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We propose a delta modulator which, at every sampling instant r, adapts 
its step-size (for a staircase approximation to the input signal) on the 
basis of a comparison between the two latest channel symbols, C,. and C,.-1 • 
Specifically, the ratio of the modified step-size in,. to the previous step size 
in, is either +P or —Q depending on whether C,. and C,._1 are equal or 
not. (We recall that, in delta modulation, C,. represents the polarity of the 
difference, at the sampling instant r, between the input signal X. and the 
latest staircase approximation to it, YT-1 .) 
A simulation of the delta modulator with a band-limited speech input 

has revealed that PQ = 1 and P  1.5 represent optimal adaptation 
characteristics, on the basis of signal-to-error ratios, over an important 
range of sampling frequencies; and that at 60 kHz, delta modulation with 
these adaptation parameters compares favorably with 7-bit logarithmic 
PUM, which reproduces speech with good telephone quality. We present 
several graphical results from this simulation, and include an evaluation 
of the effect of independent channel errors on the adaptive delta modulator. 
We proceed to suggest a heuristic theory of the delta modulator which 

explains the optimality of the condition PQ = 1, and develops an upper 
bound of 2 for the optimum value of P. 
We conclude with a summary of results from a video simulation which 

revealed that aforementioned optima for P and Q apply to a video signal 
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as well; with these optimum parameters, a useful delta-modulator output 
was obtained at 10 MHz operation. 
The results of this paper reaffirm the utility of delta modulation as a 

simple alternative to PCM, particularly in systems that operate at rela-
tively low bit-rates. 

I. INTRODUCTION 

Linear (or unadaptive) delta modulators, which work with a fixed 
step-size for the "staircase" approximation to an input signal, have the 
following basic limitation. Small values of the step size introduce slope-
overload distortion during bursts of large signal slope; large values of 
the step-size accentuate the granular noise during periods of small 
signal slope; and, even when the step-size is optimized, the performance 
of these modulators will be satisfactory only at sampling frequencies 
that may be undesirably high. Equivalently, one encounters important 
ranges of operating frequency in which the performance of conventional 
delta modulation falls short of the standards attainable by conventional 
PCM or by d-level differential PCM, of which delta modulation is a 
special case (d = 2). 
With a view to employing delta modulation (which is inherently a 

very simple signal-processing strategy) at such relatively low operating 
frequencies, several types of adaptive delta modulation have been pro-
posed. ' In these schemes, the step size is changed in accordance with 
the time-varying slope characteristics of the input signal, as per a 
predetermined adaptation strategy. Such adaptation or "companding" 
can be either at a syllabic rate (long-term) or instantaneous (short-
term). 
Typical of syllabic-companding delta modulators are recently de-

veloped schemes for reproducing telephone quality speech at operating 
frequencies of the order of 50 kHz.' 58  These systems are characterized 
by "continuous" adaptation of the step magnitude. Instantaneous 
compandors, on the other hand, usually incorporate discrete adapta-
tions, and illustrative schemes for speech, television and Gaussian 
signals are given in Abate and, for speech transmission, in Winkler.' 
Abate shows the capabilities of linear and exponential adaptation for 
speech transmission, but gives quantitative results only for specific, 
finite, step-size dictionaries. Likewise, Winkler's work on "High Infor-
mation Delta Modulation," while providing a conceptual basis for our 
paper, bypasses the question of optimal adaptation. We consider in this 
paper, although only for a sub-class of possible schemes, the problem 
of optimizing the adaptation logic. 



ADAPTIVE DELTA MODULATION  323 

We ought to refer here to the paper entitled "Statistical Delta Modu-
lation" by Bello, and others.' Philosophically, this paper treats the 
problem of optimizing delta modulation with a generality that exceeds 
the scope of our work. However, the analysis of the cited paper does 
not have explicit bearing on the design philosophy for the very specific, 
but practically important, problem of providing a time-invariant logic 
for step-size adaptation. The purpose of our paper is to treat the latter 
problem for the important case of a one-bit memory. 
We begin by defining our adaptation scheme (Section II), and go 

on to present results from a computer simulation of the delta modulator 
with a speech input (Section III). The results refer to the optimization 
of the adaptation logic, to a comparison of the optimal delta modulator 
with PCM, and to an assessment of the effect of channel errors on the 
delta modulator. We then present a heuristic theory (Section IV) for 
the delta modulator and seek to explain the optimal adaptation param-
eters that emerged from the speech simulation. Finally, we illustrate 
parallel results from a video simulation (Section V) and attempt a 
general assessment of adaptive delta modulators (Section VI). 

II. DESCRIPTION OF THE ADAPTIVE DELTA MODULATOR 

In this section, we define the delta modulator with exponential 
adaptation and a one-bit memory, and indicate its basic performance 
by illustrating its response to a constant input. 

2.1 The Adaptation Logic 

The delta modulator of this paper uses instantaneous, exponential 
adaptation in the sense that the step-size is changed at every sampling 
instant by a specific factor—more precisely, by one of two specific 
factors. Furthermore, the adaptation logic incorporates a one-bit mem-
ory in that the immediately past channel symbol Cr_i is stored, and is 
compared with the incoming bit Cr for a decision on the new step-size 
m,. . Specifically, if the previous step-size is denoted by mr_i , the 
adaptation will be of the form 

m, = P•mr-,  if Cr =  ; 

m,  —Q • mr_, if C,  . 

In this paper, we assume that P and Q are time-invariant, and note 
that in delta modulation, the following identity is usually assumed by 
definition:* 

*See Ref. 7 for an example where requirement (2) is waived. 

(1) 
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sgn m,. = ,.= sgn (X, — Yr-i)  (2) 

where X, and Yr_., represent the amplitude of the input signal and 
that of the latest staircase approximation to it, respectively, at the 
sampling instant r. The sampling interval in question would be a suit-
ably small fraction of the Nyquist interval for X. A block diagram of 
the modulator appears in Fig. 1. 

2.2 Simple Bounds on P and Q 

The crucial parameters of our delta modulator are the time-invariant 
adaptation constants P and Q. The smallest and largest allowable 
step-sizes are other important parameters, but we assume that their 
design can be treated as an independent problem; and we mention at 
suitable points in the paper the considerations which influence such 
design. We now proceed, therefore, to state two simple bounds on 
the adaptation parameters P and Q: 

(i) In order to adapt to the signal during slope overload, it is neces-
sary that 

P > 1. (3) 

(ii) In order to converge to a constant input signal during a purely 
"hunting" situation (m. = —Qm,._, with probability 1), it is 
necessary that 

Q < 1.  (4) 

Notice that P = Q = 1 represents (conventional) linear delta 
modulation. 

The adaptation logic of Section 2.1 represents the simplest nontrivial 
form of discrete exponential adaptation, and the performance of this 
scheme will be an important lower bound for that of an "n-bit" strategy 
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Fig. 1.— Schematic diagram of the Adaptive Delta Modulator. 
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(n > 2) in which the step-size m, is some optimal function of C„ 
C,_, , • • • , Cr-.+1 and of the previous z step-sizes m,..., 1 Mr-2  • • .1 mr-x •8 

2.3 Step Response of the Delta Modulator 

Figure 2 shows the approximation of a step function by our adaptive 
delta modulator for a typical case of P = 1.50 and Q = 0.66. (These 
will emerge as optimum parameters later in the paper.) Step inputs of 
9, 10 and 12 units have been considered for illustration, with a smallest 
step-size of 1 for the delta modulator. 
The dependence of the "hunting" or "oscillating" characteristics on 

the actual magnitude of the step input is clear. We also see that during 
hunting, the step-size does not always assume the smallest possible 
value. This is an inherent feature of our adaptation logic, and emphasizes 
the need to make the smallest step-size as small as is practicable so that 
the in-band component of the noise due to hunting with nonminimal 
step-sizes will be tolerably low. 

III. PERFORMANCE WITH A SPEECH INPUT 

We describe in this section several results from a simulation of the 
adaptive delta modulator of Section II with a speech input. In particu-
lar, we highlight the optimization of the adaptation parameters P and 

F4-k 

o 
TIME 

Fig. 2 —Step response of the Delta Modulator. 
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Q, and the relative performance of adaptive delta modulation (ab-
breviated henceforth as ADM) and of logarithmic PCM. 

3.1 Description of the Simulator 

The input speech signal used for the simulation was a male utterance 
of "Have you seen Bill?", bandlimited to 3.3 kHz, and sampled for the 
simulation at 20, 40, and 60 kHz. The sentence is illustrative in that it 
includes sounds which are known to be susceptible to slope-overload 
distortion. 
In the computer simulation, the peak-to-peak range of the 12-bit 

speech signal was 4096 units. The configuration of the step-size diction-
ary was not predetermined, and the changes of the step-size were 
allowed to follow the exponential adaptation rule (i) of Section II. 
The simulation started with an initial step-size magnitude of 1 unit and 
it may be mentioned that step-size magnitudes as large as 380 units 
were typically encountered in the simulation. A histogram of utilized 
step-sizes for the typical case of P = 1.50, Q .= 0.66 is illustrated in 
Fig. 3, and represents mean step magnitudes of the order of 30 units. 
For the special case of P = Q = 1.0, the constant step-size was se-
lected to maximize a performance criterion to be defined presently. 
The step-size so optimized was approximately 80, 60 and 45 units for 
sampling frequencies of 20, 40 and 60 kHz respectively. 
The simulation used an ideal integrator in the feedback loop of the 

delta modulator;* it also incorporated a nonreeursive low pass filter 
using a Fourier kernel, which was designed to have a 40 dB attenuation 
from 3 kHz to 3.3 kHz. Practical low pass filters may have to be sloppy 
in comparison, but the sharp filter was included in the simulation for a 
correct assessment of the modulator performance, and for comparison 
with Nyquist-rate PCM. 

3.2 Definition of a Signal-to-Noise Ratio G 

The basic purpose of the simulator was to study the performance of 
the delta modulator as a function of the adaptation parameters P and 
Q, and the sampling frequency F. The quality criterion which was 
adapted was an "objective signal-to-noise ratio" G, which was defined 
as the ratio of the power of the signal X. to that of the error E,=X,.— Y„ 
averaged over the duration of the speech sample. 
It is seen that no distinction was made between overload distortion 

and hunting noise in defining G. In adaptive delta modulation, instan-
* See Section 3.9 for a reference to the utility of leaky integrators for delta 

modulation in the presence of channel errors. 
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taneous companding is expected to render long bursts of one particular 
type of distortion very improbable; the total error power, defined as 
the summation of .E,2 over the overload and hunting phases, was there-
fore adopted as a good measure of performance. As a matter of fact, 
in the absence of a better criterion, the same measure has been assumed 
in this paper for the nonadaptive case as well; and the credibility of the 
procedure has been borne out by the observation of a good correlation 
between the subjectively assessed quality of representative speech re-
productions and the corresponding values of G. 

3.3 Stability of the Modulator 

Preliminary studies of stability revealed the significance of the 
product PQ, and the adaptation was seen to be inherently unstable 
(that is, resulting in a step-size oscillation between limits that were 
independent of the input) if PQ exceeded (1 -F E) where E is positive, 
and much smaller than unity. Further studies of performance therefore 

0.44 

PROBABILITY 

-0.1  -0.05  0  0.05  0.1 

STEP-SIZE IN UNITS OF PEAK- TO-PEAK SIGNAL AMPLITUDE 

Fig. 3 — Histogram of utilized step sizes in the speech simulation 
(F = 60 kHz) 
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assumed as stability condition of the form 

PQ < 1.  (5) 

The signal-to-noise ratio G was then studied as a function of allowable 
values of PQ, of P and of the sampling frequency F. 

3.4 The Dependence of G on PQ 

Using a typical value of P = 1.6, Fig. 4 shows the behavior of G as 
a function of PQ, with F as a parameter. The value of G = — co (dB) at 
PQ = 1.1 represents an example of unstable adaptation, and the mono-
tonic rise of G with PQ in its stable range is evident; in conjunction 
with the condition (5) in Section 3.3, it follows that 

PQ = 1  (6) 

represents an optimal condition for all F; this conclusion was verified 
to be independent of the value of P. 
Notice that (6) also represents a very desirable condition from the 

point of view of implementation. This is because the reciprocity of P 
and Q facilitates the use of a compact step-size dictionary. Finally, note 
that condition (6) is obviously satisfied in conventional delta modula-
tion. 
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Fig. 4 — Results of the speech simulation: signal-to-error ratios as functions of 
(PQ). 
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3.5 The Dependence of G on P 

Assuming the optimal reciprocity condition (6), the variation of G 
with P was investigated, and the results are given in Fig. 5. The "flat" 
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Fig. 5 — Results of the speech simulation: signal-to-error ratios as functions of P. 

nature of the G — P curves in the region of their maxima is noteworthy,* 
and the fact that the optimum value 

P.„, c-2 1.5  (7) 

is nearly independent of F is quite striking. Furthermore, the improve-
ment that the optimized adaptive delta modulator affords, over the 
conventional system (P = 1), is seen to be an increasing function of F; 
and for 60 kHz operation, the gain exceeds 10 dB. 

3.6 A Note on Implementation 

The step-sizes in our simulation were real-valued quantities which 
changed according to equation (1). In a practical implementation, it 
may be preferable to work with integer-valued step-sizes; or, equiva-
lently, to employ a suitably discretized step-size dictionary; and to 
avoid the actual operation of analogue multiplication. Such multiplica-
tion could pose significant practical problems. For example, the values 
of the multipliers P and Q may be subject to random perturbations 
about their design values, and these fluctuations may be independent at 
the encoder and at the decoder. Preliminary simulations that incor-
porated such imperfect multipliers suggest that the attendant deteriora-
tion of delta-modulator performance may well justify a mandatory 

*For a corresponding observation with the adaptation logic described in Ref. 8, 
see Fig. 12 in that reference. 
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use of a discretized step-size dictionary. The design procedure for such 
a dictionary is seen to be greatly facilitated by virtue of the reciprocity 
condition for PQ, and the broad optima for P. The criteria for selecting 
the minimum and maximum step-sizes have been mentioned elsewhere 
in this paper, and the intermediate (discrete) step-sizes can be chosen 
to fit the optimum condition (7) as closely as possible, through the 
range of the dictionary. A further simplification will result if the slightly 
suboptimal value P = 2 is adopted as a uniform adaptation parameter. 

3.7 Subjective Performance 

Formal subjective tests of performance have not been carried out. 
However, the optimum ADM (P = 1.50, Q = 0.66) achieves very 
good telephone quality at 60 kHz, and the degradation at 40 kHz is 
very small. The ADM deteriorates in quality at 20 kHz operation, 
though most of the intelligibility of speech is still preserved. 

3.8 Comparison of ADM and Logarithmic PCM 

Table I shows the objective signal-to-noise ratio G for the optimum 
ADM at F = 20,40 and 60 kHz; and, for n-bit logarithmic PCM at the 
Nyquist rate, the three values of n which provide correspondingly equal 
values of G. The PCM figures are due to the theory of Smith,' and 
represent average values over the significant range (100 < i < 1000) 
of his logarithmic-companding parameter 1.t. Furthermore, the PCM 
figures refer to the "strong-signal" or "full-load" case (C --> 0) in 
Smith's theory; inasmuch as our delta modulator could handle arbi-
trarily strong signals, according to equation (1), the "full-load" values 
for PCM performance were adopted as meaningful measures for our 
comparison. 
It is generally accepted that 7-bit log-PCM represents a good quality 

of speech reproduction. It would therefore appear, from Table I, that a 
sampling frequency in the range of 40 to 60 kHz would be a critical 
figure for the employment of instantaneously companding ADM to 
reproduce telephone quality speech. This is an important conclusion 
of this paper, and follows a similar claim for a syllabic-companding 
delta modulator for speech at 56 kHz operation.' 
Figure 6 replots the results of Table I, depicting G as a function of 

TABLE I— COMPARISON WITH LOGARITHMIC PCM 

ADM sampling rate: F(kHz) 
ADM Performance: G(dB) 

Equivalent log-PCM bits: n 

20 
18 
4.7 

40 
28 
6.3 

60 
34 
7.3 
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Fig. 6— Comparison of Adaptive Delta Modulation and Logarithmic PCM: 
signal-to-error ratios as functions of bit-rate. 

the bit-rate (product of the sampling frequency and the number of bits 
per channel symbol). The bit-rate is equal to the product (6600.n) for 
n-bit log-PCM at the Nyquist rate, and is equal to the sampling fre-
quency F for ADM. The crossover of the curves in Fig. 6 at about 40 
KBPS is significant.* It suggests an important, though narrow, range 
of usable bit-rates where ADM, which was conceived originally only 
for its simplicity, can actually excel conventional log-PCM for speech 
transmission. 

3.9 The Effect of Independent Channel Errors 

We conclude the section on ADM simulation with speech by pre-
senting a qualitative discussion of the effect of independent channel 
errors on the performance of the delta modulator. 
When such errors were first allowed in the simulation, deterioration 

of ADM performance was observed at error rates as low as lin le. This 
was expected because of the inherent susceptibility of ADM to channel 
errors; every such error will have the effect of producing a long sequence 
of erroneous or suboptimal step-sizes which integrate in the output. 

*Crossovers of this type are indicated in Ref. 2 for television signals, and in 
Ref. 10, for Gaussian signals with an integrated spectrum. 
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In order to reduce the noise-memory of the ADM, the ideal integrator 
in the ADM simulator of Section 3.1 was replaced by a counterpart that 
had a finite time constant of the order of 10 to 20 sampling intervals. 
Furthermore, to mitigate the instability arising out of incorrect step-size 
adaptation in a noisy situation, the maximum allowable step-size was 
limited to a suitable value* (that would not introduce noticeable slope 
overload in the noiseless case). As a result of these refinements, the 
tolerable probability of channel errors was raised from about 1 in 105 to 
a figure of the order of 1 in 104. In fact, the intelligibility of ADM 
speech was still very much preserved at error rates of the order of 1 
in 103, but the quality of the output was affected by "clicks" that were 
introduced by the channel errors. 
An additional parameter that has a potential for enhancing the 

noise-resistance of ADM would be the length of the bit-memory in the 
adaptation scheme. The simple adaptation used in this paper has a 
minimal, one-bit memory and a suitably longer memory could indeed 
decrease the noise-susceptibility of ADM by a useful factor. In the 
ultimate analysis, however, it should be clear that such noise-suscepti-
bility is a general limitation of all classes of ADM, because of the 
integrator employed in these systems; and this observation will be a 
very important factor in the assessment of adaptive delta modulation 
with reference to PCM for use on specific communication channels. 
It may not be out of place to comment on the effect of transmitter-

receiver mistracking on delta-modulator performance. In general, 
"mistracking" would characterize a situation where the step-size 
sequence in the receiver tracks that at the transmitter only in polarities 
and adaptation ratios—as determined by the transmitted binary 
sequence—but not in actual step-size magnitudes. Typically, this can 
be a result of some kind of an asynchronous operation. Thus, for example, 
the receiver may be switched on at a random instant in time, with the 
transmitter already in operation; the step-size in the decorder will then 
be different, in general, from that in the transmitter at that time instant. 
It would appear, now, that the effect of such mistracking would be akin 
to that of a random channel error occurring at the time instant in 
question; for, as in the case of such an error, the "decoding failure" due 
to asynchronous operation can be traced to a single point in time, 
although it propagates in the decoder output in the form of a long 
sequence of suboptimal step-sizes. In other words, we expect that the 

*Spec cally, the maximum step-size was limited to 0.05D, where D was the 
dynamic range of the input speech; in the miginal simulation of the noiseless 
case, step-sizes as large as 0.10D had been encountered. 
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effect of mistracking—as that of a channel error—will be perceived as 
a transient in the decoder output, and the extent of such decoding 
failure will again depend, among other things, on (z) the time constant 
of the integrator employed at the decoder, and (ii) the maximum and 
minimum allowable step-sizes, which provide "locking points" for an 
asynchronous transmitter-receiver pair. 

IV. A THEORY OF THE DELTA MODULATOR 

We have mentioned in Section III that the optimal adaptation 
equations (6) and (7) were nearly invariant with respect to the sampling 
frequency. We shall see later, by virtue of the simulation in Section V, 
that these equations also hold good for a video input. These observations 
suggested the possibility of a fundamental and general explanation for 
the observed optima of P and Q. The purpose of this section is to 
provide such an explanation. Specifically, we propose a heuristic statis-
tical model for the adaptive delta modulator, and go on to explain the 
reciprocity between the optimum values of P and Q. We also develop 
an upper bound of 2 for the optimum value of P. 

4.1 The Model 

Our statistical model is based on assumptions that are backed by 
computer simulation and physical appeal. We believe that the resulting 
theory provides a simplified, but useful, description of our delta 
modulator. The following are our tacit assumptions: 

(z) The signal gradient s, = X. — Xr_, is a random variable with 
a probability density function that is symmetrical about a mean 
value of zero. 

(ii) In the optimal modulator, the "dynamic range" of the distribu-
tion of I X, I, which denotes the signal magnitude, is much 
greater than the "dynamic range" of I m, I = I Y, — Yr-1 I, 
which denotes the random step-size in the staircase approxima-
tion to X. 

(iii) With optimal adaptation, the probabilities of "P" type and 
"—Q" type adaptations of the step-size are equal. If we denote 
these probabilities by p and q respectively, we assume that 

P  = 0.5.  (8) 

Assumption (iii) would appear to be the strongest. It is also the most 
crucial part of our model. In essence, the assumption states that, with 
optimal adaptation, overload and hunting situations are equally likely. 
In other words, the best adaptation logic is one which, by definition, 
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is neither over-slow nor over-fast, but optimal in an average sense—as 
expressed in equation (8)—for the given input signal. 

4.2 The Optimum Value of PQ 

Consider the ratio R(N) of the magnitude of mu.,.N (the step size at 
the sampling instant U + N) to that of the step size mu at the sampling 
instant U. Let the number of "P" type and "—Q" type adaptations of 
the step size m in the interval N be Npo and Nqo respectively, so that 

niu+N I  R(N) =  _ e pe  e go =  (p Qa•ipo) r1,0  (9) 
I niu I 

Note that, for the "most typical" sequence of step-sizes, as N —+ 00, 
Po and qo tend to the probabilities p and q. Furthermore, we have said 
that, for optimal adaptation, p = q. We can therefore define, for the 
optimal case, a "most typical" asymptotic value Rm(oo) for R(N) 
as follows: 

R1(00) = lim Fe(N) =  (10) 
N-.,o  N--em 

We will now postulate an optimality criterion which will insist that the 
asymptotic ratio defined in equation (10) be finite and nonzero;*  and 
because Np —> 00 when N —> 00, a necessary and sufficient condition for 
such stability will be given by 

== 1.  (11) 

Note that this condition applies only to the optimal system defined 
by equation (8). 
The next two sections of this article are devoted to the derivation of a 

lower bound on the optimum value of Q„„, . By virtue of equation (11) 
such a bound on Qo„, will implicate a reciprocal bound on P.„, . 

4.3 Minimization of Mean Square Error 

We will adopt minimum mean square error as a criterion of optimality, 
and employ the notation 

Min (e) —› Min ((X,. — 17,)2>  (12) 

—>Min  s, — Yr1 — m,)2) 

((E,-, -I- sr — Lrmr-i.)2) 

___÷m  ( (E,  Sr  
2 

Lr  M .-1 

*Clearly, the idea is to prevent the tendency of the step-size m either to 
increase beyond bounds or to decay; and the formulation in equation (10) 
provides a tractable way of expressing this idea. 

(13) 
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The method of optimization that will be adopted in the sequel is 
equivalent to carrying out the above minimization for every specific 
value of mr_i . Therefore, we may write 

Min (e) —› Min a B  —  L,)2) •  (14) 
L.  \  mr-1 

We note that, given the polarity of the adaptation parameter L„ 
the magnitude of L,. is time-invariant, and hence that I L,. I is inde-
pendent of E, s, or m. Therefore, it can be seen that the minimization 
of (e.) is equivalent to the following optimization of L, : 

Min (.0 -,[L„„ = (E,_, si), given sgn (L,)] • nt,-1  (15) 

[The above optimization of L,. has the following physical meaning. 
In the optimal system, the step size m, at every sampling instant is 
designed so that, on the average, the resulting value of Y,. tends to that 
of the input X, . In other words, the value of mi. attempts to compensate, 
at every sampling instant, for the corresponding "lag" of the staircase 
signal, as expressed by the quantity X, — Yr-1 • 
This random lag (X, — Y,_,) has two distinct components. The first 

component is given by the random error Er_, (an overload or under-
shoot) arising out of the "instantaneous" suboptimality of the previous 
step m,_1; the second component of the lag is the signal gradient Sr, 
which is the amount by which the signal X will have deviated after the 
delta-modulator integrated its previous step m,_1. Our optimization 
procedure is tantamount to estimating the expected value of the sum of 
these two components of the lag—E,, and sr—with respect to the 
value of m,_,.] 

4.4 An Upper Bound for Pc,L„ = 1/Q.1,1 

As mentioned earlier, in view of the reciprocity that has been de-
veloped for the values of P.„, and Q„„t , we can now restrict the opti-
mization procedure to that of optimizing the value of Q on the basis 
of equation (15): 

sr), given that sgn (Li) — —1;  (16) 
m r-1 

= (E,-1)  ( s, 
M r-1  M r-1 

given that sgn  (Li) = —1;  (17) 

*We have utilized the well known statistical result: If A is a random variable 
and B is a parameter that is statistically independent of A, the expectation 
((A — B) 2) has a minimum at B.9, = (A). 
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= QI +  Q2 /  given that sgn (L,.) = -1  (18) 

where Q, and Q2  obviously refer to conditional expectations of the 
ratios in equation (17). 
Figure 7 depicts a situation where sgn (Lr) is negative, and illustrates 

the random variables in (17). The problem will be to evaluate Q, and Q 2 

with reference to Fig. 7. Notice at the outset that in the figure 

E, < (19) 

mr-i > OJ 

In what follows, we will denote the probability density functions of 
E r-I  S „ and of the signal amplitude X,-1 by Ix( ), f.( ), and fx( ) 
respectively. 

4.4.1 Evaluation of Q1 : 

Let us first note the following equivalence of events: 

IE = el  {X = Y el.  (20) 

Notice next the following constraint for the overshoot error E.-1 

< Er_, < 0.  (21) 

In other words, allowable values of E fall in the interval  , 0). 
We can now invoke assumption (ii) in Section 4.1, (which says that 
the "dynamic range" of the step-magnitude I m is much smaller than 
that of the signal amplitude I X I) to make the approximation 

fx(17,--i + el) -̂2 f x(17 r-i e2)  (22) 

where ei and e2 are two values of E within the "small" permissible range 
(-m,._, , 0) for E. In writing (22), we have approximated fx( ) in the 
"narrow" range—from Y ± ei to Y + e2—by a constant function. In 
other words, the distribution of the overshoot error can be assumed to be 
uniform in the allowable range of E: 

1 
E(e) -  ; 

mr-1 
-  < e < 0.  (23) 

Obviously then, the expected value of the ratio of the overshoot error 
Er, to the step-size m,._, is given by 

Qi - f  e • f E(e) de = 
ro  1 

de = -0.5.  (24) L ,„, mr_, m, _ 
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Fig. 7 —Illustration of a reversal of step-polarity. 

