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Signals at 4, 6, and 11 GHz, transmitted over a 28.5-mile radio relay 
path in Ohio, were continuously monitored during the late summer of 1966. 
Previous publications have reported on the observed 4- and 6-GHz multipath 
fading statistics, and on the improvements available with space or frequency 
diversity. This paper presents data for the 11-GHz transmission, and, in 
combination with the earlier results, establishes an empirical frequency 
dependence for the amplitude statistics. 
A general treatment of the relationships between the factors underlying 

multipath propagation is intractable. However, based on the results in 
this and other papers, a general relationship is given for the probability 
of deep multipath fading which is linear in frequency, cubic in path length, 
and varies with meteorological-geographical factors. 
Temporal aspects of the Ohio data were also investigated at all frequencies, 

utilizing both a 1-hour and a 1-day clock time interval. It was found that 
the multipath fade time statistic can be described by a single parameter 
for either interval. A subset of the multipath fading hours was also analyzed 
using a 1-minute clock interval, with the result that the difference between 
the minute median fade and the hourly median fade is frequency inde-
pendent, and normally distributed with a standard deviation of 5.5 dB. 

I. INTRODUCTION 

Although it is a relatively rare phenomenon, multipath propagation 
constitutes a fundamental limitation to the performance of microwave 
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radio systems. During a period of multipath propagation, the narrow-
band output from a single receiving antenna can be reduced to equip-
ment noise levels for seconds at a time. Corrective measures such as 
frequency diversity or space diversity then must be introduced to 
provide satisfactory commercial operation.  Propagation data re-
quired for economical system design and detailed performance estimates 
were not available' prior to 1966. To fill this need an extensive experi-
mental program was undertaken on a typical radio relay path in Ohio. 
Previous studies' '2'4 have reported on the amplitude statistics obtaining 
during multipath propagation at 4 and 6 GHz, both with and without 
frequency or space diversity. Data were also obtained for a single 
frequency in the 11-GHz band. The multipath fading data for this 
signal have now been analyzed and statistics for the total time faded 
(P) , the number of fades (N), their average duration (I), and the fade 
duration distribution are presented in Section IV as functions of fade 
depth. 
Multipath propagation is by its very nature dependent upon the 

operating microwave frequency; the variation of the fading charac-
teristics with frequency has been considered by many investigators" 
with controversial results.* This is not surprising considering the time-
variant, nonstationary behavior of the phenomena. However, the data 
obtained in Ohio were extensive enough to give statistical stability 
which, with the 11:6:4 frequency sampling, allows a meaningful 
comparison in Section V of P, N, and t as functions of frequency. 
It is clear that a great deal is known about one path in Ohio. General-

ization of these results to other paths requires an underlying theory. 
The experimental data show that P, N, and I can be quite closely 
represented by simple, one-term algebraic functions of fade depth. This 
agrees with predictions by S. H. Lin7 based on analysis of a simple and 
plausible analytic model for multipath fading. It is therefore reasonable 
to assume that the variation of P, N, and Ï with fade depth for all paths 
subject to multipath fading will have the same functional dependence 
as did the Ohio path. A general formulation which includes the most 
important path parameters is proposed in Section VI for the coefficient 
in the equation relating the total time faded and the fade depth during 
the so-called worst fading month. This estimate provides necessary 
information for microwave radio system design in the continental U.S.A. 
The intensity of multipath fading varies greatly, even during the 

normally active summer months; during some days there will be exten-

* Reference 5 gives many references on multipath fading investigations. 
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sive multipath fading, while on others there will be none. Statistics 
for time bases shorter than a month—or the entire 68-day period for 
the test reported here—are also of interest. The time faded characteristic 
was studied for the 4-, 6-, and 11-GHz signals on both a daily (24-hour) 
and an hourly basis. Section VII concludes with a study of minute-by-
minute variations within an hour for a subset of the multipath fading 
hours. 
All the experimental results mentioned in the preceding paragraphs 

were obtained from a data base comprising all the time intervals with 
deep multipath fading.' In sum, these intervals were about 15 percent 
of the total measurement time. The P, N, and I statistics for the re-
maining 85 percent of the time are given in Section VIII for typical 
4- and 6-GHz signals. The 11-GHz data for this interval were not 
included because of the difficulty in identifying rain attenuation data; 
meteorological measurements were not made in conjunction with this 
experiment. 

II. SUMMARY 

Highlights of the results detailed in Sections IV thru VIII are given 
in this section. A few definitions are needed first: 

L: Normalized algebraic value of envelope voltage (fade depth in 
dB = —20 log L) 

P: Fraction of time T that the envelope voltage is 5 L 
A r: Number of fades (during T) of the envelope voltage below L 
t: Duration of a fade below L in seconds (i = average duration) 
f: Frequency in GHz 
D: Path length in miles 

The major results are: 
(i) The 11-GHz amplitude statistics for the data base interval (T) 
of 5.26 X 106 seconds and for fade depths exceeding 15 dB are 
P = 0.69L2, N = 12,300L, t = 330L. Also t/t is log-normal and 
independent of L with 1 percent of the fades at any level longer 
than ten times the average. 

(ii) The P and N statistics for the 4- , 6- , and 11-GHz data are, 
within experimental error, linear functions of frequency given by 
P = 0.078fL2 and N = 1000fL. The comparable t statistic is 
given by t = 410L. 

(iii) An empirical estimate of P for the worst fading month is 

P = rL2,  L  0.1 
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where r is defined as the raultipath occurrence factor and is 
given by 

r = 1) (D9)(10-5) 
4 

with 

fi average terrain 
c = 4  over-water and Gulf Coast 10.25 mountains and dry climate. 

(iv) Of the days in the 1966 Ohio data base, about 12 had more 
fading than the average while 54 had less. The worst day con-
tained about 48 percent of the total fade time at or below 
40 dB while the worst hour contained some 20 percent. 

(v) The simple model, P = al), can be used to characterize shorter 
periods with multipath fading.* The cumulative empirical 
probability distribution (c.e.p.d.) with a ffl ad is for daily fading 

Pr (a, k A) rA' exp [— 1.2 Nrii(Tihj 

and for the hourly fading with a m a,, 

Pr (ah k A)  exp [-0.7 / A(4/1)]. 

The hourly median fade depth value exceeded by 1 percent of 
the hours is 18 dB below free space. 

(vi) The random variable defined as the difference between the 
median for a minute in a fading hour and the median for the 
entire hour was found to be normally distributed with zero mean 
and a standard deviation of 5.5 ± 1.5 dB. 

III. EXPERIMENTAL DESCRIPTION2 

The data presented were obtained by the MIDASt measuring equip-
ment at West Unity, Ohio. The basic data consist of measurements of 
the received envelope voltages of standard TD-2 (4 GHz), TH (6 GHz), 
and TL (11 GHz) signals; Table I is a list of the center frequencies of 
each channel. A functional block diagram is shown on Fig. 1. The 
4-GHz and 6-GHz channels were standard in-service FM radio channels 
with nominally constant transmitted power (±0.5 dB). The 11-GHz 

• The change in the coefficient from r to a is made to clearly differentiate between 
the total measurement period and the daily (or hourly) epoch. 
t An acronym for Multiple Input Data Acquisition System. 
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TABLE I—RADIO CHANNELS MEASURED AT WEST UNITY, Orno 

Channel No.* 
Frequency 
(MHz) Antenna Polarization 

4-7 
4-1 
4-8 
4-2 
4-9 
4-11 
4-6 
6-11 
6-13 
6-14 
6-15 
6-17 
6-18 
11-1 

3750 
3770 
3830 
3850 
3910 
4070 
4170 
5945.2 
6004.5 
6034.2 
6063.8 
6123.1 
6152.8 
10995 

Horn Reflector V 
H 
V 
H 
V 
V 
H 
H 

V 
H 
H 
V 
V 

* The 4-X channels correspond to standard TD-2 radio system signals; 8-X cor-
responds to TH; 11-1 corresponds to TL. 

channel was added especially for the test program and was unmodulated, 
with the RF equipment housed in an outdoor cabinet. 
West Unity, Ohio, was chosen as the site for this experiment because 

it is part of a major cross-country route in an area known to suffer 
multipath fading. The hop monitored was of typical length-28.5 

PLEASANT  WEST UNITY 
LAKE TOWER  TOWER 

•--26.5 MILES--

4-GHZ 
CHANNELS 

(TD-2) 

W C-281 

7,8,9,11 

1,2, 6 

6- GHZ  14,18  
CHANNELS 

(TH) 11,13,15,17 

il GHz 
CHANNEL 

(TL) 

RADIO STATION BUILDING 

RADIO 
EQUIPMENT 

RADIO 
EQUIPMENT 

CONCENTRATION 
SWITCH 

RADIO 
EQUIPMENT 

CONCENTRATION 
SWITCH 

MIDAS 

CONCENTRATION 
SWITCH 
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miles—with negligible ground reflections. The path clearance was 
adequate even for the extreme of equivalent earth radius (k) equal to 
two-thirds, as shown on the path profile in Fig. 2. It is believed that 
this path is typical of those inland paths subject to multipath fading 
conditions. 
The MIDAS equipment sampled each signal five times per second, 

converted each measurement to a decibel scale, and recorded the data 
in digital form for subsequent computer processing (in the absence of 
fading the recording rate was less than the sample rate). Further 
equipment details are given in Ref. 2. 
The data were obtained during the period from 00:28 on July 22 

to 08:38 on September 28, 1966. The total elapsed time was 5.9 X 106 
seconds of which 5.26 X 106 seconds was selected for the data base; 
the balance was unusable mainly because of maintenance of the radio 
equipment or MIDAS. Within the data base, 7.8 X 103 seconds con-
tained all the multipath fading in excess of approximately 10 dB. The 
balance of the time, 4.48 X 106 seconds, was categorized as nonfading 
time. 
A natural epoch for multipath fading is the 24-hour period from noon 

to noon. It was convenient to number these periods from 1 to 69 starting 
at noon on July 21 and ending at noon on September 28. Here the 

NOTE: + INDICATES TREE HEIGHT MAXIMA 

252 
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Fig. 2—West Unity—Pleasant Lake path profile. 
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missing end periods from 12:00, July 21 to 00:28, July 22 and 08:38 
to 12:00 on September 28 have been assumed negligible. Most of the 
multipath fading was found to occur in the period between midnight 
and 9 A.M. as will be discussed later. These latter time periods were, 
for all practical purposes, subject to continuous measurement for 66 of 
the 69 periods. Thus, we reduce the multipath fading data base to 
66 nine-hour periods. These were used for channel characterization and 
for investigating the daily and hourly statistical properties of multipath 
fading. 
All fading distributions will be given in terms of the received voltage 

relative to the midday normal in dB. The rms variation in the dB 
reference level was estimated as ±0.8 dB.' 

IV. 11-GHz MULTIPATH RESULTS 

The 11-GHz data were analyzed in terms of the statistical properties 
previously reported for the 4- and 6-GHz data." These were (i) the 
fraction (P) of 5.26 X 106 seconds that the signal was faded below a 
given level L, (ii) the number of fades (N) below L, (iii) the average 
duration in seconds (0 of fades below L, and (iv) the fade duration 
distribution. The data were carefully inspected to insure that only 
multipath fading was included and that rain fading was excluded. This 
was done by inspection of signal level vs time plots with the determina-
tion made by the frequency of the fading and by comparison with the 
4- and 6-GHz data. As in the case of the 4- and 6-GHz data, we were 
most interested in fades greater than 15 dB. However, reliable data 
for the 11-GHz signal were limited to fade depths of 35 dB because the 
reference level of received signal strength was 5-10 dB lower than that 
for the 4- and 6-GHz signals. 
The data for the fractional fade time are given in Fig. 3. They are 

adequately represented by a straight line whose equation is P = 0.69r. 
The data for the number of fades are given in Fig. 4 along with the 
fitted line N = 12,300L. The data for the average fade duration are 
obtained from the ratio of the total time faded to the number of fades 
and are given in Fig. 5 along with the fitted line t = 330L. These 
variations of P, N, and t with L are in agreement with those previously 
found for the more extensive 4- and 6-GHz data and are as predicted 
from a mathematical model of the multipath fading process.' 
The probability that a fade of dépth —20 log L dB lasts longer than 

e seconds, i.e., the fade duration distribution, Can be estimated by 
dividing the number of fades of depth L and duration I seconds or 
longer by the total number of fades of depth L. A normalization is made 
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20  25  30  35 

FADE DEPTH IN dB (-20 LOG L) 
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Fig. 3-11-GHz fade depth distribution, 1966 West Unity. 
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Fig. 4-11-GHz number of fades, 1966 West Unity. 
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Fig. 5-11-GHz average fade duration, 1966 West Unity. 
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Fig. 13—.11-GHz fade duration distribution: probability that the fade duration, 

normalized to its mean for a given fade depth, is longer than a given number. Data 
pooled for all fade depths greater than 10 dB. 
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with respect to the average fade duration. The 11-GHz data are plotted 
on Fig. 6, using a normal probability scale, for all fades  10 dB. The 
data indicate that tut is independent of L and that the probability is 
approximately log normal with 1 percent of the fades being longer than 
ten times the average fade duration. The line on Fig. 6, taken from 
Fig. 40 of Ref. 4, represents the fade duration distribution for the 
corresponding 6-GHz data. Thus, the fade duration distributions, when 
properly normalized, appear to be invariant with frequency. 

V. MULTIPATH EFFECTS AS A FUNCTION OF FREQUENCY 

The 11-GHz results of Section IV can be combined with those pre-
viously obtained for 4 and 6 GHz" to obtain an estimate of the variation 
of the characteristics with microwave frequency. This treatment is 
valid because all the data were obtained under identical conditions: 
same path, same antennas,* and same time period. 
* The different beamwidths of the horn reflector for the three frequencies play a 

minor role because the variations in angle-of-arrival of the multipath components 
are generally less than the smallest beamwidth, which is ±0.6 degree at 11 GHz. 
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TABLE II—MULTIPATH FADING CHARACTERISTICS 
(L  0.1) 

Freq 
(GHz) P N 1 

4 0.25L2 3670L 408L 
6 0.53L2 6410L 490L 
11 0.69L2 12300L 330L 

Table II summarizes the 4-, 6-, and 11-GHz results. The tabulated 
coefficients incorporate the effects of the environment and frequency. 
Plotting them versus frequency (as in Fig. 7) allows us to. observe that 
the N and P coefficients increase, within experimental error, linearly 
with f while t is longer at 6 GHz and shorter at 11 GHz with respect 
to 4 GHz. Based upon these data, an approximation that./ is independent 
of f is reasonable. The functional dependence is described by: 

P = 0.078f L2,  (1) 

= 1000fL,  (2) 

410L,  (3) 
with fin Gliz. 

The deviation of the P and N coefficients of Table II from these 
empirical equations is less than ±1 dB which is within the bounds of 
experimental error.2 The E coefficients agree with equation (3) within 

dB. This is satisfactory since the t data were originally obtained as 
the ratio of the P and N data at each fade level; ±1 dB variation each 
in P and N corresponds to ±2 dB variation in t. 
The multiple transmission paths which give rise to the fading effects 

are generated by irregularities in the refractivity gradient in the volume 
defined by the beamwidths of the two antennas. As the relative path 
lengths vary with time the composite received signal may fade due to 
destructive interference (or be enhanced by constructive interference). 
It is easy to see that a given change in relative path length will cause 
more signal variations at higher frequencies because of the proportion-
ally larger phase variations; we have found that the effect in Ohio 
in 1966 was linear. There is no apparent reason why this variation with 
frequency does not generally apply for multipath fading for a normal 
overland path engineered in standard fashion. Also, a linear variation 
of P with frequency has been theoretically predicted by C. L. Ruthroffe 
from a careful analysis of a simple physical model of multipath fading.* 

* The results discussed here predate Ruthroff's analysis. 
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6.1 General 

It is well known that the time (probability) distribution of the 
envelope of a microwave signal subject to multipath fading depends 
upon path length, path geometry, terrain clearance, type of terrain, 
and meteorological conditions in a complex manner. A general treatment 
of these relationships is intractable. However, based on the results 
discussed in previous sections and in other papers, an engineering 
estimate (incorporating the most important factors) of the fade depth 
distribution can be made for typical microwave paths for the heavy 
fading time of the year, i.e., the so-called worst month fading. In the 
results that follow adequate path clearance and negligible ground 
reflections are assumed. 

6.2 Relation to the Rayleigh Distribution 

Quite often in propagation studies it is assumed that the probability 
distribution of the envelope (u) of the received signal is given by the 
Rayleigh formula 

Pr (v < L) = 1 — 

L2 for L < 0.1.  (4) 
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One physical basis of this distribution is the limiting case of the 
envelope of an infinitely large number of equal amplitude signals of 
the same frequency, but random phase. Since this is a good approxima-
tion in many situations, e.g., tropospheric and mobile radio propagation, 
this distribution has seen much use. In the case of line-of-sight micro-
wave radio, this is not a good assumption and the distribution is not 
directly applicable. From Table II the results for the fade depth dis-
tribution P vary as L2 but with different coefficients.* The coefficient 
is generally not fixed, but depends upon the time base of the data, and 
upon the particular path parameters. The path parameters can be in-
corporated in the coefficient by expressing the multipath fade depth 
distribution as 

Pr (2) < L) = rL2 L G 0.1  (5) 

where r is defined as the multipath occurrence factor; r = 1 is appro-
priate to the Rayleigh distribution. 

6.3 Path Parameters 

As discussed in Section V, r is directly proportional to frequency; 
terrain and distance effects have to be incorporated. An engineering 
estimate for r can be given as a product of three termst 

r =  (6) 

where: f is frequency in GHz, 
D is the path length in miles, 

J-1  average terrain 
c = 4  over-water and Gulf Coast 
L0.25 mountains and dry climate. 

The terrain effects and the distance dependence are based on applicable 
(albeit meager) Bell System data, most of which was acquired at 4 GHz 
on paths of 20-40 miles length. The plot given on Fig. 8 extends beyond 
this range. Indeed it can be argued that the curves should become 
parallel to the abscissa as D decreases (no multipath fading for paths 
sufficiently shore) and parallel to the ordinate (saturation) as D increases. 

* An analysis of a mathematical model for multipath fading shows that the deep 
fade region of the distribution will be proportional to L' under very general conditions 
(Ref. 7). 
t This empirical result for r is partially supported by British data as reported by 

K. W. Pearson8 and is similar to a concise result reported by S. Yonezawa and N. 
Tanaka.' 
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The plotted values are certainly upper bounds for either extreme. The 
fD8 dependence has been theoretically obtained by Ruthroff.° 
The engineering estimate, equation (6), indicates that on a path of 

above average length, maintenance of the per-hop fading outage 
usually obtaining requires compensation for the additional free-space 
loss (œD2) and for increased multipath (ŒD3), which combine to 
impose a 135 (15 dB/octave) length dependence. 

VII. TIME CONCENTRATION OF DEEP MULTIPATH FADING 

7.1 Introduction 

The results and estimates already given utilize the entire data base, 
thus averaging temporal effects. It is well established that multipath 
fading occurs most often at night, with a few nights experiencing 
considerably more fading than most of the others. Describing this 
variability statistically is the objective here. We consider the fade time 
statistic for hourly and for daily periods and the median fade depth 
during an hour or a minute. 
The analysis includes data from four fade depth values,* 9.8 dB, 

20.4 dB, 31 dB, and 40.1 dB (henceforth labeled as levels 1 through 4). 
At each fade depth and for each analysis period the fade time for the 
seven 4-GHz channels was arithmetically averaged, as was that for the 
six 6-GHz channels. The fade time for the 11-GHz channel was used 

* The unusual numbers are the result of quantization and calibration.2 
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T ABLE III —FADE TIME D ATA 

(Seconds at or Below Given Fade Depth) 

Fade Depth 

Freq Band 
(GHz) 

1 

(9.8 dB) 

2 

(20.4 dB) 

3 

(31 dB) 

4 

(40.1 dB) 

4 
6 
11 

148,427 
259,933 
243,977 

13,771 
27,503 
32,232 

1329 
2562 
2982 

135 
312 

* No data was obtained at 11 GHz for fade depth 4; see Section IV for further 
details. 

directly. The resulting data will be referred to as the 4-, 6-, and 11-GHz 
fade times respectively. The fade time totals for the entire test period 
(5.26 X 10° seconds) are given in Table III. 

7.2 Distribution by Days—Rank Order Data 

The fade times for fade depths 1-4 were separately compiled for each 
of the 66 noon-to-noon periods. As expected there is considerable 
variation. As an example, Fig. 9 shows a plot of the 6-GHz fade time 
versus day number. Here the value plotted is the ratio of the fade time 
for the day to the total fade time, given in Table III, for a fixed fade 
depth. Much of the deep fading (levels 2, 3, 4) occurred on days 10, 
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Fig. 9—Daily variation of multipath fading at 6 GHz, 1966 West Unity. 
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43, and 58 while the fading time for level 1 was more widely distributed. 
The days were separately rank ordered for each frequency and each 

level with the variable again being the fraction of the total fade time; 
the results are given on Figs. 10a-c.* A few observations from these 
plots: 

(i) The worst day fraction increases with level. 
(ii) The data for level 1 do not fall off as rapidly with rank order 

as for levels 2-4. 
(iii) Long tails in the rank order are prevalent. 

Some of the more pertinent statistics are summarized in Table IV. 
As already noted from Fig. 9, the bulk of the deep fading occurred 

on three days (10, 43, 58). The fraction of the total fading at the sample 
levels summed for these three days ranges from 0.55 to 0.74. Day 10 was 
the worst day in all cases. It appears that if a day suffered extensive 
20-dB fading it also suffered 30- and 40-dB fading, but this indicator 
is not valid for 10-dB fading. In fact, about two-thirds of the days had 
10-dB fading while only one-third had some 40-dB fading. 
The statistical worst night is of particular interest. Figure 11 is based 

upon the observation that the worst day fraction increases with fade 
depth. The data points are fairly consistent except for levels 3 and 4 at 
6 GHz which, for some unknown reason, do not show the expected in-
crease relative to level 2. The line on Fig. 11 can be used as an estimate of 
the worst day fraction as a function of level. This estimate predicts that 
for systems with 40-dB fade margins the worst day will have 48 percent 
of the total fading within the worst month.t 
A different perspective on the daily fading time can be obtained from 

Figs. 12a-c, which replot the rank order data on a logarithmic scale 
which has the effect of emphasizing the tail behavior. Generally, the 
tail is longer for lesser fade depths. It is interesting to compare these 
data with the result that would obtain for a uniform fade time distri-
bution: a horizontal line at 0.015 (1/66). This line intercepts the level 
2, 3, 4 data in the range of 10-15 days which means that this number 
of days had more fading than the average for the entire period while 
some 51-56 days have less fading. We shall return to the daily data 
in a later section where we shall see that they can be reduced to a more 

* The data were plotted for all the days such that the cumulative sum of the 
plotted fade times just exceeded 99 percent of the total; note change of scale at 
rank order day 5. 
t Here we take our statistics as representative of the worst month, the argument 

being that our results for a late summer—early fall period are generally comparable 
to the so-called worst fading month in a year. 
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Fig. 10b—Rank order of 6-GHz daily fade times, 1966 West Unity. 

Fig. 10c—Rank order of 11-GHz daily fade times, 1966 West Unity. 
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TABLE IV—DAILY FADE TIME STATISTICS 
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Freq 
(GHz) Level 

Number 
of Days 
With Fade 
Time >0 

Fraction of Total 
Fade Time 

Number of 
Days to Give 
0.99 of Total 

Worst 
Day 

Sum of 3 
Worst Days 

4 1 
2 
3 
4 

46 
36 
30 
26 

0.125 
0.33 
0.43 
0.48 

0.31 
0.56 
0.64 
0.70 

35 
25 
23 
19 

6 1 
2 
3 
4 

46 
35 
27 
24 

0.077 
0.30 
0.33 
0.33 

0.22 
0.61 
0.73 
0.71 

37 
22 
17 
16 

11 1 
2 
3 

43 
35 
30 

0,083 
0.29 
0.47 

0.22 
0.55 
0.74 

34 
24 
21 

meaningful form given the appropriate statistical treatment and 
mathematical modeling. 

7.3 Distribution by Hours—Rank Order Data 

The preceding treatment on daily fade time is repeated here for 
hourly fade time. This fade time is expressed as a fraction of all time 
during the entire measurement period as given in Table III. Of course, 
greater scatter can be expected in the hourly data than in the daily data. 
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Fig. 11—Fraction of total fade time in worst night, 1966 West Unity. 
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Figure 13 shows the distribution of fading for levels 2, 3, and 4 for 
the 6-GHz channels RS a function of the hour of the day. Deep fading 
was generally within a 9-hour period between 12 P.M. and 9 A.M. The 
hours were rank ordered by level within a particular frequency band 
as shown on Figs. 14a—c. The general observations that can be made 
are similar to the "days" case: 

(i) The worst night fraction increases with fade depth. 
(ii) The level 1 fraction does not fall off very rapidly. 
(iii) Long tails are even more prevalent than for daily fading. 

Some of the pertinent statistics are summarized in Table V. 
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TABLE V—HOURLY FADE TIME STATISTICS 
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Freq 
(GHz) Level 

Number 
of 

Hours 

Fraction of 
Total Fade Time 

Number of Hours to Give 
0.50  0.90  0.99 
of Totall?ade nme 

Worst 
Hour 

10 Worst 
Hours 

4 1 
2 
3 
4 

220 
117 
88 
61 

0.027 
0.107 
0.192 
0.222 

0.226 
0.525 
0.621 
0.699 

33 
10 
7 
5 

103 
48 
36 
24 

163 
80 
69 
47 

6 1 
2 
3 
4 

259 
123 
78 
56 

0.014 
0.083 
0.123 
0.126 

0.128 
0.559 
0.681 
0.672 

50 
9 
5 
6 

138 
39 
24 
22 

206 
83 
49 
43 

11 1 
2 
3 

230 
121 
70 

0.015 
0.085 
0.286 

0.136 
0.495 
0.694 

48 
11 
4 

127 
46 
28 

189 
88 
53 

The worst hour for each transmission band is plotted versus fade 
depth in Fig. 15. The data spread is greater than for the days case 
(Fig. 11) with 6 GHz again exhibiting the least variation. The line on 
Fig. 15 can be used as an estimate of the worst hour fraction as a function 
of level. Thus, the worst day (Fig. 11) and worst hour (Fig. 15) estimates 
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for 40 dB predict 48 percent of the worst month multipath in a single 
day with 21 percent in the worst hour. 
Days 10,43, and 58 merit special study since they contain a majority 

of the deep fade time. The hourly variation in fade time for level 3 is 
given on Fig. 16. It is obvious from these data that there is no fixed 
relation between the frequency bands on an hourly time scale.* The 
hour from 2 A. M. to 3 A. M. on day 10 was the worst hour with the frac-
tional fade time ranking with frequency as 11-4-6. However, the hour 
from 5 A. M. to 6 A. M. on day 43 was also a bad one with the fractional 
fade time ranking with frequency as 6-11-4. On day 58 the hour from 
1 A. M. to 2 A. M., which was also outstanding, had the frequency order 
6-4-11. However, the overall statistics show that fading severity 
increases with frequency. 

7.4 Hourly Median for a 4-GHz Channel 

The data reported in previous sections were in terms of the fraction 
of time that some fixed fade depth was exceeded; a reversal of these 

* This conclusion does not change if absolute fade time is used instead of fractional 
fade time. 
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roles is equally valid. The variable examined in this section is the fade 
depth exceeded for a total of 30 minutes in an hour (hourly median). 
Figure 17 shows a rank order of the hourly median data for one of the 
4-GHz channels as obtained directly from the experimental data for 
each hour. This particular channel is considered typical. The worst 
hourly median was 20.5 dB below free space and some 10 hours had 
hourly medians in excess of 15 dB. The general tendency is quite regular 
and shows a slowly decreasing median value with 120 hours experiencing 
hourly median fades in excess of 5 dB. 

7.5 Analytic Model for Hourly Median 

The single-channel fade depth statistics have a common charac-
teristic: the fractional probability that the signal y is at or below L is 
proportional to .1,2 (see Table II). Lid has shown that this is a general 
property of fading signals under very general conditions, i.e., 

P  Pr (I)  L) = aL2 L  0 .1 (7) 

where a is an environmental constant and tilT is the fractional fade 
time for the time period T. 

25 

5 
I  I   

10  15  20  40  60  BO  100  120 

RANK ORDER POSITION 

Fig. 17 -4-GHz rank order of hourly median (channel 4-7). 
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This formula will be used here with the following modification for 
analytical simplicity, 

P = Pr (u  L) 

2  t L < L2 <1 
a 

1  L2 1 

(8) 

For this simple model the median value, Lm, is given by 

1  L277 
(9) 

2a  21L 

This relation can be used to calculate values of L. from the 4-GHz 
hourly rank order data of Fig. 14a. The results for levels 2 and 3 are 
shown on Fig. 18 along with the 4-GHz hourly median data from Fig. 17. 
There is good agreement for the first 20 rank order days. Level 3 predicts 
a worst hour median 2.5 dB higher and level 2 predicts a worst hour 
median 1 dB lower than the Fig. 17 data. 
The calculated results roll off faster below 10 dB than the Fig. 17 

data, which means that the aL2 model does not hold when the hourly 
median is less than 10 dB. This is to be expected because the aL2 model 
applies for multipath fading while the Fig. 17 data contains a con-
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Fig. 18—Comparison of 4-GHz hourly median data of Fig. 17 with calculated values. 
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siderable number of hours during which the signal is depressed with 
little multipath fading. In any case, the analytic model (8) is adequate 
for the higher values of the hourly median which is the region of greatest 
interest. This model will now be applied to the nightly and hourly rank 
order data presented in Figs. 10 and 14.  • 

7.6 Empirical Probability Distribution of Daily Fade Time 

The rank order data (Section 7.2) can be used to estimate the prob-
ability distribution for the daily fade time by plotting the value of 
the ith ordered sample versus the probability estimate (N) -' (i - 0.5), 
defined as the cumulative empirical probability distribution (c.e.p.d.).1° 
The random variable IL is defined as the total amount of time during 
the 9-hour period for which the signal leyel is less than or equal to L.* 
The rank order daily fade time data (Section 7.2) are samples of iL, 
with ti,, the ith rank ordered sample yeilpe. Thus the c.e.p.d. is: 

i - 5 
PL;  Pr (IL > IL') -  0. (10) 

N L 

where N = number of sample values. 
Repeating equation (7) in a form consistent with the above definitions 

gives 

tLi Pr (vi L) = aiL2 = Ty;  (11) 

where vi is the envelope voltage during the ith interval, 
ai is the environmental constant during the ith interval, 
Ta = 9 hours. 

Combining (10) with (11) gives 

PL; = Pr (—L  _ -L = Pr (ad a,).1271, L2Ta 

Thus the e.e.p.d. for tz, is identical to that for the random variable ad, 
the daily environmental constant. 
In the calculation of PL, for levels 2-4 the values used for NL will 

be those given in Table IV. At level 2 there were 36 days with non-zero 
fade time at 4 GHz and 35 at both 6 and 11 GHz. If the aid' model is 
interpreted in a deterministic sense then all days with level 2 fade time 
should have level 3 fade time; yet there were only 30 such days at 4 GHz. 

(12) 

* The 9-hour period was chosen because most of the daily fading occurred between 
12 P.M. and 9 A.M. 
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There is no inconsistency because the aL2 model is statistical so that 
not all level 2 fades also generate level 3 fades; thus the 30 samples are 
used to construct a c.e.p.d. which can be compared to that obtained for 
the 36 samples at level 2. The corresponding procedure was followed 
for level 4 at 4 GHz and for levels 2-4 for 6 and 11 GHz. Two basic 
assumptions are made: (i) 0.2-second sampling has a negligible effect; 
(ii) the samples at any level are independent. The first assumption will 
be justified if the level 4 results are consistent with the level 2 results 
because the sampling interval would have a greater effect on the level 4 
results. The second assumption only requires independence from day 
to day which is plausible. 
The daily rank order fade time data have been plotted on Figs. 19a-c 

according to (12). The probability scale is exponential and the abscissa 
is logarithmic. The data for all three frequencies appear to be inde-
pendent of level and approximately linear with increasing scatter 
above 70 percent. The conclusion is that the aL2 representation is 
adequate over the 20-40 dB fade depth range for daily fading. 
In Section V we examined the frequency dependence of the environ-

mental constant. Utilizing that relation, and normalizing to 4 GHz, 
equation (12) becomes: 

P = Pr 
a, 1. 

(41) (ji) 

(13) 

The level 2 data for 4, 6, and 11 GHz has been plotted in Fig. 20 
according to (13). The reduced data are consistent for the three fre-
quencies; a straight line whose equation is 

Pr (t a,,  A)  exp —1.2 NjA(1)) 
L2T,, 

(14) 

provides a good fit (±2 dB) to the data below 0.9. Similar results are 
obtained for levels 3 and 4 but with increased scatter. 
Figure 20 indicates that the environmental parameter ct, is linearly 

dependent on frequency on a day-to-day statistical basis for multipath 
fading. This is a stronger result than that of Section V, where the linear 
frequency dependence was found valid for the measurement period 
taken as a whole. The net result of this analysis is that the daily fade 
time for a day picked at random can be calculated statistically. 
The result, (14), can be checked against the results giVen in Table II 

for the entire measurement period in the following manner. Equation (11) 
gives, for the ith fading day out of N, 
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Pr (y1 L) =  a,1",2 = — • 
Td 

The fractional fade time accumulated over the N days is [equation (5)1 

Thus 

N 

E iL, 
Pr (y 5 L) = rNL —   — 

NT,  

rN — 
Ea 
i.1   

E aiL2Td 
NT, 

(15) 

(16) 

so that I., is the average value of the ai's which in turn can be calculated 
from 

4 
P(a,  A) = 1 — exp (-1.21A()).  (17) 
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Thus 

dP  
rN =  ap(a) da = f a  da 

d A 

= 1.4(1). 
4 

(18) 

To convert from N periods of 9 hours each to the entire measurement 
period of 5.26 X 106 seconds the above result must be multiplied by 
[(N) (32, 400)/5.26 X 1061. Substitution of the number of days with 
nonzero level 2 fade time (Table IV) gives the results shown in Table VI. 
The coefficients obtained from the daily fade times are in fair agreement 
with the overall coefficients which is a reassuring check on the con-
sistency of the results. 
As a digression it is to be noted that the usual Rayleigh assumption 

for modeling the propagation medium corresponds to A = 1. Equation 
(18) shows that the average value of ad corresponds to A = 1.4. It 
appears that the Rayleigh assumption is reasonable on the average but 
it should be recognized that some 30 percent of the days will have 
greater fading. 
The calculation of the daily median is the last topic in this section. 

As noted in Section 7.5, the median value L,,, for the aL2 distribution 
model is given as 

=  (19) 

or 

20 log L „, = —10 log a — 3 dB.  (20) 

Values for 20 log L„, can be read off directly from Fig. 20, e.g., at 
4 GHz the 90-percent point is —8 dB relative to midday normal, while 
the 1-percent point is —14 dB. This calculation is valid only for median 
values less than some —10 dB because as the value of a gets small the 

TABLE VI—FADE TIME COEFFICIENT. OF L2 

Freq 
(GHz) 

Calculated from 
Daily Fade Time 

Measured 
(Table II) 

4 
6 
11 

0.3 
0.45 
0.82 

0.25 
0.53 
0.69 
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calculated median values will be much too high. This occurs because 
the range of validity of the aL2 representation certainly does not extend 
above —10 dB relative to midday normal. As a matter of fact, the 
daily median is uninteresting and is included here only for completeness. 
The next section will take up the matter of the hourly variation for 
which the median calculation is more meaningful. 

7.7 Empirical Probability Distribution of Hourly Fade Time 

The treatment of the daily fade time in Section 7.6 will be applied to 
the hourly fade time in this section. As in Section 7.6, we define* 

t1, total time during an hour for which the signal level is less than 
or equal to L, 

tLi  ith rank ordered sample value, 
NL number of samples, 
vi envelope voltage during ith hour, 
a, environmental constant for the ith hour, 
Th one hour (3600 seconds). 

The cumulative empirical probability distribution for the hourly data 
is constructed according to (see Section 7.6) 

i — 0.5 iL 
P LI =  -  Pr ( i — Pr (ah a,)  (21) 

NL L2Th L2Th 

with 

Pr (v, < L) = air =-  (22) 
Th 

The hourly rank order data on Figs. 14a-c are replotted on Figs. 21a-c 
according to equation (21). The probability scale is exponential and the 
abscissa is logarithmic. The 4-GHz results on Fig. 21a are consistent 
with less than 3 dB scatter from 0.8 to 0.01 and increasing scatter for 
smaller data values. The cutoff value imposed by the 0.2-second sampling 
rate is —22.2 dB for level 2, —11.6 dB for level 3, and —2.5 dB for 
level 4. Since the 4- and 6-GHz data is averaged for 7 and 6 channels 
respectively, the actual cutoff point is some 8 dB lower. In any case 
increased scatter is to be expected for smaller sample values. 
The 6-GHz results on Fig. 21b are consistent for levels 2 and 3 but 

the level 4 data is offset. If all the sample hours had the same amount 
of fade time at a given level then the c.e.p.d. would be a vertical line 
on Fig. 21b. One possible explanation, therefore, is that the level 4 hours 

* The hourly data utilizes similar notation to that for the daily data. 
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Fig. 21b-6-GHz hourly fade time, 1966 West Unity, cumulative empirical prob-

ability distribution. 
Fig. 21c-11-GHz hourly fade time, 1966 West Unity, cumulative empirical 

probability distribution. 

at 6 GHz tended to be more alike than the level 2 and level 3 hours. 
This behavior was also noted in conjunction with Figs. 14b and 15. 
We assume that the 6-GHz hourly data for level 4 is atypical. 
The 11-GHz results on Fig. 21e are reasonably consistent. Since 
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there was only one 11-GHz channel, the effect of the 0.2-second cutoff 
is clearly discernible. 
The level 2 data from Figs. 21a-c is cross-plotted on Fig. 22 where 

the frequency has been normalized to 4 GHz. Thus, assuming that the 
level 2 data is typical, it is found that the distribution of the hourly 
environmental constant ah for hours containing level 2 fades is approxi-
mately given by 

P(a, Ah) = 1 — exp ( —0.7[A (4/1)]").  (23) 

The square-root function in the exponent was arbitrarily chosen to 
agree with the result for the daily data, e.g., (14). A slightly larger 
value than 0.5 would give a better fit for the smaller sample values 
but this was considered unimportant. 
From equation (23), the 50-percent point for 4 GHz falls at Ah = 1, 

with the 99-percent point at Ah = 30. This means that for a fading hour 
the level 2 fade time will exceed 1080 seconds with 1 percent probability. 
The hourly median can now be obtained based on the ar model 

(see Section 7.3): 
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Fig. 22—Hourly fade time for level 2, cumulative empirical probability distribu-
tion, 4, 6, and 11 GHz, 1966 West Unity. 
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20 log  = —10 log ah — 3 dB.  (24) 

Values for L,„,, can be obtained from Fig. 22 using (24). For example, 
at 4 GHz the 1-percent median is —18 dB relative to midday normal. 
The actual maximum data point shown, however, falls at 10 log A = 
17 dB which gives a median of —20 dB. This is in good agreement with 
the minimum median of —20.5 dB for the data given on Fig. 17 for 
one of the 4-GHz channels. This points up the problems of using a 
best fit line to estimate tail probabilities. Within such limitations it 
appears that the simple al,' model for the hourly and daily variations 
of multipath fade time is adequate. 

7.8 Empirical Probability Distribution, of the Median of the Fade Depth 
Distribution for a Minute in a Fading Hour 

In preceding sections, the multipath fading data have been examined 
on a daily basis (Sections 7.2 and 7.6) and an hourly basis (Sections 
7.3, 7.4, 7.5, and 7.7). Finer scale variations also are of interest. The 
sampling rate for a single radio channel varies from 0.2 second to 
30 seconds depending on the amount of activity. This suggests that the 
smallest consecutive time interval that can be used in the construction 
of fade depth distributions is one minute. The measurement technique 
guarantees that if the 30-second rate is being used then the difference 
between any two 30-second samples is less than 2 dB. 
The previous section (7.7) gave an estimate of the probability distri-

bution of the hourly median fade depth of a fading hour. It is logical 
then to consider the median of the fade depth distribution for each 
minute within a clock hour. One channel in each of the three bands, 
4, 0, and 11 GHz, was selected for study during five hours with multipath 
activity. The hourly medians in dB for each combination are given 
in Table VII. Four of the hours selected were drawn from among 
the ten having the most fading, with one lesser fading hour (day 10, 
5-6 A.m.) included for comparison. 
The data analysis for the five hours proceeds as follows: 

(i) Construct the experimental fade depth distribution for each 
minute within the hour and for the entire hour. 

(ii) Estimate the 50-percent dB point from the fade depth distri-
bution for: (a) each minute within the hour: m, dB, 1 :5 i 60; 
(b) the entire hour: h dB. 

(iii) Calculate the difference in minute and hour medians: 

d,= h — ni, dB.  (25) 

(iv) Rank order the d, values from largest to smallest (i is then 



354  THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972 

TABLE VII- MEDIAN VALUES OF THE HOURLY FADE DEPTH 
DISTRIBUTION 

Day Hour 4 GHz 6 GHz 11 GHz 

10 

28 

43 

2-3 A.M 

3-4 A.M. 

5-6 A.M. 

0-1 A.M. 

5-6 A.M. 

C)* 
-20.5 dB 

0 
-17.4 dB 

® 
-11.5 dB 

C) 
-16.4 dB 

® 
-17.5 dB 

® 
-23.5 dB 

0 
-21.0 dB 

(}1 
-13.0 dB 

0 
-16.2 dB 

0 
-22.8 dB 

0 
-27.5 dB 

0 
-22.7 dB 

(D 
-14.2 dB 

0 
-17.4 dB 

0 
-21.0 dB 

"' The circled numbers give the hourly rank order position of the fade time at 
or below level .3 (-31.0 dB) in the hour. 
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the minute and hourly fade depth distribution medians. Data samples of five hours 
for 4,6, and 11 GHz.. 
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redefined as the rank order index with i = 1 for the worst 
50-percent minute median fade value as normalized to the 
hourly median). 

(e) Construct the cumulative empirical probability distribution 
for d, that is, 

i Pr Ed  d1]  — 0.5 
60 

(26) 

The c.e.p.d. for d is plotted on Fig. 23 for all five hours and the three 
radio channels. This single plot suffices because there is no consistent 
difference between the different hours for a particular channel or between 
the different channels in a particular hour. As expected, the 50-percent 
point falls at the 0-dB difference point (within ±1 dB). The entire 
set of data appears to be normal with a mean of 0 dB and a standard 
deviation of 5.5 ± 1.5 dB. It can be seen that, for a multipath fading 
hour, the minute medians vary considerably as compared to the hourly 
median. This is not surprising since the average duration of a multipath 
fade varies from 4 seconds at a —40-dB fade depth to 40 seconds at 
a —20-dB fade depth.' 
To recapitulate, the hourly median can be estimated from Fig. 22 

using equation (24) and the difference in the hourly and minute median 
calculated using a normal distribution with a mean of 0 dB and II = 
5.5 dB. 

