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In this paper we compute the change in the energy of a uniformly 
magnetized uniaxial platelet produced by the introduction of a cylin-
drical domain. Differentiation of the energy expression yields the 
translational force produced by gradients in plate thickness, material 
composition, or temperature. The force expressions provide a means for 
estimating the effect of gradients in these parameters on the margins of 
domain devices. Equating the sum of the gradient produced forces to 
the drag force yields a general domain velocity expression. The various 
results are presented in both graphical and tabular form. 

I. INTRODUCTION 

Magnetic memory and logic devices employing cylindrical domains 
in uniaxial platelets have recently received considerable attention.1,2 
The theory of the static stability of these domains3 and its application 
to cylindrical domain devices'' have been discussed in previous papers. 
This paper is concerned with the translational forces acting on the 
domains and their effect on device performance. 

*Present address Department of Electrical Engineering, McMaster University, 
Hamilton, Ontario. 
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In most device applications, cylindrical domains are propagated by 
gradients in the applied field." Cylindrical domains may, however, be 
propagated by gradients in any of the independent parameters which 
determine the total domain energy. These parameters are: the applied 
field, H; the plate thickness, h; the saturation magnetization, M„ ; 
and the wall energy density, cr,0 . The domain radius, ro, is not an 
independent parameter for domains in equilibrium but is determined 
once the other parameters are specified. The gradients in crw and MB 
may be produced by composition gradients, strain gradients or tem-
perature gradients. Composition or thickness gradients may be used to 
provide forces which are functions of position only, while temperature 
or strain gradients may be used to provide time variable forces. 
The translational force is obtained by differentiation of the total 

domain energy expression with respect to position, under the assump-
tion that the gradients in the domain parameters which produce the 
translational force are sufficiently small that the domain remains 
circular and stable; consequently the energy expression remains valid. 
Since this method of computing the force is independent of the de-
tailed stress pattern which produces the domain motion, no estimate 
of the shape distorting tendency of the various parameters is obtained. 
Equating the sum of the translational forces to the drag force yields 
the general velocity equation, and comparing the magnitudes of the 
various forces yields their effects on device operation. 

II. DOMAIN ENERGY 

The energy change produced by the introduction of a single isolated 
circular 1800 domain into an infinite plate of uniaxial magnetic 
material which is otherwise uniformly magnetized along the average 
plate normal (the z axis) is now calculated. Such a domain configura-
tion is shown in Fig. 1. The assumptions and notation of Refs. 3, 4 and 
5 are maintained except that the domain parameters h, H, M., a.., , and 
ro are allowed to be functions of position on the plate. In particular, 
the following is assumed in the model: the wall has negligible width, 
the wall is everywhere parallel to the z axis, and the wall energy 
density is independent of wall orientation or curvature. The values of 
all parameters are assumed to vary sufficiently slowly that they may 
be represented by their z-averaged values at the center of the circular 
domain. Additionally, the applied field is represented by its z com-
ponent, H, since under the assumptions stated above only this com-
ponent interacts with the magnetization. 
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Fig. 1—The cylindrical domain configuration and coordinate system. 

713 

The total change in the energy of the system due to the presence of 
a cylindrical domain is 

ET =  2irrohu. + 2M ,Hirro'h — 27re (2r1W:)1(2nilh).  (1) 

In this expression the first term, the wall energy, is the product of 
the wall energy density and the wall area; the second term, the applied 
field interaction energy, is the product of the magnetization change, 
2M8, the applied field and the domain volume; and the third term, 
the internal magnetostatic energy, is the negative of the integral of 
the generalized radial magnetostatic force of Ref. 3. The internal mag-
netostatic energy function, 1(2r0/h) is therefore defined as 

2rolla 

I(2r0lh) = f  F(x) dx,  ,  (2) 

where F (x) is the force function defined by equations 33 and 138 of 
Ref. 3. The lower limit of the integral (2) is chosen so that when the 
plate is uniformly magnetized, ro = 0, the domain energy expression 
(1) is zero. Various closed form and power series representations of 
1(d/h) are given in the appendix of this paper. This function, which 
is plotted in Fig. 2 as a function of the diameter-to-thickness ratio, 
d/h, and is tabulated in Table I, has the asymptotic forms 
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Fig. 2—The internal magnetostatic energy function, /, as a function of the 
diameter-to-thickness ratio. 
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The physical origin of the asymptotic behavior of the / function was 
discussed in some detail in Section IV of Ref. 3. 
The domain energy per unit wall length is 

Er/rd = (27rIVI)e[1/h — J(d/h)],  (4) 

where / = cr,14r1112, is the characteristic material length, where the 

applied field has been eliminated using the equilibrium condition " 

d  H _ F( _d\ = 0 (5) 
h  h 4 M \hi  ' 

and where 

(6a) 
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TABLE I-MAGNETOSTATIC ENERGY, FORCE AND STABILITY FUNCTIONS 

d/h FH =F  So 82 Fh =3J  FA( 

0.00  0.  0.  0.  0.  0.  0. 
0.10  0.0048  0.0939  0.0059  0.0007  0.0060  0.0979 
0.20  0.0184  0.1765  0.0215  0.0028  0.0225  0.1915 
0.30  0.0398  0.2493  0.0442  0.0063  0.0474  0.2800 
0.40  0.0080  0.3137  0.0716  0.0111  0.0787  0.3662 
0.50  0.1023  0.3708  0.1017  0.0172  0.1149  0.4474 
0.60  0.1419  0.4216  0.1332  0.0243  0.1544  0.5246 
0.70  0.1864  0.4872  0.1648  0.0323  0.1962  0.5980 
0.80  0.2352  0.5083  0.1960  0.0411  0.2394  0.6679 
0.90  0.2879  0.5455  0.2262  0.0505  0.2832  0.7343 
1.00  0.3442  0.5794  0.2552  0.0603  0.3271  0.7975 
1.10  0.4037  0.6104  0.2829  0.0705  0.3708  0.8576 
1.20  0.4662  0.8390  0.3093  0.0809  0.4139  0.9150 
1.30  0.5315  0.6655  0.3343  0.0914  0.4564  0.9898 
1.40  0.5993  0.6901  0.3579  0.1020  0.4980  1.0221 
1.50  0.6694  0.7130  0.3804  0.1126  0.5388  1.0721 
1.60  0.7418  0.7345  0.4016  0.1231  0.5783  1.1200 
1.70  0.8163  0.7547  0.4218  0.1336  0.8169  1.1660 
1.80  0.8927  0.7737  0.4410  0.1439  0.6546  1.2101 
1.90  0.9710  0.7917  0.4592  0.1541  0.6912  1.2525 
2.00  1.0510  0.8087  0.4765  0.1842  0.7268  1.2933 
2.10  1.1327  0.8249  0.4931  0.1741  0.7615  1.3326 
2.20  1.2180  0.8404  0.5089  0.1838  0.7952  1.3705 
2.30  1.3008  0.8551  0.5240  0.1933  0.8280  1.4071 
2.40  1.3870  0.8692  0.5385  0.2027  0.8599  1.4424 
2.50  1.4746  0.8827  0.5524  0.2119  0.8910  1.4786 
2.60  1.5835  0.8956  0.5657  0.2209  0.9212  1.5098 
2.70  1.6537  0.9081  0.5786  0.2297  0.9507  1.5418 
2.80  1.7451  0.9200  0.5909  0.2383  0.9794  1.5729 
2.90  1.8377  0.9318  0.6028  0.2468  1.0074  1.8031 
3.00  1.9314  0.9427  0.6143  0.2551  1.0347  1.6325 
3.20  2.1221  0.9639  0.6362  0.2712  1.0872  1.6887 
3.40  2.3169  0.9837  0.6566  0.2866  1.1374  1.7420 
3.60  2.5155  1.0024  0.6759  0.3015  1.1853  1.7928 
3.80  2.7178  1.0201  0.6940  0.3158  1.2310  1.8407 
4.00  2.9235  1.0368  0.7112  0.3295  1.2749  1.8867 
4.20  3.1324  1.0526  0.7275  0.3428  1.3170  1.9308 
4.40  3.3445  1.0678  0.7430  0.3556  1.3574  1.9727 
4.60  3.5595  1.0822  0.7578  0.3679  1.3982  2.0130 
4.80  3.7773  1.0960  0.7720  0.3799  1.4337  2.0518 
5.00  3.9978  1.1092  0.7855  0.3914  1.4698  2.0891 
5.20  4.2209  1.1219  0.7985  0.4026  1.5047  2.1250 
5.40  4.4465  1.1341  0.8109  0.4134  1.5383  2.1596 
5.60  4.6745  1.1458  0.8229  0.4239  1.5709  2.1931 
5.80  4.9048  1.1572  0.8345  0.4341  1.6025  2.2255 
6.00  5.1374  1.1681  0.8456  0.4439  1.6331  2.2568 
6.20  5.3721  1.1787  0.8564  0.4535  1.6628  2.2872 
6.40  5.6088  1.1889  0.8668  0.4629  1.6916  2.3186 
6.80  5.8478  1.1988  0.8769  0.4720  1.7196  2.3452 
6.80  6.0883  1.2084  0.8866  0.4808  1.7468  2.3730 
7.00  8.3310  1.2177  0.8961  0.4894  1.7733  2.3999 
7.20  8.5754  1.2268  0.9053  0.4978  1.7991  2.4262 
7.40  6.8217  1.2356  0.9142  0.5060  1.8242  2.4518 
7.80  7.0896  1.2442  0.9229  0.5140  1.8488  2.4767 
7.80  7.3193  1.2525  0.9314  0.5218  1.8727  2.5010 
8.00  7.5708  1.2606  0.9396  0.5295  1.8960  2.5247 
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The function J has the asymptotic forms 

ir   - + [1 + -3à (1e] in 
and 

4d 
(6b) 

d  

( A  A 2 ('  1 M Y  d 
J'- ' ' — '- ' 
\hi  \hi — 8 \hl ' 
r h— « 1.  (6c) 

The function J (d/h), the normalized total magnetostatic energy per 
unit wall length, is plotted in Fig. 3 together with the force function, 
F (d/h) and the stability functions So(d/h) and S2(d/h) which have 
the asymptotic forms 

FU)  + f\ )2 -F 
and 
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Numerical values of all these functions are given in Table I. 
Since from the figure and the asymptotic forms of the functions, 

(6), (8) and (9), J (d/h) lies roughly midway (with respect to diam-
eter) between 20 (d/h) and 82 (d/h ) and since the condition for domain 
stability is  80(d/h) > l/h > 82(d/h), then a platelet of arbitrary 
thickness may always be biased such that the introduction of a domain 
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Fig. 3—The magnetostatic energy per unit wall length function, J, the mag-
netostatic force function, F, and the magnetostatic stability functions, S. and S, , 
as functions of the diameter-to-thickness ratio. 

produces either a positive, or negative, or zero change in the total 
energy. The force function, F (d/h), was included in the figure so that 
the bias fields yielding these conditions may be determined. The values 
of the diameters and bias fields of zero energy determined using Fig. 3 
or Table I together with (4) and (5) are found to agree with those 
obtained previously.6 In the case of a domain having the preferred 
dimensions,4,5 1/h = 0.2500 and d/h = 2.000 (corresponding to an ap-
plied field of H/47rlds = 0.279) , then J(2.000) = 0.2422. Since J is 
nearly equal to 1/h the total energy is nearly zero. Under the preferred 
conditions and in a platelet in which 47rM8 = 100 Gauss and d = 10 
microns, the absolute value of the wall energy and the total mag-
netostatic energy change are each approximately 0.2 times the rest 
energy of the electron. [Note that the terms in (4) may not be identi-
fied as wall energy and magnetostatic contributions because the 
equilibrium condition was used to eliminate the applied field.] 

III. THE TRANSLATIONAL FORCE 

The translational force is given by 

F = —VET, 

(aEr'\  vi  — (aE T̀) 
ahl,, M.  1  \all ) h. Me.crte .ro 

VH 
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vm  (a.E7) 

» 
Vey. 

8E7, —  Vro.  (10) 
är0 

In this expression h, H, M. and ir,„ are considered to be independent 
variables (functions of position on the platelet) and ro is a dependent 
function of these variables determined by the equilibrium condition (5). 
Since the fundamental' equilibrium condition is (aET/aro)h,11 .,M. =  0, 
the last term in equation (10) may be dropped. Evaluating the remain-
ing terms using equations (1) and (2) yields 

F = —[27r-roo-,„  — 671-h2(27rM;)/(2ro/h) 

47rr0h(27rM2„)F(2r0/h)]Vh — [2M „Irrh]VH 

— [2firr› — 471-h3(27rM„)1(2ro/h)]VM, 

— [27r-7.012,]V cr.  (11) 

Eliminating the applied field using the equilibrium condition (5) and 
rearranging yields 

F = ir de(217-M2,){—[1/h — Fh(d1h)]Vh/h -k Wh — Fit(d/h) MH/H 

± [1/h + Fm(d/h)]V111,1111, — 2[1/h]Va-„,lc ,  (12) 

where 

Fh(Si) = 6(1:-i)/(0 — 3F() = 3J(9e) 

ii  92  (icti)2 ±  [3 ±  89 (icti)2] 

2 (clY  3 (c/Y 
71" \h)  - 8h)' 

d 
TI« 1, 

4d 

FH(d/h) = F(d/h),  (14) 
and 

FAe i) = 4(1)1() —  

) _ 7,1 (lid" ± [3 + -581 (i)2] ln 

_ d _ 2 (d\2 + (dY  d «1.  
37r \h)  64 \hi '  h 
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Figure 4 shows plots of F,„ F al and F = FH as functions of the norm-
alized domain diameter. Numerical values of these functions are in-
cluded in Table I. From the figure and the asymptotic forms of (7), 
(8), (13) and (14) , it is seen that the functions are positive and that 
both Fh and FR' are greater than So(d/h). From these properties and 
the stability requirement So(d/h) > 1/h > & (d/h), it is seen that for 
any stable domain the thickness gradient and magnetization gradient 
contributions to the force are in the direction of the gradient while 
the field gradient and wall energy gradient contributions to the force 
are in the direction opposite to the gradient. 
The absolute value of each of the terms in equation (12) is small but 

measureable. If Ho and H2 are defined as the collapse and elliptical run-
out fields respectively, then in the case of a gradient in the applied field 
where the stability limits are known roughly (see Ref. 5), the force pro-
duced on a domain for which d/h = 2, h/l = 4, VH = (Ho — H2)/d, 
d = 100 microns and 4/r/lf„ = 100 Gauss is approximately 6 x 10-3 
dynes. While such absolute force measurements could possibly be 
carried out, a more relevant experiment for device applications is the 
balancing of field gradients against gradients in the other quantities. 
At the present time, no such measurements have been completed. How-
ever, the directions of the applied field gradient force, the wall energy 
gradient force, and the thickness gradient force have been verified. The 
sign of the H gradient force is verified in everyday device operation. 
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Fig. 4—The transverse magnetostatic force functions, FM, F , and F (F = F11) 
and the magnetostatic stability functions S. and  , as functions of the diameter-
to-thickness ratio. 
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The sign of 0-,„ gradient force was checked using a temperature gradient 
in a sample of Sm0,55Tb0.45Fe08 . According to the data of F. C. 
Rosso1,7 at room temperature the wall energy temperature coefficient 
is approximately +1.5%/C° and the magnetization is only a slightly 
decreasing function of temperature. The cr„, gradient force thus domi-
nates in this material, and we observed that the domains move 
away from heated regions towards cooler regions as predicted. The 
sign of the MR gradient force was verified using a temperature 
gradient in a sample 6f Gd2.8Th0.7Fe5012 garnet. In this material MR 
increases at 3%/C° at room temperature while the wall energy is 
approximately constant. The M„ gradient force thus dominates, and we 
observed that the domains moved towards heated regions as predicted. 
The force direction measurements were completed in tapered platelets 
of orthoferrite in which we observed that the domains move towards 
the thick end of a platelet when restraints were removed. 
It should be noted that in carrying out these experiments it is 

important to obtain low coercivity materials. This is especially true 
in measuring the thickness gradient force when Vh/h is small. 
The drag force acting on a domain propagating with uniform 

velocity Vd from equation 58 of Ref. 5 is given by 

8 = —71 dh Ms r HR 1—  2 — Iva Vd (16) 
2  be.  IV di , 

where H, is the wall motion coercivity and it,„ is the wall motion 
mobility. Equating to zero the sum of the gradient force (12) and the 
drag force (16) yields the velocity equation for an otherwise freely 
propagating domain. In order to avoid the vector sum in this equation, 
it is convenient to assume that all the gradients lie in the same direc-
tion and are positive. It is also convenient to assume that the gradients 
are uniform so that their magnitudes may be expressed in terms of 
the maximum parameter difference across the domain divided by the 
domain diameter, V X = àX/d. Under these assumptions the velocity 
equation is 

8 H.  2 lv,i1 .  Acr 
— h  H  e  ir hlir/lf.  y,„471-M,  h  H  M. — C crib ' (17a) 

where 

C  h  = =  R—Fh(01, 
cif _Lby_ FH(4)1 

d h  h  ' 

(17b) 

(17c) 
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h, ri  éd\ 
Cf = (-1 Lit +  

and 

(17d) 

h 1  1 
(17e) 

d h ro 

are called transverse force coefficients and are all positive. 
For a domain having the diameter d = 8/ in a plate of thickness 4/, 

the velocity equation becomes 

8  H.  ±  2 Ival  
r 47rM„  g.4rM, 

ààlr = 0.238 —à11, — 0.279 —MI + 0.772 AM ' — 0.250 -->"  (18) 
h  H  cr. 

If the magnitude of the sum of the gradients is not sufficiently large, 
no motion takes place. For example, when a domain having dimensions 
such that equation (18) applies is subjected to a field gradient, the 
magnitude of the field difference across the domain must satisfy the 
condition AH/H > 9.1 X lifflirM,, before any motion can take place. 
The transverse force coefficients are plotted as functions of the 

normalized thickness h/l in Fig. 5 for the bias condition d = (d0d2)i 
where do and d2 are the collapse and elliptical runout diameters 
respectively. For small thicknesses the asymptotic forms of C,,, CM, 
and Ca are proportional to (//h) exp (-7r//h) and the asymptote of CH 
is proportional to exp (—/r//h). For large thicknesses CH and Cif 
approach unity, and C,, and Ch approach the asymptote (8/3/r) 3(1/h) 3. 
Some caution must be exercised in interpreting equation (17) and 

Fig. 5. First, the stability of moving domains has only been investi-
gated for the case of gradients in the applied field and then only 
incompletely (see Ref. 5). Another problem is that drive gradients 
which are applied from the surface and which must obey Laplace's 
equation, such as field gradients and temperature gradients, decrease 
exponentially into the platelet. (This does not apply to volume heating 
such as laser heating.) For any given value of these gradients at the 
surface the maximum z averaged value of these gradients which may 
be applied thus decreases according to the inverse first power of the 
plate thickness in thick plates. This consideration shows that the use 
of platelets having a thickness no greater than the preferred thickness 
of 4/ is thus more strongly preferred for achieving a high domain 
velocity than is indicated by inspection of Fig. 5 alone. 
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Fig. 5—The transverse force coefficients C. , Cif C u, and C. for the bias condi-
tion d = (del.) i, as functions of the normalized thickness, hit. 

IV. SIGNIFICANCE FOR DEVICE APPLICATIONS 

Equation (17) and Fig. 5, when properly interpreted, show again 
that there is a preferred plate thickness for achieving high bit rates in 
devices and that this thickness is again 4/. Equation (18) shows that, 
for plates of this thickness, wall energy, magnetization and applied 
field gradients produce transverse forces of similar magnitude. Figure 
5 shows that this is also true for plates having a thickness in the 
neighborhood of 4/. There is therefore no preferred thickness with re-
spect to favoring applied field gradients over temperature or com-
position gradients. 
In temperature dependent materials in which the domain tends to 

move towards the high temperature direction the domain will tend to 
follow a laser beam initially placed at its center. In materials having 
the opposite temperature characteristic, the domains may be pushed 
by a laser beam. Gradients in thickness or composition may be used 
to define domain tracks in order to increase margins with respect to 
spurious field or temperature gradients. An immediately useful ap-
plication of equation (18) is in the calculation of the effect on device 
margins of the heat produced by domain generators and detectors. 
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APPENDIX 

The Internal Magne tostatic Energy Function 

Various representations of the internal magnetostatic energy func-
tion, l(d/h), are given in this appendix. Since F (d/h) is non-negative 
(Ref. 3, Fig. 3 and equation 138), the integral definition of l(d/h) (2) 
implies that I(d/h) is positive and monotonic increasing as can be 
seen in Fig. 1. (Neither function is defined in the present case for 
negative values of the argument.) The definition of I(d/h) also 
implies the differential equation, dI(x)/dx = F(x), with the boundary 
condition /(0) = 0. The internal magnetostatic function may be 
written as 

ld p (hi; + (i _ rju(5) _ (, + 5),(5)] 
where as in equations (84) and (85) of Ref. 3 

and 

(19) 

U(x)  2(x + 1)4E(1  +1 x) ,  (20a) 

V(x)  2(x + 1)-K( 11 1 + (20b) 

where K (m) and E(m) are the complete elliptic integrals of the first 
and second kind respectively and the argument is in the m, of Ref. 8. 
Differentiation of equation (19) with respect to d/h and combining 
terms using equations (86) and (87a) of Ref. 3 verifies that the 
derivative of I(d/h) is indeed F (d/h) (equation 138 of Ref. 3). Sub-
stitution of the series expansions of U and V (equations 96 and 97 of 
Ref. 3) verifies that 1(0) = 0. 
Writing I(d/h) in terms of the L1 function (Ref. 3 Sec. A.4) elimi-

nates the negative power of cl/h, 

1(d) -31; {(ce  [U(id4) —2] — 4 14) + 17(e)}  (21) 
' 

and the expression in terms of F(d/h) and So (d/h) (equations 138 
and 139 of Ref. 3) is also sometimes useful, 

.40 = {2F(0 + S00 1 ± /-1-2-d2] —  (22) 
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The power series expansions of I(d/h) may be determined either 
by substituting the power series expansions for U, V and L1 (Ref. 3, 
Sections A.3 and A.4) into equation (21) or by term-by-term integra-
tion of F (d/h) with the integration constants being determined from 
the lowest order terms of the power series expansions of U and V. The 
result is 

/(93 =!{P()+1(li)-E  - 24105796 (16dY 
[(//)  (lj a (hd)5 .] In 

1 (As / (A8 ± 1 (4)4 1 MY' 4.  5  (d) 
\hi  3r \h/  16 W  128 1h1  2048 W 
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of Cylindrical Magnetic Domains* 
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This paper applies the theory of cylindrical magnetic domains' to 
cylindrical domain devices. The stability conditions are examined as 
bounds to the region. of possible device operation and it is found that 
the plate thickness, h = 41, and the domain diameter, d = 81, where 1 
is the ratio of the wall energy per unit area to 47r times the saturation 
magnetization squared, are preferred values. When the effects of wall 
coercivity and mobility are examined, it is found that the preferred 
plate thickness and domain diameter are even more strongly preferred, 
that the wall motion coercivity should be less than one percent of 47r 
times the saturation magnetization, and that a domain coercivity and 
mobility may be defined. Consideration of the Néel temperature and 
the desired absolute domain size in addition to the static stability 
conditions shows that domain materials having some antiferromagnetic 
character and induced uniaxial anisotropy are preferred. Where appro-
priate, domain methods for measuring material parameters are 
described. 

I. INTRODUCTION 

The application of cylindrical magnetic domains or "bubbles" to 
memory and logic devices has recently received considerable atten-
tion.2-0  Such domain devices may operate in a continuum of modes 
ranging from the wall motion coercivity dominated mode to the "hard 
bubble" mode. In the coercivity dominated mode, applied fields deter-
mine the domain configuration which is then maintained by coercivity. 
In the hard bubble mode the coercivity must be sufficiently low that 
the domains have a well-defined size and shape permitting the move-

* Portions of this article were presented at the "Fifteenth Annual Conference on 
Magnetism and Magnetic Materials" Philadelphia, Pennsylvania, on Nov. 20, 
1969. (See Ref. 2.) 
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ment of individual domains as distinct entities. A previous paper 
developed the theory of static stability of cylindrical domains in 
materials having zero coercivity.1 The present work applies this theory 
to the determination of the --p-itferred conditions for construction of 
devices operating in the hard bubble mode. It is found that specifying 
an operating domain diameter determines preferred values for the 
plate thickness, magnetization, anisotropy constant and the maximum 
allowable value of the wall motion coercivity. 
Figure 1 shows the model for the domain structure from which the 

static stability theory was developed. The coordinate system and 
symbols used here are the same as in Ref. 1 except for the addition 
of a few symbols such as pio , the wall mobility; I-1,, the wall motion 
coercivity; Td,  the domain velocity; and àcr „ the variation in wall 
energy. The model represents a single isolated domain in a plate of 
magnetic material of uniform thickness, It, and an infinite extent in 
the plane, 7-, = co. Everywhere within the material the magnetization 
has a uniform (saturation) magnitude, M8, directed along the upward 
plate normal (the z direction) within the domain and along the down-
ward plate normal elsewhere within the material. The domain wall is 
assumed to have negligible width and the domain wall energy density, 
(7,0, is initially taken to be independent of both wall orientation and 
curvature. The domain wall is cylindrical in the sense that it every-
where contains a line parallel to the plate normal. Under these assump-

UNPERTURBED 
DOMAIN - - 
BOUNDARY 

DOMAIN --

BOUNDARY 

Ht 

REVERSE 
- MAGNETIZED 

DOMAIN 

Fig. 1—Domain configuration and coordinate system. 
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tions only the component of the spatially uniform applied field which 
lies along the plate normal will interact with the domain so that only 
this component is considered. This component is denoted by H and is 
taken positive when directed upward, the direction tending to collapse 
the domain. 
The assumptions implicit in this domain model are not all inde-

pendent. The interrelation of the assumptions and the dependence of 
the assumptions on the domain geometry and the material parameters 
are discussed on pp. 3312-3318 of Ref. 1. The validity of the assump-
tions will not be discussed further here except to note that in order 
for domains of the type to be considered here to exist, domain nuclea-
tion and wall-width considerations require roughly that 

K. > 21-3/: ,  (1) 

where K. is the uniaxial anisotropy constant, and that the validity of 
the approximations generally improves as K. is increased above this 
minimum value. 
The domain radius function, rb(0), which is expanded in the series 

r,,(9) = ro 4- àro É ar,, cos [n(0 — 0. — AO.)],  (2) 
n =1 

describes the domain shape in the plane. The àrn and àOn describe a 
variation in domain size and shape from a circular domain of radius 
rb(0) = 7'0 and the O. describe the direction of the variation. (The LO,, 
have significance only for second variations.) Since only near circular 
domains are of interest here, the condition 

Iro I >> I àro I + Ên Pen I  (3) 
n=1 

is imposed to assure that the radius is single valued and smooth. 
The first and second variations of the total domain energy with 

respect to the ¿sr,, and àOn determine the domain equilibrium and 
stability conditions. The total domain energy, 

ET Ew  Emy  (4) 

is the sum of three terms. The wall energy, Elv, is the product of the 
wall energy density and the wall area. The applied field interaction 
energy, Ell, is proportional to the product of the domain volume and 
the external field interaction energy. The last term, LE, is the internal 
magnetostatic energy of the domain. The energy variation has the 



728  THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1971 

form 

àEr = 
i [(aaET)  (aEr) àr„  aon  AO„ 

[(ara2Earr), 3e n 3e "  2V Ea;„,)0  

Ue„ ao.) àO" AL] + 03 
(5) 

where in the energy derivatives the independent variables, the 
and ¿SO,,, have been written as 7.. and On for compactness, the zero sub-
script indicates that the derivatives are to be evaluated for a strictly 
circular domain, rb(0) = ro , and 03 indicates terms of order three or 
higher. The first derivatives are the negative of the generalized forces, 
— (aET/Or.)0 and — (aET/aojo being respectively the radial and angular 
generalized forces of rotational periodicity n. The second derivatives 
form the stiffness matrix of the system with (a2ET/arn ar,„),, being the 
(n, m) element of the radial submatrix and (a2E2./ar,, ao,00 and 
(eer/ao,, ao.), being the corresponding elements of the mixed and 
angular submatrices respectively. In Ref. 1 the derivatives of the 
total energy with respect to the An, and AO„ were obtained by differ-
entiating the integrals which form the terms of equation (4) and evaluat-
ing the resulting integrals for the case of a strictly circular domain. 
In the present work it is convenient to write the energy variation 

expression in a normalized form in which: energy is measured in units of 
4(27rM,1)(711.3), the equilibrium condition has been used to eliminate 
the applied field from the second variations (the stiffness matrix is of 
interest here only for a domain in equilibrium), the first- and second-
order variations which are identically zero and deleted, and the non-
zero generalized forces and stiffness matrix elements are written as 
functions of dimensionless variables, the applied field measured in 
units of the magnetization, H /47r31 , and ratios of the plate thickness, h, 
the domain diameter, d = 2r0 , and the characteristic length of the 
material, 

1 = cr,d4rM: . (6) 

This normal form of the energy variation is [Ref. 1, equation (68)1 

•,dLET  [i d  H F (11 A ° - L 
4(2rile)(wle)  h  h 4rM „  h  h 
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+  )[ - (2 d h - SI) (hd)1(à hr°)2 
h 1 

É  (n2  - 1) (1-)[1 S (11 M2} d h  nh  h,  03  
(7) 

where F and the S,, are called the force and stabi ity functions respec-
tively and are written in terms of the complete elliptic integral of 
the first kind, 

w/2 

K(m)  f  (1 - msin2 OP do, 
0 

the complete elliptic integral of the second kind, 

w/2 

E(m)  f  (1 - msin2 0)4 do 

(8) 

(9) 

and the Ln functions which are auxiliary functions introduced for 
convenience, 

14,(x) = 

Li(x) = 4[(x  1).g((1  x)-') - x(x  K((1  x)')] 

1  
L,1(x) -  2n  1 [4n(2x  1)L0(x) - (2n - 1)L 1(x) 

+  

- 16nx(x  1)-4 X K((1  x)')],  n  1.  (10c) 

The force and stability functions are 

F(x) =  x2[(1  x-2)IE((1  x-2)-1) - 11,  (11) 
71" 

and 

(10a) 

(10b) 

a S(x) = F(s) - s — F (x) ,  (12a) 
ax 

= -I x2[L1(x-2) - WO)],  (12h) 
27r 

1  1 
8„(x) - -n2 - 1 2r x2[L,,(x-2) - L1(x-2) - L0(0)  L,(0)], 

n  2.  (13) 

Figure 3 of Ref. 1 plots F(d/h) and Sn(d/h) for d/h  6 and n -5 10. 
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Appendices A and B of Ref. 1 give methods of computation and series 
expansions of these functions while Section IV discusses the physical 
interpretation of the terms in the energy variation expansion [equa-
tion (5) here]. 
Section II of this paper discusses the domain size and stability 

implications of the energy variation expansion (7). This discussion 
yields the conditions for the existence of cylindrical domains in the 
total absence of dissipative processes and these existence conditions in 
turn place several restrictions upon device design. The section con-
cludes with a discussion of domain size and domain ellipticity in the 
presence of anisotropie wall energy. Section III considers the effects 
of dissipative processes (wall motion coereivity and mobility) on 
domain existence and movement, the relation of domain mobility to 
wall mobility, and the limiting conditions under which the hard bubble 
mode may be achieved. Section IV combines the results obtained here 
and in Ref. 1 to obtain several relations between material parameters 
and device performance. 

II. CYLINDRICAL DOMAIN SIZE, SHAPE AND STABILITY AT EQUILIBRIUM 

This section examines the domain equilibrium and stability condi-
tions and some of their implications. 

2.1 The Equilibrium Condition 

The domain is in equilibrium when all of the first-order variations 
of the total energy with respect to the ten and AB,, are zero. In the 
variation expansion (7), all the first-order energy variations except 
the variation with respect to Arn (representing a variation in domain 
size with no variation in shape) are identically zero. Since the domain 
is initially assumed to be a circular cylinder and there are no forces 
tending to deform it, the domain is in equilibrium when it is a circular 
cylinder having a diameter which is a solution to the normalized force 
equation, 

1  d  H L.,(61) 
h  h 47M,  v = 0. (14) 

The (normalized) generalized forces appearing in this equation have 
a one to one correspondence with the ternis of the energy sum (4): 
the first term being produced by the wall energy, the second by the 
applied field, and the third by the internal magnetostatic energy. The 
normalized wall force, —l/h = —cr./47rM:h always tends to collapse 
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the domain (e. and h are positive) and is independent of domain di-
ameter. Each of the normalized generalized forces may be converted 
to an equivalent field by multiplying by hzilrM dd. The equivalent 
wall field is cr„,127.01 I a so that the wall field is proportional to the product 
of the wall energy and the wall curvature. The normalized applied field 
force, —(d1h)(HILIrM.), tends to collapse the domain for positive 
applied fields and its magnitude is proportional to the domain diam-
eter. In this case the equivalent field is the applied field, H. The normal-
ized internal magnetostatic force is -F F(d/h). The force function, F, is 
positive with positive first derivative and negative second derivative 
at all points. It approaches d/h for small domain diameters and 
ln I 48'161/h I for large domain diameters (In Ref. 1 see equation (138) 

and Fig. 3). Since F is positive, the internal magnetostatic force always 
tends to expand the domain. The internal magnetostatic force and the 
wall force are thus oppositely directed. Therefore equilibrium is at-
tained for any given diameter by adjusting the applied field to a value 
which compensates for the difference in magnitude of these two forces, 
the sign of the field depending on which force is dominant. The equiva-
lent field for the case of the internal magnetostatic force, 47rilf. 
• (h1d)F(d/h), is the z averaged z component of the internal demagnetiz-
ing field or the internal magnetostatic scalar potential difference be-
tween the top and the bottom of the plate divided by the plate thick-
ness.' This field approaches 411-M. for small domain diameters and 
4111.(h/d) In I 4èdlh I for large domain diameters. 
Solutions to the equilibrium problem may be discussed either in 

terms of the equivalent fields as was done by A. H. Bobeck3 or in 
terms of the generalized force equation (14) with the preferred method 
depending on the specific application. In the present case, the generalized 
force equation will be used since the general properties of the solutions 
of the equilibrium problem may be easily obtained by straight line 
constructions on a plot of F. 
Figure 2 shows examples of such constructions (along with stability 

constructions which will be explained later). The equilibrium con-
struction consists of first locating the point on the vertical axis whose 
ordinate is l/h, then drawing a straight line through this point whose 
numerical slope is H/47-M. . The line so constructed thus represents the 
first two terms in equation (14) so that its intersections with F (if any) 
are the equilibrium points. The dashed line asymptotic to the force 
function at the origin has numerical slope one and therefore provides 
a reference for estimating the magnitude of applied fields. In each of the 
constructions of Fig. 2, 1/h is 0.3 and this point on the vertical axis is 
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Fig. 2—Construction of solutions to the force equation for 1/h = 0.3, d =  , 
d = d2 and d = 2h. 

denoted by 'W. The symbol 'W was used since l/h is the wall energy 
per unit area in units of twice the magnetostatic self-energy per unit 
surface area of an infinite plate of uniform thickness, h, when it is 
uniformly magnetized in a direction perpendicular to the surface of the 
plate. 
For the first example, consider the line Ẁ(ft' for which //h = 0.3, 

H/471-M, = 0. This line has one intersection with F at 0(d/h = 0.378). 
Since the slope of F is everywhere positive, there will in general be 
only one intersection with the construction line for any zero or negative 
value of H/47r/l/L independent of the magnitude of 1/h. That this 
single solution is unstable may be appreciated by considering small 
variations in the solution diameter from its value at e: Increasing the 
diameter of the domain from the diameter at O increases the magnitude 
of the internal magnetostatic force term while the other terms remain 
constant. The total force tending to expand the domain thus increases 
from zero as the domain expands from the solution diameter. The domain 
is thus unstable with respect to expansion. An entirely similar argu-
ment shows that the domain is unstable with respect to collapse. It is 
easily seen in general that for a fixed solution diameter the solution 
will become more unstable (the destabilizing force increasing faster with 
increasing diameter) as the field is made more negative. Stable solu-
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tions to the equilibrium problem exist only for fields aiding the wall 
field in tending to collapse the domain although one unstable solution 
exists for any magnitude of negative applied field. 
Because of the logarithmic behavior of the force function at large 

domain diameters, a radially stable solution to the force equation will 
appear (in addition to the radially unstable solution) when a vanish-
ingly small positive bias field is applied. (Radial stability is determined 
in the same way as in the preceding paragraph. The existence of radial 
stability does not assure total domain stability as will be seen.) Since 
the F function has a negative second derivative everywhere, there can 
be no solutions in addition to a single radially unstable and a single 
radially stable solution. This situation is illustrated by the line M78 
in Fig. 2. The line represents 11h = 0.3, H/ 4rM, = 0.254 for which 
the unstable solution, denoted by 91, occurs at d/h = 0.767 and the 
stable solution, denoted by 8., occurs at d/h = 2.000. Bobecle has ob-
served experimentally the unstable solution under static conditions 
which permit the existence of the stable solution. This was done by 
applying a short duration bias field pulse which reduced the domain 
diameter from the stable solution diameter at S to the unstable solu-
tion diameter at It and then returning the bias field to its original value 
just as the unstable solution was attained. The domain having the 
unstable solution diameter was then stabilized sufficiently by coereivity 
to allow it to persist. 
If the applied field is increased from a value for which there are two 

solutions, then, the solutions approach each other until at some field 
value they coalesce. This point at which the solutions coalesce is a 
point of radial metastability since, at this point, the construction line is 
tangent to F. Thus, the solution is neither stable nor unstable to lowest 
order by the small variation argument of the preceding paragraphs. 
There are no solutions for applied fields greater than the field of radial 
metastability. Since in this case the inward forces dominate at all 
diameters, the domain collapses. (Since F everywhere lies below the 
asymptote d/h, the domains always collapse for applied fields greater 
than 471-M. .) In Fig. 2 where 1/h = 0.3, the collapse point, e, occurs 
at H/47M, = 0.283, d/h = 1.16. The sequence of the types of solu-
tions which occur as H is varied depends only on the invariant signs 
of the slope and curvature of F. Therefore for a fixed value of llh this 
sequence is independent of the value of 1/h. From the slope and curva-
ture properties of F the uniqueness of the collapse diameter and field 
for a given value of 1/h may also be shown. However, the discussion of 
both this uniqueness and the detailed behavior of the domain diameter 
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as a function of applied field are conveniently postponed until general 
stability is discussed. 
The device implications of this subsection may be summarized by 

noting that cylindrical domains exist only in the presence of an applied 
field applied in a direction tending to collapse the domain and having 
a magnitude less than 4rMa . 

2.2 General Stability 
The sign of the second variation of the total domain energy pro-

duced by a weak variation in shape characterizes the stability óf a 
cylindrical domain. Since only domains in equilibrium are of interest 
here, attention is restricted to variations of such domains from their 
equilibrium size and strictly circular shape. Since an arbitrary weak 
variation is describable by the expansion (2) with condition (3), 
the stability problem is reduced to the study of the coefficients of the 
terms in the energy expansion which are quadratic in the Arn and ABo. 
These coefficients are defined (up to some constant factor) as the 
stiffness matrix elements of the system, and these stiffness matrix ele-
ments may clearly be classified as either radial, mixed, or angular stiff-
ness matrix elements. 
In the equilibrium energy expansion (7) the only nonzero quadratic 

coefficients are the coefficients of the (Are) 2, n # 1. As required by the 
cylindrical symmetry of the system, the domain is completely metasta-
ble with respect to angle. This is indicated formally in (7) by the 
absence of any nonzero terms in AO„AO„, or Ar,40„,. (The angular and 
mixed stiffness submatrices are identically zero.) Since no terms in 
ArnAr. for m  n appear in equation (7) , (the radial stiffness matrix 
is diagonal) the variation amplitudes are quasi-normal-modes of the 
system. Nonzero terms of order three and higher in the variation ampli-
tudes and angles prevent the variation amplitudes being true normal 
modes. Finally, since the energy of a domain in an infinite plate is 
independent of the domain position, the translational stiffness of the 
domain is zero and therefore since the variation Ar1 corresponds to 
lowest order to a translation (see Ref. 1 Sec. 4.2.2), the coefficient of 
(Ar1)2 in equation (7) is zero. 
Since the second-order energy variation with respect to an arbitrary 

small amplitude weak variation is simply the sum of the energy 
variations from each normal component of the variation, the study of 
the stability of circular cylindrical domains reduces to the study of 
the stability of the domains with respect to size, Aro, and shape, Ar2 
to Ar.. The sign of the corresponding stiffness matrix element deter-
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mines the stability or instability of the domain with respect to the 
variation of a particular eir„. From equation (7), the nonzero normal 
stiffness matrix elements are 

h2  02E7) 
4(27r/le)(irle) \ ar: 

and 

= — (2  — SoU)] 
d h  

( 82E T)  (n2 -  4(20 I 4)(7h3) ar: • o =  

(15a) 

n  2. (15b) 

The quantities in square brackets are termed stability coefficients. 
The domain is stable with respect to an arbitrary variation in shape 
when all of the stiffness matrix elements are positive. From equation 
(15), this occurs when the n = O coefficient is negative and all the 
other stability coefficients are positive, 

[1/h — 80(d/h)] < 0  (16a) 

[l/h — S„(d/ h)] > 0,  n k 2.  (16b) 

So(d/h) > l/h > S2(d/h).  (17) 

Since the stability functions have the property, 

S„.„i(d/h) < S„(d/h),  (18) 

(at least up to n = 10 see Ref. 1) the condition for total stability 
reduces to 

or 

So(d/h) > l/h > S2(d/h).  (19) 

Since domain stability with respect to Jed% and ,der2 assures total stability, 
attention is largely restricted to the n = 0 and n = 1 coefficients. The 
variations Ar0 and à7"2 are termed radial and elliptical variations 
respectively. 
The numerical value of the stability coefficients and in particular 

the conditions under which the stability coefficients change sign, is 
determined by a graphical construction, an example of which is now 
.given. The construction of the radial and elliptical stability coefficients 
for the case 1/h = 0.3 is shown in Fig. 2. The elevation of the horizontal 
line .c51,761.' represents the value of 1/h. In order to determine the stability 
coefficients it is necessary to specify an operating diameter which, in 
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turn, is determined by the applied field. When the domain diameter is 
greater than the diameter at the intersection of the horizontal line 
and S, at ea' (applied fields less than that represented by the slope of 
the line MU) the elliptical stability coefficient is negative and the do-
main is unstable with respect to Aro . The domain diameter at the 
intersection of the horizontal line and S, is called the diameter of 
elliptical metastability and the corresponding field (the field represented 
by the slope of the line WC is termed the field of elliptical metastability. 
When the diameter is decreased below the diameter of elliptical metasta-
bility (by increasing the field above the field of elliptical metastability) 
the domain becomes stable with respect to elliptical deformation. When 
the domain diameter is decreased to d = 2h (the corresponding field 
being represented by the slope of the line V S) the magnitude of the 
radial stability coefficient (corresponding to the length of 8' S) is approx-
imately equal to the magnitude of the elliptical stability coefficient 
(corresponding to the length of 
Increasing the field to the value corresponding to the slope of the 

line 'W 0, decreases the domain diameter further to the value at the 
intersection of the horizontal construction• line with go at 0', so that 
the radial stability coefficient is zero and the force equation construc-
tion line is tangent to the force curve. Increasing the field above the 
field value corresponding to the slope of we decreases the diameter 
even further so that the radial stability coefficient becomes positive, 
the radial stiffness matrix element becomes negative, there are no 
solutions to the force equation and the domain collapses. 
Since the construction line for the force equation is tangent to the 

force curve at the diameter of radial metastability, it is possible to 
construct the So curve from the F curve by plotting the loci of points 
whose ordinate is l/h and whose abscissa is the diameter at which 
the construction line is tangent to the F curve. Figure 3 illustrates 
four points of such a construction. Conversely, given the initial slope 
of F, the So curve may be used to construct F. 
In Appendix A of Ref. 1 (see also Fig. 2 here) it was shown that 

the stability functions are in general monotonic increasing functions of 
the normalized domain diameter, d/h, and monotonic decreasing 
functions of the radial periodicity, n (at least up to n = 10). From 
these properties of the S. functions and the properties of the solution 
to the force equation discussed in Section 2.1, the following general 
stability properties may be deduced for any fixed value of l/h: When 
there is no applied field, the domain diameter is infinite, and the 
domain is unstable with respect to all variations for which n  2. 
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Fig. 3—Construction of the So(d/h) function as a sequence of collapse diameter 
solutions. 

When the applied field is small, the diameter is finite and the domain 
is stable with respect to all variation for which n is equal or greater 
than some n„„ while remaining unstable with respect to variations of 
for which 2  n < n„,. When the applied field is between the values 

of elliptical and radial metastability, the domain is stable with respect 
to all variations. Finally, for applied fields greater than the field of 
radial metastability, the domain collapses. (As noted previously the 
domain collapses for applied fields greater than the fields of radial 
metastability for any value of the domain diameter.) 
Note that except for Si each S„ forms the boundary between the 

regions of stability and instability with respect to the corresponding 
An, and that metastability with respect to each Ar„ (n  1) occurs only 
along the boundary between the stable and unstable regions. 

Even though the radial and elliptical stability functions bound the 
region of total domain stability, the threefold and fourfold stability 
functions, Sa and S4 , lie quite close to 82 and it might be expected 
that when the bias field on a cylindrical domain is reduced in the 
presence of a small stabilizing coercivity the domain might run out into 
an initially three or fourfold figure. Such runouts have indeed been 
observed.' 
When the bias field on an initially circular stable domain, repre-
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sented for example by the line WS in Fig. 2, is decreased, r6(9) will 
increase uniformly for all O maintaining a circular shape until the point 
fft is reached. Increasing the domain radius beyond this value causes 
the domain to become unstable with respect to elliptical variations. 
Since for small variations, the variations in the expansion used here 
are normal modes, the breakaway to instability will not be coupled to 
any pure radial motion. Thus, when the breakaway occurs rb(0) will 
actually decrease along one half the length of the wall. Experiments in 
platelets which have just enough coercivity so that the initiation of 
the breakaway is observable confirm this somewhat surprising pre-
diction. (See Ref. 4, pp. 1916-1917. The sequence of photographs on 
these pages were taken with an increasing bias field. The corresponding 
sequence for a decreasing bias field is similar.) 

2.3 Restrictions Placed on the Possible Region of Device Operation by 
Stability Considerations 
Since the diameters of radial and elliptical metastability (and the 

corresponding applied fields) are the boundaries of the region of total 
stability, they are the boundaries of the region of possible device 
operation in the hard bubble mode. It is easily appreciated by inspec-
tion of equation (15) that the domain will be metastable with respect 
to a particular Ar„ (n  1) if and only if the corresponding stability 
coefficient is zero, 

1/h — S.(d/h) = 0.  (20) 

Since the S. are monotonic increasing functions of d/h, a diameter 
of metastability is uniquely defined for each value of 7i. and charac-
teristic length to thickness ratio, 

d„/h = S-.-1 (1/h),  n  1.  (21) 

The corresponding applied fields of metastability are then defined 
using the force equation (14) by 

( 1\ 

(22) 

While 1/h is a normalized wall energy, it is also, obviously, the recipro-
cal of the thickness measured in units of the characteristic length. 
Thus, the d„ and H. are functions of the normalized thickness, h/l. 
In the remaining topics of this section it will be appropriate to think of 
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this parameter as the normalized thickness, since in a given material 
it is the thickness which is the accessible variable. 
In principle, the values of the d„ and H. for each value of h/1 could 

be obtained by graphical construction. Figure 2 may be taken as an 
example of such a construction for h/1 ,= 3.33 and n = 0 and 2. In 
this construction the intersection at e' represents d0(0.3) = 1.16h, the 
intersection at GI' represents d2(0.3) = 3.58h, the slope of we repre-
sents H0(0.3) = 0.283(4wM.) and the slope of %VCR represents H2(0.3) =-
0.196(4r/lt). (The values quoted here were obtained numerically.) 
To better appreciate the way in which the requirements of static 

stability bound the possible region of device operation, several diam-
eter and applied field functions of the normalized plate thickness 
have been plotted and their asymptotic forms in the limit of very 
thick or very thin plates have been computed. 
The values used in plotting the functions were obtained in the 

following way: The implicit equation for do and 12 [equation (20)] 
was inverted numerically using the expressions for So (d/h) [equation 
(12) ] and 82 (d/h) [equation (13)] to obtain d0/h and d/h as func-
tions of h/l. (Parametric plotting may be used only for functions of a 
single d„.) The desired functions were then computed from do/h, do/h 
and the expressions for the H„ [equation (22) ] and F (d/h) [equation 
(11)]. (See also Ref. 1, Sections A.1 and A.S.) The asymptotes of the 
various curves are obtained using the expansions for F (d/h), 5o (d/h) 
and So (d/h) from Appendix B of Ref. 1, with the force equation 
where necessary (14) and the d„ defining equation (20). The small 
d/h expansions are carried to order (d/h )2 and the large d/h expan-
sions are carried only to the lowest order constant and log terms in 
order to facilitate the algebraic inversion of equation (20). 
Since the validity of some of the assumptions of the theory increases 

with increasing d/h, each plot includes an arrow indicating the direc-
tion of increasing d,„/ h along the plotted curve or curves. The marks 
at d,o/h = 1 and do/h = 1 indicate the points at which the theory 
becomes definitely suspect. It has been found experimentally, however, 
that the theory does give reasonably consistent results for values of d/h 
which are somewhat less than one. 
Figure 4 is a plot of the diameters of radial and elliptical metasta-

bility measured in units of the characteristic length, d0/1= (h/1)(d0/h) 
and d2/1 = (h/l) (d2/h), as functions of the thickness measured in 
units of the characteristic length, h/l. These diameters have the 
asymptotic values 



740  THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1971 

300 

200 

100 

80 

60 

40 

30 

20 

10 

8 

6 

4 

3 

1 1 1 1 1 11 

n = o 

-  DOMAIN 

-  COLLAPSES 

03 0.4 

n = z 

0.6  0.8 1.0 

1  1  11 1 1111  1 

DOMAIN RUNS OUT 
INTO STRIP 

tp,6 

e e  

DOMAIN 
STABLE 

d o / h = 

2  3  4 

h/1 
6  8 10 20 30 

Fig. 4—Diameters of radial and elliptical metastability, di, and d, in units of 
the characteristic length, 1, as a function of the thickness, h, in units of 1. 

do//  0.412(h//) exp (in/h),  h/l « 1,  (23a) 

and 

doll íí 1.253(h/O,  h/l>> 1,  (23b) 

for the collapse diameter, and 

doll RD' 1.564(h//) exp (7r1lh),  h/l «1,  (24a) 

and 

d2/1  3.760(h//),  h/l>> 1,  (24b) 

for the elliptical runout diameter. The uppermost curve in Fig. 5 is a 
plot of the ratio of the diameter of elliptical metastability to the 
diameter of radial  metastability,  d2/d0 =  (d2/h)/(d0/h)  = 
(d2/0/(d0//), as a function of the h/l. This ratio has the aymptotes 

d2/d0 i 3.794,  h/1 « 1  (25a) 



CYLINDRICAL MAGNETIC DOMAINS  741 

and 

d2/d0 3.000,  hIl>> 1  (25b) 

which are easily obtainable from equations (23) and (24). Figure 6 is 
a plot of the relative variation of the geometric mean of the diameters 
of radial and elliptical metastability with respect to a relative varia-
tion in plate thickness alnl (d11d2)41/81n1hl as a function of hfl. 
This curve has the asymptotes 

a ln i(cl0d2)4 I/ a ln 'hi ,c.f, 1.000 — 3.142(h/0-1,  11/1>> 1,  (26a) 

and 

a ln i(d0d2)iv a ln 'hi 0.500,  h/l>> 1.  (26b) 

Inspection of these limiting diameter plots and asymptotic expres-
sions yields the following: In a given material, the minimum stable 
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Fig. 5—Diameter and applied field Margin ratios, d2/d, Ho/H2, and 2(H0 — 
11.2)/(H0 + HO, as functions of the thickness, h, measured in units of the charac-
teristic length, /. 
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Fig. 8—Logarithmic derivative of the domain diameter with respect to plate 
thickness, a In d/a ln In for the bias condition d = (d0c/2)i as a function of 
the plate thickness, h, measured in units of the characteristic length, Z. 

diameter attainable for any plate thickness is =3.9/ at a thickness 
of z.-•'3.3/. The minimum diameter of elliptical instability is =:12/ 
attained at a thickness of =:4.2/. For any given plate thickness, the 
range of diameters over which the domain is stable is small, the ratio 
of the diameter of elliptical metastability to the diameter of radial 
metastability being roughly equal to three for any plate thickness. 
The domain diameter is thus for all practical purposes determined 
once the plate thickness and characteristic length are known. The 
increase in domain diameter with increasing plate thickness in thick 
plates is quite mild being according to a square root law. The increase 
in domain diameter with decreasing plate thickness is, on the other 
hand, exponential for a thin plate. This variation is so rapid that the 
magnitude of the relative variation of the diameter of a centrally 
biased domain, d = (d0d2)i with respect to a relative variation in 
thickness increases according to the inverse of the thickness. 
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Figure 7 is a plot of the applied fields of radial and elliptical 
metastability, H0/47,-Ms = (h/do) [F(do/h ) — 1/11] and H2/47rM. = 
(h/d2)[F(d2/h) — 1/11], as functions of h/l. These curves have the 
asymptotes 

1-10/47rM.  0.772 exp (-11-1/h),  h/l «1,  (27a) 

and 

Ho/471-M.  1.000 — 1.596(h//)-1,  h/l>> 1,  (27b) 

for the collapse field and 

1-12/4T-111.  0.475 exp (-71/h),  h/l «1,  (28a) 

and 

H2/47rM.  1.000 — 2.660(h/0-I,  hll >> 1,  (28b) 

for the elliptical runout field. The two lowermost curves in Fig. 5 are 
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Fig. 7—Applied fields of radial and elliptical metastability, H. and H., in units 
of 4wM. as a function of thickness, h, measured in units of the characteristic 
length, 1. 
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plots of the ratio of the collapse field to the elliptical runout field and 
the ratio of the difference of these fields to their average as functions 
of h/l. The asymptotes of these ratios are 

Ho/H2 1.626,  h// « 1,  (29a) 

and 

Ho/H2 1.000 + 1.064(h/0 -/,  h/1>> 1,  (29b) 

for the field ratio and 

2(H0 — H2)/(H0 + H2) ,ce,' 0.477,  h/l «1,  (30a) 

and 

2(H0 — 112)/(H0 + Ho)  1.064(h//)-t,  >> 1,  (30b) 

for the ratio of the difference of the fields to their average. Equations 
(29) • and (30) are easily obtainable from equations (27) and (28). 
Inspection of these limiting applied field plots and asymptotes 

yields the following: The field magnitudes decrease exponentially 
with decreasing plate thickness, rapidly becoming unmanageably 
small for very thin plates. The fields increase monotonically with 
increasing plate thickness toward the common value, 47r/1/8. The rela-
tive variation of applied fields, allowed within the region of stable 
circular domains, is smaller than the allowed relative variation of 
diameters, approaching a constant for thin plates and zero for thick 
plates. 
Note that 424118 determinations are most accurately carried out in 

moderately thick plates (within the limits of the cylindrical wall 
approximation and the coercivity limits described in the next section) 
since here 1/0/4/rM„ (and 1/2/47rMa) is a weak function of 1 and is 
asymptotic to one. Measurements of the characteristic length, on the 
other hand, are best carried out in moderately thin plates (within 
coercivity limits) where the diameter is a strong function of 1. The 
appreciation of the validity of these statements will be greatly en-
hanced if the reader will try a few constructions on a plot of the 
F and S. functions. 
The implications of the foregoing for device design are summarized 

as follows: For a given value of h/1 there is only an approximately 
three-to-one variation in the domain diameter permitted within the 
stable region so that given material and plate thickness, domain size 
is closely determined. The minimum domain diameter occurs for 
h/l  4. For thinner and thinner plates, both the plate thickness 
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margins and the applied field magnitude decrease exponentially. While 
field margins are reasonable for h/l  4 (H0/H2 = 1.41) [or 2(H0 — 
H2)/(H0 + H2) ez 0.34], they become vanishingly small in very thick 
plates. These considerations thus demonstrate that from stability con-
siderations alone, for a given value of the characteristic length, there 
is both a preferred range of thicknesses and a preferred range of 
domain diameters (or applied fields) for device operation. The 
preferred range of each is centered about the preferred values 

and 

for which the bias field is 

h, = 41 

d, = 81 

H, = 0.279(4irM .). 

(31) 

(32) 

(33) 

These values will be shown to be preferred in another sense in the 
next section. 

2.4 Domain Diameter as a Function of Applied Field 
Since domain diameter is in practice only measurable for diameters 

between do and d2 (applied fields between Ho and H2), these points 
form natural endpoints for plotting the diameter as a function of 
applied field. Figure 8 is a plot of (d — do)/ (d2 — do), as a 
function of (H — H2)/ (Ho — H2), for various values of the 
normal thickness in the infinite disk. The plots for finite nonzero 
values of the thickness were obtained numerically using the force 
equation (14), the defining relation for the d„ [equation (21) ] and 
the expressions for F [equation (11)1, So [equation (12) ] and S2 
[equation (13)1. In the limit of very thick plates, diameter and applied 
field are related by 

H. — H 3 (d —  
H. — H, — 4  ddo ' 

using the small d/h expansions of F, So and S2 from Ref. 1, Appendix 
B, to order (d/h )2. In the limit of very thin plates, diameter and 
applied field are related by 

Ho — H  1   do 
Ho — H,  1 — ; exp (-1) [ 1 — —d (1 + ln 

h  co  (34a) 

do )J, 
h --> O  (34b) 
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Fig. 8—Relative diameter, (d — do) (d2 — do), as a function of relative applied 
field, (H — Hz,)/ (Ho — H2)1 in the infinite plate for various values of the plate 
thickness, h, measured in units of the characteristic length, 1. 

using the constant and simple log terms of the expansions of F, So 
and S2 from Appendix B of Ref. 1. The curves for intermediate thick-
nesses are seen to lie, in order, between the limiting curves and are all 
nearly linear except in the neighborhood of the collapse diameter. In 
the neighborhood of the collapse diameter, the slopes of all the curves 
are infinite. This is easily appreciated by expressing the derivative of 
the domain diameter with respect to applied field in terms of the 
radial stability coefficient. 
The derivative of the domain diameter with respect to the applied 

field is obtained by considering equation (14) to be continuously 
solved and then differentiating with respect to d to obtain 

1  (daii  1  a 
4irM1 kh — -a7i nd/h) = 0.  (35) ad 

Eliminating H with the force equation, using the equation for So (12) 
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and rearranging yields 

blirM. ad _ d  1   •  (36) 
d 3H h 

l/h — SoM 

So that indeed the derivative of diameter with respect to applied field 
approaches infinity as radial metastability is approached. 