4.4.2 Evaluation of Q2 : 

As a requirement for the reversal of step polarity in Fig. 7, one notes 
the constraint 

Er, + s„ < 0.  (25) 

Hence, allowable values of the signal gradient s,. have to lie in the range 

— co < s,. < —E,_, .  (26) 

Notice that, by virtue of (19), the upper bound for s„ in (26) is positive. 
Before proceeding to evaluate the expected value of Sr, we shall 

comment on the use of the unconditional density function of s, in the 
ensuing analysis. With a one-bit memory, the polarity of mr, is un-
known. Equivalently, it can be seen that there is no constraint on the 
gradient sr_, analogous to that on s, in (26). This means that, with a 
one-bit memory, one cannot develop any conditional distributions for 
the future signal gradient s„ and the use of the unconditional density 
function f.( ) will therefore be valid. Consequently, using (26) and (19) 
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and the zero-mean assumption (0 for sr in Section 4.1, 

(22  1.(x) dx =  1 f x • f .(x) dx;  (27) 
ro 

rf. 
xf,(x) dx — T.° xf .(x) dx] ;  (28) 

Mr—I L Loo 

1 > O.  (29) 

In other words, during an overshoot situation, the expected value of 
the future signal gradient is negative with respect to the present step me. ; 
and this is a consequence of a finite positive bound —E,._1 (26) on the 
symmetrically distributed random variable Sr. 
Utilizing equations (24) and (29) we can rewrite (18) in the form 

= —0.5 — 8;  5>  0.  (30) 

Finally, utilizing the simple upper bound (4) of 1 for Qopt , we may 
write 

and, by virtue of (11), 

o <  < 0.5, 
0.5 < (1,,t < 1.0 

1.0 <P0„ = ,1 < 2.0. 

(31) 

(32) 

4.5 Evaluation of the Theory 

Table II presents the values of important adaptation parameters 
obtained in a 60 kHz speech simulation of optimum delta modulation 
and compares them with the predictions of our theory. The comparison 
is good, and is particularly so with reference to the critical parameter p 
of assumption 
We believe, in retrospect, that the heuristic theory of this section 

TABLE II — CHARACTERISTICS OF AN OPTIMUM DELTA MODULATOR 

Parameter (PQ)opt P.pt P â Qi 

Theoretical Value 1 1 < P09 t < 2 0.50 0 < 0<0.5 —0.5 

Value from Speech 
Simulation 1 1.5 0.47 0.12 —0.55 
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provides a simple understanding of adaptive delta modulation charac-
terized by exponential adaption and a one-bit memory. The theory is 
still insufficient, however, and unanswered problems include an explicit 
derivation for the signal-to-error ratio and the question of analyzing the 
noise performance of adaptive delta modulation. 

V. RESULTS FROM A VIDEO SIMULATION 

We devote this section to a cursory presentation of results obtained 
from a simulation of the ADM with a video signal in a format that may 
be appropriate for communication purposes. The picture frame was 
made up of 250 scan lines, and a resolution of about 275 picture elements 
per line. The picture elements were 10-bit samples; therefore, assuming 
a scan rate of 30 frames/second, we were employing a 20 megabit/sec 
(MBPS) original. The simulator used an ideal integrator in the feedback 
loop and incorporated a digital low pass filter with a sharp cut-off at 
1 MHz. 
An important finding of the simulation was that optimum values of 

the adaptation parameters P and Q were still nearly equal to 1.5 and 
0.66, which were values encountered in the speech simulation. Further-
more, as with speech, these optima of P and Q were nearly independent 
of the sampling frequency. Also, the optimized ADM performed 
significantly better than the unadaptive (P = Q = 1) encoder with an 
optimized step-size; at 10 MHz operation, for example, the performance 
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Fig. 8—Results of the video simulation: signal-to-error ratio as a function of 
(PQ). 



340  THE BELL SYSTE M TECHNICAL JOURNAL, MARCH  1970 

40 

in 30 

U., 20 ci 

10 

o 

•C1 

F. 10 MHZ 

1.00 1.25 1.50 1.75 

P = 

2.00  2.25  2.50 

Fig. 9— Results of the video simulation: signal-to-error ratio as a function of P. 

gain, using the criterion of Section 3.2, was nearly 10 dB. We have 
provided, in Fi 14.. 8 and 9, signal-to-error ratio curves that demonstrate 
the delta-modulator performance at 10 MHz, as a function of P and Q; 
the function G represents a signal-to-error ratio as averaged over the 
"active" or "picture" portion of the video frame. 
Other sampling rates used in the simulation were 5 and 20 MHz. The 

performance of the modulator at 5 MHz was unsatisfactory, while the 
picture reproduction at 20 MHz was very acceptable. The capabilities 
and limitations of our scheme were best revealed in the 10 MHz simula-
tion. In Fig. 10, we compare the output of the 10 MHz ADM, corre-
sponding to a single frame of video input, with the 20 MBPS PCM 
original. The 10 MBPS ADM picture can be said to constitute a useful 
output; but it is not indistinguishable from the original. One notices, 
for example, the inadequate reproduction of the stripes on the dress of 
the subject.* This is attributable to the inability of the coder to follow 
sudden changes of input signal level; and would manifest, in the ADM 
version of a moving scene, as a corresponding twinkle. 
The processing of moving scenes as well as the accumulation of 

subjective performance measures, were topics that were beyond the 
scope of our simulation. But such studies represent important pre-
requisites for a correct assessment of our delta modulator for general 
video application. 

*Interested readers may obtain glossy prints of Fig. 10 from the author at 
Bell Telephone Laboratories, Murray Hill, New Jersey. 
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VI. CONCLUSION 

We have presented a very simple form of discrete adaptive delta 
modulation, characterized by the use of a one-bit memory and by 
exponential adaptations of the step-size. We have discussed optimization 
procedures for such a device, and demonstrated the applicability of the 
modulator to audio- and video-signal reproduction at practically useful 
operating frequencies, such as 60 kHz for audio and 10 MHz for video. 
It is well known that conventional (linear) delta modulators are ineffi-
cient at such frequencies. Though our ADM can be practically important 
in its own right, we reiterate that the performance of our adaptation 
logic is to be regarded as a lower bound on the performance of more 
sophisticated schemes7—in particular, of adaptations that employ more 
than a one-bit memory, or of those which exploit very specific statistics 
of the signal to be encoded. 
We have also afforded, in this paper, a comparative evaluation of 

adaptive delta modulation and of PCM in the contexts of Fig. 6 (for 
speech signals) and Fig. 10 (for video signals). It is an important con-
clusion from the aforecited illustrations—and from Fig. 15 in Ref. 2— 
that there are ranges of bit-rates, in both speech and picture systems, 
where ADM performance is competitive with that of PCM; this consti-
tutes a nontrivial observation in that the original conception of delta 

Fig. 10 — Results of a video simulation: (a) 20 MBPS PCM original (b) 10 
MBPS ADM output. 
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modulation was very much that of an inferior, though useful, alternative 
to PCM. The noise-susceptibility of delta modulation could however 
delimit its utility for specific noisy channels. On the other hand, a simple 
adaptive delta modulator would appear to have an edge over conven-
tional/differential PCM in systems characterized by relatively noise-
protected channels, in low bit-rate applications, and in systems where 
simplicity of implementation is a critical matter. 
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On an Anomaly in the Mobility of 
Gaseous Ions 

By GREGORY H. WANNIER* 

(Manuscript received July 8, 1969) 

Many mobility versus field curves for gaseous ions show a high mobility 
"bump" just above the ohmic range. The effect arises from the nature of 
the force between ions and molecules. It is effectively attractive for low speeds 
of encounter and repulsive for high speeds. A partial cancellation of de-
flections occurs in a range of intermediate speeds; the scattering cross section 
then appears to be abnormally low. 

I. INTRODUCTION 

The first semiquantitative understanding of the motion of gaseous ions 
in electric fields was achieved by Langevin.' He adopted as a model 
force between the ions and the gas molecules a superposition of the 
attractive polarization force and a hard core repulsion. He then applied 
kinetic theory to the mixture of ions and molecules and determined the 
response of the ions in such a mixture to a small field. A drift velocity 
proportional to the field was the result. The constant of proportionality 
is called the mobility. Langevin produced the first estimates for this 
number. 
There has been no essential departure from Langevin's approach in 

subsequent years, but only refinements and extensions; they occurred 
generally in close correlation with experiment?' A useful extension 
was the one to high fields. One gets then a drift velocity versus field 
curve rather than a simple constant of proportionality. In favorable 
cases, the analysis of such data has been carried out in a quite satis-
factory way.t The general rule is that if the results are expressed in 
terms of a mobility, then the mobility tends to decrease with increasing 

*Mr. Wannier is Professor of Physics, University of Oregon, Eugene. He 
performed this work while on sabbatical leave at Bell Telephone Laboratories, 
Murray Hill, New Jersey. 
t See Refs. 6 and 7. In Ref. 6, the abscissas on Figs. 3-7 are a power of ten too 

small. 
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field. The qualitative explanation of this trend is that high fields raise 
the mean random velocity of the ions above their thermal value. The 
mean speed of encounter of ions and molecules is thereby also increased. 
Under those conditions the mean free time between collisions would 
remain a constant only for inverse fifth power forces (Maxwellian 
molecules), but decrease for stiffer forces. This is normally the case in 
practice, except in the limit of very slow encounters when the polariza-

tion force prevails. 
It is the purpose of this paper to focus attention on the "mobility 

bump" which is observed occasionally in a mobility versus field plot. 
While the mobility generally behaves as described in the preceding 
paragraph, there is sometimes found a short range of fields for which 
the mobility rises before the drop sets in.4'8-10  The explanation pro-
posed for this effect is the following. The drift velocity of the ions is 
controlled by their encounters with the molecules; these depend in 
turn on the mutual force. This force is attractive at long range and 
repulsive at short range. If one studies the momentum transfer cross 
section for such a force as function of speed one finds that it has a 
"dip" at intermediate speeds as compared to the limiting laws for high 
or low speed. The reason for this dip is a partial compensation of at-
traction and repulsion. The latter is responsible for the high speed be-
havior, and the former for low speed behavior. However, attraction 
and repulsion bend the path in the opposite sense, or give phase shifts 
of opposite sign. Hence a compensation with anomalous transparency 
must be expected for a small range of speeds. If these speeds are just 
slightly larger than thermal under the experimental conditions em-
ployed, a "bump" type anomaly will appear in the data. Furthermore 
the bump will be larger if the repulsive force is soft. The reason for 
this is that a soft repulsion can compensate the polarization attraction 
over a wider range of speeds than a hard force. 

H. A STUDY OF CROSS SECTIONS 

Computations of drift velocities and comparisons with experiment 
are presented in Section III. In this section, we show the effect of the 
compensation phenomenon on the behavior of the momentum transfer 
cross section, employing two simple models. 
Within the range of validity of classical mechanics the momentum 

transfer cross section 0.(y) is defined as 

cr(11) = 271- f (1 — cos x)b db.  (1) 
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Here b is the impact parameter for a collision, and x is the angle of 
deflection in the center of mass frame. For the discussion of this section, 
we may think of the mobility as being inversely proportional to the 
quantity (1). 
The first model to be discussed is the so-called Langevin force, con-

sisting of the polarization force as the attractive force and a hard sphere 
radius as the repulsion. The deflection equals 

b du 
x = 2 fo { ir. (2) 

1 — 1)2u2 + e2P  u'i me } 

Here P is the polarizability of the molecules and u an integration varia-
ble which equals the reciprocal radius. The upper limit of the integral 
is the smaller positive root of the denominator or 1/a whichever is less; 
a is the radius of the hard core. Formula (2) gives rise to a variety of 
elliptic integrals which one can teach a computer to distinguish and to 
look up in its library. After this is done, the integration (1) has to 
follow; this was carried out numerically. Results are shown in Fig. 1 in 
a log-log plot. On abscissa is V which equals 

V = (— * 612 
77./") —e V. (3) 

It is a scaled dimensionless speed whose adjustable parameter is the 
hard sphere radius a. On ordinate is the cross section Z in units ira'. 
The curve is entirely determined by its two asymptotes. The equations 
for the asymptotes are 

Z = 2.210/V  (4a) 

for the polarization force, and 

Z = 1  (4b) 

for the hard sphere repulsion. 
Observation of Fig. 1 shows that a simple interpolation between the 

two straight lines, say, by adding the two cross sections, does not re-
produce the actual behavior of the cross section even qualitatively. As 
the speed increases from very low values the cross section departs from 
the polarization value by being lower, not higher. The effect is ad-
mittedly small; the cross section falls to 85 percent of the polarization 
value and behaves normally as regards the hard sphere value: it ap-
proaches it from above. 
To show up the effect more clearly, the calculation was repeated for 
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Fig. 1— Momentum transfer cross section versus speed for the Langevin force. 
Cross section is relative to hard sphere, speed is rendered dimensionless through 
(4). Cross section falls below one limiting law (asymptote) albeit by a small 
amount. 

another force model: the same polarization force plus a 1/r° repulsive 
potential. The reason for this choice was that it is an extremely soft 
repulsion; so the two models should bracket the truth. An incidental 
advantage is that no orbit calculations are required because the angle of 
deflection is again an elliptic integral. In detail, the potential U was 
taken in the form 

U  a2}. (5) 
r  r 

a is the distance at which the potential vanishes, and thus resembles 
vaguely the hard core radius of the first example. With the help of 
standard mechanics, one finds for the angle of scattering 

x =  
b ds   

e21)  e2P 
(s3 — Vs2 s —  a 

mv  mv 
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s is an integration variable which equals the square of the radius; the 
other letters have the same meaning as previously. .9, is the largest 
positive root of the denominator. The integral thus is a complete elliptic 
integral. It takes two different forms, depending on whether the de-
nominator has three real roots or one real root. One can teach a com-
puter to find the roots from Cardano's formula and to look up the 
elliptic integral in its library. Once x is found, the momentum transfer 
cross section (1) is computed in the same way as in the first example. 
Results are shown in Fig. 2 on a log-log plot similar to Fig. 1. The 

parameter V defined in equation (3) is again used as abscissa, and the 
ordinate is again the cross section in units ira'. On a log-log plot the 
curve has again two asymptotes representing high speed and low speed 
behavior. The equations for the asymptotes are 

= 2.210/V  (7a) 

(7b) 

and 

Z = 1.112/V1. 

They represent respectively the cross section which would prevail if the 
polarization force or the repulsive force were present alone. 
This time the effect under discussion is very large. The curve for the 

cross section approaches either asymptote from below; in the central 
region it is substantially smaller than it would be according to either 
limiting law. The reduction is to 75 percent of the repulsive cross sec-
tion and 36 percent of the polarization cross section. 
Before comparing these results with experiment, we shall look at the 

theory internally and compare the two model cases with each other. 
The effect under discussion arises because there are strongly bent orbits 
which finally result in a small deflection; the reason is that bending 
toward and away from the center cancel. Langevin was aware of this 
effect.' In his Fig. 4, the fourth from the axis of the eleven orbits shown 
is of that nature. His results also contain the bump in the mobility 
curve. His Fig. 7 is essentially a plot of mobility versus speed. However, 
the effect is small. Our second example shows that if the repulsive force 
is made soft the effect can become very large. So it is rather the small-
ness of the effect for the Langevin force which needs some extra atten-
tion here. The effect is small because the model is discontinuous. Orbits 
which approach the hard core ever so closely do not experience any 
repulsion, and hence no cancellation leading to anomalously small angles. 
On the other hand, orbits colliding with the core do experience the 
attraction. But, once present, the repulsion predominates very quickly, 
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Fig. 2— Momentum transfer cross section versus speed for the 4-6 potential. 
Abscissa and ordinate are essentially as in Fig. 1. Cross section falls very far below 
both limiting laws (asymptotes). Strong effect arises from softness of repulsion. 

and the opportunity for small angle deflections is limited. In Fig. 3 a 
typical plot of deflection versus impact parameter is shown. The angle 
itself is a continuous function, but its derivative is infinite for orbits 
just barely touching the hard sphere. The effect under discussion arises 
from the small angles in the neighborhood of the point where the angle 
passes through zero. This is very close to the point having infinite 
derivative; hence, the relevant angular range is very small. If the re-
pulsive force is softer, Fig. 3 will become smooth, and look somewhat 
like Fig. 4. Clearly, the range of initial conditions for which the angle of 
scattering is anomalously small will be much larger for such a situation. 

111. COMPARISON OF THEORY AND EXPERIMENT 

It is an essential feature of the "mobility bump" that it is observed 
outside the ohmic range. A simple mobility calculation is thus not 
quite right, but one should carry out an "intermediate field" type of 
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Fig. 3 — Detail on the dependence of the scattering angle on the impact param-
eter for the Langevin force. Infinite slope discontinuity inherent in the model 
makes also the passage through zero very rapid. 

calculation.5 However, as the bump appears at the very edge of the 
ohmic range, a mobility calculation should be indicative of precise re-
sults. What drives the drift velocity out of the ohmic range is the in-
crease of the random speed of the ions above the thermal value. This 
speed can be very reliably estimated using experimental information 
only. As the first step, we "unreduce" a plot giving the reduced mo-
bility as function of E/po , in order to determine the observed drift 
velocity Ud . This is accomplished with the help of the formula 

E 
Ud = 760 — go • 

Po 
(8) 

Thereupon we determine the mean square velocity by a formula which 

Fig. 4—. Detail on the dependence of the scattering angle on the impact param-
eter for the 4-6 potential. Curve is continuous and the passage through zero 
slower than in Fig. 3. 
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is discussed extensively elsewhere* 

3kT m(gas) 2 
(e) —  ± (I. ±  )v .  (9) 

m(ion)  m(ion) d 

What we need further on is the root mean square relative speed which 
we shall simply call "the speed" and denote by v: 

v — {  3kT  -F (v2)}i (10) 
m(gas) 

which comes out to be 

{3kT —  ± m(gas)1  
m . v   

Here m is the reduced ion-molecule mass as used previously. 
We may use equation (11) to convert the experimental data into a 

plot giving reduced mobility versus speed. Such a plot is shown in 
semilog form in Fig. 5 for H+, in H2 as published in Ref. 9. The plot 
shows the conventionally reduced mobility as function of the logarithm 
of the speed v. 
We are in a position to find theoretical data which can be compared 

with a curve such as Fig. 5. The results on cross sections obtained in 
Section II can be exploited to yield a mobility 1.‘ with the help of the 
formula 

1 e /i d f V2 \ \ t 
1.4 = à ing \i). -C-1V \-6-1:0)/ • 

(12) 

Here e is the charge of the ion, m the reduced mass of the ion-molecule 
system and N the number density of the gas. o(v) is the momentum 
transfer cross section as defined in equation (1). In addition, a calculation 
of Hershey can also be brought in for c,omparison.5 Hershey carried out 
calculations of mobilities for a ninth power repulsive force in combina-
tion with the polarization force. His result as shown in curve II, Fig. 7, 
Ref. 5, is of the desired form. His abscissa, labelled 1/g, is the random 
velocity (10) of this paper, apart from a scale factor. His ordinates 

*See equation (2120) of Ref. 7 or equation (122) of Ref. 6. Equation (97) of 
Ref. 6 also shows an instance in which the formula is not rigorously valid. Yet it 
still holds to within 5 percent. 
t The formula is a modification of (20.10) of Ref. 7 for an isotropic situation. 

It also appears as (21.17), or results from (2125). All three derivations fall short 
of being general. Indications are that the formula is close but not exact. Compare 
the comments to (168) of Ref. 6 where the same formula appears with a slightly 
different numerical factor. 
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Fig. 5—Adaptation to theoretical analysis of the data of Miller and others, on 
the motion of He in HSI. Ordinate is the same as in the original paper, but on 
abscissa is plotted the root mean square speed of encounter. 

must be multiplied with a factor to yield the polarization mobility at 
zero speed for the system under consideration. 
In Figs. 6, 7 and 8 are shown the reduced mobilities predicted for 

H*3 in I-12 , using hard sphere repulsion, seventh power repulsion and 
ninth power repulsion, respectively, combined with the polarization 
attraction. On abscissa is the mean speed of encounter; the speed is 
plotted logarithmically, so that scale factors have no influence on the 
shape of the curves. Their only adjustability consists in a possible 
horizontal rigid displacement. 
Comparison of the three theoretical curves among themselves bears 

out the point made at the end of the introduction. The bump is largest 
in Fig. 7 for which the repulsion is softest, and smallest in Fig. 6, for the 

20 

o 
0.1 02 0.4  08 08 2 4  6  8 10 

Fig. 6—Theoretical mobility versus speed curve for He in H,, adopting the 
Langevin model. The speed has an adjustable scale factor which allows a hori-
zontal shift without distortion of the curve shown. 
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Fig. 7—Theoretical mobility versus speed curve for He in Hs, adopting a 4-6 
potential model. The speed has an adjustable scale factor which allows a hori-
zontal shift without distortion of the curve shown. 
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Fig. 8— Theoretical mobility versus speed curve for He in Hs, adopting a 4-8 
potential model. Adaptation of results of Hershey.5 V' is also a scaled speed. 
A horizontal shift without distortion of the curve shown is thus allowed. 
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hard sphere. Intermediate hardness yields an intermediate size bump. 
When we go on comparing these curves with the experimental curve 
shown in Fig. 5, we find the experimental bump in between the ninth 
power repulsion and the hard sphere. A Lennard-Jones type thirteenth 
power repulsion is thus quite a plausible candidate for a good fit. 
We can make a further comparison between theory and experiment 

by identifying the velocities for which the maxima occur. The maxima in 
Fig. 6 and Fig. 7 occur roughly at V = 1, the experimental one at 
y -- 106 cm/sec. We can thus use equation (3) to get an empirical value 
for the hard sphere radius a. We find 

a = 1.7 X 10-8 cm. 

Actually, the theoretical bump should be higher than the experimental 
one because the averaging process over velocities was omitted. Since 
the bump arises only for a restricted set of speeds it will be reduced by 
an averaging procedure. 
The theoretical curves are not adjustable in a vertical direction and 

there is thus an unexplained discrepancy between theory and experi-
ment in the low speed mobility value. The theoretical value results 
from the formula 

bt 0 —  [ (Tv  [ 1_  (e 2 ein 2¡ volt sec  (13) 

where p is the density and E the dielectric constant of hydrogen. Taking 
for p the value 0.899 X 10-4 and for €-1 2.73 X 10-4 , we find a value 
of 14.03 cm2/volt sec for po while the measured one is 11.2. The cause 
for this discrepancy is not known at this time. It is possible that formula 
(13) is not quite correct for a molecular gas. The molecular polarizability 
is a tensor function which depends on orientation. The dielectric 
constant represents the polarizability response to a uniform field. If 
the ion is capable of orienting the molecules or comes so close as to ex-
perience details of molecular structure then the effective polarizability 
will be larger and the mobility smaller. 
Before leaving the subject of comparison with experiment, I wish to 

call attention to the data of Ref. 9 taken at the very highest fields. A 
second rise of the mobility is indicated. The theory proposed cannot ex-
plain such a rise. If the explanation is right, this rise must be an experi-
mental error or arise from a quite extraneous feature. 

IV. CONCLUSIONS 

It is the conclusion of this paper that the mobility bump which shows 
up in recent experiments is a normal feature of the classical theory of 
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ionic mobility. It may actually be found in the classical papers on the 
subject"' but the effect happens to be quite small for the Langevin 
model. The second model discussed here and the work of Hershey' 
show that it can be quite large, with the mobility rising to 300 percent 
of its polarization value. The size of the bump is critically dependent on 
the softness of the repulsive part of the potential. It is thus plausible 
to expect that a 1/ri2 repulsion such as occurs in the Lennard-Jones 
potential will give rise to curves resembling the experimental ones. With 
calculations of this type one might set up a correspondence between 
"bump size" and "softness". However, a glance at the experimental 
data indicates that such an identification is not easy to make because 
the bump occurs primarily when either the ion or the molecule or both 
are extended systems. "Softness" may thus be an indirect attribute 
arising because the force is different for different orientations. 
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The Enumeration of Neighbors on Cubic 
and Hexagonal-Based Lattices 

By J. D. WILEY and J. A. SEMAN 

(Manuscript received October 2, 1969) 

Radii and occupation numbers have been calculated for the first 50 shells 
of neighbors on each atomic sublattice for the Csel, NaCi, zincblencle, 
wurtzite, and CaF2 binary lattices. We present the results in tabular form 
along with rules for extending the tables to higher shell numbers. A sub-
lattice approach is used and tables are given for key cubic and hexagonal-
based sublattices. The generality of the sublattice approach is such as to 
allow easy application of the tables to more complex lattice structures or to 
such problems as enumeration of preferred interstitial sites. A number-
theoretic explanation is offered for previously observed difficulties in 
obtaining a simple expression for the radius of the m-th shell in cubic-based 
structures. 

I. INTRODUCTION 

In. discussing phenomena involving the interaction of ions in a 
crystalline lattice it is often necessary to know the radii and occupation 
numbers of near-lying shells of lattice sites. Such information is ex-
tremely important, for example, in the interpretation of donor-acceptor 
pair recombination spectra" and in calculations of ion pairing" and 
other defect clustering phenomena. The present work was motivated by 
the apparent lack of any generally available tables or formulae for 
calculating these m-th neighbor shell parameters for common lattices. 
Shell radius formulae and partial tables have been published" for the 
interpretation of pair spectra in materials with zincblende lattices but 
these tables are inadequate for other applications. Wood and Ferris-
Prabhu6 have given slightly more complete treatments but do not 
present sufficiently general rules to allow indefinite extension of their 
tables.* The methods which will be described here differ from those 

*In fact, if the diamond lattice radius rules given by Ferris-Prabhue were used 
to extend his table beyond the 25 shells which he lists, one would err in predict-
ing the radius of the 28th shell and would have all higher shells improperly 
numbered. Further errors would be made for much higher shell numbers. 

355 
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reported previously"." in that greater attention is given to the 
formulation of general rules which allow extension of the tables to higher 
shell numbers. It is hoped, however, that the tables presented will be 
sufficiently large for most applications and will not require extension. 
The general approach will be discussed in Section II and final tables of 
shell parameters will be presented together in Section III. 

