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Fifty Years of BSTJ 

It is appropriate, on this fiftieth anniversary of the founding of BSTJ, to 
recall the genesis and purpose of the publication, as set forth in the Foreword to 
Vol. 1, No. 1, of July 1922 (see opposite page). 
This perceptive and prophetic note by the founders of the BSTJ states clearly 

their conviction that the art of telecommunication would require the 
ever-increasing application of scientific knowledge and the scientific method, 
and that this effort would, in turn, expand the boundaries of human knowledge 
in many fields. The BSTJ was planned to make these advances available to the 
world, treating a range of subjects as broad as the "science and technique of 
electrical communication itself." 
How well has BSTJ performed this function? How best to catch the 

excitement and import of the technical papers that span these fifty years? One 
approach is to select a few out of the many outstanding papers to illustrate the 
forward thrust of telecommunications over the period. (See foldout.) 

The early days 
From the beginning, BSTJ authors saw their primary goal as extending the 

depth of understanding, and particularly of quantitative understanding, of the 
science and technology involved — to lay a solid foundation for the ever-growing 
nationwide telecommunication network. 
This quantitative base extended from Harvey Fletcher's paper on "The 

Nature of Speech and Its Interpretation" to articles such as George Campbell's 
"Physical Theory of the Electric Wave-Filter," Harry Nyquist's "Certain 
Factors Affecting Telegraph Speed," and Clinton Davisson's "The Discovery of 
Electron Waves." With a systems view the fundamentals of a network combining 
efficient transmission and switching were worked out. Using the understanding 
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of telephony as a springboard, important contributions were made in a variety 
of related fields—movie-making, orthophonic recording, and television are 

examples. 
In this era were laid the foundations for the great transmission advances: 

electric wave-filters, crystal filters and oscillators, Harold Black's epochal 

invention of stabilized feedback amplifiers, fundamental work on coaxial cable 
and waveguide systems, HF radio across oceans. All these were based on 
advances in understanding of the physics and mathematics involved. System 
applications were paced by the rapid sophistication of design of vacuum tubes. 
In the same period, panel and crossbar dial systems were developed to meet the 

needs for improved switching. 

The middle period 
The World War II years saw a great burst of application to military uses of the 

knowledge built up during the earlier period. Some of the basic electron tube 
and radio work reported in BSTJ in the late 30's paved the way for many of 
these advances. For example, this background made possible the development 
of the magnetron, newly invented in England, into a reliable generator of 
microwave pulses and a key to practical radar systems. "The Magnetron as a 
Generator of Centimeter Waves" by James Fisk, Homer Hagstrum, and Paul 
Hartman represents one important result of this work. 
The mood of the post-World War II period was one of great confidence and 

expectation, fulfilled in a giant forward step — the discovery of the transistor. 
This was the key to unlocking the miracles of modern semiconductor 
electronics. Papers by William Shockley, John Bardeen, and Walter Brattain 
documented this advance. The transistor was destined to change radically all 

elements of the telephone network — transmission, switching, and customer 
systems. Outside the Bell System, it formed the cornerstone for a revolutionized 
electronics business and a huge new computer industry. Other major advances 
included Claude Shannon's "A Mathematical Theory of Communication," 
John Pierce's and Rudi Kompfner's traveling-wave tube work, Harald Friis' 

microwave antenna and repeater work, and Jack Morton's microwave triode. 
The early 1950's saw also the beginning of the bold and massive effort to 

spread automatic switching throughout the nationwide network, as described in 

the paper "Automatic Switching for Nationwide Telephone Service" by A. B. 
Clark and Harold Osborne. And the modern approaches to materials science and 
engineering were firmly laid, leading to synthesis of a wide variety of new 
materials with properties especially tailored to meet communications needs - 

needs extending all the way from tough low-cost cable sheathing to exacting 

semiconductor properties. 
In this period also was made the far-reaching decision that all new Members 

of Staff in the development areas at Bell Laboratories should receive advanced 
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training beyond the Bachelors level. (This was already the practice in the 

research areas.) This trend shows in BSTJ papers in later years, with many very 
scholarly and fundamental papers written by members of the development 
staff. The prophetic words of the "Foreword" of 1922 were to come true with a 
completeness that might have surprised those early contributors. 

Since 1955 
The most recent decade and a half shows a continuing evolution in system 

complexity to meet the telecommunications needs of a population whose 
telephone usage reached 170 billion calls in 1971. We start this period with the 
transistor finding its first truly widespread application, and in its wake, a rapidly 
maturing technology in solid state electronics and an expanding computer 

capability built firmly on this technology. The mood is one of excitement that 
"almost anything" in the way of new systems concepts is technologically 
achievable. Contributing to this mood are the discovery of the traveling-wave 
maser and the laser, of hard superconductors, and the ever-increasing 
sophistication in the understanding and use of materials. Parallel advancements 
in computer science pave the way to rapid development of languages and 
software systems which spark an explosion of computer applications to design, 
simulation, control, and manufacture. 
In this period of BSTJ history, individual papers shine as before, but our 

evolving network complexity is suggested in a new way by the increasing 
number of special "systems" issues. The Te/stare Experiment issue documents 
man's first big step into satellite communications. The issue on No. I ESS 
describes the revolution in switching systems. And the wide range of technology 

and systems work to achieve a brand new two-way switched audio-video service 
is reviewed in the Picturephonee System issue. 

