
THE BELL SYSTEM

TECHNICAL JOURNAL
DEVOTED TO THE SCIENTIFIC AND ENGINEERING

ASPECTS OF ELECTRICAL COMMUNICATION

Volume 48 November 19P9 Number 9

Copyright Q 1969, American Telephone and Telegraph Company

Coupled Wave Theory for Thick
Hologram Gratings

By HERWIG KOGELNIK
(Manuscript received May 23, 1969)

A coupled wave analysis is given of the Bragg diffraction of light by
thick hologram gratings, which is analogous to Phariseau's treatment of
acoustic gratings and to the "dynamical" theory of X-ray diffraction. The
theory remains valid for large diffraction efficiencies where the incident
wave is strongly depleted. It is applied to transmission holograms and to
reflection holograms. Spatial modulations of both the refractive index and
the absorption constant are allowed for. The effects of loss in the grating and
of slanted fringes are also considered. Algebraic formulas and their nu-
merical evaluations are given for the diffraction efficiencies and the angular
and wavelength sensitivities of the various hologram types.

I. INTRODUCTION

Holographic recording in thick media ("volume recording") is of
particular interest for high -capacity information storage,1' for color
holography' and for efficient white -light display of holograms.5-9 The
high efficiency of light conversion which is attainable with thick di-
electric holograms is also important for microimaging, and it may make
it practical to use holographic optical components (for example, gratings
or fly's eye lenses) in a variety of optical systems.

In thick holograms it is light diffraction at or near the Bragg angle
2909
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which leads to efficient wavefront reconstruction. This is true for both
transmission and reflection holograms, and both types are considered
in this paper. The (volume) record of the holographic interference
pattern (fringe pattern) usually takes the form of a spatial modulation
of the absorption constant or the refractive index of the medium, or
both. Modulations of the absorption constant are produced in con-
ventional photographic emulsions and in photochromics, while newer
materials, like dichromated gelatin10,11 lithium niobate," or photo -
polymer materials' yield modulations of the refractive index.

This paper considers the properties of all these types of thick (or
"deep") holograms. Of particular interest is their efficiency of convert-
ing light into the useful reconstructed wave (diffraction efficiency) and
the angular dependence of this diffraction efficiency as the incident
light deviates from the Bragg angle. We are also interested in the wave-
length dependence and in the way the diffraction properties are changed
in the presence of loss or a slant of the fringe pattern with respect to
the surface of the recording medium.

Leith and his associates, and Gabor and Stroke have already con-
sidered some of the properties of thick holograms, in particular the
angular and the wavelength dependence of the diffracted light.' Their
theories are essentially linear or perturbational theories which use the
Kirchhoff integral or the first Born approximation with the basic
assumption that the incident light wave is not disturbed by the dif-
fraction process. Their results are valid as long as this assumption is
good. For high diffraction efficiencies (like 90 percent) the incident
wave is strongly depleted and another approach is called for. One such
approach is to use electronic computers to solve the relevant compli-
cated electromagnetic problem accurately. Results of such computations
are available for special cases. Klein, Tipnis, and Hiedemann have com-
puted data for light diffraction by ultrasonic waves,18'17 and Burckhardt
has reported results for dielectric hologram gratings.18,19 The method
of Bathia and Noble' is another approach in which they employed
integral equations to analyze acoustic diffraction of light.

Yet another approach is the use of a coupled wave theory, which is
the subject of this paper. Such a theory can predict the maximum
possible efficiencies of the various hologram types (results which one
cannot hope to obtain from linear theories), and the angular and wave-
length dependence at high diffraction efficiencies. Following Phariseau,"
coupled wave theories have been successfully used in the treatment of
light diffraction by acoustic waves' and by electrooptic gratings"
where very similar diffraction processes are at work as in holography.
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Closely related to the diffraction in thick holograms are also the dif-
fraction of electrons in lattices and the diffraction of X-rays in crystals.
The dynamical theory of X-ray diffraction" is also a theory of coupled
waves and its application to holography has already been suggested.'

We have earlier reported some of the results and an outline of the
coupled wave theory for hologram gratings.26'27 Here we propose to
give further results and a more detailed account of the basic assumptions
and the analysis. We give analytic formulas for the various hologram
types as well as numerical evaluations which include results on the
angular sensitivities and the influence of loss and slant.

For simplicity the analysis is restricted to the holographic record
of sinusoidal fringe patterns which we call hologram gratings. To some
degree a more complicated hologram can be regarded as a multiplicity
of such hologram gratings.

II. COUPLED WAVE ANALYSIS

2.1 Derivation of the Coupled Wave Equations

The coupled wave theory assumes monochromatic light incident on
the hologram grating at or near the Bragg angle and polarized per-
pendicular to the plane of incidence.* Only two significant light waves
are assumed to be present in the grating: the incoming "reference"
wave R and the outgoing "signal" wave S. Only these two waves
obey the Bragg condition at least approximately, the other diffraction
orders violate the Bragg condition strongly and are neglected. They
should be of little influence on the energy interchange between S
and R. The last assumption limits the validity of the coupled wave
theory to thick hologram gratings. Section 6 gives a more detailed
discussion of this limitation.

Figure 1 shows the model of a hologram grating which is used for
our analysis. The z-axis is chosen perpendicular to the surfaces of the
medium, the x-axis in the plane of incidence and parallel to the medium
boundaries and the y-axis perpendicular to the paper. The fringe
planes are oriented perpendicular to the plane of incidence and slanted
with respect to the medium boundaries at an angle 4. The fringes
are shown dotted. The grating vector K is oriented perpendicular to
the fringe planes and is of length K = 2711 A, where A is the period
of the grating. The same average dielectric constant is assumed for
the region inside and outside the grating boundaries. The angle of
incidence measured in the medium is B.

* A generalization to parallel polarization is given in the appendix.
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k d

Fig. 1- Model of a thick hologram grating with slanted fringes. The spatial
modulation of n or a is indicated by the dotted pattern. The grating parameters are:
0-angle of incidence in the medium, K-grating vector (perpendicular to the fringe
planes), A-grating period,-slant angle, and d-grating thickness.

Wave propagation in the grating is described by the scalar wave
equation

v2E + k2E (1)

where E(x, z) is the complex amplitude of the y -component of the
electric field, which is assumed to be independent of y and to oscillate
with an angular frequency w. The propagation constant k(x, z) is

spatially modulated and related to the relative dielectric constant
e(x, z) and the conductivity cr(x, z) of the medium by

k2 =
CO

2

'--
C

e - icolw (2)

where c is the light velocity in free space and il is the permeability
of the medium which we assume to be equal to that of free space.
In our model the constants of the medium are independent of y. The
fringes of the hologram grating are represented by a spatial modulation
of e or 0.:



WAVES IN THICK HOLOGRAMS 2913

E = E0 Ei cos (Kx)

= Up + a, cos (Kx)

where ei and al are the amplitudes of the spatial modulation, eo is

the average dielectric constant and cro the average conductivity. e and
are assumed to be modulated in phase. To simplify the notation

we have used the radius vector x and the grating vector K

sin QS

x= y ; K = K 0 ; K = 27r/A .

z, ,cos

Equations (2) and (3) can be combined in the form

k2= 02 -- 2ja0 243(eiK' e-

(3)

(4)

where we have introduced the average propagation constant and
the average absorption constant a:

= 27r(eQ)4 /X; a = mccro/2(eo)1, (5)

and the coupling constant K was defined as

1 27r
K =

(-x-
ei/ (co) - jiico-1/ (eo)) (6)

This coupling constant describes the coupling between the reference
wave R and the signal wave S. It is the central parameter in the coupled
wave theory. For K = 0 there is no coupling between R and S and,
therefore, there is no diffraction.

Optical media are usually characterized by their refractive index
and their absorption constant. We also find it convenient to use these
parameters if the following conditions are met

271-n/X >> a; 27m/X >> al , n >> n, , (7)

which is true in almost every practical case. Here n is the average
refractive index, and n1 and a1 are the amplitudes of the spatial modula-
tion of the refractive index and the absorption constant, respectively
[compare equation (3)]. A is the wavelength in free space. Under the
above conditions we can write with good accuracy

= 27rn/X (8)
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and for the coupling constant

= - ja1/2. (9)

The spatial modulation indicated by n, or «, forms a grating which
couples the two waves R and S and leads to an exchange of energy
between them. We describe these waves by complex amplitudes R(z)
and S(z) which vary along z as a result of this energy interchange or
because of an energy loss from absorption. The total electric field in
the grating is the superposition of the two waves:

E = R(z)e-i" S(z)e-id'. (10)

The propagation vectors p and d contain the information about the
propagation constants and the directions of propagation of R and S.
0 is assumed to be equal to the propagation vector of the free reference
wave in the absence of coupling. d is forced by the grating and related
to p and the grating vector by

d = p - K (11)

which has the appearance of a conservation of momentum equation.
N and d have been chosen to conform as closely as possible with our
picture of the physical process of the diffraction in the grating. If the
actual phase velocities differ somewhat from the assumed values, then
these differences will appear in the complex amplitudes R(z) and S(z)
as a result of the theory.

Figure 2 shows the vectors of interest and their orientation. The
components of p are pz and pz which are given by

sin 64'

p= 0 = 0 (12)

,13z, ,cos 0,

From this and equation (11) follow the d -components a -z and CI,

a-,
sing- K- sink

d = 0 =13 0

cos 61 --# cos 4

(13)

The vector relation (11) is shown in Fig. 3 together with a circle
of radius /3. The general case is shown in Fig. 3a, where the Bragg
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Fig. 2-9 and d, the propagation vectors of the reference wave R and the signal
wave S, and their relation to the grating vector K. The obliquity factors cR and Cs
are indicated.

condition is not met and the length of d differs from Q. Figure 3b shows
the same diagram for incidence at the Bragg angle 00 . In this special
case the lengths of both, 9 and d are equal to the free propagation
constant and the Bragg condition

cos (4 - 0) = K/213 (14)

is obeyed.
For a fixed wavelength the Bragg condition is violated by angular

(a) (b)

Fig. 3- Vector diagram (conservation of momentum) for (a) near and (b) exact
Bragg incidence,
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deviations AO from the Bragg angle O. . For a fixed angle of incidence a
similar violation takes place for changes AX from the correct wave-
length X0 . We write

0= 00+A0, (15)

and

X = xo

and assume in the following that the deviations 6,0 and AX are small.
Angular changes AO have very similar effects on the behavior of the

grating as wavelength changes AX, and there is a close relation between
the angular sensitivity and the wavelength sensitivity of thick hologram
gratings. We get an idea of this relationship by differentiating the
Bragg condition (14), from which results

d0,,
K / 4irrt sin OA - 00) (16)

dX0

The 0 - X connection shows up in the dephasing measure 6- which
appears in the coupled wave equations and which is defined by

2(Q2 0.2)/2/3 = K cos (ch -0)-4 X (17)

and which has been expressed in this form using equation (13). A Taylor
series expansion of equation (17) yields the following expression for
which is correct to the first order in the deviations AO and AX:

6 = K sin (4) - 00) - AX  K2/47n. (18)

Note that the deviations AO and AX which produce equal dephasing
6 are related by equation (16).

We are now ready to derive the coupled wave equations. We combine
equations (1) and (4), and insert the expressions of (10) and (11).
Then we compare the terms with equal exponentials (e-' e'" and
and arrive at

R" - 2jR' p, - 2jott3R 208 = 0 (19)

and

S" - 2jS'o-, - 2jOS (132 - cr2)3 2OR = 0, (20)

where the primes indicate differentiation with respect to z. The waves
generated in the directions of 0 + K and d - K are neglected, together
with all other higher diffraction orders, In addition we assume that the
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energy interchange between S and R is slow and that energy is absorbed
slowly, if at all. This allows us to neglect R" and 8". We will check
the results of the theory later for a more detailed justification of this
last step. We can now introduce equation (18) and rewrite the above
equations in the form

cRIC aR = - jtcS (21)

cs S' + (a + jv.)S = -jKR. (22)

These are the coupled wave equations which are the basis for our
analysis. The abbreviations c3 and cs stand for the expressions

CR = pi/0 = cos 0
(23)

K
cs = crzig = cos d - - cos 0.

Our physical picture of the diffraction process is reflected in the coupled
wave equations. A wave changes in amplitude along z because of coupling
to the other wave (KR, KS) or absorption (aR, aS). For deviations from
the Bragg condition S is forced out of synchronism with R and the
interaction decreases (CS).

The energy balance of the coupled -wave model is described by the
relation

(cnRR* csSS*)' 2a(RR* SS*) j(K - K*)(RS* -F R*S) = 0

(24)

where the asterisk denotes a complex conjugate. This is easily derived
from equations (21) and (22) by multiplying them with R* and 5*,
respectively, and adding the results together with the complex con-
jugate results. The presence of the obliquity factors c3 and Cs in the
first part of equation (24) indicates that it is the power flow of the
two waves in the z direction that enters the energy balance. In the
absence of ohmic loss this power flow is conserved. The second and the
third part in the equation describe the energy loss resulting from ab-
sorption in the grating. They correspond to the relevant terms of o.EE*.

2.2 Solution of the Coupled Wave Equations

It is straight forward to obtain the general solution of the coupled
wave equations, which is

R(z) = r1 exp (y,z) r2 exp (72z) (25)

S(z) = s1 exp (71z) s2 exp (y,z) (26)
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where the r, and si are constants which depend on the boundary condi-
tions. To determine the constants y; we insert equations (25) and (26)
into the coupled wave equations and obtain

(c/a; + a)ri = - jai (27)

i = 1, 2

(cen + a + Asi = -ficri (28)

After multiplying the equations with each other we get a quadratic
equation for yi

(ciai + a)(cen + a + j6) = -K2, (29)

with the solution

171.2 = - (41" +Ca +C jII)2 cR s s

± 1
2

[(_.F1
cR

_a - 4 K2 il- ---
cs cs cRcs

(30)

At this point we divert briefly from the main derivation, because
now we have the means to check the validity of neglecting R" and
S" in Section 2.1. This step is justified if the conditions R" << rdr,
and S" << 0-.S' are obeyed. In view of equations (25) and (26) this
will happen if yi <<I3. According to equation (30) the above requirement
is met if AO << 1 and if the inequalities of equation (7) are satisfied
(which is usually the case).

Continuing the coupled wave analysis, we have to determine the
constants ri and si . To do this we have to introduce boundary condi-
tions into our model. These are different for transmission holograms
and for reflection holograms. Figure 4 gives an indication of this. For
both hologram types the reference wave R is assumed to start with
unit amplitude at z = 0. It decays as it propagates to the right and
couples energy into S. In transmission holograms the signal S starts
out with zero amplitude at z = 0 and propagates to the right (cs > 0).
In reflection holograms the signal travels to the left (cs < 0) and it
starts with zero amplitude at z = d.

Let us first analyze transmission holograms where cs > 0. Here,
the boundary conditions are

R(0) = 1, S(0) = 0 (31)

as discussed before. If we insert these boundary conditions into equa-
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Fig. 4 - Wave propagation in (a) transmission and (b) reflection holograms.
The reference wave R decays while it propagates to the right. In (a) the signal S
travels to the right and gains with z, while in (b) S travels to the left and gains with
decreasing z. The shading indicates the orientation of the fringes.

tions (25) and (26),it follows immediately that

r1 r2 = 1,
and (32)

S1 + S2 = 0.

Combining these relations with equation (28) we obtain

sl = -jKiesen - 72) (33)

Introducing these constants in equation (26) we arrive at an expres-
sion for the amplitude of the signal wave at the output of the grating

S(d) =
es - 72)

(exp (y,d) - exp (yid)). (34)

This is a general expression, which is valid for all types of thick trans-
mission holograms including the cases of off -Bragg incidence, of lossy
gratings and of slanted fringe planes.

The analysis of reflection holograms follows a pattern similar to the
above. We have cs < 0 and boundary conditions given by

R(0) = 1, S(d) = 0. (35)
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The output plane for the signal wave is, now, at z = 0, and S(0) is
the output amplitude of interest. Inserting the boundary conditions in
equations (25) and (26) yields

r1 r2 = 1
and (36)

exp &1d) + s2 exp (72d) = 0.

To proceed with our derivation we rewrite the above relation for s,
and 82 in the form

si(exP (72d) - exP (Yid)) = (s1 s2) exp ('nd)

s2(exp (72d) - exp (-yid)) = -(81 (ys2) exp ,d).
(37)

Then we sum equation (28) for i = 1 and i = 2 and obtain the relation

-jic(ri r2) = = (s1 s2) (a + 36) es('nsi 'r2s2) (38)

Using the relations (37) to substitute the sum (si s2) for the terms
s1 and s2 in this equation we finally arrive at the result for the amplitude
S(0) of the output signal of a reflection hologram

S(0) = Si = iK/ {a ± + 71 exp (72d) - 'Y2 exp (7,d)
exp (72d) - exp (-yid)

(39)

This is, again, a formula of quite general validity, including off -Bragg
incidence, loss, and slant.

In the following sections we discuss the behavior of transmission and
reflection holograms in greater detail, using the general formulas de-
rived above. In these discussions a parameter of prime interest is the
diffraction efficiency j, which is defined as

I
=

s SS* (40)
ci,

where S is the (complex) amplitude of the output signal for a reference
wave R incident with unit amplitude. n is the fraction of the incident
light power which is diffracted into the signal wave. S is equal to S(d)
for transmission holograms and equal to 2(0) for reflection holograms
in the notation of this section. But for reasons of simplicity we omit
the arguments in the following sections. The obliquity factors CR and
cs appear in the above definition for the same reason they have ap-
peared in the energy balance of equation (24): in the absence of loss
it is the power flow in the z direction which is conserved.
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For slanted gratings another important parameter is the slant factor c
which is defined as the ratio between the obliquity factors

c = cR/cs = - cos 0/cos (00 - 20)

which we have expressed here, for Bragg incidence, in terms of the
angle of incidence 00 and the slant angle Figure 5 indicates lines of
constant c as a function of 00 and ck. For transmission holograms c is
positive (c > 0), and for reflection holograms c is negative (c < 0).
In the diagram transmission and reflection holograms are separated by
the line for c = 00.

III. TRANSMISSION HOLOGRAMS

In this section we discuss transmission holograms in greater detail.
We give algebraic formulas and their numerical evaluations for the
diffraction efficiencies and the angular and wavelength sensitivities of
dielectric and of absorption gratings. This includes results on the
influence of loss and slant.

C = 1

-IT/ 2 0

C = 1

0

0

7r/2

Fig. 5-The slant factor c as a function of the angle of incidence 00 and the slant
angle ¢. c is positive for transmission holograms and negative for reflection holograms.
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It is convenient to write the various diffraction formulas in terms
of parameters V and E, which are redefined for each grating type. In
these parameters are lumped together the constants of the medium
(n, a, n, , a, , K), the obliquity factors (cR , cs), the wavelength, the
grating thickness d, and the dephasing measure 6. By using v and
various trade-offs become immediately apparent.

We recall that, for transmission holograms, cs is positive and the
output signal appears at z = d. Combining equations (30) and (34)
we obtain a general formula for the signal amplitude S of a transmis-
sion grating

S = -0)  exp ( -ad/cR) -sin [v2 - - 2/v2],,
cs

= KdACRes)i, (41)

eR es cs

where K is the coupling constant given in equation (9), t the dephasing
measure of equation (18), cR and cs are the obliquity factors of equa-
tion (23), a is the absorption constant and d the grating thickness.
In the above form the parameters v and are, in general, of complex
value.

3.1 Lossless Dielectric Gratings

For completeness we give the formulas for the lossless dielectric
grating. For the unslanted case of this grating these formulas have
been previously obtained by several workers whose prime interest
was light diffraction by acoustic waves.20.21,28 For this grating type it
is easy to include the effect of slanted fringes.* For the lossless dielectric
grating we have a coupling constant K = irn,/X and a = a, = 0. Equa-
tion (41) can be rewritten in the form

S =
Cs

sin (P2 + 2)i/(1(1 + e/v2)4,

V = rn,d/X(cRc,$)1, (42)

= 6d/2cs

where I) and E have been redefined and are real -valued. The associated
formula for the diffraction efficiency is

* Slant was also included in the treatment of dielectric gratings in Ref. 29.
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= sin2 (v2 t2)i/(12/v2). (43)

For significant deviations from the Bragg condition the parameters
V and E are of equal order of magnitude, and we can take v as independent
of AO or AX without causing an appreciable change in the predictions
of equation (43). In this equation the angular and wavelength deviations
are represented by the parameter t which can be written in the form

= AO. Kd sin (4 - 80)/2cs

= - AX  K2d/87rncs (44)

by using equation (18).
The angular and wavelength sensitivities of lossless dielectric gratings

are shown in Fig. 6, where the efficiencies as given by equation (43)
are plotted (normalized) as a function of t for three values of P. The
figure shows the sensitivity of gratings with v = 7r/4 and a peak diffrac-
tion efficiency of no = 0.5, with v = 7/2 and a peak efficiency of no = 1,
and with v = 37/4 and no = 0.5. We notice that the half -power points
are reached for values near t = 1.5. There is some narrowing in the
sensitivity curves for increasing values of v, and a marked increase in
the side lobe intensity.

0

8

1.0

0.8

0.6

0.

0.2

V ./.7r/ 4 = 37/ 4

41

1 2 3 4 5

Fig. 6 - Transmission holograms-the angular and wavelength sensitivity of
lossless dielectric gratings with the normalized efficiencies n/no as a function of E.
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1.0

0.8

0.6

0.4

0.2

0
-5 -4 -3 -2 -1 0

A e IN DEGREES
2 3 4 5

Fig. 7 - Transmission holograms-the angular sensitivity of a lossy dielectric
grating with v = r/2 and Do = 2 compared with that of a lossless dielectric grating
(Do = 0), for 00 = 30° and fld = 50.

The above formulas include the influence of slant through the obliquity
factors ci, and cs . If there is no slant (4) = r/2) and if the Bragg condi-
tion is obeyed then cR = cs = cos 00 and equation (43) becomes the
well known" '21."

n = sin' (rn1d/X cos 00) (45)

By inserting the above half -power values for t into equation (44) we
obtain simple rules of thumb for the angular and spectral half -power
bandwidths of unslanted gratings: 26,01 A/d, 2& /a cot 0. A/d.

3.2 Lossy Dielectric Gratings

Let us first study the influence of loss on the angular sensitivity
of a dielectric grating. We assume that there is no slant (4 = 7/2)
and therefore cR = cs = cos 0. With this and a coupling constant of
K = irn1/X we obtain from equation (41) for the signal amplitude

S = -j exp (-ad/cos 0) e -it .611 (v2 + E2)4/(1 e/v2)i

v = cos 0 (46)

= 6d/2 cos 0 = iX 0.13d sin 00

where v and t have been redefined, and t has been expressed in the needed
form with the use of equations (14) and (18).

Equation (46) has a form similar to that of equation (42) except
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for an additional exponential term containing the absorption con-
stant a. This term decreases the peak efficiency and it changes the
angular sensitivity of the grating. But this change is very small, even
for high loss values, as illustrated in Fig. 7. This figure compares the
angular sensitivitities of a lossless grating (Do = 0) with that of a
grating of high loss (Do = 2) for a parameter value of v = 7r/2, a Bragg
angle of 00 = 30°, and an optical grating thickness of fid = 2irnd/X = 50.
The loss parameter Do was defined as

Do = ad/cos 00 (47)

which is closely related to the conventional photographic density D
(except that D0 is measured in the direction of the reference wave
given by 00). A value of D0 = 2, which is the parameter used for the
dashed curve, represents very high loss, with a decrease of the peak
efficiency by a factor of about 50. Still, the differences of the two sen-
sitivity curves are very small and consist mostly of an angular shift.
The differences are even smaller for larger values of gd (we checked
up to 13d = 200), and, of course, for smaller values of Do . The main
conclusion is that the presence of loss has very little influence on the
angular sensitivity of a dielectric transmission grating. This is probably
because absorption influences the phase relations between the waves
R and S very little. It agrees with observations by Belvaux."

Next let us consider the influence of loss on the efficiency of a slanted
dielectric grating. For simplicity we assume Bragg incidence, that is,

= 0. The obliquity factors are positive and given by cR = cos 00
and cs = -cos (0 - 20). For this case we can write equation (41)
for the signal amplitude S in the form

S = -j(c)1- exp [-00(1 c)] sin (v2 - Ewa - /),
Cs

v = 71-n,d/X(cRcs) (48)

2Do(1 - c)

where we have used the loss parameter D0 as above in equation (47),
and the slant factor c

D0 = ad/cR = ad/cos 0

c = cR/cs = - cos 00/cos (00 - 20) 

Figure 8 shows the diffraction efficiency of slanted grantings as
calculated from equation (48). The efficiencies are plotted as a function
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0.8

0.6

0.4

0.2

Do = o

0.1

0.2

0.5

1.0

1.5

V = 7/2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2 0

CR/CS

Fig. 8-Transmission holograms-the efficiency of lossy dielectric gratings as a
function of slant for v = 7/2. c = cR/c8 is the slant factor.

of the slant factor c for various values of Do , and for a value of 1, = 7/2
which corresponds to the maximum attainable efficiencies. Similar
curves for v = 7/4 and v = 37/4 and the same Do values are almost
identical to the curves of Fig. 8, except that the efficiency scale is
reduced to a maximum efficiency of 0.5. This implies that for the
range of chosen parameter values the exponential factor in equation
(48) dominates in predicting the slant -dependence of the diffraction
efficiency.

The results show that, for higher efficiencies, the grating prefers
small c -values, assuming constant Oo and Do . This is a preference of
small exist angles for S which means that we get the best efficiency
if the signal wave leaves the grating on the shortest possible path
after it has been generated.

3.3 Unslanted Absorption Gratings

When one records holograms in conventional photographic emul-
sions one produces absorption gratings (bleaching can convert this
into a dielectric grating). In an absorption grating there is no spatial
modulation of the refractive index (n1 = 0) and the coupling is provided
by a modulation (a1) of the absorption constant. We have, then, an
imaginary coupling constant K = jai/2. In this section we study the
efficiencies and the angular and wavelength sensitivities of unslanted
absorption gratings where 4 = w/2 and cR = cs = cos O. From equa-
tion (41) we obtain for the signal amplitude
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S = - exp (-ad/c,)e' sh (V2 - E2)4/(1 - E2/v2)

V = a,(1/2 cos 0 (49)

= Od/2 cos 0 AO fid sin 00 = - 2(0X/X)Kd tan 00

where v and t are real -valued, and equation (18) was used to express
the parameter t again in various forms, showing explicitly the angular
deviations i0 and the wavelength deviation AX from the Bragg
condition.

For Bragg incidence we have t = 0, and obtain from the above a
formula for the diffraction efficiency n of absorption gratings

n = exp (- 2ad/cos 00)  sh2 (aid/2 cos 00) (50)

As we exclude the presence of negative absorption (gain) in the medium,
there is an upper limit for the amplitude a, of the assumed sinusoidal
modulation, which is a, a. The highest diffraction efficiency possible
for an absorption grating is reached in the limiting case a, = a for a
value of ad/cos 00 = In 3. According to equation (50) this maximum
efficiency has a value of nmax = 1/27, or 3.7 percent.

Figure 9 shows values for the diffracted amplitude S of absorption
gratings as computed from equation (50) as a function of the modula-
tion amplitude a, and for various values of the depth of modulation.
For convenience we have again used loss parameters, which are D0 =
ad/cos O. and D, = aid/cos 00 . D, is a measure for the amplitude
of the spatial modulation and D./D, = oc/a, indicates the modulation
depth. The dashed curves for constant D0 show the grating behavior
for constant background absorption. We have plotted S on a linear
scale in order to identify the regions of linear grating response. Note
that a good linear response and relatively good efficiency is obtained
if the absorption background is held constant to a value of about D. = 1.

Equation (49) predicts also the angular sensitivity and the frequency
sensitivity of absorption gratings. Such sensitivity curves are plotted
in Fig. 10 for the special case of a, = «, and values of v = Di/2 = 1
(dashed) and v = 2 In 3 = 0.55. For the latter parameter value the
peak efficiency of 3.7 percent is reached, and for v = 1 we have a peak
efficiency of 2.5 percent. In the figure the relative efficiencies are plotted
as functions of the parameter t. We note that there is very little dif-
ference between the sensitivity curves for the two v -values chosen.
We have also computed the sensitivity for smaller values of v (0.2, 0.4),
but the resulting curves differ so little from the ones shown that we
have omitted them from the figure. The sensitivity curves are very
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Fig. 9. - Transmission holograms-the diffracted amplitude of an absorption
grating as a function of the modulation DI = aid/cos 9 = 2v for various modulation
depths DI/Do (solid curve) and various bias levels Do = ad/cos 0 (dashed curve).

similar to those of the dielectric gratings with smaller v -values which
are shown in Fig. 6. Again, the half -power points are reached for about

= 1.5. But for absorption gratings there is no narrowing with in-
creasing values of v, and the side lobe intensity remains low.

3.4 Slanted Absorption Gratings

In this section we consider the influence of slant on the efficiency
of an absorption grating. For simplicity we assume Bragg incidence
(6 = 0), and describe the slant by the obliquity factors cR = cos Oo
and es = cos (00 - 20), as before. Using equation (41) we obtain,
for this case, the following expression for the signal amplitude S

S = (c4 exp [-lad( -1
2 cR es

+ 1 )1 sh (V2 + E2)/(1 e/p2)i
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p = aid/2(cRcs)1

Zad\CR C)s

(51)

where v and are redefined as real parameters. We have plotted the
slant -dependence of absorption gratings in Fig. 11 for the special case
of a, = a, that is, maximum depth of modulation. The diffraction
efficiency i is shown as a function of the slant factor c for various
values of the loss parameter Do . These quantities are defined, as
before, by

Do = ad/cR = ad/cos 00

and (52)

C = cR/cs 

The efficiency is seen to reach its absolute maximum of 3.7 percent
for the unslanted grating (c = 1) and for a loss parameter of Do = In 3.
For larger values of Do the efficiencies reach relative maxima for exit

0
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0.8
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2 4 5

Fig. 10- Transmission holograms-the angular and wavelength sensitivity of
an absorption grating for al = a (D1 = Do) and values of v = D,/2 = 0.55 (no =
0.037) and v = D,/2 = I (no = 0.025).
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Fig. 11-Transmission holograms-the efficiency of an absorption grating as a
function of slant for at = a (D1 = Do). c = cR/cs is the slant factor.

angles of the signal wave which are smaller than that of the reference
wave (c < 1), while for smaller Do -values the situation is reversed.

3.5 Mixed Gratings

Mixed gratings are those in which both the refractive index and
the absorption constant are spatially modulated. This may occur in
some recording materials (for example, as a result of incomplete bleach-
ing, or in cases where strong absorption peaks are developed which
cause refractive index changes according to the Kramers-Kronig rela-
tions).* Mixed gratings are described by a complex coupling constant,
which is given in equation (9). For the special case of unslanted gratings
(4) = 7r/2) and Bragg incidence (6 = 0) equation (41) simplifies to

S = -j exp (- ad/cos Bo) sin (id/cos 00) (53)

where K is complex. From this we obtain, after some algebra, an expres-
sion for the efficiency of mixed gratings

n = SS* = [sin2 (rnid/X cos Bo) she (a1/2 cos 80)] exp (-2ad/cos On),

(54)

where ni and a1 are the amplitudes of the modulation of the refractive
index and the absorption constant, and a is the average absorption

* Such effects have recently been observed by Nassenstein (see Ref. 32).
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constant. We note that, at least for the special case considered here,
there is a simple addition of the intensities diffracted by the dielectric
grating and the absorption grating respectively [compare equations (46)
and (50)!]. The exponential factor including a insures that the formula
does not predict efficiencies larger than 1.

IV. REFLECTION HOLOGRAMS

In reflection holograms the recorded fringe -planes are of an orienta-
tion which is more or less parallel to the surfaces of the recording
medium, and the signal appears as a "reflection" of the reference wave.
We have illustrated this situation in Fig. 4b. It is expressed in the
coupled wave analysis by negative values of the obliquity factor
cs(cs < 0). In addition, the signal amplitude S of interest is obtained
by evaluating the signal wave in the plane z = 0, which is also the
entrance plane for the reference wave R. For reflection holograms a
slant angle 0 = 0 describes the case of unslanted gratings. Apart from
these differences the following discussion of the detailed behavior of
reflection holograms proceeds in a pattern similar to that of Section III,
where we have discussed transmission holograms.

From equations (30) and (39) we obtain a general formula for the
signal amplitude of reflection holograms which can be written in the
form

(S =
c

h (v ch a)/ch (a + ch a)
)1 'scs

p = jta / X(C RC 01

= 1(1(1 - -
CR Cs Cs

(55)

sh a =

where we have again defined (complex) parameters v, E and a, which
lump together the constants of the medium (n, a, n, , a, , 0, the obliquity
factors cR and cs , the wavelength, the grating thickness d and the
dephasing measure 6.

4.1 Lossless Dielectric Gratings

The lossless dielectric grating is characterized by a real -valued
coupling constant K = 71-7/,/X, and by zero absorption a = ai = 0.
As in the transmission -hologram counterpart, it is easy to include the
case of slant in the analysis. For the present case we can rewrite equa-
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tion (55) in the form

S = (c-// { jt/v (1 - t2/v2)i  coth (P2 - E2)i
Cs

= jrnid/McRcs)i (56)

= -t9d/2cs

where v and t have been redefined as real -valued parameters (cs is
negative!).

The associated formula for the diffraction efficiency of lossless di-
electric gratings is

n = 1/11 + (1 - E2/P2)/Sh2 (P2 - t2)11, (57)

which also provides a description of the angular and wavelength sen-
sensitivities of the grating. For unslanted acoustic gratings this formula
has been previously given by Quate and his associates.22 Sensitivity
curves calculated from equation (57) are shown in Fig. 12, where the
normalized efficiencies are plotted as a function of t for various values
of v = const. The figure shows the sensitivity of a grating with v = 7r/4
and a peak efficiency of 43 percent, a grating with v = 7/2 and no = 0.84,

1.0

0.8

0.6

0.4

0.2

2 4 5

Fig. 12 - Reflection holograms-the angular and wavelength sensitivity of a
lossless dielectric grating with the normalized efficiency n/no as a function of
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and the corresponding values for v = 37r/4 and no = 0.96. For v = 7r/4
the half -power points of the grating response are reached for values of
approximately E = 1.7. But there is considerable broadening of the
sensitivity curves for increasing values of v, and an increase in the
side -lobe level.

As in equation (44) for transmission holograms, we can express the
parameter directly in the angular deviation A0 or the wavelength
deviation AX by using equation (18) to obtain

= A 0. Kd  sin (00 - (A) /2cs

= AX  K2d/87rncs . (58)

These expressions can again be used to formulate rules for the angular
bandwidth and the spectral bandwidth of the grating.

For an unslanted grating (4) = 0) and Bragg incidence we have
cR = -cs = cos 00 , and equation (57) simplifies to

= th2 (7rnid/X cos 00) (59)

This is a formula which has been obtained previously for light diffraction
by acoustic waves." .22

4.2 Lossy Dielectric Gratings

Let us first discuss the influence of loss on the angular and wave-
length sensitivity of unslanted dielectric gratings. Here we have 4 =
and, to a good approximation

cR = cos 00(1 - AO tan 00) = cos 0

cs = - cos 00(1 + A0 tan 00), (60)

= - cos 0(1 + 20X/X)

at least as long tan 00 1. One can show that the formula for the signal
amplitude S, which we have given in equation (56), is still applicable
for the present case of an unslanted lossy grating if we modify the
parameters v and E to

V = 7rnid/X cos 00

= E0 - ./D0 (61)

= - A0  Ocl sin 00

D0 = ad/cos 00

where is now a complex parameter with0 describing the angular
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deviations and D, representing the loss. An evaluation of this formula
is shown in Fig. 13, which shows the angular sensitivity of dielectric
gratings for various values of the loss parameter Do and a grating
parameter of v = ir/2. In constrast to what we have observed in the
case of dielectric transmission holograms (Fig. 7), we see here a quite
noticeable effect of the grating loss on the sensitivity curves. With
increasing loss values the curves broaden in the wings, sharpen some-
what in the center and the side -lobe level decreases.

To study the influence of loss on the diffraction efficiencies of dielec-
tric gratings we rewrite equation (55) in the form

S = (-13cs)1/ {E/v + (1 + 2/1,2)1. coth (v2 + 2)l

= j7rnid/X(cRes)1 (62)

1D0(1 - c)

where we have written P and as real -valued parameters in a form
which is valid for Bragg incidence and for slanted or unslanted gratings.
Just as in the case of transmission holograms we have used the loss

Fig. 13-Reflection holograms-the influence of loss on the angular and wave-
length sensitivity of a dielectric grating for v = 7/2. The normalized efficiencies
n/no are shown. The peak efficiencies are no = 0.84 for Do = 0, no = 0.64 for
Do = 0.5, 770 = 0,28 for D9 = 1, and no = 0,12 for D9 = 2,
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parameter Do and the slant factor c (which is now negative)

Do = ad/cos 00 (63)

c = cR/c.s

In the case of unslanted gratings the parameters v and t simplify to

v = irn,d/X cos eo

= Do = ad/cos 00 .

The results of a numerical evaluation for unslated gratings are shown
in Fig. 14, where the signal amplitude is plotted as a function of v for
various values of the loss parameter Do . The curve Do = 0 gives the
values for lossless gratings, while the others indicate the influence
of loss.

The behavior of slanted dielectric gratings in the presence of loss
is shown in Fig. 15. The curves of this figure are also computed from
equation (62) and show the diffraction efficiency as a function of the
slant factor for I, = r/2 and various values of the loss parameter Do .
For constant Do we notice an increase of the efficiency for decreasing
values of the slant factor, as in the case of transmission holograms.

Is I

0.2 0.4 0.6

V/IT = n , d/xcoseo
0.8 1.0

(64)

Fig. 14-Reflection holograms-the influence of loss on the diffracted amplitude
S of an unslanted dielectric grating. I S I is shown as a function of v/ir = nid/X cos Coo
for various loss parameters Do.
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Fig. 15-Reflection holograms-the efficiency of a lossy dielectric grating as a
function of slant for v = 7/2. c = cR/cs is the slant factor.

Again, for given loss and a given angle of incidence short signal paths
through the grating (that is, small exit angles) are preferred for higher
efficiencies.

4.3 Unslanted Absorption Gratings

Following the pattern set in the discussion of transmission holograms
(Section III), we again describe an absorption grating by an imaginary
coupling constant K = -jai/2, and proceed to study the diffraction
efficiencies and the angular and wavelength sensitivities of unslanted
(4) = 0) gratings. In this case equation (55) simplifies to

8 = -j(cd/ [(E/v)2 - 111coth (E2 - P2)41

= jaid/2(CRCS)4 (65)

= Do - jEo

where the real -valued parameters Do and E0 can be expressed to first
order in the angular deviations AO and the wave -length deviations
LIX by

Do = ad/cos 00

E0 = AO  fld sin 00 = 2(AX/X)Kd.
(66)



WAVES IN THICK HOLOGRAMS 2937

Do is a loss parameter as before, and to is a normalized measure for
the angular or the wavelength deviations from the Bragg condition.

If the Bragg condition is obeyed equation (65) can be written in
the form

S = - Di/2[Do (D02 - D.f/4)1.coth (El; -

where

(67)

D, = 2v, = aid/cos 00

measures the spatial modulation of the absorption constant (a1)
For the deepest allowable modulation where we have D1 = Do(al = ao),

this equation predicts the maximum diffraction efficiency nmax which
is possible for reflection holograms with a (sinusoidal) absorption
modulation. We obtain 'limn. = 1/(2 V3)2, or a maximum efficiency
of 7.2 percent for Do = D1 -> . The formula reflects the experimental
fact that, for reflection holograms of the absorptive kind, one obtains
the largest efficiencies for high photographic densities. Figure 16 shows
a numerical evaluation of the above formula. Here the signal amplitude
S is plotted as a function of the modulation amplitude D, for various
levels of loss "bias" Do (dashed curves) and for various modulation
depths Do/D, .

An evaluation of the grating sensitivity as predicted by equation (65)
is shown in Fig. 17 for the special case of a maximum depth of modula-
tion where D, = Do . In this figure the (normalized) efficiency is plotted
as a function of the parameter to for various values of D, = Do . As in
the corresponding grating for the case of transmission holograms (Fig.
10) the sensitivity curves are seen to reach their half -power points for
values of about to = 1.5. But in the present case of reflection holograms
there is a noticeable broadening of the curves with increasing loss
values D, = Do .