H. DISCUSSION 

The notation to be used throughout is as follows: A convenient 
lattice point will be chosen as the origin and will be taken RS the center 
of a spherical shell which is allowed to expand. At certain radii, p,,,, the 
shell will coincide with other points of the lattice. The number, Z. , of 
lattice points on the shell of radius pm will be referred to as the occupa-
tion number of the m-th shell or the number of m-th neighbors. To find 
the radius and occupation number of the m-th shell, the following 
general approach" will be used: For each lattice a rectangular set of 
basis vectors (a1, a2, a2) will be chosen in such a way as to allow the 
coordinates of any lattice point to be written as  , A , A) where the A 
are integers. All lattice points will therefore fall on the corners of 
rectangular parallelepiped (usually cubic) cells of the basis lattice but 
since the basis lattice is smaller than the actual lattice, there will be sets 
of integers which do not correspond to actual lattice points. Rules must 
therefore be formulated to allow these fictitious points to be rejected 
in the enumeration process. Points of the real lattice can then be 
enumerated by systematically counting all allowed combinations 
, A , A). Since each point (A , 4, 4) is located on a sphere of radius 

P2 =  + 4(4 ± 4(4 ,  (1) 

one can obtain Z„, by counting all lattice points with equal p2 values and 
arranging the shells in order of ascending p'. This process is simplified by 
making use of reflection and permutation symmetries but is best done 
by computer in any case. 
It frequently turns out that one can write the radius of the m-th shell 

as a simple function of m: pm = f(m). Although there is no a priori 
reason to expect that such a formula will exist for any given lattice, it 
is very convenient if one can be found. (Radius formulae are useful, for 
example, in estimating the number of 1, values which must be considered 
in order to count all lattice points of the m-th shell.) Since the subject 
of radius formulae has been a source of some confusion in the literature,6 
it will be given special attention in the discussions of specific lattices 
which follow. 
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2.1 Cubic-Based Lattices 

Four monatomic cubic-based lattices will be considered first: Simple 
Cubic (sc), Body Centered Cubic (bee), Edge Centered Cubic (ecc), 
and Face Centered Cubic (fcc). In each case the origin will be chosen 
to be at a cube corner and the basis vectors will be (a/2)i, (a/2)j, and 
(a/2)k, where a is the length of a full cube edge and i, j, and k are unit 
vectors in the x, y, and z directions respectively which are taken to be 
cube edges. In the case of se, one could choose vectors of length a but 
the a/2 choice turns out to be more convenient. 
The bee, fcc, and eco lattices will each be decomposed into two 

sublattices: Sublattice 1 will consist of cube corners (as defined by the 
position of the origin) and sublattice 2 will consist of body centers (be), 
face centers (fc), or edge centers (ec) as the case may be. This is illus-
trated in Fig. 1. 
Since the basis lattice is a se lattice with edge length a/2, all lattice 

points of the larger se, fcc, ecc, and bee structures can be written with 
integer coordinates (ti , 6, 4). Furthermore, it is seen by inspection 
that the following rules apply: (i) Points on sublattice 1 are obtained 
if and only if 41 , 4 , and 4 are all even. (ii) Points on the be sublattice 

Sc 

Y 

bC 

ec 

Fig. 1 — The fundamental cubic-based lattices se, bee, fcc and ecc are shown 
decomposed into convenient sublattices: sc = Sc, bcc = (be  so), fcc = (fc  se), 
ecc = (ec  se). 
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are reached if and only if the coordinates are all odd. (iii) Points on the fc 
sublattice are reached if and only if two of the coordinates are odd. 
(iv) Points on the cc sublattice are reached if and only if two of the 
coordinates are even. 
By systematically enumerating all combinations of 4 , 4, and 4 that 

satisfy these criteria, one obtains all points of the respective sublattices. 
For the simple lattices considered here one can make use of reflection 
symmetry and permutation symmetry by considering only points for 
which 4  4 k 4  0. Any point (C, , 4 , 4) is then one-, three-, or 
sixfold degenerate under permutation of coordinates (p) and two-, four-, 
or eightfold degenerate under reflection in the coordinate planes (d). 
The total number of points equivalent to (€1 , 4 , 4) is then Zi = dp 
where d and p are given by Table I where A, B, and C are distinct 
integers and order is immaterial. In many cases there will be two or 
more nonequivalent sets of lattice points on the same shell. In such 
cases Z,„ = E, dipi where i ranges over the various distinguishable 
sets of lattice points. For example, the 22nd shell of the sc lattice has 
p2 = 100(a/2)2. This shell contains points of the type (8, 6, 0) and 
(10, 0, 0) (in units of a/2). There are 6 X 4 = 24 of the former and 
3 X 2 = 6 of the latter for a total of 30 points on this shell. 
Having chosen cartesian basis vectors of equal lengths we can write 

the distance from the origin to any lattice point in the form 

(2) 

where r is the shell radius in units of the basis vector length. Thus the 
square of the radius vector to any lattice point must be expressible 
as the sum of three perfect squares. This is highly relevant to previously 
observed difficulties in obtaining simple expressions for the radius r,,, 
of the m-th shell in cubic based lattices. The usual difficulty is that 
one is able to find a formula which works only for a limited number of 

TABLE I—NUMBER OF POINTS EQUIVALENT BY SYMMETRY 
Coordinates of the Form P 

(A, A, A) 
(A, A, C) 
(A, B, C) 

Number of Zero Coordinates 

1 
3 
8 

d 

2 
1 
o 

2 
4 
s 
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TABLE II--VALUES OF rj WHICH ARE FORBIDDEN IN CUBIC-BASED 
LATTICES* 

o 1  2  3  4 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

7  28  112  448  1792 
15  60  240  960 
23  92  368 
31  124 
39  156 
47  188 
55  220 
63  252 
71 
79 
87 
95 
103 

* Numbers of the form 4r (8s + 7) where r and s are integers k 0. 

shells and then fails by predicting a shell of lattice points at some radius 
r„, where, in fact, no actual lattice points exist. Thomas, and others» 2 

call these "empty shells" and count them as m-th neighbors with 
Z„, = O. Through this device a formula can be made to work for all r,,,. 
Thomas, and others, also give a formula which predicts the shells which 
will require Z„, = 0 for the zincblende lattice but do not discuss the 
origin of this formula. In every case investigated in the present work, 
a failure of shell radius formulae occurred because these formulae 
predicted values for /1 which were not expressible as the sum of three 
perfect squares.* It is known from the theory of numbers that an 
integer can be expressed as the sum of three squarest if and only if it 
is not of the form 4r(88 ± 7) where r and s are integers  O. Thus 
whenever a radius formula predicts a value of r„2, of the form 4'(8s + 7), 
no shell of lattice points will exist since r2 will fail to satisfy the physical 
constraint given by equation (2). A few of these forbidden r„,2 values 
are listed in Table IL 
The sc, bc, fc, and ec sublattices form a basic set from which one 

can construct more complex lattices. They all have reflection and per-

* It is possible, in more complex lattices, for a radius rule to fail for other 
reasons. 
t It can be shown that any integer can be expressed as the sum of not more 

than four squares, nine cubes, or nineteen fourth powers, The important point, 
however, is that three squares are sufficient. 
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mutation symmetry, however, and will not be directly applicable to 
any lattices or sublattices that do not share these symmetries. This is 
illustrated in the final monatomic lattice to be considered in this sec-
tion: diamond. 
The diamond lattice is composed of two interpenetrating fcc lattices 

which are shifted along a common diagonal by an amount (a/4, a/4, a/4) 
as indicated in Fig. 2. A corner of one of these fcc lattices will be chosen 
as the origin and this sublattice will be denoted "I." The shifted sub-
lattice is then "II." The basis vectors are taken to be a/4 in length 
and span a se basis lattice with cube edges a/4. The restrictions on 
, 6 , 4 are found by inspection (this process is aided by consideration 

of projections in the coordinate planes), and are given in Table III 
along with a summary of similar results for the se, be, fc, and cc sub-
lattices. The radius formulae given in column 5 of Table III are ob-
tained by inserting general integers of the forms given in column 4 

Y 
- a - - ->1 

DIAMOND SUBLATTICE I 

ZINCBLENDE 

DiAMOND SUESLATT CE ll 

Fig. 2—The diamond and zincblende lattices are shown decomposed into two fcc 
sublattices. In diamond, atoms on sublattices I and II are identical. In zincblende, 
atoms on I are of one type and atoms on II are the other type. 
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into equation (2) and identifying "m" in the resulting expression. 
The diamond sublattice I can be worked out directly using the rules 
given in Table III or can be formed from the results of se and fc by 
converting the r2 values from the a/2 basis to the a/4 basis, interleaving 
the sc and fc sublattices to form a full fcc lattice, and renumbering the 
shells. The renumbering of shells invalidates the previous r2 formulae 
but a new formula is found for the full fcc lattice. The diamond sub-
lattice II enumeration proceeds in a straightforward manner but re-
quires explicit counting of a greater number of points since there is less 
conveniently useable symmetry. In this case none of the simpler sub-
lattices can be used directly since diamond II lacks the full cubic 
symmetries. 
The simple monatomic lattices and sublattices can now be combined 

to describe physically interesting binary crystals. We adopt the follow-
ing notation for sublattices of binary crystals: One X atom of the com-
pound X„,Y,, is chosen to lie at the origin and all other X atoms are 
said to occupy sublattice Ix . Sublattice II x consists of all Y atoms when 
X is at the origin. Similarly, if Y is at the origin then Y atoms occupy 
sublattice Iy and X atoms occupy uy. The distinction between Ix and 
I. or IIx and lly disappears for compounds of the type X„.Y. where 
all atoms of X and Y could be interchanged without any physically 
observable effect. The zincblende lattice, shown in the lower portion 
of Fig. 2, differs from diamond only in that sublattices I and II are 
occupied by different atomic species. Figure 3 shows three more com-
monly observed binary lattices: NaCl, Csel, and CaF2 . In Table IV 
we show how these lattices can be formed from the basic cubic sub-
lattices. Thus, for example, a table of r2 and Z. values for NaCl sub-
lattice I (Na neighbors if Na is at the origin or Cl neighbors if Cl is at 
the origin) is composed of values from the se and fc tables arranged in 
order of increasing 71.. The NaCl II sublattice is obtained by combining 
the be and ec sublattices. All final tables of r: and Z„, will be given 
in Section III. 

2.2 Hexagonal-Based Lattices 

The hexagonal based lattices to be considered here are: (i) monatomic 
hexagonal close-packed (hep) and (ii) wmtzite. These lattices are 
pictured in Fig. 4 along with a diagram of the basal plane showing how 
the basis vectors are chosen. The origin is placed at a corner of the 
hexagonal prism and the z-axis is taken along the c-axis of the crystal. 
The x and y axes are chosen as shown in Fig. 4 and the basis vectors 
are (a/2)i, [a/2(3)1]j, [2a/(6)11r. We assume that the hep structure is the 
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Na CL 

Fig. 3—The cubic-based binary lattices CsCl, NaC1, and CaF2. CaF2 is shown 
with Ca at the origin. 

"ideal" one obtained by closest packing of spheres. In this case c = 
(8/3)1a. The wurtzite structure is composed of two such hep sublattices 
displaced along their common c-axis by an amount u = (3/8)c and 
having atoms of different types occupying the two hcp sublattices. 
The unshifted sublattice will be called I and the shifted sublattice will 
be II. The enumeration of neighbors proceeds as in the cases already 
discussed and need not be detailed again. By inspection of the planes 
of lattice points one can obtain' the following conditions for ti , 4 , 
and  for the hop lattice: 

—  +6( —1)"  — 1 — in• teger. (3) 

To identify points of the wurtzite II sublattice one can first locate 
points of the hep lattice (wurtzite I) using equation (3) and then add 
(f)c to their z coordinates. The r,z. values are not integers for hop and 
wurtzite because the separations between z-, y-, and z-planes of atoms 
are not related by rational numbers. Thus no r2 = f (m) formulae are 
expected. The radii are related to the coordinate integers by the follow-
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TABLE IV—DECOMPOSITION OF CUBIC-BASED BINARY LATTICES 
INTO FUNDAMENTAL SUBLATTICES 

Lattice Sublattice Basis Vectors 
Equivalent 

Monatomic Lattice 

NaC1 

I Saine as ion 
at origin (a/2)i, (a/2)j, (a/2)k fee (se ± fe) 

II Opposite from 
ion at origin (a/2)i, (a/2)j, (a/2)k 

fee shifted by 
(a/2, 0, 0) or (ec -I- bc) 

CS C1 

I Same (a/2)i, (a/2)i, (a/2)k so 

II Opposite (a/2)i, (a/2)j, (a/2)k bc 

Zineblende 
I Same (a/4)i, (a/4)j, (a/4)k diamond I 

II Opposite (a/4)i, (a/4)j, (a/4)k diamond II 

CaF2 

Ca Sublattice 
IA Ca at orgin (a/4)i, (a/4)j, (a/4)k diamond I 

F Sublattice 
IIA Ca at origin (a/4)i, (a/4)j, (a/4)k be with cube edge a/2 

F Sublattice 
II; F at origin (a/4)i, (a/4)j, (a/4)k se 

Ca Sublattice 
III; F at origin (a/4)i, (a/4)j, (a/4)k diamond II 

ing formulae 

and 

III. TABLES 

2  3C; + a + 84 
r —  12 (hop) 

2 e + + (46 -I- 3)2  
r —  (wurtzite II). 

24 

(4) 

(5) 

Tables V—VIII contain shell parameters for the basic monatomic 
lattices and sublattices. Table VIII can be used for both diamond and 
zincblende. In each case the shell number m refers to the m-th shell of 
neighbors on that sublattice. In order to combine two or more sublattices 
one must convert the r, values to the same basis (a, a/2, a/4, and so on) 
and interweave the appropriate columns in order of increasing r2. The 
Sc table includes r..2 columns for three choices of basis vector lengths: 
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a, a/2 and a/4. Tables IX—XIII give the corresponding results for 
Csel, NaC1, CaF2 and wurtzite. 
The cubic based tables are easily extended to higher shell number by 

using the methods described earlier. In this regard the shell radius 
formulae are particularly useful if the search for lattice points is done 
by hand. For the diamond II and hexagonal based lattices, however, 
one must resort to computer enumeration and summation of allowed 
combinations of coordinates. 
It should be pointed out here that there is a possible complication 

which can arise in utilizing these tables in physical applications in-
volving more complex lattices. As was indicated in Section II, many 
of the shells in Tables V—XIII are degenerate. Although points on the 
same shell always belong to the same sublattice (for all sublattices which 
have been defined here), it is possible in some cases that different points 

? 

hcp 

BASAL PLANE 

4 

WURT ZIT E 

Fig. 4—Geometry of the hep and wurtzite lattices. Wurtzite consists of two hop 
lattices shifted fc along their common e axis. The two hop sublattices of wurtzite 
are occupied by different atomic species. x = (a/2)i; y = [a/2(3)19; z = [2a/(6)1/2k 
= (e/2)k. 
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TABLE V—SHELL PARAMETERS FOR THE Sc LATTICES* 

Shell r2(a2) r2(a2/4) rs(a2/16) Z 

1(1)t 1 4 16 6 
2(2) 2 8 32 12 
3(3) 3 12 48 8 
4(4) 4 16 64 6 
5(5) 5 20 80 24 
6(6) 6 24 96 24 
7(8) 8 32 128 12 
89) 9 36 144 30 
910) 10 40 160 24 
10 11 11 44 176 24 
11 12 12 48 192 8 
12(13 13 52 208 24 
13 (1 14 56 224 48 
14(16) 16 64 256 6 
15 (17 17 68 272 48 
16 (18) 18 72 288 38 
17(19) 19 76 304 24 
18 (20) 20 80 320 24 
19 (21) 21 84 336 48 
20 (22) 22 88 352 24 
21 (24) 24 96 384 24 
22 25 25 100 400 30 
23 26 26 104 416 72 
24 27) 27 108 432 32 
25 29) 29 116 464 72 
26 30) 30 120 480 48 
27 32) 32 128 512 12 
28 33) 33 132 528 48 
29 34) 34 136 544 48 
30 (35) 35 140 560 48 
31(36) 36 144 576 30 
32 (37) 37 148 592 24 
33 (3 38 152 608 72 
34(44) 40 160 640 24 
35 (41 41 164 656 96 
36 (42) 42 168 672 48 
37 43) 43 172 688 24 
38 44) 44 176 704 24 
39 45) 45 180 720 72 
40 46) 46 184 736 48 
41 48) 48 192 768 8 
42 40) 49 196 784 54 
43 50) 50 200 800 84 
44 (51) 51 204 816 48 
45 (52) 52 208 832 24 
46 (53) 53 212 848 72 
47 (54) 54 218 864 96 
48 (56) 56 224 896 48 
49 (57) 57 228 912 48 
50 (58) 58 232 928 24 

* For convenience, r2 has been given for three choices of basis-vector lengths 
[as, (a/2)2, and (a/4 2]. 
t Numbers in parentheses conform to the notation of Refs. 1 and 2 in which 

"missing shells" are included in the sequential numbering as discussed in the text. 
If these shell numbers are used one must set n = 0 in the radius formula. 
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TABLE VI—SHELL PARAMETERS FOR THE BC AND EC SUBLATTICES* 

be Sublattice ec Sublattice 

Shell  r2  Z  r2 

1  3  8  1  6 
2  11  24  5  24 
3  19  24  9  30 
4  27  32  13  24 
5  35  48  17  48 
6  43  24  21  48 
7  51  48  25  30 
8  59  72  29  72 
9  67  24  33  48 
10  75  56  37  24 
11  83  72  41  96 
12  91  48  45  72 
13  99  72  49  54 
14  107  72  53  72 
15  115  48  57  48 
16  123  48  61  72 
17  131  120  65  96 
18  139  72  69  96 
19  147  56  73  48 
20  155  96  77  96 
21  163  24  81  102 
22  171  120  85  48 
23  179  120  89  144 
24  187  48  93  48 
25  195  96  97  48 
26  203  96  101  168 
27  211  72  105  96 
28  219  96  109  72 
29  227  120  113  96 
30  235  48  117  120 
31  243  104  121  78 
32  251  168  125  144 
33  259  96  129  144 
34  267  48  133  4S 
35  275  120  137  96 
36  283  72  141  96 
37  291  96  145  96 
38  299  192  149  168 
39  307  72  153  144 
40  315  144  157  72 
41  323  96  161  192 
42  331  72  165  96 
43  339  144  169  78 
44  347  120  173  168 
45  355  96  177  48 
46  363  104  181  120 
47  371  192  185  192 
48  379  72  189  192 
49  387  120  193  48 
50  395  192  197  120 

* r2 is in units of (a/2)2. 
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TABLE VII-SHELL PARAMETERS FOR THE FC AND HCP SUBLATTICES* 

Shell 

fcSublattice hep Lattice 

r2 Z r2 Z 

1 2 12 1.00 12 
2 6 24 2.00 6 
3 10 24 2.67 2 
4 14 48 3.00 18 
5 18 36 3.67 12 
6 22 24 4.00 6 
7 26 72 5.00 12 
8 30 48 5.67 12 
9 34 48 6.00 6 
10 38 72 6.33 6 
11 42 48 6.67 12 
12 46 48 7.00 24 
13 50 84 7.33 6 
14 54 96 8.33 12 
15 58 24 9.00 12 
16 62 96 9.67 24 
17 66 96 10.00 12 
18 70 48 10.33 12 
19 74 120 10.67 2 
20 78 48 11.00 12 
21 82 48 11.33 6 
22 86 120 11.67 24 
23 90 120 12.00 6 
24 94 96 12.33 12 
25 98 108 13.00 24 
26 102 48 13.67 12 
27 106 72 14.33 6 
28 110 144 14.67 24 
29 114 96 15.00 12 
30 118 72 15.33 12 
31 122 120 15.67 24 
32 126 144 16.00 6 
33 130 48 16.33 12 
34 134 168 17.00 24 
35 138 96 17.67 24 
36 142 48 18.00 18 
37 146 192 18.33 12 
38 150 120 18.67 12 
39 154 96 19.00 24 
40 158 96 19.67 12 
41 162 120 20.33 12 
42 166 120 21.00 36 
43 170 144 21.67 24 
44 174 144 22.00 12 
45 178 96 22.33 18 
46 182 144 22.67 12 
47 186 144 23.00 24 
48 190 48 23.33 12 
49 194 240 23.67 48 
50 198 120 24.00 2 

* For the fe sublattices r2 is in units of (a/2)2. For hep r2 is expressed in units of a2. 
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TABLE VIII—SHELL PARAMETERS FOR SUBLATTICES OF THE DIAMOND 
OR ZINCBLENDE LATTICES* 

Shell 

Sublattice I Sublattice II 

r2 Z r1 Z 

1(1)t 8 12 3 4 
2(2) 16 6 11 12 
3(3) 24 24 19 12 
4(4) 32 12 27 16 
5(5) 40 24 35 24 
6(6) 48 8 43 12 
7(7) 56 48 51 24 
8(8) 64 6 59 36 
9(9) 72 36 67 12 
10(10) 80 24 75 28 
11(11) 88 24 83 36 
12(12) 96 24 91 24 
13(13) 104 72 99 36 
14(15) 120 48 107 36 
15(16) 128 12 115 24 
16(17) 136 48 123 24 
17 18) 144 30 131 60 
18 19) 152 72 139 36 
19 20) 160 24 147 28 
20(21) 168 48 155 48 
21 (22) 176 24 163 12 
22 (23) 184 48 171 60 
23 (24) 192 8 179 60 
24 (25) 200 84 187 24 
25(26) 208 24 195 48 
26(27) 216 96 203 48 
27 21 224 48 211 36 
28 29 232 24 219 48 
29 31 248 96 227 60 
30 (32) 256 6 235 24 
31(33) 264 96 243 52 
32 (34) 272 48 251 84 
33 (35) 280 48 259 48 
34 (36) 288 36 267 24 
35 (37) 296 120 275 60 
36 (38) 304 24 283 36 
37 (39) 312 48 291 48 
38 0) 320 24 299 96 
39 (41) 328 48 307 36 
40 42) 336 48 315 72 
41 (43) 344 120 323 48 
42 (44) 352 24 331 36 
43 (45) 360 120 339 72 
44 (47) 376 96 347 60 
45(48) 384 24 355 48 
46 (49) 392 108 363 52 
47(50) 400 30 371 96 
48(51) 408 48 379 36 
49(52) 416 72 387 60 
50(53) 424 72 395 96 

*7.2 is in units of (a/4)1. 
t Numbers in parentheses apply only to sublattice I and conform to the notation 

of Refs. 1 and 2 in which "missing shells" are included in the sequential numbering 
as discussed in the text. If these shell numbers are used one must set n = 0 in the 
radius formula. 
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TABLE IX-SHELL PARAMETERS FOR SUBLATTICES OF THE CSC1 
LATTICE* 

Shell 

Sublattice I Sublattice II 

r2 Z r2 Z 

1 4 6 3 8 
2 8 12 11 24 
3 12 8 19 24 
4 16 6 27 32 
5 20 24 35 48 
6 24 24 43 24 
7 32 12 51 48 
8 36 30 59 72 
9 40 24 67 24 
10 44 24 75 56 
11 48 8 83 72 
12 52 24 91 48 
13 56 48 99 72 
14 64 6 107 72 
15 68 48 115 48 
16 72 36 123 48 
17 76 24 131 120 
18 80 24 139 72 
19 84 48 147 56 
20 88 24 155 96 
21 96 24 163 24 
22 100 30 171 120 
23 104 72 179 120 
24 108 32 187 48 
25 116 72 195 96 
26 120 48 203 96 
27 128 12 211 72 
28 132 48 219 96 
29 136 48 227 120 
30 140 48 235 48 
31 144 30 243 104 
32 148 24 251 168 
33 152 72 259 96 
34 160 24 267 48 
35 164 96 275 120 
36 168 48 283 72 
37 172 24 291 96 
38 176 24 299 192 
39 180 72 307 72 
40 184 48 315 144 
41 192 8 323 96 
42 196 54 331 72 
43 200 84 339 144 
44 204 48 347 120 
45 208 24 355 98 
46 212 72 363 104 
47 216 96 371 192 
48 224 48 379 72 
49 228 48 387 120 
50 232 24 395 192 

* r2 is in units of (a/2)2. 
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TABLE X-SHELL PARAMETERS FOR SUBLATTICES OF THE NACI 
LATTICE* 

371 

Shell 

Sublattice I Sublattice II 

7.2 2 r2 Z 

1 2 12 1 6 
2 4 6 3 8 
3 6 24 5 24 
4 8 12 9 30 
5 10 24 11 24 
6 12 8 13 24 
7 14 48 17 48 
8 16 6 19 24 
9 18 36 21 48 
10 20 24 25 30 
11 22 24 27 32 
12 24 24 29 72 
13 26 72 33 48 
14 30 48 35 48 
15 32 12 37 24 
16 34 48 41 96 
17 36 30 43 24 
18 38 72 45 72 
19 40 24 49 54 
20 42 48 51 48 
21 44 24 53 72 
22 46 48 57 48 
23 48 8 59 72 
24 50 84 61 72 
25 52 24 05 96 
28 54 96 87 24 
27 56 48 89 96 
28 58 24 73 48 
29 62 96 75 56 
30 64 6 77 96 
31 66 96 81 102 
32 68 48 83 72 
33 70 48 85 48 
34 72 36 89 144 
35 74 120 91 48 
36 78 24 93 48 
37 78 48 97 48 
as 80 24 99 72 
39 82 48 101 168 
40 84 48 105 96 
41 86 120 107 72 
42 88 24 109 72 
43 90 120 113 96 
44 94 96 115 48 
45 96 24 117 120 
46 98 108 121 78 
47 100 30 123 48 
48 102 48 125 144 
49 104 72 129 144 
50 106 72 131 120 

* r2 is in units of (a/2)2. 
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TABLE XI—SHELL PARAMETERS FOR SUBLATTICES OF THE CAF2 
LATTICE WHEN CA IS TAKEN To BE AT THE ORIGIN* 

Shell 

Sublattice Ic. Sublattice 11c. 

r2 Z r2 Z 

1 8 12 a s 
2 16 6 11 24 
3 24 24 19 24 
4 32 12 27 33 
5 40 24 35 48 
e 48 8 43 24 
7 56 48 51 48 
8 84 6 59 72 
9 72 36 67 24 
10 80 24 75 56 
11 88 24 83 72 
12 96 24 91 48 
13 104 72 99 72 
14 120 48 107 72 
15 128 12 115 48 
16 136 48 123 48 
17 144 30 131 120 
18 152 72 139 72 
19 160 24 147 56 
20 168 48 155 96 
21 176 24 163 24 
22 184 48 171 120 
23 192 8 179 120 
24 200 84 187 48 
25 208 24 195 96 
26 216 96 203 96 
27 224 48 211 72 
28 232 24 219 96 
29 248 96 227 120 
30 256 6 235 48 
31 264 96 243 104 
32 272 48 251 168 
33 280 48 259 96 
34 288 36 267 48 
35 296 120 275 120 
36 304 24 283 72 
37 312 48 291 96 
38 320 24 299 192 
39 328 48 307 72 
40 336 48 315 144 
41 344 120 323 96 
42 352 24 331 72 
43 360 120 339 144 
44 376 96 347 120 
45 384 24 355 96 
46 392 108 363 104 
47 400 30 371 192 
48 408 48 379 72 
49 416 72 387 120 
50 424 72 395 192 

* el is in units of (a/4)2. 
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TABLE XII—SHELL PARAMETERS FOR SUBLATTICES OF THE CAF2 
LATTICE WHEN F IS TAKEN To BE AT THE ORIGIN* 

Shell 

Sublattice IF Sublattice ng 

r2 Z r2 Z 

1 4 6 3 4 
2 8 12 11 12 
3 12 8 19 12 
4 16 6 27 16 
5 20 24 35 24 
6 24 24 43 12 
7 32 12 51 24 
8 36 30 59 36 
9 40 24 67 12 
10 44 24 75 28 
11 48 8 83 36 
12 52 24 91 24 
13 56 48 99 36 
14 64 6 107 36 
15 68 48 115 24 
16 72 36 123 24 
17 76 24 131 60 
18 80 24 139 36 
19 84 48 147 28 
20 88 24 155 48 
21 96 24 163 12 
22 100 30 171 60 
23 104 72 179 GO 
24 108 32 187 24 
25 116 72 195 48 
28 120 48 203 48 
27 128 12 211 36 
28 132 48 219 48 
29 136 48 227 60 
30 140 48 235 24 
31 144 30 243 52 
32 148 24 251 84 
33 152 72 259 48 
34 160 24 267 24 
35 164 96 275 60 
36 168 48 283 36 
37 172 24 291 48 
38 176 24 299 96 
39 180 72 307 36 
40 184 48 315 72 
41 192 8 323 48 
42 196 54 331 36 
43 200 84 339 72 
44 204 48 347 60 
45 208 24 355 48 
46 212 72 363 52 
47 216 96 371 96 
48 224 48 379 36 
49 228 48 387 60 
50 232 48 395 96 

• 7-2 is in units of (a/4)'. 
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TABLE XIII-SHELL PARAMETERS FOR SUBLATT10ES OF THE 
WURTZITE LATTICE* 

Sublattice I  Sublattice II 

Shell  r2 

1  1.000  12  .375  4 
2  2.000  6  1.042  1 
3  2.667  2  1.375  9 
4  3.000  18  2.042  6 
5  3.667  12  2.375  9 
6  4.000  6  3.375  9 
7  5.000  12  3.708  3 
8  5.667  12  4.042  6 
9  6.000  6  4.375  18 
10  6.333  6  4.708  3 
11  6.667  12  5.042  7 
12  7.000  24  5.375  3 
13  7.333  6  5.708  6 
14  8.333  12  6.042  6 
15  9.000  12  6.375  12 
16  9.667  24  7.042  1 
17  10.000  12  7.375  15 
18  10.333  12  7.708  6 
19  10.667  2  8.042  24 
20  11.000  12  8.375  9 
21  11.333  6  8.708  3 
22  11.667  24  9.042  6 
23  12.000  6  9.375  12 
24  12.333  12  9.708  9 
25  13.000  24  10.042  12 
26  13.667  12  10.375  9 
27  14.333  6  10.708  3 
28  14.667  24  11.042  6 
29  15.000  12  11.375  6 
30  15.333  12  11.708  9 
31  15.667  24  12.042  12 
32  16.000  6  12.375  21 
33  16.333  12  12.708  6 
34  17.000  24  13.042  6 
35  17.667  24  13.375  15 
36  18.000  18  13.708  12 
37  18.333  12  14.042  30 
38  18.667  12  14.375  18 
39  19.000  24  14.708  3 
40  19.667  12  15.042  1 
41  20.333  12  15.708  12 
42  21.000  38  16.042  12 
43  21.667  24  16.375  27 
44  22.000  12  17.042  12 
45  22.333  18  17.375  9 
46  22.667  12  17.708  9 
47  23.000  24  18.042  18 
48  23.333  12  18.375  16 
49  23.667  48  18.708  6 
50  24.000  2  19.042  12 

* r' is in units of e. 
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on the same shell can occupy physically distinguishable sites in the 
lattice (that is, sites which, even though they belong to the same sub-
lattice, have differing local environments). In addition to this, inter-
actions between electrons and holes bound to donors and acceptors 
may depend upon the relative orientations of the electron and hole 
wavefunctions, the vector separation between ions, and the crystallo-
graphic axes. Thus in the interpretation of pair spectra, for example, one 
may expect energy splittings in such cases to cause deviations from the 
spacings and magnitudes predicted on the basis of neighbor tables.' '8'9 
Wurtzite is particularly complicated in this respect, providing a variety 
of local symmetries for donor-acceptor pairs involving substitutional 
and/or interstitial ions.°'° In the absence of externally imposed asym-
metries, however, lattice sites on the same sublattice will usually be 
physically indistinguishable. Among the structures considered here, 
wurtzite is the sole exception. For this reason it was felt that the tables 
would be unnecessarily complicated by the inclusion of any information 
regarding degeneracies or coordinate types. In most cases, however, the 
computer programs were written in such a way as to preserve this 
information and it is available from the authors upon request. 

