method for optimizing the companding is
known because of difficulty in analyzing a system that incorporates an
interaction of a television source, a human observer, quantization?
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linear filters, and digital processing. Instead, the circuit has been con-
sidered intuitively as an extension of the direct feedback coder de-
scribed in Ref. 9. Indeed, the filters used are those recommended in
that work.

We emphasize the tolerance of the circuit to parameter changes
because attempts to improve a coder sometimes peak its response
about certain parameter values. These parameters are then critical
factors in the design. The present coder is very tolerant to changes;
this is an important practical advantage.

When each element of a television signal is coded with three bits, the
degradation of the picture is subjectively equivalent to about -50
dB of added noise. When the coder was adapted for voice transmis-
sion, telephone quality speech could be transmitted using a 50 KHz
digit rate. In both examples the coders accepted a wide range (10 dB)
of input level.

APPENDIX

The Circuit and Effect of Mismatched Weights

A.1. The Circuit

A.1.1. Circuit Outline

It is important that the transmission delay around the feedback
loop not exceed a sample interval. Otherwise the excess delay will
cause a low frequency instability called double moding. Correct opera-
tion requires that each decision of the threshold be sent around the
feedback in time to fully influence the next decision. Meeting this
requirement at high sampling rates is difficult but simplified by moving
the weighting circuit, in Fig. 4, outside the feedback loop, as in Fig.
18. Now, each threshold decision activates a switch, S, that sends
either of two values to the integrator. These two values have been
set up by previous code values held in registers. For this purpose the
threshold decision is placed in a flip-flop, F, in readiness for ensuing
decisions.

A.1.2 Circuit Action

All the components of the feedback loop are de coupled, enabling the
levels in the circuit to be well defined and avoid displacements caused
by spurious charges on coupling capacitors.

The timing cycle is given in Fig. 18. When gate Ticonducts, it
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samples the difference between the input and the feedback. It thus de-
fines the pulse width fed to the integrator and isolates the integrator
from the input while a polarity decision is being made on its output.

The second gate, T2, conducts a short while after T1 switches off. It
defines the time in which decisions are made. The threshold circuit is
bistable and so holds its decision until reset." Resetting occurs just as
T2 starts conducting. A negative signal applied to the threshold input
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leaves it in the "off" state; a positive signal switches it on. Once on,
the circuit cannot be switched off again from the input terminal.

The output from the threshold circuit sets the switch, S, in readi-
ness for the next conduction of gate T1. When T1 conducts, the digit
gate T'1 also conducts, placing the decision in flip-flop F. At this time
digit gate T'2 is off, it conducts at the same time as T2 transferring the
content of F to the registers. A "one" in F resets the 0 -register and
inserts a "one" into the one -register, shifting up its content. Similarly,
a "zero" in F resets the one -register and inserts a "one" into the 0 -
register. These registers feed signals to adding circuits whose outputs
provide the quantized signals, either of which is selected by the next
decision, using switch S.

A.2 Effect of Mismatched Weights

Any codec needs a digital -to -analog converter at its receiver to assign
analog values to the digital code. For the ordinary one -bit codec it is
simply a pulse shaping circuit; for multilevel codecs it is more complex,
because a variety of different analog values must be generated in re-
sponse to different code words. The present codec uses a digital -to -
analog converter with eight outputs, ±1, ±2, ±3, ±5 corresponding to
different code patterns.

What happens when there is an error in one of the levels generated
at the receiver? Every time the code calls for that level, the output
will be wrong. When use of each level is completely determined by the
instantaneous input the error is a distortion, or nonlinearity, of the
output. This is a characteristic of straight pulse code modulation.
Conversely, when use of a particular level is not determined by values
of the input, but is used almost at random, then errors in it appear
as noise on the output. This often happens in multilevel differential
and feedback coders. For the companded one -bit coder described,
there appears to be a high correlation between amplitudes of the pre -
emphasized input x and use of particular levels. Mismatching weights
are thus, approximately equivalent to a distortion of x.

Distortion of the pre -emphasized signal appears on the output as a
distortion of edges and busy areas. The errors persist for about 3 mi-
croseconds which is the time constant of the de-emphasizing filter.
The visible effect of small errors is not displeasing; it resembles a
change of contrast in the busy areas, and sometimes, a little streaking
near the edges.

If the weight sequence used is one that makes the coder unstable,
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then the correlation between values of x and use of particular weights
is lost, and mismatching weights introduces noise.
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The Silicon Diode Array Camera Tube

By MERTON H. CROWELL and EDWARD F. LABUDA

(Manuscript received November 26, 1968)

A new electronic camera tube has been developed for Picturephone®
visual telephone applications; with minor modifications it should also be
suitable for conventional television systems. The image sensing target of
the new camera consists of a planar array of reversed biased silicon photo -
diodes which are accessed by a low energy scanning electron beam similar
to that used in a conventional vidicon. This paper presents a description
of the operating principles and an analysis of the sensitivity and resolu-
tion capabilities of the new silicon diode array camera tube.

We also give the detailed experimental results obtained with the tubes.
The gamma of a silicon diode array camera tube is unity and its spectral
response is virtually uniform over the wavelength range from 0.45 to 0.90
micron with an effective quantum yield greater than 50 percent. For a
13.4 millimeter square target the silicon diode array camera tube's sensi-
tivity is 20 /lamp foot-candles of faceplate illumination with normal
incandescent illumination or 1.3 'lamp per foot-candle with fluorescent
illumination; with a center -to -center diode spacing of 15 micron it's modu-
lation transfer function is greater than 60 percent for a spatial frequency
of 14 cycles per millimeter. Typical dark currents for a 13.4 millimeter
square target are in the range of 5 to 50 nanoamperes.

INTRODUCTION

A large number of electronic cameras have been developed for
converting an optical image into an electrical signal.' -3 In many of
these, a light -induced charge pattern is stored on a suitable image
sensing target and a low velocity scanning electron beam is used
to access the charge pattern. One such camera tube, the vidicon, has
many desirable characteristics; it has found extensive commercial use
partly because of small size and inexpensive construction.2 However,
the vidicon does possess characteristics which, in many applications,
can prove undesirable or even detrimental.

1481
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Recently there have been several reports of development aimed
at obtaining an all solid-state image -sensing system: -8 Typically,
these systems consist of an array of photosensitive elements scanned
by solid-state logic circuits. In general, the technology associated with
producing the logic circuits that must duplicate the function of the
scanning electron beam is quite complicated. As a result, in all such
systems reported to date, the density of photosensitive elements has
been rather limited, and the resulting resolution has been small com-
pared with what can be achieved with a vidicon and what would be
required in a great many applications of interest.

This paper describes a new camera tube which has the resolution,
small size, and inexpensive construction of the vidicon, but not
many of its undesirable features. While the vidicon has an evaporated
photoconducting film as the image sensing target, the new camera has
a planar array of reverse biased silicon photodiodes.8-12 The diode
side of the array is scanned by a low velocity electron beam, and the
electron optics are similar to that of a conventional vidicon. Notable
improvements in device performance result from the chemical stability
of the planar array of silicon photodiodes. This stability insures that
the target performance will not be impaired by a high temperature
vacuum bake (400°C), necessary for long tube life, or by accidental
exposure to intense light images or prolonged exposure to fixed images
of normal intensity.

The new silicon diode array camera (smAc) tube has three valu-
able attributes:

(i) The spectral response is approximately constant from 0.45p, to
approximately 0.90p, with an effective quantum yield of greater than
50 percent.

(ii) Electronic zoom can be achieved by varying the size of the
raster on the mosiac of diodes since, as discussed in Section 6.2, under
the proper operating conditions the scanning beam does not alter the
uniformity of the target response.

(iii) There is no undesirable image persistence resulting from
photoconductive lag.

The first two are unique to the silicon diode array camera tube;
the last one is true for the Plumbicon and at high levels of illumination
for the vidicon.3

Section II discusses the operating principles of the silicon diode
array camera tube and Section III analyses its sensitivity and resolu-
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tion capabilities. The results of the analysis are compared with ex-
periments. The experimental results which are in agreement with the
theoretical calculations demonstrate the feasibility of using the tube
in systems requiring the quality of entertainment type television.
Several alternative modifications of the basic diode array structure
that are intended to improve various aspects of its performance are
described in Section IV. One of these embodiments, the resistive sea
structure, is discussed and analyzed in more detail in Section V.
Various other miscellaneous topics, including image lag and dark
current are discussed in Section VI.

Details about the target concerning fabrication techniques, X-ray
imaging, and other electron imaging applications are described else-
where.13,14,15

II. OPERATING PRINCIPLES OF THE DIODE ARRAY CAMERA TUBE

Figure 1 illustrates the silicon diode array camera tube. The opti-
cal image is focused by a lens onto the substrate of the photodiode
array. The diode side of the array is scanned by an electron beam
that has passed through the appropriate electron optics for focusing
and deflection. Deflection is achieved magnetically; focus is achieved
either electrostatically or magnetically. In all the experiments to be
reported, the interlaced raster scanning period was 1/30 second.

Most of the experimental results given in this paper were obtained

DIODE ARRAY
>0.4 x 106 DIODES

1

FOCUSING AND SCANNING
DEFLECTION ELECTRON
SYSTEM \ BEAM`,

'.

CATHODE

=
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VIDEO

SIGNAL

LIGHT FROM
IMAGE

LENS

n-- VT TARGET
VOLTAGE

Fig. 1-Schematic of a diode array camera tube. The electron beam scans
the diode side of the array, and the optical image is focused onto the substrate
of the array,
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Fig. 2- Schematic of a diode array target. To obtain a self-supporting struc-
ture, the perimeter of the wafer is left much thicker than the substrate in the
area of the diode array.

with the target geometry illustrated in Fig. 2. These arrays typically
consisted of a matrix of 660 by 660 diodes-about 436,000 diodes
within a 0.528 -inch square. The substrate is nominally 10 a -cm,
n -type silicon with a diameter of 0.85 inch. The substrate in the
area of the diode array is uniformly thick -0.2 to 2.0 mils (5-50/4 -
while the perimeter of the wafer is thicker -4 mils-to ensure a self-
supporting structure. The diodes, consisting of p -type islands in the
n -type substrate, are formed by standard photolithographic and
planar processing techniques.'3 The 660 by 660 array has a center -to -
center diode spacing of 20p, and an oxide hole diameter of 8µ. In the
early models gold was evaporated over a separately diffused n+ region
to ensure good electrical contact to the substrate. Subsequent ex-
perimental results have indicated that a satisfactory contact can be
obtained without the evaporated gold.

In normal operation the substrate of the diode array is biased posi-
tively with respect to the cathode of the electron gun. The substrate
potential relative to cathode potential is called the target voltage and
is typically 10 volts. The impinging electron beam thus strikes the
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mosaic with a maximum energy of 10 electron volts and deposits elec-
trons on both the p -type islands and the silicon dioxide film surround-
ing the diodes, which isolates the substrate from the beam. Since the re-
sistivity of the silicon dioxide film is very high, the electronic charge
accumulates on this surface and charges it to some voltage very close
to cathode potential where it remains.