4.4 Slanted Absorption Gratings

In this section we consider the influence of slant on the diffraction
efficiency of an absorption grating for reflection holograms. We assume
Bragg incidence (t, = 0) and again use the obliquity factors cR = cos 00
and cs = -cos (0,, - 216) to describe the slant (for reflection holograms
we have cs < 0!). We find that equation (65) can be used as a formula
for the signal amplitude for the present case if we modify the parameters
to

= Jaid/2(cRcs)i = 2D1(c)
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Fig. 16 - Reflection holograms-the diffracted amplitude of an absorption
grating as a function of the modulation Di = aid/cos 0 = 2v for modulation depths
DI/Do (solid curve) and bias levels Do = ad/cos 0 (dashed curve).

= 1D0(1 - c)

Do = ad/cos 00 ,

c = CRAS

D, = aid/cos 00
(68)

where the slant factor c is negative. All these parameters are real -valued
in the present case. For a maximum depth of modulation, that is, a, = a,
there are further simplifications, and we obtain a simple expression for
the slant -dependence of the diffraction efficiency

= -c/(1 - c (1 - c c2)1. coth 2Do(1 - c c2 )i 12. (69)

Figure 18 shows a numerical evaluation of this formula for various
values of D0 = D1 . The slant factor value off c I = 1 refers to unslanted
gratings. In this case the maximum efficiency value fIDDx = 0.072 is
approached for large Do . We note that for values of D0 below unity
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the efficiencies increase for I c I -values larger than 1 and up to about 3,
that is, for relatively large exit angles of the signal wave.

4.5 Mixed Gratings

Mixed gratings are described by a complex coupling constant
K = - ja1/2 (see Section 3.5). For Bragg incidence (0. = 0)
and unslanted fringe -planes (4) = 0) we can obtain from equation (55)
a formula for the signal amplitude of mixed gratings, which is

S = -jK / {a + + a2) l  coth cod
90

(K2 + a2)1}

where K is of complex value, a is the average absorption constant, d the
grating thickness and 90 the angle of incidence.

V. AMPLITUDES OF THE DIRECT WAVES

For diagnostic purposes it is often of interest to monitor the change
in amplitude of the direct reference wave R, which is depleted because of
diffraction into S and absorption. The quantities of interest are the
amplitudes R(d) which can be obtained from the analysis of Section 2.2.

0
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0.6

0.4

0.2

1.0 2.0

to

3.0 4.0 50

Fig. 17-Reflection holograms-the angular and wavelength sensitivity of an
absorption grating for at = a (D, = Do) and values of D, = 2p = Do = 0.2
(no = 0.007), Di = 1 (no = 0.05), and DI = 2 (no = 0.068).
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Fig. 18 - Reflection holograms-the efficiency of an absorption grating as a
function of slant for al = a (D1 = Do). c = cn/cs is the slant factor.

We will give here the general results for transmission and reflection
holograms. The notation is that of Section 2.

5.1 Transmission Holograms

From equations (27) and (33) we get for the constants r, of equation
(25) the expressions

rl = -K2/c8(71 - 72)(cR71 + a) (71)

r2 = K2/c3(71 - 72)(cR72 + a) .

Using this we can write the output amplitude R(d) of the reference
wave in the form

2 (exp (72d) exp (nd))R(d) - , (72)
c5 (71 - 72)

(exp
+ a C571 + a/

5.2 Reflection Holograms

For reflection holograms we use equations (27), (37), and (39) to
express the constants r1 in the form

r1 = (csy + a + exp (72d)/{ exP (72d)(a csy,)

- exp (71d) (a cs72))

r2 = - (cs72 + a + j0.) exP (71d)/{exP (72d)(a jz, cey,)

- exp eriCa c372)}

(73)
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The output amplitude R(d) of the reference wave becomes

R(d) = cseri - 72)/{(« ± ja + ceil) exp (-7,d)

- (a + jZ + cs72) exp (-72d)) .

2941

(74)

More detailed evaluations of the above formulas should follow the
pattern prescribed in Sections III and IV. They can be undertaken
for the specific case when the need arises.

VI. VALIDITY OF THE THEORY

We have tried to make our results as generally applicable as possible.
We have allowed for the presence of absorption in the various hologram
gratings and for a slant of the fringe planes. But a whole range of assump-
tions had to be made to make the simple coupled wave analysis possible.
It seems appropriate to recount these assumptions to make clear the
region of validity of the coupled wave theory. We have assumed that:

(i) The electric field of the light is polarized perpendicular to the
plane of incidence. However, the appendix gives an extension of the
theory to allow also for light of parallel polarization.

(ii) A slant of the fringe planes with respect to the z-axis is allowed,
except that these planes are perpendicular to the plane of incidence.
(This is reflected in the assumption E(x, z), a(x, z).) But this assumption
is not made in the generalization which we have given in the appendix.

(iii) The spatial modulation of the refractive index and the absorption
constant is sinusoidal.

(iv) There is a small absorption loss per wavelength and a slow
energy interchange (per wavelength) between the two coupled waves.
This condition is stated mathematically in equation (7) and justifies
neglecting the second derivatives R" and S" in the analysis.

(v) There is the same average refractive index n for the regions
inside and outside the grating boundaries. If the grating has interfaces
with air, then Snell's law has to be used to correct for the angular
changes resulting from refraction.

(vi) Light incidence is at or near the Bragg angle and only the diffrac-
tion orders which obey the Bragg condition at least approximately are
retained in the analysis. The other diffraction orders are neglected.

A detailed mathematical justification of assumption vi is outside the
scope of our simple analysis. One can advance physical arguments to
show that this step limits the validity of the theory to "thick" gratings,
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where the phase synchronism between the two coupled waves has
enough time to develop a strong and dominating effect. Better definitions
of a "thick grating" must come from more accurate theories which are
available for special cases. A large amount of work has been done on
acoustic diffraction gratings which correspond to the case of our
unslanted, lossless, dielectric transmission -hologram gratings." In
acoustic diffraction one defines the parameter

Q = 271-Xd/nA2 (75)

as an appropriate measure of grating thickness. We can regard a grating
as thick when the condition Q >> 1 holds!' '18 It appears that the coupled
wave theory begins to give good results for values of Q = 10. This is
particularly well demonstrated by Klein and his associates in theoretical
and experimental work on acoustic gratings for the predictions of both
the peak efficiencies and the angular sensitivities.'"'" We hasten to
add that for the majority of practical holograms the parameter Q is
larger, and sometimes much larger, than 10.

Further checks of the validity of the coupled wave theory are provided
by comparisons with accurate computer calculations and with experi-
ments on special examples of gratings. Burckhardt has made computer
calculations on unslanted, lossless, dielectric transmission holograms
for selected values of grating parameters which are commonly encoun-
tered in holography.'" Comparison with the results of the coupled
wave theory shows very satisfactory agreement." Measurements by
Shankoff and Lin on dielectric transmission holograms prepared with
dichromated gelatin yielded diffraction efficiencies approaching 100
percent, which agrees with the theory (even though there may be some
uncertainty as to the exact nature of the refractive index variations).10,11

Efficiency measurements on thick absorption gratings for the case of
transmission holograms were made by George, Mathews, and Latta."'"
Efficiencies approaching our predicted maximum value of 3.7 percent
were observed.

Kiemle has studied unslanted (q5 = 0) reflection holograms for the
special case of normal incidence (00 = 0) by analyzing equivalent
four -terminal networks." His treatment of absorption gratings cor-
responds to the material we discussed in Section 4.3 specialized to the
case of 00 = 0. But Kiemle's value of 2.8 percent for the maximum
diffraction efficiency of absorptive reflection holograms does not agree
with our prediction of 7.2 percent. This disagreement appears to derive
from a set of restrictive assumptions made in Kiemle's work. Experi-
mental observations on absorptive reflection holograms were made by
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Lin and Lo Bianco.° Efficiency values as high as 3.8 percent were
measured, which seems to support the predictions of the coupled wave
theory. But further experiments are needed for a good confirmation.

VII. CONCLUSIONS

We have discussed a coupled -wave analysis of the Bragg diffraction
of light by thick hologram gratings. This approach made it possible to
derive simple algebraic formulas for the behavior of various types of
holograms, even for the case of high diffraction efficiencies where the
incident wave is strongly depleted. The treatment covers transmission
holograms and reflection holograms, and it includes the spatial modula-
tions of both the refractive index and the absorption constant. The
influence of loss in the grating and of slanted fringes is also discussed.
Formulas and their numerical evaluations are given for the diffraction
efficiencies and the angular and wavelength sensitivities of various
grating types.

For special cases we can compare the results of this theory with more
accurate computations and with experimental observations. These
comparisons give us the confidence to assume that the coupled wave
predictions are good for a broad range of practical hologram types.
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APPENDIX

Reduced Coupling for Light Polarized in the Plane of Incidence

In the body of this paper it was assumed that the incident light is
polarized perpendicular to the plane of incidence. The purpose of this
appendix is to show that we can use the results of the main paper also
when the light is polarized in the plane of incidence, provided that we
modify the coupling constant K. Such a modification is suggested already
by the dynamical theory of X-ray diffraction.

As in Section II we start with the wave equation

V2E - V (V E) k2E = 0 (76)

for the electric field in the grating. Here, in contrast to equation (1),
we have described the field by the vector quantity E and have included
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the term V (V  E), which is not necessarily zero. The constant k2 is
defined in equation (4). As in the main paper, we assume that only two
waves are present in the grating, and put

E = R(z)e-firx S(z)e-ld'x (77)

using the vectors R and S to describe the amplitudes of the reference
and signal waves. p and d are the propagation vectors (as in Section II)
which point in the direction of the wavenormals. They are related by
equation (11). In addition we assume that, both, R and S are transverse
waves, that is, that the following conditions hold

(02) = 0, (78)
(dS) 0.

Combining equations (76), (77), and (78) we get, after separating
terms with equal exponentials and neglecting second derivatives (92 / az2

-2j p.R' jel?' - 2ja13R + 243S = 0 (79)

jdS' (f32 - a2 - 2ja(3)S 2K/3R = 0 (80)

where R. and S. are the z -components of R and S, and the notation of
Section II is used.

We now make the additional assumption that the polarizations of
R and S do not change in the grating and write

R(z) = R(z)r,
(81)

S(z) = S(z)s,

where R(z) and S (z) are the scalar amplitudes of the two waves, and
r and s are polarization vectors independent of z. These vectors are
normalized so that

(r  r) = 1, (s  s) = 1. (82)

Because of (78) we have

(rp) = 0, (s  d) = 0. (83)

After forming the dot products of r with eq. (79) and of s with (80)
we use equations (81), (82), and (83) to arrive at

- 2j p.R' - 2jceOR 2103S(r  s) = 0 (84)

-2ja.S' + (132 - QZ - 2joifl)S 2Ki3R(r  s) = 0. (85)



WAVES IN THICK HOLOGRAMS

As in Section II, we introduce the abbreviations

cR = cs = az/13,

and
(132 - 0.2)/213,
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(86)

(87)

which allow us to write the above equations in the form

c RR' aR = - jK(r  s)S (88)

cs S' (a + j6)S = - jK(r  s)R (89)

These are coupled wave equations which govern the Bragg diffraction
of light polarized parallel to the plane of incidence, and indeed, of light
of arbitrary polarization. They are similar in form to the coupled wave
equations (21) and (22) which were derived for perpendicular polariza-
tion. The only difference is a reduction of the effective coupling constant
by the dot product (rs) of the two polarization vectors.

Referring to the grating geometry of Fig. 1 we have (r  s) = 1 for
light polarized perpendicular to the plane of incidence. For parallel
polarization the value of this dot -product depends on the inclination
angles, and we have a reduced effective coupling constant Ku given by

Ku = K(r  s) = -K cos 2(0o - 4)) (90)

We can apply the results of the main paper for parallel polarization if
we replace K by K11 . For this polarization there is the trivial case of a
Bragg angle of 45° (that is, diffraction angles of 90°) where (rs) = 0
and the intensity of the diffracted light goes to zero.
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Statistics on Attenuation of Microwaves
by Intense Rain

By D. C. HOGG
(Manuscript received June 12, 1969)

Heavy rainfall and associated attenuation at centimeter and millimeter
wavelengths are discussed. Measured attenuations are combined with path-
rainf all statistics obtained from a rain -gauge network to produce plots of
attenuation versus path length for a given probability of fading. Under the
assumption that the spatial behavior of heavy rain is similar at various loca-
tions, the path -average rainfall statistics are combined with highly resolved
point rain rates for geographically separated places to produce attenuation
data appropriate to those places. Dual parallel -path -diversity is also
evaluated; it is shown to be a very advantageous arrangement.

I. INTRODUCTION

An important problem in designing wide -band radio -relay systems at
frequencies exceeding 10 GHz is reliability. Propagation through heavy
rain is the significant factor in determining realiability of the medium.
Thus it is important to examine the spatial and temporal behavior of
heavy rain and the resultant attenuation.

Recent measurements of progagation at 18.5 GHz and 30.9 GHz, and
analysis of rainfall data from the Crawford Hill rain -gauge network of
Bell Telephone Laboratories at Holmdel, New Jersey, have led to an
improved understanding of the rain environment.' Those data are
used here to provide information on attenuation by rain for use in sys-
tem design. In particular, the improvement in performance obtained by
use of path diversity is evaluated.'

II. SINGLE -PATH STATISTICS (NEW JERSEY)

2.1 The Magnitude of the Attenuation

First, one must ask: What is the magnitude of the attenuation caused
by heavy rain at frequencies exceeding 10 GHz? Figure 1 is a plot of
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Fig. 1- Attenuation measured during rain of rate 100 mm/hr (averaged over a
1 km path). The measurements at 8 and 15 GHz are from Ref. 6; 11 GHz from Ref. 7;
18 and 30 GHz from Refs. 1 and 2; and 50 and 70 GHz from Ref. 9. 6, indicates
Bell Telephone Laboratories data and 0 indicates DRB 1966 data-Canada (some
extrapolation for both).

attenuation measured at a rain rate of 100 mm/hr (4 inches per hour)
for a path length of 1 km. Data measured at 100 mm/hr, rather than at
low rain rates, are used because path -average rain rates of this magni-
tude do indeed occur a significant percentage of the time in many
places, including New Jersey.

Moreover, in the discussion that follows, we are concerned with at-
tenuations caused by path -average rain rates of the order of 100 mm/hr,
and the attenuations will be taken to be directly proportional to the path
average rain rates; that is, proportional to the average density of rain
along the path.* The curve in Fig. 1 serves as a benchmark by means
of which attenuation is related to heavy path -average rain rates. Thus

* From theoretical considerations, the attenuation 7, at frequencies of the order
10 GHz is believed related to the rain rate R by 7 = aR5. a is a function of frequency
as indicated and $ is also a mild function of frequency with values near unity. Here
we use values of a measured at high rain rates (since 0 is taken to be unity) to
minimize errors in the event p departs from unity.
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for heavy rains one has:

-y = 0.04Rd; y = 0.1Rd; -y = 0.2Rd

for frequencies of 11, 18, and 30 GHz, -y being the attenuation in deci-
bels and R the average rain rate on a path of length d.

2.2 Dependence of Path -Average Rain Rate on Path Length

The path analysis of rain rate discussed in Ref. 3 encompasses the
heavy rains of 1967 taken on 100 rain gauges forming a 130(km)2 grid
in New Jersey. Obviously, there are many paths of various lengths in
such a network and a relatively large amount of data is obtained for
such paths from the several storms that occur during one year. Path
average rain rates have been converted to a yearly base and are plotted
in Fig. 2;* the curves show the probability of path -average rain rate
with path length as parameter. At rain rates of the order 50 mm/hr, the
probabilities are about the same for all path lengths, namely, about
0.01 percent; thus the probability of exceeding an average rate of 50
mm/hr on a 10.4 km path is about the same as at a point (path length-
zero in Fig. 2). As the rain rate increases, the curves diverge. For ex-
ample, the probability of a 100 mm/hr rain rate on a 10.4 km path is less
by a factor of ten than that for a point; at 150 mm/hr, the factor is
one hundred.

The data in Fig. 2 can be examined in another way. Consider a given
probability, say, 0.001 percent (five minutes per year); the correspond-
ing rain rate at a point is about 160 mm/hr, whereas for a 10.4 km path
it is 80 mm/hr. This behavior tells us that heavy rains occur as localized
showers. Of course, this behavior will show up in evaluating the at-
tenuation on paths of various lengths.

2.3 Dependence of Attenuation on Path Length

The relationship between attenuation and path -average rain rate
at various frequencies as given in Fig. 1, and the probability of occur-
rence of rain rates, Fig. 2, have been used to produce Figs. 3a and b.
Two probability levels (0.01 percent, 50 min/yr, and 0.001 percent,
5 min/yr) and three frequencies (11, 18, and 30 GHz) have been chosen
as representative of radio relay. These plots give computed attenuation
that is exceeded for the percent of time indicated on the figure as a
function of path length. Note that there is curvature in the plots. As
one would expect, having looked at Fig. 2, the attenuation one obtains

* From curves A in Fig. 28 of Ref. 3.
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(for a low probability) on a 10 km path is less than one would expect by
linearly extrapolating from the attenuation on a 1 km path.

The two propagation paths in operation within the Holmdel rain -
gauge network are 1.9 and 6.4 km long at frequencies 30.9 and 18.5
GHz, respectively;" these lengths are indicated by arrows on the
abscissas in Fig. 3.* Percent of time distributions of attenuation on
these paths were measured throughout 1967 and 1968 and points taken
at the indicated probability level are shown on the figures. For the 1.9
km path, the measured 30.9 GHz attenuations agree well with the
computed curves for 30 GHz: somewhat higher in Fig. 3a and slightly
lower in Fig. 3b.

Likewise, in Fig. 3a the points measured at 18.5 GHz (6.4 km) are
in good agreement with, but are somewhat lower than, the computed
curve for 18 GHz. In Fig. 3b the 18.5 GHz measurement for 1968 is
somewhat below the computed curve; however, the 1967 measurement

* The 18.5 GHz signal is vertically polarized and the 30.9 GHz signal is polarized
45° from vertical.
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is considerably lower. Comparison of the 18.5 GHz attenuation dis-
tributions for 1967 and 1968 shows that heavy showers were more fre-
quent on this path in 1968 than in 1967. The 18 GHz curves in Figs.
3a and b are apparently somewhat conservative.

Thus use of the attenuations in Fig. 1 to convert the pool of path -
average rain rates from the rain -gauge network has led to a set of curves
of attenuation versus path length that are consistent with independent
measurements of attenuation. Accordingly, for design of a conventional
tandem relay system at, say, 18 GHz, with a 30 dB margin, the repeater
spacing is, from Fig. 3b, 2.5 km for 0.001 per cent probability on in-
dividual paths in coastal New Jersey.

III. SINGLE -PATH STATISTICS (OTHER LOCATIONS)

It is tempting to ask if the knowledge gained from the above studies
can be used to say something about the attenuation environment in
places other than coastal New Jersey. If certain assumptions are made
concerning the spatial distribution in rain showers, that can be done.

3.1 Point Rainfall Rates of High Resolution

Distribution of point rain rates with high resolution have been meas-
ured in a few places, shown in Fig. 4. Four of the full curves were meas-
ured in the United states by the Illinois State Water Survey using a
photographic method measured over the best part of a year; they form
a consistent set of data.' This method is capable of measuring drops in
a small volume during a short interval every ten seconds. The solid line
for Bedford, England is from a four-year sample;5 gauges with two -
minute resolution were used. The dashed curve is the distribution for the
pool of data taken during 1967 on the rain -gauge network at Holmdel,
New Jersey;3 gauges with a time constant less than one second were
sampled every ten seconds.

For a given probability of occurrence, how much heavier does it
rain at other locations than in New Jersey? Table I shows the point
rain -rate intensity in other places relative to New Jersey for the 0.01
and 0.001 per cent levels; the Illinois state survey set of curves and the
data from England in Fig. 4 are used in this comparison.

Thus in the regime of low probability (high rain rate), the rain inten-
sity in New Jersey is about one quarter that of Miami, Florida, and
five times that of Corvallis, Oregon. These data must now be linked with
the spatial distributions obtained in New Jersey in order to determine
the attenuations.
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Fig. 4-Point rainfall rates measured in several places by instruments with
rapid response.

3.2 The Spatial Distribution of Rain Showers

The data in Fig. 2 show that the probability of a given path -average
rain rate decreases with increasing path length for heavy rains, a not too
surprising result since one is dealing with rain cells of limited size. Like-
wise, for a given probability level, the path -average rain rate decreases
with increasing path length as shown in Fig. 5. For relatively high prob-
ability (101, this decrease does not amount to much; as shown by the
lowest curve in Fig. 5, the average rain rate for a 10 km path is about the
same as that for a point (d = 0). However, for example, on the upper -

TABLE I-RELATIVE INTENSITY OF POINT RAIN RATES

Probability Level
Miami

Florida
Coweeta

North Carolina
Island Beach
New Jersey

Bedford
England

Corvallis
Oregon

(a) 10-4 5 1.75 0.48 0.25
(50 min/yr)

(b) 10-6 (5 min/yr) 3.5 1.55 0.42 0.15
AVERAGE of
(a) & (b)

4.2 1.65 0.45 0.2
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most curve in Fig. 2 (for 10-6 probability) the average rain rate on a
10 km path is only one half the rate at a point.

Assume that the spatial behavior of heavy rainfall is the same in
other places as it is in New Jersey. This means that in a place with
relatively low point rain rates (such as Oregon, Fig. 4), path -average
rates are about the same as point rates (such as in the lowest curve in
Fig. 5), that is, large -area rain. Whereas, where the point rain rates
are very high (such as in Florida, Fig. 4), the path -average rates are
much less than the point rates (such as in the uppermost curve in Fig.
5), that is, showers. To determine whether this assumption is warranted,
one must await spatial measurements of rain rate in other places.

The data in Figs. 2 and 4 are used to construct Table II, a list of path -
average rain rates for the various locations, as a function of path length,
d. Some extrapolation of the curves in Fig. 2 was necessary to obtain the
column for Miami, Florida.

Table II has been converted to attenuation at 18 GHz by way of the
relationship discussed above as shown in Fig. 6. As one would expect,
the attenuation for Oregon is linear with path length, whereas for places
with heavy rain, there is considerable curvature. Figure 6 tells us that
a single transmission path at 18 GHz with a 30 dB fading margin should
not exceed 1, 2, 3, 6, and 15 km in Florida, North Carolina, New Jersey,



MICROWAVE ATTENUATION 2957

TABLE II-PATH-AVERAGE RAIN RATES IN MM/HR FOR THE 10-5
PROBABILITY LEVEL

d -km
Corvallis
Oregon

Bedford
England

Island Beach
New Jersey

Coweeta
North Carolina

Miami
Florida

0 20 55 130 200 450
1.3 20 53 110 165 325
2.6 20 52 103 153 265
5.2 20 50 90 135 215
7.8 20 48 75 110 210

10.4 20 45 70 95

Bedfordshire -England*, and Oregon, respectively, if a probability of
10-5 is stipulated.

One might argue that in Florida (for example) where the water vapor
available for production of rain exceeds that of New Jersey, the dimen-
sion of a rain cell of given rain rate may exceed that of a cell of the same
rain rate in New Jersey. If this were true, the attenuation for Florida
and North Carolina in Fig. 6 would be somewhat higher than shown.

IV. PATH DIVERSITY (NEW JERSEY)

The analysis of the rain -gauge network data by Freeny and Gabbe3
encompasses not only single paths of various lengths but also joint
statistics for pairs of parallel paths separated by various distances.t
These data are applicable to the design of path -diversity systems in that
they are statistics of the percentage of time that the average rain rate
on both paths exceeds given values. Of course, the idea in path diversity
is to switch to the path with lowest attenuation.5

4.1 Two Parallel Paths with a Given Separation

An example of how path -average rain rates in the diversity arrange-
ment convert to attenuation is given in Figs. 7a, b, and c for frequencies
of 11, 18, and 30 GHz. The curves apply to the 0.001 percent probability
level (5 min/yr) and a diversity separation of 5.2 km (3.25 miles). For
comparison, the attenuation for a single path is shown by a dashed line

* In a recent Committee Consultatif Internationale Radio document (United
Kingdom Document IX/164-E, May 9, 1969), attenuation distributions for a 24 km
path, and for the worst year (1968) observed to date, indicate that the path length
appropriate to 0.001 percent probability and 30 dB attenuation is something less
than 12 km in Bedfordshire at 18 GHz. This presumably means that, even in a
relatively low rain -rate environment, the heavier rains do indeed occur as showers
of limited size (see also Ref. 5). That being the case, the curve for England in Fig. 6
would have more curvature than indicated, that is, the curve in Fig. 6 would be
quite conservative.

t See Fig. 28 of Ref. 3.
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on each figure. If transmission paths at 18 GHz with a 30 dB fading
margin are considered, Fig. 7b shows that the path length in the diversity
arrangement with 5.2 km separation can be just over 5 km, compared
with 2.5 km when no diversity is used.

4.2 Relationship Between Interrepeater Path Length and Diversity Separa-
tion

A somewhat more general question is: For a given attenuation margin
and a given probability level, how does the inter -repeater path length
change with diversity separation? As an example, 18 GHz, 30 dB, and
0.001 percent are chosen for the frequency, margin, and probability
level; the data are plotted in Fig. 8. Note that the path length d for a
diversity separation s of 7.5 km is 7 km, about thrice the path length
(2.5 km), for the nondiversity arrangement (d = 0). Results such as
these have considerable economic implications. The data can also be
plotted as in Fig. 9 where 18 GHz attenuation is given as a function of
path length with path separation a parameter. Apparently, for a given
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diversity separation, the advantage of diversity over nondiversity is not
a strong function of the fading margin.

As yet we have no actual attenuation measurements on path diversity.
However, the data of Figs. 8 and 9 are believed conservative in the same
sense as those of Fig. 3; of course, they apply only to coastal New Jersey.

V. DISCUSSION

Although the data given here result in well -resolved design curves
hopefully useful in design of radio systems, at least two important
questions remain. A system is comprised of many paths in tandem
forming a route of length 1, whereas here only single paths have been
discussed. If one has n such paths in tandem, is the probability P1 of
attenuation by rain on the system simply nP1 where P1 is the proba-
bility for a single path? In other words, is there no correlation between
heavy fades on tandem paths? Obviously, if a dense rain cell were cen-
tered on a repeater, there would be correlation of attenuation on the
two paths associated with that repeater. From such considerations and
examination of rainfall data, the relationship P1 = nP1 is believed too
conservative.

The other question is related to path diversity. We have only dis-
cussed the case of two (single) parallel paths separated by various
distances. But in an actual system one deals with several paths in tandem
on each leg of the route; these two legs must of course merge if one wishes
to switch from one to the other. The path lengths for merge points lie
between those given in Fig. 3 and those appropriate to a parallel path
diversity arrangement.' Moreover, the diversity analysis here deals
with two (single) parallel paths of given separation whereas in practice
one would be dealing with a line of tandem paths parallel to, and dis-
placed from, a second such set. In that case, the advantage gained by
path diversity must be investigated beyond what we have done here.

Finally, it should be pointed out that the microwave systems to
which the above discussion is pertinent would carry very wide bands
of information. Clearly, the advantages of dual paths in providing
equipment diversity (in addition to propagation reliability) would be
considerable in such systems, especially from the viewpoint of main-
tenance.
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Work -Scheduling Algorithms: A
Nonprobabilistic Queuing Study

(with Possible Application
to No. 1 ESS)

By JOSEPH B. KRUSKAL

(Manuscript received November 7, 1968)

In many large computer systems with real-time use (such as the No. 1
Electronic Switching System), the central processing unit handles much
of its work through queues. It may spend much of its time cycling through
the queues, performing the work requests it finds there. To accomodate
varying degrees of urgency, the cycle may visit some hoppers more often
than others. (No. 1 ESS strongly relies on this procedure.) This paper
provides an approximate method for evaluating different cycles.

Using the evaluation method and some approximations, we obtain a
formula for the optimum relative frequency with which different queues
should be visited.

The model used is non probabilistic, and treats requests as continuous
rather than discrete. The model also ignores certain interdependencies
between queues. Despite these drastic simplifications, the results probably
provide useful guidance, if interpreted cautiously.

I. INTRODUCTION

In many large computer systems, especially those with real-time
use, the central processor handles much of its work through queues,
which contain work requests. (The queues may also be called hoppers,
buffers, waiting lines, files, and so forth. In this paper we call them
hoppers.) The processor examines each hopper in turn, and performs
some or all of the work requests if any, which it finds there.

Some work requests require processing more urgently than others.
One method of providing appropriate response times is to examine
more frequently hoppers which contain urgent work, and other hoppers
less frequently. For example, the No. 1 ESS (Electronic Switching

2963
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System) has many hoppers which it groups into five different urgency
classes." The five classes are examined (or "visited") in a fixed re-
curring cycle, of length 30, during which the classes are visited 15,
8, 4, 2, and 1 times, respectively. (During a single visit to a single class,
the individual hoppers are visited once each, in a fixed sequence.)

This paper contains a practical approximate model for evaluating
various alternative cycles. The conceptual basis for the evaluation
is the expected time each work request must wait in the hopper before
being serviced by the central processor. (Such times depend not only
on the cycle, but also on the times required to process requests, and
on the rates at which new requests are initiated. These are all assumed
given.) The expected waiting times for different hoppers are multi-
plied by frequencies and also by weights wi , the "average penalty
per second of delay," and added. The resulting sum is called P, the
"expected total penalty per second." The weights wi , which reflect
the relative importance of delaying different work requests, are assumed
given, and we seek to minimize P by choosing the cycle wisely. By
way of illustration, the calculations required to evaluate any given
cycle are given for two very simple cycles.

When applied to general cycles, our model yields the plausible
conclusion that visits to the same hopper should be spaced as evenly
as possible around the cycle (in terms of elapsed time between visits).
Furthermore, the model permits us to estimate how sensitive P is to
deviations from this ideal.

Our most important conclusion is an explicit formula for how fre-
quently each hopper should be visited. To obtain this formula, we
assume that visits to each hopper are evenly spaced around the cycle.
Then P becomes a function of the visit frequency (and not of detailed
visit pattern). We explicitly optimize this function, to obtain a formula
for visit frequencies.

The time required to examine a hopper, whether or not it contains
any work requests, is small but highly significant, and is an important
consideration in the problem. Our model explicitly reflects this fact.
(Indeed, it is known though sometimes overlooked that the No. 1 ESS
central processor finds most hoppers empty on a majority of its visits,
even when it is heavily loaded with work and operating near its ca-
pacity limits. This can occur because the number of hoppers is so large,
and because each work request requires a relatively long time to service
compared with the time to visit a single hopper.)

In this study, we assume that work enters the hoppers as a result
of some outside process, which is independent of how the hoppers
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are being served. In No. 1 ESS, as in many other situations, much
work does enter hoppers in this manner. However, it is also true that
servicing a request from one hopper may place work, directly or in-
directly, in another hopper. This interdependence may well be important
in choice of a cycle. Nevertheless, the present model, which ignores
such interdependence, is probably usable if we are suitably cautious
about interpreting our results.

Service requests are discrete items and enter the hoppers according
to an exceedingly complicated random process. Our model, however,
assumes that each kind of request comes in at a constant rate, with
no statistical fluctuation whatsoever. Furthermore, we treat the number
of requests as a continuous quantity (so that requests keep trickling
in like water) rather than a discrete quantity.

Despite the drastic nature of all these simplifications, we believe
that this analysis is better than no analysis at all. Furthermore, we
feel that our conclusions are probably valid approximations. It also
seems plausible that our model could provide the jumping-off place
for a more realistic study. Both interdependence and statistical fluc-
tuation could be introduced in a limited way. (Since this was first
written, R. W. Landgraff has done a study which extends this model
to include interdependence.3) This might well permit their main effects
to enter the model, without opening the Pandora's box of an ex-
tremely general stochastic process with one server and many inter-
dependent queues.

II. SOME ASSUMPTIONS AND NOTATION

We suppose that there are I hoppers. For each hopper i we assume
that we have three parameters:

= service time = average time to service one request in this
hopper,

ri = request time = average time between occurrence of requests
> si, and

w, = weight = average penalty per second of delay for a single
request of type i.

We also use

X, = << 1,
r,

A = E .

(To permit a steady-state solution, we assume A < 1.) Note that the
definition of w, implies that on the average the penalty for delaying
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one kind of task is proportional to the delay time. The wi are the pro-
portionality constants. This simple assumption could be refined some-
what without too much trouble if desired.

In No. 1 ESS, one major penalty caused by hopper delays is the
extra waiting time they cause to the telephone user at various stages
of his call. For some hoppers, such as those involved during the process
of dialing, undue delays can cause mishandling of the call. (Also, the
delays tie up memory capacity and indirectly cause a need for extra
memory equipment. However, this effect is probably minor.) By
considering the loss incurred by the user due to various waiting periods,
and the loss due to the probability of mishandled call, it would be
possible to assign sensible values to the w, . Although a truly realistic
appraisal of the losses would require a quite elaborate study, some
fairly reasonable simplifying assumptions which would make this
study much simpler are available. Furthermore, assignment of the
wi on a direct intuitive basis would probably be adequate for many
purposes.

To measure the total delay penalty paid by any work -scheduling
algorithm, we combine the various penalties into a single number P:

di = expected delay for a request of type i,
pi = expected penalty per
P = expected total penalty per second

,
=

w,
pi = ai

(Of course, 1/ri is the expected number of requests of type i in one
second.) We seek to minimize P by proper choice of a work -scheduling
algorithm. Only the delays di may be influenced in this way, so we
concentrate on evaluating the di .

A model which, like ours, treats requests as continuous has the
danger of "discovering" that the hoppers are serviced infinitely fast,
accumulating only an infinitesimal amount of work between visits.
The following assumption, which in any case reflects an important
reality, avoids this collapse.

To examine the ith hopper, whether or not it contains any work,
requires a certain amount of time. We assume this amount of time
is Hi . For simplicity we shall assume all the Hi are equal, and shall call
their common value H, although it would be easy to work with unequal
values if desired. Thus if x requests are serviced during one visit to
hopper i, this visit requires Hi + xsi seconds.
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It will turn out later that the value chosen for H is not very important
in the context of this model. The comparison between different work -
scheduling algorithms is unaffected by the (nonzero) value used.

III. WORK -SCHEDULING AND SERVICE POLICY

We suppose that the hoppers are visited in a fixed cycle of length
N, namely,

(il 1:2 iN).

This means that hopper i, is visited first, then hopper i2 , and so on.
After iN is visited, the cycle starts over again with hopper it . One simple
cycle with I = 4 and N = 6 is (1, 4, 2, 4, 3, 4). No. 1 ESS uses I = 5
hoppers (classes of hoppers, actually), and a cycle of length N = 30:

pams.,,er

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2
If i is any given hopper, we shall let V(i) indicate the set of all visits

to hopper i. Thus for the cycle (1, 4, 2, 4, 3, 4), we have

V(1) = [1], V(2) = [3], V(3) = [5], and V(4) = [2, 4, 6].

In the No. 1 ESS cycle,

V(1) = [1, 3, 5, , 29], 17(2) = [2, 6, 10, 14, 18, 22, 26, 30],

V(3) = [4, 12, 20, 28], V(4) = [8, 24], V(5) = [16].

For any visit it, the last previous visit to the same hopper is called
b(n) ("b" for before). Thus in the cycle (1, 4, 2, 4, 3, 4), visit 6 is to
hopper 4, and the last previous visit to the same hopper is on visit 4.
Thus b(6) = 4. Because "last previous" is understood in a cyclic sense,
b(2) = 6. We have

b(1) = 1, b(2) = 6, b(3) = 3,

b(4) = 2, b(5) = 5, b(6) = 4.

Whenever a hopper is visited, we suppose that all work requests
there are serviced. However, during the period when the hopper is
being serviced new requests can enter it. What about these requests
which enter the hopper while it is being serviced? These can either be
handled when they are reached during the same visit, which we call
the "come -right -in" policy, or they can be left for the next visit to the
hopper, which we call the "please -wait" policy. We shall treat both of
these hopper service policies, because their solutions are very similar.
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W. HOW TO EVALUATE P

As there is no statistical variation left in our model, it is easy to
analyze. Let

t = time spent emptying the hopper in during visit n.

Let C be the time spent during an entire cycle, so that C consists of N
hopper visits. Hopper visit n consists of time H to examine the hopper,
and time tn to service it. Thus

C = E (H tn) = NH + E tn .

n-1 nil

Now consider the requests which are serviced during t . Let

Tn = the interval during which they enter hopper in .

Recalling that b(n) is the last prior visit to hopper in , we see from

Fig. 1 that

Tn =

E (H tp) = [n - b(n)]H E t ,

72b (n) +1 b (n) +1

"come -right -in;"

n-1 n-1

E (t, + H) = [n - b(n)]1-1 E t, ,

ib (n) b(n)

(1)

"please -wait."

Note that b(n) and the summation indices must be understood in a
suitable "cyclic" sense, so that (for example) if b(n) = n, then n b(n)
means once around the cycle and hence equals N, not 0. Now it is easy
to see that

(the number of requests served during tn) = tn/si.

= (the number of requests initiated during Tn) = 7'n/r ,

IHI

m=b (n)

Tn FOR COME -RIGHT -IN

tm H tm+I H

Tn FOR PLEASE -WAIT

tn

Fig. 1 -Time flow diagram illustrating "please -wait" and "come -right -in" policies.
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SO

/7, = \,T . (2)

By using equation (2), we can eliminate either all T or all t from equa-
tions (1). This will leave us with N linear equations in N unknowns,
which in fact turn out to be linearly independent. By solving these
equations and using equation (2), we can find the T and the t , and
from them all else will follow, as we show below. For convenient ref-
erence, we state the equations after eliminating the to :

T =

n

[n - b(n)]H + E X,Tp ,
P-b(n)+1

n-1
[n - b(n)]H + E Xi T ,

v=b(n)

"come -right -in;"

"please -wait."

(3)

Recall the special cyclic interpretation of n - b(n) and the summations.
It is worth digressing briefly to derive an explicit formula for C,

and to show how the N equations (3) can be reduced to N -I equations
in N - I unknowns by using it. It is easy to see that if we sum Tn over
all visits to some particular hopper j, the result must equal C:

E T = C for every j. (4)
n in V(i)

Now sum equation (3) over all n in V(j), and use equation (4) several
times:

E Tn = E [n - b (n)] H + E xi, 71,}
vs in v(i) n in V(i) p=b(n)+I

This yields

C = NH + X;911,,
p-i

= NH + E xi[ E T]
i-i pin V(i)

= NH + (i Xi)C

= NH + AC.

NHC - 1 - A (5)
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Since C is now given directly in terms of known quantities, we can use
equation (4) to solve for one Tn in terms of others. We can do this
separately for each j = 1 to I, and thereby reduce the number of un-
knowns and equations to N-I.

Once we have the values of Tn (and hence of t), we may easily
evaluate e, the average delay for requests serviced during visit n.
(Each delay is reckoned from occurrence of request to when its proc-
essing starts.) By elementary reasoning, we see that

en = 1(T - tn), "come -right -in,"

en = tn), "please -wait."

Of course Tn/ri requests are serviced in visit n. Thus the average
delay per request of type j is

di =
E Tn

en
n in V(i) rim

n in v(i) ri

Using equations (6), (2), and (4), we get

Now let

so that

Then

di =
- xi)c E F: , "come -right -in,"

di -1 - 2.7 712
2C ninv(i) n

di =1 + X' 2.7 T2
2C n V(i) n

"come -right -in,"

"please -wait."

Fn = Tn/C = fraction of a cycle used by Tn ,

E F, = 1, all i.
n in V(i)

n in V(i)

same, but with 1 + X, for 1 - Ai , "please -wait."

Using equation (5) and the definition of P, we now easily find a
formula for the penalty P, which is the key quantity we use to evaluate
work -scheduling algorithms:

(6)

(7)

(8)

(9)

(10)
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NH Jr w, 1 "come -right -in,"

P = 2(1 - A) tz-i, r, (1 - xi) /7,24

same, but with 1 + X, for 1 - X, ,

1 -A is unaffected "please -wait."

(However, note that the values of the F may differ for the two policies.)
We note that the work -scheduling algorithm influences equation (11)
in only two ways: through N, and through the fractions F.. From
this formula we can evaluate and compare different work -scheduling
algorithms. Also we can compare "come -right -in" with "please -wait."

V. SOME EXAMPLES

If there are I = 3 different hoppers, the simplest possible cycle is
(1, 2, 3), for which N = 3. In this case we see trivially that F, = F2 =
F3 = 1, for eithei "come -right -in "or "please -wait." Thus equation
(10) for cycle (1, 2, 3) is:

r 311 3 W

j
E - - " "come-right-in,

r,P = 2(1 - A)

same, but with 1 + X, for 1 - X, ,

1 - A is unaffected "please -wait."

Given the three input parameters s, , , and w, for each hopper,
this can be evaluated numerically.