2.5 The Effect of Wall Energy Anisotropy on the Size, Shape and Stability 

of Cylindrical Domains 

The domains observed in orthoferrites are never precisely circular 
but always have some degree of ellipticity. The present subsection 
relates this anisotropy in domain shape to more fundamental domain 
parameters. 
In the orthoferrites K,, >> 27-M: so that the magnetization lies rigidly 

along the plate normal and the wall width is narrow as compared to the 
domain diameter (1). The applied field energy, EH and the internal 
magnetostatic energy, E , terms of the total energy expression (4) 
thus make no contribution to producing the domain anisotropy. There-
fore the anisotropy results from an anisotropy in the wall energy 
density cr,„ . Considering again the wall energy density to be inde-
pendent of wall curvature and the wall to be oriented with its normal 
perpendicular to the plate normal, i.e., a cylindrical wall, the wall 
energy density may be expanded as 

a. = & +  E 0-2. cos [2n(v — v2n)] 
n I 

where 2, iS the angle between the wall normal, N, and the x axis (see 
Fig. 9) and the expansion coefficients, 5.,„ , a2„ and v,„ are taken to be 
positive. The odd angular periodicity expansion coefficients are deleted 
from equation (37) since the energy of the system is invariant under 
time reversal while the direction of the wall normal (referred to the 
magnetization direction) changes sign. 
To describe the anisotropy observed in orthoferrites, it has proven 

sufficient to include only the average and two-fold terms in equation 
(37). In addition, if the plate is assumed oriented so that the wall 

energy is maximized when the wall normal lies along the x axis, the 
wall energy density is 

(37) 

=  Acr., cos 2,  (38) 

Although the method which now will be employed to calculate the 



748  THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1971 

Fig. 9—Coordinate system used in consideration of anisotropie wall energy. 

implications of equation (38) is clearly applicable to the more gen-
eral energy expression (37), attention will be restricted to equa-
tion (38). 
The total wall energy is 

E, = h  cr„, ds  (39) 

where s is the arc length along the curve describing the domain shape 
in the plane. When the wall energy density (38) is substituted into 
equation (39) and the differential arc length, ds, and the wall normal 
orientation angle, y (see Fig. 9), are expressed in terms of 0, rb(0) and 
arb(0)/80, the total wall energy expression becomes 

2n.  A  \ 

E, = h&  e o [71 +  do as 

2/r 

Ac„ f  {[r  i2,  (V2T cos 20 

2 arb far,, (arb 2 
cos 20 — rb sin 20)[r2b ) 1  dO.  (40) 

ao as  \ao 
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In the isotropic wall energy density case, ff„, =  , the first term in 
equation (40) is identical to the isotropic wall energy expression [equa-
tion (8) of Ref. 1], the second term in equation (40) representing en-
tirely the effect of the wall energy anisotropy. 
To evaluate the effect of the anisotropy term even to lowest order, 

it is necessary to obtain all the first and second derivatives with 
respect to the expansion coefficients, tir„ and tà0„ of the expansion of 
rb(0) (2) for the case of a strictly circular domain rb(0) = ro. In the 
expressions for the derivatives, ;Man and MO„ are again abbreviated 
to al. and acin and evaluation at rb (0) = ro is denoted by a zero sub-
script. The first derivative with respect to  is 

a(arb 
aE  ) =  r ar, , ar.  ae ,, 
ar.  rb ar„ -r ao  ar„ 

a( arA 

rb [r 2 b  ±)2 c 20 
ar,  ar, \ael 
ar„  ao ar„  ao 

(aar06)21-4 do 

a(arb 

— 2 a 0)  ar (r; cos 20 — rb sin 20)[r: 
n a 

_ 9 .!3?. b  [( h' cos 20 — rb sin 28)(71. + 
ao ar„  ao (41) 

Setting rb = r. and Ôrb/a9 = 0 and carrying out the integration yields 

(e„ v = 2Thry,„ ¿to —  h  8.2 cos 282  (42a) arn 2 

where 8„,„ is the Kronecker delta function. The remaining derivatives 
which are evaluated in an entirely similar manner are: 

faEw\ = „ 

(  02E  iv =  hi- n ""' 2 (5 
Or„ o  

3 
+ r 4—ro h or mn 3.1 3.1 cos 201 — 3...±2 cos (nO„ — m0.)I , 

(42b) 

(42c) 
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(  82E w  
\ao, ao,, — o' 

and 

(  a2E,  
— 37h lair ,  15, 2  8.2 sin 202 • ar„),, 

(42d) 

(42e) 

The terms of equation (42) in  are all identical to the corresponding 
terms in the isotropic case [equation (14) of Ref. 1] so that adding the 
terms of equation (42) in Au,. to equation (7) yields the total energy 
expansion for the anisotropie ease. The domain is therefore in equi-
librium when the force equation for the isotropic ease (14) with cr., = 
is solved and the force tending to make the domain elliptical is some-
how balanced. Inclusion of the effect of second order energy variations 
terms solves the latter part of the equilibrium problem to lowest order. 
Before proceeding with this solution, it is appropriate to comment 

upon the significance of the various energy terms. As required 
by translational symmetry [Ref. 1, Sec. 4.2.2] (8.E'à ../89.2)0 = —2r0 • 
(52E,v/8r2,)2 when 01 = 02 where L  is the Acrw contribution to the 
energy. The (02Ew/ar)0 term in the stiffness matrix thus has only 
kinematic significance. On the other hand, —aLdkr2(a.E.w/ar2)0]/802 = 
— Ara(aEw/80, 49/.2)0 is a torque tending to turn an elliptical domain 
into the direction in which the force tending to make the domain 
elliptical is most positive. 
To solve the elliptical equilibrium problem, it is convenient to write 

the energy variation expression in the form 

—F•X  4LX•S•X  0,(X)  (43a) 

where 

X M [XI , X2 , X3 , X4 , X5 , X6 , X7 , • • •1 

[An, ,  , A01. e Ar2 AO2 , A r a  • • • 

(43b) 

(43e) 

and where the elements of the force vector, F, and the stiffness matrix, 
S, are 

and 

F, = — ax J,, 

( aEr  
Si' Uzi 0x1/0 • 

(43d) 

(43e) 
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Setting the gradient of the total energy in the space of the zi equal 
to zero and solving for the equilibrium yields displacements when third 
order energy terms are neglected 

X = S-1F  (44 ) 

where S is the inverse stiffness or compliance matrix. From the com-
ments in the preceding two paragraphs and inspection of equations (43) 
and (44), it can be seen that stable equilibrium is obtained when: 
ro is the stable solution to the isotropic force equation (14) with cr,,, =  , 
0„ = 0 and At = 0 for all n (allowing now negative values of Arn) and 
Are, = 0 for n = 0 and n odd. The remaining even n ea',, are determined 
from equation (44) written with respect to these variables only. Be-
cause of the special form of the resulting F and S, inverting only a 
finite submatrix of S yields X to any finite order in Arr. . When this is 
done there results 

Aro _ 1 FL s 
ro 2\h/J khi '  

32 (01-1 -  S4  1 ( t ) 2 

Arn  "" (A / '  n  6,  (45c) 
ro h  

where 

(45a) 

(45b) 

A/  A«./4111f: .  (46) 

Equation (45a) has also been obtained by E. Della Torre and M. 
Dimyan.2 
In the small Ar„ approximation of this calculation the wall anisotropy 

term has no effect on ro or any of the odd n Arn . The collapse diameter, 
, and collapse field, Ho , are thus unchanged with respect to the iso-

tropic case. At all diameters, however, the anisotropy pulls the initially 
circular domain out into an elliptical shape, the ellipticity being smallest 
at the collapse diameter and blowing up to infinity at the isotropic 
elliptical runout diameter (45a). At the isotropic runout diameter 
this calculation clearly cannot be applied to obtaining the reduction in 
the range of stability which wall anisotropy produces. It is also clear 
from the blow up of Ar2 that any statement of such a reduction in 
the region of stability should be in terms of applied fields rather than 
domain diameters. In calculations of a. and Au. from measurements 
of the major and minor axes of elliptical domains, it should be noted 
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that Ar./r. [equation (45b)] makes a small contribution to the length 
of each axis which is not removed by averaging. 
In platelets having the preferred thickness, h = 4/, and biased to the 

collapse diameter, àr2/r0 = 2.61(A//h) and ààr,i/r,  4.65(à//h)2, while 
in the neighborhood of the isotropic elliptical runout diameter where 
pr, —› co , tkr,/r. = 3.59(à//h) ,dira/ro 
In rare earth orthoferrites, the anisotropy in wall energy is typically 

(within a factor of two) àff,,/ir„ = 3% so that ,à1/h for h = 41 is only 
3/4%. The ellipticity at collapse is thus small. The contribution of 
delr4 is very small at all diameters (h  41) and further, near collapse, 
the cylindrical wall and infinitesimal wall width approximations quite 
possibly produce larger errors. 
The implication of the foregoing for device applications is that wall 

energy anisotropy has no effect upon the collapse diameter and collapse 
field. As far as the elliptical runout conditions are concerned, careful 
measurements carried out on a low coercivity platelet of TmFeC) in 
which àcr„,/ir. = 3% show that the reduction in the ratio of the col-
lapse to the elliptical runout field is only of the order of 1%." 

III. COERCIVITY AND MOBILITY 

The preceding sections treated only forces arising from reversible 
processes. The present section considers forces arising from the irre-
versible processes describable by the wall motion coercivity and wall 
mobility. Several relations between wall parameters and domain 
parameters are obtained. In particular, this section computes the 
domain coercivity and mobility in terms of the wall coercivity and 
obtains the maximum allowable coercivity which permits device 
operation in the hard bubble mode. Inversely, it is shown how the 
wall mobility and coercivity may be obtained by domain measure-
ments. 

3.1 Domain Dissipation 

The method used to take dissipative effects into account is to 
compute the power dissipation produced by a general variation in 
domain shape using the wall dissipation equation and then to set 
this equal to the power produced by the variation. By this procedure 
the equations for the 'various modes (translation, size change and 
deformation) are obtained. The dissipation equation approach is taken 
as a best first guess to the solution of coercivity problems. The reader 
is cautioned not to take any of the coercivity results too literally, since 
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coercivity is never uniform and in many cases depends on the direc-
tion of wall motion.11 
Wall motion in many materials is describable in terms of a wall 

motion coercivity and a wall motion mobility.12-14  Such a description 
should be valid in any material for sufficiently low velocities and 
coercivities. Presently known uniaxial materials such as BaFe12C19 
for which the velocity-drive field relation is not describable • by 
coercivity and mobility at high drive fields15-18  (they show roughly 
a limiting velocity) have low mobilities which reduce their usefulness 
in device applications. The present work therefore restricts attention 
to 180° domain walls in materials having the velocity-drive field 
relation 

j —  IHLI > H. , 

0,  IHL I H. , 

where: y,, is the local wall velocity in a direction normal to the wall, 
HL is the total local field component parallel to the magnetization, and 
where equation (47) serves as the defining relation for the wall motion 
coercive field, 11,, and the wall mobility p.,„. The field HL includes 
the effect of all magnetic fields as well as any effective fields such as 
the "wall energy field," and may vary from point to point. The 
symbol, HL, is used to distinguish it from H, used elsewhere to denote 
the spatially uniform z component of the applied field. For a planar 
wall in the absence of internal magnetostatic forces, HL is the applied 
field. Equation (47) is assumed to hold whether or not the wall is 
accelerating since for presently known materials wall inertia effects 
are negligible. 
Consider now a segment of 180° domain wall such as a portion of 

the domain wall shown in Fig. 1 and assume that HL is positive when 
it lies in the positive z direction. Under these conditions, the power 
input per unit area from the local field to an inward moving (decreas-
ing rb) segment of the domain wall is independent of the details of 
the magnetic configuration within the wall and is 

Pi. = 2M. 11/Lvni•  (48) 

Since inertial effects have been assumed to be negligible, the power 
input must be equal to the power dissipated per unit wall area, pdiss 

so that eliminating HL from equations (47) and (48) results in 

(47) 

Pdies = 2M, [H, ivni ±  •  (49) 
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Integrating the dissipation density over the domain wall area yields 
the total dissipation 

1  2 

Pdiele =  f 2M. [II.  —  (50) 
'fell  g. 

where da is the differential wall area. For a circular domain, where 
ro(0) = 7'0, this expression becomes 

21. 

Pd. = 231 ohro f  [H  •ioi ± —1 iv 'iri2] dO  (51) 
g. 

where ir is the unit vector in the radial direction. Now for a circular 
domain 

dri,(0) 
v • — 

dt 

v̀c  arb(0) dr„ _L (arb)d0,1 
w eL\ ar„ /o  aer, dt 

dr„ = E cos [n(0 — 0„)] —dt  (52) 
n..0 

where again dàr„ and c13.00 have been abbreviated to dr0 and d0.. 
Substituting equation (52) into equation (51) and carrying out the 
integration yields 

dr.  2  dr.  61 
Pai  3f o.  47r .hro{H  —  ± NO( t ,[ — d  „•,f  dt  dt2-')] 

1 V droV +  (drny  03 (cldrg.)]} 
\clt  2  dt 

(53) 

where NO1 (dr./dt) indicates the nonlinear coercivity coupling terms 
which appear even in lowest order. The nonlinear coupling terms 
tend in general to couple in additional modes even when only one 
dr./ dt is initially nonzero. An exception to this is the uniform radial 
mode of motion dro/dt which, because of its symmetry, may take place 
without coupling in the other modes. If the coercivity is negligible 
[H0 « 1/14o(dr0/dt)] then the àrn and AO„ remain uncoupled normal 
modes of the system. The consequences of the damping of the various 
individual modes will now be considered in the order n = 1, n = 0, 
n  2. 

3.2 Domain Coercivity and Mobility (n = 1) 

Consider an initially circular domain in which only dAri/dt is 
nonzero. In this case the component of the domain wall velocity 
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normal to the wall is 

v„  dri,(0)/dt = (cleiri/dt) cos (0 — BO. 

755 

(54) 

Since the distribution of the wall velocity component normal to the 
domain wall for a circular domain propagating with velocity, vd, in 
the Od direction is 

V, = ir d = lvd1 cos (0 — Od),  (55) 

a variation in 3.7.1 may be identified with translation in the Od direction 
with 

lvd1 =  (56) 

Using equation (53), the power dissipated by a uniformly moving cir-
cular domain is 

Pdi  = IrMahrt-8 He ‘v,1-1- 1--Yed]  (57) 
g. 

and, since Pdiss  = —Vd• Fd where Fd is the drag force, the equivalent 
force for a domain moving with a nonzero velocity is 

Fd = —7111,h 4-8 ± —2 lvd11,,  (58) 
7r  ,U,,, 

where i„ = vd/lvd1 is the unit vector in the direction of the motion. 
Notice that Fd is an ordinary linear force which could be measured 
mechanically with the aid of a magnetic probe. 
Translational forces are most easily produced by gradients in the 

applied field. The power input to the domain from such a force is 
obtained by integrating the power input density, equation (48), over 
the domain wall area. In the case of a uniform gradient the local field 
at the domain wall is 

HL = HL — !mil Cos (0 — 0,)  (59) 

where ,ekH is a vector orientated in the direction in which the bias field 
decreases most rapidly, Oc, , and has a magnitude equal to the max-
imum difference in field across the domain (a gradient of magnitude 
IM/1/2ro and direction 8, + 7r). In equation (59) .F/L includes: the 
bias field at the center of the domain, the "wall field" and the de-
magnetizing field, all of which are independent of angle. All of the 
field components in equation (59), HL , AL and ,à1{ are to be understood 
as the z-averaged z components of the actual field since this is the 
quantity which interacts with a 180° cylindrical domain wall. With 
this understanding, integration over the wall area may be replaced by 
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multiplication by h and integration over 0. Assuming the domain to 
be exactly circular, the total power input to the domain is 

Pin = 2M ,roh 

• f2r [HL cos (0— 0,)]•[— Iva' cos (0 — 0,)] (JO 
0 

= irrohM. All • vd (60) 

which is just the expression for the power input to a dipole of strength 
(irr02h)(2M.) propagating in a gradient of magnitude I A111/2ro 
The domain will propagate in the direction in which the input power 

is greatest, (0, = Od the direction in which the bias field decreases most 
rapidly), and the magnitude of the velocity will be such that the dissi-
pated power (57) balances the input power (60). Such a balance always 
occurs for vd = 0, When I Aill < (8/7)H, this is the only condition in 
which the balance is maintained. The domain velocity is therefore 

lvdi = ii,„(1.à1/1 — H,)  IHI > lic (61a) 

lvd1 =  0, 13,H1 H, .  (61b) 
— 7r 

Comparison of equations (47) and (61) shows that it is possible to 
define a domain mobility and coercivity by taking 3,1-1 as the driving 
field in terms of the wall mobility and coercivity as 

and 

ild _ 2P.m 

8 

(62) 

(63) 

if All is taken to be the drive field. 
Note that in the integral for the power input (60), the angle inde-

pendent field term, HL , does not contribute so that the effective power 
input density with respect to angle for a domain propagating down a 
bias field gradient is rohM. I Mil Ind' cos2 (0 — 0) which has the same 
angular factor as the mobility associated dissipation (50) and (55). 
The power input and power dissipated thus cancel (after z averaging) 
at each point on the perimeter of the domain for domains propagating 
under the influence of a uniform field gradient and viscous damping. 
In this case therefore there are no forces tending to distort the domain 
shape from circular. When coercivity is present (even perfectly uniform 
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coercivity), the power input and dissipation do not cancel locally and 
thus internal stresses tending to distort the domain from circular 

are present. 
When a bias field is applied to a circular domain which is not simply 

a uniform gradient, the affect of the additional nonuniformities may be 
taken into account by Fourier decomposition of the z-averaged z com-
ponent of the applied field at the domain wall with respect to angle. 
When this is done the constant term determines domain size, the O 
term translates the domain, and the nO terms, for n k 2, deform the 
domain. The procedure is, of course, only applicable if the domain 
shape remains near circular. 
Coercivity and mobility may be measured either by applying fields 

to walls" and using equation (47) or by applying field gradients to 
entire cylindrical domains20 and using equation (61). In the platelets 
of material which have a coercivity which is so low as to make them 
useful for device applications it has been found convenient to use a 
second domain to provide the field gradient for the coercivity measure-
ments. In this measurement two domains are brought together and 
then released, the coercivity being given by the formula° 

3x rgh 
H. = (47rM  (64) 8 84 

where 8 is the center-to-center distance of the two circular domains. 
Equation (64) was obtained using equation (61) and the z component 
of the dipole field from the second domain at the center of the plate, 
2.111,rrPils3. 

3.3 Domain Size in the Presence of Dissipative Processes (n = 0) 

The domain size variation mode àr0 has two properties which are 
not common to the other modes: First, large variations from equi-
librium may be considered using the force function, F(d/h), as well as 
small variations from equilibrium using the radial stability function, 
50(d/h). Second, arbitrary dissipation functions may be considered 
because the rotational symmetry of the motion removes any tendency 
for an initially circular domain to couple in other modes. 

3.3.1 Large Variations in Domain Size 

Setting all the dArn/dt except dàro/dt equal to zero in equation (53) 
yields the dissipation produced by a domain size change 

1 dAroidAro 
Pcli es ='" 4/1" Mihr t ± H,  o dt  -  

g  dt 
(65) 
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where the upper sign is for an expanding domain. Setting the sum of 
the power dissipation and the rate of energy change from equation (7) 

dEr = dEr ado  4(2irm -2.)(7rh 2)[!_. + d  H F (11 d--4'r0 (66) 
dt  dAro dt  h  h 4rM,  h  dt 

equal to zero yields the differential equation for the domain diameter 
[dàrn = dro = ¡d(d)] 

d(1 
h   d  h) 1  d H ± H, (d 

F -h-)• 
21.4„(4r111,) h dt — h  h 4rM  (67) 

The domain diameter thus relaxes toward a value which is a solution 
to the force equation (14) in which the bias field H has been replaced 
by a composite bias field, H ± H, . After this substitution is carried 
out, the equilibrium diameters are obtained as described in Section 2.1 
except that the sign of ±H, must now be determined in each case and 
now there is a small continuous range of stable solutions about both 
the stable and unstable zero coercivity solutions. There are again two 
solution diameters for each H ± H, when 0 < H ± H. < H0 . In the 
present case, however, coercivity produces two stable ranges of solutions 
rather than one stable solution point and one unstable solution point. 
The large diameter solutions to the force equation for H  H, and 
H — H, bound the solution range which brackets the zero coercivity 
stable solution and similarly the small diameter solutions to the force 
equation for H  H, and H — H, bound the solution range which 
brackets the zero coercivity unstable solution. 
Figure 10 shows the graphical construction for the case l/h = 0.300, 

H/477-M„ --= 0.2544, H14rM, = 0.020. The zero coercivity stable and 
unstable solutions at d/h = 2.000 and d/h = 0.767 are marked S and It 
respectively; the large diameter solutions for H  H, and H — H, at 
d/h = 1.527 and d/h = 2.468 are marked 5+ and S_ respectively and 
the small diameter solutions for H  H, and H — H, at d/h = 0.919 
and d/h = 0.685 are marked It+ and 91_ respectively. A domain having 
a diameter greater than that at S_ will relax toward the diameter at S_ 
as indicated by the arrow. Coercivity stabilizes domains having di-
ameters between S+ and 8_ . Domains having diameters between the 
diameter at 8, and <it+ will relax toward 8, as indicated by the arrow. 
Coercivity stabilizes domains having diameters between 91+ and 'It_ . 
Small diameter coercivity stabilized solutions have been observed in 
the process of carrying out the mobility measurement described in the 
second paragraph which follows.' Domains having diameters smaller 
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Fig. 10—Construction of solutions to the force equation in the presence of 
coercivity, 1/h = 0.3, H/4rM. = 0.2544, H d4wM. = 0.020. 

than 'U._ will collapse as indicated by the arrow. The rate of change of 
domain diameter in any of the dynamic processes described is, of course, 

given by equation (67). 
It can be seen that the collapse diameter is independent of coercivity 

to the extent that the coercivity is uniform (this is only approximately 
true at best). A measurement of the collapse diameter, denoted by 
here, yields the characteristic length 

/ = hSo(d„,/h)  (68) 

independent of the coercivity. If H, is then measured from the diameter 
hysteresis and this value is subtracted from the measured collapse 

field, the value of 47rM, is obtained. 
Bobeckl" has developed a method for measuring mobilities which 

requires only the observation of static domain states. In this method the 
domain is biased to a stable diameter and then a short duration field 
pulse having a magnitude, H p , such that the total field amplitude 
exceeds the collapse field, H  Hp > Ho , is applied. The pulse dura-
tion is at first kept so short that at the end of the pulse, the domain 
has a diameter between the zero coercivity stable and unstable solu-
tion so that it recovers its initial size. The pulse length is then gradually 
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increased until the diameter at the end of the pulse is less than the 
unstable solution diameter so that the domain collapses. 
Figure 11 is a construction illustrating the mobility method for 

1/h = 0.30, H/47/If. = 0.254, Hp/47rM, = 0.246 and zero coercivity. 
Under these conditions, (H ± Hp)/47rM, = 0.500> Ho/ 4rM = 0.283, 
and the solution diameters are d,/h = 2.00> dolh = 1.18> d./h = 0.77 
where d, is the stable solution diameter and d. is the unstable solution 
diameter. In the figure the static collapse point is denoted by e. The 
domain is initially at the stable equilibrium point S. Application of a 
fast rise bias field pulse of amplitude Hp takes the domain to S' where 
it collapses towards W. If the pulse is turned off at 61.' (above the un-
stable solution point); the diameter increases until the point S is again 
reached. If, on the other hand, the pulse has sufficient duration to 
reach 3Y so that the domain state reaches 5), the domain collapses 
to W. In the insert, the field pulse shape used in making the measure-
ment is shown as a function of time. 
When the domain velocity is proportional to the applied field and 

1.6 

1.4 

 ̂

-̂ 

0.2 

t --3. 
i  I  I  I  I 

2  a 
cl/ h 

4 

Fig. 11—Con8truction used in the pulsed bias field mobility method, 1/h = 0.3, 
H/47rAt, = 0254, (H + HP)/47rM , = 0.500. 
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pulse rise time effects may be neglected, the mobility is 

4 -d) 
h h   

1  d  H ( 
h 41rM — Fh) c1 

where T is the minimum pulse duration which results in the collapse 
of the domain. When coercivity must be taken into account the limits 
of the integral change as described previously. (At the beginning of the 
pulse the domain is at the point  of Fig. 10.) If additionally nonlinear 
velocity-drive field relations and pulse rise times must be considered, 
it is not possible to obtain the mobility as a simple integral over the 
diameter and the integration is better carried out with respect to time. 

3.3.2 Small Variations in Domain Size from Equilibrium 

This section considers the effect of dissipative processes on domain 
size for the case where the energy variation expression (7) may be 
considered an expansion of the energy about the domain diameter 
which is a solution to the force equation (14). In this case the rate of 
change of energy with respect to time using (7) is 

dET aE Mr° 
de  aàro dl 

rd./h 
Pt° 2T4rM. a„jh 

2 h [1 - (d)] .r dàro 
= —87h(27-M.)  —  o dt 

(69) 

(70) 

Again equating the rate of energy decrease to the power dissipation 
(65) yields for the linearized differential equation for radial motion 

1   dAro (4] Aro Hc 
µ.(47M.) dl  \di h  re 47M: 

The domain radius thus relaxes towards 

lAroi He 
ro 401. I 1/h — 50(d1h) 

(71) 

(72) 

if the domain is stable or, in the case of an unstable domain, coercivity 
stabilizes the domain for departures in radius from equilibrium up 
to this same value. In either case, stable or unstable, the relaxation 
time [defined by the time factor exp(—t/T)] is 

d/h 
f. 1/h — So(d/h) 

(73) 
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The factor d/h[11h — &(d/h)] 1 in equations (71), (72) and (73) 
is a measure of the radial compliance of the domain relative to co-
ercivity or mobility and will be called the radial relative compliance 
function. The value of this function may be obtained as the inverse 
slope of a line constructed on a plot of the force and stability functions. 
Such a construction is shown in Fig. 12 for 1/h = 0.30, d/h = 2.00, 
H/47-M,, -= 0.2544. The numerical slope of the line VOI drawn from 1/h 
on the vertical axis to the point on 8,, at d/h = 2.00 is 0.0883 so that 
d/h[l/h — Sorl = 11.33. Thus, in this ease, for a domain to have a 
diameter defined to within ten percent, the coercivity must be 
H. < 0.01(4rM.). 
At the collapse diameter, do, the relative radial compliance is, of 

course, infinite while at the other end of the range of stability (the 
elliptical runout diameter) where in the present example d2/h = 0.358, 
the relative radial compliance has the value 9.57. The minimum 
value of the relative radial compliance for 1/h = 0.30 is 9.52 occurring 
at a diameter of d/h = 3.22. This behavior of the radial relative 
compliance at 1/h = 0.30 is typical for thicknesses near the preferred 
value of h/1 = 4 as can be seen from Fig. 12. In all such cases, the 
minimum compliance is achieved at some diameter less than d2, the 
compliance being nearly constant from d = d2 down to (d0d2)1 [for 
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in 0.8 
Ui 
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o 
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Fig. 12—Construction of the radial and elliptical relative compliance functions 
for 1/h = 0.3, d/h = 2. 
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1/h = 0.30, (d0d2)i/h = 2.04] then increasing rapidly to infinity at do. 
The constancy of the radial compliance over a large part of the stable 
range is related to the linearity of the diameter-field curves away from 
the collapse diameter [see (36) and Fig. 8]. 
In Section 3.3.1, the diameters bounding the coercivity stabilized 

solutions to the equilibrium problem were computed for the case 
//h = 0.30, H/4witf„ = 0.2544 and (d„/h = 0.767 ddh = 2.00 and 
1-1,,/47rM. = 0.020 using the force equation in the presence of coercivity. 
As an illustrative consistency check, these bounding diameters will 
now be computed using the linearized equation (72). The diameters 
bounding the solution region bracketing the zero coercivity unstable 
solution obtained from this equation are 

d _  {1 ±   _ I  _ 0.664 and 0.869, 
h  4TM. h Lh   

and the diameters bounding the solution region bracketing the zero 
coercivity stable solution region are 

d  cl {,  r-Cf H. d.  = h  4Tr, h ib —  = 1.547 and 2.453. 
The corresponding diameters obtained directly from the force equation 
were d/h = 0.685, 0.919, 1.527, and 2.468. The excellent agreement 
of the diameters bounding the zero coercivity stable solution com-
puted by the two methods is again related to the linearity of the 
diameter-field curves. Note that the agreement of splittings of the 
diameters bounding the zero coercivity unstable solution computed the 
two ways is also quite good. 

3.4 Domain Shape in the Presence of Dissipative Processes (n  2) 

The power dissipation produced by the motion of a single mode is 
from equation (53) 

1 dAr deir n k 2,  (74) Pdi ea  41r M1hro [ ± —2 H.  — 1 " ir 2  dt] dt ' 

where the upper sign is for positive dArddt. The rate of change of 
domain energy under these conditions is from (7) 

dE,  aE  
dt = aàr„ di 

1)(11(1)[hl  s .(dh)]  dAir„ 
= 4n-h(27/112,)(n2 —  d  n  2. (75) 
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Setting the sum of the rate of change of the energy and the power 
dissipation equal to zero yields the differential equation for the 
relaxation of the variation of a single àro, 

i 
1  dAr„  j12  (A] Arn 4 H. 

µ4/rM, dt  (7'2 "\ )[/  _,_dl h  ejn  4-irM.  (76)  

The domain shape variation amplitude thus relaxes towards 

I An,' Hc 4  1  d/h   
re 4T111. 7r (n2 — 1) [1/h — S,i(d/h)] 

if the variation is stable or, in the case of an unstable domain, 
coercivity stabilizes the domain for variations in amplitude up to this 
same value. In either case, stable or unstable, the relaxation time 
(defined by the time factor exp(—t/T)) is 

n k 2,  (77) 

ro 1  d/h   
= n  2.  (78) 
i.4.,47rM. (n2 — 1) [1/h — Sc(d/h)] ' 

Whenever the coercivity is effectively zero so that the mobility 
characterizes all dissipative processes, the normal modes of the domain 
remain decoupled (within the small amplitude approximation). Each 
of these modes relaxes according to equations (71) or (78). When 
coercivity must be considered, these equations become rather crude 
approximations because even perfectly uniform coercivity introduces 
nonlinear mode coupling. The nonlinear mode coupling is especially 
noticeable at the end of the relaxation of a single mode. The reason for 
phrasing the discussion of the effects of dissipative processes in terms 
of dissipation equations was to account correctly for the effects of 
coercivity to lowest order without being required to examine the 
coupling of the modes or the origins of coercivity. The results obtained 
do provide a general picture of the dependence of the effect of coerciv-
ity on the various domain parameters and in particular they provide 
a measure of the dependence of the stiffness of the domains on these 
parameters. 
Equations (77) and (78) show that the entire n dependence of the 

residual distortion of a domain recovering from a fluctuation of a 
single mode and the relaxation time with which it recovers is contained 
in the stiffness factor (n2 — 1)(1/h — S„(d/h)]. The domain stability 
condition, So l/h  S2 , and the inequality (18) imply that [1/h — S.] 
is a monotonic increasing function of n. Therefore the residual Ara and 
relaxation time both decrease slightly faster than 1/n2 (see Ref. 1). 
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Thus, to characterize the effect of coercivity in limiting the attainment 
of stable movable cylindrical domains it is necessary only to consider the 
elliptical shape variation mode (n ---- 2) in addition to the size (n = 0) 
and translation (n = 1) modes discussed previously. 
The factor (4/370(d1h)[1/h — 82(d/h)]-1 in equations (76), and (77) 

and (78) for n = 2 is a measure of the elliptical compliance of the do-
main relative to coercivity of mobility and will be called the elliptical 
relative compliance function. The value of this function is proportional 
to the inverse slope of a line constructed on a plot of the force and 
stability functions. Figure 12 shows such a construction for l/h = 0.30, 
d/h = 2.00, H /4rM = 0.2544. The numerical slope of the line Ve8 
drawn from l/h on the vertical axis to the point on 1S2 at d/h = 2.00 
is —0.068 so that (4/3r)(d1h)11/h — 82]-' = 6.25. Thus a coercivity 
less than that value which defines the domain diameter to within ten 
percent (H„ < 0.01(47rM.)) defines the ratio of the difference in the 
ellipse semiaxes to their average (2r2/ro) to 12 percent. 
At the elliptical runout diameter, d2, the relative elliptical com-

pliance is, of course, infinite while at the other end of the range of 
stability (the collapse diameter) where in the present case do/h = 1.16 
the relative elliptical compliance has the value 2.22. The figure shows 
that this behavior is true for any value of 1/h. In general the minimum 
value of the relative elliptical compliance occurs at the collapse 
diameter, the compliance increasing from the minimum in a regular 
fashion to infinity at the elliptical runout diameter. This regular 
behavior is in contrast to the behavior of the relative radial com-
pliance. 

3.5 Restrictions Placed on the Region of Device Operation by Consideration 
of Dissipative Effects. 
The relative compliance functions appearing as factors in equations 
(72), (73), (77) and (78) contain the dependence of both the normal-
ized residual distortion ir/ro, and the normalized relaxation time 
r( 4,r M,,)/ro , upon n, 1, h, and d, or H. Although the discussion which 
follows is phrased in terms of the residual ekr„/ro , it should be kept in 
mind that the same remarks apply to the relaxation times scaled to 
(p..42rM1), the time required to propagate the domain one radius 

when the maximum field difference across the domain, àH, is 87r/lf8 
[equation (61) ]. 
In preceding subsections, the following has been demonstrated: 

Except in the immediate neighborhood of the collapse diameter, the 
domain diameter and bias field are, within the range of stability, 
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approximately linearly related (Fig. 8). In the neighborhood of the 
plate thickness previously termed preferred, hi, = 4/ [equation (31) ], 
the radial compliance, considered as a function of the bias field, is 
roughly constant from d = (d0d2)1 to d = d2, and at d = (doda) i, 
the elliptical compliance is one half the radial compliance so that 
d = (d0d2)1 represents a reasonable bias condition. Since for h/1 ez 4 
or in general for any plate thickness, the diameter and bias field 
ranges are relatively narrow (Fig. 5) the radial and elliptical compli-
ance of domains suitable for device application may be completely 
characterized with respect to plate thickness by plotting the relative 
compliance functions with respect to h/l for the bias condition d = 
(dod2)i. 
The relative radial compliance, 

Aro/ro d/h   (79a) 
He/41-M.  So(d/h) — 1/h ' 

1.085(h//)*,  h// >> 1,  (79b) 

3.783 exp (rl/h),  h/l «1,  (79c) 

and the relative elliptical compliance, 

_ _ _ _____  4  . d/h   
(80a) 

1-1,/4r31, — 37r 82(d/h) — 1/h' 

1.382(h//),  h/l>> 1,  (80b) 

1.606 exp (r1/h),  h/l «1,  (80c) 

are plotted in Fig. 13 as functions of h/l for the bias condition d = 
(doc1.2)1. The function values and asymptotic forms were obtained by 
methods which were used in Section 2.3 to obtain the diameter and 
field functions. The feature which distinguishes the relative compliance 
functions from the diameter and field functions is that the diameter 
and field functions bound the region of domain stability whereas the 
relative compliance functions provide a measure of the magnitude of 
the stability of the domains within the stable region. 
The constructions of the radial and elliptical relative compliance 

functions shown in Fig. 12 and described in Sections 3.3.2 and 3.4 
•for h/1 = 3.33, d/h = 2.00 may be taken as approximate construction 
for the values of these functions at h/1 = 3.33 since (d0d2)i/h = 2.04. 
The minimum value of the radial compliance [d = (610:12)11] is ẑ• 7.9 

occurring at a thickness of h/1 "--; 10.3 and the minimum value of the 
elliptical compliance [d = (d,0d2)i] is  5.9 occurring at a thickness 
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Fig. 13—Radial and elliptical relative compliance functions as a function of the 
thickness, h, measured in units of the characteristic length, 1, for the bias condi-
tion d = (doei. 

of h/l  6.1.The compliance minima occur at somewhat greater plate 
thicknesses than the diameter minima. However, since the functions 
are quite flat bottomed, they increase only slightly in value from their 
minima to the thickness value previously termed preferred, hit = 4.0 
[equation (31)]. [At h/1 = 4.0, (d0d2)4//  6.8. However, the pre-
ferred values were taken to be hp= 4/ [equation (31) ], d = 8/ [equa-
tion (32)] so that clp/h, = 2.0. The exact preferred values depend on 
the device structure in which the domain is located.) 
As in the example of Sections 3.3.2 and 3.4, the coercivity require-

ment 

< 0.01(47M,)  (81) 

will insure that a domain having the preferred thickness and diameter 
values will show radius function variations from the equilibrium 
radius of no more than ten percent. Just below hit = 4.0, the increase 
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in the compliance functions is seen to become exponential so that the 
observation of stable moveable cylindrical domains in reasonably thin 
plates is experimentally unlikely. Since the relative compliance func-
tions increase slowly with thickness for thick plates, cylindrical 
domains may be observed well into the region in which the assump-
tion of cylindrical walls becomes dubious (see Ref. 1, Section 6.1). 

Although domains may be observed in thick plates, other considera-
tions cause the realizable bit rate to decrease at least inversely with 
increasing thickness. These effects are as follows: The 1111 appearing 
in the domain velocity expression (61) is twice the n = 1 Fourier com-
ponent of the z-averaged z component of the applied field. Since the 
field gradient is applied from the surface of the plate and obeys La-
place's equation, the variation in the applied field intensity decreases 
exponentially into the plate from its value at the surface. Thus for a 
given field variation intensity at the plate surface, the z-averaged z 
component of the intensity variation decreases inversely with increasing 
h/d for hid > 1. Now for d = (do do)*, d/h = 1 occurs at h/l  8 (see 
Figs. 2 or 13) and above this value d/h  2.17(h/l)-* [see Fig. 4 and 
equations (23b) and (24b)] so that for thicknesses greater than h/l s-2, 8, 
the mobility with respect to the field gradient at the surface of the 
plate decreases according to (h//)-1. Since in a given material the abso-
lute domain diameter increases with increasing plate thickness in this 
region according to d/1 ,cz-1 2.17(h//)i, the bit-rate decreases according 
to (h /1)-1 . If additionally the maximum field difference at the surface 
of the plate is assumed to be some fraction of the difference of the 
collapse and runout fields, Ho — H2 , then it is seen from equations 
(27b), (28b) and (30b) that the bit-rate decreases according to (h//)-#. 
Thus in summary, consideration of the effects of dissipative 

proçesses even more strongly defines the neighborhood of 4/1 = 4, 
dp/1 = 8 as the preferred region than did considerations of stability 
only and additionally yields the requirement Ho/4/rM, < 0.01 for the 
attainment of stable movable domains. 

IV. DETERMINATION OF MATERIAL PARAME TERS FROM PREFERRED DEVICE 

PARAMETERS* 

The preceding sections have provided preferred values of the plate 
thickness (31) and domain diameter (32) or bias field, and the least 

*Reference 21 includes part of the material of this section in a discussion of the 
relation of the M. and K. values of materials (available at that time) to the pre-
ferred values of these parameters. 



CYLINDRICAL MAGNETIC DOMAINS  769 

permissible value of the anisotropy constant (1). Additionally it was 
shown that the wall mobility acts to form the scale factor for time. 
For device construction it is desirable to specify the domain diameter, 
d,, from considerations of bit density and the resolution of mask-
making and etching procedures while maximizing the bit rate. Once the 
domain diameter is specified, the desired characteristic material length 
is determined by equation (32) as 1  d5/8, the thickness is deter-
mined by equation (31) as h,  , and the applied field is specified 
by equation (14) as H  0.28 (41rM,). It will now be shown that by 
adding assumptions about mobility and room temperature operation 
to conditions (1) and (31), it is possible to specify uniquely the three 
parameters A, K„ and M. appearing in the energy density expression 
for the simplest uniaxial materia122 

Ps = A[(9 )  sid 0(21]  K„sin2 O — FEL•m• as (82) 

In equation (82), A is the isotropic exchange constant, O is the polar 
angle (the angle between the magnetization and the z axis), cp is the 
azimuthal angle, s is the distance through the wall, K„ is the uniaxial 
anisotropy constant, M is the magnetization vector (IMI = M.) 
and HL is the sum of the applied and demagnetizing fields. Only Bloch 
walls in this simplest uniaxial material will be considered. Achievement 
of the coercivity condition (81) is a function of both intrinsic material 
properties and processing and will not be considered here. 
In Section VI of Ref. 1, it was shown that from several standpoints 

q  K.127111; ,  (83) 

the dimensionless ratio of the uniaxial anisotropy constant to the 
energy density of a volume containing a magnetic field of strength 
47rM8 must at least be greater than one, equation (1). From the 
definitions of q, I, and d„ and the expressions for the Bloch wall width 
and energy in the simplest uniaxial material (82), l„, = 7r(A/K„) and 
= 4(AK8) 4,22  the ratio of preferred domain diameter to the wall 

width is 

d,  16 = (84) 

If q were much less than one then the domain wall width would be 
larger than the domain diameter and clearly no domain of the type 
which has been considered here could exist. On the other hand, if q is 
very large the domain wall is very narrow with respect to the domain 
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diameter. For a given rate of flipping over of the spin systems com-
prising the wall, the bit-rate will thus be inversely proportional to q. 
It may thus be expected that everything else being equal (it is not 
clear at the present time just exactly what is to be held constant) 
that materials with high q values will have low bit-rates in devices 
whose speed is drive field limited. A q value of approximately three 
may thus be termed preferred. 
The range of values of the exchange constant, A, occurring in ma-

terials which may be considered for room temperature device applica-
tions is quite limited as can be seen from the following argument: 
For a given structure and density of spin systems, the exchange 
constant is expected to be proportional to the Curie or Néel tempera-
ture, Tn.28 For room temperature device applications, as a practical 
matter, Tt, must be above approximately 400°K. Since the highest ob-
served T. are approximately 1000°K, the range of allowable T. and 
therefore the range of A in acceptable materials is nearly determined. 
F. B. Hagedorn, D. H. Smith, and F. C. Rossol have combined 

domain measurements of / with magnetometer measurements of .1f. 
and 471-.21/8 to obtain the exchange constant in two materials." They 
find for Sm.Tb1,Fe03 (x ••=-: 0.55, T. = 661°K), A = 0.4 x 10-6 
ergs per cm and for PbFe12_.A11)19 (x  4.0, T. = 508°K) A = 
0.1 x 10-8 ergs per cm, values which are apparently typical for high 
Tfl iron oxides. 
Since the exchange constant, A, is to be considered fixed, q has the 

preferred value three and d has the preferred value dp, it is appropriate 
to solve for the magnetization and anisotropy constant in terms of 
these quantities, 

47rM, = 32(27rqA)Vd,  (85) 

and 

Kt, = 256 42/d,2, .  (86) 

If A = 4.0 X 10-7 ergs per cm, q = 3 and d = 10  cm (approxi-
mately one mil bit spacing) then 47M. ,ce, 80 Gauss and K.  900 ergs 
per cc which are both numerically small. 
Maintaining the values of A and cl,, but considering q as variable (85) 

becomes 47rM. R-..,' 50 N/q. Thus q any within two orders of magnitude 
of the preferred value produces a value of 4/rM. of one kilogauss or 
smaller. Since the magnetic moment per spin system and the volume 
of the individual spin systems are approximately constants and since 
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the exchange interaction is of short range, low saturation magnetiza-
tions cannot be achieved by dilution of the spin systems with magneti-
cally unordered materials. Spin system density thus must be high 
while the net magnetic moment per unit volume remains low. Some 
sort of antiferromagnetic character is thus required in magnetic ma-
terials which are candidates for use in cylindrical domain devices. 
Typical systems are ferrimagnets, and canted antiferromagnets. 
The K„ value of 900 ergs per cc is quite low for a symmetry allowed 

intrinsic uniaxial anisotropy constant." When low anisotropies are 
obtained by operating near the reorientation temperature in canted 
systems25 or near the Neel temperature, the material parameters tend 
to be undesirably temperature dependent. Since uniaxial anisotropy 
energy densities of the required value may be induced, it appears 
that the use of materials having induced anisotropy, such as the 
recently announced garnets,17.15.26 appears quite promising. 
Having determined that A is to be considered fixed and that Ku 

and M5 have preferred values, this section concludes by showing the 
dependence of several overall device parameters on these parameters 
and the mobility. The device parameters considered are the bit 
density, bit rate, the domain flux which is important in Hall effect 
detectors" and the induced voltage which is important in wire pickup 
loop detectors. 
In typical domain devices, the bit positions form a square array 

with the bit spacing being three to four domain diameters (see figures 
of References 4 and 5). If the bit spacing is assumed to be 3d, , then 
the number of bit locations per square centimeter is 

Ps = (3d„)-2 = 6.9 X 10-7(4rM.)4/AK„ .  (87) 

Since the bit density is such a strong function of 471-M8 the magnetiza-
tion is nearly determined once a bit density is specified. 
The difference of the collapse and runout bias field for a plate of 

the preferred thickness h =, 41 is H0 — H2 ez' 0.1 (47rMa). Retaining 
the assumption of a bit spacing of 3d„ and assuming that the device 
structure continuously maintains a field difference across the domain 
of 0.1(47rM„) the bit rate in bits per second is 

fb = v6/3d, = 14,4r/If./60d, = 4.1 X 10-5».(4TM.)3(AK.)-4,  (88) 

linear in the mobility and again dominated by the 47rM5 dependence 
of de. If it is assumed that a pickup loop intercepts one half of the 
flux emerging from the magnetic charges forming the upper surface 



772  THE BELL SYSTE M TECHNICAL JOURNAL, MARCH 1971 

of the cylindrical domain, then the flux change produced by moving 
a cylindrical domain under the loop in gauss square centimeters is 

= dB ' (47rM ) = 6.4 X 104AK.(47rM.)-3 . 
8 "   

If it is assumed that this flux change takes place in the time required 
for a domain driven by a field difference of 0.1(47r/lf„) to propagate 
a distance d,, the induced (MKS practical) voltage is 

V = iió p„(41-111,)2 cli, X 10-8 = 7.9 X 10-81.(AK,)i. 
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We determine the spreading resistance for a sheet of homogeneous ma-
terial of uniform thickness with a disk contact source on one side and with 
current collected (i) over the entire back plane, and (ii) at a corresponding 
disk on the back plane. A constant driving potential is assumed over the 
source resulting in mixed boundary conditions in the plane of the source. 
For each case, a closed form integral solution is derived and then numeri-
cally integrated for a range of geometric ratios resulting in a universal 
spreading resistance curve. The results are used to evaluate the spreading 
resistances encountered in a typical (1 SI cm) semiconductor material. 

I. INTRODUCTION 

The resistance associated with the nonparallel current flow between 
a spacially separated source and sink is referred to as spreading 
resistance. Calculation of spreading resistance is often required in the 
analytical treatment of semiconductor devices. In particular, elec-
trical current flow in a slice of silicon between a surface contact and 
a back-plane contact involves the calculation of the ohmic spreading 
resistance. The heat flow between an active transistor or integrated 
circuit and an external heat sink involves a calculation of the thermal 
spreading resistance in the device carrier. Also, for a given structure, 
the capacitance including fringing is directly related to the conduct-
ance including spreading. 
Two cases are considered in this paper. The spreading resistance is 

determined for an infinite sheet of homogeneous material of uniform 
thickness with a disk contact source on one side and with current 
collected (i) at a completely metallized back plane, and (ii) at a 
corresponding disk on the back plane. D. P. Kennedy analyzed 
these cases for finite cylindrical volumes but with nonmixed boundary 
conditions.' He assumed a constant flux over the source region and 
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defined spreading resistance in terms of the maximum temperature (or 
potential) on the disk. In this paper, we assume a constant driving 
potential over the source. This assumption results in a mixed boundary 
condition in the source plane because the potential is specified over 
part of the surface, and the normal derivative is specified over 
the rest of the surface. In the limiting case of a cylinder of infinite 
radius, there appears to be some difference between Kennedy's results 
and those presented herein. This appears to be associated with Ken-
nedy's definition of spreading resistance in terms of the maximum 
disk potential. However, the comparison is based on the extrapolation 
of curves given by Kennedy. 
A. Gray, et al., considered certain special cases of the infinite region 

problem with mixed boundary conditions in the source plane.2 How-
ever, they imposed one of two constraints. Either (i) there was 
sufficient separation between soiree and sink so the flux distribution 
at the disk could be taken equal to the limiting half-space case or 
(ii) the disk was small enough to be considered a point source. 
In essence, these constraints again reduce the problem to one with a 
nonmixed boundary condition in the source plane. Neither constraint 
is imposed in this paper. 
In this paper, for each case, a closed form integral solution is 

derived which is numerically integrated for a range of geometric 
ratios resulting in a universal spreading resistance curve. For both 
cases, the curves approach the half-space limit for thick sheets, and 
the curves asymptotically approach the nonfringing limit for very 
thin sheets. 'Finally, the results are used to evaluate the spreading 
resistances typical of those encountered in semiconductor technology. 

II. ALGEBRAIC SOLUTION 

The geometry and system of coordinates are given in Fig. 1. Solving 
La Place's equation in cylindrical coordinates when the potential 4» is 
independent of .0 gives2 

0(p, z) = f f(k)(Ci cosh kz  C2 sinh kz)4(kp) dk,  (1) 
o 

where f (k) must be determined by the boundary conditions at z = O. 
For nonmixed boundary conditions at z = 0, f (k) can be found by 
inverting the Hankel transform.1 In the present case, however, the 
mixed boundary condition must be imposed at the z = 0 surface. Thus, 
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acP 
az 

V = f f(k)CiJo(kp) dk, p  a; 

fi(k)k(C,. sinh kz  C2 cosh kz)J 0(k p) dkL0= 0 

This results in a dual set of integral equations. 

V = f f (k)CIJ 0(4) dk,  O  p  a; 

(2) 

(3) 

-=  f(k)C2.10(kp) dk,  p  a. 

J. D. Jackson observes that the solution of this set of equations isa 

2 Va sin ka 
r C  ka 

Thus 

(4) 

q5(p, z) = —2V—a C f' sin a ka  (cosh kz  —C sinh kz),10(kp) dk.  (5) I 
o k 

2.1 Case 1—Back Plane Grounded 

In the first case considered, the second electrode is a completely 
metallized or grounded back plane. The boundary conditions are 
given in Fig. 2. This situation is representative of heat flow from 
an integrated circuit through an insulated header to a can acting as 

DISK AT CONSTANT 
POTENTIAL, V  - 

Fig. 1—Physical geometry and coordinate system for calculating spreading 
resistance. 
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Fig. 2—Spreading resistance R1 between disk and grounded back plane. 

a thermal radiator. 

At z = w, cP(p, z)  = 0, 

and thus 

f sin ka C2  • 

Jo ka Jo(kp) (cosh  kw  + —c, smh kw) dk = O. 

Since this must hold for all w, 

C2  . 
— smh kw =  cosh kw. 

(8) 

(7) 

Thus, 

4,(p, z) —  ir 2 Va  r sin  ka  Jo ka Jo(kp)(cosh kz — coth kw sinh kz) dk.  (8) 

Now, 

= o-E = —ŒVq5  at  z = 0,  (9) 

/ f2'  Jp dp dO,  (10) o o 
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and 

acti 217 
VO =  =  sin kaJo(kp) coth kw dk.  (11) 

L-0  Oz  .0  r 

Combining the last three equations and carrying out the indicated 

integrations, yields 

coth kw sin kaJ,(ka)  
I = 4Vaa  dk.  (12) 

J0 k 

Thus 

and finally, 

1  /  =  coth kw sin kaJI(ka) dk 
4(ra fo 

Riva — 
1 

• sin x wx 
4  ,/,(x) coth (—a dx 
Jo  X 

(13) 

(14) 

2.2 Case 2—Disk on BackPlane Grounded 

The case where the sink consists of a disk of radius a coaxial with 
the source can be derived by image theory from Case 1. A drawing 
of this configuration is shown in Fig. 3. The values of spreading resist-
ance in Case 2 can be derived from Case 1 by setting 

and 

R2oa 
&au — 

2 

7-0 cnee 1  e  L ee '1• 

=  — 

The resulting spreading resistance equation is 

a  2a 

Rea = 
2 f: sinx Ji(x) coth (wx-2a ) dx 

1 

III. NU MERICAL EVALUATION 

(15) 

(16) 

(17) 

3.1 Numerical Integration—Universal Curves 

The integrals in equations (14) and (17) can be evaluated numer-
ically for various alw ratios if the upper limit is finite and the 
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Fig. 3—Spreading resistance R. between disk and grounded disk on back plane. 

integrands behave well at the lower limit. Investigation of the be-
havior of the integrands over the entire range of integration, indicated 
the range could be split into three ranges: 0 to 0.1, 0.1 to 300, and 
300 to oo. For the 300 to 00 range, and a/w > 1, the integrals for both 
cases reduce to 

But 

or4 

r sin x 
J300  X 

J1(x) dx = .13 .  (18) 

1.3 = r sin x  fo'sin x 
Jo  x Ji(x) dx —  J1(x) dx (19) 

• n x 
/3 = 1 —  J,(x) dx  1 — 14 . fo300si (20) 

/4 was evaluated numerically on a digital computer and found to be 
0.96439. Thus hi = 0.03561 and is independent of a/w for a/w  1. 
For the 0 to 0.1 range, the integrands were replaced by their small 

argument approximations. For x « 1, 
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x/2  x 
j 1(x)  f(25 =  ' 

sin x 
—*1, 

wx  a 
com — --> —, 

a  wx 

wx  2a 
coui — —+ • 

2a  ye 
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(21) 

(22) 

(23) 

(24) 

It follows that the small argument approximations for the integrands 
are a/2w, and a/w for Cases 1 and 2, respectively, and the values of 
the integrals over the range 0 to 0.1 are a/20w and a/10w, respectively. 
This is a good approximation because the integrands are very flat 
functions of x near x = O. 
Thus for numerical purposes, 

Riga — 

and 

Rea — 

1 
300 sin  x a 

4[2c7w - f --,e— J i(x) coth  dx  0.03561] 
a 

1 

2[ 77%  fo300  .1 (x, ) COth ( -2a)  dx  0.03561] 
Sill X   wx 

These results hold for a/w  1. For a/w = 0, the half-space limiting 
case for finite a and infinite w can be used to find values for R1 and 
R 2. The resultant values are .1 and  for cases 1 and 2, respectively. 
This result follows directly from Jackson's work.2 
Using the half-space limits and carrying out the numerical integra-

tions for various values of alw results in the universal spreading 
resistance curves given in Figs. 2 and 3. 

(25) 

(26) 

3.2 Asymptotic Limits for Cases 1 and 2 

As the ratio a/w becomes larger, the components of Ri and R2 due to 
fringing become progressively smaller. Neglecting fringing, the resistance 
for either case is 

É=   2 
Cr 7i a 

(27) 
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Or 

Écra = —• 
Ira 

(28) 

The results given in this section can be presented more clearly in 
terms of conductances because the fringing and nonfringing components 
are in parallel and  ü is a linear function of a/w. Let the con-
ductances corresponding to R1 and R2 be designated G, and G2, re-
spectively. For a given a and w, there should be more fringing in Case 1 
than in Case 2, and no fringing for R. Thus for any a/w, 

(29) 

Also G, and G2 should asymptotically approach a. as a function of a/w. 
These observations are supported by the curves of G1, G2 and Ù 
versus a/w given in Fig. 4. The differences of fringing components for 
Cases 1 and 2 are given in Fig. 5. G1, G2 and a are within one percent 
for a/w  10. 

3.3 Typical Example 

The results given above have been used to evaluate spreading resis-
tances typical of those encountered in semiconductor technology. A 

2  3 
a/w 

4 

Fig. 4—Spreading conductances with and without fringing between disk and 
grounded back plane and between disk and grounded disk on back plane. 



120 

100 

80 

o 60 

CC 

40 

20 

co 

o 

4 

3 

2 

o 
o 

SPREADING RESISTANCE 

2 4  6 
a/ w 

8 10 

Fig. 5—Spreading conductance fringing components. 

10  15  20  25  30 

a IN MICRONS 

Fig. 6—Spreading resistances R1 and Rg for 1 CE cm material. 

783 



784  THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1971 

1 n cm slice of silicon with circular contacts was considered. Figure 6 
gives the calculated R, and R, for such a configuration. 

IV. SUMMARY AND CONCLUSIONS 

An investigation was made to determine the spreading resistance in 
a sheet of homogeneous material of uniform thickness with a disk 
contact source on one side and with current collected (i) at the entire 
back plane, and (ii) at a corresponding disk on the back plane. These 
cases were analyzed and evaluated exactly by solution of a dual set 
of integral equations. The method represented the boundary conditions 
as they physically exist. In contrast to previous work, a single, uni-
versal, spreading resistance curve was presented for each case. These 
curves should be useful in designing devices and analyzing materials. 
In particular, the curves could be used to determine conductivity of 
a sheet of semiconductor material if its thickness is known. Also, the 
curves could be used directly in the calculation of total capacitance 
and fringing capacitance by relabeling the ordinates with Ea/C instead 
of Rua and C/ect instead of G/Era. 
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In this paper we derive equations describing the performance of 
various adaptive echo canceller configurations operating in a linear, 
time-invariant environment. We relate the parameters in these equa-
tions to measurable environmental factors, discuss their effect on per-
formance, and verify the results empirically. 
In general, the performance of an echo canceller cannot be exactly 

predicted for speech inputs. Therefore, the derived equations assume 
a stationary constant power random input. However, it is shown that 
the resutts obtained in this manner give useful estimates of the per-
formance to be expected with speech inputs. The similarities and 
differences of the results for a constant power random input and 
speech input are discussed in detail. 

I. INTRODUCTION 

The echo problem in the telephone network is caused by the interac-
tion of the following three factors: (i) The impedance mismatches 
that exist at hybrid junctions cause reflections of incident electrical 
waves. (ii) The existence of a bi-directional transmission medium per-
mits the reflected signal to reach the talker as echo. (iii) Time delay 
due to the finite propagation time of a signal makes the echo annoying. 
Historically the problem has been alleviated by increasing trunk loss, 
balancing hybrids, applying four-wire circuits where practical, and 
providing echo suppressors.' 
Echo suppressors are used when the echo delay exceed about 45 ms. 

An echo suppressor is a voice-operated device which switches a large 
loss in the echo path, as shown in Fig. la. This loss blocks the echo 
effectively but also tends to block speech from the near-end customer 

785 
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Fig. 1—Block diagrams showing how (a) an echo suppressor is applied in a tele-
phone connection and (b) an echo canceller could be applied in a telephone con-
nection. 

when he wishes to interrupt the far-end customer. This situation is 
known as double-talking. During double talking it is necessary to 
restore the connection to full duplex. Some speech mutilation (called 
chopping) and echo occur during these double-talking periods. It 
has been shown that these degradations become increasingly disturb-
ing as the echo delay increases.2,8 
The performance of echo suppressors on synchronous satellite cir-

cuits is less than satisfying clue to the very long delay of such circuits.4 
A new approach to the echo problem, called adaptive echo cancella-
tion,  °-7 has been suggested as a possible alternative. In an echo can-
celler an approximation of the echo signal is automatically constructed 
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and subtracted from the actual echo with no impairment to duplex 
operation. 
In this paper, our aim is to analyze the operation of an adaptive 

echo canceller in a linear time-invariant environment. Our hope is to 
give the reader insight into the parameters which affect performance 
and their interrelatedness. Our method of presentation is as follows. 
In Section II we discuss the environmental factors affecting perform-
ance and we derive equations describing the operation of various 
echo canceller configurations in a linear time-invariant environment. 
Since we were unable to characterize an echo canceller for speech in-
puts, the derived equations assume a stationary random input. How-
ever, in Section III we interpret the equations and show empirically 
that the results obtained give useful estimates of the performance 
to be expected with speech inputs. 

II. MATHEMATICAL DESCRIPTION OF THE ENVIRONMENT AND THE ADAPTIVE 

ECHO CANCELLER 

The echo paths that we will consider are assumed to be linear, time-
invariant channels, not necessarily band-limited and otherwise general. 

This is not to imply that all real echo paths can be so characterized. 
In fact, time-varying echo paths have been observed and others are 
suspected of being significantly nonlinear. These deviations from the 
conditions assumed above may result in serious performance limita-
tions. References 8 and 9 describe the effect on performance when the 
environment is either nonlinear or time-variant. 
A digital echo canceller, having filters with bandwidth, B, deter-

mined by the sampling interval, T, can be used with all echo paths so 
long as the filter bandwidths are at least as wide as that of the input 
signal, :Ht.), i.e., T  1/2B. The same can be said for the bandwidths 
of the filters of an analog canceller. We will assume that these are 
also bandlimited to B Hz. 
Assuming s(t) and the echo signal, y(t), are bandlimited to B Hz, 

we can equivalently represent them as sequences of the sampled values 
at times t = nT where n -= 0, 1, 2, • • • . Similarly other signals 
pertinent to the echo canceller are discrete or continuous and have the 
independent variable nT or t, respectively. For the sake of brevity we 
will adopt a common notation, letting t denote t or nT. Also the con-

volution operation will be denoted as 

ace) ace) 
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which corresponds to 

Cr(T)13(t  T) dr 

in the analog case and to 

«cow — kT) 
- 

in the digital case. Where other differences occur the specific variable 
will be used. 
Whether the echo canceller is digital or analog, it would be inserted 

into the connection as shown in Fig. lb. The customer on the left 
(far end) is being protected from echo by the canceller shown. The 
customer on the right (near end) is being protected by a similar echo 
canceller on the far end of the connection. 
Three factors that affect the performance of an echo canceller are 

the types of signals used, echo paths encountered, and echo canceller 
configuration. We will consider these three points separately. There 
are three different signals present in the echo canceller environment: 

(i) The speech of the far-end customer, called the input signal x(t). 
(ii) The speech of the near-end customer. When the near-end customer 

and far-end customer speak simultaneously, we have double-
talking. This constitutes an interference to the echo canceller. 

(iii) Interfering circuit noise which is inherent to the echo path. 

The echo canceller must perform satisfactorily when these signals are 
present in all possible combinations. Circuit noise, denoted as p(t), is 
assumed to be a zero mean random process with variance 02, band-
limited to B Hz. 
A block diagram of the canceller circuit used is shown in Fig. 2. 

The basic components of this canceller are: 

(i) A set of M filters having orthonormal impulse responses which 
are the first M members of a complete basis set. 

(ii) A control network which automatically weights and sums the 
outputs of the M filters to generate an approximation of the echo. 

(iii) Devices to couple the canceller to the telephone plant. The A-D 
and D-A converters are required for an analog canceller operating 
in a digital plant or vice versa. The set of M filters have impulse 
responses )1/41(e), X2("), • • • , Xef(e). The output of each filter, de-
noted as w„,(t) and given by 
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Fig. 2—Block diagram of the structure of an echo canceller. 

= X.(e) * x(e),  (1) 

is weighted by the value of the tap gain g (t). At e = 0 the tap gain is 
set to some initial value (usually assumed to be zero). The sum of these 
weighted outputs is the approximation of the echo and is denoted as 
û(r). Thus we have 

9(e) = g.(e)w.(e)  (2) 
m 

which is subtracted from y (C) to give the cancelled echo denoted as 
e . The cancelled echo plus noise p (C) is operated on by a function F 
and then multiplied by a positive factor K. F may be any odd non-
decreasing function. 
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We will consider the two cases: 

(i) F[•] = [•] and 

F[•] = sgn [•1 = .{-1--1  if [.] > 0, 

—1  if [•] < 0. 

The resulting signal is multiplied by iv.(t) and integrated to yield the 
value of each gm (C). 
The analog network is governed by the set of differential equations 

g.(t) = KF[e(1)  Alw.(1),  m = 1, 2, • • • , M.  (3) 

The digital network is governed by the set of difference equations 

g„,(nT) = g„,(nT — T)  KTF[e(nT — T) 

p(nT — T)]w„,(nT — T),  m = 1, 2, • • • , M.  (4) 

We can write the error, e (e) , as 

e(e)  y(e) — 9(e) 

= E [C. — gmcemw.(e) + q(e),  (5) 

where 

CO 

q(e)  E  cmX.(e)*x(e)-  (6) 
m.•Af +1 

The coefficients cm , m = 1, 2, • • • are the generalized Fourier coeffici-
ents of the echo path transfer function H (f) over the bandwidth III 
B relative to the complete basis set. They are given by the equation 

fH(f)A,(f),'  = 1, 2, • • •  (7) 
-B 

where An, (f) is the Fourier transform of ,i4n(t). The term q(e) is called 
the uncancellable part of e (e) . 
Echo suppression achieved  seconds after the start of canceller 

operation is defined as 

, E[e2(e)i  „  ' sce) - — log E[y2(e)] ' 

t The overbar denotes complex conjugation. 
t E denotes ensemble average. 

(8) 



ADAPTIVE ECHO CANCELLER  791 

Maximum achievable suppression is denoted as Smllx and equals 
[San We define the average settling time t. to be the time 

in seconds required for the suppression S(r) to each 98 percent 
of S..„ in decibels. 
We will now derive equations for maximum achievable suppression 

and average settling time for the two cases F[•1 = [•] and F[•] = 
sgn[ • 1. To facilitate the derivations we define the column matrices 

tol(e) -

W(t) 

wm(e)_ 
and 

CI 

R(e) c — au-) 
_cm_  _gm(e)_ 

Using these matrices, we may write e(t) as 

e(t) = Ri(r)•Tv(t) + q(t)t 
and y()  as 

(9) 

y() = C' .W() + et").  (10) 

In the derivations which follow we will assume: 

(i) The input signal, x(t), is a stationary random process having a 
rectangular power density spectrum 

P.(1) = .(u/2B;  III  B; 

O ;  Ifi > B; 

(ii) The circuit noise, p(t), is a stationary zero mean random process 
bandlimitted to B Hz and independent of x(t); 

(iii) For the case F[•] = sgn [•] we will further assume that x(t) and 
p(t) are gaussian with zero mean; 

(iv) R(t) is independent of both x(e) and pal. 

With regard to the last assumption, it is clear that, since lice.) is a 
function of x(t) and p(e), it cannot truly be independent of x(r) and 
p(e). For reasonable values of the feedback factor K, the rate of change 

t An apostrophe denotes matrix transpose and a dot denotes scalar multiplica-
tion. 
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of R(t) will be much slower than that of x(e) or p(e), so that the assump-
tion is justified for a wide range of operating conditions. 
Substituting equations (9) and (10) into equation (8), it can be 

shown that 
F R 

IH(f)12 df — C' •C  E[R'(e). noi 
s(e) = —10 log 

Fo ligni. 2 df 

The integral in the denominator of equation (11) is defined as the 
echo path energy which will be denoted as I,. We see from equation 
(11) that SW is maximized for a given echo path if E [R' (C) • R (C) [ = 
0. The maximum value is 

8(r) = —10 log  — C' • 1 (12) 

Actually this suppression may not be achieved because E [R' (t) • R (C)] 
may not vanish. However, equation (12) gives a theoretical limit on 
suppression as defined—this limit being a function of the basis set 
used and the filter set truncation. We will define an incompleteness 
(truncation) factor I as 

— C' • C 
=  (13) 

Note that I is a nonseparable function of the environment and the 
echo canceller. That is to say, to calculate the incompleteness factor 
one must know the echo-path transfer function over the bandwidth of 
the input signal, the filter set used in the echo canceller and the num-
ber of taps employed in the canceller. 
To find maximum achievable suppression and average settling time, 

we must evaluate the term E [R' (t) • R (C)] for the digital and analog 
case under the two conditions of the function F. 