VIII. AMPLITUDE STATISTICS FOR ENTIRE TEST PERIOD 

8.1 Introduction 

The effects of multipath propagation are most important in the deep 
fade region, because the received signal can be rendered unusable. The 
signal statistics for shallow fade depths also are of interest if only 
because the signal amplitude resides in this range for the vast majority 
of time. At West Unity an elapsed time of 5.26 X 10° seconds (T0) was 
the total data base; of this total 0.78 X 10° seconds (T4) contained 
all the deep multipath fading and was subjected to detailed analysis.1,2.4 

In this section, statistics for the remaining 4.48 X 106 seconds (T5) 
will be presented for two 4-GHz and two 6-GHz channels. The data for 
the 11-GHz channel was not included in this analysis because of the 
difficulty of separating out the effects of rain attenuation. 

8.2 Fade Depth Distribution 

The fade depth distributions for 4 and 6 GHz are given on Figs. 24 
and 25, respectively, for the three time bases TA, TB ,and T. = TA ± TB. 
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Fig. 24-4.GHz fade depth distribution for the entire test period, 1966 West Unity. 
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The lines on the figures are smoothed through the data, with the deep 
fade equations 0.25/2 and 0.53L2 (as given in Table II) used below 
—20 dB for 4 and 6 GHz respectively. As expected, the TB data domi-
nates the total distribution above the 10-percent point. 
It should not be inferred from these results that there was zero 

probability of upfades above +3 dB. The equipment was designed to 
give this value whenever the signal level was in excess thereof. 
The data for the fade depths less than 20 dB have been replotted 

on Figs. 26 and 27 on a normal probability scale where each set of data 
has been normalized to its own time base, e.g., the data for the multipath 
period are expressed as a fraction of 0.78 X 106 seconds (TA). The data 
are given for only one of the channels in each band since the two channels 
have almost identical statistics in this fade depth range (see Figs. 24 
and 25). 
The plots show that neither the data for the total measurement 

period of 5.26 X 100 seconds (T  TB) nor for the "nonfading" period 
of 4.48 X 100 seconds (TB) are lognormal. During normal daytime 
periods of transmission on a single hop when the atmosphere is well 
mixed the envelope voltage scintillates and has a lognormal distribution 
with a standard deviation less than 1 dB. The TB data is drawn from 



1 

10-3  

u_ 
o 

o-5 

NIULTIPATH PROPAGATION 

TA = 0.78 x 106SEC (MULTIPATH 
DATA) 

TB= 4.48 x106 SEC  NON-
FADING" DATA) 

D CHAN 6-11 
LI CHAN 6-18 

1 

O  10  20  30  40  50 
FADE DEPTH IN d B RELATIVE TO MIDDAY NORMAL (-20 LOG L) 

357 

Fig. 25-640Hz fade depth distribution for the entire test period, 1966 West Unity. 
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Fig. 26-4-G Hz fade depth distribution, 1966 West Unity, probabilities for mea-
surement intervals TA (0.78 X 10' seconds), rg (4.48 X 101. seconds), and TA ± T8 
(5.26 X 10 seconds). 



358  THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972 

PERCENT OP TI
ME FADE DEPTH
 ..ABCISSA 

10 

20 
30 
40 
50 
60 
70 
80 

90 

95 

98 
99 

99.8 
99.9 

99.99 0  5  10  15  20 
FADE DEPTH IN dB RELATIVE TO MIDDAY NORMAL 

Fig. 27-6-GHz fade depth distribution, 1966 West Unity, probabilities for mea-
surement intervals TA (0.78 X 106 seconds), TB (4.48 X 106 seconds), and TA + TB 
(5.26 X 10° seconds). 

a mixture of such periods and others with mild fading. This mixture, 
coupled with the approximately 2-dB quantizing intervals, makes it 
difficult to draw definitive conclusions from either the TB or the 

(TB ± TA) data in the central part of the distribution. 
The TA data are approximately lognormal over the central 80 percent 

of the distribution, with the characteristics given in Table VIII. As can 
be seen from Figs. 26 and 27, the lognormal characteristic is useless 
for predicting the deep fade behavior. This seems to be a common 
finding; an observable which can be modeled as having multiplicative 
components is usually lognormal near its median. However, a more 
sophisticated model is needed for calculation of the tails of the dis-
tribution.' 

TABLE VIII—CHARACTERISTICS OF SHALLOW FADES DURING 
PERIODS INCLUSIVE OF ALL DEEP MULTIPATH FADES 

Characteristic 4 GHz 6 GHz 

50% point 3.1 dB 
4.6 dB 

6.0 dB 
5.2 dB 
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8.3 Number of Fades and Average Fade Durations 

Data on the number of fades and the average fade duration were 
also obtained for a 4-GHz and a 6-GHz radio channel, as shown on 
Figs. 28a-b and 29a-b respectively. The number of fades occurring 
during the deep fade total time (TA) first increases and then decreases 
as the fade depth increases below 0 dB. The line through the deep fade 
region, 3670L for 4 GHz on Fig. 28a and 6410L for 6 GHz on Fig. 29a, 
are the least squares fitted lines to the data for all the channels in the 
separate bands.' The data for the balance of the measurement time (T8) 
varies more rapidly as a function of fade depth, i.e., approximately a 
factor of 100 from 0 to —10 dB. Of course, the TB data has many more 
fades at 0 dB fade than the TA data. Note that the deep fade fitted line 
would overestimate the number of fades by a factor of 2 at a —10-dB 
fade depth but would be quite adequate for prediction at 0 dB fade 
depth. 
The average fade duration at any fade depth is obtained from the 

ratio of the total time at or below the fade depth to the number of 
fades of this depth. Values for this variable have been obtained from 
the data for each of the three time bases—TA , TB , and TA + TB—as 
shown on Figs. 28b and 29b for 4 and 6 GHz respectively. The lines 
408L (4 GHz) and 490/1, (6 GHz) have been obtained for the deep fade 

io3 

2 
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Fig. 28a-4-GHz number of fades for the entire test period. 
Fig. 28b-4-GHz average fade duration for the entire test period. 
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Fig. 29a-6-GHz number of fades for the entire test period. 
Fig. 29b-6-GHz average fade duration for the entire test period. 
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data. However, these deep fade lines, extended to 0 dB, are a good 
representation of the data for the entire dB range. This is further 
evidence in support of Lin's finding that the average fade duration is 
less sensitive to the fading conditions than is either the number of 
fades or the fade depth distribution. 
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This paper discusses the performance and interface advantages of a 
self-isolating bipolar-IGFET (BIGFET) integrated structure as an output 
buffer-driver for IGFET integrated circuits. The low-capacitance, high-
impedance input and low-impedance, high-current output characteristics 
make the BIGFET ideally suited to drive large output capacitances and 
to interface with bipolar logic circuits. It is shown that in a shift register 
application the operating speed is increased substantially when the BIGRE T 
is used as output buffer and is essentially independent of output capacitance 
up to 100 pF . The application of BIGFET output circuits to 5-volt T2I, 
and 3-volt collector-diffusion-isolation (CDI) T21, is also discussed. 

I. INTRODUCTION 

Due to the high output impedance normally associated with In-
sulated-Gate Field-Effect Transistors (IGFET) two problems often 
arise in digital IGFET integrated circuits: (i) Charging and discharging 
times for capacitances external to the integrated circuit are long com-
pared to the corresponding times for internal circuit nodes. (ii) Inter-
facing with bipolar logic requires IGFETs to provide and/or sink 
currents which are larger than those normally available from IGFETs 
with typical integrated circuit geometries. Attempts to solve these 
problems usually involve large IGFET inverters or push-pull drivers 
as output stages. Since these types of output interface circuits employ 
large-geometry IGFETs and have higher input capacitances than those 
capacitances typically found at the nodes of the internal IGFET 
circuitry, the overall result is that circuit speed is degraded at the 
output interface. 
This paper discusses the use of a self-isolating bipolar-IGFET 

(BIGFET) integrated structure in an output buffer-driver. Although 
this structure has been previously proposed,1-3  there have been no 
reported experimental studies of improved circuit performance when 
the BIGFET is incorporated directly on a monolithic p-channel IGFET 

383 
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integrated circuit. Since the BIGFET is capable of providing a low-
capacitance, high-impedance input and a low-impedance, high-current 
output, it provides an almost ideal solution to the interface problems 
discussed above. 

II. DEVICE STRUCTURE AND CHARACTERISTICS 

A schematic and device cross section of a BIGFET are shown in 
Fig. 1. The structure is basically an IGFET and a vertical npn bipolar 
transistor in cascade. The collector of the npn transistor is common 
to the Silicon Integrated Circuit (SIC) substrate. A p-type diffusion 
performs the dual role of bipolar transistor base and p-channel IGFET 
drain. The emitter is formed by the same phosphorus • diffusion that 
is used to make ohmic contact to the 6-9 St-cm n-type substrate. 
The current-voltage characteristics for a typical BIGFET with 

VT = —1.0 volt and hrs  = 140 at /* = 10 mA are shown in Fig. 2. 
It may be seen in the figure that the output current is in the range of 
tens of milliamperes, although the IGFET gain factor, 0[(gice,,/,,..)W /L], 
for this structure is only 100 gmhos/volt. The overall effective gain 
factor is just the product of a and hFs  or, in this case, 14,000 gmhos/volt. 
Therefore, when using this structure for high-current output circuit 
applications, one may employ a small gain factor IGFET with cor-
respondingly low input capacitance. Since this input capacitance need 
be no greater than that found at a typical internal node of an IGFET 
SIC, the delay through the BIGFET output-buffer, in turn, need be 
no greater than the intrinsic delays associated with the internal IGFET 
circuitry. 
BIGFETs with the structure discussed above have been routinely 
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Fig. 1—BIGFET device schematic and structure. 
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Fig. 2—BIGFET current-voltage characteristics. 
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fabricated with a minimum hFE of 60 at Ic = 1 mA. Preliminary life-test 
data indicate that an end-of-life limit for hpE of 50 is feasible for 
high-reliability applications. The temperature dependence of h,s is 
(dh,E/dT)/hFE 1 percent per degree from 0° to 80°C. 

III. CIRCUIT PERFORMANCE 

In order to assess empirically the circuit performance improvements 
achievable through the use of a BIGFET output driver, two four-bit 
static shift registers were designed, fabricated, and tested. One version 
of the shift register (SR1) has a large IGFET inverter a ( y—dr i ve r =  60 
izmhos/volt) as the output stage. The es of the IGFETs in the third 
and fourth bits are appropriately increased to achieve optimum design 
for maximum circuit speed. The second version (SR2) uses a BIGFET 
output driver which consists of a normal IGFET inverter R ( m—drivar  = 

20 eimhos/volt) in cascade with a bipolar emitter follower. For the 
case of SR2, there was no increase in the gain factors of the IGFETs 
in the shift register bits just preceding the BIGFET buffer-driver. 
The two shift registers are shown schematically in Fig. 3. 
To measure the maximum clocking frequency (f..) of the two shift 

registers, a 7-inverter cascade with a BIGFET output stage was used 
as signal discriminator. Signals from the shift register were acceptable 
only if they were capable of propagating through the seven-stage 
inverter cascade. Two voltage bias conditions were studied. In one 
case V Go = —3.0 V and V DD  = +5.0 V while for the other V Do = 0 V 
and V DD = +5.0 V. 
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Fig. 3—Experimental circuits for comparative speed performance measurements. 

The experimentally measured results for the two types of shift 
registers are summarized in Fig. 4. The maximum operating frequency 
is plotted as a function of the output capacitive load (C.) for the two 
stated supply conditions. For SR1, f.,,, is twice as high at low values 
of CD when two supplies are employed as when a single 5-volt supply 
is used. However, f„,„,, decreases with increasing C. at essentially the 
same rate regardless of the supplies used. On the other hand, SR2 is 
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Fig. 4—Experimental performance results for all-IGFET (SRI) and BIGFET-
output (SR2) shift registers. 
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capable of operating at 3.3 MHz for small values of Co when two supplies 
are used and remains independent of Co up to 100 pF. Beyond 100 pF 
the maximum operating frequency falls off in the same manner as SRI.. 
In the single-supply case, f.  for SR2 is independent of C„ over the 
range investigated. Further comparison of the integrity of output 
waveforms with and without the BIGFET output buffer is demon-
strated in Fig. 5. It can be seen that the output waveforms of SRI 
with an IGFET output circuit are grossly degraded by the loading 
of 100 pF. The output of SR2 with the BIGFET is almost unaffected. 

IV. CIRCUIT INTERFACE 

In addition to its usefulness as an output driver, the BIGFET is 
also extremely versatile as a buffer to interface IGFET integrated 
circuits with bipolar logic. To interface with any bipolar logic, the 
primary design consideration is that the driver gate must furnish as 
well as sink currents required by the loading bipolar gate. The net 
result is that the value of the BIGFET emitter resistor RE must be 
carefully chosen to reflect this requirement. 
As an example, the choice of 1500 n for RE allows a straightforward 

interface from BIGFET to low-power 5-volt T2I, logic. The circuit 
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SR2 OUTPUT 1° rill1114010011111111 

11111 1 11 1 L ill dig i ll 11 11 _  'C)LT  

INPUT  

SRI OUTPUT  II II  11 111 1 11 1 11 1 11 1 M 

SR2 OUTPUT  ' 1 1/1 1 1 11 1111 1  'II'  11/1 1 1/1 "11 "U ni  - I  
i l ill i a l l IOVOLT 

Co = ii2pF  —3 •12Ps le— 

Fig. 5—Effects of capacitive loading on output waveforms for all-IGFET (SRI) 
and BIGFET-output (SR2) shift registers. 
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Fig. 6—(a) Circuit schematic of BIGFET-T2L interface. (b) Typical waveforms 
for BIGFET-T2L interface. 

schematic is shown in Fig. 6a and the input and output waveforms 
of the circuit interface are shown in Fig. 6b. In like manner, a suitable 
choice of RE allows the BIGFET to interface with RTL and DTL. 
Interfacing with the 3-volt collector-diffusion-isolation (CDI)4 T2L 

logic is less straightforward. If the same voltage biasing condition, i.e., 
RE grounded, is used one finds that an RE ladder of 900 12 and 300 
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is needed to meet the current and voltage requirements of CDI-TzL. 
This is shown in Fig. 7a. The circuit shown requires a ±10-percent 
tolerance on the 30042 resistor which is not desirable for a high-yield, 
low-cost integrated circuit technology. Since a —3-volt supply is often 
available in low-threshold (VT = —1 V) IGFET SIC applications, a 
higher-value and relaxed-tolerance RE ('"-' 1500 a ± 20 percent) may 
be used if the emitter resistor is connected to the —3-volt supply. 
A schematic of this circuit configuration is shown in Fig. 7b. 
Due to the voltage drop across the driver IGFET and the Vic  of 

the bipolar portion of the BIGFET, the output voltage level from the 
emitter follower may not be sufficient to provide adequate de noise 
margin for low VT IGFET SICs. However, this problem may be over-
come by the introduction of a "pull-up" IGFET in parallel with the 
BIGFET output and using an IGFET as the active emitter load. 
This is shown in Fig. 8. The only requirement is that a gating signal 
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Fig. 7—Circuit schematic for BIGFET-T2L (CDI) interface: (a) resistor ladder 
output. (b) single emitter resistor. 
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Fig. 8—IGFET "pull-up" circuit for BIGFET-IGFET interface. 

must be applied to turn off the IGFET emitter load when the bipolar 
transistor and the associated "pull-up" IGFET are on. Such a gating 
signal is often conveniently available on circuits with timing signals, 
e.g., IGFET shift registers. An alternate solution is to provide a voltage 
level shifting buffer such as an IGFET source-follower at the input 
of the IGFET circuit to which the BIGFET interfaces. 

V. CONCLUSION 

This work demonstrates that there are significant advantages in 
using an integral bipolar-IGFET functional element as a fast interface 
buffer-driver. Specifically, the BIGFET driver 

(i) requires no additional processing for isolation since the bipolar 
collector is common to the IGFET substrate, 

(ii) significantly increases overall speed in multi-integrated circuit 
applications by reducing circuit-to-circuit propagation delays, 
and 

(iii) allows direct interface with most forms of bipolar logic. 
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On Finding the Paths Through a Network 

By N. J. A. SLOANE 

(Manuscript received May 19, 1971) 

Given a directed graph G, algorithms are discussed for finding (i) all paths 
through G with prescribed originating and terminating nodes, (ii) a subset 
of these paths containing all the edges, (iii) a subset containing all the 
edge-edge transitions, and (iv) a subset containing the most likely paths. 

L INTRODUCTION 

Informally, a directed graph consists of a set of vertices or nodes 
together with a set of directed edges joining the nodes. (All of the figures 
below show directed graphs; for a formal definition see page 10 of Ref. 1. 
There may be more than one edge with the same originating and termi-
nating nodes, and the originating and terminating nodes of an edge 
may coincide.) 
Common examples of directed graphs are state diagrams of systems: 

the nodes represent states of the system and an edge directed from 
node N to node N means that it is possible for the system to go directly 
from state N to state AT . 
The following questions concerning the paths through a directed 

graph arose in testing for possible errors sections of the stored program 
of a No. 1 ESS electronic switching system.' However, these questions 
and the algorithms for their solution seem of sufficient general interest 
to warrant stating them independently of their origin. 
Given a directed graph G, the questions are: (i) Find the set a of all 

paths through G with prescribed originating and terminating nodes. 
(A path is just what one would expect; a formal definition is given in 
Section II.) (ii) Find a small subset of a which contains every edge 
occurring in a. (iii) Find a small subset of a which contains all the 
edge-edge transitions occurring in any path in a. (iv) If a probability 
measure is associated with the edges of G, find the most probable paths 
in a. 
These questions and algorithms for their solution are discussed in 

Sections III, V, VI, and VII, respectively. Section II is concerned with 

371 
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the notation used to describe paths, and Section IV with an algorithm 
for partially solving a combinatorial problem encountered in Sections V 
and VI. 

II. NOTATION FOR PATHS 

Definition: A path from node Ar to N2 in a directed graph is a sequence 
of (not necessarily distinct) edges e1, e2 , • • • , e4 with the property 
that there are nodes N1 = n,, n2, • • • y n/ +I = N2 such that ei is 
directed from ni to  for i = 1, 2, • • • ,€. The length of a path is the 
number of edges it contains. 
A path is specified by giving the ordered string e1e2 • • • e4 of its edges. 
(We are in fact describing paths by the notation used in automata theory 
to describe regular expressions, as given, for example, in Ref. 3 and 
chapter 5 of Ref. 4. However, the treatment given here is self-contained.) 
It is convenient to include in the definition a path of zero length 

(whose endpoints N1 and N2 must coincide). This path is specified by 
the empty string A (not to be confused with the empty set q5). 
A collection of paths is specified by the sum of the strings of the 

individual paths. 
If S is a string, S' denotes SS • • • S (i.e., S concatenated i times) 

and S* denotes A -F S + S2 -I- S + • • • . For example, in Fig. 1 the 
collection of all paths from 

N2 to N  is d), 

N to N  is A, 

N1 to N2 is a, 

N4  to N4 is A -I- f + 12 r + • • • = 1*, 
N2 to Ng is d + ce + cfe  cee -F • • • = d + cf*e, 

N1 to Na is ad + (ac  b)f*e. 

Parentheses are used in the natural way. The following rules are easily 
verified. Here S is any sum of strings. 

çb -I- S = 8, e =  = 

S* = A + S +  + • • • 

A* = A 

AS = S 
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Fig. 1—An example. 

(A + S)* = A+ SS* = A + S* = S* 

Si -I- &SI& = 8tS1; S + SiS282 = SiSt 

+ S2)* = (St + St) *. 

III. FINDING ALL PATHS THROUGH A GRAPH 

Let G be a directed graph with n nodes labeled N1 , N2 , • • • , N„ . 
Methods are given for finding all paths through G having prescribed 
starting node N„ and (not necessarily distinct) terminating node N, . 
We first describe the McNaughton-Yamada Algorithm, which requires 
on the order of n3 steps. 

Definition: Let at denote the set of paths which start at N, , end at Ni , 
and do not pass through any intermediate node Ni, with p > k, for 
k = 0, 1, • • • , n, and i, j = 1, 2, • • • , n. 
The algorithm successively computes at for all i and j, then cx!! for 

all i and j, • • • , then «77L for all i and j. The final step is to compute 
the set of all paths from N„ to N, with no restriction on intermediate 

nodes, which is the desired result. 
The inductive step proceeds as follows. Suppose akil is known for 

all i, j, and we wish to obtain ak, , . Referring to Fig. 2, we see that 
the fundamental recurrence equation is 

a,, -I- ai:k-1(akkk-1)*a:71. (1) 

In words, this says that the paths from N, to N, containing intermediate 
nodes as high as k are made up of those containing intermediate nodes 
only as high as k — 1, a71, plus all possible paths containing Nk as an 
intermediate node, c4i (cel)*akki t• When k is equal to either i or j, 
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Fig. 2—The inductive step. 

(1) may be simplified. We now give the complete statement of the 
algorithm. 

THE MCNAUGHTON—YAMADA ALGORITHM3 

1. The Initial Step 

Define a?, for all i, j = 1, • • • , n by: 

(1.1) if i j, 

_  if there is no edge from A r to r 
a" — e,  e, + • • • if edges labeled el , €2 , 

{cii  , 

(1.2)  if i = j, 

= 
o {A if there is no edge from N to itself, 

A + e,  e2 + • • • if edges labeled e, , e, , • • • join A r to itself. 

2. The Inductive Step (Refer to Fig. 2) 
For k = 1,2, • • • , n — 1 compute ak,, for all  j = 1,2, • • • , n from: 

(2.1) if k  k  j then 

• • • join N, to 1 s ; 

aii = a1:7' +  )* a kki ; 

(2.2) if i  j and k = 

(2.3) if i  j and k = j, 

(2.4) if i = j = k, 

= (aii71)>Kaii71; 

a,i = 42::7I(a7;71)*; 
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Fig. 3—An example. 
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3. The Final Step 

Finally, use whichever of (2.1) to (2.4) is appropriate to calculate 
, the set of all paths from N„ to N, . 

Remark: In steps 2 and 3, after obtaining expressions of the form 
a„„,, = • • • (a)* • • • , it may be convenient to simplify (3)* by means 
of the rules given at the end of Section II. 

An Example: We will use the McNaughton-Yamada algorithm to 
compute the set of all paths in Fig. 3 which start at N1 and end at N4 , 
or, in other words, c44 . 

Step 1. 

a?; 

1 2  3  4 

1 
2 
3 
4 

A a  4)  4) 
A + c  d  b 

e  A  f 
4, 4)  A 

Step 2. Since there are no paths into N, ,a:i = at for all i, j. 

i  1  2  3 4 

1  A  a(A + c)*  a(A  c)*d 
cê; 2  4)  (A + c)*  (A ± c)*d 

3  cp  e(A  e)*  A + e(A  c)*d 
4  41 

a(A  c)*d 
(A + c)*b 

f  e(A  c)*b 
A 
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where we have used the rules 4, + S = S and OS = 24, = ck. This may 
be further simplified using the rules at the end of Section II as follows. 

1  2  3  4 

1  A  ac*  ac*d  ac*b 
2  2  4,  c*  c*d  c*b 

3  (1)  ec*  A -F ec*d  f  ec*b 
4  4,  4›  4, A 

Since there are no paths out of N , ce;l, = aa,, for all i, j. We can 
therefore go directly to Step 3: 

a14  ce4 =  -1- ci:3(cY.33) *a234 

= ac*b  a,c*d(A  ec*d)*(1  ec* b) 

= ctc *b  ac*d(ec*d)*(f  ec*b), 

which, if required, can be expanded to give 
4 «14 = ab + acb  ac2b + • • • 

• adf  adeb  adecb  add b + • • • 

• adedf  adedeb  adedecb  • • • 

• adecdf  adecdeb  adecdecb  • • • 

• eccdf  acdeb  acdecb  acdec2b + • • • 

▪ acdedf  acdedeb  acdedecb + • • • 

+.... 

It may be verified that this includes all possible paths from N1 to N 4 • 

Remarks: (i) When programmed in a computer language capable of 
handling strings, such as stiosoL4,5 this algorithm involves the calcula-
tion of nn X n matrices (requiring on the order of n3 steps). Enough 
storage space. is required to hold two n X n matrices (the current 
[4], j = 1, • • • , n, matrix and the previously calculated [(1171, ti, j 
1, • • • , n, matrix) each entry of which is a string of letters, parentheses, 
-Vs and *'s. (ii) With very little extra work Step 3 can be modified to 
give the paths between several pairs of nodes. This is valuable for 
analyzing large graphs, as we now show. 
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Analysis of Large Graphs by Partitioning 

Since the time required for the McNaughton—Yamada algorithm 
grows as the cube of the number of states, large graphs cannot be 
handled directly. However, such graphs can usually be handled by 
partitioning them into smaller subgraphs, applying the algorithm 
to each subgraph separately, and then reapplying the algorithm to the 
network of subgraphs. The following simple example will illustrate 
the method. 
Figure 4 shows a graph G partitioned into two subgraphs GI and G2 

which are interconnected at nodes N2 and N3. (Only edges between 
the subgraphs are shown.) Suppose we wish to find all paths from 
NI to N4. If G1, G2 each contain 20 nodes, a direct application of the 
McNaughton—Yamada algorithm would require on the order of 4e = 
64,000 steps. This number is considerably reduced by the following 
technique. 
Let 13"(G,) denote the set of all paths starting at N,, ending at Ni , 

and lying entirely in the subgraph G,. 
We first apply the McNaughton—Yamada algorithm to G, and G2 to 

obtain ¡3.,(G1), i, j = 1, 2, and j9, (G2), i, j = 3, 4. That is, we first find 
all the paths between the interconnecting nodes that lie completely in 
one of the subgraphs. (This will take on the order of MO = 16,000 
steps.) 
We now replace G by the condensed graph a of Fig. 5.  contains 

(i) nodes g , N4 corresponding to the terminal nodes N1, N , (ii) nodes 
Sr2 g3 corresponding to the interconnecting nodes N2 y N3 y (iii) edges 
a, b corresponding to the interconnecting edges a, b of G, and (iv) edges 
corresponding to all the paths pio,), i, j = 1, 2, and fi,i(G2),  i, j 
3,4, in G. 
The McNaughton—Yamada algorithm is now used to obtain all paths 

from g, to g, in G. (This takes on the order of 43 = 64 steps.) It is 
clear that these paths are exactly all the paths from N, to N, in the 
original graph G. Partitioning into two equal subgraphs has thus 
reduced the number of steps by approximately a factor of four. (Parti-

Fig. 4—A graph partitioned into subgraphs. 
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021(G1) 043 (G2) 

Fig. 5—The condensed graph corresponding to Fig. 4. 

tioning into k equal subgraphs would reduce it by a factor of about le.) 
The general method of analyzing a large graph by partitioning 

should now be clear. 
If n, is the largest number of nodes that can be directly handled by 

the McNaughton—Yamada algorithm, then it is desirable to partition G 
in such a way that no subgraph has more than n, nodes, and that the 
total number of interconnecting nodes (which is the number of nodes 
in the condensed graph) is also less than n.. (Of course the sugbraphs 
may themselves be partitioned.) 

IV. THE COVERING PROBLEM 

In Sections V and VI we will encounter a basic combinatorial problem, 
the covering problem, which may be stated as follows. Suppose a set 
S = {si , 82 , • • • , 8„} of n elements is given, together with a family 
if of subsets of S, 

if =  , X 2,  • • •  -Km),  X i C  S. 

The problem is to find a subfamily SC C if, say 

3C = (Xi„ Xi„ • • • , Xi,), 

where G is as small as possible, such that every element of S appearing 
in if also appears in SC, or formally, such that 

Xi X, L) • • • 1../  =  Xi. ‘../ • • • Ll  . 

3C is called a covering set for 
The family if may be represented by an m X n (0, 1) matrix 911 = 

(mil where 

= 1 

o 
if s; E. X i , 

if si xi . 

The ith row of ffrt, written /(X1), is called the indicator vector of X1 , 
since it indicates which elements of S belong to X . 
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The problem is to find a minimal set of rows which together contain 
a 1 in every nonzero column. Equivalently, if we relabel the matrix so 
that columns correspond to subsets and rows to elements, the problem 
is to find a minimal system of representatives for the subsets. This 
problem is known to be difficult (Ref. 6, page 521). 
The direct attack is to look at the rows taken 1, 2, 3, • • • , in at a time, 

until a covering set is found; this finds a minimal covering set, but may 
take up to 2" — 1 steps. Several methods ' have been given which 
are faster than the direct attack, but are still impractical for large m. 
Roth's algorithm" finds a locally minimal cover which has a high 
probability of being the minimal cover, for quite large values of m 
(up to several hundred). 
However, for our purposes, the following extremely simple (and 

appropriately named) algorithm is adequate. It finds a covering set in 
at most ¡m2 steps, but may not find a minimal cover. 

THE GREEDY ALGORITHM 

The algorithm proceeds inductively, starting with 3C =- rj, and 
(greedily) adding to 3C, each time that particular X which will contribute 
the greatest number of new elements. 
We keep track of the elements in e at each step by means of the 

indicator vector 

/(3C) = /(l.) 
Xt3C 

and stop when this is equal to 

/(if) = I(lJ X). 
X cif 

1. The Initial Step 

Set  = 4), i(3e) = (0, 0,  , 0). 

2. The Inductive Step 

Search through all X, e if that are not in 3C and find an X k which 
maximizes the number of elements of S which are in X k but not in 3C, 
i.e., which maximizes weight (/(Xk). AND. NOT. /(3e)). (The weight of 
a vector is the number of its nonzero components, (a„ • • • , a„). AND. 
(b, , • • • , bn) = (a, AND bj. , • • • , a„ AND b„), NOT. (a, , • • • , a„) = 
(NOT a, , • • • , NOT a„), and .0R. is defined similarly.) Break ties in any 
way. 
Add Xi, to 3C, and calculate the new I(x) = old I(x). OR. /(X,.). 

Repeat Step 2 until /(3e) = /(if); then stop. 
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Remarks: 

(i) The greedy algorithm often finds a covering set which is close to 
minimal, although it is possible to construct examples when the minimal 
covering set contains two subsets while the greedy algorithm uses more 
than N subsets, for any preassigned value of N. Are such examples rare? 
The behavior of the algorithm for a random family  seems to be 
unknown. 

(ii) Since the algorithm involves simple calculations with binary 
vectors it may be easily programmed on a computer. 

Example 1: The set of all paths from N1 to N. in Fig. 6 consists of 

(al 1- a2)(b1 -E b2)(ci -E c2)  a1b1c2  cl1b2c1  ct1b2c2 

a2b1c1 a2b1c2  a2b2c1 -E a2b2c2. 

Suppose it is desired to find a minimal subset of these paths which 
contains all the edges S = { a, , a2 , bl , b2 , cl , c21 J. consists of the 
following eight subsets of S, shown together with their indicator vectors. 

x I(X) 

1  ab,c,  1 0 1 0 1 0 
2  aibic2  1 0 1 0 0 1 
3  a1l)2c1  1 0 0 1 1 0 
4  aib2c2  1 0 0 1 0 1 
5  a2b1c1 0 1 1 0 1 0 
6  a2b1c2  0 1 1 0 0 1 
7  a2b2ci  0 1 0 1 1 0 
8  a2b2c2  0 1 0 1 0 1 

The greedy algorithm then proceeds as follows. 
Step 1. 3e = (12, /(3C) = 000000. 
Step 2. Weight (1(X3. AND. 111111) = 3 for all i, so we pick X, 

(any X. will do) and add it to 3C: 3C = {XI}, /(3C) = 101010. 
Step 2 again. Weight (1(X1). AND. 010101) is maximized by i = 8. 

a2 

Fig. 6—An example. 
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Then 3C = {Xi , X81, /(3C) = 101010. OR. 010101 = 111111. The 
algorithm terminates having found 

3C =  , a2b2c21 

which is a correct solution. 

Example 2: The greedy algorithm does not always find a minimal 
covering set, as the following example shows. 

S = {1, 2, 3, 4, 5, 6} 

= {X, = {1, 2, 31, x3 = {4, 5, 61, x3 = { 1, 3,4, 61. 
The greedy algorithm finds 3C = 1X1 , X, , X81, while the minimal 
3C is {Xi , X21. 

V. FINDING A SMALL SET OF PATHS CONTAINING ALL EDGES 

As before, let G be a directed graph with nodes N,, N, , • • • , N. 
Let a„ denote the set of paths from N, to N, . 
Definition: A set p„, of paths from N„ to N, is said to be a spanning set 
if every edge occurring in the set a„ occurs in /3„ . 

Example: In Fig. 7, the set of all paths from N1 to Ar, is 

«12 = (a + b)(c  d) = ac  + bc + bd, 

whereas an example of a spanning set is 013 = ac ± bd. 
The problem we consider in this section is to find a small spanning 

set 13,, . Finding a minimal spanning set appears difficult, and the only 
method we know is essentially an exhaustive search, as given in the 
next paragraph. The main algorithm of this section, algorithm B, gives 
a small spanning set Op, with a reasonable amount of computation. 

Finding the Smallest Spanning Set fi„ by Exhaustive Search 

This may be accomplished by first applying the McNaughton—Yamada 
algorithm of Section III to produce a condensed list of all paths from 
N„ to N, . Then truncate each expression 8* appearing in this list to 
A ± S. (Since there is no need to go around a loop more than once in 

d 

Fig. 7—An example. 
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succession, we can throw away the remaining terms of S* = A + S + 
52  + 53 + • • • .) We now have a finite spanning set /3„ and can use an 
exhaustive search to get a minimal set. 
The difficulty with this method is that the number of terms obtained 

in the final list will be very large. To illustrate we apply the method to 
the four-node graph of Fig. 3. We found that the complete set of paths 
from N1 to N4 is 

al4 =  ac*b + ac*d(ec*d)*(f + ec*b). 

Truncating each S to A  S, we obtain 

a(A  c)b + a(A  c)d(A +-e(A + c)d)(f + e(A + c)b), 

which, when parentheses are removed, becomes 

ab + acb + aclf + adeb + wipe') + adedf + cbdedeb + aded.ccb 

+ adecdf + adecdeb + adecclecb + acdf + acdeb + acdecb + accleclf 

+ acdedeb + acdedecb + acdecdf + acclecdeb + acclecde,cb. 

Then by inspection, or from the greedy algorithm of Section IV, we 
find that a minimal spanning set is for example 

/314 =  adf + adecb. 

An Approximate Solution to the Problem—Algorithm B 

We noticed in the above example that the difficulty was not in 
finding a minimal spanning set—indeed there are a large number of ways 
of choosing one—but rather in the very rapid increase in the number 
of terms to be handled. The algorithm to be described now keeps the 
lists involved small. 
The basic idea is to follow the McNaughton—Yamada algorithm, but 

to use the greedy algorithm twice at each step to reduce the complete path 
sets at to small covering sets le, . 

Definition,: Let lei be a set of paths from Al.; to Ni containing no 
internal node N„ with p > k and containing every edge appearing 
in cet • 
Then 0,1, = 13„ is an example of a spanning set of paths from N, to N„ 

which is what we are seeking. 
The algorithm will form the fit by induction on k. At each step we will 

keep a record of the edges in St by means of its indicator vector l(13). 
The inductive step proceeds as follows. Suppose 01:7' is known for 

all i, j, and we wish to obtain fei (see Fig. 8). We restrict ourselves here 
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T2 

Fig. 8—The inductive step of algorithm B. 
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to the case when i, j and k are distinct, the other cases being left to the 
detailed statement of the algorithm. 
Suppose $:1 = T. + T2 + • • • + T, , where each T. is a path 

from Nk to Nk . Then a possible choice for le is 

eì + e177„Ti, • • • TiAT'  (2) 
where we have used just enough Tir's to include all the edges in T, 
T2 + • • • + T, that were not already contained in 

Okr7I ,3,7'13;:7I • 
A better choice for lei , however, is to obtain (2) and then find a small 
spanning subset of (2) by the greedy algorithm. 
We now give the algorithm. 

ALGORITHM B 

Each ei will have the form of a sum of strings of edges, without 
*'s or parentheses. 

1. The Initial Step 

Define $t for all i, j  1, • • • , n by: 

(1.1) if i j, 

_ {0 if there is no edge from N1 to N , 
"  c,  c2 + • • • if edges labeled c, , c2 , • • • join r to N ; 

(1.2) if i = j, 

{A if there is no edge from N, to itself, cic2 • • • if edges labeled cl , c2 , • • • join AT; to itself. 
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2. The Inductive Step (Refer to Fig. 8) 

For k = 1, 2, • • • , n — 1, compute it for all i, j = 1, 2, 
as follows: 

n 

(2.1) If k  i,k  j: 

(2.1.1) Let the terms of fl,'̀, 1 be 

=  + T2 + • • • + Tr . 

(2.1.2) Form the indicator vector 

= /(13t,7').0R.I en.OR. w').  (2.1.3) 

(This includes all the edges in the three sides of the triangle of Fig. 8.) 
(2.1.4) Using the greedy algorithm, find a small subset of the T.'s 
in (2.1.1) which contains all the edges in 

/( e). AND. NOT. 

i.e., find a small subset of the terms T. which includes all the new edges 
they contain. Let this subset be T., + T.. + • • • + T... 

(2.1.5) Form the set 

31 +  • • • Tam3:7' • • •  (2.1.6) 
(By construction, this now contains all the edges visible in Fig. 8.) 
(2.1.7) Apply the greedy algorithm to the set (2.1.6) to find a small 
spanning subset. This is ei . 

(2.2) If i j and k = i, replace (2.1.3) by /,  '), and replace 
(2.1.6) by 

T.,T., • • • T.,,,s7t. 
(2.3) If i j and k = j, replace (2.1.3) by I = I(13!;'), and replace 
(2.1.6) by 

fi",»T.,T., • • • T.. . 

(2.4) If i = j = k: 
Replace (2.1.3) by I, = 0 and replace steps (2.1.5) and (2.1.7) by 

= T.,T.. • • • T.. . 

3. The Final Step 

Use whichever of (2.1) to (2.4) is appropriate to calculate 07,„ the 
desired result. 
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Example: We use algorithm B to obtain a small spanning set 13,4 of 
paths from node 1 to node 4 in Fig. 3. 

1 2 3 4 

e: • = j3,.  2 
3 
4 

1 
2 
3 
4 

A a 

e 

1 2 3 4 

A 
e 
0 
4, 

ac 

e 
cc 

4, 

acd 
cd 
ecd 
4) 

acb 
cb 

f + ecb 
A 

The last step will be shown in detail. 
(2.1.1) 0:3 = ecd = T1. 
(2.1.2) IL = 1(4). OR. l(e.). OR. I($4) = 111000. Oit. 101100. OR. 
011011 = 111111. 

(2.1.4) NOT. II = 000000 so no T.'s need be used. 
(2.1.5) fg, 13i3e4 = acb  acd(f  ecb) = acb  a,cdf  acdecb. 
(2.1.7) From the greedy algorithm, 13;4 = (3-114 = acdecb  acd f, which 

is a minimal solution (although minimal solutions with shorter strings 
are possible, such as acdeb  adf). 

Remarks: (i) If a fast version of the greedy algorithm is available, the 
computation time for algorithm B should not be much more than for 
the McNaughton—Yamada algorithm. (ii) An edge forming a loop of 
length one may be deleted from any sum of strings in which it appears 
more than once. If there are many such edges the algorithm should be 
modified to make a list of such edges and periodically delete duplicates 
from the ei . The modified algorithm would then give the improved 
solution acdeb  adf to the above example. (iii) As in Section III, large 
networks may be handled by partitioning. 
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VI. FINDING A SMALL SET OF PATHS CONTAINING ALL EDGE-EDGE TRANSI-

TIONS. 

With a„ defined as before, in this section we consider the problem of 
finding a small subset ,y„ of a„ with the property that every edge-edge 
transition appearing in any path from N, to N, appears in 'y,,. 
For example, consider the graph of Fig. 6. Here the set of all paths 

from Ni to N 4 is 

= (a, -F a2)(b1  b2)(c1 4- e2) 

= aibici ct1b1c2 ± a1b2e1 ± al be. 

4- a2b1c1  a2b,c2  a2b2c1  a2b,c2 , 

and an example of "y,4 is 

714 = aible,  a1b2c1  a2b,c2  a2b2c2 • 

To check this we observe that al4 contains eight distinct edge-edge 
transitions: 

aibi , aib2 , a2b1 , a2b2 , b1c , b1c2 , b2c, ,b2c2 

and all of these appear in 1,14 

Of course 'y,4 is not unique, another example being 

a1b1c2  a1b2c2 4- a2b,c1 -F a2b2ci • 

The idea of the solution is to construct from G a new graph called the 
transition graph, G", which will have an edge for every edge-edge 
transition in G, and then to apply algorithm B to Or . 
Suppose then that Gis given and it is desired to find -y„, . First form 

the augmented graph G by adding to G a node N. which is connected 
to Ns by an edge z, , and a node  to which N, is connected by 
an edge z2 (see Fig. 9). 
From G we construct the transition graph Gr as follows. The nodes 

of G" are (i) a node denoted (Ns), and (ii) nodes denoted (ei, , N.) , • • • , 
(e(„„ N.) if edges e11 , • • • , e„.; enter Ni in a, for i = 1,2, • • • , n  1. 

G  G 

Fig. 9—Construction of augmented graph O. 



PATHS THROUGH A NET WORK  387 

The edges of Gr are (i) an edge from (N.) to (Z1  N,), labeled (z1); 
and (ii) for every edge-edge transition in a, 

o  N.  f  N, 

 o 

there is a corresponding edge in Gr: 

(e,  N 
co .1) 

In general, we see that nodes of Gr have labels of the form (edge of a, 
node of a), and edges have labels of the form (edge-edge transition 
pair of a). 
By construction, apart from the edge (z,) of Gr, there is a one-to-one 

correspondence between edge-edge transitions in a and edges of G7'. 
To find 7„„ we apply algorithm B to Gr . Each path through G 1. from 

N. to Nn+1  will have the form 

(z1),  e,,), (ei, ei.), • • • , (e1.22)  (3) 

and this corresponds uniquely to the path 

ei.  elr (4) 

from 11 rm  to N, in G. The process of obtaining (4) from (3) will be called 
contracting. 
We can now state the algorithm. 

Algorithm C for Obtaining -y„ 

1. From G obtain O and then the transition graph Gr 

2. Apply algorithm B to find a small set of spanning paths from N. to 
N„.›, in Gr. 

3. Contract each of these paths to give a set of paths in G. This is  . 

Example: Let G be the graph of Fig. 6. Then a and G7' are shown 
in Figs. 10-11. 
Applying algorithm B, or in this case even by inspection, we see that 

a minimal spanning set for Fig. 11 is 

(zi)(zial)(aibi)(bici)(ciz2) 

(z1)(ziai)(alb2)(b2c1)(eiz2) 

(z1)(z1a2)(a2b1)(b1c2)(c2z2) 

(z1)(z1a2)(a2b2)(b2c2)(c2z2), 
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o  

a,  b,  c2 

Fig. 10—Augmented graph Ù corresponding to Fig. 6. 

which contracts to give the paths 

albici  a,b2c1  a2b1c2 -E a2b2c2 , 

the same solution as found before. 