Now suppose we use the cycle (1, 2, 1, 3), for which N = 4, with
the "come -right -in" policy. Then equations (3) for cycle (1, 2, 1, 3)
become the following four equations:

T1 = X,T, A3T4 + 2H,

T2 = + T3) + A2T2 + X3T4 + 4H,

T3 = A2T2 + )013 + 2H,

T4 = X (Ti + T3) + A2T2 X3714 + 4H.

However, taking C as known, and using equation (4) for cycle (1, 2, 1, 3)
namely,

+ T2 = C, T2 = C, T4 = C,

we eliminate the unknowns T2 T3 , and T, , leaving one equation in
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one unknown, T, :

We find

T, = X, T, X3C + 2H.

T
1

1
= [2H + AX].- X,

Dividing by C, and using C = 4H/(1 - A) from equation (5), we

1(1 - A) ± X3 1 1 XI + X3 X2

I 1-X, - 2 1 - X,

= 'X3 - X21
2 L 1-A,

As F3 = 1 - F, , we find

PI -I- = 1+

and also

Thus equation (11) for
policy is

P

(X3 - X2)2
1 - X, '

see

= 1, n = 1.
cycle (1, 2, 1, 3) with the "come -right -in"

4H {Iv' xi) 1 1+ (X3- X2)2]
2(1 - A) r, 2 1 - X,

+w2(1 - ),2) + (1 X3)}.
r2 r3

Through special circumstances which would not hold in general, the
values for Fn using this cycle are all the same for "please -wait" as
for "come -right -in," so P for "please -wait" is the same as the above
but with 1 + X, substituted for 1 + Xi in three places. Given the
parameters Si r; , and wi for each hopper, this can be evaluated
numerically.

VI. CONCLUSIONS

If we compare cycles of the same length and with the same number
of visits to each hopper, then equation (11) yields the following con-
clusion: The visits to a given hopper should be spaced as evenly around
the cycle as possible.
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By this we mean that the values of TT, (and hence of Fn) pertaining
to this hopper should he as equal as possible. This follows because
the minimum of

E F: subject to E Fn = 1
n in V(i) n in V(i)

occurs when the Fn with n in V(i) are all equal. Furthermore, equation
(11) can be used to estimate how serious any given deviation from
equality is.

Suppose a cycle has Ni visits to hopper i, so that N = ZNi , and
suppose that the Ni visits are spaced approximately evenly around
the cycle for every i. Then for each visit n to hopper i,

F
" Ni

Thus

HP N w_,. (1 _ "come -right -in."
2(1 - A) , r; Ni

Either using a Lagrange multiplier to handle the constraint that
EN; = N, or by direct argument (see the appendix), it is easy to deduce
that the values of Ni which minimize this satisfy

SO

Ni proportional to [-1 (1 - X i)
ri

Ni
N

ri

].(1 - x,)

This yields our most important conclusion: The above approximate
formula gives the optimum relative frequency of visits to each hopper in
the cycle.

By obtaining values for ri , s; , and less easily for wi , it is possible
to compare different work -scheduling algorithms with each other and
with the "ideal" schedule with perfect spacing implied above. Notice
that the actual value of H does not enter into this comparison. (If we
had used unequal values for the Hi , only the ratios Hi/Hi would
enter into the comparison, not the actual values of the Hi themselves.)
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It would probably be worthwhile to analyze the actual work -sched-
uling algorithm used for ESS No. 1 in these terms. It would be in-
teresting to compare this actual algorithm with the "ideal" algorithm.

Our model, with its highly simplified assumptions, cannot possibly
provide the last word on work -scheduling evaluations, even with regard
to delay times. However, this kind of approach is probably desirable.
If greater realism is desired, the most important aspects are statistical
variability and interdependence of hoppers.

APPENDIX

Direct Argument to Replace the LaGrange Multiplier Argument

Henry Pollak has pointed out a simple direct argument which shows
that l(ai/Ni) is minimized, subject to the constraint = N, if
N is proportional to (a,)/. Using a, = 2v,(1 - X;)/r; , this yields the
formula given above for Ni.

First, let q = NAM(ai)i]. Now, we multiply the quantity to be min-
imized by q2, and express it:

, 1/2

E
qai oi/2) 2qm(a01/2
Ni N

The middle term is constant by definition, and the last term is con-
stant by constraint. The first term cannot be less than 0. The first
term is 0 if

ea,
or Nc q(a1)1/2

N

Since these values satisfy the constraint, we obtain the desired result.
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Some Properties of a Nonlinear Model of
a System for Synchronizing Digital

Transmission Networks*

By IRWIN W. SANDBERG

(Manuscript received April 22, 1969)

J. R. Pierce has recently proposed a system for synchronizing an arbitrary
number of geographically separated oscillators, and, under the assumption
of zero transmission delays between stations, has shown that a certain linear
model of the system is stable in the sense that all of the station frequencies
approach a common final value as t 00 .

The purpose of this paper is to report on some results concerning the
dynamic behavior of a nonlinear version of an important special case of
Pierce's model. The nonlinear model takes into account transmission delays.

It is proved under certain very general conditions that the nonlinear model
possesses the stability property required of a synchronization system. More
explicitly, it is proved that the model is stable for all nonnegative values of
the delays. The results show that the model possesses some additional funda-
mental properties of engineering interest, and they provide an analytical
basis for using a computer for further studies. In particular, a complete
solution to the problem of determining the final frequency of the system and
the final value of the content of an arbitrary buffer is presented, in the sense
that it is shown that these quantities can be determined by solving a certain set
of nonlinear equations which is proved to possess a unique solution.

I. INTRODUCTION

The purpose of this paper is to report on some results concerning
properties of the solution f i(t) , WI) , , f (t) of the set of equations

* This paper was presented as an invited contribution at both the Symposium on
Mathematical Aspects of Electrical Networks (sponsored by the American Mathe-
matical Society, New York City, April 1969) and the Joint Conference on Mathe-
matical and Computer Aids to Design (sponsored by the ACM, SIAM, and IEEE;
Anaheim, California; October 1969).

2975



2976 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969

Mt) = coi{ i{ft [Mr - r - j(T)] dr b 0)1}

= 1,2, ,n

0 (1)

in which n is an arbitrary positive integer such that n > 2, the goi()
and the yo,;( ) are monotone functions that map the real interval
(- 00 , 00) into itself, the 7i; are nonnegative constants, and the ci and
the bi;(0) are real constants.

The set of equations (1) governs the behavior of a nonlinear model of
the key part of a system for synchronizing digital transmission networks.
Our main result is that synchronization is possible under very general
conditions concerning the nonlinearities and the time delays ri; . In
addition, an analytical basis for computing the final frequency of the
system is presented; this involves proving that a certain set of nonlinear
equations possesses a unique solution. Other results are presented con-
cerning, for example, buffer requirements* and certain monotonicity
properties of the frequency functions f ;().

1.1 Pierce's Model

When Ti; = 0 for all i j, when co (x) = x for all i and all real x, and
when pi; (x) = a; ix for all real x and all i j, in which ai; is a real con-
stant for all i j, we have

f i(t) = E aii{f [fio-) - tier)] dr + bii(o)) + ci

i=1,2,,n O. (2)

Equations (2) are the equations of a linear model of the principal part
of a system for synchronizing digital transmission networks recently
proposed by J. R. Pierce.' His system employs oscillators of adjustable
frequency and buffers which accept pulses at an incoming rate and which
produce corresponding output pulses at the local clock rate.

In Pierce's model the content bi; of the buffer at station i which ac-
cepts pulses from station j is assumed to satisfy the equation

b,;(t) = Mt) - fi(t), t 0 (3)

in which Mt) and Mt) are the frequencies at time t at stations j and i,

* An explanation of the function of the device called a buffer is given in Section 1.1.
t As usual, a dot over a mathematical symbol denotes the derivative with respect

to time.
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respectively, and the overall system of coupled oscillators is assumed to
satisfy equations (2) with a,1 = aii 0 for all i j. Under the natural
assumption that there is some path from each station to every other
station, Pierce has shown, by directing attention to a passive RL net-
work analog of equations (2), that the model is stable in the sense that
each frequency f; approaches the same final value as t 00.*

1.2 The Nonlinear Model

Our interest in the properties of the solution of equations (1) arises
as a consequence of Pierce's work as follows. First, we wish to take into
account the time delay Tii associated with transmission to an arbitrary
station i from an arbitrary station j i. Thus we replace f i(t) by f i(t -
ri i) in (3) and (2). The content bii(t) of the ijth buffer is then

U,(7 - 7,;) - f,(7)] dr + bi;(0) (4)
 0

for all t 0.
Our mathematical model of a buffer does not reflect the fact that the

capacity of a real buffer is bounded; a real buffer is a device that can store
at most some fixed finite number of pulses. Therefore it makes sense to
study how a linear model of a synchronization system employing buf-
fers, such as the one governed by (2), can be modified to reduce the pos-
sibility of occurrence of buffer overload (that is, the possibility that the
capacity of the buffers will be exceeded). It is therefore reasonable to
replace the expression (4) for the buffer content by some monotone non-
linear function so; i(  ) of (4), with the idea in mind that soi;(  ) is a func-
tion with moderate slope near the origin and very large slope correspond-
ing to values of (4) that are in the neighborhoods of buffer overload.
Similarly, in order to ease the requirements on the extent to which the
frequencies of the adjustable oscillators must be variable, and in order
to reduce the tendency of very large excursions in the frequencies f
during a transient phase, it is reasonable to replace the sum

E (pii[bii(t)] (5)

formed at the ith station by some monotone nonlinear function co; (  )
* In Ref. 1 Pierce actually deals with a more general linear model than we have

described here, but treats in most detail the important case described above. In
connection with the more general model, Pierce has exploited the network analogy
further in order to obtain an expression for the final frequency, and to make asser-
tions concerning the behavior of the system when certain elements are nonlinear.
For additional material dealing with various aspects of the problem of synchronizing
geographically separated oscillators, see, for example, Refs. 2-7. In particular,
Ref. 4 contains a short history of the problem.
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of (5), in which soi( ) has moderate slope near the origin and very small
slope far from the origin.

These considerations lead at once to the study of the properties of the
set of equations (1). Of course the crucial question is: "Does the system
governed by (1) possess the basic stability property required of a
synchronization system?" Our main result concerning (1) is that, no
matter what the values of the time delays 7-'1 under some conditions
which are quite trivial from the engineering viewpoint (and rather weak
from the mathematical viewpoint), it does.

II. SUMMARY OF RESULTS, AND SOME APPLICATIONS

2.1 The Main Result Concerning (1)

In order to describe the result, we first introduce some definitions and
assumptions.

Definition 1: Let ill denote an arbitrary 91 X n matrix with elements
. Let the graph of M denote the graph containing 91 vertices (that is,

n nodes), a directed edge (that is, a directed line segment or arc) from
node j to node i for every pair i, j with i 0 j and mi; 0 0, and no other
directed edges.

Definition 2: Let M denote an arbitrary n X n matrix. Then we shall
say that the graph of M is a communicating graph if and only if there is
some path (not necessarily a direct path) from each node to every other
node.

We assume throughout the paper that:

(i) rii denotes an arbitrary nonnegative constant for all i j.
(ii) For each i, soi(  ) denotes a real -valued continuously differenti-

able function defined on (- co, co) such that

so(x) (6)

for all x, with k, and L positive constants.
(iii) For each i j, (p;;() denotes a continuously differentiable real -

valued function defined on (- co , co) such that either 4011(x) = 0 for
all x, or

so'(r) (7)

for all x, with ki, and E, positive constants.*
* At the price of some additional complication, we could have replaced assuinp-

tions (ii) and (iii) with assumptions concerning the behavior of the sai(  ) and the vii(  )
on finite intervals. See Section 2.2.
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(iv) The matrix M defined by

(M)" = 0 for all i

(M)1 = co, 0) for all i j

is the matrix of a communicating graph.
(v) Each fi(  ) is defined and differentiable on 00 ) in which

maxi,i17").
Assumption (iv) possesses a simple physical interpretation. It is a

natural connectivity assumption of the type needed if synchronization
is to be possible in the sense that all of the station frequencies approach
a common final value as t -> 00 .

Our basic set of equations is

Mt) = coi{ E [Mr - ri,) - Mr)] dr + b1,(0)}} ci (8)

2979

for all i and all t 0. By differentiating both sides of these equations with
respect to t, we have

= ca;[ t)] coa(1)][ii(t - r) - fi(t)], t > 0 (9)

for all i, in which of course

Silt) = E coAr [fi(7. - MT)] dT b11(0)}
0

and

Ei = f [fi(r - rii) - Mr)] dr + bii(0)
0

Let 11, i(t) = go'i[Mt)]p'i[Ei,(t)] for all t 0 and all j i. Then

A(t) = E h.(t)U,(t - Ti,) - fa], t 0 (10)
iii

for all i. According to Theorem 1 (Section III) the coefficients 11,1,()
of (10) are such that there exists a real constant p with the property that
for all i, fi(t) - p 0 as t -> 00 . This means that the system is stable in
the sense that all of the station frequencies approach a common final
value. Note that this result does not involve assumptions concerning the
values of the nonnegative delays Tii , that it is valid for monotone non-
linearities of a very general type, and that it does not involve symmetry
assumptions such as so"(  ) = soii(  ) for all i j.
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2.2. A Monotonicity Property of the f,()

The first of the two lemmas used in the proof of Theorem 1 asserts that
the solution fi(  ), f2(  ), , f(  ) of (10) possesses an interesting mono -
tonicity property. Let T be an arbitrary nonnegative value of time t,
and let the upper envelope and lower envelope f(t) and f (t), respectively,
of the fi(t) be defined for each t by At) = max, fi(t), f (t) =
min, f,(t). Let 1,-(T) and f,(T), respectively, denote the largest and smal-
lest value of f(t) and f(t) for t belonging to the interval [--1. T, T].
Then, according to the lemma just referred to, At) < f, (T) and f(t)
b(T) for all t > T. In particular, since the fi(t) approach a common final
value, we see that the interval envelope functions j, (T) and f,(T) ap-
proach each other as T co

Our assumptions (ii) and (iii) on the co, (  ) and the ç,(.) concern the
behavior of those functions for all, and in particular arbitrarily large,
arguments. The upper and lower bounds just described show that it
would have sufficed to have made similar assumptions on the behavior
of the io,(  ) on any finite interval [- a, a] such that for all i

cc; (x) E [b(0) - max c, , 3 (0) - min c,.]

for all x c [-a, a]. On the basis of bounds of the type described in Sec-
tion 2.4, similar statements can be made concerning the pertinent range
of arguments of the ,pii().

2.3. Final -Frequency Determination

We now turn our attention to the matter of determining the final
frequency of the model governed by (1).

Let

pi(t) = f Mr) dr
0

for all t >= 0 and all i. Then, since for all t 0

Jt
- dr =

({-r{{)

fi(r) dr + f Mr) dr,
-7{,

we have, using (1),

= E ve,[p,(t - - p,(t) + x,d} + ci (12)

for all i and all t > 0, in which
0

Xii = b,;(0) Mr) dr. (13)
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According to Theorem 2 (Section III), there exists a unique real con-
stant p and some real n -vector q such that

P = (pi{ E CNA- PT.; qi - qi Xii]} ci for all i. (14)

With p and q such that (14) is satisfied, let

pi(t) = Pt qi ri(t), t (15)

for all i, in which the qi are the components of q, and the ri(t) are some
functions of t. Then, using (12),

P i(t) = E iii[-prii + qi - qi + Xii
iii

ri(t - - ri(t)]} ci (16)

for all i and all t > 0. But, using (14) and (16),

Pi(t) = Soi I E (pii[ri(t - - ri(t) + siill - coi{ E (pii[sii]i (17)
iii iii

for all i and all t > 0, in which s,1 = -prii qi -
For each i and each t E [0, 00), we have, by the mean -value theorem,

E vii[ri(t - - ri(t) sii]) - Coif E
jOi

= ioqu.(t)]t E <pii[ri(t - ri(t) - E coii[sii])

for some ui(t) such that ui(t) lies within the closed interval with end-
points E,,.fi cpii[si,] and Ei, - Ti;) - r,(t) sii]. Similarly
for each j i and each t E [0, 00),

coii[ri(t - rii) - ri(t) sii] - coo[sii]

= co'ij[Wii(t)][ri(t - ri1) - ri(t)]

for a suitably chosen wii(t). Therefore (17) can be written as

ti(t) = c,;(0mt - re,) - ri(t)] (18)
iasi

for all i and all t > 0, where cii(t) = co'du,(t)bo'idwii(t)]. But, by Theorem
1, the coefficients cii() of (18) are such that there exists a constant a
with the property that for all i,ri(t)->cast-÷ co. It follows [see (18)]
that for all i, ti(t) 0 as t co . Since

ft f ,(r) dr = pt q, ri(t), t > 0

for all i, it is clear that p is the final value of the fi().
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According to Theorem 2: there exists exactly one real n -vector q such
that, with tir = (1, 1, , 1),

U'q = E so,;[-riiuttg + qi - qi Xii]l ci

for all i, and p = Ulrq.
There are some simple special cases in which we can exhibit an ex-

plicit expression for p. Suppose, for example, that Tii = 0 for all i j,

that bii(0) = -bii(0) for all i j, and that (pii(x) = c011(- x) for
all i j and all real x. Then, using (14), we have for all i

- ci) = E coil [qi - qi bii(0)]

in which c,c. (  ) is the inverse of soi(), and

E vv(p - = E E (pal; - - bii(0)] = 0.

Therefore, np = Ei ci if soi(x) = x for all real x and all i, or if n = 2
and 9,(x) = p2 (x) = -co2(-x) for all real x.

Finally, as a relevant application of the material of Section 2.2, we
have when = 0 for all i j

min (ci (E 6 P < max (ci I E vii[bii(0)]))
Joi

since At) < maxi f i(0) and i(t) > mini fi(0) for all t > 0, and, by (1),

MO) = ci coii[b.,(0)])
i#i

for all i.

2.4. Bounds on Buffer Content

In order to analytically formulate specifications to be met by real
buffers such that buffer overload does not occur in a real synchronization
system of the type under study, it is natural to consider the problem of
obtaining useful upper bounds on the contents of the mathematical buf-
fers of our model. We do not treat this entire problem in detail in this
paper. However, we show here that under some strong assumptions, it is
possible to exploit the material of Sections 2.2 and 2.3 to obtain a simple
uniform bound on buffer content. In addition, in terms of the constant
p and the vector q introduced in Section 2.3, we present a complete
solution to the problem of evaluating the final value of the content of an
arbitrary buffer.

According to Theorem 2, the vector q that satisfies (14) is unique to
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within an additive n -vector of the form a U, in which a is a real constant
and U is the transpose of (1, 1, , 1). In particular, the quantity
Ag = (maxi qi - mini qi) associated with any solution pair p, q of (14)
is unique. In this section it is shown that when

Tij = bii(0) = 0 for all i j, (19)

then the magnitude of the content

fe ifio)- Ur)] dr (20)

of an arbitrary buffer is bounded for all I ?: 0 by 2Aa.
Let (19) be satisfied. As in Section 2.3, let

pi(t) = f MT) dr, t 0

for all i. Then with pi(t) = pt ri(t), t > 0 for all i, in which p and
q satisfy (14), we find as in Section 2.3 that for suitably chosen functions
ui() and wii(),

ti(i) = c11(0[7.0 - ri(t)], t 0 (21)

for all i, in which cii(t) = co'jui(t)bp:i[tvii(t)]. Since (21) is an equation
of the same type as (10) (more precisely, see Lemma 1 of the proof of
Theorem 1), it follows that for all t >= 0, ri(t) 5 maxi r (0) and ri(t)
mini ri(0). But ri(0) = - qi for all i. Thus, for any j and i with j

p - pi(t) = q; - q; r ,(t) - ri(t), t 0

<20Q, t>>=0

and, similarly, pi(t) - pi(t) -2A, , t > 0.
Concerning the problem of evaluating A, , there are some cases in

which it is possible to obtain simple and useful upper bounds. In one
simple case we can obtain an explicit expression for A, . For example,
suppose that (19) is satisfied and that n = 2. Suppose also that coi(x) =
cot (x) = co2(-x) for all x, and that c12 (x) = 4o21(x) = co21( - x) for

all x. Then p = coi[4,12(q2 - q1)] c, = co2[cc21(q1-q2)] + c2 , and, using
the fact that 02(.) and con(  ) are odd, 2(p1[sc12(q2 - q1)] = c2 - c,
Therefore, in this case AQ = I q2 - q, = so111,PI[i(c2 - ci)] H.

We now consider the matter of (proving the existence of and) evaluat-
ing the final value lim, bii(t) of the content of an arbitrary buffer.
With p, q, the ri(), and the pi(  ) as defined in Section 2.3, we have for
t > 0 and any i j
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bii(t) = f [Mr - - Mr)] dr -I- bii(0)
0

0

= pi(t - - pi(t) bii(0) f Mr) dr

0

= - prii qi - ri(t - r,i) - r,(t) bii(0) fi(r) dr.
flit

Since r; (t - - ri(t) 0 as t 00 , we have the result
0

lim bii(t) = - pTjj qi - qi bii(0) fi(r) dr. (22)
e-00 fTif

Finally, if (19) is satisfied, then, using (22),

max I lim bii(t) I = max I qi - qi = A, ,
iii 1-.co iii

which shows that our uniform bound 2A, is not unreasonable.

2.5 Discussion

The results presented in this paper are concerned with a reasonably
realistic strongly -nonlinear model of an important type of synchroniza-
tion system. They answer several key questions concerning the dynamic
behavior of the system, and provide an analytical basis for using a com-
puter for further studies in so far as we have proved, for example, that a
solution pair p, q of the set of equations (14) exists, that this pair is
unique in the sense indicated, and that it can be determined by com-
puting the unique solution q of a related set of equations.

On the other hand, although we have proved that under very general
conditions our nonlinear model possess the basic properties of a syn-
chronization system, in this paper we have not considered the next
natural problem, that of determining the extent to which the system
performance can be improved as a result of the presence of the non-
linearities. There are several other important practical problems that
are not considered here, such as the problem of predicting the effects of
variable transmission delays (due to temperature changes). There is a
clear need for much more work in this area, especially in connection with
the problem of comparing the performance of alternative synchroniza-
tion systems.

III. THEOREMS 1 AND 2

Throughout Sections III and IV:

(i) n denotes an arbitrary fixed positive integer such that n 2;
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the statement "for all i" means for all i = 1, 2, , n, and "for all
j i" means for all j E [1, 2, , n) except j = i.

(ii) With v an arbitrary n -vector, v" denotes the transpose of v.
The zero n -vector is denoted by O.

(iii) If x denotes a differentiable function of t, then t indicates the
derivative of x with respect to t.

(iv) All functions and constants considered are real valued.

The following two theorems are proved in Section IV.

Theorem 1: Suppose that the following conditions are satisfied:
(i) For each i j, a;; () denotes a nonnegative bounded measurable

function defined for all t E [0, 00).
(ii) With a and a positive constants such that a < a, for each i j,

ai1() satisfies either a;; (t) = 0 for all t E [0, 00) or a a;; (t) < a for
all t E [0, °O ).

(iii) For t E [0, 00), the n X n matrix A, with (A)ii = a;; (t) for all
i j and (A)ii = 0 for all i, is the matrix of a communicating graph.*

(iv) For each i j, r denotes a nonnegative constant and z =
maxio; rii .

(v) For each i, x i( ) denotes a differentiable function defined on [-T, 00)
such that

Mt) = E aii(o[xi(t - T11) - xi(ob
ioi

t> 0

for all i.
Then there exists a constant p such that x(t) - pU 0 as t 00 , in

which U = (1, 1, , 1)".

Theorem 2: Suppose that assumptions (i) through (iv) in Section 2.1 are
satisfied. Let U denote the n -vector (1, 1, , 1)". Then (a) there exists a
unique n -vector q such that

utrq = (pit E co,;[-ToLlerq q, - qi ci for all

in which the Xi, and the ci are constants, and (b) concerning the solution
p, q of

P = (pit E + qi - q, Xii]} c, for all i,

the value of p is unique, and q is unique to within an additive n -vector aU,
in which a is an arbitrary real constant.

* See definitions 1 and 2 in Section 2.1.
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IV. PROOF OF THEOREMS 1 AND 2

In this section:

(i) I denotes the identity matrix of order n.
(ii) The transpose of any matrix M is denoted by Mt'.

(iii) If v is an n -vector, then II v II denotes (v'v).
(iv) If F denotes an n -vector -valued function, then (F); denotes the

ill' component of F.

4.1. Proof of Theorem 1

We first prove the following lemma.

Lemma I: Suppose that (i), (iv), and (v) of Theorem I are satisfied.
For all t E co ), let (t) and a(t) denote max, xg(t) and min, xg(t),
respectively. Let T be a nonnegative constant. Then, for all t T, x(t)
supt-F.T. T1 (t) and a(t) X(t).

Proof: (upper bound) We have for all i

±;(t) = E ai,(t)[si(t - rii) - xi(t)], t > 0. (23)

Thus

and

jrAi

±;(t) E = E ctimmt - t 0
jOi

xi(t) = xi(T) exp [- E aim) dti
fT ia

exp
[-f E a"(t) dti E aii(r)s,;(r - rii) dr, t T (24)

r jaEi iii
for all i.

It is convenient to introduce the function I(, , ) defined by

/(u, v, k) = exp [-f E aki(t) dti
k

for all real u v and all positive integer k < n. Thus, for example, (24)
is equivalent to

xi(t) = xi(T)I(T,1,i) f I(T, t, i) E aii(r)si(r - 7.11) dr,
T

'/'. (25)
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Let to denote an arbitrary positive constant. There exist an index k

and a t, c[T, T to] such that

xk(t,) = sup 2(0 .
LT .T+ fel

Clearly

xk(ti) = xk(T)/(T, t1 fl' , E akisi(r - ro) .

Therefore, since the aki are nonnegative,

MO xk(T)/(T, ti , f t k) E aki(r)dr

 max sup xi(t)

1,

xk(T)I(T, t, , k) f , E aki(r) di sup 2(t) .
IT -7,131

But

l(r, ti , E aki(r) dr = 1 - l(T, ti , k).
iSk

Thus

x,(t,) 5 xk(T)I(T, ti , k) [1 - I(T, t k)] sup t(t).
I T-T ,t .1

Either

or

sup :f(t) sup t(t) (26)
I T-F.TI IT.1,1

sup f7(t) > sup t(t).
IT-F,TI 17.1,1

(27)

If (26) holds, then

xk(ti) 6 xk(T)I(T, t, , + [1 - I(T, t, , k)]xk(ti)

[since 34(0 = suP[T,tal OA and hence

xk(ti) 6 xk(T),

which implies that xk(4) 5 sup, 20). If (27) holds, then [since
xk(T) 5_ "SPIT -7. TI x (01
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xk(tl) 5 I(T, t k) sup (t) + [1 - I(T, t, , k)] sup ±. (t)
,T) IT -7.T1

6 sup X(t).
(T-7, T1

We have shown that

sup (t) < sup *(t). (28)
IT .T+1.1 IT -f .TI

But to is an arbitrary positive number. Therefore

sup -(t) 6 sup x(t).
1kT [T-F,T1

(lower bound) Our proof of the inequality

inf x(t) > inf x(t) (29)
tkT 1T-7.71

parallels the derivation of the upper bound, and is outlined below.
There exists an index 1 and a t2 >r [T, T to] such that

xi (t2) = inf x(t).

Thus

xt(t2) ?_-: x1(T)1(T, t2 , 1) + [1 - I(T, t2 , 1)] inf x(t). (30)
1T-7,121

Either

or

inf x(t) inf x(t)
IT -F. T1 (T.til

inf x(t) < inf x(t).
IT-F.T1 IT.til

In either case, we find using (30), that (29) is satisfied. 0
We note that it is a consequence of Lemma 1 that the components of

x() are bounded on [0, 00 ), and, since x() and t(  ) are related by (23),
that the components of ±() are bounded on [0, 00).

Assume that

sup ±-(t) - inf (t)
lu-F,u1 (u-F.ul

[2() and x(  ) are defined in the statement of Lemma 1] does not ap-
proach zero as u -) 00 . We shall show that this assumption implies that
the components of x() are not bounded on [0, 00 ), a contradiction.

Since, by assumption, suplu-F.ui (t) - inf[u-7,u1 x(t) does not ap-
proach zero as u 00 , there exist a positive constant E and a set fu17,
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with u, E [0, 00) and sup,, u, = co such that

sup (t) - inf 2e

for all q. For each q let tg E [u. - T, u.] and tQ E [ue - T, u,,] be such that

x(t) = inf :1(t)
lue-F.ugi

i(g) = sup gt).

Of course sup t = co and I t - 4 I < T. Thus there exists a set { X}°,`,'
of real constants such that I X,, I < T for all q, with the property that
gt X) - x(t) > 2e for all q. It follows from the definition of x(  )
and i(  ) that for each q there exist indices 1(q) and s(q) such that
X1 (0(4 Xq) X,(,) (to)2e.

Finally, since the components of x() are bounded on [0, c0 ), there
exists a positive constant 6 such that for all q xi (Q)(t X() - x, (G) (t) > e
for all t E [te - 2 S, t. 15].

At this point we need the following lemma.

Lemma 2: If the hypotheses of Theorem 1 are satisfied, if T is a non -
negative constant, and if there exist three positive constants t, , e, and (5 and
indices 1(q) and s(q) such that to - z S > T i- and xio)(t X) -
x1()(t) > E for all t E [tg - 13, 1,2 + lb], with Xg a constant and I ?kg

T, then there exist positive constants E and A such that, with (t) as defined
in the statement of Lemma 1,

sup (t) sup x(t) - A
IT-F.Ti

and A depends only on a, a, f, e, and b.

Proof:

As in the proof of Lemma 1, it is convenient to introduce the function
I(,  ,  ) defined by

I(u,v,k) = exp [- f E ax; (T) cid
lA i0k

for all real u v and all positive integer k < n. The relation between
T, f, t, , and (5 is indicated in Fig. 1.

From (23)

xi(t) = xi(T)I(T, t, i) f I(T, t, i) E aii(r)xi(T - Ti;) dT

for all t > T and all i. By Lemma 1, x (t) < sup Ti x (t) for all t T.
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r-6
tq

Fig. t - Relation between T, f, S.

Therefore

sup At) - xR()(t) E (31)
T-r. TI

for all t E 1tg - 16, tQ + 161.
Let k1 be an index such that ak,,(Q)(t) 0 for all I > 0. Then for

t tQ

Xki(i) = Xk (T)/(T, t, k,) f 1(T, t, k,) E ak-(r).rier - rk,i) dT
T ilk,

I(T, t, k1) sup :g(t)
(T-F. TI

+ I(T t, k'1)
T

'1'

Eak.(r)x,(r - rk) dr
.4R(a)

I(T, t, ki)ak, ) - Tknco) dr

-1-154-,k,  (,)

-T(r 1, let)aki,i(a)(r)x,i(o(r rk,,(o) dr
q-15+,-ki,,(g)

 J I(T, t, - Tk,a(q)) (I. T.
tg+15+Tki,(a)

By Lemma 1, for each j,

xi(r Tki) sup '.f(t)
I

(32)

for all T. T TA:xi . But (32) is obviously satisfied also for T E [T, T
Tk, jj. That is, (32) holds for all r T and all j. Thus, using (31),

xk,(1) S I(T, t, ki) sup ;f(t)
r-F. TI

I(T, t, ki) E ak.(r) dr sup (1)
T .T1

rtg+1,3+1-ki,(q)

E / I(T, 1, kii)ak,s(g)(T) dT
 tg-454-,k,,(q)

J 0 d
t,+16-Frki,(a)

sup .L(t) - E /(T, t, ki)ak,.(r
I r-f TI
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for all t > t, + f, since

f1 I(r, t, k,) E ak(T)dT = 1 - I(T, t, k,).
T ilk,

But, for all ki ,

rt ,4+5+7"kie(q)

1(7, kjaki.(4)(r) dr a Ci.--.)a(i-r) dr
.,,_io+Tk(g)

K exp -O[t - 1. - rk,.(G) - jib])

in which = (n - 1)a and K = all - exp [- (n - 1)ci8]}[(7/ - Oa]-'.
Therefore

.rk,(t) sup :f(t) - eK exp -13[t - 1, - rk,e(,) -
IT -F. T1

for all t t, + T. In particular,

sup x(t) - xk,(t) ->-: elfe-s(6.7)
IT -F .TI

for all t E [tq ta 4(5 f]. Similarly, if the index k2 is such that
ak,k,(t) 0 for all t > 0, we have for all t > tg + 2f

= .rk,(T)/(T, t, k2)

f t, k2) E ak,i(7-)si(T - rk,i) dr
j1:2

sup (t) EK2 ( )

I T-r.TI

2991

 exp - t, - T, - g -S - 71) . (33)

In particular, for t e [tg + 2i-, tg 2i-]

sup t(t) - xka(t) > EK2e-2s(a+7)
IT -T. TI

Since the graph of A is a communicating graph, we may continue in
this manner to obtain an upper bound of the type (33) for all of the
3c,(). More explicitly, for each lc' E {1, 2, , n}, let { , k2 , ,

denote a finite set of positive integers, with the integer p dependent on
k such that {ki , k2 , , {1, 2, , n} and

ak2kakik2 akpk(p,..1) 0,0.
Then, with B = supIT-r.ri 2(0, u = e -s(' , and

T,. = tg ± (7* - 1)0 for all r = 1, 2, , p,
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we have

Xka(0 S B - clfe-oFe-tict-T,)

Xk.(0 B - EK2ue-fife-p(e- T2 )

xkp(t) B - eKlit'e-fife-sci-T)

Now let t = 71 with n £ [0, i-]. Then

xkt(t) < B - EiCe-s'e-13(P-1)"+"e-fin

t > T,

t > T2

t T, .

- joue-Pe--13(7,-2)(a+F)e-fin

xkp(t) B - ElOu'e-sfe-1311.

Thus, for all t e [Tp ,

x k (t) B - Aki

for all r = 1, 2, , p, in which
min { eKrur- le-2ofe-pp-,) ( a -1-f))

Let A = mink, Zk, and observe that A depends only on a, a, T, e, and
S. By Lemma 1,

37,(t) B - A
for all t > Tp

Since as indicated earlier, there are an infinite number of 6 -intervals
with centers tg such that sup { tg} = 00, and such that there exist in-
dices 1(q) and s(q) with the property that

Xi(g)(t - X8(,) E (34)

for all t e [t, - 16, t, + 16], with the constants X such that I Xg

we see that Lemma 2 and the assumption that

sup t(t) - inf x(t) (35)
(u-F.u1

does not approach zero as u 00 imply that "(t) -+ - 00 as t co ,

which contradicts the fact that ±-() is bounded on [0, 00). Therefore
(35) approaches zero as u --> 00. But, by Lemma 1, sup(_.,) t(t) is
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monotone nonincreasing in u-and bounded from below. Thus there is a
constant L such that

sup (t) L
(u-I.ul

as u -÷ 00. Similarly, by Lemma 1, influ_,,, x(t) is monotone non -
decreasing in u and bounded from above. Thus there is a constant
L such that

inf x(t) L
(u-F,u1

as u 00. But we have proved that L = L. Therefore (t) and a(t)
both approach L as t 00, which means that there is a constant p such
that

x(t) - pU 0 as t 00 . 0

4.2. Proof of Theorem 2

In part (a) of this proof we employ a theorem of R. S. Palais* ac-
cording to which: if F(.) is a continuously -differentiable mapping of
real Euclidean n -space En into itself with values F(q) for q E En such that

(i) det J, 0 for all q e Em, in which J, is the Jacobian matrix of
F() with respect to q, and

limigo- II F(q) =

then F() is an invertible mapping of En onto itself and F()-1 is con-
tinually differentiable on E.

We have

U'rq = coif E cot,[-Tiiutrq,+ q; - qi Xii]) c; for all i.
sue;

Let F() denote the mapping of En into itself defined by the condition
that for all i and all q E E":

[F(q)]; = Utrq - (0,{ E vi,[-Tijutrq + qi - qi Xii]}.

Our objective is to show that F() satisfies conditions (i) and (ii) of
Palais' theorem.

We have, with F; denoting [F(  )]; ,

aF = 1 + co; E (1 + for all i
a q i

* See Ref. 8 and the appendix of Ref. 9.
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and

aF, = 1 + E - sofso:k for all k
aqk iii

in which

c,4 = cp'it E vii[-Tirrq + - q1 + ),;;]}

and
(*off coff[- TiitItrq qi - q, Xi,].

Let iii; = c.o(p., for all i j, let V be the n -vector defined by

V`r = (1 ± EI iiTli, 1 ± 7 8,-257-2; , , 1 + E (3,,),
i*2

and let B denote the n X n matrix defined by

(B), = E oii for all i, (B)11 = -8,, for all i j.
i*i

Then J, = B VU".
Suppose now that det J, = 0 for some n -vector q. For that q, there

would exist an n -vector x 0 such that J,"x = (B' UV')x = 0.
Since the column space of Ber is orthogonal to U, we must have B'x = 0
and V`rx = 0. But B is of rank (n - 1) and the cofactors of B are non -
negative. *

Thus Btrx = 0 implies that x = Ey, in which y is any column of the
matrix of cofactors of B and E is some real nonzero constant.f But we
must have Vrx, = .17.gry = 0, which is a contradiction, since at least one
element of y and all of the elements of V are positive. Therefore F()
meets condition (i) of Palais' theorem.

We now show that F (  ) satisfies condition (ii) of the theorem of Palais.
It is a simple matter to verify that for all i

F = U'q - E rii[-TifUtrq qi - q1] - vi[E

in which

E ;04- Tiiutrq + qi - q1 + xii]) -
I4i j#ir, =
E(pii[-Tifutrq + qi - q. + - E

* See Ref. 10 for a proof that B is of rank (n. - 1) and that the cofactors of all of
the (B)ii elements of B are positive. Since BU = 6, each of the columns of the
transposed matrix of cofactors of B is proportional to the vector U (see the footnote
that follows). Therefore all of the cofactors of B are positive.

t This follows from the well-known proposition that MerC = 1 det M, in which
M is any square matrix and C is the matrix of cofactors of M.
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co,,[- THU' q - -1- X.H] -rii - riirr q + - qi
with the understanding that ri is unity when the corresponding numera-
tor is zero, ri; is zero for all q and all i j for which coo is identically
zero, and ri; is unity for all i j for which (p is not identically zero and
for all q for which the corresponding numerator is zero. Therefore, for
all qe En, F(q) = Mq s, in which the n X n matrix M is obtained from
elg by replacing co: by ri and (p;; by ri; for all i and all i j, respectively,
and the ith component of s is cpii(Xii)] for all i. In particular,
det M 0 for all q. Therefore det (Mt > 0 for all q. Since all of the
ri as well as all of the nonidentically zero rii are bounded above and
below by positive constants uniformly for q En, there exists a positive
constant E such that det (M' M) e for all q

Let X, , X2 , , X,i denote the eigenvalues of 111" M. Then X,X2 Xn

e for all q E En. Assume that X, X, X . Since all of the ri
and all of the ri; are bounded from above uniformly for q E En, there
exists a positive constant X such that X < X for all q E E. Thus, for all
q E En we have X, > eX-("-1). Therefore,

11 F(q) 11 = 11 Mq s 11 11 Mq 11 - 11s 11

1X -1(n-" 11 q 11 - 11s 11

for all q E En, from which it is clear that II F(q)
I

I -* op as II q 00

This completes the proof of part (a) of our theorem.
Next we show that there is at most one p with the property that there

exists a qe E" such that for all i

P = (Pif E Prii qi - qi X,;]) + c, .

iii

Let p(a) and p(" be two constants, and q(a) and q(b) two n -vectors, such
that for all i

P(a) = coif E P(a)Tii e) - + ill + 1

p(b) (piE e) e) +

Then with q(`) = q(b) aU , in which the constant a is chosen so that
p(a) p(b) = U (q( a) - q( ) , we have for all i

P
(c) -
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where p(`) = p(b). Thus

and

(a) (e) E
ioi

- cad E (pd-P(c)rii e) - e) --k Xii])

p(a) p(c) utr(q(a) q(a)).

Therefore we can define nonnegative ratios pi and pi; similar to the
ri and ri; above, such that

utr(q(o) q(c)) Utr(q(a) q(C))rii
iii

(e) - e)) - (e) - e))] for all i,

and such that these equations are equivalent to M'(q(a) - q(`)) = 0
in which the n X n matrix M' is obtained from J Q by replacing tpi by
pi and by pi; for all i and all i j, respectively, so that det M' 0.