Looking ahead 
We enter the 70's with new building blocks such as charge-coupled devices, 

magnetic bubbles, miniature solid-state lasers, and minicomputers becoming 
available, and this reinforces our confidence that almost any technical challenge 
can be met. Within the field of switching, the burgeoning use of stored program 
electronic systems continues to point the way to new services. In transmission 
there is a strong feeling that we are on the threshold of another giant step - one 
which may have almost as widespread an effect on how we carry future 
telecommunication signals as the transistor has had on today's transmission 
network. That step is the emergence of low-loss optical fibers as a practical 
medium for information transmission. 
But we also enter the 70's with increased awareness that our new system 

choices must show substantial economic and service margins over existing 
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systems if we are adequately to provide the new services that our advancing 
technological base promises. Topping past achievements is no small challenge, 
but the use of new technology to build on these accomplishments promises 

achievements yet unforeseen. 
The sweeping observation of fifty years ago that "electrical communica-

tion touches upon almost every branch of science" seems equally applicable 
today. This observation also applies to the social sciences, as evidenced by 
increasing attention to the social impact of telecommunications and to the 

needs and aspirations of the individuals that comprise a large organization. 
Thus we can expect that in addition to continued "hard-science" advances in 
areas such as the basic understanding of materials, and of circuit, transmission, 
and switching theory, there will be increased contributions by BSTJ authors 

to solving relevant societal problems as well. A growing involvement in 
operational aspects of the nationwide network is one step in this direction. 
As the BSTJ begins its second half-century one thing seems clear, even in this 

era of change. The flow of ideas, understanding, and concrete realization 

reported in its pages will continue to represent the main stream of progress 
foreshadowing the systems that will supply tomorrow's telecommunications 

demands efficiently, economically, and responsibly. 
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Network for Block Switching of Data 

By J. R. PIERCE 

(Manuscript received December 4, 1970) 

This paper describes a possible sort of data network for the transmission 
of addressed blocks of data between data terminals. The network consists 
of a number of closed rings or loops around which data blocks circulate. 
Data terminals on local loops can read data into empty blocks and read 
data addressed to them from full blocks. Buffered devices transfer data 
between local and regional loops and between regional loops and a national 
loop. Loops so interconnected need not be synchronized; they need not even 
operate at the same bit rate. Provisions are made for a "busy" signal, 
for special loops to carry heavy traffic between particular local loops, and 
for alternate routing. 

I. GENERAL INTRODUCTION 

1.1 The Aim of This Paper 

This paper describes a data network in which addressed blocks of 
data find their way through a network of interconnected loops. The 
network does not use common control. Rather, simple customer ter-
minals and simple devices which monitor and interconnect "loops" 
or "rings" would be added as such a network was brought into being. 
Thus, the cost and complexity would grow as the network grew. 

1.2 The Digital Communication Situation 

There is an increasing amount of digital traffic associated with 
computers and computerlike devices. Some of this traffic is highly 
intermittent but demands good transmission and quick response. Most 
networks at present available either offer quick response but monopolize 
a channel (private lines) or require an appreciable setup time (line 
switching). 
One approach to handling intermittent, quick-response traffic is to 

transmit such traffic in blocks around loops or rings. " This paper 
describes a system in which simple customer terminals put blocks of 
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data onto or take blocks of data off of a loop or ring. Nonsynchronous 
loops or rings can be interconnected to form a widespread network.° 
This network takes digital circuits as they are; it does not impose 
special modulation formats as has been proposed.' 

II. THE ENVIRONMENT OF A SWITCHED DATA NET WORK 

The environment in which a switched data network would operate 
is different from the environment of telephone service. About all one 
can say for sure about "data" is that the input and output will appear 
in, or can be translated by the user into, binary form, and into serial 
binary form if need be. It is commonplace for the user or his machine 
to address messages, to look for addresses, to check for errors in various 
ways, and to perform other complex functions. Thus, user equipment 
can do, the writer believes, many things that the carrier might consider 
doing. 
A data network would be different in another way. The line-switched 

telephone network is already there, in reach of wherever a data ter-
minal or a data switching equipment might be. Hence, it is not at all 
necessary that messages concerning faults or the monitoring of opera-
tions be transmitted by the data network itself. The line-switched tele-
phone network can be called in at any time. 
Finally, in order to succeed, a data network must be able to grow 

gradually, gracefully, and economically, both geographically and in 
traffic capacity. Data channels for growth can readily be provided. 
Switching means will be needed at an increasing number of locations 
as the service grows. Switching means, which must of course be highly 
reliable, should be as simple and inexpensive as possible, consistent 
with providing satisfactory service to a community of sophisticated 

users. 

HI. SERVICE REQUIREMENTS 

What service requirements should we put on an address-switched 
data communication network? What should be reserved for the carrier 
and what should be left to the user? 
In addressing these questions we should remember that equipment 

or functions "left to" the user can as an option be supplied by the 
carrier through special "add on" equipment. 
In the list below, several areas of requirements are discussed. 

3.1 Modulation and Timing 

The modulation and timing should be under control of the carrier; 
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otherwise there can be no assurance that transmission facilities will 
work or can be interconnected. The user should be provided with binary 
digits and a timing wave, which can be used in accepting digits or in 
putting digits into a terminal. 
This argues strongly the desirability of performing all network func-

tions other than transmission on binary streams, and providing modems 
to convert to binary at the ends of all transmission circuits which are 
used. 

3.2 Signal Format 

It is assumed that messages are transmitted by means of addressed 
blocks of binary digits, blocks of a common length. Certain positions 
within a block must be reserved for synchronizing and supervisory 
functions. Other positions should be accessible to the user for message 
digits and addresses. The sender's address might be put on by the carrier 
(to avoid misuse) or by the user. There seems no reason why the user 
should not supply the destination address. 

3.3 "Privacy" 

The carrier should supply in its switching system or data terminal 
means to assure that a message reaches only the customer to which it 
is addressed. 

3.4 Blocking 

A certain probability of blocking is inevitable.7'8 However, provision 
should be made to prevent a single user from blocking a system for a 
prolonged time by transmitting continuously. This could be achieved 
by assuring that the user puts data into the system at an average rate 
considerably lower than the speed of the channel which serves him.8 
Thus, he would necessarily leave the channel idle after transmission 
of any block. 