The beam diameter, as indicated in Fig. 2, is generally larger than
the diode spacing to eliminate any need for registration between the
beam and the mosaic. The electronic charge deposited by a sufficiently
intense beam will place a reverse bias of 10 volts on the diodes as it
scans over the array. This bias will create a depletion width of ap-
proximately 5µ with a 10 i-cm substrate giving a junction capacitance
that results in an effective charge storage capacitance for the target
of approximately 2,000 pF per cm2. Notice that, at this bias, the
silicon surface under the oxide will normally be depleted as indicated
in Fig. 2. With very low values of diode leakage currents (less than
10-13 amperes per diode) the diodes remain in the full reverse
biased condition throughout the entire frame period, if they are not
illuminated. The usable values of target capacitance are limited to a
narrow range by several factors.3 For example, the minimum useful
target capacitance is determined from the ratio of the required
peak video current to the permissible swing in voltage on the scanned
side of the array. The maximum voltage swing of the scanned surface
is limited by the allowable amount of beam bending which results
from transverse (that is, parallel to the surface) electric fields. On the
other hand, the maximum capacitance is limited by the charging abil-
ity of the electron beam and the image lag requirements placed on
the camera. The charging ability of the beam is substantially greater
for a higher positive surface potential which is inversely proportional
to the target capacitance. In addition, in the diode array camera tube
the maximum amount of charge that can be stored is limited by the
breakdown voltage of the diodes."

Almost all of the incident light associated with the image is ab-
sorbed in the n -type region, each absorbed photon giving rise to one
hole -electron pair. Since the absorption coefficient for visible light in
silicon is greater than 3000 cm -1, the majority of the photon -generated
carriers will be created near the illuminated surface." This will
increase the minority carrier (that is, hole) density above its thermal
equilibrium value and cause a net diffusion of holes toward the re-
verse biased diodes. If the lifetime of the holes is ' sufficiently long
and the illuminated surface has been treated properly to reduce
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recombination effects, a large fraction of the photon -generated holes
will diffuse to the electric fields associated with the depletion regions
of the diodes and will contribute to the junction current. The light -
induced junction current will continue to flow and discharge the
junction capacitance throughout the frame period as long as the
diodes remain in the reverse -biased condition. Thus, high light levels
require high values of reverse -bias voltage or high values of junction
capacitance to avoid saturation. The video output signal from each
diode is created when the electron beam returns to a diode and re-
stores the original charge by re-establishing the full value of reverse
bias. The sensitivity and resolution capabilities of the basic diode
array structure are considered in Section III.

It has been found experimentally that the basic diode array
structure indicated in Fig. 2 has one rather undesirable charac-
teristic: the silicon dioxide film which insulates the substrate from
the electron beam can exhibit uncontrollable charging effects. In some
cases the film will accumulate enough negative charge to repell the
electron beam and prevent it from impinging on the p -regions. Several
alternative modifications of the basic target structure which prevent
this charging phenomenon and which improve the performance of
the array in other respects are discussed in Section IV.

III. SENSITIVITY AND RESOLUTION CAPABILITIES OF A DIODE ARRAY TARGET

As described in Section II the light associated with the optical image
is absorbed in the n -type substrate of the diode array creating hole -
electron pairs. The photo -generated holes then diffuse from their
point of generation to the depletion regions of the reverse -biased
diodes. This section considers the sensitivity and resolution capabili-
ties of the diode array target as determined by hole diffusion and the
discrete nature of the diode array, but it does not consider any limi-
tations in resolution resulting from the finite size of the electron
beam, aberrations in the light optics, or frequency response of the
video amplifiers.

3.1 Diffusion of Minority Carriers
An analytical evaluation of the diffusion process in a mosaic

target would be quite complicated. In fact, an exact solution would
require detailed knowledge of the shape of the depletion regions.
However, to estimate the light sensitivity and resolving ability from
the simplified model in Fig. 3 is quite straightforward. In this figure,
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Fig. 3- Schematic of the simplified model used to estimate the light sensitivity
and resolving ability of a diode array target.

the isolated p -regions have been replaced by one homogeneous p -re-
gion in which there is no lateral conductivity. This is equivalent
to a mosaic structure with zero spacing between diodes. With the low
surface recombination velocity normally achieved at the silicon
dioxide -silicon interface between diodes or with a fully depleted surface
as shown in Fig. 2, the theoretical results obtained from the simplified
model should accurately predict the sensitivity of the silicon diode
array camera tube. Since the response of the tube is proportional
to the incident light level (that is, the gamma is unity) camera sensi-
tivity may be determined by calculating the ratio of the flux of
optically generated holes entering the p -region to the incident photon
flux.

The steady state diffusion of optically excited holes in the substrate
from their point of generation to the depletion regions of the diodes
will be governed by the time independent continuity equation17

-DV2pp/T = G(x, y, z) (1)

where

p = hole density in excess of thermal equilibrium
T = minority carrier lifetime
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D = hole diffusion constant in n -type silicon
G = hole generation rate per unit volume.

For the model of Fig. 3, the appropriate boundary conditions are

Sp = D -ay at y = 0
(2)

p = 0 at y = L.
where S is the surface recombination velocity for holes at the illumi-
nated surface. Setting p = 0 at L = La, the edge of the depletion re-
gion, is valid since the electric field prevents any accumulation of
holes by quickly sweeping the holes across the depletion region.

The problem being considered here is similar to the one analyzed
by Buck and others ;13 however, it does differ in two significant re-
spects. First, our calculation takes into account carrier generation in
the depletion regions of the diodes whereas Buck's analysis, intended
for short circuit current measurements, does not include carrier gener-
ation in the junction space charge region. Second, the hole generation
rate is permitted to vary in the transverse direction (the x direction of
Fig. 3) so that nonuniform incident light intensities can be considered.
This permits evaluation of the loss in resolution caused by lateral
diffusion of the holes.

If it is assumed that the light incident on the target is stationary,
monochromatic, parallel, and varying in intensity only in the trans-
verse direction as

(N0/2) (1 ± cos kx),

then the generation function G (x, y, z) will be given by

G(x, y) = 2° a(1 - R)(1 ± cos kx)e-av

in which

(3)

N. = peak incident photon flux,
a = silicon absorption coefficient at the optical wavelength of

interest,
R = silicon reflectivity at the optical wavelength of interest,
k = 27r/[spatial period of the intensity variation in the transverse

direction].
This equation does not include the response to infrared light that may
be multiple reflected when the absorption coefficient becomes very
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small (that is, aLb < 2 corresponding to optical wavelengths greater
than approximately 0.8µ). With the above generation function, equa-
tion (1) can be solved, subject to the boundary conditions given in
equation (2), for the hole distribution in the substrate. The hole flux
entering the p -region, 4(x), can then be obtained by evaluating the
hole diffusion current density that enters the depletion region and
adding to this the number of holes per unit time and area created by
photons absorbed in the depletion region. The result may be written
in the form

4(x) = 0/2)1710 + nk cos kx1 (4)

with

aL(1 - R) [2(aL SL/D) - (/3+ - /EL) exp (-aLa)
nk - a2L2 1 0. P-

- (aL)-1 exp ( -aL0)] - (1 - exp (-arib), (5)

no = nk I k -O

and in which

= (1 ± SL/D) exp ± (L ./ L),
1 / L2 (k) = 1/ L20 k2,

Lo = diffusion length = (D7)1,
La = thickness of undepleted region,
Lb = thickness of the n -type region plus the width of the

depletion region.

Notice that no is the ratio of the flux of optically generated holes en-
tering the p -region to the incident photon flux for uniform illumina-
tion (k = 0).

The existence of a "dead layer" and an electric field associated with
the illuminated surface, as discussed by Buck and others, invalidates
the field -free continuity equation in a small region near the illuminated
surface.13 Consequently, at the shorter wavelengths (< 0.50 , meas-
ured sensitivities may be less than that predicted by equation (5).

With the above reservation in mind, no versus optical wavelength
for various values of the target parameters can be obtained from
equation (5). For the results to be presented, the thickness of the un-
depleted portion of the substrate La was assumed to be 15p.. As Sec-
tion 3.1 shows, this is a practical value since the maximum value of
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La for an operating camera tube will be determined by the resolution
requirements. The width of the depletion region was assumed to be
5µ which is appropriate for a 10 n -cm substrate with a target bias of
approximately 10 volts. The wavelength dependence of a, the absorp-
tion coefficient, was obtained from the data of Dash and Neumann
while the measured wavelength dependence of R, the reflectivity as
given by the solid curve in Fig. 4, was used.1°
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Fig. 4 - Reflectivity versus optical wavelength of a bare, polished silicon sur-
face and of a polished silicon surface with an evaporated layer of silicon mon-
oxide. In both cases the silicon was n -type with a resistivity of approximately 10

In Figs. 5 and 6, no is plotted versus wavelength for various values
of La/La (or equivalently lifetime T) for two values of S.* As expected,
the curves of Fig. 6, corresponding to a surface with a relatively low
recombination velocity, are much higher at the shorter wavelengths
than those of Fig. 5 which correspond to a surface with a high recom-
bination velocity. Also as expected, no becomes independent of T for
1.0 > La.

An inspection of equation (5) in the wavelength range where «La>> 1

* The apparent discontinuity in the curves near 0.5g, results from a discon-
tinuity in the dependence of absorption coefficient upon optical wavelength as
reported in the literature and is probably spurious.
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Fig. 5- Calculated plots of no versus optical wavelength for different values
of minority carrier lifetime or equivalently different values of the diffusion
length L. and for a high value of surface recombination velocity S.

indicates that no will be virtually independent of wavelength, except
for the slight wavelength dependence of the reflectivity, if S/D < a.
This is illustrated by the curves of Fig. 7 which give no versus wave-
length for various values of S and a given value of r or equivalently L. .

At the shorter wavelengths (increasing a) the curves are essentially
independent of wavelength for values of S less than 103cm per second.

Measured values of no for three diode array camera tubes with
different targets are shown in Fig. 8. These results are in qualitative
agreement with the above considerations. The arrays with a low re-
combination velocity which provide the best response for short wave-
lengths were obtained by the formation of an n+ region on the light
incident side while the array with a high recombination velocity had
an untreated etched surface. In the near infrared (wavelengths >
0.90p.) the thicker array had a higher response. This is not surprising
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Fig. 6- Calculated plots of no versus optical wavelength for different values
of minority carrier lifetime or equivalently, different values of the diffusion
length L. and for a low value of surface recombination velocity S.

since the only reason no is falling with increasing wavelength in this
range is because the photon energy is approaching the bandgap energy
of silicon and the substrate is becoming transparent.