IV. FURTHER APPLICATIONS 

The crystal structures which have been explicitly discussed account 
for the vast majority of binary compounds XmYN and virtually all of 
the important XV compounds. This is indicated in Table XIV where 
we have shown the crystal structures of the common binary compounds 
formed by combining elements from groupings IA, IIA, and IB—IVB* 
with elements from groups IVB—VIIB.11 In Table XIV the important 
elemental and compound semiconductors, the oxides and chalcogenides 
of group IIA and IIB metals, the alkali halides, and the noble metal 
salts have been enclosed in heavy lines. It is seen that nearly all of these 
compounds crystallize in one of the structures which has been treated 
here. Furthermore, it is noted that many of the structures which were 
not treated explicitly are cubic-based or hexagonal-based so that the 
one might be able to utilize one or more of the basic sublattices calcu-
lated here. 
In certain kinds of defect interaction calculations it may also be 

convenient to know the distribution of available interstitial sites as a 
function of distance from a given ion. Inspection of crystalline lattice 

*The A and B notation used here for subgroups of the periodic table was 
chosen to agree with Frederiksen but is not uniform throughout the literature. 
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structures shows the most of them have regular arrays of preferred 
interstitial sites. These sites form a sublattice which can be treated by 
the methods already discussed. As an example we list in Table XV the 
first 25 shells of interstitial sites for the fcc lattice. These are at ec and 
be sites. This table is the same as the table for Type III pair spectra 
given by Ryan and Miller.' Similar tables can be constructed for inter-
stitials in other lattices. 

V. SUMMARY 

We have described a general method for obtaining radii and occupa-
tion numbers of m-th order shells of neighboring lattice points for 
cubic and hexagonal based lattices. The method described here will, in 

TABLE XIV—A SUMMARY OF INORGANIC BINARY COMPOUNDS X mYN 

AND THEIR CRYSTAL STRUCTURES* 

Y 

X 

IVB 
C, Si, Ge, 
Sn, Pb 

VB 
N, P, As, 
Sb 

VIB 
0, S, Se, 
Te 

VIIB 
F, Cl, Br, 

I 

IVB C, Si, Ge, 
Sn, Pb 

X, SiC 
3,7 

XY, X212 
1,8 

XY, XY2 
1,4,6,7,8 

X Y4 
6,8 

IIIB B, Al, 
Ga, In 

— XY 
3,4 

X2Y, 
3,4,6,7 — 

IIB Zn, Cd, 
Hg 

— X2Y2 
6,7,8 

XY 
1,3,4 

X Y2 
5,6,7,8 

IB  Cu, Ag, 
Au 

— X3Y, XY2, X2Y 
6,7.8 

, 
XY, X2Y, XYL. 
1,2,5,6,7,8 

XY 
1,3,4 

IA  Li, Na, 
K, Rb, Cs — — 

X2Y 
5 

XY 
1,2 

HA Be, Mg, Ca, 
Sr, Ba 

X2Y 
5,7,8 

X3 Y2 
6,7 

XY 
1,3,4 

X Y2 
5,6,7,8 

1. NaCI Structure 
2. CsCl Structure 
3. Zincblende Structure (Diamond in case of element) 
4. Wurtzite Structure 
5. CriF, Structure 
6. Other Cubic-based Structure 
7. Other Hexagonal-based Structure 
8. Complex 
* Roman numerals and A or B refer to groupe and subgroups of the periodic 

table in the notation of Ref. 11. Only representative compound-types are indicated 
and not all of the elements of any one group form in all of the combinations shown. 
See Ref. 11 for an extensive list of specific compounds. 
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TABLE XV—THE FIRST 25 SHELLS OF PREFERRED INTERSTITIAL 
SITES FOR THE FCC LATTICE* 

Interstitials 

Shell 

1 (0)t 
2 (1) 
3 (2) 
4 (4) 
5 (5) 
6 (6) 
7 (8) 
8 (9) 
9 (10) 
10 (12) 
11(13) 
12 (14) 
13 (16) 
14 (17) 
15 (18) 
16 (20) 
17 (21) 
18 (22) 
19 (24) 
20 (25) 
21 (26) 
22 (28) 
23 (29) 
24 (30) 
25 (32) 

1 
3 
5 
9 
11 
13 
17 
19 
21 
25 
27 
29 
33 
35 
37 
41 
43 
45 
49 
51 
53 
57 
59 
61 
65 

6 
8 
24 
30 
24 
24 
48 
24 
48 
30 
32 
72 
48 
48 
24 
96 
24 
72 
54 
48 
72 
48 
72 
72 
96 

* This table was obtained by combining the first few shells of the be and ee tables 
and is easily extended further. All r2 values are in units of (a/2)2. 
t Numbers in parentheses conform to the notation of Refs. 1 and 2 in which 

"missing shells" are included in the sequential numbering as discussed in the text. 
Note that Ryan and Miller began the numbering with m = 0. 

principle, work for any specific lattice if the basis vectors are properly 
chosen but is practical only in cases where the lattice contains no 
arbitrary angles or spacings. A general hexagonal lattice, for example, 
has an arbitrary c/a ratio which must be fixed before the basis vectors 
can be chosen. The principal results are contained in Tables V—XIII 
which contain shell parameters for simple building-block sublattices 
as well as physically interesting binary lattices. Extension of the tables 
to higher shell numbers and application of the tables to physical prob-
lems were discussed. 
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An Asymmetric Encoding Scheme for 
Word Stuffing 
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The effectiveness of word stuffing for synchronization depends upon our 
ability to distinguish the stuff words from the data words at the destination 
and, thus, delete correctly the stuff words. If all input sequences are per-
mitted, the data wards must be encoded before stuffing occurs so that the 
stuff word can be distinct from the data words. In this paper, we give the 
code that, for a given redundancy, maximizes the minimum distance be-
tween the stuff word and any data word. This helps to prevent the loss of 
character synchronization because of transitions between data and stuff 
words due to transmission errors. In contrast to the perfect distance sym-
metries between the code words of the group codes normally encountered 
in error-control work, the primary virtue of the present code is its highly 
asymmetric distance structure. 

I. INTRODUCTION 

When a digital communication network is used for data transmission, 
it may be necessary to adjust transmission rates within the network to 
achieve synchronization. Word stuffing' . 2 is a technique that can be used 
for this purpose. The basic idea is to group the transmitted bits into 
words which we call data words. The data words are formed for trans-
mission and are not related to any word structure that may exist in 
the customer's data stream. Stuff words, which are distinguishable 
from the data words, are inserted into the stream of data words at the 
transmitter. Thus, transmission rates can be adjusted within the net-
work by inserting or deleting stuff words. At the destination, the stuff 
words are deleted whereas the data words are delivered to the customer. 
The effectiveness of word stuffing depends upon our ability to dis-
tinguish the stuff words from the data words at the destination and, 
thus, delete correctly the stuff words. If the stuff words are incorrectly 
deleted, bits will be inserted into or deleted from the customer's data 

379 
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stream. As a result, the received bits will be incorrectly formatted and 
incorrectly interpreted. When this occurs, we say that character syn-
chronization is lost. Character synchronization is important in data 
transmission because once it is lost, subsequent bits are erroneously 
interpreted even if transmitted correctly. 
Two problems arise. First, we require that all input sequences are 

allowed. Thus, redundancy must be added to the data words by an 
encoder so that it is possible to choose a stuff word that is distinct from 
the data words. Second, when transmission errors occur, it is possible for: 

(i) a stuff word to be transformed into a data word, 
(ii) a data word to be transformed into a stuff word, or 
(iii) a data word to be transformed into another data word. 

In most cases, (i) and (ii) are more serious than (iii) because of the 
resulting loss of character synchronization. The prevention of type (iii) 
errors is generally performed by the customer's terminal, when required, 
and is not considered in this paper. 
Previously, Mattesich and Richtersi proposed a format for the data 

words and the stuff word. The format results in the stuff word being 
distance one* from a data word. Therefore, a single transmission error 
can change a data word into the stuff word or vice versa with a corre-
sponding loss of character synchronization. 
We give an alternative encoding scheme that, for a given redundancy, 

maximizes the minimum distance between the stuff word and any data 
word. This helps to prevent the loss of character synchronization be-
cause of transitions between data and stuff words due to transmission 
errors. An implementation is given for arbitrary word size and re-
dundancy. For a redundancy of one bit, a particularly simple encoding-
decoding technique is described. 
Some other methods of achieving synchronization by means of stuffing 

have been proposed. A word stuffing technique, proposed by Butman2, 
achieves a distance d between the stuff word and any data word by 
inserting deliberate errors in certain data words at the transmitter to 
keep the data words at least distance d from the stuff word. Butman's 
technique requires some knowledge of the statistics of the transmitted 
data words for selection of the stuff word and a relatively large word size 
so that the deliberate insertion of errors is infrequent. It results in 
deliberate errors in the customer's data and prohibits the reception of 

*The distance, frequently called the Hamming distance, between two binary 
words X and Y is the number of positions in which X and Y differ. 
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certain data words. The latter point is troublesome if the data words 
used in transmission are identical to the data words of the customer. 
Pulse stuffing, rather than word stuffing, can be used to achieve 

synchronization. Individual pulses are inserted at the transmitter and a 
separate data link is used to signal the locations of the stuff pulses. 
References 3 through 6 are representative of the work in pulse stuffing. 

II. PRELIMINARIES 

A model of the processing before transmission is shown in Fig. 1. 
The input binary data stream is segmented into k-bit data words de-
noted by A, where 

A = (a, , ak_, , • • • , ai). 

We assume that all of the 2k possible sequences for A are allowed. In 
order for the stuff word to be distinguishable from the data words, the 
alphabet is enlarged by adding redundancy to A. Thus, the encoder 
generates from A an n-tuple B where n > k and 

B = (b„ ,b,,„ • • • ,b1). 

The sequence B is transmitted. The dimensions of such a code are 
denoted by (n, k). 
There are 2' possible sequences for B of which 2k are used to transmit 

data. Thus, there are 2" — 2" values of B that are not used for data but 
that can be used for other purposes including the stuff word. For n> k, 

2" — 21̀  2k.  (1) 

The reader should appreciate the tremendous flexibility available in the 
design of the coding scheme because, by (1), never more than half of the 
possible B sequences are used as data words. 
The processing after transmission is indicated in Fig. 2. As shown 

later, it is possible to construct codes that have a minimum distance 
greater than one between the stuff word and any data word for practical 
values of n and k. For these codes, the first step at the destination is to 
delete the stuff word and all other received words "sufficiently close" 

INPUT A O A 
i 1 

k-BIT WORDS 

DATA ENCODER 
B  STUFF WORD 

--- T  - e  INSERTION  - 4- ...  
\ 
•  / / '',"1-BIT WORDS 

Fig. 1 —Processing before transmission. 

DIGITAL TRANSMISSION SYSTEM 
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DIGITAL 
TRANSMISSION 

SYSTEM - 7- > 
STUFF 
WORD 

DELETION 

13' - -F —.. 

*.'-- rl -BIT WORDS 

DATA 
DECODER 

Fig. 2—Processing after transmission. 

A'  OUTPUT 

ik o 

I 
I 

k -BIT WORDS 

to the stuff word. In saying "sufficiently close," we mean that the re-
ceived word is more likely the result of a stuff word corrupted by errors 
than a data word corrupted by errors. Let B' denote the n-tuples that 
are not deleted where 

B' = (b,', , b;,-1 , • • • , bD • 

The decoder operates on B' to form the k-bit word A' where 

A' = (ale , al_, , • • • , a). 

The system functions properly if 

A' = A. 

At this point, we describe for reference the encoding and decoding 
schemes presented in Ref. 1. Art (8, 7) code is used, that is, n = 8, 
k = 7. The encoder generates B from A by the relation 

b. = 1 

bi = a; for 1 S i 7. 

Thus, 
B = (1, a, , a8 , • • • , at). 

The stuff word is (00000001). At the receiver, only the word (00000001) 
is deleted as the stuff word; all other received words are decoded as 
data words. Thus, the stuff word is interpreted as a data word if one or 
more transmission. errors occur. Alternatively, because the data word 
(10000001) is distance one from the stuff word, a single error can con-
vert this data word into the stuff word. Any other data word requires 
at least two errors for conversion into the stuff word. 

III. DESCRIPTION OF THE CODE 

We construct a code that has one stuff word and 2k data words such 
that the minimum distance between the stuff word and any data word 
is maximized. The problem is to divide the 2" n-tuples into three sets; 
namely, 
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(i) the stuff word denoted by S, 
(ii) the set D consisting of the 2" data words, and 
(iii) the set U consisting of the 2" —  — 1 unused words, 

such that, for given values of n and k, the minimum distance between S 
and any element of D is maximized. 
Choose one of the n-tuples to be the stuff word S. For given n, k and S, 

let d„, denote the maximum possible minimum distance between S and 
any element of D. We determine d„, by observing that if all elements of 
D are to be at least distance d„, from S, then U must contain all n-
tuples that are distance d„, — 1 or less from S. Thus, the set U contains 

the 

the 

n-tuples distance 1 from S, 

n-tuples distance 2 from S,  (2a) 

the CIn  n-tuples distance d„, — 1 from S, — 1 

and 8 n-tuples distance greater than d. — 1 from S such that 

and 

dt (1) 5 2" — 2k — 1 <  (;) 
1  e  1 I 

(2b) 

d — 1 (n, 
=  — 2k — 1 — E  (2c) 

i-1 

The data words are the remaining 2" words. 
The value of d„, is determined by (2b). From (2b), it follows that d„, 

is independent of S and is determined entirely by n and k. Also, it is 
easy to show that changing a code by adding* a constant n-tuple to 
all words simply rotates the code with no change in the distance prop-
erties, including d,,,. 
The code is specified by (2) up to the choice of the 8 unused words 

that are at distance greater than d„, — 1 from S. While the choice of 
these ô words does not alter d. , the probability that a data word is 
transposed into the stuff word is minimized if the 6 words are all chosen 

* The addition is component-by-component modulo two addition and is denoted 
by (D. 
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to be distance dm from S. In practice, the choice of the 8 words does not 
change this probability substantially and it appears preferable to assign 
the 8 words to simplify encoder-decoder design. 
The case n = k ± 1 is of interest because of the low redundancy. In 

Appendix A, it is shown that for n = k ± 1, 

dm = [] + 1 2 

where [x] denotes the largest integer less than or equal to x. Also, for 
n = k + 1 and k even, it is shown in Appendix A that 8 = O. A plot of 
d„, versus n for n = k -I- 1 and n = k + 2 is given in Fig. 3. 

E 

k = n -1 

1  1  1  1  1  1  1  1  1  1  1  1  1  1  
1  2  3  4  5  6  7  8  9  10  H  12  13  14  15 

n 

Fig. 3— Maximum minimum distance ci„, for various n. 

16 

Transmission of the all-zero word can be avoided by choosing S so 
that the all-zero word is one of the unused words. However, it may be 
convenient, particularly when detecting stuff words, for S to be the all-
zero word because then distance from S is equivalent to weight* and 
can be computed by counting ones. These two objectives can be simul-
taneously satisfied as follows. Design the encoder and stuff word using 
a code C in which S is the all-zero word. Let S' be one of the unused 
words in C. Add S' to each word immediately before transmission and 

* The weight of a binary word X is the number of nonzero components in X 
and is denoted by w(X). 
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add S' to each word immediately after transmission. The double addi-
tion of S' permits the suppression of the all-zero word for transmission 
but is transparent for the encoding, stuff word detection, and decoding 
operations. 
Because the data words and the stuff word form a subset of the set 

of all possible n-tuples, we may, on the average, transmit an unequal 
number of zeros and ones. By varying w(S) from 0 to n, the relative 
number of zeros and ones in the data words can be varied from mostly 
ones to mostly zeros. 

IV. ENCODING, DECODING AND STUFF WORD DETECTION: GENERAL CASE 

In this section, we specify an encoder that achieves d,„ for arbitrary 
n and k. Let the stuff word be the all-one n-tuple. A necessary and 
sufficient condition for the encoder to achieve d„, is that each A must 
be encoded into a unique B such that the maximum weight of any B is 
n — d„,. 
We begin by regarding each A as the k-bit natural binary representa-

tion of some integer a, 0 5 a 5 2k — 1. Thus, 

A = Bk(a) 

where 

a = E  . 
i-1 

We can construct a table that, for each a, gives the corresponding A 
and B sequences. The entries are in the order of increasing a. For illus-
tration, consider the (9, 7) code where d. = 6. The first 24 entries for 
the (9, 7) code are shown in Table 1. The A column corresponds to 
counting in binary from the all-zero k-tuple to the all-one k-tuple. The 
B column is also formed by counting in binary except that all n-tuples 
with weight greater than n — d„, are omitted from the count. It follows 
that the maximum weight of any B is n — d„, . The arrows in Table 1 
indicate where 9-tuples with weight greater than three have been 
omitted in the B column. 
Let us examine the counting in the B column of Table 1 in greater 

detail. Consider counting to the B sequence for a = 22, that is, 

(000011000).  (3) 

position 5  position 4 

First, count to (000010000). At this point, all 4-tuples of weight not 
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TABLE I—RELATIONSHIP BETWEEN A AND B FOR (9, 7) CODE; 
ONLY THE FIRST 24 VALUES OF A ARE SHOWN. 

A = B 7(a) 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

0000000 
0000001 
0000010 
0000011 
0000100 
0000101 
0000110 
0000111 
0001000 
0001001 
0001010 
0001011 
0001100 
0001101 
0001110 
0001111 
0010000 
0010001 
0010010 
0010011 
0010100 
0010101 
0010110 
0010111 

000000000 
000000001 
000000010 
000000011 
000000100 
000000101 
000000110 
000000111 
000001000 
000001001 
000001010 
000001011 
000001100 
000001101 
000001110 
0000100004-

000010001 
000010010 
000010011 
000010100 
000010101 
000010110 
0000110004-

000011001 

greater than three have been used in positions one through four. Then, 
count to the sequence in (3) by using all 3-tuples of weight not greater 
than two in positions one through three while keeping a one in position 
five. As shown in Fig. 4, the value of a associated with the sequence 
in (3) has two components. The first component, denoted by a(5), is 
the number of B sequences used in counting to obtain the one in position 
five. Similarly, the second component, denoted by a2(4), is the number 
of B sequences used in counting to obtain the one in position four. 
Accordingly, 

where 

= a(5) + a2(4) 

al(5) =  (4) = 15, 
-0 

cx2(4) =  (3) = 7. 

The above ideas can be formalized so that, for an arbitrary B (de-
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000000000 ' 

(5) 

000001110 

0000 l0000 

-  2(4) 

0000101 10 

0000 1 1000 

—a 

Fig. 4—Counting to determine a. 

noted by Bo), it is possible to determine the corresponding value of a 
(denoted by ao). Let w = w(B0), co  n — dm. Let a,. , /32, • • • , o de-
note the position numbers of the w nonzero components of Bo where 

al > 02 >  • • • >  0. . 

For example, if Bo = (000011000), co = 2 and Si = 5, 0, = 4. Let a1(0i) 
denote the contribution of the one in position 0i to ao , that is, 

cro = E a.03i)• 

Observe that a, (0,) is the number of sequences in the B column 
from the sequence whose nonzero components are in positions 
01 ,  , • • • , i3;-1 to the sequence whose nonzero components are in 
positions 0, , 132 , • • • , . Thus, a. (e,) is the number of (0; —1)-tuples 
of weight not greater than n — d„, —  + 1 and is given by 

It follows that 

ai(J3i) = 

ao 
Min(n—d,,,—i+1,0¡-1) to . 

E  E  
ns..0 

M 
(4) 

Equation (4) can be used to find Bo when ao is given, that is, to design 
an encoder.* For each value of i, 1 i n — dm, construct an array. 
In the ith array, list j and a, (j) as j runs from one to n —  -F 1. To 
encode ao , find in the first array the largest j (denoted by j1) such that 

al(ji)  ao • 

*The ideas in this paragraph are illustrated by a numerical example in 
Appendix B. 
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Next, find in the second array the largest j (denoted by j2) such that 

a2(.12)  ao — In the the ith array, find the largest j such that 

II -1 

ao — E 
m 1 

The process continues until 
jl , 12 , 

• • • 

weight of 130 . 
It is possible to obtain a recurrence relation for the elements of the 

arrays. It is shown in Appendix C that 

=  + 1)  (5) 

for 1 j n — i, 1 5 i n — d,. — 1. By knowing that a.(1) = 1 for 
1 5- i n —  and that a„_d”,(j) = j for 1 j dm ± 1, equation (5) 
can be used to generate elements of the arrays. 
Also, equation (5) can be used to construct an encoder directly. 

First, we specify the subtraction and storage device shown in Fig. 5. 
Let R denote the integer stored in the device. The output is equal to the 
integer stored in the device, that is, R. Let the input be an integer 
R', 0  R'  R. When the device is activated, the number stored in 
the device becomes R — R' and, thus, the output also takes the value 
R — R'. 

= ao 

for some w'  n — dm . It follows that Bo has ones in positions 
and zeros in all remaining positions. Also, w' = w, the 

ACTIVATE 

Fig. 5 —Subtraction and storage device. 

The encoder operates as shown in Fig. 6. The storage devices are 
preset so that R, = a, (n  &, and T = a, the 
integer representation of the A sequence to be encoded.* Position the 

*For the (9, 7) code, the preset values are R1 = 93, R. = 29 and Ra = 7. 
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ACTIVATE 

Fig. 6—Encoder for arbitrary n and k. 
Preset Values:  T 

= al(n) 

R2 =  a2(n — 1) 

R„_4”, =  + 1) 

389 

switch so R = Ri . If T < Ri , the n — d„, storage devices are activated 
and their contents reduced. Also, a 0 is transmitted, that is, b„ = O. 
However, if T Ri , a 1 is sent, Ri is subtracted from T, and the 
switch is shifted so R = R2 . The process continues until the entire B 
sequence is generated. Notice that the B sequence is generated and, 
thus, transmitted with b„ first and b, last. 
The decoder is shown in Fig. 7. The storage devices are preset so that 

R. = ce, (n —  + 1), 1 i n — d„, , and the accumulator is set 
equal to zero. Position the switch so R = Ri . Prior to the decoder, if 
the weight of the received n-tuple is greater than n — d„, because errors 
have occurred, the weight is reduced to n — d„, by arbitrarily converting 
sufficient ones to zeros. Thus, we assume that w(B1) < n — d„, and 
that B' arrives with b„ first and bq last. The decoder first considers b„' . 
If b„' = 0, the n — d„, storage devices are activated and their contents 
reduced. If b„' = 1, the accumulator is increased by Ri and the switch 
is shifted so R = R2 . The process continues until bl has been used. 
After tq has been used, the accumulator contains the integer representa-
tion of A'. 
For the stuff word detector, S and all other received words less than a 

specified distance from S are deleted. Thus, the detector counts the 
zeros in each word and, if the count is less than the specified distance, 
deletes the word. 
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ACTIVATE 

B' SEQUENCE 

w(Bi)5- n-d m 

Fig. 7—Decoder for arbitrary n and k. 
Preset Values:  R1 = cei(n) 

R2 =  C 2(n —  1) 

=  an-d.(dm +  1) 

Accumulator = 

ACTIVATE 

V. ENCODING, DECODING, AND STUFF WORD DETECTION: n = k  1 

In this section, we give a possible implementation for the encoder, 

decoder, and stuff word detector for n = k  1. 