3.5 Errors 

Nothing that the carrier can do can entirely prevent errors. The cost 
of error correction can be high. Different users may tolerate different 
error rates. The computer art is sophisticated. It seems best to leave 
error correction to the user. The carrier should endeavor to supply a 
low-error-rate service. If this could not be done over certain trans-
mission links without error correction, the carrier might use error cor-
rection in these transmission links. The carrier can of course offer 
error correcting equipment as an option. 
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3.6 Failure to Deliver 

Some messages are bound to fail to reach their destination, either 
because of blocking in transmission, errors in transmission, or because 
the user is out of operation or busy. The simplest way to deal with 
failure to deliver is acknowledgment of receipt. This can be left up 
to the user. If the user divides a long message into many blocks, he 
can, if he wishes, number the blocks and acknowledge only the first 
block, the end block, and loss of an intermediate block (when he receives 
a block whose number is not one greater than that of the preceding 
block which he received.) Such precautions could take care of the pos-
sible but unlikely time interchange of blocks—a block being delayed 
by alternate routing and arriving after a block which was sent later. 

3.7 User Busy 

In different systems, "user busy" can mean different things. It might 
merely mean that the user wasn't reading things out of a buffer fast 
enough. This would certainly happen if user equipment failed. The 
carrier could provide some notification to the sender if a terminal fails 
to accept a message intended for it. 

3.8 Failure of Service 

The system should somehow monitor its performance and request 
service when it fails. Alternate routing can allow service around a failed 
portion of the system. When the user believes that service has failed, 
the most sensible provision would seem to be a telephone number 
that would put him in touch with a computer or a person. 

3.9 Buffering at Data Terminals 

Some buffering will probably be necessary at data terminals to allow 
adequate notification of receipt of • data and to allow notification of 
time when a block can be transmitted and correct timing of transmitted 
data. Buffering beyond this minimum required amount could be provided 
by the user, with an optional offering by the carrier. 

W. A PARTICULAR NETWORK 

This section describes a particular data network. It makes use of 
closed digital loops, as in some other networks. ' However, taken 
as a whole, it differs from other loop networks. ' It is assumed that 
access to transmission facilities is through modems whose inputs and 
outputs are binary digits and a timing wave. 
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Figure 1 shows several interconnected loops which could form a 
small data network or a part of a large data network. Each loop is a 
data transmission channel. Ti lines look very attractive for local loops 
to which customers are connected. Other lines, such as 50-kilobit lines, 
could serve as trunk loops. 
Three sorts of boxes appear in the loops: 
Each loop has a box A which contains a clock and a buffer, so as to 

time and close the loop. A also performs other functions. 
Unless a loop is a trunk loop, it also has boxes B which put blocks 

of data on and take blocks of data from the loop. 
Loops are interconnected by boxes C, which transfer blocks of data 

from one loop to another and perform other functions. 
Loops need not be synchronous, and speeds of transmission on dif-

ferent loops can be very different. Thus, transmission means can be 
fitted to the traffic on the loop. In transferring blocks from one loop to 
another, buffering will be provided to take care of differences in bit 
rate. Commonly, the buffer size will be one or more block lengths. 
The operation of the network in Fig. 1 is best explained by considering 

particular features and blocks. 

4.1 Block Format 

Figure 2 shows a possible block format. The block is divided into 
several sections. 
One section provides bits used for synchronization. These are written 

in by an A and used by B's and C's. 

Fig. 1—Several interconnected loops in a data network. 
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Another section indicates whether the block is vacant or full; this 
reads vacant until a B or a C writes in full prior to writing address and 
message digits into the block. 
Another part of the block is reserved for other supervisory marks; 

this space is used by the A's, B's, and C's, as will be explained later. 
Other spaces in the block are reserved for destination address, 

sender's address, and message digits. These digits are accessible to the 
user on receipt of a message and, with the possible exception of sender's 
address, are supplied by the user. 

4.2 Box A 
An A contains a clock and circuitry for writing in the synch digits 

at the beginning of an outgoing block. In addition, it contains a buffer 
for storing the digits of an incoming block. The buffer can conveniently 
be a whole block long. 
A block written by a B may have to pass an A in order to reach 

another B on the same loop. In this case, the A will simply read the bits 
of the block out from the buffer into the corresponding positions in the 
outgoing block. However, an A marks any full block that passes through 
it. When a marked block passes through an A, the A can interchange 
the sender's and destination addresses of any marked block. This returns 
the block to the sender and so provides a "busy signal" (the returned 
block) in case of any failure to deliver. 
When the addresses are interchanged, the block should be marked 

so as not to be erased if it passes an A box once but to be erased if it 
passes any A box twice (rather than another interchange of address). 
This keeps undeliverable blocks from circulating endlessly through 
the network. 
Rather than interchanging addresses in a marked block, an A could 

simply erase a marked block. In this case the system provides no "busy 
signal." 
The A box should monitor the incoming signal and somehow send 

SYNCH 

/  VACANT 
/  OR FULL 

(  1  MARKS 
DESTINATION 
ADDRESS 

V 

SENDER'S 
ADDRESS 

MESSAGE 
BITS 

 V 

BEGINNING 
ACCESSIBLE TO USER 

Fig. 2—Block format. 

ENDj 
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an alarm signal if there is none, or in the case of any other detectable 
malfunction. 