But this implies that q(6) = q(`) and hence that p(a) = p(b).
We shall how prove that q is specified to within an additive vector

of the form «CI in which a is a real constant.
Suppose that, with q(') and q(b) two n -vectors,

P - coi E cod- prii + e) - e) + xii])
iii

= p co,{ E e) -

for all i. Then, with the pi and pi; as introduced above,

E pii[(e) - - (q!, a) te,))] 0

Jo,

q(ib) j}

for all i. Thus, since pi 0 0 for all i, and the n X n matrix P defined by

(P), = E pi; , for all i
ioi

(P)ii = -pi; , for all i j

is of rank* (n - 1), and PU = 0, we have q(a) - q(b) = aU for some real
constant a. 0

* See Ref. 10.
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Overflow Oscillations in Digital Filters

By P. M. EBERT, JAMES E. MAZO,
AND MICHAEL G. TAYLOR

(Manuscript received May 9, 1969)

The cascade and parallel realizations of an arbitrary digital filter are
both formed using second order sections as building blocks. This simple
recursive filter is commonly implemented using 2's complement arithmetic
for the addition operation. Overflow can then occur at the adder and the
resulting nonlinearity causes self -oscillations in the filter. The character
of the resulting oscillations for the second order section are here analyzed
in some detail. A simple necessary and sufficient condition on the feedback
tap gains to insure stability, even with the presence of the nonlinearity, is
given although for many desired designs this will be too restrictive. A
second question studied is the effect of modifying the "arithmetic" in order
to quench the oscillations. In particular it is proven that if the 2's comple-
ment adder is modified so that it "saturates" when overflow occurs, then no
self -oscillations will be present.

I. INTRODUCTION

A digital filter using idealized operations can easily be designed to be
stable.' Nevertheless, in actual implementations, the output of such a
stable filter can display large oscillations even when no input is present. *
A known cause of this phenomenon is the fact that the digital filter
realization of the required addition operation can cause overflow,
thereby creating a severe nonlinearity. t Our purpose here is twofold.
The first is to give a somewhat detailed analysis of the character of the
oscillations when the filter is a simple second order recursive section with
two feedback taps. This unit is the fundamental building block for the
cascade and the parallel realization of digital filters, and as such is
worthy of some scrutiny.' A simple conclusion which one can draw from

* To the best of our knowledge, these oscillations were first observed and diagnosed
by L. B. Jackson of Bell Telephone Laboratories.

1- In the present work rounding errors in multiplication or storage are neglected
and therefore so are the little -understood oscillations attendant upon these non-
linearities.

2999
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the analysis is that the design of many useful filters requires using values
of feedback coefficients such that the threat of oscillations is always
present (with 2's complement arithmetic). Optimum solutions that cope
with this state of affairs are still unknown. Some recent proposals include
observing when overflow at the adder is to occur and then taking ap-
propriate action. Our second purpose, then, is to discuss the effectiveness
of some of these ideas, and to give a proof that modifying 2's complement
arithmetic so that the adder "saturates" is an effective way to eliminate
the oscillations. Questions of how this nonlinearity will affect the desired
outputs from a particular ensemble of input signals are not yet answered
however, and perhaps for some applications other solutions need be
considered.

II. PROBLEM FORMULATION AND GENERAL DISCUSSION

As explained in the introduction, this paper deals primarily with the
simple structure shown in Fig. 1. The outputs of the registers, which
are storage elements with one unit of delay, are multiplied by coef-
ficients a and b respectively, fed back, and "added" to the input in the
accumulator. No round -off error is considered either in multiplication
or storage, but overflow of the accumulator is not neglected. In other
words, the accumulator will perform as a true adder if the sum of its
inputs is in some range; otherwise a nonlinear behavior is observed.

Figure 2 shows the instantaneous input-output characteristic f (v)
of the device motivated by using 2's complement arithmetic. It is also
important to note that there is no memory of the accumulator for
past outputs; that is, the device is zeroed after the generation of each
output.

If we let x(t) be the input signal to the device, y(t) the output, and

x (t)
IN

ACCUMU-
LATOR

f (v)
DELAY

y (t)
OUT'

DELAY

Fig. 1 - Basic configuration for the digital filter yk+z = f[ayk+1 byk
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OUTPUT = f (v)

Fig. 2 - Instantaneous transfer function of the accumulator.
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f () the nonlinear characteristic of the accumulator, we have the basic
equation

y(t + 2) = f[ay(t + 1) + by(t) --1- x(t + 2)]. (1)

We shall be concerned with the self-sustaining oscillations of the device
that are observed even when no input is present [x(t) = 0], and when
linear theory would predict the device to be stable.

By making this linear approximation f(v) = v, the linearized version
of equation (1) becomes, with no driving term in the equation,

y(t + 2) - ay(t + 1) - by(t) = 0. (2)

The roots of the characteristic equation for equation (2) are

a ± (a2 4b)1

2P1,2 - (3)

and the region of linear stability corresponds to the requirement that
I pi I < 1. This region is depicted as a subset of the a -b plane in Fig. 3.
One has I pi I < 1 if and only if one is within the large triangle shown in
Fig. 3. For this situation any solution of (2) will damp out to zero after
a sufficient period of time. Now note that (2) is not necessarily a valid
reduction of (1) even when x(t) = 0. The output, by choice of f, has been
assumed to be constrained to be less than unity, but this is not sufficient
to guarantee that the argument of the function f is less than unity. For
this to be the case we require

ay(t + 1) + by(t)
I

< 1. (4)

Since I y(t) I < 1, equation (4) will always be satisfied provided that

lal Ibl < 1. (5)
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( -1, 2 ) a

( I
,0)

Fig. 3-Some interesting regions in the "space" of feedback tap weights. The hatching
indicates stability even with the nonlinearity.

The subset of the a -b plane for which (5) is true is shown in Fig. 3
with vertical hatching, and is a subset of the region of linear stability.
It is shown in this Section that if (5) is not satisfied there always exist
self -sustained oscillations of the digital filter and hence (5) is both a
necessary and sufficient condition for absence of self -sustained oscilla-
tions.* One way to avoid the oscillations in question is simply to impose
the requirement (5). This trick has its ]imitations, however, for it clearly
restricts design capabilities. The region of the s -plane which is shaded
in Fig. 4 shows the allowable pole positions. Roughly speaking, one con-
cludes that there are desirable filter characteristics that can be realized
with this restriction and there are desirable characteristics that cannot.

It is not our purpose here to outline those applications for which (5)
will not be restrictive; we proceed to sketch the situation when a I +

b I > 1 and the threat of oscillation is present. Sections III and IV
contain, we believe, a novel and interesting mathematical treatment of
the general problem of classifying the self -oscillations of the nonlinear
difference equation (1). However, for the user of digital filters a simple
proof of the I a I + I b I > 1 being sufficient for threat of oscillations is
of more immediate interest. After reading the simple proof of this fact
given next in the present section, such a reader may wish to proceed
directly to Section V.

Consider the possibility of undriven nonlinear operation giving a de

* I. W. Sandberg has informed the authors that the necessity and sufficiency of
(5) holding for absence of oscillations has also been obtained jointly by him and
L. B. Jackson.
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output, that is, yk = y for all k. Equation (1), with x(t) = 0 becomes
y = fRa b)y]. Assuming for definitness that y > 0, we can easily see
from Fig. 2 that the above equation will be true if (a b)y = y - 2,
which implies y = 2/(1 - a - b). One can show (see discussion follow-
ing equation 17), that this y will have magnitude < 1 provided only
that the tap values a and b lie in the region labeled I in Fig. 3. Thus a
consistent de oscillation is always possible for all (a, b) pairs in this
region. Next consider the possibility of a period 2 oscillation. This
amounts to finding a consistent solution to y = f[(b - a)y]. Proceeding
as before we obtain

2y- 1 + a -
Thus /A will be given by (- 1)ky, and will have magnitude less than unity
if the (a, b) pair lies anywhere in region II of Fig. 3.

III. FURTHER ANALYSIS OF THE OSCILLATIONS

To analyze equation (1) in greater detail, it is very convenient to
write it in the form similar to (2),

y(t + 2) - ay(t + 1) - by(t) = E au(t + 2 - n), (6)

5

(3-2\rf)
P.-, -0.88

T

Fig. 4 - Pole locations in the s -plane (shaded region) realizable under the constraint
that Ibl < 1.
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where u(t) is a square pulse of unit height that one may conveniently
think of as lasting from t = 0 until t = 1. This, of course, means that
one interprets the solution of (6) to be a piecewise constant function
like the actual output of the digital filter. For mathematical manipula-
tions it is sometimes desirable to also interpret (6) as a difference equa-
tion, defined only for integer t. In this case one would write that u(t - n)
= (5171 where St?, is the familiar Kroneker symbol.

The point of the right side of (6) is simply to keep I f (v) I < 1 re-
gardless of what value v has. From Fig. 2 we see that if I v I < 1, this
added term is not needed and we take an = 0. If 1 < v < 3 then we take
an = - 2, and if -3 < v < -1 we take an = +2. Since we have that

y(t) J < 1 and that linear stability (see Fig. 3) implies I a I < 2, I b < 1,
we need not consider further values of I v I. Thus in (6) an = 0, ±2
depending on whether or not v(t) = ay(t + 1) by(t) crosses the lines
v = ±1. It will be convenient to have a word for such crossings; we
shall call them "clicks", borrowing a favorite word from FM theory.
Then an = 0, ±2 depending on whether or not a click does not, or does,
occur.

Note if one knew what the click sequence { an } was, one could solve
(6) simply by using the clicks to be the driving term for a linear equation.
We are mainly interested in describing the self -sustained steady state
oscillations of arbitrary period N. Hence initial conditions will play no
essential role for us, for while they determine which oscillating mode
appears as t 00 , they play no role in describing the modes. Our pro-
cedure will be as follows:

(i) Assume a click sequence of period N;

ao , a, , a2 3 aN-1

aiN+k = ak 1 = 0, 1,

0 _k<N-1.
(ii) Using the assumed { an }, find the steady state solution of (6).

However, only solutions that have I y(t) I < 1 for all t are allowed.
(iii) Check that this steady state solution actually generates the as-
sumed click sequence.

In carrying out the above program for some simple cases we observed
that step iii never seemed to yield anything new. Indeed, surprising as
it seems at first glance, step iii never has to be carried out. If one obtains
a solution with I y(t) I < 1, this solution is consistent. That is, it auto-
matically generates the assumed click sequence. The proof is simple.

(7)
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One calculates the argument of the function f from (6):

ay(t + 1) + by(t) = y(t + 2) - E anu(t + 2 - n). (8)

We have a click at time t + 2 = m if I ay(m - 2) + by(m - 1) I > 1.
From (8),

ay(m - 2) + by(m - 1) I = I y(m) - am I. (9)

Note then if in (9) am = 0, then I ay(m - 2) + by(m - 1)
I = I y(m)

< 1; thus if there is no click at a particular time in the assumed click
sequence the "solution" will not generate one. Next assume am = +2;
then

ay(m - 2) + by(m - 1) = y(m) -2 < -1, (10)

where we use I y(t) I
< 1 again. Equation (10) says if a positive click

is present in the assumed click sequence then the solution obtained from

the linear equation (6), given by this click sequence, will reproduce the
positive click. Obviously the same argument holds for a negative click,

am = -2, and the proof of this point is complete.
The steady-state solution of our fundamental equation (6) for an

arbitrary click sequence fam of period N is derived in the appendix.
If we define

(1 . E anz-n
z n-0

and
D (z) = z2 - az - b, (12)

and let r , i = 1, , N, be the N Nth roots of unity, then the (periodic)
output values are given by

1
N AN-1(-ri) k

Yk = N ,-1 D(ri)
(13)

The above expression gives the { yk} output sequence for any click se-
quence. We emphasize, however, that it is only a solution correspond-
ing to a self -sustained oscillation of the digital filter if we have I yk I < 1,
all k. Whether or not this is true depends on the particular click sequence
assumed.

Another form of the solution can be obtained by manipulation of (13).
To write this down, define

b(k) = (Cik--1- (14)
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where we understand ai = 0 if j does not lie between 0 and N - 1,
inclusive, and di = a; if it does. One of the a's in (14) will thus always be
zero and b"`) has values of ±1, 0. The other form of the solution is then

N-1
Pi

Y k 2 E bn(k)
P1 - P2 n-01 - PI

P2

1 N- P2

k = 0, 1, , N - 1 (15)

where pi are given in (3).
In (15) we have N vectors of dimension N, namely the {b7,(k)) k =

0, 1, 2, , N - 1. Note from (14), however, that they are all cyclic
permutations of one another. Hence we may refer to the b vector, b, of
a solution, understanding that the b and all its cyclic permutations
generate a solution in the sense of (15). Note that a cyclic permutation
of the yk has no real significance here; it simply changes the origin of
time.

An interesting property of the solutions which we have written down
follows from the fact that if we transform the point (a, b) in the ab-plane
into another point by

a a' = -a
b -> b' = b

then under this transformation

PI - Pi = - P2

P2 -> P2 = Pi

The property is this: Let N be an even integer and let b = (bo ,b, , ,

bN_1) be a click vector generating a solution at point (a, b). Then the
vector b' = (b. , - b1 , b2 , -1)3 , , bN_1) generates a solution at
reflected point (-a, b). The proof is simple. Note from (15),

(16a)

,(k) 2 b,i(k)[ pr
/

P2 n 1 -PiN- 1 -

2 i)k + nbn[( P2): P

- P2 ± PI n 1-P2 1 - pNi

Hence if I y(k) I < 1 then I Y' (k) < 1. Note that the proof also supplies
the value for y' (lc) in terms of y (k'. This theorem will be used later to
generate new solutions from old ones.

Before leaving this general discussion in favor of exhibiting some
solutions in the next section, we list a few more observations related

(16b)

i)ky(k)
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to the click vector b. The click vector b, whose only allowed component
values are ±1, 0, completely characterizes the associated oscillation.
Clearly there can then only be a finite number of oscillations of given
period N. This number is upper bounded by 3N, but will generally be
much less. Also note that a cyclic permutation of the components of b
cyclically permutates the output values yk, and this latter is merely a
shift in time. The permutated values are not physically distinct.

Also note that if we perform b -b then y -> -y, and a solution
of opposite sign is obtained. While this may often be distinguishable
from the first solution, it is trivially related to it. Finally if one were to
count the number b vectors of dimension N that yield new information,
one would wish to exclude subperiods of N. Thus if (+, 0, 0) is an gen-
erating b vector for period 3, (+, 0, 0, +, 0, 0) generates a period 6
oscillation but this is not new information. We have not solved the prob-
lem of counting how many of the 3N vectors are left after we impose the
requirements of cyclic shifts, sign changes, and subperiods. At any rate,
it is essential to test the ones that remain to check that they generate
allowed solutions, I yk < 1.

IV. SOME EXPLICIT PERIODS AND REGIONS OF OSCILLATION

Now for a few explicit solutions. Consider the possibility of a de
"oscillation", namely, set N = 1. The only nontrivial click vector is
b = (+). The solution is more immediate if we use (13). We have

2y= 1 - a - b (17)

for the dc value of output. For what values of a and b within the triangle
of Fig. 3 will we have I y I < 1? We require

11- a- bl> (18)

which is equivalent to either

1 - a - b > 2 (19a)

or

-1 ± a + b > 2. (19b)

Inequality (19a) (coupled with the linear stability requirement) defines
the triangle labeled "I" in Fig. 3, while (19b) is outside the stability
region and needs no further consideration. Thus any portion of the
region a < 0 that we have not excluded from oscillations has now been
shown to have them. They are of period 1; other period oscillations may
(and do) occur in this region.
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At this point it is amusing to use an earlier remark on the possibility
of generating new solutions from an even period one by "reflection".
Letting N= 2, the click vector b = (+, +) certainly generates a period
2 oscillation (albeit one with subperiods) in region I. Then the click vec-
tor b = -) generates something really new: a period 2 oscillation
in the region labeled II in Fig. 3. The amplitudes of the output are

y(k) i)k
1 +2- b '

a > 0. (20)
a

One more possibility of a click vector exists for period 2, and that is
b = (+, 0). From (13) we write for possible output values

1 1

Y° = 1 -a-b+1+a-b
1 1

Y1 = 1 -a-b 1+a-b
After a little uninteresting analysis one can conclude that we cannot
have I yo I < 1, I yi I < 1 in (21) for any allowed values of a and b. Thus
there are no other period 2 oscillations.

On to period 3. Now there are four click vectors which must be con-
sidered. These are (+00), (+ +0), (+ -0), (+ + -). Even in this case
an exhaustive check that the "solutions" generated are legitimate ones is
trying. Therefore, we resort to a trick; we look for periods which may
exist in the immediate neighborhood of the point (a = 0, b = 1). This
means pi = i, P2 = In this immediate neighborhood P2 = 13'1, and
(15) reads

(21)

2
N-1 bz.
27

Y
Im= Im z 1 - ZN

(22)

where we have let z = pi . Letting N= 3, z = i gives

Yo = bo bl b2

yl = -b, b2 bo (23)

Y2 = b2 bp

We now require y,, = ±1 as a test for the click vector b. We see that
only (+00) qualifies as possibly yielding a solution in the neighborhood
of (a = 0, b= -1). A computer study shows that indeed the solution
extends into the interior of the triangle and the region found is shown
in Fig. 5. This immediately implies existence of the period 6 oscillation
generated by (+00-00) in the reflected region. Similarly, a period 5
oscillation region (with the concomitant period 10) generated by
(+0000) is shown in Fig. 6.
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Fig. 5 -A region for period 3 oscillations.
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It is very tempting to conjecture that the point (a = 0, b = -1) is a
boundary point of any allowed region of oscillation. If this is true, a
procedure like that used above may eliminate some otherwise very
respectable b vectors from consideration. Note that for N = 2, b =
(-I-, 0) satisfies the required condition at p, = i, but we have shown this

=1.0b-0.9 -0.8 -0.7 -0.6

-0.2

a
-0.4

-0.6

-0.8_

Fig. 6 -A region for period 5 oscillations.
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OUTPUT = f (v)

Fig. 7 - Zeroing arithmetic, shown above, also gives rise to oscillations.

is not extendable into the interior of the triangle. Hence existence at
z = i does not guarantee an allowed solution.

V. STABILITY WITH A MODIFIED ARITHMETIC

In an attempt to eliminate these oscillations, proposals have been
made which rely on detecting overflow. One such suggestion dictates that
when overflow occurs, the adder is directed to shift out zero. For ref-
ereace we call this zeroing arithmetic. The effective transfer function of
the adder for zeroing arithmetic is given in Fig. 7. However, it can be
shown by numerical example that such a procedure still leads to oscil-
lations. Another possibility, "saturation arithmetic," is displayed in
Fig. 8. Here a one (with the appropriate sign) is put out when overflow
is detected. The remaining portion of this paper is devoted to proving
that saturation arithmetic leads to stable operation whenever linear
theory would predict it to be so.

To begin, we suppose for the moment that we ignore the fact that
the digitally implemented adder is nonlinear. Then the second -order
linear difference equation which governs the behavior of the undriven
system has solutions yk which may be described as follows:

Case 1: Complex roots for characteristic equation

yk = Re Ko exp (- ak), K0 and a complex, Re a > 0.

k = 0, 1, 2, . (24)

Case 2: Real but unequal roots

yk = K1 exp (-ale) + K2 exp ( #k). K, real; a > 0, # > 0. (25)
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Case 3: Real and equal roots

Y k = [K, K 2k] exp (-ak). Ki real; a > 0. (26)

Using this information, coupled with knowledge of yi and y,+, for some
j, it is easy to give a bound on the magnitudes of all future (k > j)
values of the output and to show this value goes to zero with increasing
j. This is just another way to say that the solutions go to zero for the
linear case. In the nonlinear case we cannot exclude the situation that
some yk+i will exceed unity and the nonlinearity will be operative. For
saturation arithmetic the offending value must be set to unity if, for
example, yk+i > +1. We can, for conceptual purposes, regard this as a
"squeezing" of the output from a value greater than unity down to the
value one which is performed in a continuous fashion. The crux of the
proof now comes in showing that the partial derivative of our bound
(on future outputs) with respect to the most recent output yk...1 has, for
saturation arithmetic, the same sign as yk+, . Hence decreasing a value
that is too large in magnitude will decrease the bound as well, and it
will go to zero at least as fast as it does for the linear case.

To show how the above outline works, consider first the linear case
with complex roots. From the form of the solution

Y k = Re Ko exp (-ak), Re a > 0, k = 0, 1, 2,

it is clear that if we define

Bo = IK.12 (27)

then y: S Bo for all k >= 0. We now express B, in terms of the values

Yo yi which are initially stored in the shift registers to yield

2 [ - y Re exp (-a)]2
Bo = (28)

[Im exp (-a)]2

This suggests that one define the more general set of numbers

) [yi, - y, Re exp (-a)]2B, = +(N)[Im exp (-a)]2

Clearly, from the way that B. is defined, we have that

yk = Re K1 exp [-a(k - j)], k > j (30)

where K1 is some appropriate complex number that satisfies

B1 = I Ks r2. (31)

From (30), the additional inequality that y: <= B1 for all k j follows,
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Furthermore, one can see by comparing (30) and (24) that

I K, 12 = Ko 121 exp (- ai) 12. (32)

Hence, since the real part of a is positive, Bi goes monotonically to
zero with increasing j.

To generalize the above arguments to a nonlinear situation of in-
terest,* consider the following equation which follows from (29):

aB 2

aYa.+1 [Im exp (-a)]2
[Y'+' - yi Re exp (-a)]. (33)

Now imagine Bi_i has been calculated from values stored in the registers.
From linear theory we predict W+1 and .B1') < Bi_i exp (-2a), by (32).
Now if the W.,1 generated by the linear equation were too large, say, then
decreasing it to unity would, according to (33), decrease the bound B if
we knew that

Ya+i yi Re [exp (-a)] -.?=. 0 for Ya+1 > yM (34)

where W+1 is the linear prediction for yi, and ?A+c), is the correct value
for the nonlinear circuit resulting from "squeezing" y;+i down. Since

yi
I

S 1 and Re exp (-a) < 1, (34) is always true for saturation
arithmetic (see Fig. 8) because = +1 (assuming W+1 > +1) and
(34) can never swing negative. Similar things happen, of course, if
yi+1 < -1. Thus the bound decreases at least as fast as for the linear
case (which is exponential) and stability is assured. For zeroing arith-
metic = 0, and thus the appropriate sign for (34) cannot be guar-
anteed which is in satisfying agreement with the known instability for
this case.

For the next case of real but unequal roots, we now have reference to
equation (25) and define our initial bound as

Bo = 2(K; +

= 2 [y, - exp (-a)yo]2 EY1 - exp (-0)://d2
[exp (-a) - exp (-OW

The remaining details are too similar to those of the preceding ease to
warrant recording again; stability for saturation arithmetic holds here
as well.

The last case to discuss occurs when we have real and equal roots.

(35)

* B, calculated from (29) is a bound on future outputs for the nonlinear as well as
the linear case. If B, < 1 the two cases coincide, while of Bs > I the conclusion
follows equally trivially since IykI < 1 for the nonlinear situation.
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OUTPUT = f (v)
A

INPUT = V

Fig. 8 - The above nonlinearity corresponds to saturation arithmetic and leads to
stable behavior.

This situation, represented for the linear equation by equation (26),
is more difficult to treat than the previous ones. The analog of (27) and
(35) now is

4K
Bo = max .{,ilf;

a2

That (36) yields a bound follows from the facts that (for t _.?,, 0)

y/2, -5 max RK1 + K20 exp (-at)]2

2 max [if + Ift2] exp (-2at)

imax
.1C;. exp (-2at)

...-5. 4 max '

max K2 t2 exp (-2at)

K'i

K:2,. exp (-2)= 4 max

4 max
KZ

a

a 2

(36)
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Since

= yo

exp a - yo)2
2 = 2a a

we define our general bound as

2

Yi

B, = 4 max
i+i exP a - Y1)2

a2

Using the solution y1 = (K, K2j) exp (-aj), we see that

0, = (y exp a - y,)2
2

(37)

(38)

(39)

decreases by the multiplicative factor exp (-2a) for every unit increase
of j. Further, suppose that B. = 4y for some j. That is, suppose

exP - Y1)2
a2

This implies

(40)

< y(1 a)2 exp (-2a), (41)

and so if next time B1+, = then we have decreased by
(1 -I- a)2 exp (- 2a) < 1. On the other hand, if at the next step we have
to choose B; +, = , we see

Bi+1 0,+1 < 0,+, < exp (-2a).B. -y, = 0,
(42)

Likewise if we go from 40, to 48,4.1 we decrease by exp (-2a). Finally,
a "transition" from 40, as a bound to 44,1 decreases the bound by a
multiplicative factor of (1 a)2 exp (-2a). To see this we note that,
by assumption,

B, = 4y
4[yi+i exp a -Yiy,]22

,
a2

Using the left-hand equality in (43) implies

Yi+1 exP a < a(Bi)_ 2 ± Yi

(43)

(44)
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while B, > 40 yields

Yi
(B.)1

Using (45) in (44) then allows us to deduce that

Bi+i = -5. (1 a)2 exp (-2a)./3;

(45)

(46)

as was claimed. To extend these arguments to the nonlinear case we
again observe that

N31

(91h4-1

for saturation arithmetic.

(47)

VI. GENERALIZATIONS TO OTHER STABLE NONLINEARITIES

Aside from the three nonlinearities already mentioned, there does
not appear to be immediate engineering interest in seeing which other
nonlinearities will or will not give rise to stable behavior of the filter.
Having come this far, however, it is hard to resist asking if the method
of proof we have used, or some slight extension of it, does suggest other
nonlinearities for which stability will hold. The extension we consider

is not to require

all during the "squeezing" operation, but merely that

13; - Be, > 0, (48)

where is the value of the bound using linear theory and Bc, is the
"correct" value. An inspection of the previous proofs shows that this

is equivalent to

- aYi)2 - - aY1)2 > 0 (49)

for all real a such that I a I < 1.

A little manipulation reduces (49) to

(yt+1 - Yfi-1)(Yf.+, yf+i - 2ayk) > 0. (50)

Assuming > 0, the first term in (50) to be nonnegative, and I yk

1, makes it apparent that

MI:+1 y;:+1 2 (51)
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is sufficient. The "stable nonlinearities" deduced from this kind of
reasoning are outlined in Fig. 9. Thus any nonlinearity whose graph
coincides with the identity function on the interval [ - 1, 1] and whose
remaining portions lie in the closed shaded region of Fig. 9 will be stable.
The function in these regions need not be continuous and need not obey
f (- u) = -f (u) .

An even higher degree of generality is achieved when we realize that
nothing in our proofs required the nonlinearity f(u) to be the same for
successive values of the parameter k. This is tantamount to allowing the
nonlinearity to be random in the following manner. Suppose a value of
yti.i > 1 has been predicted from linear theory (see Fig. 9). The per-
pendicular P to the v axis through yt+, intersects the shaded region
shown in Fig. 9 along a line segment. Choose randomly from this line
segment the "value" of the nonlinearity to give yf, 1 . The discussion in
this Section shows that the solutions of the difference equation

yk,2 = f[ayk,i d- byk] (52)

which has the stochastic nonlinearity just described will be stable when-
ever the linear version has stable solutions.

APPENDIX

Derivation of the Steady -State Solution

We obtain the steady-state solution of our fundamental equation (6)
using z -transforms. Recall that if one has a bounded sequence of number
{ an } , the z -transform is defined by

.
f(z) = E anz-n (53)

ts0

where (53) converges and is analytic outside the unit circle, I z I > 1.
It is easy to show that if { an} is periodic of period N, that is if aN.,.n = a ,
then (53) becomes

f (z)

AN...1()
Z_

1 - Z -N
(54)

where AN, is the polynomial of degree (N - 1) in 1/z given by

A N -1(1z) = N2 a nZ " . (55)
n..,0

The N poles of f(z) at the N roots of unity are apparent from (12), and
there are no other poles.
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V

Fig. 9 - Any nonlinearity whose graph coincides with the identity function on the
interval [ -1, +1] and whose remaining portions lie in the (closed) shaded regionwill
be stable. The possibility of generalizing this to a stochastic nonlinearity is also noted
in the text.

Denoting by Y(z) the z -transform of y (t) excluding the additive terms
involving initial conditions (since these will damp out because of linear
stability) we have from (6) that

Y(z) -
(z2 az - b)(1 -z A')

The z -transform of the steady-state solution P(z) must still be ex-
tracted from Y(z). Since the unit circle I z = 1 corresponds to the
frequency axis if one were using Fourier transforms, we know, by anal-
ogy, the state steady-state portion of (56) will be the pole -terms. Let
ri , i = 1, , N be the N Nth roots of unity and define

,-,A1-1()
k

Z k=0 ri z)

Note (57) implies

Then from (56)-(58) we have

1-7(z) = E

= Nr,
r;

Z -N

1 _ 1

r z

AN-1(1)

- 1-)  Nr  D(rCr;z

(56)

(57)

(58)

(59)
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where we have let

D(z) = z2 - az - b. (60)

Using (57) once more, the steady-state solution (59) may be written

1 N AN-1(-9Q
N_1(1z

)
Y(z) =

1 , ri
61

1 - z -N N i=1riD(ri)
( )

Referring back to the discussion at the beginning of this section, we see
that (61) is the z -transform of a sequence {yk} of period N where

J 1 N A N -1(7-1'
,
)C I (z)1.

yk = coefficient of z -A.' in EN ,, riD(rt)

k = 0,1, , N - 1. (62)

Using (57) in (62) we obtain

v
AN-1\r!1i k

N=1 D(ri)

1

(63)

where, in writing (63), we have used the fact that ?iv, = 1. Expression
(63) thus gives the { yk} sequence for any click sequence. It is a solution
corresponding to a self -sustained oscillation of the digital filter only if
we have I yk I < 1, all k.

Two sums appear in (63). The explicit one shown is the sum over the
roots of unity; the hidden one is the polynomial Aiv_i(l/ri). We will
exhibit another form of solution (63) by explicitly doing the sum over the
N roots. We begin by writing

N-1

AN_1(- = 2 E 111- pi = ±1, 0. (64)
ri

2

1-0 ri

Thus pi are the coefficients, except for the factor of 2, of the polynomial
AN_1(z). We also write, by factoring D(z) and expanding in partial
fractions,

(65)
1 1 1 1- 1 1

D(z) (z - pi)(z - P2) Pi - P2 LZ p1 z - 132

Now note that if z is such a number than z' = 1, we have (since I p I < 1
and z = 1)
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1 (p)
z - p z n-0 z

(66)

Let us look at the sum of the n. = 0, N, 2N, etc., terms in the right side
of (66), that is

2N 3N
P P

1 -r N 2N T z3N
Z z

= 1 + P P2X
=

1

Treating the sum of terms

n = 1, N + 1, 2N + 1,

n = 2, N + 2, 2N ± 2,

1 - p

n = N - 1, N + (N - 1) , 2N + (N - 1),

similarly, we have

1 1 1
N -1i

_
. [1 + 12 + R: + +Z - p z 1 p' Z Z z -I

Finally letting z = 1/r, gives

1
N-1

- E [pr;]",
1 1 - p n=0- - P
i',

Using (65) and (64) in (63) yields

1 2
yk =

PI - P2 N

N-1
pr7.s( E
r,

1 x- 1 ( pi )1.
L.,

rr n=0 rn - Pin 1 P;

(67)

(68)

(69)

(70)

Two sums in (70) are immediately done. First look at the sum over the
roots of unity. This involves observing that

1N if k - 1 - 1 - n = 0 mod N,
(71)

otherwise.

The congruence indicated in (71) can only be satisfied here if 1 = k
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1 - n or if / = lc - 1 - n N. Thus it is useful to define

2b"' ak-i-n+N (72)

where we understand ei; = 0 if j does not lie between 0 and N 1, in-
clusive, and af = a; if it does. One of the a's in (72) will thus always be
zero and bn(k) has values, like the p's, of ±1, 0. Using the discussion above
surrounding equations (71) and (72) we perform next the sum over /
and write another form of the solution:

2
N- n
E bn(k, 13;
n=o

k - Pi -P21 - - pw2

k = 0, 1, , N - 1. (73)
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Rate Optimization for Digital
Frequency Modulation

By J. E. MAZO, HARRISON E. ROWE, and J. SALZ
(Manuscript received June 12, 1969)

The data rate of a multilevel digital FM system is optimized subject
to fixed RF bandwidth, signal-to-noise ratio, and output error rate. The
possibility of optimizing such a system was first considered by J. R.
Pierce at Bell Telephone Laboratories. He made the observation that it
is possible to send many levels slowly or fewer levels rapidly for an FM
wave of fixed RF bandwidth and error rate, and that there must be a choice
of signaling rate and number of levels that optimize the data rate. The
rigorous treatment of this problem is the subject of this paper. The mathe-
matical model we analyze uses frequency -shift keying at the transmitter

detection an integrate -and -dump circuit as
the post -detection filter. Our results are exhibited graphically showing the
various dependencies among the pertinent system parameters.

I. INTRODUCTION

In this paper we optimize the information rate (subject to certain
constraints) of a multilevel digital FM system. This problem of
delivering the maximum information through an FM system has
recently been formulated by J. R. Pierce.' Specifically, he considered
how one should choose the baseband signaling rate and the number
of levels to get the most information through the channel, subject to
fixed bandwidth, fixed RF signal-to-noise ratio, and fixed output error
rate. This optimization has recently been carried out under the assump-
tion that the conventional FM receiver can be linearized.' Small -noise
linear FM theory is satisfactory when analyzing analog systems, but
has its well known pitfalls in digital applications.

The purpose of this paper is to reexamine this problem more rig-
orously, paying particular attention to the anomalies (clicks) which
can result from the nonlinear character of the receiver. In order to
do this we must choose a particular mathematical model for digital
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FM which is amenable to analysis. Such a model uses frequency -shift
keying (FSK) at the transmitter and ideal discrimination detection
with an integrate -and -dump circuit as the postdetection filter. The
noise at RF is assumed to possess gaussian statistics. Although realizable
FM systems do not exactly conform to this ideal mathematical model,
we feel that the results predicted with the use of this model are applic-
cable to real FM systems. In any case, the numerical results agree
well with those derived from the linear theory. According to our present
calculations, this is due to the circumstance that the optimum number
of levels leads to small enough deviations so that the contribution
of the clicks to the error rate can be neglected.

II. ANALYSIS

Consider an n -level FSK communication system with a sample rate
N = 1/T, square -wave modulation, and a level separation (in frequency)
Af. Such a system would yield a data rate R given by

R = N log2 n = 1.443 N In n bits/s, (1)

and, according to Carson's rule, occupy a bandwidth*

B = N (n - 1) Al. (2)

The FM signal plus gaussian noise enters a receiver consisting of an
ideal RF filter (bandwidth B), limiter, discriminator, integrator (in-
tegration time T), and sampler (sampling rate N). The sampler out-
puts are simply the successive values of the instantaneous phase of
the modulated wave following each (rectangular) modulation pulse,
and would be separated by multiples of

6.fA¢= -N radians (3)

in the absence of noise.
The simplicity of the present system (that is, the finite -time integrator

post -detection filter) has permitted a fairly rigorous determination of
the probability of error for high RF signal-to-noise ratio.' It is shown
in Ref. 4 that the parameter AO given in equation (3) plays a very
important role in the theory of error rates for digital FM. In particular,
it is known that if A < 7r (or equivalently, Af/N < 1), then it is
the smooth noise at the baseband output which determines the error

* Comparison with the exact FSK spectra for n = 2, 4, 8 suggests that this
approximation is valid for present purposes.,
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rate; while if AO > r (Af/N > 1), then the clicks dominate, which

is the basic reason for the probability of error taking on different forms
in these two cases.

The optimum systems considered here are shown to correspond to
the Af/N < Z case, for which clicks are unimportant. Therefore we
take the probability of error* P as given by twice equation (17a) of
Ref. 4, with 4> -> 04)/2 = 7 Af/N;

1
cot (2 N11

(2rp)
cos r Nll

exp [ - 2p sin'
(r Af
\2 N) 1'

p >> 1, -Af <2
'

(4)
N

and subsequently verify that Af/N is indeed less than 2 for the re-
sulting optimum systems. Here p is the RF signal-to-noise ratio in
the frequency band B. We treat the asymptotic approximation (for
large p) of equation (4) as an equality in the following.

For fixed error rate P and RF signal-to-noise ratio p, equation (4)
determines Af/N. Rewriting equation (2),

g = (n - 1) IVA ; (5)

substituting equation (5) into equation (1),

I? 1.443 In n
=

At
bits/cycle. (6)

1 + (n - 1) -N

We set the derivative of equation (6) equal to zero, determining the
optimum number of levels no and maximum rate R0 

1
n0(ln no - 1) = - 1.

Af/N

1?,, 1.443
B no(Af/N)

Alternatively, once the optimum number of levels no has been de -

(7)

(8)

* For multilevel output samples, most errors will be to adjacent levels. Assuming
that something like the Gray code is used, the symbol probability of error P of
equation (4) will be approximately the bit probability of error for the final recon-
structed binary signal.
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termined via equations (4) and (7), we may express the other parameters
of the (optimum) system in terms of no only:

Af 1
(9)N no(ln - 1) ± 1 '

Ro
--B- = 1.443 In +

no
- 11 bits/cycle, (10)

B In no
(11)N = no(1n n0 - 1) + 1

Note that the restriction Af/N < 2 implies via equation (7) that

4. (12)

Finally, the Shannon capacity for the RF channel is

= 1.443 In (1 p) bits/cycle. (13)

III. RESULTS

Figures 1 to 7 illustrate the parameters of optimum multilevel
FM systems using a finite -time integrator as a post -detection filter
for two representative error rates (P = 10-8).

The solid curves of Fig. 1 show the optimum number of levels no
versus the RF signal-to-noise ratio in dB, 10 log10 p, for the two values
of P. The curves terminate at no = 4, according to equation (12).

En 50

-J 40
tL

WI 30

3
3

20
2
3
3
17 10a.
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C
0

0 10 20 30 40 50

10 LOG10 p-RF SIGNAL-TO-NOISE
RATIO IN DECIBELS

Fig. 1-Number of levels for maximum data rate versus RF signal-to-noise ratio.
Dashed lines indicate small -angle approximations.



2.4

2.0

1.6

1.2

1 00

PM RATE OPTIMIZATION 3025

(a) (b)

P p=10-8

10 20 30 40 50 0 10 20 30 40
10 LOG10 p-RF SIGNAL-TO-NOISE no -OPTIMUM NUMBER

RATIO IN DECIBELS OF LEVELS

Fig. 2 - Bandwidth expansion factor for maximum data rate.

50

no increases rapidly as p increases, for fixed P. The small -angle approx-
imation for the trigonometric functions in equation (4) is shown by
the dashed curves of Fig. 1; in this approximation changing P simply
translates the curves of Fig. 1 horizontally. This is a reasonable ap-
proximation for the smallest no permitted [by equation (12)], for the
values of P of interest here.

Figures 2, 3, 4, and 5 show optimum system parameters plotted
against two horizontal

(i) 10 logiorr-the RF signal-to-noise ratio in dB. Two plots are
shown, for P = 10'. Using the small -angle approximation in
equation (4), changing P translates these curves horizontally. This
horizontal axis is the parameter of most direct physical interest.

5

(a)

P. io-.!

z

(b)

0
10 20 30 40 50 0

10 LOG10 p- RF SIGNAL-TO-NOISE
RATIO IN DECIBELS

10 20 30 40
no -OPTIMUM NUMBER

OF LEVELS

Fig. 3 - Maximum data rate per unit RF bandwidth.

50
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Fig. 4 - Relative phase shift per level in one sample interval for optimum systems.

(ii) no optimum number of levels, determined from Fig. 1.

Here a single universal plot suffices rigorously for all P [That is, without
small -angle approximations in equation (4)].
The vertical axes show:

Figure 2-B/N, the bandwidth expansion factor, roughly* one-half
the ratio of RF to base -bandwidth. This factor varies from about 2 at
small p or n0 , to an asymptotic limit of 1 as p, no ---> 00 . For large p, n0
we have small -index phase modulation, with only the first sideband
significant. Even for the smallest p, no considered here the bandwidth
expansion is moderate.

Figure 3-Ro/B, the normalized maximum rate in bits per cycle.
This quantity increases monotonically with p, no .

Figure 4-360 Af/N represents the relative phase change in degrees
corresponding to a change in modulation of one level.

Figure 5-360 (n - 1) Af/N represents the maximum relative
phase change in degrees in one sampling interval, corresponding to a
change in modulation from the lowest to the highest level. The maximum
value for this quantity, occurring for the smallest p, no (that is, no = 4)
is not far from 360°. As p, no increase, the maximum phase change be-

comes small for optimum systems.
Within the small -angle approximation, discussed in connection with

Fig. 1, changing P merely shifts the horizontal (dB) axes of Fig. 1

and Figs. 2(a) to 5(a). Let us adopt the P = 10-' curves as standard,

* This is because the square -wave modulation assumed here is not strictly band -
limited; in fact, its spectrum falls off so slowly that its rms bandwidth is infinite.
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Fig. 5 - Maximum relative phase shift in one sample interval for optimum systems.

and plot the number of dB to be added to the 10 logic, p axes a sa function
of P. This is shown in Fig. 6. We remark that this is only an approxi-
mation, and will begin to fail sooner as P decreases.