2.1 Evaluation of E[R'(t)•R(t)] for the Analog Case to Yield S,„„„ and t, 
Using the definition of R(e) and equation (3), we may write 

—d [Iii(t)•R(1)] = —2KF[R'(1)• W(t)  g( t)  p(t)]Rqt) • W (t).  (14) 
dt 

2.1.1 The Case F[•] = [.] 

For this case, we can write equation (14) as 
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-d [R'(t) • R(t)] = -2K{ [R' (0 • W(t)J2 [R'  •W(t)][q(t)  p(t)]1 . (15) 
dt 

Solving equation (15) for the expectation ,of Rqt) • R(t) gives 

Kot 
E[R'(t) •R(t)] = R' (0) •R(0) exp  t 0.  (16) 

Substituting equation (16) into equation (11) yields 

R' (0) • R(0) ( Ku 
S(t) = -10 log [  ! / -F  exp - -B t)].  (17) 

As t -› co, we have 

= -10 log /.  (18) 

For the given assumptions, the maximum achievable suppression is 
not a function of circuit noise and is limited only by the incomplete-
ness of the filter set. Of course, strictly speaking, S., would be less 
than this limit by an amount depending on the correlation existing 
between R(t) and p (t) 
Defining the term 

0.98108.) 
8(1.)  log-1 ( (19) 

the antilog of the suppression at the settling time t. , substituting this 
into equation (17) and rearranging we get 

Ri(0).R(0)  
t B  og [e(t.) -  
-•  0.434K4 

2.1.2 The Case F'[•] = sgn [•1 (hard limiter) 

As above, Sr... and t, may be derived yielding the following two 
equations: 

and 

(20) 

S mulx  = -10 log /  (21) 

B\i§ [26, _ o + 2.30 log ([7,  01  [J2' +- 611)] t. -   (22) 

where 

110-. 

Iper:s(tày. 
e k 2B 
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o = (6,2, + (*e 2—BC" 'C))1 

7 =_ (0.2, ±  — C' • C  R'(0) 41(0) 1 
2B  • 

If the circuit noise p(i) can be neglected and if I ,̂-,J 0 then equation (22) 
can be written as 

1 
t  1( [7.13R1 (0) • R(0)][1 —  s(t)]  (23) 

(4 

where s(t) is the antilog of the suppression at time t. 

2.2 Evaluation of E[R' (nT)- R(nT)] for the Digital Case to Yield S„,„„ 
and t, 

Using the definition of R(e) and equation (4), we can write 

R'(n,T).R(nT) — R'(nT — T).R(nT — T) 

= —2KTF[R'(nT — T)- W(nT — T)  g(nT — T) 

p(nT — T)]R'(nT — T)• W(nT — T) 

▪ K2T2F2[Ri(nT — T) •W(nT — T)  g(nT — T) 

• p(nT — T)]W'(nT — T)• W(nT — T).  (24) 

2.2.1 The Case FE.] = [•1 

Solving equation (24) for the expectation of R' (t) • R(t), it may be 
shown that S(nT) is given by 

S(nT)  log [/(1  1111(2712o 4V — 11) 
a — 1 

R ' (0) • R(0) Ill K2T2o-! (a*_ ) 
a" +  (25) 

for n = 0, 1, 2, • • • and where 

a = 1 — KTcr![2 — KT (M  ,  O < a < 1; 
(26) 

= MICT24# — C ' • C)  111K2T2cr!cr, . 

Note that the limits on « are necessary to yield a convergent system. 
We define the signal to noise ratio v at the output of the echo path as 
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and 

= 10 log v dB. 

(27) 

The maximum suppression is given from the limiting value of S (nT) as 
e as 

Sm.„ = —10 log [i(1 — 1/11C2T2°.‘: \  MK2T2cr l (28) 
a — 1 ) v(a — 1) j 

and t, is given by 

t. - 

8(1.) — Smax  
T log [R  + (0).R(0) /m(K!) 2 _L M (KT cr!)2 

a — 1 m v(a — 1)  
log [a] 

2.2.2 The Case F[•] = sgn [•] 

With the hard limiter we can write equation (24) as 

R'(nT) • R(nT) — R'(nT — T) • R(nT — T) 

= —2KT sgn [R'(nT — T) • W (nT — T)  q(nT — T) 

p(nT — T)]V ' (nT — T)• W(nT — T) 

K2T2W '(nT — T) • W (nT — T). 

(29) 

(30) 

Using the same assumptions and analysis technique as used for the 
analog case, we can derive the average value of equation (30) obtain-
ing 

E[R'(nT).R(nT)] — E[R'(nT — T).R(nT — T)] 

E[R' (nT — T) • R(nT — T)]   
ir' \ii e(nT — T) • R(nT — T)] + 

1111ercr.  (31) 

Rather than attempt a solution of this nonlinear difference equa-
tion, we will find only the limiting value of E [ R' (nT) • R (nT)] . For 
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E [R' (nT) • R (nT)] to converge, we require that the right hand side of 
equation (31) be nonpositive. Using this inequality and solving for 
E [R' (nT) • R (nT) ] gives 

—01 log {/. 
164/ 

7r(MKT0•)2  

rir2(MKTcr8r 2r(M KT er,)2 (.1 
L 256e  I 14 

(32) 

An explicit express'on for the average settling time t8 for this case 
is not available. As an alternative, the analog equation for settling 
time t8, equation (22), with K replaced by KT may be used to predict 
settling time for this digital case. When using equation (22), we 
should use equation (32) to calculate s(t8). 

III. EMPIRICAL RESULTS AND INTERPRETATIONS OF THE THEORETICAL 

RESULTS 

In this section we will compare the theoretical results with empirical 
findings. We will then discuss the performance predicted by the 
equations as several of the parameters are varied. Finally we will 
demonstrate that although the equations were derived for a noise 
input, they yield useful information about the operation of the can-
celler for speech inputs provided that the echo path is linear and time-
invariant. The empirical results tabulated below pertain only to digital 
implementations, since an analog system was not available for testing. 
The echo canceller shown in Fig. 2 was simulated on a digital 

computer. Also an echo path, chosen to have characteristics which 
are similar to those of real echo paths which have been observed, was 
simulated on the computer. Experiments have also been performed 
incorporating various analog echo paths with the results in general 
agreement with predicted performance. For the sake of brevity the 
latter results are omitted. 
The measure of echo canceller suppression which we use to monitor 

canceller performance is defined by the equation 

S(t) = —10 log fop 11 (1) —  gm(r) Am«) 

fop IH  df 

df 
(33) 

Equation (33) yields a measure of the goodness of fit across the entire 
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band at time t. It is not necessarily equivalent to the subjective echo 
reduction which a listener would perceive. In fact subjective testing on 
a very limited basis indicates that perceived loss may be greater than 
is indicated by this measure. It is important that this subjective factor 
be considered when comparing the predicted suppression of an echo 
canceller with what is considered to be necessary for adequate echo 
reduction. It is clear that equation (33) would give values of sup-
pression identical to the values given by the previously derived equa-
tions if the input to the canceller is noise with a rectangular power 
density spectrum. 

3.1 Random Noise Input Results 

3.1.1 FP] = H 
In Fig. 3 we plot suppression for a typical simulation. The choice of 

parameters for the simulation is listed on the figure. The crosses indi-
cate the results of the computer simulation [equation (33)] which is 
compared against the values of settling time, t8, and maximum sup-
pression, S.. , as predicted by equations (29) and (28) respectively. 
We also compare the results of the simulation against the suppression 
as a function of time predicted by equation (25). We see from the 
figure that a high value of suppression is obtainable. 
In Fig. 4, we allowed the echo canceller to reach its maximum sup-

pression with no circuit noise present. Then we introduced a high 
noise level, S/N = —18 dB, for approximately 1.5 seconds and then 
removed it, simulating doubletalking. It is clear from the figure that 
the results are in very good agreement with the equations. 
From these results and numerous others using different echo paths 

and basis sets we draw the following conclusions: 
The assumption of the independence of R(C) from x(t) and p() 
is quite reasonable for suppressions of up to 40 dB, S/N ratios as low 
as —20 dB, and settling times of 0.3 second and greater. Therefore 
for random noise inputs we conclude that the derived equations are 
very accurate predictors of the performance of an echo canceller. 

We now focus our attention on the nature of the equations, and discuss 
the effects of various environmental factors upon them. 
In Figs. 5 through 7, we plot maximum suppression (28) versus 

KTcr! for 100 taps and the incompleteness factors I = 0.01, 0.001, 
0.0001. In all three figures Sm.= decreases as the S/N decreases. Note 
that for small values of KT«! , as the incompleteness factor I decreases, 
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the increase in suppression becomes larger for equal increments in 
S/N. That is, circuit noise (and double-talking) becomes more trouble-
some as the echo canceller is designed to give higher and higher values 
of Sm.„ . 
Note that for fixed S/N, K, and T, an increase in the input signal 

power reduces the maximum achievable suppression. On the other 
hand, for fixed 0-2 and KT0-! < 10-a, a change in signal has no appreci-
able affect upon maximum suppression. However from equation (25), 
we see that convergence is assured if and only if 0 < a < 1. This in 
turn, implies that KTŒ! G 2/ (M  2). Therefore, we cannot make 
KTcr! arbitrarily large. 
Figures 5 through 7 were calculated for M = 100. In order to investi-

gate the sensitivity of Sr.„„ to M we have plotted Sm„. versus M for 
KT  = 0.0001 and / = 0.001 and 0.01 in Fig. 8. Observe that Sm 
is a weak function of M. Thus, Figs. 5 through 7 can be used to predict 
S.., for given / and KT  o-: with little regard for M. 
In Figs. 9 through 11, we plot settling time versus KT0-: for various 

choices of / and S/N. Note that a decreasing S/N results in a decreasing 
settling time. This could lead to the erroneous conclusion that high 
noise levels help convergence. We find, however, that as the noise level 
increases, Sr..„ decreases. In some cases of very high noise levels, the 
echo canceller could even provide a net gain. Intuitively it is clear that, 
starting with zero suppression, it should take less time to settle to the 
lower level of suppression. For example, consider Fig. 9, with KTcr: = 
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Fig. 5—Theoretically maximum suppression versus Kny.,2 for an incompleteness 
factor of 0.01 and various echo-to-noise ratios. 
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72 

10. It shows that for S/N =.0 the settling time is approximately 
3.6 X 103 iterations versus 1.6 X 10'' for S/N = —20 dB. However, 
Fig. 5 shows that S,  is 19 dB and —7 dB respectively. This situation 
also illustrates what may happen when a strong interference such as 
double-talking occurs. The interference will cause divergence to a re-
duced suppression and may even cause a net gain. We also conclude 
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Fig. 8—Theoretically maximum suppression versus number of taps for various 
echo-to-noise ratios and incompleteness factors. 

that for fixed S/N and KT, the larger the input signal power, the faster 
the settling time will be. However, for the reasons explained previ-
ously, the signal power cannot be made arbitrarily large. For constant 
noise power and fixed KT, it can be seen that settling time is decreased 
and the rate of increase of suppression is made larger with increased 
input signal power. 
In Fig. 12 we plot settling time as a function of the number of filters 

M for several values of S/N and I. We see that settling time is rela-
tively insensitive to M and that Figs. 9 through 11 may be used to 
estimate settling time irrespective of M. 

3.1.2 F[•J = sgn [ • ] 
We now consider the echo canceller with a hard limiter in the feed-

back loop. We cannot predict the exact temporal performance of this 
canceller configuration because we have no solution to the governing 
difference equation (31). However, we may estimate it by using the 
solution of the analog differential equation and replacing K with KT. 
Since this imposes no limit on maximum suppression, we must combine 
this with the limiting value of S„,„x given by equation (32). This tech-
nique yields a reasonable prediction of the operation. For this case 
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Fig. 9—Settling time versus KTer2 for an incompleteness factor of 0.01 and 
various echo-to-noise ratios. 

there are too many variables to present easily a set of curves which 
describes the operation quantitatively. Therefore we will make some 
qualitative observations which are generally true. We will use Figs. 
13 and 14 as typical examples but we emphasize that these curves are 
only quantitatively valid for the particular choice of parameters given. 
We observe that S,„„x and settling time are inversely proportional 

to 0-.„ . For fixed KT0-. , Smax  decreases as S/N decreases. For constant 
signal to noise ratio, S„,„x decreases with increasing KT. . However, 
for constant noise level, S.. is relatively insensitive to changes in 
KT  crx over a wide range. Note too that for KTcr sufficiently large the 
canceller may introduce a net gain. For fixed S/N, settling time is a 
decreasing function of KTux. For fixed KTcr,F a decrease in S/N pro-
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duces an increase in settling time, while for the case F[•] = [•] the 
opposite was true. We will now turn our attention to the operation of 
the echo canceller with speech; we will attempt to interpret the equa-
tions in this new light. We will also attempt to show empirically that 
the results we obtain give useful estimates of performance. 

3.2 Operation With Speech 

The fundamental differences between noise and speech are: 

(i) The short time (50 ms) average power of speech is erratic from 
time interval to time interval whereas by comparison it is rela-
tively constant for the random noise. 

(ii)  The spectral density of speech is nonuniform, and depends on 
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Fig. 10—The same as Fig. 9 but with an incompleteness factor of 0.001. 
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which phoneme is spoken and who speaks it. In fact, the speech 
power is usually concentrated only a few narrow frequency 
bands at a time. However, if enough time is allowed to elapse, it 
is reasonable to assume that the speech power* will eventually 
scan the entire available bandwidth. 

At present, no adequate statistical description of a speech signal 
accounting for the above properties is available. Using the long-time 
(several seconds) estimate of average speech power, we have found 
that the results derived in this paper for random noise may be used as 
an estimate of the performance which can be expected with speech 

*Strictly speaking, this is also true for the random-noise case. However, for 
noise, the power density spectru m may be considered uniform for a shorter period 
of elapsed time. 
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inputs. However, the blind use of the equations may give erroneous 
and optimistically deceiving estimates. We show below how the equa-
tions should be used to predict the maximum achievable suppression 
obtained from the echo canceller with a speech input, and discuss the 
significance of the settling time estimates. 

Because of the variation in speech power level on a short-time (50 ms) 
basis, we find that the rate of convergence of an echo canceller is erratic. 
To illustrate this, assume for the moment that we have available 
speech with a uniform spectral density but with short-time power level 
variations. For such an input signal, we would find that the operation 
would be as predicted by the equations with 0-2z (short-time power 
estimate) considered a function of time. 
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The time variation of the speech spectrum causes individual tap 
settings of the echo canceller to become correlated. This effect is not 
taken into account in the equations. This correlation causes the set-
tling-time to be longer than the equations predict. Because of the 
variations in the spectral density of speech over time, we find that the 
echo canceller converges on a frequency selective basis. Figure 15 
shows the plot of suppression versus time for the echo canceller with a 
random noise input and F[•] = sgn [ • ]. The suppression was measured 
in 20 adjacent frequency bands approximately 200 Hz wide from 0 to 
4000 Hz. The suppressioti in each band was computed by integrating 
only over that band using equation (33). Two of these bands are 
shown in Fig. 15. Note that each one converges at approximately the 
same rate to a limiting value where it then begins to oscillate. Note 
also that for each band the limiting suppression is reached very close 
to the predicted settling time of 0.3 second. The other 18 bands be-
haved similarly. Similar results were obtained with F[.] = [•]. 

Figure 16 demonstrates what happens when speech is used instead 
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Fig. 15—Suppression as a function of time in the 400- to 500-Hz and 3200- to 
3400-Hz frequency bands for a random noise input signal. 
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Fig. 16—Suppression as a function of time in the 400- to 600-Hz, 1000- to 1200-
Hz and 3200- to 3400-Hz bands with a speech input signal. 

of random noise. The designated value of settling time in this experi-
ment was ts --= 1 second, using the long-time average (5 seconds) speech 
power as cr: . Note that the suppression increases at different rates. For 
example, between g = 0.75 second and t = 1.25 seconds, the suppression 
in the 400- to 600-Hz band increases 9 dB while the suppression in the 
other 2 bands increases 4 dB at most. Between t = 1.25 seconds and 
t = 1.5 seconds, however, the rate of convergence becomes most rapid in 
the 1000-1200 Hz band. This frequency selective convergence is un-
doubtedly due to the variation in the spectral distribution of speech 
power. One result of this is a longer overall settling time based on our 
measure of suppression. The experiment indicates that although the 
overall settling time may be longer, the echo canceller converges in 
some frequency bands more rapidly than average. The bands where 
this speedy convergence takes place are those where the speech power is 
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greatest at a given time. Because of this, we believe that the perceived 
settling time would be shorter than is indicated by our measure of 
suppression, equation (33).* Over a long time (several seconds), this 
selective convergence results in a fit almost equivalent to that of the 
random noise across the bandwidth of the speech input. We find that 
the maximum suppression Sma„ achieved with a speech input is very 
nearly equal to that given by the equations when the long-time average 
speech power is used for  
Figure 17 shows some typical results which were obtained for a 
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Fig. 17—Comparison of the results of a computer simulation of an echo can-
celler for a speech input with those predicted by the equations. 

simulation with a speech input. Curve (A) shows the results of simula-
tions where S(nT) is calculated every 50 ms using equation (33). 
Curve (B) shows the performance as predicted using equation (25) 
and a long-time average (5 seconds) speech power for cr! . The settling 
time was 2.5 seconds. Curve (C) shows the resulting prediction when 

* A need for subjective tests which relate suppression (Equation 44) to per-
ceived suppression exists. 
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u: is replaced by a function of time ..!(e), which in this case is the 
successive short-time (50 ms) average speech power. Note that Curves 
(A) and (C) are almost identical in shape. However, (C) settles more 
rapidly to its final value as expected. As explained, the nonuniformity 
of the speech spectrum causes the longer settling time. Had the simu-
lation been plotted for time longer than 4.5 seconds, we would observe 
that (A) would converge to its limiting value near S„, x -- 22.4 dB. 
Another typical case is shown in Fig. 18. A hard limiter was used in 

the feedback loop of the canceller. The same segment of speech was 
used here as used in Fig. 17. The value of K was chosen to give a 
settling time for random noise of 1 second. Note that the echo canceller 
converged to within 1 dB of Sinui  in 3 to 4 seconds. 
The effects of high noise levels are shown in Fig. 19. With the S/N 

ratio computed to be —10 dB, we see that the echo canceller converged 
in approximately 1.5 seconds to Sr„,,. = 11 dB, where the suppression 
then tended to vary around this value. This demonstrates that the can-
celler converges to Sma „ as predicted in the presence of high levels of 
noise. Such a strong noise simulates the effect of double-talking. Had the 
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noise been introduced after the canceller had converged to some higher 
Smax , the canceller would begin to diverge to the limiting value of 
S = 11 dB. The rate of divergence with speech double-talking is slower 
than that with random noise. Thus we would find that the effect of 
double-talking as predicted by the equations would be more severe 
than it actually is. Also, such an interfering signal causes frequency 
selective divergence of the echo canceller's transfer function. The 
divergence is greatest where the interfering signal spectrum is largest. 
This is not necessarily where the input signal spectrum is largest. 
In summary, we see that a long time estimate of speech power can 

be used in the equations to give a good estimate of the limiting value 
of suppression Sm.„ . Also we see that the canceller performs generally 
as predicted with a speech input, and in the presence of strong inter-
fering noise. In general, the settling time of the canceller is longer 
than that predicted by the equations. The settling time may be reduced 
by increasing K but this must be weighed against the resulting de-
crease in S„„,„ . Also if K is made too large convergence may not take 

place at all. 

IV. SUMMARY 

We have described the performance of an adaptive echo canceller 
operating in a linear, time-invariant, noisy environment. Both digital 
and analog implementations were considered. In both cases the echo 
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cancellers were assumed to consist of a set of M filters having ortho-
normal impulse responses which were selected as the first M member 
of a complete basis set. A weighted sum of the filter outputs approxi-
mates the echo signal. The approximation is substracted from the real 
echo and the difference signal is used to continually improve the 
approximation so that the cancelled echo power tends toward a mini-
mum. We have used the mean-squared value of the difference between 
the transfer functions of the echo canceller and the echo path uni-
formly weighted over the bandwidth of the input signal as a measure 
of suppression. This measure is not necessarily equivalent to the 
subjective echo loss (apparent loss perceived by listeners) other than 
on a relative basis. Sets of equations were derived giving maximum 
achievable suppression and settling time of the echo canceller. We 
have shown that despite certain simplifying assumptions made in their 
derivations, the equations accurately describe the performance for a 
random noise input. 
Families of curves—Figs. 5 through 7, 9 through 11, 13, and 14 show 

maximum suppression and average settling time for a range of incom-
pleteness factors /, S/N, and a factor related to the input power. The 
results of simulations are shown to be in tlose agreement with the 
predictions. 
For a speech input we have found that the equations for maximum 

suppression can be used to predict performance. The long-time (several 
seconds) average speech power is used in the equations. The short-
time variability of speech power and spectral variations of the speech 
signal cause the settling time of the echo canceller to be longer than 
that given by the equations. We have found that during convergence a 
speech input causes the transfer function of an echo canceller to con-
verge on a frequency selective basis—the fit being best where the 
power spectrum of the input is greatest. We find that, given enough 
time, the transfer function of the echo canceller converges to essen-
tially a uniform fit of the echo path transfer function over the band-
width of the input signal. We have also found that an interfering 
speech signal (such as exists during double-talking) will cause the 
echo canceller to diverge on a frequency selective basis. The rate of 
divergence with speech interference is less than that for the random 
noise interference. 
Before concluding, two final points should be reemphasized. All 

the previous analysis is only valid when the environment is linear and 
time-invariant. At present, we suspect that certain systems (corn-
pandored systems for example) exhibit non-negligible nonlinearities. 
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For such systems, the previous analysis may not suffice depending on 
the type and magnitude of the nonlinearities. In any case it becomes 
extremely dangerous for compandor type nonlinearities to attempt to 
relate the performance of an echo canceller to a speech input from 
the white noise equations given previously. 
Also, it should be stressed, that the measure of performances we 

have defined are objective in nature. These measures are not necessar-
ily equivalent to the subjective echo reduction which a listener will 
preceive. A need exists to relate the objective and subjective. 
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Number and Duration of 
Fades at 6 and 4 GHz 

By ARVIDS VIGANTS 

(Manuscript received November 9, 1970) 

We present in this paper experimental and theoretical results on the 
number of fades, average durations of fades, and the probability distri-
butions of fade durations for line-of-sight microwave transmission in the 
6- and 4-GHz bands. Both fading of single signals and simultaneous 
fading of pairs of signals within each of the two bands are treated. The 
experimental results are based on data obtained in 1966 in Ohio. Mathe-
matical description of the number and average duration of fades is based 
on a theory in which pairs of signals are treated as correlated random 
variables that are jointly Rayleigh distributed. The durations of deep fades 
of single signals tend to be lognormally distributed. A probability distri-
bution of the duration of simultaneous fades, which agrees with experi-
mental data, is obtained from the lognormal distribution using a heuristic 
model. 

I. INTRODUCTION 

Microwave transmission on line-of-sight radio-relay links is affected 
by the lower atmosphere. When atmospheric conditions permit multi-
path propagation, the output from a receiving antenna can be prac-
tically zero for seconds at a time. Such deep fades are rare events. 
Still, they are sufficiently numerous to cause problems in high-
performance communication systems. 
There is a certainty to fading that other causes of outages and 

performance degradation do not possess. For example, catastrophic 
equipment failure may or may not occur during the projected life of 
the equipment on a communications link. On the other hand, come 
summer and fall, one can state with some assurance that fading will 
occur on certain links in a particular microwave radio-relay system. 
The number of fades and the durations of the fades have a direct 

bearing on system performance. Previous investigations of frequency 

815 
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diversity at Bell Laboratories1,2 and reports on extensive Britisha and 
Japanese experiments dwell mostly on fade-depth distributions. The 
available information on fade duration distributions is rudimentary.5-7  
As a part of a current and continuing effort, both experimental and 

theoretical, to describe the fundamental properties of line-of-sight 
microwave channels,2.8.9 we will present results on the number of fades, 
the average durations of fades, and the probability distributions of 
fade durations. Both fading of single signals and simultaneous fading 
of pairs of signals within a frequency band will be treated. Theo-
retical description of fading being far from complete, we will put 
major emphasis on experimental data. 
Deep fades rarely occur simultaneously at two frequencies when 

the frequency separation becomes larger than a few tens of MHz. We 
will show that this experimental result can be described in terms of 
a model in which the signals at the two frequencies are treated as 
correlated random variables that are jointly Rayleigh distributed. We 
will also show that the observed average fade durations follow from 
this model. The advantage of the Rayleigh model is that it contains 
only a small number of parameters. 
Durations of deep fades tend to be lognormally distributed. When 

the durations are normalized to their means, the distribution becomes 
independent of fade depth. We will show that a heuristic model can be 
used to describe how the durations of simultaneous fades of two sig-
nals are related to fade durations of single signals. The model permits 
transformation of the lognormal distribution into a distribution for 
the durations of simultaneous fades. 
The final section of this work contains a comparison of the effective-

ness of frequency-diversity and space-diversity reception. The results 
summarized in this section may be of particular interest to readers who 
need numerical values for diversity, reliability, or interference calcu-
lations. 

II. FORM OF THE EXPERIMENTAL DATA 

The resulte presented here are based on experimental data obtained 
at West Unity, Ohio.2 Briefly, the basic data consist of measurements 
of received power for signals at various frequencies on a 28.5-mile 
path. The transmitted power for each signal, which was angle modu-
lated, was constant. The center frequencies of the signals in the 6-GHz 
and 4-GHz bands are listed in Table I. The received power for each 
signal was sampled five times a second, converted to a decibel scale, 
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TABLE I—LIST OF FREQUENCIES 

Frequencies 

6-GHz Band 4-GHz Band 

GHz GHz 

1 
2 
3 
4 
5 
6 

5.9452 
6.0045 
6.0342 
6.0638 
6.1231 
6.1528 

1 
2 
3 
4 
5 
6 
7 

3.750 
3.770 
3.830 
3.850 
3.910 
4.070 
4.170 

and recorded in digital form for subsequent computer processing (in 
the absence of fading the recording rate was less than the sampling 
rate). The data were obtained during a 68-day period in 1966 (July 
22 to September 28). The time covered by the data is 5.26 x 106 
seconds. We refer to the 5.26 x 108 seconds as the test period. 
During computer processing, the received power for each signal was 

normalized to its value in the absence of fading. The normalized dB 
values are denoted by 20 log Ri, where the subscript i identifies a 
frequency in Table I (the data in the two frequency bands will be 
discussed separately; there should be no confusion about which of the 
two bands a subscript refers to). As a consequence of the normaliza-
tion, the voltage envelopes Ri are unity in the absence of fading. 
To investigate simultaneous fading of signals at two frequencies, an 

envelope consisting of the larger of the two envelopes, 

= max (Ri , Ri) (1) 

was constructed in the computer during the processing of the data. 
Fifteen such envelopes were constructed in each of the two bands. 
These are listed in Tables II and III. The frequency separations af in 
Table II have been rounded to the nearest multiple of 30 MHz. 
The parameter q, discussed later, will be used in the description of 
simultaneous fading. 
An idealized picture of fading is shown in Fig. 1. A signal is said 

to be in a fade of depth 20 log L when its envelope becomes less than 
L. We refer to fades of Rif as simultaneous fades. We limit our discus-
sion to fades deeper than —20 dB; that is, to values of L that are less 
than a tenth. 
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TABLE II —LIST OF FREQUENCY PAIRS IN THE 6-GHz BAND 

af in MHz ij q Figure 

30 23 0.001 6 
30 34 0.001 7 
30 56 0.001 8 
60 12 0.002 9 
60 24 0.002 10 
60 45 0.002 11 
90 13 0.004 12 
so 35 0.004 13 
90 48 0.004 14 
120 14 0.005 15 
120 25 0.005 16 
120 38 0.005 17 
150 26 0.007 18 
180 15 0.007 19 
210 16 0.010 20 

TABLE III— LIST OF FREQUENCY PAIRS IN THE 4-GHz BAND 

af in MHz ij q Figure 

20 12 0.002 21 
20 34 0.002 22 
80 23 0.007 23 
80 45 0.007 24 
80 24 0.010 25 
ao 35 0.010 26 
100 14 0.013 27 
160 15 0.020 28 
180 56 0.020 29 
220 46 0.030 30 
260 57 0.030 31 
300 26 0.035 32 
340 37 0.035 33 
400 27 0.050 34 
420 17 0.050 35 

III. NUMBER AND AVERAGE DURATION OF FADES OF SINGLE SIGNALS 

The number of fades of depth 20 log L dB is equal to, by definition, 
the number of times an envelope crosses L in an upward direction 
(see Fig. 1). The data on this for the six signals in the 6-GHz band 
and the seven signals in the 4-GHz band are summarized in Figs. 2 
and 3 respectively. The data scatter, but the overall impression is that 
the number of fades is proportional to L. Least-squares fitting of lines 
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Fig. 2—Summary of the number of fades in the test period of the six single 
signals in the 6-GHz band (equation of theoretical line is N = 6410 L) 
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with this dependence on L to the data gives the following for the 
number of fades in the test period 

N = 6410 L, in the 6-GHz band,  (2) 

N = 3670 L, in the 4-GHz band.  (8) 

As an example, we note that N in the 6-GHz band averages to roughly 
one —40 dB fade per day during the test period. 
The average durations of fades were obtained by taking the total 

time spent in fades of a given depth2 and dividing this by the num-
ber of fades of that depth. The resulting data are shown in Fig. 4 for 
the six signals in the 6-GHz band and in Fig. 5 for the seven signals 
in the 4-GHz band. The average durations are roughly proportional to 
L. Least-squares lines with this dependence on L fitted to the data are 

(cy = 490 L seconds, in the 6-GHz band, 

(oz) = 408 L seconds, in the 4-GHz band, 

(4) 

(5) 

where a denotes fade duration (see Fig. 1), and where the brackets 
denote averages. The fit of equation (4) to the points in Fig. 4 is 
better than that of equation (5) to the points in Fig. 5. The points in 
Fig. 4 are based on a larger number of observations than those in 
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Fig. 4—Summary of the average fade durations of the six single signals in the 
6-GFIz band (equation of theoretical line is (a) = 490 L). 

Fig. 5. It is therefore possible that in Fig. 5 we are beginning to see 
the effects of small sample size. We will assume that this is indeed so 
and put greater emphasis on the 6-GHz data in the subsequent analysis. 
The data show that average fade durations in the —40 dB range 

are of the order of seconds. This has direct bearing on system per-
formance calculations, where it has been assumed, at times, that deep 
fades have durations of the order of minutes. (Section 5.2.1 in Ref. 10.) 
The total time spent in fades is the product N (a), which is propor-

tional to L 2. The observed behavior of fade-depth distributions for 
deep fades is indeed this,2 which suggests comparison of the experi-
mental results to theoretical results for Rayleigh distributed variables. 
The theoretical expressions for the number of fades and the average 
fade durations are, in the case of deep fades 

N  (rT„c) L, L < 0.1 ;  (6) 

(a)  c-1L, L < 0.1;  (7) 

-40 
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Fig. 5—Summary of the average fade durations of the seven single signals in 
the 4-GHz band (equation of theoretical line is (a) = 408 L). 

where the di mensionless factor r is proportional to the amount of ti me 

during which at mospheric conditions allow multipath propagation; To 

is the test period (5.26 X 108 seconds in our case) ; the quantity c, 

which has the di mensions of inverse ti me, is proportional to the 

spectral width of the fluctuations of R. The theoretical equations (6) 

and  (7)  clarify the meaning of the coe fficients in equations  (2) 

through  (5). Nu merical values for the para meters r and c can be 

obtained readily fro m a co mparison of the coefficients. However, r 

varies with path length and other para meters.12  W e will not discuss 

this here, because the variability of fading fro m path to path is a 

topic in itself. 

IV. NUMBER OF SIMULTANEOUS FADES 

Si multaneous fades are fades of Rij (see Fig. 1). The experi mental 
results on the nu mber of si multaneous fades are shown in Figs. 6 to 20 



823 

1000 
800 

600 

400 

200 

100 
w  80 
o 
<  60 
u_ 

LI- 40 
0 

u.1 
cri  20 

10 
8 

NUMBER OF FADES 

6 

4 

2 

O  N2 

o  N 3 

A  N „ 

o 0 

A 

o 

FIG. 6 

o 

gIL 

1   
- 20  -25  -30  - 35  -40 

FADE DEPTH 

20 LOG 1_, dB RELATIVE TO NOR MAL 

1000 
800 

600 

400 

200 

100 
LLI  80 

60 
U. 

u_  40 
O 

Lu 
co  20 

io 
a 
6 

4 

2 

 e 

-45 

o 

A 

O N5 

o N6 
A  N56 

FIG. 8 

un 

A 

-20  -25 -30  -35 

FADE DEPTH 

20 LOG L, dB RELATIVE TO NORMAL 

.A  

o 

-40 -45 

1000 

800 

600 

400 

200 

_100 
80 

< • 60 
u. 
u_ 40 
O 

cr 
al • 20 

2  •  10 

8 

6 

4 

2 

1 
-20  -25  -30  - 35  -40 

FADE DEPTH 

20 LOG L, dB RELATIVE TO NOR MAL 

FIG.7 

A 
A 

O  N 3 

O  N 4 

A  N 34  

1000 
800 

600 

400 

200 

100 
ao 
60 

CL  40 
O 

4 

-45 

2 

1 
-20  -25  -30  -35 

FADE DEPTH 

20 LOG L, dB RELATIVE TO NORMAL 

A 

o N1 

o N2 

A  N12 

FIG. 9 

-40  -45 
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for the 6-GHz band and Figs. 21 to 35 for the 4-GHz band. The 
figures are arranged in order of increasing frequency separation in 
each of the two bands. The number of fades of Ri in the test period is 
denoted by N1. The number of simultaneous fades in the test period 
is denoted by N1. The points on the drawings are the experimental 
data; the lines are theoretical and will be discussed shortly. 
The data show, for example, that for a one percent frequency separa-

tion in the 6-GHz band (60 MHz, Figs. 9 to 11) Nu averages to about 
one —40 dB fade per ten days. The ratio of Ni to Nu at this fade 
depth is about ten. 
The number of deep simultaneous fades is roughly proportional to 

L3, which again suggests comparison to theoretical results for Rayleigh 
distributed variables. When RI and RJ are treated as correlated Ray-
leigh distributed variables, the theoretical expression for the number 
of deep simultaneous fades is9 

N11 (rT oc)2q-112 , L < 0.1, q-11,2 < 0.1  (8) 

where the parameter q is a function of the frequency separation of the 
signals. Values of q for the various signal pairs are listed in Tables 
II and III.* 
The comparison of the theoretical expressions to the experimental 

data was carried out as follows. Values of q for the various signal pairs 
(R1, RJ) were obtained from Table II or Table III. On each drawing, 
equation (6) was used to describe the average of Ni and N J , and 
equation (8) was used to describe N. . Actually, equation (8) de-
scribes only the part of N11 appearing as a straight line on a drawing; 
the curved portions of N11 were computed from more complex expres-
sions in previous work.9 The value of q determines the position of 
equation (8) relative to equation (6), and curve fitting becomes a 
matter of fitting two curves with a fixed relative position to the three 
sets of data on a drawing. The result of a fitting is a value for the 
product rToc. The values of rToc vary somewhat from drawing to 
drawing, reflecting the apparently random variations in Ni from 
signal to signal. The average values of rToc in the two frequency 
bands appear as coefficients in equations (2) and (3). The overall 
impression is that the data agree with the theoretically predicted 
dependence on the fade depth L. 
The behavior of the data on the number of fades is typically that of 

*These are values of q obtained by Barnett2 for each signal pair from experi-
mental data on fade depth distributions. Equations describing q are shown in 
Section X. 
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propagation data in general. The processes in the atmosphere causing 
fading are complex, and this shows up as scatter and deviations of 
the experimental points from the theoretical lines. Some of this is 
magnified by the logarithmic scales used in the drawings. The devia-
tions of the experimental points from the theoretical lines in the 4-GHz 
band are larger than those in the 6-GHz. This may be because the 
number of observations in the 4-GHz band is smaller, or because the 
theoretical description becomes less applicable as the path length, 
measured in wavelengths, becomes shorter. The deviations of the 
points from the lines around —20 dB reinforce the observation that 
the theory based on the joint Rayleigh distribution applies only to 
fades deeper than about —20 dB. A possible explanation is that the 
physical processes generating deep fades differ from those generating 
shallow fades. 

V. AVERAGE DURATION OF SIMULTANEOUS FADES 

The determination of the average durations of simultaneous fades is 
difficult, because there are too few simultaneous fades, particularly at 
the larger frequency separations, to obtain meaningful averages. The 
data for the first entry in Table II are shown in Fig. 36. The curves 
are theoretical. The top curve is equation (7), with c-1 adjusted to 
describe the average of «2 and «3 (the notation is defined in Fig. 1). 
Given the top curve and the value of q in Table II, the bottom curve 
describing /323 is calculated under thé assumption that R2 and R3 are 
jointly Rayleigh distributed.° Note from the curves that as the fades 
become deeper, the average durations of simultaneous fades tend to 
one-half of those of single signals. The theory predicts this for all 
frequency separations, provided the fades are sufficiently deep,° 

(t1ii) R-.1¡(«;), L < 0.1, q-11,2 < 0.1.  (9) 

It is interesting that the same result can also be inferred from a 
heuristic argument, given in Section VIII. 
The data and the theory are in agreement in Fig. 36. In general, 

the data on the average durations of simultaneous" fades show a large 
amount of scatter, much larger than in the example in Fig. 36, be-
cause of the small number of observations. 

VI. THE SCALE OF SCATTER IN THE OBSERVATIONS 

Experimental data can scatter simply because the number of ob-
servations is small. In the case of average fade durations we can esti-
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mate the amount of scatter possible, and it is instructive to digress 
and do so. As an example, the average durations at the highest fre-
quency in the 6-GHz band are shown in Fig. 37 (the points denoted 
by black squares are at fade depths for which probability distributions 
of fade durations will be obtained later). Each point on the drawing 
is the average of a sample of size N4. This average, the so called 
sample mean, is a random variable. For example, if the test period 
contains, by chance, an excess of small at, the sample mean will be 
less than the true average. As Ni increases, the sample mean tends to 
deviate less from the true average. The standard deviations of the 
sample means in Fig. 37 are estimated in the Appendix. The straight 
line in Fig. 37 is the result of a least squares fitting of equation (7) to 
the data. The curves are at three standard deviations of the sample 
mean above and below the straight line. 
The tolerance band defined by the curves in Fig. 37 is asymmetric, 

especially so for the deeper fades, because of the logarithmic scale 
on which the average fade durations are plotted. The band is quite 
wide in the —40 dB region, and the conclusion is that the deviations 
of the points from the line are well within those predicted possible by 
elementary sampling theory. 
A corresponding tolerance band for the 4-GHz data would be wider 

because of the smaller number of fades observed. It would be much 
wider for the simultaneous fades because their number is much smaller. 
Because of the potential for large scatter in the 4-GHz data, we will 
discuss, in the next section, duration distributions for the 6-GHz band 
only. 

VII. OBSERVED DISTRIBUTIONS OF FADE DURATIONS 

Estimates of the probability that a fade of depth 20 log L dB (see 
Fig. 1) lasts longer than t seconds were obtained by taking the number 
of fades longer than t seconds and dividing this by the total number of 
fades of depth 20 log L dB. The results of this for the highest fre-
quency in the 6-GHz band are shown in Fig. 38 for five values of fade 
depth (the average durations at these depths are denoted by the black 
squares in Fig. 37). The probability scale is normal and the duration 
scale is logarithmic. 
The behavior of the probabilities shows a more readily discernible 

pattern if the durations are measured not in seconds but in units of 
average fade durations; that is, if we look at the probability that xi 
is larger than a number u, where 

X . ad(ai). (10) 
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Fig. 34—Number of fades in test period (4-GHz band, Af = 400 MHz). 
Fig. 35—Number of fades in test period (4-GHz band, Af = 420 MHz). 

Fig. 36—Average durations of simultaneous fades of signals at 6.0045 and 6.0342 
GHz (the lines are theoretical) 
Fig. 37—Average durations of fades of the signal at 6.1528 Grlz, with superim-

posed control curves at three standard deviations above and below the straight 
line, estimated from elementary sampling theory. 
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When this is done, using values of (a.4) denoted by solid squares in 
Fig. 37, the fairly tightly grouped set of points in Fig. 39 is obtained. 
From the behavior of the points for the various fade depths one can 
argue that the data approach a lognormal distribution, denoted by the 
straight line, as fades become deeper and longer. When points from the 
other five frequencies are superimposed on this, Fig. 40 is obtained. Be-
cause we have pooled data from various frequencies, we have dropped 
the subscripts on the variables. 
The pattern formed by the points in Fig. 40 suggests that the distri-

bution of durations longer than average can be described by a straight 
line (the points for the long durations begin to scatter because the 
number of observations is small). The equation of the line shown is 

Pr (x > u) = erfc [(In u — ,1)/V al  (11) 

with 

= —0.673, cr = 1.27  (12) 

where ln denotes the natural logarithm, and erfc denotes the comple-
mentary error function. The lognormal distribution (11) specifies that 
one percent of the durations are longer than ten times average, and 
that thirty percent of the durations are longer than average. 
The results for the durations of the simultaneous fades also fall into 

a pattern when the durations are normalized to their averages. Letting 

Yis =  (13) 

and pooling the data for all fifteen entries in Table II, we obtain Fig. 
41. Again, subscripts are dropped for the pooled data. 
The behavior of the data for the simultaneous fades in Fig. 41 is 
very similar to that of the data in Fig. 40. The line from Fig. 40 is 
shown dotted on Fig. 41 (the solid line on Fig. 41 will be discussed 
shortly). 
Comparison to previous data on duration distributions5-7  is difficult, 

beyond noting the similar lognormal behavior, since the previous data 
do not cover fades in the —30 to —40 dB range of interest to us. 
Furthermore, in one of the cases the emphasis is on a grazing path5. 6 
and in the other on overwater paths,7 whereas our interest is in "stand-
ard" overland paths. 

VIII. THEORETICAL DESCRIPTION OF DURATION DISTRIBUTIONS 

The probability distribution of ai is related to the power spectrum of 
the fluctuations of Rd .0 Calculation of the probability distribution of 
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Fig. 39—Probability that duration of fade, normalized to its mean, is longer 

than a given number (same data as on Fig. 38—line fitted to show trend for 
deep fades). 
Fig. 40—Probability that duration of fade, normalized to its mean, is longer 
than a given number (summary for the six signals in the 6-GHz band at the fade 
depths listed for Fig. 38—the line is from Fig. 39). 
Fig. 41—Probability that duration of a simultaneous fade, normalized to its 

mean, is longer than a given number (summary for the 15 pairs of signals in 
the 6-GHz band listed in Table II—dotted line from Fig. 39—solid line is theo-
retical). 
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ai is difficult theoretically and also because we do not have experi-
mental information on the power spectra. Experimental determination 
of the spectra is far from straightforward, because fading occurs in 
spurts and because, presumably, the fluctuations of Ri are generated by 
a mix of random processes. Various theoretical spectra have been 
treated by S. O. Ricen (we obtained the idea of normalizing to the 
average durations from this work), but our observed durations are 
longer than those that follow from the spectra considered. For exam-
ple, the spectrum that gives the largest percentage of long durations 
provides one percent of durations longer than 5.6 times the average 
(from Fig. 4 in Ref. 11). The data in Fig. 40 show that one percent 
of the durations are longer than ten times average. 
To circumvent these difficulties we use the empirically determined 

expression (11) for Pr (x > u), and determine the duration distribution 
of simultaneous fades from this using a heuristic model. The model 
is based on the observation that when signals separated in frequency 
undergo a deep fade, the fade durations are often roughly the same, 
but the fades are offset in time. Furthermore, as fades become deeper 
they become shorter, and the offsets soon become larger than the fade 
durations, which explains why there is a large reduction in the number 
of deep simultaneous fades. A simultaneous fade occurs when the fades 
at two frequencies overlap. There is apparently no preferred overlap 
position, and the relationship between a and fi (see Fig. 1) can be 
expressed mathematically as 

= ga  (14) 

where g is a random variable, distributed uniformly between zero and 
unity. The relationship (9) for the averages follows from this immedi-
ately. 
The duration distribution of the simultaneous fades also follows 

immediately when the transformation (14) is applied to Pr (x > u). 
Specifically, 

Pr (y > u) = Pr (2gx > u), 

= f Pr (x > ¡g-lu) dg,  (15) 

where the integrand is (11), with appropriate change of variable. 
Fortunately, this can be transformed into an expression that can be 
integrated.18 The result, after a fair amount of algebra, is 



NUMBER OF FADES  837 

Pr (y > u) -= erfc (111 
2  / 

— fu exp  40.2) erfc (in (4-1& -  v r )  (16) 

The solid line in Fig. 41 is equation (16) with numerical values for 
p. and a as in equation (12). The line provides adequate description 
of durations longer than average. 
The generality imparted to the distribution functions Pr (x > u) 

and Pr(y > u) by the normalization of the durations to their means 
is a subject for further work. We would venture a guess, for example, 
that the distributions of x and y in the 4-0Hz band are also given by 
equations (11) and (16). A somewhat different thought is that the 
idea of uniformly distributed overlaps of deep fades, which lead to 
equation (14), can perhaps be extended to durations of simultaneous 
fades of more than two signals. This approach might provide results 
for a problem that otherwise seems to be mathematically intractable. 

IX. SIMILARITY TO DURATION DISTRIBUTION IN BEYOND-HORIZON 
PROPAGATION 

It is interesting to compare the line-of-sight data for Pr(x > u) to 
similar data for tropospheric beyond-horizon propagation,14 where fade 
durations have also been observed to be lognormally distributed. Table 
IV shows that the numerical values for line-of-sight (from our Fig. 40) 
are quite close to the numerical values for long term tropospheric data 
(from Table 2 of Ref. 14). 
In line-of-sight transmission, the receiving antenna is illuminated 

directly by the transmitting antenna. In beyond-horizon tropospheric 
transmission the receiving antenna is illuminated by reflected (scat-
tered) energy. There is insufficient knowledge to decide whether the 

TABLE IV—COMPARISON OF FADE-DURATION PROBABILITIES IN LINE-
OF-BIGHT AND BEYOND-HORIZON PROPAGATION 

u 

Pr(x > u) Line-of-Sight Beyond-Horizon 

0.1 
0.01 

2.6 
10 

2.2 
9.1 
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structures of the electromagnetic waves at the receiving antennas in 
the two cases are similar in some sense, or whether the numerical 
closeness of the distributions of the durations normalized to their 
means is accidental. 

X. COMPARISON OF FREQUENCY AND SPACE DIVERSITY 

The number of simultaneous fades of the two signals must be small 
to obtain good diversity reception. More specifically, the ratio 

FN =  (17) 

must be large. For signal envelopes that are jointly Rayleigh distri-
buted, a theoretical result for deep fades is9 

FN gt% qL 2, L < 0.1, q-11,2 < 0.1.  (18) 

This shows how FN varies with fade depth. Information about the sepa-
ration of the signals is contained in the parameter q. A theory from 
which q can be calculated for line-of-sight microwave links still re-
mains to be established. However, empirical expressions for q, based 
on experimental data, are available,2 and these provide a means for 
comparing the effectiveness of separations in frequency and space. 
For separations in frequency, expressions for q determined from 

probability distributions of Ri; are2 

q =  (f/f), in the 6-GHz band;  (19) 

q = 4(tif/f), in the 4-GHz band;  (20 ) 

where àf is the frequency separation of Ri and Ri , and where the 
values of f used in the determination of the coefficients in equations 
(19) and (20) were 6.175 and 3.950 GHz respectively. The above 
expressions for q are based on data obtained on a 28.5-mile path in 
Ohio. We do not know, for example, how the expressions are affected 
by changes in path length. 
For two signals received at the same frequency on two vertically 

separated receiving antennas, an empirical expression for q 1s2. 

q = (2.75) -1 (s2/Xd)  (21) 

where s is the vertical center-to-center separation of the receiving an-
tennas, À is the wavelength, and d is the path length—all measured 
in the same units. Equation (21) is also based on data from the test 
path in Ohio, which was picked because fading on it was thought to be 
typical of many paths in the United States. Some generality is lent 
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to equation (21) by the fact that one of the experimental points on 
which it is based comes from data obtained in Texas. 
The equations for q can be used to compare the effects of separations 

in frequency and space. For example, separations that provide equal 
values of FN are shown in Fig. 42. The curves apply for deep fades 
that satisfy the conditions L < 0.1 and q-1/,' < 0.1. As an illustration, 
values of FN at 20 log L = —40 are indicated along the curves. Since 
the expressions for q are based on data for fairly small separations, 
equations (19) through (21) should be viewed as first terms in power 
series, and extrapolation of the results to separations larger than those 
in Fig. 42 may not be advisable. 
The term improvement has been used to describe the ratio of the 

total time spent in fades to the total time spent in simultaneous 
fades.2, 8 In terms of FN,  the deep fade approximation for the im-
provement F is° 

F r-t12FN , L < 0.1, q-'.L2 < 0.1  (22) 

and Fig. 42 therefore describes separations that provide equal im-
provement. 

XI. CONCLUSIONS 

We have presented data on aspects of fading that are important but 
have not been covered in previous investigations of fading on line-of-
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sight microwave links. The theoretical framework we have provided 
for the data will be, we anticipate, of practical value to designers of 
communication systems. 
The results presented here also demonstrate that further work, both 

experimental and theoretical, is needed. For example, the parameters 
in our equations are empirical and are based on data from one prop-
agation path only. 
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APPENDIX 

Control Curves 

The equation for the control curves in Fig. 37 is, denoting the stand-
ard deviation of the sample means by cr, , 

AL) = (a,) ± 3a, .  (23) 

From elementary sampling theory15 

o,= N71 cr2.  (24) 

where ow is the standard deviation of the fade durations at . Further 

fr. = (ai)cr.  (25) 

where cr, is the standard deviation of x, and x denotes the fade dura-
tions normalized to their means. The probability distribution of the 
natural logarithm of x is given by equation (11). In terms of the 
variance of that distribution 

er!= (x)2 (exP (f2) — 1).  (26) 

Since (x) is unity by definition, use of 0- from equation (12) gives 

cr!  4.  (27) 
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Using equation (2) to describe N(, we obtain 

841 

6   
f (L)  («;){1 V RTF)./.}  (28) 

The straight line in Fig. 37 is (ai), and equation (28) therefore provides 
numerical values for drawing of the control curves. 
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In dielectric waveguides operating at optical frequencies, the primary 
cause of time dispersion of narrow pulses can be mode conversion. In 
this paper we argue that under certain assumptions a dielectric waveguide 
acts as a linear system in intensity. That is, given the intensity input, the 
intensity output is equal to the input convolved with an intensity impulse 
response. We show that contrary to intuition, the width of the impulse 
response gets narrower when coupling between guided modes increases. 
Using the perturbation results of D. Marcuse, we obtain an interesting 
model of energy propagation down imperfect guides. We conclude that the 
intensity response width increases as the square root of the guide length for 
sufficiently long guides and approaches a gaussian shape for sufficiently 
long guides. 
We conclude from the theory that the dispersion in dielectric wave-

guides may be orders of magnitude below that which was previously ex-
pected in guides of sufficiently long length having properly controlled large 
amounts of mode conversion. These theoretical results have not yet been 
verified experimentally. 

I. INTRODUCTION 

In multimode dielectric waveguides operating at optical frequencies, 
the primary cause of time dispersion of narrow pulses can be mode 
conversion. In a geometrically perfect guide with more than a single 
mode, energy initially launched in a given mode remains in that mode 
as it propagates down the guide. Physical guides have imperfections 
from perfect geometric shape (e.g., roughness at the core-cladding in-
terface of a nominally right circular cylindrical guide) which allows 
energy to couple between modes during propagation down the guide'. 
Since group velocities differ in general amongst the modes, a pulse of 
energy initially launched in a single mode or combination of modes 
will be broadened due to the spread of propagation times of different 
parts of the energy. 

843 
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In this paper we argue that under certain assumptions, a dielectric 
waveguide acts as a linear system in intensity as well as in voltage. 
That is, we show that the relationship between the input intensity and 
output intensity of the guide is defined in terms of an intensity impulse 
response. We argue that this intensity impulse response, for sufficiently 
long guides, has a mean-square width about its mean which increases 
only linearly with length. Further, in the limit of very long guides, we 
argue that the response shape is gaussian. We also show that the 
greater the coupling between modes, the less the time dispersion—a 
result which at first contradicts intuition. Finally, we obtain quantita-
tive results and an interesting model of an optical guide under certain 
assumptions. 
We conclude from the theory that the dispersion in dielectric wave-

guides may be orders of magnitude below that which was previously 
expected in guides of sufficiently long length having properly controlled 
large amounts of mode conversion. These theoretical results have 
not yet been verified experimentally. 

II. AN OUTLINE OF THE ARGUMENTS 

We next outline the steps of the derivations to follow, so that the 
reader can follow the train of thought. 
We start with the fact that the optical guide is a linear system in 

voltage. That is, if we expand the input signal in spatial modes and 
expand the output signal in the same modes, then the time varying 
coefficients of the modes at the output are related to the coefficients at 
the input by a set of voltage impulse responses. We then make an as-
sumption about the associated set of transfer functions (Fourier trans-
forms of the impulse responses) which allows us to argue that the set 
of average output intensities and the set of input intensities are also 
related by a set of impulse responses. Thus the guide is also linear in 
intensity under the assumptions. 
We next argue that for sufficiently long guides, these intensity im-

pulse responses coupling a chosen input mode coefficient and a chosen 
output mode coefficient are indifferent to the modes chosen except per-
haps for a magnitude scale factor. 
Finally, this allows us to show that for guides longer than the above 

scale, the intensity impulse response which is now in common for all 
input-output pairs has a mean-square deviation about its mean which 
grows linearly in length, and which approaches the gaussian shape in 
the limit of long guides. 
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III. THE OPTICAL GUIDE AS A LINEAR SYSTEM IN INTENSITY 

3.1 The Random Channel 
We now argue that under a simple assumption, the expected value 

of the intensity at the output of a random channel is related to the 
intensity of the input to the channel by a simple convolution with 
an intensity impulse response. We start with input baseband signal 
a(t). We use a(t) to linearly modulate a carrier m(t) which may 
be coherent or a stationary (wide sense) random process centered at 
frequency fo. We assume that the result x(t) = a(t)m(t), has band-
width B, i.e., its spectrum extends from —B/2 + fn to B/2 +. fn. 
We pass x(t) through a time invariant filter with a random impulse 

response h(t) representing the channel, resulting in the final output 
y(t). We define a Fourier transform relationship between the function 
A(f) and the function A(t) 

A(f) =  exp [i21rf(t)]).(t). 4t, 
(1) 

A(f)  X(tD3). 

By simple linear system theory if 

X(f) <=>  

H(f) <=> h(t),  (2) 

Y(f)  

then 

Y(f) = X(1)11 (1)-

Define the envelopes of x(t) and y(t) by 

x(t) = Nr2 Re {x(t) exp (i2rfot)1, 

y(t) = 1/2 Re ty,(t) exp (i2irfot)1. 

The intensity of the input and output signals are defined as 

/..(t) = Ix(t)I2 = a2(t) Inz.(012, 

I(t) = IY.(412, 

where me(t) = carrier envelope. 
Assumption: Stationarity of channel transfer function 

(1-1* (a)11 (i ± a)) = r(1) 
provided fo — B/2 <a, f + a < fo + B/2. 

(3) 

(4) 

(5) 



846  THE BELL SYSTE M TECHNICAL JOURNAL, MARCH  1071 

The assumption, while apparently arbitrary, is essential to the results 
which follow. Perturbation results of Marcuse,' to be discussed in 
Section 4.1, indicate that equation (5) may be satisfied for the input-
output temporal transfer function of a given spatial eigenmode of an 
optical dielectric waveguide with mechanical imperfections, provided 
the mechanical imperfections satisfy constraints also to be discussed. 
Define for any function U (a) 

U , (a) = U(a)  a a. O, 

= 0  a < O. 

Then it has been shown that (See Appendix C) 

2 f 17+(i +  Y(a) da. 

Then clearly 

IY.(t) la <=> 2f X.F(f  a)11,(1  a)Ht(a)Xt(a) da. 

Using equation (5) we obtain 

(ly.(1)12) <=> 21"(f) f: (X,(f  a)Xt(a)) da, 

(IMO 12) <=> 
where 

I, „(f) <=> (I, n(t)). 
Thus* 

(I..(1)) = (1-1n(t)) * y(t) 
where 

(6) 

(7) 

(8) 

(9) 

(10) 

7(t) <=> r(f). 

Thus we have a linear system relationship between the channel input 
and output intensities. 

3.2 Extension to Vector Channels 

Suppose we have a vector channel (corresponding to multimode 
guide) consisting of a vector of L input functions 

* The notation x(t) * y(t) signifies convolution: 

x(t) * y(t)  f  x(t — u)y(u)du. 
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X(t) = 

_ocL(0_ 

and L output functions 

Yi(t) 

• 

yL(t) 

The input and output functions are related by an L x L matrix of 
impulse responses 

where we have 

Y(t) = 

0(t) = Piii(t)] 

y(t) =  *  
i 

(12) 

Y(t) = 0(t) * X(t). 

Now consider a cascade of two vector channels having impulse response 
matrices 10(t) and 20(0. The input passes first through channel 1 and 
then through channel 2. The output of channel 2 is given by 

Y(t) = 20(0 * le(t) * X(t).  (13) 

Define the envelope of yk(t), yka(t): we know that 

iYk.(012 <=> 2 E . Yk+ 4 + f) Yt.(a) da, 

<=> 2 f:  E E 2Hkz+(i +  +(f a)X +(I + a) 
(14) 

•211t„,.(a)Illt .,(a)Xt.(a) da. 

Assumption a. Stationarity of Mode Transfer function. 
b. Mode Transfer functions uncorrelated. 

(HIM + oi)21 ht(f  a)111,?„,(a)2Hen(a)) 

= 'nzurni,(1) st si 5, (15) 
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ax, y r Kronecka delta 

for {f + a, a) e input signal bands. 
We are implying that randomness, especially in phase, erases corre-

lation between the transfer functions of different modes. The validity 
of this assumption for optical guides with more than one mode will be 
discussed in Section 4.1. 
It then follows that 

o  L  L 

(12 k e(t) 12 ) <=> 2 j E E irl,(D2rki(f)(X,+(f  cy)Xt.(a))da, 
(16) 

L  L 

(lyk.(012)=> E E 2rki(f)lr1i(1)/1.,(f) 

where 

<= (I  (t) 12). 

Thus under assumption (15) we have 

L  L 

where 

(lyk.(012) = E E 27,..(o*i.yif(t)*(ixi.(0i2) 

kg(t) 4= > rki(f). 

(17) 

Forming the matrix 1G(t) with elements lyki(t) and similarly 2G(t) ; 
the vectors of input and output intensities are related by 

Y, 12 = 2G(t) *IG(t)* IX, 12.  (18) 

Thus the vector channel is a vector linear system in intensity as well 
as voltage [compare equation (18) to equation (13)1. 

3.3 A Limit Theorem for a Cascade of Vector Channels 
Now consider a cascade of a large number M of vector channels, 

each behaving as described in Sections 3.1 and 3.2, i.e., if 1Y(t)  12 is 
the vector of the average intensity responses at the output, 1X,(t)12 the 
input intensity vector; we have 

1Y,(t)12 = * G,(t)) * 1X.(t) 12 = Gr * 1X,(t) 12 

where 
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Gr = * Gi(t) = G Af * GM-1 • • • * G1 •  (20) 
i-1 

We would like to argue now that for sufficiently large M, all the 
elements of GT are identical in waveform, differing at most by a con-
stant. In other words, we would like to argue that the shape of the 
intensity response between any input mode and any output mode is 
indifferent to the choices of input and output modes, for sufficiently 
long guides, except perhaps for the magnitude of the responses. 
We shall prove our results for a lossless two-mode guide. Define 

yij(t, b) as the j —› i intensity impulse response for b sections of 
guide. We obtain (see Appendix A for derivation) 

721(t,  = E 711(t, b —  * 721(0 * ye2R1t)  (21) 

where 

'Ye2R-1 (t)  722(1) * 7.(1) • • • R — 1 times 

and 

711(t, 0) =  

Now assume that the guide is lossless, i.e., 

Further define 

Thus 

L. (TIM) -1- 721(01 dt = 1. 

aiiPri(t), 

f.0 p„(t) dl = 1,  0 <a 1 < 1. 

(22) 

(23) 

721(t, 10 = E 711(4 b — R) * P21(t) * te2R-1 (t)(a21 4-1).  (24) 
R 1 

For the lossless guide, and b sufficiently large -y„(b — R)  b) 
for R << b. Furthermore a convolution of 711(t, b — R) with 
P21(t) * pe2R-1(g) is approximately equal to 7„(t, b — R) for R << b 
since the response 7,1(t, b — R), which is a convolution of b — R terms, 
has a narrow spectrum compared to the other R term convolution for 
b» R. Furthermore a2142-1 --> 0 for R large. Thus for b sufficiently large 

b)  -y„(t, b)(a21/ (1 — a22))•  (25) 
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Similarly we have 

b) = .2,- - (I h  R1 *  * (t)  (  a 1  1 

R-1 

712(t,  an   — 7,2(1, b), 
1 — 

(since a2,  = 1). Thus 

G(t, b)  p(t, b) 

1 1  
1+ n  1+17 

1  1 

(26) 

= p(t, b)A,  (27) 

1 + 1/n  1 + 1/n_ 

where n = a21/a12, and p(t, b) L7,1(4  b) dt. Finally we 
obtain the response of a guide of kb sections 

G(t, kb) =- p*k(t, b)A. 

Note that A is idempotent, i.e., A 2 =  A and p(t, b) is a positive unit 
area function. 

3.4 Application to Long Optical Guide 

For a multimode lossless of guide sufficiently long length, 1 = kL, 
with finite coupling between all modes, we can generalize equation 
(27) to conclude that the intensity impulse response between an input 
and output mode is a constant times some positive unit area function 
p(t, L) convolved with itself 1/L times when L is a scale on which 
equation (27) holds in the generalized case (more than two modes). 
Since the central limit theorem states that the convolution of a large 
number of unit area positive functions approaches a gaussian shape,* 
we conclude that the impulse response should approach a gaussian 
shape in the limit of long guides. Further, the impulse response's 
second moment about its mean increases linearly with increasing guide 
length for guides longer than L. That is, the second moment about 
the mean of the response is 

M 2(1) = 1112(L)1/ L.  (28) 

If ri is the "differential delay" (time/meter) of propagation in the 

*Provided that f p(t, Llt2dt < co, when we add similar independent random 
variables with finite second moments, the probability density of the sum, which 
is the convolution of the individual densities, approaches a gaussian shape. 
The second central moment of a convolution is the sum of the individual 

second central moments. 
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slowest modes and T2 is the differential delay in the fastest mode, then* 

(Ti ra)21,2  (417M2  M 2(L)  •  (29) 
4  4 

Therefore, 

0 
M2(/)  (tA2 41 Li 

for any L where equation (27) holds [for an N mode case we have an 
N x N matrix multiplying p(t, 1)1. 