4.3 Box B 

The purpose of box B is to write data from a source into empty blocks 
and to read data from blocks. 
B has to synchronize an internal counter or clock with the syn-

chronizing pulses A writes in the blocks. This can be done by various 
methods. 
In putting a message into a vacant block, B will have stored in its 

buffer part or all of the bits to go into the block. B will monitor the 
loop for a vacant block. When it finds one, it will (i) mark the block 
as full, (ii) signal its message source that it is transmitting so that more 
bits can be read in from the computer or other source, and (iii) write 
in address and message bits. B may write in the sender's address from 
the message source or from an internal store. 
In taking a message from a block, B will examine the destination 

address of any full block. If this is the address of that B, the B will (i) 
signal the computer to accept bits, (ii) read address and message bits 
into buffer (if desired, message bits only can be outputted to the com-
puter), and (iii) mark the block as empty and erase any harmful 
supervisory marks. 
If desired, box B can signal the computer whenever a complete 

block has been received or transmitted, as well as when reception or 
transmission starts. 

4.4 BOX C 

The purpose of box C is to transfer blocks from one loop to another. 
As the loops which box C interconnects may have different bit rates, 
buffering up to several block lengths may be necessary or desirable. 
A C must decide whether to transfer a block or not. Thus, it must 

examine a part of the destination address of the message. The part 
it must examine is the address of the loop on which the destination 
lies, not the address in the loop on which the destination lies. The 
examination should certainly not involve a lengthy table lookup. 
In Section 4.6 the writer describes one simple scheme. In this, the 

C need merely compare a part of the destination address with one 
particular address and determine whether the addresses are the same 
or different. 
When a C transfers a block from one loop to another, it marks the 

block on the first loop as empty and makes any necessary erasures. 
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When a C effects a transfer, the block it puts onto the new loop is 
marked as not having passed an A; otherwise the block would be erased 
in passing an A in the new loop. The C, however, leaves intact a super-
visory mark which shows that destination and sender's addresses have 
been interchanged. 
An appropriate system layout will allow alternate routing; a 

message may be transferred by any of several C's on a loop, but not 
by others. 
If the buffer of a C is full when a message which it might have trans-

ferred arrives, the C rejects the message. A message rejected by all C's 
on a loop could pass an A twice, and the A would either interchange 
sender's and destination addresses, so that the sender would get a 
"busy signal" (the returned block), or else erase the block. However, 
if the addresses had already been changed and the block so marked, 
the block would be erased on passing a particular A for the second time. 
A C with a full buffer should signal for help. If the buffer is often 

full, there is danger of blocking. If the buffer stays full, something is 
wrong. 

4.5 Lost Blocks and Other Troubles 

Several things can cause the loss of a block. 
Mutilation of address (through errors in transmission or in box func-

tion) can render a block undeliverable. Such a block will eventually 
be erased or returned. 
Buffer overflow in a C may result in rejection of a block and sub-

sequent destruction at an A. This is the carrier's fault; more buffering 
or more channel capacity could have prevented loss. 
A block may reach the proper B but be rejected because of inadequate 

buffer capacity. If this bothers the recipient, he should add more buffer 
capacity. 
A block may reach the proper B but the equipment for which it is 

intended may be down. 
Errors introduced in going through the system may alter the address 

and send a block to the wrong destination. If the number of possible 
addresses is much larger than the number of addresses in use, this is 
not very likely to happen. Users can guard against false receipt of 
blocks by reserving some of their message bits for identification of 
desired messages, or by accepting messages only if the sender's address 
is in some restricted group. 
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4.6 Systems Plan and Logic 

In the foregoing account the exact logic of the C's and the overall 
organization of the system have not been spelled out. 
Figure 3 indicates the general features of the system plan. There 

are several hierarchies of loops—three in the figure. These have been 
labeled L (local), R (regional), and N (national). There is only one N 
loop. Various R loops connect to it by C's. L loops connect to the R 
loops by C's. L loops have B boxes on them to serve customers. 
An address of a message destination (or a customer) consists of three 

parts: 10.0 

, Number on the local loop (L) 
n2, Number of the local loop (L) 
na , Number of the regional loop (R). 
Let us consider how a C should act in transferring blocks between 

loops: 
(i) A block on an L loop is transferred to an R loop if its destina-
tion na (number of the local loop) is different from the number 
of the L loop it is on. 

Fig. 3—General features of system plan. 
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(ii) A block on an R loop is transferred to the N loop if its destina-
tion n3 is different from the number of the R loop it is on. 

(iii) A block on the N loop is transferred to an R loop if its destina-
tion n3 is the same as the n3 of the R loop to which it can be 
transferred. 

(iv) A block on an R loop is transferred to an L loop if its destina-
tion n2 is the same as the n, of the L loop to which it can be 
transferred. 

It is easy to see that this logic always gets a block to the destination 
address. 
The above scheme does not provide alternate routing, and it channels 

all traffic between different regional loops or their local loops through 
the national loop. There may be heavy traffic between particular pairs 
of regional or local loops. To accommodate this, R or L loops can be 
interconnected by special TRUNK loops, as shown in Fig. 4. The C's 
for such interconnection should be located so that a block passes them 
just before it reaches the C to a higher-order (N or R) loop, as shown 
in the figure. The C's to the TRUNK transfer a block only if the destina-
tion n3 (for a TRUNK connecting R loops) or the destination n2 and 
na (for a TRUNK connecting L loops) is the same as the n3 or n3 and n3 
of the loop to which the TRUNK can take the block. 
Sometimes one might wish to connect a physically remote R or L 

loop to an N or R loop. This might be done by a physical extension of 
the remote loop, as shown at the left of Fig. 5. It might be more econom-
ical to provide a trunk loop, as at the right of Fig. 5. Thus, blocks on 

Fig. 4—Special TRUNK loop. 