The sensitivity of a diode array camera tube is compared with that
of a commercially available vidicon and the response of a unity quan-
tum efficiency (770 = 1) ideal detector is shown in Fig. 9a. The target
of the diode array tube was approximately 20µ thick and had a low
recombination velocity on the light incident surface. For the com-
parison, both tubes were operated with comparable dark currents. The
dark current of a typical diode array camera tube is in the range from
5 to 50 nanoamperes. This upper value of dark current is obtained at
a target bias of 30 volts in a typical vidicon with visible light response.
The vidicon response curves shown in Figure 9 were obtained with this
target bias. The light power incident on the tubes was adjusted so



ELECTRONIC CAMERA TUBE 1493

that the video output current was approximately equal to the dark
current. The conclusion that follows from the curves given in Fig. 9a
is that the diode array camera tube has a much broader and a much
higher sensitivity than that of a vidicon.

The sensitivity of the diode array camera represented by the curve
given in Fig. 9a may also be expressed as approximately 20 /lamps
per ft-cd of faceplate illumination when the scene is illuminated
with an incandescent lamp operating at a normal temperature. The
corresponding response of a vidicon with 50 nanoamperes of dark
current may be written as approximately 0.6 /Lamp per ft-cd at a
faceplate illumination of 0.1 ft-cd. At this light level, the video signal
current of the vidicon is comparable to that of the dark current; be-
cause of the photoconductive decay characteristics the image lag in
the displayed video may be excessive. For fluorescent illumination the
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sensitivity of the diode array camera is approximately 1.3 µamps per
ft-cd of faceplate illumination.

The sensitivity of a vidicon is less. at higher levels of illumination
since its gamma is approximately 0.65. This is ilustrated in Fig. 91)
in which the sensitivity versus output signal current is plotted for a
diode array camera tube and a vidicon. These curves were obtained
with monochromatic illumination at a wavelength of 0.55µ when
both tubes were operated at a dark current of approximately 0.02
µamp . The zero slope of the diode array camera tube results from a
unity gamma; whereas the slope for the vidicon corresponds to the
value of (y - 1) .

The cross -hatched area below 0.02 µamp of output signal current
is the region where the dark current is greater than the signal cur-
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Fig. 9- (a) Sensitivity of a silicon diode array camera tube as a function of
optical wavelength. As a comparison the sensitivity of a commercially available
vidicon is also plotted. For the vidicon the signal current was equal to the dark
current (0.05 pa) at all wavelengths. (b) Sensitivity of a silicon diode array
camera and a vidicon as a function of video signal current: Optical wavelength
= 0.55 /2; dark current = 0.02 p, amps.
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rent and is considered to be below the operating range of both camera
tubes. As the signal current approaches 1.0 p. amp, the sensitivity of
a vidicon is reduced to a value approximately 1/25 of a diode array
camera tube. Notice that the optical wavelength of 0.55,a used for the
above comparison corresponds to the peak of the response for both
the vidicon and the normal eye.

For the experimental curves of Fig. 8 no effort was made to reduce
the reflectivity of the substrate below that given in Fig. 4 for bare
silicon which is approximately 0.34 throughout the visible portion of
the spectrum. This reflectivity can be significantly reduced by a
single -layer antireflection film. As illustrated by the dotted curve of
Fig. 4, a film of evaporated silicon monoxide, 550 A thick, will reduce
the reflectivity to less than 0.10 throughout the visible portion of the
spectrum. When such a film is used on a diode array target, the target
sensitivity is increased by an amount corresponding to the reduction
in reflectivity for wavelengths greater than approximately 0.55,u. For
wavelengths less than 0.55,u, the sensitivity is also increased but not
as much as would be expected from the reduction in reflectivity. The
reason is not fully understood but it may be that light absorption in
the evaporated silicon monoxide layer is appreciable at these shorter
wavelengths.

In the diode array camera, the video signal is normally obtained
from the target lead as in a conventional vidicon; as a result, the
lowest usable light level will be determined by thermal noise sources
in the video preamplifier. This means that in spite of the high sensi-
tivity of the basic silicon diode array camera, its use will be restricted
to relatively bright light with presently available commercial pre-
amplifiers. If it is desired to operate at extremely low light levels,
the use of return beam reading with secondary emission amplification
may improve matters. The minimum detectable light level of an image
tube depends upon a number of factors, and the actual determination
of this level is beyond the scope of this paper. With return beam
reading, however, the minimum detectable light level of the silicon
diode array camera would probably be limited by the presently
achievable room temperature dark current of 5 to 50 nanoamperes."
A modest amount of cooling could be used to reduce the dark current
considerably since the dark current drops an order of magnitude for a
reduction in temperature of about 25°C.

Consider how lateral diffusion of the photo -generated holes affects
the resolution capabilities of the model depicted in Fig. 3. The resolu-
tion capabilities of a camera tube are usually evaluated by illuminat-
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ing the tube with a sinusoidal light pattern, measuring the peak -
to -peak video response as a function of the spatial wavelength or
frequency of the light pattern, and normalizing with respect to the
response for uniform light. For targets with low values of diode leak-
age currents it is reasonable to assume that the peak -to -peak video
signal is proportional to the peak -to -peak hole flux entering the p -
region of Fig. 3. Therefore, the modulation transfer function resulting
from the hole diffusion process, RD, is readily obtained from equation
(4), the result is

RD(k) = ok/no

Values of RD for various values of the target parameters can be ob-
tained from equation (5).

The response RD (k) will be a function of the wavelength of the
incident light pattern, increasing with increasing wavelength as long
as multiple reflections in the substrate are not significant. This in-
crease results from the fact that at the longer wavelengths more of
the photo -generated holes are created closer to the edge of the deple-
tion region and thus they do not have as far to diffuse. In addition,
the existence of a dead layer and associated electric field may result
in greater resolution capabilities than predicted by equation (5) when
the illumination is restricted to wavelengths less than 0.5p..

As illustrated by Fig. 10, where RD is plotted versus spatial fre-
quency (k/2r) for various values of Lb , the degradation in resolution
contributed by lateral diffusion is a strong function of target thickness.
For these curves the width of the depletion region (Lb - La) was kept
constant at a value of 51.1 and the wavelength of the incident light was
assumed to be 0.55/L. The quantity RD(k) will also be a decreasing
function of the minority carrier lifetime T. This is illustrated by the
curves of Fig. 11 for which 7 has been increased an order of magnitude
over the value used for Fig. 10. For the curves of both of these figures
a low surface recombination velocity was used because this is a necessity
for adequate sensitivity in the visible portion of the spectrum. The
resolution and sensitivity will be relatively independent of 7 or L.
when La << L. . However, if L. < L. , then the sensitivity will increase
and the resolution will decrease with increasing L. , and vice versa.

3.2 Image Detection with a Mosaic
The discrete nature of a diode array target places a limit on its

resolution capabilities; an estimate of this limit can be obtained if
the model depicted in Fig. 3 is modified so that the homogeneous
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p -region is divided into discrete p -islands as indicated in Fig. 12. It
will be assumed that the lateral conductivity of each p -type island
is infinite.

The resolution capabilities of the mosaic will be obtained by eval-
uating the peak -to -peak response obtained on the p -type islands for
a given incident hole flux. The response of the nth island r will be
proportional to the total number of holes collected by this p -region;
if Jgx) is the hole flux, then

(n+1)d,

rn cc JD(x) dx (6)

in which 2dp is the center -to -center spacing of the islands. Assuming
a sinusoidal variation in the incident light pattern, it follows from
equation  (4) that

Jgx) = (N0/2)[770 flk cos (kx co)] (7)

where cto is a spatial phase factor that accounts for the relative orienta-
tion between the mosaic and the light pattern. The peak -to -peak
response will be a function of the phase relationship 'p between the
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light pattern and the mosaic; however, if we restrict our considera-
tions to spatial wavelengths greater than two or three times dp, the
response will be virtually independent of gyp. With equation (6) and
(7), the peak -to -peak response of the mosaic can be evaluated and
if this is normalized with respect to the response for uniform light,
the resulting modulation transfer function R (k) is given by

77 sin kdp) (sin kd)
R(k) - for kd, << 2r. (8)

kd,kd,

Thus because of the discrete nature of the diode array target, its
resolution capabilities are reduced by the factor

sin kdp/kd, .

The effect of this function on the curve of Fig. 10 corresponding to
Lb = 20p, is shown in Fig. 13 for various values of the diode spacing
24.

In addition to lateral diffusion and the discrete nature of the target,
the resolution capabilities of an operating camera tube will be de-
graded by the finite size of the electron beam. Measured modulation
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Fig. 13 - Calculated values of the modulation transfer function due to lateral
hole diffusion and the finite diode spacing as a function of spatial frequency for
various diode spacings. (Lb = 20,a; L. = 15p. = Lo ; S = 103 cm/s; optical wave-
length = 0.55A).
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transfer functions of a typical diode array camera tube for electro-
statically and magnetically focused electron beams are given in Fig.
14. Using reasonable estimates of the unknown target parameters, the
modulation transfer function can be calculated from equation (18) ;
the results of such a calculation are also given in Fig. 14. The agree-
ment between calculation and experiment is fairly good when a mag-
netically focused electron beam is used. The increased resolution
obtained with magnetic focus compared with electrostatic focus re-
sults from a smaller electron beam size.

IV. MODIFICATIONS OF THE BASIC TARGET STRUCTURE

In the basic diode array structure, the silicon dioxide is exposed
directly to the scanning electron beam; it has been found that suf-
ficient negative charge can accumulate on the insulating silicon
dioxide layer to prevent the beam from striking the recessed p -type
islands. The effect of the silicon dioxide film is analogous to that of a
control grid in a triode. This section discusses three modifications of
the basic diode array structure that will prevent this charging be-
havior and will improve the performance of the array in other
respects.

4.1 Enlarged Islands
One modification of the basic diode array structure, identified as

a conducting island structure, is shown in Fig. 15. In this structure,
electrically isolated conducting islands are placed over each p -type
region. If the spacing between islands is small enough, most of the
silicon dioxide film will be covered with a conducting material so
that charging of this surface should be reduced if not eliminated.

Another advantage of the island structure is that the electron beam
current is utilized more efficiently. With the typical diode spacing of
20µ and the typical diode diameter of 8µ only approximately 1/8 of
the total beam current is available for producing an output signal if
beam pulling effects are neglected. This is simply the ratio of the
total exposed area of all of the p -regions to the total target area.
With the conducting islands, the beam landing area of each p -type
region is greatly increased and more of the beam current can be
used. Reducing the required beam current permits smaller beam
diameters to be achieved and as a result the degradation in resolu-
tion because of the size of the electron beam may be reduced and
possibly the cathode loading may be reduced.



1.502 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1969

0.8

0.6

0.4

0.2

0

Lb=15/A,Lb-
CALCULATED

S=103

X

,'CURVE FOR
La = 5/17 1-0 = 47.5/1'
CM/SEC, 2 dp=I5,U

0

0

0 4 6 8 10 12

SPATIAL FREQUENCY IN CYCLES PER mm
14 16

Fig. 14 - Measured values of the modulation transfer function of a diode array
camera tube as a function of spatial frequency. Results are given for both a
magnetically (x) and electrostatically focused (o) electron beam (optical wave-
length =

The conducting islands will also increase the capacitance shunting
the diodes without a corresponding increase in the diode leakage cur-
rent. Thus the time constant and the charge storage characteristic or
dynamic range of each diode will be increased. However, this increase
in capacitance must be consistent with the image lag requirements
because if the capacitance becomes too large the electron beam may
not be able to fully recharge the diode in one scan.