5.1 Case 1 

Let the stuff word S be the all-zero (k  1)-tuple. The encoder is 
specified in (6) and shown in Fig. 8. In Fig. 8, the A sequence is assumed 
to arrive with ak first and a, last. Similarly, bk+, is transmitted first 
with b, last. 

If w(A)  [--k]+ 1, 
2 

If w(A)  [k] 2 '  bk+i = 1.  (6) 

Then b = bk+, C) a; for 1 i k. 

Decoding is also straightforward. The operation necessary for de-
coding is 

bk+l  0 

=  C) 1) for 1 i k.  (7) 

Figure 9 shows the decoder in equation (7). In Fig. 9, it is assumed 
that bL., is received first and b is received last. The stuff word detector 
is the same as in Section IV except ones are counted instead of zeros. 
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(a l ,  (b„  (biy b2,•.•5 bk+1)=E3 

I 

Fig. 8 —Encoder for Case 1. 

The encoding-decoding technique in (6) results in some error multipli-
cation. Suppose that position j, 1 î k, is in error and that position 
k  1 is correct. Then, from equations (6) and (7), 

a; = bk.i (1) 1 C) bi -=  

The error in position i is delivered to the customer. However, if position 
k  1 is in error, from equations (6) and (7), 

a; = 1 C) b+, C)b1 = 1 e ai for 1 5 i k. 

The point is that now all k data positions are in error. However, charac-
ter synchronization is maintained because the correct number of bits 
are delivered to the destination. 
As noted in Section III, it is possible to design a code for which the 

stuff word is the all-zero word and then, for transmission, suppress the 
all-zero word by adding an unused word to each word before trans-

11 

Fig.  —Decoder for Case 1. 
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mission. However, it is easy to combine the encoding and addition 
operations. We give two examples. 

5.2 Case. 

Let the stuff word be 

S  =  ( 1  0  • • • 0 ) • 

t 

I k positions 

position k  1 

The encoder is given in (8). 

If w(A)  [-2] + 1, 

If w(A)  [2] ' b  0 . 

Then b, = 1 C) bk+i  C) a; for 1 5 i < k. 

The decoder performs the operations in (9). 

= 1 C)  0b  for 1 5 i k. 

5.3 Case 3 

The stuff word is 

S = (0 0 • • • 0 1 • • • 1). 

k, positions 
position k  1 

The encoder is specified in (10). 

If w(A)  L21 + 1, 

If w(A)  [ k] 2 ' 

b k + 1  =  . 

b  + 1  =  1 . 

Then b, = 1 G bki., C) a, for  1 5. i k1 

b,  bk+1 0 ai for ki+ 1 5i 5k. 

The decoder performs the operations in (11). 

(8) 

(9) 

(10) 
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for  1 S k, , 

a; =  b;  for k, + 1 5 i k. 

Notice that if  = k, the decoder for Case 3 is identical to the decoder 
for Case 2. 

VI. THE (8, 7) CODE 

Because Bell System PCM channels use a basic 8-bit word, the (8, 7) 
code is of interest. From Fig. 3, it is possible to design an (8, 7) code 
with d„, = 4. Let R. and Rd denote the stuff rate and the rate of occur-
rence of the data words that are distance four from S, respectively. 
When the stuff rate is low (R. < Rd), the decision rule at the receiver 
is biased in favor of the data words by deleting as stuff words all received 
words distance one from S and decoding as data words all remaining 
received words. Conversely, for high stuff rates (R. > Rd), the decision 
rule is biased in favor of  the stuff words by deleting as stuff words all 
received words distance two or less from S and decoding as data words 
all remaining received words. When the rates are approximately equal 
(R.  Rd), the two decision rules give comparable performance. 
It is possible to modify the (8, 7) code by relaxing the minimum 

distance requirement so that all data words are merely required to be 
at least distance three from S. Received words distance one from S are 
deleted as stuff words; the remaining received words are decoded as 
data words. This balanced code gives roughly the same performance as 
either of the biased codes when R. .̂•-• Rd . However, the reduction in 
minimum distance provides for less error multiplication (see Section V). 
Let Td,. denote the mean time between erroneous conversions of a 

stuff word into a data word and let T.15 denote the mean time between 
erroneous conversions of a data word into a stuff word. We use the 
following assumptions: 

(i) Transmission errors are independent of the transmitted bits, 
independent of each other, and occur with probability p 
(ii) The transmission rate is 64 X 103 bits per second or, because 

n = 8, 8000 words per second. 
(iii) All 7-bit input words are equally likely. 
(iv) The stuff rate is R. stuff words per second.* 

* The value of R. will vary depending upon the application. For fine adjust-
ment of clock rates, R. typically would be less than 20 words per second. If word 
stuffing is used for speed padding as well as adjusting clock rates (for example, 
to send 50 kilobit service over a 64-kilobit line), R. could be 850 words per 
second or larger. 
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The balanced (8, 7) code is applicable except for extremely high or low 
stuff rates. Let N. denote the number of data words distance three from 
S (the exact value of N. depends upon the encoder). Then 

1   9.93 X 108  
R.  hours  

36001? [(8)pl 
2 

and 

1 

J(32)N '  
3600(8000 — R51 2, p 

By a modification of the encoder-decoder in Case 1 of Section V, it is 
possible to reduce the error multiplication in the decoder. The stuff 
word is 

1.18 X 1012 
N3(8000 — R.) 

hours. 

S = (00000000). 

The encoder is given in (12). 

If w(A)  3,  b8 = 0. 

If w(A) :5_ 2,  b. = 1.  (12) 

Then b; = b. C) a; for 1 5 i 5 4, 

= ai for 5 5 i -5 7. 

The decoder performs the operations in (13). 

a =b E b  for 1 i 5 4, 

ct = b  for 5 5 i 7.  (13) 

Notice that an error in position eight now results in four rather than 
seven errors for the customer. 

VII. COMPARISON WITH GROUP CODES 

In the binary group codes normally encountered in error-control 
work, the code words are a set of 28 n-tuples selected so that the code 
words form a group under component-by-component modulo two addi-
tion. Because of the resulting perfect distance symmetries between the 
code words,* the probability that a transmitted word is decoded in 

* Let X and Y be code words. For any e(1 5 E  n), the number of code words 
distance e from X is equal to the number of code words distance e from Y for all 
X and Y. 
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error does not depend upon the transmitted word (provided the trans-
mission errors are independent of the transmitted bits). 
The code presented herein has 2k -I- 1 code words (the 2k elements of 

D plus the stuff word S). The code words do not form a group and ex-
hibit highly asymmetric distance properties. It is the asymmetric dis-
tance properties that enable us to use the available redundancy to 
protect against the loss of character synchronization due to transmission 

We note that it is possible to design other asymmetric codes that 
are, in a sense, generalizations of the code in (2). Instead of a single 
stuff word, there are now several special words with unique distance 
properties with respect to each other and the set D. Such codes might 
be used in a data transmission system where, for example, one wishes 
to provide more protection for control characters than for data words. 
A wide range of capabilities is possible and future work in the design 
of these codes should prove profitable. 

VIII. CONCLUSIONS 

For a given redundancy, we give the code that maximizes the mini-
mum distance between the stuff word and any data word. An encoder and 
decoder are given for arbitrary n and k. For n = k  1, a particularly 
simple encoding-decoding technique is described. Certain properties of 
the (8, 7) code are considered in detail. 
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APPENDIX A 

Derivation of d„, for n = k  1 

Let n = k  1. From (2b), d„, is chosen so that 

d +  1)  k  -" (k ±1)  
• 

1-1 
However, 

2k41 _ 2 =__ 

Therefore, for k even, 

E 

(14) 
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2k - 1 = kE/2 (k ± 1\ 
1 .- 1 \  /  ) 

which, from (14), implies that 

k 
dm = i ± 1 

and, from (2c), that ô = O. For k odd, 

k + 1 

2k — 1 = ii ,t: (lc +1 1) ± 21 rLo + 1 (15) 
2_I 

where [k/2] denotes the largest integer 5 k/2. Thus, from (14) and (15), 

dm = [] ± 1. 

APPENDIX B 

Encoder for (9, 7) Code 

For the (9, 7) code, d,„ = 6. Thus, construct the three arrays shown 
in Table II. Consider encoding ao = 22. In the first array, ai(5) = 15 is 
the largest ai(j) not greater than 22. Therefore, :71 = 5. Next, in the 
second array, we find that the largest a2(j) not greater than 

ao — al (5) = 22 — 15 = 7 

is a,(4) = 7. Thus, j, = 7. However, 
2 

E am(i.) = at(5) + a2(4) r= 22 = ao 

TABLE II—ARRAYS FOR ENCODING FOR THE (9, 7) CODE. 

Array 1 Array 2 Array 3 

j  oti(j) j  ce2(j) j  cza(i) 

1  1 
2  2 
3  4 
4  8 
5  15 
6  26 
7  42 
8  64 
9  93 

1  1 
2  2 
3  4 
4  7 
5  11 
6  16 
7  22 
8  29 

1  1 
2  2 
3  3 
4  4 
5  5 
6  6 
7  7 
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so the process terminates. Therefore, Bo has ones in positions j, = 5 
and j, = 4, that is, 

= (000011000). 

position 5 2 L position 4 

APPENDIX C 

Proof of Equation (5) 

After substituting (4) into (5), we must show that 

Min(n—d.—i+1.i-1) I f rn ) i \  Min(n—d.—i,f-1) (a  1\ 

-11- sys«,0 

Min(n—d.,—i+1.j) 

(16) 

for 1  1. Choose an i and consider j as 
j increases from 1 to n — i. Suppose that 1 _j_•5_.n —d„, —i + 1. 
Then (16) reduces to 

or 

21-1  I- 2i-1 = 2. 

Now, suppose that n — d„, —i +1 <j n —i. Then (16) becomes 

1\  1\  =  \ m )  m )  U1) 
.-0 

However, 

1 ±  E 
In  m 

= 1 + 

= 1 + 

[( Mi —± 11 ) 

n—d.—i  2 

.-0  (rn 1- 1) 

=  (a) 

.-0  fit 

The argument is valid for each i, 1 < i < n — d„. — 1. 

+ 1)] 
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Queues Served in Cyclic Order: 
Waiting Times 

By R. B. COOPER 

(Manuscript received December 2, 1969) 

This paper extends the results of a previous paper in which two models 
of a system of queues served in cyclic order were studied. One model is an 
exhaustive service model, in which the server waits on all customers in. 
a queue before proceeding to the next queue in cyclic order. The other is a 
gating model, in which a gate closes behind the waiting units when. the 
server arrives, and the server waits on only those customers in front of 
the gate, deferring service of later arrivals until the next cycle. 
In the present paper, the Laplace—Stieltjes transforms of the order-of-

arrival waiting time distribution functions and, for the exhaustive service 
model, the mean waiting time for a unit arriving at a queue, are obtained. 

I. INTRODUCTION 

In a recent paper' we studied two models of a system of queues 
served in cyclic order: 
In each model, the ith queue is characterized by general service time 

distribution function 11,(•) and Poisson input with parameter X. . In 
the exhaustive service model, the server continues to serve a particular 
queue until for the first time there are no units in service or waiting in 
that queue; at this time the server advances to and immediately starts 
service on the next nonempty queue in the cyclic order. The gating 
model differs from the exhaustive service model in that when the server 
advances to a nonempty queue, a gate closes behind the waiting units. 
Only those units waiting in front of the gate are served during this 
cycle, with the service of subsequent arrivals deferred to the next cycle. 
In Ref. 1 we found, for the exhaustive service model, expressions for 

the mean number of units in a queue at the instant it starts service, the 
mean cycle time, and the Laplace—Stieltjes transform of the cycle time 
distribution function. 
In the present paper, we extend the analysis to obtain, for each 

399 



400  THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970 

model, the Laplace-Stieltjes transform of the order-of-arrival waiting 
time distribution function and, for the exhaustive service model, the 
mean waiting time for a unit arriving at the ith queue. 
In Ref. 1 we defined a switch point as a time epoch at which the 

server finishes serving a queue; and we defined P1(n1 , • • • , nN) as the 
joint probability that at a switch point the server has just completed a 
visit at queue i (i = 0, 1, • • • , N) and n, units are waiting in queue 
-F 1, n2 units in queue i + 2, • • • , and nN units in queue i N. 
The central results of Ref. 1 were an iterative algorithm for the 

calculation of the probability generating functions 

, • • • , = E • • • E  , • • • , nN)xr • • • ir 
(i = 0, 1,  • • • ,IV)  (1) 

and, for the exhaustive service model, an expression for the mean 
number it, of units waiting in queue i 1 when the server completes a 
visit at queue i. In particular, it was shown for the exhaustive service 
model that these generating functions satisfy the functional equations 

gi(x, , • • • , xre) = gi_1(3,( E X1.„(1 —  • • •  XN-1) 
yn •=1 

x. ( + - x.))P(0) - Pi-1(0, • • • , 0) 

(i = 0, 1, • • • ,N)  (2) 

and that Ft, is given by n1 = ift,/g1(1, • • • , 1), where 

we,  =  0\ P  Pi-FI -='• 0, 1, • • • , N)  (3) 

and where Xi is the rate of arrivals of units at queue i, pi is the traffic 
intensity at queue i, 

N 

X = E 

p  = E 
i 

P11 

P(0) =  P.(0, • • • , 0), 

and ti i(•) is the Laplace-Stieltjes transform of the distribution function 
of the length of the busy period at queue i. Equations (1), (2), and (3) 
appear in Ref. 1 as equations (3), (5), and (34), respectively. 
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The distribution generated by g.(x, , • • • , xi.,) is defined with respect 
to a Markov chain imbedded at the switch points. An analysis by 
Taká,c2 of the exhaustive service model for the special case of two 
queues is based on a Markov chain imbedded at the set of service com-
pletion points. Clearly, the set of switch points is a proper subset of 
the set of service completion points. Our use of switch points instead of 
service completion points enabled us in Ref. 1 to analyze the multiqueue 
model with about the same degree of mathematical complexity as 
Takács required for the analysis of the 2-queue model. On the other 
hand, one would expect that our use of a chain imbedded in a "smaller" 
set of points would result in a corresponding loss of useful information. 
Takács' analysis yielded waiting time results for the 2-queue model. 

At the time Ref. 1 was written, it was not apparent to us that our 
method of analysis provided enough information to enable us to obtain 
corresponding waiting time results for the multiqueue model. Accord-
ingly, we concentrated on the cycle time, a quantity that seemingly 
gives the same kind of information as the waiting time. Unfortunately, 
we did not have complete freedom in choosing a precise definition of the 
quantity we would call cycle time. The mathematical formulation of 
the model dictated that the cycle time for queue i be defined, roughly 
speaking, as the length of time between two successive instants at which 
the server completes service at queue i, without regard to whether or 
not the server is continuously busy throughout this time interval. This 
definition introduces, among others, the following difficulty in the inter-
pretation of realized values of the cycle time: A long cycle time could 
have resulted either from heavy congestion or from no congestion. 
No such ambiguities exist with respect to interpretation of the waiting 

time, which is simply the elapsed time from the arrival instant of a 
unit to the instant at which service on this unit begins. Therefore, we 
would like to obtain waiting time results. Furthermore, we would like 
to obtain these results, if possible, without directly extending the pre-
vious analysis to include the entire set of service completion points. 
In the present paper, we obtain the desired waiting time results 

without recourse to a complicated reformulation of the original analysis 
based on the complete set of service completion points. Rather, to obtain 
the waiting times at queue i, we use the generating function 
gi-i (xi  XN)  calculated in Ref. 1, to append to the original set of 
switch points only those service completion points that correspond to 
departures from queue i; and this is sufficient for our waiting time 
calculations. 
The essence of the method is to calculate the probability generating 
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function of the number of units left in queue i by an arbitrary de-
parture from queue i, using only the (known) probability generating 
function of the number of units waiting in queue i when the server 
arrives. The Laplace—Stieltjes transform of the order-of-arrival waiting 
time distribution function for units at queue i is then easily obtained 
by a standard argument. 
The preceding discussion refers mainly to the exhaustive service 

model, which was discussed in detail in Ref. 1. The gating model was 
shown to be characterized by equations that are essentially the same 
as those of the exhaustive service model, and was therefore not devel-
oped in detail. In the present paper, the waiting times for the gating 
model will also be discussed. 

II. THE m/G/1 QUEUE WITH SERVER VACATION TIMES 

In preparation for calculation of the waiting times in the exhaustive 
service model, we first consider the following generalization of the 
M/G/1 queue: 

As usual, the server serves the queue continuously as long as there 
is at least one unit in the system (waiting or in service). When the 
server finishes serving a unit and finds the system empty, however, it 
goes away for a length of time called a vacation. At the end of the vaca-
tion the server returns to the queue, and begins to serve those units, if 
any, that have arrived during the vacation. If the server finds the 
system empty at the end of a vacation, it immediately takes another 
vacation, and continues in this manner until it finds at least one waiting 
unit upon return from a vacation. 
Let Xk (k = 1, 2, • • • ) be the number of units left behind by the kth 

departing unit. Then 

PIXk+, = nj = 
n+1 

EP1X,. = v}P1X,„_, = n  = v 
-0 

(k = 1,2, • • • ;n = 0,1, • • •).  (4) 

Let P(j) be the probability that at the end of a vacation the server 
finds j  0 units waiting for service. If the arrival rate and the service 
time distribution function are denoted by X and H(•), respectively, then 

=n IXk =  > 0 =  (n,   exp (—Xe) c111(e) 

(n  v — 1)  (5) 
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and 

p(i) (xtr+1-1  exi)( _xo  
ppck.. = n X k =  131  =  — P(0)  

di/W.  (6) 

The expression P(j)/[1 — P(0)] in equation (6) is the conditional prob-
ability that when the server starts serving the queue there are j units 
waiting, given that at least one unit is waiting. 
When the traffic intensity p is less than unity (p = Xh, where h is 

the mean service time), there exists a unique distribution 

71- =-- lim P (X  n}  (n = 0, 1, • • •) 
k—eao 

that satisfies both the normalization equation 

and the limiting set of equations obtained from equation (4), 

11+1  p r  (xe ,s+1-i  
f., 1 — P(0) 4 (n ±1 _)! exP (— Xt) d.17(e) 

f"   
•-.  + — vp. exP (—Xe) c/11.() 

Define the probability generating functions 
03 

f(x) =  E 
n=0 

and 

(n = 0, 1, • • •). 

(7) 

(8) 

(9) 

(10) 

(x) = c't P(Dxi •  (11) 
i-0 

Substitution of equation (9) into equation (10) yields, after some 
manipulation, 

(x) — 
{e(x) — P(0)  1 — P(0)  1}n(X — Xx) 

X  n(?1/4 — xx)  7r0 
(12) 

where n(•) is the Laplace-Stieltjes transform of the service time distri-
bution function H(.). Observe that the expression [tfr(x) — P(0)]/[1 — 
P(0)] is the probability generating function of the number of units 
waiting when service commences. 
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The unknown probability ro is determined from equation (12) by the 
normalization condition f(l) = 1. Application of l'Hospital's rule to 
equation (12) yields 

1 — 
ro =  ip,P(0) (1)  (1  p).  (13) 

Thus, the probability generating function f(.)  of the number of units left 
behind by an arbitrary departure, and the probability generating func-
tion t'(•) of the number of units waiting at the end of a vacation are 
related as follows: 

[1,1/(x) — l]n(X — Xx) (1 — p)  
f (x) —  (14) 

x — nO. — xx)  e(l) . 
We now apply a standard argument to obtain the Laplace—Stieltjes 

transform co (• ) of the order-of-arrival waiting time distribution function 
from the generating function (14). 
Let F(•) be the distribution function of an arbitrary unit's sojourn 

time, defined as the elapsed time between the unit's arrival and de-
parture epochs, and denote by t(.) the Laplace—Stieltjes transform 
of F(-). Since the sojourn time is the sum of the waiting time and the 
service time, and since these latter times are independent, therefore 

0(s) = co(s)n(s)-  (15) 

When units are served in their arrival order, each departing unit 
leaves behind it precisely those units that arrived during the departure's 
sojourn time. Further, these remaining units arrived according to a 
Poisson process, independent of the sojourn time. Therefore, the prob-
ability Ir that a departing unit leaves behind n other units is 

e (X0" rn = I. --in exp (—n) dF(0.  (16) 

Substitution of equation (16) into (10) gives the well known and funda-
mental relation 

f(x) = 4,(X — Xx)-  (17) 

Equations (14), (15), and (17) together give the Laplace—Stieltjes 
transform w(.) of the waiting time distribution function in terms of the 
probability generating function tk(• ) of the number of units waiting 
at the end of a vacation: 

w(s) — ,(1)  [1  .s  \ X I] s — X + Xn(s)  (18)• 



CYCLIC QUEUES  405 

Note that for the ordinary M/G/1 queue, in which the vacation ends 
immediately whenever a unit arrives and finds the server idle, e(x) = x 
and equation (18) reduces to the well known Pollaczek—Khinchin 
formula, 

— 
s(1 —   

s — X ± X77(s5 
(19) 

Finally, the mean wait for service TP. = —0/(0), obtained from 
equation (18), is given by 

Xn"(0) r(1)  
— 2(1 — p)  2),/(1) 

The first term on the right side of equation (20) is identical with the 
mean waiting time in the ordinary 111/G/1 queue, as would be obtained 
directly from the Pollaczek—Khinchin formula (19). The second term 
in equation (20) represents the component of the mean wait that arises 
because of the variability in the number of units waiting when service 
begins. Although service in arrival order was assumed in its derivation, 
equation (20) is valid for any order of service that is independent of the 
service times. 
Note that the result (14) is true regardless of any relationship be-

tween the vacation lengths and the arrival process, whereas equations 
(18) and (20) are valid only when the vacation lengths are determined 
without regard to the arrival process. For example, if one were to 
consider a mechanism such that service begins as soon as a fixed number 
j (j  2) units are waiting, then equation (14) with 0(x) = xi would 
correctly give the probability generating function of the number of units 
in the system just after a service completion epoch. On the other hand, 
equations (18) and (20) would not apply, because (16), and therefore 
(17), would no longer be true. (For if #(x) = xi, then the first departing 
unit would always leave behind at least those j — 1 other units that 
were present when service commenced. Thus, for the first departing 
unit, ir„ = 0 for n < j — 1, and this contradicts the assumption (16) 
if j  2.) 

(20) 

III. LAPLACE—STIELTJES TRANSFORM OF WAITING TIME DISTRIBUTION 

FUNCTION FOR EXHAUSTIVE SERVICE MODEL 

We now proceed to apply the results of Section II to the analysis of 
waiting times in the exhaustive service model. In essence, the "vaca-
tion time" of Section II is the length of time that the server spends idle 
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or working on other queues before registering a switch point at queue 
— 1 and beginning service on queue j. 
For want of a better word, let us define as a supercycle the elapsed 

time between the arrival epoch of a unit at any queue when the system 
is completely empty, and the first instant at which the whole system 
again becomes empty. Then units that arrive at queue i can be classified 
into two exclusive and exhaustive categories: 

(1) arrivals at queue i that either initiate a supercycle or occur 
during the 1-busy period generated by an arrival at queue i that 
initiated a supercycle; or 

(2) all other arrivals at queue i. 

Equivalently, units in category (1) are those arrivals at queue i whose 
service begins prior to the occurrence of the first switch point of a 
supercycle, whereas units in category (2) are arrivals at queue i whose 
service times begin after the first switch point of a supercycle. 
Consider now the waiting times of units that arrive at queue 2:. Those 

units in category (1) are served during a busy period originated by one 
unit. Therefore, the Laplace-Stieltjes transform co!')(• ) of the order-
of-arrival waiting time distribution function for units at queue i that 
belong to category (1) is given by the Pollaczek-Khirtchin formula (19): 

ce(s) —  + x(8)  (21) 

where pi , Xi , and 77;0 are the corresponding quantities in equation (19) 
defined now with respect to queue i. 
Units in category (2) are served during a busy period originated by 

those units waiting in queue i when the server leaves queue i — 1. 
Let ik,(•) be the probability generating function of the number of units 
waiting in queue i when the server leaves queue i — 1; 1,1/i(-) is the 
probability generating function of the number of units waiting for 
service in queue i when the server finishes a vacation, and is given by 

g i_,(x, 1, • • • , 1) 
, 1, • • • , 1) 

[Note that 1,1", (1) =  = 771.;_1/g1_1 (1,1, • • • , 1).] Thus, the Laplace-
Stieltjes transform co?) (• ) of the waiting time distribution function for 
units in category (2) is given by equation (18): 

A. —  P;   ce )(8\ =  [1. 

efi(1)  AiIi  8 — Xi + Xi 71 i(s) • 

(22) 

(23) 
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Let pli) be the proportion of all arrivals at queue i that are in cate-
gory (1). The mean number of units that arrive at queue i during an 
interval of length t is X,t. The probability that an arbitrary arrival at 
queue i finds the whole system empty is 1 - p (p = pc + • • • + (JA), 
so that Xit(1 -  is the mean number of arrivals at queue i that initiate 
a supercycle during any elapsed time t. The mean number of units 
served at queue j during the 1-busy period generated by each such 
arrival is (1 - /4)-1, and hence the mean number of units in category 
(1) served at queue i during an elapsed time t is Xit(1 - p)/(1 - pi). 
Therefore, the probability is [Xit(1 - p)/(1 - pi)]/Xit that an arbitrary 
arrival at queue jis in category (1); that is, 

(1)  
- 1 - pi ' 

and the probability p?' = 1 - p;" that an arbitrary arrival at queue i 
is in category (2) is 

(2)  P — Pi 
Pi  — 

(24) 

(25) 

The Laplace-Stieltj es transform w (•) of the waiting time distribution 
function for an arbitrary unit at queue i is the weighted sum of the 
transforms for each category: 

wi(s)  = je co i)(8)  p 2)(0 2)(8).  (26) 

Finally, equation (26) becomes, with the help of equations (21) through 
(25) and equation (3), 

1 — p   
w (̀8)  — s — Xi ± X (s) 

• {-2-̀ - [g;_,(1, 1, • • • , 1) - g; (X'   , 8 1I • • • 1)1 ± 8} P(0)  xi  

=-•  , 1 , • • • , N) .  (27) 

Inherent in equation (27) is the assumption that units in queue i are 
served in their arrival order, but no assumption is made regarding the 
order of service of units in other queues. If at each queue units are 
served in their arrival order, then the waiting time distribution function 
for an arbitrary unit, without regard to the identity of the queue in 
which it is served, has Laplace-Stieltjes transform w(•) given by 

,(s) = x-1 E xmi(s). 
i 

(28) 
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IV. MEAN WAITING TIMES FOR EXHAUSTIVE SERVICE MODEL 

Denote by W 1 the mean wait for service suffered by units arriving 
at queue i. The mean wait for service for units in category (1) is 
[X '(0)/2(1 — pj]; the mean wait for service for units in category (2) is, 
in analogy with equation (20), [X1n'i'(0)/2(1 — pi)] ± ['(1)/2X1 (1)]. 
Weighting these values according to equations (24) and (25), respec-
tively, we have 

_  X.77';'(0) ei/(1)  p — Pi   

' 2(1 —  1,14 (1) 2X;(1 — p) 

In equation (26) of Ref. 1 we defined 

m1(k) =  gi(xi , • • • , XN) 
O'Xk - • • • ...xN=1 

(i = 0, 1, • • • , N). (29) 

(i = 0, 1, • • • ,N; k = 1, • • • ,N)  (30) 

and 774 = rrzi (1). Let us also define 

X(1 — p)  a2  
k) —  P(0)  axi ax,gix1  • • • xiv) 

(i = 0, 1, • • • ,N; j = 1, • • • , N; k = 1, • • • , N).  (31) 

Then it follows from equation (22) and these definitions that 

P(0)  i_(1, 1) 
(32) (1) — x(1 —  77t _l(1) • 

Using equations (3) and (32), we can rewrite (29): 

_  xoy,,(0) in1_1(1, 1) _ 1, N).  
2(1 — pi)  2X(1 — pi) 

It remains to calculate the quantity  (1, 1) in (33). To this end, we 
define 

(33) 

a — x„,))1 

(i = 0, 1, • • • ,N; k  1, • •• ,N)  (34) 

and 

51(i, k) —  ai(f — x.)) ax, axk 
= 0, 1, • • • , N; j = 1, • • • ,N; k = 1, • • • ,N).  (35) 



CYCLIC QUEUES  409 

Note that in terms of the given parameters, 

0.(k) = Xi+k 1  h' p,  (36) 

and 

k) = Xi+iXi+k (1  p)3 (37) 

where hi is the mean and ni (•) the Laplace-Stieltj es transform of the 
service time distribution function for a unit at queue i. 
We proceed to calculate /ili(1, 1) in the same way we calculated 

ift, (1) in Section VII of Ref. 1. Differentiating twice through equation (2) 
and setting xi = • • • = xy = 1, we obtain the three-dimensional set of 
linear equations 

?(j, A.) - X(1 -   - i-, (1),7 , + (1 - p)x (j, k) p(0)  m   

+  1) + (1 — bov —  + 1) 
+ (1 — S(N -  k  1) 

+ (1 - S(N - j))(1 - S(N - k))771,,,(j + 1, k  1) 

(i = 0,1, • • - ,N; j = 1, • • • ,N; k = 1, • • • , N)  (38) 

where i5(x) = 1 if x = 0 and S(x) = O if x  O. Using equation (3) and 
combining the first two terms on the right side of equation (38), we can 
write 

(j, k) = X,(1 - p i)$ i(j , k)  a ;WO i(k)r7ii_1(1, 1) 

+ 1(k)77,1(l + 1) +  k  1) +  ± 1, k  1) 

(i = 0,1, • • • ,N; j = 1, • • • ,N; k  1, • • • ,N)  (39) 

where all undefined terms are taken to be zero. (The functions ni, (j, k) 
are defined only for j, k = 1, • • • , N.) It is required to solve this set of 
1N(N  1)2 independent linear equations for the 774(1, 1). [Note that 

771i( k) = 1T2i(k, j) .] 
Successive substitution into the last term on the right side of equa-

tion (39) gives 

17(1 , k) = E x;_,(1 - p,_,)0i_,(1  k 
0 

+ E )3 -(1 +  + p)n-t,_1(1, 1) 
•YO 
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+ E + P)17ii-1-,( 1 , 2 y) 
v=0 

+ E +  k  1 + y) 
v=0 

(i = 0, 1, • • • , N ; k=1, • • • ,N)  (40) 

where each sum is continued as long as the terms are defined. 
The set (40) consists of N(N + 1) independent linear equations. 