IV. QUANTITATIVE RESULTS 

4.1 Perturbation Theory 
We shall now apply the above results to the case of a lossless slab 

dielectric waveguide previously studied by Marcuse?. We expand the 
input field to the guide as 

e(t, x, 0) = E ek(t, 0)4,5(x)  (30) 

where x is the cross-sectional position parameter and the tfrk(x) are 
the eigenmodes of the guide. The field a distance 1 down the guide is 
written as 

e(t, x, 1) = E ek(t, 1)44(x).  (31) 

We have a linear voltage impulse response relationship between the 
vector of input voltages [ek(t, 0)] and the vector of output voltages 
[4(4 1)]. Defining E k(co, 1) as the Fourier transform of e5(t, 1) we have 

Ek(co,  =- E Cki(4), 1)E i(cu, 0).  (32) 

Marcuse has shown that a perturbation theory solution for the Cki(w, 1) 
is given by 

ek,(W, 1) = Xki exp [iSi(w)/] f g(z) exp  — i(w)]z} dz  (33) 
0 

where Xki is a constant weakly dependent upon CO and g(z) is the wall 
perturbation from straightness. It is assumed k  j [For k = j, 
Cki(w, 1) = 11. We have therefore 

*The right side of equation (29) is the mean-square intensity impulse response 
width if the response consists of an impulse of area j at the shortest delay and an 
impulse of area j at the longest delay. 
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oc(c., + (7, 1) 
ri 

= xkie, exp liffli(co)  $(w 0"))/} j j g(z)ez') 

• exp {i[(0k(c.o) — i3,(c0))z — (0„(co  u) — e„(co  is))z11 dz dz'.  (34) 

Defining the correlation function 

(g(z)g(z')) = Rg(z — z')  (35) 

(we assume g(z) is a wide sense stationary process) we obtain 

(C,;(co, 1)CMco u, = = Xlc Ap exp  Af321) f f Ro(z — z') 

• exp [i(f3k(w) — eico)(z — z')] exp [i Ai3(co, 0)z'] dz dz'  (36) 

where 

= (ak(co) — 0,40  u» — (O M —  + (,)), 
A/32 =  — op(w + u)• 

If Rg(z — z') drops off quickly for (z — z') in an interval of length 1, 
then we have the approximate result 

(Cki k OCTP(C°  e)  )4iXttP180(ek(W)  fli (4) 

A 1 - exp [i Ati(w, (7)/J 
.exp  Ẁ2 " i e e(4, Cr)1 

where 30(•) = Fourier Transform of R0(•), and is assumed to be 
constant as a function of $k(w) — /3,(w) for (.0 within the excitation 
bandwidth. For k = n, j = p 

•-•-_'[al3k(o))  0401 — 
Law  a,   

às (aoi)« 
\ato 

That is we assume u is small enough so that there is negligible disper-
sion of energy travelling in a single mode. Thus, the intensity impulse 
response between input j and output k is (see Fig. 1) 

where 

A rk 

(37) 

(38) 

Se(0.(w) — (32(c0))i(t — -TM  (39) 

f(t) = 1,  te[O, 

= 0,  otherwise; 
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for l small enough for the perturbation theory to hold. 
From equations (36) through (38), it is clear that for cases where we do 

not have k  n, j = p the correlation function Cki(w)C„1,(co -I- 0-) will be 
negligible provided O W 0-) is sufficiently large in the band of input 
frequencies. Thus we can use the perturbation length impulse response 
to find a long-guide response by means of equation (20). 
From equation (37) we see that we increase coupling between modes 

by making the mechanical perturbation spectrum large at frequencies 
which correspond to the difference of the inverses of the phase velocities 
of the modes at excitation frequencies. It should be emphasized that 
while making the perturbation spectrum high at frequencies that 
couple guided modes, we will wish to avoid making it too high at 
frequencies that couple guided to unguided radiation modes since such 
coupling results in loss. 

4.2 A Hydraulic Model of Dispersion 

We shall now show that the perturbation results imply a model 
which is an interesting interpretation of the propagation process, and 
which allows easy computation of the response of a long guide. 
Suppose energy traveled down the guide as follows. We start with a 

large number of indivisible bundles of energy at the guide input. Each 
bundle begins propagating down the guide randomly jumping from 
mode to mode. At any point down the guide, a bundle travels at the 
group velocity associated with the mode it is currently in. At any posi-
tion, the probability that a bundle will jump to mode k, given that it 
is in mode j, in the next increment of distance dl is XkiXeS„(f1k(w) — 

I3i(w)) 
Since we have a very large number of bundles, the output response 

of the guide in intensity should have the same shape as the probability 
distribution of the arrival time at the output of an individual bundle. 
For a short guide of length L, the probability that a bundle is in mode k 
given that it started in mode j is Xkj 12 IS, (Ok (CO) — I3,(w))L and its 
arrival time distribution is given exactly by Fig. 1. Since this distribution 
is the perturbation solution for the intensity impulse response of a 
short guide, we see that the hydraulic model gives the same result as 
the perturbation theory. Further, a little thought will show (see Ap-
pendix B) that the extrapolation from a short guide to a long guide in 
the hydraulic model is analytically the same as equation (20). Thus 
any technique which can be used to determine the intensity impulse 
response characteristics using the hydraulic model will be valid for the 
solution of equation (20) using the perturbation results. 
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IMPULSE 

Ti L 

ri L  (Ti+Ar rni )L 

(ri  L  TiL 

TIME - -

Fig. 1—Output intensity response for modes j, m and k, given mode j is excited. 

4.3 The Solution of Some Hydraulic Model Response 

4.3.1 Characteristics 

We now wish to determine some probability density moments of 
the arrival time of a bundle of energy at the output of a long guide 
recalling that this has the shape of the guide impulse response. 
Let H(1') be the mode a bundle is in at distance l' down the guide. 

In that mode the bundle travels with differential delay (time/meter) 
TH =  r(1'). The total propagation time down the guide is 

T = fT(1') dl'. 0 

The expected propagation time down the guide is 

(T),  fz (T(1') dl')„, . 
0 

The variance about the mean is 

(40) 

(41) 

«T — (T))2)„, =  f (r(l') — (r).,(l'))(7-(l") — (r)(l")) dl' dl") 
o o 

= [[ f R,(l', l") dl' dl"] —  (42) 

where R,(1', I") = E(T(1')T(1")). We need the correlation function 
R,(1, 1') and the mean  
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4.4 Calculation for a Lossless Two-Mode Guide 

For the lossless two-mode guide we have an energy bundle making a 
Poisson number of mode changes in any length L with mean 
I X12 12 So 091(CO)  132(w))L. The correlation function R,(1, 1') (assuming 
we start off randomly in one of the modes) is that of a random tele-
graph wave' and is given by 

R.,(1, 1')  4 IAri2l exp (-2 Il — /1//) 

where 

and 

72 )2 

,)  (1 — 1')2 

1/1, = I xi2 12 so (0, (w) —  

(43) 

ati2  = ((2.15A _ 02) 
\aw  / = 1.1 — 1.2 

We obtain the mean and second moment about the mean of the 
intensity response of a guide of length L. 

— (r  r2)L, 
2 

((T — (T)„,)2)„, — (eirieiL  —  (1 — exp (-2L// ))]c  [1 / 
4  2L 

lim  ((T —  (eor12)2Li  
' IL/1,1-..  4 

where 

= [IX1212 S.(5i(w) —  

(r12)2L2  
lim  ((T — (T).„)2),„ —  4 , 
teit 1.0 

(44) 

(compare equation (44) to equation (29)). 

4.5 Extension to the Two-Mode Guide With Loss 
We can use the hydraulic model to extend the above results to a 

two-mode guide with loss and differential loss. 
Assume that when travelling at distance dl in mode j, a bundle of 

light has probability 41 of being absorbed. 
If in travelling down a guide of length L, the bundle spends a dis-

tance L1 in mode 1 and L2 in mode 2, then the probability that it is 



856  THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1971 

not absorbed is 

P = exp [— (aiLi  ex2L2)] = exp  ((al  a2)Li  • a2L)]. (45) 

The number of bundles entering the guide at time zero and arriving 
at the output end at time t in the presence of loss equals the number 
that would arrive at time t in the absence of loss times the probabil-
ity that a bundle with total travel time t is not absorbed. But we have 

L,  L, = L, 

t =  r2L2 = (r, —  + r2L, 

P = exp [— (ctiLi  ce2L2)] = exp {— (Cia (1 7c,II T221j)  ce2L)} 

(46) 

where 

=  T1  —  T2  ACe =  at — cez• 

With a little algebra we obtain 

àa 
P = exp  (t — (r)8.L)  (a),L}1  (47) 

where 

=  ± «,)/2, 

(1")., =  + 7-2)/2. 

Thus the intensity impulse response for a two-mode guide with loss 
is equal to the lossless response multiplied by P of equation (47). 
Note that the gaussian shape for long guides still holds because the 

product of a gaussian and an exponential envelope is a shifted 
gaussian. 

V. CONCLUSIONS 

We can conclude at least one important result. Long optical fiber 
waveguides need not have large dispersion due to random imperfec-
tions if properly controlled mode coupling exists. From equation (44) 
we see that a mechanical perturbation spectrum which is peaked at 
frequencies that couple guided modes will lower dispersion. However, 
to avoid loss, we must not make the mechanical perturbation spectrum 
too high at frequencies that couple guided and radiating modes. 
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The above conclusions have been obtained by D. T. Young and 
H. E. Rowe,3 for the two-mode guide by solving the coupled line 
equations directly under the assumption of white noise coupling. 

APPENDIX A 

We wish to derive equation (21) from the following relationship 

G(t, b) = [-y„(t, b)] = fryii(t)]*[-y,;(t)]* • • • (b Times), 

i,j=1,2.  (48) 

Equation (48) implies the following model shown in Fig. 2. The 
transfer function y21(t, b) is the overall transmission response between 
input 1 and output 2. This can be obtained by adding up the trans-
mission responses over all different paths between input 1 and output 2 
using any desired bookkeeping scheme. Every path between input 1 
and output 2 must pass through the -hi(t) function for the last time in 
some section. If a path passes through the 1,21(t) function for the last 
time in the fifth section from the end, then it must pass through four 
-y22(t) functions on its way to output 2. The sum of the path transfer 
functions between input 1 and the input to the y21(t) function in the 
fifth section from the end is  b — 5). Thus the contribution to the 
overall transfer function between input 1 and output 2 due to all paths 
which pass through a 721(t) function for the last time in the fifth section 
from the end is 711(t, b — 5) * 721(t) * 'Y't1(t). Equation (21) merely 
expresses the sum of the contributions over all positions of last passage 
through a ya, (i) function. 

-  

INPUTS 

«4--

(t) 

722 (t)  „ (t) 

b SIMILAR SECTIONS 

Fig. 2—b-section guide. 

OUTPUTS 
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721(1, b) = E-yi,(1, b — R) * 721(1)*112R-t (t)•  (21) 
R-, 

APPENDIX B 

We wish to show that the equations for obtaining the intensity 
response of a long guide, given the intensity response of a short guide, 
for the hydraulic model are identical to the extrapolation equations 
for the intensity response given by equation (20). 
Suppose we have the probability density, for a short guide, that 

a bundle of energy starting off in mode j of the guide (at time 
zero) arrives at the output of the guide at time t in mode i. Thus we 
have the matrix of densities P(t, L) where L is the guide length 
and the elements pij(t, L) are the previously described densities. 
Let. ii(t, 0) be the probability density that a bundle of light arrives 
at input j at time t. Let I(t, L) be the probability density that a 
bundle arrives at the output position L in mode j at time t. Let 1(t, • ) 
be the corresponding vectors. Using the laws of addition of random 
variables we obtain 

L) = E p„(t, L) * /.(t, 0) 
of in matrix notation 

I(t, L) = P(t, L) * I(t, 0) 

therefore 
h 

1(1, kL) = (* P(t, L)) * 1(t, 0). 

We see that the probability density of the output arrival mode and 
time of a bundle of energy for a long guide, which corresponds to the 
intensity response, is extrapolated from the short-guide response 
exactly as in equation (20). Thus since the perturbation results of 
Marcuse correspond to the hydraulic model in the limit of short guides 
and satisfy the conditions for extrapolation using equation (20), it 
follows that properties of the hydaulic model solution for long guides 
will correspond to the solution of equation (20) starting with these 
perturbation results. This is true no matter what techniques we use 
to find these hydaulic model properties. 

APPENDIX C 

We wish to establish that for a narrowband high frequency signal 
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Y(t) = (Mt) exp (icoot)  y',P(t) exp (—iwot))/ -V2 

of carrier frequency fo = coo/27r and envelope y,(t), the intensity is 
given by 

!Mt) 12 = 2f [ro 17?-(f) 17+(i ±  di] 

<=> 2f  rt(f)Y.(f. + a) df. 

Define 

exp (—i2Tat) da, 

oe 

17«,(f) = f y,(t) exp (i27rft) dt, = 1/2 17,(1  fo), 

[provided ye(t) is narrowband compared with fo] ; 

ly,(012 =-  Y,(1) exp (-2i7rft)Y":(r) exp « WO df df', 

= f f exp [—i2r(f — nt][ Y„(f)171(r)1 df df', 

=f r exp ( — i27r7t)[ rt(r) Y,(f' y)] d'y df', 

where y = f — f'; 

= 2 foe   exp (—ilryt)[lit(g)Y+(g + -y) d-y dg] 

where g = (f' + fo). 

Q.E.D. 
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Anisotropie Scattering Due to Rain at 
Radio-Relay Frequencies 

By DAVID E. SETZER 

(Manuscript received October 30, 1970) 

L. T. Gusler and D. C. Hogg have estimated that interference 
coupling due to rain is a significant factor in coordinating the shared 
use of frequencies between satellite-communications and terrestrial 
microwave radio-relay systems. Their calculations are based on the 
assumption that rain scatters isotropically. Calculations given here, 
based on the exact anisotropie angular scattering functions, do not 
alter their conclusions. The exact scattering patterns at selected fre-
quencies in the range 1.4 to 300 GHz for rains whose drop sizes obey 
the Laws-Parsons distribution are presented for the range of rain rates 
1 to 150 mm/hr. 

I. INTRODUCTION 

Recently L. T. Gusler and D. C. Hoge calculated the degree of 
coupling between satellite-communications and terrestrial radio-relay 
systems due to scattering by rain at frequencies of 4, 6, 11, 18.5 and 
30 GHz. In their work they took the scattering by raindrops to be 
isotropic and to be based on the Laws and Parsons drop-size distri-
bution.2 They have pointed out correctly that it is known that rain-
drops do not scatter isotropically. Since the isotropic assumption is 
incorrect, it is of interest to examine the magnitude of the resulting 
error. Also, for the purposes of documentation, we present the scatter-
ing patterns at selected frequencies in the range 1.4 to 300 GHz at rain 
rates in the range 1 to 150 mm/hr. 
It has been shown that the Mie solution to the problem of scattering 

from a single sphere can be used to generate the Stokes scattering 
matrix for atmospheric type aerosols, such as rain, and in particular 
for Laws and Parsons type rains.3.4 One of the elements of this matirx 
is the angular scattering function [P1(0) + P2 (0)], sometimes referred 
to as the normalized Mie intensity function. Here, O is the scattering 

861 
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angle (00 to 180°) with zero representing the forward direction. Since 
the aerosol is assumed to be made up of spherical particles, the scat-
tering is symmetric about the direction of propagation; therefore, the 
total scattering field can be described iii terms of the single variable O. 
Essentially, the function [P1(0) + P2 (9)  is a prescription for the 
relative amount of energy scattered into a differential solid angle in 
the direction O. For isotropic scattering, 

P1(0) + P2(0) = 2,  (1) 

and for Rayleigh scattering, 

PI(0) ± IMO) = (1 -I- cos' 0).  (2) 

Generally, as the ratio of particle circumference to the wavelength 
of the scattered energy becomes small, the scattering function [P1(0) 
+ P2 (0) I approaches the Rayleigh formula. 

II. COMPUTER PROGRAM 

We devised a computer program which was used to generate the 
angular scattering functions for Laws and Parsons rains of 1, 50, 100 
and 150 mm/hr at 1.4, 2, 3, 6, 16, 30, 60, 100, 150 and 300 GHz.4 The 
results are plotted on Figs. 1 through 4 along with plots for isotropic 
and Rayleigh scattering. The Laws and Parsons rains are described 
in Table I. 
Figures 1 through 4 show that the scattering at 1.4, 2 and 3 GHz 

is described by the Rayleigh function. Also, for many applications it  F 
appears that the assumption of Rayleigh scattering at 6, 16 and 30 
GHz will be in ,order; however, the scattering patterns at 60, 100, 150 
and 300 GHz deviate greatly from the Rayleigh function. Note that 
the scattering diagrams are only mildly dependent on rain rate, the 
most noticeable feature being the increase in the forward peak with 
increase in rain rate. It is to be expected that, in general, for a Laws 
and Parsons rain, the angular scattering function will not be greatly 
influenced by rain rate. This is because the angular scattering function 
of an aerosol is determined by the shape of the particle size distribu-
tion and the mean particle size, rather than the density of particles. 
As can be seen by examining Table I, the mean particle size and the 
general distribution shape are not very different over the range of rain 
rates presented. 
Finally, note that none of the scattering patterns can be described 

as isotropic. However, in the range of frequency considered by Gusler 
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and Hogg, 4 to 30 GHz, the actual scattering functions are everywhere 
within a factor of two (3 dB) of the isotropic function. Since the 
Gusler-Hogg scattering model predicts an interference level between 
radio relay and satellite systems proportional to the scattering func-
tion, the solutions can be in error by at most 3 dB. It is important 
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TABLE I-LAWS AND PARSONS DROP-SIZE DISTRIBUTIONS FOR 
VARIOUS PRECIPITATION RATES 

Drop 
Diameter (cm) 0.25 

Rain Rate (mm/hour) 

1.25 I 2.5 I 5 112.5  I 25  50 

Percent of Total Volume 

100  150 

0.05  28.0  10.9  7.3  4.7  2.6  1.7  1.2 
0.1  50.1  37.1  27.8  20.3  11.5  7.6  5.4 
0.15  18.2  31.3  32.8  31.0  24.5  18.4  12.5 
0.2  3.0  13.5  19.0  22.2  25.4  23.9  19.9 
0.25  0.7  4.9  7.9  11.8  17.3  19.9  20.9 
0.3  1.5  3.3  5.7  10.1  12.8  15.6 
0.35  0.6  1.1  2.5  4.3  8.2  10.9 
0.4  0.2  0.6  1.0  2.3  3.5  6.7 
0.45  0.2  0.5  1.2  2.1  3.3 
0.5  0.3  0.6  1.1  1.8 
0.55  0.2  0.5  1.1 
0.6  0.3  0.5 
0.65  0.2 
0.7 

1.0 
4.6 
8.8 
13.9 
17.1 
18.4 
15.0 
9.0 
5.8 
3.0 
1.7 
1.0 
0.7 

1.0 
4.1 
7.6 
11.7 
13.9 
17.7 
16.1 
11.9 
7.7 
3.6 
2.2 
1.2 
1.0 
0.3 

to remember that here we are speaking only of the error due to invok-
ing the isotropic scattering assumption. Nothing is intended to be said 
about any other aspect of the model and, most importantly, this work 
does not imply anything about the magnitude of the scattering cross 
section other than that the Rayleigh cross section is probably a rea-
sonable assumption at those wavelengths where the angular scattering 
function is Rayleigh. For a detailed look at the Mie cross sections for 
Laws and Parsons rains see Ref. 4. 

III. SUMMARY 

Gusler and Hogg have estimated maximum coupling between 
satellite communications and terrestrial radio-relay systems due to 
scattering by rain to be of the order of -150 dB. A 3-dB uncertainty 
in those results is not really significant, considering all of the other 
uncertain aspects of modeling such a complicated physical problem. 
In summary, the results of Gusler and Hogg are not. significantly 
altered if the exact angular scattering functions rather than isotropic 
scattering functions are used in their calculations. 

REFERENCES 

1. Gusler, L. T., and Hogg, D. C., "Some Calculations on Coupling Between Satel-
lite Communications and Terrestrial Radio-Relay Systems Due to Scattering 
by Rain," B.S.T.J., 49, No. 7 (September 1970), pp. 1491-1511. 



868  THE BELL SYSTE M TECHNICAL JOURNAL, MARCH 1971 

2. Medhurst, R. G., "Rainfall Attenuation of Centimeter Waves: Comparison of 
Theory and Measurement," IEEE Trans. Antennas and Propagation, 18, No. 
4 (July 1965), pp. 550-564. 

3. Setzer, D. E., "Comparison of Measured and Predicted Aerosol Scattering 
Functions," Applied Optics, 8, No. 5 (May 1969), pp. 905-911. 

4. Setzer, D. E., "Computed Transmission Through Rain at Microwave and Visi-
ble Frequencies," B.S.T.J., 49, No. 8 (October 1970), pp. 1873-1892. 



Copyright (C) 1971 American Telephone and Telegraph Company 
THE BELL SYSTEM TECHNICAL JOURNAL 

Vol. 50, No. 3, March, 1971 
Printed in U.S.A. 

Short-Term Frequency Stability of 

Precision Oscillators and 

Frequency Generators 

By Raymond E. Barber 

(Manuscript received August 3, 1970) 

We present in this paper two definitions of short-term frequency stability: 
(i) time domain, the expected value of the variance of the fractional 
frequency fluctuations from nominal frequency, (trf,(N , T, 7)), in which 
N is the number of samples, T is the averaging time plus the dead time 
between samples, and T is the averaging time; and (ii) frequency domain, 
the power spectral density of the fractional frequency departure from 
nominal frequency, S„(f). We discuss the topics of conversion from the fre-
quency domain to the time domain and conversion among time domain 
measures. 
All measurements were made in the time domain, using period counting 

techniques. An oscillator was offset in frequency by using a specially 
built quartz crystal unit plated for 10 kHz below the frequency of the other 
sources. This oscillator was used to obtain the beat frequency required by 
the period counting approach. 

Since the use of (c(2, T, 7)) as a measure of short-term stability has 

significant advantages over (uf,(N , T, T)), the relationship between the 
two quantities was investigated. For averaging times of one second or less, 
(0-2„(2, T, r) ) and (cr,(N, T, r)) were almost equal. 

The short-term stability of several quartz crystal oscillators and precision 
frequency generators was measured. The stability over the shorter averaging 
times was nearly equal for most of the oscillators. At longer times, the 
stability of each oscillator was unique. The frequency generators demon-
strated similar stability over averaging times of 10 and 100 milliseconds, 
but were unique elsewhere. The accuracy of all measurements was limited 
by systematic effects from the environment and the measurement equipment 
itself. 

881 



882  THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1971 

I. INTRODUCTION 

When the phrase "short-term frequency stability" is mentioned, one 
can immediately infer that frequency varies with time and that a short 
time interval is involved. Many questions are, at this point, un-
answered: How short is the interval? How is stability defined? What 
system malfunctions can result from excessive instability? What 
definitions are appropriate for the specific application and why? 
Some answers to these questions are developed here; others must be 

determined by the user in terms of the specific system involved. If 
a measurement of short-term frequency stability is to be of significant 
use, each of these questions must be resolved. 
Although ever-increasing interest in short-term stability has existed 

for 25 or 30 years, no universally accepted definition of short-term 
stability exists. Primarily, early research in this area was extremely 
application-oriented. Little general work was performed with the 
result that many definitions were developed. Individuals and organiza-
tions defined and used stability in terms of their own applications. 
The resultant confusion showed that a more general definition appli-
cable to the majority of cases was desirable in the topic of short-term 
frequency stability. 
Today, many users talk about stable oscillators without understand-

ing why or even if such precision is necessary. Manufacturers add to 
the present confusion through lack of rigor in their performance speci-
fications. That is, they often merely quote a number without defining 
what, how, or why they are measuring the stability of their equipment. 
Sophisticated systems exist today which require more precision than 

frequency standards of 10 to 15 years ago. Only recently has the pre-
cision oscillator been liberated from its position in secluded portions of 
carefully controlled laboratories.1 Spacecraft applications suffice as 
good examples of the strides made in this area; wide temperature 
variations, severe mechanical vibrations, and varying oscillator voltage 
are often encountered. In the immediate future, these requirements 
will tighten even further. A proposed collision avoidance system for 
aircraft will require stable oscillators. With higher and higher data 
rates in communication systems, even the dependable telephone office 
will contain precision oscillators. As precision oscillators come into 
general use, accepted measurement theory and techniques are abso-
lutely necessary. 
In view of the above, two definitions of frequency stability are pre-

sented in this paper. One definition is in the time domain; the other 
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is in the frequency domain. Conversion between the domains, an ex-
tremely important subject, is also treated. Every attempt has been 
made to be consistent with the IEEE Subcommittee on Frequency 
Stability.* It is anticipated that the subcommittee will publish its 
formal definition sometime in 1971. 

II. GENERAL DISCUSSION 

2.1 General Definitions 

The general definition of instantaneous angular frequency is the 
time-rate of change of phase. That is 

w(t) = 71i = e 

An oscillator output signal may be described as 

g(t) = [A + e(t)] cos [cot + ep(t)],  (2a) 

g(t) = [A + e(t)] cos [2r F t 0(t)],  (2b) 

(1) 

where 

nominal angular frequency of the oscillator, 
F = co/2r = nominal frequency in hertz of the oscillator, 
A = nominal amplitude of the oscillator, 
E(t) = small, slowly time-varying amplitude fluctuations, and 
o(t) = slowly time-varying real function (phase). 
Here, g(t) may be considered as either a voltage or a current. If the 
oscillator is to qualify as a precision oscillator, it is required that 

E(t) «1,  (3) 
A 

e(t) 
27rF 

«1.  (4) 

2.2 Statistical Processes 
For the present, assume that the variables of equation (2) are ran-

dom processes. It is generally assumed in the study of frequency stabil-
ity that amplitude deviations, ¿(t), do not directly affect frequency or 

*This subcommittee, formed in 1964 as a result of the IEEE-NASA Sympo-
sium on short-term frequency stability, is formally named the Subcommittee on 
Frequency Stability of the Technical Committee on Frequency and Time of the 
Group on Instrumentation and Measurement of the IEEE. 
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phase.2 It must be stressed that 0(0 presumably contains all fre-
quency and phase fluctuations and is the main quantity considered. 
If a random process is stationary in the strict sense, it is unaffected 

by translations of the origin for time.5 This implies that the probabil-
ity distribution of values in the ensemble will be the same at any two 
instants. Hence, examination of the ensemble yields no data as to 
which instant of time the examination occurred. 
Texts on random noise and stochastic processes assume that most 

noise functions may be represented or approximated as stationary 
gaussian random processes with zero averages.' The justification for 
assuming a gaussian distribution lies in the central limit theorem. This 
well-known theorem states that the distribution of the sum of a large 
number of independent random variables will approach a gaussian dis-
tribution. S. O. Rice showed that noise does, in general, conform to a 
gaussian distribution, provided that a sufficiently large sample is 
taken.5 Zero averages of each random variable are assumed for con-
venience. 
A process can be defined as ergodic when the statistics of one sys-

tem over an infinite period of time are equivalent to the statistics of 
an infinite ensemble of systems at any given instant. (Note that sta-
tionarity is a necessary but not sufficient condition for ergodicity.) 
Since the processes are stationary and gaussian, the noise functions 
considered in this paper are assumed ergodic. 
In the real world, no process can be stationary in the strict sense. To 

be stationary, the probability distributions across the ensemble must 
be the same for any selected instant of time. This stipulation includes 
time as it approaches infinity. If the process is terminated at some 
future time, the concept of stationarity in the strict sense is violated. 
The random process, Xt , is called stationary in the wide sense, if the 
first and second order moments of its random variables exist and 
satisfy 

E(X,) = constant, 

= constant, 

— E(X,,r)][X, — Egan =  

where 

R(r) = autocorrelation function, and 
T =  some arbitrary finite time interval. 

The actual verification of stationarity is not feasible. The main re-
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quirement is that the physical process be consistent with the concept 
of stationarity. That is, if measurements are to be of any use, they 
must reasonably describe the process at all times in the future, prior 
to termination of the process. 

2.3 Systematics 
When a study is made of a precision oscillator or frequency genera-

tor, great pains are often taken to isolate the circuits from electrical 
disturbances. This is done to minimize the systematic effects so that 
only the truly random noise can be observed. For evaluation of the 
generator itself, this is a sound practice. However, in the real world, 
electrical disturbances do exist. For example, in a data processing 
system there are card readers, magnetic tape transports, and other 
devices. Each of these devices has numerous electro-mechanical relays 
which are continually chattering. Thus, it is desirable to insure that 
a frequency generator has the necessary stability. This obviously 
means it must demonstrate adequate stability in the operating en-
vironment with the contribution of the systematic effects. 
In equation (2), it was assumed that the main contribution of (t) 

came from the oscillator. Now it is necessary to loosen this assumption 
to include the contributions to 0(0 from the operating environment. 
While these added uncertainties are not caused by the oscillator, any 
attempt to observe ck(t) will include these effects. Therefore,  (t) in 
equation (2) can be considered to include 

0(t) = c(t)  s(t)  n(t),  (5) 

where 

c(t) = phase due to aging (drift), 
s(t) = phase due to environmental systematic effects, and 
n(t) = phase due to oscillator random noise. 

The contributions of c (t) are strictly long term, affecting time inter-
vals of a thousand seconds or longer. Hence, for time periods of less 
than a thousand seconds, c(t) becomes almost constant and thus is not 
significant. The exact composition of s (t) is unknown, although it has 
both long- and short-term effects. Again, the long-term component of 
the systematic effects becomes insignificant for short time periods. 
For these short intervals, 0(0 becomes 

= 8n(t)  n(t),  (6) 
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s„(e) = short-term components of the systematic effects. 

For the present, it will be assumed that the short-term component 
of the systematic effects is a random process which is stationary at 
least in the wide sense: gaussian, with zero averages, and ergodic. 
This stipulation may later fall as more is learned about the nature of 
systematic effects. Certainly, even if not truly random, the effects will 
appear as short-term instabilities. 
Any environment will contribute a term s (t) to (5). Obviously, if the 

systematics, s(t), can be minimized to the point where their contribu-
tion is several orders of magnitude less than the oscillator noise, n (t) 
becomes the only significant measurable. On the other hand, if the 
environment is extremely noise contaminated, the actual oscillator 
instabilities may be "swamped" by the systematic effects. Conditions 
can exist that are so contaminated that coherent operation of many 
electronic systems is not possible. The systematic effects will contribute 
to the short-term instabilities in an additive manner on a power basis. 
If an estimate of the short-term stability of an oscillator or fre-
quency generator can be obtained in a carefully controlled, low-noise 
environment and if a subsequent estimate can be made in an operating 
atmosphere, the resulting instabilities may be compared. The contri-
bution of the noise due to the systematic effects of the environment 
may then be described. 

III. DEFINITIONS 

3.1 General 
Many applications exist that necessitate the use of highly stable os-

cillators or frequency generators. Due to the accuracy requirements of 
these various applications, some measure of oscillator instability is 
imperative. Although many persons view such a quantity merely as a 
vehicle for oscillator selection and comparison between oscillators, 
these uses are only academic. Strictly speaking, a measure of instabil-
ity enables prediction of oscillator performance or, if not sufficiently 
stable, nonperformance in a given system. More precisely, any devia-
tion from the intended frequency will degrade the performance of any 
system. Specific cases of the effects of frequency stability on an 
operation are discussed by J. A. Barnes.6. 7 
Presented below are definitions of short-term frequency stability 
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both in the time and frequency domains. Translation between the 
domains is also discussed. 

3.2 Time Domain 
In this paper, short-term frequency stability in the time domain is 

defined as the ensemble average of the variance of fractional frequency 
fluctuations from nominal frequency. This definition is based on the 
work of D. W. Allan.8 
It is convenient to make the following definition 

(Xi) 
Y(t) 

where 

(7) 

e(t) = ckpldt = w(t) {from equations (1) and (2)), and 
= long-term average frequency, hertz, of the oscillator {from 
equation (2)). 

Taking the short-term average value of equation (7) 

ĝ f  y(g) dt — etn 7) —  
T  „  27F, T 

1 fià+, 
— y(t) dt — etk  (1)(th)  
T  t  2/rF1 e 

(8) 

(9) 

where n, k = 1, 2, • • • , m, • • • . 
Using equations (8) and (9), an expression in terms of the sample 

variance is obtained 

1  (4; l i e y 
0"2.(N,  r) — N but —  ITT k uk  e 

—  «1 

where 

(10) 

N = number of samples, 
T = time between the beginning of successive sample intervals, and 
r = sample time. 

Short-term frequency stability in the time domain is defined as the 
expected value or ensemble average of equation (10), the variance of 
fractional frequency fluctuations from nominal frequency. That is 

(0-:(N , T , r)) = E[N 1 1 ,4 (g„ — ,,y] (11) 
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where E [X] denotes the expected value or ensemble average of X. 
Note that this definition of frequency stability is dimensionless. 
The justification of the use of the term 1/(N — 1), located directly 

to the left of the first summation in equations (10) and (11) , follows 
from the theory of estimation (see Ref. 9) . Thus, in order to obtain an 
unbiased estimate of the population variance, the sample variance 
is multiplied by N / (N — 1) , resulting in equations (10) and (11). 
Clearly, for large samples, the population and sample variances be-
come very nearly equal. 
A popular expression of short-term stability in the time domain is 

the expected value of the standard deviation (rms value) of the frac-
tional frequency fluctuations from nominal frequency. Expressed func-
tionally, this becomes 

(cri,(N , T, r))  E L I :#(17 „ —  Ak# 71,) 1}•  (12) 

It should be noted that the square root of equation (11), (cr:,(N, T, 'r)), 
is equal to equation (12), (cr,(N , T, r)), only when the successive samples 
are truly stationary in the wide sense. If the samples appear only 
slightly nonstationary, approximate equality may be assumed as 

(4'10 re T, T M } (cre e e T, r».  (13) 

la Frequency Domain 
L. S. Cutler and C. L. Searle showed that a practical definition of 

short-term frequency stability can be given in terms of autocorrelation 
functions and power spectral densities.1° 
The autocorrelation function of phase is defined as 

Ro(r) =h m f  qh(t  r)0(1) dt.  ( 1 4) 

T-POD   

Ro(r) can also be determined using numerical methods on a digital 
computer if enough samples can be taken, such as 

1 
RAT) =  E <14(t + r),(0,  (15) 

where N is some large positive integer. 
Let Re, (r) be the autocorrelation function of a process which is sta-

tionary in the wide sense and continuous. From the Wiener-Khintchine 
theorem, it is known that autocorrelation functions and power spectral 
densities are Fourier transform pairs. Hence, the two-sided spectral 
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density of phase becomes1°* 

S(j) = Re (r)e-i2“, dr. (16) 

From this, the one-sided spectral density of phase, so(f) , becomes° 

So(f) = 2 foe Ro(r) cos (21d r) dr, 

Ro(r) = 2 f e 8.(f) COS (24 r) df. 
o 

(17) 

(18) 

In normal Fourier analysis,* differentiation in the time domain cor-
responds to multiplication by j2irf in the frequency domain. In terms 
of power spectral densities, this becomes (274) 2. Thus 

S(f) = (211)2S0(0.  (19) 

But S4(1) is the power spectral density of frequency fluctuations. 
To obtain the power spectral density of instantaneous fractional fre-
quency departure from nominal frequency, equation (19) must be 
normalized 

¡VD i2  
su(f) (2eF1)2 

Thus, S(I), equation (20), is the definition of short-term frequency 
stability in the frequency domain. Note that ,S,,(f) has the units "per 
hertz." 

3.4 Translations Between Domains 

(20) 

3.4.1 Frequency Domain to Time Domain 

L. S. Cutler has shown that the following equation allows calculation 
of the time-domain stability from the frequency domain' 

(0.:(N T, r» 
(NN 1) f s.(f) 'ili:/(:)!r" [1 e l2si(nr2r f (1:1J) T)] cf, 

where 

(21) 

r = Tir. 

*In this paper, the convention is used that the term F1, as in equations (2) and 
(7), is the cycle frequency, hertz, of the oscillator. The term f is a Fourier fre-
quency, hertz, and is not a function of time. 
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3.4.2 Translations Among Time-Domain Measures 

In certain applications, translation among time-domain measures 
is of interest. The following method, presented by Barnes," allows 
calculation of (o (N2 , T2 , r2)), given an estimate of (0.,2,(N, T, r)), for 
functions which have a power law spectral density. 
Since most precision oscillators and frequency generators have 

power law spectral densities, it is possible to define two bias functions, 
Bi(N, r, 1.0 and B2(r, µ) , as follows 

(02(N T 7))  
B,(N , r, IÀ) =  "2 " 

(«‘,(2, T, r)) ' 

B2(r, /2) , (0.21p, T, •,-)) 
(Cr t,(2 7 T7 r)) ' 

where 

(22) 

(23) 

= spectral type (related to the shape of the spectrum. In Ref. 11, 
Barnes shows how µ may be found, given B1)• 

Now an estimate of (u2„(N2 , T 2 , r2)) can be made 

(0.12 e2 , T 2 , 1.2»  (7 1  Bi( Nz e r2 7 11.)B2(r2 1  icr., ( Ni , 171 , ri». 
ri B e, , r1 , iÀ)B2fri , bt) \ (24) 

See Ref. 11 for a listing of the bias functions for various spectral types, 
number of samples, and r. 

IV. MEASUREMENT TECHNIQUES 

4.1 Period Counting Technique 

The basic functional description of this method is shown in Fig. 
1. This arrangement is similar to that presented in Ref. 2. Two similar 
oscillators are offset in frequency. This offset can be produced by 
adjustment of the tuning control on the oscillator or use of a crystal 
which produces a slightly different average frequency. It is assumed 
that these procedures change only the long-term average frequency 
of the oscillators and that the short-term instabilities are not affected. 
As in equation (2), the output signals from these similar oscillators 

are fed to a mixer or product detector. The resulting output is fed to a 
low pass filter. This yields an expression: 

ill A2 
M g    2 I cos [21-(F1 — F2)t + 41(t) — 412(0)]}. (25) 
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This signal is the nominal frequency difference between the sources 
plus the instabilities of each. (For a more detailed discussion, see Refs. 
8, 10 or 12.) Define 

Fo = F1 — F2 , 

cb(1) = [c(t) — Çb2(0]. 
Substituting these values into equation (25) 

go(t) f:÷_' A1 2112  cos [22rFot + 4,(t)1.  (26) 

This quantity is fed directly to a digital counter. 
The theoretical time, ro , between the first and Mth positive-going 

zero crossings, if the signals were ideal, is 

M 
To = —• 

Fo 

The actual elapsed time, T, between the first and Mth zero crossing is 

T =  M  [ell(t0 ±  7) —  C1)(10)] .  (27) 

Fo 22rFo 

The uncertainties are characterized as 

— 'ear) ± r) — (13(to)  
Sr   . 

27rFo 

Therefore, equation (27) becomes 

T =  To —  ÔT.  (28) 

Because of equation (4), 8r is small. Cutler and Searle show that if 

REFERENCE 
OSCILLATOR 

TEST 
OSCILLATOR 

1_ 
MIXER FILTER — .4. TRIGGER   1 AND GATE  1 

1  DIGITAL  I 
COUNTER 

RECORDER 

COMPUTER 

Fig. 1—Fundamental description, period counting technique. 
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variations of Sr are small, the following may be assumed 

1,(to •r)  Eto ± ro), (29) 
substituting 

or  4)(10 + To) - «to) 
271-Fo 

(30) 

Substituting equation (30) into equations (8) and (9) gives 

Fo [1.(to,, T  —  CP(to)] Fo 6r  
e Fir° 271-F0 F1 To (31) 

Fo [(1)(tok ± TO) .-ii(tok)1 _ FO (57 k  (32) 
F, To 271-F0 Firo   

For each sampling sequence, N estimates of 9„ and 9k are computed. 
Substituting these values into equation (11) 

(crf(N T , r)) =    
N - 1  Faro 8T ''  •èt1 Faro rk N1 e )21  (33) 

(c7.1(N , T, r)) = E R N -  Ftrt  \ur "  kr 67-k)2]. (34) 
1  F,2) ( 

4.2 A Special Case 

When N = 2, equation (11) is simplified 

(cr,(2, T, r)) = E[ (g. 

Likewise, as in equation (34), 

F2 2 
(a(2, T, r)) = E[- 2 - E (or  É  )2] . 

F;r(,  "  2 h  k 

(35) 

(36) 

Recall that r  - Or 

e 2 1 2 
(GT:(2) T r» = EL-,2 2 E {(TO  Tn)  - E (T. — rk)}2] • (37) 

17-0 n=  2 ,_, 

Expanding the right side of this equation and reducing 

(er(2, T, r)) - E[FP,02 (72  -2 71)2 ]•  (38) 

Let r.2. - Tj = à•ro 

(ot(2, T, r)) = E[ el  (Ar l • 
211  To 

(39) 
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The following term often appears in the literature on frequency 
stability" 

AF 
F  -17 

where 

(40) 

AP' = frequency difference between received and local standards 
(hertz), 

F = nominal frequency, 
= accumulated time error corresponding to change in phase, and 

T = averaging time. 

The expression in equation (40) is frequently used in calculating the 
long-term stability or drift rate of an oscillator. The application of 
equation (40) has been well documented in many sources. The differ-
ence between two readings of equation (40) is recognized as the defini-
tion of long-term stability, yielding a peak-to-peak value of frequency 
drift over a specified time period. 
As the time interval is compressed, the oscillator instabilities dem-

onstrate more randomness while being less subject to drift. In the 
limit, equation (40) yields an instantaneous peak-to-peak value of the 
fractional frequency fluctuations from nominal frequency. Letting 
t = T and substituting equation (40) into equation (39),  

[___ 2FA(AFF:y1 
(cr,2,(2, T, r)) = E  (41a) 

(01,(2, T, r)) = E[ — 2F1; (AF°)2 ]  (41b) ' 

(cr:(2, T, r)) =  (F 2F1 02 -  F01) 2]  (41c) 

where 

F01 , F02 =  two successive samples of the beat frequency, Fo , over 
an averaging time, T. 

In a similar manner, the standard deviation becomes 

(0' T r» — E{  1 RF — F 01)11/ 2}  (42) 

In Section 3.4.2, it was shown that, given the spectral type, 
translations between time domain measures can be made. Recalling 
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equation (22) 

((N, T r»  
B  , g)  T, r» 

It is obvious that if 

then 

(o-,2,(N , T, r)) = (cr,2,(2, T , r)), 

131(N , r,  = 1. 

(43) 

(44 ) 

Barnes showed that for r > 1, equation (44) holds in two cases, when 
p. = —1.00 and —2.00." For r  1, equation (44) holds for p. = —1.00 
only. Allan showed that when the spectral type, p., is equal to minus 
one, white noise frequency modulation is present.8 When p. equals 
minus two, flicker noise phase modulation is indicated. 
As shown by E. A. Gerber and R. A. Sykes," and Cutler and 

Searle,1° there are three main sources of noise in oscillators. These 
are: 

(i) additive noise (added to signal), 
(ii) thermal and shot noise (perturbs oscillation) , and 
(iii) flicker (1/f) noise frequency modulation. (See Ref. 15 for a 

discussion of flicker noise.) 

For very short time intervals, the additive (white) noise predomi-
nates. For longer intervals, flicker noise frequency modulation pre-
vails." Thermal and shot noise are overpowered by the other two 
types.1° 
For oscillators, p. normally assumes two values 

-n 0, 

—1. 

When the latter is true, 131(N , r, p) _c•-2 1 and (cr:(N , T, r))  ((r:(2, T, r)). 
When µ  0, however, this does not hold. 
There are many indications that the most basic parameter of fre-

quency stability in the time domain is (e„(2, T, r)) (no dead time between 
samples). Initially, there is no guarantee that (0.,( co , T, r)) will converge. 
Secondly, even if it were possible to assume convergence, it is not 
practical to take enough samples at the longer intervals to assure 
meaningful results. Next, it can be shown° that (cr:(2, r, r,)) converges 
even for divergent (cr;,(N T, r)). Therefore, the greatest significance 
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of (o-:(2, T, r)) as a measure of short-term frequency stability is that 
it eliminates the embarrassing divergence of fficker noise contributions 
as N  œ in (6(N , T, I)). 
In addition, some noise functions have extremely long periods, 

even beyond one cycle per year. These low frequency components 
affect estimates of ((f! (N, T, •7-)) even though their periods are too long 
to have any influence on an actual system. As a result, (Gr:(2, T, T)) 
is more constant in time than (a.2„(N , T, r)). 
In physical applications, («:(2, r, r)) is often more directly applicable 

than other expressions. For example, in radar it can be shown° that 
the expression for calculating doppler range errors is directly propor-
tional to (01/(2, r, r)). In timing, the mean-square second difference 
of phase is often useful:7'15 It can be shown° that (cr:(2, r, r)) is directly 
proportional to the mean-square second difference of phase. 
In a practical sense, measurement of (a.°,(2, T, r)) is easier to achieve 

than (o(N , T, r)). Storage requirements for the latter become excessive 
as N becomes large. Usually, the most practical method of making 
estimates of (o(N , T, r)) is the use of a magnetic tape unit for storage 
of data. The data may then be processed off-line on a special purpose 
or commercial computer. 
For (crt(2, T, r)), storage requirements are small. Neglecting processing 

requirements, only one summation register is necessary to obtain the 
ensemble average. Resulting equipment is small and portable. Com-
putations can be made on-line, in real time. Using this approach, 
reliable measurements of short-term stability in the time domain are 
practical at field locations. 

V. MEASUREMENTS 

5.1 General 

Of prime interest to this paper is the measurement of the short-
term frequency stability of a frequency and time of year generator 
to be used in a large, special purpose computer. This generator con-
sists of a rack of equipment which produces a total of 17 different 
square wave signals ranging from 9.5367 Hz to 20 MHz. These sig-
nals are used as clock frequencies for the computer. 
The primary frequency source consists of three 5-MHz quartz 

crystal osci11ators.1 Two of these oscillators, designated as slave and 
standby, are phase locked to the other oscillator, called the master. 
The outputs of the master-slave pair are combined in three digital 
mixers and fed to three counter chains. Each counter chain output 
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is compared to the corresponding outputs of the other two counters. 
The two signals that very nearly coincide are combined and fed to 
external users via cables. The output from the standby oscillator is 
not used. The standby oscillator is present only because of the five day 
initial warm-up period. It is phase locked to the master oscillator to 
speed switching into the system should a failure of one of the other 
two oscillators occur. 
The time of year generator simply uses a 1-MHz combined output 

and generates a 42-bit BCD parallel time of year code. 
A VLF receiver is used to cheek the 5-MHz oscillators against pre-

cision VLF stations. Daily frequency checks reduce the actual 
frequency error. The specified long-term stability of each oscillator 
is 1 pp 10" per day. [This is a measure of àF/F as shown in equation 
(40). The expression 1 pp 10" is a commonly used abbreviation for 
1 X 10-10 .1 Thus, in theory at least, long-term error (drift) never ex-
ceeds that which can be accumulated in a single day. 
Provisions have been made to indicate to operating personnel if 

errors have occurred. These include sensors to detect missing pulses, 
the loss of an output, counter synchronization errors, or a phase lock 
circuit approaching its limits. These techniques are present merely to 
add additional reliability to the system. 

The phase-lock circuit permits two oscillators to be phase locked 
over a frequency change of ±1 pp 108 with a maximum phase error 
between the two oscillators of less than ±60 milliradians. The circuit 
can "capture" over a range of ±2.5 pp 108 with a phase error of ±160 
milliradians. 
Whether instabilities are caused directly by an oscillator or by 

associated circuitry, various problems can result from excessive insta-
bilities. These include (i) loss of phase lock, (ii) loss of counter chain 
synchronization resulting in one or more false outputs, (iii) degrada-
tion of stability delivered to users, and (iv) failure of the frequency 
generator. Loss of phase lock will occur when linear drift or phase 
errors caused by excessive instability of an oscillator exceed the above-
given limits. When phase lock is lost, short-term stability is degraded 
even further. When a counter chain loses synchronization, the resulting 
false outputs could have serious consequences to the data processing 
system. 
Once the stability is degraded to some critical level, the data 

processing system will begin to lose accuracy and resolution; time-of-
year errors will accumulate. Pulses propagating through delay lines 
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will not coincide with intended clock pulses. Loss of data and parity 
errors will result. When the parity count is sufficiently large, a soft-
ware program will attempt to regain coherence of the data processing 
system, which will cause destruction of data. Since the generator is the 
system clock, failure of the generator will cause failure of the system. 
Possibly the most serious problems occur when the stability is mar-
ginal, causing the system to respond with false data, without any 
indication to operating personnel. 
Since the generator is located in the operating environment, all 

electrical disturbances caused by peripheral equipment add to the 
instabilities (see Section 2.3). The signals are distributed to users via 
cables. Each cable, up to 300 feet in length, acts as an "antenna" to 
the systematic noise, resulting in greater degradation of stability. 
It was desirable to determine the short-term frequency stability in 

several configurations: 

(i) Oscillator output in a "quiet" environment (sinusoid). 
(ii) Output at terminals of generator in a "quiet" environment 

(square wave). 
(iii) Oscillator output in an operating environment (sinusoid). 
(iv) Output at terminals of generator in an operating environment 

(square wave). 
(v) Generator output at end of a 200-foot cable in an operating 
environment (square wave). 

(vi) Generator output at end of a 200-foot cable in a "quiet" en-
vironment (square wave). 

If a comparison between oscillator stability in a "quiet" and an 
operating environment is made, an estimate of the noise contributed 
by the environment is possible. Comparison between the results for 
the oscillator and the generator yields an estimate of the instabilities 
contributed by the generator itself. 
Comparison of the stabilities of the generator outputs over short and 

long cables yields an estimate of the degradation due to the cable in 
the environment. Finally, comparison between the stability at the end 
of a long cable in both operating and "quiet" environments yields an 
estimate of the absolute contribution of the cable and another estimate 
of environmental noise. 
Almost all subsystems using outputs from this frequency generator 

are defined and operated in terms of real time. Therefore, short-term 
frequency stability is more appropriately defined and measured in 
the time domain. 
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5.2 Measurement Systems 

In Fig. 2, a measurement system similar to that of Cutler and 
Searle is shown. The optional multipliers are used for two reasons. 
First, it is often desirable to use similar oscillators. If the oscillators 
are truly of high precision, they are tunable only over a small range 
(one hertz or less). One oscillator is tuned to nominal frequency. The 
other is offset by some predetermined amount. Using frequency multi-
pliers, both oscillator outputs are multiplied up until the frequency 
difference between the two is 10 kHz. This permits measurement down 
to intervals of 100 microseconds. Secondly, in addition to the basic 
frequencies, all instabilities are multiplied as well. The use of multi-
pliers enables the use of a counter that is less accurate than otherwise 
required. For example, assume that it is necessary to measure the 
stability of an oscillator to 1 pp 107 in one millisecond, using a beat 
frequency of 10 kHz. To be able to resolve this quantity, the counter 
must be accurate to one millihertz in a millisecond. If multipliers are 
used, however, the instabilities are increased by the multiplication 
factor. If the factor used is 100, the counter need resolve only 0.1 Hz. 
For higher multiplication factors, counter requirements are propor-
tionately reduced. 
Up to this point, it has been assumed that the multipliers are 

perfect. Unfortunately, this is not the case. Highly accurate multipliers 
are extremely difficult to construct. Multipliers are susceptible to 
temperature variations and, if not properly designed, are sources of 
phase instability. When using multipliers, there is no guarantee that 
the measured instabilities are due to the oscillators. They may be 
due to instabilities within the multipliers. 
The problem of obtaining a large enough frequency offset is easily 

solved. Assuming two similar precision oscillators are present, it is 
possible to replace the quartz crystal in one oscillator with a similar 
type plated for either 10 kHz above or below 5 MHz. 

OSCILLATOR  MU LT I PL IERS 
REFERENCE 1 _,ir (OPT IONALP 

MIXER 

TEST  L i (OPTIONAL) IONA L) I 
OSCILLATOR F - ILMULT I PLI ERS 

FILTER COUNTER 

RECORDER 

Fig. 2—Measurement system of L. S. Cutler and C. L. Searle.lo 
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The problem of obtaining the necessary resolution can be solved by 
using commercially available counters. There are at least two types 
available that have sufficient accuracy to enable precise measurement 
at short averaging times, without multipliers. The first, a Hewlett-
Packard 5248L counter, has a 100-MHz clock, allowing measurements 
down to one millisecond with an offset of 1000 hertz. The second, a 
Hewlett-Packard 5360A Computing Counter, allows measurements 
down to 100 microseconds with an offset of 10 kHz. 
In an effort to verify the assumptions made in Section 4.2, the 

arrangement shown in Fig. 3 was used. The 11P5248L was modified 
to have a one-millsecond recycle delay time. It was not possible to 
use the HP5360A in this configuration due to slower data transfer 
capabilities to the computer and interface incompatibility. A large 
number of samples were taken at various averaging times and the 
data recorded on magnetic tape. The quantities (Uy (N, T, T)) and 
(0.2/(2, T, T)) were computed from the same data and compared. 
Using the configuration shown in Fig. 4, measurements were made 

with the HP5360A Computing Counter and associated keyboard. This 
unit can be programmed to calculate (g(2, T, T)) from its measured 
data. It is portable and was transported by automobile to test oscil-
lators and frequency generators in use at various locations. 

5.3 Precision Oscillators 
The measurement systems used by the author are shown in Figs. 3 

and 4. Note that a 5-MHz square wave signal from the frequency 
generator was used as an external time base for the counter in Fig. 4. 
A slight improvement was noted due to the superior stability of the 
frequency generator over the internal time base of the counter. It was 
originally planned to use the 5-MHz oscillator being tested to drive 
the external time base. Unfortunately, the additional load degraded 
measurable stability. 
In the system shown in Fig 3, the oscillators, synthesizer, mixer, 

and video amplifier were located inside a shielded room. The counter, 
computer, and magnetic tape unit were located immediately outside. 
No frequency standard was available at the counter for use as an 
external time base. 
In Section 2.2., the assumption was made that instabilities in oscil-

lators are independent random processes. It can be shown° that the 
variance of the sum of two independent or uncorrelated random vari-
ables is equal to the sum of the variances, provided that the variances 
exist. 
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Fig. 3—Measurement system used for comparison of ((N, T, 7-)) and (cr,(2, 
T, r)). 

It was previously stated that it is often desirable to use similar 
oscillators. The process of selecting two oscillators at random from a 
large population of oscillators can be approximated by procuring two 
oscillators from a large supplier. Since the manufacturing processes 
are identical, it is assumed that the probability density and distribution 
functions of the oscillators are the same. The total measurable insta-
bilities of the pair are then equal to twice the instabilities of either 
oscillator. Therefore, the variance measured is divided by two. Like-
wise, the standard deviation can be divided by V.2-. In the case of the 

5.00 MHz 
oscILLATOR 

4.99 MHz 
OSCILLATOR 

? 
MIXER ' 

LOW PASS FILTER 
AND TRIGGER 

 t 

5 M Hz 
SQUARE WAVE 

COMPUTING 
COUNTER 

RECORDER 

Fig. 4—Measurement system used by the author. 
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offset oscillator, it is assumed that modification of the crystal did not 
change the statistics by a significant amount. 
Using the arrangement shown in Fig. 3, a comparison between 

(o-,2 (N, T, r)) and (a!(2, T, r)) can be made. These quantities represent 
the sum of the variance contributed by the oscillator plus the variance 
contributed by the synthesizer, since the processes are independent. 
When the arrangement shown in Fig. 4 is used, a very good estimate 

of the short-term stability in the time domain will result. 

5.4 Frequency Generators 

It was desirable to investigate the short-term stability of the 5-MHz 
square wave output of the frequency generator, described briefly in 
Section 5.1. The measurement system used was the same as that shown 
in Fig. 4 except that the 5-MHz square wave was substituted for the 
5-MHz oscillator. 
It seems logical that the stability of the generator would be worse 

than that of an oscillator, since the original sine wave produced by 
an oscillator has gone through shapers, counters, and other circuits 
used to generate the square wave signal. The exact magnitude of the 
generator instabilities can be easily determined. First, the total insta-
bilities of the oscillator-generator combination are determined. The 
contribution of the oscillator, discussed in Section 5.3, may be sub-
tracted out. The remainder is a good estimate of the variance of frac-
tional frequency fluctuations from nominal frequency of the 5-MHz 
square wave. 

5.5 Synthesizers 

Short-term stability must often be measured when no auxiliary 
precision oscillators are available. By using a synthesizer, it is possible 
to obtain the necessary offset without the use of multipliers. Subse-
quently, it is possibile to arrive at an estimate of the short-term 
stability, provided a sufficiently accurate counter is available (see 
Figs. 3 and 5). Several problems are introduced, however. In the 
preceding examples, the stability of each oscillator or frequency gen-
erator could be determined. Such is not possible using a synthesizer 
since the contributions of the oscillator and synthesizer to equation 
(37) are unknown. 
If two similar synthesizers were present, these could be driven by an 

external precision oscillator and the stability determined as in the 
case of two similar oscillators. With only one synthesizer, an estimate 
of the stability of the oscillator-synthesizer combination can be deter-
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OSCILLATOR 

SYNTHESIZER 
MIXER FILTER .•••••• COMPUTING COUNTER 

VRECORDER 
Fig. 5—Measurement system using a frequency synthesizer. 

mined. Then, it can be stated that the actual stability of the oscillator 
is at least as good as that measured for the combination. If the 
synthesizer was much better than the oscillator, the majority of the 
instabilities measured would be contributed by the oscillator. Un-
fortunately, the reverse is usually true; the instabilities of the oscil-
lator are small compared with those of the synthesizer. In some cases, 
however, the measured stability using such a configuration may be 
useful in evaluating system performance. 

VI. RESULTS 

6.1 Precision Oscillators 

In order to compare the actual relationship between (o-2„(N , T, r)) 
and (0.2„(2, T, r)), the arrangement shown in Fig. 3 was used. The two 
oscillators shown are similar except for the modified crystal in the 
4.99-MHz oscillator. It was assumed that the instabilities of the oscil-
lators were similar. Therefore, the channel containing the synthesizer 
was inherently more noisy due to the mere presence of the synthesizer. 
In an attempt to minimize the measurable stability, a narrowband 

crystal filter was inserted between the synthesizer output and the 
mixer input. At averaging times shorter than the reciprocal of the 
bandwidth of the filter, significant improvement in measurable stability 
of the system was noted. At times longer than the reciprocal of the 
bandwidth, the presence of the filter caused a slight degradation of 
measurable stability. As a result, for these longer averaging times, 
the filter was removed from the synthesizer output. 
The total recycle delay time of the counter is about one millisecond. 

Therefore, T = r +  1 millisecond. For longer averaging times, this 
delay time is not significant. It was assumed for the longer intervals 
that T  r. 
The quantities observed are listed in Table I. Note the close corre-
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spondence of (u,„( N, T, r)) and (a. (2, T, r)) for averaging times of one 
second and less. Since neither quantity is consistently larger than the 
other at all sampling times, it appears that correspondence would 
become even better if more samples were taken. 
At averaging times of ten or more seconds, (o,(2, T, r)) becomes 

smaller than (0„(N , T, T)) . It can be seen, in these longer intervals, 
that Bi(N, r, p.) is in the range predicted by Barneel for flicker noise 
frequency modulation and superpositions of white and flicker noise 
frequency modulation. 

More precise measurements of (oi(2, T, r)) over all time intervals 
were possible by using the configuration shown in Fig. 4. The improved 
precision was achieved by the elimination of the synthesizer and the 
use of a more accurate counter. The recycle delay time of the HP5360A 
is on the order of 1.5 milliseconds. As before, for the longer averaging 
times, it was assumed that T  T. 

First, measurements were made using several standard oscillators 
(averaging times from 0.1 millisecond to 10 seconds). Although the 
instabilities contributed by similar oscillators are theoretically the 
same, differences in stability were observed. Among the six standard 
oscillators tested, using the system shown in Fig. 4, one oscillator 
demonstrated generally better characteristics than the other five at 
the short averaging times. At longer time intervals, the measured 
stability of each oscillator was unique. For example, at a one second 
averaging time, the best oscillator demonstrated a stability of better 
than 6.3 pp 1012. [Here, the quantity measured was (al, (2, T, r)).] 
The worst was about 1.4 pp 1011. The only differences in the oscillators 
were that oscillators one, two and three used solder-mounted crystals. 
The offset oscillator and oscillators four, five and six all used ther-
mally bonded crystal units. It appears that the thermally bonded units 
exhibit more similarity between crystals. It is interesting to note, 
however, that the best stability at an averaging time of 10 seconds 
was observed using an oscillator containing a solder-mounted crystal 
unit. Likewise, the oscillator which demonstrated the worst stability 
also used a solder-mounted unit. Although the differences in the 
measurable stability of the oscillators using the thermally bonded 
crystal units were significant, these differences were still somewhat 
small. The stabilities measured are summarized in Table II and 
Fig. 6. 
In an attempt to determine the contribution of the environment to 

oscillator instabilities, all equipment in the system was de-energized. 
The only equipment which remained under power was the frequency 
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Fig. 6—Short-term stability of six precision oscillators. 

generator, the offset oscillator, measurement equipment, and the air 
conditioning equipment required for forced air cooling of the frequency 
generator. Measurements were repeated for all time intervals. At the 
shorter intervals, no differences were apparent. In some instances, 
stability was slightly improved at intervals of 100 milliseconds or 
longer but only by an amount of questionable significance. 
Since these results were not as anticipated, the causes for the 

disparity were investigated. The only obvious reason was inherent 
in the design of the mixer circuit. The mixer contains four small ferrite 
cores. About twenty feet from the frequency generator is a large power 
transformer which is used in the power distribution network for the 
entire data processing laboratory. Even with the remainder of the 
data processing system idle, this transformer must be energized, as it 
supplies power to the generator. Ferrites have been found to adversely 
affect short-term stability when used in the presence of electro-
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magnetic fields.17 The effect of the field created by the power trans-
former on mixer performance is unknown. 
Other than the ferrites, no reason for the discrepancy was apparent. 

The most logical reason, however, would be that the measurable sta-
bility is limited by the noise characteristics of the measurement system 
itself. If the noise characteristics of the system were much worse than 
that of the oscillators, no differences in measurable stability would 
occur. Since differences between oscillators can be observed, the oscil-
lators must contribute a measurable amount of the noise. As a result, 
if the noise characteristics of the measurement system were improved, 
measurable stability may improve, but probably by less than an 
order of magnitude. 

6.2 Frequency Generators 

6.2.1 General 

Each frequency generator contains three precision oscillators. Any 

of the three oscillators may assume any of the three functions. The 
functions are switched by means of control panel and associated relays. 
The normally closed positions of the relays constitute the usual ar-
rangement and is referred to as the "normal" mode. These are 

Oscillator #1 = MASTER, 
Oscillator #2 = SLAVE, and 
Oscillator #3 = STANDBY. 

The outputs from the phase-locked master-slave pair are digitally 
mixed and sent through counter chains and frequency multipliers to 
arrive at the various output frequencies. As mentioned above, it fol-
lows that the stability of the generator should, in general, follow the 
stability of the oscillators used as the frequency sources. 
The observed stability of the six oscillators differed for time inter-

vals of one second or longer (see Section 6.1) . Ironically, the oscillator 
installed in the number one position in frequency generator #1 
demonstrated the worst stability at the longer intervals. Oscillator 
number three demonstrated the best. 
The oscillator functions were redesignated 

Oscillator #3 = MASTER, 
Oscillator #2 = SLAVE, and 
Oscillator #1 = STANDBY. 

As anticipated, the observed stability improved. Most measurements 



908  THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1971 

were taken using the "normal" mode, as this is the usual configuration 
employed during operation of the data processing system. 