Another potential advantage of metallic conducting islands is that
the infrared sensitivity will be increased at wavelengths where a
significant amount of light can pass through the substrate. The metal-
lic islands will reflect most of the transmitted light back into the sub-
strate and thus effectively double the absorption path. Furthermore,
the metallic islands will also shield the substrate from stray light
emitted by the cathode.

Several diode array camera tubes with gold conducting islands
have been fabricated. The thickness of the gold islands was about
0.5p., the minimum separation between islands that has been success-
fully achieved to date is approximately 3p.. These arrays when exam-
ined in a camera tube still showed significant charging effects. These
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results indicate that with an island thickness of approximately 0.5p.,
an island separation of less than 2p, would be required to eliminate the
charging behavior. However, stringent requirements must be placed on
the photolithographic processes in order to obtain this small separation
over the entire array. On the other hand, if the thickness of the islands
is considerably increased, it might be possible to use a larger island
separation with no deleterious charging effects.

4.2 Conductive Sea Surrounding the p -Type Islands

Another attractive target structure, called a conducting sea struc-
ture, is illustrated in Fig. 16. In this embodiment the silicon dioxide
is covered by a conducting material which surrounds the diodes with-
out contacting the p -type islands. This structure should also eliminate
charging effects since the silicon dioxide is shielded from the electron
beam.

An attractive feature of the conducting sea is that the potential be-
tween the sea and the n -type substrate can be varied. Thus the silicon
surface potential at the silicon -silicon dioxide interface can be con-
trolled and, more important, it can be optimized so as to minimize
the leakage current resulting from generation centers at the interface.
These centers are the dominant source of dark current in an operat-
ing camera tube. Notice that the capacitance between the sea and the
substrate is rather large (approximately 6000 pF per cm2 for an oxide
thickness of 0.5p,, assuming no depletion at the interface), and the

Si,02

p -TYPE
ISLANDS - -

fl -TYPE
SUBSTRATE

CONDUCTING
ISLANDS -

Fig. 15 - Conducting island structure in which electrically isolated conducting
islands are placed over each p -type region.
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high frequency shunting effects of this capacitance must be reduced
by the use of a high frequency blocking filter in the bias lead for the
sea as shown in Fig. 16.

The conducting sea also has the potential advantage of providing
electronic gain. Gain may be obtained by adjusting the bias applied
to the conductive sea so that the fraction of beam current which can
strike the sea will be modulated by the charge pattern stored on the
p -type islands. The video signal is obtained from the parallel com-
bination of the conductive sea and the n -type substrate. When the
target is operated in this mode, the performance should be similar to
a triode with zero spacing between the control grid and the plate.

The practicality of these advantages depends upon the develop-
ment of successful fabrication techniques for creating the conductive
sea. Thus far inadvertent shorts between the sea and the substrate or
between the sea and some of the p -type islands have prevented actual
evaluation of a conducting sea structure.

4.3 Resistive Sea in Contact with the p -Type Islands
Another technique for eliminating the uncontrolled charging of the

silicon dioxide film is illustrated in Fig. 17. In this case, a resistive
film or sea covers both the silicon dioxide film and the p -type islands.
This resistive sea prevents any build-up of excess charge in the
regions between p -type islands by providing a controlled leakage path
to the individual diodes. The resistance (that is, ohms per square) of
the resistive sea must be chosen judiciously in order to provide this
leakage path without impairing the resolution capabilities of the
basic diode array target. This implies that there should not be a
significant amount of charge leakage between picture elements dur-
ing a frame period (that is, 1/30 second).

Section V shows that for a silicon dioxide film thickness of ap-
proximately 0.5p., the resistivity of the resistive sea must be greater
than approximately 1013 ohms per square. This sheet resistivity has
been obtained with thin films formed by evaporation or sputtering.
Table I lists some of the source materials that have been tried. Since
sometimes the process was performed in the presence of a background
gas, the composition of the resulting resistive film is not precisely
known. The required film resistivity is rather high and one of the
biggest problems in obtaining suitable resistive sea structures has
been reproducibility. Comments about the reproducibility of the
different materials are given in Table I.

Although in many respects Sb2S3 works well as a resistive film, it
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TABLE f-- SOURCE MATERIALS

Material
Method of
deposition

Obtainable
resistivity Reproducibility

Sb2S3 Evaporated
High

enough
Small

problem

GaAs Evaporated
High

enough Problem

SiN* Sputtered
High

enough ?

Si*
Evaporated
Sputtered Marginal

Extreme
problem

Ha (Ta) Nt Sputtered
High

enough ?

* These films were provided by E. N. Fuls.
t This film was provided by F. Vratny.

has one serious drawback. That is, the completed camera tubes with
an Sb2S3 film cannot be vacuum baked at high temperature. The other
materials listed in Table I result in films which permit the camera
tube to be baked at 400°C.

Of the many structures and techniques proposed to eliminate the
charging problem associated with the basic diode array structure, we
have found the resistive sea structure to be the simplest to implement
and to date it has given the best results. All of the experimental results
presented in this paper were obtained with diode arrays which had a
resistive sea.

V. RESISTIVE SEA STRUCTURE

It is quite clear that a resistive film covering the diodes and the
silicon dioxide can affect the resolution capabilities of the basic diode
array structure and, as pointed out previously, in order for the film
not to impair these capabilities, its resistance should be such that
there is not a significant amount of charge leakage between picture
elements during a frame period. In addition to affecting the resolu-
tion, the amount of lateral charge spreading permitted by the film
during a frame period will influence many of the other electrical
properties of the basic diode array structure.

The following model of the resistive film will be used to establish
the required sheet resistivity and to provide a basis for interpreta-
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tion of experimental results. It will be assumed that the film can be
characterized by an effective sheet resistance Rf. This sheet resistance
could be a function of the free carrier density spatial distribution in
the film if the current flow is space charge limited or if interface
states are present at the oxide -film interface. To simplify the present
considerations, we assume that Rf is independent of the lateral cur-
rent flow in the film and that the free carriers in the film are nega-
tively charged and reside at the oxide interface.

Under these assumptions the voltage distribution with respect to
the cathode V on the resistive film as a function of time will satisfy
the following equation

V'`TT = R fC P--aTt7 (9)

in which C is the capacitance per unit area between the oxide -film
interface and the substrate. This capacitance, which consists of the
series combination of the oxide capacitance and the capacitance of
the depletion region formed at the oxide -silicon interface, will gen-
erally be a function of the difference between the substrate voltage
and the film voltage. To obtain a model amenable to analysis the
capacitance C will be assumed to be independent of V. This assump-
tion will be valid for a target in an operating camera tube if the
maximum amplitude of V is small compared with the target (sub-
strate) voltage.

To obtain some idea of the minimum film resistivity or charge
spreading behavior required to prevent a loss in resolution, consider
a simple model of the resistive sea structure that neglects the discrete
nature of the target. The oxide layer is assumed to be uniform in the
lateral direction as indicated in Fig. 18. With such a model, it is
possible to determine, for a given stored charge pattern, a minimum

RESISTIVE FILM -SHEET RESISTANCE - Rf

'"SILICON SUBSTRATE"'

Fig. 18 - The model used for analyzing the resistive sea structure,
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value for Rf for which there is no appreciable lateral charge leakage
during a frame time.

Since the purpose of the resistive film is to provide a controlled
charge leakage path without introducing a concurrent loss in resolu-
tion, the decay rate of a given initial charge distribution is the pa-
rameter of interest. If we restrict our considerations to a one dimen-
sional charge distribution and a uniform oxide layer, equation (9

becomes

a2v(x, 8V(x,
axe ' at

in which x is a lateral coordinate parallel to the film.
Let the initial charge distribution at the resistive film -oxide inter-

face be given by

qk(x, t = 0) = 170 cos kx

in which

(10)

k = 2ir(spatial wavelength) -1.

This charge distribution will create a voltage profile which may be
approximated as

V k(x, t = 0) = (qo/C) cos kx,

provided k << C / eo , where e is the permittivity of free space. It follows
from equation (10) that such an initial voltage profile will decay ex-
ponentially with time with a time constant rk that is given by

Tk = RfC/le. (11)

Thus the time interval over which a sinusoidal charge pattern may
be stored without smearing is proportional to the square of the spatial
wavelength of the pattern.

If the decay time of the voltage profile is required to be 10 times
the frame period of 1/30 second so that there is only a 10 percent loss
in resolution resulting from charge spreading, then the value of Rf
must be such that

Rf > le /3C.

For a spatial frequency of 14 cycles per mm, the largest spatial fre-
quency of interest, and assuming C 4000 pF per cm2 (a value which
lies between the oxide capacitance and the capacitance of the depletion
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region under the oxide), it follows that

RI > 5 X 10" ohms per square.

This implies that for a resistive sea thickness of approximately 0.1p.,
a bulk resistivity of at least 108 ohm -cm is required for the material
of the resistive layer.

Measurements of the decay of an initial voltage distribution have
been used to obtain estimates of the sheet resistances of the resistive
films. A voltage distribution is created on the resistive sea by focus-
ing onto the camera target a bar pattern (resolution chart) that is
illuminated by a light pulse, the duration of which is much shorter
than a frame period. The light induced charge pattern and resulting
voltage pattern is introduced to the resistive film in discrete areas
corresponding to the p -regions of the diodes. If the spatial wave-
length of the illuminated bar pattern is much greater than the diode
spacing, then the charge over the p -regions will relax into the sur-
rounding areas in a time that is short compared with the relaxation
time of the overall light induced charge pattern. For times longer
than the relaxation time between diodes, the simple model discussed
above should be valid. In the measurements, the peak -to -peak video
response is measured as a function of the time between when the bar
pattern is illuminated with the light pulse and when the electron beam
scans the light induced charge pattern produced on the resistive sea.

Some results obtained from this type of measurement are given in
Fig. 19 for targets with different film resistances. During the time
between writing and reading, the electron beam was blanked so that
no electrons were hitting the target. A square wave bar pattern was
used and the dotted lines are calculated curves for the decay of an
initial square wave voltage profile using the simple model discussed
above. Except for very short times, the agreement between calcula-
tion and experiment is very good. At long enough times, only the
fundamental component of the square wave contributes to the video
signal and the decay is then truly an exponential, that is a straight
line on the semilog plot of Fig. 19. The sheet resistances indicated in
the figure were calculated from the decay times of the various curves
by assuming the effective capacitance between the film and the
substrate was the same for all curves and was equal to 4000 pF per
cm2. In the remainder of the paper, when a value of sheet resistance is
given, it refers to a value obtained from decay curves as plotted in
Fig. 19.
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It has been found that targets with low resistivity films (sheet re-
sistances <1013 ohms per square) will have certain distinguishing
characteristics that are quite different from those observed on targets
with high resistivity films (sheet resistances >1014 ohms per square).
That is, the resistance region between 1013 ohms per square and 1014
ohms per square is a transition region for the typical diode arrays
with a diode spacing in the range of 15 to 20p.. One of the most striking
contrasts between targets with a high resistivity film and those with
a low resistivity film occurs when the video current through a white de-
fect is observed as the substrate voltage is increased. Most arrays fab-
ricated to date have isolated diodes which exhibit higher values of dark
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current than their neighboring diodes. This higher value of dark
current manifests itself in the displayed video as an isolated bright
spot or equivalently a white defect.