Unfortunately, it does not appear that further algebraic simplification 
is likely. However, for particular values of the parameters and reason-
able values of N, numerical solution should not be difficult. 
Therefore, to calculate the mean wait Wi for service at queue 
(i = 0, 1, • • • , N) for any particular values of the basic parameters, 
simply solve the set (40) of N(N 4- 1) linear equations numerically, 
and use the resulting value of  (1, 1) in equation (33). Note that 
these calculations for the mean waiting times require no iteration, since 
neither generating functions nor state probabilities appear. This last 
observation is remarkable in light of the complicated iteration process 
(discussed in Ref. 1) underlying the derivation of these results. Thus, 
despite the complicated derivation, calculations do not seem 
impractical. 
In. the particular case of two queues (N = 1), only N(N  1) = 2 

simultaneous equations must be solved to find 772,, (1, 1), and an algebraic 
solution is easily obtained. For N = 1 equation (40) gives 

1) _  X1_, 1(0)(1 — p.)2 4- xin'(0)p-,  
(1 — p,--1)2(1 — p,)2 —  - p2 

and hence, for two queues, 

X;77'(0)  VP; —  P,)2 -E   
2(1 — p,)  2(1 — p,)[(1 — p,--1)2(1 p.)2 e-IP1 

(i = 0, 1).  (41) 

Our result (41) is in agreement with previous results of Takács,2 Avi-
Itzhak, Maxwell and Miller,' and Eisenberg.' 
Although service in order of arrival was assumed throughout, the 

results for the mean waiting time are valid for any order of service that 
is independent of the service times. 

V.  LAPLACE-STIELTJES  TRANSFORM  OF  WAITING  TIME DISTRIBUTION 

FUNCTION FOR GATING MODEL 

Turning to the gating model, we now study briefly the distribution 
of waiting times for units served in order of arrival at the ith queue. 
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As with the exhaustive service model, we first calculate the probability 
generating function of the number of units left in queue j by an arbi-
trary unit departing from queue i; and using the same arguments, we 
obtain from this generating function the Laplace-Stieltjes transform 
of the waiting time distribution function. As in Ref. 1, the notation 
for the gating model is the same as for the exhaustive service model; 
1-1 (x1, • • • , xpi) and related probabilities are defined and calculated as 
described in Section IX of Ref. 1. 
Let ir (j)  be the conditional probability that an arbitrary departure 

from queue i leaves behind it j units in queue i, given that this de-
parture did not arrive when the system was completely empty. Then 

Ira= Pi-1(n)   1  _i   exp (—X,E) dHe n 1 — Pi-1(0) n  (e) k=1 •10  — n  k)! 

(j = 0, 1, • • •)  (42) 

where Pi-1(n)/[1 — Pi-1(0)] is the conditional probability that n k 1 
units are waiting in queue i when the gate closes, given that at least 
one unit is waiting; and 1/n is the probability that a departing unit is 
kth in line for service (k = 1, 2, • • • , n) given that n units are present 
at the closing of the gate. The integrand in equation (42) is taken to be 
zero when n — k > j. 
Following the argument for the exhaustive service model we see that 

the (conditional) probability generating function of the number of 
arrivals at queue i that occur during the waiting time of a departing 
unit (given that the departing unit did not find the system empty on 
arrival) is 

7.-i(j)xi/ni(x‘ - xix) • 

A simple calculation gives 

<0 

E Iri (j Xi 
,=n   Pi-1(n)   I  n-k k-11 

ni(Xi Xia) 1 %_1 X  ). 71" -i -- X'x).  

The probability that an arbitrary departing unit did not find the system 
completely empty on arrival is p =  Xihi . Thus, after summing 
the geometric series in equation (43), the unconditional order-of-arrival 
waiting time distribution function for units served at queue i has La-
place-Stieltjes transform w.(.) given by 

(43) 
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e  P - (n)   1  [x (s)]"  — (X. — sr 
(,),(s) = (1 — p)  P E   1 - P.,(0) nX:'  s — Xi  X,n,(s) 

(i = 0,1, • • • , N — 1).  (44) 

Equation (44) allows numerical calculation (and hence numerical 
inversion) of the transform cui ( • ). Unfortunately, this procedure requires 
knowledge of the distribution {  (n)1, which is specified only through 
its generating function gi_, (x, 1, • • • , 1). Thus, to obtain numerical 
results for the gating model one must solve two distinct problems in nu-
merical analysis, numerical calculation of the {  (n)1 and then nu-
merical inversion of the transform. Note that the first of these numerical 
calculations is not required for the exhaustive service model. The subject 
of numerical inversion of Laplace-Stieltjes transforms and probability 
generating functions (the latter being, in fact, a special case of the 
former) is important for the reduction to practice of these cyclic queuing 
models. However, it is a subject best treated separately, without regard 
to the particular applications at hand, and will not be discussed further 
here. 

VI. SUMMARY AND PROPOSALS FOR FUTURE WORK 

We have extended our previous study of cyclic queues to obtain 
waiting time results. In particular we have obtained, for both the ex-
haustive service model and the gating model, the Laplace-Stieltj es 
transform of the waiting time distribution function for units arriving 
at the ith queue, when units at that queue are served in order of arrival. 
These transforms are given by equation (27) for the exhaustive service 
model and equation (44) for the gating model. Also, we have obtained 
for the exhaustive service model a formula (33) for the mean waiting 
time for units arriving at the ith queue. Use of equation (33) requires 
calculation of the value ñ1,  (1, 1), which can be obtained in any 
particular case by numerical solution of the N(N ± 1) linear equations 
(40). It is noteworthy that the calculation of the mean waiting time 
requires no iteration. 
The techniques used in this and our previous study might be useful 

in the analyses of priority queuing models and other cyclic queuing 
models that have important practical applications. Examples of the 
latter are: extensions of the present models to include arbitrary switching 
times and/or set up times; systems of queues served in arbitrary periodic 
order (of which cyclic order is a special case); and within-queue disci-
plines other than service in order of arrival, such as service in random 
order. 
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On the Capacity of an Ensemble of 
Channels with Differing Parameters 

By E. A. WALVICK 

(Manuscript received November 17, 1969) 

To provide a mathematical tool for the evaluation of cable pairs, this 
paper suggests a quality measure which is based on information theory. 
While a group of cable pairs (paired wires) with a given gauge and con-
struction are nominally equivalent, manufacturing tolerances and differences 
in installation and environment lead to variation from the nominal param-
eters. 
To measure the quality of a group of channels (for example, cable pairs 

leaving a central office), this paper recommends the following procedure. 
Choose a fraction p of the original group and evaluate the mutual informa-
tion between input and output of each channel in the subgroup, subject 
to the input to each channel being chosen from the same process. Then, by 
choosing the proper process, maximize the smallest mutual information in 
the subgroup. This largest possible minimum mutual information is a 
quality measure for the subgroup. Next, apply this measure to all subgroups 
of fractional size p; the subgroup with the highest measure provides the 
numerical value of the quality measure for the original group relative to 
fraction p. Repeat this procedure for all p (0  p  1). The resulting 
function is the suggested quality measure of the group. 
To illustrate the above measure of quality, we derive the capacity of an 

ensemble of channels with stationary Gaussian inputs, additive noise, 
and crosstalk. In the Appendix we derive the capacity of a single such 
channel. 

I. INTRODUCTION 

Cables are usually analyzed as if all of the components had a par-
ticular set of parameters (for example, nominal, worst case, and so on). 
Because of manufacturing tolerances, installation differences and various 
environmental effects, however, transmission parameters actually vary 
from pair to pair. To account for these variations, this paper takes an 

415 
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approach based on information theory. We consider the cable network 
to be a statistical population of channels which have parameters that 
vary from channel to channel. We propose a quality measure for the 
network based on this model. 
After defining channel capacity, we present the suggested capacity 

definition for a group of channels (as outlined in the Abstract). Using 
this definition, we provide an example in Section IV in which the 
capacity of a group of channels with stationary Gaussian inputs, additive 
noise and crosstalk is derived. The capacity for a single such channel is 
found in the Appendix. In Section 4.1 the crosstalk is assumed to differ 
from channel to channel; in Section 4.2 the channel attenuation is 
assumed variable; and in Section 4.3 both the crosstalk and attenuation 
vary from channel to channel. 
These results indicate the trade-off between design rate for a trans-

mission system and the expected fraction of channels which will be 
capable of error-free transmission at the design rate. 
This technique can also be used to evaluate different parameter dis-

tributions as may result from tighter production controls. 

II. CHANNEL CAPACITY 

A channel is defined as a probabilistic mapping of one stochastic 
process onto another (for our problem we consider the processes to be 
time functions). (See Fig. 1.) 

Let 

s(t) be the input stochastic process, 
r (t) be the output stochastic process, 
sr = {s(t) : t e [— T/2, T/21), 
s be s„, . 

Then the operation of the channel can be written in terms of a prob-
abilistic mapping F as 

F{s} = r. (1) 
The capacity is defined as the maximum (over input processes) mutual 
information between input and output, that is, 

s( t) CHANNEL 1- -er (t) 

Fig. 1— Channel model. 
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where 

1 
C  sup lim sup  .1(r, ,S) = sup (I(r, s)) 

e 

(I (r , s))  lim sup —1 I(r r , s r) . 

(2) 

(3) 

I (rr , sr) is the mutual information* between sr and rr 
the supremum is taken over all possible distributions of input signals 
subject to some constraint (for example, fixed power), 
and for a large class of channels including memoryless channels and 
colored Gaussian channels C is the maximum information rate (that is, 
the maximum error free transmittable rate). 

The maximization of equation (2) will yield not only C, but more im-
portantly perhaps, the properties of s(t) which will achieve C. 

III. CAPACITY DEFINITIONS FOR A GROUP OF CHANNELS 

Now, consider the extension of the capacity definition to a group of 
channels. Capacity is dependent not only on the nature of the channel, 
but also the nature of the constraints placed on the input. For different 
sets of input constraints, different capacities will be obtained. This 
section contains two possible alternate capacity definitions [equations 
(5) and (6)] followed by the recommended definition [equation (10)]. 
A natural extension of equation (2) to a class of channels (formally 

the set {co : w e al) 

F'{s} = w e SZ 

(that is, F(') is the mapping corresponding to channel w) would be to 
define the capacity as the sum of the individual capacities, or the aver-
age capacity for an infinite set St. That is, the capacity of each channel is: 

C(') = sup (Ir"', 

where the supremum is performed for each channel separately, con-
strained as before. Then one measure of the capacity of the ensemble 
could be the total capacity (for a finite set): 

C T E cco . 

Another measure could be the average per-channel capacity 

*See for example Gallager.1 

(4) 
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(C)7 =  (5) 

where E denotes the expectation. 
As for the single channel, equation (4) [or (5)] yields both CT (or (C)7) 

and the properties of the set S = 1.9(') : co e 121 which will achieve CT 
(or (C)7). This number defines the maximum transmittable rate when 
the input processes are chosen for each channel individually. In many 
instances this may not be a practical measure in that it may be desirable 
to use a single signaling set on all members of 12. A measure using a 
single signaling set has been suggested in the literature:2 

CB = sup inf (I(r(' , s)).  (6) 
• .E11 

The desirable property of CB is that it will result in a signal distribu-
tion which, when applied to any member, co z[2, will permit transmission 
at rates arbitrarily close to C, with arbitrarily small probability of error. 
That is, CB is the maximum rate which will work on all members of the 
group when one process is sent over all channels. However, this seems 
to be an overly pessimistic measure in that if fi should have even one 
member with poor transmission properties, CB will reflect this single poor 
member in exactly the same way as if all of l were equally bad. 
To overcome this difficulty a new capacity definition is introduced. 

This definition is actually a function rather than a single number for the 
group of channels. This definition is essentially CB , restricted to the 
best subset, of size p, of the original group of channels, as a function 
of p. To formalize this notion: 
Let &(p) be a subset of St (indexed by X) of fractional size p. That is, 

for co E a 

Pr {to : E Stx(p)} = p. 

Let n(p) be the set of all such subsets: 

n(P) =  

Find CB for each subset 27,(p): 

CB [52x(p)] = sup inf (I(t.(' , s)). 
8  41 tilx(p) 

Finally consider the supremum over all such subsets, that is 

C(p)  sup sup inf (I(r̀') , s)) 
X  •  °Jab, (p) 

= sup CB. (10) 
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Note that equation (10) can also be written as: 

C(p) = sup sup inf (I(r') , s)). 
X  a» tax (n) 

The following coding theorem can be proved almost by inspection: 
C(p) is the supremum of rates which can be transmitted error free over 
at least the fraction p of the original ensemble of channels when the 
inputs to all channels are from the same signal distribution. (Clearly, 
for larger p, more channels are required to be capable of error free 
transmission at rates arbitrarily close to C(p) than for smaller p. There-
fore, C(p) decreases as p increases, more of the set of poor channels 
included.) 
C(p) would then be plotted as in Fig. 2 which intentionally represents 

an ensemble for which most of the channels have near nominal param-
eters, a small percentage have worse parameters, and a small percentage 
better parameters. From the figure, if all channels must have error-free 
transmission, then the design rate for any system can be no greater 
than C s . However, if design criterion only requires pi of the channels 
to be error free then rate C1 can be used. Similarly, if only p2 of the 
channels need operate without errors, rate C2 can be used. 

C(p) is a useful measure for the following reasons: 

(i) If it is desired that a given fraction of the channels have satis-
factory transmission, then C(p) indicates the maximum permissible 
rate. 
(ii) If the objective is to provide a given transmission rate C(p), 

then the value of p indicates what percentage of the channels will be 
capable of operating without errors. 

C2 

C(p) 

1 
I  I 
1 I 

CB   + +-
1   

0  P2 PI 
ERROR-FREE FRACTION 

Fig. 2 — C (p) vs. p-
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(iii) When deciding between two alternative groups of channels, 
C (p) can indicate those transmission rates for which one type is better 
than the other. 

IV. EXAMPLE 

To provide an example for the use of the C(p) function, consider an 
ensemble of channels, each of which can be modeled as shown in Fig. 3.* 

where 

11(w) is the channel transfer function, 
X(w) is the crosstalk transfer function, 
s(t) is the signal with one-sided power spectral density S (w) , 
(t) is the signal on an adjacent channel with the same power spec-
tral density, and 

n(t) is the noise with power spectral density SN(w). 

If only stationary Gaussian inputs are considered the average mutual 
information between the input and output of any channel in the en-
semble is:3'4 

(I(r, s» =  foe log (1  Isietg;e(iis)(w1)2) dw,  (11) 

where 

Ss (w) is the input signal power spectral density, 
Siz((e) = Ss (co) I II (w) 12 (1 + 1 X(w)  12) + SN(w),  (12) 

is the output power spectral density, and 

SsR(w) = Ss (w)H*(co),  (13) 

is the input-output cross power spectral density. 
Then, 

1 
(I(r , s)) = — — 

27 

-f: log [1  S(w) 1 leco) 12   
S28(w) 1 I-1(w) 12 (1 ± 1 le(w) 12) + Ss((o)Sze(w)] dw.  

(14) 

* w is used here to represent frequency and not probability spaces as in the 
first part of this paper. 
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Define 

Then 

s (t) 

(t) 

Fig. 3 — Channel model. 

Sm(cd)  
gel (co) — H(co) 12 

r (t) 

(15) 

Ss(w)    (I(r, , 8)) =  ro log [1 ± X(w) 12 s(co)  s,(w) ] cico.  (16) 

4.1 Fixed Noise and Channel, Distributed Crosstalk 

Assume that the crosstalk parameters of all of the cables are the 
same except for a multiplier, that is: 

1 X(w)  1 = EE  X(W)  (17) 

Equation (16) indicates that for any choice of Ss (w) , (1(r, s)) de-
creases as Ee increases. Thus, while equation (9) requires a minimization 
followed by a maximization, it is clear in the case that the "if" for a 
given p occurs for the largest Ee in the subset Slx(p). Further, the "sup" is 
achieved using the spectrum that achieves capacity on the channel 
with the largest Ee . Finally, the "sup" in equation (10) is achieved by 
choosing the 11x(p) such that 0 < e  ev where Ey, is such that 

r«, 
P = jo P.E(E) (18) 

where p,t(e) is the probability density of Et . Thus using the capacity 
result obtained in the Appendix 

So(w) = [SN(w...) — Siv(w)][1 — 161 X(w) 12(41 X(w) 12 ± 1) ± • • • }. 

(19) 
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The capacity function can now be found: 

1   
cv) — iîrl {fo ' [log [1 ± 4 1 x(c.,) 121 

+ 4 log {1 -F 44 I X(w) I [€27, I X(w) 12 ± 1]18N8(Z )}] cicu} • 

(20) 

Consider the following example to illustrate the above: 
Let SN(w) be zero. Then from equation (16) the mutual information 

is independent of the signal spectrum and 

1 
C(p) = 2-17r f oe log [1 + e: 1 X(4°) 12] d . 

(21) 

(This is achieved for any spectrum with finite power which is strictly 
greater than zero for all frequencies.) Let 

I X(w) 12 = .2 (22) 

and let log E, be normally distributed with mean —8.2 and cr = 0.17. 
(The crosstalk figures are idealizations of typical figures for 22 gauge 
PIC). Then 

where 

and 

p .-- erf {log €0,,.-1-17  8.2} + 0.5  

1 fx _Y.' dy, erf (x) = (2-7A) o e 

1  
C(73)  — 2e„ In 2 

(in bits) 

(23) 

(24) 

1  . 
= —24 (m nats).  (25) 

These results are indicated in Fig. 4. For p = 0.8, C(p) is 6.3 X 107. 
For p = 0.1, C(p) is 1.3 X le. Thus a factor of two is realized in ca-
pacity by reducing the required usable fraction of channels by a factor 
of eight. 

4.2 Fixed Crosstalk and Noise, Distributed Channel 

Assume 

= EN ,  (26) 
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Fig. 4 — Capacity vs. fraction of satisfactory channels. 
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I Haw)I .=  ,  (27) 

and that at(w) is such that 

ak.(wi) > cet.(w.)  a(coi)  at.(co;).  (28) 

That is, if the attenuation of channel et is greater than the attenuation 
of 2 at one frequency, it is greater at all frequencies. Then, again design 
for the worst case, that is, 

p = fp,,(a) da. (20) o 

(Again the smaller a, the "better" the channel.) 

80(0) = eN[e  —  —  I X) 12 (1 X() 12 + 1)1, (30) 

and 
wm.. 

c(,„) =  {f  {log [1 +  x(1w) 12] 
2ir  o 

øm.) 

+  log [1 + 4 1 X(co) 12(1  X(w)  12+  1)  e2g,(to) ]} dw}. (31) 

4.3 Fixed Noise, Distributed Channel and Crosstalk 

Proceeding as in the previous two sections, choose the signal spec-
trum to achieve capacity on a channel with a particular sp, and a,, , 
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that is: 

ex[exP [204.(w .)] — exp  [2a9,(co)l] 

• [1 —  I X(w) 12 (4, I X(co) 12 ± 1)],  (32) 

C ,(p) = -.7r {f,' {log (1 + 4.  I X(w)  la) 

-I-  log [1  44, X(w) j2( I  X(w) 12 ± 1) 

exp [2aph»....0]1 d 
exp [2a„(w)] j) (.°1 

Here, p is found by integrating the joint density of ae and et over the 
region where the mutual information is greater than C.(p). That is, 

(33) 

p =  p.,,„,(e, a) de do!  (34) 

where R is the region in the (e, a) space, where 

1 rm"   1   
log [1 21-  eeI X(co) 12 + es exp 2aE(w)]  C'(/)).  (35)  

The difficulty with this problem at this point is that there is no 
unique e,, and ap, which yield a given p in equation (34). Thus it is 
necessary to search all such sets (ep. , a„.) which yield the same p, and 
choose the one which yields the largest C.(p). While this may seem 
difficult, it can be implemented with a computer search. 

V. CONCLUDING REMARKS 

The quality measure suggested herein should be considered part of 
the development of a technique for comparison of groups of cables. 
It should be pointed out that, while the definition of capacity for a 

single channel is straightforward, the definition of capacity for an 
ensemble of channels depends on certain assumptions concerning the 
use of the channels. 
(C)T , the average per channel capacity, [equation (5)] assumes each 

channel will be used individually, and optimized individually. CB , 
Blackwell's definition, [equation (6)] assumes the same input distribu-
tions will be used for all channels in the group and that the channels are 
used individually. Further, no more than the minimum rate transmit-
table over the worst channel will be sent over each channel. 
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The recommended definition, C(p), equation (12), is similar to CB 
except that the fraction 1 — p of the worst channels will not work 
satisfactorily and could be discarded. 
The example carried out in Section IV uses a new result on the ca-

pacity of a single channel with crosstalk and additive Gaussian noise 
which is derived in the Appendix. The discussion on the calculus of 
variations, contained before equation (40), can be used to rigorously 
prove some old results for optimum spectra in the presence of additive 
Gaussian noise [see footnote, following equation (52)]. 
In applying C(.p), it is noted that when only one parameter is un-

known (for example, the magnitude of the crosstalk), the capacity of 
the group of channels as a function of p (the fraction of usable channels) 
is a simple calculation. However, when more than one parameter is 
unknown (for example, the magnitude of the crosstalk as well as the 
channel attenuation), search techniques are indicated. 

APPENDIX 

Capacity Calculation for a Single Channel 

Consider the channel model of Fig. 3. The mutual information ex-
pression is given in equation (16) and is repeated below: 

mr, 8» = 2— r ,r 0 log [1 + .x(eo) 12 ss(co)  82v(e.j dco.  (36) 

Now capacity for this channel is defined as 

C =.• sup (I(r, s»,  (37) 
ss(.,) 

subject to 

—f s  P = power, 
27r  ' 

and 

S s(co) k 0  for all ce. (38) 

The method of variational calculus can be applied to determine the 
optimum solution. 
Let 

So(co)  be the assumed optimum solution, and 
ô• e(w)  be a small perturbation, then 
Ss (ce) = So(w) -F  (c). 
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In order to account for Ss(co)  0, S• €(w) must be nonnegative when-
ever So(co) -- O. That is, in order that S8 (w) be a power spectral density, 
whenever So(co) = 0, the perturbation at that frequency must be such 
that the resulting density at that frequency remain nonnegative. Note 
that since So(w) is to be the optimum solution, (I(r, s)) must be a 
maximum at 5 = 0 for all permissible b• é(w). This implies that 
aumas 1,5_„ will be negative for all permissible S• E(co) which approach 
zero from the positive side (5• 6(w) —› 0'), and am/as  will be 
positive for S• E(w) —› 0-. Or finally, auvas 1,..0 = 0 whenever 5• e(w) 
can approach zero from either the positive or negative side and the 
derivative is defined. Now, 

1   
2ir 'es> =  log 1 ±  dw 

2 8,(co)   
X(co) 1 ± So(w)  5•E(co)1 

[ —  +c°  [So(w)  5• €(w)] dco — 2rP}1 ,  (39) 

where g is a Lagrangian multiplier used to introduce the power con-
straint. 
Or 

eS = f ¿(,)[  8.v(w)  (40) a - o  o  A (co) e (co)  B (co) S (co) + el, (co)  M] 61° ' 

where 

A(w) = I X(w) 12 (I X(w) 12 + 1) , 

B(w) = [2 I X(w) 12 -I- 1] SN(co). 