DATA BLOCK SWITCHING 

TRUNK 
LOOP - 

N OR R 

REMOTE 

R OR L 

Fig. 5—Methods of connecting to a remote loop. 
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the remote loop would not have to travel the length of a long extension. 
The trunk loop might be a slower-speed loop than the remote loop. 
The two C's should have the same logic as the one C to the left. 
What if the N loop fails? We can provide alternate routing by inter-

connecting regional loops with ALTERNATE loops as shown in Fig. 6. 
The C's connecting the R loops to the ALTERNATE loop should 
come after a C connecting an R loop to the N loop. Ordinarily, a block 
whose destination n3 is not the same as the n3 of the R loop it is on 
will be transferred to the N loop. If this fails, the following C will 
transfer the block to another R loop, as shown in the figure. Further 
ALTERNATE loops can be arranged so that a block which fails to 
reach the N loop will be passed from one R loop to another until it 
finally reaches the right R loop. 
Reliability can also be increased by making the N loop and all R 

loops double and interconnecting them as shown in Fig. 7. 
The L loops can be made double, too, perhaps by using the common 

two-way equipping of Ti lines. In the case of the L loops, one of the 
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Fig. 6—ALTERNATE loop. 

loops should be used in preference until it fails; then the A, the B's, 
and the C's should automatically shift to the other loop of the pair. 
If a B loses power or fails, an automatic switch should bridge across 

it so as to keep the loop closed. 

N 

R 

Fig. 7—Another method of increasing reliability. 

4.7 Blocking and Traffic Considerations 

The fact that material to be transmitted may be held for the ap-
pearance of a vacant block means that it is somewhat more likely that 
a full block will be followed by a full block than by an empty block. 
This must be taken into account in analyzing blocking. 
It has already been mentioned that an increase in buffer size at a 

C should decrease blocking. 

V. SOME CONCLUDING THOUGHTS 

Unless the network is overloaded, the data network outlined in the 
preceding sections will get a block of data from source to destination 
very quickly. 
Transmission of blocks of fixed length may seem restrictive, but it 

has a number of advantages. It allows easy synchronization at B's 
and C's and sure location of positions within the block. It lends itself 
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to acknowledgment and retransmission. Combined with a requirement 
that the average rate at which a user can transmit be considerably 
lower than the loop rate, it prevents one user from blocking a loop. 
If the C's are to have a simple criterion for transferring blocks, the 

numbering of loops must satisfy some simple criterion. The freedom 
available through translation between directory and office numbers is 
not available. Translation would certainly run the cost up and might 
slow operation. Perhaps it is wise to forego translation in a data network, 
and stick to a carefully planned numbering scheme. 
The data network has been deliberately kept very simple. It is 

multiprocessing with a vengeance. A few standard modules do every-
thing. The logic and much of the circuitry of all A's is the same; adapta-
tion is to the speed of the line. The same can be said for the B's and 
C's. Of course, for different types of channel, different modems will 
be needed in going to and from binary and in extracting and using the 
timing wave. Nonetheless, the network could be constructed of A, 
B, and C boxes and existing circuits and the modems for them. 
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In a companion paper, J. R. Pierce has described a novel data com-
munication network which makes use of a hierarchy of interconnected rings 
or loops. The basic elements necessary to realize this network are called 
"A," "B," and "C" stations. Data blocks are circulated on closed loops 
formed by the interconnection of "A" and "B" stations. The "B" stations 
provide user access to the network while one "A" station on each loop 
performs supervisory functions. Isolated loops are interconnected by "C" 
stations. This paper describes an experimental hardware implementation 
of specific "A" and "B" station designs which operate via a Ti carrier 
system loop. A hog prevention technique is incorporated into the system 
which prevents any group of stations from monopolizing a loop. A likely 
"C" station realization and loop transferring algorithm is outlined. A 
bypass box which would automatically remove malfunctioning stations from 
the loop is also described. 

I. GENERAL INFORMATION 

A new type of data communication network has been described in a 
companion paper by J. R. Pierce.' It uses asynchronous multiplexing, 
buffered switching, and a distributed control system. 
In this loop switching system, users are connected to the network 

by stations which are interconnected by a closed loop transmission 
line as shown in Fig. 1. Data is entered into and taken from the system 
in fixed-size blocks. Each data block consists of a unique synchroniza-
tion word and a header which contains source and destination addresses 
as well as control information. 
Each loop contains an "A" station which serves to close the loop, 

selectively repeating messages around the loop, and provides clocking 
and synchronizing information for all messages on the loop. 
Another type of station, called a "B" station, utilizes the clock and 
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I/O LINES 
TO 

CUSTOMER 

Fig. 1—Basic closed loop transmission network. 

synchronizing information provided from the "A" station to write 
message blocks onto and read message blocks from the transmission 
loop. 
A third type of station, called a "C" station, is used to transfer mes-

sage blocks between loops. It also supervises the routing of messages 
through a maze of loops to their ultimate destination. 
Laboratory models of the "A" and "B" stations have been designed 

and built to implement an experimental version of the data loop net-
work described above. This paper describes the essential external 
features of this hardware and a probable "C" station configuration. 
It should be noted the work reported on herein is solely a research 

project to test the feasibility of the concepts and to discover any un-
foreseen problems. 

II. CONTROL FEATURES 

2.1 Message Format 

The message formats and headers shown in Fig. 2 were chosen to 
keep the "B" station as simple as possible, since it is the most numerous 
component in the system. The first three words after the start of the 
block SYNC word are used for supervisory and current (or local) loop 
addressing functions. 
When traffic is confined to a single loop or to the same local loop, 

the local message format is used which consists of a local loop header 
immediately followed by N bytes of useful data. For any given network, 
N is fixed and was made equal to 54 for the loop described herein. 
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When addressing a station on a different loop the foreign message format 
shown in Fig. 2 is used. It consists of a current loop header and a 
foreign loop header followed by N — 6 bytes of data. The contents 
of the foreign header is used by the "C" stations to pass the message 
from loop to loop to its ultimate destination. 
The first word of each message block is a control word which is sub-

divided into fields that carry a coded representation of the status of 
the message block such as whether the block is vacant or full, private 
or common, and other conditions to be described later. The format of 
the Data Block Control Word (DBCW) and its control fields is sum-
marized in Table I. 