6.2.2 5-MHz Square Wave, Ten-Foot Cable 
On frequency generator #1, measurements were taken in both 

operating and idle environments. As was the case of precision oscil-
lators, little difference was apparent. On frequency generator #2, 
measurements were taken in an operating environment only. 
To make estimates of the short-term stability of the generator, it 

was necessary to obtain the variance of the fractional frequency 
fluctuations of the offset oscillator-frequency generator pair. When 
these were determined, the variance contributed by the offset oscil-
lator was subtracted out of the data. 
The question at this point was, which oscillator-data should be 

subtracted out to arrive at a reasonable estimate of the square wave 
stability? The data from the best oscillator pair from each frequency 
generator was used. If the data from the worst pair was used, the sta-
bility of the generator may be too optimistic. Since the offset oscillator 
used a thermally bonded crystal unit, the actual stability is probably 
similar to the other oscillators using thermally bonded units. 
In extremely critical applications, the measured stability between 

the oscillator-generator pair can be considered to be the stability of 
the generator itself. It may be safely assumed that the actual stability 
of the generator is no worse than the measured stability of the 
oscillator-generator pair. 
See Table III for a listing of the quantities observed. Figure 7 

shows the same data in graphical form. 

6.2.3 5-MHz Square Wave, 200-Foot Cable 

On frequency generator #2, measurements were made only in an 
operating environment. Measurements were taken on frequency gen-
erator #1 in both operating and idle environments. Little, if any, 
difference was noted between the two environments except as noted 
below. 
At intervals of 100 and 400 microseconds, little difference between 

the short and long cables was apparent. At averaging times of 1 milli-
second, the measured instabilities began to increase. At 10 milli-
seconds, the additional instabilities reached a peak about forty percent 
above the short cable. For 100 milliseconds, the figure had declined, 
although not to the level present using the short cable. At intervals 
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Fig. 7—Stability of two frequency generators, ten-foot cable. 

of one and ten seconds, instabilities returned to the level observed 
using the short cable. 
Some of the causes of the additional instabilities centered at ten 

milliseconds are identifiable in this instance. In many data processing 
systems, pulse rates of 100 bits per second are used. Since this rate has 
a duty cycle of ten milliseconds, it is not surprising that averaging 
times of ten milliseconds would be affected. Comparing the data be-
tween quiet and operating environments, it became apparent that 
averaging times of ten milliseconds were indeed affected by the opera-
tion of the data processing system. In addition, the period of the second 
harmonic of the power line frequency occurs near this rate. Much 
longer time intervals are not affected by either of these noise sources. 
The stabilities observed for both frequency generators are plotted in 

Fig. 8. The same data is presented in tabular form in Table III. 
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8.3 Synthesizers 
A Hewlett-Packard model 5105A Frequency Synthesizer/5110B 

Synthesizer Driver was arranged as shown in Fig. 5. A model 5100A 
Frequency Synthesizer/5110B Synthesizer Driver was used in Fig. 3. 
A 5-MHz precision oscillator was used as an external frequency stand-
ard input to the driver in both applications. In the neighborhood of 5 
MHz, the short-term stability of the 5100A is much better at all time 
intervals than that of the 5105A. As a result, the 5100A was more use-
ful in evaluating performance of oscillators and frequency generators. 
The 5105A has a higher frequency capability than the 5100A, and 
produces the best short-term stability at these frequencies. 
Using the 5105A, the synthesizer output frequency was adjusted for 

4.99 MHz. The output was mixed with the 5-MHz oscillator which 
was being used as the external reference. Here, the stability of the pair 
was about 2 pp 1010 over one second. A 5-MHz square wave was then 
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Fig. 8—Stability of two frequency generators, 200-foot cable. 
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mixed with the synthesizer output with no significant change in results. 
The frequency of the synthesizer was then readjusted for 990 kHz 

and the output was mixed with a 1-MHz square wave signal from 
the generator. The stability was now reduced to 1.5 pp 10° over one 
second. 
The frequency was then increased to 19.99 MHz and the output was 

mixed with a 20-MHz square wave signal from the generator. In this 
configuration, measurable stability improved to 5 pp 1011 over one 
second. 
Figure 9 shows a plot of the frequency versus the standard deviation 

of fractional frequency fluctuations for a one-second averaging time. 
The specifications from the manufacturer's catalog are plotted on the 
same graph. Since the slopes appear the same, the synthesizer is the 
most likely source of the majority of noise. It may be assumed that 
the stability of all the frequencies measured are of the same order as 
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the stability observed for the 20-MHz square wave. In reality, all may 
be somewhat better. Similar data for the 5100A Synthesizer was not 
taken. 

6.4 Systematic Effects 
From the experimental data, it seems that systematics from the data 

processing system do not contribute as large a portion of the instabili-
ties as previously suspected. It must be noted, however, that the data 
processing environments used for testing purposes were only small, 
developmental varieties of the larger system (to be constructed at a 
later date). It, is anticipated that the larger system will contribute more 
systematic noise to all frequency sources within the system. 
Several discussions took place with individuals involved in short-

and long-term stability measurements. Some of these individuals had 
made such measurements in areas where machine tools or other heavy 
electrical equipment were operated. There seemed to be a general 
consensus that stability is degraded at 8:00 a.m. and 4:30 p.m. or 
whenever the equipment is being started or stopped. Since no heavy 
machinery was located in the near vicinity of the data processing 
systems, these effects were not observed. 
Each day, somewhere between 4:00 and 4:15 p.m., it was noted that 

observable stability became two to three times worse than that norm-
ally observed. About 4:30 p.m., the instabilities returned to their 
former level. Occasionally, the same effects were observed at other 
times during system operation. 
Investigation yielded two causes for these observations. First, many 

individuals are dumping data on the various input-output devices to 
prepare for the change in shifts. Second, a concept of "rotation" is 
present to make the system available to individuals wishing to run 
software tests. Time intervals of five minutes are scheduled in advance. 
Individuals are generally prepared with magnetic and paper tapes and 
subject the system to heavy use during their five-minute allotment. 
It appeared that the increased instabilities observed during mid-day 
operation occurred during rotation periods. 
Accuracy of measurements was probably reduced due to systematic 

noise introduced by the measurement system itself. For a good charac-
terization of the noise due strictly to the oscillator or frequency gen-
erator plus induced noise from the environment, the system should 
have a noise level capability of at least two orders of magnitude better 
than the anticipated stability of the unit being tested. 
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VII. RECOMMENDATIONS AND CONCLUSIONS 

The aspects of short-term frequency stability applicable to most 
situations have been discussed. Although definitions were made in both 
the frequency and time domains, the time domain definitions were used 
for measurement. 
With the vast increase in the use of precision oscillators, measure-

ment techniques must be fast, accurate, and easy to perform. Fre-
quency domain measurements are extremely difficult to make accu-
rately. In addition, such measurements take a long time to gather 
sufficient data. 
The actual observable relationship between (cry(N, T, T)) and 

(cry (2, T, T)) was discussed. It was shown that the two quantities are 
very nearly equal for averaging times of one second or less. For longer 
times, the results are in agreement with those predicted by Barnes." 
Time domain measurements, using a device such as the HP5360A 

computing counter, are fast and consistent. The accuracy limitations 
of such measurements depend mainly on mixing and filtering equip-
ment. A good method for determination of the short-term stability of 
precision oscillators and frequency generators is the use of an offset 
oscillator to obtain a frequency difference. 
Further investigation of systematic effects is in order. Initially, sys-

tematic noise due to the measurement system must be minimized. 
Then, estimates of the stability of the oscillators in a quiet environ-
ment should be performed. Next, estimates should be made in an 
operating environment under controlled activity levels. Using this data, 
it may be possible to generate a mathematical model of the contribu-
tions of the systematic effects of the data processing system to the 
short-term frequency stability. 
Investigation of the distribution of the instabilities would be ex-

tremely useful in evaluating performance of the measurement system. 
Such computations can be made by appropriate programming of the 
HP2116B computer shown in Fig. 3. 
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This paper considers the problem of transmitting baiidlimited signals 
using binary signaling over a noise-free channel. An analytical framework 
is presented for the design and analysis of a class of PCM systems where 
peak error is of primary interest. For a specific class of input signals which 
includes deterministic amplitude-constrained bandlimited functions as 
well as bandlimited wide-sense stationary, second-order, random processes, 
results are obtained which provide trade-offs between the sampling rate, 
quantizer and reconstruction filter. 

I. INTRODUCTION 

This paper considers the problem of transmitting bandlimited sig-
nals using binary signaling over a noise-free channel. A functional 
block diagram of the type of PCM system under consideration is 
shown in Fig. 1.* 
The two major differences between the problem considered here 

and previous work are the measure of system performance and signal 
classes considered. The measure of system performance usually con-
sidered is related to the integral mean-squared error.1-8  This 
type of performance measure lends itself to a frequency-domain 
analysis. While this criterion is widely used, it doesn't provide direct 
information regarding the size of the error as a function of time. To 
investigate this time behavior, we use a time-domain approach and 
use the maximum error over time as a measure of system performance. 

Because of the desire to consider input signals that engineers would 
normally call bandlimited [i.e., trigonometric polynomials, sinusoids as 
well as functions in 22(— co, co) with finite bandwidth] we treat a 

*For special classes of signals, other types of PCM systems such as DPCM 
and Delta Modulation are sometimes used. These systems will not be considered 
here. 

917 
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Fig. 1—UPCM system. 

RECONSTRUCTION 
g(t) 

somewhat broader class of signals than normally considered in the 
literature. (The input class is usually considered to be a wide-sense 
stationary random process.) 
In this paper, a technique is presented which simultaneously selects 

the sampling rate, quantizer and reconstruction filter in such a way 
as to minimize a bound on the peak error between the reconstructed 
and transmitted-signals. Since our interest centers on studying the 
trade-offs between the various system parameters, we desire precise 
mathematical results which are valid over the entire range of possible 
system parameters. By using an upper bound on system performance 
this aim was achieved for several classes of input signals. Using a 
criterion which evaluates a given encoding-decoding scheme in terms 
of its performance for the worst signal in the input class, a specific 
encoding-decoding algorithm, which will be called Uniform PCM or 
UPCM, is suggested and evaluated. The results are presented in the 
form of a set of normalized curves which plot an upper bound on 
the percentage error associated with the proposed UPCM system as 
a function of a normalized parameter, p, which represents the ratio of 
the bit rate to the bandwidth of the input class. The optimized values 
of the various parameters which define the system can also be deter-
mined from the plots (these include the sampling rate, the number of 
quantizing levels and the delay associated with the decoder). 

II. AN ENCODING-DECODING ALGORITHM FOR THE TRANSMISSION OF 

BANDLIMITED FUNCTIONS 

The class B, of functions consists of entire functions of exponential 
order one and type « which are bounded on the real alds.4 It includes 
all functions in £2(— co, co) having finite radian bandwidth, cr, and all 
trigonometric polynomials of degree [01.* 
The performance of a given system is defined by 

* [ ] denotes integral part. A trigonometric polynomial of degree lal has the form 

¡ao L (ak cos kt  bh sin kt). 
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E =  sup  sup II u(t) — g(t;u) II  (1) 
1.(0, TI ut/3•( M) 

where u(t) is the value of the input signal at time t and g(t; u) represents 
the value of the output signal at time t corresponding to the input 
function u. The input function u is an element of B, and the values of 
the input and output signals at any time t e [0, T] belong to a normed 
linear space, SI. By proper choice of St and the norm on 11, a variety of 
different input classes and performance measures can be treated. 
Specifically, define the set Ba(M) by 

Ba(M) = Ix : x e B, , x(t) e SI, II x(t) II e Af 

In arriving at the proposed algorithm, the following representation 
is used for elements of B, (and hence Ba(M):* 

u(t)  E u(ji)01(t)  (2) 

where 

- 00 

k o 
sin t sin 1 — 8  1 — 8 t 

0(0 —  , k cr (3) 
1 — 8 t  1 — 8 t 

7r(1 — 8)  
=  — jh),  h —  (4) a. 

This representation is valid for any 8 e (0, 1), hence 8 may be chosen 
appropriately for each application. The parameter 8 will be called the 
fractional guardband since the time between samples is r(1 — 8)/er 
which is less than the time between samples 7r/u which corresponds to 
the Nyquist rate. 
In essence the proposed algorithm is a scheme for approximating any 

element of Ba(M) t by one of a finite set of appropriately chosen func-
tions. These functions are determined by first truncating the infinite 
series, (2). This truncation process produces an approximation to u(t) 
(over the time interval t e [0, T]) of the form 

tmi+L 
ti(t) = E u(jh)Oi(t). 

i--L 
(5) 

* This is a special case of a broader class of representations for elements of B,5. 
It was chosen because it provided the smallest bound on quantization error. 
t The results presented in this paper are applicable to the class of signals having 

representation (2) with ilu(jh)II  M. This class is larger than B(M). 
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Thus we have replaced the requirement of transmitting an infinite 
number of sample values by the problem of transmitting a finite 
number. To achieve our ultimate objective, these sample values are 
then quantized and the quantized samples are used to reconstruct 
the signal 

ET/Al+L 

g(t) = E ù(jh)Oi(t) (6) 

where ù(jh) represents the quantized value of u(jh). 
The encoder will therefore consist of appropriate quantization of the 

input samples while the decoder simply represents the reconstruction 
of the truncated series using the quantized samples [i.e., the signal 
g (t) given in equation (6) ]. An analog interpretation of the decoding 
process is discussed in Section V. It should be noted that in order to 
construct g (t) according to equation (6), a delay of T  Lh seconds is 
required. The trade-offs between this delay and the accuracy of re-
construction will become clear as the results are presented. 
Having constrained the general form of the proposed system, we 

now seek to determine the various parameters which define it (e.g., 
sampling rate and quantizer) in such a way as to minimize an upper 
bound on the value of E. Because of the binary nature of the signaling 
which is being considered, the number of quantization levels is con-
strained to be 29, where y is an integer.* Thus y represents the number 
of bits per sample. The bit rate is then given by 

B = 12- b/s. 
h 

It is convenient to define a normalized parameter p, which is given by 

B 
p  -  =  - 

Cr 

(7) 

(8) 

where « is the radian bandwidth of the input class and f is the band-
width in Hz. In terms of these parameters, from equation (4) , we have 

3 = 1 — —2v •  (6) 

Since 8 E (0, 1) , the number of bits per sample must satisfy 

ley e W•  (10) 

* This is a practical constraint and not a theoretical one. 
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In terms of these parameters a simple bound on the reconstruction 
error results. 

The analysis of the reconstruction error, given in the Appendix, 
shows that e, defined by equation (1), satisfies 

MK u(v) 
e e e 7 2 SL  •‘/¡ 

where 

— 
K=' 

T ' 
Tit +1 

= sup sup  I I u(jh) — 12(1h) II  (13) 
j  utB,( M) 

(12) 

and (3 is given by equation (9). Thus the actual value of e which is 
achieved by the proposed algorithm may be less than the value î given 
by equation (11). In fact, since the reconstruction formula (6) is inter-
polatory, the error at sample points can never exceed the raw quantiza-
tion error, cr.(v). The first term on the right-hand side of equation (11) 
may be viewed as the error due to truncating u(t) as given by equation 
(2) while the second term represents the quantization error. The effect 
of the delay on the error can be easily seen from equations (11) and (12). 
As a design procedure, one might first choose the quantizer which 

minimizes cr(p) and then determine the value of P [subject to (10)] 
which minimizes the error bound given by É [see equation (11)]. 
In the next sections, several important special cases are considered 

and explicit design curves are presented for these cases. 

III. DETERMINISTIC, AMPLITUDE CONSTRAINED BANDLIMITED FUNCTIONS 

In this case, ri =R (the real line), and lixil = ix'. Thus 

B(M) = fu : u e .8« , u(t) a R, I u(1)  M V tl*. 

The quantizer which minimizes 0q (y) for this ease is shown in Fig. 2. 
The optimal value of er,(F) is given by 

cra(v) = (14) 

* Insofar as information content is concerned, if MI u(t)  M2, then it is equiv-
alent to consider lu(t)1  M, where M = (/112 — Mi) 5. 



922  THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1971 

_ 

M(2v-l)  
2" 

7M 
2v 

5M 

3M 

M (2"-2) 6M  4M  2M  2M  4M  6M 
2 1/  2v  2" 2  2" 

INPUT 

Fig. 2—Uniform quantizer. 

Using equation (14), equation (11) becomes 

MK M  
e e e 45L  2"• 

For later use, we define 

M ;2" -2I  

2v 

(15) 

MK KoM  
— 2 rs,  •  (16) * 

0././  • Vi 2' 

For the present ease K0 = 1 and equation (15) thus becomes e 5 é = 
The bound represented by equation (15) is valid for any allowable 

set of system parameters. For fixed values of p, T, and L, the value of 
which minimizes  can easily be found. If we define the normalized 
percentage error as 100(i/2MK0), then Fig. 3 plots this as a function 
of p, using the optimized values of Y. These values of y (denoted v*) are 
indicated on the curves. Curves are plotted for KoL/K = 5, 10, 20, 40, 

* Ko is introduced here for the purpose of unifying the results of this section 
and the next. For the class of signals in this section, Ko can be replaced by unity. 
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2)/(T/Lh  1); delay = T  Lh. 3. v* is the optimized number of bits per 
sample. 4. The optimum sampling rate is 1/h = B/0.) 
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and co . Since 1 5 K 5 2, for a given value of the ratio L/K, one can 
associate any value of L satisfying L/K 5 L 5 2L/K. Using equation 
(12), the corresponding value of T can then be computed. The delay 
associated with reconstruction in accordance with equation (6) is then 
given by T4 = T -I- Lh. As discussed in Section V, when an analog 
implementation is used for the reconstruction, a value of K = 1 should 
be used and the delay associated with the filter which accomplishes the 
reconstruction is given by Td = (L ± 1)h. 
To illustrate the use of these curves, consider the problem defined by 

the following parameter values: 

0- = 7 X 100, 

B = 6.3 X 108 b/s. 

Using these values, we compute p=12.6. From the curves, for L/K-= 20, 
we have 50 /M = 4.67 percent, v* = 5. Using M = #, we have i = 0.035. 
Since B = vlh, we have h* = 0.79 X 10-6 seconds or 1/h* = 1.26 X 106 
samples/second. For L = 40, the delay associated with the error [using 
equation (6) to accomplish the reconstruction] is about 32 ms. For the 
corresponding analog implementation (See Section V) these results 
correspond to a value of L = 20 (and K = 1) with a corresponding 
delay of 16.6 ms. 
It is clear that the normalized nature of the curves in Fig. 3 facilitates 

their use in a wide variety of ways. For example, one could easily 
answer questions such as: 

(i) For a given class of signals, what is the smallest bit rate that 
can be used to guarantee an error not exceeding a prescribed 
level? 

(ii) For a given bit rate, what is the largest class of signals that can 
be handled with a maximum error not exceeding a prescribed 
level? 

In the next section, analogous results are developed for some 
important classes of random input signals. 

IV. SOME IMPORTANT CLASSES OF RANDOM INPUTS 

In this section we consider the case where a is the space of zero 
mean second-order random variables* with norm given by 

11 x 11 = (ExY  ur ,  x E O.  (17) 

* There is no loss of generality in the zero-mean assumption. 
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Then 

B0(M) = fit : u i B, , u(t) rIZ, 47.(j) M.  (18)* 

Thus B,(M) consists of second-order random processes (with (7,‘„) M) 
with sample functions which are all in B„ . For the important special 
case of wide-sense stationary random processes, cr.(,) u„ . For this 
case, the quantizer will be characterized by the property that it mini-
mizes the mean-squared error at the sample times. The problem of 
designing such a quantizer for a given probability distribution of the 
input amplitude has been considered by B. Smith.' An approximate 
upper bound on the optimized quantizing error is given by 

cr.  c7  1 2r „ = eu) du  (19) 
2"  3 o 

where p(u) is the probability density function of u(t). The corresponding 
quantizer is described in Ref. 6. 
For the important cases where p(u) is uniform, gaussian, or expo-

nential, arg can be written in the form 

Ker„ 
fig —  (20) 

2" 

where K0 is a constant depending on the particular distribution func-
tion. Table I gives the value of K0 for each of the input classes of 
interest. The bound on the system performance which is given by 
equation (11) can thus be written as 

MK KoM  (21) 

which is identical in form to the corresponding bound for the deter-
ministic case [see equation (16)1. The use of the design-analysis 
curves of Fig. 3 for these cases is thus identical to the previously 
described deterministic case. 
It is interesting to note that for the case of a uniform amplitude 

distribution as well as the amplitude constrained input class, a. =  
and the optimal quantizer is a uniform quantizer. In each of these 
cases E 

In the next section, the interpretation and implementation of the 
proposed algorithm will be discussed. It will be shown that the analog 
implementation takes the form of a PCM system where the sampling 

* More precisely, B6(M) = )u(., •): u(•, CO) E B,„ u(t, • ) e ilua, • MI  M). 
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TABLE I—INPUT SIGNAL DESCRIPTION* 

Random 
Deter-
ministic Uniform Gaussian Exponential 

lu(t)I  M 

Ko = 1 

p (u ) = 

1 
— II  a 

O > a 

KB -= 1 

a 
=  ill 

1  
P(u) —  cr„ 

exp (—u2/2a.„2) 

Ko = 1.65 

M =---- cr„ 

1  
p(u) = 

exp (— V2u/0-0 

Ko = 2.12 

CTu 

* All signals are in B„. 

rate, quantizer and low-pass filter which is used to accomplish the 
decoding are carefully chosen. 

V. ANALOG RECONSTRUCTION IN THE UPCM SYSTEM 

In this section we discuss an analog reconstruction in the UPCM 
system. For the analog reconstruction, the system takes the form 
shown in Fig. 4. The identification of the low-pass filter results from 
the following analysis. 
If we first consider the response, p(t), of a causal, stationary filter 

[with impulse response h (t) ] to the input 

then 

u*() = E û(jh) b(t — jh) 

g(t) = E û(jh)h(t — jh) 

(22) 

(23) 

We now consider h (t) to be a delayed, truncated (for negative times) 

u(t) 
— 4> SAMPLER 

u(P) QuAN- UP) 
TIZER 

BIN ARO 

CODING 

CHANNEL  BINARY 

— PI DECODING 
LI(J11) 

Fig. 4—Analog UPCM system. 
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version of 0(t) [see equation (3)] 

h(t) = 0(t — (L + 1)h)8(t) = OL.„(t)8(t) 

927 

(24 ) 

where 0(t) is given in equation (3) and 2(t) is the unit step. The 
response g(t) can thus be written 

0(0 = E 7.2(jh)0,(t — (L + 1)h).  (25) 

If 21(0, given in equation (5), were more accurately represented by 
(T/h1+L 

'a(t) =  E u(jh)0,(t),  ti [0, T]  (5') 

then q(t), given by equation (6), would more accurately be repre-
sented (for T = h) by 

0(0 = 1-  u(jh)8,(t),  t e [0, T].  (6') 

Equation (6') can be made valid for all t with 

Thus 

ti/h1+L+1 
g(t) =  E ù(jh)8i(t). 

- 
(26) 

g(t - (L + 1)h) = E 12(jh)Oi(t — (L + 1)h).  (27) 
- 

We thus see that the output p(t) of the filter, with impulse response 
h(t) given by equation (24), is a delayed version [delay of (L + 1)h 
seconds] of the more accurate representation of g (t) given by equation 
(6'). It should be noted that the more accurate representation of g (t) 
was obtained by truncating only future values in the infinite sum as 
opposed to truncating both past and future values. The correspondipg 
error bound is reduced to 

u(t — (L + 1)h) — g(t) II s  111,_1( ^  M  

This corresponds to the case K -= 1 for the curves shown in Fig. 3. 
Figure 5 is a plot of 9L-F1(t)  and its transform 

OL+1(w) = f 0+i(t) exp (—jcot) dt. 

(28)* 

*This can easily be obtained by eliminating the second term in equation (38) 
which corresponds to truncation of past values. 
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Fig. 5—Curve shown for L = 4, 6 = 1/2. 

The causal impulse response h(t) can he written as 

h(t) = OL.,(t) — OL,I(t)8(-1) 

where the second term represents the negative time tail of 01,4.1( 0. The 
corresponding transform is 

H(w) = eL+.(w) — 17(w) (29) 

where fi(co) is the transform of 9L.1(t)S(—t). The transform of the 
causal filter is thus seen to be a slight perturbation (for L sufficiently 
large) of the low-pass characteristic of 0L +1(w)• 

VI. DISCUSSION 

In this paper, the design and analysis of a class of PCM systems has 
been considered. In arriving at these results, advantage has been taken 
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of the fact that the sampling rate is higher than the Nyquist rate. 
The approach taken in this paper takes advantage of the alternate 
representations of the input class which are made possible by the 
higher sampling rate and chooses one for which a good bound on the 
effects of quantization errors can be derived. 

In their present form the results which have been presented may be 
viewed as a step towards the study of peak error behavior of PCM 
systems. The extension of these results to input signals about which 
more information is available (e.g., power spectral information) is the 
next step towards providing a more generally applicable framework 
for the design and analysis of PCM systems where peak error is the 
natural criterion. 
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APPENDIX 

Derivation of Error Bound for UPC11/1 System 

The class B. of functions consists of entire functions of exponential 
order one and type o- which are bounded on the real axis.' It includes 
all functions in £2(— œ,  ) having finite radian bandwidth, o-, and all 
trigonometric polynomials of degree [01.* 
Any element in B has the representation' 

u(t) = «±› u(jh)Oi(t)  (30) 

where 

Scr a 
sin 1 —  6 t sin 1 —  8 t 

0(t) — i 
Se cr  

1 — at 1 — (3 t 

0i(t) = e(t — jh), 
7r(1 — (5)  h _ 

o. 

(31) 

(32) 

* [ ] denotes integral part. A trigonometric polynomial of degree [cr] has the form 

iao  t‘ (ak cos kt bk sin kt). 
k-1 
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This representation is valid for any 8 e (0, 1), hence (5 may be chosen 
appropriately for each application. The parameter (5 will be called the 
fractional guardband since the time between samples is  —  
which is less than the time between samples ir/a which corresponds to 
the Nyquist rate. 
Let fc(t) represent an approximation to u(t) in the interval 

[— T/2, T/2] obtained by truncating equation (30). Thus 

= E u(jh)0,(t)  (33) 
-- N 

and 

u(t) — ti-(t) = E  0 i(t) 

Iii >N 

(34) 

Since u e B(M), we have 

sup  I I u(t) — u(t) I I M E I e(t) I.  (35) 
.,B(M) 

Let 2N + 1 = T/h +2L, T/h odd, and Iii > N, then for 1 t1  T/2, 

Thus 

sup 

Oi(t) I  21   1  2 ' 

"  (i 

(36) 

u(t) — is(t) II75_ m E{('— t)-2 + + 2}  (37) 
ir S  

Using the Sonin formula' to sum the remainder series in equation (37) 
yields 

sup  I u(t) — ft(t) 11 

5  i(Ar _E 1 _ ) 1 -1 I_ (AT _1-  1-  (38) 
ir2 2  h 

To obtain a uniform bound for t E  T/2, T/2], we observe that the 
right side of equation (38) is maximized for t = T/2. Using this and 
N ±  = T /2h  L yields 

sup  sup  I I u(t) — li(t) I I < MK 2 
IC-T/2.7721 , B ( M)  (5L ' 

where 

(39) 
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—Lh  2 
K = 7, 

+ 1 
1  K 5 2. 

Thus equation (39) represents a uniform bound on the truncation error 
associated with the finite sum approximation (33) to an arbitrary 
u e B(M) over the time interval — T/2  t  T/2. It is clear that this 
bound can be made arbitrarily small by appropriate choice of L, how-
ever the quantity T  Lh represents the delay associated with the 
decoder and hence some compromise will generally be called for. 
To evaluate the error due to quantizing the sample values, it is con-

venient to define the quantity A (0) by 

A(S) = sup  E 01(1) I.  (40) 
—co<t <o> j —eea 

A(8) plays a crucial role in relating the effects of quantization error 
at sample times to the error between samples. In fact, one of the sig-
nificant characteristics of the representation (30), which is not shared 
by the Cardinal series representation (for functions in FV„ c 13,7) is 
the ability to establish a useful bound on A (8). To do this, we first 
apply the Cauchy-Schwarz inequality and obtain 

A(5)2 sup  E 
—o< t<  i 

sup  E 

.  Scr  
sin  1 — (t  jh) 

(t  jh) 
1—o 

1 — 
CI   

(I  jh) 

} 2 Cr   (t — jh)] sin   

2 

(41) 

The Parseval theorem for functions in B«, which are also in 
£2(— co, co) provides the following explicit evaluations 

E 

2 0-
sin  (1 — jh) 
1 —   
 o. 

(t — jh) 
1—o 

n si  So-
1 — (t — jh)] 2 

1 
(t — jh) 

— 

— 1,  (42) 

1 
i • (43) 
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Hence 

1  
A(S)  (44) 

Consider a quantizer with 2" output levels. If we denote by g(t) 

the signal 

g(t) =  i--N 11(jh)0,(t),  (45) 

where /1,(jh) represents the quantized value of u(jh), then 

u(t) — g(t) = IÈr (u(jh) — û(jh))0,(t)  E u(jh)01(0.  (46) 
1= — N  1:1>N 

Since the maximum quantization error at sample times is ag(v), using 
equations (44) and (39) we obtain 

à 
sup  sup  I u(t) — g(t) II < cr(v) MK — (47) 

te[—T/2.T/21 vcil «,( M) 
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Digital Phase Demodulator 

By BERNARD GLANCE 

(Manuscript received October 2, 1970) 

Injection-locked oscillators are shown to act as narrow-band tunable 
filters for FM signals if the modulation rate is much larger than the locking 
bandwidth. The filtering action of the injection-locked oscillator for FM 
signals is found analogous to that of a high Q passive cavity. The effective 
Q of the injection-locked oscillator can be as high as 10° if the stability of 
the injected signal carrier and oscillator frequencies is better than 106, 
These filtering properties can be applied to a digital demodulator for 

coherent phase detection of a coded FM signal. The local source which is 
required for coherent phase detection is provided by using a fraction of the 
received signal to lock an oscillator. Sideband suppression and carrier 
amplification of the injected signal are achieved simultaneously by using 
the filtering action of the injection-locked oscillator. 
The simplicity of this digital demodulator makes it appear useful for 

repeaters in microwave radio relays. 

I. INTRODUCTION 

Injection-locked oscillators can perform a wide variety of functions 
required in microwave radio relays, such as amplification, amplitude 
limitation,' frequency modulation2 and demodulation3 to mention only 
the most important applications. 
It is shown in this paper that injection-locked oscillators can also 

be used as narrow band tunable filters for angle modulated signals. 
These filtering properties can be used in a digital demodulator for 
coherent phase detection and such a demodulator is described 
here. Its configuration, shown in Fig. 1, is similar to the injection-
locked oscillator FM receiver proposed by C. L. Ruthroff.3 The 
principles of operation, however, are different. For proper opera-
tion of the injection-locked oscillator FM receiver the output signal 
of the oscillator contains all of the frequency modulation on the input 
signal. This signal is multiplied by a fraction of the input signal to 

933 
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Fig. 1—Scheme of the digital demodulator for coherent phase detection. 

produce the demodulated output. In the digital demodulator, the filter-
ing properties of an injection-locked oscillator are used to remove the 
frequency modulation from the input signal and to deliver a sinusoidal 
output at the frequency and phase of the unmodulated carrier; this 
carrier is used as the local reference clock signal in a synchronous de-
tector. The mixing of the received signal with the local source gives a 
current dependent on the phase of the received signal provided the time 
average of the phase modulation stays small over periods shorter than 
the time constant of the oscillator. 
The first part of this paper includes an analysis of the filtering 

properties of the injection-locked oscillator for phase modulated 
signals. An approximate analytical solution for the filtering action 
is derived from the locking equation. This solution is then compared 
with exact numerical calculations and with experimental results. 
The second part of this paper describes the properties and the 

• limitations of a digital demodulator which uses the filtering action of 
the injection-locked oscillator analyzed in the first section. 

II. ANALYSIS OF THE INJECTION-LOCKED OSCILLATOR FILTER 

2.1 Locking Equation Analysis 

The injection-locked oscillator performs two functions in the digital 
demodulator: it removes the phase modulation of the input signal and 
it amplifies the carrier signal up to the free-running oscillator output 
level. The oscillator output signal which is obtained can be used as a 
reference signal for synchronous detection. 
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The filtering properties can be derived from the locking equation. 
These properties can also be obtained from a frequency domain analy-
sis which provides a clearer physical picture of the phenomena. 

Let us consider first the locking equation analysis. Assume that the 
injection-locked oscillator is driven by an injected signal phase modu-
lated by a function 0(t), thus i(t) = I cos [cot -I- 0(01. Locking occurs if 
co is sufficiently close to the natural oscillator frequency coo . Within 
the locking range, the oscillator output voltage is given by v(t) = 
V(t) cos [cot  0(t) — tp(t)].̀ ip(t), called the tracking angle, is the differ-
ence in phase between the input and output signals of the oscillator. 
The phases of the input and output signals are related by the well-
known locking equation5 6 

de =  0 -I- w — coo — AcoL sin io(t),  (1) 
dt  dt 

where 

tioL = //(2V(OGL) X wo/Q 

is one-half the locking bandwidth for an unmodulated injected signal of 
amplitude I, GL is the load and Q is the external loaded circuit Q. The 
output signal amplitude V (0 is usually nearly constant' and therefore 

may be assumed to be time independent. 
Removing the phase modulation from the injected signal requires 

that the phase of the oscillator output signal, e(t) — (t) , becomes 
time independent. It will be shown that this condition is approximately 
fulfilled if the rate of phase modulation is much larger than the lock-
ing bandwidth. 
Let us consider an input signal with a sinusoidal phase modulation 

given by 

0(t) --- 00 sin SU. 

Substitution of equation (2) into equation (1) gives 

dedt  n°8  =  [ùe — sin  e (t) ] • 

(2) 

(3) 

With a rate of phase modulation S2 » AWL , the right side of equation 
(3) remains much smaller than unity as long as I w — co0 I  AWL • 
Equation (3) can therefore be approximated by 

1 d 
T1 [e(t) — 0(t)] (4) 
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which gives for the output signal a phase approximately time inde-
pendent, thus 

c,0(t) — 0(0  (pp .  (5) 

The constant of integration, (po , can be obtained from the locking 
condition which is obtained by taking the time average of equation (1) 
yielding 

= Kddet) 
-F w — coo — AwL(sin ye(0). 

From equations (2) and (4), 

and 

(6) 

(6a) 

(sin ço(t)) = (sin (e0 -F Basin Sit)) 

= J.(30) sin çoi, 

where Jo is the Bessel function of order zero. Substitution of equation 
(6a) into equation (6) gives the locking condition 

w — wo = àwLJo(00) sin vo • (7) 

The frequency range of locking is determined by the condition 
sin vo I 5 1. Therefore the locking bandwidth is, from equation (7), 

2(co —  = 2 àwzio(go)•  (8) 

The maximum locking bandwidth is reduced by the factor Jo (0o) 
compared with the unmodulated case; in particular, it becomes equal 
to zero for 00 = 2.405 radians. 
These results have been obtained from a first-order solution of 

equation (3). The magnitude of the filtering effect, resulting from the 
residual phase modulation 0(t) — ¡DM of the oscillator output signal, 
can be calculated by solving equation (3) to the second order. 
Before calculating the magnitude of the filtering effect, it is interest-

ing to give a physical picture of this phenomenon through a frequency 
domain analysis. Experimental results observed with a spectrum 
analyzer will be compared with the results of this analysis. 
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2.2 Frequency Domain Discussion 

Let us consider as before an oscillator locked by an injected signal 
with a sinusoidal phase modulation, thus 

i(t)  / cos [cd + 00 sin nt]. (9) 

The current expression, expanded in Bessel series, can be written as' 

i(t = /{4(00) cos wt  J.(0.) cos (cd n0)t}-  (10) 
nee 

If one assumes that the carrier frequency cd is within the locking band-
width eicoL and that 12 » tktaL , the spectral components at 
-F nO (n = ±1, ±2, • • • etc) have a small effect on the oscillator. 

It can be expected in a first approximation that the oscillator is locked 
by the injected current component /J0(00) cos cat corresponding to the 
carrier frequency. The locking bandwidth, which is proportional to the 
effective driving current amplitude /J0(00), is reduced by the factor 
J0(00) as found previously in Section 2.1. The locking bandwidth de-
creases with increasing index of modulation and becomes equal to zero 
for 00 = 2.405. This particular case corresponds to an injected FM 
signal with a suppressed carrier. 
The sideband suppression effect, of the injection-locked oscillator, 

can be seen clearly in this analysis as an increasing function of the rate 
of phase modulation. Furthermore it can be expected from this analysis 
that locking can also occur for any of the spectral components at 

nn (n =  ±2, • • • ). Locking can be obtained by tuning the 
oscillator natural frequency to cd -I- et. The locking range for each 
frequency cd  na is proportional to the spectral line amplitude, /J„(80). 

2.3 Experimental Verification 

The validity of the assumptions made in this analysis has been 
checked by locking a 35-MHz oscillator with an FM injected signal. 
The index of modulation, the rate of modulation and the locking band-
width were adjusted to be about r/2, 100 kHz, and 10 kHz, respectively. 
Stable locking was obtained by tuning the injected signal frequency 

such that the main spectral lines, J0(212) cos wt, J „(7r12) cos (cd ±ft)t 
and J 2(7r/2 cos (c» ± 20)t lie consecutively in the locking range. Figure 2 
shows the locking obtained with the three first spectral components 
and also shows the characteristic beat modulation which occurs just 
before locking. The largest locking ranges correspond as expected to the 
spectral components J±1(1r/2) cos (cd ± 0)t which have the largest 
amplitudes. 
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k- -30 kHz/cm 

Fig. 2—Spectra of the injected signal and the oscillator output signal: (a) 
injected signal spectrum, (b) output signal with locking at w, (c) output signal with 
locking at co — 0, (d) output signal with locking at co -I- St, and (e) output signal 
just before locking. (0 = 7r/2 sin et, 1/ = 27r X 100 kHz, ticoL = 2w X 10 kHz, 
Fo = 35 MHz) 

2.4 Sideband Attenuation 
The filtering effect of the injection-locked oscillator suppresses the 

sidebands of the output signal. This effect is shown in Fig. 2 where 
the spectra of the input and output signals of the oscillator can be 
compared. 
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Sideband attenuation can be defined by 

(Sideband Power\ /(Sideband Power\ 

Carrier Power i.e../ \ Carrier Power  • 
This ratio is related to the residual phase modulation 0(t) - (t) 
which can be calculated by solving equation (3) to the second order. 
The calculations are given in Appendix A for On = w/2. The steady-
state solution is 

, w 
Kt) r-•-••• -2 sin at  soo 

A f 
+ 2  1 4) cos ioo cos at  2 sin ¡re° sin 2Stt ,  (11) 

where from equation (7) 

- ce„  
sin  -  (12) 

Jo()AcoL, 

For simplicity let us assume that w = wo , thus the injected current is 

i(t) = I cos Loot 7i sin nt] •  (13) 

The tracking angle becomes 

cp(t)  /21 sin nt + 2 1"--)1' J b cos SZt,  (14) 

and the oscillator output voltage is 

v(t) = V cos [coot - 2 -41.L J, W cos SU] •  (15) 

The expressions of the input and output power, expanded in Bessel 
series, yield for the ratio of sideband power to carrier power: 

a) Input signal 

(Sideband Power\ 
Carrier Power ii„„„, 

1 -  2  
- 3.484. 

4(1) 2 
(16) 
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b) Output signal 

(Sideband Power 

\ Carrier Power output 

1 -    i ( r)] 
St  2  

— 0.0064.  (17) 

J20[2  
Sl  2 

The calculated sideband attenuation, in the present case, is about 
27.4 dB. 
In order to verify these results, equation (3) has been solved nu-

merically for the following parameter values: 80 = 7r/2, (c.a — wo)/SZ = 
—0.01 and (àw,)/0 = 0.1. Results of this computation are shown in 
Fig. 3 and are compared in Table I with the second-order approxi-
mation given by equation (11). 

2.5 Comparison Between the Active and Passive Resonators 

In the case of an injected current phase-modulated by a sinusoidal 
phase excursion, the filtering properties of the injection-locked oscillator 
characterized by a single-pole resonator with a negative resistance 
can be compared to the filtering effect of the same passive circuit. 
Assuming an injected current equal to / cos (wet + ir/2 sin SU) the 

power ratio between the spectral component at we + 12 and the carrier 
at we is, for the passive resonator, 

2.4 

1.6 

0.8 

-0.8 

1+ 4Q2(2)2 
41(22 (wS;)2 

2 

(18) 

,OUTPUT PHASE 0(t) - (t) 

-INPUT PHASE 0(t) = f SIN Ut 

I  I  I  1 I  I  I  
-2 4 0  5  10  15  20  25  30  35 

nt 

40  45  50 55 60 65 

Fig. 3—Phase of the oscillator output signal for an injected signal phase modulated 
by 0(t) = ir/2 sin S1t. [(wzj/  = 0.1, (w — (.00)/ft = —0.01, Co = T/2.] 
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TABLE I—COMPARISON BETWEEN THE ANALYTIC APPROXIMATION 
SOLUTION AND THE COMPUTED SOLUTION 

Analytic Second-Order 
Approximation Solution Numerically Computed Solution 

— co()  
sin so° 0.212 10(7112)tic‘u, 

ko —  -  = 0.112 
Sideband attenuation = 27.4 dB 

sin ioo = —0.199 

— ;Po — elm« = 0.160 
Sideband attenuation = 23.7 dB 

Taking into account that àw, = wo/Q(Pi/P0)1/2 , the same ratio for 
the locked oscillator gives, for It >> &oz. 

M 2f  2q 11 Q2 2 Po 
(19) 

where Po/Pi is the locking gain. For an FM injected signal having a 
sinusoidal phase excursion of amplitude w/2, the locked oscillator acts 
as a singly resonant filter with an effective Q given by 

Q.  = e poy  1 \Pi  = (20) 

2J d 

The maximum effective Q which can be obtained depends on the mini-
mum-locking bandwidth achievable. The minimum-locking bandwidth 
is limited by 

(i) minimum frequency offset w — wo , 
(ii) oscillator free running frequency stability 6wo/wo , 
(iii) injected signal frequency stability 8w/co. 

The slow variation of the frequency offset w — wo , between the injected 
signal frequency and the oscillator free-running frequency, can be made 
approximately equal to zero with a low-frequency feedback loop as 
shown in Ref. 3. In that scheme, the mixer output signal contains a 
current proportional to w — coo ; the oscillator natural frequency wo can 
be kept tuned to w by using this current to control a suitable oscillator 
parameter. 
If one assumes a frequency stability of 10-2 for w and coo and takes a 

safety margin ,dicoL = 10 So), one obtains a maximum effective Q given by 

1... Q....  = L   
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III. DIGITAL DEMODULATOR 

3.1 Coherent Phase Detection 

Coherent phase detection involves multiplication of the PM received 
signal by a local source which has a constant phase and the frequency 
of the carrier associated with the received signal. The local source, which 
is needed to achieve coherent phase detection, can be obtained by using 
the filtering properties of the injection-locked oscillator for phase-
modulated signals. 
A block diagram of the digital demodulator is shown in Fig. 1. The 

oscillator, in this configuration, is locked by a fraction of the received 
signal. The filtering properties of the injection-locked oscillator are 
used to remove the phase modulation from the input signal and to 
deliver a sinusoidal output at the frequency and phase of the un-
modulated carrier; this carrier is used as the local reference signal for 
synchronous detection. The mixing of the received signal with the local 
source gives a current dependent on the phase of the received signal. 
Correct demodulation is obtained if the time average of the phase 
modulation stays small over periods shorter than Acor. This restriction 
results from the impossibility of maintaining the phase of the reference 
signal constant if the phase of the injected signal has an average value 
different from zero. This problem arises for instance with a long pulse 
sequence of plus ones made by binary digital encoding using polar 
pulses. 

3.2 Demodulation of a Binary Polar Signal 

Let us consider an unmodulated carrier given by cos cot. Starting at 
t = 0, the phase is modulated by a pulse train of plus ones made frpm 
raised cosines of maximum amplitude equal to r/2. The phase of the 
received signal can be written for t 

0(0 = sid 

= 714- [1 — cos 212t] (21) 

where 211 is the signaling frequency equal here to the rate of phase 
modulation. The phase modulation of the received signal has an average 
value equal to r/4. The phase of the local source 0(t) — cp(t) at t > 0 is 
obtained py the transient solution of the equation 

dio T . WL 
— sm 2SZt —  (22) 
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where to — ion has been set equal to zero in order to simplify the analysis. 
The filtering condition AcoL/S2 « 1 suggests that the time constant 

associated with the transient solution of equation (22) is large com-
pared to 2101 An equation giving approximately the transient effect 
can be obtained by taking the time average of equation (22) over a 
large number of periods of sin 29/. Equation (22) then becomes 

= — AcoL(sinip).  (23) 
dt 

Equation (23) can be solved approximately by replacing (sin io) by (e) 
which yields 

(so)  exp (— àicoL t).  (24) 

The transient solution of equation (22) is therefore approximated by 

e(t) c••—• [exp (—AcoLt) — cos 2W],  (25) 
4 

where —r/4 cos 2W is the first order steady state solution of equation 
(22). The phase of the local source is given for t 0 by 

8(t) — ip(t)  — exp (— AcoL (26) 

An exact numerical solution, shown in Fig. 4, agrees well with the 
analytical solution given by equatibn (26). This result shows that the 
phase of the filtered signal used as a local source increases exponentially 
from zero to w/4 with a time constant equal to about &or. 
Correct demodulation requires that the magnitude of the phase of the 

reference signal remains small compared to r/4. The maximum number 
of consecutive pulses of the same polarity, which can be decoded with-
out error, increases with the ratio S1/ AcoL . It is important to note that 
the sideband suppression effect improves by the same factor. 
In general, the pulse polarity varies in a nearly random fashion from 

pulse to pulse. The phase of the reference signal is then a function of the 
random processes which give the pulse polarity distribution. Its maxi-
mum magnitude variation can be equal to ±e/4. It will remain smaller 
than I 7r/4 I if the probability of having positive or negative pulses is 
about the same over periods shorter than àco-2. This condition intro-
duces some restriction on the coding. 

3.3 Demodulation of a Signal Symmetrically Phase Modulated 
The problem of the reference phase discussed in the previous section 

disappears in case the average phase deviation is equal to zero for each 
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Fig. 4—Tracking angle and phase of the oscillator output signal for an injected 
signal phase modulated by 0(1) = (7/2) sin2 BE with (eàùej,)/s2 = 0.1, (a) Phase of 
the input signal, (b) tracking angle, (c) phase of the oscillator output signal. 

pulse. A simple example of such a pulse shape is a sine wave starting 
from zero and limited to one period. The phase of the received signal 
can be written in this case 

0(t) =  a(k) i-r- sin 12(t — kT),  (27) 
k  2 
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where a (k) takes, for example, the value 0 or +1 according to a binary 
code. The phase of the received signal becomes, for a pulse train of + ls 

0(0 = ; sin M.  (28) 

This case has been solved in Section II, equation (11); it gives, if 
(w — wo)/Awz, «1, a local source with a phase equal to 

co — wo  
0(t) —  + 2 A-1—dL- 1(1 cos nt. (29) 

SZ  2 
J 0(1) Aco 
2 

This result is shown in Fig. 3. 
The phase of the local source can be made nearly constant and ad-

justed close to zero by making (co — wo)/AcoL and (AcoL)/9 very small. 
This phase shift is also calculated for other types of pulse distribu-

tions. Its effect is shown in Fig. 5 which gives the tracking angle e(t) 
and the demodulated signal sin [(O] for an injected signal phase 
modulated by a pulse train of alternate ones and zero. These curves are 
calculated for the parameters (Awc..)/S2 = 0.1 and w — wo/i1coi, = ±0.1. 
Figure 6 shows the same functions for a random phase modulation 
with the same parameter values. In these two cases, the distortion due to 
the phase shift of the local source is minimum for (co — wo)/Aw = —0.1. 
Partial compensation is then obtained between the phase shift resulting 
from the frequency offset and the phase shift due to the residual of the 
filtering effect. In all cases the distortion can be minimized by setting 
(AcoL)/S) and (co — wo)/AwL small compared to unity. Correct de-
modulation can then be obtained without an encoding restriction. 

IV. CONCLUSION 

Injection-locked oscillators can be used as filters for sideband sup-
pression of FM signals if the modulation rate is much larger than the 
locking range. These filtering properties can be summarized as 

(i) high effective Q, 
(ii) power amplification for the carrier, and 
(iii) circuit simplicity. 

The filtering properties of an injection-locked oscillator can be used 
in a digital demodulator to provide a local source for coherent phase 
detection of a particular class of digitally modulated signals. In partic-
ular, correct demodulation is obtained for pulse shapes which give an 
average phase deviation equal to zero for each pulse. 



946  THE BELL SYSTE M TECHNICAL JOURNAL, MARCH 1971 

1.60 

120 

0.80 

0.40 

o 

- 0.40-

-0.80-

- 1.20 -1 

-1 80 - 

30 
1  1  1   
55  BO  105  130 

RADIANS at 

1.60 1-

1.20-

0.80 

0.40 

b- - o  
040 - 

- 0.80 - 

-1.20 - 

- 1.60 - 

III i(b) 

II 

I 
155 

(ti) 
11 j  11 1 1 

30  55  BO  105  130  155 30  55  BO 

RADIANS SA, 

1.20 

0.80 -7-7  0.40 

0  

Z -0.40 

-0.80 

-1 20 
30 

.(c) 

••••• 

1 I 
105  130 155 

I  I  I I  I  I  I 
55  80  105  130  155 30  55 

RADIANS in 

80  105  130  155 

Fig. 5—Tracking angle and demodulated signal for an injected signal phase modu-
lated by 

7r .  1  2 co sin (2p + 1)111/2] 
0(1)  [2 +  2p + 1 

which corresponds to a pulse train of 1, 0, 1, 0, • • •. (a) Input modulation, 8(0 — 

(1/2) sin 11111/2 + 2//r  [sin (2p + 1)(S1t/2)1/(2p + 1)). (b) Tracking angle 

OM and (c) output mixer sin (km, (&.L/t1) = 0.1 and (w —  = 0.01. (b') 
Tracking angle cp(t) and (c') output sin cb(t), (AwL/n) = 0.1 and (w — wo/n) = 
—0.01. 
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A binary digital coding using polar pulses requires a coding which 
gives a small average phase deviation over periods shorter than ,C.(07,' 

V. AciuslowLEnomENT 

I am grateful to C. L. Ruthroff for helpful comments, and to Mrs. 
C. L. Beattie for making the numerical calculations. 
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Fig. 6—Tracking angle and demodulated signal for an injected signal phase 
modulated by Kt) = r(t)ir/2 sin ne where r(t) is a random telegraphic signal equal 
to +1 or zero with signaling frequency equal to 0. (a) Random input modulation 
0(0. (b) Tracking angle OW and (c) mixer output sin 0(0, (àcuL/S1) = 0.1 and 
(co — coo/S2) = 0.01. (b') Tracking angle (t) and (c') mixer output sin et), (acc1/0) = 
0.1 and (co — wain) = —0.01. 



948 

APPENDIX 

THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1971 

Second-Order Solution of the Locking Equation 
The locking equation (3), obtained for an injected signal phase 

modulated by OM = 7r/2 sin SU, can be written as: 

dço  r 
dx = —2 cos x  — a sin ço  (30) 

where n  = (co — coo)/U and a = (AwL)/n• 

Equation (30) integrated for fi < « << 1 has a solution in the first 
approximation given by 

(31) 

with 

fi = cr‘10() sin ioo •  (32) 

The second-order approximation is calculated by putting io2 =  + 
n, with n ,-- a « 1. Substitution of these results into equation (30) 
gives, keeping the first-order terms in a, 

an{[J 0(1) + 2J2 ) cos 2x] cos cp, — 2J, (1) sin x sin (po} dx  2 2  2 

= —24./ à) cos vo sin x  J2(i) sin wo cos 24.  (33) 

The approximate solution of equation (33) is 

'Id  1. 
n = 2a{J,(7-) cos o cos x —  2 sin v., sin 2x j 

C exp [—atio(i)x  J2(;) cos soo 

.sin 2x + 2 4") sin ioo sin x}] ,  (34) 

which gives for v2 after the initial transient 
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, 
v2  = - sin x -r g>0 

2 

{ 

I 
-I- 2a J ,(71",)) cos (po cos '.-c  2 sin vo sin 2x •  (35) 
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Self-Synchronizing Sequential Coding 
with Low Redundancy 

By PETER G. NEUMANN 

(Manuseript received August 31. 1970) 

In this paper, we present sequential codes which have interesting 
properties in three respects. First, these codes may be used to achieve 
low redundancy (e.g., bandwidth compression through coding) by 
employing a multiplicity of variable-length codes to encode transitions 
between successive source symbols. Second, the coding complexity is 
surprisingly low. Third, many of these codes have exceedingly good 
intrinsic recoverability properties following errors. These codes com-
pare favorably trith a difference code environment in which the dif-
ferences between successive source symbols are encoded. The scope 
of the sequential codes presented here includes, but is much wider than, 
difference code schemes. Where comparable, the sequential codes have 
slightly greater complexity and may have lower redundancy. They 
normally have vastly superior error recovery. These codes are ap-
plicable in situations such as video transmission in which the message 
source is highly correlated and where errors ran be tolerated for a short 
period of time. 

I. INTRODUCTION 

In several previous papers, the author has pursued two apparently 
separate paths of development. The first path involves classes of 
slightly suboptimal varia hle-lengt h prefix codes" whose self-synchro-
nizing abilities are vastly superior to the optimal (Huffman) codes 
which minimize redundancy. The second path involves self-synchroniz-
ing sequential codes using informatiou-lossless sequential machines as 
encoders and decoders." In this paper, these two paths of development 
are joined. The result produces highly efficient sequential codes (with 
low redundancy) which have good self-synchronizing abilities and 
surprisingly low decoding complexity. These codes are applicable in 
situations in which the message source is highly correlated. 

951 
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1.1 Difference Codes 

Given an environment in which successive source signals are likely 
to be similar (or at least strongly correlated), considerable compres-
sion can be obtained by encoding the level difference between succes-
sive quantized signal levels (temporally or spatially). Such is the 
situation in a video picture environment, for example, with respect 
to adjacent points horizontally or vertically, or even to the same point 
in successive frames. By encoding differences, however, any error in 
quantizing, encoding, transmitting, decoding or reconstructing the 
image tends to persist. That is, once an error has occurred in a signal 
level, subsequent levels will continue to be in error by the same offset, 
unless terminated by boundary effects or by compensating errors. In 
an encoding of level differences between successive points in a line, 
for example, errors tend to propagate until the end of the line; in an 
encoding of level differences between the same point in successive 
frames, on the other hand, errors may continue forever. In order to 
prevent such error effects from propagating indefinitely, it may be 
necessary to terminate the propagation forcibly, for example by 
transmitting periodically the set of signal levels for the entire frame 
("replenishment") rather than their frame-to-frame differences. Thus 
the use of difference coding for compression may he compromised by 
the need to resynchronize. This is true in general of frame-to-frame 
difference codes. An example of the use of such codes in a differential 
pulse-code modulation environment is given in Ref. 5. 

SELF-SYNCHRONIZATION 

The main purpose of this paper is to present codes which have 
compression capabilities at least as good as difference codes, along 
with roughly comparable decoding complexity, as well as having 
rather remarkable intrinsic self-synchronization properties. (These 
codes are in fact much more general than difference codes in terms 
of compression capabilities.) These codes recover quickly from the 
effects of errors in that arbitrary errors give incorrect results for a 
period of time, after which the entire system resumes correct operation 
without any explicit effort. (Note that self-synchronization is a prop-
erty of the coding scheme, and should not be confused with video 
picture frame synchronisation.) It is important to note that in such a 
scheme the errors are not corrected (in the sense of error-correcting 
codes); instead errors are tolerated, with the expectation that their 
effect will cease quickly. Video coding is an example where such an 
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approach is reasonable since loss of information for a short period of 
time can often be tolerated. 

2.1 Self-Synchronisation in Variable-Length Codes 

The use of variable-length codes for reducing redundancy is well 
understood_ For example, D. A. Huffman* shows how to obtain a code 
which minimizes the transmitted information for a given independent 
distribution of source symbols. However, there has been relatively 
little quantitative concern for the effects of errors on these codes. In 
earlier papers'.2 the author has shown that a slight sacrifice in efficiency 
(i.e., a slight increase in transmitted information) can be rewarded 
with tremendous gains in self-synchronizing capability. Some of this 
work is required here and is reviewed briefly, although from a differ-
ent viewpoint. 
A code is a collection of sequences of digits (code digits), each 

sequence being called a code word. Code text is obtained by concat-
enating code words. An encoding is a mapping of source symbols S(i) 
onto rode words W(i). A code is a prefix code if and only if no code 
word occurs as the beginning (prefix) of any other code word. Thus 
in prefix code text, a code word can be decoded as eoon as it is received, 
even though there are no explicit interword markers. A code is 
exhatutive if and only if every sequenee of code digits is the prefix of 
some code text (i.e., of some sequence of code words). (A uniquely 
clecodable code must be a prefix code if it is exhaustive.') A sequence 
of code digits is a synchronizing sequence for a given code if the 
occurrence of the end of that sequence in (correct) code text must 
correspond to the end of a code word (although not necessarily to a 
particular code word  irrespective of what preceded that sequence. 
M. P. Schützenberger" and E. N. Gilbert and E. F. Moore have shown 
that. most exhaustive prefix codes tend to resynchronize themselves 
following loss of synchronization (e.g., after arbitrary errors, or at 
start-up). If an exhaustive code has at least one synchronizing se-
quence, then the code tends to resynchronize itself following errors 
with a finite average delay (assuming a suitable randomness). All 
codes considered here are exhaustive unless explicitly stated otherwise. 
Note that resynchronization is an intrinsic property of the code, and 
no externally implied synch ron j sa tion is required. Synchronization 
following ambiguity occurs as a result of any synchronizing sequence 
occurring naturally in code text. 
As an example, consider the code of Fig. 1, consisting of the five 

code words 00, 01, 10, 110, 111. The tree of Fig. 1 may be interpreted 
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1 

100;  :CI)1)  ('D/ 

4=2 

p p I (1111 

Fig. 1—A simple prefix code. 

as the state diagram for a sequential machine' which detects the end of 
a code word whenever the initial state 1 recurs. In this figure (and 
throughout this paper) a "0" code digit corresponds to left-downward 
motion, a "1" to right-downward motion. These digits are the inputs 
to the sequential machine. In Fig. 1, state 4 is equivalent to state 2 
(in the usual sequential machine sense), since the respective next 
states are equivalent, for each input digit. Thus Fig. 1 represents a 
3-state machine whose recurrence of state 1 indicates the end of a code 
word in text. 
The synchronizing diagram33 ° for the code of Fig. 1 is shown in 

Fig. 2. It is obtained from Fig. 1 by examining the set of next states 
resulting from each input digit, beginning with the set of all states, i.e., 
total ambiguity. For example, a "0" digit can lead only to state 1 or 
2, and a "1" can lead only to state 1, 2 (formerly 4), or 3. Given the 
set of states 1, 2, a "1" can lead only to state 1 or 3. In this way it is 
seen that the sequence 0110 always culminates in the occurrence of 
state 1, irrespective of the actual state at the beginning. (This is indi-
cated in Fig. 2 by the dark path.) Thus 0110 is a synchronizing se-
quence for the code. (Note that its occurrence in code text following 
ambiguity does not imply the conclusion of a particular code word; 
either 10 or 110 could be involved.) There is an infinite set of syn-
chronizing sequences described by Fig. 2, including as other examples 
0111110 and 10110. 
If a sequential machine (or a code) has at least one synchronizing 

sequence, then it tends to resynchronize itself with probability one," 
assuming all input sequences are possible. In order to obtain a measure 
of how well text for a given code is self-synchronizing following arbi-
trary errors, the code digits "0" and "1" are assumed to occur inde-
pendently and equiprohably. This is in fact a meaningful and useful 
assumption under various real-life circumstances, even when it is only 
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966 

Fig. 2—Synchronising diagram for the rode of Fig. 1, showing unresolved 
ambiguity. 

approximately valid. (This assumption holds exactly whenever each 
code word occurs independently with its characteristic probability 2-4, 
where d is the length of the code word in digits.) Assuming this ran-
domness of 0 and 1 in code text, the synchronizing diagram of Fig. 2 is 
redrawn in Fig. 3 to show that on the average I = 16 digits of code text 
are required for code text to resynchronize itself following arbitrary 
errors. (This computation may be done in several ways' which are not 
relevant to the present discussion. Note that the randomness assump-
tion implies that at each node in the synchronizing diagram the resi-
dual lag is one more than the average between the residual lags of the 
two nodes below.) In general, the synchronisation lag (or, simply, the 
lag) / of a (prefix) code is defined as the average number of code 
digits until synchronization can be guaranteed to the end of some (not 
necessarily known) code word following total ambiguity, assuming 

= 

Fig. 3—Copy of Fig. 2, showing lag at each node 
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randomness of "0" and "1" as above. Thus the lag is the average length 
of the synchronising sequences. (It is also convenient to speak of the 
actual Mg, the same average but based on the probabilities of the actual 
source distribution rather than on random text. If the randomness 
assumption is not roughly applicable in a given case, then it is neces-
sary to investigate the actual lag. If the likelihood of the various 
synchronising sequences actually occurring in text is smaller than under 
the randomness assumption [e.g., because of constraints on the source 
symbols], the actual lag is larger than I. However, in such cases it is 
often possible to change the encoding slightly to assure that the actual 
lag is less than /, without, adversely affecting compression. It may 
also be possible to use a different code with the same set of code-word 
lengths whose lag is less. For example, the code 00, 01, 11, 100, 101 
has / = 5, a marked improvement over the code of Fig. 1, with / = 16; 
for purposes of compression, these two codes are equivalent. In general, 
the randomness assumption and the resulting lag are quite useful.) 
[Synchronising sequences also exist for uniquely decodable non-pre-

fix codes. For example, consider the code 00, 01, 11, 001, 011.8 The se-
quence 10 in code text guarantees that a code-word end occurred 
between the "1" and the "0"; the lag is 4. Since such codes may require 
decoding delays (in some cases infinite) beyond the end of their code 
words, they are of little practical significance. (This paragraph and 
others delimited by square brackets may be omitted on casual read-
ing.) ] 
Codes vary widely in their ability to resynchronize code text. For 

each number n of code words, there is a code with / = 2 (the "best"), 
and a related code with / = 2(") — 2 (the "bad" code). These codes 
are shown in Fig. 4 for each n  9, along with a few other examples. 
(Note that the "best" code and the "bad" code for each n have the 
same set of code-word lengths, and are thus equivalent with respect to 
compression considerations.) The only finite exhaustive codes with / = 
ts) known to Schütsenbergerl (and to the author) are the block codes 
(e.g., the fixed-length codes (a), (b) in Fig. 4) and three classes of 
non-block codes: the codes with greatest common divisor of their code-
word lengths greater than one (e.g., code (e) in Fig. 4), the uniformly 
composed codes Cf obtained by concatenating f times the code words 
of some code in all combinations (e.g., code (d) in Fig. 4, composed 
from 0, 10, 11 with f = 2), and Schützenberger's "anagrammatic" 
codes' which when scanned backwards are also prefix codes (e.g., code 
(e) in Fig. 4). Note that block codes have the properties of all of these 
three classes. (By sacrificing exhaustivity [and optimality], i.e., by 
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Fig. 4—Prefix eadee with external lags for n 5- 9. 

eliminating at least one code word from a code, the lag is never in-
creased; in some cases I is reduced substantially. IA slight extension of 
the definition of the lag is necessary for non-exhaustive prefix codes to 
handle sequences which cannot arise.) Thus there are synchronisation 
advantages of nonexhaustive codes.l 
The only finite exhaustive codesicnown to the author which have 

2"-" — 2 < I < en for any n are the two codes (f) and (g) in Fig. 4. 
Excluding these two codes and the "bad" codes, all remaining finite 
lag codes seem to have I < 2"-" — 2, for all n; the worst of the re-
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maining codes seem to be far from the "had" code bound (/ = 5.5 for 
n = 5, / = 12 for n = 6). Nevertheless, as n increases, the lag of an 
arbitrary code may he quite bad. Since prefix codes offer compressions 
which become more spectacular as n increases, this would be distressing 
were it not for the small-lag infinite systematic codes of Refs. 1 and 2. 
Since these are helpful in the construction of sequential prefix codes, 
they are summarized next. 