Finally, Fig. 7 compares the maximum data rate for the multilevel
FM system with the Shannon capacity of the RF channel. The optimum
data rate ranges from about 19 to 27 percent of the ideal RF channel
capacity, for error probabilities P between 10-' and 10-8.

We have so far dealt with optimum systems. However, the number
of levels may be fixed by other constraints, so that suboptimum systems
are of interest. For example, it may not be practical to have the large
number of levels required for optimum systems at large RF signal -to -

4
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0
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I 0-8 to -9 0-10

Fig. 6 - Correction for modifying P = 10-6 curves to other error probabilities.
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Fig. 7 - Ratio of maximum data rate to Shannon capacity.

noise ratios p; we may be restricted to 8 (or 16) levels, and it is necessary
to determine how much the data rate will be reduced. Now rather than
maximizing R by varying N and n in equation (1) subject to the con-
straints of equations (2) and (4), we fix n in equations (5) and (6).
Figures 8 and 9 show the optimum rate Ro/B versus 10 logo p [given
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0 10 20 30 40 50

10 LOGI() p-RF SIGNAL-TO-NOISE
RATIO IN DECIBELS

P= io-6 i
/

/
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/

4

n = 2

NUMBER OF
LEVELS

I

Fig. 8 - Best data rate for suboptimum systems with two, four, and eight levels
compared to maximum data rate for optimum system. Dashed line-maximum data
rate for optimum system, Ro/B (see Fig. 3).
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Fig. 9 - Best data rate for suboptimum systems with two, four, and eight levels
compared to maximum data rate for optimum system. Dashed lined-maximum
data rate for optimum system, Ro/B (see Fig. 3).

also in Fig. 3(a)], together with the rates for two, four, and eight levels,
determined from equation (6) with n = 2, 4, and 8 for P = 10-8 in
equation (4). While eight levels is strictly optimum only at the point
of tangency between the R8 and the R, curves, we see that the optimum
is fairly broad. The corresponding bandwidth expansion factors are
found from equation (5).

IV. DISCUSSION

We have presented the results of Figs. 1 through 9 as continuous
curves. Actually, only isolated points of these curves are significant,
since the number of levels must be integral. These continuous curves
should consequently be replaced by appropriate "staircase" functions,
but the difference will be significant only for small numbers of levels
(that is, at low RF signal-to-noise ratios).

The present theory excludes two- and three -level systems. Naively,
one might try to extend the present results to these cases by equation
(17c) and Fig. 5 of Ref. 4. This may not be accurate for the error rates
considered here (P 101, because the RF signal-to-noise ratio
p becomes small, and the basic results of Ref. 4, that is, equations
(17), (26), and (27), are asymptotic as p becomes large. However, for
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very much smaller error rates, for example, P 10- " , it is possible
that this approach would be productive.

It would be desirable to extend the present results to binary and
ternary systems; this will require a different or improved approach
from the asymptotic evaluation of Ref. 4 for the error probability. It
seems likely that clicks will dominate the error behavior for optimum
two- and three -level systems.

The principal limitation in the present treatment (aside from the
assumptions of the model, such as a finite -time integrator post -detection
filter) lies in our lack of knowledge of the precise way in which the basic
result for the probability of error P (equation (4) above) fails. We have
merely assumed that this result holds for signal-to-noise ratios down to
about 10 dB, independently of P or Af/N. This provides additional
motivation for further study of the asymptotic theory of Ref. 4.
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Power Spectrum of Hard -Limited Gaussian
Processes

By HARRY M. HALL

(Manuscript received September 10, 1968)

The power spectral density at the output of an ideal hard limiter (one -
bit quantizer) is examined when the input is driven by a narrowband gaus-
sian signal plus an additive gaussian noise that consists of a broadband back-
ground component plus narrowband interference. Assuming that the input
signal-to-noise power ratio is small by virtue of the large bandwidth of the
observed broadband noise, calculations are made of the average output signal
power, the average output noise power in the signal band, and the average
power of the strongest intermodulation product. The results support the

intuitive conclusion that spectrum analyzer performance is degraded by
the presence of the limiter and that this degradation is more pronounced
when a strong narrowband interfering signal is present. They also indicate
that the degradation can be minimized by making the bandwidth observed
by the limiter sufficiently wide that the broadband noise power dominates
both the signal and interference powers. In particular, for a typical example,
the signal-to-noise power ratio measured in the signal band is degraded by
less than about 1.3 dB by the presence of the limiter and the ratio of output
signal power to power of the strongest intermodulation product is greater
than about 14.5 dB as long as the broadband noise power exceeds the inter-
fering -signal power.

I. INTRODUCTION

In this paper we examine the power spectral density at the output of
an ideal hard limiter when the input is driven by a collection of inde-
pendent gaussian processes. This work is motivated by the fact that in
spectrum analysis, it is often convenient from the point of view of signal
processing to precede the analyzer with a hard limiter. In order to deter-
mine the effect of the limiter on analyzer performance, it is of interest
to compare the power spectral density at the limiter output with that
at the limiter input. With this goal in mind, the ideal limiter to be ana-
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lyzed is shown in Fig. 1. It is assumed that the limiter input is driven
by the signal

0

Fig. 1 - Ideal hard limiter.

y(t)

x(t) = s(t) n(t), (1)

where s(t) is a sample function of the gaussian "signal" process S(t) and
n(t) is a sample function of the gaussian "noise" process N(t). More
precisely, it is assumed that S(t) and N(t) are statistically independent,
zero -mean, stationary, real, gaussian processes having continuous co-
variance functions R3(r) and RN(T) respectively. Further, motivated by
the spectrum analysis application, the covariance functions Rs (T) and
RN(T) are specified: the signal process S(t) is assumed to be a narrow -
band process with covariance function

RS(T) = Ro(r) cos cool (2)

where So(f), the Fourier transform of Ro(T), occupies a narrow band
centered at zero frequency. The noise process N(t) is assumed to consist
of a broadband background component plus narrowband interference
that is statistically independent of the background noise. The covariance
function of the broadband background noise is assumed to be a continous
covariance function that is given in the forms

R, (T)= R, (T,;

T
= p( -L--) cos COI T

T T1

where p(x) satisfies the conditions

p(0) = 1,

fo' p(x) dx < 00 .

This specification of R,(r) has the properties:
t For example, consider the exponential covariance

RIE(T) = Coexp (-13 I-9 cos corr.
T
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(i) The total average broadband noise power R1(0) increases linearly
with TT 1 where r, > 0 is defined to be the broadband noise "correlation
time."

(ii) The average broadband noise power observed in any fixed band
of finite extent approaches a finite constant as the correlation time T1
approaches zero.

Finally, the covariance function of the narrowband interference is
assumed to be given by R2(7) cos CO 2T where S2(i), the Fourier transform
of R2(T), occupies a narrow band centered at zero frequency. Therefore,
the covariance function of the noise process N(t) is given by

RN(T) = RI(r) R2(r) COS W2T (6)

where R (T) satisfies equation (3).
It was stated that the covariance functions just specified are suggested

by the spectrum analysis application, and this is true in the following
sense: it is often the case that one desires to analyze narrowband signals
that lie at a priori unknown locations within a relatively wide band, and
in fact it may be that the total bandwidth to be searched is a significant
fraction of the band center frequency. Given such a spectrum analysis
problem, it is proposed that the situation of greatest interest is that in
which the average noise power in the narrow band actually occupied by
the signal may or may not be comparable to the average signal power,
but in which the total average noise power is much larger than the aver-
age signal power by virtue of the large noise bandwidth. Having such a
situation in mind, it is seen that the model for the broadband covariance
function RI(T) specified in equation (3) does in fact exhibit the desired
behavior when the correlation time T1 is appropriately small.

However, in addition to this "weak -signal" situation in which the
narrowband signal power R8(0) is much smaller than the broadband
noise power R1(0), it is also of interest to allow the presence of "strong"
narrowband signals whose average power is comparable to that of the
broadband background noise. The presence of such strong narrowband
signals is expected to be obvious at the limiter output, and in fact these
signals are of interest since we expect that their presence will lead to the
generation of intermodulation products that may interfere with the
analysis of any weak signals that are present. In order to examine this
situation, a narrowband interference has been included, and it is con-
venient to consider this interfering signal to be part of the additive
noise N(t).

Before proceeding with the analysis of the problem stated above, it
is noted that the ideal limiter described in Fig. 1 has received a great
deal of attention in the literature. The noiseless case has been considered
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and output amplitudes examined when the input consists of a collection
of sinusoids.' The noise -alone case has been examined and results ob-
tained for the autocorrelation function and power spectral density at the
limiter output both for the case of broadband gaussian noise alone
[R, (T)] and for the case of narrowband gaussian noise alone [R2(r)
cos cog]." The ratio of output signal-to-noise ratio (SNR) to input SNR
has been evaluated for the case in which the input consists of one or two
sinusoids plus narrowband gaussian noise.' These same workers have
examined the strengths of intermodulation products, and the analysis
of output signal and intermodulation product power has been extended
to the case of an arbitrary number of sinusoids plus gaussian noise.8'9
In addition, analysis of the limiter has played an important part in
studies of the performance of angle -modulation systems, and these
analyses have generally assumed that the limiter is driven by a narrow -
band process.

On the other hand, it does not appear that much has been reported
for the situation in which the limiter is driven by a narrowband signal
plus noise that includes a broadband component. Known results that
have application to this situation include those of Manasse, and others,
which apply when the limiter is driven by a "weak" narrowband signal
plus narrowband gaussian noise whose bandwidth is much larger than
that of the signal, 10 plus approximate results that apply when the input
includes a narrowband component that is "much stronger" than the sum
of the other inputs present.' We address this problem by examining the
the output power spectral density when the limiter input is given by
equation (1); namely, the input is made up of a narrowband gaussian
signal plus a gaussian noise consisting of a broadband background com-
ponent plus narrowband interference. In particular, this examination
is carried out by calculating the output power spectral density in Sec-
tion II, as the broadband noise correlation time 7-1 approaches zero.
This calculated result is then used in Section III to evaluate three
performance measures. An example of a system to which these per-
formance measures apply is a spectrum analyzer preceded by the ideal
limiter.

(i) The degradation in the ratio (SNR) of average signal power to
average noise power in the spectral band occupied by the signal is
calculated. This degradation is important because the signal-to-noise
power ratio measured in the signal band is often one of the important
parameters in determining system performance.

(ii) The ratio (SIR) of average output signal power to average image
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power is calculated where, if the narrowband signal is centered at a
frequency fo and the narrowband interference is centered at a frequency
/2 , then the signal image is defined to be that intermodulation product
centered at the frequency I 21, - fo I. This is the strongest of the inter -
modulation products of the signal with the additive noise, and thus it is
reasonable to use the SIR as an indication of whether or not these inter -
modulation products will have a significant effect on system perform-
ance.

(iii) The ratio %Nil() of average output interference power to aver-
age output broadband noise power in the spectral band occupied by the
interference is calculated. As discussed previously, the distinction in
this work between signal and interference is made based upon average
power at the limiter input. That is, it has been assumed that the presence
of any narrowband signal having an average power comparable to that
of the broadband background noise will be obvious at the limiter out-
put, and that such an input may in fact interfere with the analysis of
other narrowband inputs. S2NR0 is calculated to check the assumption
that in fact the presence and location of such an interfering signal will
be obvious upon analyzing the power spectrum at the limiter output.

Since the performance measures listed above are calculated as the
broadband noise correlation time T1 approaches zero, it follows that they
will all apply in practice to situations in which the broadband component
of the input noise has been shaped by a low-pass filter whose bandwidth
is large compared with the center frequencies of the narrowband inputs
that may be present. An example of a situation in which such a model is
viable occurs in the spectrum analysis of underwater acoustical signals.

On the other hand, the SNR and S2NR0 results obtained will not apply
directly to communication situations in which the bandwidth of the
additive broadband noise is much larger than that of the narrowband
signal but much smaller than the system center frequency. This situa-
tion is discussed in Section IV, and it is pointed out there that the results
can be modified to encompass this situation by letting the center fre-
quencies of both the narrowband signal and additive noise increase
linearly with TT1.

II. THE OUTPUT POWER SPECTRAL DENSITY

The output power spectral density can be calculated by using the
expression for the output autocorrelation function Ry (T) given by
Davenport and Root (Ref. 12, p. 308)
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ax -2. 2k"I'2[(k m)/2]
sRy(T) = Rk (r)n(r), k m odd

ken ri 72k! m![Rs(0) RN(0)]'+'

= 0, otherwise, (7)

where r(x) denotes the gamma function; in conjunction with the ex-
pression for R y (T) given by Van Vleck (Ref. 3, p. 23)

R y (T) = arcsm
2 . [Rs(r) RN(T)
7r Rs (0) R,,, (0)1 (8)

Defining a to be the fraction of the average noise power due to the
broadband background noise,

R1(0) R,(0)
= RN(0) R1(0) + R2(0)

it is seen that the ratio ns of average signal power to average noise power
at the limiter input is given by

a R8(0) R s (0)- ans - RN(0)
r, .

(9)

(10)

Now, it was pointed out in Section I that we are interested in the situa-
tion in which the signal-to-noise power ratio ns is small, and in fact
the case of interest is that in which ns is small because 71 is small, that is,
n, is small due to the large bandwidth of the observed broadband back-
ground noise. Motivated by this, it is shown in Appendix A, using
the expressions for R,(r) given by equations (7) and (8), that when
a > 0 the output power spectral density Sy(f) is given by

{;4 .10' arc,sin M)MN(T) cosCOS 7 dT

s
.

+ a
R

c(0) Ti [ps(T) - (1 - a)p2(7)f

Sy(f) =

COS ohr]

 [1 - (1 - a)24r) cost cA)27-]-4 cos cor dr} + 0(r1) (11)

as r1 0, uniformly in f, where

P7(7) R, (0)

are assumed to be absolutely integrable.
Equation (11) exhibits the components that dominate the output

power spectral density when the broadband noise correlation time 71

ry = S, N, 0, 1, 2, (12)
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approaches zero. In particular, inspection of equation (11) shows that
these dominant contributions include a component that is just the out-
put power spectral density observed when the noise N(t) alone is present
at the limiter input, a component that has the spectral characteristics
of the signal S(t), and a component that is due to interaction of the
signal with the interference component [p2(r) cos co,T] of the noise. In
order to quantitatively analyze these components where, in particular,
we desire to use Sy(f) to calculate the performance measures discussed
in Section I it is convenient to make use of the fact that both the signal
S(t) and the interference component of the noise have been assumed to
be narrowband processes, plus the fact that the broadband component
of the noise becomes white across any fixed band of finite extent when
Ti -> 0. These properties can be exploited by expanding both [1 -
(1 - a)2p22(7) cos CO22Tri and arcsin pN(r) followed by an appropriate
collection of terms. This is carried

Rout

in Appendix B and the result is4 s2(m ±
Sy(f) = Sy &)S y,(f) 7r2 (X C

(0)
Z -dT1 m

r
r(2m + 1)

(1 a)2.

f 2F1 [m ± m 1; 2m + 1; (1 - a)2 p*)]

 Ps(T)P2m(T) cos

- a
8 Rs(0)

r(2m ±
DrOn

2
71" Co 2) (1 - a)2"1+1

j' 2F1[m 1-; 2m 2; (1 - a)2p:(T)]

24-1
 P2m (T) cos (2m + 1)co2T cos cor dT 0(T1) (13)

as T1 - 0, uniformly in 1, where 2F 1(a, b; c; x) is Gauss's hypergeometric
function (Ref. 13, p. 556), em is the Neumann factor ec, = 1, em
2(nt = 1, 2,  ), and where Sy, (f) and Sy, (f) are given:

A co

y,(f) = f farcsin p(x) 1 - a]
0

- arcsin (1 - a)1 dx o(Ti) (14)

as Ti -÷ 0, for all f << f mns < co for arbitrary fixed fmaxt and

t Recall from equation (3) that

I 7 1pi(r) = p(-) cos cOIT
Ti

where p(x) satisfies equations (4) and (5).
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SY.(i) =
4

r2(m
2i)

\
(1 a)2.+1

7 moo r(2M + 2)

2F1[m m ± 1; 2m + 2; (1 - cx)2PZ(T)]

P22m+1( ) cos (2m + 1)(.02T cos COT dT . (15)

The expression given by equations (13), (14), and (15) exhibits in a
useful fashion the components that dominate the output power spectral
density when the broadband noise correlation time approaches zero. To
see this more clearly, it is convenient to assume that the narrowband
interference in fact has a line spectrum, that is,

p2(r) 1. (16)

This assumption is convenient since it simplifies the calculations with-
out obscuring the most important effects that result from the presence
of narrowband interference. This assumption is applied in Appendix B
to equations (13), (14), and (15), and it is shown that, when p2(r) = 1,
we can write

a 2e° (m

lim SY(f) = Sr,()f Sy,(f) 2 TI E(1 - a)2m

ir CO "I
1(2 + 1)

2Fi[m + m + 1; 2m + 1; (1 -a)2]

 [88(f - 2mf2) Ss (f 2mf2)] (17)

where Sy, (f) is given by equation (14),

1 I12(m +
SY,(1) = E (1 -

11(2m + 2)

 2F1[m + m + 1; 2m + 2; (1 -a)2]

{ o[f - (2m + 1)12] + Off + (2m + 1)121) (18)

where 6(x) denotes the Dirac -delta function, and where
CO

Ss(f) = 2 f Rs(T) cos un- dr (19)
0

is the power spectral density of the signal S(t). Equations (17), (14),
and (18) give the representation we desire, and they demonstrate that
there are three contributions that dominate the output power spectral
density when the broadband noise correlation time ri approaches zero.

(i) There is a component Sy. (f) that becomes white across any fre-
quency band of finite extent as T1 0. When a = 1, this component is
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just the output power spectral density that would be observed if the
broadband component of the noise was present alone at the limiter
input. Moreover it is necessary to specify the broadband covariance
function R1 (r) in order to calculate Sy,(f). For example, if R1(T) is the
"triangular" covariance function

C
Rip(7) = - )

, I T 71

0, I T I > T1 , (20)

then equation (14) gives the result

4 r, [r&LAU) = - - - arcsin (1 - a) - (2a - a2)/] o(r,) (21)r a -z

as 71 -> 0, for all f < 00 for arbitrary fixed fr:, .

(ii) There is a component Sy,(f) consisting of line spectra located at
f I = k f 2 ,k = 1, 3, . When a = 0, this component is just the power

spectral density that would be observed if the narrowband interference
was present alone at the limiter input.

(iii) There is a component consisting of a term that has the spectral
characteristics of the signal plus terms that are intermodulation products
of the signal with the narrowband interference component of the noise.

2.1 Noise Consisting of Broadband Component Alone

It is clear from inspection of equations (17), (14), and (18) that
the output power spectral density is greatly simplified when the additive
noise consists only of the broadband component (a = 1), and in fact
it is seen that in this case equation (13) reduces to the simple result

2 71
Sy(f) = Sy,(f)

CO
Ss(f) o(Ti) (22)

as T1 0, uniformly in f. Moreover, the calculation of Sy, (i) is simpli-
fied when a = 1. For example, if /?,(r) is given by the triangular function
in equation (20), then it is seen that, when a = 1,

Si (f) = aresinJI (1 - cos WT dr. (23)
0 Ti

This integral can be evaluated using Erdelyi [Ref. 14, item 4.8(1)1,
and we find

SY,A(f) = 2r, [Jo(cor,) sine (2ffri) - Ho(cori) cos con] (24)
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where J ,(x) denotes the Bessel function of the first kind of order v and
H,(x) is a Struve function of order v (Ref. 14, p. 372).t Note that equa-
tion (24) holds for all f and for all Ti &IA (f) is plotted in Fig. 2 along
with

SlA(f) = Co sinc2 (ITO, (25)

the power spectral density at the limiter input corresponding to RI (7).
The plotted data are normalized so that both processes have the same
average power. Thus the data plotted in Fig. 2 show explicitly how the
ideal limiter redistributes the average broadband noise power across the
band and demonstrate in particular the power -spreading effect that
takes place due to the limiter nonlinearity.

III. EVALUATION OF PERFORMANCE MEASURES

It is now desired to use the output power spectral density results
derived above to evaluate the performance measures discussed in Sec-
tion I. These calculations use directly the results derived above except
that the assumption that the narrowband interference has a line spec-
trum can be relaxed. That is, the results derived below continue to be
useful as long as the interference is a narrowband gaussian process with
the covariance function R2(T) cos W2T specified in Section I.

3.1 Degradation in Signal -to -Noise Power Ratio

The degradation in signal-to-noise power ratio in the spectral band
occupied by the signal is obtained by calculating the ratio SNRo/SNRI
of output signal-to-noise power ratio to input signal-to-noise power
ratio, where these SNR's are calculated in the spectral band B occupied
by the signal. Moreover, we assume that:

(i) The band B contains significant contributions from only the
narrowband signal and the broadband component of the noise, that is,
the narrowband interference and intermodulation products of the
narrowband signal with the narrowband interference have negligible
power in the band B.

R, (r) is the triangular function in equation (20) since it is neces-
sary to specify the covariance function of the broadband component of
the noise.

Making these assumptions, the ratio SNR0/SNRr measured in the

f Note that sine x A sin 7rx
irx



POWER SPECTRUM

1.0

0.9 -

0.8 -

0.7 --

0.6 -

(.3

N 0.5
"41-

(r)

0.4 -

0.3 -

0.2 --

0.1 --

-57T -4 7T -27T -7T O

cor,
7T 27T 37r 11

Fig. 2 - Normalized power spectral density.
Rio(0)

Ry,A(0)
Sy1 (f); (f) = Co since Uri).

577.

3041

band B of finite extent can be calculated using S y(f) given by equation
(17), and it is seen that

. SNR S y (f) df f Si(f) cif
1.11n a

SNRI
s} ,(f) df f 88(f) df

where SY,(f) is given by equation (21), SS(f) is the power spectral
density of the narrowband signal SW, and S y s (f) and S i(f) are given:

y S (f) is defined to be the contribution to S y(f) that has the spectral
characteristics of the signal SW and thus is determined by setting
m = 0 in the sum in equation (17). This gives

2 a
Sy,s(f) r 0

2Fi [1. 1; 1; (1 - oz)2]7-133(f)

which (using p. 387 of Ref. 14) can be written as

(26)

(27)
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4 aS(f) = -cc. K(1 - a)riSs(i) (28)

where K(k) denotes the complete elliptic integral of the first kind. Si(f)
is defined to be the power spectral density at the limiter input due to
the broadband component of the noise and thus, using equation (25),
is given by

Si(i) = Co + 0(Ti) (29)

as 71 0, for all f < fma. < 00 for arbitrary fixed fma. . Thus, making
the appropriate substitutions into equation (26) yields

SN Re a2K(1 - a)
lim (30)

RIi-0 OIN 4'1 - arcsin (1 - a) - (2a - a2)11
2

This relative signal-to-noise power ratio result is plotted in Fig. 3 and
demonstrates the expected result that the degradation in the signal
band increases when there is a strong narrowband interfering signal
present at the limiter input. However, it is important to note that the
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narrowband interference must be very strong to cause a significant in-
crease in the degradation. In particular, it is seen that the degradation
is less than about 1.3 dB as long as a is greater than 0.5, that is, as long
as the broadband noise power is greater than the narrowband inter-
ference power.

3.2 Signal -to -Image Power Ratio

The signal -to -image power ratio (SIR) is obtained by calculating the
ratio of average output signal power to average image power where the
image has been defined to be that narrowband component of Sy(f)
centered at the frequency I 212 - fo I. The SIR can be calculated using
Sy(f) given by equation (17), but it should be noted that, when Ti 0,
the SIR does not depend on the particular choice of R, (T) within the
class specified by equation (3). Using equation (17), it is seen that

f Sys(f) df
lira SIR = (31)
T,-.0

2 EW SY' di

where Sys (f) is given by equation (28) and Sy, (f) is found by setting
m = 1 in the sum in equation (17). That is,

1 -Sy,(f) -
47

a(1
Co

a)2
2F 1; 3; (1 - a)217-,

 [Ss(f - 2f2) Ss(f 2f2)], (32)

which, using Abramowitz and Stegun [Ref. 13, item 15.2.1] together
with Price [Ref. 15, p. 10] and Dwight [Ref. 16, items 788.1, 788.2],
can be written as

21 +
2

a - a2
a) E(1 - adr,

SYi(f) 7r2 (1 -a)2C0[
 [Ss(f - 2/2) + Ss(f + 212)] (33)

where E (k) denotes the complete elliptic integral of the second kind.
Making the appropriate substitutions, there results

(1 - a)2K(1 - a)lim SIR - (34)(1 + 2a - a2)K(1 - a) - 2E(1 - a)
This SIR result is plotted in Fig. 4 and demonstrates that the signal -
to -image power ratio decreases when there is a strong narrowband
interfering signal present at the limiter input. In fact, equation (34)
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a Ri(0)a = Ri(0) + R2(0).

has the limiting behavior

lim lim SIR = 1, (35)
a-01:1 ri-00

which agrees with the approximate result obtained when one assumes
that the input to the limiter includes a narrowband component that is
much stronger than the sum of the other input components present."
However, the most interesting result demonstrated by Fig. 4 is that
the narrowband interference must be very strong for the image power
to be comparable to the signal power at the limiter output. In particular,
it is seen that the SIR is greater than about 14.5 dB as long as the broad-
band noise power is greater than the narrowband interference power.

3.3 Output Interference -to -Broadband Noise Power Ratio

The output interference -to -broadband noise power ratio S,NR0 is
obtained by calculating the ratio of average output interference power
to average output broadband noise power, measured in the spectral
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band Bet occupied by the interference. In order to perform this calcu-
lation it is necessary to specify the broadband covariance function, and
is is assumed that Ri(T) is the triangular function in equation (20).
Having specified Ri(r) in this manner, S2NR0 can be calculated using
S,. (f) given by equation (17), and it is seen that

f Sy,(f) df
lim S2NR0 -

1-10 Sy,(f) df

where Sy, (f) is given by equation (21) and Sy, (f) is given by equation
(18). Proceeding with these substitutions and making the assumption
that the components of Sy,(f) concentrated at (odd) harmonics of the
fundamental frequency 12 contribute negligible power in the band B2
there results

(36)

a(1 - a) 2F1[1, 1; 2; - a)2]lim S2NRo - , (37)
ri-4o

27-1 - arcsin (1 - a) - (2« - 411(f df)
13,

which, making use of Price [Ref. 15, p. 10], can be written as

2a[E(1 - a) - (2a - a2)K(1 - a)]
lim S2NRo = (38)

7r(1 - - arcsin (1 -a) - (2« - a2) TVri

where

W -4- f df. (39)
BR

The normalized power ratio lim,0 WTI (S2NR0) is plotted in Fig. 5, and
the plotted data are seen to support the intuitive assumption made in
Section I that the presence and location of a narrowband input having
an average power comparable to that of the broadband background
noise will be obvious at the limiter output.

A result of perhaps more interest than S2NR0 is the ratio S2NR0/
S2NRI of output interference -to -broadband noise power ratio to input
interference -to -broadband noise power ratio. This calculation can be
carried out in the same way that SNRo/SNRr was calculated earlier,
and we find

t This calculation is not of interest if the interference truly has a line spectrum
(that we can resolve). However, it is of interest here since these results are useful as
long as the interference is a narrowband gaussian process.
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. S NR L. S(f) df i Si(f) df
13,lim S2NRI2° - (40)

fi. S,(f) df 82(1) dff32

where Sri (f) is given by equation (21), Sr, (f) by equation (18), S1 (f)
by equation (29), and

L52(f) df = R2(0). (41)
B,

Making these substitutions and using the definition of a in equation (9)
yields

. S2N Ro 2a2[E(1 - «) - (2« - a2)KO. - a)]
lim - (42)
ri-401021N il.,I r(1 -a)2 -. - arcsin (1 -«) - (2a -a2)][ 7r

This relative (interfering) signal-to-noise power ratio result is plotted
in Fig. 3 and is particularly interesting since the plotted data can be
viewed as a plot of S2NRo/S2NR/ versus the input interfering signal -
to -total broadband noise power ratio S2NTRI . That is, it is seen that
the ratio of average input interfering -signal power to total average input
broadband noise power is given by
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S2NT
R2(0) 1 - a
R, (0) a

(43)

With this interpretation in mind, the plotted data show that there is a
degradation in signal-to-noise power ratio in the signal band at all levels
of input signal-to-noise power ratio as r1 0, and that this degradation
increases monotonically with increasing input signal -to -total noise power
ratio. We note the contrast of this result to that found by Davenport
for the case in which the limiter is driven by an unmodulated sinusoid
plus narrowband Gaussian noise where he shows that there is an en-
hancement in signal-to-noise ratio (measured in the narrow noise band)
at high input signal-to-noise ratios.5 It is also noted that the data plotted
in Fig. 5 together with that in Fig. 3 show, that although the degradation
increases monotonically with S2NTRI , it does not increase as rapidly as
WTI (S,NRi) itself is increasing.

IV. CONCLUSIONS

This paper has concentrated on analyzing the power spectral density
at the output of an ideal limiter when the input is driven by a narrow -
band gaussian signal plus an additive gaussian noise that consists of a

interference.
Conclusions that can be drawn from this work depend upon the system
in which the limiter is used, and one is led to the following conclusions
when this system consists of a spectrum analyzer preceded by the ideal
limiter: Spectrum analyzer performance will be degraded by the presence
of the limiter, and this degradation can be substantial when there is a
strong narrowband interfering signal present at the limiter input. This
intuitive conclusion follows from the fact that the signal-to-noise power
ratio SNR measured in the signal band may be significantly degraded by
the presence of the limiter when there is a strong narrowband interfering
signal present at the limiter input, plus the fact that intermodulation
products of the narrowband signal with the narrowband interference
may be troublesome as indicated by a decreased signal -to -image power
ratio SIR.

However, it is important to note that the results also indicate that the
degradation in performance can be minimized by making the band-
width observed by the limiter sufficiently wide that the average broad-
band noise power dominates both the signal and interference powers.
This conclusion follows from the fact that such a procedure minimizes
both the degradation in SNR and the decrease in SIR mentioned above
since it ultimately requires that a approach unity. In particular, the
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data plotted in Fig. 3 show that the signal-to-noise power ratio SNR is
degraded by less than about 1.3 dB as long as the total average broad-
band noise power is greater than the average narrowband interference
power. In addition, the data plotted in Fig. 4 show that the signal -to -
image power ratio SIR is greater than about 14.5 dB as long as the
total average broadband noise power is greater than the average narrow -
band interference power. This SIR result is interesting since it is indic-
ative of the fact that intermodulation products do not grow as rapidly
with increasing interfering -signal power in the situation analyzed here
as they do when the ideal limiter is driven by two sinusoids plus narrow -
band Gaussian noise. This conclusion follows from comparison of Fig.
4 with the results of Jones as presented in his Fig. 4.7 The difference
in behavior appears to be due primarily to the fact that the strong
narrowband signal in this analysis is a gaussian process and not a
sinusoid.

It is of course true that the conclusions reached above based on the
data plotted in Fig. 3 are conclusions based on the assumption that
the broadband covariance function R,(T) is the triangular function
specified in equation (20). This example was chosen as a typical ex-
ample that is computationally convenient for studying the degradation
in signal-to-noise power ratio SNR as a function of interfering -signal
strength. It is also of interest to study the dependence of the degrada-
tion in SNR on the choice of R ,(T), and it is noted that this can be ac-
complished by using Syi (f) given by equation (14) instead of SY1A (f)
given by equation (21) in the calculation of SNRo/SNRI .

Finally, it is emphasized that the results leading to the above con-
clusions are asymptotic results that apply when the broadband noise
correlation time T1 approaches zero. As discussed in Section I, our
interest in small T1 stems from a desire to model the situation in which
the average noise power in the spectral band occupied by the narrow -
band signal may be comparable to the average signal power but in
which the total average noise power is much larger than the average
signal power by virtue of the large noise bandwidth observed by the
limiter. Thus we have a practical interest in the situation of small T1 ,

although it is of course true that the situation of engineering importance
is that in which T1 although small is greater than zero; for example,
a < 1 makes physical sense only if T1 > 0. With this in mind, it is of
interest to determine the conditions that must be satisfied for the
results of this work to be useful when Ti > 0, and inspection of the
analysis performed leads to the following conclusions (when the broad-
band noise covariance function R, (T) is written such that the band-
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width of the broadband noise is approximately T1'): In order for the
power spectral density result given by equation (11) and the signal -
to -image power ratio result plotted in Fig. 4 to remain useful, it is
necessary that certain conditions be satisfied:

(i) The broadband noise correlation time must itself satisfy the
condition r1 << 1.

(ii) The input signal-to-noise power ratio

A R s(0) R s (0)

RN(0) a Cc,
T, (10)

must satisfy the condition ns << 1.
In addition to these conditions, in order for the power spectral density

results given by (13) and (17) and the signal-to-noise power ratio results
plotted in Fig. 3 and 5 to remain useful, it is necessary that the condition

coin << 1, i = 0, 1, 2, (44)

be satisfied. This last condition requires that the bandwidth of the broad-
band background noise be much larger than the largest of the center
frequencies coo , co, , and w2 . The necessity of this condition was noted in
Section I, and it was pointed out that this condition is not satisfied in
communications situations in which the bandwidth of the broadband
noise is much larger than that of the narrowband signals that may be
present but much smaller than their center frequencies. However, in-
spection of the derivation of equations (13) and (17) shows that, if we set

coo = col = ct,o/ri and w2 = 0)0/71 wo (45)

then we have constructed a model for these "narrowband" communi-
cations situations for which equation (13) and (17) hold except for the
term S,1(f) which is now given by

Sy,(1) = f {arcsin [ap,(T) + (1 - a)p(r) cos WET]
7

- arcs in [(1 - a) p2(r) cos ohr}} cos am dr. (46)

Signal-to-noise power ratio results corresponding to those plotted in
Figs. 3 and 5 can be calculated (numerically) using equation (17) with
Sy,(f) given by equation (46) after making the simplifications that fol-
low from the definitions of wo , co, , and w2 given in equation (45). When
a = 1 and c30 is large, the signal-to-noise ratio result corresponding to
Fig. 3 will reduce to the result derived by Manasse, and others.'
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APPENDIX A

Calculation of Output Power Spectral Density

Using the characteristic function method discussed by Rice [Ref. 17]
it can be shown [Ref. 12, p. 308] that, if the input to the ideal limiter of
Fig. 1 is given by equation (1), then the autocorrelation function at
the limiter output

Ry(T) A. (17 (t)Y*(t - T)), (47)

is given by equation (7). Defining the input signal-to-noise power ratio
ns according to equation (10), it follows that

2""112[(k m)/2]
Ry(T) = ! m! ns

m-O

P(r) P(r)11-1-sns111+Nnsr
= 0, otherwise. (48)

It was pointed out in the text that we are interested in the situation
where ns is small due to the large bandwidth of the broadband back-
ground noise. Motivated by this, it is noted that, upon summing on
m, equation (48) can be written as

R y(T) =
21,4-1 +

k-0(oven) 7r2k 2

k m odd

± 1 k 1 3 [ PN(T)
2

PN(T) [ps(r)
 21. 1

2 ' 2 ' 2 ' 1 + ns J 1 + ns 1 ± ns ns

oda
E

)

2* r2(k) {k k 1 [pN(T) 12W pso-) iknk
2,, 2. 2'2'2' 1 + nsJ nsi S

(49)

Noting that 2F 1(a, b; c; x) is finite for all I x I < 1 as long as c m

 (m = 0, -1, -2,  )t [Ref. 13, p. 556], it follows that

t Gauss's hypergeometric function is also absolutely convergent at I x = 1 as
long as Re (c - a - b) > 0. Thus in fact

2F1(i, i; 1; 1) =

which implies that the series

aresin x = x 21.3z3 213.4.5 z6

converges for all ! x 5 1.
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() ,F1 1 3 ( PN(T) )21 PN(T)RyT = ; 2 2 ' 1 + ns 1 -I- ns

1 1 1 ( PN(T) )21 Ps(T) }
21,1[2'2'2' ± ns

19[770.T)PN(7)] + 0[44(r)] (50)

as ns --> 0, for all T such that I pN(r) I < 1. Moreover, by expressing the
hypergeometric function in the first term of equation (50) in its series
form and then appropriately collecting terms, it can be shown that

PN(T) p [1 1 3 ( PN(T)
2

2. 2 2 2 1 +

= aresin PN(T) - PN(T)[l - PN(r)Ilns O[nIPN(T)] (51)

as ns 0, for all 7 such that I pN(r) I < 1. Also, it is immediately recog-
nized that, in the second term in equation (50),

ps(T) L., [1 1 1 ( PN(T) )2
2r1 + n 2 2 ' ' 1 + nsi

= Ps(T)[1 - PN(T)]_ O[nsPs(T)] (52)

as ns -* 0, for all 7 such that I pN(r) I < 1. Therefore, recalling that the
noise N (t) contains a broadband component so that in fact

PN(T) < 1 (53)

for all I T I > 0,1 it is concluded upon substitution of equations (51)
and (52) into equation (50) that

Ry(T) =
2

{arcsin pN(7) [Ps(T) - PN(T)][1 - PN(r)i-i Os}

O[nIPs(T)] O[n3pN(r)] (54)

as ns 0, for all I T I > O.
In order to calculate the power spectral density S y(f) at the limiter

output it is necessary to evaluate

Sy(f) 2 f R y(T) cos COT dr, CO arf. (55)
0

t Note that this follows from the integrability condition placed on the broad-
band covariance function Ri(r) by (5). This integrability condition implies that

p(x) I < p(0) for all I x I > 0 and requires that the power spectrum of the broad-
band noise contain no line components.
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As it stands, Ry(T) given by equation (54) is not enough because of the
difficulty as r 0. It is not clear from the foregoing analysis whether
or not the representation given by equation (54) is valid as r 0

when ns -' 0, and in fact this representation may be valid for all ps(r)
and pN(r) of interest [compare Ref. 18].* In any event, the difficulties
involved in evaluating the remainder terms in order to examine this
possibility can be circumvented by using the well-known result that
Ry(T) is also given by equation (8).3 Thus,

which implies that

Ry(T) =
9arCSin

PPer) nSPS(T)
7 1 + ns

R1.(r) = -2 arcsin pN(T) o(1)
7r

(56)

(57)

as ns 0, uniformly in T. In fact, making use of the expressions for
Ry(T) given by equations (54) and (57) in conjunction with the expres-
sion for ns given by equation (10) and the integrability condition in
equation (5), it is seen that, if Ri(r) can be written in the form speci-
fied by equation (3) and the parameters a and Rs(0)/Co satisfy the
conditions a > 0, Rs(0)/C0 < co , then Ry(T) can be expressed:1

Ry(T) =
2
- arcsin pN(T) o(1), 0

--= -2 {arcsin pN(r) aR,s(0) [ps(T) - PN(T)][1 - P2A, (T)]- 71}
C.

0[71.13S(T)] + 0[4 PN(T)], I T I T1 (58)

sa 0. Substituting this result into equation (55) and assuming
that the integrability conditions

jo I ps(r) I dr < (59)

lc°I pN(T) I dr < 00 (60)

are satisfied, there results

* McFadden derives a similar expression for the case of a weak sinusoid in additive
gaussian noise and asserts that the expansion is valid at r = 0 as long as pN(r)
satisfies certain differentiability conditions.

t Another method for obtaining equation (58) is to expand equation (56) in a
Taylor series about pN(r).
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51(f) = 4- f arcsin Px(T) COS WT drr 0

+ a R(C)
Ti

Co
[1),(7) - p,(7)][1 - )1(7-)] cos COT dT} 0(71)

(61)

as ri 0, uniformly in f. This result can immediately be simplified by
observing that the predominant contributions to S1(f) due to interaction
of the signal and noise processes are due to interaction of the signal
process with the narrowband interference component of the noise.
In fact, noting that

pN(r) = api(r) + (1 - a)p2(r) cos w2r, (62)

it can be seen that equation (61) reduces to equation (11).