The behavior of a target with a low resistivity film is illustrated in
Fig. 20. The pictures in this figure are of the video display of the
dark current pattern at different target voltages obtained from a
camera tube which had many white defects. With the low resistivity
film, as the target voltage is increased, the video current through
the defects increases, that is, the white spots get brighter and also
tend to enlarge only slightly.

Compare this behavior with that exhibited by a target with a high
resistivity film as shown in Fig. 21. Here, as the target voltage is
increased the video current through the defects again increases, but
now when the target voltage reaches a certain critical voltage, the

Fig. 20 - Photographs of the video display of the dark current pattern at
different target voltages obtained from a camera tube in which the target had
a low resistivity resistive film : (a) VT = 1.5 volts, (b) VT = 5.0 volts, ( c) VT
= 12 volts. (Video display scan lines and printing screens cause moire patterns
in some figures that are not in the originals.)
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Fig. 21- Photographs of the video display of the dark current pattern at
different target voltages obtained from a camera tube in which the target had a
high resistivity resistive film: (a) VT = 2.5 volts, (b) VT = 3.0 volts, (c) V2, =
3.5 volts, (d) VT = 4.0 volts.

defects grow larger in the lateral direction very rapidly and eventu-
ally envelop the entire target. This enveloping or "whiting out" of
the target can result from only one single defect.

The large white regions in the last two photographs of Fig. 21
cover many diodes and correspond to areas in which the diodes are
all electrically shorted together. Experimental evidence indicates that
these diodes are electrically shorted together by a p -type inversion
layer which forms under the oxide and which connects the originally
isolated p -regions. The fact that an inversion layer can form with a
high resistivity film but not with a low resistivity film turns out to
be what one would expect; the reason for this is illustrated in Fig. 22.

In the top part of the figure, the area around one diode is sche-
matically indicated just after the electron beam has recharged the
diode. The film potential will be at cathode potential; assuming the
target voltage or the potential of the n -region is high enough, ap-
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proximately 5 to 8 volts for a 10 n -cm substrate and an oxide thick-
ness of approximately 0.5p,, the area under the oxide will also be
depleted as indicated. Let us further assume that in the vicinity of
this diode there is for some reason a high generation rate of minority
carriers. This situation could arise for example as the result of some
sort of defect in the vicinity of the diode.

The charge collected on the p -region resulting from the large gen-
eration rate will cause both the potential of the p -type island and the
potential of the film over the p -region to increase from cathode po-
tential towards target potential. What happens now depends upon
the charge spreading behavior of the film.

As indicated in the lower left half of Fig. 22, the rise in potential of
the p -type region for a low resistivity film will be communicated lat-
erally a significant distance during a frame period. Thus the film po-
tential over the oxide increases and as a result both the diode depletion
region and the depletion region under the oxide directly surrounding the

LOW RESISTIVITY
FILM

FILM POTENTIAL

NO INVERSION

HIGH RESISTIVITY
FILM

RESISTIVE FILM

-OXIDE

--DEPLETED REGION

FILM POTENTIAL

ONSET OF INVERSION

,/W4.7117,7W7Z

INVERSION

Fig. 22 - Illustration of how an inversion layer can form around a defect when
a high resistivity resistive film is used but not when a low resistivity resistive film
is used.
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p -region will be reduced. The reduction of the depletion region under
the oxide inhibits the formation of an inversion layer and no inversion
occurs in this case.

On the other hand, as indicated in the lower right half of Fig. 22,
with a high resistivity film the rise in potential of the p -region is not
accompanied by a rise in potential of the film out over the oxide.
Therefore, the depletion region under the oxide will not immediately
collapse along with the diode depletion region and an electric field in
the lateral direction will be produced which forces holes from the
p -region into the depletion region under the oxide, resulting in the
formation of an inversion layer. As the experimental results have
indicated, the inversion layer can cause many diodes to be shorted
together. This behavior is similar to the shorting together of the
source and drain of an insulated gate field effect transistor by the
application of the appropriate voltage to the gate electrode.

Thus with a high resistivity film we have the possibility of inver-
sion layers forming at a defect whereas with a low resistivity film
the lateral charge spreading inhibits the formation of an inversion
layer.*

Besides influencing the target properties discussed above, the resis-
tive sea also affects the ability of the electron beam to re-establish
the full value of the reverse bias on a diode during one scan.15 Some
insight into this problem can be obtained from the equivalent circuit
shown in Fig. 23 which approximates one of the diodes. In this figure
the p -n junction is represented by a schematic diode which is shunted
with an effective junction capacitance, C5, and a current generator.
The equivalent circuit is valid only if the charge stored on the oxide
surrounding the diode is negligible compared with that stored on the
diode. The resistive sea immediately over the p -region is represented
by the parallel combination of R8 and C8. The time -constant for this
combination is the intrinsic time -constant for the resistive sea (that
is, R8C8 = pose° where Es is the relative dielectric constant and p8 is
the volume resistivity of the resistive film).

A qualitative estimate of the charge storage properties of the

* These conclusions are consistent with the results obtained by Grove and
Fitzgerald1° on a gate -controlled diode structure. They show that for inversion
to occur, the difference between the silicon surface potential at the oxide inter-
face and the reverse bias voltage of the diode must be less than twice the fermi
potential of the substrate. Because of the lateral charge spreading in a low re-
sistivity sea, this inequality is never satisfied whereas with a high resistivity sea
it can be satisfied in a region where there is a high generation rate of minority
carriers.
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CURRENT
GENERATOR

Fig. 23 - Equivalent circuit used to represent the area around one diode or
p -type region.

equivalent circuit can be obtained from intuition. Consider first the
fact that the electron beam will charge both the resistive sea and the
beam side of capacitor C3 down to zero potential. If the reverse -bias
leakage current of the diode may be neglected, the resistor R8 will
discharge any voltage difference across C8 at a rate related to the
time -constant R8C8. From the previous discussion it is estimated that
p8 is approximately 108 ohm -cm. Therefore, R,C, may be estimated

35 µsec by assuming ER to be 4. the
p -regions are quickly charged to cathode potential and the full value
of reverse -bias is placed across the diode.

The current from the photoresponse is represented by the current
generator in Fig. 23. Since the capacitance from the film surface to
electrical ground is very small, any change in reverse -bias voltage
across the diode caused by photoresponse throughout the frame period
appears very quickly on the electron beam side of the resistive sea.
Furthermore, this process does not create a significant voltage drop
across R8. However, when the full value of reverse bias is re-estab-
lished by the scanning electron beam, a significant voltage drop may
appear across the parallel combination of R8 and C8 since the beam is
on a diode for less than 0.3 psec. For example, if the photoresponse
has created a reduction in diode reverse -bias of AV1 volts, the process
of charging the beam side of the resistive sea down to zero volts will
increase the reverse -bias by the amount AV,, where

A V2 - A Vi.
C. C1

The ratio of AV2 to A V1 may be estimated by assuming equal values
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for the relative dielectric constants for the resistive sea and the deple-
tion region. Thus, if the thickness of the resistive sea is 1/6 of the
depletion width, then

AV2/AVi = 6/7.
The significance of this voltage ratio is that the scanning beam can-
not re-establish the full value of reverse bias across the diode in one
sweep even with arbitrarily large beam currents. While the charge
stored on the oxide surrounding the diode has been neglected in this
discussion, a similar conclusion would result from a calculation
which included this additional charge.

One important question about the resistive sea structure that has
not yet been answered is whether a film resistivity can be chosen
which will lead to an increase in the effective beam landing area of
each p -type region without significantly affecting the resolution capa-
bilities of the basic diode array. Answering this question requires an
evaluation of the amount of charge stored on the resistive film over
the oxide surrounding the diode relative to the amount of charge stored
on the diode. This evaluation in turn requires a complicated model
which includes the effects of the isolated p -regions and is beyond the
scope of this paper. However, preliminary calculations indicate that
there is a value of Rf which will preserve the resolution capabilities
of the diode array and will also lead to a significant increase in the
beam landing area of each p -type island. The optimum value of Rf
is a strong function of the target geometry but will always be in the
range of 1012 to 1014 ohms per square for practical geometries.

VI. MISCELLANEOUS TOPICS

The dark current characteristics of a diode array target are pre-
dominantly determined by the surface states at the silicon -silicon
dioxide interface, as discussed by Buck and others.13 However the de-
tailed behavior of the dark current versus target voltage depends
upon many other factors some of which are discussed in this section.

6.1 Effect of Resistivity Striations on Dark Current
A large number of the silicon diode array camera tubes fabricated

to date have exhibited a phenomenon called "coring." Coring manifests
itself as a modulation of the dark current pattern as illustrated in
Fig. 24. The photographs in the figure are of the video display of the
dark current pattern of a diode array camera tube at different target
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Fig. 24 - Photographs of the video display of the dark current pattern of a
camera tube which exhibits "coring": (a) VT = 4 volts, (b) VT = 6 volts, (c)
VT = 8 volts, (d) VT = 12 volts.

voltages. The modulation introduced by the coring pattern is seen
to be a strong function of the target voltage; its maximum amplitude
can be as high as 40 per cent. The spatial wavelength of the coring
pattern is typically of order 500/1. The term modulation as used here
means the ratio of the peak -to -peak modulation of the dark current,
introduced by the coring, to the average dark current.

One possible cause of the coring, consistent with experimental re-
sults, is resistivity striations produced in the silicon substrate during
crystal growth. The standard methods used for growing silicon crystals
would result in circular striations.2° In addition, a silicon crystal in
which resistivity striations had been purposely introduced yielded
targets which exhibited coring patterns that corresponded to the
resistivity striations. A variation in resistivity of approximately 25
per cent yielded coring patterns with a modulation of approximately
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VII. CONCLUSION

The preliminary results reported in this paper indicate the silicon
diode array camera tube has improved lag and spectral response and
comparable resolution capabilities when compared with commercially
available vidicons. In addition, the unity gamma of a diode array
camera would be a significant advantage for color television cameras.

Two of the outstanding features of the silicon diode array camera
are its wide spctral response (0.4 to 1.0µ) and its high effective quan-
tum yield (approximately 50 percent). For fluorescent illumination
these provide a sensitivity of approximately 1.3 µamp per ft-cd of
faceplate illumination with an image sensing area of 1.8 sq-cm.