VII. FINDING THE MOST PROBABLE PATHS 

A directed graph G is given with a conditional probability measure 
associated with the edges. More precisely G has nodes N, , • • • , N„ , 
and associated with each edge e, directed say from N, to Ni , is the 
conditional probability p. that e will be traversed next, given that the 
last node reached was N. . 
We wish to find the most probable paths through the graph, starting 

at N and ending at N, . The probability of a path is the product of the 
probabilities associated with the edges in the path. 
In other words it is desired to find those paths P for which 

probability (P) = II  p. 
all edge!' 
erP 

is the maximum, or is close to the maximum. 
If we label each edge e of G with the "length" 

q. = —log p. 

instead of with p, an equivalent problem is to find those paths P for 
which 

qr 
all edges c P 

is the minimum, or is close to the minimum. In the new graph this 
corresponds to finding the shortest paths between N„ and N, . This 
problem has been extensively studied and many good algorithms for 
its solution are available. We refer the reader to the recent survey by 
S. E. Dreyfus." References 16 and 17 are earlier surveys covering a wide 
range of similar problems. The paper by H. Frank" is also relevant. 

VIII. SUMMARY 

Four questions which arise in testing a stored program for possible 
errors are stated quite generally in terms of listing the paths through 
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(No) 

(z,) 

(z, N,) 

(z, a,)  (z1 a2) 

(al N2)  (a2 N2) 

(a, b,)  (a2 b2) 

(b1 N 3)  (b -2 1\1 3) 

(bi  ( 2 C2) 

(C1 N4  (C2 N4) 

(z2 N5) 

Fig. 11—Transition graph Gr corresponding to Fig. 10. 
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a directed graph. Question 1 may be answered for small graphs by the 
McNaughton—Yamada algorithm, and for large graphs by partitioning 
(Section III). Question 2 involves a difficult combinatorial problem, 
the minimal covering problem, a partial solution of which is given by the 
appropriately named greedy algorithm of Section IV. With the aid of 
the greedy algorithm, algorithm B solves question 2 (Section V). 
Question 3 is solved by the same method as question 2 (Section VI). 
Question 4 is shown to be equivalent to the widely studied "shortest-path 
problem," and references are given to the appropriate literature (Sec-
tion VII). 
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Wiring Telephone Apparatus from 
Computer-Generated Speech 

By J. L. FLANAGAN, L. R. RABINER, R. W. SCHAFER, and 
J. D. DENMAN 

(Manuscript received October 5, 1971) 

Tape-recorded, spoken wiring instructions eliminate the need for a 
wireman to divert his eyes and hands from the equipment he is fabricating. 
A computer technique is described for automatically converting printed 
wire lists to synthetic speech. The technique was used to synthesize spoken 
wire lists for crossbar-4 equipment, and the result was tested informally 
on a production line at the Western Electric Company plant in Oklahoma 
City. No errors were made in wiring crossbar-4 circuitry from the computer-
synthesized instructions. 

I. INTRODUCTION 

In many instances in fabricating and wiring telephone equipment, 
it is necessary for the wireman to use both hands and to visually "keep 
his place" in the equipment. Since it is inefficient and time consuming 
to divert either eyes or hands from the wiring task, a spoken presentation 
of the wire-list sequence is advantageous. 
Tape-recorded, spoken wire lists have been used by Western Electric 

Company for switchgear wiring and cable forming at the Oklahoma City 
and Montgomery (Chicago) plants. The wire lists typically are read and 
recorded by a practiced announcer. The recordings are then checked 
and edited by another person in a separate listening operation. The 
final recording is then used in a cassette play-back whose start-stop 
control is wired to a footswitch. As the wireman needs items of the 
wiring sequence, he presses the footswitch for a time required to play 
back each item of the list. Because of the noisy environment he normally 
listens on an ear-insert earphone. The play-back normally is stopped 
while each connection is made. A typical wire list includes: lead length; 
color; beginning point; terminating point; and, sometimes, auxiliary 
instructions. Studies of the audio technique of wiring show accelerated 
training time and substantial improvements in quality and efficiency. 

391 
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Fewer defects are found to occur and less time is needed to repair them.' 
Wire lists for complex equipment are generally organized on computer 

cards. The audio technique therefore requires a listing of the card deck 
in a form convenient for the human announcer. The two human opera-
tions [(i) recording and (ii) editing] offer possibilities for errors to 
creep in. This sequence of operations is illustrated in the upper half 
of Fig. 1. Modifications in the wire list—made easily in the card deck 
and, generally, made often during the life of a typical list—require 
re-recording and re-editing of the audio tape. Consequently, there is 
considerable motivation to consider direct and automatic conversion of 
the card deck into a speech recording. One scheme for a direct and 
automatic generation of the spoken wire list uses synthetic speech and 
is illustrated in the lower half of Fig. 1. 

If. COMPUTER-SYNTHESIZED INSTRUCTIONS 

We recently have devised a computer technique for synthesizing 
speech from stored, low bit-rate data.' In its initial form the method 
has been applied to the synthesis of 7-digit telephone numbers, as 
might be used in an automatic intercept system. The system is imple-
mented on one of the DDP-516 computers in the Acoustics Research 

ANNOUNCER 

PRINTED 
WIRE 
LIST 

WIRE LIST 
COMPUTER 
CARDS 

\   

DOP-518 
COMPUTER 

.11» 

TAPE 
RECORDER 

DIGITAL 
SPEECH 

SYNTHÈSIZER 

- 111P 
TAPE 

RECORDER 

TAPE --e. 
RECORDER 

CHECK 
AND 
EDIT 

FOOT 
SWITCH 

CROSSBAR -4 WIREMAN 

WECO, OKLAHOMA CITY 

Fig. 1—Human and computer methods of preparing tape-recorded, spoken wiring 
instructions. 
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Department, and the major components of the system are shown in 

Fig. 2. 
Individually-spoken words are analyzed in terms of their character-

istic (formant) resonances, and the results described by a data rate of 
530 bits per second.2 These data are stored in the fast-access disc of 
the DDP-516 facility and constitute the vocabulary for the voice-
response system. When a word-sequence is demanded by a control 
(answer-back) program, the formant data for the successive words are 
accessed from disc and are concatenated "head-to-tail." An analysis 
is made of the context in which the library words are to appear, and 
duration and voice pitch data are computed for each word by the 
synthesis program. The formant data at the boundaries between words 
are interpolated smoothly by a specially designed algorithm in the 
synthesis program. Finally, the formant and pitch data calculated for 
the required utterance are sent to a hardware digital filter whose 
resonances simulate those of the human vocal tract." Digital-to-analog 
conversion of the filter output yields a synthetic speech signal. 
We have used this voice-response system with simplified duration 

and pitch rules to synthesize wire lists for crossbar-4 switchgear. In 
this application the card deck comprising the wire list is simply put 
into the card reader of the DDP-516 and each wiring instruction is 
synthesized. A computer-controlled analog tape recorder records the 
output of the D/A converter, and this tape goes directly to the wireman's 
cassette. The items of the crossbar-4 wire list which were synthesized 
are shown in Table I. The synthesized list contained a total of 58 com-
plete wire wrap instructions. 

WORD SEQUENCE 

DEMANDED BY 

ANSWER - BACK 

PROGRAM 

DIGITAL STORAGE 
FOR FORMANT-
CODED WORDS 
(530 BPS) 

DD P-516 

PROGRAM FOR 

CONCATENATING 

WORDS 

CALCULATED SAMPLED 
"...CONTROLS FOR HARDWARE 
/ FORMANT SYNTHESIZER 

DURATION 
CALCULATION 

PITCH 
CONTOUR 

CALCULATION 

HARDWARE 

DIGITAL 

SPEECH 

SYNTHESIZER 

DIGITAL-

TO -

ANALOG 

CONVERTER 

Fig. 2—DDP-516 computer system for automatic synthesis of spoken wiring 
instructions. 
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TABLE I—SYNTHESIZED W IRE LIST 

SWJ99234T2 
issue 7 

List combination 1, 2, C, D 
Apparatus not otherwise identified shall be considered to be a relay. 
Wire colors not otherwise identified shall be green and the length will be in inches. 
The sequence of operations will be: wire length, starting terminal and apparatus 
designation, ending terminal and apparatus designation. 

12 
3 
11 
2 
18 
19 

4-1/2 
20 
16 
11 
4-1/2 
11 
19 
11 
10-1/2 
3-1/2 
4 
3-1/2 
3 
17 
9 
10 
10 
2-1/2 

2-1/2 
2-1/2 
5 
3-1/2 
3-1/2 

5 
3 
4 
7 
4 
4.5 
2 
3 
3 
3.5 
3.5 
3.5 
20 
20 
11.5 

5.5 
7 

Red 2.5 
Black 3 
Black 9.5 
Black 2.5 
Black 3 
Black 10 

27A terminal strip 
28A terminal strip 
37A terminal strip 
38A terminal strip 
15A terminal strip 
18A terminal strip 
25A terminal strip 
26A terminal strip 
35A terminal strip 
36A terminal strip 
14A terminal strip 
24A terminal strip 
33A terminal strip 
34A terminal strip 
12A terminal strip 
32A terminal strip 
IA tube socket 
5A tube socket 
6A tube socket 
8A tube socket 
1 top P 
2 top P 
3 top P 
4 top P 
5 top P 
8 top P 
bottom C2 capacitor 
top C2 capacitor 
bottom Cl capacitor 
top Cl capacitor 
bottom C resistor 
4 break R1 
6 break RI 
bottom A capacitor 
top A capacitor 
5A repeat coil 
1 lower TP 
1 upper TP 
2 lower TP 
2 upper TP 
IA repeat coil 
6A repeat coil 
bottom A resistor 
top A resistor 
17A terminal strip 
18A terminal strip 
22A terminal strip 
6 top P 
bottom D capacitor 
top R1 upper terminal 
11A terminal strip 
3IA terminal strip 
7A tube socket 
8 break R1 
2 make R1 
10 make R1 

6R1 
2A tube socket 
4R1 
6A. tube socket 
1 lower TP 
1 TP 
7 break TP 
1 top P 
7 TP 
2A repeat coil 
6 make RI 
2 top P 
4 make RI 
1 upper TP 
2 RI 
upper RI 
8 top P 
9 top P 
4 top P 
7 top P 
6 make TP 
10 break RI 
8 make R1 
top A capacitor 
top D capacitor 
bottom A capacitor 
bottom Cl capacitor 
top Cl capacitor 
8 RI 
top C resistor 
10 R1 
4A repeat coil 
7A repeat coil 
8A repeat coil 
3A repeat coil 
6 TP 
right E capacitor 
lower E capacitor 
4 make TP 
4 TP 
top A resistor 
bottom A resistor 
bottom B capacitor 
top B 
5 TP 
3 TP 
11 RI 
top R1 upper terminal 
bottom Ttl lower terminal 
5A repeat coil 
4A tube socket 
7A tube socket 
8 break RI 
2 make RI 
10 make R1 
top TP terminal 
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We have made informal experiments at the Western Electric Company 
plant in Oklahoma City, where we asked the wireman (or, rather, 
wiregirl) to use the àynthetic speech recording to fabricate crossbar-4 
equipment. A photograph of the wireman simultaneously wire-wrapping 
five identical chassis of crossbar-4 equipment is shown in Fig. 3a. The 
footswitch control of the synthetic speech tape on the cassette is shown 
in Fig. 3b. 

Fig. 3a—Wireman on production line at Western Electric Company plant in 
Oklahoma City. The wireman is fabricating crossbar-4 equipment from the computer-
spoken wire list. 



396  THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972 

Fig. 3b—Wireman's foot9witch to control the computer—synthesized speech tape. 

While the quality of the synthetic speech is far from natural, the 
wireman (who had never heard synthetic speech) experienced no 
difficulty in using it immediately and, in fact, remarked that the 
"caricatured" nature of the synthetic signal seemed better for the noisy 
plant environment than natural speech. About 15 minutes/chassis are 
needed to wire the equipment shown in Fig. 3, and no wiring errors were 
made in the informal tests on the five chassis. 
For speech material with as small a vocabulary and as rigid a con-
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textual format as a wire list, the flexibility and storage economy of the 
synthesis system is not critically needed. In the case of brief lists, 
digital recordings of the naturally spoken vocabulary words may be 
made on the DDP-516 disc and these words can be concatenated 
automatically by the control program. This simpler approach does not, 
of course, permit smooth, natural joining of the words into a sentence, 
but utterances such as the components of a wire list can be rendered 
reasonably well virtually in isolation. This approach would be exceed-
ingly economical in that no pre-analysis computation of formant data 
is required to establish the machine vocabulary, and all the advantages 
of automatic, computer-generation of the spoken instructions are 

retained. 
One final comment may be in order about computer-generation of 

spoken wire lists. The human-pronounced list which had been in use for 
the crossbar-4 wiring had a very obvious pausal error throughout. (Look, 
for example, at the first item in Table I.) The girl announcer who 
recorded the tapes, and who apparently was unfamiliar with the wiring 
operation, consistently read the items as "Twelve (pause) Twenty-seven 
(pause) A terminal strip." The computer, although speaking with a 
machine accent, never makes this mistake. 
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Man-Machine Interaction in 
Human-Face Identification 

By A. J. GOLDSTEIN, L. D. HARMON, and A. B. LESK 

(Manuscript received September 20,1971) 

How well can a computer identify a human face which is described by a 
person who is inspecting a photograph? We give an account of an inter-
active system that takes advantage both of the human's superiority in 
detecting and describing noteworthy features and of the machine's super-
iority in making decisions based on accurate knowledge of population 
statistics of stored face-features. Experiments using a population of 
255 faces and 10 or fewer feature-descriptions showed that the population 
containing the described individual could be narrowed down to less than 
4 percent in 99 percent of all trials. 

I. INTRODUCTION 

In a previous report' we described experiments in human-face 
recognition which were intended to establish a foundation for extended 
study. Those experiments provided a large body of reliable quantitative 
data based on 21 feature-descriptions of 255 human faces. These 
21-dimensional vectors were shown to be sufficient for accurate indi-
vidual identification, both by human and by computer search.* 
The objective, then and now, is to explore new techniques for obtaining 

accurate recognition of vectors given imprecise component values. Our 
procedures involve searching through a population of vectors to retrieve 
one, a "target," whose components best match a searcher's imprecise 
specification. 
There are two obvious kinds of such recognition and retrieval, just 

as in fingerprint-file search. One is that of finding the best match 
between an unidentified individual and a member of a file population. 
The other is that of assigning an individual to one of a number of 

* Our population consisted of 255 white males aged 20-50 with no eyeglasses, 
facial hair, scars, or notable deformities. A panel of 10 observers independently 
evaluated 21 features (shown in Fig. 1) for each face. The average value of the 
observers' votes was used as the "official" description of each face-feature. Although 
individual feature-descriptions are restricted to integral values, averaging the panel's 
votes provides non-integral official descriptions. Reference 1 contains a detailed 
discussion of the features and population used. 
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predefined classes according to some systematic scheme. Ours is the 
first approach, matching, though the techniques developed could 
readily be used for the second, cataloging. 
In our previous work, a subject was given a set of photographs of 

human faces and an official description of one of them. He was required 
to select that photograph which best matched the description. In the 
experiments reported here, the subject was shown a picture and was 
asked to describe it to a computer using features from a list given to him. 
The computer then searched a population of stored descriptions for 
best fit to the description furnished by the subject. In both studies 
we ran supplementary experiments employing computer simulation to 
establish theoretical limits of human performance under certain model-
ing assumptions. 
In the earlier face-identification procedures, isolation was based on a 

binary-decision technique. At each step in the search, the population 
was progressively reduced by using a quantitative feature-description 
to determine which members of the remaining subset would be retained. 
On the average, eight feature-descriptions were required to isolate a 
face in a population of 255 males; about 50 percent correct identification 
was obtained. The binary process, however, obviously insured doom 
given just one error in the sequence. 
A more lenient process is rank-ordering. If one ranks population 

members according to some goodness-of-fit criterion, any reasonably 
accurate description can be expected to place the target high on the 
rank-ordered list. Such a system can be quite useful in focusing attention 
on a small subset of the population that has high probability of con-
taining the target. Population-reduction techniques like this are well-
known to be useful in many tasks, from fingerprint-file search' and 
script recognition' to document retrieval.' 
The present report deals with a real-time man-machine interactive 

system for human-face identification. The study has three main objec-
tives: 

(i) To develop a decision-making technique which replaces the 
earlier error-sensitive binary-decision selection process by a 
more forgiving rank-ordering process, 

(is) To design algorithms for optimizing the man-machine system 
so that we can take advantage of both the human's superiority 
in detecting noteworthy features and the machine's superiority in 
making decisions based on accurate knowledge of population 
statistics, and 

(iii) To devise simple yet effective measures of performance. 
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II. SYSTEM DESIGN 

The system design can be understood by considering our experimental 
procedure. A subject at a remote computer-terminal is given a photo-
graph of one member of the population. He describes this target face 
to the computer using descriptive features chosen from a permitted set. 
The aim is to have the computer identify the target from the subject's 
description of it. 
Subjects in our experiments used three-view photographs of target 

faces (two examples are shown in Fig. 6). The set of features from 
which descriptions were drawn is shown in Fig. 1. 
In our experiments, features may be chosen by the subject or by 

the computer which uses an automatic feature-selection algorithm. 
There are three alternative modes of feature selection: the subject 
may choose all features, or he may choose some and then let the com-
puter choose the rest, or the computer may choose all features. 
After each feature description, the computer assigns a goodness-of-fit 

measure (a "weight") to each member of the population. This weight 
represents the similarity of the subject's description to the official 
description of each member of the population. At each feature-descrip-
tion step, the population is ranked by weight. After a predetermined 
number of steps, the process is terminated. We evaluate performance 
with respect to the target's rank and weight. An illustrative printout 
of one "portrait"* appears in Fig. 2. 
Two aspects of system design are crucial: the weight-assignment 

algorithm and the feature-selection algorithm. They are described 
below. Following that, we discuss two critical experimental requirements, 
stopping criteria and measures of performance. The experiments 
reported in the succeeding section were designed to show how various 
modes of feature selection affected system performance. 

2.1 Weight Assignment 

The algorithm used to assign weights at each step must maintain 
a reasonable balance between penalizing descriptive errors so heavily 
that recovery from a mistake is impossible and penalizing these errors 
so lightly that no significant reduction of the population is achieved. 
The penalties assigned should distinguish between a minor descriptive 
error (e.g., medium-long vs long nose-length) from which recovery 
should be easy, and a major error (e.g., short vs long nose-length) 
from which recovery should be more difficult. 
* A portrait is defined as a description consisting of a set of integral feature-values 

assigned by a subject; the subject is said to "portray" the target. 
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Fig. 1—Set of 21 face-features and their allowable val les w,ed for all experiments 

We chose 

E 1/4 -  =  
as the general form of an individual's weight at step s. For the feature 
described at step i, y is the individual's official value, Di is the value 
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DESCRIBE NEXT PICTURE. 

FEATURE   METE OPENING 
EYEBROW WT.  NARROW  MEDIUM  WIDE 

THIN  MEDIUM  BUSHY  1  2  3  4  5 
1  2  3  .  5  .2 

.1  76  /2  226  26  191 
93  244  183  223  159  1.00 0.51 0.40 0.38 0.36 

1.00 1.00 1.00 1.00 0.82 

FEATURE 
EAR LENGTH 

SHORT  MEDIUM  LONG 
1  2  3  4  5 

.1 
72  244  175  93  43 

1.00 1.00 0082 0.6/ 0.66 

****** UPPER LIP 
THIN  MEDIUM  THICK 

1  2  3  4  5 
.3 

76  191  72  221  52 
1.00 0.33 0.29 0.23 0.21 

 HAIR SHADE 
DARK  MED.  L.T.  GRAY  WMT. 

FEATURE  1  2  3  4  5 
LIP OVERLAP  .2 

UPPER  NEITHER  LOWER  76  221  72  226  191 
I  2  1.00 0.34 0.34 0.33 0. 25  

.1 
72  226  114  122  76 

1.00 0.73 0.66 0.61 0.60   IP 
THIN  MEDIUM  THICK 

1  2  3  4  5 
FEATURE  .1 

HAIR TEXTURE  76  72  221  84  191 
STRAIGHT  WAVY  CURLY  1.00 0.19 04.13 0.12 0.11 

1  e  3  4 
.4 

76  122  32  244  52  PLEASE TYPE TARGET NUMBER. 
1.00 0.74 0.56 0055 0.50  .76 

FEATURE 

.2 
76  147  52  84  72 

1.00 0.50 0.42 0.37 0.34 

AUTOMATIC FEATURE SELECTION 
****** EYE SHADE 
LIGHT  MEDIUM  DARK 

1  2  3  4  5 
.3 

76  52  72  221  191 
1.00 0.56 0.45 0.38 0..36  S  EYE SHADE  3  2.1 

6  EYEONOW SEP. 2  1.3 
7  EYE OPENING  2  2.6 

****** EYEBROW SEP. 8  UPPER LIP  3  2.9 
SEPARATE  MEDIUM  MEETING  9  HAIR SHADE  2  1.5 
I  e  a  10  LOWER LIP  I  2.3 

ORDER FEATURE  DESCRIPTION  RANK 
YOU  AVG.  NO.  % 

1  EYEBROW WT.  1  2.2  27  10.2 
2  EAR LENGTH  I  2.3  6  2.7 
3  LIP OVERLAP  1  1.2  5  1.6 
4  HAIR TEXTURE  4  3.0  1  O. 

D. 
o. 
o. 
o. 
o. 
D. 

Fig. 2-Printout of one interactive dialog. Computer requested feature; subject 
picked Eyebrow Weight. Computer printed allowable feature-values; subject voted 
thin. In next two lines computer displayed calculated weights of the top five in-
dividuals. First four faces, 93 • • • 223, tied with relative weights 1.00. Face no. 159 in 
fifth place was weighted 0.82 relatively. By step three the target (no. 76) was in 
fifth place, advancing to first rank by step four despite deliberately introduced errors 
on first two steps. Subject changed to AFS at step five, whereupon computer specified 
Eye Shade. Nearest neighbors were gradually separated; by step 10 the closest had 
relative weight of only 0.19. Portrait automatically terminated at step 10. Summary 
compares subject's assignments with official values ("AVG."); also displayed is 
target's rank at each step and percentage of population with higher rank. 

assigned by the subject, and à, is the magnitude of the difference 
between them. 
A number of variants of this formulation were tested. In particular 

we found that k = 1 yielded results as good as or better than any 
other value of k. We also considered the effect of quantization error 
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arising from comparing the integral feature-values used by subjects 
to the non-integral official feature-values. For each feature description 
this error is at most 0.5. Alternative formulations of weight functions 
intended to minimize the effect of this error degraded performance. 
Our earliest formulations of weight used an exponential form. While 
presently unessential, the exponential has survived in our computational 
algorithms. Consequently, with k = 1 and with no compensation for 
quantizing effects, the weight assignment is 

W = exp (—  Ai)• 

2.2 Automatic Feature-Selection 

As noted above, features may be selected either by the subject or 
by the computer. The two methods have complementary advantages: 
The subject possesses exhaustive knowledge of the face he is portraying, 
but he knows very little about the characteristics of the population 
stored in the machine; conversely, the machine does not know who the 
target is, but it does possess the official descriptions of all population 
members and their goodnesses-of-fit to the target description. 
We wish to find if the advantages of human and of computer feature-

selection can be usefully combined, where the human can take advantage 
of extreme features, while the computer can utilize discriminating 
features. 
An extreme feature of a target is a feature whose official value is 

near an extreme of that feature's range; e.g., long hair, short nose, 
small mouth. This classification does not depend on the target's other 
feature values or those of the population. It depends only on the fea-
ture's value and range. 
Conversely, a discriminating feature is a purely relative concept, 

based on the population and the target description up to any given 
step. At each step, we refer to a feature as discriminating if its descrip-
tion will distinguish among those individuals whose official descriptions 
match the partial portrait well (i.e., the individuals who have large 
weights). Whether a feature is discriminating depends on the statistics 
of feature-value distribution over the population. 
We wish to develop an automatic-feature-selection procedure that 

chooses the most discriminating feature available as the next one to 
be described in a portrait. How can we decide when a feature is dis-
criminating? 
Consider the two hypothetical distributions of official feature-values 
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shown in Fig. 3. If feature b were used, and if the target's value happened 
to be x2 , then the target would be well separated from the rest of the 
population. It is much more likely, however, that the target's value 
would be x, , in which case the separation of population members 
would be poor. If feature a were used, one would always obtain some 
intermediate amount of population separation. In the extreme, if all 
members of the population had the same value of a particular feature, 
say very long ears, then the use of that feature would not lead to 
population separation. Conversely if the values were uniformly dis-
tributed over the population, maximum discrimination and most 
effective separation would be obtained. 
In considering feature-value distributions, it is undesirable to utilize 

the official description of every member of the population for all unused 
features. Not only would this increase cost, but it would degrade 
performance. This can be seen from the following argument: The aim 
of automatic feature-selection (AFS) is to find a feature which will 
decrease the number of individuals who are described well by the 
portrait thus far. The distribution of feature values among those 
individuals may be completely different from the distribution in the 
whole population. If AFS considered all individuals, the distinguishing 
characteristics of the high-ranking individuals would be obscured by 
those of the overwhelming number of low-ranking individuals. To avoid 
waste of one's knowledge of the partial portrait, AFS considers the 
distribution of feature values only in the subset of the population 
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which the portrait describes well, although the feature chosen will be 
used to rerank the entire population. This subset should include the 
individuals who could easily attain first place in the rank-ordered 
population. In practice, we found that to consider all individuals with 
weight  0.7 times the weight of the first-ranked one, but at least 
10 individuals, was effective. 
As a result of the above arguments, we implemented an AFS procedure 

which chooses as the next feature that one for which the distribution 
of the feature-values of the high-ranking individuals is most nearly 
uniform. This will be the most-discriminating feature in the sense of 
efficient identification. Analytical details of the procedure are given 
in Appendix A. 

2.3 Stopping Criteria 

The portrait composition must continue for enough steps to insure 
accuracy. On the other hand, too many steps lead to subject fatigue 
and boredom. The rule which governs when portrait composition stops 
should satisfy both these requirements. 
A stopping rule may be dynamic and depend on the ranks and/or 

the weights at each step, or the rule may be static, e.g., stop after a 
predetermined step. Our earlier experiments, employing a human 
binary-search process,' showed that, on the average, fewer than eight 
features were used when a target was successfully identified. One might 
conjecture that with 5-valued features some 2.3 bits of information could 
be available at each step, and so the present experiments should require 
fewer than 8 steps for isolation, and not less than log2 255/log2 5 = 3.5. 
This argument, and information from trial runs indicating that 

fatigue and boredom commenced after the subject judged about ten 
features, were used to arrive at a static stopping-rule of ten steps. 
Experimental results have shown this to provide adequate accuracy. 
The data we obtained permitted us to formulate an efficient dynamic 
stopping-rule for future use; it is described in Section IV. 

2.4 Measures of Performance 

A binary search-procedure may be evaluated by whether and at what 
stage the target is ultimately isolated, or at what stage the target is 
rejected and the size of the smallest subset that contained the target. 
Meaningful measures of performance for a rank-ordering procedure are 
less obvious. 
One useful measure, population reduction, can be transferred directly 

from binary search to rank ordering. We can consider the size of the 
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subset of the population with rank greater than that of the target, and 
how rapidly the population is reduced to that size. The concept of 
absolute isolation is thus replaced by one of relative identification. 
We measure the population reduction at each step by the rank of 

the target. Since his rank usually changes from step to step, we use 
as an overall measure of performance the mean rank of the target 
from the sixth through tenth steps. The first five steps are not included 
because the target's rank then is usually large and changing rapidly. 
Population reduction shows whether the target is separated from 

the rest of the population. It does not reveal, however, the extent of 
that separation. To do this, a "confidence" measure was introduced. 
It is based on the weights of the individuals in the ranked list, as 
follows; If the target is ranked first, his confidence is the ratio of his 
weight to that of the second-ranked individual; otherwise, the target's 
confidence is equal to the ratio of his weight to that of the first-ranked 
individual. A confidence value less than 1.0 denotes failure to place 
the target in first rank; confidence values greater than 1.0 correspond 
to varying degrees of success. Obviously, the magnitude of the con-
fidence measure depends on the weighting function being used. 
Confidence and rank are useful in evaluating a single portrait; their 

averages can be used to compare several sets of portraits. A third 
measure we find useful is the rank cross-section; this is meaningful 
only for comparing sets of portraits. For a set of portraits, the rank 
cross-section is the frequency with which targets reach or exceed a given 
threshold rank (e.g., first rank, or top 2 percent of population, etc.) 
at each step of a portrait. This indicates the average speed and extent 
of a target's rise in rank. 
However, a target does not necessarily always rise in rank. A faulty 

feature-judgment may worsen his position. The weighting scheme is 
forgiving in that it permits recovery from a subject's error in feature 
judgment. Another way of viewing this is that once the target is en-
trenched in first place, i.e., has a large confidence, it takes a large error 
in judgment to displace him. 
We can express this quantitatively as follows: Suppose the target 

is in first rank; let him have confidence c, and let the next feature 
judgment for him have an error à. Suppose that the error for the 
second-ranked individual is O. Then with the weighting scheme that was 
adopted, we find that if à > ln c, the ranks will be reversed. Thus, 

when confidence c  1.6 2.7 4.5 7.4 12.2 20.0 
reversal occurs if à > 0.5 1.0 1.5 2.0  2.5  3.0. 
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Data on subject error (see Section 3.1.1.1) show that 95 percent of the 
time A  1.0. Thus a first-ranked target with confidence 2.7 or greater 
is rarely dislodged. 

III. EXPERIMENTS 

3.1 Human Experiments 

An interactive experiment was run to evaluate the effectiveness of 
our overall system and to test the relative utility of three different 
modes of operation.* In one mode the subject selects every feature he 
describes to the computer, using first those he considers most extreme 
for the target. We shall refer to this mode as "NO AFS" (i.e., no auto-
matic feature-selection). In another mode, termed "ALL AFS," the 
subject simply assigns feature values for each feature specified by the 
computer which is operating in the automatic-feature-selection mode 
described earlier. A third mode, termed "MIXED," requires a subject 
to select features until he decides there are no more he considers out-
standing, then to invoke AFS. 
We expected subject selection of extreme features to enhance separa-

tion, at least for the first few features, for many members of the popu-
lation. When there are no extreme features to use, then computer 
selection of discriminating features should facilitate target separation. 
We expected that the mixed mode of operation, taking advantage of 
the best capability of both human and computer, would yield best 
results as measured by confidence and rank. 
Fifteen subjects were used (13M, 2F). Twenty-one features were 

made available, as illustrated in Fig. 1. Each subject participated in 
three separate sessions, one in the NO-AFS mode, one in MIXED, 
and one in ALL AFS. Each of the 15 subjects, portraying 15 targets, 
provided us with 225 portraits. Five targets were portrayed in each 
session. Fifteen different targets were used; each subject thus portrayed 
all targets. The targets were individually selected at random from our 
population of 255; as an ensemble they were shown to preserve the 
feature distributions of the entire population. To minimize possible 
effects of learning, we randomized the order in which subjects used the 
three modes of feature selection and the order in which they portrayed 
the targets. 
At the beginning of the experiment each subject was given 20-30 

minutes of verbal instruction to familiarize him with the feature set. 
This used a collection of sample faces that were not employed in the 

* The program which was used is described in Ref. 5. 
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Fig. 4—Cumulative distribution of differences between subject votes and official 
values. The difference was never greater than 1.0 for 95 percent of the votes. 

experiment. The subject then observed the experimenter portraying 
one target. 
At the beginning of each session, the subject portrayed one practice 

target using the same mode of description (NO AFS, MIXED, or 
ALL AFS) to be employed in the experimental session. In all eases 
the subjects viewed the target's photograph while describing his features. 

3.1.1 Results 

3.1.1.1 Feature-Judgment Reliability. Our 15 subjects, making 2250 
total judgments (15 subjects X 15 targets X 10 features), were in 
excellent agreement with the official feature-values. This can be seen 
in Fig. 4 which displays the cumulative distribution of magnitudes 
of the differences (à) between the subject judgments and the official 
values. In 95 percent of the 2250 judgments, the à was 5 1.0 (the 
maximum à is 4.0 for a 5-valued feature).* No judgments were as 
much as 3.0 off, only two were > 2.0 off, and only 24 of the 2250 judg-
ments were different from the official values by more than 1.5. 
Standard deviations were computed for the distributions of subject 

judgments, feature by feature. In both the ALL-AFS and the NO-AFS 
experiments, the standard deviation ranged from 0.42 to 1.1. The 
standard-deviation values for each feature are similar for ALL AFS 
and NO AFS, indicating no significant difference in subject accuracy as 
a function of whether feature selection is active or passive. 
3.1.1.2 Identification Accuracy. The confidence and rank data, 

* With the exception of two three-valued features. The data of Fig. 4, which 
include all 21 features, are not significantly changed by deleting the contributions of 
the two three-valued features. 
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averaged over all subjects and all targets, are shown in Fig. 5. For 
the combined 225 portraits, the mean confidence at step 10 was 5.65, and 
the mean rank over the sixth through tenth steps was 4.12. For 75 
MIXED portraits, the mean confidence and rank were 6.79 and 2.75 
respectively, while for 75 ALL-AFS portraits the corresponding figures 
were 4.41 and 6.71. The results of the 75 NO-AFS experiments were 
intermediate; mean confidence was 5.74, and mean rank was 2.91. 
Subject performance varied considerably. Both the average confidence 

and the average rank had a range of 6:1 (from best to worst subjects). 
One subject's performance was consistently poor. When his scores are 
deleted, the average rank improves from 4.12 to 3.70, and the average 
confidence improves from 5.65 to 5.80. 
To test for improved performance with practice during the course 

of the experiment, the data for each subject were examined according 
to their temporal sequence. No trends were observed. 
The 15 targets received a rather wide range of performance indices. 

Number 99 had an average confidence measure of 20.3 (compared to 
the 15-target mean of 5.65), and his average rank was 1.39 (compared 
to the 15-target mean of 4.12). At the other extreme, no. 19 had a 
confidence measure of 0.88 and a rank of 9.16. These two individuals 
are depicted in Fig. 6. 

NO AFS MIXED ALL AFS COMBINED 

CONFIDENCE 5.74 6.79 4.41 5.65 

RANK 2.91 2.75 6.71 4.12 

• ALL AFS 

AVERAGE RANK,
 STEPS 6-10 

6 

5 - 

4 - 

• 
MIXED 

2 1  1 I I  I   
40  4.5  5.0  5.5  6.0  6.5  70 

CONFIDENCE 

Fig. 5—Two measures of performance summarized for all subjects and targets. 
MIXED mode is clearly superior, while ALL AFS is markedly poorest. Combined 
results for all experimental data show that the average target, with a rank of 4.12, 
was in the upper 1.6 percent of the population over the sixth through tenth steps. 

• NO AFS 
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Fig. 8—Targets which produced two extremes of performance. No. 19 was difficult 
to retrieve, obtaining confidence 0.88 and rank 9.16, while no. 99 was outstandingly 
easy, obtaining confidence 20.3 and rank 1.39. 

The reasons for the different success with the two targets are clear. 
In general, no. 19 is much closer to the population mean than is no. 99 
who has a larger number of more extreme features than has no. 19. 
All ten subjects who portrayed no. 99 in either the MIXED or the 
NO-AFS mode started their portrait with hair texture; no. 99 has the 
curliest hair in the population. All ten also described his light hair-shade 
and thin upper lip, and all five NO-AFS portraits included his small-
to-medium mouth width. By contrast, only one of no. 19's features 
received unanimous mention: his medium-to-wide eye opening. 
3.1.1.3 Performance Di,fferences A MOlig NO AFS, MIXED, and ALL 

AFS. The differences in performance among the three modes of opera-
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tion are clear and consistent. This can be seen first by noting the average 
rank of the target at each feature step. Figure 7 illustrates this by a 
plot of the percent of the population with better rank than the target 
at each step. Overall, the population reduction in early steps is quite 
rapid. 
It is clear that at any step the ALL-AFS mode places the target 

about twice as far down the ordered list as does either of the other 
two modes. This suggests that knowledge of the population statistics 
is not as effective as knowledge of a target's outstanding features. 
Both the MIXED and the NO-AFS modes are roughly equal and are 
superior to ALL AFS. From step seven on, with the MIXED and 
NO-AFS modés, the population having better rank than the target 
was reduced to 0.68 percent. We have seen (Fig. 5) that the confidence 
in the MIXED experiments is 18 percent higher than that in the 
NO-AFS experiments and 54 percent higher than that in the ALL-AFS 
experiments. Similarly, the rank results are superior for MIXED, being 
11 percent ahead of NO AFS and 59 percent ahead of ALL AFS. Even 
for ALL AFS, however, the average rank was better than seventh place; 
i.e., 2.2 percent of the population had better rank than the target. 
The plots of rank cross-section (see Section 2.4), displayed in Fig. 8, 

also make evident the relative inferiority of ALL AFS. The asymptotic 
levels of NO AFS and MIXED are virtually identical. For both MIXED 
and NO AFS, half the targets reach first place by step five, and by 
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Fig. 8—Rank cross-section at each step. ALL-AFS mode is obviously inferior. 
Performances from NO AFS and MIXED are essentially alike. By step five, roughly 
half the targets reached the top in MIXED and NO AFS; by step 10, better than 
70 percent reached first place. 

step ten in both modes 99 percent of the targets are in no worse than 
tenth rank. And 96 percent are in no worse than fifth rank. 
Although ALL AFS does not produce results comparable to those of 

the other modes, more than half the targets reach first place by the 
tenth step, and more than three-quarters of them reach fifth place or 
better. 
The confidence measure (see Fig. 5) also indicates the relative infer-

iority of ALL AFS. Unlike the other measures discussed here, confidence 
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shows MIXED to be superior to NO AFS in separating the target from 
the rest of the population. 

3.2 Computer Experiments 

How does human performance compare with that of an "ideal" 
subject? The major variables in subject performance are the set of 
features selected, the accuracy with which they are judged, and the 
order in which they are described. Since the subject is constrained to 
use integral feature-values, the best judgment he can make on any 
feature is the nearest integer to the target's official description; we shall 
refer to this value as a "rounded" judgment. For each target there is a 
sequence of features which gives the largest confidence at step 10, and 
there is one which gives the best average rank. Either of these could 
be regarded as the optimal sequence chosen by an ideal subject. How-
ever, there is no easy way to find such optimal sequences; therefore the 

ideal subject was defined as follows: 
For each target the sequence of features to be used by the ideal 

subject in a computer simulation was selected on the basis of feature 
"extremeness." The extremeness of an individual's feature is the 
magnitude of the difference between his official value and the feature's 
population mean. Our ideal subject, modeled on how our human sub-
jects were instructed, was defined to be one who selected features in 
descending order of extremeness and used, for each feature's value, the 
rounded value of the official description. 
This ideal subject was used to portray the 15 targets employed in the 

human experiments. The distribution of the step at which the target 
first achieved rank one and remained there through step 10 is 

Step  1 2 3 4 5 6 7 8 9 10 
Frequency 2 4 4 3 1 0 0 0 0  1. 

For all targets, the average number of steps is 3.27, and the average 
rank (over steps 6 through 10) is 1.01 (i.e., virtually perfect). The 
confidence at step 10 ranged from 1.00 to 95.6 with an average of 21.5 
and a median of 16.1. 
These results are markedly superior to the results of the human 

experiments summarized in Fig. 5. Are the differences due to subject 
judgment-errors or to less-than-ideal feature selection owing to the fact 
that the subject does not know the population statistics? 
To explore this question, three additional computer studies were 

performed with the same 15 targets used in the human experiments. 
The results of all four computer experiments are summarized in the 
tabulation below and are contrasted with the NO-AFS human experi-
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meats. Experiment no. lis that described above, using the ideal subject. 
In the second experiment, the NO-AFS human experimental data were 
modified by replacing the subject judgments with rounded official-
values. Third, the extreme features chosen by the ideal subject were 
used with human judgments. In the last computer experiment (no. 4), 
four random sequences of features were used with rounded feature-
judgments. Finally, the results of the NO-AFS human experiments are 
shown. 
Besides displaying confidence and mean rank (averaged over steps 6 

through 10), the table shows the number of targets on which confidence 
was greater than, approximately equal to, and less than the confidence 
obtained by the ideal subject. 

Feature 
Exp.  Selection  Judgment  Conf.  >  <  Mean Rank 

1  Extreme  Rounded  21.5  0  15  0  1.01 
2  NO AFS  Rounded  10.6  4  6 5  1.23 
3  Extreme  Human  8.25  1  2 12  1.68 
4  Random  Rounded  4.08  0  2 13  1.76 
5  NO AFS  Human  5.74  2  0 13  2.91 

The confidence and mean rank slow the performance of the ideal 
subject (exp. no. 1) to be better than that obtained in the experiment 
using NO AFS and rounded official-values. Notice, however, if one 
examines confidence for the ideal case and NO AFS rounded, target by 
target, then it is seen that NO AFS is better about as many times as 
it is worse. Since the only variable was feature selection, this indicates 
that the humans were almost as good as the ideal subject in their 
choice of features. The use of extreme features with human judgments 
(exp. no. 3) gives worse performance in rank and confidence than does 
NO AFS with rounded judgments. This shows that the advantage of 
extreme-feature selection was not sufficient to overcome human errors 
in judgment. 
It might be argued that any feature sequence would produce good 

results. But the random experiment shows that perfect feature-judg-
ments alone are not sufficient; feature selection is important. 
In summary, humans are nearly ideal in feature selection while 

considerably less than ideal in feature-value assignment. 