APPENDIX B

Derivation of Output -Power Spectral Density Expansion

It is shown in Appendix A that the output power spectral density
can be expressed according to equation (11); namely, that

4 R s(0) r'
Sy(f) = Sy N(f) a T1 [PAT)r C o

- (1 - a) p 2(T) cos co,r]
o

 [1 - (1 - cx)2AT) cos' (427]-1 cos COT dT 0(Ti) (63)

as T1 - 0, uniformly in f, where

SyN(f) - arcsin [api(T) + (1 - Mr) cos coo.] cos COT dT (64)
7r

is the output power spectral density when the noise N(t) alone is present
at the limiter input. Si(f) can be put in a more useful form by expanding
both [1 - (1 - a)2P22(7) cos' (.021-]-1 and arcsin [ap1(r) + (1 - a)p2(r)
cos cool. Proceeding with expansion of the latter it is seen that [Ref.
13, item 15.1.6]

arcsin [ap,(7) + (1 - a)p2(r) cos cool

1 r2(m
= + Dm! kpi(r) + (1 - c)132(T)

1
r2(m 2m+1 (2m -r 1) !

= Trir ,o- r(m + Dm! (27/1, + 1 - j)! j!

 [(1 - a) p2(r) cos co2T]l[api(T)]2m+1-i

COS CO2 Ti2M+1
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00

2(= arcsin [(1 - a)p2(r) cos w27-] rm +27 ,-.0 r(m 2)m!

X-2"1 (2m + I)!
 1_, (2m + 1 - j)! [(1 - c)P2(7) cos wolf [aPI(T)]2"1+1-i

,-0

Thus, substituting equation (65) into equation (64), we have

SyN(i) = SY.(i)

(65)

(66)

where

SY,(f) = 72j fa°
1)

1"(m + Dm! (2m + 1 - j)! j!

 [(1 - cr)p2(T) cos C42Tii[aPi(T)]2771+1 cos coT dT (67)

and

Sy,(f) =
4 f- arcsin [(1 - a)p2(7-) cos co27-] cos WT dT. (68)
r

We have succeeded in breaking Sy (f) into a broadband component
S,1(f) plus a component Sy2(f) consisting of narrowband contributions.
In fact, letting x r/ri , it can be seen, using the integrability condition
of equation (5), that

10

00

- P2(7) COS CO271i[api(T)]2m+1-i COS COT dT

= T1 f [(1 - a)P2(Tix) cos co2rix]i[ag cox) cos , rixfm+1- i cos wris dx

= T1 f (1 - ay
P 'a2m+1-i

2m+1- (x) dx o(T,)
0

as T1 0, for all f < fmaz < 00 for arbitrary fixed fru., , as long as j <
2m + 1. Moreover, using this integrability condition plus the fact that
the series in the integrand is absolutely convergent, it can be shown that

2 r r2(m + (2m + 1)
SY1(1) 77r1 Ti JO frdO r(M Dm! f7d- ) (2m ± 1 - j)! j!

 (1 - a)l[ap(x)]2m+l-i dx 0(T,) (70)

(69)

as Ti 0, for all f < f,a < 00, which can be written as

sy.(f) = T1 f' arcsin [ap(x) + 1 - a]
0

- arcsin (1 - a)} dx 0(Ti) (71)
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as T 0, for all f LC. 'max < co for arbitrary fixed fmax . Thus it is seen
that the broadband component Sy, (f) becomes white across any fre-
quency band of finite extent as ri 0 and moreover that, if « = 1,
then Sy, (f) is just the output power spectral density that would be
observed if the broadband component of the noise was present alone
at the limiter input.

Turning now to Sy, (f) given by equation (68), it is seen that

arcsin [(1 - p2(T) cos co2T]

1 r2(k
.17-1r r(k + -)1c! [(1 - p2(7-) cos U2l-12"-i

1 +c r2(k + rti tr\i2k+
r(k + i)k! L'±

to
(2k

(2k + 1
± I)!
_ ! 7.! 22k cos (2k + 1 - 2r)co2r. (72)

Now, letting k - r Am and then interchanging the order of summation
on k and m, there results

arcsin - a)p2(r) cos 0)2T]

=1 r2(k + 1)(2k +
2ir  r(k + 1)k! (k m 1)! (k - m)! 22k

 [(1 - a)P2(T)]2k+1 cos (2m + 1)(02T (73)

However [Ref. 13, item 6.1.18],

(2k + 1)! = (27)-122"3k or(k + (74)

so that equation (73) can be rewritten as

arcsin [(1 - a)p2(r) cos ce2T]

1 1'2(k_
X° (k m 1)! (k - n?)! [(1 - a)P2(T)12k+1 cos (2m + 1)w2T

kam

1 e÷ r20 + m + [(1 - a)p2H2j4-2m+1 1),027.-r ru + ± 2)3!

= 1 r2(m 2F,Im m 1; 2m + 2; [(1 a)P2H2)l'(2m + 2)

 [(1 - cx)p2(T)]2'1 cos (2m + 1)(027% (75)

Substituting this result into equation (68), we obtain the result stated
in equation (15).
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The expansion of [1 - (1 - a) 21)22

( ) cost 27-]-1 in the second term in
equation (63) can be pursued in a manner identical to that used above
for the expansion of arcsin [(1 - a)p2(r) cos c0271, and the result obtained
is that given in (13).

It is pointed out in the text that the assumption p2(r) = 1 greatly
simplifies the expression for S,. (f) without obscuring the most important
effects that result from the presence of narrowband interference. In
particular, it is seen that the assumption p2(r) 7=-7 1 violates the inte-
grability condition in equation (60). As a result, equation (13) does
not hold uniformly in f under this assumption since the points f = ±kf2 ,
k = 1, 3, - , must be excluded. However, it is observed that equation
(13) can be made to hold at these points as Ti 0 by addition of the
remainder term

0(7- f I p2(T) I dr) (76)

Moreover, it is seen from equation (15) that, when p2(r) = 1, Syjf) is
nonzero only at f = ±kf2 , k = 1, 3, , and its value at these points is

0(f' I p2(7) I dr).
0

(77)

Thus in fact it can be seen that, when p2(r) === 1, it is meaningful to
write Sy (f)as given by equation (17).
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Rate -Distortion Functions for
Gaussian Markov Processes*

By BARRY J. BUNIN
(Manuscript received June 5, 1969)

The rate -distortion function with a mean square error distortion criterion
is investigated for a class of Gaussian 111 arkov sources. It is found that for
rates greater than a certain minimum, the rate -distortion function is equiva-
lent to that of an independent letter source. This minimum rate was found
to be less than n bits per symbol, where n is the order of the Markov se-
quence. Comparisons between the rate -distortion function, and two quantiz-
ing systems are made.

I. INTRODUCTION

Suppose in the communication system of Fig. 1, the source emits a
sequence of continuous -valued random variables. The exact specifica-
tion of such variates requires an infinite number of binary digits. Hence
exact transmission would require a channel of infinite capacity. Since
no physical channels possess infinite capacity, we see that exact trans-
mission is impossible through this system.

However, if we are willing to accept some error in our specification
of the source output, then finitely many binary digits are necessary.
In the study of digital encoding systems, a useful quantity to know is
the fewest number of binary digits necessary to represent an analog
signal within a certain error. Such a quantity would give us a perform-
ance criterion with which to compare existing systems, and also tell us
how much improvement is possible.

The quantity we seek is given by Shannon's rate -distortion function.' ' 2
The rate -distortion function gives, for any bit rate, the minimum pos-
sible error achievable.

In this paper we study the rate -distortion functions for the important
* This research was partially supported by the Air Force Office of Scientific

Research under Contract AF 49(638)-1600. This paper is part of a dissertation
submitted in 1969 to the Faculty of the Polytechnic Institute of Brooklyn, in partial
fulfillment of the requirements for the Ph.D. degree in systems science.
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SOURCE
XN

ENCODER
YN CHANNEL

YN
DECODER

XN

Fig. 1 - General communication system.

RECEIVER

class of gaussian Markov sources. We measure our error by the mean
square error criterion. Also, the performance of two quantizing systems,
differential PCM and block quantizing, is compared to the rate -distor-
tion bound.

II. DISCUSSION OF RESULTS

We have studied the rate -distortion functions of gaussian Markov
sources with a mean square error criterion. We express our results in
Fig. 2 by plotting signal-to-noise ratio in dB, versus bit rate R. The
signal-to-noise ratio is given by

0.2

S/N = 10 logic, -h- (1)

where 0.2 is the variance of the source output, and D is the mean square
error.

It was found that for rates R greater than a certain Rmin , the rate
distortion function is given by

f

S/N IN dB

fr2
10 LOG =-2-

2

R = log, B'

4.34 dB

0 < D < a,2 (2)

BOUND

DIFFERENTIAL PCM
AND

BLOCK QUANTIZING

4.34 dB

RMIN
R (BITS/SYMBOL)

Fig. 2 - Rate -distortion bound of a Markov-n source compared with block quantiz-
ing system and differential PCM.
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or

2S/N = 6.02/? ± 10 logo 2
am

(3)

where a: is the minimum mean square prediction error one step ahead.
The point R,,,; occurs in the interval (0, n) where n is the order of the
Markov process that the source emits. The exact location of R,; de-
pends on the exact shape of the power spectral density of the process,
as we shall see. At R = &hi , the rate -distortion function has a dis-
continuity in the third derivative.

If the source were followed by the optimum prediction system of Fig.
3 then the output sequence produced would be uncorrelated with vari-
ance orm . Such a sequence has the rate -distortion function given by (2).
Hence for rates greater than Rmin the sequences at the input and output
of the prediction system have equal rate -distortion functions. For rates
less than R.I. they do not.

A lower bound on the performance achievable by the block quantizing
system of Fig. 4 was found. The result is also shown in Fig. 2, where it
is seen that this system can be made to perform within 4.34 dB of the
bound.

Also shown in Fig. 2 is the performance bound for a differential PCM
system (see Fig. 5) as derived by O'Neal. This bound however, holds
only for high bit rates.

III. RATE DISTORTION FUNCTIONS FOR MARKOV-N SOURCES

3.1 Introduction

Consider again the communication system of Fig. 1. The source emits
the discrete time, stationary random process x t = 0, ±1, ±2, .

After N seconds, a column N vector X is obtained, and after encoding,
transmission and decoding, the receiver obtains a replica of X. The
mean square error between the transmitted and received vectors is

SOURCE

OPTIMUM
PREDICTOR

Fig. 3 - Predictive communication system.
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SOURCE
XN

defined by

UNITARY
TRANSFORMATION

A

"N ADAPTIVE
QUANTIZER

YN

Fig. 4 - Block quantizer for correlated source.

D = -N E(X - )T (X - X)

A-1
x'N

(4)

where E denotes expectation and X T is the transpose of X. It is reason-
able to ask what the minimum bit rate is, at which we must transmit,
so as to be able to achieve a mean square error less than some prescribed
amount. The answer is given by Shannon's rate -distortion function
which is defined as follows:1'

1

NR(D) = lim min - f p(XN)P(IN I XN)

i PaN XN) dXN
(12.--,v

P( N)

where the minimization is taken over all pa N I XN) satisfying

(D) = k ff (.2c, - .kN)TaN - gN)

P(XN)KXN I XN) dXN dXN S D

and where

(5)

(6)

p(XN) = probability measure of the source vector XN
P(XN XN) = conditional probability measure of X N given XN

p(XN) = probability measure induced on XN by p(X N) and
P(XN I XN).

SOURCE QUANTIZER

OPTIMUM
PREDICTOR

Fig. 5 - Differential pulse code modulation system.
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(The subscript N is included to emphasize that we are dealing with an
N -vector.)

Suppose the source emits a stationary gaussian time series with cor-
relations E(x,x,) = r; _k = r,.. Then the discrete time power spectral
density is given by

co

f(X) = E rretrX X r (7)
- 00

and the rate distortion function is given parametrically by3 (see Fig. 6
for interpretation)

R(0) = fi log gc;c7)- 2cA,

D65) = .2- ji, Xr

A= { X : f(X) 0}

A' = IX : f(X) < 01

and

8(a)

8(b)

A U A' = (-7r, r).

Hence, if we are given a distortion D, from (8b) we can find 0, and
then from (8a) we can find the theoretically minimum rate R necessary
to achieve a mean square error less than or equal to D. If x, consists

Fig. 6 - Graphical interpretation of equations 8a and b. The set A = , X-4)
U (X-3, X-2) U (X-1, X1) U (X2, X3) U (X4, ir). A' = (X.4, X-3) U (X-2, X-1) U (X1, X2)
U (X3, X4).
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of independent Gaussian variates, with variance 0-2, then f(X) = 0'2 and

(8a) becomes

0.2
R(D) = -D-log, bits/symbol. (9)

If we restrict the class of sources to be wide sense Markov of order

n, then f(X) assumes the following form:

f(X) -
1-1 1 eex ai 12

K

i =1

with 0 < ai < 1, ai a, if j k, and K is chosen to satisfy

E{x,.2 } = f f (X) dX.

(10)

In the remainder of this paper we consider some properties of the
rate distortion function as given by (Sa) and (8b) for processes with
power spectral density (10).*

3.2 The Markov-n Sequence

In this section we present some results from prediction theory.
For details and proofs see Refs. 6 and 7.

A process with power spectral density given in (10) is known as a
Markov-n process.' Performing the indicated multiplication in (10)

results in

f(X)K K n (12)

11 e" - ai 12 I ei" biei(n-"x +
bfl I'

i =1

A sequence with the spectrum (12) can be shown to satisfy the autore-
gressive relation

x + E bix_, = En (13)

where { en } is a sequence of uncorrelated random variables with variance
K.

Writing (13) in the form

x = -E bix_i E (14)
=1

* T. Berger, in a recent paper conAders similar properties for the Weiner process'.
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it can be shown by the orthogonality principle (Ref. 8, Section VII -C)
that the best linear predictor in the mean square sense, of x given the
infinite past is just

Zn = -E b,sn_i
i=,

(15)

Hence for a Markov-n process the best prediction involves only the
n previous samples.

The error is

e x - = .

The minimum mean square error is thus

cr: E(En)2 = K.

(16)

(17)

From (10) and (17)

f7f r nlog, f(X) dX = log2 u, -Elog, I e'''- ai 12. (18)
27r -7r i=i

From Peirce's tables,° number 540, it can be shown that the integral is
zero (recalling that 0 < a; < 1). We state our conclusion as a theorem.

Theorem .1: For a sequence with spectrum given in (10) the minimum
mean square error resulting from an optimal prediction one step ahead is
0-2, , where

log2 4, =
27
-1 r log2 f(X) dX. (19)

Theorem 1 is a special case of the theorem proved in Ref. 6, page 1S3.

3.3 Evaluation of R(D) for D :5_ f(r)

We next consider the particular form that equations (8a) and (8b)
assume when f(X) is as given in (10).

Theorem 2: Given a process with

f(X) =
xIT e - a; 12

;=1

for some integer n. For mean square errors satisfying 0 < D Lc. f(r), R(D)
is given by

0,R(D) = rilog, bits/symbol. (20)
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Proof: From (8a) and (8b)

R(cp) = fi log M-
2 2r

D =
4,7r

f dX fA f(X) dX.
A '

The power spectral density f(X) is monotonically decreasing with a
minimum at X = r. Hence for (/) in the range 0 < ¢ < Air), A = (-r, r),
A' = 0, and

D =27r f dx = q5

It follows that

(21)

dX
R(qh) = R(D) = -1

r log, f(X) - - log, D. (22)
2 f

,r

From Theorem 1 the first term is 2 log am so R(D) = log, o -,2/D

which holds for 0 < D < f (r). This is (20).
The rate -distortion function (20) is precisely the rate -distortion func-

tion of a process consisting of independent gaussian random variables
with mean 0 and variance u,2 [see (9)].

Figure 7 illustrates why the rate -distortion function depends on
f(7) in this way. The shape of the spectrum of D in (8b) is that which
would be assumed by water if it were poured into a container shaped as
f(X). As we pour in water, it distributes itself uniformly so long as its
level is below f(r). Hence D is independent of f(X) so long as D < f(r).
Once D = f(n-) the exact shape of f (X) comes into play.

Consider next the predictive communication system of Fig. 4. The
source emits the gaussian process with power spectral density (10). The

f (A)

Fig. 7 - Typical Markov spectrum, illustrating water filling interpretation of the
rate -distortion function.
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optimum predictor makes a prediction of xn based on {:ck }7:0' . This
prediction is then subtracted from xn and the error is transmitted. The
transmitted sequence is thus the sequence 1 [see (14)] which is a
sequence of uncorrelated gaussian random variables with variance o .

Its rate -distortion function is thus also given by (20), for D in the in-
terval 0 < D am .

From (1)
2

S/N = 10 logo

2 2

66'n= 10 log,o

2 2
o- ,

= 3.01 log, -D + 10 log10 2

0.2

= 6.02R + 10 logi0 (3.2 (23)

since R is given by (20). Hence S/N is a linear function of R over the
range of R for which 0 < D f (Or). This range depends on n, the order
of the Markov process, as given in theorem 3.

Theorem 3: For an nth order gaussian Markov process, the rate -distortion
function is given by

R(D) = 2 log, D bits/symbol

for rates R > R,; . The value of R, depends on the exact shape of the
power spectral density f(X) and assumes a value satisfying

0 < R,1 < n bits/symbol (24)

depending on the ai's of f(X) [see (10)].

Proof: From (10)

From this

i(X) =
Heix - 12

i -

l(r) -
I 1 1 + a, 12

-1

(25)
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At D = Yr)
2

= RU (Cr)) 1 102 f6ir)) -6 "1) bits/symbolloge

which from Theorem 1 is

1

2

1

2

[21,-; iv log2 f(X) dX - log2 AT)]

1 v." r
[log, K - 0-2 I eix - (Li 12 dX

Ii=i -n-

ri

- log, K E + ai)21

As in (18) the integral is zero and

(26)

(27)

Rmin = E log2 (1 + ai) bits/symbol. (28)

Since 1 cti I < 1, Rmin < n bits/symbol. Hence, 0 < Rmin < 1? bits/
symbol, which is the desired result.

3.4 Behavior of R(D) at D= t(r)
With f (X) as given in (10), the rate -distortion function is, from (20)

2

R(D) = z log2 756-

for 0 < D 5 f(r), and from (8a) and (8b)

R(X) = 217r r log2 dry (29a)

D(X) = [f f(X) f ch]
o

(29b)

for f (v) S D S 62. Writing (8a) and (8b) in this form follows from the
observation that for a monotonically decreasing power spectral density
the set A equals the simply connected interval (0, X) and (fr = f(X), for
the appropriate X.

From (20)

crR (n 1)! D_ In 2C/51 =(-1)n
0< D< f(r) (30)

and from (29)
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dR 1 1

dD = z f (X) In 2 (31)

d2R r 1

dD2 - 2 Xf2(X)
in 2

d3R f2(X) 2Xf(X)f'(X)
In 2 (33)dD3 - 2 X3r(X)f(X) -

for Kr) < D < a2, where f'(X) = df(X)/dX
From (30), (31), and (32) we see that dR/dD and d2R/dD2 are con-

tinuous at D = f (Or). But from (33) we see that d3R/dD3 - CO as D
f(r) from above (since f' (r) -÷ 0), whereas d3R/dD3 is bounded as D
f(r) from below. Hence d3R/dD3 is discontinuous at D = f(r).

W. QUANTIZING CORRELATED SOURCES

(32)

4.1 Introduction

Consider a source that emits a sequence of independent gaussian
random variables of mean 0, variance a2. It is desired to optimally quan-
tize the source by using an M level quantizer. Maxi° has shown that by
optimally choosing the quantizer input ranges and output levels, a mean
square quantization error of

0.2

D = K(111) 37 (34)

can be achieved where K(111) is a function of M. Further, it is shown
numerically that K(111) 2.72, and that the inequality becomes an
equality as M 00 . Hence for any M

o2

D,, S 2.72 -
M2

(35)

For an M level quantizer the number of bits/symbol is R = log2 M, so
that (35) can be written

2

D, < 2.72 5- 22R (36)

The rate -distortion function of the process is from (9)
(7.2

R = 1 log2 T)

so that the minimum possible mean square error achievable with a fixed
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bit rate R is
2

0-
Dmin ------ - 22R (37)

Hence Max's scheme can be made to achieve a mean square error
satisfying

A, -__. 2.72 Dm,. (38)

where Dmin is the minimum mean square error as given by rate -distortion
theory.

In this section we find a bound on a quantizing system studied by
Huang and Schultheiss.11 Our result is that (38) holds also for correlated
sources, when Dmjn is as given by the appropriate rate-distortion fun-
tion. For the case of Markov sources we plot this result in Fig. 2.

4.2 Description of the System

Referring to Fig. 4, the source emits correlated gaussian variates (not
necessarily Markov), of mean 0 and with correlation matrix a =
E(XXT). The operator A accumulates source N -vectors X, and rotates
them in such a way that

Y = AX (39)

and
E(Y YT) = E(AXXT AT) = AE(XXT)AT = APLAT = J (40)

where J is a diagonal matrix whose ith entry is X, , the ith eigenvalue
of R. Hence Y is an N -vector whose components are independent ran-
dom variables with mean 0 and variance X, , and A is a unitary trans-
formation.

The sequence of independent variates { yi} (the components of YN)
are then quantized step by step.'" The jth quantization can be opti-
mized to produce a mean square error of

Di = K(111 i)XiM i-2 < 2.72X,MT2 (41)

where M; is the number of quantization levels used to quantize yi .

Denoting the output of the quantizer by the vector Y', the average
mean square error is

D = -N E(Y - Y')T(Y - Y') = -1 E(Y - Y')T AT A(Y - I")
N

= -N E(X - X')T (X - X') (42)
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where we have used the fact that for a unitary transformation AAT =
AA -1 = I, the identity matrix. Hence the system mean square error
equals the quantizer mean square error.
From (41) and (42)

1D = -1
N

E(Y - Y')' (Y - Y') = -E E (yi -

-1 2.72 E x"./1172 D. . (43)
N

4.3 Optimization over the

We next tighten the upper bound by optimally choosing the Mi's
subject to the following constraints.

(i) 1 for every j. The quantizer must have at least one output
level.

(ii) The bit rate is limited by the channel capacity, C bits per symbol.
We can thus use M = 2' levels per symbol or MN levels per vector.
This implies the constraint

N

= fl 112; . (44)

Hence we wish to minimize the right side of (43) subject to (44), while
keeping in mind constraint (i).

With v a Lagrange multiplier, we form

F = + vMN (45)

A differentiation with respect to Mk yields

Xk = (46)

where µ is a constant. Using (44) to solve for the constant gives
\ 1/2

k (47)Alk = , 1/N

L(11Xi)
and

79 ( iiN
) (48)= 11

3/2 i=i
X

However constraint (i) will only hold if in (47)
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II xi
M2

for every k.
The right side of (49) can be written

1

N E logs Xi
II xi

= I
3/12

2 -2
1112

fkf log. 1(X) dX1

1112

(49)

(50)

(51)

2
0" m=. (52)

111 r

where we have used the fact that the eigenvalues of a approach the
ordinates of f(X) equally spaced in (-r, r) as N -p 00 (see Ref. 6), and
then applied the definition of a Riemann integral. Finally, we used
(19). Hence the constraint (i) is met if

2

X k (53)

for all k. Using (50), (51), and (52), (48) becomes
2

DL = 2.72

In terms of signal to noise ratio we get
2cr2

S/N = 10 logic, 10 log10
Du

(54)

2

= 10 logic, - ± 20 logic ,2 log, M - 4.340-7

a2= 10 log), 6.02/? - 4.34 (55)
Qm

for

1? >
0.2

log2 (56)--n
f (r)

and where we used the relation

R = log2 M. (57)

Suppose, however, that for some Xk's (53) is not met. Specifically,
arrange the eigenvalues such that Al X2 X3 XN and suppose
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Mk>1 k = 1, 2,  J
Mk<1 k=J+1N.

(58a)

(58b)

Set those Mk in (58b) equal to one, and reoptimize over the Mk of
(58a), the expression

J
Dr = 2.72 E

x

k

subject to the constraint
J

We would find that optimally

(59)

Mk = MN (60)

/ J \l/J
1-1 X.)

Xk 1..1
31: 312N/J - k = 1  J (61)

where the right side of (61) is a constant. Without loss of generality,
we can assume that all /1/k obtained from (61) are greater than or equal
to one. Otherwise we would set the infeasible Mk equal to one, and
reoptimize. The procedure would return us to an equation similar to
(61). As N 00

Da 2.72 (i iir Xi)_j+,

= 2.72 k (t + Xi)

= 2.72P;
JA

-y dX f(X) (62)
A 

where A and A' are as given in (8) with ch replaced by 7.
Similarly

- m2N/J
II xi

which, upon rearrangement, becomes

R21N Xilog2 M = - log2 -7

f log., dx.
471- -A

(63)

(64)
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By comparing (8a) and (8b) with (62) and (64) we see that (62) has
the optimal spectrum for a rate given by (64). This implies that our
procedure of setting infeasible Mk's equal to one does indeed lead to an
optimum result.

Further, the terms in brackets in (62) is the minimum mean square
error for a rate given by (64). Hence the quantization procedure has
yielded

2.72 Dm in

which is (38).
This result is plotted in dB in Fig. 2, for the case of a Markov-n

process.
There is an approximation involved in obtaining this result. The M.

obtained may not be integers. However, the large M, will be little
affected by rounding, and the looseness of the bound of (38) for small Mi
counteracts the effects of rounding the small M1 . In fact, for very small
M, the bound is conservative, as we can see from Fig. 2. Clearly S/N
should approach zero as R goes to zero. Hence our lower bound on S/N
is loose in this range.
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The Optimum Linear Modulator for
a Gaussian Source Used with

a Gaussian Channel

By RANDOLPH J. PILC
(Manuscript received June 12, 1969)

The optimum linear modulator and demodulator which provide transmis-
sion of a gaussian vector source through an additive gaussian vector channel
are derived in this paper. The measure of performance that is used is
the transmission distortion, which is defined here as the mean square error
between the source output and the decoder output. It is assumed that the
source and channel are mutually independent but that correlations can
exist among the components of each. The performance of the best linear
system is then compared with the distortion shown by Shannon to be

theoretically obtainable when no functional constraint is imposed at the
modulator other than an energy constraint. Although the precise form, of
this optimum modulator is not known for general gaussian vector sources
and channels, it is known to be nonlinear and to require arbitrarily long
coding block lengths. However, it is a commonly held notion that when
the source and channel dimensionalities are equal the optimum modulator
is linear and requires a block length of only one. It is shown here that
this belief is incorrect except in very particular situations which are de-
scribed. Some relations between the optimum linear modulator -demodulator
pair and Shannon's test channel are discussed, and an example is in-
cluded which shows that the nonoptimality of linear devices can be quite
small.

I. INTRODUCTION

We are concerned here with the transmission of a gaussian vector
source over an additive gaussian vector channel. The mean square
difference between the source and decoder outputs is used to measure
the transmission distortion in the system and is, therefore, attempted
to be minimized in the design of the encoder and decoder. In this
design the encoder is constrained to present only a limited energy to

3075
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the channel, thus constraining the transmission capacity of the system.'
It is because the transmission capacity of the system is limited in this
way that the given gaussian vector source cannot be transmitted with
arbitrarily small error.

The distortion which necessarily must exist in the system is pre-
scribed by Shannon's rate -distortion theory.' This theory states that
when the transmission rate in a system is limited to R, the transmission
of the source must include an average distortion of at least dR , which
in general is a function of the source statistics and the distortion measure.
The theory further states that the distortion level dR is attainable
with some modulator -demodulator pair. Unfortunately, the precise form
of this modulator and demodulator is not known in general, except
that it is nonlinear" and that it requires the use of arbitrarily long
coding block lengths.'

Since the nonlinearity of the optimum encoder is probably a very
complex twisting of the source space locus within the channel input
space, the implementation of the optimum encoder, even if it were
known, would be extraordinarily complex. Of course, the long coding
block length requirement does nothing to help the situation. For these
reasons we study in this paper the optimum linear transmission system,
restricting both the encoder and decoder to be linear operators. Such
a system uses a block length of only one and is very simple to implement.
(It is later shown that increasing the block length does not improve
the performance.)

The degradation in performance with the use of the optimum linear
system is found by comparing the resulting distortion to that of the
optimum nonlinear system as found by Shannon. Contrary to popular
belief, the best linear system does not provide the minimum attainable
distortion, even when source and channel dimensionalities are equal,
except in very particular situations that are described. However, in
many cases the difference is small. At the end of the paper we discuss
some relations between the optimum linear modulator -demodulator
pair and Shannon's test channel.'

II. THE LINEAR TRANSMISSION SYSTEM

The system considered is shown in Fig. 1. The N, dimensional
zero -mean source vector w is linearly modulated by A to form the
input to the N, dimensional additive gaussian noise channel. We
assume the noise vector n to be independent of w. The linear demodu-
lator B extracts from the received vector y an estimate iv of the source
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w,

A

x,

n,

Y2

nNc

Fig. 1 - The linear system.

which is presented to the user. In summary

th = By = B(x n) = B(Aw n). (1)

The measure of distortion in the system is taken to be the sum
of mean -square errors between the components of w and /V, that is

N.

d w - 12] = E[ (w - ibi)2] (2)

The modulation matrices, A and B, are sought which minimize this
distortion, their choice subject only to an average channel input energy
constraint,

N

B
tifa

171
N s

3077

i N.

ST = E[ 2 E Var xi , (3)

5 SO (4)

which obviously will be met with equality in the optimum system.
It is well known that the minimum mean square error estimate of

any quantity (here the source vector w) based on the observation
of a second quantity (here the channel output vector y) is the condi-
tional expected value of the first given the second.' Further, the average
error made with such an estimate is the conditional variance of the
first given the second. Therefore, we have

= E(w I y); i = 1, 2, , N,
N.

d = E Var (wi ( y).
i-1

The required conditional density p(wly) can be found from

(5)
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p(w) = k1 exp f-iwgc'w]

and

P (Y i w) = k2 exP {- (y - Aw)t 4°,71 (Y - Aw)]

by application of Bayes rule. The result is

p(w I y) = ka exP [-1(w - /1))(cicoly(w - 6)]

with

and

= AtcP,71A + (DV

= (1),7' AGI),.1

From these equations we have one immediate result, that is, the optimum
demodulator matrix is given in terms of A by

B = cDwhAtc13,71. (8)

If we now rewrite equations (5) and (3) as

d = trace cb. iv (9)

ST = trace .Icsz (10)

we can restate our problem as that of finding the matrix A which
minimizes the trace of ciou,i, subject to a constrained maximum trace
of cPz .

III. THE SOLUTION UNDER CERTAIN ASSUMPTIONS

We first restrict our attention to systems in which the source and
channel dimensionalities are equal, N. = = N, and in which the
correlation matrices (Du, and cI3 are diagonal. From equation (6) we
have

`1), c13:1, = 43 A (13,7' A + I (11)

and from equation (1) that it = A (1)tA. g and ci3i, = 43 , which
provides

titTi I. (12)

Noting that (13. enters these equations in a more symmetric way than
dose (13.x , we recast the energy constraint in equation (10) to be in
terms of the received energy at the channel output. This energy equals



LINEAR NIODITLATOR 3079

N.

SR = E[E y = E Var y;
-1

= trace 4y

= trace cl3z + trace c13

which, if trace (I) = No , is constrained to satisfy

SRS So + No (13)

3.1 The Proof that the Optimum Modulator Matrix is Diagonal

If we denote the characteristic polynomial of a matrix M in the
variable X by

c.p. [M, X] = det (M - XI)

and state that Mi is square, we can use the following two matrix
properties:5

(i) c.p. [311/112 , X} = c.p. ])112/111 , X] (14)

(ii) c.p. [M1 , X] = c.p. [MI + I, X - 1] (15)

to conclude from equations (11) and (12) that

cP [(1).41:1,, , X] = c.p. [cDycl',71, X]. (16)

It is this equation which provides the important relations among the
correlation matrices in the system.

We note that the set of matrix pairs c13,01 , (Dv which are consistent
with equation (16) include many pairs which do not satisfy both equa-
tions (11) and (12) for any given A. The latter equations of course
specify the relations among c,,1,, and ciz. which must exist in the com-
munication problem under consideration. Nevertheless, we will work
with equation (16) to perform the optimization and then show that
the solutions for (1),,I and c13 can be realized with some modulator
matrix A and, therefore, are consistent with the more restrictive equa-
tions (11) and (12).

Equation (14) and the assumed diagonal form of (1), and (1, allows
us to rewrite equation (16) as

c.p. , X] = c.1). [404),,c13,74,

As 43,,, and cf. are system constants not under the control of the user,
any specification of c13 completely determines the roots of c13,71(1343,71,

which we denote by lad, i = 1, 2, , N. The roots of (1),:,4(1),1(10:4
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are also determined and are equal to { }. Our claim now is that
among all matrices 43 with roots { }, the one which produces the
minimum trace of 43,01 = k1,44j, is diagonal.

If so, are used to denote the elements of the trace of c1D,01, equals

trace 43,,, =
N

V, 2

(ri(Pii
i - 1

At this point we impose, without loss of generality, that the variances
be ordered such that 0-: > > QN . Since the minimum

trace of 4)1,, is sought, clearly the diagonal elements soi, should cor-
respondingly satisfy son - so22 S S coNN . This presents no re-
striction on 43 as a simultaneous interchange of rows and columns
produces no change in the characteristic equation of 4).

Now consider any nondiagonal candidate for the desired 43. In
particular, let comk = (Pkm m > k, be nonzero. Because the submatrix

CI) (km) [9k k
SO km

cOmk iOmm-

is itself a correlation matrix, it can be diagonalized by some orthogonal
matrix T such that

cr.' (km) = (i) (k m) T = [vfck
0

0 cp:s_

From (14) it is known that the characteristic polynomials of 43(km)
and 4V(km) are equal. The trace and determinant of each are therefore
equal. It follows that (ofKk = (Pkk c and so,' , = cmm c; c > 0, or that
the larger diagonal element is increased and that the smaller one is
decreased.

The diagonalization of the submatrix 4)(km) within cl) can be effected
by an orthogonal matrix Q which contains T in the appropriate sub -
matrix position and identity matrix elements in the other positions:

qii = ti; ;
= (k, k), (k, m), (m, (m, m)

qii = di; ; other (i, j).

We then have 43' = (W2` with only the elements in V in rows and
columns k and m changed from those in 40. If te' is used to generate
a new correlation matrix V., = 40,!,4/40,14, , we have

N N

tr cl)'w iv = E Gr!cof, = E
c(0.2k 0.2m)
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= tr - - 0-,0

tr 61)7, I , (17)

which establishes the claim of this section. That is, any nondiagonal
correlation matrix 4) with roots cy-i1} conjectured as providing a
minimum trace correlation matrix (13,,,c1343! = ci),1 can be improved
upon by V. The desired matrix for c13 is therefore diagonal and equal to

[a7'511] (18)

with the corresponding form of 43,,, I equal to

= [tra71,5i,1- (19)

It follows that among all matrices (13,,i, consistent with equation (16)
with any given it , the one with minimum trace is diagonal.

An identical argument yields the symmetric conclusion. That is, for
any specified (1),1 the matrix c1) with minimum trace among those
consistent with equation (16) is also diagonal and equal to

(1)7, = (20)

The argument assumes only that the noise variances are ordered
an2i 0..22

We can now state that the minimization of the trace of 43,1, over
all pairs & 71 , (1c. which satisfy equation (16) and the constraint equa-
tion (13) is obtained with a pair of diagonal matrices parametrically
related as in equations (19) and (20). Any pair not so related can be
altered, one matrix at a time, to decrease either the error (trace (1,1,)
or the received energy (trace (1),). Although we have worked with
pairs 43,,l, (13 consistent with equation (16) rather than the smaller
set satisfying equations (11) and (12), the solution forms for cIo, I, and
4), are still valid as they do satisfy these equations.

The modulator matrix which produces the correlation matrices (13 i
and (Du in the optimum form can be found from either equation (11)
or (12) to be

A =
[°--1- (a, - 1)1611 (21)

cri

Equations (12), (14), and (15) and the fact that ci.-1A013,,A has
nonnegative roots (it is a correlation matrix) can be used to show
that ai >= 1, i = 1, 2, , N which guarantees that the elements
of A are real. It remains to solve for the set of roots faii which provides
the desired optimization.
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3.2 The Optimum Diagonal Modulator Matrix

In terms of the set {ad, the distortion which is to be minimized
is given by

X- 2 -Id = trace (1),1 = z criai
i=1

and the received energy constraint by
N

SR = trace , = E o-2(I) iai N .

i=1

A further constraint is that ai > 1, i = 1, 2, , N. As the set of
permissible ai's is a convex set and the functions d(ai) and SR(ai) are
convex functions, the Kuhn-Tucker theorem is applicable.' This states
that at the point of minimization:

(5z d+`2 SR
a [

Therefore we have

or

= 0 if a; > 1

<0 if a; = 1.

2 -2 1
o -n i = 0 if ai > 1

X

<0 if a; = 1

ai = max , 1 (22)
Acr,

It has already been observed that ai >= a2 > z «AT and that
ai = 1 corresponds to aii = 0 or no transmission of the ith source
component. If we let N' denote the last ai strictly greater than one
we have the following solution for the optimum modulator matrix

A =1- 0-ii
( 1)
Xani 1 ._._ i, j . AT' . (23)

\I
a6i ii-

0

L 0 0_

The solution for the distortion in the optimum linear system follows
directly from equation (19):

N'

d E + E g
2

i 1

i=1 i=N'+I
(24)
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as does the solution for the total received energy from equation (20):

1
SR = 7, Cr i(rni + E an2, (25)

iiiA

In these equations, the parameter X is chosen to satisfy the constraint
in equation (13) with equality. It should be remembered in the solu-
tion for X that N' is a function of X, being equal to the largest value
of i for which a-1/6,,, > X. For completeness, we give the optimum de-

modulator matrix:

B = Xani
( - 1) 6,i 01. 1c i, j N' . (26)

0 0

IV. ELIMINATION OF THE ASSUMPTIONS

4.1 A Source and Channel with Nonindependent Components

We now consider systems in which clot, and 1pn are not diagonal.
Let P and R be the orthogonal matrices which respectively diagonalize
these two correlation matrices, that is, I = Pcp,Pt and cIon, = Mod?'
with c13, and cID, diagonal. Using the previous results, we can find the
optimum modulator matrix A' in the primed system containing the
correlation matrices (I), and 43, . Now consider the use of the modulator
matrix A = Re AT in the system with (1.20 and (11. . From equation (6)
and c13 = A(PwAt 4, , it can be easily shown that using A' in the
primed system and A in the unprimed system each produces the same
distortion and uses the same energy. Consequently, A must be the
optimum matrix in the unprimed system. If it is not, and Ao is better,
Ao = RA°13" would be a better choice than A' for modulator in the
primed system contrary to A' being optimum.

4.2 Nonequal Source and Channel Dimensionality

When N. N we can appropriately modify either the source or
channel to restore the equality. For example, when N. < N, - N.
source components of arbitrarily small variance, say e, are added to
the original source vector. The optimum modulator is then found as
a function of e by the previous method, and finally the limit taken
as e goes to zero. Similarly, when N, < Na, Na - N, , channel com-
ponents of arbitrarily large noise variance, say 1/e, are added to the
original channel, the optimum modulator found, and the limit taken
as E goes to zero. We have seen that whenever either the soiree ha,s



3084 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969

a component with small variance or the channel has a component
with large noise variance, the number of source components actually
transmitted, N', is smaller than N. Since the optimum modulator
matrix is diagonal, N' is also the number of channel components
actually used. Therefore, the limiting modulator form in both of the
above situations is attained for a nonzero value of e, say El . This
modulator form is then optimum for all E < Ei 0.

V. COMPARISON OF OPTIMUM LINEAR AND NONLINEAR MODULATORS

In 1959 C. E. Shannon introduced a relation between dR , the min-
imum attainable transmission distortion of a source, and R, the total
information rate used in transmission.' This relation involves only the
source statistics and the distortion measure in use. From it one is
able to conclude that any channel with capacity R can be used to
transmit the source with a transmission distortion arbitrarily close
to dR . One need only use a "sufficiently complex" encoder and decoder.

Another part of rate -distortion theory is the idea of a "test channel."
Associated with each point on the rate -distortion curve, (d, , R), is
such a test channel which has the significance that among all channels
that transmit the source at a rate equal to R, it provides the minimum

operators which can transform a given capacity R channel into the
test channel for the source at (dR , R), these operators must be optimum.
An obvious necessary condition for this transformation, which is not
always met, is that the capacity of the test channel at (cl, R) be equal
to R.

For a gaussian source with variance 62 and squared difference distor-
tion, Shannon has found' both the rate distortion expression, dR = Cl2e-2R
and the test channel:

w C) .

n

(27)

In this reverse channel, et) and n are independent gauss variables with
respective variances a' - dR and dR . It can be shown that this channel
is identical to the forward channel:

w (-3 -

A, n

(28)
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with A, = (0-2 - d R) = A IdR , and the independence between
w and n. A similar form is given by Gallager in Ref. 7. Still another
form of the test channel is:

tv --+ (:) --4 (i) (29)

T T T

A n B

with A2 = (o-2 - dR)cr/a2d, B2 = (a2 - dR)dR/a2a2 , and n any
given additive gaussian noise.