The expected operating life of a silicon diode array camera should
exceed that a vidicon for at least two reasons. First, the image sens-
ing target is not damaged by intense light images (for example, the
noonday sun has been imaged with a F:1.5 lens on the silicon target
without damage) Second, the completely assembled tube can be vac-
uum baked at 400°C provided an appropriate resistive film is used.
This vacuum bake should provide a longer cathode life.

Typical video performance of a diode array tube is illustrated by
Figs. 30, 31, and 32. These photographs were obtained from a 525 -line
monitor when the image of a black and white transparency was
focused onto the camera. The photograph in Fig. 32 was obtained by
reducing the size of the raster on the diode array so that only a small
portion of the array was scanned. This electronic zooming permits
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the individual diodes to be observed for detailed study. For example,
the one very bright spot or white defect on the number 300 results
from a single defective diode. The two bright spots on the extreme
left represent two defective diodes separated by a good diode. For
this photograph the optical magnification was adjusted so that the
black and white wedge pattern created 300 cycles per inch at the
center of the display. Since the diodes are located on 20p, centers, only
two diodes are fully illuminated by a white bar near the numeral 300.

While the bright defects depicted in the photographs of Figs. 30 to
32 impair the image quality and would in some instances prevent this
tube from being used, the small size and number of defects would be

Fig. 30 -A video display obtained with a typical silicon diode array camera
tube. The subject was a black and white transparency.
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array camera tube.

acceptable in a number of applications. Although most of the arrays
fabricated to date have exhibited bright defects, considerable progress
has been made in reducing their number; improved technology should
permit fabrication of defect -free arrays with moderately good yield.
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Fig. 32 - The video display of a small portion of the resolution chart shown
in Fig. 30 obtained by electronically zooming the diode array camera. The
white spots or defects correspond to diodes with a high value of reverse bias
leakage current.
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Television Transmission of Holograms
With Reduced Resolution Requirements

on the Camera Tube

By C. B. BURCKHARDT and L. H. ENLOE
(Manuscript received November 21, 1968)

This paper proposes a technique for the television transmission of a
hologram of a two-dimensional transparency. The spatial resolution re-
quired on the camera tube is reduced by a factor of four compared with the
transmission of a conventional off -axis reference beam hologram. The
resolution required is therefore no higher than that required for the direct
transmission of the transparency itself. Implementation of the proposed
arrangement should be easy. Three holograms formed with an on -axis
reference beam are transmitted. The phase of the reference beam assumes
the values 0°, 120°, and 240° for the first, second, and third hologram,
respectively. The carrier -frequency hologram is "synthesized" from these
three on -axis holograms at the receiver. The technique has the further
advantage that the undesirable zero -order terms are eliminated.

Holograms of two-dimensional transparencies have been transmitted
via television.' The hologram is first formed on the face of the camera
tube with an off -axis reference beam and is then transmitted. The
main difficulty with this scheme is the high spatial resolution re-
quirement for the camera tube. If the object wavefront has spatial
frequencies between -W and +W, then the spatial frequencies of the
unwanted zero -order terms extend from -2W to 2W. The spatial
frequency of the reference beam therefore has to be at least 3W; the
highest spatial frequency to be resolved by the camera tube is 4W.
(The conditions mentioned, and further discussed in Ref. 2, are well
known.) This is higher by a factor of 4 than the highest spatial
frequency of the original two-dimensional transparency which is
unfortunate because television camera tubes are of rather limited
resolution.

Two scanning schemes have recently been proposed which reduce

1529
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the resolution requirement for the camera tube by a factor of 2 and 4.3
It is the purpose of this paper to point out that a reduction by a factor
of 4 can also be achieved by the adaption of a scheme described by
Burckhardt and Doherty.4 The idea to be described should be easier
to implement than the heterodyne scanners proposed in Ref. 3 and
has the advantage that it allows the use of charge storage camera
tubes. Since a factor of 4 is saved in resolution requirement, the
resolution of the camera tube has to be no higher than that required
for the direct transmission of the original transparency.

Figure 1 shows the adaption of the idea of Reference 4 to hologram
transmission via television. The hologram is formed with an on -axis
reference beam on the camera tube. This hologram is scanned and
transmitted; at the receiver, the received electrical signal is multiplied
by a cosinusoidal signal and displayed on a kinescope. The phase
plate at the transmitter is then switched electro-optically to give a
phase shift of 120° in the reference beam; correspondingly the
cosinusoidal signal at the receiver is shifted by 120° in temporal phase.
The hologram is again scanned, transmitted, multiplied by the cosinu-
soidal signal, and displayed. This procedure is repeated once more. It
will now be shown that the intensities of the three scans add up to give
a carrier frequency hologram on the kinescope.

Let the complex -valued amplitude of the subject wavefront be
called A and the real -valued amplitude of the reference beam be
called B. For the intensity Ii on the camera tube during the first
scan we then have

= (A B)(A* B) = AA* ± .132 + AB + A*B. (1)

TRANSPARENCY

ILLUMINATING
BEAM

PHASE
PLATE

BEAM
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---
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PHASE
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Fig. 1- Hologram transmission via television, with reduced resolution re-
quirement on the camera tube.
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Suppose now that the transmitter is linear and that the voltage U,
arriving at the receiver is proportional to /1,

U, = KiI (2)

where K, is the constant of proportionality. The voltage U, is now
multiplied by a cosinusoidal signal to give the voltage (if ,

IP, = U1 cos wt = K, I, cos wt

= K, cos wt(AA* + B2 + AB + A*B). (3)

We now assume that the display is also linear and that the intensity
/K, on the kinescope is given by

1 K1 = Ko . (4)

The constant bias term K. is necessary because Uf assumes both posi-
tive and negative values. The term K2 is a constant of proportionality.
Combining equations (3) and (4) we obtain for the intensity 1Ki on
the kinescope

/1,1 = Ko KiK2 cos co,x(AA* + B2 + AB + A*B). (5)

The term w is the spatial frequency which corresponds to the temporal
frequency w in equation (3).

During the second scan the total amplitude on the camera tube is
A + B exp (j2r/3) because the phase of the reference beam is now
shifted by 120°. The intensity /2 therefore is

12 = [A + B exp (j2r/3)]  [A* B exp (-j2r/3)]
(6)

= AA* + B2 + AB exp (-j2r/3) + A*B exp (j2r/3).

We now multiply the voltage arriving at the receiver by cos (cot + 27r/3)
and obtain for the intensity 1K2 on the kinescope

1 K2 = K0 + KiK2/2 cos (cosX + 2r/3)

= Ko ilf1lC212[exp (jceix j27r/3) exp (-iwsx - i2r/3)]

= Ko 2K1K2[exP (icosx j2ir/3) exp (-icosx - j27r/3)]

[AA* + B2 + AB exp (- j2r/3) A*B exp (j27/3)]. (7)

The intensity 'KS on the kinescope during the third scan is obtained in
an analogous way. For the total intensity IKtot we then obtain
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I/Ctot IK1 1K2  -T/C3

2

= 3K0 IK1K2 E [exp (?wax jn2r/3)
n-0 (8)

exp (- jwsx - jn27/3)1

 [AA* B2 AB exp (-fran-/3) A*B exp (jn27/3)])

= 31C0 (1)ABK1K2 exp (ico.x) (i)A*BK1K2 exp (- jw,x).

The last two terms of this expression are the real and virtual image
terms modulated onto different spatial carriers. Notice that the un-
desirable zero -order terms do not occur in equation (8). This is because
we multiplied the voltage arriving at the receiver with a bipolar elec-
trical signal. If the subject wavefront at the camera tube has spatial
frequencies extending from -W to TV, the spatial carrier frequency
at the kinescope can be chosen as TV. The positive spatial frequencies
of the kinescope display then extend from 0 to 2W. (Since the in-
tensity on the kinescope is a real function, a knowledge of the positive
frequencies is sufficient.)

Some bandwidth considerations are appropriate. If the positive

transparency extend from 0 to W, the hologram displayed at the
receiver has a bandwidth of 2W. This increase by a factor of 2 occurs
because the hologram contains information about amplitude and
phase. The system just described transmits three holograms, each
with a bandwidth W. This is equivalent to transmitting one hologram
with a bandwidth 3W. The minimum bandwidth of an off -axis holo-
gram is 4W; therefore, our scheme requires less bandwidth than trans-
mitting an off -axis hologram. Since the bandwidth of the hologram
on the kinescope is 2W, the amount of information to be transmitted
in our scheme is still higher by a factor 3/2 than what it necessarily
has to be. The scheme described in Section IV of Ref. 3 only transmits
a hologram of bandwidth 2W therefore avoiding this increase.

In our discussion we have used three subholograms and phase shifts
of 120°. In the Appendix we derive the general equations and show
that three subholograms is the minimum required number.

It might be mentioned that our scheme can be modified such that
it only transmits one hologram of bandwidth 2W. In this case all the
processing is done at the transmitter and the final hologram of band-
width 2W is transmitted. A scheme for doing this is shown in Fig. 2.
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Fig. 2 - Modification of the arrangement of Fig. 1 to reduce the amount of
information to be transmitted by one third.

The voltage from the scan is multiplied by the sinusoidal signal and
then stored in a tapped delay line. The delay line delays the first
scan by the time needed for two scans and the second scan by one
scanning time. The gate opens during the third scan. The channel is
only used during one third of the time. In order that anything be
gained the channel has, of course, to be used for something else
during the remaining two thirds of the time. Alternatively, the
output of the gate can be stored in a buffer memory (for example,
magnetic tape) and transmitted at a slower rate. It is seen that the
scheme of Fig. 2 is quite a bit more complex than the scheme of Fig. 1.

APPENDIX

General equations

Here we present the general equations which must be satisfied for
the N subhologram case and show that the least number required
is N = 3.

The general expression for the spatially varying part of the intensity
on the kinescope corresponding to equation (8) is

N-1

Itot = Re E ± AA* + A exp (-A)
ri()

-I- A* exp (A)} exp (jcoix j-yn)]

N-1

= Re E [{ [1 + A A*] exp (j77,) + A exp (j77, - jon)
11..0

+ A* exp (iyn + A) exp (ico,x)]

(9)
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where fly, is the relative phase -shift of the plane -wave reference beam;
co, and 77, are the spatial frequency and phase of the grating produced by
the electrical carrier introduced at the receiver. In order to simplify
expressions, we have equated the multiplying factors K, , K2 and the
magnitude of the reference beam to unity. Notice that the quantity
within the { } braces in the second equation of (9) represents the beam
which would be diffracted at the angle w, when a hologram is recon-
structed. This term is the coefficient of exp (jcoax). We desire to super-
impose N exposures, each having the form of Eq. (9), to accomplish
the following:

(i) Force the complex coefficient of 1 + AA* to zero. This prevents
components from the direct beam, during reconstruction, from being
diffracted at angle co, .