2.2 Loop Synchronization 

The following synchronization scheme was chosen to make the system 
compatible with the Bell System's Ti carrier system." As shown in 
Fig. 2, the message block is composed of 8-bit words which are always 
preceded by a guard bit. This prevents long strings of zeros which 
would cause the Ti carrier repeaters' to lose clock synchronism. The 
guard bit also allows one to construct a very simple loop synchronization 
scheme. A start-of-block sync pulse is generated whenever NINE 
consecutive zeros followed by a ONE are detected, with the result that 
an arbitrary number of ONEs are permitted between blocks. This 
allows the system to operate over large variations in loop length. 

TABLE I—DATA BLOCK CONTROL WORD FORMAT 

12 
TO 

34 

LC 

56 

SB 

78 

HC 

Type of Message Control Field (2 bits) 
Loop Vacant-Full Control Field (2 bits) 
Spare Bits  (2 bits) 
Hog Prevention Control Field  (2 bits) 

00 PM Private Message 
10 CM *Common Message 
01 UFM Undeliverable Foreign Message, Foreign 

Source & Destination Interchanged 
11 SCM *Special Common Message, can be written 

only via an "A" or "C" Station 

00 VCC Block Vacant 
10 FCC1 Block Full 
01 FCC2 Block Full and Passed an "A" Station Once 
11 FCC3 Block Full and Passed an "A" Station Twice, 

Current Loop S & D Interchanged 

* Valid for within loop traffic only 
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III. "B" STATION FUNCTIONS 

The main function of a "B" station is to provide an access port to 
the data loop network. It permits a user to read and write fixed-length 
message blocks under the supervision of a DBCW. Two general types 
of messages, namely private and common, are provided to facilitate 
message handling by the network. A private message, as the name 
implies, is used for personal or nonpublic communication between 
individual stations. The common message is used to broadcast the same 
message to a number of stations on the same loop. The main functional 
operations of a "B" station are described below and their corresponding 
logical equations are summarized in Table II. 

3.1 Reading Private Message Blocks 

If a "B" station detects a full block and recognizes the current loop 
destination address as its own, a message can be read from the data 
loop if the station's ReaD ReQuest line is enabled. The current loop 
source address and data is made available on the Parallel and Serial 
OUTput lines. A timing chart for both the Parallel and Serial Read 
STroBe lines and the terminal ReaDing gate is given in Fig. 3 together 
with a diagram summarizing the I/O signals needed to interface to a 
"B" station. The contents of the DBCW are stored in a register and 
made available during the entire read cycle on the Control Word 
OuTput lines. The station acknowledges reading a block by writing 
a block vacant mark into the DBCW's LC field. 

3.2 Reading Common Message Blocks 

A full block that is marked as being a common or special common 
message can be read by any station on the loop between the sender 
and the station nominally addressed, provided its Common Read 
ReQuest line is enabled. The nominally addressed station always marks 
the block empty to prevent its further propagation on the loop whether 
it is read or not. In other respects reading proceeds as described in the 
paragraph above. These messages can only be used for within-loop 
traffic. They will not be treated as foreign messages when received by a 
"C" station. A special common message is reserved for system use and 
can be written only by an "A" or "C" station. Its purpose is to provide 
a means by which system status information can be efficiently trans-
mitted about a loop so that economical network management and 
supervision schemes can be implemented. For example, it would be 
useful in setting up loop testing, billing, and automated maintenance 
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Fig. 3—"B" station I/O signals and timing diagram. 

procedures. The common message feature can be useful on special 
purpose loops where a number of stations wish to share a common 
data base such as when driving slave-type display systems. 

3.3 Writing Message Blocks 

A message is written when a station, whose WRite ReQuest line is 
enabled, detects a vacant block. When this occurs a block-full marker 
is written into the DBCW's LC field. The type of message code to be 
written (see Table I) is determined by the status of the Control Word 
IN lines and is written into the DBCW's TC field. The current loop 
destination address and data are entered, from a user's buffer, through 
either the Parallel INput or Serial INput lines as determined by the 
logic level of the Enable Serial WRi te line. The current loop source 
address is hard-wired within the station in order to provide positive 
sender identification. The timing for both the Parallel and Serial Write 
STroBe pulses and the terminal WRiting gate is given in Fig. 3. 

3.4 Format Error Detection 

The "B" station contains logic to continuously monitor the format 
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of the data loop. This is done by counting the number of words between 
consecutive start of block syncs. If the number of words is shorter than 
that needed to store a message block or longer than needed to store 
two blocks, a format error signal is generated. The "B" station also 
generates a format error if it detects a missing clock pulse. This error 
signal notifies the user as to the operational condition of the loop. 

15 Prevention of Data Loop Hogging 

Loop hogging can occur when certain send-receive patterns are 
established on a loop. For example, in Fig. 1, stations B2 and B5 through 
B8 cannot write messages onto the loop if B1 and B4 transmit continu-
ously to B3 and B9 respectively. This problem can be solved if, after any 
"B" station sends a message, it is prevented from sending another 
message until all other write requests on the loop are acknowledged. 
This was implemented by manipulating a 2-bit Hog prevention Control 
(HC) field in the DBCW of each message block in the following manner; 
(i) When a "B" station writes a message, a Hog Prevention Flip-
Flop (HPFF) in that station is set to ONE. The block's HC 
field, however, is circulated on the loop unmodified. 

(ii) If a "B" station on the loop has its WRite ReQuest line enabled 
when a full block is detected and if its HPFF is set to 
(a) ZERO, HC2 of the Hog prevention Control field is set to 

ONE; 
(b) ONE, nothing is done to HC2. 