3.2 Infinite Codee with Good Synchronisation Properties 

The "systematic" prefix codes of Ref. 1 are infinite codes generated 
by sequential machines whose synchronizing properties guarantee that 
the codes will themselves have good synchronising properties. (These 
codes have properties suggested by B. Mandelbrot.") When truncated, 
these codes give highly efficient (but not optimal because they are no 
longer exhaustive) encodings with self-synchronizability far exceeding 
that of the optimal (Huffman) encodings. A typical reduction for a 
code for English words with n = 5537 is from I 1> 1,000,000 for an 
optimal code down to / = 10.7 for a systematic code which is within 
3 percent of the optimal code in terms of compression. (The resulting 
compression is about a factor of three better than a block coding of 
the English letters, due to the redundancy of the language.) High-
efficiency compression using these codes is discussed in Ref. 1. 
Several examples are given in Fig. 5. The convention of this and 

succeeding figures is that a terminal node without an arrow indicates 
the end of a code word. A terminal node with an arrow indicates the 
occurrence of a state shown elsewhere in the diagram. If there is no 
label on the arrow, the corresponding state is that occurring at the top 
(the root) of the diagram. The first code (a) is a "definite" code,2 with 
any occurrence of the sequence "10" in code text indicating the end 

to 
010 
I 10 
0010 
01.0 
1110 

• 
• 

(s) 

(a) 

to 

o go 
0010 
Il to 
00010 
01110 
11010 

(CI 

I I 
loo 
011 
0100 
001, 
to i I 

Fig. 5—Examples of systematic prefix codes with small lags I. (a) Definite 
code, / = 4, L = 4; N(d) = 0 1 2 3 4 5 6 7 . . (b) Tree-based code, / = 
L = 6; N(d) = 0 11 2 3 5 8 13 . . . (e) General systematic, I = 6, L = 4; 
N(d) = 0 1 2 3 4 5 6 7 . . 
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of a code word. A definite code is one in which a code-word end occurs 
in code text if and only if one of a finite set of finite sequences occurs; 
in the example, the sequence "10" forms the set. The other codes are 
not definite, but nevertheless have small lags. The number N(d) of 
code words of each length d is given for each code. The function N(d) 
is usually called the structure function. of the code. The average code-
word length (assuming randomness of "0" and "1" in code text) is L, 
the sum of d N(d) 2-4 over all d. (If each code word occurs inde-
pendently with its characteristic probability, then L is equal to the 
entropy H of the source distribution.) Note that I  L for all prefix 
codes, with equality if and only if the code is definite. That is, on the 
average, one code word is sufficient to resynchronize a definite code, 
longer being required for a non-definite code. 
It appears that asymptotically almost all [completely specified, 

strongly connected, deterministic] sequential machines have synchro-
nizing sequences; for those that do, the resulting systematic prefix 
codes are self-synchronizing (i.e., I < co). The spectrum of values of I, 
however, is wide. As is the case with exhaustive finite prefix codes, the 
infinite codes with / = co may be of several 'classes. There exist codes 
with a non-unit greatest common divisor of their code-word lengths 
(e.g., Fig. 6a), with uniform composition (e.g., Fig. 6b), and with the 
anagranunatie property (e.g., Fig. fiel. Unlike the ease for finite ex-
haustive codes, infinite exhaustive codes can easily be constructed 
which belong to none of these three classes (e.g., Fig. 6d). (Uniformly 
composed codes are studied in Ref. 13.) 
[The worst value of / for a code derived from a synchronizable 

r-state machine appears to be about / 5- (r — 4) (2' — 2) + 1; that is, 
just about a factor of r worse than the "bad" code of Fig. 4 with r 
states, r = n — 1. A. E. Laemmel and B. Rudner" exhibit for each r a 

machine whose shortest synchronizing sequence is (r — 1)2. For all state machines machines with synchronizing sequences, the best bound known 

to the author for the longest synchronizing sequence is that given by 
M. A. Fischler and M. Tannenbaum's: Ir — 1)', exact for r •.5 4; 
(r3 r1/6 for small r  5; 11r1/48 for large r. On the other hand, 
there are many machines with extremely short synchronizing se-
quences and small values of LI 

M. SYNCHRONIZATION IN SEQUENTIAL PREFIX CO W> 

For purposes of this paper, sequential coding implies the use of a 
sequential machine for the encoder, and a corresponding sequential 
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(a) (b) (CI 

Mg. 8—Examples of systematic codes with infinite lag (1 = co). (a) Greatest 
common divisor 2; N(d) = 0 1 0 3 0 9 0 27 0 81 . . . . (1)) Uniform composition; 
I = 2. N(d) = 0 1 2 3 4 5 8 7 . . . . (c) Ansicrammatie; N(d) = 0 2 2 2 2 2 2 
. . (d) None of the three classes; N(d) = 0 11 23 5 8 13 21 . . . 

machine (the inverse or "quasi-inverse") for the decoder." In an 
earlier paper,' the author explored the use of particular input sequences 
to the encoder (synchronizing input sequences) each of which synchro-
nizes the encoder to a particular known state. Also involved are partic-
ular output sequences from the encoder (synchronising output 
sequences) whose presence in code text (in the absence of errors) guar-
antees the occurrence of a particular state of the encoder at a particular 
point in the code text. Synchronizing output sequences correspond to 
the synchronizing sequences for prefix codes. 
Given an encoder with both synchronizing input sequences and 

synchronizing output sequences, the entire system is self-synchronizing 
on the average. That is, following some arbitrary errors, two things 
happen. First the encoder resynchronizes itself and begins to encode 
correct text again. Then the decoder tends to resynchronize itself with 
the encoder (the synchronizing output sequences for the encoder act 
as synchronising input sequences for the decoder), and correct decod-
ing resumes. This occurs spontaneously as an intrinsic property of the 
coding system, with no externally imposed resynchronization required. 
A (first-order) sequential encoding is a mapping of symbols S(i) 

onto code words w(i I j) where the code word selected depends on the 
previously encoded symbol S(j) as well as on S(i). If the set of code 
words (w(i I j) ) for each j is a prefix code, then the set of code words 
(w(i j)) for all i, j is a sequential prefix code. For such codes a syn-
chronizing sequence is a sequence of code digits the end of which must 
correspond to the end of a code word (possibly unknown) resulting 
from a known symbol 8(1), irrespective of what preceded that se-
quence. Thereafter subsequent decoding is correct, irrespective of the 
initial ambiguity. The remainder of this paper is concerned with 
sequential prefix codes, and investigates their compression, decoding 
and self-synchronising properties. (The development is also applicable 
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to higher-order sequential encodings, with the code word depending on 
the present message S(i) and some finite number of previous messages.) 
As an example, consider the sequential encoding given by Table I. 

A, B, C and D represent four source symbols S(i),1 = 0, 1, 2, 3, where 
I is the level of the symbol. This is an example of an encoding in which 
the code word tai j) to be transmitted is a function of the cyclic 
difference between the level of the symbol S(i) to be encoded (column 
headings) and the level of the symbol SW just previously encoded 
(row headings) :  j) = W (lc), where k  I — j (mod 4). This 
encoding is thus a difference encoding. Note that, irrespective of the 
choice of the code W(k) }, there is always ambiguity in decoding as 
soon as an error is made. If for example 8(2) is decoded instead of 
8(1) as a result of a transmission error, subsequent decoding will 
consistently produce 3(1 + 1) instead of 8(1) where i + 1 is modulo 
4, as long as further errors do not compensate for the original errors. 
(Throughout the paper, all additive operations involving i and j are 
modulo n.) 
As a second example, consider the sequential prefix code of Table II. 

In this example four different prefix encodings tai Ii)  are used for 
j = 0, 1, 2, 3, depending upon the symbol S(j) previously encoded. 
For example, if "A" was just encoded, then A, B, C, D are encoded 
as 0, 11, 100, 101, respectively. Thus any symbol 3(i) as input to the 
encoder acts as a synchronizing input sequence. (The encoder is a 1-
definite machine,' with its output being a function of the present input 
symbol and the previous input symbol.) 
A state diagram for the decoder is given in Fig. 7. The states A, B, 

C, 1) represent the successful decoding of these four symbols, while the 
states a, b, e, d, a', b', c', d' are intermediate states. The state diagram 
is shown in four pieces, which fit together as the upper-case letters 
indicate. The synchronization diagram for this state diagram is shown 
in Fig. 8. Its construction follows the usual technique") and is similar 
to the synchronization diagram for prefix codes (cf. Fig. 3). The top 

TABLE I-FOUR-LEVEL DIFFERENCE CODE 

8(j) 
1  2  3 

3(i) = A  B  C  1) 

j  0 A 
j-1B  
j  2 C 
j  3 D 

W(0)  W(1)  W(2)  W(3) 
W(3)  W(0)  W(1)  W(2) 
W(2)  W(3)  W(0)  W(1) 
W(1)  W(2)  W(3)  W(0) 
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TABLE II--A GOOD SEQUENTIAL PREFIX CODE 

i •-• 0  1  2  a 
s(j) 1 sto - A  B  C  D 

j -= 0 A  1  0  11  100  101 
j -- = 1 8  010  1  00  011 
j — 2 e 100  11  0  101 
j . - 3 D  010  011  00  1 

node corresponds to the set of all states. Each terminal node corre-
sponds to the occurrence of the end of a code word resulting from a 
particular symbol S(i). Given a "0" input, the next state must be one 
of A, C, b, d, a', c', for example, beginning with the set of all states. 
The synchronizing diagram of Fig. 8 results after noting several 
equivalences (e.g., Abda'c' with ACbda'c'i . 
From the synchronizing diagram of Fig. 8 it is seen that the se-

quence 0011 can arise in code text only if the corresponding source 
sequence ends in a "B". Thus 0011 synchronizes the decoder to the end 
of a code word corresponding to the symbol "B" irrespective of what 
preceded it; similarly 00101 synchronizes to "D", 1100 to "C", and 
11010 to "A". Assuming 0 and 1 are random in the above sense, it is 
easily shown that synchronization results from total ambiguity after 
an average of J = 7.67 digits. The sequential synchronization lag J 
is the average number of code digits until the end of a code word is 
achieved corresponding to a known symbol; that is, J is the average 
length of the synchronizing sequences. In this example, the occurrences 
in code text of the encoded versions of CB, CD, BC and BA imply 
synchronizing sequences for the decoder. (For example, note that CB 
is encoded as 0011 following a "B" or "D", as 10011 following an "A", 

Fig. 7-8tate diagram for the decoder for the rode of Table 
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ic t. b ci ab'c'd . 

Fig. 8-8ynchroniging diagram for the decoder of Fig. 7, .1 = 7.87,  = 3, 
r = 4.67. 

and as 011 following a "C"; in the last ease, 011 must have been 
preceded by a "0".) 
In the example, any sequence ending in 00 or 11 (cf. Fig. 8) guar-

antees the end of a code word, although not the code word for a known 
symbol. For purposes of this paper, synchronization to the end of some 
tunspecified1 code word is called first-stage synchronization. Synchro-
nization to the end of a code word corresponding to a particular symbol 
is called second-stage synchronization. The former is of concern in 
prefix codes, and both are of concern in sequential codes. In rare cases 
(particularly asymmetric ones), the second stage is achieved simul-
taneously with the first stage. In many useful cases, however, they 
may be treated independently. (In all but one example given in this 
paper, second-stage synchronisation implies a particular known code 
word as well as a particular known symbol.1 
[A word of caution is again needed regarding the randomness as-

sumption. Again, the actual lag may he defined in terms of the actual 
probabilities. If synchronizing sequences occur naturally in code text, 
then the lag J is a fair estimate of the actual lag. If the sequences occur 
only as a result of unlikely sequences of symbols, then the lag J is 
smaller than the actual lag. However, in such cases the encoding can 
often be altered so that J is realistic. In general, it is desirable to have 
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codes with widely distributed likely synchronizing sequences, as in 
Fig. 8, rather than being totally dependent on a few obscure sequences.] 

IV. CODING COMPLEXITY 

It, is clear that the choice of the code of Table II (with J = 7.67) 
is (infinitely) superior to the code of Table I (with J = oo) in terms of 
resynchronizability. If W(k) = 0, 11, 100, 101 in Table I for k = 
0, 1, 2, 3, then the codes of Tables I and II are identical with respect 
to compression capabilities. The significant concern remaining is the 
computational complexity of the encoder and the decoder for the code 
of Table II. Intuitively, one might expect that an n-state sequential 
prefix code would be almost n times as complex as a difference code in 
terms of its encoding and decoding circuitry. Somewhat surprisingly, 
codes are developed below for which the complexity is essentially the 
same as the difference codes, while attaining good synchronizability 
and compression. 
Examination of the code w(i I j) of Table II shows that the prefix 

code w(i I 1) for state B (j =1) is the binary complement of the code 
w(i I 0) for state A (j = 0), cyclically shifted by one word: w(i I 1) = 

— 1 0). Further, the code w(i f2) for state e ( j = 2) is related 
to w(i I 0), having the same code words but with a different mapping. 
In particular, w(i I 2) = w(2 — 1 I 0). Finally, the code for state D 
(j = 3) is the shift of the complement of w(i I 2), or the complement 
of the shift, and thus w(i I 3) = wq3 — il 0). Thus all four of the 
prefix codes are closely related to any one of them. 
The code w(i I j) as a function of w(i I 0) is summarized in Table 

HI for each j. The structure of the code is somewhat more transparent 
when related to the difference code of Table I, with W(k) = 0, 11, 100, 
101 for k = 0, 1, 2, 3 and k i — j (mod 4). In this case, w(i j) = 
W(k), W1(k), W(—k), W'(—k for j = 0, 1, 2, 3, respectively. The 
encoder and decoder for Table II are thus easily specified in terms of 
the difference code. If (p, q) is the binary representation of j as shown 
in Table III, then W(k) is replaced by W(—k) if p = 1, and the result 
is complemented if q = 1. The encoder for the difference code is shown 
in Fig. 9, while the encoder for the sequential prefix code of Table II 
is given in Fig. 10. ("A" represents a one-digit delay.) It is seen that 
an AND gate (•) and two EXCLUSIVE OR gates (e) represent the 
marginal cost of encoding the latter code, compared to the difference 
code. The same is true of the decoder, which employs precisely the 
same set of gates. 



SELF-SYNCH RON IZ ING CODING  965 

TABLE Ill -SUMMARY OF ENCODER AND DECODER FOR TIIE CODE OF 
TABLE II 

j  P  q  Code w(iii) 

0  W O O)  V (1.10)  W(k) 
1  0  1  ir(ill)  w?(i-110)  W'(k) 
2  1  0  se(112) =  —110) =  —k) 
3  1  1  set il3 )  wq3 —  W'(—k) 

V. CONSTRUCTION OF GOOD SEQUENTIAL PREFIX CODES (WITH SMALL LAGS) 

The synchronizing properties of sequential prefix codes fall into two 
classes, those which depend on the individual choice of the encoding 
w(i j) for each i, j, and those lin varying degrees) which are inde-
pendent of the actual choice of te(i I j). [The encoding of Table I, 
for example, has J = oo irrespective of the w(i j).] Such properties 
are said to be choice-dependent and choice-independent for these two 
classes. An example of how choice-independent properties may be 
treated separately is given by the following theorem. 

6.1 Very Bad Codes (J = Do) 
Theorem 1: A sequential prefix code has J = co in each of the 

following cases: (a) if there are precisely n distinct code words among 
the n. x n {w(i f j)), each of which occurs exactly once for each i 
(a "Latin square" code); (b) if for some value of s (0 < 8 < n) the 
relation w(i + sI j + a) = w(i l j) holds for al4 i and j. 
Proof: Case (a). Consider an ambiguity between any two symbols 

which could have led to a given code word. Then any subsequent code 
word could have resulted from either of two distinct symbols. Thus 
ambiguity is never reduced, and J = øo irrespective of the choice of the 
n independent w (if j). [Note that if the prefix code for any j (the same 
code words, but a different encoding for each j) is self-synchronizing 
(I < oo), then it is possible to reduce ambiguity to the end of some 
(unknown) code word, but no further. Recall that in the definitions, a 
distinction is made between the code (the set of code words) and 

• 

w(k) 
CODE TEXT 

Fig. 9—Encoder for the difference code of Table I. 
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• 

w(.(*) 

Fig. 10—Encoder for the sequential prefix code of Table II, 

CODE 
TEXT 

the encoding (the mapping between code words and source messages)] 
Case (bl. Without loss of generality, suppose that s is the smallest 

value of s for which w(i +  j + 8) = w(i I j) for all i and j. (If is 1, 
the code is a difference code.) Then to(i + gs j + gs) = (i I j) for all 
1,j, for every integer g. Let u be the smallest value of g > O for which 
gs  0 (mod n). Then since 8 is as small as possible, it follows that su 
= n, i.e., s divides n: Thus there are 8 prefix codes u.(i j), e.g., for j = 
0, 1, • • • , s — 1, which completely determine the prefix codes for j = 8, 
8 +  1, • • • , n — 1. That is, the same prefix code (shifted) occurs for 
each j = gs + h (mod n) for g = 0, 1, • • • , In — s)/s, for any fixed 
value of h. 0  h  8 — I. Thus there must always remain an ambi-
guity among all the symbols with i = gs + h (mod n) for g = 
1, • • • , (n — 8)/s, for any particular value of h, 0  h 8 — 1. There-
fore J is infinite again, irrespective of the choice of the sn independent 
ut (i I j). QED. 
[Case (b) of Theorem 1 can easily be extended to include cases for 

which w(i + sIj + p = tai j) for all î, j: if s and t are each 
relatively prime to n, or more generally if 8 and t have the same order 
in the field of integers {i.e., if u = v, where u and y are the smallest 
non-zero values for which us sa 0 (mod n) and vi = O (mod n)). As 
these cases are less natural to the present environment, they are men-
tioned parenthetically.] 
The difference codes satisfy both cases (a) and (b). Another example 

of case (b) is given in Table IV. If e,!, g, h are replaced by 6, e, d, a, 
respectively; this example also satisfies case (a), and is a "sum" code 
rather than a difference code. 

5.2 Properties of Good Codes 

It is highly desirable that sequential codes (u,(i I j)) have consider-
able structure, in order to simplify encoding and decoding, to simplify 
the analysis of synchronizing properties, and to facilitate the construc-
tion of good large codes. Several intuitively evolved properties have 
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been examined which are found to contribute considerably to this 
desired structure. Firstly, to simplify encoding and decoding, the num-
ber m of distinct prefix codes (not counting complements) used to form 
a sequential code should be small (one or at most two). If a prefix 
code and its complement are both used, the sequential code is comple-
mented. In the complemented code of Tables II and III, m is one 
since the prefix code for each j is W(k ) or its complement. Since the 
circuitry required is up to m times as complex as when m = 1, large 
values of in are to be diligently avoided. The ni distinct prefix codes 
(ignoring complements) are called kernels. The property of keeping 
m small is called the symmetrization property; it is choice-independent. 
Secondly, if all code words leg I j) for a given i end in the same digit, 
irrespective of j, then first-stage synchronization is greatly enhanced. 
This property of making code-word endings uniform by column (as in 
Table II) is called the coltunnization property. (It is more or less 
choice-independent.) A third property involves the number of different 
symbols to which a given code word can correspond. (In the example 
of Table II, half of the code words occur only for one value of i each.) 
Second-stage synchronization is greatly aided by having almost all code 
words occur only for a relatively small number of different symbols, 
avoiding having each occurrence correspond to a different symbol S(i). 
Thu is called the assoriation property, and is also choice-independent. 
It should be noted that none of the above properties is necessary for 

obtaining finite lag codes; however, these properties are found to be 
helpful in achieving low lags. Although the example of Table V is a 
(complemented) one-kernel code, it violates both the columnization 
property and the association property. (Note that each code word 
occurs only twice, but always for different symbols.) Its lag J, though 
finite, is quite horrendous (aroun(1 200), with the shortest synchroniz-
ing sequences being of length ten (e.g., 0101000100). It thus compares 
badly with the code of Table II with respect to its lag. (It even com-
pares badly with the worst columnized one-kernel finite-lag code using 
the given prefix code, for which J = 23.1.) 

TABLE 1V—EXAMPLE OF A CODE WITH J = CD  BY TLIF.OREM 1(b) 
n = 4, s = 2 

a  b  e  d 
e  f  II  h 
e  d  a  b 
g  h  e  f 
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TABLE V—A BAD FINITE LAG CODE 

0  11  100  101 
1  00  011  010 

101  100  11 
010  011  00  1 

An example of a two-kernel code which satisfies the columnization 
property and the association property is shown in Table VI. The code 
words which occur for only one value of i are indicated by asterisks. 
This code has J = 8.9, with synchronizing sequences including 0011 
(for B) and 11100 (for C). 
In a columnized code, the set of symbols S(i) for which all code 

words end in "0" ("1") is called the 0-set (1-set). In the example of 
Table VI, the sequence 00 (among others) guarantees the end of a code 
word corresponding to the 0-set A, C or E (i even), while a 111 guaran-
tees the end of a code word corresponding to the 1-set B or D (i odd). 
These are two of the first-stage synchronizing sequences. Having re-
duced the ambiguity to a 0-set symbol or to a 1-set symbol, the associ-
ation property within these sets is of great aid to second-stage synchro-
nization. For example, the code words which optimally satisfy the 
association property (e.g., those with asterisks in Table VI) themselves 
act as second-stage synchronizing sequences in this example. Associa-
tion is especially helpful to second-stage synchronization if the prefix 
code is the same for each symbol S(j) in the 0-set, and similarly for 
the 1-set. This is the bifurcation property of columnized codes, that 
the 0-set and the 1-set use one prefix code each (although the two 
codes may be identical). Note that this property is found in the code 
of Table VI, in which two distinct prefix codes are used. If present, the 
biftircation property implies that the symmetrization property is met 
with m = 1 or 2. (By definition, bifurcated codes must be columnized.) 
An example of a one-kernel code satisfying all four of the above 

properties is given in Table VII. Apart from 00 and 01, no code word 

TABLE VI  A TWO-KERNEL EXAMPLE, J  8.9, l' i• 4, J"  5.1 

i.g(j) 

A 

E 

S:':  -A  Es  C  D  E 

o  ii•  loo  low  1010 
010'  1  00e  0111  our 
1010  11*  0  Ion-  wo 
me  0111  ow, 1  one 
low  11*  100  1011.  0 
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TABLE VII—A ONE-KERNEL EXA7•IPLE, J = 20.2, / = 8, J"  14.7 

El(i)  S(i)...A  B  C  1)  E  F  Li  H 

A, B  00  01  100  101  1100  1101  1110  1111 
C, 1)  1100  1101  00  01  io0  101  1110  1111 
E, F  1100  1101  100  101  00  01  1110  1111 
G. 11  1100  1101  1110  1111  100  101  00  01 

occurs for more than two symbols  i.e., in more t han two 
columns). The lag is seen to be J = 20.2. 

5.3 Balanced Codes 
If the columnization property is to be achieved in a complemented 

sequential code, then any kernel prefix eode and its complement must 
each have the same number of code words ending in zero for one). 
Consequently, the prefix code and its complement) must have half 
of its code words ending in each digit. Such a prefix code is called a 
balanced code, and of course must have an even number of code words. 
The codes of Tables II and VII are examples of balanced prefix codes 
used in complemented and uncomplemented one-kernel codes, respec-
tively. 
Theorem 2: For every set of rode-word lengths with n even for 

which there exists an exhaustive prefix rode, there exists at least one 
balanced prefix rode. 
Proof: A simple proof involves a construction procedure during 

which the number of code words ending in "0" differs by at most one 
from the number of code words ending in "1". Thus since n is even, 
the resulting code is balanced. Such a procedure is easy to construct, 
but is omitted here since it does not contribute to a basic understand-
ing of the paper. lit can in fact be shown that the ratio of balanced 
exhaustive codes to all exhaustive codes is asymptotic for large n to 
1/(nris.1 
A few balanced exhaustive codes are shown in Fig. 11, including one 

for each structure function NM) with n = 4 and 6. In each of these 
cases, the code shown has the smallest possible lag I among all bal-
anced codes with the given NW). 
If the sequential code is not complemented, the kernels need not be 

balanced. However, the use of balanced prefix codes as kernels is 
highly beneficial. It greatly enhances flexibility in the assignment of 
the w(1: ! j) according to the needs of synchronization I e.g., via colum-
nization and association), coding complexity and compression. 
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C-One n - 4 

04 

00 

oo 

co 

oo 

It2 

6 

3 

5 

1-1 

w iz  1032  1104  024  CAI? 

5.2  5.3  r  10  .z 

3  6.1  s.s  to  ii 

31  6.3  5.9  io  ,1 

2  5.1  4.5  9  ., 

Fig. 11—Some balanced codes for n  8, 

8.4 Analysis of First-Stage Synchronization 
Another property emerges from considering the relation between 

the lag J of a bifurcated sequential code and the lags of the kernel 
codes. For an uncomplemented one-kernel code, first-stage synchroni-
zation is guaranteed by the synchronizing sequences of the kernel, i.e., 
with the lag I of the kernel. Thus this lag should clearly be small. On 
the other hand, for a bifurcated complemented one-kernel code, the 
lage I is not relevant to first-stage synchronization. Instead the mu-
tual lag I' of a prefix code and its complement is needed. The mutual 
lag of a 0-set code and a 1-set code is obtained by considering the state 
diagrams of both codes. Imposing the restriction that a code word 
ending in "0" ("1") is followed by a 0-set (1-set) code word, these 
two state diagrams become one just as the four diagrams in Fig. 7 
become one. The mutual lag I' is then the lag of this combined state 
diagram, obtained from the mutual synchronizing diagram, i.e., the 
synchronizing diagram for the combined state diagram. Terminal nodes 
consist of first-stage synchronization, i.e., solely of 0-set or 1-set code-
word ends. (Note that the mutual lag is partially choice-independent, 
depending on the choice of the 0-set and 1-set prefix codes, but not on 
the actual re(iI j).) Mutual lags are relevant primarily for balanced 
prefix codes and their complements, as used in (one-kernel) bifurcated 
complemented codes; this case is assumed unless otherwise specified. 
They are also meaningful for two-kernel bifurcated codes, for which 
the mutual synchronization diagram also guarantees first-state syn-
chronisation. (For example, the two prefix codes used in Table VI have 
I' = 4.1 Note that the mutual lag of a code with itself is l' = I (since 
the 0-set code and the 1-set code are identical). 
Consider as an example the prefix code (0, 11, 100, 101) used in 
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Table II. Suppose that it is used for the 0-set symbols A and C (Fig. 
12a), while its complement is used for the 1-set symbols B and D (Fig. 
12b). The state 0 (1) corresponds to a code word ending in "0" ("1"), 
and implies that the next code word is taken from the 0-set (I-set) 
code. (Note that irrespective of the actual tr (i I j), the occurrence of a 
00 or a 11 suffices to guarantee the end of a code word, as in Fig. 8.) 
The mutual synchronization diagram is given in Fig. 12e, and has 
= 3. 
Values of the mutual lag I' are given in Fig. 11 for each code shown 

there and its complement. In each case, the code shown has the smallest 
value of I' for any balanced code with the given set of code-word 
lengths N(d). A numerologiral epiriosity is provided by Fig. 11: for 
each N(d), the indicated best value of I' is precisely one greater than 
the best value I' of / attainable by any code (unbalanced, in fact) 
with the given N(d). Since this curiosity is true of all N(d) for ex-
haustive codes with n :5- 6, including those for odd n, it seems highly 
likely for all n, for all N(d) for which exhaustive codes exist. 
[It should be noted that the value of l' for a given prefix code and 

its complement is obtained with the given code as the 0-set code. If 
it is used instead as the 1-set code, the resulting value of /' is the 
mutual lag of the complemented prefix code, and is designated by I'. 
Values of E are also shown in Fig. 11. It is seen that I' and I' are not 
usually the sanie.] 
The kernel lag J' of a bifurcated code is then defined as the synchro-

nisation lag of the first stage. For a one-kernel uncomplemented code, 
= I; for a two-kernel (uncomplemented) code, or a one-kernel com-

plemented code, J' = I'. The kernel lag properly then states that the 
kernel lag J' of a bifurcated code should be small, in order to help mini-
mise the lag J. 

(bl (C) 

.3.5 

Fig. 12—Example of first-stage Erynch roniza lion in a complemented code with 
P = 3. 
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ss Further Properties of Bifurcated Codes 

The second-stage lag may be approximated by the structural lag J" 
which assumes first-stage synchronization, and results in a known 
symbol (at the end of a code word). It is obtained by averaging the 
second-stage lags, K beginning with the 0-set and K' beginning with 
the 1-set; K and K' are weighted according to the probabilities of 
reaching the 0-set and 1-set, respectively, in the mutual synchroniza-
tion diagram. (In the example of Table VI, for example, it. is seen that 
these weights are § and ¡.) The structural lag property states that this 
lag should he as small as possible. A rough measure of J" may be 
made independent of the prefix code by assuming all code words of 
equal length, and the 0-set and 1-set equiprobable. 

Theorem. 3: For a bifurcated code, 

J  J'  J". 

Proof: The theorem follows from the definitions. Inequality occurs 
when, in the sequential synchronization diagram, first-stage synchro-
nization occurs in at least one case as the result of an advantageous 
subset of either the 0-set or the 1-set. By "advantageous" is meant 
a aubset which accelerates second-stage synchronization. The value of J' 
gives precisely the first-stage synchronization lag in any event. When 
there are no such subsets, equality holds, as in Fig. 8. (For example, 
the code of Table VI has J' = 4, J"  5.1 and J  8.9; the sequence 
1100 guarantees not just the 0-set, but specifically a "C" or an "E" 
at its end. The code of Table VII also has such subsets. These subsets 
are obtainable from the first-stage synchronization diagram, and may 
be used to calculate the exact second-stage lag J- based on the subsets 
with their appropriate weights, rather than just on the 0-set and the 
1-set. Then J  J'  J. In all eases J"  f. Also, if J" is infinite, 
then 80 is J -.) 

Theorem 4: A bifurcated code has J = oc if and only if either J' 
or J" 118 infinite. 
Proof: The "only if" follows as a corollary of Theorem 3. The "if" 

requires two cases. If J" = oc, then J  cci since the 0-set and 1-set 
are subsets of the set of all states, on which J is based. If J' = oc, 
first-stage synchronization is never reached. Since a bifurcated code 
must go through this stage in order to reach second-stage synchro-
nization, and since J' is the true value of first-stage lag even when 
there is inequality in Theorem 3, it follows that J  co. QED. (Note 
that in Theorem 4 J" may be replaced by J- .) 
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In many symmetric cases, the 0-set and the 1-set are equivalent 
structurally, and K = K' = J". This occurs in the example of Table II, 
since the code obtained under the transformation A  D, B  C is 
the complement of the Table II code (a complementary reflective 
symmetry). It also occurs in Table VII, since the 0-set and 1-set sym-
bols are paired with identical encodings. Such symmetric cases are 
advantageous for encoding/decoding and analytic simplicity. 
In certain cases it is desirable to use complemented bifurcated codes. 

If the above numerological curiosity is true in general, there is essen-
tially no sacrifice in the hest I' of a balanced code compared to the 
best I = P for the given N(d). That is, first-stage synchronization is 
just as rapid for these complemented codes, while avoiding the diffi-
culties arising from the use of an unbalanced code. Further, considering 
only balanced codes for a given N(d1, the best value of I' is often 
better than the best value of I (cf. Fig. 11). Thus the overall lag is 
frequently better. Furthermore, the flexibility of compression available 
with the complemented codes is often greater. For example, consider 
again the code of Table II, this time only in terms of its code-word 
lengths. Using an exhaustive prefix code, it is imposible to have length 
one on the j = j diagonal with an uncomplemented one-kernel code 
unless the columnization property is violated; this in turn may greatly 
increase the lag of the code. 
[Surprisingly, prefix codes with I = xi are not altogether useless. If a 

one-kernel code uses a block code or a code the greatest common divi-
sor (gcd) of whose lengths is greater than one, then it follows that 
J' = J = oo. it is interesting to note, however, that many uniformly 
composed codes and anagrammatic codes (with I = co ) have I' < 
and thus may give rise to one-kernel codes with J < co, assuming 
J' < oo. The smallest possible finite exhaustive anagrammatic code 
with l' = I = co has n  18, and is its own complement. An infinite 
example with the same properties is provided by the self-complement-
ing anagrammatic code of Fig. 6e. Thus the use of such prefix codes 
in a one-kernel sequential code must result in J = co, by Theorem 4.1 

VI. GOOD STRUCTURE FOR LARGE SEQUENTIAL CODI5 

The codes of Tables Il and VII are rather small examples, albeit 
good ones, of one-kernel codes. Since great compressions are found 
primarily in large codes, the next question is whether low lags can be 
achieved for large codes without sacrificing 'coding simplicity and 
compression. 
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Assume for now that it is possible to approximate the second-
order probabilities associated with the code words te i I j) as a function 
of k i — j (mod n), and hence that from a compression point of 
view a difference code is meaningful. (This assumption will be general-
ized below.) Now consider the general n-level one-kernel encoding 
framework shown in Fig. 13. The difference k is modified as a function 
of j, and the result. k* is encoded by an ordinary prefix encoding 
Wae•). If the code is a complemented code, the result is complemented 
(e.g., if jis odd). (Otherwise the complementing circuitry is not needed, 
as in Table VII.1 The corresponding decoder is shown in Fig. 14. 
(Again the complementing circuitry may not be required.) In many 
cases the deinodification circuitry of Fig. 14 is identical to the modifi-
cation circuitry of Fig. 13, with the input and output interchanged. 
Note that the codes of Tables II (see Figs. 9 and 10) and VII are 
examples of codes amendable to this framework. The incremental cost 
of encoding and decoding compared to difference codes is embodied in 
the modification logic and the trivial complementing logic; as long as 
the modification logic can be kept simple, the incremental cost is 
The compression can in general be made at least as good as the differ-
ence code. 
If a balanced code is used, the framework defined by Fig. 13 makes 

it easy to satisfy the eolumnization property, the symmetrization 
property (with na. = 1), and the bifurcation property. The choice of a 
prefix code is dictated by the kernel lag property, and by the condi-
tional probability distribution of the symbols S(i), given S(j). The 
suitable structure is dictated by those probabilities, mitigated by the 
structural lag property, and by the complexity of the modification logic 
desired. Considerable experimentation has shown that the properties 
discussed here are central to the construction of good codes. Columni-
zation and the choice of prefix codes with small J' greatly facilitate 
first-stage synchronization. Association greatly influences second-stage 
synchronization. Bifurcation greatly simplifies coding complexity and 
improves second stage synchronization. The use of balanced codes is 
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Fig. 13—Generalised encoder for one-kernel codes. 
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Fig. 14—Generalized decoder for one-kernel codes. 

very helpful. If the number n- of messages is odd, however, it may he 
desirable to use a two-kernel code as in Table VI to achieve columni-
zation. 
If the conditional probabilities are strongly asymmetric and/or 

not approximately representable by difference probabilities, it may 
he advantageous from a compression standpoint to use a multi-kernel 
code. Alternatively, or additionally, it. may be desirable to eliminate 
the difference/sum circuitry in Figs. 13 and 14, and to (leal directly 
with the i and j. The properties described in this paper are equally 
relevant in such cases. No restrictive assumptions have been made 
regarding the first-order probabilities. It is also unnecessary for 0-set 
and 1-set code words to match even and odd i, respectively; this is 
merely a descriptive convenience. 

6.1 Large Balanced Codes 

In order to enhance the kernel lag property for codes with large n, 
it may be desirable to use truncated systematic prefix codes rather 
than optimal prefix codes as kernels. In this way it is possible for / to 
remain small as n increases. Several examples of such codes which may 
easily be truncated to give balanced codes are summarized in Fig. 15, 
along with their structure functions Sid) and their lags I, I' and r. 
The best lag P for any code with the specified .V(d1 is also given, 
along with the random average code-word length L for N(d). The 
selection of efficient codes for compression purposes is considered in 
Ref. 1. 
There exist many classes of codes for which J remains finite (and 

in fact quite small) as n increases without limit. A simple (rather 
extreme) example is indicated in Table VIII for n  8. The code is 
columnized, complemented, bifurcated, and maximally associated with-
out being trivial. ¿It assumes very high probability of i = j for com-
pression purposes.) To avoid confusion, the symbols are given as A to 
H for i and j from 0 to 7; the integer k is given to indicate the occur-
rence of the code word Wok). If jis odd, the complementary code word 
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COIDE 1'  1' 
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e 

a 
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17.5 4 

O 2 2 2 P  ? 2  2 • • • 

O I 2 3 4 .5 6  7 6• • • 

O 0 2 2 4 4  8 12  24 • • • 

O 0 2 2 4 6 tO 16 26 • • • 

O 0 1 3 6 0 15 Zt 28 • • • 

O 0 4 4 4 4  4  1  4 • • • 

Fig. 1b—Some systematic prefix codes easily truncated to balanred codes. 

Ir(k) is used, and the table is read from the bottom up. The code 
thus has complementary reflective symmetry. If IV(k) = 0, 11, 100, 
1011, 10100, 101011, 1010100, 1010101 for k = 0, 1, • • • , 7, then 
J = 8.62. This code is readily extended to arbitrary even n with a 
similar pattern of kas: for each even j other than 0, k = 0 for i = j, 
k = j for i = 0; otherwise k = 1; code words for odd j are then 
specified by the complementary reflective symmetry. The modification 
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logic of Figs. 13 and 14 is thus exceedingly simple, and the comple-
menting logic is again a single EXCLUSIVE OR gate as in Fig. 10. 
The limiting prefix code is code  of Fig. 15. Analysis shows that a 
sequential code with J' =  = 3, J" = 411 + 341 + 1,4 r, + 4;3 + 
+ • • • 1 < 5.7, J < 8.7 exists for every even n. For suitably skewed 
distributions, the compression factor arising from this code approaches 
the hase two logarithm of n.1 This is an example of a class of codes for 
which the differential circuitry is not relevant; it is easier to encode 
directly as k = i, with (n — 11.1 pairs of exceptions. Variants for 
which the 1-set is treated in this fashion while the 0-set is treated 
differentially as before are also easily implemented. These variants 
provide a very simple structure which results in low J and simple 
circuitry. 
[A word of caution is in order when considering sequences of ex-

haustive prefix codes approaching systematic codes in the limit: the 
limit of a sequence of values of / (or  thus obtained is normally 
somewhat larger than the value of / (or  for the limiting systematic 
code. (The previous example is an exception with respect to 1'.) Code 
(b) of Fig. 15 is an example in point. with 1 =  = 5. The limit of the 
value of / (or !') for the codes 01, 10, 001, 110,000, Ill (1 = r = 10) , 
01, 10, 001, 110, 0001, 1110, 0000, 1111, (I = I' = 81, etc., is seven, 
although this sequence approaches the systematic code (with / =  = 
5) in the limit. In general, truncated systematic codes have better 
synchronisation properties than their finite exhaustive approximations, 
since the values of I and l' are essentially unaffected by truncation. 
For large codes, there is little if any noticeable degradation in com-
pression caused by using truncated infinite codes.' 
The use of definite codes is suggested since their lags are minimal 
(I = Li, while / > 1, for non-definite codes. However, non-definite 
codes can be quite good. Codes (a1 and (et in Fig. 15, for example, 

TAM.): VIII—EXAMPLE OF A (100D CODE FROM AN INFINITE ('LASS OF 
CODES FOR WHICH J < 8.7 FOR ALL n 

even 
k fur deNired 11.(k) 

A  13  C  1)  E  F  G H-8(i) 

1  9  3  4  5  6  7  H 
2  1  0  3  4  5  6  7  F 

E  4  1  2  3  0  5  6  7  1) 
6  1  2  3  4  5  0  7  B: j 

8(1)  H G F  E  D C B  A 
k for &mired Ink) 

j odd 
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have N(d) for which definite codes exist (whence I* = L). In these 
cases,  = L + 1, recalling the above numerological curiosity. No 
counterexample to this curiosity is known among N(d) for which 
definite codes exist, or even among all systematic codes. In general, 
there are many non-definite cases for which / or l' is quite close to 
L + 1. Thus in these cases the non-definite systematic codes do almost 
as well as comparable definite codes in achieving first-stage synchroni-
zation. Subsequently the non-definite codes may be much better in 
reaching the second stage. Definite codes are necessarily completely 
unbalanced," with all code words ending in the same digit; therefore 
a complemented columnized code is impossible. Although a non-com-
plemented code is thus automatically columnized if it uses a definite 
prefix code as its kernel, second-stage synchronization often must 
begin with the set of symbols, not just half of them as in the case of a 
balanced code. However, some definite codes are balanced on two 
distinct terminal sequences, e.g., on the next to last digit of each code 
word or on some earlier digit position. In these eases, it is possible to 
colurnnize on the two distinct terminal sequences. As an example, con-
sider code (d) of Fig. 15. This is a definite code defined by the set of 
sequences (0100,0110), with N(d) = 002 2448 12 24 • • • . For each 
length there are exactly as many code words ending in 00 as in 10. If 
the sequential code is columnized according to the last two digits of 
each code word into a 00-set and a 10-set, first-stage synchronization 
results in one of these two sets, as in the balanced code situation. Since 
I = f., = 8, this code has synchronization properties excelling any non-
definite code with the given N(d). 

6.2 Guidelines for Choosing Good Encodings 

Hecate(' of the perversity of the three-dimensional tradeoffs among 
compression, complexity and synchronizability, it is pointless to try to 
give a specific algorithm for choosing the best encoding for a given 
application. Optimality in any one dimension is of little concern, for 
slight sacrifices in any of these dimensions often result in great savings 
in the other two. Besides, no sensible cost metric is known. Nevertheless, 
the techniques of this paper provide a set of guidelines for the con-
struction of good codes and good encodings. 
The first step in selecting a sequential encoding is to establish for 

each j the code-word lengths which are optimal for the code word 
uP(i j) in the prefix code for the given j, based on the conditional prob-
abilities of S(i), given S(j). This may be done simply using any variant 
of the Huffman algorithm° which derives the code-word lengths. In-
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spection of the matrix of lengths thus obtained (i.e., of the set of n 
structure functions, one for each j) indicates what kind of symmetries 
the code might reasonably have, e.g., whether a reflective symmetry is 
in order, and whether the code can be a one-kernel code. A comple-
mented bifurcated code may be required for compression reasons, as 
in Table II. The next step is to choose the basis code(s), considering the 
set of lengths and the first-stage lag J'. For large codes, techniques of 
Ref. 1 may be required to aid code selection. The encodings should then 
be arranged to have the columnisation and wociation properties to 
help minimize the first- and second-stage lap, respectively. The de-
sired code-word lengths should be taken as suggestive rather than as 
mandatory; slight departures from these lengths are generally not 
harmful to compression (especially among large lengths), and may 
help greatly in decreasing J. . Care should be taken to avoid having 
short synchronizing sequences occur only as the result of unlikely 
sequences of source messages. 

VII. CONCLUSIONS 

The object of this paper is to present codes with low redundancy, 
reasonable complexity and intrinsic error tolerance, within a single 
class of codes designed for that purpose. The approach taken is by 
no means the only one, although the codes exhibited here seem quite 
powerful in view of their capabilities. In combination with some 
additional redundancy (e.g., as in Refs. 1, 4, 17 and 18) to he used 
for error-detection and/or correction and/or forced framing, the in-
trinsic properties described here may be used to great advantage. 
The sequential prefix codes of this paper can be useful for a wide 

range of conditional probability distributions. Quantized video picture 
information provides an example of a class of distribution e-21  to which 
these codes seem suited, with respect to compression and synchroniza-
bility, as well as to the meaningfulness of tolerating errors for a short 
period of time. Such distributions are strongly geometric," for which 
the codes presented here are naturally applicable. 
The techniques described here are also applicable to other com-

pression situations. Examples include run-length coding (which has the 
same essential synchronization problem as differential coding) and 
predictive, averaging or smoothing schemes, or combinations thereof. 
In addition, the same techniques are applicable when code words 
(i j) need not be provided for many of the transitions, for example, 
when only relatively small differences are possible. 
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In conclusion, a wide variety of sequential prefix codes has been 
presented, with a considerable range of tradeoffs among coding com-
plexity, compression and synehronizability. By not insisting on opti-
mality in any of these, it is possible to obtain codes which are highly 
satisfactory in all of these respects at the same time. 
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Theory for Some Asynchronous 
Time-Division Switches 

By J. E. MAZO 

(Manuscript received September 24, 1970) 

A two-wire active asynchro-notts time-division switch has recently 
been proposed by J. O. Dim mick, T. G. Lewis, and J. F. O'Neill. The 
interrupted energy transfer from one filter to another is accomplished 
asynchronously in order that more efficient use may be made of pro-
cessing time of talker pairs on the switching bus. After first formulat-
ing, in a concise mathematical fashion, the effect of passing a signal 
through such a randomly time-varying circuit, we focus attention on 
optimizing an important filter response function. Typically, two per-
cent tins jitter in the transfer times yields an output S/N of 30 dB 
indope-ndent of signal spectrum. The timing stabilization required to 
obtain small jitter is also discussed and an exact solution for ex-
ponential processing time is obtained. This latter result may be put 
to good use in studying the efficiency of the switch. Conservatively, 
asynchronous operation should increase traffic capacity threefold. 
Finally, a speech wave which passes through a sample-and-hold 

circuit with random satnpling times is considered upon. being recon-
structed with a fixed fitter. This is a model for a four-wire active 
asynchronous switch. and results arc compared with the two-wire 
situation. 

1. INTRODUCTION 

Voice switching syste ms have most commonly been based on con-
trolling electromechanical switches which select and hold a spatially 
distinct path for each conversation. The technology used to implement 
such a space-division network (crossbar or ferreed switches) usually 
results, in practice, of an individual path having much larger band-
width than is required for faithful transmission of the signal. The 
space and cost of these switches makes other solutions desirable for 

983 
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many applications. One line of attack has been to keep the space-divi-
sion concept, but replace the electromechanical relays with semicon-
ductor switches. These techniques, however, still suffer from the 
hard-to-grow nature of multistage space division networks. A more 
promising solution seems to be tb place all the conversations on a 
wideband bus using time-division techniques. In fact, the 101 Elec-
tronic Switching System (ESS) is such a time-division switch. This 
system uses resonant energy transfer to "move" periodically measured 
samples of a speech wave from an incoming line to an outgoing one. In 
the sanie vein, an asynchronous time-division switch has recently 
been proposed by J. O. Dimmiek, T. G. Lewis, and J. F. O'Neill.' This 
switching arrangement makes use of active energy transfer between 
filters rather than resonant mere/ transfer and allows a variable time 
slot for transferring each speech sample through the switch. The asyn-
chronous nature of this switch allows a more efficient use of processing 
time than is possible to achieve synchronously. However, a consequence 
of this virtue is a periodic sampling of the input waves. While the 
synchronous switch can make use of the usual sampling theory to 
guarantee faithful reproduction, the asynchronous switch cannot. 
Further, the modifications of the theory which are required to discuss 
the proposed asynchronous switch are not simple, for the random 
sampling causes some feedback energy which is later retransmitted, 
further adding to the output noise. Our immediate purpose will be, 
then, to present theoretical work relevant to this problem. We discuss 
the quality of transmission [measured by the output signal-to-noise 
ratio (S/N) ] as a function of jitter in the sample values and as a 
functional of a certain filter response function upon which the feed-
back energy depends. The optimum function is found. Also a tech-
nique suggested in Ref. 1 for keeping the jitter small is discussed 
theoretically, and the combined question of how jitter, quality of 
transmission, and increased efficiency are related is answered. 
Section X summarizes our conclusions and, barring some terminology 

introduced in the text, may he read next. 

II. MATHEMATICAL MODEL 

Consider the diagram in Fig. I which represents a talker and listener 
on a switching bus. There will be many such pairs on a particular bus, 
but we need now concentrate on only one. The way the switch works 
is that, at approximately periodic instants of time, the two identical 
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E(t) INPUT_____ 
¿TALKER 

rice,' 1- Flt.TES 
OUTPuT 

(LISTENER 

Fig. 1—Model for a "talker"—"listener" pair on an aitynehronous switching bus. 

capacitors which are shown in Fig. 1 are interchanged* and energy 
transfer is effected. The following assumptions are made: 

(i) The input signal x(t) is bandlirnited to W Hz and the switching 
occurs at times t„  nT  f„, where T e 2W and ¿is small com-
pared to T. 

(ii) The filtering aspect of the filter is neglected in the sense that if 
no switching is performed, then v(1) = x(t). In particular this 
means that if current impulses of area x(nT) are applied at times 
nT to the listeners capacitor, x(t) will occur at the output. 

(iii) Suppose that one volt is placed on the listening capacitor when 
no energy is stored in the filter. The voltage across the capacitor 
(t  0) under these conditions will be called z(t), and we asume 
z(0+) = 1. 

Our goal will be to determine, for given spectrum of the input, and 
for given second-order statistics of the co sequence, the output S/N. 
The proper design of z(t) will be of major concern in the analysis. 
We shall call the problem just described two-wire switching. 

III. FUNDA MENTAL EQUATIONS 

In this section an exact equation which describes the two-wire 
talker-listener switching situation will he derived. As in Fig. 1, let v(t) 
be the actual voltage on the talker's capacitor and w(t) the actual 
voltage on the listener's capacitor. In the absence of switching, v(t) = 
x(t). In addition, at times nT + «. voltages Itr(nT + e,,—) — v(nT + 
(„—) I are placed on the capacitor, where le (I-1 means the limiting 

*Of course in reality they are not interchanged. What happens is that. at. the 
given instant of time at which the "switch" is to occur, the instantaneous voltages 
are measured, certain current sources (not shown) are activated and a fixed value 
of current flows for a duration just sufficient, to effect the interchange of ehamea, 
and hence voltages, of the equal capacitors. All this occurs in a negligible period 
of time compared with the response time of the filters. 
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value of wit') as t' approaches t from below. Since switching occurs at 
times nT +  , continuity cannot be assumed at these instants and left 
and right limits must be distinguished. Using the definition of z(t) we 
have by the superposition principle 

v(t)  x(t) + E  [w(nT + 4—) — y(nT 4- 4—)k(1 — nT —  (1) 

where i(t) is the integer which sfitigfiCS 

ROT + .  s < (1(1) + 1)T  el.,. 

Likewise for w(t) we may write 

wo) = E [v(nT + ee—) — w(nT  e.,—))z(t — nT — E.) .  (2) 

If we let t --> (kT + 4—) in equations (I) and (2), we have the 
pair of equations 

v(kT + EA  x(kT + el) — 

and 

1. 
E 
n - f) 

[1.,(nT  — w(nT + 

•z[(k — n)T + 4 — e„-1  (3) 

I t 

w(kT + 4—) = E 1v(nT + te—) — w(nT 

-21(k — n)7' + 4 —  (4) 

It is very useful to now introduce the vectors Y, V, W and a matrix Z 
defined by 

Ye = x(kT + 4), 

tit v(kT + et—), 

w& = w(kT  — ), 

and 

(5) 

Zt„ xi (k — n)T + ek — E.-1.  (6) 

Note Zit, = 0 if k  n since z(t) = 0 for t < O. 
Using equations (5) and (6). (3) and (41 become 

V—  — Z(V — W),  (7) 

W  Z(V — W).  (8) 
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Solving the above pair for (I — W) gives* 

(V — W) = [I + 

987 

(9) 

Equation (9) determines exactly the behavior of the switch, for the 
output is determined by applying the sequence {Vk — Wk) at times 
kT + ek to the filter (here assumed ideal). We emphasize that the 
jitter enters not only through the time at which the 8-functions are 
applied, but also in the quantities Z and Y. 
Consider now a z(t) such as that shown in Fig. 2 which passes 

through zero at all times k7', k > O. If further there is no jitter, then 
Z = 0, and equations (5) and (9) show that impulses of area x(nT) 
are applied at times nT, thus giving x(t) at the output. In short, in 
the absence of jitter, any z(t) which passes through zero at all positive 
integer multiples of the sampling interval will be optimum. One might 
now conclude that a z(t) which is zero in a sufficiently large neighbor-
hood of each such crossing will not see the jitter and would therefore 
be optimum in the presence of jitter. However the following argument 
(by J. F. O'Neill) suggests that such is not the case. Consider sampling 
a de signal at random times. We must get enough power through the 
switch to reproduce the signal. Surely if we sample late, we are lagging 
in power and we would like to increase the area of the impulse; like-
wise if we sample early, we seem to he supplying extra power and so 
should decrease the impulse area. There should be a design of z(t) 
which would conspire with the jitter to reduce jitter noise even below 
that noise obtained for the class of z(t) which do not see the jitter. 

IV. W HAT IS THE OUTPUT NOISE? 

Define the vector 

and the functions 

sin II- (t — nT) 

(10) 

—   (11) 
T— (t —nT) 

for all integer n. The properties of 0.(ti that we use are 

co =  0,  (12) 
*The inverse of (f -I- 2Z) always exists since it is triangular and all its diagonal 

elements are unity. 
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Fig. 2—An illustrative curve for s(t). 

L. #„(1)#..(t) dl = T5,,,, , 

#.(11 — = 

(13) 

(14) 

We assume that the reconstructing filter impulse response is given by 
3ro(t) and thus the output error signal is 

e(1) = E 7.0.(1 — — E  (Is) 
and has average power* N where 

N  lim  f KT  e2(I) dl = lim  f ee e(1) di.  (16) 
._.jor r  — rn 

In the right, side of equation (16), we have introduced e(t) which 
is the error signal truncated to K pulses; that is, the upper limit of the 
sums in equation (151 is K instead of infinity. If we use equation (14) 
to expand ,,4„(t — („) which occurs in equation (15), find et (I) and 
do the time integral, we obtain 

el(e)  T E 'Ye* en(e.) en 4 ai-h(e*) 

+ T Ex — 2T E 
..I.0 

xeslen-k(eé).  (17 ) 

• This corresponds to the noise in a band up to 1/2T Hs. if T is less than the 
Nyquint rate, then some out-of-hand noise is included here. In practice T will be 
about. half the Ny9uist interval in order to make filter design problems easier, 
but. then the inclusion of the out-of-band noise seems fair at this stage. Figure 3 
shows a picture of the relevant bandwidths. 
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Equation (14) may be used again to recombine the first terms of the 
right side of equation (171 and so 

„KT  j eei)  7.74#.-a(f — E.) k 4.k. 
- .81 

2 %LC 
—  

A m.b..0 

Recall again that 

z[(k — n)T  — e.1, 

= (1 + 22)i:ri1 , 

x(1T te). 

It is useful to define a new matrix 8 by 

so that 

(18) 

(19) 

2Z  
—  (20) 
1 -I- 2Z 

Y — OY.  (21) 

Substitution of equation (21) in equation (18) splits the expressions 
into two types of terms. The first type, called collectively AK , do not 
involve the filter z(t) while the remaining ones, called B K , do. We 
thus have 

N = lim  ,c] lim E[B.) mi A  B,  (22) 

where in equation (22), the expectation is taken over both the signal 
and jitter statistics. The quantities At and 131. are given by 

1 x-ix x 
A  Y.Y A 4, - «  K (e, —  + — ic z —  2_, x„yok._,(f.), (23) —  N.11.0 

IDE• L 
RECONST RUCT 'PIG 

FILTER 

SrGNAt. 
1 

AL IAS ED 
SIGNAL 

Fig 3—Relevant bandwidths in terms of the sampling interval T. 
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2 K 
BE =  .p.y..(00Arik. a(e6 — e.) —  

-  - ....„ 

A + ,7; E (00.(0y),#» k(ek — (.)•  (24) 

One may note that if z(t) is such that when the filter is designed 
so as not to feel the jitter (as described in Section III), then B = 
and the noise would he given by the filter independent term A alone. 
The function of the filter design is to make B as negative as possible. 
To proceed further we make essential use of the fact that the el are 

small. In addition, since z(kT) = 0 is an optimum solution in the 
absence of jitter we shall keep the requirement 

z(kT) = 0,  k = 1, 2, • •  (25) 

and see what further optimization can now be made. This will amount 
to designing the slopes of the function z(t) when it goes through zero. 
The evaluation of A and B for small e is carried out in Appendix B. 
Introducing the correlation function of the signal 

R(r) = E[x(i)x(t  r))  (26) 

and the correlation function of the jitter 

J(k — n)  E[eke.]  (27) 

we find that when the jitter is independent from sample to sample, 

A = limEIAj = (4[—k(0)  :R(0)].  (28) 

In equation (28), «2, is the variance of the jitter and is given, for inde-
pendent jitter, by 

(29) 

To write the corresponding expression for Bk we introduce, as is done 
in Appendix B, the derivatives ê. of the function 8(() at the zeros, 
that is 

.  d 
— z(1) 
di =  1, 2, 3, • • •  (30) 
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and also the constants* 

(-1)— r. = 4,.(0) = eb(--8) — Ts , 

Then, for jitter independent from sample to sample, 

B  lirn E[B,c] 

= 4R(o)ertE Vi. + 2 E 

(31) 

(32) 

É  148)R(0) Z, . + 2 El. 
,-,  R(0) 

s>g 

Expressions for Ak and Bk which include the effects of correlation in 
the jitter are also derived in Appendix B and will be discussed in 
Section V. At the moment we merely state that positive correlation 
between jitter values will tend to reduce the noise power given by the 
sum of equations (28) and (32). Equation (321 gives, incidentally, 
more of a physical interpretation as to the breakup of the noise into 
A and B terms. The filter mentioned at the end of Section III which 
does not see the jitter certainly has i(t) = Oat each crossing, and thus 
from equation (321, B = O for that filter. Thus the .4 term is the 
noise power for the "blind" filter; it will be improved upon whenever 
B is negative. 
If we now define the functional F 1 z) of z ( t I by 

,  .  « É(a) .  x . Rs —I) s) 
Ilz] = E r,i. + 2 E i; — E  z. + 2 E z.i,  . (33) 

..,  4-1  ilmt RO ..•-1  R(0) 
.>i 

then optimum choice of any it is found by simple differentiation of 
equation (33): 

R(k — k = 1, 2, 
ai  • • • - •  le ) + 2 E id elk)  0  r. + 2z* — R(0)  .̀ —.  -  R(0) 

(14) 

Thus for given signal statistics, equation (34) must he solved for the 
optimum set of (zk). In reality, equation (34) does not have to be 
taken seriously for all positive integer k, since the response of a 
realistic filter will die off rapidly with time. Thus in equation (331, 
most of the ik can be set to zero and only a few retained. If the first 2 
are thus retained we shall refer to this as designing the first Z zero 

*Recall the definition of 0.(1) given in equation (11). Also in equation (31), 
dota denote differentiation with respect to the time variable... 
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cross.ings. Of course equation (34) will hold only for the k such that 
ik 0 a priori. 
As our first example we consider the ease where the signal spectrum 

is flat and extends to fl,„„ = wIT rad/sec. We refer to this as the 
full spectrum case. The interval r in this case is also the Nyquist 
interval, and no oversampling is done as one would expect to do in 
practice (the latter case will be treated shortly). We have 

Full Spectrum Case: 

R(r) = R(0) th(r) , 

R(8) = 0,  8 e 0, 

E(0) = 0,  (35) 

14s) = RO (i,Y  0 0, 

1 w2 -R(0) -= R(0) à 

Thus equation (34) yields as the optimum solution for designing all 
zeros in the full spectrum case 

•  (_l)&  rà 
sa,    

27'k  — 2 • 

Proceeding to evaluate A and B, we have 

2 2 2 
A = R(0) • —  cr. 

3 T  ' 

1 Tr' 2 
B  —R(0) • •à- 7--a cr. 

Since R (0) is the signal power, we have 

S  1 ir g 

"àP  • 

(36) 

(37) 

(38) 

An important fact can be gleaned from equation (37) : one should not 
generally expect the optimum filter to be very much better than the 
"blind" filter.* In the reasonable example which we have just worked, 
only a gain of 3 dB is achieved. 

'I Of course the blind filter is itself a highly designed filter. 
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TABLE I—FULL SPECTRUM 

! Jitter Standard Deviation 
Output S....1S1  IT. 

15 d11  0.1 T 
21 dB  0.05 T 
29 dB  0.02 T 
35 dB  0.01 T 
55 dB  0.001 T 

Table I calculates equation (381 for several values of jitter. For an 
output S/N of 30 dB, two percent jitter is required. 

V. EFFECTS OF SIGNAL CORRELATION 

Equation (341, the basic design equation for the filter response z(t), 
can be conveniently rewritten in matrix notation 

(I  M)i = A 

where the vectors i and A have components 

(i)& = 

k  1, 2, • 

and the matrix M is defined by 

M  ., R . 
R(0) 

The matrix / is of course the identity. The dimension of all the above 
quantities is Z, where Z is the number of zero crossings that one wishes 
to design for. 
To solve equation 1391 one must in general invert the matrix 

(/ + M). This was possible in the full spectrum case because M was a 
diagonal matrix; in general it is hard to do exactly, unless the dimen-
sion 2 is small. A case of special interest for applications is a qualita-
tive understanding of the situation for a flat signal bandwidth up to 

= ir/2T. This corresponds to sampling at twice the Nyquist rate 
and better approximates the situation to be encountered in practice. 
We call it the half spectrum case. We have 

(39) 

(40a) 

(40b) 
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Half Spectrum Case: 

R(sT) — R(0)  sin  a,  s  0; 

[ 

r  . r 
cos 7; 8  2 sin - 8 

2 
14172) = R(0) si r --8-1.1----,  (41) 

—R(0) = à Gi-,) • R(0). 
1 W  2 

The A term yields, from equation (28) 

e4  5 ir2 s cr: 
(42) 

In the B term we must solve equation (39). We do so by inverting the 
matrix by hand fof the cases of designing either the first zero, the first 
two zeros, or the first three zeros (Z = 1,2, 3 respectively). We obtain 

1 
¡apt  [-0.409], 

z-

I r —0.454 
zno = T x-2 L+0.1 145 

—0.442 
1 

1- 
= 3  +0.179]• 

—0.118 

These numbers give for B 

( - 1 5 0) 

(43 ) 

(44) 

From equations (44) and (42) we note that Z = 1 design improves the 
"blind" filter by only 1.7 dB and Z = 2, 3 by 1«8 dB. Output S/N are 

given in Table II. For a given fraction of jitter essentially the same out-
put S/N is obtained as for the full spectrum case shown in Fig. 1. Let 
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TABLE 11—HALF SPECTRUM* 

Output /3/N 

1 2 3 

tr./T 

15.5 dB 
21.5 dB 
29.5 dB 
35.5 dB 
55.5 dB 

A 

E E 

0.1 
0.05 
0.02 
0.01 
0.001 

• The noise is here measured in a bandwidth twice the signal bandwidth. 

us emphasize here that the jitter is listed as a fraction of the nominal 
sampling time and not in absolute units. Thus for a fixed signal spec-
trum and fixed jitter in seconds, one percent jitter for the full spectrum 
case would correspond to two percent for half spectrum situation. 
The effect of positive correlation can be seen by comparing equation 

(43) with equation (36). Positive correlation tends to flatten the slopes 
at the zero crossings somewhat. Pursuing positive signal correlation to 
the utmost, we consider one more case, the case of a de signal. In this 
ease E(r)  0, and we want to solve 

(/ + 311)i = —Ir (45) 

where 

I + M 

9  1  1  1  . • le 

1 2 1 1 • • • 

1 1  9 1 

.1 1 1 2 

• • • 

Let us first consider the (Z x 7) version of equation 
verify that for de 

1  
(1 -I- 211) -' = I — 

Z  1 

(46) 

(45). One may 

(47) 

where U is the Z x Z matrix that has all its elements equal to unity. 
If we let V equal the 2 dimensional vector which has all its com-
ponents equal to unity, then we get 

2(2 + 1)T L 
1   1-»-iiv. 