(ii) Force the complex coefficient of A* to zero. This prevents com-
ponents of the conjugate wave from being diffracted at co, .

(iii) Force the complex coefficient of A to some nonzero value. This
reconstructs the desired object wavefront at angle co, .

In order to control these 3 complex coefficients, we need a minimum
of 6 independent variables to adjust.f Each exposure of the form
equation (9) has 2 variables to adjust, fl and yn. Thus, we need a
minimum of 3 subholograms.

The equations which must be satisfied are

N-i
E exp (j7) = 0
n-0

N-
E exp (j-yn - ji3n) 0 0
.-0
N-i
E exp (h. + ffin) = 0,
.-0

where N = 3 is the minimum value. Equation (10a)
if for the 71,'s we simply pick the N roots of exp (j9)
well-known theorem of De Moivre, that is,

0 + 271-n'Y.N-

(10a)

(10b)

(10c)

can be satisfied
according to the

f There is always a possibility that the equations for these three complex co-
efficients are not themselves independent, and that as a consequence only four
independent variables are required to control them. In order to rule out this case,
we let N = 2 in equations (10) and define sn = exp (jT.) and z = exp (A).
Equations (10) then reduce to so = -si, so*(zo - z1) 0 and so(zo - z1) = 0. We
see that these equations cannot be satisfied simultaneously.
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where n = 0, 1, 2, . . . N - 1. If we then set 13,, = yn, equations (10b)
and (10c) are then automatically satisfied.

As an example, for the minimum number of subholograms N = 3,
we may pick 0 = 0 without loss of generality since the absolute phase
of the reference beam is unimportant. Then we have from De Moivre's
theorem yo = /30 = 0, yi = = 2/0, = /32 = 4/r/3. Thus, for
three subholograms we shift the reference beam and grating producing
electrical carrier phase by 120°
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A Sliding -Scale Direct -Feedback
PCM Coder for Television

By EARL F. BROWN
(Manuscript received December 19, 1968)

A sliding -scale coder for television signals was built which extends the
range of the quantizing scale by processing the input signal twice when
the input signal exceeds a prescribed threshold. On the second pass the
quantizing range is effectively moved outward to reduce the errors in coding
large signals. Double processing nearly triples the number of quantizing
levels of a basic three -bit coder. Measurements of the number of extra bits
required, that is, those in excess of three -bits per sample show that they
may be accomodated on a three -bit per sample transmission channel by
reducing the sampling rate five percent. The experimental coder generates
19 quantizing levels. Its performance approaches that of a seven -bit pulse
code modulation coder. Busyness or streaking, common to most three -bit
differential type coders, is eliminated. Acceptable pictures are reproduced
with ±5 dB changes in the input signal's range. Over this range the signal-
to-noise ratio of the reproduced pictures varies from 47 dB to 54 dB and
the rise -time of a regenerated step -signal varies from 1 microsecond to 1.45
microsecond when the input signals rise -time is limited to 1 microsecond.

I. INTRODUCTION

Differential, direct -feedback, and delta -modulation pulse code mod-
ulation systems take advantage of the television viewer's tolerance to
brightness errors, especially in high detail areas of the picture.1-5*
Analog signals must be quantized into a finite number of levels for
conversion to digital signals. This quantization introduces errors in
the reconstructed picture. These errors are lumped together under the
name of quantizing noise which for differential pulse code modulation
(PCM) systems is a function of the quantizer step size(s), the sam-
pling rate, channel capacity, and filter characteristics. Quantizing
noise may be classified into six visually subjective catagories: granular

* This family of coders are hereafter referred to as differential coders.
1537
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noise, streaking, contouring, slope -overload, edge -busyness, and edge -
stepping.

Granular noise is a high frequency noise, caused by individual sam-
ple errors, whose visibility is increased by amplitude differences from
frame to frame. Contouring produces brightness steps in flat regions
of the picture. Both of these defects may be decreased with proper
filtering and decreasing the smaller step sizes. A reduction in contour-
ing is usually made at the expense of increased granular noise.

Streaking results from mistracking between the coder and the de-
coder. The length is determined by the decoder's time constant.

Slope -overload, edge -busyness, and edge -stepping occur at large
brightness boundaries which are not parallel to the scanning lines.
These defects become increasingly visible as the brightness boundaries
approach the vertical. Slope -overload appears as a smearing effect.
This may be reduced by increasing the step size for large difference
signals at the expense of increasing edge -busyness and edge -stepping.
Edge -busyness appears as relatively large brightness errors jumping
back and forth along the scanning line. This defect results from large
errors at brightness boundaries whose jitter is increased with frame -
to -frame amplitude differences and when the sweep rates are not
locked to the digital processing rates. Edge -stepping appears as dis-
continuities in brightness boundaries because of amplitude differences
along the continuum. This defect appears to crawl up and down the
boundary when the sweep rates are not locked to the digital processing
rates.

Some or all of these defects may be reduced, if not eliminated,
through one or more of the following procedures:

(i) Companding the signal,
(ii) Increasing the number of levels and length of PCM words, and
(iii) Increasing the sampling and bit rate.
When the bandwidth and bit rate are fixed, more sophisticated tech-

niques are required such as:
(i) Optimizing sampling rate or coder processing rate as a function

of spatial frequency,
(ii) Adding levels as a function of slope amplitude.
(iii) Efficiently using time slots such as redundant signal areas and

blanking periods.
Two types of sliding -scale differential coders were simulated on a

computer.° The excellent results obtained in the simulation encouraged
the building of a real-time sliding -scale coder.
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The real-time sliding -scale coder was designed to process the input
signal twice and introduce additional levels when the input signal ex-
ceeded a threshold. Double processing can increase the number of
effective levels in a three -bit system to 22 at a moderate increase in
circuit complexity. The additional information may be handled by
reducing the sampling rate; or the additional information could be
transmitted during the blanking period or in place of redundant signal
components.

The experimental coder was 'limited to 19 levels. Its performance
approached that of a 7 -bit straight PCM coder. Slope -overload, edge -
stepping, and granular noise were minimized. Edge -stepping was just
perceptible when the sweep rates and the digital processing rates were
unlocked. Edge -busyness and contouring were eliminated. Input signals
varying over a ±5 dB range produced acceptable pictures. At midrange
the peak -to -peak signal to root mean square noise was 50 dB; and with
a 75 percent change in signal level, the rise -time increased from 1 to
1.15 As. Over the input signal operating range of ±5 dB, a signal-to-
noise ratio of 54 to 47 dB was obtained. Over the same operating range,
and with a 75 percent change in signal level occurring in 1µs, the rise -
time of the output signal varied from 1 to 1.45 As.

II. DIRECT -FEEDBACK CODING

The sliding -scale coder was built around a direct -feedback coder
configuration. Briefly, direct -feedback coders function the same as
DP CM coders, but the circuit is arranged to allow greater flexibility of
filter design. Figure 1 is a schematic diagram of a direct -feedback
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Hi A ANALOG -TO -INPUT OUT

DIFFEREN- ACCUMU- DIGITAL
T I AT OR LATOR CONVERTER

DIGITS
IN

D IG I TAL-TO -
ANALOG

CONVERTER
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H2
INT EGRATOR

ANALOG
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Fig. 1- Block diagram of a direct -feedback PCM coder,
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Fig. 2 - Filter characteristics of a direct -feedback Pcm coder.

coder, and Fig. 2 shows typical filter characteristics. For television
signals the preemphasis filter H1 is a differentiating filter. The de -
emphasis filter H2 is a short time integrator, approximately the in-
verse of H1. The accumulator filter A in the feedback loop has a long
time constant.

The feedback acts like a servomechanism trying to make the aver-
age value of the quantized signal, y, equal to the pre -emphasized in-
put signal, x. The difference between x and y is accumulated in A
and used to correct the quantized output.

Figure 3 shows a typical 8 -level companded quantizer scale. The
quantizer is tailored to the observer's perception ; that is, fine quantum
steps are used for small signal errors and coarse steps for large error
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signals. Optimally designed companded quantizers adhere to Max's
rule for minimum distortion.? Max states that the decision levels must
fall midway between the quantizer levels. In such a quantizer the
error amplitude ranges between plus and minus half a quantum step
over the range of the quantizer.

Even so, minimum distortion quantizers of three bits per sample
or less are subject to considerable noise and are only marginally ac-
ceptable. The sliding -scale coder is an attempt to increase the sub-
jective acceptability of predictive coders.

III. PRINCIPLES OF THE CODER

3.1 Transmitter Coder:
Figure 4a is a block diagram of a sliding -scale direct -feedback

coder. It has the same functional blocks as a direct -feedback coder
except for an AND gate and an elastic store. Assume a three -bit coder
with the quantizer levels shown in Fig. 5. Switches S1 and S2 of Fig. 4a
are closed at time ti. The error signal out of the accumulator at time
ti is quantized and fed back to the accumulator. If the quantizer out-
put stays within the bounds of decision levels +c and -c, the proc-
essing during that sample period is complete and one word describing

///////

//
0

INPUT

Fig. 3 - Typical eight -level companded quantizer scale.
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Fig. 4 -A sliding -scale direct -feedback PCM coder.

the error signal is generated. If decision levels +d or -d are gener-
ated they are also fed back to the accumulator; they reduce its error
signal. In addition, levels +d and -d are used to open the AND gate.
A pulse then passes through the AND gate at time t2 closing switch
S2 during the same sample period. In so doing, the output of the ac-
cumulator, already coarsely corrected by level +d or -d, has a fine
correction applied to it during the sample period.

When levels +d or -d are generated, two words are produced in
one sample period. To facilitate a uniform transmission rate the words
are fed into an elastic store which feeds the transmission channel at
a constant rate. The sampling rate may be reduced by an amount pro-
portionate to the number of additional words so as not to exceed the
channel bit rate capacity. When the sampling rate is reduced, the cut-
off frequency of the low-pass filter must be reduced proportionately so
as to reduce the effects of foldover (aliasing) and granular noise.

3.2 Receiver Decoder
Figure 4b is a functional block diagram of the receiver decoder.
The output of the receiver elastic store is applied to the digital -to -

analog converter. When a +d or -d level is detected by the digital -to -
analog converter, a second word is taken out of the elastic store during
that sampling period. The output of the decoder after integration by
filter 112 is a replica of the input analog signal at the transmitter.
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3.3 Quantizer Levels
The technique of double processing the error signal may be

thought of as one operation in which the quantizing scale's midpoint
may occupy one of three positions: centered around zero, +d, or -d.
Thus the midpoint of the quantizer scale slides up and down the
scale as a function of the amplitude of the accumulator's error signal.
For an 8 -level quantizer six levels are available when the midpoint of
the scale is centered around zero and 8 each when centered around
level +d or -d as illustrated in Fig. 5b. For a three -bit coder operat-
ing in this mode, 22 levels are available during one sample interval
if level +d,-d is counted twice. Although the quantizing scale of
Fig. 5b is not optimized, it is adequate for most television applications.
The effectiveness of all 22 available levels may be increased by addi-
tional companding of the error signal, approximately the inverse of
the initial companding, on the second pass.