IV. EXTENSION TO LARGE POPULATIONS AND TO OTHER PROBLEMS 

The procedures we have described for identification and retrieval are 
applicable to problems other than the face-recognition tasks we have 
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so far explored. Such searches as medical diagnosis and telephone-
directory lookup also deal often with noisy data where probabilistic 
identification is made. With what generality can the procedures we 
have evolved be applied to tasks where descriptive components are 
imprecise and populations are large? 
First, however, there are questions of economic feasibility. The 

storage and computing requirements in the present experiments are 
modest. For a population of 255, we require 1500 words* of disk and 
14,400 words of core storage. Memory requirements grow at a rate 
of 7 words/face. The interactive computation process (slowed enor-
mously by the human at a remote terminal) takes about 5-10 minutes 
real time  seconds central-processor time) and costs $2.50 on the 
average. A key question for extended applications is: How do these 
numbers increase with population size? 
In the earlier model of the binary-search identification process,' we 

showed a logarithmic growth of the number of steps (features) required 
to isolate a target. For a particular condition we found useful, the 
model predicts that an average of only 13.5 feature-descriptions will be 
required for a population of 4 million. If the actual growth of the 
number of steps required to isolate in the present rather different rank-
ordering process is close to our model's prediction in the binary-search 
process, then a nonlinearity very important to economic treatment of 
large populations will be at hand. That this may indeed be so can be 
seen in Appendix B. 
To investigate the effect of population size on the number of steps 

required for isolation, comparable runs were made with population 
sizes of 128, 255, and 510 individuals.t The first feature in all portraits 
was chosen at random, and all subsequent features were chosen by AFS. 
(Since the number of individuals used in the AFS computation is a 
function of each partial portrait, the cost varies from target to target.) 
The dynamic stopping-rule described at the end of this section was used. 
Feature judgments were drawn from the panel of observers whose 
averaged judgments comprise the official values. Randomly chosen 
observers supplied portraits. The data for each population size were 
averaged over five portraits of each of 15 randomly chosen individuals 
(75 portraits total). The results of this experiment are summarized 
below. 

* The computer is a time-shared Honeywell-635 having 36-bit words. 
t The 128-individual population is a randomly-chosen subset of the 255-face one. 

The 510-individual population is composed of the original 255 individuals plus 255 
"new" pseudo-faces created by randomly shuffling the feature values of the old 
population. 
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Population Size 

128  255  510 

Mean stopping step, std. dey. 
Relative total cost 
Relative cost/step 

9.5, 3.9  10.6, 4.2  11.7, 4.3 
1.00  1.98  4.56 
1.00  1.77  3.76 

While the mean stopping step appears to increase logarithmically 
with population size, P, the cost per step increases roughly in proportion 
to population size. That is, 

Total Cost/Step 

and the logarithmic growth of the mean stopping step with population 
size gives 

Total Cost ln P. 

The mean stopping step increased very slowly with population size, 
from 9.5 to 11.7 for populations of 128 and 510. The final rank of the 
target rose on the average from 1.4 to only 2.5, less than a twofold 
increase for a fourfold increase in population size. Experience with 
MIXED and ALL AFS indicates that the corresponding figures for 
MIXED would be markedly better than those above, which were 
obtained with ALL AFS. 
The cost of the AFS algorithm is linear with respect to the number of 

faces used to determine the next feature. Figure 9 shows that this 
number converges rapidly to a minimum. It is seen that, at most, less 
than 35 percent of the population is used in the AFS computation at 
step two and less than 15 percent at step three. From step four on 
(with but a slight exception at step five), only 3.9 percent is used; this 
is the minimum possible given our (arbitrary) convention of considering 
all individuals with relative weight  0.7, but at least 10 faces (10/255 = 
3.9 percent). 
Several kinds of algorithmic corner-cutting look attractive and are 

under consideration. The results displayed in Fig. 10 show that for a 
given performance level only some minimum proportion of the popula-
tion need be considered at each step. For example, if flawless perform-
ance were required while operating in the MIXED mode, no more 
than half the population would need to be considered in steps three 
and four, and from step five on, at least 75 percent of the population 
could be ignored. In 95 percent of all trials, the target was in the top 
10 percent of the population from the sixth step on. The computational 
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Fig. 9—Extent of AFS computation. For empirically determined rule of consider-
ing only those population members with weight equal to or greater than 0.7, or a 
minimum of 10, extent of computation drops rapidly. With but very slight exception, 
at and after step four no more than 10 individuals have weights above 0.7, indicating 
efficient separation of top members. 

savings with such a limited-depth search would thus be considerable. 
Another possible economy might be some form of individual or 

feature clustering. One could divide the population into small groups 
of "look-alikes" and create a "super-description" for each cluster 
whose official description was the mean of the individual descriptions. 
One could then order these clusters according to their resemblance to 
the target description and then search the clusters' members in that 
order to find a good individual match to the description. This scheme 
assumes that such a clustering can be achieved and that the cluster 
descriptions would be non-trivially different. 
In a sense the 255 individuals we have dealt with comprise a cluster 

of the general population. Our 255-member subpopulation was delib-
erately chosen to be homogeneous (see footnote on page 399) to make 
isolation more difficult. Consequently, several highly reliable features 
(e.g., gender, race, age) could be added to our feature set for use with 
a more universal population. We might guess that the general population 
represented by the nonrepresentative subpopulation used in these 

studies is on the order of several thousand individuals. 

An Empirical Dynamic Stopping Rule 

An empirical dynamic stopping rule was developed using the data 
gathered from the 75 NO-AFS portraits. It is based on the concepts 
of confidence and rank and on tradeoff between the frequency and 
accuracy with which the rule stops portrait composition. 
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Fig. 10—Minimum envelope needed to capture the target with several probabil-
ities at each step. P = 1.0 corresponds to the worst rank observed experimentally. 
After step five, target was in top 10 percent. of the population for all cases except 
ALL AFS. 

We consider first the confidence, which measures the degree of separa-
tion among population members. To formulate a stopping rule, we will 
use a variant "pseudo-confidence," the ratio of the weights of the 
first- and second-ranked individuals. (Note that this ratio is always 
1.0). The experimental data show that when this ratio exceeded 3.5 

at any step in the portrait, the target was then ranked first in 32 of 
the 34 eases, and the first-ranked individual was subsequently unseated 
in only two of 34 cases. We adopt this threshold as one component in our 
dynamic stopping rule: Whenever the pseudo-confidence exceeds 3.5, 
stop portrait composition. 
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Unfortunately, such a high pseudo-confidence occurs in fewer than 
half of the portraits. Another possible stopping criterion is an extended 
tenure-of-first-place by the same individual. Consequently, we adopt 
as the second component in our stopping rule: If the same individual 
has been in first place for the last six steps, stop regardless of the value 
of the pseudo-confidence. In only one of 37 cases did an individual 
change rank after holding first place for six or more consecutive steps. 
We now have two criteria which would have terminated 80 percent 

of our experimental NO-MS portraits. It was decided to use them as 
points on a linear stopping rule combining p, the pseudo-confidence, 
and s, the number of consecutive steps in which the same individual 
has been first-ranked: If s 2p > 8, stop. This is the dynamic stopping 
rule used above to compare costs for various population sizes. 
This empirical stopping rule was applied to the data from the rest 

of the experiment, and it provided another means of comparison (the 
mean stopping step) among the three types of portraits. The table 
below shows the results of applying the dynamic stopping rule to the 
NO-AFS, MIXED, and ALL-AFS runs. 

NO AFS  MIXED  ALL AFS 

Decisions 
(Number of portraits terminated 
by stopping rule)  55  56  43 

Correct decisions  49 (89%)  48 (86%)  30 (70%) 
Mean stopping step, std. dey. 
Decisions only  6.8,  2.1  6.6,  2.2  7.7,  1.8 
All portraits  7.7,  2.3  7.4,  2.4  8.7,  1.8 

Mean rank of target 
Decisions only  1.4  1.6  3.6 
All portraits  2.3  2.4  5.1 

The number of decisions is the number of portraits (out of 75 in 
each case) which met the requirements of our stopping rule at or before 
the tenth step. A correct decision is one in which the target was in first 
place at the stopping step. The mean stopping step and its standard 
deviation are given for both the portraits which the stopping rule 
terminated ("Decisions only") and for all 75 portraits, considering the 
stopping step to be 10 for portraits in which no decision was made. The 
mean rank of the target at the stopping step is also given for both cases. 
The data show the performance of MIXED and NO AFS to be 

almost identical. Both are superior in all respects to ALL AFS. The 
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mean stopping step and mean rank of the target are in the ranges one 
would expect from Fig. 7, which shows the progression of the average 
rank of the target. The stopping rule usually was satisfied soon after 
the position of the target had stabilized. 
If this dynamic stopping rule had been used in our experiments, the 

average stopping step for a portrait would have been 7.9 instead of 10, 
a 21-percent saving with virtually no loss of accuracy in identification. 

V. SUMMARY 

An interactive system for the description and retrieval of multi-
dimensional objects has been developed. This paper describes the 
system and its performance in face-identification experiments. 
The system permits flexible description of target items using features 

chosen by either the user of the program or an automatic-feature-
selection algorithm. At each step, AFS selects the feature which is 
most likely to be discriminating. It makes this choice on the basis of 
the partial portrait and the population statistics. Population members 
are ranked at each step on the basis of weights which reflect the match 
between the portrait description and each individual's official value. 
Performance is measured by two indices, confidence and rank. 
The system was evaluated using 21 features, a population of 255 faces, 

and three modes of operation (NO AFS, MIXED, and ALL AFS). 
There were four principal results: 

(i) The population was quickly and effectively reduced by all 
modes of operation. Over all trials, the population was reduced 
to less than 4 percent more than 93 percent of the time, and 
the target was successfully "isolated" (i.e., was in first place by 
portrait's end) 07 percent of the time (see Fig. 8). In 95 percent 
of all trials, the target remained in the top 10 percent of the 
population from the sixth step on. 

(ii) The MIXED mode was the most effective in separating the 
target from the rest of the population as measured by confidence 
(see Fig. 5). 

(iii) MIXED and NO AFS were equally effective with respect to 
population reduction, as measured by rank. The performance of 
these two modes was considerably superior to that of ALL AFS 
(see Figs. 5, 7). In the MIXED experiments, the population was 
reduced to less than 4 percent over 99 percent of the time, and 
the target was isolated 70 percent of the time (see Fig. 8). 

(iv) The extent of the AFS computation drops rapidly with step 
number, reaching its minimum by step four (see Fig. 9). 
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These results can be summarized as follows: even in the worst case 
there is fair performance in singling out a target and good performance 
in narrowing down the population; and in the best case the population 
reduction is excellent. 
This rapid population-reduction and the slow growth of the mean 

stopping step with population size (using the dynamic stopping rule) 
make the extension of these experiments to larger populations feasible. 
To process very large populations, say on the order of a million, new 
approaches would undoubtedly be needed. With the cost-cutting 
modifications we have described (dynamic stopping rule, limited-depth 
search), the present system could economically accommodate a popula-
tion on the order of 5000. 
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APPENDIX A 

Automatic Feature-Selection 

As discussed in the text (Section 2.2), the automatic-feature-selection 
algorithm selects, at each step, the most discriminating feature for the 
subject to describe next. The purpose of this Appendix is to formalize 
what is meant by a discriminating feature. 
The AFS algorithm uses a subset of the population whose members 

are well-described by the subject's description of the target. In order 
to give greater importance to those members of the subset with high 
weight, each member's official feature-values were considered in propor-
tion to his weight. The most discriminating feature, for that subset, 
thus is the one for which the distribution of the weighted feature-values 
is most uniform. Since the distribution of feature values may span 
different parts of.the permissible feature ranges, distributions are shifted 
to facilitate equitable comparisons among features. 
We shall define, for any shift, the deviation of the distribution of 

weighted feature-values from a uniform distribution. Formulae for the 
best shift and corresponding deviation are then derived. 
Consider the subset of the population whose members are well-

described by the subject's description of the target. Let the members of 
this subset have weights W1, • • • , W. . The sum of the weights is WT . 
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Let us concentrate on one feature. For convenience, scale its range 
to be from 0 to 1. Let the (scaled) official values corresponding to the 
above weights be y1 , • • • , v. 
Let 

pi =  • 

We may interpret pi as the probability that individual j is the target. 
When the sum of these probabilities in any interval is equal to the 
length of that interval, then the distribution of weighted feature-values 
is uniform. That is, if the interval is (xi , 4), then 

2.5eiàzo 

This is equivalent to 

E p, = y, 0  s 1. 
ospis. 

The deviation from uniformity can be measured by integrating the 
square of the difference between the left and right sides, 

E pi — v)2 dv. 

If we define F(v) by 

F(v) = E pi , 

then the last formula becomes 

(F(v) — v)2 dv. 

Figure 11 gives a typical plot of F(v) where F(v) = 0 for s 5 a and 
F(v) = 1 for y k b. Now shifting F(v) to the left or right [as long as 
neither a nor b is shifted out of the interval (0, 1)] does not change the 
essential shape of F(v). It is reasonable to shift F(v) to give the best 
approximation to v. We therefore define E(s) to be the mean squared 
error when F(v) is shifted by s; i.e., 

E(s) = f (F(v — s) — v)2 dv for —a  s < 1 — b. 

Then we redefine the deviation from uniformity by 

E = min E(s). 

We derive the minimizing shift in the following lemma. 
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V, SCALED FEATURE VALUE 

Fig. 11—A graph of a hypothetical F(v), the cumulative distribution of Pi (the 
normalized weights) versus y (the scaled feature value). No individual has a scaled 
feature value less than a or greater than b. 

Lemma: Let 

E (s) =  (F (v — 8) — v)2 dv , 

and let 

e = f1 v dF(v). 0 
Then for —a < s < 1 — b, E(s) is minimized for 

f —a  if  

1  if  —a <1 —e 1 —b 

1 — b if 1 — b <  — e. 

Proof: To avoid needless mathematical complexity, let us suppose 
that F(v) is a differentiable function. Then 

E' (s) = —2 £ (F (v — s) — v)F ' (v — s) dv 

= —F2(1 —s)  F2(—s) -I- 2 f v dF(v — s). 

The first term is —1 since b < 1— s. The second term is 0 since —s  a. 
The third term is easily shown to be 2(e + s) by using the substitution 
ii = u — 8 and the facts that —8  a and b  1 — s. Thus 

E'(s) = 2(e ± 8 — 
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E(s) is minimized by having e + s as close to  as possible since Eqs) 
is negative (positive) if e + s lies to the left (right) of 1. 

APPENDIX B 

Population Size and Identification Speed 

We wish to show that the number of steps in the identification process 
grows at most logarithmically with P, the population size. More pre-
cisely, let rk denote the rank of the target after the subject has given 
the kth feature value. It will be shown that under reasonable assump-
tions, given below, the expected value of rk , for large k, satisfies 

E(rk) < P•ck = exp (ln P — k In  

where 0  c < 1, and e is a function of the distributions of the official 
values and the subject's errors in judgment. Thus, to achieve a given 
expected rank, the number of steps, k, need grow no faster than ln P. 
While we believe that these several assumptions lead to a reasonable 

model of our experiment, we expect them to provide only a qualitative 
indication of the growth of rank with population size. A quantitative 
analytical model is unobtainable at this point since the data we have 
are insufficient to extract the necessary statistical parameters. The 
assumptions are as follows: 
Each of the P individuals in the population can be considered to be 

a vector i = (i1  2, • • • ) whose components are the official feature-
values. We assume that these feature values are independent, identically 
distributed random variables and that the individuals are independent 
vectors. The subject describes the features of the target t = (t, , 12 , • • •), 
and his judgments of the features are in error by e1, e2 , • • • . We assume 
that the errors are independent, identically distributed random variables. 
By convention, the components of each vector are ordered in the 

sequence in which they are described by the subject. 
Using the above notation and our definition of weight, the target 

has weight 

while an individual, i, has weight 

exp (—j,  + ei —  i)• 
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If we define 

i) = I ti  ei  I -- ei , 

then i's weight is larger than es weight if 

E  Xj(t,  < O. 

Let 

sk(1, i) 
fi if E i) < 0 

0 otherwise. 

Define rk , the rank of t, as the number of individuals with weight larger 
than i's weight. We then have 

rk = E  o. 

The expected value of rk is 

E(rk) = E E sk(t, i). 

In ek(t, i), each summand rk(t, i) has, for fixed t, a distribution which 
clearly is a function of t. However, we are taking an expectation over 
all targets and populations. Thus, in this context, the xk(t, i) (for t p i) 
are independent, identically distributed variables since the Vs, as well as 
the i's and e's, are independent, identically distributed variables. Hence 

E(rk) = (P — 1)E(sk(t, i)) = (P — 1) Pr isk(t,  = 11 

= (P — 1) Pr {1 xi(t, i) < 0}• 
-1 

Let the xk's have common mean m and standard deviation «. We 
apply the Central Limit Theorem to the last probability to obtain 

f  km 
Pr {  xi(t, i) <o} = Pr   < — vk CI 

where 4 is the cumulative normal distribution. For large values of 
N/Tc m/Œ, the asymptotic formula* for  gives 

1  e-x2 2 

* As x --->  (14—x)  7-er  • 
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1 
E(rk) (P — 1) 

for k sufficiently large. 

N/Fr  m/ 

< P(e-mv2e )k = Pc' 
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Guided modes of multiinode wave guides exchange power if the wave guide 
deviates in any way from its perfect geometry. The power exchange problem 
is studied for a multimode slab waveguide under the assumption. that the 
power coupling is caused by irregularities of the core-cladding interfaces. 
The problem. is treated by means of coupled power equations. The main 
result of this study is the realization that the power distribution versus mode 
number settles down to a steady state distribution if the wave guide is 
sufficiently long. The shape of the steady state distribution depends on the 
correlation length of the function describing the core-cladding interface 
irregularities. For very short correlation length only the lowest-order mode 
carries an appreciable amount of power while the power carried by all 
the other modes is orders of magnitude smaller. For very long correlation 
length, on the other hand, all guided modes carry equal amounts of power. 
The steady state distribution is achieved regardless of the way in which 
the power was distributed over . all the modes at the beginning of the guide. 
However, the total power in the steady state mode distribution is dependent 
on the initial power distribution. 

I. INTRODUCTION 

Light communications systems using optical fibers as the guidance 
medium are presently being planned for two different modes of opera-
tion. High-capacity systems are likely to be used with a laser as the 
light source and should be operated in the fundamental HE,, mode in 
order to minimize delay distortion that accompanies multimode opera-
tion. For less ambitious, low-capacity systems excitation of the fiber 
with a light emitting diode appears more economical. However, the 
output of light emitting diodes cannot be used to excite a single fiber 
mode with high efficiency. A low-capacity fiber to be used with a light 
emitting diode must thus be designed to operate with many modes. 
Multimode optical fibers are not as easily characterized as single-mode 

429 
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fibers. The power loss of such a fiber is usually not simply expressed 
by an exponential decay law but depends in a complicated way on the 
distribution of the power over the many modes. The present study is 
an attempt to describe the loss behavior of multimode optical fibers. 
We use the TE modes of the simplified model of a slab waveguide with 
the added requirement that there is no field variation or change in the 
slab geometry in the y direction of the coordinate system. This model 
makes it possible to describe the multimode waveguide rather simply. 
Even though it cannot directly be used to predict the loss behavior of 
round multimode optical fibers, it provides insight into the operating 
principles of multimode waveguides that can be used to obtain an 
understanding of the properties of multimode fibers of different shape. 
Our treatment of the multimode dielectric slab waveguide is based on 
coupled power equations. It has been shown in an earlier paper' that 
the coupled wave equations of a multimode optical waveguide2 can be 
used to derive much simpler coupled power equations provided that 
the coupling mechanism can be described by a stationary random 
process with Gaussian correlation function. The coupled power equa-
tions have the advantage that their coefficient matrix is constant, real, 
and symmetric. The system of coupled linear first-order differential 
equations can thus be solved by first finding eigensolutions with the 
common z dependence exp ( —az). These can be used to express the 
general solution as a superposition of eigensolutions. This approach 
makes it clear that a steady state power distribution must exist. By 
allowing the field to travel far enough in the waveguide, so that all 
but the lowest-loss eigensolution has decayed to insignificant values, 
it is obvious that the distribution of power over the many modes 
assumes the shape of the lowest-order eigensolution regardless of the 
initial power distribution. The power loss of the steady state eigen-
solution obeys a simple exponential law and can thus be characterized 
by a single number, the lowest-order eigenvalue of the eigensolutions 
of the power rate equations. 
The mechanism causing coupling between the many guided modes 

and of guided modes to the continuous spectrum of radiation modes will 
be assumed to consist of irregularities of the core-cladding interface. 
The coupling coefficients for this model have been evaluated in an 
earlier paper.' Any imperfection of the refractive index distribution 
and the slab geometry causes coupling between the modes. We choose 
the core-cladding interface irregularities because this coupling mecha-
nism is of fundamental importance and because its properties are well 
understood. Mode coupling caused by irregularities of the refractive 
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index distribution will cause similar effects in some respects. However, 
there are differences that consist mostly in the dependence of the 
coupling process on the mode number of the coupled modes. 
The coupling coefficient for the core-cladding irregularities can be 

expressed as a product of a term that is independent of the length 
coordinate z but depends on the mode number times a z-dependent 
function that describes the actual shape of the core-cladding interface. 
This function f(z) is assumed to be a stationary random variable with 
a Gaussian correlation function that can be completely described by 
the rms deviation 5- of the core-cladding interface from a perfect plane 
and by the correlation length D. The same process that couples the 
guided modes among each other also causes each mode to lose power 
to the continuous spectrum of radiation modes. The interplay between 
coupling among the guided modes and power loss to radiation is respon-
sible for the shape of the steady state distribution as well as for the loss 
associated with that steady state distribution. 
In order to spare readers not interested in the details of the theory 

the trouble of finding their way through the theoretical part of the 
paper, we present the results of the numerical analysis before the 
discussion of the details of the theory. 

II. RESULTS OF THE NUMERICAL ANALYSIS 

The theory has been evaluated for a slab waveguide with a core 
index of n, = 1.5 and a core-to-cladding-index ratio of 711/n2 = 1.01. 
Most numerical results hold for a slab waveguide supporting ten modes 
corresponding to the value kd = 82 (k = free-space propagation 
constant, d = slab half width). The only other case for which numerical 
values have been calculated corresponds to kd = 165 with twenty-one 
guided modes. It has been assumed throughout that the irregularities 
of the two core-cladding interfaces are statistically independent of each 
other but have the same rms deviation and the same correlation length. 
Figure 1 is a plot of the steady state distribution of the ten-mode slab 

waveguide. The steady state mode power is plotted versus mode number. 
Actually, only integer values of the mode number have physical mean-
ing. In order to be able to display the mode power distributions for 
several values of the correlation length on one graph, the power values 
at the integer mode numbers were connected by straight lines. The 
label B,.") of the vertical axis refers to the lowest-order eigenvector of 
the eigenvalue problem [see equation (62) of the theoretical part]. 
These values are proportional to the power in each mode. They are 
normalized so that the squares of the power values for all ten integer 
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Fig. 1—Steady state power distributions for different values of the correlation 
length D. The multimode guide carries 10 modes. 

mode numbers add up to unity. The most important aspect of Fig. 1 
is the shape of the steady state power distribution for different values 
of Did, the ratio of correlation length to slab half width. For very long 
correlation length each mode carries an equal amount of power regard-
less of the shape of the power versus mode distribution at the beginning 
of the guide. As Did decreases more power is carried by the lower-order 
modes. For very small values of Did (less than unity) essentially all 
the power is contained in the lowest-order mode. Figure 2 presents a 
similar graph for the case of twenty-one modes. The shape of the steady 
state distributions is essentially unchanged except that similarly shaped 
curves carry smaller Did values showing that the number of modes 
does not affect the general behavior of the steady state distributions. 
The shape of the steady state distributions can be explained as 

follows. For long correlation length only the high-order guided modes 
lose power directly to the radiation field while the guided modes couple 
in such a way that only next neighbors exchange power. It is thus 
understandable that the power tends to equalize among all the modes. 
For very short correlation length all guided modes couple directly to 



I.0 

0.9 

0.8 

0.7 

0.6 

c 
0.5 

0.4 

0.3 

0.2 

0.1 

RADIATION LOSSES IN M ULTI MODE WAVEGUIDES 

kd= 165 

Did = 30 

15 

20 

10 

 .1uniarmanimo. _ 
2  4  6  8  10  12  14  16  18  20  22 

ri 

Fig. 2—Same as Fig. 1 for the 21-mode case. 
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radiation. Higher-order modes lose power by this mechanism at a higher 
rate than lower-order modes. In addition, each guided mode couples 
to all the other guided modes. Since the lowest-order mode loses the 
least power to radiation it is the one that "survives" after all the other 
modes have lost nearly all of their power. In general, the correlation 
length of the random core-cladding interface irregularities cannot be 
chosen at will. However, for multimode operation one would hope for 
a long correlation length which makes it possible to transmit power in 
all the modes. Coupling with short correlation length forces the multi-
mode fiber into single-mode steady state operation. 
Figure 3 shows the normalized steady state loss ad/(ã2k2) of the 

slab waveguide (the lines labeled i = 1) as functions of Did. The lines 
labeled i = 2 represent the second eigenvalue of the eigenvalue problem. 
The important feature of Fig. 3 is the existence of a maximum as a 
function of Did and the separation between the curves of the first 
(i = 1) and second (i = 2) eigenvalues. With the help of these two 
curves it is possible to estimate the region where steady state operation 
has been achieved. The loss parameters am and a121 enter in the form 
exp (— a "1z) as the first and second term of a series expansion [see 
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equation (62)]. When Œ21Z > 4.6 we have exp (—a121 5) < 10-2 so that 
the second term of the series expansion is becoming insignificant and 
steady state is essentially achieved. 
Figures 4, 5, and 6 show the way in which an initially uniform distri-

bution of power settles down toward the steady state distribution. Three 
different values of correlation length were used. Did = 0.01 is a suffi-
ciently small value whose steady state distribution consists of only the 
lowest-order mode. The second mode carries only 10  of the power of 
the first mode at z —>  . The value Did = 20 was chosen as an example 
for an intermediate correlation length. The steady state distribution 
in this case does not favor exclusively the lowest-order mode but assumes 
a shape in which higher-order modes carry decreasingly smaller amounts 
of power. The value of Did = 35 is sufficiently large to produce an 
essentially uniform steady state distribution. 
The next three figures, Figs. 7, 8, and 9, show how the steady state 

distribution establishes itself if initially all the power is launched in the 
first mode. The last three figures, Figs. 10, 11, and 12, show similar 
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Fig. 4—Power distribution versus mode number for several values of normalized 
length along the guide for Did = 0.01. 
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plots for the case that all the power starts out in mode 9. The three 
values, Did = 0.01, 20, and 35, have again been used. 
It may be of interest to know the ratio of the power remaining in the 

steady state if initially only mode 1 or mode 9 were excited. We call 
this ratio P(1, z)/P(9, z) and obtain P(1, z)/P(9, z) = 1.55 X 104 for 
Dld = 0.01, P(1, z)/P(9, z) = 9.75 for Dld = 20, and P(1, z)/P(9, z) = 
1.08 for Did = 35. 
Tables I, II, and III show the ten eigenvalues of the steady state mode 

distributions together with the first eigenvector for the same three 
values of D/d. The lowest-order and the second eigenvalue appear also 
in Fig. 3. The other eigenvalues are given in the tables for the sake of 
completeness. It should be noted that the integer values in the left-hand 
column of these tables have different meaning for the eigenvalues and 
the eigenvector. The eigenvalues a(' } are ordered in increasing value 
and originate as the ten solutions of the eigenvalue problem [equation 
(60)] of a symmetric 10 by 10 matrix. The first eigenvector B.") belongs 
to the lowest eigenvalue a'. The subscript y is a mode label in this 
case. The eigenvector IV' is proportional to the steady state power 
distribution. Table I shows clearly that mode 1 carries the overwhelming 
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TABLE 1-EIGENVALUES AND THE FIRST EIGENVECTOR FOR 
D/d = 0.01 

i or v 
d  (i) 
ir2k2 

B,(1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

7.624 X 10-6  
3.044 X 10-4  
6.845 X 10-6  

1.214 X 10-4 
1.891 X 10 ' 
2.711 X 10-4 
3.666 X 10-4 
4.743 X 10-5 
5.909 X 10-5 
7.049 X 10-5 

9.999 X 10-, 
8.486 X 10-5 
7.160 X 10-5 
6.789 X 10-5 
6.630 X 10-5 
6.546 x 10-5 
6.497 X 10-5 
6.466 x 10-5 
6.444 X 10-5 
6.424 X 10-5 

TABLE II-EIGENVALUES AND THE FIRST EIGENVECTOR FOR D/d = 20 

I or v d 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

5.175 X 10-6 
1.402 X 10-6 
4.576 X 10-6 
1.008 X 10-4 
1.951 X 10-4 
3.329 X 10-4 
5.217 X 10-4 
7.596 X 10-5 
1.046 X 10-6 
4.345 X 10-3 

7.284 X 10-1 
3.799 X 10-1 
3.212 X 10-1 
2.770 X 10-1 
2.376 X 10-1 
2.011 X 10-4 
1.648 X 10-1 
1.248 X 10-1 
7.475 X 10-9 
3.129 X 10-3 

TABLE III-EIGENVALUES AND THE FIRST EIGENVECTOR FOR D/d = 35 

i or v 
d  (i) 
a-'21c2 

B,,O) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

6.415 X 10-9 
2.552 X 10-7 
1.112 X 10-6 
4.251 X 10-6 
7.789 X 10-6 
1.608 X 10-4 
3.149 X 10-6 
5.837 X 10-6 
1.036 X 10-4 
1.765 X 10-4 

3.296 X 10-1 
3.294 X 10-1 
3.293 X 10-1 
3.291 X 10-1 
3.290 X 10-1 
3.287 X 10-1 
3.279 X 1071 
3.248 X 10-1 
3.094 X 10-' 
2.067 X 10-1 
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amount of power in the steady state if Did = 0.01. The distribution of 
the first eigenvector for Did = 20 appears also in Fig. 1. 
In order to obtain a feeling for the amount of irregularity of the 

core-cladding interface that will cause a certain amount of loss, we 
consider the case kd = 82 (10 modes). For X = 1 gm we then obtain 
d = 13 gm for the slab half width. We now ask the question: What value 
of the rms deviation & causes 10 dB/km steady state radiation loss? 
The result is obtained from Fig. 3 or from Tables I, II, and III and is 
shown in Table IV. The tolerance requirements, arising from the need 

TABLE IV—Rms DEVIATION OF CORE-CLADDING INTERFACE 
CAUSING 10 dB/km Loss FOR kd = 82, X = 1 gm 

Did e/d Ken) 

0.01 
0.3 
20.0 
35.0 

7.65 X 10-4 
3.26 x 10-4 
9.30 x 10-4 
2.63 x 10-2 

9.94 x 10-, 
4.25 x 10-, 
1.21 x 10-1 
3.42 X 10-1 

for keeping the steady state radiation losses low, are thus very stringent 
since the rms deviation of the core-cladding interface must be kept 
within fractions of micrometers. 

III. APPLICATION TO DELAY DISTORTION* 

Multimode waveguides suffer from delay distortion that occurs 
because the modes contributing to the power transmission travel with 
different group velocities. Modes with a higher group velocity arrive 
at the receiver earlier than modes with a slower group velocity. A pulse, 
whose power is shared in some way by many modes, is thus distorted 
and lengthened by this effect. If the modes exchange power rapidly 
among each other this pulse lengthening effect of multimode waveguides 
can be substantially reduced. S. D. Personick4 first pointed out the 
beneficial effect of tight mode coupling for the reduction of pulse delay 
distortion. For a two-mode waveguide Personick's results have been 
confirmed by a rigorous analysis by H. E. Rowe and D. T. Young.' 
Our present work has some applications to the reduction of delay 
distortion by mode mixing. It is clear that if the coupling between the 
modes is strong, as would be desirable for delay distortion reduction, 

* A more rigorous discussion of pulse distortion in multimode waveguides will be 
published in a later issue of B.S.T.J.3 
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the steady state power distribution is reached sooner. From Fig. 1 we 
see that only if the correlation length is large do many modes contribute 
to energy transport in the waveguide. As far as delay distortion is 
concerned it might appear advantageous to operate with a short corre-
lation length forcing the multimode waveguide into essentially single-
mode steady state operation. However, this method has the disadvantage 
that most of the power that is initially launched into higher-order 
modes is lost by radiation so that the waveguide suffers high transient 
losses. If a light emitting diode is to be used as the transmitter, single-
mode operation is most undesirable. That leaves us only with the choice 
of a long correlation length (if indeed we have a choice) to reduce the 
power loss from high-order modes. In the limit of very long correlation 
length all the modes are excited equally strongly in the steady state 
distribution. If we can still provide strong coupling between the modes 
there is a chance that the power will be exchanged among all the modes 
making possible the reduction of delay distortion by mode mixing. 
Mode mixing takes place via coupling between nearest neighbors in 
case of long correlation length. The diffusion of power from mode 1 to 
the highest-order mode and vice versa is thus likely to be slow. 
We can get a rough idea of the "speed" with which the power travels 

from mode 1 to mode 9 (or from mode 9 to mode 1) from Figs. 9 and 12. 
It is apparent from both figures that it takes approximately zirY /d = 
10-° to 10-7 before the mode at the other end of the mode spectrum has 
received an appreciable amount of power from the mode that is initially 
excited. The same power diffusion must, of course, take place for any 
other excitation of the modes. But the effect becomes observable when 
we launch all the power in one mode and watch how it redistributes 
itself over the other modes. This redistribution of power is part of the 
transient behavior that results in the •steady state distribution. It is 
thus possible to estimate the distance that is required for one transit 
of power from mode 1 to mode 9 (or from mode 9 to mode 1) by looking 
at the second eigenvalue. We know that the steady state is reached as 
soon as the second term in the series expansion (of power in terms of 
steady states) becomes negligible compared to the leading first term 
[see equation (62)]. The second term is quite small when aw z = 2.3. 
We thus define a diffusion length Ld by the relation 

2.3 
Ld =  (2) . a 

(1) 

Ld is the distance along the waveguide that is required for the power in 
one of the modes at the end of the mode spectrum to transfer an appre-
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ciable amount of power (which is a somewhat undefined quantity) 
across to the mode at the other end of the mode spectrum. For D/d = 35 
we obtain from Table III and equation (1) Laa2k2/d = 9 X le. From 
Figs. 9 and 12 we see that this is indeed a reasonable estimate for the 
distance required for a power exchange between mode 1 and 9. The 
definition (1) allows us immediately to determine the steady state power 
loss that accompanies this power diffusion among the guided modes. 
The steady state power loss that occurs over a distance z = Ld is 
given by 

an au) )11, = 2.3 --rir• (2) 

Table V shows a number of values for a ("La for various correlation 
lengths. The penalty in radiation loss that must be paid for this mode 
mixing process is relatively high but it improves with increasing corre-
lation length. Mode mixing via the next neighbor power exchange is not 
likely to be very effective in reducing delay distortion since only a small 
fraction of power traveling initially in one mode is transferred to the 
mode at the other end of the mode spectrum in the distance Ld . One 
might expect that many such diffusion distances would have to fit into 
the overall length of the guide before delay distortion reduction by mode 
mixing becomes appreciable. Table V shows that a large correlation 
length to slab half width ratio is required in order to keep the loss per 
distance Ld small. Also shown in the table is the normalized exchange 
length La . The numbers were computed for kd = 82, the ten-mode case. 
For delay distortion equalization it appears desirable to make La much 

shorter than the total guide length L. If we choose L/Ld = 100, for 
example, we compute from the last column of Table V for Did = 40 
with L = 1 km, kd = 82, X = I min, and d = 13 gm the value ei• = 3.14 
j.4m for the required rms deviation of the core-cladding interface irregu-
larities. This value is much larger than accidental irregularities need 

TABLE V—LOSS PENALTY « 41> Ld AND NORMALIZED POWER 
EXCHANGE LENGTH La FOR kd = 82 

Did a(1)1.4(dB) 

e2k2 

20 
30 
35 
40 

3.7 
0.33 
0.25 
0.064 

1.64 X 10' 
4.41 X 10' 
9.02 X 10° 
3.01 X 108 
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to be. It is thus conceivable that an optical fiber could be designed 
with an intentional core-cladding interface irregularity with long 
correlation length for the purpose of reducing pulse delay distortion. 

W. THE COUPLING COEFFICIENTS 

In Ref. 1 coupled power equations were derived from the coupled 
wave equations. The coupled wave equations have the form 

dA,   c„A„e' 
dz 

With the coupling coefficient written as 

c„ = K „f (z).  (4) 

and with the assumption that the correlation function of f(z) is Gaussian, 

(1(z)f(z _ u»  = ci2e-(u/DP  (5) 

) indicates an ensemble average), the coupled equations for the 
average power assume the form 

dP Ntir 5.2D E 1 ic ,m  12 e -111)121(19,-12,.)I V),, r%) . (6)  
dz $+.1 

The term —a,P, was added to account for the radiation losses of the 
modes. Coupling coefficients describing the coupling between the guided 
modes of a slab waveguide caused by core-cladding interface irregular-
ities were derived in Ref. 2. To obtain the coupling coefficient c„ from 
our earlier work, we observe that equations (53) and (60) of Ref. 2 
correspond to a solution by perturbation theory of equation (3) for the 
special case that only the lowest-order even guided TE mode of the 
slab waveguide ià excited. Comparison between the corresponding 
perturbation solution of (3) and equations (53) and (60) of Ref. 2 allows 
us to find 

(n; — n)kaa,a„(7,,,y„)4  
—  (7) 
241 i3,,i3„ 1(1 -1- 74)(1 -1- -yel)-1] [1(z)  — (-1reh(z)l • 

The symbols appearing in (7) have the following meaning: 

d = core half thickness 
n, = index of refraction of core material 
n, --- index of refraction of cladding material 

27/X = free-space propagation constant 
/3 = propagation constant of mode 
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isin K,d for y = 1, 3, 5 
f(z) = distortion function of upper core-cladding interface (f(z) = 0 

indicates a perfect interface at x =- d) 
h(z) = distortion function of lower core-cladding interface (h(z) = 0 

indicates a perfect interface at x = —d). 

The propagation constants of the even and odd guided TE modes are 
obtained with the help of (8) and (9) from the eigenvalue equations. 
We have for even modes 

(8) 

(9) 

7, =  — 4k2)1 

= (n5(.2 — 

cos ec,d for v = 0, 2, 4 • • • 
a, = (10) 

7, tan Krd = —  = 0, 2, 4, • • •  (11) 
K, 

and for odd modes 

tan K,d = —152-  v = 1, 3, 5, • • •  (12) 

With the help of the eigenvalue equations, we can express (10) in the 
following form: 

(- 1r/2   K,   for  = 0, 2, 4 • • 
a, =  (13) 

(-1)(" )/2  (11' le k for  = 1, 3, 5 • • • . 