(iii) If a "B" station detects a vacant block and if the HC field is 
(a) ZERO,  writing is independent of the state of HPFF; 
(b) NOT ZERO, the "B" station can write if and only if 

HPFF = O. 
(iv) When a data block pe-ses an "A" station the contents of H02 

become the contents of HC1 and ZERO becomes the contents 
of HC2, i.e., (H02)  (HC1) and 0 --> (HC2). 

(v) Whenever a "B" station detects an HC field whose contents 
are zero, its HPFF is reset; if it writes into this block, its HPFF 
will be set. 

The scheme outlined above prevents any group of stations from 
monopolizing a loop. The service rendered is equitable in that the 
resources of the loop are divided equally among all of the users request-
ing service. If M users have their WRRQ lines enabled, each user is 
guaranteed that he will have to wait for no more than M vacant blocks 
to pass before he can write—provided no new WRRQ lines are enabled 
while the station is waiting. It should be noted at this time that vacant 
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blocks are generated, not only by a "B" station that reads a message 
addressed to it from the loop, but also by an "A" station (see Section 
4.1) which detects three passes of the same message block. Considering 
this and the worst traffic situation that can occur on a loop, namely 
that all stations continually write messages to busy or nonexistent 
stations, we obtain, for an N-station loop, a maximum possible waiting 
time of 3N message block periods between consecutive write permits. 

3.6 Basic Delay Properties of Loop 

From a user's point of view, message string delay, D8, is probably 
the most important variable by which system performance can be 
evaluated. For a given loop, DB is the total time encountered in sending 
a message string consisting of K blocks between two stations on the 
same loop, and is given by 

Ds = KDA Dp  (1) 

where D A is an average access delay for the writing interval and Dp 
is a propagation delay. 
Propagation delay, D,, is the time interval from when a message is 

written onto a loop until it arrives at its destination on the same loop 
and is simply equal to the number of delay elements between the sender 
and receiver. Each "B" station contains an 18-bit shift register which 
results in an 18-bit delay for each station on the loop. 
Access delay, D A , is defined as the time lapse between when a station 

requests and is subsequently granted permission to write a message 
block onto the loop. If a station requests service continuously, D A 

is the time between two consecutive write permits for that station. 
It is a traffic-dependent random variable and as such requires statistical 
assumptions concerning user behavior to model it in a complete and 
rigorous manner. This random delay has been characterized in a study 
by J. F. Hayes and D. N. Sherman' for a data loop proposed by J. R. 
Pierce,' which did not include the above-mentioned anti-hogging scheme. 
It has been demonstrated in the section above, however, that the 

constraint placed on loop traffic by the anti-hogging control scheme 
places a maximum limit on this delay of 3N blocks and is independent 
of user behavior. We thus have a worst case access delay of 

(DA).. < 3N * L/C  (2) 

for a "B" station on a loop with the following characteristics: 
N = number of stations on the loop, 
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L = block length in bits (including header, message body, guard bits, 
and filter bits), 

C = loop bit rate capacity in bits/second. 
The maximum propagation delay possible for a given loop is 

(Dp)... < S * L/C  (3) 

where S is the number of message block sectors circulating on the loop. 
We now obtain a maximum message string delay of 

(Ds). < (3N * K + S) * L/C.  (4) 

Although these results can be used to estimate worst case loop 
delays under saturated traffic conditions, they are much too conservative 
for use on local loops. Few stations on a local loop will send messages 
continuously. Equation (2) can therefore be multiplied by an average 
utilization factor, 

N 

il = 1/N E m, 
1 

where pi is the probability that station i has its WRRQ enabled, and 
results in the following 

(5) 

DA < 3„N * L/C  (6) 

more realistic average access delay. Further analysis requires statistics 
concerning user behavior. 
The worst case traffic assumption that led to the factor 3 in the 

above analysis is rather conservative; for example, it may be replaced 
by unity if circumstances are such that one can assume that all messages 
are properly addressed and encounter no busy stations. 

IV. "A" STATION FUNCTIONS 

4.1 Supervision of Unclaimed Messages 

One of the primary functions of an "A" station is to dispose of un-
deliverable messages that occur due to being addressed to busy or 
nonexistent stations. This is done in the following manner: 

(i) When a message passes an "A" station for the first time, its 
DBCW is marked to this effect as shown in Table I. 

(ii) If the same message passes an "A" station twice, the destination 
and source addresses are interchanged and the DBCW marked 
to this effect. This sends the message back to the sender and thus 
serves as a station busy signal. 
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(iii) If the same message passes an "A" station for the third time, 
the block is marked vacant. 

4.2 Line Buffering 

In order to close the data loop, the "A" station must contain a 
loop closing buffer. The size of the buffer is dictated by the need to 
guarantee that the total loop bit capacity will always be large enough 
to store an integral number of data blocks. In the experimental model 
the buffer size is 512 bits and is fixed. The fixed buffer can result in a 
variable gap between messages, depending upon the number of stations 
on the loop. In an actual operating system it will probably be desirable 
to make this a variable length buffer in order to compensate for large 
variations in loop bit capacity due to changes in loop length. Loop 
length would be subject to temperature variations and changes due to 
taking malfunctioning stations off the loop. In any case, since the 
proposed synchronization scheme is insensitive to variations in loop 
length, this becomes a separate problem. 
Another problem can present itself at an "A" station when closing 

the loop. Data errors will sometimes result due to phase difference 
variations between the "A" station's internal crystal clock and the 
received Ti carrier clock. In short loops this difference is nearly constant 
and can be compensated for by delaying the Ti clock by a fixed amount. 
This was done in the laboratory model. On long loops this phase dif-
ference will vary due to repeater-induced clock jitter as well as those 
variations discussed in the previous paragraph. This problem can be 
eliminated, using a four-bit elastic store' in the "A" station, by reading 
data into a buffer under the control of the incoming Ti repeater clock 
and reading out under control of the "A" station's crystal clock. The 
buffer must be initialized during a format loop cycle so that the buffer 
cell being read into is two bits removed from the cell being read out. 
This prevents data errors by eliminating the possibility that a buffer 
cell will be overwritten before its contents are used by the "A" station. 