In equation (20) one now considers all permissible e(w). Whenever 
So(w) is nonzero (that is, (5• E(co) is unrestricted), the integrand is zero, 
since for these frequencies, e(w) is arbitrary. However, when So(w) 
is zero (5• e(co)  0) all that can be said is that the integrand is negative. 
That is, as one approaches the boundary of permissible 5• E(co), (I(r, s)) 
must be monotonically increasing. 
This yields: 

SN (co)   
A (ce) 8,2, (co)  B (co)  (co) -I- g( co)  1j. 

for all co such that So(co)  0,  (41) 

and 
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1 
mco)  —  0 for all co such that So(w) = 0.  (42) 

(This equation is simply the integrand for So(w) = 0.) 
Or from the above for So(w) 0 0, 

— B (w) E { B2(w) — 4A (w)C MI*  
So(w) — 

2A(w) 

where 

= 82N(w) — Siv(c0)/g•  (43) 

Now, So(w) must be nonnegative. In order that equation (43) yield a 
nonnegative result, the positive root must be taken, and further the 
following inequality must be satisfied: 

1132 (w) — 4A(co)C(c0)0  13(w).  (44) 

Relation (44) implies 

C(w) < 0 for all w such that So(w) > 0.  (45) 

Relation (42) (which implies 1/ 15- 0) can be rewritten as 

C(w) k 0 for all w such that So(w) = 0.  (46) 

If we assume that 8N(w) is a monotonically increasing function* of co, 
relations (45) and (46) imply 

1 - = 

and 

SO (CO) = O  CO 

Hence t rewriting equation (43) 

= N(co) 
11  4A(w) SN(co...)/ gN(W)  — {1 + 4A (w) 80(co)  S  

where co.„. can be found from 

2A (w) 

(47) 

(48) 

(49) 

1 So(w) dco = P.  (50) 
hr 

This can be used to obtain a relation between Wm and P. 

* This is not at all necessary. It just simplifies the form of the following equations. 
t In what follows, it is understood that the expression given for So(co) holds for 

to 5 co..., and that So(to) = 0 otherwise. 
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Now if the crosstalk is small [IX(w) I «1], each of the radicals in the 
equation for So(w) can be approximated by the first few terms in the 
binomial expansion. Then 

So(co) = [SN(w...) — 8N(c0 41 —  I X(co) 12(1  X(03) 12 -4- 1) 

±  X(w) 12(1 X(co) 12 + 1)(givs(:)(c7 — 1) 4- - • , (51) 

So(w)  [8N(co .) — Siv(w)] {1 I 1 X(to) 12 (1 X(w) 12 + 1)] , 

[8N(co..) — SN Wl•  (52) 

This result indicates that for small crosstalk, the signal spectrum ought 
to be designed independent of the crosstalk spectrum. Equation (52) 
is the familiar "spectrum filling" result for additive Gaussian noise.* 
This is shown in Fig. 5. The exact solution [equation (51)] (superimposed 

EXACT 
SOLUTION 

50 (01) + 8 N (") 

w) 

Fig. 5 — Typical optimum spectrum 1. 

with the broken lines) simply implies some shaping. Figure 6 illustrates 
the solution when Shr(w) is not monotonically increasing. 
With the solution obtained for So(w) 

Cdmex  1   
Capacity = /r {f  log [1 ±  21 dw 2  X(w) 

f  log {1 + 4 I X(co) 12 [I x(w) 12 + 1] 8Nst:7)} dco}. (53) 

Using the small crosstalk approximation for 80(w): 

*This result is contained in Fano5, pp. 173ff. That proof is not as rigorous as 
the one presented here as Fano does not prove that the optimum spectrum is 
zero whenever the noise is greater than a threshold. Fano's result can be proved 
directly by noting the discussion preceding equation (21) herein. 
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Capacity 

So(w) + SN(0)) 

EXACT 
SOLUTION 

1 

____ 

Fig. 6 — Typical optimum spectrum 2. 

1 S,v(co...)  Sitr(co)   

log  [i 1X2(w) 1 [  SN M  SN W]  

— S40)   1 
log [1 -I-

fo 1 X(c) 12 SN(com.x)  SN(co) 

1  f  log [1 X(w) 12+ 88ereict i 
27 o 

(54) 

(Note that even for small crosstalk, capacity is still a function of the 
crosstalk spectrum.) 
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A Stationary Phase Method for the 
Computation of the Far Field of 
Open Cassegrain Antennas 

By W. H. IERLEY and H. ZUCKER 

(Manuscript received October 17, 1969) 

A method is presented for the computation of the far field radiation 
patterns of paraboloid reflector antennas by using a modified stationary 
phase approximation to eliminate one integration. This method is applicable 
to open cassegrain, offset paraboloid and horn reflector antennas. For 
symmetrical paraboloid antennas the modified approximation reduces to 
the exact expression obtained by direct integration. 
The errors introduced by the stationary phase and modified stationary 

phase approximations are investigated. Specifically the far field of an open 
cassegrain with a 128 wavelength aperture diameter is computed by the 
approximate method up to 20 degrees off-axis. The difference between these 
radiation patterns and those computed by double integration, is less than a 
few tenths of a dB up to 1.0 degree, and less than a few hundredths of a dB 
at larger angles off-axis. 
In order to estimate the computational advantage of this approximation, 

the number of points required for integration of an oscillatory function by 
Simpson's rule is also examined and it is determined that at least 6 points 
per cycle are necessary to obtain 4 decimal accuracy. For fewer points the 
error is appreciable. 

I. INTRODUCTION 

The computation of the far field radiation patterns of large reflector 
antennas is of importance in predicting the performance of satellite 
ground stations. For example, the antenna sidelobes contribute to the 
system noise temperature and may cause interference with other com-
munication systems. The open cassegrain antenna' is a particularly 
suitable configuration for obtaining low sidelobe levels, since blocking 
by the subreflector and its supports are eliminated. A further advantage, 
resulting from this feature, is that the radiation pattern can be accu-

431 
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rately predicted and it has been shown to be in good agreement with 
experimental results.' 
The previous computations of the radiation patterns of open cas-

segrain antennas have been performed by precise computation of the 
appropriate diffraction integrals, generally requiring a double numerical 
integration. For large angles off-axis, such computations require con-
siderable computation time. It is, however, for large angles that the 
integrals which are used for the computation of the far field radiation 
patterns are of a form which is suitable for approximation by the method 
of stationary phase. This method was initially applied to eliminate the 
azimuthal cp integration, but it was subsequently recognized that certain 
terms in the approximation are related to the asymptotic expansions of 
Bessel functions. The stationary phase approximation could therefore 
be modified, with the observed result that the far field radiation pattern 
can be computed with good accuracy also in the immediate vicinity of the 
main beam. 
In the following sections we derive the stationary phase approximation 

and present a geometrical interpretation of the location of the station-
ary points. For the far field on axis, the ep integration is performed in 
closed form and it is shown that the antenna gain is the same for both 
perpendicular polarizations. Numerical computations are performed to 
estimate the error introduced by the stationary phase and modified 
methods. The extended range of applicability of the latter method is 
evident from the computations. The number of points per cycle needed 
to obtain an accurate value for an integral of an oscillatory function is 
also examined, and it is shown that for the functions considered at 
least 6 points/cycle are needed. 
The far field radiation patterns of an open cassegrain with a 128 

wavelength aperture diameter are computed with this method up to 20 
degrees off-axis. In the vicinity of 20 degrees, the relative sidelobe levels 
are less than —65 dB or about 15 dB below isotropic. 

1.1 The Far Field 

The far electric field El of a paraboloid reflector antenna in an angular 
region about the axis, can be, based on the projected aperture field 
method, related to the reflected field at the aperture, E„ by the follow-
ing expression:' 

Ef — j exp (— jk/t) f E,.(x„ , y9) exp (jk pp. iRa) ds  (1) 
XR.  A 
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where 

X = wavelength, 
k = 2i-/X (propagation constant), 
R„ = the distance to the far field observation point, 
is a vector in the aperture plane, 

1, is a unit vector which specifies the direction of the observation 
point, 

A is the aperture area. 

Specifically the direction of the observation point 1R. expressed in 
terms of the unit vectors of the aperture (x„ , y,, , z„) coordinate 
system is: 

= lz, sin 0„ cos 4), + 1„ sin et, sin 0„  1.„ cos 0.  (2) 

where 0. and 0, are the far field observation angles, and 

e, = 1z,x„  1,,,y,,.  (3) 

For an open cassegrain the incident fields at the main reflector can 
be more readily computed in a spherical coordinate system with the 
axis aligned with the horn subrefiector axis as shown in Fig. 1. There-
fore, the integrations in equation (1) are also performed in this co-
ordinate system. The relations between aperture coordinates and the 
fields in the two coordinate systems were derived previously' and are 

x„ = r[cos 00 sin 0 cos 4) + sin 00 cos 0],  (4) 

y„ = r sin sin 4), 

Er = 1„,{ [sin 00 sin 0 — cos e(1 -I- cos 0 cos  

sin e(cos 0 ± cos 00)E0] 

— 1„,{sin «cos 00 + cos 0)E0 

— [sin 0 sin 00 — cos e(1 + cos O cos 00)1E01,  (6) 

where Elf and E0 are the 0 and e components of the incident electric 
field, fis the focal length of the paraboloid and r is the equation of the 
paraboloid surface in the 0, e coordinate system 

2f   
— 1 + cos 0. cos O — sin 0 sin 00 cos (1) 

(5) 

(7) 
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Fig. 1-Open cassegrain antenna. 
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HORN 

0,, is the offset angle. The surface element 

ds = r2 sin 0 dO dcp.  (8) 

Heretofore the above integral has been evaluated by double inte-
gration using Simpson's rule. Although rather accurate results can be 
obtained in this fashion, computation time for a given angle, 0„ in-
creases roughly proportional to (sin 0)2 (see Appendix C). As a result, 
except for the mairdobe and first few sidelobes of the far field, this ap-
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proach becomes extremely time consuming. To reduce the computation 
time for large values of the off-axis angle O. , the stationary phase 
approximation to the 4, integration is investigated. 

1.2 The Method of Stationary Phase 

Consider an integral of the form 

I(k sin 0) = f g(4,)  exp (j(k sin mob)} de 
a 

where (k sin 0) is large, 4,(41) is a real function and g(4,) is a slowly 
varying function. The method of stationary phase' approximates the 
above integral to 0(1/k sin 0.) by considering only contributions in the 
vicinity of the stationary points 44 where 4/(44) = 0. 
Under these conditions 

(9) 

2ir I(k sin 0.)  E g(0,)( sink e  lc in 0a 4/(4, )1  (10) 
i 0j.0"(0 i)  xP   

This method has been applied to the 4, integration in the expression for 
the far field (1). 
From equations (1), (2) and (3) e(e) can be written as 

et.) = [1.„ cos 4,,,  1„„ sin 44 • pi, .  (11) 

For specified observation angles 0. and 4)„ , equation (11) can be con-
sidered as the projection of the vector p„ in the direction of the unit 
vector 1,„ = 1„,, cos e + 1„, sine. . For the problem under consideration 
pi, is a function of O and 0. It has been shown previously' that for con-
stant 0, the vector pi, describes a circle as 4, varies from 0 to 2/r. The 
equation of the circle is 

2f sin 0. )2 ±  (  2f sin 0  
cos 0. + cos 0  + 2 \ COS 0  cosCOS Op) •  (12) 

A family of such circles for an offset angle 0. of 47.50 is shown in Fig. 2. 
Therefore the condition 4/(4)) = 0 corresponds to determining the 

extreme values of the projections of the vector p„ in the direction of the 
unit vector 1,„ . It is evident from Fig. 2 that as p„ describes a constant O 
circle two extreme values for the projections exist, namely at those two 
points on the circle such that tangents to the circle passing through the 
points intersect normally a line in the direction of the unit vector 1„„ . 
Furthermore the difference between the two extreme projections is the 
circle diameter. 
The expressions for the stationary points and the other values which 

enter in the evaluation of the 4, integration are derived in Appendix A. 
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Fig. 2— Projection circles of the paraboloid reflector for so = 

1.3 Approximate Values 

In order to approximate the 0 integration in equation (1), namely 
2r 

E =  r2E, exP le sin 0(x, cos 0.;  yp sin 0.,)1 del)  (13) 

by the stationary phase method, the reflected field E, has to be de-
termined at the stationary points. This field has an explicit 4) dependence 
for a TEli mode or combined TEn — T/1/11 excitation. For these modes 
it has been shown' that for x and y polarization the field components 
E0 and E0 are 

x polarization 

y polarization 

.1E0 = ear /2) cos 

146 -= —E(0) sin 4, 

=- E(ir/2) sin 0 

E0 = E(0) cos 0 

(14) 

(15) 

(16) 

(17) 

where E(r/2) and E(0) denote the O dependence of the fields when 
the feed horn is excited for y polarization in the planes 0 = ir/2 and 
0 = 0, respectively. 
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As shown in Appendix A, it is sufficient to evaluate the fields at the 
stationary points for one polarization only. For the other polarization 
the fields are then readily obtained. Therefore only y polarization will 
be considered. Furthermore it will be assumed that the radiated field 
from the subreflector has been computed at a constant radius from the 
focal point of the hyperboloid subrefleetor. 
By assuming a 1/r dependence for subreflector fields, the relation 

between the fields is 

2f   E(0,   
Er(9,  e — 1 ± cos 00 r 

where E. is the field at the distance 2f/(1 ± cos 00) and r is the equation 
of the paraboloid (7). The spherical phase dependence of the field in 
equation (18) is suppressed. 
With the approximation (18) and the stationary phase approximation 

to the q5 integration, the far field using equation (1) is obtained from 
the integral (see Appendix A) 

(18) 

(  ik R,.) f 9 (Efv) — j ex "  —  (Er) sin  clO  (19) 
0 

where the subscript y designates that the far field is for y polarization, 
and Om is the illumination angle. The y and x (cross polarization) com-
ponents of (Er) namely (Er)„ and (E,1 are given by 

(Es/  c(a2 —  b2 COS2 0.)(1 ±  COS 0o) 
( ce 1)1 

—ir(2f)2e8  2   

• [c(e'  «)( a sid  Er/2)  c cos' 4). .E(0)} 

— b sin' q5. cos çb.(e" — e'){cE,(7112) — aEc(0)}]  (20) 

and the cross polarized component (E,1 is 

E  2fYee  2   

v).  c(a2 —  b2 COS2 0.)(1 ±  cos oo) [r (Ce  +  .14)it 

ir(   sin O.   

• [b(e' — e') fa sin? ep„ E‘(0)  c cod 0. E‘(7112)} 

c cos 0.(ein e"){cE‘(0) — a.E‘(7/2)1] 

where 

= 1 ± cos O cos 90 , 

(21) 

(22a) 
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b = sin 0 sin 9,  (22b) 

C = cos 0 ± cos 0..  (22c) 

2k/ sin 0„ sin 0 
a —  r/4,  (23) 

cos 0 ± cos 00 

a 2k/ sin 0„ cos e„[   (24) sin 0° 
cos 0 ± cos  cos Oo ± cos Omi 

sin 0„,   

The second term in equation (24) reduces the phase by a constant. 
The expansions (20) and (21) are valid for (k sin 0„) very large. It 

should be noted that (20) and (21) display singularities at a = —T/4, 
that is, at 0. = 0, or 0 = 0. However, upon examination it can be seen 
that (20) and (21) contain the first terms of the asymptotic expansions 
for Bessel functions, that is, 

(2J„(x)  — 
Tx 

( cos x — --nT  7r) 
2  4 

(j)"( 2){ — (-1)' exp  — 11)1  exp [—j(x  
2  Tx  4  4 

By identifying and replacing the asymptotic terms by the actual 
Bessel functions, the singularities are removed and it might be ex-
pected that the approximation for small 0 and 0,, would improve and 
furthermore for large values of 0 and 0,, the approximations would be 
equivalent. There is however, no unique method to introduce such a 
replacement. The method chosen was dictated by the requirement that 
for the symmetric case 00 = 0, the expressions reduce to the exact 
expressions previously determined.' This necessitates associating a 
Bessel function of order n, J„(x) with terms cos mi)„ or sin nck., . 
On this basis the approximations to the 4, integration are: 

—7r(2f)2e''   
(Es) — c(a — b2 cos' 00(1 ± cos 0) 

• [c(Jo(x) faE,(7r / 2) + cE,(0)I  J 2(x) cos 20„1aE,(T/2) — cE,(0)I) 

— j/2b[cE0(7r/2) — aE,(0)} {J i(x) cos (b.+ J3(x) cos 3141] (26) 

and the cross polarized component 

T(2f)2ei°   
W V). c(a2 —  b2 COS2 Cb.)  +  cos 00) 

• [jb{3aE (0)  cE„(T/2)1J, (x) sin 0. 

2c{aE,(T/2) — cE,(0)IJ 2(x) sin 20„ 

jbfaE,(0) — cL(ir /2)1J o(x) sin 30.1 

(25) 

(27) 
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where 

47rf (  sin 0. sin 0  
x—  (28) 

X cos O ± cos 00). 

It is noted the (Es),, is symmetrical with respect to 0,, since by inter-
changing cp. by —45. the expression remains the same. This would be 
expected since the plane ct, = 0 is a plane of antenna symmetry. It is 
also evident from equation (27) that the cross polarized component is 
zero in the plane of symmetry and is antisymmetrical with respect to 0. . 
The above expressions reduce to those obtained by the method of 

stationary phase for large values of x. As shown subsequently by nu-
merical integration the latter approximations extend considerably the 
range of O and O beyond which the stationary phase approximations are 
applicable. 
For x polarization as outlined in Appendix A the expressions are 

similar. In particular (Er) z is of the same form as (E.)„ with Ez(o) and 
E, (71-/2) interchanged. The cross polarized component (Es).., is of the 
same form as — (Ey)z with E, (o) and Ez(r/2) interchanged. 
The expressions (26) and (27) are of course approximate. This is 

evident by considering the special case Oa = 0, where the values for the 
fields must be the same independent of 4). . For this special case the 4) 
integration is performed in closed form in Appendix B. 
For the antenna shown in Fig. 1, with 00 = 55° and O., = 34.00, by 

assuming the radiation fields of the subreflector at a constant distance 
are the same in the E and H planes, it is shown that the differences 
between the exact and the approximate values at O. -- 0 are 0.049 in 
the E-plane and —0.053 in the H-plane, both in comparison to one. 
The subsequent numerical computations indicate that these are the 
largest errors introduced by the approximation. 

1.4 Numerical Results 

In order to determine the validity of the above approximations, 
computations of the far field radiation patterns for the open cassegrain 
antenna have been performed using the subreflector radiation pattern 
E. shown in Fig. 3. 
The integration with respect to 4,, as indicated in equation (13), has 

been performed, employing Simpsons rule, as a function of 61 in the E 
and H planes, and for observation angles O. = 0, 2.5, 5°, 10° and 20°. 
Estimates for the number of points required for the ri) integration and 
the computation time are presented in Appendix C. 
The normalized amplitudes obtained from the integration are shown 

in the upper portions of Figs. 4-8. The normalization was based on the 
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52 

stationary phase approximation (20) which shows that in the planes 
tela = 0 or ir/2 the integral (13) is proportional to B,(o) or E'(/r/2) re-
spectively. The normalized values for the integrals EN shown are 

E N   v   

[(Ev)vIE.13 

where the subscript zero indicates the value at O = 0. 
Immediately beneath EN in Figs. 5-8 is shown a plot of the absolute 

value of the difference between the normalized values obtained by inte-
gration and the stationary phase approximation given by equation 
(20). The third plot in each figure show the corresponding difference 
using the modified stationary phase approximation (26). As predicted 
by the method of stationary phase and as shown in Figs. 5-8, the 
approximations improve as k sin O. increases. However, where as 

(29) 
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for small values of O the stationary phase approximation (20) introduces 
significant error, the modified approximation (26) becomes increasingly 
accurate. It should also be noted that with both approximations rela-
tive maximum differences occur near zeros, therefore resulting in less 
significance in the second integration. 
Figures 9 and 10 show the amplitudes of the far field radiation as 

computed by single integration and the modified stationary phase 
approximation (26). Shown for y polarization are the far field in the 
plane of antenna symmetry 0. = 0 and 7r, and the fields in the plane of 
asymmetry 4, = r/2 up to 200 off axis. Figure 11 shows the difference 
in the plane yb„ = 0 between the far field pattern computed by the ap-
proximate method and the same pattern computed using double integra-
tion. Excluding the vicinity of relative minima, errors were less than 0.2 
dB up to off-axis angles of 10, and on the order of a few hundredths of a 
dB for larger angles. It should be noted that on axis the difference is zero, 
since the exact expression for the  integration as given in Appendix B 
is incorporated in the single integration program. 

II. CONCLUSIONS 

A method has been developed for the numerical computation of the 
far field radiation patterns of open cassegrain antennas and related 
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antenna configurations using a single numerical integration, which re-
duces considerably the computation time. The method is based on the 
stationary phase approximation but modified such that for symmetrical 
paraboloid antennas the approximation reduces to the exact expression 
which is obtained by direct integration. The errors introduced by 
stationary phase and modified approximations are examined. It is shown 
by numerical computations that the error in the far field radiation 
pattern introduced by the modified stationary phase approximation at 



STATIONARY PHASE METHOD  443 

angles beyond the main beam is on the order of a few hundreths of a dB. 
The number of points needed for numerical integration of oscillatory 

functions by Simpson's rule is also examined by using specific oscillatory 
functions. It was determined that at least 6 points per cycle are necessary 
to obtain four decimal-point accuracy. 
The radiation patterns of an open cassegrain antenna with a 128 

wavelength aperture diameter are computed up to 200 off axis. In this 
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region the sidelobe levels are —65 dB or —15 dB below the isotropic 
levels. 
Although the stationary phase method has been applied here to the 

computation of the far field based on the projected aperture field method, 
the same approach may be used for the computations based on the 
current distribution method. In particular in the plane of antenna sym-
metry, the locations of the stationary phase stationary points are the 
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same and therefore the presented approximations are readily extended 
to this plane. 

APPENDIX A 

Derivation of the Stationary Phase Approximation 

Consider the 4) integration of equation (1) 
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21r 

E(k, 0) = f  exp [jk sin 0„(x„ cos 44  y, sin 0,,)]7•2 (10  (30) 

with x„ , y, , E,. and r given by equations (4) through (7). The stationary 
points are determined by 

d   ay, -  — ax 
cos ea + sm  Ade ae (31) 

This leads to the relation 

[(1 ± cosO cos Bo) cos 4, — sin 0 sin 0.] sin cp. 

— sin ecos O ± cos Oa] cos (10„ = 0.  (32) 

Equation (32) is a quadratic equation in cos de. Solving this equation 
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Fig. 9—Far field radiation pattern in the plane of symmetry. 
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yields the following values for the stationary points 

sin 0 sin 00 ± cos 00(1 + cos 0 cos 00)  
COS 4,1.2 -  (33) 1 ± cos 0 cos 0o ± cos 0„ sin e sin 00 

and from (32) 

sin itea(cos 0 ± cos 00)   
sin 01.2 =  (34) 1 + cos  cos 00 ± cos 00 sin 0 sin 90 

Evaluating the phase factor 1// gives 

= 21 (sin 0 + cos Oa sin 00)  
cos  -I- cos O0 

(sin  — cos 00 sin 00) 
—  2f  cos 0 ± 008 00 

(35) 

(36) 
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Fig. 11—Difference in far field pattern as computed by double integration and 
approximate method (in the plane 0. = 0). 

Note that 
2f sin O   

Ihbi) — e(ip.) — 2[cos 0 + cos 00  (37) 

which is the diameter of the circle given by equation (12). That is the 
stationary points are antipodes on the projection of the plane of the 
intersection of the paraboloid surface with the cone 0 = constant. 
Evaluation of the second derivative leads to 

o  = +f 
c/2 ,  smp . [1 + cos ecos Oo ± cos  sin sin 00]2  

2  2  0  (38 d  1.2  ) [cos O + cos Oor 

Evaluation of r gives 

[1 + cos 0 cos On ± sin 0 sin Oo cos cloo]  
7'1,2 = zi  [cos O + cos Oo l2 (39) 

It remains to evaluate E, at the stationary points. From equation (18) 

2 —  1   •  (40) 
r (1 + cos 00) 

From equations (6) and (31) 

sin 4,..1' 2 (cos O ± cos 00)  ,2 —  •   cos 4). — Eco sin 0,,) 
sm (1).  1+ cos 00 

1„0(E.9 sin  Ec, cos On)].  (41) 
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Substituting the values for x and y polarization in equations (14) 
through (17) it is evident that the expressions are similar. Therefore 
the x component for x polarization can be obtained from the y com-
ponent for y polarization by interchanging Ea(o) with E(T/2). Similarly 
the y component for x polarization can be obtained from the x com-
ponent for y polarization also by interchanging E.(o) with E(r/2) and 
changing the sign in front of the resulting expression. 
Substituting the appropriate expressions for y polarization into the 

stationary phase approximation leads to equations (20) and (21). 

APPENDIX B 

The 4, Integration on Axis (0. = 0) 

From equations (6), and (13) for 0. = 0, the integral for the y com-
ponent of y polarization with respect to ck can be written 

(21)2  
er). — (1 + cos 0) 

j[E ,(7,- /2)e — aE ,(0)1 sire 4) j_  X(0)   } d,„ (42) 
Jo  [a — b cos ce a — b cos  "̀" 

where a, b, and c are defined by equations (22a), (22b), and (22e). 
Integrating the first terra by parts, reduces the evaluation of equation 
(42) to a tabulated integra1,6 that is, 

hence 

I--  de 2/z-
a — b cos  — (a' — b2) 

[X(ir/2)  E,(0)](E„)„ = —2(2f)2 
(1 ± cos eel ± cos 0). 

The integration for x polarization (E,..). gives the same result. As a 
consequence the on-axis gain for an open cassegrain antenna is the same 
for x and y polarization if the excitation is the same. Based on the 
approximation (26) 

(2f)2[E,(x/2)(1 ± cos 0 cos 0.)  X(0)(cos 0 + cos 0 n 0)] (A\  
(E ") '' — (1 + cos 00)[(1 ± cos 0 cos 00)2 — (sin 0 sin  cos 0.)2] '") 

To estimate the relative error it is assumed that E%(o) = E.(r / 2). 
This gives in the plane 0. = 0 or r 

= 1  [(1 ± cos 0)(1 ± COS 0 12 

(43) 

2[cos 0 + cos 00] 

(44) 
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120 

Similarly in the plane gk„ = 7r/2 

(AE,,)„ = 1 L ± cos 0)(1 ± cos 00)12 (46) 
2(1 ± Cos O Cos 00) 

Equations (48) and (49) can be combined yielding 

1   
= 1 (47) 

[1  (tan 0/2 tan 00/2)12 

where the minus sign corresponds to fi) = 0 or ir and the plus sign is for 
4). = r/2. 

APPE NDI X C 

Computation Time Estimates 

The attempt to find a suitable approximation to be used for the 
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evaluation of far field radiation patterns was motivated, in fact necessi-
tated, by the excessive computation time required for a double inte-
gration procedure. 
Both the 4) integral [equation (13)] and the 0 integral [equation (19)] 

have oscillatory integrands, with the 4) integrand, for the maximum 
value of 0, having approximately double the number of oscillations as 
the 0 integrand. The maximum number of full cycles in the O integrand 
is equal approximately to 

D. 
sin O. 

where D is the antenna aperture diameter. 
Figures 12 through 15 show the 4) integrand for 0= 340, and for 

various values of observation angle 0„ . Below these figures is shown 
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the result of the  integration using Simpson's rule with increasing 
number of points. We have found by numerical integration that for the 
integrands discussed above, a minimum number of 6 points per cycle is 
necessary to provide reasonable accuracy. 
For a discussion of numerical integration of oscillatory integrands 

the reader is referred to Ref. 6. 
An estimate for the processor time required to calculate both com-

ponents of the far field pattern in both the E and H planes (4 patterns) 
out to an observation angle of O. degrees by the method of double inte-
gration is given by: 

k, f-  82. -à-

where 
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k, is the fundamental program loop execution time (1.13 X 10-4 
min., on the G. E. 635). 