It is convenient to describe the guided modes in terms of a mode angle o,. 
We can introduce this angle by the equations 

K, = nil( sin 0„  (14) 

13, = n ilc cos 0, .  (15) 

Equations (14) and (15) represent the transverse and longitudinal 
components of the propagation vector of a plane wave in the core and 
are clearly compatible with (9). The guided mode can be represented 
as a superposition of two plane waves traveling inside of the core of 
the slab waveguide. ±0, is the angle that these plane waves form with 
the waveguide axis. 
The function f(z) appearing in (4) is replaced with the sum of f(z) 

and h(z) in (7). Assuming that the two functions are uncorrelated, and 
assuming further that they have the same correlation function, we find 

([f(z) — (-1)".4h(z)lif(z — u) — (-1)""h(z  u)]) = 25 2e-c./D)..  (16) 
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By collecting all our results we can finally express the absolute square 
value of K„„ defined by (4) in the form 

ni2k2 sin2 0, sin2 0,   
I K„ r —  (17) 

2d2(1 +  +  0, cos 0, cos em 
„cl 7,,c1 

For small values of (n,/n2 — 1) we have 0,  1. For modes far from 
cutoff we have, in addition, 7,d >> 1. Under these conditions, (17) 
simplifies to the expression 

12 nbee,0! 
2d2 

Far from cutoff we can approximate the solution of the eigenvalue 
equations (11) and (12) as follows: 

fc„d =  + 1) ; for y -= 0, 1, 2, 3, 4 • • • .  (19) 

The mode angles can then be expressed as 

r(v -I- 1) 
sin 0, =  (20) 

2n, kd 

Finally, it is important to know the largest mode angle that can occur. 
Mode guidance ceases to exist when the angle, that the plane-wave 
components of the guided mode form with the core-cladding interface, 
exceeds the total internal reflection angle Oc defined by 

n, cos 0. = rt2 .  (21) 

For (n,/n2 — 1) «1 we obtain approximately 

(18) 

= [2(1 — 71')]4. 
n, 

(22) 

Combining (20) and (22) allows us to find an approximate value for 
the number of modes N that the slab waveguide can support: 

, 
N = —2 nikd[2(1 — ")] — 1. 

ir  ni 
(23) 

V. RADIATION LOSSES 

In order to be able to evaluate the coupled power equations (6) we 
need convenient approximations for the radiation losses a, of the 
guided modes. 
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The radiation loss problem has been solved in a general way in Ref. 6. 
Equation (14) of Ref. 6 gives the radiation losses of the even and odd 
guide modes. 

with 

n.k 
= 

- nDk3n, sid 0,  
I,(3) — 

27c1 cos 0,(1 + —1 ) 
-y,c1 

p cos2 Œd   +   
[p2 cos2 crd + cr2sin2 od  p2 sin' aPdsill-F2 (red2 c0s2 crdi  (25) 

and with the Fourier coefficient of the core-cladding interface function 

F(0, — 0) = \--h foL f (z)e— (8-8 '' dz .  (26) 

Equations (10), (13), (14), and (15) have been used to express (25) in 
this form. In addition, (25) has been multiplied with a factor 2 to 
account for the fact that both core-cladding interfaces have irregularities 
(contrary to the assumption in Ref. 6) that are statistically independent 
of each other but have the same correlation function. There are two 
new parameters in (25): 

PT — e) 12)I M dia (24) 

P = (n4k2 /32)1 (27) 

and 

0- --- (71,k2 — 132)4.  (28) 

The parameter fi is the propagation constant (in z direction) of the 
radiation modes. Using (5) and assuming that L>> D we obtain from (26) 

(I F(3, — i9) 12) = V .; ii2De-"Di "' (29) 

The loss expression (24) must be simplified before it can be used for 
our purposes. We are interested only in multimode waveguides with 
kd >> 1. The functions sin crd and cos ed thus vary rapidly as functions 
of p. It is impossible to obtain an approximation for all values of Did. 
We begin by assuming Did < 1. In this case, we can replace the exponen-
tial function in (29) by unity and obtain 
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(Pi; — n22)k3n, sin2 0,  _2 D 
,7 

2Vai: cos 0,(1 

r,k  p cos2 ad  p sin2 ad   1 i dfl. (30) 
-nak [p2 c0s2 o-d + o-2 o-d  p2 sin2 + a2 COS2 

Consider the terms in the integrand. The first term can be written 

— p cos2  p cos' o-d   
G,  (31) 

p2 c0s2 o-d  o-2 sin2 o-d  p 2  (47 2  p 2) sin2 ad 

The sine and cosine functions oscillate rapidly while p is only a slowly 
varying function. The contribution of the second term in the denomi-
nator is slight since this term vanishes when the cosine term in the 
numerator assumes its maximum. On the other hand, when the second 
term in the denominator is largest, the numerator is zero so that the 
value of the denominator does not matter. We can thus write to a crude 
approximation 

cos2 ad 
•  (32) 

The average value of the cosine square function is 1/2 so that we 
approximate further 

1 
"-=1 (33) 

It appears that this approximation may be very poor at p = 0. However, 
by converting the integration variable from p to 13, we see that 

= -P- dp  (34) 

showing that there is no pole at p = O. By an analogous argument we 
find that the second term in the integrand can also be approximated as 

1 
G2  (35) 

2p 

The integral in (30) thus assumes the value 

rk  n.k 

(G,  G2)  f  — df3 = 7 .  (36) 
-n.k  p 

For Did < (1/2n2lcd) we obtain the following approximation for the 
radiation loss of the pth guided mode of the slab waveguide: 
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(n; — n:)/1,1c3 _2 D 
a, =  o- •  (37) 

2 cos 0„(1 

Next we try to obtain an approximation for large values of the corre-
lation length, D/d >> 1. The general expression for the radiation loss 
of the vth guided mode follows from (24), (25), and (29): 

(72,  4n1k3 sid 0,  5.2 D 
a, = 

1 
2  — ) COS O, 

7,d 

f—n,k 

•  e -1(D12)(0.-0)1. 

p cos2  p sir 2 o•d   
d13.  (38) 

[p2 cos2 crd  o•2sin2 crd  p2 sin2 o-d  o-2 cos2 o-d] 

The exponential function under the integral sign decreases very rapidly 
with increasing values of 0, — e for D/d >> 1. Since the largest value 
that 9 can assume is 0 = 7/2k only the immediate vicinity of the upper 
limit of the integration range contributes to the integral. In this region 
we have p « n2k. In order to be able to work out approximations for 
the case of large correlation length we must consider two more sub-
divisions, the case that Did is small enough so that the exponential 
factor under the integral sign in (38) varies slowly compared to the 
rapid oscillations of the sine and cosine functions and the opposite case 
where the exponential function decays to insignificant values within 
one cycle of the oscillations of the oscillatory functions. 
In the first ease, slowly varying exponential function, we can consider 

p and cr approximately constant over one cycle of oscillation except 
for the o-d term appearing in the argument of the oscillatory functions 
and consider the average of the integral over one period 

1  fo, p cos2 crd   
d, 

02 — 01  cos2 --I- o-2sin2 cid 

cos2 x   1 

fo p2 cos2 x  cr2sin2 x dx  cT + p 

And, similarly, for the second term of the integrand we find 

1  ro. psid o-d   
(113  1 • 

02 — 01 s, p2sin2 ad  o-2 c0s2 o-d  p 

(39) 

(40) 
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Since only small values of p can contribute to the integral, because of the 
rapid decay of the exponential function, we use the approximations 

1  1   

if ± p  — n:lc 

and 

(41) 

2 
f3 = n2lc — 2n2k •  (42) 

Using all these approximations and the change of integration variable 

dO = —2 dp  —  - dp' (43) 
n2k   

the integral in (38) can be approximated by the following expression: 

2   r ,k  2  _1(D/2)0,-0)12  2 / 2 n2 
Lau + Pe n2k V ni 

f p exp {— [2;2. (0, — 77.21(  271,p2k )]  dp 
2  2 

4   du 
lcVn: — n: D f(D/2)(s,-..k)i 
kD Vn —  {1 — erf [-2 03, — n210]}•  (44) 

: n: 

We have now finally obtained the result that the radiation loss of the 
Pth mode can be approximated by 

= nik2 Vn: — n: sin2 0, 5.2  D a,  {1 — erf  (e, — 77,2k)]}-  (45) 

±  

The range of applicability of (45) is obtained by considering that we 
must require the exponential function in (44) to change only slightly 
over the range Ap corresponding to A(crd) = 27r. This condition can be 
expressed as 

\ 
PàPD2  — n  2 2k  P )  1. 
271,1z  27221c 

The increment Zip is obtained from 

Ap = 2r -o- -1• 
p d 

(46) 

(47) 
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The condition (46) must hold primarily for small values of p. We use, 
therefore, 

P = nap.  (48) 

With n being a small number such as 2 or 5 and obtained from (46), 
(47), and (48) with u  (n: — 74)41c, 

2 

2 — n2k)d +  —n)kd(re'   

<  <  n2  (49) 
d 

14(8, — n,k)d  (n"  —n2 e2)l In21 — 

The left-hand side of this inequality follows from the requirement that 
the exponential function in (44) must drop to small values as p grows 
from 0 to approximately (n: — nWk. 
Finally, we obtain an approximation for very large values of Did if 

we assume that the exponential factor in (38) decreases very appreciably 
over an interval corresponding to one oscillation period of the oscillatory 
functions. We can now use the approximation 

0-= (77, — nDik  (50) 

treating o• as independent of p. Expanding the factor that multiplies 
the exponential function in (38) in a power series in terms of p at p = 0, 
keeping only the first none-vanishing term, results in 

LP - (D/2 ) (Or -0)1 

fo e 

p cos° crd   
[ 

p sin2 crd   ] dP 
po cos 2 ud  ± 0.2 sin 2 0.d + p2 sin 2 ow  + u2 038 2 rid  

1   
(cot2 tan2 o-d) 

n2(e, — n)k3 

• ID'  [P _ n2k + —P2 )]2} dp 
2  2n2k 

2(irn2k)i 
k2(ti — n:)(13, — n2k)1D3 

If 0, = n2k, (51) becomes infinitely large. The approximation leading 
to the solution of the integral is violated in this case and the result 

(cot2 ad  tan2 (51) 
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becomes meaningless. However, this violation of the applicability of 
the approximate solution of (51) can happen only for the highest-order 
mode and only if it happens to be directly at its cutoff frequency. Our 
approximation, if applied to this case, gives a loss value that is too large. 
Using too large a radiation loss for the highest-order mode affects the 
power distribution in all the other modes only slightly. The radiation 
loss of the highest-order mode is large in any case. Power coupled from 
the neighboring guided modes to this mode is lost rapidly. Using too 
large a loss value for this mode makes little difference to any of the 
other modes. We thus use (51) for all values of il,. 
A more serious violation of the applicability of (51) occurs if either 

the function cot ud or the function tan rrd should become infinite or at 
least very large. In both of these cases the integral assumes the form 

°' 1  (D/2)(8.-0)1 , d 1 -1 (D/2) (13.-n.k+ (e nnak)) I  1 — e  „  f e a P I' 
n2k 

e-i(D/2)(11.-na)]. 
e•J    (52) 
D[n2k(e, — n2k)] 

For very large Did the radiation loss approximation is 

sin2   
a, -= 5-2 

if,d) 
2d[n2k(0, — n2k)](1  —  cos O. 

1 

2n2   (cot2 o- d  tan2 od) for tan crd  0 
kD2(3, — n,k) 
•  and cot crd 0 0  (53) 

(71; — 4  for tan od = 

or cot  = O. 

Equation (53) holds for values of Did that are much larger than the 
Did values in the range indicated in (49). 

VI. THE EIGENVALUE PROBLEM 

Knowing the coupling coefficients and the radiation losses allows us 
to determine the power distribution in the multimode dielectric slab 
waveguide as a function of the distance z along the guide. Introducing 
the abbreviations 

km =  Ef2D 1 K„» 12  (54) 
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and 

b, = E h,p ,  (55) 
M1 

we can write the coupled power equations (6) in the form 

dP 
7 -1.; =  (ay  b,)P,  E hygP,j .  (56) 

0-1 

The trial solution 

P, = Be '  (57) 

converts (56) into an eigenvalue problem 

E [h„ — (a„  b,, — a)8„]13, = 0.  (58) 

The coefficient matrix of this problem is real and symmetric as can be 
seen from (54) and the condition (11) of Ref. 1. This latter condition 
can be expressed in the form 

Lp 12 = 1 KY.12 • (59) 

The symmetry condition (59) follows also directly from (17). The 
eigenvalue « is obtained from the eigenvalue equation 

— (am + b,. —  6.01 = 0.  (60) 

The vertical lines in (60) indicate that the determinant of the matrix, 
whose vp element appears explicitly, must be formed. The eigenvalue 
equation is an algebraic equation of order N providing N different 
solutions for the eigenvalues a"). The eigenvectors, whose elements 
are B!", are mutually orthogonal and will be assumed to be normalized, 

E B")/3") = (5„ .  (61) 

The general solution of (56) can now be expressed as a linear super-
position of the N eigensolutions, 

(62) 

The expansion coefficients c, must be determined from the given power 
distribution at z = 0. With the help of (61) we obtain from (62) 

Ci =  E e i)P,(0). (63) 
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VII. CONCLUSIONS 

In this paper we have shown that coupling between the guided modes 
of a multimode waveguide causes the power versus mode number 
distribution to settle down to a steady state provided the signal is 
allowed to travel far enough in the waveguide. This steady state applies, 
of course, only to the CW case. For very long correlation length of the 
core-cladding interface irregularities the steady state distribution 
contains equal power in all the modes. For very short correlation length, 
on the other hand, only the lowest-order mode carries an appreciable 
amount of power, forcing the fiber into single-mode steady state opera-

tion. 
The results of this paper have some application to delay distortion 

equalization. If the power carried by the guided modes is exchanged 
rapidly among them, the pulse distortion caused by the different group 
velocities of the modes is partially compensated. Coupling among the 
modes is of necessity accompanied by radiation losses. Effective pulse 
delay distortion equalization has a chance of working only if the corre-
lation length of the core-cladding irregularities is long since the penalty 
paid in radiation loss becomes high for short correlation length. In 
addition, only for long correlation length do all the modes carry power 
in the steady state distribution. 
A detailed discussion of the numerical results and the properties of 

multimode waveguides is to be found at the beginning of the paper. 
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Bipolar Transistors 
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The integral charge-control model for bipolar transistors is rederived 
with the purpose of elucidating hot carrier effects. In its original derivation 
the model contained an additive hot carrier contribution to the base charge 
of possible significance in narrow-base transistors. Inclusion of this term 
is shown to be unnecessary. However, careful examination of the potentials 
appearing in the formalism has disclosed other hot carrier effects. These 
could lower the transconductance of a transistor operating in or near 
saturation, particularly if the base has a low number of impurities per 
unit area, but would otherwise be unobservable. 

I. INTRODUCTION 

The integral charge-control model (ICM) provides an elegant and 
compact description of the one-dimensional transport physics of tran-
sistors by relating collector current to the junction voltages and total 
base majority carrier charge." The original derivation of the model 
indicates a possible need for supplementing the base charge in the 
ICM relation with a term inversely proportional to the minority 
carrier saturation velocity when base widths are very small (--4000 A) .' 
It is shown herein that this term is an artifact arising from inappropriate 
treatment of the diffusion current contribution to the transport equa-
tion. There are, however, additional hot carrier modifications of the 
charge-control relation that have not been included in previous treat-
ments. These originate in the heating of a reverse current by the built-in 
field in a junction not supporting a large reverse bias, and should be 
manifest only in saturated or near-saturated transistor operation. With 
this exception, the standard ICM relation [equation (15) of Ref. 11 
remains valid to the same extent as the macroscopic current transport 
equation, even for very narrow base widths. 

455 
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II. DERIVATION 

Considering a pnp transistor, we integrate the one-dimensional 
macroscopic equation for hole transport to obtain the integral charge-
control relation. Our derivation largely parallels that of H. K. Gumme1.1 
The essential differences are representation of diffusive transport by 
—qV(Dp) rather than —qDVp, and a more detailed treatment of the 
potentials. Both diffusion expressions are, of course, identical if D is 
coordinate independent. When coordinate dependencies arise from local 
carrier heating, the former can be more readily justified by integration 
of the Boltzmann equation, and is therefore to be preferred.' Thus, 
as a starting equation we take 

•  (-e  n (-4 ) dx ' (1) 

where j,, is the hole current density, E is the electric field, and kT4 
and n are given by 

kT, 

Dp. 

(2) 

(3) 

In relation (2), 714 is the hole "diffusion temperature," which is defined 
from the local diffusion coefficient and mobility by the Einstein relation. 
The variable n is the product of the local diffusion coefficient and hole 
density. 
The full solution to (1) is the sum of the homogeneous solution 

for j = 0, and the particular solution. From the homogeneous equation 
we obtain 

nh = e-e(z) , 

where 

(4) 

dx  — kTd (5) 

Note that 1,1, is a potential normalized to the local value of kT4 and 
is nonconservative in regions where T, varies. The particular solution 
to (1) is 

Thus 

_  qE 

. 
np = -- e4(.0  2,,(x9e"'" dx'. 

n = x) _ e-e(r) f mx,»#(.') e 

(6) 

(7) 
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Equation (7) is now evaluated at xc , the outer edge of the emitter 
junction, and xc , the outer edge of the collector junction. This pro-
cedure yields 

n( Me ,r  =  j(xP)e . 
el )  1 f «re  C') p  dx'. 

q =E 
(s) 

Following Gummel,' we may account in a crude way for recombination 
through the introduction of a quantity a defined by 

f.ip(a)e"" dx = àj,  e ) dx,  (9) 
rE 

where j, = jp(xc) is the collector hole current density. Consequently, 
à  1, and assumes the value unity in the absence of recombination. 
Upon substitution of (9) into (S), the resulting equation may be solved 

for j,. 

(eR)e  —   —  • 
à 

e" da: 

(10) 

There remains evaluation of the contributions to (10). At coordinates 
xE and xc in the undepleted bulk material of the emitter and collector 
there is no carrier heating and the diffusion coefficient has its zero field 
value D, . Hence, assuming the emitter and collector have the same 
low field mobility, 

ti(xE) = Dop(xE)  (11a) 

17(xe) = DoP(cc)  (11b) 

so that (10) may be rewritten 

qD0 p(xE)e'̀̀ NE)  — p(xe)c"") —  •  (12) 

L 
ee( ') dx 

Since the normalized potentials in (12) are, in general, nonconserva-
tive, it is convenient to introduce a conservative electrical potential 
e(x) which is everywhere normalized to the lattice temperature To . 
Then in regions where the holes are not heated, their concentration is 
given by 

p(a) nie'"' "̀", (13) 

where 711 is the intrinsic carrier concentration and (p„(x) is the hole 
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quasi-Fermi level normalized to T.. Equation (13) can be invoked 
at xE and x, , yielding 

• an .D e(-)-41(-E).e,(..) _ e0(2 0— P2c). ete,(sc) 

—  .c 
e > .e; c») dx  

fzE 

(14) 

The relationship between 1,b(x) and e(x) is arbitrary to within a 
constant, permitting a choice of the coordinate at which ex) and e(x) 
coincide. Although (14) is implicitly "gauge invariant," its explicit 
form will depend on the choice made. The most symmetrical appearance 
is obtained if one relates i(x) to e(x) by 

e(e)  =  o E dx  + 'fr(xR) ' 

where xi, is any coordinate in the base. Then (14) becomes 

ic qn,D0 ,y(x2)e " ) —   

f.g gg y(x)ee(z) dx 
where 

and 

-y(x)  e(z)-e(') = exp r qE(Td — T.) dx. 
kTaT. 

(15) 

(16) 

(17) 

The function 7(x) provides a uniform treatment of the hot carrier 
effects in (16), which all arise when hole current is drifted in the direc-
tion of the field, and power absorption from the field raises the hole 
diffusion temperature T d above T.. 
The ICM relation follows from (16) if the quasi-Fermi level for the 

electrons in the base may be regarded as constant. This implies the 
absence of substantial dc base majority carrier current, such as would 
arise if there were both high-level injection and poor current gain.' 
For a constant electron quasi-Fermi level cp„b one has 

n(x) = nee (18) 

(19a) 

kT 
=  (WP(X C) ‘P b), (19b) 

kT 
V eb  lWnlX E —  ,,b) 
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where Vet, and Va, are respectively the applied emitter-base and col-
lector-base voltages exclusive of ohmic drops. Insertion of (18) and 
(19) into (16) results in 

. ??.qD„.y(3...E) eal'«è/LT.  

—  a 

Letting A denote the active cross-sectional area of the transistor, and 
defining an effective base majority carrier charge by 

r=c 
= qA j 7(x)n(x) dx,  (21) 

one arrives at the ICM relation for the collector current I. . 

(4eniA)2D. 7(xE)egv""r° —   ic =  (22) 
ci Qt 

If one neglects carrier heating, -y(x) = 1 for all x and Qt, reduces to Qb 

the total majority charge (within the active region) that communicates 
with the base terminal. Equation (22) then becomes identical to the 
integral charge-control relation derived by Gumme1.1 

III. DISCUSSION AND CONCLUSION 

-y(x)n(x) dx 

(20) 

We have shown that inclusion of the diffusion coefficient within the 
gradient operation in the current transport equation automatically 
eliminates additive contributions to the defining integral for the base 
charge in the ICM. However, careful examination of the nonconserva-
tive potentials appearing in the formalism discloses other hot carrier 
contributions that have not been previously considered. In equation (22) 
these are embodied in -y(xE), -y(xe), and Qt . For forward operation 
of the transistor, -y(xE) = 1 because the holes do not absorb power 
from the emitter junction field. On the other hand, carrier heating 
can occur in the collector junction and, in accordance with (17), result 
in 7(xe) > 1. However, this effect would be discernible only for rea-
sonably large values of exp (q17,,,/kT), requiring the transistor to be 
in or near saturation. Heating must then be produced by the built-in 
field. Similar considerations apply to the effective charge defined by 
(21). Reverse bias of the collector causes the Boltzmann tail of n(x) 
to fall off very fast within the collector junction and make little con-
tribution to the integral. Saturated or near-saturated operation of the 
transistor is therefore required for carrier heating to affect Qt . Further-
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more, the number of impurities per unit area of the base must be low 
for the Boltzmann tails within the junctions to make any significant 
contributions to the total base charge. Since 'y(x) > 1 within the 
collector junction, Qt will exceed Q, . Therefore, by increasing 7(xe) 
and the effective base charge, carrier heating in the collector junction 
tends to decrease the collector current for a given set of applied voltages. 
The diminution in / is plausible in view of the decreased effectiveness 
of the collector junction as a sink for the minority holes diffusing across 
the base when their mobility within the junction is lowered by carrier 
heating. 
A number of important effects, such as impact ionization and base 

crowding, have not been included in this treatment. High current gain 
has been assumed. The question of the ultimate validity of the macro-
scopic transport equation in inhomogeneous high-field regions has not 
been addressed. 
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The Design and Embodiment of Magnetic 
Domain Encoders and Single-Error 

Correcting Decoders for Cyclic Block Codes 

By S. V. AHA MED 

(Manuscript received July 19, 1971) 

This paper explores the possibilities of accomplishing the functional 
requirements of encoders and single-error correcting decoders for cyclic 
block codes using the inherent properties of magnetic domains. Typical 
designs and embodiments of such encoders and decoders are presented with 
field access propagations for moving the magnetic domains. 

L INTRODUCTION 

The properties of magnetic domains have been studied by A. H. 
Bobeck, ' by A. J. Perneski,4 by U. F. Gianola,' and by A. A. Thiele." 
The applications of such magnetic domains for storage and logic are 
described by A. H. Bobeck, R. F. Fischer, and A. J. Perneski," and 
by P. I. Bonyhard, et al.' This paper proposes the possible applications 
of these results to the construction of encoders and single-error correcting 
decoders for cyclic block codes. 
Single-error correcting codes were introduced by R. W. Hamming 

in 1950." In 1960, R. C. Bose and D. K. Ray-Chaudhuri" formulated 
a class of multiple-error correcting cyclic codes. W. W. Peterson' has 
presented a variety of logic circuits for encoders and decoders. These 
circuits conventionally employ semiconductor logic elements. Such 
circuits are discussed in some detail by R. W. Lucky, J. Salz, and 
E. J. Weldon, Jr.," and by E. R. Berlekamp." 
The encoders proposed in this paper are for cyclic block codes and 

the decoders are limited to single-error correcting decoders for such 
codes. In general, these codes constitute a set of BCH codes named 
after Bose, Chaudhuri, and A. Hocquenghem." The paper is divided 
into four parts. Part A provides an insight into the fundamentals 
necessary for a Qualitative understanding of magnetic domain functions. 
Part B deals with encoders for cyclic block codes and Part C deals 

461 
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with single-error correcting decoders for such codes. Part D discusses 
the various types of magnetic materials suitable for embodi-
ments and their characteristics. Each of the two parts B and C is 
divided into two sections; section 1 introduces the fundamentals of 
encoding and decoding while section 2 leads into the conversion of 
conventional encoding and decoding to serial encoding and decoding, 
and describes these functions with magnetic domains. The expert in 
magnetic domain devices may skip Part A and the expert in coding 
theory may skip the first sections of Parts B and C. 

(PART A) 

II. MAGNETIC DOMAINS AND THEIR FUNCTIONS 

2.1 Introduction to Orthoferrites and Domains 

Rare earth orthoferrites have a formula RFe03 where R is a rare 
earth. Very thin platelets of the orthoferrite crystals are prepared so 
that the appropriate crystalline axis (generally the 001 or c axis) is 
normal to the surface of the platelet. Magnetic domains with their 
direction or magnetization normal to the surface of such platelets may 
be observed by Faraday effect. Such domains may also be observed 
(Fig. la) in very thin epitaxial garnet films deposited on suitable sub-
strates. When these domains are subjected to a bias field opposing the 
magnetic moment enclosed within them, they shrink (Fig. lb) to 
microscopic and submicroscopic sizes and are cylindrical in shape. 
Such cylindrical magnetic domains, sometimes called bubbles, generally 

Fig. la—Magnetic domains in a typical epitaxial film 5 to 8 microns deep, de-
posited on Gadolinium—Gallium—Garnet (GGG) substrate 20 to 40 mils thick. 
Magnification is 340. 
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(b) 

Fig. lb—Formation of "bubbles" from magnetic domains at a bias field of 30 Oe 
in the same material used in Fig. la. Magnification is 340. 

are a few microns in diameter and are stable under proper bias field 
conditions. Bubbles may be used to store information and to carry out 
certain elementary logical functions. 

2.2 Propagation of Bubbles 

Bubbles respond to bias field gradients in the plane of the platelet 
(or film) hosting them by moving in a direction which tends to minimize 
the net energy. A bubble of diameter d located in a uniform gradient 
field would tend towards the position of reduced bias (Fig. 2a). Bubble 
velocities yielding a bit rate of over two or three megacycles have been 
achieved in selected magnetic materials. There are two basic methods 
of providing such an inplane field gradient. The first method depends 
on a current in a conductor loop which produces a field to attract the 
neighboring bubble directly beneath a loop formed by a conductor 
(Fig. 2b). This method is called "conductor propagation" since a 

UNIFORM GRADIENT 

FIELD IN X DIRECTION - -PLATELET 

(a) 

Fig. 2a—A cylindrical domain located in a uniform gradient field. 
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(b) 

Fig. 2b—Conductor propagation of bubbles. 

sequence of bubble positions may be propagated by exciting a series 
of conductor loops ivired to carry current pulses. The second method 
depends on the alternating magnetization of a patterned soft magnetic 
overlay embedded on the surface of the platelet (Fig. 2c). The magnetiza-
tion is imposed by a rotating inplane magnetic field generated by a 
set of two coils carrying an alternating current and surrounding the 
platelet with their axes in its plane. This method is called the "field 
access propagation" and each of the bubbles is propagated to the next 
pattern in the overlay during one cycle of the exciting current in the 
surrounding coils. 
Field access propagation is more suitable for constructing magnetic 

domain encoders and decoders, even though it is possible to construct 
these devices with conductor propagation. Storage, propagation, and 
the synchronization of incoming data with the outgoing data may all 
be accomplished by one clock driven at one frequency which is a mul-
tiple of the transmission rate. For this reason, only the embodiments of 
encoders and decoders with field access propagation will be discussed 
in this paper. 

4 

34  2 3 4 
2 T 

2 3 4 

,C, 

2 

Fig. 2c—Field access propagation of bubbles. 

3 

2 +  4 

ROTATING 
MAGNETIC 
FIELD 
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2.3 Bubble Functions 

2.3.1 Generation of Bubbles 

Bubbles are generated from an original source bubble. The source 
bubble rotates around the periphery of a disk of soft magnetic material 
and when subjected to the localized field of a properly placed current 
loop it is duplicated (Fig. 3). One section is led away from the generator 

SOURCE 
BUBBLE NEWLY, GENERATED BUBBLES 

Fig. 3—Generation of bubbles in field access propagation. 

and the other section keeps rotating. In most cases the bubbles are 
generated only when subjected to the field of a current, which is generally 
controlled by the information bits, or by> readings of sensors in a circuit. 

2.3.2 The exclusive-or operation 

This function is accomplished by the mutual repulsion of two bubbles 
when they are brought in close proximity. In Fig. 4 any one of the two 
input bubbles A or B finds its way to the output in the absence of a 
repulsive force due to the other input bubble. Two input bubbles 
mutually repel themselves into two annihilators. Such an annihilator 
operates by merging the incoming bubble with a bubble of its own and 
the diameter of the bubble in the annihilator remains as it was before 
the merging of the incoming bubbles. 

(PART B) 

Overview 

The basic vehicle chosen for introducing the principles of encoding 
is the single-error correcting (7,4)* cyclic block Hamming codé. The 

* The notation is explained in Section 3.1. 
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principles are then extended to a (31,21) cyclic block code. The code 
chosen to demonstrate the feasibility of the designs and the embodiments 
of magnetic domain encoders is (30,20) shortened block code. It is 
derived from the original (31,21) code. This choice, even though it is 
inherently a double-error correcting code, facilitates the presentation 
of serial encoding with field access propagation. The generality of the 
embodiment for another code is also presented. 
In the design of encoders and decoders, time plays a critical part and 

it becomes necessary to choose a unit of time for any given code. In a 
(n,k) code, if the incoming information is received at the rate of k bits 
every P seconds, then the outgoing information is relayed at the rate 
of n bits every P seconds. If t is defined as P/(n X k) seconds, then the 
average interval between the incoming information is (n X t) and the 
interval between the outgoing information is (k X t) seconds. As it will 
become evident in the design of magnetic domain encoders and decoders, 
t plays a dominant role in moving the bubbles from one location to 
the next. 

III. ENCODERS FOR CYCLIC BLOCK CODES 

(PART B, SECTION 1) 

3.1 Cyclic Block Codes and their Construction* 

Block codes constitute a set of codes in which a binary block of k 

ANN I HIL ATOR 

ATIITIIT T II ITAeB 
T T T 

ANN IH IL ATOR 

Fig. 4—Exclusive-or operation in field access propagation. 

* This topic is discussed in Refs. 12, 13, and 14. 
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information bits has a binary block of (n — k) parity bits appended 
to it, thus constituting a (n,k) block code. The n-bit binary cyclic block 
is represented as a polynomial c(X) as follows. 
Let the n-bit binary string be 1010001. The polynomial representation 

would be 

c(x) = r + x4 +  = xfi + x4 +  (1) 

corresponding to unity in the first, third, and seventh binary positions. 
Cyclic block codes have the attractive property that if coefficients 
of c(X) are cyclically shifted, the new polynomial also represents a 
code word. For instance, cyclically shifting the coefficients of c(X) once, 
yields (r + X + 1) which represents another code word. 
Consider a new polynomial, 

g(X) = X3 ± X2 ± 1,  (2) 

which is four binary bits long. If c(X) is divided by g(X) as 

X2 + X2 ± O ± 1 

X' + x2 + 0+ 11x6 + 0+ X4 +0 +0 + 1 
X' + X' + o + x3 

r + x4 + x2 + o 
r + x4 + o + X2   

O ± X2 + X2 ± 0 
0 + 0 +0 +0 

X2 ± X2 ± O + 1 
X2 ± X2 ± O ± 1  

O + O + 0, 

the remainder is three binary zeros. When polynomials obtained by 
cyclically shifting the coefficients of c(X) once, twice, etc., are divided 
by g(X), the three-bit remainders obtained are always zero. For each 
cyclic code there exists such a polynomial g(X) which divides every 
codeword. This polynomial is called the generator of the code. 
Now consider a new polynomial d(X) which corresponds to the first 

four bit positions of c(X) yielding 

d(X) = X e. (3) 

If d(X) is divided by g(X) the remainder corresponds to the polynomial 

r(X) = 0.X' ± 0•X ± 1 = 1,  (4) 



468  THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972 

corresponding to the last three bits of the polynomial c(X), since g(X) 
divides c(X) completely. If the first four bits of c(X) were to denote 
information bits of a code, then, the last three bits may be thought of 
as the parity bits, and are in general obtained by dividing a data 
polynomial d(X) by the generator g(X) and calculating the remainder. 
The paper by Bose and Chaudhurill has proved that a large number 

of codes may be generated by various choices of n and k, provided a 
generator polynomial g(X) exists for the particular combination of 
n and k. The value of n is initially limited to (2' — 1) where m is an 
integer number. The series of polynomials g(X) for each value of n are 
readily available in any standard textbook in coding theory (see Ref. 
12 or 13). One such value of n is 31 (i.e., 25 — 1) and one of the poly-
nomials for g(X) is 

g(X) = Xi° +  +  +  + X 5 +  X 3 +  1.  (5) 

The highest degree of the remainder r(X) in the division of a polynomial 
d(X) by g(X) is always one less than the degree of divisor g(X). In this 
case, the highest degree of r(X) is 9 and is 10 bits long. Hence the cyclic 
block code constructed with n = 31 and the prechosen value of g(X) 
has 10 parity bits leading to a (31,21) code. It is however possible to 
reduce both n and k by a selected number and obtain shortened block 
codes. For example, lithe first bit of an original (31,21) code is eliminated 
by considering it as being always zero, then a (30,20) code is obtained 
yielding 10 parity bits for every 20 information bits and the rate corre-
sponding to the ratio of k to n is 2/3. 

3.2 The Function of Encoding for Cyclic Block Codes 

The encoder receives information d(X) in blocks from the data source 
and yields the code word c(X) in blocks. The two subfunctions are 

(i) Divide the incoming data string d(X) by the generator function 
g(X), and 

(ii) Append the remainder after the division to the incoming data 
string. 

These subfunctions are commonly accomplished by semiconductor 
electronic circuitry in conventional encoders. The division in Section 3.1 
has four steps. During the first step of the division cycle the nonzero 
terms of g(X) are added (by an exclusive-or operation) to the appropriate 
terms of the data polynomial d(X). At the successive steps of the division 
cycle, the partial remainder from the earlier step is treated the same 
way, and the nonzero terms of g(X) are added (by the exclusive-or 
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function) to the appropriate terms, provided the highest order of the 
partial remainder is a nonzero quantity. When a zero quotient is en-
countered in the highest order (such as the third step of the division), 
then a set of zeros is added (by an exclusive-or function) to the partial 
remainder. 
In the electronic circuitry these functions may be explicitly accom-

plished. The steps in the well-known (but not frequently used) encoder,* 
shown in Fig. 5a, are as follows. 

Step 1:  Switch  Si 52 Sa 

Position  1  1  1 

a  I 

b o 
s 

C  I 

d 0 
INPUT 

DATA INTO 
CIRCUIT 

X0  XI  X2 

(i) 1(c)  o(b)  1(a) 

(LC) 
O 

(iv)  o 
(v)  1(9)  o(f)  o(el 

(e) 

2 
O 

53 

a 1 

b o 
c I 

  d 0 

e 

fo 

OUTPUT 
CODE WORD 
INTO CHANNEL 

Fig. 5a—Encoding for a (7,4) block cyclic code with generator function 
g(X) = 1 + X 2 ± 

The first three data positions 101 of d(X) in (3) are shifted into the 
encoder and transmitted into the channel [line (i) in Fig. 5a]. 

Step 2:  Switch  51 52 53 
Position  1  2  2 

The last data bit, i.e., 0, is shifted into the register and transmitted into 
the line. The contents of the shift register are shown in line (ii). (Also 
see the partial remainder after the first step of the division cycle in 
Section 3.1.) 

Step 3:  Switch  S1 
Position  2  2  2 

5 2 S3 

* It will be seen that this type of encoder will present certain operating advantages 
with magnetic domain configurations in which storage is quite inexpensive as com-
pared to semiconductor configurations. 
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The contents of the shift register are shifted three times (corresponding 
to the three remaining steps of the four-step division cycle). The contents 
of the shift register are shown by (iii), (iv), and (v). 

Step 4: Switch 
Position 

Si 52 53 
2  1  1 

The contents of the shift register are emptied into the channel and these 
correspond to the parity bits r(X) in (4). 
A more commonly used configuration of the encoder arrangement is 

shown in Fig. 5b. Four data bits are shifted with switches S, , S2 and S3 
in position 2. The switches are moved down to position 1 and the con-
tents of the shift register are emptied into the channel. The lines a, b, 
c, and d in Fig. 5b indicate the contents of the register as the data bits 
corresponding to d(X) in (3) are received. 
It is to be observed here that the arrangement in Fig. 5b necessitates 

that the two exclusive-or functions be done serially between the arrival 
of data bits, whereas the arrangement in Fig. 5a requires that the two 
exclusive-or functions be accomplished simultaneously. In the magnetic 
domain technology this consideration makes the configuration of Fig. 5a 
more favorable for the implementation. 
Encoders for various codes are similarly constructed. The location 

of the exclusive-or gates is determined by the nonzero terms in the 
generator polynomial g(X) exclusive of the highest-degree term. Figures 
Sc and 5d indicate the conventional encoder arrangements for the 
(30,20) shortened block code discussed earlier with g(X) in (5). The 
complete encoder also adjusts for the difference of rate between the 

a 
b o 

CI 

do 
INPUT 

DATA INTO 
E NCODER 

2  S 

X0 X 
a  1  0 

b i i 

X2 

a 

b o 

C i 

 d o 

e o 
fo 

9 
OUTPUT 

CODE WORD 
INTO CHANNEL 
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I.  SI 
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INPUT 
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• 0 M 
X0  X1  X2  X3  X4 X5 

) 

Fig. 5c—An encoding arrangement for (30,20) cyclic block code with general or 
function 

X5 X7 

g(X) = 1 + X3 + X' + X' + X ± X" ± X". 

1 S2 

X0  X1  X2  X3  X4  X5  X6  X7 

(d) 
Fig. 5d—Conventional encoder configuration for the (30,20) code with same 

generator used in Fig. Sc. 

CHAN-
NEL 

2 

\ OUTPUT 

CHAN-
NEL 1 

1 

k 2 

OUTPUT 

arrival rate at the input of the encoder and its output into the channel. 
In this case the input rate in the encoder is two-thirds the output rate. 
The generator g(X) in (S) has seven terms. During each step of the 

division cycle the highest order term is eliminated from the partial 
remainder in the shift register. This leads to an unconditional zero 
coefficient for the term to which X' is added. This fact may be used 
to limit the number of terms in (1(X) to six terms (excluding the highest-
order term), provided the highest-order term is eliminated from the 
partial remainder after sensing its value.* Under such conditions the 
six remaining terms may be written as 

g'(X) = 1 + X3 + X-5 + X° r r.  (6) 

(PART B, SECTION 2) 

3.2.1 Serial Arrangement of Encoders for Cyclic Block Codes 

In the conventional configurations (Figs. Sc and 5d), the output of 
the rightmost stage feeds back into six different exclusive-or gates 

* The presence of one in the highest-order position requires that the other six 
terms be added (by exclusive-or function) to the corresponding terms in the partial 
remainder. 
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corresponding to the nonzero terms of g(X). Alternatively, the informa-
tion may be fed back at one location with one exclusive-or gate but at 
six different instants of time. Each step of the 20*-step division cycle 
is effectively performed by circulating the partial remainder through 
this gate. The input to the gate is dictated by the nonzero terms of 
g' (X). A configuration incorporating such a serial feedback arrangement 
is shown in Fig. 6a. The switch Sa is designed to respond to the contents 
of x10 , closing only if the content is one. The contents of the shift 
register g'(X) are initialized to 1101101001 corresponding to the r, X°, 
X°, X', X', 1 terms of the function g' (X) in (6). The contents of the shift 
register g'(X) are circulated in synchronism with the main shift register 
SR. The circulation time of both registers is the time between the 
arrival of bits in the incoming data stream. 
The operation of this type of encoder after emptying its contents 

is as follows: 

Step 1:  Switch SI S2 S;  S3 
Position  1  2  2  1 

The first 10 bits of a data block are shifted into the main shift register 
SR. 

Step 2:  Switch  S1  S2 S;  S3 
Position  1  1  2  1 

The shift register is shifted once more so that the highest-order bit is 
in xil, and the 11th bit of the data block enters position xo simultaneously. 

Step 3:  Switch  S1 S2 S; Sa 
Position  1  2  1  1 

The shift register is completely circulated once. 

Step 4:  Switch 
Position 

SI S2 S; S3 
1  1  2  1 

The highest-order bit is entered in x10 as in step 2 and the 12th bit of 
data enters position xo . The process in steps 3 and 4 is repeated 10 times 
(i.e., 8 more times). After the 20th data bit enters the shift register, 
the switch SI is moved to position 2 and the shift register is circulated 
10 more times as in steps 2 and 3. The division is now complete. 

Step 5:  Switch  S1 S2 S;  S3 
Position  2  2  2  2 

* i.e., 30-10 or k, the number of information bite in the block. 
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(a) 
Fig. 6a—Serial encoding for the (30,20) code. 

473 

The parity bits are emptied into the channel. The process is repeated 
for the next data block by returning to step 1. 

8.2.2 Complete Encoder with Serial Arrangement for Cyclic Block Code 

Figure 613 shows a complete encoder. The incoming data (k = 20 
information bits) arrives uniformly at the encoder and coded information 
(n =. 30 bits consisting of 20 information and 10 parity bits) is recovered 
uniformly. The operation of the switch S. is explained earlier. Only 
one of three poles of switch Sb is closed at any given instant of time. 
Coded information is emptied out of d', d", or di, one bit every 201 
seconds. The data-stores d' and d" store the first and second 10 bits, 
and d„ stores the parity bit. The data-store d; holds the first 10 bits 
of any block on an interim basis while the main shift register SR is 
calculating the parity bits of the previous data block. 
When the register is full, the contents of d; are moved into both the 

main shift register SR and d' within the 30t seconds preceding the 
arrival of the next data bit. The shift is synchronized with moving the 
parity bits from SR to d„ with S,, in position 2. The arrival of the 11th 
bit is synchronized with the movement of the first bit into xi° , thus 
emptying the location xo in SR for this 11th bit.. The second 10 bits 
arrive at location xo of SR via switch S, and are also entered in d". 
The circulation SR and division with g(X) continues 20 times. The 
data-storè d; would then have emptied the first 10 bits of the next data 
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Fig. 6b—A complete serial encoder for the (30,20) code. 
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block into SR and di, would have the parity bits for the data just 
processed. The cycle can be repeated indefinitely provided the stored d', 
d", and dr, have been emptied into the transmission channel at appro-
priate times. The operation of switches a, b, and c meet this requirement. 
The timing diagram of the encoder is shown in Fig. 6e. The incoming 
data is shown in line (i) and the outgoing information is shown on 
line  The data-stores d' and (I, shift in during a 301-second interval 
and shift out into the channel one bit every 201 seconds. The data-
store d" shifts in one bit every 30/ seconds and uniformly shifts out 
one bit every 20/ seconds. 

3.3 Magnetic Domain Encoders for Cyclic Block Codes with Field Access 
Propagation 

In field access propagation all the bubbles in the region are propagated 
by one pitch (or period) during one cycle time of the rotating magnetic 
field. It is advantageous to equate the cycle time of this magnetic field 
with t defined earlier. 
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Fig. 6c—Timing diagram for encoder shown in Fig. 6b. 

:TIME 

The encoder arrangement is shown in Fig. 7. The incoming data 
pulses generate bubbles at the information bubble generator. These 
are accumulated in loop 1 at consecutive periods since there are 29 
periods and the incoming data arrives every 30t seconds. The channeling 
gate g1 opens every 20 circulations* to permit a sequence of 20 bubble 
positions to enter the duplicator D. The data is circulated in loop 3. 
Loop 2 performs one step of the 20-step division cycle every circulation. 
The sensor S. reads the leading bubble position every 30t seconds and 
controls the generator Gg to inject a series of bubbles corresponding to 
the nonzero terms of the generator g(X) in the exclusive-or gate. A 
string of bubbles 11101101001, corresponding to X', r, x8, r, x8, x3, 
1 terms in g(X), is generated if S. has sensed a bubble. The distances 
between the sensor S., the exclusive-or gate, and generator G. are 
adjusted so that the bubble corresponding to the X' position of g(X) 
arrives into the exclusive-or gate in synchronism with the leading 
bubble position that Sg sensed. After 20 circulations, the 10 parity bits 
are left in loop 2. The parity and data bits are channeled into loops 4 and 
5 by the action of the channeling gates (Ref. 9) g2 and g2 respectively. 
The code word (data and parity) is retrieved and transmitted in two 

sections. The data is read by the sensor S4 in loop 5 every 20t seconds. 
The parity is read by the sensor Sg in loop 4 every 20t seconds. The 

* A circulation corresponds to the contents of the loop going around once. 
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Fig. 7—Serial encoder with domains under field access propagation for the (30,20) 
code with t = P/30 X 20. 

diverting gates g, and g, function identically. Every time the sensor 
Sd or S5 is read, the diverting gate g, or g, diverts the bubble position 

read into annihilator A. 
The generality of this embodiment is exemplified by another serial 

encoder shown in Fig. 8 for (31,26) cyclic block code. The generator 

function for this code is 

g(X) = 1 ±  (7) 

This encoder operates along the same principles described earlier. Such 
encoders cannot be constructed when the loops 1 through 5 become 
extremely small, and thus codes with very short block lengths cannot be 
easily implemented. Generally block codes with block lengths of 30 or 
over are well suited for such embodiment. 

(PART C) 

Overview 

The basic vehicle chosen for introducing the principles of decoding is 
the single-error correcting (7,4) cyclic block Hamming code discussed 

earlier. The general concepts of decoding and single-error correcting 
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Fig. 8—Serial encoder for the (31,26) code with domains under field access prop-
agation with t = P/31 X 26. 

are then extended to cyclic block codes. The particular code chosen to 
demonstrate the embodiment of single-error correcting decoders for 
cyclic block codes is the (30,20) shortened cyclic code. 
For a (n,k) code, the decoders receive information from the channel 

at an interval of one bit every (k X t) seconds and recover the original 
information at an interval of one bit every (n X t) seconds. Further, the 
decoders discussed here detect and correct single errors in the received 
information. Multiple-error correcting decoders are not discussed in 
this paper. 