- (+d+d)

- (+d +c)

- (+d + b)
+d ±d---- (+d+a)- (+ d- a)

- (+d - b)

- (+d -c)
+C +C

+b +b
+a (-d+d)(+d-d)----1-a
-b - d

-c
- (-d+c)

- (-d+b)
d d----(-d+a)- (- d -a)

(a) ----(-d-c)

- (-d-d)

(b)

Fig. 5-Quantizing scales: (a) an eight -level companded quantizing scale;
(b) typical levels of a sliding -scale coder derived from the eight -level quantizing
scale.



1544 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1969

A general expression for the number of effective quantizer levels
in a sliding -scale coder is

QL = (21' - K) (K2m) (1)

where 2n is the number of levels the quantizer can generate, K is the
number of levels which causes a double processing, and 2'n is the num-
ber of levels used when the midpoint of the quantizer scale is shifted
from zero and where m usually equals n.

IV. EXPERIMENTAL SLIDING -SCALE CODER

Figure 6 is a block diagram of the experimental coder. This is a
direct -feedback coder with the sliding -scale features added to it. This
arrangement of the sliding -scale coder was used to increase its ex-
perimental versatility. The elastic stores were omitted since they do
not directly relate to the quality of the picture if they have suf-
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Fig. 6- Experimental sliding -scale direct -feedback PCM coder.
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ficient capacity. The design procedure of Brainard and Candy was
followed for the direct -feedback coder.3

Two feedback paths were used, one for coarse and one for fine
quantized levels. Several switches were used to control the timing
of the operations. Each switch was closed for 50 ns with a 50 ns
space between successive operations so that all operations were com-
pleted in the sampling period of 0.5 its.

The companded quantizing scale for the experimental coder is shown
in Fig. 7. The fine quantizer was designed with seven levels. Level a
was set at zero volts. The five inner levels a, ±b, and ±c satisfied
Max's first rule for minimum distortion. The two outer levels, +d
and -d, of the fine quantizer were assigned the same code words as
the two coarse quantizer levels, +d' and -d'. (Notice that in Section
III levels +d and - d, and +d' and - d', respectively, have the same
value).

The decision levels for +d and -d were set slightly higher than the
decision levels for +d' and -d'. Thus code words for levels ±d' will
always preceed the code words for levels mod. This permits the receiver
to identify and assign the correct level to the d words. Although the
optimum quantizing scale was not determined, some information in
this direction was obtained. The coder was not sensitive to changes in
the fine quantizing scale when the +d and -d levels did not exceed
ten percent of the peak input signal. The coarse levels +d' and -d'
prefer to be slightly more than twice the value of +d and -d.

Examination of the quantizing scale, Fig. 7, shows that the 19 levels
are not efficiently used. For instance, levels +d' ±b and -d' ±b pro-
duce substantially the same results as the ±d' +a level with signal
changes of this magnitude. Therefore, the effective number of levels
is more like 15 instead of 19. Since excellent results were obtained with
the fifteen "effective" levels the techniques which would permit the
effective use of all 19 levels were not tried.

V. LARGE SIGNAL CHANGES

5.1 Frequency of Occurrence

The frequency of occurrence of the two outer levels, ±d', was meas-
ured for the two still pictures shown in Figs. 8a and c. The results are
listed in Table I for three levels of input signal. Picture A refers to the
picture shown in Fig. 8a and Picture C to the picture shown in Fig. 8c.
The position of levels ±d' for picture A is shown in Fig. 9 for three
levels of input signal.
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Fig. 7- Companded quantizing scale of the experimental sliding -scale direct -
feedback PCM coder.

5.2 Capacity of Elastic Store
The data of Table I provide a measure of the size of the elastic

store that is required. Assuming that the average proportion of large
changes per picture is the same as the average proportion for each
line, an elastic store with a capacity of ten percent of the bits per
line would be adequate to handle the three signal levels listed in Table

TABLE I-FREQUENCY OF OCCURRENCE OF LEVELS ±d' IN

PERCENT OF TOTAL CHANGES FOR THREE INPUT

SIGNAL LEVELS

Change in
signal level

Picture A Picture C

-d' +di Total -d' +d' Total

+5 dB 4.6 4.7 9.3 5.8 4.7 10.5

0 dB 1.1 1.2 2.3 1.6 1.8 3.4

-5 dB 0.4 0.6 1.0 0.4 0.4 0.8
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Fig. 8 - Photographs of television pictures bandlimited to 1.0 MHz: (a) high
detail picture without coding, (b) high detail coded picture with optimum input
signal level, (c) low detail picture without coding, and (d) low detail coded pic-
ture with optimum input signal level. (The scan lines and printing screen in Figs.
8 through 11 cause moire patterns that are not in the originals.)

I. If the average number of large changes per line exceeds ten per-
cent, the coder degrades to an eight -level coder. This "graceful"
degradation occurs at the edge of the picture which in most cases
will not be noticed.

VI. EVALUATION OF CODER

6.1 Coder Environment
The signal source was a television system consisting of a 275 line,

2:1 line interlaced picture, displaying 30 frames per second. The tele-
vision signal was bandlimited to 1 MHz and sampled at a 2 MHz rate.
The transmission bit rate was 6 MHz with 3 -bits per sample. The pic-
ture display was 51 inches by 5 inches and was viewed from 31
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Fig. 9 - Television pictures showing where ±d' occurred for input signal
level changes of -5dB, 0dB (optimum input level), and +5dB.

feet. The peak luminance was 70 foot lamberts and the room illumina-
tion was 100 foot candles.

6.2 Picture Material

Two types of still pictures (see Fig. 8) were used for the subjective
evaluation; one with great detail and one with little detail. Evalua-
tions were obtained for input signals which varied over a ±5 dB range.
Figs. Sa and c show the uncoded pictures passed through the same
low-pass filters as the coded pictures. Figs. 813 and d show coded
pictures at the optimum input signal level. Fig. 10 shows the detailed
picture with a -5 dB(a) and a +5 dB(b) change in input signal.

Photographs should be used with care in evaluating television pres-
entations. Long exposures of photographs, compared with television
frame time, will integrate noise and motion defects out of television
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pictures. The photographs of Fig. 8 may be compared except for the
granular noise defects which appeared in Figs. 8b and c. The granular
signal-to-noise ratio of these two pictures was 50 dB. Fig. 10a shows
some of the effects of granular noise that appeared in the television
picture. For this picture the input signal was reduced 5 dB from the
reference level and had a granular signal-to-noise ratio of 47 dB.
Fig. 10b illustrates slope -overload defects which occurred when the
input signal was increased by 5 dB from the reference value. This
defect is most apparent in the young woman's blouse. The granular
signal-to-noise ratio in this case was 54 dB.

6.3 Evaluation
Evaluation of the coder using live subjects indicated that the defects

listed in this section were more severe for the two still subjects.
Therefore only the still subjects were used in the evaluation.

The six types of noise associated with differential type PCM coders
were evaluated. The six types of noise are: granular noise, streaking,
contouring, slope -overload, edge -busyness, and edge -stepping. These
were evaluated subjectively by the author, except for slope -overload.
The subjective evaluation was conducted on pictures when the sweep
rates were locked to the digital processing rates and when they were
not.

Contouring, edge -busyness, and streaking were not perceptible in
either picture whether or not the sweep rates and the digital processing
rates were locked. However, when the ratios between the outer levels,

Fig. 10 - Detailed coded picture at two input signal levels: (a) decrease of
5 dB from optimum; (b) increase of 5 dB from optimum.
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+d' and -d', and the inner levels were different between the trans-
mitter and receiver, streaking did occur. The threshold for streaking
permitted a difference in ratios of ±4 percent. Worst case transmission
errors which occur in the d' and - d' words produce an error signal
which decays exponentially to zero in 6 is and appears as a streak
about 0.05 inches long on the picture. The photographs in Fig. 11
show the effect of an error locked to the line rate in a -d' and a +d'
word.

Edge -stepping was not perceptible when the sweep rates and the
digital processing rates were locked. When they were unlocked, edge -
stepping was just perceptible at large brightness boundaries.

Slope -overload was measured objectively. A slide which provided a
75 percent white to black transition along the scanning lines was placed
in front of the camera. An oscilloscope was used to measure the transi-
tion time from white to black for several input levels at the input to
the monitor. The results are shown in Fig. 12 and a typical waveform
shown in Fig. 13. The rise -time varied from 1.0 to 1.45 tts over a 12.5
dB range of input signals, where the input signal was limited to a rise -
time of 1.0 ps. At the optimum input signal level (0 dB), the rise -time
increased to 1.15 pS. There was no measurable difference in the slope
response when the sweep rates and the digital processing rates were
unlocked.

Granular noise was measured subjectively by comparing the coded
picture with an uncoded picture to which gaussian noise had been
added. The granular noise resulting from coding was a high frequency

Fig. 11- Effect of transmitting erroneous ±d' word when the erroneous
word is locked to the scanning rates: (a) -d' error, (d) +d' error.
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Fig. 12 - Measurements of signal-to-noise ratio and slope -overload as a func-
tion of input signal level for the sliding -scale coder.

noise occurring at or near the sampling rate. Since the gaussian noise
occupied the full band, some subjective weighting was necessary. The
uncoded picture with added noise was passed through the same low-
pass filters as the coded picture. The two pictures with equalized con-
trast were alternately switched onto the monitor and the added noise
adjusted until they were judged subjectively equal. The signal-to-
noise was measured in terms of peak -to -peak signal to root mean
square noise on the uncoded picture with added noise. The results are
shown in Fig. 12. The equivalent signal-to-noise of the two test pic-
tures was substantially the same, ranging from 47 dB to 54 dB over an
input signal range of 10 dB. With the input signal level optimized
(0 dB) the equivalent signal-to-noise was 50 dB. The signal-to-noise
of a companded 3 -bit differential pulse code modulation coder, using
the same measuring technique, was 45 dB. When the picture sweep
rates and the digital processig rates were unlocked, the signal-to-noise
was decreased by 3 dB. This decrease in signal-to-noise is caused by
sampling position differences from frame to frame at the smaller
brightness boundaries.

VII. CONCLUSIONS

This experiment, with the sliding -scale coder, demonstrated that
15 "effective" levels are sufficient to produce a high quality television
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(a)

(b)

-1 t

Fig.. 13 - Waveform response to a 75 percent change in brightness level when
bandhmited to 1.0 MHz: (a) analog response; (b) response of sliding -scale coder.

picture with a small increase in circuit cost and complexity. The
increase in circuit cost and complexity is offset by the double process-
ing technique which reduces the requirements on the number of
threshold and quantizing circuits.

The most significant improvement offered by the sliding -scale coder
is in the rendition of the subjectively critical large brightness changes.
The coder performance approaches that of a seven -bit PCM system.

A reduction in the sampling rate of about five percent permits the
sliding -scale coder to nearly triple the number of quantizer levels
without an increase in channel bit rate.
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