N is the number of integrand evaluations per cycle required by the 
integration procedure. 

AO. is the observation angular increment at which results are to be 
calculated. 

An estimate for the same calculation by the approximate method 
derived herein is: 

00 O. 
k,  N -2 

where 

k, = 0.75 X 10-3 min. 
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TABLE I—EXECUTION TIMES 

O. 50 100 20 0 

Double Int. 
Appr. Method 

4.7 min. 
0.9 min. 

38 min. 
3.7 min. 

300 min. 
15 min. 

Table I shows comparable execution times for various observation 
angle extremes, assuming ,à0„ = 0.1 0, N = 10. 
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A Decomposition of a Transfer Function 
Minimizing Distortion and 

Inband Losses 

By ERNST LUEDER 

(Manuscript received July 3, 1969) 

A rational transfer function to be realized by an RC-active network is 
usually decomposed into functions of at most second degree. We present 
a method for achieving this—which maximizes the dynamic range of the 
whole network while minimizing inband losses. The method is based on 
the "bottleneck problem." 

I. INTRODUCTION 

A given rational transfer-function T(s) of a passive network, which 
is real for real s, is to be realized by an inductorless two-port. This is 
usually done by breaking down T(s) into functions T1(s) of the first 
or second degree in s. All functions of the first and those of the second 
degree with poles on the negative real axis are realized by passive RC-
networks with buffer amplifiers between the different stages. Those of 
second degree but with poles not on the negative real axis are realized 
by RC-active networks containing amplifiers. We deal at first with 
the second group of functions. The extension to the general case follows 
easily. The voltage swing at the input of the different stages with func-
tions T ; (s) is often tightly limited by the threshold above which over-
driving of the amplifiers (that is, distortion) occurs. A further result 
in many cases is high inband loss of the overall filter which cannot be 
overcome by amplification because of both distortion and a too low 
signal/noise ratio. 
Our task is to find a method of factoring T(8) into the different 

functions T;(8) such that the allowable voltage swing at the input 
is as high as possible without creating distortion and the inband losses 
as low as possible. We confine ourselves first to transfer functions 

V2  IS" ± • • • ais ao  
T(s) —  — K sm  b,3-1  ± • • • bi8  b with n m  (1)o 

455 
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which, as mentioned, have no poles on the negative real axis. Thus m 
is even. If we count the zeros of T (s) including those at infinity, then 
T (s) has also m zeros. Let the number of zeros including the origin and 
infinity on the real axis be r, . Then r, is even, since m and the number 
of zeros not on the real axis are even. We are mainly dealing with 
transfer-functions, which belong to the class of networks having a pass-
band. In the case of two ports without a passband a slightly different 
approach will be necessary. The functions T. (s) of second order have 

the general form. 

2 +̀21 s + co2. 
Ti(s) = K1 q,   

2 + C.Op  + 
ci 

qv 

After normalization by 

with 

we get from equation (2) 

(2) 

(3a) 

(3b) 

e2 

Ti(C°P .7)) =  i7(P) = K1 q.   with c = (j.- •  (3c) 
p 2  p  

To meet the aforementioned requirements as to distortion and inband 
losses, we have these possibilities: 

(i) There are in general a large number of ways of finding the 
different functions T (s), because there are many methods of 
choosing pairs of poles and zeros in forming T (s). In Sections 
II and III we discuss the best choice for our task. 

(ii) In RC-active two-ports there is some freedom in evaluating 
the constant K in equation (2). 

(iii) The functions T (s) and their realizations once found, there 
are many possibilities for the sequence in cascading the different 
stages. In Section IV, we discuss some guidelines for this point as 
well as for 
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II. A CRITERION FOR THE GOODNESS OF AN ASSIGNMENT OF POLES AND 

ZEROS 

We need a criterion which tells us when a chosen assignment meets 
the requirement of voltage swing and inband losses. For this reason 
we are looking for the shape of the function 1 T1(j2) 12, which from 
equation (3c) has the normalized form, 

2 
(e2 x). e x 

I T' 'n 12 4!  — Fi(x) —  with x = 22.  (4) 
K.  (1 — x)2 

4! 

We are interested in the shape of the function in equation (4) for real 
values of 2, that is, for real nonnegative values of x. The extrema, of 
F. (z) occur, as can be easily calculated, at the values 

C2 
C4 — 1  [ c4 _ 1)2 02{2 (02 1) + 1 — } {2 (C2 1) + 1 2 — 1  

Xo , ] q.  q7, 
X., ,, — , 1 C2 (5a) ql,   

2 (c2— 
49 4. 

and 

with 
Fi(œ) = 1. 

(51D) 

(5e) 

If xa,b are real and nonnegative, extrema occur with the ordinate 
values F, (z.,,,) from equations (4) and (5a) as follows: 

(c2 _ z‘..0 2  
! 
" 

—  4 •  (6) 
(1 — 

For the moment we need not know if F1(x.) or F1(4) is a maximum 
or a minimum. It is sufficient to note that besides the extremum at 
x = 00 , at most two other extrema of F. (z) can occur.* Let the maxi-
mum be at x„, and the minimum at x. . We note from equation (4): 

F;(0) = c4 (7) 
with F1(0)  Moo) = 1 depending on c. An example for a function 

*For o as abscissa, a further extremum can occur at O = O. For e = 0, one of 
the extrema in equation (5a) lies at z = O. 
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Fi(x) with Fi(x.) > e and Fi(0) > Fi (co) is shown in Fig. la, while 
Fig. lb represents a function Fi(x) with F i(x„,) < 1 and F 1(0) < Fi( co ), 
The passband of the whole filter may be in x e Ex, , x21 with x, 

and x2 > xi , as shown in Fig. 1. Let us first assume that a peak 
of F1(x) may occur at x,„ with x„, E [x, , x2]. Considering only frequencies 
in the passband, we are stating that overdrive of the amplifiers will 
first occur at the maximal value F„,,,x of Fi(x), when the spectrum of 
the input signal is assumed constant at least in x E [xi , x21. To prevent 
overdrive of the amplifiers F.,„ should exceed the "mean" values in 
the passband as little as possible. On the other hand, we have to re-
gard the minimum value F., of F-(x) in x e [x, , xa]. F., gives us 
the strongest attenuation of the signal, which we have to overcome by 
amplification. When this is not possible because of overdrive or a too 
low signal/noise ratio, then a low F.,. yields high inband losses. For 
this reason, Frnin  should be as close to the "mean" values in the pass-
band as possible. It would seem at first sight that both requirements 
can be met, namely that F.,,,, and F., be as close to the mean values 
in the passband as possible, if we look for a transfer function Ti(s) 
such that di = Fm,, — F„, be minimized. But this criterion does not 
always cover our requirements as can be seen in Fig. 2. Both functions 
Fi(x) have the same value di ---- Fra,„ —Fmi,, . Their practical behavior 
however is very different. The two port with the transfer function of 
Fig. 2a almost entirely cuts off the frequencies in the passband in the 
neighborhood of xi and x2 and we would need a very high gain to bring 
them up, which is not true in the case of Fig. 2b. To avoid this error, 
we redefine the di-value by the ratio 

d- = Er ' 
min 

(a) 

(8) 

Fig. 1—Functions FJ(x) with (a) Iii(x„,) > cl and Fi(0) > F)(00); and (b) 
j(x.) < 1 and Fj(0) < Fi(oo). 
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Fig. 2— Two-port almost entirely cuts off the frequencies in passband in 
neighborhood of x1 and 52 in (a) but not in (b). 

with F„,„, and Fmk , for x E [x„ x21 and require it to be as close to unity 
as possible. In order to compress the range of values we can let 

di = log (9) 

where di is obviously a positive number. The values di in equation (9) 
should be as close as possible to zero, that is, as small as possible. 
Until now, we have assumed x„, G [x, , 52]. If 5m is outside the pass-

band we have to argue in a slightly different manner. Now we could 
have two points of a peak value, one at x = x„, and one at the boun-
dary x  co . We look for that point among these two with the highest 
F„,„,, value and we denote this point by x„, . Let us assume that the 
amplitude of a signal from a neighboring channel occurring at x„,' is so 
high that the amplifiers are overdriven. This will change the operating 
points of the amplifiers resulting in an impaired transmission of signals 
in the passband. This can sometimes be avoided by inserting the stage 
under consideration at such a place in the cascade, that the amplitude 
of the input signal at x„; is not too high. This, however restricts the 
freedom of choosing the cascade sequence. We therefore request that 
the maximum F,„„. at x„', be as close to the "mean" values in the pass-
band as possible, even if x, EE [si , x2]. Thus we look for F„,„,, for x E 
[0, cd.  Minimum values of F  f ( s)  for x Er [x„ xj are of no importance 
since we don't have to amplify those values outside the passband. For 
these reasons the di-values in equations (8) and (9) are replaced by 

' 
(10) 
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or 

= log 
e min 

with 

for x G [0, co] 

and 

Fmia  for x e [X1 1 x2]. 

Thus each assignment of a pair of poles to a pair of zeros, that is, 
each function T i(8), is described by a number d1 defined by one 
of the equations (10) or (11), which in the case of (11) should be as 
small as possible for all j = 1, 2, • • • , m/2. In other words 

max { dil i=1.2, • • •m/2 —* min  (13) 

for the d1 in equation (11). 
M. Segal pointed out that this problem is an assignment problem 

of the bottleneck type.' O. Gross has given a solution which is con-
venient also for large numbers of poles and zeros.' This algorithm was 
adopted by S. Halfin to find an optimal pairing and an optimal nested 
solution.' He also presented a method of listing all equivalent solu-
tions. A further solution suitable for smaller numbers of poles and 
zeros (for example,  20) has been described in Ref. 4, where also all 
equivalent solutions may be found. The next paragraph shows how 
the various types of transfer functions should be treated as to this 
assignment problem. 

III. THE PAIRING OF POLES AND ZEROS 

We have to check all possibilities of assigning a pair of poles to a 
pair of zeros. For simplicity, we first assume all zeros including the 
origin and infinity to lie off the real axis. We consider the case of zeros 
on. the real axis later. Remember that all poles of T (p)* lie in the in-
terior of the left half plane of p but not on the negative real axis. If 
we assign a pole at p = p, to a zero at p = zu as shown in Fig. 3, we 
have to assign, as is well known, the conjugate complex pole p = 
to the conjugate complex zero p = zs,; , thus forming the second order 
function Ti (p) in equation (3c). Therefore we need only regard in. 
Fig. 3 the assignments of the poles p1, n2 • • • Pm/2 to the zeros z,, 

* T(p) is the function T(s) of equation (1) normalized by equation (3a). 
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Pu 

o 

p -PLANE 

o 

Fig. 3 — An example for a pole-zero assignment. 

Z2 • • • 5„,/2 where all values have positive imaginary part. To each 
assignment (p„  =  1, 2 • • • m/2, belongs a number defined in 
equations (10) or (11), which will here be denoted by d,,„. All possible 
assignments (p„ , z„), with their associated d,,„ are listed in Table I. 
Obviously their total number is (m/2)2. The solution of the assign-
ment problem" starts with Table I. 
Now we have to regard the case of zeros lying on the real axis in-

cluding the origin and infinity, while as before, all poles are assumed 
to be complex. The problem now is to assign a pair of zeros to each 
conjugate complex pair of poles. The zeros on the real axis with number 
r,, where r, is even, can be arranged pairwise in many ways. For 
example if we have the four distinct zeros 1, 2, 3, 4 in Fig. 4, where 
one of them may be at infinity, then we have these three possibilities 
to arrange them in pairs: (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3). In general, 
if we have r, different zeros on the real axis with r, even, then we have 

= (r, — 1)(r, — 3)(r, — 5) • • • 5.3.1  (14) 

TABLE I 

Z' Z a Zh 

d12 dih 

pa da l d 2 2 d 2h 

dh, dh2 dhh 

h= 
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p -PLANE 

o 
4  3 

Fig. 4 — We have these possibilities to arrange zeros in pairs: (1, 2) (3, 4); 
(1,3) (2, 4) ; (1,4) (2, 3). 

different possibilities of a pairwise arrangement. In the case of multiple 
zeros on the real axis we have less than ao possibilities of pairwise 
assignments. For the zero arrangement shown in Fig. 5, we have only 
the following two possibilities: (1, 2)(3, 4) and (1, 3)(2, 4). 
Now we have to complete Table I by regarding also zeros on the 

real axis. We pick out one pairwise combination of the zeros, for example, 
the arrangement (1, 2)(3, 4) of Fig. 5, and add each pair of these zeros 
to the pairs of conjugate complex zeros in Table I, where we treat 
them like the other zeros. From that, one solution of the assignment 
problem will be found. However, we did not yet regard all possible 
assignments. We have to replace the pairwise combinations of the 
real zeros by another possible combination, for example, by (1, 3)(2, 4) 
in Fig. 5. This provides a second table like Table I from which a further 
solution can be found, and so on. The solution with the least maximum 
value of the d,,. is the solution to the whole problem. 
Finally we have to deal with the case in which poles are also located 

on the real axis. We consider first the simplest and most important 
case of only one pole and r„ different zeros on the real axis. The pole 
on the real axis can be assigned to one of the zeros on the real axis. 
There are r, ways of doing this. 
The r, — 1 zeros left can be pairwise arranged according to equa-

tion (14) in ai = (r, — 2)(r, — 4) • • • 5.3.1 ways where each pair of 
these a, sets is handled like a conjugate complex pair of zeros. Thus 
we get r,a, sets of zeros to be assigned to the poles, which means r,a, 
different tables of the kind of Table I. The solution with the least 
maximum value of the d,,,, is the solution of the whole problem. The 
case where the r, zeros on the real axis are not different is handled in a 

oo 

3,4 

Fig. 5— We have here two possibilities: (1, 2) (3, 4) and (1, 3) (2, 4). 
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similar way. The more general case where r,> 1 poles, with r, odd or 
even, are on the real axis is usually not so important and is therefore 
only described briefly. 
If r, is odd, we assign one pole to one zero on the real axis, which 

can be done in several ways. The zeros and poles left on the real axis 
are arranged in pairs, which once more can be done in several ways. 
Then we form for each pairwise arranged set of poles and zeros a table 
like Table I from which we get the solution. If r, is even, we start with 
the pairwise arrangement of poles and zeros and proceed as above. 
Incidentally more first order functions of the kind described could be 

formed with negative real poles and zeros. However this is undesirable 
because it would require more buffer amplifiers. 
In some cases the assignment of one particular pole to one particular 

zero is prescribed by the realization procedure. Then we simply assign 
them and eliminate this pole-zero pair from consideration. On the 
other hand, if a particular assignment of one pole to one zero is for-
bidden, we provide it a high d, ,u-value. 

IV. THE CHOICE OF THE FACTORS Ki AND OF THE SEQUENCE OF CASCADING 

In most realization procedures the factor K 1  in equation (2) can be 
chosen within certain limits by evaluating the gain of the amplifiers. 
We describe here one way to do that. The choice of Ki should be made 
in such a way that the "gain" in the passband of all stages is as close 
together as possible. This prevents one stage from having a much 
lower gain than the others which results in a lower signal/noise level 
in that stage. This is only a short hint because work on this point is 
continuing. Within the building block concept of G. S. Moschytz5 there 
is enough freedom to choose the appropriate K1. In the case of the 
low pass, bandpass and the high pass, this has been shown in Ref. 6. 
Some guidelines for the sequence in cascading the different stages 

follow where we use observations by Moschytz. The first stage should 
be a low pass or a bandpass, thus keeping higher frequencies from the 
amplifiers and avoiding slew rate problems. Also the last stage should 
be a low or a bandpass for the purpose of suppressing noise created by 
the amplifiers themselves. Where a peak in the frequency response of a 
stage cannot be avoided, this stage should be preceded by stages de-
livering attenuation at the peak point. In special cases different con-
siderations for cascading could be necessary. 
If the assignment problem gives us several solutions, then the one 

best meeting these guidelines for cascading should be chosen. If the 
two port has no passband, then xi and x2 should define the frequency 
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range in which the network has to operate. The choice of the values Ki 
should also be made in such a way that there is no great difference in 
gain in the frequency range x E [x„ x2]. 

V. AN EXAMPLE 

Given a transfer function T (s) for a Single-Side-Band (SSB) filter 
with the following poles p, • • • p5 and the zeros z, • • • 25 : 

zi = ±j0.32233523.106, 

22 = ±j0.36742346•106, 

23 = —0.31480-105 ±j0.3132295- 106, 

2 4 =  0 (twice), 

25 = co (twice), 

7), = —0.276100.10 ±j0.2961048•106, 

732 = —0.31480.105 ±j0.3132295.106, 

p3 = —0.8706.104 ±j0.314697•106, 

74  =  —0.93340.10' ±j0.18670202.106, 

p5 = —0.25280.10' ±j0.62888167•105. 

The zero 23 and the pole p2 are a phantom pair which have been intro-
duced for the realization procedure. 
The four zeros on the real axis 24 and 25 can be pairwise arranged in 

two ways: (24 , 24), (25 , 25) or (24 , 25), (24 , 25). Let the pairs of the first 
arrangement be denoted by 24,1 = (24 , z4) and 25,1 = (25 , 25) and the 
pairs of the second assignment by 24,2 = (24 , 25) and 25,2 = (24 , 25). 
Now we calculate the di-values of equation (11) from which we ob-

tain Table II, corresponding to Table I. Then we obtain with the help 
of Ref. 4, the following pairings* 

(25 ,p4);  (241 ,p5);  (2.1 ,p4);  (22 ,p2);  (2i ,p).  (15) 

In the realization procedures there is usually a constraint such that 
one particular assignment of a pole to a zero is prescribed. In the reali-
zation by building blocks,' pole p, has to be assigned to zero z3 . The 
rest of the assignments are free. In this case the solution is 

(23 , p3); (Z41 1 p.);  , 134);  (22 p2);  (Si Pi).  (16) 

*The pairings in this example have been calculated by a procedure described 
in Ref. 4, which is suitable for small numbers of poles and zeros. 



RATIONAL TRANSFER FUNCTION 465 

TABLE II 

Z1 Z2 Z3 Z41 Z51 242 Z52 

P1 0.15 0.57 0.25 3.7 1.36 2.47 2.47 

P2 0.18 0.3 0 3.8 1.49 2.69 2.69 

P3 0.18 1.25 1.1 4.9 2.5 3.77 3.77 

P4 1.87 1.4 1.6 1.9 0.56 0.87 0.87 

05 4.1 3.3 3.7 0.4 2,64 1.5 1.5 

Solution (16) has the five transfer functions Ti , j = 1, 2, • • • 5 
listed and drawn with full lines in Figs. fia through 6e. There the factors 
Ki , j = 1, 2, 3, 4, 5 in equation (3b) have been chosen in accordance 
with Section IV such that the whole filter has an attenuation of 0 dB 
at 30 kHz. The sequence in cascading the different stages is as de-
scribed in Section IV, using the denotations for the different stages 
in Figs. 6a through 6e 

T 4(s) T j(s) T 2(s) T (s) T (s). 

T  , Ti and T2 deliver the attenuation for the peak of 713 . Since it is 
not possible to have a low pass as both the first and the last sections, 
we chose the low pass to be the first because in this case, noise coming 
in at the input terminals was stronger than noise created by the ampli-
fiers. The magnitude of the transfer function of the whole filter can be 
seen in Fig. 7. 
We wish to compare the solution described above with an earlier 

solution realizing the same transfer function in a different way. In the 
earlier version the phantom pair (za , pa) had the following location 

za = -0.12.10° ± j0.28 • 10'; pa = -0.1240° ± j0.28 • 10°. 

In. the new realization we shifted this phantom pair closer to the pole 
pa and thus were able to decrease the peak in the FEN* section as 
shown in Fig. 6c. 
The earlier realization had the following assignment of poles and 

zeros; (z1p2)(z2pi)(z3pa)(z4p4)(z5p3), which leads to the following transfer 
functions of Ref. 7. T; , j = 1, 2. • • • 5, are listed in Figs. 6a through 6e. 
The magnitude in dB of these functions is plotted as dotted lines in 
Figs. 6a through 6e. The passband lies between 12 and 46 kHz. The 
functions T, , T, and especially T4 of the new version have obviously 
less attenuation in the passband, while the functions T2 and especially 
T3 have a lower peak than in the earlier version. The whole filter has 

* Frequency Emphasizing Network. 
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Fig. 6a —Transfer function Tj, j  1. 

62 -I- 0.103940"   
Ti(s) = 0.85  + (0.5522.105)s ± 0.8844-10" (solid line); 

.575s' + 59.742 •10"   
Ti'(8) = (dotted line). 

82 ± (25.909 • 104)8 + 9.911 4010 

Fig. 6b — Transfer function Th j = 2. 
s"  0.135.10"   (solid line); 

T2(8) = 0.75 s'  (0.06296•106)s + 9.91140'° 

32 + .135.10"   
T2'(s)  .4586 Es 2 (.5522-105)s ± .8844 • 10"i (dotted line). 

60 70 
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the frequency response of Fig. 7, where the full line represents the 
new, the dotted line the earlier version. The new version has a minimum 
attenuation of 0 dB in the passband, instead of —17 dB in the earlier 
case. If needed, the new version is able to deliver some amplification 
in the passband. In the earlier version a maximum voltage swing of 
0.3V„, at the input was admissible because of overdriving, while in 
the new version the maximum voltage swing is limited by the ampli-
fiers and not by the peaks of the transfer-functions. Using the op. amp. 
RCA 3015A, the maximum voltage swing in the new version is  
since the amplifiers alone have a voltage swing of 1.8V„„ . A way to 
improve the dynamic range of the amplifiers by minimizing the current 
drain can be found in Ref. 8. This method can also be used in con-
nection with the transfer-functions T, (s) found by the method pre-
sented in this paper. 

VI. CONCLUSIONS 

The given transfer function of a filter, which is to be realized by an 
RC-active two-port, is generally factored into second order functions. 
A method has been presented to achieve this so that the whole filter 
has minimum inband losses and maximum dynamic range in which no 
overdrive of the amplifiers (that is, no distortion) occurs. The problem 
led to an assignment problem of the bottleneck type. The efficiency of 
the method has been shown in the case of an 88B-filter, where the in-

Fig. fic — Transfer function Th j = 3. 

, 8: + 0.06296.10°s  9.911.1010 
218 ‘81 32 + (1.7412.104)8  9.911.1010 (solid line); 

40150 + 10.412•104s ± 39.84400  
T,'(a)  (dotted line). 

a° -I- (1.7412401)8 + 9.911.1010 

Fig. 6d — Transfer function T,, j = 4. 

1   
(solid line); T 4(s) = 3.277 • 10.1° 80 (1.8668.100)8 A- 4.357.10'6 

15.287.107   
82 -I- (5.056.106)8 + 4.594.100 (dotted line). 

Fig. 6e — Transfer function Th j = 5. 

/31   
Tb(s)  = 0.834  st + (5.056 — 101)8  4.594.101 (solid  line); 

2.1060   
— (dotted line). 82 ± (1.8668.105)8 + 4.357.1010 
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Fig. 7 — Gain of the bandpass. Earlier version with dotted line; new version 
with solid line. 

band loss could be reduced to 0 dB instead of —17 dB in an earlier 
version and where the dynamic range of the input signal could be in-
creased to 1.8V„ instead of 0.3V„ as before. 
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Electrochemically Controlled Thinning of Silicon 

By H. A. WAGGENER 

(Manuscript received December 31, 1989) 

A method for precision thinning silicon integrated circuit slices has 
been developed whereby either n or p type regions may be selectively 
removed from material of opposite conductivity. The existence of a 
simple and economical means to attain precise thickness control permits 
more complete advantage to be taken of many silicon IC structures. 
For example, precise thickness control, together with anisotropie' 
etching of isolation/separation slots, is expected to permit economical 
fabrication of high component density, air-isolated monolithic' inte-
grated circuits. 
This method differs from previous electrochemical techniques' in that 

unwanted silicon is removed chemically, while the regions to be retained 
are passivated electrochemically. Accordingly, etchants are used for 
which silicon to be retained is passive when biased above some critical 
voltage, V„,,„„ ,while regions to be removed are at a potential below V,,,.. 
Hot aqueous alkaline solutions form a useful class of etchants for this 

application, for orientations other than (111). These etchants are 
characterized by a relatively sharp active/passive transition (V0011  •—• 
V„a.. ,e..-..', 0.5 volt) and by a large ratio of silicon etch rates between the 
active and passive states. Ratios of greater than 200 : 1 are readily 
obtained. The ratio of active etch rate/passive etch rate is very impor-
tant, because this quantity in part determines the thickness uncertainty. 
Application of the technique to the formation of thin, uniformly 

thick n type silicon slices is illustrated in Fig. 1. If V.011 > V,,0,.. ) then 
Va = Veal 1 > Vines and the n region will be retained. If V0.11 is restricted 
to voltages such that the leakage of the reverse biased junction is 
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OHMIC 
CONTACT \ VCELL--  , PT CATHODE 

5N KOH AT 95°C 

Fig. 1— Schematic illustration of the thinning technique as used to form 
n type slices with accurately controlled thickness. An n region is formed by 
epitaxy or by diffusion. The starting material is high-resistivity p material. 
When the cell is biased as described in the text, the p region can be removed 
while the n region is retained. Neither the exact composition nor temperature 
of the etching solution is critical. 

sufficiently small, then Vp < Vp... , and the p region will be removed. 
It is assumed that the contacts are arranged so that the lateral ohmic 
drop in the n type silicon is small enough to be negligible. 
For the cell arrangement shown, V„ is about 0.5 volt for either n or p 

material. Thus thin p-type slices can be formed by reversing the location 
of the n and p layers as shown in Fig. 2. The maximum allowable cell 
voltage is reduced because the controlling junction is now forward 
biased. 
Structures of this type have been made where the n layer was formed 

by diffusion into a background approximately 2.5 X 10-a cm thick. 

/INERT 
CARRIER' 

 VCELL   -PT CATHODE 

5N SOH AT 95°C 

Fig. 2— Schematic illustration of the thinning technique as used to form p 
type slices with accurately controlled thickness. Cell polarity is unchanged. 



SILICON THINNING 475 

Fig. 3 — Multilayered structures which can be fabricated using the thinning 
technique. These structures are particularly suitable for making npn and pap 
integrated circuits. 

After thinning, the difference between the thickness of the remaining 
n layer and the depth of the diffusion was about 3 X 10-5 cm. 
Multilayered structures can also be fabricated as illustrated in Fig. 3. 

These structures are particularly suitable for fabrication of npn and 
pnp air-isolated or dielectric-isolated integrated circuits. The thickness 
control is determined by the combined thickness of the diffused and 
epitaxial layers, and is expected to be easily controllable to within 10 
percent. 
Experimental beam leaded, air-isolated monolithic integrated circuits 

have been made on n/n-F/p starting material and have been thinned 
by the technique described. A total of approximately 2.5 X 10-2 cm 
of p material was removed in one step, without prior mechanical 
operations. 
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