W. SINGLE-ERROR CORRECTING DECODERS FOR CYCLIC BLOCK CODES 

(PART C, SECTION 1) 

4.1 Decoding of Cyclic Block Codes* 

Coded information in the form of c(X) in (1) is received from the 
channel into the decoder. The decoder recovers the original information 

* This topic is discussed in Refs. 16 and 17. 
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bits [polynomial d(X)] from c(X) even if one of the bits of c(X) was 
received in error at the decoder. The function of detecting and correcting 
single errors for the (7,4) Hamming code is explained as follows. Let 
21(X), S2(X), • • • , S7(X) be the remainders obtained by dividing 
X, X2, • • • r, by g(X) in (2). These polynomials may be calculated as: 

s,(X) = X; 

s3(X) = X2 + 1; 

85(X) = X ± 1; 

and finally 

se) = r 
se) = r + x + 1 
86(x) = x2 + x, 

(8a; b) 

(8c; d) 

(8e; f) 

87(x) =  = o•x2 + 0.X + 1 = 1.  (8g) 
Now if the received word has a single error in the second location,* 
then the received word R(X) will differ from c(X) as follows: 

R(X) = c(X)  = r + r + x4 + 1  (9) 

and the remainder [also known as the syndrome s(X)] obtained by 
dividing R(X) by g(X) is 

s(X) = X + 1.  (10) 

This polynomial is seen to be s6(X) from (8e) indicating that a single 
error in the ith location yields a syndrome corresponding to 87_;(X). 
Next consider the polynomial obtained by shifting s(X) two (i.e., 7 — 5) 

times, 

X2- s(X) = X3 + X2;  (11) 

and the remainder, denoted by p(X), obtained by dividing the shifted 
polynomial by g(X) is 

p(X) = 0•X2 0•X ± 1 = 1.  (12) 

This value of p(X) corresponds to s7(X) or r(X) in (8g), since 

X' • s(X) = X' • s7_,(X),  (13) 

and the remainder obtained by dividing the right side of (13) by g(X) 
does in fact represent the remainder obtained by dividing (Xi • r -i) 
or X7 by g(X) and is indeed r (X). This leads to the conclusion that if 
the remainder obtained by dividing s(X) shifted i times by g(X) corre-
sponds to P(X) then the ith bit is in error. Correction is accomplished 

* It should be noted that the error in the ith bit corresponds to adding the X" 
term to c(X). 
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by complementing this bit. In this case, the corrected data corre-
sponding to the first four bits of R(X) is 1010 originally represented 
as d(X) in (3). 
This reasoning may be extended to general cyclic codes and in 

particular to the (30,20) code. For this code, r(x) is the remainder 
obtained by dividing X3° by g(X) in (5) and it can be calculated as 

r(X) = X' -I- X5 +  .  (14) 

In semiconductor circuitry the division by g(X) is accomplished by the 
top section of the decoder shown in Fig. 9 and the comparison of the 
contents of the register with r(x) is accomplished by the AND gate. 
In the complete shift register two shift registers are used with one 
performing the comparison while the other is calculating the syndrome 
of the next data block. 

(PART C, SECTION 2) 

4.2 Serial Decoding of Block Cyclic Codes 

In serial decoding the division is carried out by one exclusive-or gate 
as in serial encoding discussed in Section 3.2.1. Further, the comparison 
of the content of the shift register is also done serially bit by bit in 
contrast to the simultaneous evaluation and comparison of all the bits 
by the AND gate used in conventional decoders (Fig. 9). 
An exclusive-or gate is used for serial comparison instead of the 

AND gate. In the (30,20) code the comparison cycle lasts for 10 bits 

S WA 
 o 

INP UT 

3  X.:1 

1  2  3  4 

0 - 111— D 

X7 a 

17  18  19 20  OUTPUT 
u rn 

LOWER REGISTER SHIFTS ONLY FOR FIRST 20 BITS 
OF EACH 30-BIT BLOCK 

Fig. 9—Conventional single-error correcting decoder with (30,20) code. 
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(i.e., the number of bits in the remainder). Bits duplicated from the 
shift register are serially fed into an exclusive-or gate together with 
bits corresponding to r(x). A perfect match between the two inputs 
yields a zero output from the exclusive-or gate for the entire interval 
of comparison. One or more outputs from the exclusive-or gate during 
the interval indicates a mismatch. This principle is used in the magnetic 
domain decoders discussed next. 

4.3 Single-Error Correcting Magnetic Domain Decoder for Cyclic Block 
Codes with Field Access Propagation 

Figure 10 shows a decoder for the (30,20) code. The operation of the 
decoder closely resembles the operation of the encoder shown in Fig. 7. 
The incoming data generates a series of bubbles at GI . This data is led 
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(b)10 TIMES 

G 

30 INPUT 
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EVERY 26t 

30 PERIODS 
20 CIRCULATIONS 

-****, 

( b) 
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20 BITS 
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20 BITS 
SECOND 
10 BITS 

(L) 

s3 
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DA IA 

SYNDROME 

Gg d's'y   

T  
(> >0 
E01 

(IL) 

G9 

reS9 4-6 

0 -0 
E02 

•••,_   
29 PERIODS 

20 CIRCULATIONS 

D2 

29 PERIODS 
20 TIMES 

20 READINGS 
EVERY 30t 

, (5 E03 

O 
ONE 
ROTATION 
EVERY t SEC 

Sc 

Fig. 10—Serial arrangement of single-error correcting decoder with magnetic 
domains under field access propagation for the (30,20) code with t = P/30 X 20. 
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into a loop with 19 periods and two exit gates g1 and g, . A string of 
bubbles are formed in adjoining periods in the loop since the main 
magnetic field rotates every t seconds and the bubbles arrive every 20t 
seconds. When the first 19 bubble positions have arrived in the loop, 
the gate g1 empties the bubble stream into channel (a). This stream is 
duplicated at D, and it enters loops (i) and (ii). This data is allowed to 
circulate in (i) while the division in (ii) progresses. The sensor S. in (ii) 
senses a bubble every 30t seconds and directs G. to generate a stream 
of bubbles into the exclusive-or gate E01 only if a bubble is sensed at 
the leading end of the data stream. The generator bubble stream is 
11101101001 and is consistent with the nonzero coefficients of g(X). A 
leading bubble corresponding to the 10th power of X is necessary since 
there is no special arrangement to eliminate the X") bubble as in the 
conductor pattern propagation (see Fig. 6b). After the parity bits are 
accumulated in the first loop, they are channeled into (ii) via gate g2. 
To ascertain that the last 10 bits arrive at the correct location in (ii), 
it is necessary to adjust the number of periods between the exit points 
g, and g, in the first loop. 
When the division is complete [i.e., 20 circulations of (ii), each cir-

culation accomplishing one step of the 20-step division cycle] the data 
and syndrome may be transferred out of (i) and (ii) by gates g, and g4 
respectively. Such gates have been designed and implemented for other 
applications (Ref. 9 and Ref. 18). In loop (iv) the syndrome is again 
divided by the generator function g(X). The exclusive-or gate E02 
performs this function. The remainder after this division is duplicated 
at D 2. One section circulates in (iv) and the other is compared with 
the remainder function r(x) by the exclusive-or gate E03. A perfect 
match results in a zero reading of sensor S. during the entire com-
parison time which lasts for 10t seconds. Meanwhile, the data in (iii) 
is also being circulated. The gate g, permits one leading bubble to be 
channelized out of the loop once every circulation into the exclusive-or 
gate E04. This gate receives a complementing bubble only if S. has not 
sensed a bubble after comparing the contents of (iv) with the remainder 
function r(x). 
The generality of the embodiment is exemplified by another serial 

decoder shown in Fig. 11 for (31,26) cyclic block codes. The encoder 
for this code is shown in Fig. 8 and the generator function is given by 
equation (7). This decoder operates on a principle of serial decoding 
discussed earlier and the value of F(X), the remainder obtained by 
dividing X31 by g(X) in (7), is 

P(X) = o..x5 + o•x4 + o•x3 + o•x2 o.x  = 1. (15) 
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Fig. 11—Seria1 decoder for the (31,26) code with domains under field access 
propagation with t = P/31 X 26. 

(PART D) 

V. DISCUSSION OF MAGNETIC DOMAIN ENCODERS AND DECODERS 

Magnetic domain technology offers inexpensive storage but requires 
time for every operation (generation, propagation, exclusive-or opera-
tion, sensing, annihilation, etc.,) in contrast to the instantaneous 
operation of semiconductor circuitry. Such a constraint induces the 
variations in the design of encoders and decoders from conventional 
devices in semiconductor technology. 
The basic functions utilized in the domain devices in this paper are: 

controlled generation of information, propagation, storage, duplication, 
gating of bubble streams, exclusive-or operation, sensing, and anni-
hilation. Most of these functions have been successfully accomplished 
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within the Bell System. Some of the functions are discussed in Part A 
and the others are reported in Refs. 8, 9, and 18. Serial arrangements 
of these encoders and decoders utilize fewer exclusive-or operations 
than the nonserial arrangements. 
The packing density (which ultimately influences the active chip 

area in the devices) depends upon the nature of the uniaxial magnetic 
material chosen. Typical orthoferrites" (YbFe03 , YFe03 , and 
Sm0.33T130.43FE03) can hold bubbles of 40 to 50 micron diameters at 
200 micron spacing yielding about 1.6 X 105 bits per square inch. 
Typical garnets (Er2Tb1Al1.1Fe3.9013 and Gd3.3Tb0.7Fe3012) can support 
bubbles of 4 to 8 micron diameters at 25 micron spacing yielding about 
108 bits per square inch. Newer epitaxial garnet films have yielded up 
to 1.6 X 10° bits per square inch of storage." The hexagonal ferrites 
(PbAl4Fe30,9) support bubbles of 4 to 8 microns in diameter. 
The domain velocity (which ultimately influences the speed of 

devices) depends on the field difference across the bubble diameter and 
the magnetic material used. A nominal value of 20 Oe can be generated 
in field access propagation with a T-bar type of overlay. Orthofenites 
require the lowest time to move a bubble from one position to the next 
data position approximately four diameters away, thus yielding a data 
rate of about one megacycle of 20 Oe field difference. The highest rate 
achieved is about three megacycles. Some of the earlier garnets have 
lower mobilities and a data rate of 140 kHz has been achieved with 
field access propagation. Some of the newer garnet films have yielded 
data rates of up to one megacycle." Hexagonal orthoferrites have the 
lowest mobilities and are suitable for 10 to 60 kHz application. The 
data rates thus far attained in orthoferrites and garnets are sufficient 
to construct encoders and decoders at normal data transmission rates. 
For instance a transmission rate of 4800 bits per second would demand 
a data rate of about 125 kHz. 
One of the differences between the conventional semiconductor 

devices and the serial type of bubble devices is the ease of converting 
one generator polynomial to another generator of the same degree 
without changing the control or propagating circuitry. If it is desired 
to change the generator, then it is necessary only to change the sequence 
of bubbles injected by Gg in Fig. 7 for the encoder and Fig. 11 for the 
decoder together with the generator r(X), without altering the rest of 
the circuitry. Further, the embodiments presented indicate that the 
serial encoders and decoders with field access propagation yield flexible 
designs for block codes whose block length is about thirty bits or more. 
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VI. CONCLUSIONS 

Magnetic domains may be used to construct encoders and single-error 
correcting decoders for cyclic block codes. The magnetic material 
chosen to host the bubbles depends on the transmission rate, and the 
generator of the code may be changed from one polynomial to another 
of the same order without altering the embodiment or the control 
circuitry in the serial type of devices. 
In the field access propagation only one clock frequency is utilized to 

accomplish storage, division, and synchronizing the input and the 
output. The same clock excites the main propagating magnetic field 
once during an interval calculated as (P/n X k) seconds, where P is 
the time required to transmit one block of data through the transmission 
channel, n is the total number of bits in the block, and k is the number 
of information bits in the block. 
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Delay Distortion in Weakly Guiding 
Optical Fibers Due to Elliptic 
Deformation of the Boundary 

By W. O. SCHLOSSER 

(Manuscript received September 13, 1971) 

The delay distortion in glass fiber optical waveguides due to small 
elliptical deformations of the cross section is calculated. Simple approxi-
mations are given for the case of small differences in index of refraction 
between core and cladding (weak guidance). Since the delay distortion 
is quadratically dependent on the index difference it is found that it is 
generally possible to keep it negligible by judiciously choosing the guide 
parameters. 

I. INTRODUCTION 

Recent results' indicate that glass fibers are a potential transmission 
medium for optical communication. For high-capacity systems (in 
excess of 100 MBaud) dispersion and the associated delay distortion 
is an important factor to be considered. For such an application the 
fiber cannot be used in a frequency range where more than one mode 
propagates, since the difference in group velocity between the various 
modes causes excessive delay distortion.' In the single-mode range 
the two best known sources of delay distortion are the material and 
waveguide dispersion.' In this paper we will treat a different source 
of dispersion. If the fiber is elliptically deformed two different polariza-
tions with different group velocities are possible. We will calculate the 
delay distortion due to these elliptical deformations and establish 
simple relationships between the allowable delay distortion and the 
tolerances with which the fiber has to be manufactured. 

II. DEFORMATION OF A SQUARE DIELECTRIC W AVEGUIDE 

Let us consider the dielectric waveg-uide of square cross section first, 
since its properties are very similar to the round waveguide3 and the 
mode structure is quite simple. This will allow us to explain the effects 

487 
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of deformation more easily than for the round waveguide, where the 
necessary formalism clouds the physics somewhat. For a rectangular 
dielectric waveguide the HE„ dominant mode can be thought of as 
being composed of the E mode on a slab of height 2a and the H mode 
on a slab of height 2b (Fig. 1). The propagation constant is approxi-
mated by 

132 = rt>12) — (ei -I- 4)  (1) 
where 011 and eE can be determined from the characteristic equations 
for the slab modes: 

[(n2 — n2)kg — ei2]1/2 = tan 0Ha  H mode,  (2a) 
2 

nn- Î [(11, — n2)kó — R e2 = SE tan 0Eb  E mode.  (2b) 

We postulate that the deformation of a quadratic cross section into 
a rectangular one corresponds to the elliptic deformation of a circular 
cross section. The height 2a of the square is increased by 2àa and 
the width is decreased by 2àa. The change in propagation constant 
due to this deformation can be calculated from 

„ (490 ( ai  OH) 
• àa = — = — —aa 0  a b 

• àa.  (3) 

This shows that the effects from the widening of one dimension and 
narrowing of the other tend to cancel each other. From the well known 
properties of /3 we can make predictions about à0. For small differences 
of refractive indices n,  n and e is given by e = n • ko A•f(a,b, ko) 
where à = (n, — n)/n. The derivative of 0 with respect to the dimen-
sions a, b will therefore have a factor à and à0 must hence possess 
this factor. We observe furthermore from the equations (2a) and (2b) 

rl 

28 

zb 
Fig. 1—Cross section of rectangular waveguide. 
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that 13. and ifiR obey the same characteristic equation except for a 
factor 71,2c/n2 •-= 1 ± 2. The difference, 

fq 0 1314  013E 
1-11 —  — mE — aa ab cp.b=ao 

will therefore be proportional to A'. We can thus expect Aft to be 
quadratic in à and the difference in group delay between the two 
polarizations will have the form 

2 La 
dàT =  f(a, ko , à). 

a 
(4) 

Recently, a letter by R. B. Dyott and J. R. Stern' has been published, 
approximating the phase difference between the two polarizations by 
the phase difference of two modes on circular guides of different di-
ameters. This results in an approximation which overestimates the 
delay distortion considerably. We can see that easily by calculating 
the variation in propagation constant due to an increase of height 
and width by 2àa, 

H  .  ) as  1 as  as, 
àf3  aa Aa  = — 4; -Fa -h )i; ab 

• àa. 

Since the two derivatives are added, Ae will only be of order à and 
not A' as in equation (4). In practical cases A is in the order of 10-2 
and therefore this approximation gives a considerably bigger value 
than (4). 

III. DEFORMATION OF A CIRCULAR DIELECTRIC WAVEGUIDE 

The function f(a, k, à) in equation (4) has to be determined for the 
circular fiber. This will now be done by first determining Ae and then 
differentiating with respect to co. We make use of the fact that the cross 
section of the guide is only slightly elliptic (Fig. 2). In this case the 
propagation constant fi is approximated by the first two terms of a 
Taylor series 

el' 
e =  ± (1) aelleP à)2 (5) 

where ea is the propagation constant on the circular guide and e the 
small excentricity. The propagation constant /3 is generally determined 
from the zeros of the characteristic equation: 

F(d, e2, e, k0, A) = 0.  (6) 
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—f 

d— 1ci 

Fig. 2—Cross section of elliptically deformed fiber. 

The derivative ai3/3(1,)2 can thus be expressed by the derivatives of F, 

e\2  aF/a()2 
(913/aUl  aF/ae e=0 

(7) 

The problem is now reduced to finding F. This has been done for small 
ellipticities in Ref. 5. The reduction of the results of Ref. 5 to the case 
of small difference in refractive indices finally yields AO: 

LK0(10(w)) 1.5)u4w4 

A13 = A22 -,-•n•  nuva (8) ) 

where 

d  /   
U = — ko-V71,2 — (01k0)2 2 

d 
= «îkov (13/1c0)2 — n2 

= _d k N/ 2  2 
2 0  — n • 

Afl has the à dependence predicted from the quadratic case. It must 
be noted that the part in square brackets is only dependent on the 
parameter y, the normalized frequency. As shown in Ref. 6 the mag-
nitude of y determines uniquely the properties of the mode independent 
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Fig. 3—The normalized perturbation !My) of the propagation constant. 

of the guide parameters (only for small A of course). We can therefore 
express 43 as the product of the guide parameters and a function e(v) 
depending only on the binding properties of the mode: 

= 3,2.2  (9) 

iii(v) is plotted in Fig. 3. The group delay difference between the two 
polarizations is given by 

Ar = —Ln A22 —Ad —d (v • ili(v)). 
d dv 

(10) 

The y dependent part is plotted in Fig. 4. Since it never exceeds 1M, 

we can use the upper limit 
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Fig. 5—The maximum diameter variation as a function of A. 

to establish tolerances for (M)/d as a function of à, assuming that 
the core diameter is chosen to get appropriate binding properties. 
Figure 5 shows the upper limit of (M)/d as a function of à corre-
sponding to various delay distortions. The length L of the guide is 
3 km and n = 1.5. For 1 ns delay distortion and à = 1.8 X 10-2 the 
diameter variation must be smaller than 10 percent which is not diffi-
cult to achieve. The requirements for a 10-ps delay distortion however 
(à < 1.8 X 10-3 for (M)/d G 10 percent) are not so trivial anymore. 
We can conclude from these data that for a system in the several 
100-Mb/s range the delay distortion due to elliptical deformation 
does not cause any difficult tolerance problems. At much higher speeds, 
however, the effect must be seriously considered. 
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Optimal Reception for Binary 
Partial Response Channels 

By M. J. FERGUSON 
(Manuscript received September 3, 1971) 

This paper describes art exceptionally simple scheme for binary partial 
response signal formats of the form ah ± ah_i (for l  1, and ah = ±1). 
The receiver implements the maximum likelihood detector of the sequence 
ah assuming additive white Gaussian noise as the channel impairment. 
It is simpler and more efficient than the scheme recently described by 
G. D. Forney.' It is, however, not generalizable to multilevel signaling 
while still retaining its simplicity. 

I. INTRODUCTION 

There has recently been considerable interest in using the inherent 
redundancy of the partial response signal formal to approach the 
error rate versus signal-to-noise-ratio performance equivalent to binary 
antipodal signaling. Forney' at the 1970 International Symposium on 
Information Theory discussed a simple decoding scheme which he shows 
to be asymptotically optimal for high signal-to-noise ratio for channels 

with white additive Gaussian noise. 
This paper describes a receiver for binary partial response signaling 

which is optimal for white additive Gaussian noise. This demodulator 
is much simpler than the equivalent two-level scheme of Forney. 
However, the extension to four or more levels seems to result in a 
scheme of much greater complexity than Forney's. In the first part 
of the paper we briefly review binary Class IV partial response signaling. 
Then we derive the optimal detection scheme for binary signaling which 
has a particularly simple implementation. A simple analysis of the 
memory requirements of the implementation follows. Finally we discuss 
some of the problems of extensions to multilevel signaling. 

II. A PARTIAL RESPONSE SYSTEM* 

The motivation for binary partial response signaling schemes is to 

* This section is almost entirely due to D. D. Falconer.' E. R. Kretzmer3 and 
A. Lender' did the original work in this area and Lucky, Salz, and Weldon' have a 
good survey and summary. 
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allow transmission of two bits per cycle of bandwidth without requiring 
ideal boxcar filters. The train of signal waveforms is shaped so that 
inherent intersymbol interference does not affect decisions made by 
the receiver. 
Figure 1 shows a basic partial response signaling scheme transmitting 

1/ T bits per second. Information bits (ctk) are represented by -1-ls 
and —1s. Signal shaping is done by the filter whose transfer function 
is X(w). A "Class IV" partial response function X(w) and its associated 
sampled impulse response are shown in Fig. 2. This particular scheme 
is useful since it has no transmitted de component. It is used in several 
existing and proposed partial response modems. 
The transmitted Class IV partial response signal s(t) can be rep-

resented in terms of the sequence of samples (x,) spaced at Nyquist 
intervals (T seconds) as 

s(t) = A  x, sine (;-4 — kir)  (1) 

where 

sin x 
sine (x) — 

x 

and 

Xk =  ak — ak-2 )  k = 1, 2, - • • . (2) 

When the information symbols ak take on values ±1, then the 
samples (x,) have three possible levels: 0, +2, or —2. Thus the scheme 
would be expected to be more sensitive to noise than is a comparable 
binary antipodal scheme in which x,, = ±1, and in which the trans-
mitting filter's transfer function is a "boxcar." In fact, when independent 
hard decisions are made on each bit, it can be shown to require 3 dB 
higher signal-to-noise ratio in order to achieve the same error rate 
as the comparable binary antipodal scheme. A more efficient conven-
tional partial response configuration which is 2.1 dB worse than binary 
antipodal5 is to provide a matched filter at the receiver by replacing 

BAND-  BAND-LIMITING 
SHAPING  LIMITED  FILTER DECISION-
FILTER  GAIN  CHANNEL  MAKER 

INFORMATION 
SYMBOLS 

±1 

8... _Elm_ 
1  1 

- 2T 

Fig. 1—Partial response system. 

1.  ....IN 

OUTPUT 
DECISION 

±1 
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2T 

(a) (b) 
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Fig. 2—Class IV partial response: (a) spectrum; (b) sampled impulse response. 

X(co) at the transmitter by X(w)1 at the transmitter and X(w) / at 
the receiver. Other classes of binary partial response systems are 
worse than the ideal binary antipodal scheme by various amounts 
(see Table 4-2, page 91, in Ref. 5). 
With ah = ±1, X = ah — a5_2 is a sequence of three-level signals. 

However not all the sequences are possible! For example, if a, = +1, 
xk = +2 or 0 and if ah = —1, rk = 0 or —2. All the schemes described 
use this inherent redundancy to win back the 2.1-dB loss alluded to 
previously. Finally we note that all partial responses of the form 

xk = ak — ak_1 ,  1  1, 

produce 1 noninteracting streams of xks. For 1 = 2, the even xks and 
the odd xks are entirely independent. A scheme for 1 = 1 can be used 
for any /  1 by time sharing its operation with the other independent 
streams of xks. This observation allowed Forney to assert the applic-
ability of his scheme for all /. It also allows us to consider only / = 1. 

III. DERIVATION OF OPTIMAL RECEIVER 

The receiver that we develop is to be optimal for additive white 
Gaussian noise and the signaling format 

xk= ak — ak-1 

with 
(3) 

= 1. 

A simple way to describe the sequence of xks resulting from a sequence 
of aks is given by the trellis in Fig. 3. The branches of the trellis are 
the xk values and the nodes are the ak values. The upper nodes are +1 
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and the lower values are —1. We trace a particular sequence of xks 
by following the branches joining the nodes for the appropriate ah . 
For instance if we have the sequence starred (*) in Fig. 3, namely • • • , 

+1  o 

- 
k - 

o 

+1 +1 o  1.1 

-1  0  -1  0  -1 
k+ 

Fig. 3—Signal trellis. 

,BRANCH 

k + 2 

ak_, = 1, ak -= —1,  = —1, a,. 2  =  + 1 , • • • , then we have the 
output sequence • • • , xk = —2, xk+1 = 0,  = +2, • • • by following 
the appropriate branches. Notice that we have the capability of de-
scribing any possible sequence of xks using Fig. 3. Further we note 
that any node has two branches leading to it and away from it. 
The channel is assumed to add white Gaussian noise nk , with density 

N(0, 0-2)* giving a received signal yk = xk n,.. It is well known that 
the maximum likelihood receiver chooses the infinite sequence of 4,s 
which maximize 

- E M(âk + &-i) —  E  - eik-D2 (4) 

= 1, 

for a given sequence of yks. The âks are the estimates of the transmitted 
sequence {ad . While it is clearly impossible to maximize (4) directly, 
it is possible to maximize (4) sequentially. We note that we can rép-
resent all possible sequences of âk by paths in the signal trellis in Fig. 3. 
We also note that we can represent all possible sums in (4) as the 
result of paths through a trellis. We then obtain the trellis in Fig. 4. 
When âk and etk,., are of the same sign, the branch contributes 0 to 
the sum in (4) but when 4k = +1, âk_, = —1, it contributes yk — 1 
to the sum. Similarly when 4k = —1, dk-1 =  + 1, the branch contributes 
— Yk — 1 to the sum. We say that a specific sequence of 4,s through 
the trellis describes a path. All paths must have âk =  +1 or âk =  — 1. 

* N(a, b) is the Gaussian density with mean a and variance b. 
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O  -I  o  -t 
k  k+t 

Fig. 4—Received signal trellis. 

o 

o 

For all those paths with âk = +1 we can write (4) as 

(1  k 1  k 

663 E  Y1 0'1 =I)   —  â1-1) 2} 4 

where 
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k+2 

1 
+ E yi(di — âi_i) — E (ezi — â)2} (5) 

l=ki t  

âk =  1. 

Thus it is necessary that any path with âk = 1 and which maximizes 
(5) also maximizes the first bracketed sum in (5). But this first bracketed 
sum in (5) depends only on { , • • • , âk_, } and this portion of the path 
can be chosen independently of the rest of the path. Define 

f i 1  k 

1: 4 max  E yE(áz — át_1) — E (âi —  (6a) 
I paths  —0 

with 

We similarly define, for the best path leading to âk = —1, 

( k  k 

max  1--, E y,(á1 — di-i) — —A E  — di-i)2}• 
IL paths  k=0  /=/) 

fi = 
with tru=-1. 

(6b) 

Finally we see that there are only four branches from the kth to the 
(k  1)st node. Hence, if we have the best path to âk  =  ±1, then 
at tik„ = +1 we must choose between only two paths, the one coming 
from âk  =  + 1 having a value rk and the one from âk  =  — 1 having 
a value f . ., u k+1  1. The best path is obviously the one with the 
largest value. Thus we have 

(+ PATH) 
1:+i = max  

+Yk —1 —  1 (— PATH). 
(7a) 
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Similarly we have the best path to dk.i = — 1 as the solution of 

x — yk.i — 1 

17 

(-I- PATH) 

(— PATH). 
(M) 

Thus at any point in time we have two paths, one of which must be 
the beginning of the one which optimizes (4).* We say we are not 
merged at (k — 1) if we still have two paths left at k. Figure 5 shows 

+1 +1 +1 

(k)  (k-i) 

(a) 

Fig. 5—Possible nonmerge paths. 

(b) 

+1 

( k) 

the only two possibilities to remain unmerged. For the (±) path to go 
to dk+1 = +1 and the (—) path to go to ák.,1 = —1 (Fig. 5a) we need 
both 

and 

Thus we require 

f';‘ —  — yk+i + 1 >_ o 

—(1+k —  + Yk+1 ± 1  o. 

—1 e_ f+, — fi — yk+1 s 1. 

from (7a) 

from (7b) 

(8) 

For us to remain unmerged on the "crossover" path of Fig. 5b we 
require 

¡and (1:  n  

This is clearly impossible. Thus we 
(8) is true. Hence when (8) is true, 
likely path from the ± node leads to 

Yk+i > 1 

Yk+2 < —1 

remain unmerged if and only if 
we are unmerged and the most 
the + node, and the most likely 

* The formulation and solution of this problem is a simple example of Dynamic 
Programming and an application of Bellman's Principle of Optimality.' This may 
also be considered as a simple example of the Viterbi Algorithm which was shown 
by J. K. 0mura7 to be equivalent to Dynamic Programming. Finally, the identi-
cal formulation and solution to this problem was also obtained independently by 
H. Kobayashi and M. Segal (unpublished). 
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path from the — node leads to the — node. We also note that 

rk  ik — Yk+1 > 1 

implies both best paths came from ák-i =  + 1 [a (±) merge] and 

-  - Yk+i < 1  (10) 

implies both best paths came from 4k_., = —1 [a (—) merge]. Finally 
we see that all decisions as to merge or not are based on f;,' —f and 
not on either separately. We then define 

Ak  - rk• 

Subtracting (7b) from (7a) and noting (8), (9), and (10) gives 

Yk.i + 1,  Ak — Yk+, > 1  (+ MERGE) at k 
àk+1 =  Ilk,  — 1  <  'eàle  Yk+1  <  1  (NO MERGE). (11) 

Yk+1  1 /  àk  Yk+1  <  + 1  ( + MERGE) 

The optimal receiver implements (11). We see that while unmerged, 
à, remains the same. Only the testing to see if we have finally merged 
depends on the incoming data. The value of àk while unmerged is 
just that resulting from the two paths leading from the most recent 
merge. Thus if the most recent merge was (-1-) at node t — 1 then 
àk = m + 1 for k  t and no merge. Between merges, only two se-
quences are possible, either 11, 1, 1, • • •J or { —1, —1, —1, • • • 1. 
Hence in our implementation all we have to do is save àz and the 
location of the most recent merge. Since we will be placing our data 
in a storage register prior to outputing it, we must decide which of 
the two between-merge sequences should we store. Obviously, the 
best is the most likely of the two. 
We remember that after a (+) merge at the (k — 1) node 

Ak = yk ± 1. 

If the (+) merge is correct then 

Yk = ak — ak-1  nk 

= —1 ± ak  nk 

giving 
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(9) 

AA" =  a/c +  nk • 

Since ak = ±1, then àk = 1 + nk if the transmitted path leads to 
the + node and is,, = —1 + nk if the transmitted path leads to the 
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— node. Hence the determination of the most likely path leading from 
the (k — 1) node is a binary hypothesis testing problem. The solution 
is to say the most likely path leads to the + node if Ak > 0 and the 
— node if àk < O. 
For a correct — merge, the test is identical. The most likely path 

initially then is the one leading to sgn(àk). If when we finally merge, 
the sign of à/ at the merge point is the same as the merge, the most 
likely path is the same as the most likely path initially chosen on the 
basis of ,dik 0. 

IV. IMPLEMENTATION 

An implementation is suggested by the flow diagram of Fig. 6. 
We suppress the subscripts. The newly received signal is y and the 
previously stored difference is A. The decoded data are stored in a 

NEW 

YES 
(+ MERGE) 

NO 

YES 
(-MERGE) 

NO 
(NO MERGE) 

P P + is 

a = -1* 8=+I 

(DISAGREE)  
NO  NO 

YES  a 

y +a 

aI, 1. LI 
à0—.SGNà 

Fig. 6—Flow diagram for X = ak — ak-I. 
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register of length N + 1. à0 is the most recent decision and G is the 
bit about to be outputed. There is also a pointer, p, which indicates 
where the first data bit after the most recent merge point is located 
in the data register. The equations implemented are those of (11). 
The values of 4.„ , • • • , di, are those of the initially most likely path 
as described in Section III. Referring to Fig. 6; when a new value 
y is obtained, we subtract it from the stored difference à calling this 
sum z. We then check to see if a merge has occurred according to (11). 
If z > 1 then we have a + merge, if z < —1 we have a — merge, 
and if —1 5 z 5 1 we have no merge. If a merge has occurred, then 
we will eventually replace à by y ± 1 for a + merge and y — 1 for 
a — merge. We thus let a 4 ±1 for a ± merge. If the most likely 
path is actually the one we have been saving, then they must agree 
at the merge. We check this by finding out whether sgn à is the same 
as the merge value ±1. If it is, then we have saved the most likely 
path. If it does not agree, the most likely path is the complement 
of the one we saved up to the most recent merge point p. We then 
complement â,, • • • , d„ . After we have our data set up, we replace 
A by its new value y -I- a, and reset the pointer p to 0. At this point 
we shift the register and place 40 = sgn A. 
If there is no merge, then life is simpler; à is the same and the pointer 

is advanced by 1; the register is then shifted and âo = sgn A. We are 
now ready for a new piece of data. Figure 7 shows a possible imple-
mentation of the above flow diagram. 

V. BUFFER OVERFLO W (P > N) STRATEGY 

Since we are saving the most likely sequence, we just output the 
buffer and keep p = N. If when we merge, we do indeed have the 
most likely sequence, then all is fine. If the most likely sequence is 
not actually held, then we complement the entire register. Although 
we have sent some suboptimally detected bits, this appears to be the 
best strategy. We could save ourselves most of the problem if we 
differentially encoded ("PRECODED"5) the data. This means we 
would let 

Xk =  fik -  Etk-1 

where 

akak-, = ak . 

Under these circumstances, a single suboptimal decision in the decoded 
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POINTER 

A _r-

0, ± 

0,±I 

CONTROL  

+1: A ON 
RESET 
POINTER TO C 

-I : A ON 
COMPLEMENT 
DATA FROM 
C TO D 

o: A OFF 
ADVANCE 
POINTER +I 

Fig. 7—Possible implementation for xi, = ak — ak_i. 

ei,, path results in two errors in the ak path. However, if we hold the 
complement ak path after a merge point rather than the most likely 
path, we only make a single suboptimal decision in decoding the aks 
rather than a possibly long burst. If we now complement the entire 
register, then we make an additional single error for the data bit af-
fected by both dig and  because tiN was complemented and drri.i 
was not. If we do not complement the entire register, then the same 
phenomenon occurs at the next merge point. In both cases we make 
only two single suboptimal decisions whenever the buffer overflows. 
This obviously makes differential encoding of the data advisable. 

VI. ANALYSIS OF BUFFER SIZE 

In this section we determine the approximate probability of overflow 
of a buffer of length (N ± 1). If we have a (±) merge then 

A = yo + 1  (12) 

and for a (—) merge 

(13) 

where the "0" subscript refers to the merge position. Because yo is 
N( —2, 0.2) for a ±— transition, N(0, 0.2) for a ++ or -- transition, 
and N(+2, 0.2) for a — + transition (see Fig. 3) we have, for a correct 
decision, substituting into (12) and (13), that à is N(1, 0-2) for a transi-
tion leading to a + node and A is N(-1, cr2) for a transition leading to 
a — node for both types of previous merges. We know we remain 
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unmerged for N transitions if 

—1  A — y, 1  / = 1, • • • , N.  (14) 

Since the ++,  —, — ±, — — transitions are all equally likely, we 
have à — y, with the densities 

A —  N(+3, o-2) with probability 1/4  (15a) 

à — y, N(+1, u2) with probability 1/4  (15b) 

A — y, N(-1, 0-2) with probability 1/4  (15c) 

A —  N( —3, a.2) with probability 1/4.  (15d) 

For small 0 2 (large signal-to-noise ratio) both (15a) and (15d) lead 
to (14) not being satisfied with a very high probability. We can ignore 
these two events. (15b) and (15c) both correspond to yi N(0, «2) 
and occur together with probability 1/2. Because of the symmetry 
of (14), (15b), (15c), and yl we can write the probability of no merge 
for at least N nodes as 

Pr(-1 <à — Yi 1,1 = 1, • • • , N) 

1 (à — 1)2 [1 ri-à  1   — 012o. dy r dA.  
xf e p —  2 
—‘c  V2r e 2 Li-a -V271- 0-e 

Now if 0 2 is small then à is concentrated about 1 and the limit —1 — A 
can be replaced by —  . We then have 

: -V2T 0- 
Gir  br  1 

V27r 
Letting 

and noting 

we write (16) as 

Q(x) = f. V217.  

1  dQ(x) —  —x./2a. e 
N/21- u 

e'sne  dy] dx.  (16) 

P(N) = (7)1)N [(2(x)]N cl(2(x) 

1 

N ± 12) 

(17) 
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To obtain (17) we have really used only the fact that the distributions 
of à and y are translates of each other and that they are symmetric 
about their mean value. Equation (17) was also derived independently 
by Kobayashi.8 
The Forney scheme' has a probability of buffer overflow of 2'. 

Equation (17) indicates a factor of N improvement in this case. For 
N = 20, (17) gives P (N) = 4.5 X 10-8. 

VII. GENERALIZATIONS 

The most obvious generalization we would like is to four-level 
signaling. We can obtain a signal trellis in the same way as in the 
binary case but now we have four nodes at each time instant. Again 
we can write, using the same arguments as before, equations equivalent 
to (7). However, all the special structure which led to the exceptionally 
simple results of (11) seems to be missing. Instead of only one set 
of no-merge paths as indicated by Fig. 5a, we have many. Instead 
of only one possible way for either a -I- or — merge to occur, we have 
several. It also appears that all four possible paths through the trellis 
must be kept. In short, for a four-level signaling, Forn.ey's scheme 
seems to be the simplest but for binary signaling, the one described 
here is best. 

VIII. CONCLUSIONS 

The system here is applicable to partial response signaling with 
binary data of the form 

xk = ak ak_i for all / 1. 

Differential encoding of the data is helpful to reduce the effects of 
buffer overflow. The extension to multilevel signaling destroys the 
beauty and simplicity of the binary scheme. 
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By H. RUBIN and H. E. MEADOWS 
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This paper presents a unified treatment of linear time-variable networks 
displaying arbitrary geometrical symmetries by incorporating group theory 
into an analysis scheme. Symmetric networks have their elements arranged 
so that certain permutations of the network edges result in a configuration 
which is identical with the original. These permutations lead to a group of 
monomial matrices which are shown to commute with the network A-matrix 
and the state transition matrix of the normal form equation. The repre-
sentation theory of groups facilitates the study of those network properties 
which are determined solely by symmetry. By using group theory, a simple 
arithmetic condition is derived which, when satisfied, implies that the 
network is noncontrollable or nortobservable because of symmetry alone. 
The results allow the determination by inspection of linear combinations 
of the original state variables which result in noncontrollable variables. It 
is shown that networks displaying axial point group symmetry are generally 
only weakly controllable. 

I. INTRODUCTION 

In the past two decades, engineers and applied mathematicians have 
devoted a great deal of attention to diverse aspects of linear time-
variable networks and systems. However, one problem that has not 
been treated in depth is that of analyzing time-varying networks 
displaying arbitrary geometrical symmetries. A symmetric network may 
be regarded as a set of identical subnetworks connected in a symmetric 
pattern. Such a circuit may be more easily implemented in an integrated 
form than is a nonsymmetric network, especially when the circuit is 
time-variable and the construction and synchronization of the variable 
elements are major technical problems. Since the trend in integrated 
circuit technology is towards large-scale integration, it may soon become 
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practically important to consider large networks displaying arbitrary 
geometrical symmetries. The present research was undertaken partly 
as a possible first step toward developing a modular approach to linear 
network design. 
While it has long been known that network symmetries can be used 

to facilitate analysis, previous work on symmetric networks dealt 
mainly with bisection techniques for networks with mirror-plane 
symmetry and has not incorporated general types of symmetries into 
an analysis scheme. The present work treats arbitrary symmetries by 
utilizing the mathematics of group theory, a natural tool for studying 
symmetry. 
Network controllability and observability are important concepts in 

analysis and synthesis, and group theory may be employed in deter-
mining symmetry-constrained noncontrollability and nonobservability 
of the network. Furthermore, the determination of these properties may 

be made by inspection without writing network equations. The group-
theoretic approach enables US to prove several theorems concerning 
controllability and observability of a wide class of symmetric networks. 
The theorems would be difficult or impossible to prove, or to state 
precisely, without the use of group theory. 
The reader who is unfamiliar with the results and notation used in 

both the abstract and representation theories of groups can find this 
material in Appendixes. A and B in a form consistent with that used in 
the remainder of the text. The reader may wish to study the appendixes 
before continuing to Section II. 

II. GROUP THEORY AND NETWORK EQUATIONS 

Symmetric networks have their elements arranged so that certain 
permutations of the network edges result in a configuration which is 
identical with the original. For example, the geometrically symmetric 
network shown in Fig. 1 is invariant under permutations of the network 
edges which result from a rotation of the network structure by r radians 
about an axis perpendicular to the plane of the paper or from reflections 
in the planes  and 0-2. 
Definition 1: A covering operation or symmetry operation is a trans-
formation (rotation, reflection, etc.) which will bring the symmetric 
object (network) into a form indistinguishable from the original one. 
The following is well-known and shown in Ref. 1. 

Theorem 1: The set of symmetry operations of an object constitutes 
a group.t 

$ See Appendix A for definitions of pertinent group theoretic terms. 
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The effect of each symmetry operation is to permute the network 
edges. Specifically, only resistive edges are permuted among themselves, 
capacitive edges are permuted among themselves, etc., i.e., only edges 
of like type and equal element value or variation may be permuted. 
The letter R is used to denote the general symmetry operation of the 
symmetry group. Thus, R denotes either E, C2 , Cri , or Cr2 for the network 
of Fig. 1, where E denotes the identity, C% denotes rotation by w radians, 
and cr denotes reflection in the plane Cr. Thus, the operations {R } form 
a group Gs which describes the symmetry of the network structure. 
The following exposition shows how group theory may be incorporated 
into the network analysis scheme. 
Analysis in the time-domain can proceed from the normal form 

equation 
i(t) = A(t)x(t)  B(t)u(t),  (1) 

where x(t) is an n-vector of state variables, u(t) is a k-vector of inputs, 
and A (t) and B(t) are time-variable matrices conformable with x and u. 
In the context of our analysis, it is sufficient to consider A(1), T. R. 
Bashkow's A-matrix? The A-matrix contains some information about 
the network topology and also determines the natural response of the 
network. B. K. Kinariwala3 showed that the A-matrix description is 
valid for time-varying as well as for fixed networks. The explicit form 
of the A-matrix given by P. R. Bryant' may be found in textbooks 
such as Refs. 5 and 6. 
The A-matrix is derived with respect to a normal tree, i.e., a tree 

containing a maximum number of capacitive edges and a minimum 
number of inductive edges. It is assumed that the reader is familiar 
with the procedures needed to obtain the A-matrix, and the form of the 
network equilibrium equations is therefore given below:1 
t A superscript appearing with a matrix denotes the transpose of that matrix; 

a superscript * denotes the complex conjugate of a scalar quantity. 
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r pCi  0 O  Ho  H1  H 2 

O  G,  0  0  H 3 H4 V2 

0  0  I' tp-1  0  0 H,  V3  j3 

— e  0  0  D,p-1  0  O  i3 

— e  0  0  R,  O  i3 e3 

—  — H  0  0 pL, 

j2 

e3 

_el_ 

(2) 

In (2), the subscript t denotes elements in the tree, the subscript c 
denotes elements in the cotree, and p is differentiation with respect 
to time. Submatrices H. through H 5 express the topological relationship 
between elements in the tree and elements in the cotree. The letters e 
and j refer to voltage and current sources, respectively, while V and i 
denote branch variables. In order to obtain the A-matrix from equa-
tion (2), the nondynamic vector variables V2, V3 , i2  i3 are eliminated 
algebraically, thus yielding the equation 

[pC  G  T  TV1= 
(3) 

— 71̀ pL i 

where j and e are regarded as inputs. For a complete interpretation of 
submatrices in the above equations, see Ref. 5. Equation (3) may be 
put into the form of equation (1) by choosing capacitor charges (q = C V) 
and inductor fluxes (4, = Li) as state variables and writing 

d q = _ G  T C-1  0  q ± j . (4) 
* L ]  [—  R I 0  L-1 01  Lei 

With reference to equation (2), observe that tree edges are used to 
define basic cutsets7 of the network graph and hence current-law equa-
tions, while cotree edges are used to define basic loopsets7 of the network 
graph and hence voltage-law equations. Thus, if a symmetry operation 
of the network structure permutes an edge in the tree with one of the 
cotree, the equilibrium equation (2) will be in a form different from that 
of the original equations; such an operation is not a symmetry operation 
of the network equilibrium equations. Those covering operations of the 
network structure which do not permute tree edges with cotree edges 
form a subgroup GN of the group Gs (if two operations R1 and R 3 do not 
permute tree edges with cotree edges, then the compound operation 
R1R2 also possesses that property), and the group GN thus contains the 
symmetry operations of the equilibrium equations. Since the network 
equilibrium equations are being considered, the transformations of edge 
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voltages and currents are of importance rather than merely the permuta-
tions of network edges. The operations R of the group GN may transform 
a voltage (or current) into the negative of another voltage (or current). 
If the network contains b edges, a b-dimensional monomial matrixe 
n(R) may be formed which represents the transformation of the b 
voltages and currents under the symmetry operation R. The rows and 
columns of D(R) correspond to edge voltages and currents, and the 
matrix entries show how these quantities transform under the symmetry 
operation. Matrices p(R) form a reducible representation of the group 
GA,. 
2.1 Commutativity Relations 
In (2), denote the column vector of edge currents and voltages by .1, 

the column vector of current sources and voltage sources by 0, and the 
coefficient matrix by Ñ. Thus, equation (2) becomes 

= d•  (5) 
Consider the new arrangement of sources and edges obtained by operat-
ing on the network with symmetry operation R, i.e., consider the equi-
librium equations for the case 

ge = h(R)0 

I = MR)).  (8) 
Since the operation R yields a network configuration, including the 
choice of tree, which is identical to the original one, it must be that 

= 
Hence, 

(7) 

/M(R)) = t'(R)d = l(R)g),  (8) 

where use is made of equations (5) and (6). For a network of b edges, 
b linearly independent vectors I may be specified such that the current-
law and voltage-law equations are satisfied. Furthermore, b values 
of 0 are then obtained such that for each .1 chosen, the terminal relations 
of the network elements are satisfied. Thus, equality of the first and 
last members of (8) implies that 

Ñ1(R) =  

or 

fri (R)Ñ MR) = S. 