Now consider a single dimensional gaussian channel of capacity R.
Since the received energy SR is accordingly restricted to crn2 exp (2R),
we have from equations (23) through (26) that the optimum linear
operators are

2a,,
a

1)
a2n dXa

1);, =

x=

0.72,2

x2( a 1) d(a2 d)

\Xcrn CI Cfn

Qv,,

aan SR

Note that the distortion d equals a2 exp (2R), and that au
agree precisely with the test channel parameters in (29). Therefore,
we can conclude that in this case the operators in equations (23) and
(26) are optimum, even outside the linear class.

The rate -distortion curve and the test channel for gaussian vector
sources can also be found from Shannon's results. The results for the
N -dimensional source with variances c4, a22 , , a; are (we continue
to assume that a > a22 > > cr;):

N 1 /N

d, -= N{C2R H 2 0 dR Nav
ial

N-1 1/N-1

0-2N (N - 1){e -2R H a 2i
i = 1

N dR aN (N - 1)a2N__,

N-2 1/N-2
crN2 erN2 (N - 2) e- 2R ll cr2i

a2Ar (N - 1)a2N-1 dR -5_ 41 + (N - 2)a2N-2
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= +  ± +
0-N +  ± 20-: C dR ± 

= 0-2N +  ± ; R = 0.

0.21

(30)

This expression can also be applied to a gaussian vector source with
correlated components if the variances (4 are interpreted as those in
the diagonalized correlation matrix (1), = P4,.1)`. The test channel
for N > 1 is the product of elementary test channels given in (29) with

A = A1 , A2 ,  ,AN,
A _? (4 - di) 2

o -di
a-ni

di = min (4 , dR),

0.7,2 2
, = any noise vector.

Let us now presume that the vector channel provided for use has
the additive noise variances given by the vector a2 and is constrained
to have an output energy level equal to SR . This equivalently specifies
the channel capacity as

R = max E 1
log SRi

slit i-1

with

(31)

SRi = max (8, a-,22

and S adjusted to have E SRi = SR . The comparison between the
minimum attainable transmission distortion using linear transmitter
and receiver operators (equation 24) and using unrestricted transmitter
and receiver operators (equation 30) now reveals that contrary to the
single dimension case, when N > 1 the linear operators are not, in
general, optimum. The only exception is when both the vectors 0-2
and cr: are uniform. Some intuition as to why the single and multi-
dimensional cases are different might be provided by the following.

The test channel at (dR , R), for example, the one including the
noise vector a! in its form, is a result of a minimization of mutual
information under a distortion constraint. It does not, therefore,
necessarily divide the total energy presented to the gaussian vector
channel in a way which uses this channel to capacity. Since this channel,
by definition, transmits information at a rate equal to R, its total
capacity is (except for the special case noted previously) strictly
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greater than R. Consequently, when the same additive noise channel,
o-,2 is to be used for transmission but is stated to have a capacity
of only R, it cannot be transformed into the test channel by any pre -

and postoperators.
The impossiblity of such a transformation can also be observed

by noting that the allowed total input energy on the given capacity
R channel is restricted to a lower level than present on the test channel
The uniqueness of the test channel, which is formed with linear op-
erators, and the continuity of both the mutual information and dis-
tortion with the modulator matrix then precludes the possibility of
attaining the test channel's performance with the given capacity R
channel and linear operators.

One could argue that the comparison to this point is not fair in
that Shannon allows modulators and demodulators that operate on
blocks of letters, whereas the results in equations (23), (24), and (25)
were derived using a coding block length of one. However, the previous
results show that the optimum linear modulator does not mix indepen-
dent source components before presentation to the channel, assuming
the channel has already been rotated in N -space so as to have indepen-
dent noise components. Neither does it cross -couple sets of source
components having no cross dependence when presentation is to a
channel with sets of noise components of equal respective dimen-
sionalities also having no cross dependence. Therefore, if successive
source and channel (vector) events are independent, and their dimen-
sionalities filled out to be equal by adding either zero variance source
components or infinite variance noise components, there is no memory
introduced by the optimum linear modulator among elements of the
encoded block. The consequence is that the distortion and the energy
are only scaled by the block length in use.

VI. AN EXAMPLE

We cite here just one example which shows that at least in many
cases the performance of the optimum linear modulator- demodulator
pair compares favorably with that theoretically obtainable with more
complex operators. We take ai = 02 = 1, = a, a7,2 = ae24' and use
a and co as parameters that generate a set of different channels. To
better compare the two performances, we fix the channel capacity at
C which in turn fixes Shannon's minimum attainable distortion at
dc = 2e -c. The total allowed received energy is thus specified ac-
cording to equation (31).

Upon solution for X and d in equations (24) and (25) we have the
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following expression for the ratio between the distortion obtainable
with linear operators and that theoretically attainable:

cosh' cc.

d (go) cosh' 40

c 1 - cosh (2v - C) '

cosh C ;

0 go :5_ C

ZC<ga<C

C < go.

We illustrate this function for several different values of capacity in
Fig. 2. At co = 0 (where both the vectors cr2 and (7,2, are uniform) we
see that d(0) = c 1 indicating the optimality of the linear modulator
and demodulator for this case. Using a term introduced in Ref. 8,
we can therefore say that when go = 0 the source and channel are
"matched." As go increases, the source -channel mismatch increases and
the nonoptimality of linear operators also increases. As the figure
illustrates, the nonoptimality ratio, d(co)/dc , can be quite large when
both the channel capacity is high and the additive noise vector is
highly skewed in variance. However, over a significant region of interest,
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Fig. 2 - The linear system nonoptimality for N = 2, cri = 0.2 = 1, = 1, ant = exp 20.
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(p, < 1 (reflecting a noise component variance ratio of about 50), the
nonoptimality ratio is small.

VII. SUMMARY

In this paper we have derived the optimum linear modulator and
demodulator for the transmission of a gaussian vector source through
an additive gaussian vector channel. It was found that when both
the source and channel components are independent, both the modulator
and demodulator matrices are diagonal. This specifies the separate
amplification, transmission, and decoding of each source component.
When both the source and channel components are correlated, the
optimum modulator matrix was found to be the cascade of three
matrices: (i) the orthogonal matrix which diagonalizes the source
correlation matrix, (ii) the optimum modulator matrix which transmits
this newly formed independent component source over the independent
component additive noise channel which is formed by (iii) the orthog-
onal transformation matrix that diagonalizes the noise correlation
matrix. We have found that in general the best linear system does not
provide a distortion as small as that stated by Shannon to be attainable
with a channel of the same capacity. The only exception is when both
the source and channel noise variance vectors are uniform. The non -
optimality of linear modulators and demodulators can be quite large
in some cases but, in many other situations, can be small enough to
justify the use of these very simple operators.
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Communication Systems Which Minimize
Coding Noise

By BROCKWAY McMILLAN

(Manuscript received May 28, 1969)

The problem of minimizing coding or quantizing noise in a communica-
tion system is posed in a general setting. It is shown that if the messages to
be transmitted are sample sequences drawn from a discrete -time random
process meeting a certain simply stated criterion of "randomness" and if
there exists a quantized communication system which is optimal in that it
introduces a minimum amount of coding noise, then this optimal system
can be realized using a transmitter of special form. Specifically, the opti-
mum transmitter is one which quantizes each message sample according to a
scheme that depends only upon the quantized material already transmitted,
rather than upon the (unquantized) material that has been previously offered
for transmission. It follows that only digital storage is required at the
transmitter or receiver. If the receiver is limited, a priori, to have only a given
finite amount of storage, and if the system is optimum within this con-
straint, the transmitter need have only the same amount of storage.

I. INTRODUCTION: THE MODEL

Shannon's theory of communication, shows how to defeat noise intro-
duced in a communication medium by restricting the repertoire of trans-
mitted signals to a discrete set.' If the messages to be transmitted are
not already in an appropriately discrete form, noise in the medium is
then eliminated only at the expense of noise, here called coding noise,
caused by the failure of the restricted family of available signals to
represent faithfully the full family of possible messages. The amount of
coding noise introduced is of course subject to control by design.

This paper considers one aspect of the problem of minimizing coding
noise. Noise in the medium is not considered. The paper limits attention
to systems in which the random process representing the message is a
discrete -time or sampled -data process. The sampling noise caused by
creating such a process out of a continuous -time process is not considered.

3091
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The problem of selecting a coding scheme that maximizes the rate of
communication over a noisy channel is not considered. Rather, the paper
starts at the point that a coding scheme has been found, that is optimum
according a fairly general criterion of fidelity. What is then shown is
that the transmitter and receiver-encoder and decoder-of the system
are of a special form.

A Q -coded communication system is defined by a discrete set Q and by
three jointly distributed random processes, { xn qn , y J n = 0, ±1,
±2, }. For purposes of this paper, the set Q will be either

(i) the set {1, 2, , M , where M is a given positive integer > 1, or
(ii) the set {1, 2, 3, } of all positive integers.

The process { xn} represents periodic samples derived from the message
offered for transmission, each xn is a real random variable. fq1 represents
the transmitted signals; for each n, qn is a random variable, taking values
from the set Q and measurable on the sample space of fx , x.-1
xn_. , 1 . That is, for each n, the value of the integer variable qn
depends only upon, and is determined (apart perhaps from events of
probability zero) by the present and past of the message. { y,,} represents
the version of the message reconstructed at the receiver; for each n, yn
is a real random variable measurable on the sample space of { qn- 1 ,

qn.-2 , } . Therefore for each n, yn depends only upon, and is determined
(apart perhaps from events of probability zero) by the present and
past of the transmitted signal.

The model at this point is very general. It provides that at each time,
n a discrete valued random variable q be generated in some way out of
the material {x , xn_, , xn_2 , then available from the message
process, and that subsequently at the receiver a y be generated out of the
material { qn , , } there currently available. If all three processes
xn , qn , yn } are stationary we can call the system stationary. The ques-

tion of stationarity does not enter in what follows.
What remains to be specified in this model is that in some sense the

process IN is to represent the process { xn}. At the start it appears
natural to consider three cases; it develops that two are simply special
cases of the third, one of them not interesting in the framework of this
paper.

We start with a given sequence *In = 0, ±1, ±2, of functions,
in which each Vin is a real valued Borel measurable function On(x, y) of
the real variables x, y. The use of a sequence { } here is a largely deco-
rative generality that costs nothing. The conventional case is that in
which all On are the same function 0. These functions define a fidelity
criterion as follows:
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Case (i), the delay -free case:

Here we choose to regard y as a replica of x , and evaluate our
communication system at each time n by the quantity

E { (xn , y.)}, (1)

where E denotes expectation over the message ensemble.

Case (ii), the case of fixed delay:

Here we are given a fixed integer d > 0 and we choose to regard y
as a replica of xn_d , thus allowing q to take advantage not only of

, x_d_ , } (the present and past of x_d) but also of {x, x.-1, ,

(a limited span of the "future of x,z_d) in representing x -d
Here the criterion relative to x _d is (by a convention we will use with
respect to indices)

EIIP.(xn-d 7 Y.)i (2)

If d = 0, this case reduces to case i.

Case block encoding with cycle time c:

This is the situation that arises naturally in Shannon's theory. We
are given a fixed integer c 1, and the transmission process is repetitive
with a cycle of length c. By a choice of time origin, we can describe it as
follows. Let Q1 be a discrete set with MI < 00 members. At time 0 the
transmitter examines { xo , x_, , } and generates a Q1 -discrete variable
which we shall call do . At time c, the transmitter then examines { xc
xe_, , } and produces ql ; the process repeats with period c. For trans-
mission, the random variable do is encoded into the string fa a2,--1, 
q. } of random variables each being Q -discrete, where .21/` > /111 . At
time c, all of do , 6, , are available at the receiver, being rep-
resented by the sequence c{a aA Ac-1 qt-`) 1 } . From these, the sequence
{1/2e-1 1/2,--2 ?lc} is generated, representing xo , x_, , ,

respectively. We think of these y's as being presented to the output
of the receiver in the order of their indices, y, at time c, and so on.

If one follows through the functional dependencies here, he sees that
indeed the processes { x , q , yn} are so related that each q depends at
most upon {x , x_1 , } , and each y at most upon fq. , "  i
Indeed, except at times which recur with period c, qn is not "up to
date," depending in fact only on x's strictly prior to xn . Similarly, y is
only periodically up to date; at other times it depends only upon q's
that are actually earlier than qn .

In the situation as just described, the criterion of fidelity becomes
(Xn -2c +1 ?JO } Case iii is then also a special case of case ii, in which
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d = 2c - 1 > 1. What makes it special is that in case ii, q,, and y
are permitted to be up to date at each value of n, however in case iii
the block coding process restricts the currency of the data upon which
most of the q's and y's depend.

Actually, case iii as just described will turn out not to be covered,
in general, by the theorems to be proved. This happens because, as is
later be stated more precisely, we are interested only in communication
systems that minimize (2) for each n, in comparison with all possible
competing systems. Clearly, to impose the restrictions immanent in
case iii upon one's reportoire of coding schemes limits the domain
within which a minimum is to be sought. The system that brings
about an absolute minimum is simply not, in general, to be found
in this restricted domain.

The previous observation is not to be entered as a criticism of Shan-
non's theory. Typically, in a noisy medium, it is necessary to use a
highly redundant encoding {qn , qc-1 , , q1 } to represent do , so that
the inefficiencies (as measured by expression 2) that are imposed by
the block -coding process are needed in order to ensure that the yn
in (2) is an approximately error free replica of xn_d . We must remember
that (2) measures the noise introduced by the coding process, not by
the noisy medium. It is interesting to a designer only if the latter
noise has been eliminated. The price of this elimination is that one
may not be able to minimize (2) in competition with systems that
are not restricted to be of block coding form.

A true engineering solution to the problems reflected in the remarks
immediately above would consider (2) in which the expectation is
taken over the joint ensemble of message and noise. The solution
should balance coding noise against channel noise at, say, a fixed delay,
to minimize (2). This paper is very far from solving such a problem.

It does not follow that the results of this paper are without interest
in the search for coding schemes to eliminate noise. Given a Q -coded
communication system which does minimize (2), the {q } process is
in digital form. This {q} process can then be redundantly encoded
according to Shannon's theory, and recovered with few errors (and
typically much delay) at the receiver. The {y } process then results
(perhaps delayed) and has few errors. Then (2) does measure the
total amount of noise introduced in this operation.

II. STATEMENT OF RESULTS

Given the message process {x}, the sequence { 1i}, and the delay
d > 0, a Q -coded communication system fx , q , yn I will be called
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0 , d I -optimal if

(i) For each '7? = 0, ±1, ±2, 

E Y.) <
and

(3)

(ii) For any other Q -coded communication system { x , qn , y'},

y,,)} < E (4)

for each n = 0, ±1, .

The simplest result of this paper is of such a form as to illustrate
the nature of all of the results. We define a class K of functions 4/,
and a class, here called CCD, of message processes { x} , such that
the following theorem is true.

Theorem 1: Let {xn , qt, , yn} be a given Q -coded communication system
that is { , 0} -optimal. If each IncK, n = 0, ±2, , and if
{ x} E CCD, then each qn is equal with probability one to a random variable
measurable on the sample space of {x. , qn-1 , q.-2 , }

The force of this theorem is that it simplifies, in principle at least,
the requirements for memory at the transmitter. Only the digital
sequence f a.Ln-1 qn- 2 } need be in storage at time n. The proof
of the theorem will also develop a standard structure for the optimum
transmitter difficult to summarize easily in a theorem.

The definition of the class K is long and is deferred to Section III.
Suffice it here to say that K is a large class that includes the conventional

01(x, = I x - y I, tP2(x, y) = (x -

and any other continuous strictly increasing function of 01.

We define CCD, and a related class CCDf, thus:

COD consists of those processes xI such that: for each n = 0,
±1, ±2, , if z is a random variable measurable on the sample
space of fx_, , x_2 , }, then the probability that z = x is zero:

P{z= x} = 0. (5)

CCDf consists of those processes {x} such that: for each n = 0,
+1, ±2, , if A is a finite Borel field or the completion of a finite
Borel field, and if z is a random variable measurable on the smallest
Borel field containing A and the sample space of {x._1 , xn-2 , 1,

then (5) holds.
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Read CCD as "continuous conditional distribution." If {x} E CCD
and if xn has a conditional distribution given {x_, , x_2 , }, that
distribution must be continuous.

We now define a more restricted class of Q -coded communication
systems and a corresponding notion of optimality.

Given an integer m > 0, a Q -coded communication system {xn , qn
will be said to have decoder memory span m if for each n = 0,
±2, y is measurable on the sample space of { a q_1 qn-m )

A Q -coded communication system { xn , qn , yn} will be called
{On , d, m }-optimal if it has decoder memory span m, if (3) holds for
every n, and if (4) holds for every n and for every { , qn' , yn'} which
has decoder memory span m.

In the case of {On , d, ml optimality, then, the competition is re-
stricted to systems with decoder memory span m. We can put m = 00
to refer to the case of {On , d} optimality defined earlier.

Perhaps our most surprising result is that case ii of our model,
which includes case i as a special case, is also included in case i. This
is shown by Theorem 2.

Theorem 2: Let {x , qn , yn} be a given Q -coded communication system
that is {On , d} -optimal. If each On E K, n = 0, ±1, ±2, , if M,
the number of elements of Q, is finite, and if {xn } E CCDf, then each qn is
equal with probability one to a random variable measurable on the sample
space of {x -d , q0_2 } . Furthermore, the system {x , qa , y'},
where

qn - Cln+d n = 0, ±1, ±2, , (6)

= Yn+d

is a Q -coded communication system that is {IX , 0} optimal, where

On' +d n = 0, ±1, ±2, . (7)

Finally, we state a theorem that includes the two preceding ones.

Theorem 3: Let {xn , qn , yn} be a given Q -coded communication system
that is {I,Pn , d, m } -optimal. If each tfin E K, n = 0, ± 1, ±2, , if
M < 00, and if fxn1 e CCDf, then each qn is equal with probability one
to a random variable measurable on the sample space of {xn-d

, ({x_d} if m = 0). The system as defined by (6) is a Q -coded
communication system with decoder memory span m that is {On , 0, m} -
optimal, where On' is given by (7). If, in the initial hypotheses, d = 0,
then it suffices that I xn 1 e CCD and the restriction M < 00 may be removed.
If m < co , the hypothesis I X, } E CCDf may be replaced by:
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For each n = 0, ±1, ±2, , if z is a random variable that takes
only finitely many values, then P fx = z = 0.

Theorem 1 shows the basic facts about measurability in the present
context. Theorem 2 adds the fact that delay d > 0 gains no advantage
(since the "future" of xn_d is not known at the receiver, even if it is
at the transmitter). Finally, Theorem 3 includes these facts and shows
that a limitation on the memory span of the receiver allows a cor-
responding simplification of the transmitter.

In the proofs of these theorems it is seen that they are true for classes
of process slightly larger than CCD or CCDf. In particular, the final
conclusion of Theorem 3 opens the case of finite memory span to any
process fx) that has a little additive nonsingular Gaussian noise in
each sample.

III. THE CLASS K

The class K of cost functions allowed by these theorems can be
very general. The definition below seems more inclusive than is called
for by the applications I can think of; at the cost of elaboration, it
can be enlarged further.

We let K be the class of all functions Ik(x, y) of two real variables
x, y with the following properties.

(i) y) is continuous;
(ii) for all x, y, &(x, y) > 0;
(iii) for all x, 4/(x, x) = 0;
(iv) for each y, there are at most countably many solutions x to the

equation

11/(x, y) = 0, (8)

in the sense that: there exist Borel measurable functions gk(y), k =
1, 2, 3, , such that if (8) holds, then for some k, x = ak(y).

v) If yi y2 , there are at most countably many solutions to the
equation

4/(x, Yi) = 1,t(x, Y2), (9)

in the sense that: there exist Borel measurable functions fk(y, z), k =
1, 2, 3, such that if (9) holds and if yi 5 y2 , then for some k, x =
fk(Yi , Y2).

It follows from this definition that 01 e K, where O'(x, y) = I x - y I.
Then also 02 E K, where 1,1/2(x, y) = (x - y)2. Similarly any other con-
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tinuous strictly monotone function of IP is also in K. In all of these
instances, (8) has the unique solution y = x, and (9) has a unique
solution given by 2x = yi ± Y2.

IV. PROOFS

Let {0, B, P} be a probability space: A set Sl of points w, a Borel
field B of subsets of 0, and a probability measure P on B with respect
to which B is complete. This probability space is assumed given and
fixed.

A random variable x is a real -valued function x(w) defined on St
and measurable B.

If F C B is a Borel field, a random variable x is said to be essentially
measurable F if x is equal with probability one to a random variable x'
which is measurable F. If F is complete, such an x is then itself meas-
urable F.

If F c B is a Borel field and x a random variable, {x} V F denotes
the smallest Borel field such that: x is measurable {x} V F and
F c {x} V F.

A random variable taking its values in the set Q will be called Q -
discrete.

Denote by [x I q, F y, G] a mathematical object of the following
kind:

x is a random variable,
q is a Q -discrete random variable,
F is a Borel field, F c B, and q is essentially measurable on the field

determined by F and the sample space of x,
y is a random variable,
G is a Borel field, G c {x} V F, and y is essentially measurable on

the field determined by G and the sample space of q.

For convenience let CQAx ("conditionally quantized approximation
to x") denote the class of all objects of the kind described, based on
the given probability space 10, B, , the given x, and the given set Q.

Given a Q -coded communication system { x,a , qn , yn} , given a delay d
and a memory span m, let X,,/ be the sample space of the selection
I x , Xn- 1 of random variables from which the specific variable
xn_d has been deleted. Let be the sample space of the random
variables qn-2 , q71-77.1 Then it is easy to see that {x , ,

is a Q -coded communication system with decoder memory span m
if and only if for each n = 0, ±1, ±2,

CQAxn-d[Xn-d Iqn Xn,d I Y. Qn.nl]
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Given tp, a [x
I

q, F I y, G] E CQAx will be called weakly 0 -optimal if:

(i) E{ I tgx, Y) I <
(ii) If random variables q' and y' are such that [x I q', F I y', G] E CQAx,

then E 0(x, y)} < E {1,1/(x, y')}

The qualifier "weakly" in this definition signals the fact that the
fields F and G are not allowed to vary in the competition for optimality.

Lemma 1: If {x q , y.} is a Q -coded communication system with
decoder memory span m, and if {x. , q. , y.} is , d, m} -optimal,
then for each n [x_d I q. , X.,d

I
y. , Q,] is weakly On

Proof: Fix an n; for convenience identify it as n = 0. Suppose that
we are given random variables q' and y', which we shall here call qo
and W, , such that

[X-d
I

q0, XO,d YO (20,.] CQAxd .

Define a new Q -coded communication system { xn , q' , yn } thus:

For n < 0, qn = qn , yf, = y. ;

For n = 0, qt) and yo are those above;

Forn>0,qn= 1 and = 0.

That this is a Q -coded communication system with decoder memory
span m follows at once from the definitions. Furthermore, the sample
space of {qL qL, , is Q0,, . Because {xn , qn , y} is {On , d, m}-

oooptimal, we conclude that EII00(x-d ,Yo)II < and that E14/0(x-d , yo) I

E{00(x-d YO)}.
These, however, prove that [x_d I qo , XO,d I yo , Q0,.] is weakly t' -

optimal. Clearly this proof can be repeated for any other value of n.
The proof of this lemma indicates, deliberately, the force of the

notion of { , d, m} -optimality for {x , q , yn} . The competing com-
munication system {xn , qn , yn } used in the proof sacrificed all reason-
able behavior for n > 0, yet was still allowed to compete at n = 0.
In particular, notice that even if { x , qn , yn } is stationary, it must
compete with nonstationary systems designed to excel at only one
value of n. The theorems of Section II are not proved for stationary
systems which are known only to minimize each E{ tfrn(Xn-d yn)
against competing systems drawn from the class of stationary systems.

Given a Borel field G C B, we define CCD(G) analogously to CCD:
CCD(G) is the class of all random variables x such that:

If z is a random variable measurable G, then P = z} = 0.
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The results of this paper all derive from Theorem 4.

Theorem 4: Let [x I q, F y, G] c CQAx and suppose that it is weakly
ik-optimal. If Q is a finite set, or if 4/ is Borel measurable and for each
x is bounded from below, then there exists a Q -discrete random variable
q' and a random variable y' such that

(i) [x I q', G I y', G] £ CQAx,
(ii) tfr(x, y') = 0(x, y) with probability one. In particular, also, the

object i is weakly it -optimal.
If 4/ c K and x E CCD(G) then also

q' = q with probability one, and
(iv) y' = y with probability one.

It then follows that the given q is essentially measurable on the Borel field
{x} vG, determined by G and the sample space of x.

We wish to use the given [x I q, F I y, G] as a model for some

[Xn-d
I gr. , Xn,d Yn

in a Q -coded communication system. Conclusions i and ii show that
for any given n we can find a qn essentially measurable Ixn_d V Qn,
and a yn such that, according to the criterion defined by 0, y, represents
x, as well as yn conclusion the substitution
qn for qn can alter the subsequent Borel fields Q',n, , k 0, to the point
that we are no longer sure that [Xn+k-d I q::+k )Xn+k,d I +k Qn'i-kon]f k > 0
is weakly On+k-optimal. Without iii, therefore, one cannot apply The-
orem 4 to prove the other theorems.

It is convenient now to invoke a lemma which is a simple theorem
from measure theory. The lemma provides a standard form for the
variables q and y of an object [x q, F I y, G] CQAx.

Theorem 2: Given a Q -discrete random variable q and a Borel field G,
if y is a random variable measurable on the Borel field determined by G
and the sample space of q, then there exist random variables z, , p e Q}

such that

(i) each z, is measurable G and
(ii) for each co 1, if q(w) = p then y(w) = zp(co).

Conversely, of course, given {Z, , p £ Q }, each measurable G, any y defined
by ii is measurable on the field determined by G and the sample space of q.

The proof of this lemma consists in showing that the class of random
variables of the type of y above, as the { z , p Q} are selected arbi-
trarily from the class of variables measurable G, exhausts the class
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of all random variables measurable on the Borel field determined by G
and the sample space of q. The proof is a straightforward exercise in

measure theory and is omitted.
To begin the main argument, given [x I q, F I y, G] z CDAx and

a Borel measurable function 0(x, y), if for each x 4'(x, y) is bounded
from below, or if Q is a finite set, we can define the random variable

E(w) = inf 0(x(c.0),
rtO

Then is measurable I x V G.
Given p c Q and r £ Q, we define sets 74; , T n by

Tn = {w I kx(w), z9(0))) = ,((01

Tpr = [co I #(x(w), z,(0.))) 1,1,(x(w), zr(w))1 ,

T,= - UTpr.
rp,23
rcQ

Clearly each of these sets is measurable {x } V G. TT, is the set where
the index p minimizes '(x, z), and T, is that subset of 71 where this
minimizing index is unique. It follows that if r p then

71, A = 0, (10)

and as a consequence, T, A Tr = 0, r p.
Clearly

Tpr = T.
Also

T*; A Tpr = T n A T , (11)

since either side is the set where an index minimizing 11/(x, z,) can be
equal either to p or to r.

In terms of these sets, the argument to be used can be outlined
briefly. First, one shows that the Tt, essentially cover 9, in the sense
that there is a null set N such that

-N = UTp. (12)
pcQ

This follows without argument, and with N = 0, if Q is finite; it results
from 1k -optimality in general.

Second, by definition

T: - T, T .

rsO
rop

(13)
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Third, one observes that for p, r E Q and p r, T consists of the
set S

Sp, = {co I zp(w) = zr(w)1

plus a disjoint remainder T - S . The hypothesis x E CCD(G) allows
one to show that this remainder is a null set. Over the set S , on the
other hand, the information about x conveyed by the family {z , p c Q}
is redundant. The hypothesis of 1P -optimality can then be violated,
unless S is also a null set. It follows then that each T is a null set,
and from (12) and (13) then that the T partition SZ apart from a null set.
From this the full theorem follows quickly.

To proceed with (12), given p c Q, let N be the set

N = {co
I
q(w) = p} A { sl - U Tt} .

rEQ

Fix an w E N, ; then y(w) = zp(w) but co T p , so that t(co) < IP(x(co), z(co)).
It follows that there is some r E Q, r p, such that

%&(x(w), zr(w)) < t'(x(w), zp(c0)), (14)

and indeed, since Q is bounded from below, that there is a least such r,
call it rt,(co). Notice that N, is measurable on the Borel field determined
by the sample space of {x } , by F, and by G. Since G C {x } V F, it follows
that N,, is measurable Ix V F. That subset Rk of N, where r:(co) = k
is empty if k = p; otherwise

Rpk, = N A fw
I %P(s(6)), Mu))) < ;1/(44), 4O) } if k = 1 p,

R = N, A { w
I

tgx(co), zk(w)) < Igx(co), zp(w)) } A

k-1n 0(40), zi(w)) >= i,t(x(w), ;40)1 if k > 1, k p.

It follows from these equalities that Rpk and r: are measurable {x } V F.
We now define the Q -discrete random variable q' by

If p E Q and co N, , q' (co) = rt(0));
If w E S2 - UpEQ N, , then q' (co) is the least value of r E Q such that

a) T: .

Since the N, cover the complement of Ur T: , and since Q is bounded
from below, this defines q'(co) for each w c SZ; clearly q' is Q -discrete.
Given k e Q, the set where q' < k consists of the union of

Rpk
ptg
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with the set Vk , where

VI = TP

V, = (St - 7"1) A A - A k > 1.

Since each Vk is measurable {x} V G c {x} V F, it follows that q' is
measurable {x} V F. Furthermore, over SZ - Up,C) Np , q' is equal to a
random variable that is measurable {x}V G, since each Vk is measurable
on this latter field.

We now define the random variable y' by

V(0)) = z., .)(w), E

Then y' is measurable on G and the sample space of q'. It follows that
[x I q', F I y', G] c CQAx, and from the hypothesis of weak 0 -optimality
then that

y)} < E{1,1/(x, y')}.

But now we claim that for all w E SZ

igx(co), V(0))) Igx(w), y(w))-

First, if w e Np , we have

'(x (0)), Y'((4)) = 11/(40, zrpo( .) (GO) < 41(x(w), zp(w))

= 11,07(4) , y(w)),

(15)

(16)

(17)

the inequality being by definition of rt . Therefore strict inequality
prevails in (16) for w E Upc() N, . Consider now an co E - UON,) A
Id I q'(w') = p}. For this w we have co E TT, and 0(x(co), y'(w)) =
1,1/(x(co), zp(co)) < ifr(x(c0), zr(co)) for any r E Q, by definition of T. . But
then (16) follows for this w because y(w) = z,.(o.)) for some r e Q.

Now from (16), by taking expectations, we conclude the inequality
opposite in sense to (15), hence (15) is an equality, and (16) is then
an equality with probability one. Therefore ii of Theorem 4 is proved.
Now by (17), (16) is a strict inequality over N = UpeQ N, . Hence
this latter set is a null set. Therefore i of Theorem 4 is proved, since
q' is equal, over the complement of N, to a variable that is measurable

{x} V G, as we noted earlier. Finally, since

- = U N,. = N
peQ rtQ

the T essentially cover 2. This is (12), as was to be proved.
It would be possible at this point to invoke the hypotheses c K
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and x E CCD(G) to conclude iv of the Theorem. It will be more effi-
cient to prove iii and iv together. To do so requires, as our earlier
outline suggests, that we examine the sets Tt, A T over which re-
dundancy prevails (because on Tt A T either of z or Zr , where

p, could be used to define the same value of y minimizing '(x, y).
We have concluded (12), that except for w E N, a null set, for each

w there is at least one p e Q such that E(w) = 1L(x(co), zp(co)), that is,
the minimizing index is uniquely p for co E T - N.

Now define, as earlier, for r p,

S = {co I zp(w) = zr(w)}.

Then if w E T. - S , we have

&(x(w), z(co)) = 0(x(co), z,.(co)), zp(co) z,.(co).

Since V/ e K, it follows that for some k = 1, 2,  we have

x(co) = f k(zp(co), zr(w)) (18)

Now let Ak,,r be the set of all w such that (18) holds. We have just
showed that

00

Tpr - S c U 24,, . (19)
k=1

But now, since f, is Borel measurable and each z is measureable G,
(18) constrains x on Ak to be equal to a random variable measurable G.
Since x E CCD(G), then A., is a subset of some null set,

P{Akpr} = 0, k= 1, 2, ,

and

Ep{Ak} = 0.

This last with (19) makes P{T - S} = 0. Indeed, finally, since Q
is countable,

P{U U (T - S)} = 0.
prQ rtQ

rip

It is important later that by definition, S is measurable G and
therefore that, by (19), Tpr is essentially measurable G.

We now define a new Q -discrete random variable q" and a corre-
sponding y". The construction depends upon an arbitrarily chosen
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po E Q and an arbitrarily chosen real number a, although the notation
will not emphasize this dependence. Later it will be shown that q" = q'
and y" = y' each with probability one, so that the dependence upon
Po and a is not essential.

Fix a po Q and select a real number a. Define the random variable
z;:(co) by:

if co E U T, , 4:(w) = a,
r r()

r4po

otherwise, zg(co) = z,(0.)).

Then z',: (co) is measurable G. Define

z;,' = z , p E Q, p po .

Then certainly each ziy, p E Q, is measurable G. Define the Q -discrete
random variable q" (0.) by

If co E T, V [(Pt,. - Ty.) A 1(2 I 110(w% a) < 1'(x(w'), z(01)}]

then q" (w) = po ;

if e.s c (T ,t, - T) A 144' I
CX(63'), a) a gx(w/), 27,(&)))

then q"(w) is the least value of p £ Q such that p po and w £ rt;

if w E SZ - Tit , then q" (o)) = (co).

It is easily seen that this defines q" for all co E
We now define the random variable y" by y" (w) = (co). Then

y" is measurable on G and the sample space of q", so that by con-
struction [x q", F I y", G] E CQAx. Applying the hypothesis of weak
'-optimality, we conclude that

fi [ (x, y") - , y)] dP = E I y")I - El I' (x, Y 0. (20)

We now partition the domain SZ of integration into the four sets

= T,
A2 = - T) A 1co Ii(x(w), a) < 0(x(co), z,(c0))} ,

A3 = (T:. - T) A {w 0(x(co), a) _1- 1/0(0)), z,(0.)))} ,

A, = S2 - TP .

That this is a partition follows from the definition and the fact, already
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proved, that T, C Tpt. We consider the four resulting integrals
individually, in the order of the listing.

If co T then either CO E T A N, or w E 71p. - N. We may ignore
the first case. For the second, by definition of T , if r

tgx(co); ;Jo))) < '(x(w), zr(0))) (21)

Also, by definition

rt6.
rOpo

and therefore by definition 4:(0.) = z.(w), and q"(0)) = pa . Then

gx(w), y"(w)) = tgx(co), 4,:(0.)) = '(x(w), zp.(0)))

and from the inequality (21) we conclude that the integrand

4/(44), Y"(0))) - gx(w), Y(0))) < 0,

since y(w) is equal to some zr(co), r E Q. Hence the integral over A, is
not positive.

If co E A2 , then by definition q"(w) = pa and

y"(w) = z;:(co).

Again, we ignore the contribution of A2 A N. If co E A, -N then by
(13),

.

r*po

Then by definition z;: (co) = a. Hence, the integrand

Y"(0))) - I'(x(w), Y(0)))

= [0(40, a) - 0(40, zi,o(w))] [0(4.0), zpo(c0)) - t(x(w), 04))] 

The first bracket on the right is <0 by definition of A2 , and the second
is 0 because co E T 2,*. and by definition of TD we have igx(co), zi,o(co))

(w) , z,.(co)) for all r e Q; among the latter is Iii(x(co), y(w)). Hence
the second integral is not positive, and its integrand is strictly negative.

Now consider w E 213 . We ignore the integral over A3 A N, . If
CO E A3 - N, , then q"(w) = p pa and w E Tt for some p E Q. For this
w we have

'(x(w), Y"(0))) = '(x(w), zNco)) = '(x(w), zp(0))) igx(w), z,(0)))

for all r E Q; here the first equality is by definition of y", the second
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by definition of zir since p Po , and the inequality is by definition
of T. . But the inequality makes the integrand in (20) < 0, since
y(w) = z,.(co) for some r c Q. Therefore, the integral over A3 is not
positive.

Over A, , the integrand of (20) is

Ng; y") - y')] [kx, y') - y)].

The second bracket vanishes with probability one by ii of Theorem 4,
already proved. The first bracket is

tgx(w), egfc.)(6))) - 1'(z(c0), z., c.)(c0))

and this vanishes for all w E A4 by the definitions because over A4 ,
(w) < Cx(co), zz,o(co)) so that q' (6)) po ; therefore by definition

z",',(o,)(co) = ze(w)(co).
We conclude from these calculations that the integral (20) cannot

be positive. By (20), therefore, the integral vanishes. But the argument
showed that the integrand was 0 with probability one, hence indeed,
the integrand vanishes with probability one:

y") = y) with probability one.

In particular, over A2 , the integrand was strictly < 0. Therefore
A2 has probability zero. We shall now exploit this fact.

In the argument above, a was any real number. Let fa. be a countable
dense set of real numbers and let

W. = (co I tP(x(co), a.) < 4/(x(0.,), z2,(co))}.

We have just proved that P{A,} = 0, which is to say that we could
have proved, for each it, that

P { (Tit - 779.) A W.} = 0.
Then also

N2 = U (T, t, - L.) A TV.

is a null set. Now if 0., E N2 , then w E T, - Tv° and also there is some
number an such that

'(x(w), a) < (x(0.,), z.(c0)). (22)

Conversely, if co E Ty*. - To and there is a number an such that (22)
is true, then w E N2 . Therefore if w E (T,, - L.) - N2 , then for every
number an we have

Ip(x(0.,), a.) 1,//(x(co), z.(co)). (23)
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Given an co E - Ty.) - N2 , choose a sequence an x(w). Assume
that tk E K. Then ;J., is continuous and from (23) we have

0 = '(x(w), x(w)) = lim Ik(x(co), an) 0(x(co), z.(co)) 0.

Notice, incidentally, that it suffices here for each x that 41(x, y) be
continuous for y in some neighborhood of x. This is an example of one
way in which K can be enlarged.

From this and item iv in the definition of K, there is some integer K
such that

x(w) = g k(z.(w)). (24)

Let 0k be the set of all CO such that (24) holds. Since g k is Borel meas-
urable, over Ck , (24) constrains x to be equal to a function measurable
G. If x E CCD(G), then Ck is a null set. But we have just showed above
that

(T -T ) - N2 ck
k-,

Therefore

P{Tv't - T,o} = 0.

Since Po was arbitrary, this can be proved for each po E Q; therefore
from (12) the T, p E Q essentially cover 1. We proved along with
definitions that the T, are pairwise disjoint, hence they partition
SZ - N3 , where N3 is some null set.

We continue the argument using the selected Po . For co E SZ - N3 ,
either w c TD, or CO E T,. where r E Q but r Po . In this latter case, however,
as we proved with the definitions, w c E2 - Tpt ; then by definition
q" (w) = (co). If w E T , by the definitions q" (w) = q' (w) = po . There-
fore

q" = q' with probability one.

Furthermore we know that if w E T , then q' (co) = p. From (25)

y" (w) = (w)

(25)

(26)

If co E 1-2 - T , , except at most on a null set we have q" (w) Po and
from (26) and the definition of

y"(co) = = ze(,)(co) = y' (co), c.,.) e - L.) A Ng (27)

where N, is a null set. Now if CO E Ty, - N, we showed earlier that
z',:(co) = zpo (co). Hence the equalities in (27) hold for w E T ,0 -N as
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well, so that

y" = y' with probability one. (28)

Equalities (25) and (28) free the constructions from any dependence,
except on a null set, upon the initially selected po and a. We need
the Theorem to make identification with q and y.

Let 2 be that subset of T where q(w) p. Then if w E Si, , by de-
finition of T ,
41(x(co) (co)) = (5(w),z p(co)) < (co) z (0))) = 11(x(w), Y(co)).
From ii of Theorem 4, then, P {Sp} = 0, and P{UQ Sr} = 0. Since
the Ti, , p c Q, essentially partition 12, it follows that q' = q with prob-
ability one, and at once that y(co) = = ze(,,,,(w) = y' (w) with
probability one. These conclusions are iii and iv of the Theorem, the
proof of which is now complete.