(48) 2  er;  n J 
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Finally for dc signal we have 

A  cr3 
R(0) 

and 

(49) 

= 4 -4) 4— 

which has the limiting value (Z  00  ) 

2 B is, 1  —r52. re 
R(0)  

Again we see for an exact solution that only 3 dB is gained by pursu-
ing optimum design past the "blind" filter design. The output (S/N) 
is 3 dB better than equation (38) ; one would expect de to be influenced 
less by jitter. 
We note the remarkable fact that as Z  , equation (48) yields 

exactly the same solution ik = -rt/2, as one gets for the full spectrum 
case. This is not true for a fixed finite Z. 
Judging from our two exact and one approximate solution, designing 

FA 
2 

(51) 

is an optimum design independent of signal spectrum. Also the "blind" 
filter is a very good design independent of signal spectrum, being about 
only 3 dB worse than optimum. This all assumes that the jitter is in-
dependent from sample to sample. 

VI. EFFECTS OF JITTFIt CORRELATION 

Until now, any correlation between jitter samples has been ignored. 
In fact, some positive correlation is to be expected in the jitter statis-
tics. We do not feel it is large for the way we have described the jitter 
in the previous sections* (call it i-jitter), so that our previous design 
is not affected. Nevertheless, we should note that any positive correla-
tion which exists between the jitter values will improve the output 
S/N above that obtained by assuming that. the jitter from sample to 
sample is independent. The physical argument as to why this should 
be true is quite simple. Assume ci is a nonzero constant, the same con-

See Section VII. 
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stant for all j. Then we are sampling at time t. = nT + 4. From equa-
tion (19), Z = 0 and we are supplying current impulses of area 
r(nr + i) at times tir + (to the output filter and the signal is recon-
structed perfectly. Positive correlation helps. 
An important check on our work thus far can be made by assuming 

e = const., and checking that the A and B terms, which for jitter are 
given in Appendix B, vanish. Since for this case 

J(0)  J(s),  for all a,  (52) 

the B term given in equation (112) obviously vanishes. The explicit 
demonstration of the vanishing of the A term in equation (107) is not 
at all so obvious. Term (107), the A term, for constant jitter, is seen to 
be proportional to [note eo(o) 01 
—e(0) — E R (s) .(0)  2 E R (8) ,(0) 

= — 1(0) — E Rw40(8T) — 2 E it(8)e.(87).  (53) 
Define a function of time g(t) by 

9(1)  iR(04,,.(1)1. 

Then the right side of equation (53) is 

g(8T) 

and by Poisson's sum formula 

=  G(,.) 
•__., (54) 

where G(w) is the Fourier Transform of a(t). Now 0.(t) is band-
limited to tail < w/T and so is R(t). The spectrum of R(t)00(0 ex-
tends only to 2r/T and in fact «vanishes at id =  Zw/T since it is a con-
volution. Thus only the na = 0 term of equation (54) could possibly 
contribute, but this contribution also vanishes because the second time 
derivative in the definition of  t) introduces a double zero in the 
spectrum of Glid) at  O. 
Further use will be made of the expression for output noise with cor-

related jitter when the 4-model for jitter is compared with another 
model discussed later in Section IX. 



998  THIN BELL SYSTEM TECHNICAL JOURNAL, MARCH 1971 

VII. TIMING STABILIZATION 

At this point we return to consideration of many talker-listener 
pairs. Let L be the number of possible such pairs. This number depends 
on !lbw rapidly each talker can be processed (switched). For example, 
if each talker is sampled at a nominal rate of 1/T and ti is the process-
ing time for the ith speaker, a constraint which reads eotnething like 

L 
(55 ) 

must be imposed. Further, the timing errors c, are hopefully small. A 
scheme for stabilising the sampling rate has, in fact, been proposed 
but T. G. Lewis." An interpretation of this scheme due to Saltaberg 
and Pasternak is shown in Fig. 4. For immediate convenience let us not 
worry about normalisation and let the dashed line have unity slope. 
The large dots in Fig. 4 represent a talker starting to be sampled, and 
let the length of tinie required for the ith sample be t1. The time t, 
represents the length of time that the current source pumps current to 
effect the interchange of the talker-listener capacitors and, in accord-
ance with our earlier assumptions about measurement times being 
short compared to filter bandwidths, we have ti 4: T. After many 
counts (measurements), say L, we return to resample a given talker. 
We particularly note that a talker is never sampled early. We see that 
in Fig. 4 after the time is , our path hits the 450 line early, and we 

o 
TIME 

Fig. 4—Timing stabilization 

4 
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"pad" time until the fourth count occurs. Also, as shown, the variables 
q. represent the horizontal distance from the 450 line to the dot repre-
senting the count. They are positive random variables and are given by 
the equation* 

q. — max 
9--1 4- 4-1 — 1. 

The random length of times 1._ 1 are assumed to be identically dis-
tributed and independent of q„.. 1 . We shall proceed to derive an in-
tegral equation for the probability distribution function for q..I We 
note the possibility of a 8-function at q. = 0 and thus write for the 
density function qn(x) 

(56) 

q(x) mg a. 3(z) + (1 — ate)P.(x).  (57) 

The number a„ is the probability of having q,  0, and p.(x) describes 
the continuous portion of the density. If we let u(t) denote the density 
of t and* denote convolution, we have, using equation (56), 

= «.-1 

e(x) = atuv.11 

u(1) di  (1 — 

U(I +  1) 

f ie  ti( r)  

r 
a.-1) I fp.-1 * di' (58a) 

p._,(t1)21(x + 1 —  di' 

f dl f p._ 1(tr)u(1 — 1') dl' 

(58b) 

A steady-state a and p(x) would obey equation (58) with all indices 
removed. We shall write the steady-state equation. Let K denote the 
known constant, 

K fu(1')  ,  (59) 
1 

let, for z > 0, y(t) denote the known density function 

u(1 + 1)  
v(t)  K  ' (60) 

*Except for a time scale normalisation. the sequence (q,a) n = 1. 2 • • • corre-
sponda to the sequence (eij of previous sections when there are L talkers on 
the switch. 
B R. Saltzberg and G. P. Pasternak& had also derived an integral equation 

for q., and no doubt our equation is substantially equivalent to their equation. 
An entirely different approach (je., an equation for a different set of variables to 
describe the urne problem) has also been discussed by J. Bala and R. D. Gitlin.* 
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and introduce the unknown constant 

p  f  [p• u(1')]  . 

Then the steady-state solution (Jim n —) cc) satisfies, if it exista, 

a = (1 — K)a -1- (1 —  p 

(61) 

(62a) 

p(x)  ay(x) + (1 — a) f  — I') de.  (62b) 

If we let C(w) denote the characteristic function of p(x) then equation 
(62) yields 

av(w)  _ 
c(ia) — 1 _ (1 — a)v(w) 

where 

(63) 

(64 ) 
K  p 

One may now imagine determining the unknown constant p in the 
following manner, Equation (63) determines C(e) and therefore the 
density p(x) in term; of p. Form the convolution of p with u and set 
the finite integral of this convolution equal to p in accordance with 
equation (61). This then is an equation which can be used for the 
numerical determination of p_ For the case 

exp  (65) 

the procedure may be carried through exactly. We find that the dens-
ity p(x ) of the q variable is also exponential and is 

12(x) -1 exp (- 04,  (66) 

where the probability a of having q exactly zero is related to # by 

1 — a = exp (—Oa).  (67) 

Using the inequality 

1 — x <  x 0 0, 

we see that equation (671 has a nonvanishing solution for a if and 
only if fi > 1. Realising that the average of l is 1/fl, this says the 
system will be stable if the average duration of ti is less than one. 
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From the above conNiderations we calculate that 

2  1 — a 
u„ — a2032 

VIII. EFFICIENCY OF SWITCH 

2 

(68) 

We propose here to give an idea of how much is gained by asyn-
chronous (but stabilized  versus synchronous sampling. We have 
shown in the previous section that (introducing unnorinalized quanti-
ties now) for a speech processing duration distributed exponentially, 
i.e., 

we have 

where a and Li' are related by 

which requires 

=  

1 ••• a 2 2 
O. IM  

a 0 

(69) 

(70) 

1 — a = exp [— f] ,  (71) 

> — •  (72) 

Again, L is the number of talkers. To effect the comparison with the 
synchronous version of the above scheme a new parameter has to be 
introduced which represents the peak-to-average voltage (not power) 
ratio of the signal. Recall VS is the average processing time, and 
therefore represents the average voltage. In the synchronous ease a 
maximum time, t„,„‘ , is allowed for each talker. Clearly t.,L is a 
representative of the peak voltage. The ratio A is then 

A OLE .  (73) 

If L, iN the number of synchronous talkers, we also have 

L L.  T. (74) 

Now use equation (70) to solve for a, substitute the expression for a 
into equation (71), eliminate p via equations (73) and (74) and obtain 
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1 

where 

[— A(11-4)] 
1   

exp   
V1  ZI 

(75) 

Z 7 el 11 21 4(el,) .  (76) 

An approximate solution to equation (75), which is accurate for large 
La  is that 

(77) La ' 

i.e., in the large Ls limit, the ratio of possible asynchronous talkers to 
synchronous ones is approximately the peak-to-average voltage ratio 
of the speech signal. One would expect this number to be at least 
four. Actually for La of interest (77) is not an accurate enough ap-
proximation. The solution of equations (75) and (76) is shown if 
Figs. 5 and 6 for A = 4 and 8 respectively. Taking A = 4 (which is 
conservative), we see from Fig. 5 that if the technology would permit 
50 talkers to be put on the switch synchronously, the switch could 
accommodate 150 simultaneous speakers, sampled on a stabilised asyn-
chronous manner, with an output S/N of 35 dB. To repeat, factor of 
3 increase in efficiency seems like a conservative estimate. 

IX. YOUR-WIRE CONSIDERATIONS 

The last topic we consider is what we call a four-wire treatment of 
the problem. Here we treat the details of a model proposed by F. K. 
Becker' which should deal with active asynchronous energy transfer 
when four-wire facilities are available. The model is this. A speech 
waveform is sampled and held for a variable time tà, before the next 
sample is taken (see Fig. 7). The holding times àg are independent, 
identically distributed, and have average value 

3, = T.  (78) 

The initial speech waveform is approximately reconstructed by passing 
the jittered box car through a filter having an inband characteristic 

ooT 
2  (iuT 

h(w)  exp 

sin  7 
* The 8/N is read from Table H for odT = 0.01. 

(79) 
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lo 
ti l l  I i 

2-0  30  40  50 60 7080 100  200  300  400 500 

NuMLIER OF SYNCHRONOUS TALKERS, Ls 

Fig. 5—Efficiency venue number of synchronous talkers for peak-to-average 
voltage ratio A = 4. 

The A in the above model will not necessarily be assumed to be 
sharply distributed about T; later a stabilised version using an (-jitter 
model will be used. 
Let x(t) denote the speech wave and xj(t) denote the jittered box 

car version. Further denote the spectra of the two processes by S(61) 
and ei(o) respectively. Our major intcreSt shall focus on determining 
the spectrum E (60) of the error 

5 

4 
di 7 8 9 10 

error = h * ,(1) —  

20  30  40  50 60 7060 100 
Nub48ER OF SYNCHRONOUS TALKERS, Ls 

? C 

(80 ) 

Fig. 0—Efficiency versus number of synchronous talkers for peak-to-average 
voltage ratio A = 8. 
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Lo t,  t  t] 

Fig. 7—"Jittered-boxear" sampled speech wave. 

assuming h ( t) is the reconstructing filter. The output noise power can 
then be obtained by integrating the spectrum. It may be shown that for 
the à-model of jitter described above the exact error spectrum is 

E(w)  SW 11 — ..-; h*(w)[1 — C(w)1 

.  1 — Mt I  di)} 'l lls(w)17 
±  3 Re {[1 — C F f 84')  1 — C(c• i f *(41  -- co) 2r  • (81) Tcd  --.   

In equation (81), the function C(..) is the characteristic function of the 
variable à, that is, 

C(W) =  exp (iwa)p(a) da, (82) 

p(à) being the probability density of A. Also 

h(w)  f exp (—i4d0h(1) di. 
-40 

The symbol P in front of the integral in equation (81) denotes that 
the principal value is to be taken for the simple pole 1/11 —  — 
..) J. If the term in the bracee in equation (81) is rewritten as 

1 J—  S(W) Re [ C(c2))1 (83) 1 — C(ci — cd) ' 

the reader should be assured that now no singularity will arise in the 
integrand, and the principal value distinction need not be made. 
For numerical purposes, we plot the error spectrum given in equa-

tions (81) and 1831 for the case when à is gaussian distributed about 
mean value T, and for standard deviations (cu e) = 0.316, 0.1.* 

• The random variable à is always positive, while the gatiesian assumption ai-
Iowa it to become negative with some probability. We have verified that, this 
effect is not significant here. 
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These larger variances are chosen here because we are mainly in-
terested in the unstabilized version. Figures 8 and 9 show, respec-
tively, these error spectra, assuming the input spectrum is flat up to a 
maximum frequency n = rad/s, and assuming a sampling interval 
= 0.5 s. This corresponds to sampling at twice the Nyquist rate. 

Also in calculating the out-of-band noise we have taken the reconstruct-
Mg filter (79) to extend to twice the baseband spectrum. This em-
phasizes the higher frequencies more than desirable, perhaps. Thus 
in Fig. 9, the S/N for noise measured in twice the baseband interval is 
24 dB while inband we have a S/N of 29 dB. Thus for independent at 
a 10 percent jitter about the mean value seems tolerable for sampling 
at about twice the Nyquist rate.* 
In the event that the unstabilized four-wire version is unsatisfactory, 

we recalculate the error spectrum when timing is stabilized according 
to a-model discussed earlier. In this ease the Fourier transform eL(œ) 
of the truncated error signal is found to be given by 

ez.(w) = - E x(nT  en) exp (- icenT - tut -2 
n 0 

X [exp  -  - exp  -  
icdT 

LeT  1 (i6)7 1  (same terms) 
2  
sm 

2 

Again, the reconstructing filter (79) has been assumed. Further details 
of the calculation will not be recorded, but we simply state that the 
error spectrum E(œ) is, retaining only second-order terms as in pre-

X 

vious work involving c-jitter, 

E(cd)  lim E leL(w)I1 
L_.-  L  ' 

(  r  wee + 1)+R(8  
exp (-1:408715- J(81R(8)  2 =   2w7' 

sin 

- sin' 2 — R(s)J(s) 

• Let us remark that the  model for 
ferent from the e-model used previously. 
between adjacent e variables and for a 
shall return to the  questions shortly. 

(84) 

jitter described here is significantly dif-
The à model implies positive correlation 
given variance produces less noise_ We 
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sin I J(s)[(—É(s)  É(8 + 1)) exp 

— (—É(s)  É(s — 1)) exp (1:ü4)]}.  (85) 

One may verify that the above expression is indeed real, that is, it 
vanishes when e, = e and when the correlation function corresponds 
to a dc input signal. The noise power N in any bandwidth 0 is gotten 
from equation (85) by 

N = — 1 in E(w) du. 
2r _ 

Choosing n = w/T we obtain from equation (86) 

N  - — (0) J (0) ÷ E a. j(8)[R(8)  R(8 +  + R(8 —   

•  it 0. j(8)  A(s + 1) ; É(s — 1)  

0.0 1 

o 

.r(s) rea)  + + É (1 —   

2 

5 
— .143.5dB 
Nv 

—  14 dB 
N air 

1 
2  3v 4 

(86) 

• (87) 

Fig. 8—Error spectrum for T = 1/2, n/T = 0218. Undistorted spectrum is one 
for —w 5_ w 5. w, and zero otherwise. S/N. = 18.5 dB, 13/Nir = 14 dB. 
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Fig. 9—Error spectrum for T = 1/2, sà/T = 0.1. Undistorted spectrum is one 
for —1r e 5 w, and zero othenvise. 8/N. = 29 dB, 8/N» = 24 dB. 

where 

Numerically 

1 f  • Ceti XX 2 
(IX,2ir  . x 

° stn2 - 
2 

(88a) 

X 
cos - 

1 fo' 2 ,_ 
0. --.-- -  z Cat; at -  GS,  (88b) 

ir z 
8in - 
2 

1 f.'  
8, = -  z sin 8x dx =   )  a Pi 0.  (88e) 

1T  8 

cro 200 r,t,' 2.78, 

at = —0.469, 

1.39, 

a, = 0.386. 
For the came of independent e-jitter, equation (97) reduces to 

noise power; 
independent . 

(89) 

I An (1_ nu.) +10,,É(1)]. .R(0)cr;L-edi + ao\  Rai  T  R(0) 

(90) 
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The results for the stabilized full spectrum and half spectrum cases 
are obtained by using equations (35) and (41) in equation (90). 

Full Spectrum: 

=  e21  [WI  N  T2 (4.67). (91) 

Half Spectrum: 

2  (S) Cr.  Ir 

—  [   —  —  e 00 (0 946)  (92) 
N  T  12 ir %d  7'  •  • 

By comparison with equation (38), the four-wire full spectrum answer 
(91) is about 1.5 dB worse than the optimum two-wire result, hut 
the four-wire result has about a 4.5-dB advantage for the half-spec-
trum case [compare equation (92) with equations (42) and (44)]. 
The latter case corresponds more to the case of practical interest. We 
note further that in this comparison the four-wire might be penalized 
by two dB or so due to the (x/ sin x) characteristic being used out of 
band also. Secondly, the more concentrated toward de the signal spec-
trum is, the better the four-wire version will become since it has 
vanishing distortion for dc, while the optimum two-wire version does 
not. 
Before leaving this topic, a comment on the relation between a-jitter 

and e-jitter should be made. We begin by looking at two successive 
a-variables an and A.., in terms of e-variables. 

h Is  = T  e. —  (93) 

tke +1 =  + fig 
Clearly 

E(a)  T ,  (94a) 

2e1/(1 — p),  (946) 

ER4.41 — 71(à. - 7)] = - - •  (94c) 

In writing equation (94 a through c), we define 

= e/P  (95) 

and assume no e-correlation after one displacement, i.e., 

.2 
M e at) =  e 

To make two successive  variables uneorrelated, we set equation 
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(94e) equal to zero and obtain 

and 

1  1 ia 
P  — — 2  2 ;17 

2 

(96) 

(97) 

Thus to compare independent ¿-jitter with i-jitter, a good way to 
do it is to choose the same variance according to equation (97) and 
introduce a correlation between adjacent f' s by equation (96). This 
simple way of comparing the two schemes is not exact, but should be 
good if signal correlations do not persist for extended periods. In any 
event, it illustrates why for cr:  cr; the independent a-model will yield 
appreciably better results than the independent z model. The first 
implies positive correlation in the second. 

X. CONCLUSIONS 

We began our study with consideration of the two-wire switching 
problem (Fig. 1). After obtaining a concise mathematical description 
of the operation of this switch, [equation (9)], attention focused on 
the optimum capacitor discharge z(t) when one volt is placed on the 
capacitor (Fig. 2). We have seen that a good design for the slopes ik 
of the function a(l) as it passes through its zeros (see Fig. 2) are the 
values k  — 1 lk/(2kT). Exact solutions for full spectrum and for 
de indicate that this result is not sensitive to the signal spectrum. This 
optimum design can he expected to yield only a 3 dB improvement 
over the "blind" filter which is defined to he flat at the zero crossings 
and consequently does not "see" the jitter. Typically two percent jitter 
yields an output 8/N of 30 dB. Any positive correlation in the jitter 
will tend to improve this figure. 
When the processing time of an individual speaker is exponentially 

distributed, an exact distribution of the timing jitter with a stabilised 
clock is obtained_ This result is ut;ed to study the efficiency of the 
asynchronous switch. This increase in capacity over a switch using the 
same technology but employing a synchronous strategy is, roughly, 
the peak-to-average voltage ratio of the signal. More accurate descrip-
tions are presented in Figs. 5 and 6. Conservatively, the asynchronous 
switch should handle three times the traffic. 
Finally, a four-wire version modeled as a jittered boxcar recon-

structed with a filter has been considered. Under the independent 
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a-model for jitter, Fig. 7, 10 percent jitter can yield 30 dB S/N, largely 
because of the correlations this implies for i-jitter. Exact error spectra 
have been plotted for this case also (Figs. 8 and 9). With timing 
stabilization, and consequently the i-jitter model, the reconstructed 
boxcar should yield several dB improvement over the two-wire results 
for cases of practical interest (spectrum concentrated at dc). 
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APPENDIX A 

Some Lemmas on Limits of Sums 

We list here certain lemmas which will be needed in Appendix B. 

Lemma 1: If either Er_oI f(s) I or Er.° sf(s) converges,* then 

. 1 g 
11 M  E 1(n — k) = E f(s). 

g%  •-0 
leak 

(98) 

Lemma 2: If Er_c, I (8) converges, then 

K la ea 

li M  «"1  E E1(s) - E t(8).  (99) 
x-• K et.1 eml  ••.I 

g  le 10 

li M 1 —  E E 1(8, g) = E 14, 0-  OM 
ic—ne K opal 8.1•1  4.1.•1 

Likewise 

• 
Lemma 3: If E f(j, s) converges, then 

N—à 

Tr E E  E  fUt E  Rit 8). 
i..k 

i• —•• 

APPENDIX B 

Derivation of Output Noise Power 

Our first step is to derive the filter independent noise, i.e. 

(101) 

*Neither condition implies the other; each implies the convergence of 21(s). 
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A =1im A x 
X-.. -

where A m is given by equation 123). Our expressions are valid to 
second order in the (41). We note the following relations 

y,. = x(nT + t.)  x(nT) + E.±(nT) + ¡e nT);  (102) 

2 

1+ if m -0; 

+ ',MOW/2,  if m  0;  (103) 

ei(0) = —e_.(0); 
making use of this in equation (23), we have, to second order in (0 

1 
AK -= - E (£2„? — /3 4.0vo 

K "  

Errrie.e, — 2xett.e.télk.-kel• 
wont 

(104) 

Averaging over the signal statistics by using equation (26) and the 

further relations 

E[±(t + T)x(O]  lei(r)  —E[i(t)x(t  r).1, 
(105) 

E[et  f)ein = — R(r), 

and also averaging over the jitter variables using equation (27) gives: 

EA K E [ — R(0) ./ (0) —  
.-• 

1 K —  E [Rn — k)J(n —  2r„,./(n — k)/ 4 — k)]. 
(106) 

Observing that the second sum is a symmetric function of (ri — k) 
and using Lemma 1 of Appendix A, the required limiting operation 
yields 

1 
Tc 

A  —É(0)J(0) — E R(s)J(s)e,(0) + 2 É r ,J(s)R(s).  (107) 
e.-10 

as10 

We list for further possible use 
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e,(0)  2 (-1)8" 
sir 

4;00 

and also 

2 

3 T2 ' 

— 0. 

8 0 0; 

(109) 

The latter relation may be derived by direct evaluation of the sum, of 
course, or by using the Poisson sum formula and the bandlimited 
nature of o(t). 
We now proceed to derive an expression for the filter dependent 

terms B, starting from equation (241. Gathering the second-order 
terms proceeds much as it did for the Ak terms, with the following 
additional complication. Recall from equation (20) that O is given by 

2Z  
=  = 22 — 42z 4-  — 
1 -4- 2Z 

From equation (6), 

higher) 
Zk„ = (tà —  (term;  

•  •  • 

,  if k > n: 

=0,  if k < n. 

Thus the matrix O is at least linear in the (e,). Proceeding now to 
collect terma and averaging, we have to second order 

4 K 11-1  
E[B]  E .pe — m) 

•[J(0)  J(m —  - J(n — m) — J(n — I)] 

4 v. K  I 

—K Lai E  — m)[J(0) — J(n — m)1  ( 1 10) 
.-1 .-0 

4 K  A-I E E T_  ,R (n — m)[J(n — k) — J(n — m)]. 
K 
fusI 

In the second term of the above, we change summation variables by 
replacing the sum over m with a sum over s, where 

n — m,  1, 2, • • • , n. 
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We make the same change in the first term, and also introduce 

t n — 1,  t = 1, 2, • • • , n. 

In the last term let 

s = k — m,  s = 1, 2, • • - , k, 

j = n — k,  j= —(k — 1), • • • , K — k, 

Then 

E[B,c] =  — 0[J(0) + .1(s — t) — .1(8) — J(1)1 

EPo, 
I— 

i.148X.FM — 1(8)1 

rR(j + s)[J(j) — J(j  s)). 

Making use of Lemmas 2 and 3 of Appendix A yields 

B = lim MBE) = —4 et i,R(s)[J (0) — Js)] 
X-sie  - 

-I- 4 E  — 0[J(0)  J(s —  — J(8) — J(01  (112) 
•.•-• 

+ 4 t  8)[J(j) —  + 
• •-•  --

(I 

The simpler equations (28) and (32) which hold for independent 
jitter may be gotten from the above by using the result of Section 
VI. Namely for J(s) = const., all s, the A and B terms vanish. When 
we have independent jitter J(s) = const., s 7É 0. So we add and sub-
tract a term with J(0) replaced by J(s IL 0) and use equation (29) to 
obtain the independent jitter results. 

APPENDIX C 

Exact Error Spectrum for Independent a-Jitter 

Consider a long time L, and denote by ILI the best integer so that 

L  (113) 
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The jittered box car (truncated to the long interval /4 can then be 
represented as 

ILI 

x,(1) = x(i.)B[1.+1, tu], (114) 
n•O 

where B is a unit box extending from t. to t„.1. The Fourier transform 
of this truncated version is then 

IL) 

E x(t) exp (—iwt.)[exp (—ear  — 1].  (115) 
•0 

The power spectra for a process y(t) is generally calculated according 
to 

1 
G(cd)  lim  E 

where yL(w) is the Fourier transform of y(t) truncated to an interval 
L, and E denotes an ensemble average with respect to all random 
parameters. If we apply the above to spectrum of the error signal 
(80), we obtain immediately, using notation of the text, 

E(ø) = j h(ca) 12 Si(co)  2(w)  D(w)  (116) 

where 

.  1 
D(w) = — 1101 in , • 2E Re h* (w)ij. (w)  (117) 

Expressing XL (0) as a time integral and performing the signal averag-
ing we get 

2 . 
D(co) = —h m w e Re 10(w){ — E exp (tcot,J[exp «to  — 1] 

„,-,„ 
(118) 

X f exp  —  dt}-

Expressing the signal correlation function in terms of the spectrum, 
doing the integrals and remaining averages, gives 

—2 
D(w)  -j  Re le(co) W8(w)(1 — C(w)J.  (119) 

There remains the calculation of S,, (e). Using equation (115), we have 
(performing averages over signals) 
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ILI  [ R-1 

E lst(w)I' = 23E E R  — 
I.4•0  4-0 

exp (—u,  — 11(exP (ità dei.) — l][exp — 

where we note the fact 

en+1  En 4 m• 

Performing the .-averaging yields 

1[8;1(7,4))1' _ uR,A) 2[1 — Re C(0)] 11Ë 1 
{ ILl 
(1 — C*(oo)1 

(LI 

E 
01‘«i 

• .  de  S W) C 41 —  6)) • [C 40° —  —  C( 01 } (j 122) 
:   

To perform the limits of the sums we first replace re--'"(d - to) by 
— 4011 to insure convergence and then let t  0. 

We then have 

1 
S j(w)  . [LITE le(w)13 

dtd  1 — CW)   
w—ri Re {[1 — C*(cd))  cr, S(4;1 1 _  _  (123) 
2 

Making use of the general relation 

1  
X ± it 

where P denotes principal value, finally yields 

11 — C4)12 eltid 
3.1(64) =  to,  T: 

+ —1  Re  {[1 C.4)1P  J du'  1 I -ce .)} Tw 
2  re  

The interested reader may indeed check that for 

C(w) = erp (icoT), 

(124) 
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th P above expression reproduces the known result for a wave-form 
impulse modulated at precisely T-second intervals. 
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Error Probability of a Multilevel Digital 
System With Intersymbol Interference 

and Gaussian Noise 

By E. Y. HO and Y. S. YEH 
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In a previous paper a series expansion method for calculating the error 
probability of a binary digital AM system in the presence of intersymbol 
interference and additive gaussian noise was derived.' In this paper those 
results are extended to the multilevel case. In the examples calculated for a 
four-level system, this method is 104 times faster than the exhaustive method 
and is 102 times more accurate than the Chernoff bound. The actual compu-
tation time with an 11-sample approximation to the real system impulse 
response is only 1.8 seconds with the GE Mark II time-sharing system. 

I. INTRODUCTION 

In a recent paper' we have developed a new method to calculate the 
error probability of a binary digital data system in the presence of 
intersymbol interference and additive gaussian noise. A similar method 
has also been reported by M. I. Celebiler and O. Shimbo? The purpose 
of this paper is to extend the previous results to multilevel systems. 
The existing methods for the estimation of the error probability are 

the Chernoff bound or the worst case bound,3'4 the results of which are 
generally too loose. Another alternative is the time-consuming exhaus-
tive method.3 For example, it would require 410(":-.; 106) calculations of 
the error function to find the error probability of a four-level digital 
system where intersymbol interference resulted from ten nonzero 
samples of the channel impulse response. 

II. DERIVATION OF THE EXPRESSION FOR ERROR PROBABILITY 

For a 2m-level digital AM system, the corrupted received sequence at 
the input to the receiver detector is 

1017 
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CO 

y(t) = E air(t — 1T) + n(t), 
E...—co 

where 

n(t) is additive gaussian noise, 

ct) =  1, ±3, • • • , (2m — 1) with equal probability, 

and 

(1) 

r(t) is the given noiseless system impulse response. 

At the detector, y(t) is sampled every T seconds to determine the 
amplitude of the transmitted signal. At sampling time to , the sampled 
signal is, 

Y(to) = aor(to) + E air(to — IT) + n(10).  (2) 
1--. 
1 ..0 

The first term is the desired signal while the second and the third terms 
represent the intersymbol interference and gaussian noise respectively. 
The set of slicing levels are,5 

0, +2r(t0),  4r(to), • • • , ± (2m — 2)r(10).  (3) 

Given a particular transmitted signal level, ao, the conditional error 
probability is, 

Pr(e/cto) 

P fy(to)  —2(m — 1)r(t0)} ,  ao = —(2m — 1), 

Ply(to) e_ 2(m — 1)r(t0)1,  ao = 2m — 1, 

P I (Y(to) ..k (ao + 1)r(t0))U(y(t0)  (ao — 1)r(t0))1, 

ao 0 ±(2m — 1), 

where AUB is the union of the events A and B. 
Substituting equation (2) into (4), we obtain 

Pr(e/ao) 

Pf E air(to — 1T) + n(to)  r(to)), 
100 

Pf E air(to — 1T) -I- n(to) *.e. —1 *(4)1, 
100 

ao = —(2m — 1), 

ao = 2m — 1, 

PI( E a)r(to — 1T) + n(to) k r(to))U , 
100 

( E air(to — IT) -I- n(to) :4 —r(to))}, ao 0 ±(2m — 1). 
loo 

(4) 

(5) 
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Since E1,.° air(to — 1T) and n(to) are equally likely to be positive or 
negative, equation (5) reduces to 

P,(elao) 

Pi E aer(to — 1T) ± n(10)  r(t0)1, 
100 

ao =  (2tn — 1), 

211 E air(to — 1T)  n(to) k KO}, ao  ±(2m — 1). 
100 

The error probability of the system is, 

P. = E P,(e/a0)P,.(a0), 

(6) 

— 2m — 1  P E alr(to — 1T) + n(to) r(to)}.  (7) 
100 

We note that equation (7) is similar to equation (7) of Ref. 1, with 
the only exception that the al can now assume multiple values. Accord-
ing to equation (9) of Ref. 1, we obtain the following expansion for Po, 

P  =  2m — 1 e fe r(to) 
'  2m  r  

2m — 1 )! 1 ( ly  1 exp  r2(g0) 1 
m  (2k 2cr 

(8) 

where 

0.2 is the noise power, 
H 2k _1 is the Hermite polynomial, 
erfc is the complementary error function, 
1112k is the 2kth moment of the random variable X, 

and 

X = E a,r(to — 1T),  a, = ±1, ±3, • • • , ±(2m — 1). 

The moments can again be obtained through the characteristic function 
of X without the explicit evaluation of the distribution function. The 

characteristic function is, 

cI,(w) = II  exp [jw(2k — 1)r(t0 — 17')1/2m} , 

(9) 

= 11 {- sin [29mor(to — 17')]• ese [or(to — 1T)]}•  (10)* 
zoo 2m 

*See Ref. 6, equation (1.342). 
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Therefore, 

= 44,012m Er(to — lT) cot [2mco(to — 1T)] 
l00 

— E r(10 — lT) cot [car(to — 1T)]1 .  (11) 
100 

Since M2k = (-1)k4,e(0) and M 2k -i  =  0, we obtain a recurrence 
formula for M2k by successive differentiation of equation (11), 

34.21. ,  +. (2k — 1\  /-1);  22[(2m)2[(2m)" — 1] I B2,  I 
\ 2i — 1/1112,2  2i 

• [E r(to — 1T)21,  (12) 
too 

where B2{  is the Bernoulli number obtained by series expansion of 
cotangent function about the origin. Knowing that M0 = 1, all the 
214.21.1s can be calculated successively through equation (12) for an 
N-sample approximation of the channel pulse response. The N-sample 
truncation is equivalent to the approximation of E 1,.0 r(to — 1T)21. by 
(N — 1) summation terms. 
The error probability of a 2m-level system can thus be obtained by 

equations (8) and (12). In the special case m = 1, equations (8) and 
(12) agree with the results of the binary system, i.e., equations (9) 
and (15) of Ref. 1. 

HI. TRUNCATION ERROR BOUND 

The error incurred by truncating the series expansion of equation (8) 
at a finite term n — 1 is, 

R  2m — 1 1 [ 1 ]e 1  [ 
. — 

m  (210! 20-2 •V; exP  2g2 

(r t,,) /  (13) 1  0. 2k  • 
V. 

Let 

X = maximum II  air(t, — 1T) j, 
l -0 

= (2m — 1) E I r(to — lT) I.  (14) 
100 

It can be shown that the moments satisfy the following inequality, 

1/1 2k+211  21.X2P  I p = 0, 1, 2, • • •  (15) 
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For (2k — 1) >> z, the Hermite polynomials are upper bounded by, 

H2-i(x) I 2k-1 [(2k — 3)!!] V2k — 1 exp [2/2].  (16) 

Substituting equations (16) and (15) into equation (13) and grouping 
the terms into geometric series, we obtain an upper bound for R 2,, . 

Ra. e2„ — m — 1 1 — (exp [ —r2(to)/ 40.2]) 
m  V27r 

Ma,,  1  1   

• (2u2)" n! /2n — 1 [  [(2m — 1) E 17*(4 — IT) e l 

1  Ion   
2ner2 

IV. EXAMPLE 

(17) 

We have calculated the error probability of a four-level digital AM 
system with the received pulse given by 

T  r(t) =  sin (irtIT). 

10-5  

4 

Pe 

e 

2 

4 
CHERNOFF BOUND  1, 88 x 10-

-  

SERIES EXPANSION, 

TRUNCATION 

ERROR BOUND 

I  I  I  I  I  1 1  1  1  1   

3  4  5  6  7  8  9  10  11  12  13  14  15 
NUMBER OF TERMS IN EQUATION 

Fig. 1—Comparison of Chernoff Bound and series expansion method. Sin 
[vt/T]l(w/T)t pulse, 11-pulse truncation approximation, to = 0.05T, (S/N) = 
24 dB. 
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CHERNOFF BOUND  8.83i 10-5  

10-6 

Pe 

8 

lo-8 

SERIES 
EXPANSION 

4  5 

EXHAUSTIVE METHOD 

5.2 X 10-7  

TRUNCATION ERROR 
---  BOUND 

6,  7  8  9  10  11  12  13  14  15 
NUMBER OF TERMS IN EQUATION (e)  k 

Fig. 2—Comparison of series expansion method with Chernoff Bound and 
exhaustive method. [SIN rt/T)/(r/T)t pulse, 5-pulse truncation approxima-
tion, to = 0.05T, (S/N) = 24 dB. 

With an 11-sample approximation, a S/R of 24 dB and a sampling 
time of to = 0.05 T, the error probability obtained by the Chernofr * 
bound is 2 x 10-4. The result obtained by our method is 3.4 x 10-4 
indicating an improvement of two orders of magnitude. The conver-
gence of equation (8) is presented in Fig. 1. Reasonable accuracy is 
achieved after eight terms of the series are calculated. A check of the 
accuracy of our method by comparison with the exhaustive method is 
impossible in this case because the latter requires 104 times more com-
putation time as compared to the series expansion method. Instead, we 
checked our method with the exhaustive method for the case of a five-
sample approximation. The results agree well and are presented in 

e 11-sample approximation to the channel response is used in calculating the 
Chernoff bound. 
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Fig. 2. The computation time spent on GE Mark II time-sharing sys-
tem is approximately 1.3 seconds for the series expansion method in 
both the eleven-sample and the five-sample approximations. The 
truncation error bounds are also presented in both figures. 

V. CONCLUSIONS 

We have extended the series expansion evaluation of the error prob-
ability of a binary digital AM system in the presence of intersymbol 
interference and additive gaussian noise to the 2m-level systems. The 
results are extremely encouraging. For the case examined the series ex-
pansion method was calculated several orders of magnitude faster 
than the exhaustive method, and it was more accurate than the Cher-
noff bound by two orders of magnitude. 
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Spectral Density of a Nonlinear 
Function of a Gaussian Process 
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We derive an expression which can be used in a relatively straight-
forward manner to obtain either the autocorrelation function or the spectral 
density of any "reasonable" function of any stationary gaussian process. 
The expression is used to study the spectral density of a sinusoidal wave 
which is phase modulated by a hard-limited gaussian process. 

I. INTRODUCTION 

A band-limited gaussian process having a rectangular power spec-
trum is assumed for some purposes to be an adequate approximation 
for several classes of modulating signals encountered in phase modu-
lation (PM) systems.1 However, in an actual implementation of a PM 
system, the modulating signal passes through circuitry which saturates 
when the signal rises above a fixed level. This clipping (i.e., limiting) 
level is usually adjusted fairly high (nominally at four times the rms 
of the modulating signal) and then ignored in any subsequent analysis 
of the system. Consequently, the objective of this study is to deter-
mine the qualitative effect of hard-limiting the modulating signal in 
a PM system. 
From a mathematical viewpoint, we can obtain an understanding 

of the preceding question by investigating the following problem: 
Find the spectral density of a sinusoidal wave which is phase modu-
lated by a function g (Xe) of the stationary gaussian process X. Of 
course, this version of the problem can also be viewed as finding the 
spectral density of a (composite) nonlinear function of a gaussian 
process; a problem originally studied by S. O. Rice,2 D. Middleton2 
and W. R. Bennett.4 In fact, we do use their approach (representing 
the nonlinearity in terms of a transform) to derive an expression 
which is essentially the starting point of our analysis. However, using 
our relation avoids some of the complexity associated with the trans-

1025 
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form method. A derivation of the expression is given in Appendix A. 
The notation and general results are presented in Section II along 

with two examples. In the third section, we obtain specific results for 

the hard-limiting case. 

II. SPECTRAL DENSITY OF A PM WAVE MODULATED BY A NONLINEAR 

FUNCTION OF A GAUSSIAN PROCESS 

Let W(t) denote a constant-amplitude sinusoidal wave which is 
phase modulated by a real-valued function g (X,) of the stationary 
gaussian process Xt. That is, 

W(t) = A cos (coct g(X,)  0)  (1) 

where A is the wave amplitude, f, =  /27r is the carrier frequency, 
and O is a random variable with probability density function 

7,8(0) 
—1 for 0 s O < 2ir, 
2w (2) 

, otherwise. 

To obtain the spectral density for W(t), it is convenient to express 
the wave in terms of complex variables as5 

W(t) = Re (W(t))  (3) 

(4) 

wheret 

and 

lr  = A exp [j(wct  0)]V(t), 

V(t) = exp [jg(X,)].  (5) 

Since X, is stationary and O is uniformly distributed, both W(t) and 
V(t) are wide-sense stationary.' Moreover, the spectral density S,„(f) 
of W(t) is given by 

S(f) = ES.(f — fc)  S.(—f — f.)1  (6) 

where SM) is the spectral density of V(t).5 
If we define R,(T) = (V(t  r) V(Ø), the Wiener—Khintchine theorem 

implies that 

S,(1) =  Ri(r) exp [—j27r1r] dr. (7) 

t We use Re (z) and 1m (z) to denote respectively the real and imaginary parts 
of the complex variable z. The symbol 2 denotes the complex conjugate of z. 
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So, assume that Xt+, and Xt are gaussian with joint probability 
density function 

1  e- 2rx,x,   \ x  p(x, , x2) = 
22re  — r2 exp  2r2(1 — r2) J' 

— ao <xi < ce (8) 
where Rs(r) = (Xt,,-Xt), r2 = R,(0) and r = R,(,)/r. It follows 
that 

R,(r) = f  exp [j(g(xi) — g(x2))iP(x1 , x2) dx, dx2 •  (9) 
-e 

In Appendix A, we show that if G (x) is of exponential order and 
of bounded variation on bounded intervals,t then 

where 

and 

G(Xi) G(X2)P(X1 e X2) dX1. dX2 = 

a„, = —n! 

Eanr" ,  r j5.. 1,  (10) 
ti—O 

G(x)(da p(x)) dx dx 

1 (-4 .) 
p(x) =  exp   

V2r112 zr 

2 

is the probability density for Xt. Setting G (x) = exp[jg (x)] , 

R,(r) = E Cur", 
n 

where 

L , f n  cer 
C n =  exp [jg(x)][ d-7--1 p(x)] dx 2 •  (12) 

n  dx" 

Recall that the Hermite polynomial of degree n,, H(x), satisfies the 
relation 

d" 
exp (-2)  = (-1).1/„(x) exp (-2). 

t We define such functions to be "reasonable." 
$ Since lexp  I = 1 for all finite g(z), it follows that equations (11) and 

(12) are valid for all functions g(x) which are of bounded variation on finite 
intervals. This should include most functions which one might encounter in 
engineering applications. 
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Consequently, 

C"  Tn! 
1 

f  exp [jg(x)].1-1„( s4 j-p(x) dx 
2 

(13) 

Since the coefficients (C,i) are independent of R2(r), an infinite 
series representation for the spectral density Sv(f) can be obtained 
from equations (7) and (11). To obtain the series, let 

8,(1) = f F(T) exp (—j2ir1r) dr  (14) 

and define Sn(f) to be the n-fold convolution of S,(f) with itself; i.e., 
8„(1) = S.-1(f) * Si(f) for n k. 2. It follows that 

S (i) S.(1) = Co b(f)  E  no.  — œ < f < co .  (15) 

Using equations (13) and (15), one can see that the carrier power 
is given by 

Co = I (exp  [ig(Xt)]) 12. (16) 

2.1 Examples 
To obtain a better understanding of the preceding results, we present 

two examples. The first example uses g (x) = x (and serves as a partial 
check on our results since this case is well known5). The second 

example assumes extreme clipping, 

g (x) =  b for x > 0, 

—b for x < 0, 

and serves as a preview for the hard-limiting case presented in 
Section III. 

2.1.1 Phase Modulation 

For this example, g(x) = x for all x. Consequently, from equation (13) 
we have, for n  0, 

C„ = 

Thus, 

1 
2%! 

1  
c,. — 22"(2n)! 

r f exp (W-2- 11x)H„(x) exp (—  dx 

2,- fe cos (V2- rx)H2„(x) exp (—x2) dx 
v ir 

2 •  (17) 

2 
,  (18) 
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(F2)2'  
C2n = exp (-1'2) '(2n)! ' 

(see Ref. 6, Section 7.388-3). 
In a similar fashion C2 +1 

implies that 

(19) 

= exp (_r2) (r2)2n4-1 / (2n + 1)!, which 

C„ = exp (— r2) e for n  0.  (20 ) 

Now, substitute equation (20) into equation (11) to obtain the well-
known result5 

R,(r) = exp [—r2(1 — r)].  (21) 

2.1.2 Phase Modulation by an Extreme-Limited Gaussian Process 

For this case, 

b if x > 0, 
g(x) = 

—b if x < 0. 

Using equation (22) in equation (13), one obtains 

1 
C = 
"  2"n! 

exp (jb) foe' H„(v—ix—F)p(x) dx 

exp (— jb)  dx 

(22) 

2,  (23) 

which reduces to 

C2 " — (2co2"s(2(nb)))!2 ( \rn-2  F. H2.(x) exp (-2) dx)2 (24) 

and 

C  2 

± 1 
(25) (sin (b))2   2  re' H2+1 (x) 

2n+ 1 —  exp  x2) dx), 22"."(2n  )  ; 

for n  0. Since 

QQ 

o 

we have 

exp (— y2)H„(y) dy = H,,_1(0) for n  1,  (26) 

Co =  (cos (b)) 2,  (27) 

C2„ = 0 for n  1,  (28) 
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and 

(sin (b))2   2 2 H2„(0)) • 
C2.+1 = 22.- "(2n  1)! A/Tr (29) 

Using the fact that H0(0) = 1 and H2„(0) = (-1)2[1.3 • • • (2n — 1)] 
for n  1, we see that 

and 

C, = (sin (b))1 
ir 

2 .  2 1.3. 5 • • (2n — 1)  
= — (sin (b)) 

2"n! (2n  1) 

Substituting equations (27), (28) and (30) into equation (11) and 
recalling the series éxpansion for Arcsin x, one obtains 

for n  1.  (30) 

R.(?) = (cos (b))1 (sin (b))1 Aresin 7,-  R(0))  (31) 

for — co < r < co. 
Notice that the carrier power, C0= (cos (b))1, vanishes if b= 

k = 0, 1, • • • , while all the power goes into the carrier whenever b = kir, 
k = 0, 1, • • • . If b kir, the continuous part of the spectrum is simply a 
scaled version of the spectrum for an amplitude-modulated wave when 
the modulator is an extreme-limited gaussian process. This problem was 
studied by J. H. VanYleck.7 

HI, PHASE MODULATION BY A HARD-LIMITED GAUSSIAN PROCESS 

A problem of interest arises when the function g represents an ideal 
hard-limiter; i.e., 

i b for z > b, 

g(x) =  x for  I xi  b, 

—b for x < —b, 

for some b  0. 

(32) 

3.1 Carrier Power 

Noting equations (13) and (16), one can see that the carrier power 
is given by 
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c0  (  1 r2 - h 2 
n COS (x) exp  dx 

f  

+ cos (b) -V W-* f: exp  dx )2. 
2   

Defining ct = be (the relative clipping level), we have 

2  f a / V2  
Co =  /—  cos ( Vi rx) exp (-2) dx -I- cos (b) erfc (Se—)) (33) 

v r  o 

where 

erf (z) =   exp (—e) dt  (34) 

is the error function8 and erfc (z) -= 1 — erf (z). 
A more useful expression for Co can be obtained in terms of the 

error function with complex argument. Apparently, 

2 f c.rvi 
cos (Vi rx) exp (-2) dx 

o 

= Re {. *,  exp (—jVi rx —  dx} ,  (35) 

lys = exp  Re {v771 exp (—(x  j 1/_-12)2) dx}  (36) 

lys =  exp (— V Re {erf  j  — erf  j \+_"2. )} , (37) 

exp (— -) Re {erf (55-- ± j->;)} •  (38) 

Consequently, 

Co = (exp  ) Re {erf  j ,t÷5-1)} ± cos (b) erfc (‘72°̀ ))2 (39) 

can be calculated numerically!' However, we can obtain a better 
analytical understanding of the carrier power by expressing the 
integral in equation (36) as 

t To make the last step, we used the relations° 
erf (—z) = —erf (z) and erf (2) = erf (z). 
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exp (r2 2  — 2 XRe  f  exp (—(x  j )2) dx} 

r2 ,vi÷;(rivi) 
= exp (- -2 ) Re  exp (—z2) dz} •  (40) {f«irrfv-2) 

Since exp (—z2) is an entire function, the integral in equation (40) is 
independent of the path taken from i(rha) to aha  j(rhi2). It 
is useful to use a contour consisting of three straight line-segments: the 
first from j(1-1/112) to 0 (on the imaginary axis), the second from 0 to 
a/N.  (on the real axis) and the last from afe to ahri -F j(r/v7). 
Integrating along these lines, it is straightforward to show that 

exp (—r22-) Re {  2,- f «(r/Vu)/v2+i(r/v)  exp (—z2) dz} 
1/7 i   

r2 
--= exp (--1) erf 

V2.) 

c,2) 2 r/VU 

-F exp (—  sin (N/2 ay) • exp (— (-5   r  — y2)) dy (41) 

Combining equations (33) and (41) yields 

a 
C. = (  r2  exp  erf (172 ) -F cos (b) erfc  

2 2 f 'i  2 

-F exp (-122 ) .v.; ortv  sin (N/2- ay) exp (—(7  — y2)) dy) • (42) 

When r « 1 (low-index case), the last term inside the brackets is 
negligible so that 

a  a Co (exp (— en -F cos (b) erfc (-/-))2 when r «1. (43) 

It is interesting to observe that erf (a/ VI) is the probability that X 
is inside the clipping levels [—b, b] [and erfc (al V2) is the probability 
that X, is outside the clipping levels]. Hence, we can reason that 
exp (— P2/2) is the average de voltage associated with V(t) when X is 
inside the clipping levels while cos (b) is the average voltage when X, 
is outside the limits. [One can see from equation (16) that the carrier 
power Co =I (V(I)) 124 
Pursuing these thoughts further, one might conclude that the 

integral in equation (42) represents a high-order correction (to the 
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preceding approximation) associated with transitions of Xt across the 
clipping thresholds. When r is small, these transitions are rapid and 
the correction (i.e., the integral) is small. However, as r increases, the 
transitions are slower (at least when Xt is bandlimited) and the 
integral in equation (42) can increase in magnitude for certain values 
of «. Moreover, 

riVI 

f  sin (V-2- ay) exp (—(12. — 7/2)) dY 
r  0 

sin (b)F(3--;) when F» 

where F(x) = 2/Ni; f¡, exp [—(x2 — 12)] dl is Dawson's function.' 
Consequently it follows that when r >> -%/2 (i.e., the high-index case), 

a 
(exp (-120 erf (72-) ± cos (b) erfc (:j-) 

-1- sin (b) exp (—°«.)-)F(‘Ii))2.  (44) 

Thus, when a is not too large, 

(cos (b) erfc  + sin (b) exp  )F( ))2.  (45) 

The quantity inside the brackets is a sinusoidal function of a. Hence, 
there are various values of a (for fixed r) which will completely null 
the carrier power Co while other clipping levels give rise to a relative 
maximum carrier power. 
Using 

(V(t)) = exp (— r72., ) Re {erf  fc  j 52)} -I- cos (b) erfc (e-2) 

we computed exp (r2/2)(17(0) as a function of a for several values of F. 
Some of the results are displayed in Fig. 1. (Since the dynamic range of 
this function is so large, we used a linear scale between —1 and 1 on the 
ordinate axis and a logarithmic scale otherwise.) 
The general features of the three functions are as indicated above. 

Since (V(t)) = 1 whenever a =  0, each curve starts at exp (r2/2) 
for a = 0. For Ì  1 (not shown in Fig. 1) the curve decreased mono-
tonically to one. For r = 2, this relative average remains positive but 
oscillates slightly before converging to unity. However, for the high-
index case, the relative mean is similar to a damped sinusoid (as dis-
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r= 5 

r=3 

0  0.5  1.0  I 5  2.0  2.5 3.0 3.5  4.0  4.5  5.0  5.5  60 

Fig. 1—Relative mean of V(t) as a function of relative clipping level, a is 
the ratio of the clipping level b to the rms modulation-index I'. 

cussed above). This extreme oscillation about zero apparently occurs 
for r  3. Notice that the value of a required for the relative mean 
(and therefore the carrier power) to stabilize increases as r increases. 
Hence, for high-index modulation, setting a e'zzl 4 does not necessarily 
guarantee that the carrier power is unaffected by the clipping. 

3.2 Continuous Part of the Spectrum 

Numerical techniques are required to obtain the continuous part of 
the spectrum. However, one can see from equations (23) and (31) 
that the coefficients {C„} in the series are independent of R(r) and 
need only be computed once for any particular configuration of the 
hard limiter (and choice of r). Consequently, it seems worthwhile to 
derive an algorithm for efficient computation of (C„). 
Noting equations (11), (12) and (13), one can see that 

where 

R.(r) =  (p)nc„ 

r"I v(n)  
C„ — 

n! 

(46) 

(47) 
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and 

fv(n) = f exp [— jg(x)](=-- p(x)) dx . 
dx" 

Consequently, 

jv(1) 

(48) 

-6 

= fexp (—ix) dp(x)  exp (— jb) f dP(x)  exp (jb) f dp( x ), 
-6 

= exp (— ç) Re (erfc  + 

Next, for n k 2 we have 

(49) 

j"p(n) = f exp ( jx) d(  -11 P(x))  exp (— j19) fe d( cr 1 p(x)) 
--b dx"  dx 

exp (jb) L: d(ccf +.1-1 P(x)) • 

Integrating the above expression by parts, we have 

v(n) =   f exp (—jx) e p (x)) dx .  (50) 
-b 

Recall that 

d"  (  /  —1  \"    
cl7 exP  Hn(v; r) exp (— e 2) 

so that integrating equation (50) by parts obtains 

v(n) = v(n — 1) — \IA;  (vi  IH._2(v2 r ) exp (—jx — 
-b 

(51) 

Of course, I- In( —x) = (-1)nH„(x), which implies that the exact 
determination of equation (51) depends on whether n is even or odd. 
It is straightforward to show that 

v(2n) = v(2n — 1) 

2 
(-1)" sin (b)  exp  X   

2  1  \ 2n-1 

2 Vi r)  112('-1)( )  (52) 

and 
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v (2n + 1) = p(2n) — (-1)" cos (b) ‘/2; exp (—a22)(v i.g  

for n  1. 

It is known that° 

H0(x) = 1,  Hi(x) = 2x 

and 

H„,,(x) = 2xH„(x) — 2nH„_1(x)  (53) 

for n  1, so that in principle, the sequence {C„} can be computed 
by using equations (47), (52) and (53). However, in practice the dif-
ference-equations (52) and (53) are unstable and care must be taken 
in their implementation. We found it best to use the following approach: 
Let [x] denote the largest integer not exceeding x and let n!! = 

n1/2rnm [n/2] I. [So that (2n — 1)!! = 1.3.5.• • (2n, — 1).J Now, one 
can use equations (52) and (53) to obtain stable algorithms for 

rnp(n) 
ti(n) = 

21”121[1 ! 
2 

which are used to compute 

and t2(n) — 

C„ =  

r(n)  
n!! 

3.3 Numerical Results 

To obtain insight into the effect of hard-limiting, we assume that Xt 
is bandlimited with a rectangular power spectrum. That is to say 

R(r) = r2 sin  27rWT  for  I T  <  °O. 
2/rWr 

In this case,° 

(54) 

S,(1/W) = C. 5(f) +  1  2.TW  C„F„(f/W),  (55) 
„_, 

for —00 < f < 00. The functions F„(A) are defined as follows: 9 

Fi(x)  = ill-,  —1 < X < 1, 

0, otherwise, 

and for n  2, 

(56) 
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F„(X) =  E 
k.0 

Mfts.X) 
(I  n  2  k)"-' 

(-1 )k \   , o I x < 71, 

0,  otherwise, 

where M (n, À) = [n + IXI/2]. We use [x] to denote the-integer part 
of x. 
As Ilf (n, À) increases, it becomes increasingly difficult to accurately 

sum the alternating series displayed in equation (57). Since 

(6-)' exp( — 1 n  n  (58) 

(see Ref. 9), we used the asymptotic approximation (58) whenever 
F.()1/4) was required for n k 15. The threshold 15 was determined 
empirically. We attempted to keep our numerical estimates of the 
various spectra accurate to one percent relative error. 
We considered three eases: low modulation-index (r = 0.1), mod-

erately high index (11 = 1) and high index (r = 5). The results are 
displayed in Figs. 2 through 4. In each case, we have computed the 
effect of changes in the relative clipping level a = b/r. 

8.3.1 Low Modulation-Index 

When r « 1, it is evident from Fig. 2 and equation (55) that the 
principal part of the spectrum is well approximated by 

S.(f/W)  . {  C Co 8(f) +  
,=-.:,  27W 

(57) 

for  f 1 < W,  (59) 

O,  otherwise. 

Using results from the preceding section, we can show that when 
F «1, c,  r2 exp (—F2) (erf (a/ V2))2. Hence, for r « 1, 

S.(f/W) 

e + (erf  27rw (5))2 F2 exp  (— F2)  Fi(f1W),  II I < Tv, (60) 

0,  otherwise. 

That is to say, in the low-index case (r « 1), hard-limiting causes 
the principal part of the spectrum to be scaled down by the multiplica-
tive factor (erf (c0/2))2. 
Figure 2 illustrates the actual behavior [as opposed to the approxi-
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Fig. 2—Spectrum of low-index PM wave (r = 0.1) for various relative clipping 
levels, a is the ratio of the clipping level b to the rms modulation-index r. 

mation (60)] of St,(f /W) for f > W. Notice that the tails of the spec-
trum are raised considerably as the relative clipping level a decreases. 
This phenomenon is noticeable even for a  =  4 (i.e., clipping at a 
four-sigma level). The increase in high-frequency content is appar-
ently caused by the introduction of points at which the derivative of 
W(t) is discontinuous. 

3.3.2 Moderately High Modulation-Index 
The results for r = 1 are displayed in Fig. 3. The qualitative results 

are similar to those observed for r = 0.1; i.e., the principal part of the 
spectrum tends to decrease and the tails increase, as the relative 
clipping level a decreases. However, notice that for a particular value 
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of a, the frequency 11W at which the tails of the spectrum begin to 
rise is somewhat larger for r = 1 than for r = 0.1. 

3.3.3 High Modulation-Index 

When r = 5, the behavior of (V(0) as a function of a is quite dif-
ferent from that observed for r 5 1 (see Fig. 1). In fact, small changes 
in a can change the discrete component of the spectrum, C. = (V(0)2, 
from a relative maximum to zero. Consequently, we originally suspected 
that the continuous part of the spectrum might change significantly 
as the discrete component changed from a relatively large value to 
zero. To check this point, four values of a were selected for testing; 

10 

lo-' 

10 -5  

10-6 
0  2  4 f /vv  G 

10- 6 

10-7 

10-8 

10-9 

10 -10  

10 

Fig. 3—Spectrum of waves having moderately high modulation-index (r = 1) 
for various relative clipping-levels, a is the ratio of the clipping level b to the 
rms modulation-index r. 
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two at points of relative maxima for C. and two where C. was nearly 
zero. The results are displayed in Figs. 4a and b. 
From Figure 4a, we see that the qualitative behavior of S.(f/W) 

for high modulation-index (1' --- 5) differs significantly from that 
observed for r 1. However, whether or not C. vanishes does not 
seem to affect the general characteristics of the continuous part of the 
spectrum. Generally speaking as a decreases, the portion of the spectrum 
for 0 < f/W < 1 tends to increase while the part for 1 < f/W < 10 
tends to decrease. Notice that a discontinuity is introduced at IIW = 1, 
a characteristic of lower modulation-index. Of course, limiting reduces 
the variance of the modulating signal X, , so that the discontinuity 
at f/W = 1 is not surprising. 
To examine the behavior of the tails of the spectra, look at Figure 4b. 

As in the other cases, decreasing a raises the tails of the spectrum, 
although the effect is considerably less than that observed for r • 5 1. 
In fact, for a > 3, we observed very little difference between the clipped 
and unclipped cases. 

3.4 Comments 
Computation of the spectrum for large values of f/W, using the 

infinite series approach, is expensive since many terms are required. 
Moreover, accurate computation of C„ and F. , for large n, is difficult 
(if not impossible) because of numerical problems. Consequently, a 
good estimate of the spectrum for large f/W would be very desirable. 
Unfortunately, we do not have such .an approximation. However, it 
is possible to estimate the relative frequency f/W at which the tails of 
the spectrum for a clipped modulator will begin to depart from the 
unclipped case. 
More precisely, consider equations (48) and (49) which constitute 

an algorithm for the computation of y(n.). Since the tails of the spec-
trum of W(t) can rise only when v(fl) increases as a function of n, 
we need to examine p(n) for large n. 
For large n, we know that' 

H2„(x) = (-1)"2"(2n — 1)!I exp (x2/2){cos (V '4n  1 x)   

(61) 
and 

H2„,(x) = (-1)"2"+4(2n — 1)!PV2n -I- 1 

• exp (x2/2){sin (N/4n ± 3 x)  (62) 
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Hence, for large n we have the approximation 

v(2n)  v(2n — 1) — 2r sin (b). 0 cos (a V2n — 3/2) 

.exp  14 (2k j2 1) 

v(2n + 1)  v(2n) + cos (b),\P sin (a N/2n ± 3/2) 
7r 

/ «2\ V2n + 1 (2k —  
.exp --)  r2  k- r2 ) 1 

(63) 

(64) 

It is evident that the sequence /2„ = H ..1 [(21c — 1))1 is a decreasing 
function of n for n G no = [P2 + 3/2] and is an increasing function 
for n > n0. For any finite a, g„ will ultimately exceed exp (2 /4) and 
the forcing function for v(2n) will begin to grow without bound. It 
follows that v(2n) will exhibit instability when n is so large that jz,, >> 
exp (2/4). This will certainly be true when (2n — 1)/r2 exp (2.14) 
or for 

n  i[r2 exp  (a2/4) + 1].  (65) 

An inspection of Figs. (2), (3) and (4) shows that equation (65) gives 
a good indication (at least for those cases considered) of the value 
of f/W where the tails of the clipped spectra begin a significant depar-
ture from the unclipped case. Equations (63) and (64) also indicate that 
for large n, p(n) will oscillate as it increases in magnitude. Consequently, 
it appears that it will be difficult to get tight bounds on 2„(f /W) for 
large f/W. It is interesting that the carrier power is most significantly 
altered by the hard-limiting when r >> 1 while the effect (of hard-
limiting), on the tails of the spectrum decreases as r increases. 