Thus the monomial representation h(R) commutes with Ñ. 

(9) 

t A monomial matrix has only one nonzero entry in any row or column. The 
nonzero entry is restricted here to the values +1 or —1. 
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Equation (3) shows how elimination of nondynamic variables in 
equation (2) reduces g to a new matrix 

N = 
—T̀  pL 

[ G  T pC  

and reduces .1 and d to the vectors V 

f  and g = 
_ _ 

Le 

The algebraic operations have eliminated from /9- the rows and columns 
corresponding to submatrices G, , R, , r, , and Dc in equation (2). 
The elimination of rows and columns of b(R) which correspond to 
, , r„ and D. results in a group of matrices D(R) which show only 

how tree capacitive voltages and cotree inductive currents are trans-
formed under the operation R. By expanding equation (9) in terms of 
the submatrices of equation (2), it is possible to show' that D(R) satisfies 
the following commutativity relation: 

D-1 (R)ND(R) = N, 

or  (10) 

' D_Io q —71̀  pL  R  —T̀  pL  Ell 
pC + G  T D(R)  pC + G  T 

where D(R) commutes with [', 2] and with [2,, ;]. Thus, the following 
may be stated. 

Theorem 2: For a symmetric network, construct the monomial represen-
tation D(R) of the symmetry group GAT, where D(R) shows how the tree 
capacitive voltages and cotree inductive currents are transformed under the 
symmetry operation R. The monomial representation D(R) commutes 
with the network A-matrix based either on voltages and currents or fluxes 
and charges as state variables. That is, 

D-1(R)A(t)D(R) = A(t), for all R t GN . 

The commutativity relation given in Theorem 2 establishes a basic 
connection between group theory and the network analysis problem, 
and allows group theoretic methods to be applied to linear networks 
displaying arbitrary geometrical symmetries. 
The state transition matrix 4(4 r) is the matric solution to the 

homogeneous part of equation (1) which satisfies 
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= I,  (11) 

where I is the unit matrix of appropriate order. «1, r) is given in 
series forms as 

00 

4(1, 7-) = E 4)A(1, r), 

where 

(12) 

4),A/, 7") = ft AWebk(P,  dp  (13) 

4)0 = I. 

Theorem 3: For a symmetric network, the monomial representation D(R) 
of the symmetry group GN commutes with 40(1, r), i.e., 

D I(R)4)(t, r)D(R) = 4,(1, r). 

Proof: From (12) and (13), 

D-1(R)4(/, r) D(R)  E  DIR)(1),(1, r) D(R). 

An induction procedure shows that D(R) commutes with each term 
(1)k(e, r) in the above sum. 

(R)(1)1(1, r) D(R) = j [D-1(R)A(p) D(R)1I dp 

= f A(P)dP = cni(1, 7-)• 

Assume that D(R) commutes with c1)4.(/, r). Hence, 

D-I(1?)cb„.,(1, r) D(R) =  [D-1(R)A(p) D(R)][D-1(R)4k(p, 7.) Den dp 

= ft A(P)(Dk(P, r) dp = cbk+1(1, 

Thus, the theorem is proved. 

III. EXPLICIT FORM OF TRANSFORNIATION a TO REDUCE A(1) 

In Appendix B, a procedure is given for the construction of a unitary 
matrix a from the irreducible representations of symmetry group GN 
and representation D(R). The important. property possessed by the 
transformation a is that it transforms the state space to a new basis 
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in which D(R) appears in block diagonal form and in which A (t) appears 
in block diagonal form.' For the remainder of this paper, it is important 
to determine the positions of zero elements in the matrix «. Thus, the 
characterization of a in an explicit form is undertaken at this point. 
The following definition is adapted from group theory in a way useful 
to network analysis. 

Definition 2: A symmetric network is said to be transitive if there is at 
least one group operation which transforms a given state variable into 
any other state variable (with plus or minus sign). The network is 
intransitive if it is not transitive. 

Since an inductor and a capacitor cannot be permuted by any sym-
metry operation, general RLC symmetric networks are intransitive. 
The state variables can be partitioned into sets such that the group 
operations permute among themselves only those variables in the same 
set. Hence, each set is transitive, and the state variables are said to be 
partitioned into transitive sets. 

Theorem 4: For a symmetric network, the number of transitive sets into 
which the state variables may be partitioned is equal to the number of times 
the totally symmetric irreducible representation [i.e., D 1 (R) having all 
group operations represented by unity] appears in D,(R), the permutation 
representation obtained from D(R) by replacing each —1 entry in D(R) 
by +1. 

Proof: This result follows from a theorem given by W. Burnside 
(Ref. 10, p. 191) which states that 

e = ETV,  (14) 
r -1 

where g is the order of the group, n the number of symbols (state 
variables) operated on by the group, s the number of transitive sets in 
which the n symbols are permuted, and I), the number of group operators 
which leave exactly r symbols unchanged. 
Let e denote the number of times that D(') (R) appears in Dr(R) 

and x the trace of D. From (52) in Appendix A, 

=  g R 

=  g 
(15) 

since x(1' (R) = 1 for all R. Because D(R) is a permutation representa-
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tion, x(R) is precisely the number of state variables left unchanged by 
operation R, and hence is an integer from zero to n. The group operators 
can be partitioned such that all operations in a given set leave unchanged 
the same number of state variables. It is now evident that (14) and (15) 
are identical sums, and c; is equal to s. 
The column vectors a„„ , a = 1, • • • , c, , of the matrix a are given 

in (56) in Appendix B and repeated here for convenience. They are 
c„ linearly independent (and orthonormal) columns of 

E D >(R)  f „ D(R)I ,  (16) 

where I is the unit matrix and pira are indices defined as follows. The 
index p denotes one of the distinct irreducible representations of the 
symmetry group, the index ir runs from 1 to 1„ and denotes a row of 
the matrix D̀v)(R) [so that the dimension of De') (R) is 1„], and the 
index a denotes one of the cp appearances of D > (R) in D(R). Thus, 
a has the form 

a = [aiii , • • • 1 a lai 7 • • •  a 771c0 1 • • • 1 a pr1 1 • • • , aure,, 1 • • • ]•  (17 ) 

We consider a typical column vector as,,.,, corresponding to the wth row 
of D > (R). Let em be the vector containing all zeros except for unity in 
the mth row. From (16), a„,.„, may be considered to result from (we 
delete the normalization factor) 

E D̀")(R)! D(R)e. .  (18) 

If c„ is less than or equal to c; , the number of transitive sets into which 
the state variables may be partitioned (Theorem 4), the c,, values of the 
index m can be chosen such that each vector em corresponds to a different 
transitive set. The operation D(R)em results in a new vector ek where 
m and k are in the same transitive set. Thus, the c„ vectors a„„, chosen 
above are necessarily linearly independent if they are not zero. If any 
choice of m yields a zero result in (18), merely choose a value of m 
corresponding to a different transitive set; c„ linearly independent a„ m 
must be obtained in this way since the matrix G<' has rank c„.'1 

Lemma 1: If the vectors a„„„, are chosen as outlined above, only one of 
the vectors having indices 1.4 and 7r can possibly have a nonzero result in 
row r, namely, a„„, where r and p are in the same transitive set. 

The rth component of a„„, is denoted by af„,. . The group operators 
may be partitioned into the set R;J and its complement {el where 
{R; I consists of all group operations which take the pth state variable 
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into the rth state variable. Thus, 

«„„, = E D (R)?, , D(R)e,, 

E D'")(R;)1,̀ D(R;)e„  E D'")(R)Ì, D(„)e„ 
R,'  

E 8; DnR;)8, + E D')(R;),. D(i )ep ,  (19) 

where s; is +1 or —1 as R; transforms state variable x, into state 
variable x, with positive or negative sign, respectively. Hence, except 
for a scale factor, 

«;„ =E 8; DnR;):., .  (20) 

In determining whether the rth component of vectors a„„„ is zero, there 
may be some ambiguity in choosing the index p in the same transitive 
set as r. The following lemma eliminates any ambiguity in this choice. 

Lemma 2: A necessary and sufficient condition for d„.„„ to be zero for 
all p in. the same transitive set as r is that ce„' „ be equal to zero, i.e., that 

E s Dwar,e,. = 0.  (21) 

Proof: Consider the subgroup X of the group ON , where X consists 
of those group operations which transform the rth state variable into 
itself with either positive or negative sign. The subset H of X which 
transform the rth state variable into itself with positive sign forms a 
subgroup of index two in X.' Thus, X may be partitioned into cosets 
with respect to H as 

X = H, PH,  (22) 

where P is an operation of X not contained in H, and thus transforms 
the rth state variable into itself with minus sign. The group GN may be 
partitioned into cosets with respect to X as 

GN = H, PH, RH, R:PH , • • • , R:H , R:PH , 

where R denotes a group operation which transforms the rth state 
variable into the ith with plus sign. It is clear from the above that if 
any group operations transform any symbols (state variables) with 
negative sign, there must exist an equal number of group operations 
which transform the symbols with positive sign. Hence, for each transi-
tive set of symbols (state variables) operated on by GN , the subset of 
group operations which permutes the symbols with positive sign forms 
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a subgroup of index two. Therefore, there exists a one-dimensional 
irreducible representation D" (R) of G, in which each group operation 
which transforms the symbols with plus sign is represented by +1, 
while each operation which transforms the symbols with minus sign is 
represented by —1.12 Thus, in equation (20), 

s; = D (R).  (23) 

The orthogonality relation (51) for irreducible representations requires 
that 

E D (R) D (R)?,,, =  6g,, = 0  (24) 

if  g. Notice that if D(R) is a permutation representation, then 
= 1, and Du) (R) is the totally symmetric irreducible representation. 
Let the transitive set to which r belongs be denoted by M, consisting 

of { r, p, • • • , nl. Hence, the set of group operations may be partitioned 
into {el, le, • • • , {MI, and from equations (23) and (24), 
E D R) D (R), = E s D(m) one, + E sr. D 4) (lir e ir 

Rr'  RrP 

+  • • • +  E Dcm)(e)e. = 0.  (25) 

Now, the matrices D (R) are unitary, and {R  P,.1 = {[R]'1, • • • , 
= [R;]-'). Hence, if a,,p = • • • = a;•,, = 0, then by virtue of (20), 
equation (25) implies that «;„ = 0 as well. This proves necessity. 
There are two cases to consider in proving sufficiency, namely, 

cp cl' and 4, > ci'. 
Case (a) cu c : 
In this case c,, linearly independent vectors a„0 may be obtained by 

choosing vectors em in (18) so that each m corresponds to a different 
transitive set. Suppose e, is chosen corresponding to the set M. . The 
addition of a„,,, to the set thus results in a dependent set. Furthermore, 
by construction, all vectors except a„ r are zero in positions where ag., is 
nonzero. Thus, a„, and a„„ are proportional, i.e., if a„ = 0, then 

= 0. The last result holds true for all p E M,. , and sufficiency is 
established for Case (a). 
Case (b) c, >  : 
In this case, it may be possible to choose more than one index in the 

transitive set M,. such that the «„0 vectors obtained from equation (18) 
are linearly independent. A direct argument shows that a contradiction 
results if a,,, = 0 while amr,.„ 0 0; namely, more linearly independent 
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vectors than is actually possible can be obtained from equation (18) 
by using indices m corresponding to the transitive set M . Thus, 

sufficiency for Case (b) is proved. 
Hence, it has been established that for any indices g and 7r, the 

vanishing of the rth component of a„. is completely determined by the 
matrices D4) (1?;), where the only group operations involved are those 
which transform the rth state variable into itself. This result will be 

used in the next section. 

IV. CONTROLLABILITY OF SYMMETRIC NET WORKS 

The concept of controllability relates to the degree to which the state 
of a system is affected by the application of some input. The following 
definition may be found in Ref. 13. 

Definition 3: The system (1) is completely controllable on an interval 
(to , la if for any state xo at to and any desired final state x1 at t1 , there 
exists an input u(t) defined on (to , tI) such that x(ti) = X, . 
The system (1) is totally controllable on an interval (to , t,) if it is 

completely controllable on every subinterval of (to , ti). 
For networks with sufficiently smooth time-variations, controllability 

of the linear time-varying system (1) may be characterized by the 
controllability matrix' 

Q. = [POP, • • • Pn-de 
Pk  A(t) Pk-1  fek-1 , P, = B 

and n is the order of the system. 
The following theorem is a paraphrase of Theorem 4 of Ref. 13. 

Theorem 5: For the system (1) assume that A(t) and B(t) together with 
their first n — 2 and n — 1 derivatives, respectively, are continuo= func-
tions. System (1) is totally controllable on the interval (to , tl) if and only if 
Qo does not have rank less than n on any subinterval of (to , t1). 

Lemma 3: The system described in partitioned form by 

cl[Z,1=  [A, Orii±[Bliu. 
dt Z2 LO A2 Z2 0 

is noncontrollable (i.e., not completely controllable). 

A sufficient condition for noncontrollability is given in the above 
lemma. This section is concerned with determining conditions in which 
symmetry alone is sufficient to cause the network to be noncontrollable. 

Definition 4: A symmetric network is said to be NCS (possess the NCS 
property) if it is noncontrollable because of symmetry alone. 

where 
(26) 

(27) 
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In (4), if only k of the inputs [i] are nonzero, the equation can be 
rewritten using the k-vector of inputs, u(t). Thus, 

= A(t)x -F Bu(t)  (28) 

where B is an n X k constant matrix and x = [;]. By making the unitary 
change of variablee Z = dex, we arrive at the block diagonal system of 
equations 

d 
dl 

Z: 

_en_ 

A' 

Az 

21, 

Z: atBu(t),  (29) 

where Z is shown partitioned according to the submatrices À: . Con-
trollability of the network reduces to that of all of the subsystems 
corresponding to the À: . From Lemma 3, the network is noncontroll-
able if a submatrix of at B corresponding in its partition location to one 
of the À"„ is zero. This occurrence is due solely to symmetry; we now 
investigate this condition more closely. 
First consider the case where a single input is coupled only to the 

rth state variable, i.e., in (28), B = er and u(t) is a scalar. From a given 
in (17), it is evident that the submatrix of ate,  corresponding to 44- : is 
simply the c„ X 1 partition consisting of the rth components of the 
vectors a„ 1 , • • • , a„„ . As mentioned in Lemma 1, at most one of these 
vectors can have nonzero entry in row r. Using the notation developed 
previously and Lemma 2, the following theorem has therefore been 
established. 

Theorem 6: A symmetric time-varying network having a single input 
coupled only to the rth state variable is noncontrollable by virtue of its 
symmetry (i.e., is NC S) if and only if there is a g such that D ( R) 
appears in D(R) and 

E s Dnge, = 

for some value of 7r. 

It is clear that if a table of irreducible representations is available, the 
arithmetic computation involved in the above theorem is quite simple. 
For any  all values of w = 1, • • • , l„ should be checked to determine 

t The complex conjugate transpose of the matrix a is denoted by at. 



520  THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY  1972 

which state variables are uncontrollable. For most cases of interest, 
= 1, 2, or 3; the point group of the regular icosahedron has irreducible 

representations of order five.' 
If the irreducible representation in (21) is one-dimensional, the 

quantities D'"> (R),,, are unambiguous. However, for irreducible repre-
sentations whose dimension exceeds unity, any representation which is 
equivalent to DI') (R) may be used to form the matrix a which reduces 
the system of (28) to that of (29). Clearly, although the block diagonal 
form of (29) will be essentially the same under transformations produced 
from equivalent irreducible representations, the matrix a will be dif-
ferent depending on which irreducible representation is used to construct 
it. Hence, for multidimensional irreducible representations, it is possible 
for atB in equation (29) to have a zero submatrix if D (R) is used to 
construct a, whereas nonzero submatrices may result if a representation 
equivalent to D'") (R) is used to construct the transformation a. The 
above discussion shows that for multidimensional irreducible repre-
sentations, 

E D(")oze, o 

is not sufficient to conclude that the network is not NCS. The inequality 
to zero of the sum in (21) must be shown for all representations equiva-
lent to D(') (R). In most cases of interest, the set {R; } consists of very 
few elements, and it may be quite easy to determine an irreducible 
representation which satisfies (21). The points mentioned in the above 
discussion will be illustrated by example in the sequel. 
As an example illustrating the use of Theorem 6, consider the network 

of Fig. 2. The network has C2, symmetry, and a table of irreducible 
representations of the group is given in Fig. 2. By utilizing (52), it is 
determined that the monomialt representation D(R) contains D") (R) 
three times, D(2) (R) zero times, and D(3) (R) and D") (R) each one time. 
If a current source 1(t) is placed in parallel with the capacitor associated 
with state variable  , the following calculations can be made with 
regard to Theorem 6. The group operations which leave xi invariant 
are E and cr, . Thus, 

E Dmerye, = 1 + 1 o 

E D(3)(R',:),!„ = 1 + 1 o 

E D(4)(g),!, = 1 — 1 = a. 
R,r 

D(R) is a permutation representation in this ease, so that Sr' = +1. 
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SYMMETRY GROUP C2v 
,\ 
-2 

IRREDUCIBLE REPRESENTATIONS 

E  C2 al 0'2 

D(1)(R)  I  1  1  1 

D(2 )(R)  t  t  1  -1 

D(3) (R)  I  -1  I -1 

D(4) (R)  i  -1  -1  1 

521 

SYMMETRY 
OPERATIONS  

E = (1)(2)(3)(4)(5) 

C2 = (13)(24) 

= (24) 

'72 = (13 ) 

TRANSFORMATION 

I  o  o i 1 o - 

O  I  o  o i I 
I 

1  o  o  -I i o 
1 O  ,  0  0 I -1 
I 

O  0  f2-  0 i O_ 
 e  •_m _e 

D(1) (R)  D(3) (R) D(4) (R) 

Fig. 2—Network with C21. symmetry, including symmetry operations, irreducible 
representations, and transformation matrix «. 

Hence, if the excitation is coupled solely to state variable xi , the basis 
function corresponding to D141 (R) will be uncontrollable. Indeed, the 
block-diagonal system has the form 

d 
di 

22 

23 

24 

_Zs 

[a b c 0 0 

de  f 0 0 

= g h i 0 0 

0 0 0 j 0 

_O 0 0 O k_ 

Z1 

22 

23 

24 

[1 

o 
1 
0 1(  (30) 0.  

1 

0_ 

It is seen from the matrix a in Fig. 2 that 25 = x2 — x4 , and it is this 
linear combination of the original state variables which is uncontrollable 
in the present example. Note that since D'2' (R) does not appear in D(R) 
in the above example, no basis functions are associated with it, and 
hence a computation is not made for this irreducible representation. 
The next example serves to illustrate some complications that arise 

when the symmetry group possesses irreducible representations of 
dimension greater than unity. The network shown in Fig. 3 possesses 
symmetry C3. . Two equivalent two-dimensional irreducible representa-
tions are given, and two transformation matrices al and 0/2 are shown 



522  THE BELL SYSTE M TECHNICAL JOURNAL, FEBRUARY  1972 

SYMMETRY GROUP C3v 

(73 

if 

TRANSFORMATION al 

USING D(3) (R) 

az 

E =(I)(2) (3) 
C3= (132) 

SYMMETRY OPERATIONS 

q = (123) 

ut =( ) 

Cr2 = (13) 

Cr3  (12) 

IRREDUCIBLE REPRESENTATIONS  

E  C3 g  0  02 (73 

D(I) (R) 

D(2) (R) 

D 1(R) 

[3(3)(R) 

1  1  1  I  1  1 

I  1  I  -I  -I  -1 

[1 1 [ 1 - 1 [ i 1  [1 01 L  - 1-1 p-  1  

0 1  i- -i - 2 .i-  0 1 2 i -'F 7 li  1 e _,  Iii_i  ri _, 

[c), odp. .3€.][0c- oc][0, 01[0, 01[00, ..] 

TRANSFORMATION az 
USING D(3) (R) 

001(R) 5((R) 

NOTE: 

i 27T _i 21T 
E =e- 3 es=e' 3 

D(3) (R) AND 5 (3) (R) 

ARE EQUIVALENT 

Fig. 3—Network with C3,, symmetry, including symmetry operations, irreducible 
representations, and transformation matrix a. 

which will transform the differential equations to block diagonal form. 
It is determined that the irreducible representations D11> (R) and 
D>2> (R) are contained one time and zero times, respectively, in the 
permutation representation D(R), while the two-dimensional irreducible 
representation is contained once in D(R). The transformation matrix 
al is constructed using the real two-dimensional representation while a2 
is constructed using the complex two-dimensional representation. Both 
a, and a, are given in Fig. 3. 
If a current source /(t) is placed in parallel with the capacitor asso-

ciated with state variable x, , the block-diagonal system has the form 
(using the transformation «,) 

- - 

22 

_23_ 

a 0 

O b 

o 
o 

_O O b_ 

Z2 

while if a, is used as the transformation 

1/(3) 

2/(6)-1 1(1), 

o  

matrix, the block-diagonal 
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system has the form 

d 
dt 

zi a 0 0 z,  1 

2'2 = 0 b 0 z2 -F 1 1(1). 

_x3_  -0 0 b_ _z3_  _1_ 

The network is uncontrollable as shown with ai above. Uncontrollability 
of the network may be determined by inspection by using the real 
two-dimensional representation in Theorem 6. The set {R:1 consists 
of 1E, crd, where r = 1. 
The following corollary results from a trivial application of Theorem 6, 

but is by no means obvious without the use of the theorem. 

Corollary 1: Given the assumptions of Theorem 6, if there is just one 
group operation that leaves the rth state variable invariant, then the network 
cannot be NC S. 

Proof: The lone group operation must be the identity, and D" (E),, = 
1 for all u and Ir. 
An interesting and important result of Corollary 1 is that a network 
whose only symmetry operations are rotations (i.e., C„ groups) cannot 
be NCS except in the special case treated in Corollary 2 which follows. 

Corollary 2: If the symmetric network contains a state variable which 
is invariant under all the group operations, and if the single input is 
coupled solely to this stale variable, the network is NC S. 

Proof: Since fe,.1 is the entire group, equation (51) yields 

E s D'") (RD': „. = E D'In(R) Dc")(R)*  r 6 =  - T Ir 1 IT Mg  12 • 

The network of Fig. 2 may also serve to illustrate Corollary 2. State 
variable x5 is invariant under all the group operations. If an excitation 
I(t) is coupled only to x5 , the block-diagonal system has the form 
(p = 1 since D(R) is a permutation representation) 

d 
Crt 

Z1 

Z2 

Z3 

Z4 

Z3 

a bc O 0 

de  f 0 0 

g hi 0 0 

0 0 0 j 0 

_0 0 0 O k_ 

Z1 

Z2 

Z3 

z, 

_z,_ 

O 

O 

O 

1 



524  THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY  1972 

Corollary 3: The state variables associated with D'n (R) represent an 
always excitable portion of the network, i.e., these variables are never 
NC S. If ji 0 1, basis functions corresponding to Du> (R) are always NC S. 

Proof: From (22), the subset of group operations which transform 
the rth state variable into itself with plus sign forms a subgroup of 
index two in the group X of operations which transforms the rth state 
variable into itself with either plus or minus sign. Hence, the quantities 
.9; in equation (21) form an irreducible representation JP' (R) of the 
group X. Thus, for the basis functions corresponding to D̀g) (R), 
equation (21) becomes 

E e, Don up, =E D̀g)(R) D""(R)* = k  0, 

where k denotes the order of the group 3C. Likewise, Du) (R) forms an 
irreducible representation of X since the totally symmetric representa-
tion is an irreducible representation of any abstract group. Thus, for 
the basis functions corresponding to D"> (R), equation (21) becomes 

E s .1)(1) (R)* = E D̀ r°R; Dd'>  (g)* = O. 
R. , 

Thus, the corollary is proved. 
Corollary 3 is illustrated in (30) and (31) where the excitation is coupled 
to the state variables associated with Du' (R). (Matrix D(R) is a permu-
tation representation for the example of Fig. 2, so that g = 1.) 
The applicability of Theorem 6 is extended somewhat by considering 

the case where the single input is coupled to more than one state vari-
able. For the moment, it is assumed that only two state variables are 
coupled to the input so that in equation (28) 

B(t) = hi(t)e + h2(t)e1 ,  (32) 

where hi(t) and 14(t) are scalars. 

Corollary 4: A symmetric network having a single input coupled only 
to the rth and jth state variables is NC S if and only if a proper value' 
of u exists such that for some value of 7r, 

E sr, D" >(Fl)T = 0 and  E s Dwgee.. = o.  (33) 
R.' 

Proof: For r and j in the same transitive set and c„ cf , the partition 
of at B in equation (29) corresponding to A. „" can have nonzero terms 
only frome 

A proper value of ei is one for which D (P)(/?) is contained in D(R). 
I A normalization factor is not included in the vector a„, . 
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(a ) t B = hi(t) E 8; D4) (R.)t- + h2(t) E sir D(P)(RWer. . (34) 
R.'  R.J 

Provided that h1(t) and h2(t) are not specially chosen to cause (34) to 
vanish, Lemma 2 implies that (34) vanishes if and only if 

E s',. D (g)t,„ = 0 
R.' 

(only one of the sums in (33) need be computed in this case). 
For the case where c„ > c , the possibility exists that a„, and a i 

are linearly independent. This linear independence also occurs when 
r and j are in different transitive sets. Thus, for these cases, the possible 
nonzero terms in the partition of atB corresponding to A1 in (29) arise 
from (a„„)thi(t)er and from (a„ ;)th,(t)ei . From Lemma 2, (a„,k)te, is 
zero if and only if 

E s: D'")(R:):, = 0,  le = r, j. 
Ré. 

Thus, the proof is complete. 
The above method may be extended in a fairly obvious manner to 

treat the ease where any number of state variables are coupled to the 
single input. A separate statement is required for each set of variables 
in a given transitive set. 
At this point, we consider the problem of determining general condi-

tions which guarantee that (21) will or will not be satisfied for some 
proper value of g. Thus, the summations for all values of ji need not be 
computed. A partial solution to this problem is offered in Theorems 7, 8, 
and 9 below. It is assumed that the single input is coupled only to the 
rth state variable; the results can be extended to the case of multiple 
couplings by utilizing the reasoning in Corollary 4 above. 
Use is made of the following well-known properties of finite groups". 
(i) The order of a group G which is transitive on k symbols is mk 

where m is an integer giving the number of group operations which leave 
any given symbol unchanged. 
(ii) If a group G is intransitive on k symbols, the symbols may be 

partitioned into transitive sets M. M. , • • • . If the operations of G are 
allowed to operate only on symbols in the transitive set M. (i.e., permu-
tations of symbols not in M,. are simply ignored), G reduces to a new 
group Gr . The result is that 

g = grgf ,  (35) 

where the lower-case letters indicate the orders of the appropriate 
groups, and GF is the invariant subgroup leaving fixed all symbols in M,. . 
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A general intransitive symmetric network is considered in which the 
state variables are partitioned into the transitive sets M,. , M , • • • . 
The set M, contains the rth state variable, x„ and the number of state 
variables in Air is denoted by k,. . The following theorem is a simple 
application of property (i) above; it guarantees that the rth state variable 
is left unchanged by only one operation of the network symmetry 
group, G. 

Theorem 7: If G is isomorphic with G,. and if kr is equal to the order 
of G, the network is not NCS. 

Proof: Since G. is necessarily transitive on the k,. symbols of Mr , 
property (i) above implies that g, = mk, . However, g, = g since G 
and Gr are isomorphic. Thus, g = mk, . By hypothesis, k,. equals the 
order of G;m must be unity. Hence, only one group operation of G leaves 
the rth state variable invariant, and the NCS property is impossible as 
shown in Corollary 1 to Theorem 6. 

Theorem 8: Let G be an axial point group and let G, be a proper subgroup 
of G. The symmetric network with symmetry group G is NCS. 

Proof: Since G. is a proper subgroup of G, equation (35) implies that 
g, is greater than unity. For the axial point groups excluding 1),h groups, 
only the identity and a reflection plane 0., (a rotation C2 about a two-fold 
axis perpendicular to the principal axis may be included instead of a 
reflection plane) can have an invariant effect on any given state variable. 
For D„k groups, in addition to E and 0-1 a C2 operation and a tr„ operation 
can have an invariant effect on a given state variable. Furthermore, 
at most only one symmetry plane Op (rotation C2) can leave a given state 
variable unchanged. Hence gr. = 2, or possibly g; = 4, for a D., group. 
Thus, the subgroup Gf in property (ii) above is either {E, e.1, { E, C2}, 

or {E, 17 „ C2 , ak ), and these operations leave invariant all variables in 
the transitive set M, . 
To show that the networks considered in this theorem are NCS, a 

proper value of it is determined for use in (21); we compute c2 , the 
number of times D(2) (R) is contained in D(R), using (52). To facilitate 
the computation of c2, the n state variables are partitioned into h2 
transitive sets of two variables each, h3 transitive sets of three variables 
each, • • • , hk, transitive sets of k,. variables each, etc. Thus, 

n = 2h2 314 ± • • • + hk,k, + • • • .  (36) 

In 1)(2› (R), all cr, and C2 operations are represented by —1 while E 
and up are represented by +1.'2 Hence, e2 is at least 
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C2 = E x(2)(R)*xv(R) 
g  R 

1  [n  hkrk,l, for C„o , D. , D„,, symmetry 

= 1 or 

—1 [n — hk,kr -{- lz,,k, —  for D„,, symmetry. 

In general, c2 is not zero, and (21) is satisfied for is = 2 since {g[ =-
{E, er, or {E, C21, or {E, (s„ C2 crh), and 

(37) 

E s; D(2)(R:”.', = 1 — 1 = 0, for C,,„ D,. , or D„d groups 
Rr , 

and 

E s; D(2)(Rrot = 1 — 1 ± 1 — 1 = 0, for D55 groups. 
Rr' 

Thus, these networks are NCS. 
As an example illustrating the use of Theorems 7 and 8, consider the 

network of Fig. 4 which includes the operations of the symmetry 
group C2, for this case. A table of irreducible representations of C2e may 
be found in Fig. 2. There are two transitive sets, namely, M 1 = { xi , r41 
and M2 = (X2 , Xs , z5, X5). By allowing the permutations of G to operate 
only on state variables in M„ G reduces to 

G, = {E, (r) 

where 

SYMMETRY GROUP C 2v 

JI 

Fig. 4—Network with Cy, symmetry and symmetry operations. 

E = (1)(4) 

o. = (14). 

SYMMETRY OPERATIONS  

E = (i)(2)(3) (4) (5) (6) 

-- 02  C2 = (14) (25)(36) 

rr, = (14)(23)(56) 

Cf2 = (25)(36) 
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By allowing the permutations of G to operate only on state variables 
in M2 G reduces to G2 G (i.e., G2 and G are isomorphic). Furthermore, 
the number of state variables in M2 is equal to the order of G. Thus, 
by Theorem 7, no symmetry constraints are placed on controllability 
if the input is coupled to one of the variables in the set M2. However, 
from Theorem 8, if the input is coupled either to x, or to x. , the network 
has the NCS property. The above statements are verified by computing 
the sum in equation (21) for each case. 

Theorem 9: Let G be an axial point group having at least one irre-
ducible representation of dimension two. A network possessing symmetry 
group G is NCS. 

Proof: Let .134) (R) be an irreducible representation of G of dimension 
two, and let cp be the number of times that D' (R) appears in the 
monomial representation D(R). Since the character xnR) of all 
group operators, excluding E, that can possibly have an invariant 
effect on any state variable is zero (see tables of irreducible representa-
tions in Ref. 12), 

c„ = —1 E x(P)(R)*x(R) = x̀P>(E)*x(E) = 2.n. 
g R 

Hence, D(')(R) is contained in D(R). From the proof of the previous 
theorem, 1R:  = 1E, e7,1 or { E, C21 or { E,  , C, , uhl. A table of 
irreducible representations12 shows that D (R) is equivalent to a 
representation in which 

D'(E) = [ 1 0 
0 1_ 

— 1 0 
or D (C2) = 

D (0-,,) = 

Therefore, equation (21) is satisfied for ir = 1 (or Tr = 2 if s = -1), 
and the network is NCS. The theorem is proved. 
An example illustrating Theorem 9 has already been given in the 

discussion following Theorem 6. The example concerned the network 
displaying C3, symmetry shown in Fig. 3. Since all C„„ D,, , Dnd , and DnA 
groups of complexity C3, or greater possess two-dimensional irreducible 
representations, Theorem 9 shows that the general symmetric network 
displaying axial point group symmetry is NCS. 
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The single-input case, considered extensively here, assumes an added 
significance in view of the following definition found in Ref. 14. 

Definition .5: A k-input system is said to be strongly controllable if it 
is controllable by each input separately while all others are zero; other-
wise it is weakly controllable. 
From the discussion of the present section, it is observed that a sym-
metric network is generally only weakly controllable. Thus, several 
inputs are required to control the state of a symmetric network in 
general. The results of the present section can be used to determine the 
number and placement of inputs to insure that the network is not NCS. 
The previous results of this section may be applied to the multiple-

input case by means of the following. 

Theorem 10: The k-input system of equation (28) with symmetry group 
Gm is NC ,S if and only if a proper value of 11 exists such that for some 
value of w, 

r,••• 
Re 

where 4) is an index denoting all nonzero couplings of the inputs to the 
state variables in the k columns of B. 

Proof: It follows from Theorem 6 and its Corollary 4 that if the above 
conditions hold, the submatrix of at 13 in (29) corresponding to A is 
identically zero. Thus, the network is noncontrollable due to symmetry 
constraints. From Theorem 6, the above conditions are also necessary 
for the NCS property. 
The discussion just concluded shows that simple arithmetic computa-

tions involving the irreducible representations of the network symmetry 
group can be used to detect noncontrollability which is due solely to 
symmetry. For an input coupled to a given state variable, the NCS 
property is determined completely by those group operations that leave 
the given state variable unchanged. The interpretation of (21) is 
obtained from (52), in which the generating matrix  is obtained by 
analogy with the projection operation n1'. If the input is coupled to 
the rth state variable, then, by Lemma 2, condition (21) is equivalent 
to the statement that the projection of the input onto the invariant 
subspace associated with the wth row of D'")(R) is zero. 
In the application of Theorem 6, if equation (21) is not satisfied, 

the network may be controllable. The nonsatisfaction of equation (21) 
amounts to a necessary condition for controllability of a symmetric 
network. The transformation a obtained using group theory then enables 
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us to test controllability of several smaller subsystems [equation (29)] 
rather than that of system (1). 

V. OBSERVABILITY OF SYMMETRIC NET WORKS 

The concept of observability relates to the degree to which the past 
state of a system may be determined from knowledge of the system 
outputs. The following definition may be found in Ref. 13. 

Definition 6: The system (1) is said to be completely observable on an 
interval (t0, ti) if any initial state x„ at t. can be determined from knowl-
edge of the system output over (i„ , ti). 
The system (1) is said to be totally observable on an interval (t. , ti) 

if it is completely observable on every subinterval of (e0, 
For networks with sufficiently smooth time variations, observability 

of the linear time-varying system 

= A(t)x  B(t)u(t) 
(38) 

y(t) = C(t)x 

may be characterized by the observability matrix 13 

Q. = [So& • • • S.-1] 
where 

(39) 

SA, =  A t 5 k-L  I  Si) =  C̀ 

and n is the order of the system. 
The following theorem is a paraphrase of Theorem 5 of Ref. 13. 

Theorem 11: For the system (38), assume that A (t) and C(t) and their 
first n — 2 and n — 1 derivatives, respectively, are continuous functions. 
System (38) is totally observable on the interval (t. , t,) if and only if 
Qo does not have rank less than n on any subinterval of (t. , ti). 
The results of this section are completely analogous to those obtained 

for controllability. Hence, only some theorems will be presented; their 
proofs follow exactly from their counterparts in the previous sections. 

Lemma 4: The system described in partitioned form by 

it  A 
d [Z,]  [Ai 0 r il 

Bu(t) 
Li2  V  ,C1 2  Z2 

y(t) = [C  01[ 1 
Z 2 

is unobservable (i.e., not completely observable). 

(40) 
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Definition 7: A symmetric network is said to be NOS (possess the 
NOS property) if it is nonobservable because of symmetry alone. 
To examine the NOS property, we reduce A(t) to block-diagonal 

form; for Z = afx, equation (38) becomes 

o 
d 
dl 

Z: 

• o 

= c(t)« 

Z1, 

Z: 

ze 2Bu(t)  (41) 

Hence, if a submatrix of C(t)a corresponding to Z: is zero, these vari-
ables will not be observed in the output. In analogy to Section IV, 
first consider the output in (38) to be a function of a single state variable, 
. Thus, C(e) is [er]', and C(1)« in (39) is the rth row of a. 

Theorem 12: A symmetric time-varying network whose output is a 
function of the rth state variable only is NOS if and only if there exists 
a proper value of p and a value of ir such that 

E s 131̀")(R;)* = 0.  (42) 
R., 

Corollaries 1-4 of Theorem 6 carry through directly for this case 
with slight and obvious changes of wording (i.e., "NOS" replaces 
"NCS", etc.), and they are not repeated here. Of course the other 
results of Section IV follow for observability with slight modification 
of the wording. 

VI. APPEARANCE OF BASIS FUNCTIONS IN (I)(t, r) 

It may happen that one or more basis functions of the normal form 
differential equation do not appear in the expression for component 
i(t, r) of the state-transition matrix 4(4 r). In the case of fixed systems, 

this condition corresponds to one in which certain modes are cancelled. 
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The present section investigates the use of symmetry in predicting 
such cancellation of basis functions in a symmetric network. 
In Section II, it was shown that the monomial representation D(R) 

of the group G N commutes with 4)(1, T) for a symmetric network. Hence, 
4)(1, 7-) is reduced to block-diagonal form by the same transformation 
a which reduces D(R) and A(t), and we can write 

r) =  r)at 

o 

at ,  (43) 

o 

where e is a c, X c, matrix which does not depend on 7r.t Hence, 

r) =  1 • • • e Oe ,r1 1 • • • 1  1 • • • 1 Ce Si 0“11 

X 

o 

o 

ap,1 

agre, 

-4405-

(44) 

It is evident from (44) that basis functions associated with D̀")(R) 

In Ref. 2 it is shown that submatriees ii„P of the A-matrix of (29) do not depend 
on 7r. Hence, submatrices it.",.° given above are independent of 7. 
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will appear in ikii(t, r) if 

=  , • • •  , • • • y Ce .y[Xi  , • • 

7 
apt 

q7; 

0,  (45) 

2 ;1 4. 4 — 

where K, is used to denote all terms corresponding to D(m)(R) in (44). 
From Lemma 1, only one of the cm terms a„'  (or a a) can possibly be 
nonzero, a = 1, • • • , c, ; 7r = 1, • • • , 1„ . Thus, using the results of 
Section II and excluding a scale factor, we have 

1„ 
K„ = (ig)ad E [Es D()(Riati[E D41 (lrei),,]  (46a) 

c•-•1  R.  R.; 

if i and j are in the same transitive set, or 

=  E [Es'i D(P)(Ric.][Esii D<P)(Rii)„..] 
I Ri'  Ri , 

if i and j are in different transitive sets.e In (46), (93:)ad and (end. are 
components of the matrix e: , and are removed from the 7r-summation 
because they are independent of 7r. Thus, the following theorem has 
been established. 

(46b) 

Theorem 13: Basis functions corresponding to .1)4) (R) will not appear 
in (1),;(t, r) as a result of the symmetry if and only if 

E [E s D 1e)t][ E  D Rii)„] = 0.  (47) 

t If 4, > ciP, equation (46b) may apply even if i and j are in the same transitive 
set. See Lemma 2. 
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The following corollaries to the above theorem may be established; 
some of the corollaries are similar to those following Theorem 6. 

Corollary 1: All basis functions corresponding to D̀g)(R) appear in 
every 4,(1, 7) (if all the s equal unity, re = 1). 

Corollary 2: If there is just one group operation taking the ith stale 
variable into the jth state variable, basis functions corresponding to D" (R) 
appear in yibii(1, r) if x<')(Ri,)  0, where x(R) denotes the trace of 
Dc») (R). 

Proof: The hypothesis requires that only one group operator leave 
the ith state variable invariant." This operator must be the identity, 
and D(')(E)„ = 1 for all values of L. Hence, equation (46a) becomes 
(sr, equals unity for the identity operation) 

= cedd E &Ago.. = (13"..),,,/x4) (R;)•  (48) 

Thus, basis functions corresponding to D') (R) appear in e„(t, 7-) if 

x̀")(R!) 