To prove Theorem 1, let {x , qn yn} be a given Q -coded communica-
tion system that is {,y , 0} optimal. Given n, by Lemma 1,

[x,, I qn X,,.0 y,, , Qn,.] £ CQAx

and is weakly ik-optimal. If 1,G E K and x £ CCD(Q,), Theorem 4
proves that q is measurable on lx,,I V Q, . But Qn,. is the sample
space of {a

, qn-2 }, and is therefore contained in the sample
space of { x_, , x.-2 , }, since by hypothesis {x , q , yn) is a Q -coded
communication system. The hypothesis {x) E CCD of Theorem 1 then
implies that for the given n, x e CCD(Qn,.), and Theorem 4 establishes
Theorem 1.

Turning to Theorem 3, let {x , qn Yn} be a given Q -coded com-
munication system with decoder memory span m, and suppose that
it is {p , d, m} -optimal. By Lemma 1, then, given n, [sn_d

I qn , Xn,d I yn

Qn.,n] E CQAX,--d and is weakly 1k -optimal. By the hypotheses of The-
orem 3, On £ K, and {x} E CCDf. Consider Qn, , the sample space
of { qn-1 qn-2 , , 47-}. Suppose first that m > d; then this sample
space is the smallest Borel field which contains both the sample space
of {qn, , , qn_d} and that of {qn_d_, , , qn_,}. Since M < co,
the first of these is a finite field, and the second is a subfield of {xn-d-1
xn_d. , } (since {xn , qn , yn } is indeed a Q -coded communication
system). The hypothesis { x} £ CCDf then implies that x E CCD(Q,,).
If m < d, the subfield of {x,_, , } is empty, but the reasoning
and conclusion are still valid. Then Theorem 4 applies and we conclude
that qn is measurable on the sample space of {x_d , qn-, , ,

This is the first conclusion of Theorem 3. We note now that a weaker
hypothesis than {xn} £ CCDf could suffice here. Indeed, if in < 00,
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it is sufficient that: if A is a finite field then x £ CCD(A). This is the
final conclusion of Theorem 3.

Given that qn is essentially measurable on {xn_d , qn_i , , q.--.},
for each n, we conclude by induction that q is essentially measurable
{Xn-d , X.-d-1 , qn-2 Y 1 qn-m-1} ;

and finally then that q is es-
sentially measurable {xn_d , xn_d_i , } . Define

qn = qn+d y

y,, = y.,., , n = 0, ±1, .

Then it is a simple translation of notation to verify that {xn , q' , yn}

is a Q -coded communication system with decoder memory span m
that is {IA', , 0, m} -optimal, where IP.' = 071+d , n = 0, ±1, .This
is the second conclusion of Theorem 3.

Finally, if d = 0, then " {x} e CCDf" may be replaced by: " 1 xn 1
e CCD." Then M is unrestricted, since no "future" is involved that
must be restricted to a finite field. This completes the proof.

Theorem 2 is a limiting case of Theorem 3, proved by putting m = co
everywhere in the proof of Theorem 3.

V. A COROLLARY

It is a consequence of Lemma 2 and of the proof of Theorem 4 that,
given w, in a set of probability one, q(w) is that unique value of p which
minimizes tii(x(co), zy(a))). (This was remarked in connection with
equation 25.) Applying this to the situation of Theorem 1, one sees
that the transmitter of a delay -free Q -coded communication system
{x, , qn , yn} satisfying Theorem 1 has the block diagram form shown
in Fig. 1. (If d > 0, one simply puts an analog delay line in the input
lead, ahead of the rest of the system.)

This block diagram can be described thus: at time subsequent to
t = n - 1 and prior to t = n, the transmitter has in its digital store
the values qn_1 , qn_2 , of the previously transmitted signals. From
these, quantities z1 , , z2, z,,n , are constructed. These are the
.zz, of Lemma 2, for the particular random variable yn . When xn becomes
available, quantities 11/(x , zi,), 21/n(xn, z2,), are constructed and
the comparator identifies the least of these (unique with probability
one). The transmitted qn is that value of the index which identifies
the least 1Pn(xn , z,). This index is transmitted to the receiver as qn
and is also stored in the transmitter's memory for the next cycle.
The receiver can be realized using a portion of the transmitter, as
suggested in Fig. 2. Each function generator in these diagrams can
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qn

of course be nonstationary. Connections to a master "clock" are not
shown.

VI. REMARKS ON K AND CCD

One might ask to what degree are the central hypotheses of Theorem 4
necessary to the conclusions. The theorem itself provides a partial
answer: conclusions i and ii do not use x E CCD(G) at all, and use
only a measurability and a boundedness property of The critical
conclusions are the uniqueness conclusions iii and iv. Clearly, something

qno

DELAY
1/2 UNIT

STORE

qn-1,

22

z

ZM

SELECTOR
SWITCH

Fig. 2 - Form of receiver.

yn=Zqn
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is required of igx, y) that makes it, in some sense, smaller when y = x
than elsewhere, and not too indifferent to the value of y when y 0 x,
if uniqueness is to be expected from the hypothesis of 0 -optimality.
As we have already noted, the hypothesis 0 e K is fairly weak in this
regard, and could, in the presence of CCD, be made weaker at the
expense of further elaboration of the proof.

The interesting hypothesis is x c CCD(G). This implies that if x has
a conditional probability distribution relative to the field G, then that
distribution is continuous. It is easy to see that the 0 -optimum quantiz-
ing of a random variable x need not be unique if the distribution of x
is not continuous, even when one uses 0(x, y) = (x - y)2. Since y
in Theorem 2 0 -optimally quantizes x for each event measurable on
the conditioning field G, something like x c CCD(G) is necessary if
conclusion iv is to follow. Thus we conclude a loose kind of necessity
for this hypothesis.

We notice finally that iii and iv were proved by confining the re-
dundancy among the { zz, , p e Q} to a null set. In the application of
this idea to the situation of Theorem 1, it seems likely that redundancy
in the {z, , p e Q 1 for some fixed n might indeed be exploited to improve
some

Ellkyl+k(Xn+k y Yn+k) 1 y
k > 0, (29)

by selection, among the minimizing zn to which E{ 0(x , yn)} is in-
different, one which actually contributes information about xn+k and
therefore allows a reduction in (29). I have no example to show this
phenomenon, so its existence remains a conjecture. We have proved,
of course, that its possible existence is ruled out by x E CCD(G).
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A class of binary encoding algorithms called Harper codes has been
studied previously as a means of encoding numbers for transmission over
an idealized binary channel. This paper considers a more general and
practical transmission system model. For any Harper code, it presents
a technique for obtaining the expression for the average absolute numerical
error that occurs during transmission. It shows that all Harper codes
do not exhibit the same average absolute numerical error for all transmission
systems that satisfy the model. However, there is a subset of Harper codes
such that all codes in the subset give identical performance. The paper
defines the subset and presents an expression for the average absolute nu-
merical error for any Harper code in the subset. The subset is important
because it includes the natural binary representation, the Gray code, and
the folded binary code.

I. INTRODUCTION

In order to send numerical data over a binary channel, each input
number must be encoded into a suitable binary sequence for transmis-
sion. For example, when a sampler and quantizer are used, a binary
sequence is assigned to each quantization level. For each sample, the
number of the appropriate quantization level is transmitted by sending
the binary sequence assigned to the level. But how should the binary
sequences be assigned? One approach is to use the natural binary
representation of each number. Alternatively, a Gray code might be
used with the idea that its unit -distance properties are in some sense
desirable.

If the transmission system is error -free and if the binary sequences
are unique, it does not matter how the sequences are assigned. How-
ever, if transmission errors can occur, some assignment algorithms may
be preferable to others. In this paper, the performance of certain
binary encoding algorithms is considered. The average magnitude by

3113
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which the number delivered to the destination differs from the trans-
mitted number is used as the criterion of performance.

Previously, Harper presented a class of binary codes that we call
Harper codes.' The class includes the natural binary representation,
the Gray code, and the folded binary code. Reference 2 showed that
for any set of 2" input numbers all Harper codes exhibit the same mean
magnitude error when used with a specific binary transmission system
model (see Section II) and that, when the probability of transmission
error is sufficiently small, Harper codes are optimum.

In this paper, a more general transmission system model is considered.
For 2" equally spaced input numbers, a means of obtaining the expres-
sion for the average absolute numerical error (hereafter called average
numerical error) for any Harper code is presented. All Harper codes
do not exhibit the same average numerical error except in the special
case when the transmission system model reduces to the model used
in Ref. 2. However, there does exist a subset of Harper codes such
that all codes in the subset are equivalent in performance. The subset
is defined and an expression is given for the average numerical error
for any Harper code in the subset. The subset is important because
it includes the natural binary representation, the Gray code, and the
folded binary code.

II. SYSTEM MODEL AND PREVIOUS RESULTS

A system model is shown in Fig. 1. In general, we wish to send over
a binary transmission system' any one of the 21` equally likely numbers
of the form A + Bs where s is an integer, 0 s S 2" - 1. At the
transmitter, the binary encoder receives A + Bs and, based upon s,
sends a k -bit binary sequence assigned by a Harper code and denoted
by Hk(s). At the receiver, a binary decoder receives a k -bit binary
sequence H, (r), 0 < r 5 2" - 1, and generates A + Br. Let Pr[1-1,(r)
Hk(s)] denote the probability of receiving Hk(r) when Hk(s) is sent.
If all s are equally likely, the average numerical error (as in Ref. 3)
that occurs is

B 2k--1 24-1
ANE = x E Elr -s1 Pr[Hk(r)

I Hk(s)] 
,.-0 8-0

The average numerical error is dependent upon the binary encoding
algorithm and the transmission system through Pr[Hk(r) I Hk(s)].

t It is important to distinguish between the binary transmission system and the
channel. The transmission system includes the channel and the encoder and decoder
for error control.

(1)
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Harper codes are defined in terms of the vertices of the k -cube'.
Assign 0 to an arbitrary vertex; that is, 1/,(0) is arbitrary. Having
assigned 0, 1, 2, , / - 1, assign / to an unnumbered vertex (not
necessarily unique) that has the most numbered one -distant neighbors.'
In the remainder of this paper, certain properties of Harper codes
presented in Refs. 1 and 2 are used without specific reference.

We can now summarize the results in Ref. 2. In a binary transmis-
sion system as shown in Fig. 1, it was assumed that the errors between

NUMERI CAL
SOURCE

DESTINATION

A+Bs

A+ Br

BINARY
ENCODER

BINARY TRANSMISSION
SYSTEM

BINARY
DECODER

Hk (S)

Pik (r)

ERROR CONTROL
ENCODER

BINARY
CHANNEL

2

Fig. 1 --- System model

ERROR CONTROL
DECODER

locations 1 and 2 are independent of the transmitted bits and occur
independently of one another with probability pi . For such a trans-
mission system and for any set of 2k input numbers, it was shown that
all Harper codes yield the same mean magnitude error and, thus,
are equivalent. Also, it was shown that when pi is sufficiently small,
Harper codes are optimum for any set of 2k input numbers because
they minimize the mean magnitude error. Of course, the results in
Ref. 2 are applicable to our set of 2k equally spaced numbers and
indicate that all Harper codes yield the same average numerical error
for a transmission system that satisfies the model in Ref. 2.

However, the transmission system model in Ref. 2 is extremely
restrictive. Channels with correlated errors are excluded. The model
also excludes transmission systems using many types of error -cor-
recting codes even if the actual channel is a memoryless binary sym-
metric channel with probability of bit error p. In fact, even the Hamming

t The weight of an n-tuple v is the number of nonzero components in v and is
denoted by w[v]. The distance between two binary n-tuples u and v is w[u C) v] where
e denotes component by component modulo 2 addition of n-tuples.
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perfect single error -correcting codes when used with a meinoryless
binary symmetric channel do not comply with the model in Ref. 2.
The reason is that, in a Hamming code, all _II k(s) of a particular weight
are not encoded as code vectors of equal weight. Thus, all error
patterns of equal weight in the Harper code sequences do not occur
with equal probability. However, in order for a transmission system
to satisfy the model in Ref. 2, all error patterns of equal weight must
occur with equal probability. It follows that the Hamming code violates
the model in Ref. 2.

An interesting approach to coding for numerical data transmission
is found in unequal error -protection codes. The idea behind unequal
error -protection codes is to match the protection provided by the code
to the numerical significance of the transmitted bits. Significant -bit
codes (a subclass of unequal error -protection codes) have been shown
to be effective in reducing the average numerical error and in many
cases are easy to implement." However, the transmission system
model in Ref. 2 excludes unequal error -protection codes which is un-
fortunate because these codes are directly applicable to the basic
problem considered in Ref. 2, that is, reducing the average numerical

error.
Accordingly, it is important to examine the performance of Harper

codes when a less restrictive and more practical transmission system
model is used. For our model, we assume simply that the transmission
system is binary and that the errors are independent of the transmitted
bits. A binary transmission system satisfies this model if, for every
integer r, 0 < r 5 2k - 1, and integer s, 0 < s < 2k - 1, there exists
an integer 1, 0 S t S 2h - 1, such that

Pr[Hk(r) I Hk(s)] = Pr[Hk(t) I Bk(0)] (2)

where

Hk(t) = k(r) G - 1,(s) (3)

and B AD denotes the i-bit natural binary representation of the integer
j, 0 - 1. Observe that equation (2) implies that the prob-
ability of a particular error pattern Hk(t) in a Harper code sequence
is independent of the transmitted sequence.

Because the transmission system model is not very restrictive, the
results to be presented are applicable to a wide range of practical
systems. For example, the model is satisfied by the important class
of binary transmission systems composed of
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(i) a linear block code with a decoding scheme equivalent to Slepian's
standard array', and

(ii) a binary symmetric channel in which the errors are independent
of the transmitted hits.

III. THE AVERAGE NUMERICAL ERROR FOR A HARPER CODE

Let H' be a Harper code in which s is encoded as Hi(s). From the
definition of a Harper code, it is possible that Hk(0) Bk(0). We first
show that if HL(0) 0 Bk(0), then a Harper code H [in which s is encoded
as Hk(s)] can be constructed such that (i) Hk(0) = Bk(0) and, (ii) the
performance of H' is identical to the performance of H. The average
numerical error for H' is

/3 2k-1 2k-1
NE' = E -sl Pr[H(r) H,',(s)].

z r-0 8-0
(4)

Let H be a code whose elements are obtained from the elements of H'
by the relation

Hk(s) = Hfc(0). (5)

From (5), Hk(0) = Bk(0).
We now show that H is a Harper code. Clearly Hk(0) satisfies the

requirements for a Harper code. Suppose that Hk(0) through Hk(l - 1)
have been determined by (5). Nov, if H,',(s) is distance d from HW),
then Hk(s) is distance d from H,(1). Thus, if HW) is assigned to have
the most numbered one -distant neighbors, Hk(l) will have the most
numbered one -distant neighbors. It follows that H is a Harper code.

The average numerical error for H is given by equation (1). We
must show that the expression for ANE is identical to the expression
for ANE'. From (2),

Pr[11,'#) I 11s)] = Pr[Hf:(r) Q Hi(s) I Bk(0)]

Also, from (2),

Pr[Hk(r) Hk(s)] = Pr[Hk(r) e Hk(s) Bk(0)l

From (5),

Therefore,

H k(r) OO Hk(s) = Har) 0 Has).

Pr[Hk(r)
I Hk(s)] = Pr[Har) I Has)]
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and, by (1) and (4),

ANE = ANE'.

Thus, every Harper code is equivalent in performance to a Harper
code in which

Hk(0) = Bk(0). (6)

For convenience and without loss of generality, we shall consider the
performance of Harper codes that satisfy (6). At the end of Section IV,
we remove this restriction and give, in general terms, the structure
of all Harper codes that are equivalent to the natural binary rep-
resentation.

Now, let us consider the expression for the average numerical error
for H. By substituting (2) into (1) and rewriting,

B 2k--i 2k-i
ANE = 7 I' f1 r, 8 I Pr[ k(t) I B 0)]

2

where r, is the value of r in (3), that is,

H k(r,) = Hk(s) 0 H k(t). (8)

Now, (7) can be written as

where

B 2k-1ANE = E C I Pr[Hk(t) I BO)]
2 e-i

2k -1

(7)

(9)

cv, = E I rt - s I. (10)
a=0

The expression for the average numerical error is determined by spec-
ifying each C, (1 < t < 2k - 1).

In order to evaluate C, , we proceed as follows. Divide the 2k elements
of H into k 1 sets called levels. The 0 -level contains Hk(0) exclusively.
For 1 the j -level is the set of Hk(s) for which - 1.
Because H is a Harper code, the elements of level j are in the shadow
of the (j - 1)-subcubet formed by the elements of levels 0 through
j - 1. From equation (6) and the definition of a Harper code, it follows
that each element of the j -level has a one in a particular position which
we call the j -position. Thus, the j -level consists of the k-tuples that

t A (j - 1)-subcube of the k -cube is a set of all k-tuples that are the same in
k -j 1 positions. The shadow of a (j - 1)-subcube is obtained by changing
one of the k -j 1 fixed positions.
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have zeros in positions j -1-- 1 through k, a one in position j, and all
possible (j - 1)-tuples in positions 1 through j - 1.

Notice that the position numbers are determined by the structure
of the Harper code and not by the order in which the bits are arranged
for transmission. For example, in the Harper code shown in Table I,
Pr[/14(2) I

B4(0)] is the probability that no transmission errors occur in
positions 1, 3, and 4 and that a transmission error occurs in position 2.
If transmitted in the order shown in Table I, Pr[H4(2) I B4(0)] is the
probability that the error sequence 0001 occurs.

We must determine C, for each of the 2k - 1 nonzero values of t.
Thus, we regard t as known and seek to determine C, . Let a be an
integer such that

2°-1 t 2' - 1. (11)

Because H satisfies equation (6), Hk(t) has a one in position Q. To
evaluate C, , we rewrite (10) to exhibit the levels of s as

cr 2i-1 k 2, -1

C, = -

TABLE I-A k = 4 HARPER CODE

r, - 8 I (12)

H4(8)
Level

number

0 0 0 0 0 0

1 0 0 1 0 1

2 0 0 0 1 2

3 0 0 1 1 2

4 0 1 1 1 3
5 0 1 1 0 3
6 0 1 0 1 3
7 0 1 0 0 3

8 1 0 0 0 4
9 1 0 0 1 4

10 1 0 1 1 4
11 1 0 1 0 4
12 1 1 0 0 4
13 1 1 1 0 4
14 1 1 0 1 4
15 1 1 1 1 4

position 4 - position 2

position 3 position 1
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where the 0 -level is shown individually as r, and j indexes the levels
from 1 to k. The parentheses enclose the contribution of levels 0 through
v. From Appendix A,

a 21-1

(r, +E E
I
r, -s = (13)

i=1

Now, consider the set of Hk(s) in the j -level where a 1 < j < k
and 21-1 < s < 21 - 1. First, we define a run as follows.' In the j -level,
there is a run in position m, 1 < m < j - 1, that starts at so and is
of length R(m, so) if and only if

(i) R(m, so) = 2' for some integer 1 > 0,
(ii) the set of Hk(s) for so < s < so + - 1 forms an l-subcube

of the k -cube where m is one of the k - 1 fixed positions,
(iii) the set of Hk(s) for so + s < so + 21+1 - 1 forms an 1-

subcube that is in the shadow of the subcube in (ii),
(iv) the subcube in (iii) is distinguished from the subcube in (ii)

by position m, and
(v) the Hk(s) for 27-1 < s < so - 1 can be divided into runs of

length 2' although perhaps not in position m.

An example from Table I will illustrate the definition of a run.
Consider the 4 -level. Then H4(8) starts a run of length 1 in position 2,
a run of length 2 in position 1, and a run of length 4 in position 3. Thus,

R(1, 8) = 2 R(2, 8) = 1 R(3, 8) = 4.

Let w[Hk(t)] = co and let t7 , £2 , , t denote the w nonzero
positions in Hk(t). Then R(t,,, , 21_i) is the length of the run in position
t, that starts at 21-i (that is, the length of the first run in position
t, in the j -level). Let

7 "(t) = Max R(t, ,

From Appendix C,
2i -.4-27i.i(t) -1

1'1 s

2,-.+2,,.,(,)-1
E (r, - s) E - r,) = 272i,1(t).

s''2i-1+71.1(1)
t Appendix B contains a more complete discussion of the structure of the j -level

of a Harper code and the relationship between the structure and the concept of a
run. It is shown that runs are basic to the structure of Harper codes and that the
definition of a run is meaningful and consistent.
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The above process can be extended to obtain .yi,i(t) after -y,.,(t),
7; .2 (t) 7i.i-1(t) are known. Specifically,

Then

yi.i(t) = Max R(t, , + 2 E ey,,,(o)

Irt- S = 2y. ;(t)
s=2i-.+2 E

By continuing the process, we eventually exhaust the 2i' values
of s in the j -level. Let gi denote the number of -y,.,(t) needed to cover
the j -level, that is,

It follows that

9i

2 E y1, =
1=1

2i-1 gi

E I r, - s I= 2 E 72",,(0.

From (12), (13), and (14),

k pi

(14)

C, = 22-1 + 2 E E (15)
i-a4-1 1=1

By substituting (15) into (9),

ANE = 142 21c (22q-1 2 E 'Y.i(t))Pr[Hk(t) BA)]
.-1

(16)

where o is given by (11). The expression in (16) is particularly useful
because it consists exclusively of error probabilities conditional upon
Bk(0) being transmitted and the yi,;(t) can be obtained directly from
the Harper code. A numerical example that illustrates the use of (15)
and (16) is given in Appendix D.

We now consider the condition under which two Harper codes give
identical performance. Let H' be a Harper code that is not H (that is,
H' cannot be obtained from H by a relationship of the form Hi(s) =
Hk(s) Q Bk(s,) where s, is an arbitrary integer, 0 < s, < 2k - 1).
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From (9), for H',

B 2k-1ANE' = E C',,Pr[H,',(r) I Bk(0)].

Then H and H' exhibit identical performance for any transmission
system that satisfies our model only if, for every t, = C, where
t' is determined by H,(t') = H k(t). Conversely, if Cf. C, for at least
one value of t, the two codes may or may not give the same performance,
depending upon the error statistics of the transmission system.

IV. CODES EQUIVALENT TO THE NATURAL BINARY REPRESENTATION

Because of the considerable structure in the natural binary rep-
resentation, it is easy to use (15) to compute each C 1 < t < 2k - 1.
For a given t, we first find by (11), that is, o- - 1 is the largest power
of 2 in t. Then, for each j, + 1 < j < k, we determine g and the

(t). For the natural binary representation,

= 2' (17)

for 1 < i < g so g = Therefore, by (15) and (17),

k 27

et = 22cr-1 + 2 E E 22a-2 = 2k."-1
i=o+1 i=1

(18)

Notice that each Cg t < 2' - 1, is equal to 2"-(1-1. Thus,
C, is determined simply by the largest power of 2 in t. Substituting
(18) into (9) and rewriting, we obtain

2°-1

ANEB = B E E Pr[Bk(t) I Bkni
0=1 1=2°-1

(19)

where ANE, denotes the average numerical error for the natural
binary representation.

Is it possible to find a Harper code H that is not the natural binary
representation but that exhibits performance that is identical to the
natural binary representation for all transmission systems that satisfy
our model? The answer is yes. We now show that a necessary and
sufficient condition is that

for 1 <i <g;and
'Yr.;(t) = 2'

gi =

(20a)

(20b)



IIARPER CODE EQUIVALENCE 3123

for each t, 1 < t 2k - 1, and for each j, Q + 1 k (where a is
chosen so that 2°-1 < t 2° - 1).

If (20) is satisfied, then by (15), C, = 2k"-1. The average numerical
error for H (denoted by ANE,) is

k 2°-1
ANE, = B E E Pr[Hk(t) I Bk(0)]

=1 t=2°-i

By the definition of a Harper code and the definition of a level,

2°-1 2°-1
E Pr[H Bk(0)] = E Pr[Bk(t) I Bk(0)]

=2°-1

(21)

(22)

Therefore, by (19), (21), and (22), ANEB = ANEH . It follows that
(20) is a sufficient condition.

We now show by contradiction that (20) is a necessary condition.
Consider the set of coefficients Cv- for 1 < < k. From (15),

k ai

22°-1 + 2 E
i=cf+1

The term 22'1 is independent of the particular Harper code used.
Thus, we need only consider the summation part. Suppose that it is
possible to arrange the ,yi,i(2-1) so that they are not all equal to 2°-1
but keep C20-i = If this is done, at least one 7i,i(2°-1) will
be less than 2`1-1 and at least one ,y,,,(2°-1) will be greater than 2'.
However, in order for one to be less than 2°-1, there must
exist a < a such that > 2°"-1. But in order for C20,-1 =
2k"' -I, there must be at least one (2°' -1) < 2°1-1. The argument
continues until we reach ,,,,(2°) where there must be at least one

i , (2°) > 2°. (23)

However, in order for C20 = 2k, (23) implies that there must be at
least one 7i,,,i-(2°) < 2°, which is impossible. It follows that (20)
must hold in order for a Harper code to be equivalent to the natural
binary representation.

We can show the existence of a great many Harper codes other than
the natural binary representation that satisfy (20) by presenting
explicitly the structure implied by (20). At this point, we no longer
assume that Hk(0) = Bk(0) but state the structure for any Harper
code. List the Hk(s) sequentially as s runs from 0 to 2k - 1. For po-
sition i, 1 < i < k, divide the s into 2k-14-1 consecutive intervals each
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of length Let j index the intervals where 0 < j < 2k -'+l 1.

A Harper code is equivalent to the natural binary representation
if and only if, for every odd numbered interval (j odd), the binary
digit in position i is the complement of the binary digit in position i
in the immediately preceding even numbered interval (j even). The
digit in position i in the even numbered intervals is arbitrary.

The structure is presented graphically in Table II for k = 5. The
symbol bi a denotes the binary digit in position i in the jth interval.
For odd j, bi,i = (where = 1 0 b;,1_1) and, thus, b71_1
is shown in Table II for odd j. For all even j, can be assigned arbi-
trarily for each i.

The expression for the average numerical error of the Harper codes
that are equivalent to the natural binary representation is interesting.
From (21), the set of error probabilities Pr[Hk(t) I Bk(0)] for 2" -5,
t 2' - 1 (that is, for t in the a -level) all have the weighting coeffi-
cient 2'. Thus, the cost of a particular error pattern is the numerical
significance of the most significant bit in error. When one considers
unequal error -protection codes, the structure in (21) is very convenient
because the protection against transmission errors can be matched
to the significance of the bit positions. However, for a Harper code
that is not equivalent to the natural binary representation, the average
numerical error does not exhibit the above structure. Therefore, un-
equal error -protection codes appear to be less applicable.

V. THE GRAY CODE AND THE FOLDED BINARY CODE

The Gray code and the folded binary code are of interest because
of their possible applicability to numerical data transmission." This
section shows that both of these codes exhibit performance that is
identical to the performance of the natural binary representation for
all binary transmission systems that satisfy our model.

Let the k -bit binary representation of s be Bk(s) = (bk , , , b1)
where bi , 1 S i < k, is the binary digit in position i and

S = E
i=1

As in Section III, the position numbers are defined in terms of the
structure of the code, not the order in which the bits are transmitted.
From Ref. 7, the Gray code representation of s, denoted by Gk(s), is
Gk(s) = (bk , bk e bk_, , , e b,). We show that the Gray code
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is equivalent to the natural binary representation by showing that
the structure of the Gray code conforms with the structure in Table II.
Consider position i. As in the construction of Table II, divide the
range for s into consecutive intervals each of length 2s-' and number
the intervals sequentially from 0 to 2'1-1 - 1. The binary digit in
position i of Gk(s) in an even numbered interval is bi+110 bi and the

TABLE II -STRUCTURE FOR A HARPER CODE EQUIVALENT TO THE
NATURAL BINARY REPRESENTATION; k = 5

Position Number
5 4 3

0
1

2

3

4
5

6

7

8
9

10
11

12

13
14

15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31

b5,0

135.0

b40

4,0

I

b3,0

I

b3,2

2 I

b2,o b1,0
.1.

14%0

bt 0 131,2

.1
b',16,2

132,2 b1,4
I 131,4

132,2 b1,6
I bt,6

b2,4 b1,8

I b t8
132,4

1

b,,,0
br,10

bt, 2 b2,8 b1,12

1

i
bt.8

bt,12
b1,14

b4,2 135,4

134,2

13:,4

bt,

I

1 br,,,,
b2,8 131,10

1 131,10

bt, 131,18

1 bt,18
b2,10 b1,20

i bt,20
btlo 61,22

i 1;1.22

12,12 b1,24
i br,24

b2,12 111,28

1 bt2,
b2,14 b1,28

1 1*4,28
14,14 b1,30

1 bt,30
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binary digit in position i in the immediately following odd numbered
interval is bi+i e = bir. Therefore, from the structure
in Table II, the Gray code is equivalent to the natural binary rep-
resentation.

It is also interesting to consider the folded binary codes. Let Fk(s)
denote the representation of s. Then Fk(s) = (bk , b k C) , ,

bt e bi) where b = bk e 1. As in the case of the Gray code, consider
position i and divide the range for s into intervals of length 2'. The
binary digit in position i of Fk(s) in an even numbered interval is
bt C) b, . The binary digit in position i in the immediately following
odd numbered interval is br C) = (bk C) bi)*. Therefore, from the
structure in Table II, the folded binary code is equivalent to the natural
binary representation.

VI. CONCLUSIONS

The model used in this paper for the binary transmission system
is quite general and is satisfied by a wide range of practical systems
including many that utilize error -correcting codes. A technique is
presented for determining the average numerical error for any Harper
code. All Harper codes do not exhibit equal performance for all trans-
mission systems that satisfy the model. Because the performance of
a given Harper code is closely related to the error statistics of the
transmission system, it does not appear possible to specify a Harper
code that is best for all applications. However, a subset of Harper
codes is defined such that all codes in the subset give identical per-
formance for all transmission systems covered by the model. The
subset is important because it includes the natural binary represen-
tation, the Gray code, and the folded binary code. Unequal error -
protection codes appear to be particularly applicable to Harper codes
in the subset.

APPENDIX A

Contribution of Levels 0 through a to C,

To determine the contribution of levels 0 through a to C we must
evaluate

a 21-1 2.-1
r, +E E Ire -sl= Elr, - s I.

a-1 8-2i-

From equation (8), for every s in the range 0 < s < 2' - 1, there
exists a unique r, in the range 2°' < r, < 2° - 1, As s runs from 0



through 2g-1 -
once and only
every r, in the
Accordingly,

2.-1

E
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1, every r, in the range 2°-1 5 r, 5 2° - 1 occurs
once. Similarly, as s runs from 2°-1 through 2° - 1,
range 0 < r, 5 2' - 1 occurs once and only once.

2.-1
-s I = E (r, - s) E (s - r,) = 22,-1.

8-0 8-0 8=20-i

APPENDIX B

The Structure of the j -Level of a Harper Code

Consider the set of Hk(s) in the j -level of a Harper code where
s < 2' - 1. For clarity, Table III illustrates the ideas pre-

sented here by applying the ideas to the 4 -level of the Harper code
in Table I.

Let p be an integer, For each value of p, the j -level
can be divided into 2i -P sets of consecutive values of s each set of
length 2'. The sets are numbered consecutively from 0 through
2l' - 1 as follows. Let E be an integer, 0 - 1. For each
value of E, there will be two sets; an even numbered set whose number
is of the form 2E and an odd numbered set whose number is of the form
2E 1.

An even numbered set contains the Hk(s) for 2i-1 2E2P-1 < s
+ (2E + 1)2' - 1 and forms a (p - 1)-subcube because H

is a Harper code. Similarly, an odd numbered set contains the Hk(s)
for 2'-.1 + (2E + 1)2P-1 5 s + (2E -I- 2)2P-1 - 1 and forms
a (p - 1)-subcube. The important point is that for each value of E,
a useful relationship exists between set 2 and set 2E 1. Specifically,

TABLE III-DETAILS OF 4 -LEVEL OF HARPER CODE IN TABLE I

Set

p = 1

t
p = 2

Set E

p = 3
Set

8 1 0 0 0 0 0 0 0 0 0
9 1 0 0 1 1 0 0 0 0 0

10 1 0 1 1 2 1 1 0 0 0
11 1 0 1 0 3 1 1 0 0 0
12 1 1 0 0 4 2 2 1 1 0
13 1 1 1 0 5 2 2 1 1 0
14 1 1 0 1 6 3 3 1 1 0
15 1 1 1 1 7 3 3 1 1 0

position 4--11 L on 2positi

position 3 position 1
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the (p - 1)-subcube formed by set 2 + 1 is in the shadow of the
(p - 1)-subcube formed by set 2. Accordingly, all Hk(s) in set 2E 1

differ in exactly one position from all Hk(s) in set 2E. Denote the po-
sition that distinguishes the subcubes by m. Therefore, the 2E set
consists of 2' elements each of which has the same binary digit in
position m. Similarly, the 2 + 1 set consists of 29-i elements each
of which has in position m the complement of the binary digit in po-
sition m in the elements of set 2.

The above sets form what we call a run in position m of length 2'
that starts at 2' -I- 2E2' (the first Hk(s) in set 2E). The definition
in Section III follows from the preceding sentence.

APPENDIX C

Contribution of First 271,1(0 Values of s in Level j to C,

From equation (8), as s runs from through 7;,,(t) - 1,
every r, in the range r, 2-yi,i(t) - 1 occurs
once and only once. Similarly, as s runs from + y; ,,(t) through

27i,i(t) - 1, every r, in the range .6 r, -yi,,(t) - 1
occurs once and only once. Therefore,

21-1+27i.1(1)-1
r, - s

21-.+27i.t(l)-1
E (r, - s) - r,) =

8"`21-1+7i.i(t)

APPENDIX D

Numerical Example to Illustrate Equations (15) and (16)

Consider the Harper code given in Table I. We show how to use
equation (15) when t = 2 and t = 3 to find C2 and C3 , respectively.
For t = 2, o- = 2 so, from (15)

4 Of

C2 = 8 + 2 E E
i=r3 1=1

In the 3 -level, -y3,,(2) and 73,2(2) are shown in Table IV. Therefore,
g3 = 2. Also, in the 4 -level, 74.1(2), 74.2(2) and 74,3(2) are given in
Table IV. Thus, g4 = 3. It follows that

C2 = 8 + 2 (12 + 12 + 12 + 12 + 22) = 24.
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TABLE IV-ILLUSTRATION OF EQUATION (15) APPLIED TO THE
HARPER CODE IN TABLE I

a Hi(a) 7/.1(2)

0 0 -level 0 0 0 0

1 1 -level 0 0 1 0

2
3 2 -level

0 0 0 1
0 0 1 1

4 0 1 1 1 73,1(2) = 1 73,3(3) = 2
5
6

3 -level 0 1 1 0
0 1 0 1 73,2(2) = 1

7 0 1 0 0

8 1 0 0 0 74,1(2) = 1 74,1(3) = 2
9 1 0 0 1

10 1 0 1 1 74,2(2) = 1

11
12 4 -level 1010

1 1 0 0 74,3(2) = 74,2(3) = 2
13 1110
14 1101
15 1111

position 4 L. position 2

3 1position position

Similarly, for t = 3, o- = 2 so, from (15),
4 oi

C3 = 8 + 2 E Ey,;(3).
i=3 2=1

In Table IV, 73,3(3), 74,3(3) and 74,2(3) are given. Thus,

C3 = 8 + 2 (22 + 22 + 22) = 32.

By similar reasoning, the remaining C, can be found. The expression
for the average numerical error of the Harper code in Table I is

ANE = -16 (24Pr[1 I 0] + 24Pr[2 I 0] 32Pr[3 I 0] -1- 64Pr[4 0]

 64Pr[5 0] 64Pr[6 I 0] + 64Pr[7 10] + 128Pr[8
I 0]

 128Pr[9 0] 128Pr[10 0] 128Pr[11 1 0] 128Pr[12 0]

 128Pr[13 I 0] + 128Pr[14 0] 128Pr[15
1 O])
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B.S.T.J. BRIEF

Solving Nonlinear Network Equations Using
Optimization Techniques

By ALLEN GERSHO
(Manuscript received September 10, 1969)

A class of nonlinear equations arising in transistor network analysis,
as well as in other areas, has the form

mx,) + E ai,x, - bi = 0 i = 1, 2, , n (1)

or in matrix notation

F(x) Ax -b = 0, (2)

where the nonlinearities f;() are continuously differentiable, strictly
monotone increasing functions. Results by Willson' and Sandberg and
Willson2'2 on nonlinear networks have included broad conditions for the
existence and uniqueness of a solution to equation (2). However, con-
vergent computational algorithms for finding the solution have been
given only for restricted subclasses of the class of equations that have
unique solutions.' '2'4 .5 These subclasses are characterized by a variety
of restrictions on the matrix A and on the type of nonlinearities. In this
brief we show that a single convergent algorithm exists for solving these
equations under conditions virtually as broad as the known existence
and uniqueness conditions. Peripherally, we obtain under these condi-
tions a conceptually simple proof of the existence of a solution.

The approach is to use the old technique (probably due to Cauchy)
of converting a root -finding problem to a minimization problem. Let

r(x) F(x) Ax - b,
and define the scalar valued "potential" function

Q(x) r713r

(3)

(4)

where B is an arbitrarily chosen symmetric positive definite matrix and
T denotes the transpose. Then Q(x) is positive unless x is a solution
of equation (2). Consequently, minimizing Q(x) is equivalent to solving
equation (2) if in fact the nonlinear equation (2) has a solution.
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Since Q(x) is continuous, we may regard it as a continuous surface and
observe that if

Q(x) -)oo as ilx (5)

the so-called "level sets",

Ix : Q(x) < ,

are bounded for each number c > 0 and there must exist a point x* where
Q(x) attains a global minimum. Under what conditions will this mini-
mum satisfy Q(x*) = 0 so that x* is a solution of equation (2)? From
equations (3) and (4) the gradient of Q is easily found to be

VQ(x) = 2(D. + AT)Br (6)

where Dx is the positive diagonal matrix whose ith diagonal element is
f:(xj) where the prime denotes differentiation. Since the gradient must
be zero at a minimum, either (i)

r(x*) = 0,

or (ii)

det D + Al = 0 at x = x*.

If A is in the class of matrices Po characterized by the property3

det ID -I- A1 0 for all diagonal matrices D > 0, (7)

it follows that condition (i) holds so that x* is a solution of equation (3)
for A in Po if condition (5) is satisfied. But Theorem 5 of Ref. 2 implies
that condition (5) is satisfied if A is in Po and the range of the non-
linearities fi() is the entire real line.* Uniqueness of the solution of
equation (2) is very simply shown in Ref. 2. Reference 3 shows that the
basic condition, A in Po , is satisfied for large classes of transistor net-
works.

The minimum of a continuously differentiable function with bounded
level sets can always be found by a gradient descent algorithm when the
gradient has a unique root.' No assumption regarding convexity or the
behavior of the Hessian matrix is necessary. Clearly, a sufficiently
small change in x in the negative gradient direction will always decrease
the potential Q(x) unless x is already at a minimum. A sequence of itera-
tions of this type, that is,

* Recently Sandberg has shown that condition (5) holds without any require-
ments on the range of the nonlinearities if A is nonsingular as well as in Po.
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xk+1 = xk - 7k VQ(xk), (8)

monotonically reduces the potential Q(x) and yields a bounded sequence
of points X, because the level sets are bounded. Convergence of the
algorithm (8) is assured if the step sizes can be made large enough so that
the potential Q(xk) approaches zero rather than a positive limit. This
can be achieved by making 7k depend on the size of the gradient in such
a way that 7k cannot approach zero unless the gradient is approaching
zero. Goldstein' gives the following procedure for selecting 7k . Define
the normalized potential drop:

Q(x) - Q[x - VQ(x)]
g(x, 7) = > 0,

7 11 VQ(x) 112
(9)

a continuous function of -y which assumes all values between 1 and 0 as 7
ranges between zero and some positive value. Then for any (5 with

0 < S <

choose 7, so that

g(xk , 7k) 1 - 5 (10)

if g(xk ,-yk) < (5; otherwise let 7k = 1. Note that 7, can be chosen by trial
and error computation in each iteration. For small 5 few trials are neces-
sary; but the resulting drop in potential in each iteration is smaller so
that more iterations are needed. With this method of choosing 7, , con-
vergence of the algorithm (8) is assured for any starting point xo .

In summary, using the optimization approach and a result of Ref. 2
we have shown the existence of a solution to equation (2) and the
availability of a convergent algorithm to find the solution under the
following conditions.

(I) the nonlinearities fi(.) are continuously differentiable, strictly
monotone increasing, and map the whole real line onto itself, and

(II) the matrix A is in the class Po 
The original existence conditions given in Ref. 2 do not include the

"continuously differentiable" assumption but are otherwise identical to
conditions I and II above.
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