IV. CONCLUSIONS 

In principle, equation (68) can be used to obtain either the auto-
correlation function or the spectral density of any "reasonable" func-
tion of a stationary gaussian process. We made use of the identity to 
study the spectral density of a sinusoidal wave which is phase-
modulated by a hard-limited gaussian process. 
The main disadvantage of this approach (i.e., using an infinite series 

solution) is that numerical techniques are usually required to obtain 
a solution. Consequently, estimates of the tails of spectra (of interest 
for PM systems having high modulation-index) are difficult and 
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expensive to compute accurately. However, when no better alternative 
is available, our approach can be used to obtain numerical results in 
a relatively straightforward manner. 
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APPENDIX 

A Relation 

Let Xt denote a stationary gaussian 
density function 

p(x) 
1 1 x\ 

277F exP  ' 

process with probability 

The joint probability density function for Xt+ , and Xi is 

p(x, ,x2) = 27r r2   exp 
7-2 

where 

(66) 

— 2rx,x2   
2112(1 — r2) J ' 

-œ < < œ,  (67) 

R1(r) 
Ri(r) =  r2 = R.(0) and r — r, 

for — co < r < co. 
If G(x) is an exponentially bounded complex-valued function of the 

real variable x (i.e., there are real numbers u and v such that W WI 5 
exp (u 'xi) for — co < x < co) and if G(x) is of bounded variation 
on finite intervals, then we shall show that 

i f e i‘e —co 
G(x1)G(x2)p(x, , x2) dx, dxa 

É̀' (R.(7))" 
nT .-0 fiG(AU-5 P(1) ) dx 12 (68)  

A.1 Comments 

All the improper integrals displayed in this Appendix are defined 
in the sense of principal value. For example, equation (68) is more 
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precisely expressed as 
f.T. 

hi m  J  G(X1)G(X2)P(X1 X2) dX1 dX2 

-Tt 

(Rn(I"))n 

n-0  n! 
dn   lurn j• G(x)(---i,p(x)) dx 2 1 •  (69) 
dx 

Since G(x) is exponentially bounded and integrable over (— T, T) 
for all T  0, it follows that the integrals in equation (69) exist and 
are bounded. Consequently, the improper integrals in equation (68) 
also exist. Moreover, one can show that 

T, 

hi m G(X1) G(X2) P(X1 1 X2) dX1 =  G(X1) G(X2) P(X1  X2) dX1 
T,-no  -T,  -0a 

uniformly for — 00  <  x2 < CO . 

It follows that the double limit in equation (69) can be expressed 
as an iterated limit and further that the improper integral in equation 
(68) can be evaluated as an iterated improper double integral. 

A.2 Proof of Identity 

We first establish equation (68) for all functions G(x) which are of 
bounded variation and satisfy 

L. I G(x) I dx <  . 

In this case (following Rice,' MicIdletona and Bennett4), G (x) has a 
Fourier transform 

(w) =J G(x) exp (—jwx) dx 

such that for almost all x, — co < x < co, 

1  G(x) = 2— r7  9(w) exp (jwx) dw. 

Using equation (71), we can write 

f C0 

x2) dx, dx, 

=  9(coi) exp  de),)(f: 9(0,0 exp (icee2) dto.) 

•p(x, ,  dx, dx2 .  (72) 

(70) 

(71) 
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Since G(x) is of exponential order, one can show that all combinations 
of the integrals in the right-hand side of equation (72) converge uni-
formly so that we are justified in interchanging the order of integra-

tion to obtain 

f:G(xi)G(x2)P(xi , x2) dx1 dx2 

=  F. 0 01)9(c02) 

P( Xi  x2) exp  [i(celxi  w2x2)] dx1 dx2) dw1 dw2 .  (73) 

Using the fact that 

r 
p(x, , x2) exp  w2x2)] dx1 dx, 

r' 2 
= exp  (0)2 + 21%010,2   

(see Ref. 5, pp. 30-35), and recalling that  e/n! converges uni-
formly to exp (x) for — 00 < x < o o , we obtain the following from 
equation (73): 

r 
G(x1)G(x2)73(x1 , x2) dx1 dx2 

=  (R.(r))" {1 r 2 exp — r 2—  te) I ) (240 1 

27r L. 

(iw2)S(w2) exp (-11;-(e) dc02ir }. 

An application of Parseval's theorem yields 

27 f g(co)(jw)" exp  r2  z) dc,7  f  p(x)) dx r  (75) 
d" 

and a similar expression for -§ and O. Using equation (75) in equation 
(74), we obtain equation (68). 
Now, we only assume that G(x) is exponentially bounded and of 

bounded variation on finite intervals. For k = 1, 2, • • • , define 

Gk(x) = Ix), 
0, 

for  —k  x  k, 

otherwise. 

(74) 
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It follows that G k(x) is of bounded variation and that f ̀1%,I G k(x) I dx < co 
for k = 1, 2, • • • so that the above results imply that 

f. 
Gk(x,)Gk(x2)P(x1 , x2) dxi dx2 

=  (R(7))"  
n  n! 

j'e .Gk(x)( ;p(x)) dx 
2  (76)  

for k = 1, 2, • • • . 
We know that 

d"  1  (  (x\ 
P(x) = 27r2 ri  Ht -j) exp 2112) 

[H,, (z) is the Hermite polynomial of degree n], so that the series in 
equation (76) can be expressed as 

where 

1 
a„,,, = 2„n!  

00 

Sk(r) = E a„,,, r" 
—0 

1 r° 
Gk(d rx)H„(x) exp (—x2) dx 

1/..; 

Making use of the inequalityR 

H(x) I < exp ()2012V ,  e 1.086435, 

and the assumption 

G(x) I 5. v exp (u x I),  —  < x < co, 

we can see that 

(77) 

2 

•  (78) 

2 e)  2 
o  < (. f e.    o  exp (uVj rx —  dx) < cc , 

for all n and all k. Hence, when I r < 1, Weierstrass' M-test implies that 
the series Sk(r) converges uniformly for k = 1, 2, • • • . Consequently, 
we have 

co -co 

f  ,00 

lir n  f  G k ( XI) G1, ( X2) P( Xi  I x 2) dx, d X2 

k-no -   

CO  (R (r))" E 
n! 

d" 
lim f Gk(x)( p(x)) dx 

dx Ic-Kc 

for all T such that /0•)/r2 ±1; i.e. for I r I < 1. 

2 

(79) 
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One can also show that 
f 00  

11m m  Gk(xi)Gk(x2)P(x, , x2) dxi dx2 
f - .0 

G(x,)G(x25P(xi , x2) dxi dx2 

and that 

(80) 

co  d" 1i m f G  —  x)) dx = fe G(x)( cr--; p(x)) dx .  (81) 
k..., -. *(X) (dXn P(  _{.,  dx 

Substituting equations (80) and (81) into equation (79) yields the 
identity (68) for all r such that R(r)/r2 0 ±1. 
We saw above that our identity can also be expressed as 

where 

faa 
G(xi)G(x2)P(x1 , x2) dx1 dx2 = E aen,  I r < 1,  (82) 

n.0 

1  1  2 

ay, — en!   fic G(0 rx)H„(x) exp (—x2) dx1 •  (83) 
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Three classes of differential coders have been built which exploit 
the two-dimensional spatial correlation present in television pictures. 
The three classes are distinguished according to the technique used to 
predict the value of the picture element (pel) to be coded. In the first 
class, the prediction is the value of the previous di' ment along the 
scan line averaged with one or more elements in the previous line 
(of the same field). In the second class, the prediction is the sum of 
the value of the previous pel with the local element difference in the 
previous line. In the third class, the transmitter and receiver choose 
the prediction from either the previous element or some combination 
of the previous element with the elements in the previous line. The 
choice is based on differences measured between elements already 
coded. These are available both at the transmitter and receiver, so 
no extra information need be transmitted. In the absence of trans-
mission errors, the pictures resulting from all three classes of coder 
are markedly improved over those in which only the previous element 
is used as a prediction. In particular, vertical and sloping edges are 
now well defined. The effect of a transmission error on a single frame 
of the received picture is scarcely visible in the first class of coder 
but is much more visible in the second and third classes. 

I. INTRODUCTION 

Intensity correlation in television pictures extends both horizontally 
and vertically.'-3 For a number of good reasons, most practical predic-
tive encoders have exploited only the horizontal correlation: 2 

(i) In a noninterlace system, access to the vertically adjacent 
picture element (pel) requires storage of one line of information 
(about 8,000 bits for broadcast TV or 2,000 bits for Picture-

1049 
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phone® Service). In a 2 : 1 interlaced system, a field plus a line 
must be stored (106 bits for broadcast or 250,000 for Picture-
phone Service). If access to the vertically adjacent pel in the 
same field is desired, a line of storage is required. 

(ii) Most television systems, including Picture phone Service, use an 
interlaced scan. Because of the storage problem, access to the 
vertically adjacent pel in the same field is most practical. How-
ever, this pel is about twice as far away (spatially) from the 
current pel as is the previous pel in the same scan line. The 
vertical correlation of intensity within a field is thus less than 
the horizontal correlation. 

(iii) Statistical studies of television pictures suggested that for 
linear predictive encoding very little extra redundancy could 
be removed by exploiting the vertical correlation as well as the 
horizontal correlation.2•3 

Given these reasons, why look at the use of vertically adjacent pels 
in various predictive encoding schemes? First, in recent years the cost 
of storage has fallen dramatically and hence the extra memory, re-
quired for storing one line is not a serious objection. At present, a 
2,000-bit line store using MOS shift registers costs about $600.00 
and fits on one printed circuit board containing 40 dual-in-line pack-
ages. Future costs should be much lower (less than $100.00)• 
To counter the second and third points above, let us consider for a 

moment the operation of a differential quantizer. A differential quan-
tizer predicts the value of the current pel by using information that 
has already been transmitted. The discrepancy between the uncoded 
value and the prediction is quantized and added to the prediction to 
form the coded value of the current pel. 
Most practical differential quantizers which make use of the 

horizontal correlation of intensity produce pictures of generally accept-
able quality, except for sharp vertical or diagonal edges. These are 
blurred and have an annoying "busyness." The problem is in the predic-
tion. The differential quantizer has no way of "anticipating" a vertical 
edge. Consequently, the prediction it makes is grossly in error at these 
edges. 
By making use of information from the previous line, it is possible to 

anticipate the vertical edges and most of the diagonal ones. To study 
this possibility, we have built and/or simulated on a computer a num-
ber of differential quantizers. These coders can be divided into three 
classes which are distinguished by the way in which the information 
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from the previous line is used to "anticipate" or predict the value of 
the current pel. In Fig. 1 we give a labelled diagram of the pels near the 
current pel. 
In the first class of coder, the prediction is the average of the value 

of the previous pel, A, and the value of one or more of the vertically 
adjacent pels, B, C, and D. We call this "averaged prediction." In the 
second class of coder, the prediction is the sum of A and the scaled 
horizontal element difference or slope between elements on the previous 
line, e.g., C — B or -1;(D — B). This has been called "planar predic-
tion."4 
These first two classes of coders use linear prediction since the pre-

diction is a linear sum of previously coded intensities. The third class of 
coder uses a nonlinear prediction in that the choice of prediction mode 
is signal-dependent. The prediction can be either A or some linear 
combination of A, B, C and/or D. The choice is dependent on the mag-
nitude of intensity differences between the pels in the previously coded 
neighborhood of the current pel, X. This class of coder can be called 
"optional prediction." (R. E. Graham has proposed and simulated 
some coders of this type.5) 
In the following sections we describe the particular coders we have 

built, and give some examples of processed pictures. We also include 
a discussion of the effect of transmission errors for the various coding 

strategies. 

II. DESCRIPTION 

The scan format is similar to that used in Picturephone Service: 
there are 271 scan lines with a 2:1 interlace, 248 elements per line and 
the frame rate is 30 Hz. 
A schematic of a general differential quantizer that uses information 

from the preceding line is given in Fig. 2. The quantizer characteris-
tics are shown on Table I. The particular coders fo be described below 
differ only in the implementation of the predictor. Note that with the 
use of sign prediction° these are three-bit coders. 
For comparison, we chose as a reference an element-coder (i.e., the 

INTERLACED{ 
FIELD 

D 

A  X }CURRENT FIELD 

Fig. 1—Diagram of picture elements (pels) near the current pel. 
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PREDICTION m-- P 

9-LEVEL 

QUANTIZER 

PREDICTOR 

1- PEL 
DELAY 

 TO CHANNEL 
CODER 

--• — 
A 

LINE-  1- PEL 
2 PEL 
DELAY  D  DELAY 

1- PEL 

c  DELAY 

Fig. 2—Diagram of differential quantizer using information in previous line to 
aid prediction of current pel. The letters A, B, C and D refer to the pela whose 
positions are shown in Fig. 1. 

value of pel A is used as a prediction) having the same quantizer 
characteristics as above. Although it might be argued that it would 
make more sense to optimize the quantizing scale for each type of 
prediction, we found that the subjectively optimum quantizing scale 
varied as much with picture content as with prediction strategy. For 
most experiments, therefore, we used one quantizing scale; a few 
results on varying the quantizing scale are, however, also described in 
the next section. 
In the subjective tests, the 5-1 inch by 5 inch raster was viewed 

through a polarizing screen from a distance of 36 inches in a room 
having average office illumination (70 foot candles). Two scenes were 
used: (i) a model head, "Penelope," with a draped background (Fig. 
3a) ; and (ii) a photographic slide, "Karen," (Fig. 3b). 

III. AVERAGED PREDICTION 

In this type of coder, the prediction is formed by adding the value of 
pel A to the value of some combination of the pels B, C and D. Three 
coders were built and tested; the predictions used were: (i) (A + 
D)/2,  (A + C) /2, (iii) [A + (C + D)/2]/2. Figure 4a show' s a 
diagram of the arrangement used to test coder (i). 
In the absence of channel errors, the displayed picture at the trans-

TABLE I—ENCODER CHARACTERISTICS 

Input Levels ±0-1  2-7  8-17  18-33  34-255 

Output Levels ±0  4  11  25  42 
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mitter is the same as at the receiver° and hence only the transmitter 
loop was built for the real time tests. 
In comparison with the reference coder, all three of the coders gave 

significantly improved rendition of the vertical and most of the sloping 
edges. Horizontal edges and those sloping slightly upward appear 
blurred in comparison with the same edges encoded by the element 
coder. However, it is a static blurring which is subjectively much less 
annoying than the "edge busyness" which occurs on some edges en-
coded by the element coder. The granular noise in pictures encoded 
with the averaged prediction coders is associated more with high 
vertical spatial frequencies than with high horizontal spatial fre-
quencies. This effect is to be expected because the relatively large 
vertical step size will result in more frequent use of the larger (and 
less accurate) quantized difference signals in regions containing vertical 
detail. In picture areas with no directional properties, the noise level 
is about the same as with the element coder. Some observers, however, 
mentioned that it appeared to be a higher frequency noise. 
In comparisons among the "averaged prediction" coders, (i) and 
(iii) appeared preferable to (ii) since they were able to adequately 
encode edges with smaller positive slopes than was (ii). This is under-
standable since the presence of pel D in their prediction means that 
such edges are anticipated. There was very little to choose between 
coders (i) and (iii) and so we carried out subjective tests in which 
eight unskilled and eight skilled observers were asked to state a pref-
erence between pictures obtained using coder (1) and the reference 
coder. With "Penelope," all eight of the skilled and seven of the eight 
unskilled observers preferred the picture given by coder (1). With 

Fig. 3—Scenes viewed for evaluating coders, (a) Penelope and (b) Karen. 
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Fig. 4a—Diagram of apparatus used to evaluate coder (i) in which the value 
(A ± D) /2 is used as a prediction of the current picture element. The displayed 
picture is equivalent to the received picture providing there are no channel errors. 
Fig. 4b—Apparatus used to evaluate coder (v) in which A + (D — B)/2 is 

used as a•prediction of the current pel. The position of pele A, B and D is shown 
in Fig. 1. 
Fig. 4c—Apparatus used to test the optional prediction encoder. If IA — BI > 
ID — B1, A is used as the prediction. If IA — BI  iD — BI, (A + D)/2 is used. 
The positions of A, B and D are shown on Fig. 1. 
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"Karen," all subjects preferred the picture given by coder (i). (The 
skilled observers all remarked on the better edge rendition of the verti-
cal stripes in Karen's blouse.) As the quantizing scale is made coarser, 
there is improved rendition of vertical edges in the picture from the 
reference coder but the granular noise also increases. In this situation, 
the comparison between the two coders is closer, but coder (i) was still 
preferable. 
The element coder and coders (i), (ii) and (iii) were simulated on 

a DDP-224 computer system. Only a single frame was processed so 
it was not possible to judge frame to frame noise. In the first set of 
experiments the magnitude of the difference between the original pic-
ture (coded as eight-bit PCM) and pictures from the above coders 
was displayed. Figures 5a and 5b show the discrepancy between the 
PCM coded picture and pictures coded with the element coder and 
coder (i) respectively. (Figures 5c and d are for coders discussed 

(h) 

Fig. 5—Magnitude of the difference between a picture coded as 8-bit PCM and: 
(a) the reference coder; (b) coder (i) ([A -F D1/2 is prediction); (c) coder (y) 
((A ± (D — B)/21 is prediction); (d) optional prediction coder of Fig. 4e. 
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below.) As expected, the element coder showed differences along verti-
cal and diagonal edges. The average prediction coders, on the other 
hand, gave differences chiefly along horizontal edges. Coder (iii) 
seemed to show the least discrepancy from the eight-bit coded picture. 
No subjective improvement was realized by choosing coder (iii) over 
coder (i) in the experimental model. 
We also investigated on the computer the effect of transmission 

errors on a single frame of the received picture. It has been suggested 
that because the average prediction coders made use of information 
from the previous line as well as from previous pels on the current 
line, the effect of an error on subsequent lines would be serious. How-
ever, because the prediction is an average, the effect of the error decays 
spatially. For example, consider the effects of an error of 64 quantum 
levels in coder (i). This error results in the array of intensity errors 
shown in Table II. Note that the effect of the error decays rapidly 
both horizontally and diagonally, but more slowly vertically. Also, 
the spatial derivative of the error pattern is small except near the 
original error. This fact should help reduce the visibility of the error 
pattern. In fact, the pictures generated on the computer showed that 
even serious errors (e.g., a change of sign on the outer level) resulted 
in a pattern that was scarcely visible. 
Contrast the visibility of the errors in Figs. 6a and b. The picture 

in Fig. 6a was coded with the reference coder. The upper, dark line 
was caused by a positive-to-negative sign change in an outer quantizer 
level. The lower light line results from a negative-to-positive sign 
change in the third quantizer level. The identical type of errors are 
present in the picture in Fig. 6b which was coded with coder (i). The 
error in the outer quantizer level is visible as a small black dot at the 
outside corner of the left-hand eye. The error in the third quantizer 
level appears as a white streak toward the right end of the upper lip. 
In any event, the errors are far less visible than the equivalent errors 
in Fig. 6a. 

IV. PLANAR PREDICTION ENCODERS 

Two coders were built and tested. The predictions used were (iv) 
A + (C — B) , and (v) A + (D — B)/2. Figure 4(b) shows a sche-
matic for coder (v). 
Both coders showed improvement over the reference coder, but not 

over the coders in the previous section. In particular, the planar pre-
diction encoders gave rise to "edge-busyness" on edges sloping upward 
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Fig. 6—Decoded pictures showing the effect of intensity errors resulting from 
channel errors. Figures (a) and (b) each contain two error patterns resulting from 
errors of 84 and 50 levels (out of 255 levels). (a) Derived using the reference coder 
(differential quantizer using A as the prediction); (b) results from the use of 
coder (i) (rA + D1/2 is prediction) ; (c) results from the use of coder (y) 
(Di ± (D — B)/21 is prediction) when there is a single intensity error of 84 
levels; (d) results from the use of the optional predictor (see Fig. 4e) when there 
is a single intensity error of 50 levels. Copies of the original prints may be ob-
tained from the authors. 

to the left. In addition, coder (iv) gave rise to the same problem on 
edges sloping upward to the right. 
Consider an edge passing to the left of B in Fig. 1 and between 

A and X so that (C — B) = (D — B) = O. The values of A + 
(C — B) and A + (D — B)/2 will both be poor predictions of X 
(the same as the element coder but worse than (A + D)/2.) Also, 
if an edge passes between A and X and between D and C, then A + 
(C — B) will be a poor prediction of X. 
The discrepancy between the picture coded as eight-bit PCM and 

that coded with coder (v) is shown in Fig. 5c. Although on the 
average, the picture shows less discrepancies than the equivalent 
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picture for coder (j), the discrepancies that do occur lie on vertical 
or diagonal edges sloping upward to the left. It is on just these edges 
that the "edge busyness" occurs. 
The effect of a transmission error is an area of uniformly altered 

brightness as shown in Fig. 6e. How this pattern arises is illustrated 
in Table III where we have assumed an error of +64 levels in the 
element in the top row of numbers. 
In view of the increased visibility of error patterns and the absence 

of a significant improvement in picture quality over the averaged 
prediction encoder, we saw no overall advantage in the planar pre-
diction encoders for fixed length codes. 

V. OPTIONAL PREDICTION ENCODERS 

A number of varieties of optional prediction encoders were investi-
gated. The one examined most closely uses either A or (A + D)/2 as 
a prediction. If the difference IA — BI is greater than the difference 
ID — BI, A is used as the prediction, otherwise (A + D)/2 is used 
(Fig. 4c). These differences are made up of pels already coded and 
available (in the absence of transmission errors) at both the receiver 
and transmitter. Thus, no extra information need be sent to the re-
ceiver to indicate the prediction used by the transmitter. 
The pictures obtained showed less granular noise than those from 

any of the other encoders. They showed little deviation (Fig. 5d) 
from the pictures coded as eight-bit PCM. Most edges are reproduced 
well, but those sloping at about 45 degrees upward to the left showed 
some local slope overload due to a mistaken choice of prediction. Un-
fortunately, a mistaken choice on one line tended to lead to similar 
mistakes on the next line and hence such clusters of mistakes tended 
to be visible. Different strategies for making the choice altered the 
slope of the edges on which the trouble occurred. So far only simple 
strategies have been tried; more complicated ones may well eliminate 
the problem. Obviously, there is a wide variety of techniques to be 
explored. For instance, there can be more than two options. In view 
of the low granular noise of the encoded pictures, such exploration is 
well worthwhile. 
The effect of a transmission error on the decoded picture can be 

catastrophic. The receiver can lose track of the prediction option 
selected by the transmitter. Indeed,ihe effect of a large error tends to 
make the receiver choose incorrectly. This is illustrated by supposing 
the pel D has an error of +64 levels. This generates a large spatial 
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change; ID — B I is large and hence (A + D)/2 will probably be used 
as the prediction. This propagates the error to the next line. If A 
should have been used as a prediction instead of (A + D)/2, then the 
differences are added to the wrong prediction at the receiver. The 
effect on the decoded picture can be catastrophic as is illustrated in 

Fig. 6d. 

VI. DISCUSSION 

Because of the improved picture quality and the insensitivity to 
transmission errors compared with a standard differential quantizer, 
coders (i) and  seem at present to be the most practical for intra-
field coding of pictures for transmission. This is especially true when 
fixed length codes are to be used. We have still to determine the best 
quantizing characteristics and the best weighting of pel A with pels on 
the previous line to form a prediction. 
Except for a few poorly predicted pels, the optional prediction en-

coders give a better rendering of the scenes described than do the fixed 
prediction encoders [e.g., coders (i) through (y) ]. Hence we are con-
tinuing to study ways of removing the last few flaws in the coded 
picture. The sensitivity of this type of coder to transmission errors 
may be a serious problem. We are considering a number of methods 
for reducing this sensitivity. 
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On the Control of Linear Multiple 
Input-Output Systems* 
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The control of linear time-invariant systems is one of the most basic 
problems of modern automatic control theory. Although "optimal con-
trollers" which minimize certain costs associated with control can be 
determined, in most applications "simple controllers" suffice, and are 
often more desirable. The criteria by which these simple controllers 
are designed are closely related to the problem of assigning the 
eigenvalues of the fundamental matrix (i.e., the poles of the system) 
to arbitrary but specified locations. This paper presents an arpproach 
to the design of such control systems. Our approach does not involve 
computing complicated canonical forms, as do some previous methods, 
and at the same time generalizes easily to multi-input-output systems. 
A simple solution of the problem of designing feedback control systems 
with a minimum number of dynamic elements is also presented. 

I. INTRODUCTION 

In recent years there has been a considerable amount of interest in 
the problem of designing controllers for linear systems. Although 
most of the theoretical interest has centered around optimal control 
approaches, it is generally known that in most standard control sys-
tems, simple and usually nonoptimal controllers suffice. One of the 
oldest problems of control theory is that of stabilizing a linear control 
system by using feedback (see Fig. 1). Although this problem has 
been solved in the single input-output case by many people, one of the 
first clear statements was that by D. G. Luenberger.1 In the case of 
multiple input-outputs, elegant solutions are of recent origin (see Ref. 
2). Almost all of the published solutions resort to canonical forms, 
and in the multiple input-output case are not convenient to work 

*A talk based on this paper was presented at the Second Assilomar Con-
ference on Circuits and System Theory, 1968. 
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INPUT 
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Zi 

Fig. 1—Model of controller. 

with. Also, in almost all cases, since the system is often described in 
terms of variables that are of direct interest, a transformation to 
canonical form is inconvenient. 
In this memo we present a solution of the problem including the 

problem of designing controllers of minimal dynamic order (i.e., a 
controller using the, least number of dynamic elements). The present 
solution does not resort to the use of canonical forms for the design. 
This approach also helps to systematically exploit the additional 
freedom that is obtainable due to the multiplicity of the inputs and 
outputs. In fact there is no previous solution known to the author 
which solves the problem of designing "minimal order" observers 
without resorting to complicated canonical forms. 
We begin by introducing certain preliminaries and establishing the 

notation, and then solving the problem of designing controllers and 
observers in Sections III and IV. In Section V, the problem of design-
ing controllers of low dynamic order is solved. 
After this paper was written, the author became aware of the paper 

by W. M. Wonham.' Wonham derives Lemma 1 in the following sec-
tion. The proof given in Wonham however uses the theory of minimal 
polynomials, as compared to the proof given in the following section 
which uses only the concept of linear spaces. Wonham himself has 
commented in his paper that an abstract proof of his results would 
be very worthwhile. The author feels that the proof given in the 
following section is an abstract version. The results of Sections III 
through V are not to be found in Wonham's paper. 

II. LINEAR TIME-INVARIANT SYSTEMS AND THE PROBLEM OF CONTROL 

The following definitions contain certain undefined but generally 
understood concepts such as dynamical system, etc. For a more 
detailed discussion of these ideas, the reader is referred to Ref. 4. 



LINEAR TIME-INVARIANT SYSTEMS  1065 

2.1 Linear Time-Invariant System 

A linear time-invariant system  is a dynamical system governed 
by the following equation. 

i(t) = Px(t)  Gu(t),  (1) 

y(t) = Ilx(1),  (2) 

where x(1)  E" is the state of Z and u(t) e Em and y(t) e e are the 
inputs and outputs of Z respectively. F, G, and H are n X n, n X m 
and p X n matrices respectively, and are independent of time t. 
A "system" hereinafter shall denote a linear time-invariant system 

for brevity. 

2.1.1 Cyclic System 

Z is cyclic if there exists x e e such that the matrix [x Fx • • • F"-lx] 
is nonsingular. 

2.1.2 Complete Controllability 

Z is completely controllable if the rank of [G FG • • • F"--1G] is n. 
See Ref. 4 for details. 

2.1.3 Complete Observability 

Z is completely observable if the rank of [H' F'H' • • • F"'I1] is n. 
Finally Z is ordinary if 

(i) Z is cyclic; and 
(ii) Z is completely controllable and observable. 

Most systems ordinarily dealt with are cyclic, because, as will be 
shown in this section, the condition of not being cyclic is caused by 
having two identical subsystems embedded in one system and yet 
completely decoupled from each other. Hence it is a singular situation 
in the sense that whenever a system is completely reachable and com-
pletely observable, a slight amount of feedback can make the system 
cyclic (see Ref. 5). 
It is very interesting to note that most theorems to be given in this 

paper are dependent on a simple and basic property of linear spaces. 
This property is stated as the following lemma. 

Lemma 1: Let g „ i = 1 • • • n, be n distinct linear subspaces of a 
linear space. Let .e be a linear space contained in the set union of g, , 
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i = 1 • • • n. Then 

S, for some j E {1, 2, • • • nl,  (3) 

where c denotes "contained in". 

Proof: The proof will be based on the principle of finite induction. 
The lemma is obviously true for n = 1. Now suppose the lemma is 
true for all n <n0 ; i.e., suppose that, given gi ,i = 1,2, • • • ,n < no , 
then 2 C U S, implies that 2 C S, for some j  n. It will then be 
proved that the lemma is true for n = no , which will complete the 
proof of the lemma by finite induction. 
Assume .e is not contained in the set union of any m (m < no) of 

the g,'s, for if it is so contained, then the lemma trivially holds (from 
previous paragraph). Therefore there exists no vectors x, such that 

X. c 2, x, E g, and x, e g, if i j.  (4) 

Consider now any two of these no vectors x. , x, and 

± (EX i  j,  a t R. (5) 

(The set of real numbers). 

Since 2 is linear, x,  axi t 2 V a; also, since 2 C  g, 

ax, e S, for some s(a) E {1, 2, • • • ,  (6) 

However, since there are only a finite number of g,'s while a can assume 
any values from the uncountably infinite set R, there exists an "s" 
such that for at least two distinct values of a, namely a, and az , 

OCIX and a2X1 S.. 

But this implies that 

(a, — a2)x1 t S. since g, is linear; 

xi e S. since a,  a2 and g, are linear. 

(7) 

(8) 

Therefore s  j by (4), i.e., x,  aix, e gi , whence x, e g, since x; e gi 
and g, is linear. Once again using (4), x,eg, i = j which contradicts 

equation (5). Q.E.D. 

Note: As can easily be seen, Lemma 1 does not hold in general for 
an uncountable union of linear spaces. 

Definition: A square matrix F has simple structure if and only if for 
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each eigenvalue X, , of F there exists one and only one eigenvector e, . 
(In other words, F is simple if no two uncoupled Jorden blocks in the 
canonical form have the same eigenvalue.) 

Note: All the eigenvectors are assumed to be normalized such that 
the first nonzero component is +1. 

Lemma 2: The statement that the system  is cyclic implies that the 
square matrix F in equation (I) has simple structure. 

Proof: Suppose there exists two eigenvectors e, and e2 of F corre-
sponding to the eigenvalue X. Then 3 two eigenvectors, d, and cl2 of 
the matrix F' corresponding to I, where F' is the conjugate transpose 
of F. Let x be any vector in K. Then suppose y is the projection of x 
in R(d, , d2), the subspace spanned by d, and d2 . Let 

z R(d, , d2) such that  (z, y)* = 0, z  O.  (9) 

Then since ((x — y), z) = 0 because z e R(d, , d2), it follows that 
(x, z) = 0 by equation (9) and since z R(d, , d2), z = aid, + a2d2 • 

Therefore 

(z, Fx)  ((aidi  a2d2), rx), 

= X'((aidi  «2d2), x), 

= itr(z, x) = 0  V  r. 

Therefore the proof is complete. Q.E.D. 

Definition: A subspace .0 of e is an invariant subspace of F if 
x e 2 = Fr £ L..11(F) denotes an s-dimensional invariant subspace of F. 

Lemma 3: The statement that  is ordinary implies that 3 an a aB-

and  K, such that 

p([F : Ga]) = p([F' : H'0]) = nt. 

Proof: Notice that the number of invariant subspaces of F are finite, 
since the number of one-dimensional invariant subspaces are finite. [This 
follows from the familiar structure of invariant subspaces, see equa-
tion (6).] Suppose x e R(G), the space spanned by the columns of G and 

paF : x]) = s(x) G n. 

* (z, y) is inner product of z and y. 
t The matrix [F : M will in general denote the matrix [A FA • • • Fn-lA], 

and paF : A]) denotes the rank of [F : A]. 
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Therefore x a R(G) belongs to some g.(F), 8 < n. Therefore, from 
Lemma 1 (R(G) C .1.(F) for some s <n, which contradicts p([F:G]) = n. 
Therefore 3 an a e E", such that p([F : Gal) = n. Similarly the other 
case. Q.E.D. 

The above lemma shows that 3 a single input-output system corre-
sponding to every ordinary system, such that the controllability and 
observability of the new system is implied by that of the old system 
with multiple inputs and outputs. Lemma 4 shows that the weighting 
vectors a and  could almost be any vector in Ern and E9 respectively. 

Lemma 4: The statement that 2 is ordinary, that a E Ern and 0 e E', 
implies that p([F  :Gal) = p([F' :  = n almost surely.* 
Proof: Notice the determinant of [F: Ga] is a polynomial in a, and 
by Lemma 3 we have shown is nonzero for at least one a. If the distribu-
tion of a does not allow nonzero probability to any surface of dimension 

< m then 

Probability that p([F : Ga]) = n is 1. Q.E.D. 

The stability of 2, and the transient response of 2 are generally 
characterized by the eigenvalues of F, which in turn are given by the 
characteristic polynomial x (F) Hence loosely by dynamics of 2 we 

mean the characteristic polynomial or the eigenvalues of F. 
Given that a system 2 models a "plant" to be controlled the problem 

that we will consider is that of designing another system  such that 
the resultant "closed loop" system has arbitrary dynamics. 

HI. THE DESIGN OF CONTROLLERS 

In order to motivate the nature of the problem in Section IV, we 
shall first solve the so-called control problem which essentially is a 
simplified version of the problem postulated in Section II. The H 
matrix in equation (2) is now assumed to be the "n" dimensional 
identity denoted by l„, in other words, the complete state of 2 is 
available for measurement. In this case, we show that we need only 
feed back a certain linear function of the state "x" to achieve any 
given dynamics for the closed loop system. 
The problem formally reduces to the following. 
Given a plant 2 described by equations (1) and (2) with H in (2) 

*a and p are chosen from any joint distribution in E" and EP respectively, 
which does not assign nonzero probability to a surface of dimension less than 
m and p, respectively. 
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replaced by I„ , it is required to find an m x n matrix K referred 
to in the following as the feedback gain such that the resultant system 
has the prescribed characteristic polynomial (10) 

sn E  (10) 

Let the characteristic polynomial x(F) be 

x(F) = n  E a1s.  (11) 

Then from Fig. 2 the problem reduces to finding K such that 

x(F — GK) =  E  (12) 

since the new differential equation is î = (F — GK)x Gu. The' 
solution is contained in the following theorem. 

Theorem I: If a system E is cyclic and completely controllable then. 
with 7, , -y, , • • • , -y„ real constants, 

(1)  x(F — GK) = s"  E  (13) 
i-1 

for any K of rank one satisfying 

(14) 7, =- a,  tr (GK) 

= a + an+, tr (GK) ± • • •  tr (F"'(3K). 

(2) Moreover there exists at least one K satisfying equation (14). 
Proof: The new characteristic polynomial with feedback is 

x(F — GK) = det (s/ — F  (3K), 

G 

Fig. 2—Feedback control when the state is known. 
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i.e., 

= det Rs/ — F)(I (si — F)-1GK)],  (15) 

= x(F) det (I + (sI — FriGK). 

Since K is of rank one, it follows that (si — F) -'GK has rank one; 
therefore 

det (I + (si — F) IGK) = 1  tr (si — F)'GK  (16) 

where tr (A) denotes the sum of the diagonal elements of A. Therefore 
from equation (15) 

x(F = GK) = x(F)[1  tr (si — F) -1GK],  (17) 

x(F — GK) = x(F)  tr [x(F)(sl — F) IGK]  (18) 
which since 

(si — E Fis-“+" 
i -0 

outside an appropriate region in the complex plane (see Ref. 6), 

becomes 

x(F — GK) = x(F)  tr [x(F) E [es 1)GK]] • • (19) 
-0 

Now using the Cayley-Hamilton theorem (see Ref. 6), i.e., using the 
fact that 

F"  E  = 0.  (20) 
i-1 

and equating coefficients of equation (19), we have that the coefficient 
of s"- on R. H. S. of equation (19) is (using a.  yo 1 1) 

=0,  j > n;  (21) 

-y, = a; +  tr GK  • • • + tr F''GK,  n > j > 1;  (22) 

=0,  j < 0.  (23) 

Therefore 

= al  tr GK, 

72 = a2  al tr GK  tr FGK, 

y„ = a„ ± • • • ± tr F""GK. 

(24) 
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This proves that if there exists K of rank 1 such that equation (14) is 
satisfied, then K satisfies equation (24), and that if K satisfies equa-
tion (24), then equation (12) is satisfied. 
Let 

[71, • , 7.1 

[a„ • • • , an] º- a', 

where ' denotes the transpose. We have, rewriting equation (24), 

Let 

A 

1  0 • • • 0 

a,  1 • • • 0 

"  • 

an_2 • • • a11_ 

- tr GK 

tr FGK 

_tr 

1  0 • • • 0 0 

a,  1 • • • 0 0 

an_2 an, • • • 1 

_an-1 an-2 • • • al 

Notice here that A-1 always exists and can 

- tr GK 

tr FGK 

1_ 

be evaluated easily. 

= A-1(7 — a).  (28) 

(25) 

(26) 

(27) 

_tr F"-G̀K 

Now we assume K = ak' (a and k are m x 1 and n x 1 matrices 
respectively), such that K is of rank 1 then equation (28) becomes 

- tr Gak' 

tr FGak' 

tr 

= 'e'er — a•)•  (29) 
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Since tr Gale =a'G'F"k, equation (29) becomes 

a'G' 

k = A-1 ('y = a) .  (30) 

But from Lemma 4 it is clear that p([F Ga]) = n for almost all ot. 
Therefore it follows that equation (30) has a unique solution for almost 
any a, and this completes the proof. 
Therefore from the proof of the above theorem, it is easy to see 

how we can find the required gain matrix. Equation (28) is linear in 
the elements of K. The freedom in the multi input-output case is 
essentially one of picking a. Almost any solution of equation (28) 
which has rank 1 will do the job. Notice that restricting K to be of 
rank 1 also helps to reduce the number of amplifiers to implement 
the system, for K then can be realized by (m  n — 1) amplifiers 
instead of (mn). 

IV. DESIGN OF OBSERVERS 

In Section III we saw how a gain matrix K could be computed for 
the system E with H = In . However when H  I„ , the state 'n' of Z 
is not directly observable and an observer to estimate the state has to be 
designed. It will become clear that Theorem 1 gives the solution to this 
problem also. The solution consists of designing a linear system E° 
which is constructed in such a way that its state e can easily be ob-
served, and such that the state of E° tends to the state of  as "rapidly 
as desired." (The meaning will become clear in the following.) 
The system Zo will consist of a model of E driven by an input which 

is equal to the sum of the inputs to a weighted error term which is the 
difference between the state of Z and that of Z,,. 

Let Z0 be defined by 

= F2  LH(x —  + Gu. (31). 

Let the error 2  x —  Then equations (1) and (31) imply 

= FX — L11±.  (32) 

Now we would like 2 to decrease to zero according to some dynamics 
in the sense that x(F — LH) should be some prescribed polynomial. 
It is obvious that once again the problem is to find an L such that 



LINEAR TIME-INVARIANT SYSTEMS  1073 

x(F — LH) is a prescribed polynomial which by Theorem 1 again is 
easily done by solving 

= a, 1- tr LH, 

= a2  a, tr LH ± • • • ± tr LHF, (33) 

= a„  an_, tr LH + • • • -I- tr HF"', 

where yi are the coefficients of the prescribed polynomial. Hence now 
the complete solution can be stated as follows. 
Step 1: By solving equation (33), construct an observer with dy-

namics such that it is sufficiently fast compared with the plant. 
Step 2: By solving equation (26), construct the controller as in 

Section III to have the required closed loop dynamics. 
Step 3: Cascade the observer and the controller as in Fig. 3. 

We can show that the characteristic polynomial of the entire closed 
loop system of Fig. 3 is actually x(F — GK) x(F — LH). 

zo 

Fig. 3—The structure of a complete "controller." 
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The differential equation for the complete system of Fig. 3 is as 
follows. 

—GK  [G- u. 

[LH F — GK  LH L  G_ 

Since the characteristic equation is unaltered by a nonsingular trans-
formation of the state [x', er, consider the transformation T denoted by 

[./- 0 1. 

/ —/ 

Obviously T is nonsingular and 

TLF  —OK  = F — GK  GK 
[ 

LH F — GK  LH  F — LH 

whose characteristic polynomial is clearly 

x(F — GK)x(F — LH). 

V. DESIGN OF OBSERVERS OF MINIMAL ORDER 

In Section IV, the design of observers was discussed and it was seen 
that the observer is a system of the same order as 1,, namely n. If it is 
assumed that H has full rank (this assumption is obviously no loss 
of generality), it is clear that the knowledge of Hx gives measurements 
on part of the state immediately; for 

y = Hx  (34) 

gives the projection of x on the row space of H. Hence it seems that 
one should be able to find the other component in the complement of 
the row space of H by making use of a dynamical system of order 
(n — p) (H: p X n). This was first proved by Luenberger in 1964 
in the single input/output easel and was proved in the multiple input/ 
output case by the same author in 1966.2 
In the following section, a simple proof of this proposition is given 

and a different method for constructing the observer is derived. 
Let the given system be, as before: 

= Fx + Gu, 

y = Hx. 

Let H be of full rank. It can be assumed that H is of the form 

(35) 
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H  [I, , 0],  p < n; 
since a nonsingular transformation of the state of equation 
always be found such that equation (36) holds. Hence, if 

and 

Then 

X = xilp 
_x2 n — p 

F = [F11 F12-1) 

LF21 F22._n — 
G rGilP 

LG2in — p. 

IX'  F12X2 

±2  =  F21X1  F 22X2  G2U. 

1075 

(36) 

(35) can 

(37) 

(38) 

(39) 

(40 ) 

Now the design procedure will be described in the form of two theorems 
for clarity. 

Theorem 2: If (H, F) is completely observable, then [F12, F22] is 
completely observable. 

Proof: The assertion of the theorem is in some sense intuitively 
clear, since y = x1 does not give any direct information about x2. The 
only information about x2 is obtained from equation (40). That is, 

F12x2 =  — F11x1 — Gdt,  (41) 

which implies that F12 F22 should be completely observable in order 
that (H, F) be completely observable. 
The proof of the theorem is immediate, since (H, F) completely 

observable implies that the rank 

p[(H' , F'H', • • • , F'n-111')] = n, 

i.e., using the partition of F indicated in equation (38) , 

F',,  F12 

F1 F12F2i F11F12  FI2F22 = n.  (42) 
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[In the following a row of a partitioned matrix will mean the "block" 
row; for example, the first row of the matrix in equation (42) is 
[I 0], the second row is [F11 F12], etc.] 
The rank of the matrix in equation (42) is unaltered by adding to 

any row linear combination of other rows. Hence 

O T 

F12 

F12F22 

Fl2 P212 1_ 

= n.  (43) 

•, 
The third row of the matrix in equation (43) is the third row of the old 
matrix — F2,1 (first row) — F„ (second row), etc. Equation (43) im-
plies that, irrespective of what the first column of the matrix in equa-
tion (43) is, 

o 
F12 

=  — p),  (44) 

j'i2F;;1_ 

which by the Cayley—Hamilton theorem implies that one need only 
include terms up to Fi2g2-'1 which gives 

P([F;2 FIFi2 „  FO-P-I FU) =  — p)• (45) 

Theorem 3: There exists an "observer" of dimension (n — p) for Z 
of Theorem 2. 

Proof: Consider the "partitioned" system presented in Theorem 3. 

From Section IV it is clear that since (F12 , F22) is completely ob-
servable we can find an L such that (F22 — LF12) has arbitrary eigen-
values. Hence if 22 is defined by 

— F222 2 +  L F12(X2 -  22) ±  G2U  F21X1 

then 2 = x2 — t2 implies 

= (±2 — 2) = (F22 — LF12)22 •  (47) 

Therefore by choosing L appropriately, we can make 22 —> 0 as fast 

(46) 
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as we want. The only problem is observing (x2 — 22) in equation (46), 
that can be solved as follows. Using equation (40), equation (46) re-
duces to 

=  (F22 -  L F12) 2 2  L F1 'XI -  G2u  F21x1  L±,.  (48) 

All the terms on the R. H. S. of equation (48) except Li, can be ob-
served. In order to eliminate the need for getting Li, we replace it by 
(F22 — LF,2)Lx, , i.e., if 

=  (F22 -  L F12)£2  L F1 IX'  L GIU 

± Get ± F21x1 + (F22 — LF12)Lx1 • 

Then it can be shown by integration by parts that 

(49) 

29 =  t2 exP (F22 — LF12)t 

• (MO)  LF„x,(0)  LG1u(0) — G2u(0))  Lx,(t).  (50) 

Therefore by appropriately choosing initial conditions for the system 
described by eqt ation (49) we can make 

22 = 2 ± Lxi(t)  (51) 

hence the proof is complete. Note that even if the initial conditions 
for equation (41) were not set, the error term, namely, 

21 — 2 — 141(t) —> 0 as fast as exp (F22 — LF12)t. 

The proof of the theorem, though complete above, is easier to see in the 
form of figures. 
Equation (48: says that the observer is of the form presented in 

Fig. 4. 
Theorem 3 implies that Fig. 4 is equivalent to Fig. 5, namely, the 

input t, shifted over to the right of (n — p) dimensional integrator. 
From the above theorems the following method evolves for the 

construction of minimal-order observers. 

Step 1: Construct by the method of §3 an L such that F22 — LF12 
is stable and has the required dynamics. 

Step 2: Use the output x, in the configuration presented in Fig. 5 
to get [xf , 4] which gives the required estimate. 

VI. EXAMPLE 

In order to illustrate the methods presented in this paper, we solve 
a simple example of a control problem. 
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X1 

LF„ 

a— LG 4 

d/dt 

„-LF4, 

Fig. 4—Minimal order observer with rate information. 

The problem is to stabilize the control system 

X2 
u, 

H 

X2  (52) 
_y2 _  X2_  LO  1  0_ -x3-

It is readily seen that the characteristic polynomial of this system is 

s3 — 32 ± 3s  1,  or (s — 1)3,  (53) 

which shows that the system is unstable. 
It is desired to design a controller which observes the output y and 

computes a linear feedback law such that the plant (52) behaves as a 

F 11 

2— LG 

Fig. 5—Minimal order observer without rate information. 
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system with characteristic polynomial 

(s + 1)3 = 0. 

Proceeding as in Sections III and IV, suppose (xi , 
able; then the feedback control gain matrix say 

pen  k12  k131 A K 

Lic2, 1c22 k23J 

can be computed from equation (24) which gives 

1 2 1 0 0 1 

9 4 1 2 2 1 

10 6 1 10 4 1_ 

k11 

ki2 

k,3 

k21 

kn 

X2 , X3) 

6 

= 18 

38_ 

(54) 

were avail-

(55) 

(56) 

Almost any solution (56), subject to the condition that rank of K = 
1, will do. For the purpose of this discussion a particular solution, 
namely 

[2/3 4/3 4/3] 

2/3 4/3 4/3 
(57) 

will be considered. 
Now since x3 is not actually available, an estimate will be computed 

and the error will be required to diminish as fast as exp ( —2t), at the 
same time using only one integrator in the feedback loop. From 
equation (52) it follows that 

X3  =  X3 +  U1 +  U2 , 

[±11 _ [1 31[xl  [21x3 + [1 

±2 — 0 1 x,  2  2 

(58) 

(59) 

The expressions in equations (58) and (59) can be compared to the 
more general treatment of Section III by noting that 

[1  3 
F11= 

0 1] 

F22 = [1], 

F12 =  [22 1 ; 

F31 = [0 0]. 
(60) 
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Then 

F22 -  L F12 =  1  [L, 1_,(2][2 —2. 
7.   

2 

One solution for L is 

(61) 

L, = L2 =  (62) 

The analogue of equation (23) is 

j13 = 23 + (3/2 3/2)[21 (x3 — 23) + U1 + u2 ;  (63) 
2] 

that is, the solution of equation (46) obviously tends to xs as fast as 
exp(-2t) for from equation (52) 

(xs — is) = —2(x3 — ds). 
dt 

(64) 

In order to construct the observer, in equation (63), xs has to be 
replaced by x1, x2 which are directly measurable. Proceeding just as 
in §3, equation (46) becomes 

is = —24 + [3/2 3/2 1 1 —  3r 1 — [I + u, + u . 
is 0 1 xs j  2 0 us 

(65) 

Therefore 

= —24 — 3/2 x, — 6x2 — 9/2 u, + 3/2(i, + ±2) + u, + u2 . (66) 

The only quantity that is not available on the right-hand side of equa-
tion (66) is  + 4), but appealing to Theorem 4 it follows that if 

= —24 — 3/2 x1 — 6x2 — 9/2u1 — 3(x1 + 52) +u1 +u2 (67) 

23  23 + 3/2(x, ± 52)  (68) 

and the error tends to zero as exp (-20 [it can be made zero by setting 
the initial condition on the integrator simulating equation (62) to 

23(0) — (x, (0) + x2(0))]. 
Hence 4 + î(x, + x2) which can also be gotten as in Fig. 5 tends 

to xs as exp (-20. Therefore the controller design is complete. The 
analog computer realization is shown in Fig. 6. 
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u, 

U2 

9/2 

2/3 

PLANT 
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4/3 

4/3 

3/2 

5.83 

3/2 

2 I  

Fig. 6—Example of a controlled system. 

3/2 H 
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HILO—An Improved Transmission Scheme 
for Semiconductor Switching Networks 

By R. R. LAANE 

(Manuscript received July 25, 1969) 

I. INTRODUCTION 

Foremost among the problems in semiconductor switching network 
implementations is the difficulty of fabricating a semiconductor cross-
point which duplicates the characteristics of metallic crosspoints of 
nearly zero "on" impedance. A low crosspoint impedance is necessary 
for low signal loss through the switching network. 
A transmission technique is described in this paper which relieves the 

requirement for low crosspoint "on" impedance and which allows 
excellent voice-band transmission characteristics with unbalanced 
semiconductor switching networks. The technique called HILO con-
verts voltage inputs to the network into current changes using a high 
input impedance current source and transmits the current changes 
through the network crosspoints by modulating the network bias 
current. A low output impedance is provided at the networks receiving 
terminal, where the modulated currents are decoded to recover normal 
voltage-current levels. 

II. CURRENT TRANSMISSION 

The ac equivalent of the HILO current transmission circuit is shown 
in Fig. 1. Assuming idealized transistor characteristics (zero emitter 
impedance, infinite collector impedance, and unity a), an input signal 
e, controls the current source, Q, , converting the input into a current 
change i = e,/R, . The current change is transmitted through a net-
work path and is supplied as an input to a common base amplifier, 
Q2, at the receiving terminal. The recovered output is given by 

e0 = iRo = Ro/R,e; . (1) 

Although equation (1) assumes idealized transistor characteristics to 

1089 
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SWITCHING 
NET WORK 

L 

Fig. 1— Current transmission circuit for switching networks (assume a —› 1). 

keep the exposition simple, the equation remains reasonably valid for 
voice-band applications using Darlington transistor pairs and normal 
(600-ohm) transmission impedance levels. 
Because information is transmitted only as a current change within 

the switching network, crosspoint resistance and crosspoint nonlineari-
ties do not impair the characteristics of the recovered signal. Recovered 
transmission level becomes primarily a function of R, and Ro . As a re-
sult, network gain (loss) characteristics can be accurately controlled. 
In addition to providing good signal transmission capability, the 

technique allows nearly ideal isolation between network paths. Capaci-
tive crosstalk is minimized because only a small voltage change is pro-
duced within the network transmission path as a result of the trans-
mitted current changes. This is the result of a low input impedance at 
the common base output stage and the result of relatively low series 
resistance of the network crosspoints. 
Inductive crosstalk is reduced because the high output impedance 

of the current source driver makes the transmitted currents relatively 
insensitive to inductive coupling between network paths. 

M. BIASING, TRANSMISSION, AND CONTROL 

As an example of current transmission, Fig. 2 illustrates the biasing, 
transmission, and conttol circuitry necessary for operating an un-
balanced thyristor network. Only a single direction of transmission is 
shown. For a bidirectional connection, a second, identical circuit is 
required. 
To establish a connection through the network, a CONNECT signal 

is applied at the transmit terminal. The signal sets the control flip-flop, 
thereby turning off Q1.  As a result current source transistors, Q2 and 
Q3 , become forward biased. The CONNECT signal also saturates Q. which 
allows Q2 and Q, to saturate during selection. 
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Next, appropriate thyristor base selection lines are pulsed simul-
taneously to form a path through the network stages. Crosspoints are 
activated when the selected current path appears at the cathode terminal 
and when a thyristor selection control signal is applied at the base 
terminal. Thus, thyristors turn on in sequence starting with the stage 
nearest the network input terminal. 
Holding current for the crosspoints is supplied through thyristor 

base terminals of successive stages until a path has been established 
from the transmitting to the receiving terminal. At this time, appro-
priate holding current is supplied through Q, and Q. and thyristor 
selection inputs may be terminated. Finally, the CONNECT input is re-
moved, causing Q, to turn off and forcing Q2 and Q3 to function as a cur-

rent source. 
Supply voltage V2 is selected to set the level of the current source col-

lector voltage (Q2 and Q3) at a higher potential than the thyristor base 
selection inputs. This prevents faulty connection to already active net-

work paths. 
A network path is disconnected by applying a DISCONNECT input 

to the control flip-flop. This causes Q, to saturate, terminating the 
current flow in the network path and thereby tearing down the connec-
tion. 

DIS-
CONNECT 

CONNECT 

o  

NETWORK 
INPUT 

o  

STAGE I 
SELECT -

STAGE TI 
SELECT 

Fig. 2. — Thyristor network using current transmission. 

NETWORK 
OUTPUT 

+v2 +v, 
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Fig. 3— Combined hybrid and transmission gate (assume a —› 1). 

IV. COMBINED HYBRID AND TRANSMISSION CIRCUIT 

A loss-less electronic hybrid can be combined with the transmission 
and biasing circuits to convert two unidirectional transmission paths in 
the switching network to bidirectional transmission paths at the net-
work terminals. Figure 3 shows the ac equivalent of the hybrid circuit. 
Currents appearing at the emitter of Q, are transmitted to the emitter 

of Qa via Q8; whereas, currents at the emitter of Q5 are transmitted to 
Q, via Q4 and Q2 . Inverter stage Q4 is necessary for proper phase rela-
tionship in the transmission loop. The circuit can be described by the 
following z-parameters 

Ii 

Lvi R3 0  /2 

Consequently, 

(2) 

R8R,8 v 
V2  — RiR.  (3) 

and 

R 
V, = — °› 172  

R5 

The input impedance at the two input terminals is given by 

z V,  R,R8R.i  
(5) 

I /1 Reg2 
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Fig. 4— Combining two hybrid-transmission circuits in a switching network. 

V  RRR 2  3 4  

_   
zj2  /2  R2 Ral 

(6) 

To cancel the inverse effect of R91 and Ra on input impedance two 
identical circuits are cascaded between network terminals. Assuming 
, R2, R3 , and R4 of the circuits are identical, the circuit acts as a 

gyrator and termination impedances are reflected through the network 
to the input terminals such that 

Z1  —  R 92 ,  Z2  ROI • (7) 

For symmetry, two stages are connected as shown in Fig. 4 to form a 
switching network with unidirectional network paths and bidirectional 

network terminals. 
The contributions and suggestions of W. B. Gaunt, J. E. Iwersen and 

D. Vlack on the hybrid circuit are gratefully acknowledged. 
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A Telephone Traffic Model Based on Randomly Closing 
Crosspoints, and Its Relationships to Other Models 

By V. E. BENEÊ 

(Manuscript received December 23, 1970) 

I. INTRODUCTION AND SUMMARY 

In the theory of traffic in telephone connecting networks it is on one 
hand a virtual necessity, for practical purposes, to compromise the true 
complexity of the system under study and to introduce drastic simplify-
ing assumptions that allow some calculation to be done, and on the 
other, it is perfectly feasible to pursue basic theoretical studies without 
such compromise and simplification. For this reason, a spectrum of 
several mathematical models for describing traffic in networks has been 
developed in recent years. 
These models range from "simple" ones that furnish an incomplete 

description based on strong stochastic independence assumptions, to 
"complicated" ones that exactly mirror network structure and routing. 
Each grade of model has its uses: "simple" ones for easy computation 
and involved ones for general understanding. 
An example of a useful "simple" model is the probability linear 

graph' suggested by C. Y. Lee in 1955, an outgrowth of earlier work by 
L. E. Kittredge and E. C. Molina. At the other end of the scale, an 
example of a "complicated" model is the Markov process' proposed by 
the author in 1963 as an improvement of the "thermodynamic" model.' 
We shall describe here another "simple" model, with a basic starting 

point similar to that of Lee, and then show how a certain natural restric-
tion of this model yields in many cases precisely the thermodynamic 
model. Our presentation thus clarifies the known relationships between 
these models, and reveals some unsuspected ones; it strengthens our 
understanding of them by showing how the apparently realistic "com-
plicated" models can arise through natural and relatively minor mod-
fications of the "simple" ones. 
Whereas Lee's model assumes that a link t of the network is busy 

or idle with a probability p„ all links being independent of each other, 
we propose instead to assume that each (individual switch or) cross point 
c is closed with some probability p„ again independently. This 
basis for calculating probabilities has the virtue of assigning prob-
ability to every possible way of closing switches, physically meaningful 
or not. We then modify the model by calculating all probabilities 
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conditional on the system's being in a physically meaningful state. 
This procedure in effect rids our calculations of the irrelevant states by 
normalizing them out. The resulting new model we call the cross point 
model. If, as is usually the case, every call goes through the same num-
ber of switches, then conditioning in this way brings in the partition 
functiona in a natural way, and the crosspoint model turns out to be 
formally equivalent to the thermodynamic one; when the latter is in 
turn modified so as to take realistic account of routing and calling rates, 
it becomes the Markov process model. 
We stress that the suggestion made here of a new model does not 

really improve our capacity to calculate blocking, load-loss curves, 
or other practical items. Primarily, it provides a new derivation of the 
thermodynamic model from simple (and strong) first principles similar 
to those used for the probability linear graph model of Lee. 

H. LEE'S MODEL AND ITS EXTENSION 

The probability linear graph model has been extensively discussed" 
in the literature, so we include only a resume of the method: to calculate 
the congestion incurred by traffic between an inlet u and an outlet y, 
attention is focused on the graph G defined by the permitted paths 
through the network from u to y; G consists of all nodes and branches 
through which some path from u to y passes. Given any complete 
specification of which branches of G are busy and which are idle (at a 
particular juncture of network operation), it is possible to examine G 
to see if there is a path from u to y no branch of which is busy. The 
method now assigns a probability distribution to the possible occupancies 
by postulating that a link L of G is busy with probability p, inde-
pendently of all other links. The congestion for u and y is then calculated 
as the probability that this distribution assigns to the event "There 
is no path from u to u composed of idle branches." 
We have described the probability linear graph model as assuming 

something only about certain events having to do with the graph G 
of paths for a particular call from u to y, and not as providing a prob-
abilistic description of the busy or idle condition of all the links in the 
network. However, it is entirely possible to extend the probabilistic 
description, used in Lee's model for links of G, to all the links in the 
network. This extension is natural because if the description is believable 
for one inlet-outlet pair, it should be so for all such pairs, and so for 
all links. It will of course still give only an incomplete stochastic model, 
since it says rather little about what crosspoints are closed, so that 
in general it is not possible to tell what inlet is connected to what outlet. 
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However, the extension does shed some light on the character and ac-
curacy of Lee's model, as we note in the next paragraph, and it also 
suggests the new model to be proposed. 
The fashion in which this extended version of Lee's model works is 

clear: the states of the network, i.e., all the possible ways of closing 
crosspoints, whether physically meaningful or not, are partitioned ac-
cording to the equivalence relation of "having the same links busy," 
and probabilities are assigned to these equivalence classes. In this 
situation, it is unfortunately true that physically meaningful and 
physically irrelevant (microscopic) states occur in the same equivalence 
class. Were this not so, one could try to remove the effect of the ir-
relevant states' by insisting that all probabilities be taken conditional 
on being in the set of relevant states. This set, however, does not have 
probability assigned to it. 

III. THE CROSSPOINT MODEL 

There is, nevertheless, a basic modification of Lee's approach in 
which the normalization device for eliminating the "irrelevant" states 
can be used. The change to be made is this: whereas Lee's model assigns 
a probability p, of being busy to each link  we propose to assign a 
probability p. of being closed to each crosspoint c, all independently 
in both cases. The point is this: if it is known what crosspoints are 
closed, then it is known what links are busy, but not vice versa. This 
approach has the property of assigning probability to every state of 
the network, physically meaningful or not. 
In particular, the set of meaningful states is assigned probability. 

Once this is true we can restrict attention to these states. We shall 
eliminate the effect of the irrelevant states by simply normalizing them 
out of the picture, i.e., by calculating all probabilities of interest condi-
tional on being in the set of meaningful states. The distribution of 
probability (over the set S of physically meaningful states) obtained 
in this way we shall call the "crosspoint" model, because the basic 
events to which probability is assigned are closings or openings of cross-
points. In a similar vein, Lee's model might be called the "link" model, 
because the basic probabilities are assigned to the busy or idle condition 
of links. 

IV. PROPERTIES OF THE CROSSPOINT MODEL 

Let S be the set of physically meaningful ways of closing crosspoints, 
and for x E S let c(x) be the number of switches or crosspoints closed 
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in x. Let us suppose that all crosspoints have the same chance p of being 
closed. (This is likely to be true if the network traffic is uniform and 
if there is neither concentration nor expansion.) The basic unconditional 
probability assigned to x is then 

x e S 

where C is the total number of crosspoints in the network. The prob-
ability of x conditional on being in the set S of physically meaningful 
states is then zero if x 1 S, and 

p c (z)( 1  

Epc(u)(1 — 
viS 

or, with µ = p/(1 — p), 

E 
..2 

for x S, 

This is of the familiar Maxwell-Boltzmann form, with the function 
c(•) playing the role of the energy. The reader familiar with the thermo-
dynamic model' will at once recognize the resemblance of the above 
expression to the basic (equilibrium) state probabilities in that model, 
which assigns a meaningful state xeSa probability 

x I xl 

E  I 

v.S 

with I y = number of calls in progress in state y, and X a positive 
constant. As we have pointed out, this distribution is obtained by 
maximizing the entropy functional subject to a fixed mean number 
of calls in progress. Exactly the same arguments' characterize the 
distribution over S in the crosspoint model, as follows: 

Theorem:  The distribution  , x t SI of probability over S which max-
imizes the entropy functional 

H(q) = — E q• log 

subject to the constraint 

xeS 

E qe(x) = c, 
..s 
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with c a fixed number >0, is given by 
c (s) 

—  all) 

where µ > 0 is the constant determined uniquely by the equation 

d 
c =  5— log E 

..s 

Thus the crosspoint model differs from the thermodynamic model 

only in that the average number of closed crosspoints, rather than 

that of calls in progress, is fixed while maximizing the entropy. In an 
important class of cases the two models formally coincide, even. This 

can be seen from the 

Corollary: If every call goes through exactly s switches, then the state 
probabilities assigned by the cross point model with parameter p are exactly 
the same as those assigned by the thermodynamic model with parameter 

=  = 1 — p 

For evidently in this ease c(x) = s I x I. The property that every call 

goes through the same number of switches is possessed by virtually 

all the connecting networks used in practice. 
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