Corollary 3: If no group operation transforms the ith state variable into 
the jth state variable, the types of basis functions which appear in 4,, (t, 7) 

are those which are common to Of,(t, 7) and 01(4 r). 

The proof of Corollary 3 is a straightforward application of Theorem 13. 

Corollary 4: If the kth state variable is invariant under all the group 
operators, the only basis functions appearing in Oa(t, 7) are those which 
correspond to D(P)(R). 

With regard to Section IV (Section V) the following statement can 
be made about noncontrollability (nonobservability) due to symmetry. 

Theorem 14: A symmetric time-variable linear network with a single 
input coupled only to the rth state variable (output proportional only to 
the rth state variable) is NC S (NOS) if there exists a proper value of 1.4 
such that basis functions corresponding to D'") (R) do not appear in 

Proof: If the basis functions corresponding to D'") (R) do not appear 
in f¢„(t, r), Theorem 13 shows that 

E [E s; D'Un1.1[E e D ne)..] = 0.  (49) 
r  R.  

Since the squared magnitude of the bracketed term appears in the 
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above equation, it is necessary that 

E s'',.  = 0.  (50) 
12,' 

Under the conditions of the present theorem, the network is NCS (NOS) 
by Theorem 6 (Theorem 12). 

VII. CONCLUSION 

We have presented a unified treatment of linear time-variable 
networks displaying arbitrary geometrical symmetries by incorporating 
group theory into the analysis scheme. Symmetric networks have their 
elements arranged so that certain permutations of the network edges 
result in a configuration identical with the original. The complete set 
of such permutations constitutes a group Gs , the symmetry group of the 
network structure. A group GN of monomial matrices may then be 
determined, and it was shown that these matrices commute with the 
A-matrix and the state transition matrix of the normal form equation. 
The commutativity result establishes a basic connection between 
group theory and the network analysis problem and allows group 
theoretic methods to be employed in the study of networks with arbi-
trary symmetries. The group GN may be a proper subgroup of Gs , since 
GN contains those operations of Gs which do not permute edges in 
the tree with those in the cotree. 
Group representation theory makes it possible to obtain information 

about properties of the network differential equations without writing 
or solving them. For the case of a network with a single input coupled 
to only one of the state variables, an extremely simple arithmetic 
condition is derived which determines whether symmetry alone causes 
the network to be noncontrollable. The condition involves only those 
group operators which transform the state variable in question into 
itself. It is equivalent to the algebraic statement that the projection 
of the input vector onto a subspace associated with an irreducible 
representation of the group be zero. The results allow a determination 
by inspection of linear combinations of the original state variables 
which result in noncontrollable variables. It was demonstrated that 
a network with axial point group symmetry is always noncontrollable 
if its symmetry group possesses an irreducible matrix representation 
of dimension two. This result agrees with intuition in that the network 
will be noncontrollable if the symmetry is high enough. Thus, networks 
with axial point group symmetry are generally noncontrollable because 
of symmetry alone. The case where the input is coupled to more than 
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one state variable and the multiple input ease were also treated. Further-
more, dual results were stated for network observability. 
By utilizing the symmetry, a transformation may be constructed 

which transforms the A-matrix into block-diagonal form. The original 
differential equation is thereby resolved into several differential equa-
tions of relatively low order. Hence, there results an appreciable economy 
of effort in obtaining solutions for symmetric networks. 

APPENDIX A 

This appendix provides some basic definitions and results from the 
abstract theory of finite groups and the corresponding representation 
theory. A more detailed treatment of concepts mentioned here may be 
found in Refs. 10 and 15, 16. 

Definition. 8: A set of elements G = tA, , A2 A3, • • • is a group if 

(i) for A„ , A.t G, A„A. e G (closure) 
(ii) for A„ , A, , A,. e G, (A,A.)A,. = A,(A.A,.) (associativity) 
(iii) there exists E e G such that AE = EA, = A, (identity element) 
(iv) there exists A;' e G such that /1„-IA„ = A„A.;' = E (inverse 

element). 

If the number of distinct elements of the group is finite, the group is 
said to be a finite group; the number of distinct elements in a finite 
group is called its order. 

Definition 9: Two groups G and G' are said to be isomorphic if there 
exists a one-to-one correspondence (denoted  between their elements 
such that products correspond to products, i.e., if A  A' and B  B', 
then AB  A'B' 

Definition 10: If among the elements of a group G there exists a 
subset H of elements satisfying the definition of a group, then H is 
said to be subgroup of the group G. 

Consider a subgroup H of G, where the order of H is It while that 
of G is g. Now consider any element .r, of G which is not contained in H, 
and form the product 2.111. That is, multiply every element of H on the 
left by r, . Since xi is not in H, the resulting set of elements is different 
from H (H contains the identity, E, and hence xiii contains .r1). The 
set of elements tiff is called a left coset of G with respect to the sub-
group H. A coset is not a subgroup since it does not contain the identity 
(H does not contain x,7'). If there are any elements of G not contained 
in H or xiii, choose one of these elements, r2 say, and form the coset x3H. 
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Continue in this manner until all elements of G are exhausted. Thus, 
a partition has been effected of the group G into left cosets with respect 
to the subgroup H. 

G = H, x111, x2H, • • • , x1_,H. 

A similar partition could be effected using right cosets, defined anal-
ogously. The quantity 1 = g/h is an integer' called the index of H in G. 

Definition 11: If H is a subgroup of G and x e G, then x-111x is called 
a conjugate subgroup of H in G. If H coincides with all its conjugates 
(i.e., x-1Hx = H, for all x t G), then H is said to be an invariant subgroup. 
Consider the set of n symbols al , a,, • • • , a„ . A rearrangement of 

these same symbols into the order b, , b2 , • • • , b. is called a permutation. 
Here, the symbol al is replaced by b,, a, by 1)2, etc. One way of indicating 
this permutation is 

ia,a2 • • • a,,': 
, 

bah • • • b 

so that each symbol on the upper line is replaced by the symbol appear-
ing below it. A more convenient notation is to write the permutation 
as a set of cycles. To do so, begin by choosing any symbol on the top 
line, say g, writing it followed by the symbol r on the bottom line which 
replaces it. Now find where r appears on the upper line, obtain the 
symbol which replaces r and write that. This procedure is continued 
until we arrive at the symbol which is replaced by g, the first symbol in 
the cycle. This step completes a cycle. If any symbols remain unused, 
a new cycle is written by choosing as the leading symbol any one of 
those which did not appear in the first cycle. This procedure is continued 
until all symbols are exhausted. The cycles are enclosed in parentheses. 
Thus, 

{ 

1 2 3 4 5 6 
= (14)(235)(6) = (14)(235), 4 3 5 1 2 61 

where 1 is replaced by 4, 4 is replaced by 1, etc. Cycles composed of 
a single symbol, such as (6), need not be written. In examples of sym-
metric networks, the cycle notation may be used to make easy the 
identification of matrices D(R) (Section II) by inspection. 
Some important results in group representation theory are presented 

next. 
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(denoted  between the matrices and the group elements such that 
products correspond to products, i.e., if Ri D(Ri) and R2 esd D(R2)1 
then (R1R2) D(R1)D(R2) = D(RiR2). 
An example of a representation is the so-called totally symmetric repre-
sentation in which each group element is represented by the scalar 

quantity unity. 

Definüion 13: A representation is said to be reducible if it can be 
converted to block-diagonal form via a similarity transformation; i.e., 

D(R) =[D„(R) 

O  D2(R) 

is reducible. Otherwise, it is said to be irreducible. For a finite group, 
there can be only a finite number of distinct irreducible representations, 
and the irreducible representations may generally be specified to within 
a similarity transformation. The irreducible representations of a finite 
group satisfy the following important orthogonality relation.' 

E D("(Res D")(R) „ = 5.. tt  aa  

where D(')(R)ap denotes the aa-element of irreducible representation 
Dm (R), t denotes the dimension of D" (R), g denotes the order of the 
group, i5„ is Kronecker's delta, and asterisk denotes the complex 
conjugate. 
If a reducible representation D(R) is reduced to block-diagonal form, 

the nonzero submatrices along the diagonal will be the irreducible 
representations of the group." Some irreducible representations may 
appear more than once (i.e., several nonzero blocks may be identical) 
in D(R) while others may not appear at all. The number of times 
that D')(R) appears in D(R) is denoted by ch and is given by" 

(k) 
Ck  1 E x (R)*x(R), g 

where x(R) is the trace of D(R) and xu) (R) is the trace of D (R). 
A very brief account is now given of so-called axial point groups. 

Some important statements regarding networks with axial point group 
symmetry may be found in Theorems 7, 8, and 9. For a more complete 
treatment of these groups, see Ref. 17. 
A point group is one whose symmetry operations leave fixed a point 

at the center of symmetry. Some symmetry operations contained in 
these groups are described in the following five definitions. 

(52) 



LINEAR TIME-VARIABLE NETWORKS  539 

Definition 14: The identity is the trivial operation which does not 
transform the object at all. It is denoted by the letter E. 

Definition 15: A rotation operation by 2w /n radians about an axis is 
denoted by C„ where 2/r/n is the smallest angle for which the object 
may be rotated invariantly about this axis. The axis is said to be an 
n-fold rotation axis. 

Definition 16: A reflection operation in a plane of symmetry is labelled 
cr. If the plane of symmetry is perpendicular to the principal rotation 
axis of symmetry, it is labelled oh ; if it contains the principal axis, 
it is labelled either (3., or ud 

Definition 17: The rotation-reflection operation S„ is a compound 
operation consisting of a rotation by 2/r/n radians about an axis followed 
by a reflection in a plane perpendicular to the axis. Thus, S„ = cr„C . 

Definition 18: The inversion, denoted by i, is a reflection in the 
center of symmetry. 

The distinguishing characteristic of axial point groups is their single 
n-fold axis of symmetry (n > 2), called the principal symmetry axis. 
A diagram, called an equivalent point diagram, often used to visualize 
the operations of an axial point group, is described below. The number 
of points in the diagram is equal to the order of the group;12 the points 
transform into one another under the group operations. In the equivalent 
point diagram, a plus, -I-, and circle, 0, denote points above and below 
the plane of the paper, respectively. Reflection planes not in the plane 
of the paper are indicated by dotted lines while rotation axes are 
indicated by solid lines marked with one of the symbols 0, A, D, etc. 
to indicate a two-fold, three-fold, four-fold axis, etc. Reflection in the 
plane of the paper is indicated as a solid circle in the point diagram. 
In the equivalent point diagram, the principal symmetry axis is assumed 
to be perpendicular to the plane of the paper so that reflection in that 
plane is Œh. See Fig. 5 for equivalent point diagrams of all the axial 
point groups mentioned below. 
C„ groups have one n-fold rotation axis. The group operations consist 
of the rotations C of the object by (27r)/n radians (r = 1, 2, • • • , n). 
These groups are cyclic. 
S. groups have one n-fold rotation-reflection axis. 
C„, groups have a symmetry axis C„ and n symmetry planes cr„ 
C„,, groups have a symmetry axis C„ and one symmetry plane oh perpen-
dicular to it. 
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Fig. 5—Some axial point groups and their equivalent point diagrams. 

D„ groups have an n-fold rotation axis and n two-fold rotation axes 
perpendicular to the principal axis. The angle between two adjacent 

two-fold axes is 7r/n radians. 
D.,' groups contain all the symmetries of D„ and in addition contain 
n vertical symmetry planes o-d which contain the principal axis and 
bisect the angles between the two-fold axes. 
D.h groups contain all the symmetries of D„ and in addition contain the 

symmetry plane 0h perpendicular to the principal axis. These symmetries 
imply the existence of n symmetry planes u, containing both the principal 
axis and a two-fold rotation axis. 

APPENDIX B 

For a given reducible representation D(R) of a group G , it is possible 
to construct a unitary matrix a such that the transformed representa-
tion  D(R)« is in block-diagonal form. It is nekt shown how a is 

constructed. 
The complex conjugate transpose of matrix a is denoted by ai. 
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Let D(') (R) be an irreducible representation contained in the reducible 
representation D(R) of the group GN . 

Definition 19: A set of k vectors 14), le, • • • , vi" is said to form a 
basis for an irreducible representation D")(R) of dimension k if the 
effect of all group operators on these vectors is to produce a vector 
which is a linear combination of those already in the set. The set of 
vectors is said to transform according to D'') (R). 

Definition 20: The vector /4") is said to belong to (or transform accord-
ing to) the xth row of the irreducible representation D" (R) if it satisfies 

E D(')(R), D(R)v,(‘) =  v,") (53) 

where ON is the order of GN . The other vectors in the basis belong to 
other rows of D">(R) and are called partners of yzm. They satisfy 

ỳ = E  D(R)v  (54) k 

Let PR be the operator which denotes the effect of operating on a 
vector with group operation R. Form the operator 

PP) = E D (R) PN .  (55) 

n ) has the important property that its effect on any arbitrary vector 
y is to produce the component vector (which may be zero) which belongs 
to the kth row of e n (R)." Hence, PI') is a projection operation. 
The transformation a which places a reducible representation D(R) 

in a block diagonal form may now be constructed. Let c, be the number 
of times the irreducible representation VP) (R) of dimension 1, appears 
in D(R). Form the n X n generating matrix Ge:') by analogy with the 
projection operator of equation (55), so that 

C„.P) = E D'")(R)t D(R)I,  (56) 

where I is the unit matrix. Some of the column vectors of G?) may be 
zero and several may be identical; the number of linearly independent 
vectors among the columns of G?) is c, ,1-1 and each of these c, vectors 
belongs to the rth row of D(')(R). They are orthogonal and may be 
normalized to unity. Following Kerns' notation," these e, column 
vectors are labelled a , • • • 1 al1WCI  • • • , a„,, , and are used as c„ 
column vectors of the matrix a. For every one of the vectors am  , 
1, — 1 partner vectors must be constructed. The partner vectors are de-
noted by app„ where µ = 1, • • • ir — 1, ir -I- 1, • • • , L„ and a = 1, • • • , c„ 
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and may be calculated as [using equation (54)] 

a„„  [E D(')(R),t, D(R)1a, .  (57) 

The index p runs over all distinct irreducible representations of the 
symmetry group GN . Thus, if a table of irreducible representations is 
available, the matrix a may be computed relatively easily, and has the 
form 

a = [am , • • • y alley asii 7 •  1  • (58) 

12)(11 (R)  D121 (R) 

where the columns of a are shown associated with the appropriate 
irreducible representation in the above equation. 
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One of the electromechanical transducer candidates for the electronic 
telephone is a bilamellar piezoelectric ceramic.* In order to meet the 
design template for transducer response in the acoustic band, 0.3 kHz-
3.0 kHz, a controlled resonant condition must be introduced at the upper 
end of the spectrum. 
An analytical program, consisting of three complementary parts, was 

carried out in order to understand the phenomenology of the transducer/ 
support system response to acoustic loading. The three parts are: (i) a 
simple direct variational model, used to generate parametric design in-
formation; (ii) an exact solution with a lumped mechanical model of 
the support structure, used to evaluate the effect of using different rubber 
materials in relation to the design goal; and (iii) a finite element modal 
survey of the system, used to determine the necessary design modifications 
and to expose deficiencies in the previous models. 

I. INTRODUCTION 

Several alternative designs are under consideration as transducer 
elements for the electronic telephone.' One of the leading candidates 
is a bilamellar piezoelectric ceramic plate consisting of two thin 
circular ceramic wafers that are electroded on both surfaces and ce-
mented together.' The disks are joined with opposing polarity so that 
the flexural response of the assembly to applied acoustic loading re-
sults in additive voltage output. 
The design objectives for the transducer response as a function of 

driving frequency are shown in Fig. 1.3 The cross-hatched areas indicate 
the template within which the response should fall. Important char-
acteristics of this template are: (i) the electrical output rolls off below 
300 Hz in order to exclude low-frequency room noise; (ii) output is 

* It has since been decided to eliminate rubber from the design and to replace 
the bilamellar transducer by a metal/ceramic combination. 

543 
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Fig. 1—Microphone response design objective. 

relatively flat between 300 and 1000 Hz; (iii) output increases by 
approximately 7 dB between 1000 and 3000 Hz in order to compensate 
for transmission loop losses and to improve speech recognition; and 
(iv) output rolls off rapidly at frequencies above 3000 Hz in order 
to eliminate crosstalk and other high-frequency noise. The object of this 
investigation is to determine the extent to which transducer support 
damping can be used to achieve these characteristics while maximizing 
the microphone sensitivity. 
The basic approach is to design a bilamellar structure with a funda-

mental flexural resonance near 3000 Hz—this will guarantee flat re-
sponse up to frequencies just below the resonance—while providing a 
support configuration which will permit shaping the response around 
the resonant peak. In addition, this shaping should include the sup-
pression of resonant response at higher frequencies. The shaping of 
the response curve at frequencies below 300 Hz is considered to be 
a manageable problem. 
One support configuration that has been tried is shown in Fig. 2. 

The ceramic disks are mounted between soft rubber "0"-rings that 
are held in place by a relatively rigid housing. Such a design has one 
serious drawback—the lack of stability of the transducer response with 
respect to slight changes in rubber precompression. This sensitivity is 
due to the large contact area increase, and corresponding increase in 
support stiffness, as a function of slight changes in precompression. 
Large excursions in support stiffness will affect the location of the 
fundamental resonance and, thereby, distort the response. 
A more dimensionally stable configuration is shown in Fig. 3. Conical 
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Fig. 2—"0"-ring support configuration. 

rubber washers are placed above and below the disk and have flat 
surfaces in contact with the ceramic, insuring relatively constant 
stiffness with respect to precompression. The stiffness of the washer 
is primarily dependent on the thickness and height of the cross section, 
with a secondary dependence on the cone angle, shown as 25 degrees 
in Fig. 3. This design can be easily modified in order to achieve the 
response objectives by making suitable adjustments in these parameters. 
While the concern here is with controlled response through support 

damping, other concepts, such as the addition of acoustic elements 
to the design (acoustic mass, compliance, and resistance) or con-
strained layer damping, could be considered.' Economic constraints 
are paramount in deciding the most feasible concept, however, so that 
manufacturability, material availability, and unit cost are vital 
ingredients. 

Fig. 3—Conical washer configuration. 
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In the following sections, an analytical effort that consists of three 
mutually complementary elements is described. First, a direct varia-
tional procedure is used to calculate, approximately, the first two 
resonant frequencies of the ceramic and its support system. The attrac-
tion of these approximate methods is their simplicity of expression 
and the consequent ease in assessing system trade-offs. The second 
phase deals with the washer as a lumped mechanical network that 
acts at an "effective support radius" and is accounted for by a boundary 
condition on the shear resultant at this location. The exact solution 
for the forced response of the transducer, as a function of driving 
frequency, is then found. The third phase consists of a resonant fre-
quency and modal shape survey of the complete structure by using an 
elastic, axisymmetric, dynamic finite element code. These finite element 
results provide a check on previous calculations and give more de-
tailed information on the motion executed by the support system. 
From this description the role of analysis is seen to have several facets: 

(i) as a design guide (to identify parameters and to check initial ex-
periments); (ii) as a key to understanding the phenomenology; (iii) to 
assess hard designs through detailed analysis; and (iv) to provide 
guidelines for future designs. 

II. RUBBER CHARACTERISTICS 

Before proceeding with the analytical details, a few comments on 
the thermomechanical properties of viscoelastic support materials are 
in order. From the transducer response template in Fig. I, the primary 
information needed is the complex viscoelastic moduli over the fre-
quency range 100 Hz-10,000 Hz. In addition, since the transducer 
must have stable response characteristics with respect to temperature 
changes down to about —40°C and up to about +50°C, the effect 
of temperature on these moduli must be known. 
For these analyses, the candidate polymers were assumed to be 

isotropic, thus reducing the number of moduli about which knowledge 
is required down to two (e.g., the shear and bulk moduli). Also, it was 
assumed that the materials were nearly incompressible over the fre-
quency and temperature ranges of interest (the biilk modulus much 
larger than the shear modulus), reducing the number down to one.' 
For example, if the complex extensional modulus is known, the complex 
shear modulus is found by dividing by three. It suffices, therefore, 
to know the storage modulus, in either extension or shear, and the 
loss tangent over the acoustic frequency range at temperatures in the 
environmental range. 
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An additional simplification is possible by assuming the polymers 
to be thermorheologically simple, so that the theory of reduced vari-
ables' applies (e.g., frequency and temperature are interrelated). Thus, 
if the complex extensional modulus as a function of circular frequency 
co at a temperature To is given by (i = V-1) 

E(co, T„) = E'(co, T„)  tiE"(cd, T„),  (1) 

where E' and E" are the storage and loss moduli, respectively, then 
the extensional modulus at a temperature T is given by E(cuct r T„). 
The multiplier a, is referred to as the time-temperature shift function. 
For a typical polymer, such as polybutadiene, a plot of extensional 
modulus versus frequency (see Fig. 4) at room temperature can be used 
to generate data at other temperatures provided the shift function has 
been experimentally determined and provided that the room tempera-
ture data extends over a sufficient frequency range. 
Characterizing each polymer to this extent is prohibitive, however, 

and the usual approach is to generate data at a fixed frequency while 
varying the temperature. Such data is shown in Fig. 5 for two polymers 
of interest: (i) a blend of 50 percent cis-4 polybutadiene and 50 percent 
styrene-butadiene rubber (called PBD/SBR) and (ii) a blend of 75 
percent cis-4 polybutadiene and 25 percent chlorobutyl rubber (called 
PBD/CBT). A fixed frequency of 110 Hz (data obtained with a Vibron 
Viscoelastometer marketed by Imass, Inc., Accord, Mass.) was used 
and the temperature was varied sufficiently to capture the transition 
regions of interest.' Note that the loss tangent, defined by 

It 

cu 
to 

>o 

z 9 

uJ 
9 

0 

2  3  4 
LOGio FREQUENCY IN HERTZ 

5 

Fig. 4—Complex extensional modulus, polybtttadiene, T = 20°C. 
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Fig. 5—E' and tan 8 vs temperature. 

tan ô = E" / .4" ,  (2) 

has been shown in lieu of the imaginary component of the modulus. 
In order to construct modulus versus frequency from these data, 

the shift function for each polymer must be known. Ordinarily, a, 
would be determined experimentally from several fixed frequency runs 
and their graphical superposition. It is often convenient, however, 
to assume a form for the shift function that is found to fit a wide variety 
of polymers and is called the WLF equation :7 

log,0 ar = — ci(T — T R)/ (e2  T — T,,),  (3) 

where c, and e2 are constants and TR is a reference temperature. Common 
practice is to use c, = 8.86 and e2 = 101.5 as the constants and a 
reference temperature in the middle of the transition region. For the 
analytical work described here, TR for the PBD/SBR was selected 
as —60°C and for the PBD/CBT was chosen as —40°C. Then, with 
the help of (3), the data of Fig. 5 was converted to the form of Fig. 4 
for specific temperatures. 
These modulus values can be approximately converted to effective 

stiffness by using simple strength of materials considerations. If the 
cone angle is neglected and the washer is assumed to be in a state 
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of plane stress, then the factor which converts modulus to stiffness 
(per radian) can be written 

(4) 1,12t)  

where  is an average radius for the washer, t is its thickness, I is the 
height, yr, is the Poisson's ratio for the rubber, and the multiplier 
indicates that both washers are being taken into account. The cantilever 
frustum, which does not provide support stiffness in its unconstrained 
configuration, is neglected. If p5 is assumed to be 0.5 and the dimen-
sions of Fig. 3 are used, K  0.8, indicating that the effective rubber 
stiffness per radian is eight-tenths of the extensional modulus. This 
conversion factor will be used in the next section in order to help 
generate parametric design information. 

2ft 

III. SIMPLE VARIATIONAL SOLUTION 

As a first step in the rational design process, a procedure for estimating 
the two lowest resonant frequencies of the transducer, as a function 
of geometric and material parameters, is developed. A Rayleigh-Ritz 
procedure is used for deriving these design equations. First, a functional 
is written which represents the strain energy and kinetic energy of 
the plate and its deformable supports, less the work done by the acoustic 
loading.' Classical infinitesimal plate theory is used (rotatory inertia 
and shear deformation are neglected) and piezoelectric stiffening effects 
are ignored. Then 

2W  OW 2 a2W  aw 
F(w) =  o r ar  ar  r ar D(r){((4-  - 1 — 2(1 — y)(—r)(.-1 —)}rdr 2   

tt,2 f  p(r)h(r)Iw(r, t)rrdr — f p(r, t)w(r, t)rdr 
0 

¡ralc,{w(r, , 1)1 2 — ¡oh.„111,{w(r„ t)}2,  (5) 

where r is the radial coordinate of the circular plate, t is the time, 
and w(r, t) is transverse deflection. The flexural stiffness, density, 
thickness, Poisson's ratio, and radius of the plate are D(r), p(r), h(r), 
v(r), and rc , respectively. The effective mass, effective stiffness, and 
effective support radius for the rubber are denoted by M., lc. , and 
r • , respectively. The circular frequency is w and the applied acoustic 
pressure is p(r, t). 
Next, an approximate deflected shape is assumed, in terms of one 
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or more undetermined parameters, and substituted into (5). This 
shape function should satisfy the geometric boundary conditions for 
the plate (i.e., those on deflection and slope) identically, but may also 
satisfy natural boundary conditions (i.e., on shear and bending moment). 
After substitution, the spatial integration is carried out; then, the 
stationary value of the functional is found through the first variation 
and subsequent solution of simultaneous equations for the undeter-
mined parameters. Eigenvalues are found from the homogeneous sys-
tem. The procedure has been used for clamped and simply supported 
plates' and is usually found to be within a few percent of exact solutions. 
The trial function for the microphone is taken to be 

w(r)  + el l (6 ± 2v)(r)2 ± (1 ± 1( 7'11  (6) 5 + V  re  5 + v 

where a, and a, are the undetermined parameters (the harmonic time 
dependence has been suppressed). This trial function has the properties 

that 

and 

w(0) = a. + al , 

wfrà = ce<„ 

111,.(r,) = O. 

(7a) 

(7b) 

(7c) 

This implies that the generalized coordinate a, represents the motion 
at the outside edge of the plate and that the generalized coordinate 
a, represents motion of the center of the plate relative to edge motion. 
The boundary condition on shear at the outside edge is not, and need 
not be, satisfied by the trial function; the boundary condition or radial 
bending moment at the outside edge, which also need not be satisfied 
by the trial function, is explicitly satisfied, as indicated by (7c). Note 
that (6) has the value w(r.) = tb, at the effective support radius. 
Carrying out the steps previously indicated yields the matrix equation 

governing the system: 

UK] — co2[M]1{:} = {F{, 

where the stiffness matrix, [K]; the mass matrix, [M]; and the load 
vector, {F{, are given by 

D X  Xee 
[K] = 

re 32(1 + v)(7  v)  
MD. MD. + 3(5 + v)2  - 

(s) 

(9a) 
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and 

= Phr 
1 + m 

1 (7 + v 
6 \ 5 + ) 

, (9b) 
1 (7 ± v) (1,2 ± 36v + 113) _,_ 
_6 \ 5 ± v  30(5 + v)2 mw ' 

IFI = Ipori 

[1 -  (15 :)(rr:)41 
1  1 ,  (9e) 

respectively. The dimensionless parameters X and m are defined by 

r2 • r k  r„M„ 
D '  m =  phr, 

and the variables p„ and r, are the uniform acoustic pressure and the 
loading radius (0 < r1 < r1). 
As an illustration of the Rayleigh-Ritz procedure, consider a trans-

ducer composed of two PZT-5A disks, each 0.006 inch thick and 0.590 
inch in diameter. The bonding layer is assumed to have negligible 
thickness. With an in-plane extensional modulus of 6.1 X 10" dynes/cm' 
and a Poisson's ratio of 0.35, the flexural stiffness for the plate is D 
1.644 X 10° dyne-cm. The effective radius of the rubber support (the 
centerline of contact with the conical washer) is taken to be 0.708 cm, 
r, = 0.75 cm, the density for PZT-5A is 7.8 g/cma, and the total thick-
ness of the plate is 0.0305 cm. 
Using these data, approximate values for the first two resonant 

frequencies can be found as a function of the stiffness ratio, X, and 
the mass ratio, m. Figure 6 shows these two resonances plotted pa-
rametrically with respect to X and m. From this plot, the primary 
effect of the rubber effective mass is to lower both resonances (the 
second much more markedly than the first). 
The Rayleigh-Ritz results are summarized in Table I. Effective 

translational inertia is found from Ref. 10, where the effective mass 
of a rubber block bonded between two plates was shown to be slightly 
larger than one-third of the total mass. Since the total rubber volume 
per radian is 0.0312 cm' and r, = 0.708 cm, then 

(10) 

M. = 0.0146 pn g/cm/radian,  (11) 

where pR is the density of the rubber (pR  1.2 for PBD/SBR and 
1.0 for PBD/CBT). The extensional modulus values are obtained by 
fitting the WLF shifted data of Fig. 5 by collocation;" the effective 



552  THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972 

10 

8 — 

  , DIMENSIONLESS RUBBER EFFECTIVE MASS 
2pherc2 

4  a  12  16  20  24  28 

/I % Ks  
X =  0  DIMENSIONLESS RUBBER STIFFNESS 

' 

Fig. 6—First and second resonances vs rubber mass and stiffness. 

stiffness is then computed using the conversion factor, lc = 0.8, found 
previously. The frequencies shown in Table I will be seen later to 
be in excellent agreement with measured results. 
The direct variational calculations can be extended to include forced 

response and complex rubber properties. Rather than rely on (8) 
entirely, however, a more exact representation is formulated in the 
next section. 

TABLE I—RAYLEIGH—RITZ RESULTS 

PBD/SBR PBD/CBT 

3 kHz 10 kHz 3 kHz 10 kHz 

M. 
nl 

k. 

ft 
f2 

0.0176  0.0176 
0.093  0.093 
116 X 100 148 X 10° 
92 X 10°  118 X 10° 
22.5  28.5 

3.3 kHz 
9.2 kHz 

0.0146  0.0146 
0.078  0.078 
48 X 10°  59 X 10e 
38 X 100 47 X 100 
9.5  11.5 

2.7 kHz 
7.3 kHz 
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IV. EXACT SOLUTION-LUMPED SUPPORT PARAMETERS 

In this section, the effect of the support stiffness and damping is 
treated through a boundary condition on the shear resultant. This 
resultant is assumed to act at the mean radius of the conical washer, 
implying that the contact area of the rubber is small in comparison 
to the area of the ceramic (see Fig. 3). Then, the forced harmonic 
response of the plate can be found from the solution to 

iwf 
— 1-5 e ' 

V4w —  = 1 
O < r <r, 

0,  r,<r <r. 

where the wave number, k, is defined by 

— 1'112 - — D 

(12) 

(13) 

Due to the assumed cylindrical symmetry of the pressure, only 
axisymmetric solutions of (12) are sought. The plate is then divided 
into three regions: (1) 0 < r < r, ; (ii)r, < r < r. ; and (iii) r, < r < r . 
Solutions over these regions are pieced together by satisfying continuity 
(boundary) conditions on the transverse displacement, the slope, the 
radial bending moment, and the shear force at the radii r, and r, ; 
in addition, the homogeneous boundary conditions on radial bending 
moment and shear at the free outer edge of the plate are satisfied. 
At the effective support radius, 

Q(ri-) —  ko2M» — k.(w)iw(r.);  (14) 

i.e., the net shear is opposed by a complex impedance that is propor-
tional to the transverse displacement at that point. The impedance 
is composed of an inertia term, represented by w2M, , and a complex 
stiffness, written as a generalized Maxwell model' in the form 

ks(w) == ICU 1- ikqw),  (15) 

where 

N  k 412 T2  
le„(co) = k,, +E 22  (16a) 

.-1 1 ± cor„ ' 

N k COT 
k:'(co) = E  -I- W T,, (1613) 1  2r! ' 

and k , k,,, and r,, are the equilibrium (rubbery) stiffness, an incre-
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mental stiffness, and a relaxation time associated with an incremental 
stiffness, respectively. 
The technique that is used to solve this system, subject to the above 

stated boundary conditions, does not require the determination of the 
eigenfunctions of the problem. This procedure can be avoided since a 
particular solution is known: namely, 

ieD ' 
w„ 

o <r <r i 
(17) 

0,  < r  . 

To this solution it is necessary only to add properly weighted homo-
geneous solutions to satisfy the boundary conditions—in this case, 
ordinary and modified Bessel functions of zero order. The matrix 
inversion required to find the proper weights is carried out on a digital 
computer and the solution to (12) can then be determined as a function 
of the acoustic driving frequency. The voltage output is then found 
from the expression derived in the Appendix. 
Two numerical examples are solved in order to illustrate the pro-

cedure and to compare the exact (lumped parameter) results with 
experiment. The transducer design is identical in both cases; the only 
difference is the conical washer material—in the first case, the PBD/SBR 
blend; in the second case, the PBD/CBT blend. Effective mass and 
stiffness are computed by procedures that were described previously. 
The comparison to experiment for the PBD/SBR blend is shown in 
Fig. 7 and a similar comparison for the PBD/CBT blend is shown 
in Fig. 8. 
The response comparison for both examples is favorable up to fre-

quencies slightly above the first resonance; then, in both cases, an 
intermediate response peak is not captured by this model and the re-
sponse peak at the next resonance is predicted to be much lower than 
shown by experiment. The location of this latter peak is, however, 
quite favorable. Perhaps the most disturbing feature of the comparison 
is the encouraging proximity of the analytical results to the design 
goal (see Fig. 1)—encouragement that is not borne out by the actual 
transducer performance. It seems apparent that other deformation 
mechanisms, not represented adequately by the lumped mechanical 
model of the conical washer support, are dominating the response at 
the higher frequencies. For this reason, a more exact model of the 
support structure is in order. 
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V. FINITE ELEMENT ANALYSIS 

In order to understand the limitations of the lumped mechanical 
model of the rubber support, a finite element code' was exercised. 
The code was designed to dynamically analyze axisymmetric elastic 
solids subjected to arbitrary time-dependent loads and includes, as an 
option, the frequency and mode shape calculations for the solid. For 
this application, the ceramic was discretized into eighteen plate bending 
elements and the conical washers were discretized into three successively 
finer grids, with the most dense grid containing 92 quadrilateral con-
tinuum elements. All materials were treated as elastic—the absolute 
value of the complex extensional modulus of the rubber was used—and 
Poisson's ratio was chosen to be either 0.45 or 0.49. 
A modal survey was then conducted for varying values of rubber 

extensional modulus. The four lowest resonant frequencies and their 
corresponding mode shapes were calculated for each modulus value. 
Typical results are shown in Figs. 9a-9d. These figures portray the 
influence of the rotatory inertia of the cantilevered frustum, which 
vibrates either in-phase or out-of-phase with the outer edge rotation 
of the ceramic. Note that the out-of-phase modes, Figs. 9a and 9c, 
are not strongly piezoelectrically active, whereas the in-phase modes, 
Figures 9b and 9d indicate substantial edge rotation with reference to 
central deflection. 
A composite plot of all the results obtained from the modal survey 

is shown in Fig. 10. This plot correlates well with the experimental 
results of Figs. 7 and 8. Note that the results are only slightly de-
pendent on the value of Poisson's ratio and on the discretization. 

VI. CONCLUSIONS 

With the knowledge gained from these three phases of analysis, a 
coherent set of design conclusions can be drawn. These recommenda-
tions fall into two categories: (i) rubber material selection and (ii) 
conical washer design modification. In Figs. 11 and 12 the response 
variation of the ceramic transducer and its rubber supports is shown, 
as a function of environmental temperature, for the two different 
rubbers.'4 Clearly, the rubber modulus is increasing too rapidly and 
the loss tangent is not holding an adequate value at the lower tem-
peratures. In addition, the rotatory inertia of the unconstrained rubber 
is creating intolerable amplitude levels at the higher frequencies. In a 
recent investigation," block copolymers cast from different solvents 
seemed to yield dynamic mechanical properties with desirable damping 
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Fig. 9a—Resonant mode shape, fo 

Fig. 9b—Resonant mode shape, fo 

Fig. 9c—Resonant mode shape, fl 

Fig. 9d —Resonant mode shape, f2 
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characteristics and relatively stable stiffness. Because of the dual 
transition (see Fig. 13), a styrene-butadiene-styrene block copolymer, 
obtained from solutions in carbon tetrachloride (c), toluene (T), ethyl 
acetate (E), and methyl ethyl ketone (M), has a sufficiently high loss 
tangent over a 200°C temperature range and also has a relatively 
constant modulus over a 130°C range. If the modulus is too high over 
this range, the washer design can be modified—thinner and taller 
cross section—to achieve nominal stiffness. A material tailoring program 
might produce a rubber which will help the transducer meet the design 
template. 
In addition to the improvement of rubber mechanical properties, 

the washer design should be altered in order to decrease, substantially, 
the rotatory inertia of the unrestrained cantilever section. One pos-
sibility is shown in Fig. 14. An inverted vee-shaped design is depicted 
for the bottom washer that has three salient features: (i) a thinner 
cross section in order to maintain the modulus/stiffness ratio; (ii) re-
straint of the cantilevered section; and (iii) a seating lip to aid in 
fabrication of the transducer. 
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APPENDIX 

Voltage Output Calculation 

The voltage output of the bimorph ceramic microphone is calculated 
from the strain field under the following assumptions. 
The significant contributions to the component of the electric field, 

Ez(r), perpendicular to the midplane of the plate are generated by the 
two strain components E„ and 48 . This assumes that the electric dis-
placement field is negligible. Hence 

Z • B(r) = Ez(r) = Z • ( —h•S  g• D) (18) 
A —h12€12 — /hem , 

where Z is the unit normal vector to the plate, h the piezoelectric tensor 
relating strain, S, to electric field, and  the electric displacement 
field, D, to electric field." However, for a ceramic poled in the Z direc-
tion, h. = h,2 ; hence, 

Ez(r) = —hi ( 3‘E12  E13) 

=  h13(Err  toe). 

From thin-plate theory, the strain term is given in terms of the 
midplane displacement, w(r), by the expression 

Ii ddr (7. ddril ; 

thus 

Err ±  EEO = 

Ez(r) =  (7. ei • 
The average electric field over the plated area is given by 

f 1 '2 '  E z(r)rd 
71-r n  n 

where r„ is the electroded radius. 

(19) 

(20) 

(21) 

(22) 
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Substitution of (21) in (22) yields 

E ave  r p2  r dr ) r-rp • 
2zh,. dw 

The potential difference across one plate is therefore given by the 
line integral fo' Eavc dz, but, since the two plates are series connected, 
the total voltage is given by 

21a 3 e.. (dw 
r„  dr 

where hc is the thickness of one ceramic disk, and h = 2h, the total 
thickness. 

(23) 

(24) 
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Effect of Ambient Temperature on Infrared Transmission 
Through a Glass Fiber 
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(Manuscript received December 2, 1971) 

Recent progress in reducing the losses in optical fibers' has increased 
the possibility that such fibers might be used as dielectric waveguides 
in future optical communication systems.' The loss properties of such 
fibers are therefore of interest. This note concerns the measured change 
in transmission loss of a glass fiber for an ambient temperature variation 
of —196°C to +200°C. The results indicate that the loss in glass fibers 
varies only slightly with temperature. 
The attenuation measurements were made on single fibers taken 

from a Corning type 5900 optical fiber bundle. These fibers were ap-
proximately 60 ean in diameter and had a very thin cladding with a 
refractive index about 10 percent below that of the core. The elevated 
temperature measurement was performed on a 39-meter length which 
was made up of three 10- to 20-meter lengths joined into a single piece 
by a low-loss fusing process.' The reduced-temperature tests were 
made with a 12-meter segment of this same fiber. The light source 
consisted of a 50-pm-diameter gallium arsenide light emitter diode 
(GaAs LED)4 which was used to supply about 0.05 mW of power 
into the fiber at a wavelength of 0.9 m. Detection was accomplished 
with a silicon PIN photodetector. The high-temperature test was 
carried out with the major portion of the fiber on a reel in an oven; 
for the low-temperature test, the fiber was coiled in a Dewar flask 
filled with liquid nitrogen. In both cases, the source and the detector 
were outside the test chamber in a room-temperature ambient. 
Calibration and stability tests showed that no measurable change 

occurred in the LED output when the input current was maintained 
within ±0.05 percent; that the optical power from the LED decreased 
0.24 percent for a. one-degree rise in the ambient temperature (near 
25°C); and that there was no measurable change in the detector sen-
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sitivity for an ambient temperature variation of ±2°C. The recording 
voltmeter drifted less than 0.001 mV (the estimated reading accuracy) 
in a 5-hour period. The time of an individual run was less than one 

hour. 
Results of the measurements are summarized in Table I. The absolute 

attenuation of the fiber at room temperature was determined by 
measuring the received power, first through the entire length, and then 
(after breaking the fiber near the source) through a very short length. 
The tabulated results include a correction for a 0.144-percent reduction 
in input power due to a 0.6°C increase in the ambient temperature 
near the LED during the course of the heating run. The ambient 
temperature neat the detector changed less than one degree during 
both runs, and thus no correction was required. The difference in loss 
per unit length of the two sections of fiber listed in the table is typical, 
in our experience, of the variation in the infrared loss of different 
individual fibers from the same bundle. 
On the assumption of a thermal expansion coefficient for the glass 

of approximately 1 X 10-5/°C, the change in fiber length over these 
large temperature ranges is significant. The estimated increase was 
7 cm for a temperature increase of 175°C, for example. While this 
expansion slightly changes the value of the fiber loss per unit length, 
it does not affect consideration of the total change in loss between 
two terminals connected by a specific fiber. 
The small variation in transmission loss measured for rather extreme 

temperature changes indicates that glass or glass-like dielectric wave-
guides should have transmission characteristics essentially unaffected 

TABLE I—MEASURED CHANGE IN OVERALL 
TRANSMITTED POWER THROUGH CORNING 

5900 FIBER 

Fiber Length 
(4),25 °C 
(In) 

Ambient 
Temp. 
(. 

Received 
Power 
(dBm) 

Fiber 
Loss 
(dB) 

Change in Effective 
Attenuation Constant 

(%) 

39.20 +25 —44.83 31.82t 
+200 —44.78* 31.76t —0.19* 

12.02 +25 —26.29 13.28t 
—196 —26.41 13.42: +1.05 

* Corrected for change in source output due to ambient-temperature change of 
source 
t Measured 
* Derived from change in received power 
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by ordinary ambient temperature changes. The measured value for 
this fiber, of the order of 0.001 percent per degree Centigrade above 
room temperature, would correspond to a variation of the order of 
10-a dB/°C between repeaters separated by a transmission line with 
an overall attenuation of 50-60 dB. Thus the complex active tem-
perature compensation required by coaxial cable systems' probably 
would not be necessary in a system employing fiber transmission lines. 
These results qualitatively confirm the expectation that the ab-

sorption characteristics of wide band-gap materials should change 
very little as a result of normal temperature fluctuations. Furthermore, 
the direction of the small but detectable changes measured here is 
consistent with an increase in the lower-energy-state population of 
the glass at lower temperatures. 
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