4.3 Formatting 

When an "A" station detects a format error signal, it reformats the 
loop. In cases where it is possible to have only ONE data block circulat-
ing on the loop, reformatting is easily done by filling the line with all 
ONEs and then inserting a sequence of nine ZER0s. If the error condi-
tion persists, the loop is down and some maintenance procedures must 
be initiated. 
In order to perform the various functions described above, an "A" 
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station needs a substantial portion of the logic contained in a "B" 
station. Therefore, the elements required to perform these operations 
are incorporated into one of the loop's "B" stations. A block diagram 
summarizing the additional logic needed is shown in Fig. 4. 

V. "C" STATION FUNCTIONS 

The primary purpose of a "C" station is to provide a means for 
interconnecting isolated loops. A likely realization of a "C" station is 
shown in Fig. 5. It consists of two "B" stations interconnected by a 
Buffer Memory and Controller. Messages destined for a station outside 
its own particular local loop are read and subsequently rewritten by 
"C" stations from loop to loop in the same manner as local interloop 
traffic. Buffering is needed because messages will often be delayed in 
going from one loop to another since messages already on the adjacent 
loop have the right of way. Buffering also has the desirable effect of 
allowing adjacent loops to operate at different bit rates. 
If a network consists of a hierarchy of loops, a particularly simple 

foreign addressing scheme results. Such a network due to Pierce' is 
shown in Fig. 6. Individual subscribers are connected together by a 
local loop. The local loops are interconnected by the "LC" stations 
forming regional loops which are in turn connected by "RC" stations 
to form a national loop. 

5.1 Loop Transferring Algorithms 

To gain some insight into how a "C" station can be designed using 
the "B" station hardware described above, let us send a foreign mes-
sage from X (R1, L2, B1) to Y (R4, L2, B2) in Fig. 6, examining the 
address portion of the message at each step. 
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Fig. 4—"A" station. 
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Fig. 5—"C" station. 

Station X starts the process by writing a private message, with the 
header shown in step 1 of Fig. 6, to its local loop "C" station. Note 
that all private messages sent and received by the local loop portion 
of a local "C" station are declared foreign. 
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The message is then read by the addressed "C" station if its buffer 
is not full. The LC field of the DBCW is checked to make certain that 
the current loop source and destination addresses have not been inter-
changed, i.e., LC 0 P003. The various control field codes are defined 
in Table I. 
The message header is then operated upon by the appropriate pro-

cedure denoted by entry point SW shown in Fig. 7. The position of 
switch SW depends upon which loop is being traversed. The message 
with its new header is now written onto the adjacent loop. By following 
the process to its conclusion one can easily see that the algorithm 
given in Fig. 7 always gets the message to its designated destination 
address if no "C" station with a full buffer is encountered. The addresses 
bracketed by periods in Figs. 6 and 7 are defined and written at the 
step indicated by the network's "B" or "C" stations and cannot be 
altered by a customer. This is done to insure proper message source 
identification. They and the user defined addresses of step 1 are sub-
sequently manipulated by the network's "C" stations as shown in Fig. 6. 

5.2 Undeliverable Foreign Messages 

If a destination "B" station, or any "C" station, encountered by a 
message block is busy, the condition is detected by an "A" station 
which interchanges the current loop source and destination addresses 
and marks this fact by making LC = F003. As a result, the message 
is sent back to the last "C" station from which it came. This "C" 
station examines the contents of the DBCW and upon finding LC = 
FCC3 takes one of the following alternate corrective actions: 
(i) If this is the message's first encounter with an obstacle, i.e., 
TC = PM, the message is read into the "C" station's buffer 
memory where its foreign source and destination addresses are 
interchanged. The message is also marked as being an un-
deliverable foreign message. The process then proceeds as di-
rected by entry point SW in Fig. 7 and thus sends the message 
back to the sender. 

(ii) If the message has already been marked as being an undeliverable 
foreign message, i.e., TO = UFM, the message is not read 
into the buffer memory. Therefore, any message that encounters 
two busy stations as it wanders through a maze of loops is de-
stroyed. 

5.3 Buffer Status Controls the Relaying of Messages 

In the system above messages can be rejected and even destroyed 
by the system. A message should be rejected only due to encountering 
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Fig. 7—"C" station loop transferring algorithms. 

a busy destination "B" station. This ideal system will be approached 
as system "C" station buffer capacity is increased. 
The following strategy can be employed to prevent message loss due 

to blockage by the system even in the presence of limited "C" station 
buffering. 
Each "C" station buffer is divided into two sections—an upward 

buffer and a downward buffer. As their names imply these buffers pass 
messages up and down the hierarchy of loops. When one of these "C" 
station buffers becomes nearly full, its station sends a buffer full status 
signal, via a special common message, to all the other stations on the 
loop from which the buffer in question receives messages. 
This buffer status information is used by the other "C" stations to 

prevent the relaying of messages to a station with a full buffer. 
The buffer full status signal is sent before the buffer is completely 

full because messages destined for the station may still be in transition— 
the maximum number of messages in transit being the capacity of the 
loop. 
The "C" station with the full buffer later sends a buffer clear status 
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signal to all stations on its loop when its buffer has room for additional 
messages. 

5.4 Redundant Loops 

The reliability and capacity of the hierarchical system just described 
would be substantially improved if redundant pathways were added. 
The alternate message routing and loop doubling schemes outlined in 
Pierce's paper' can be readily incorporated into the system for this 
purpose. 

VI. BYPASS BOX 

Loop integrity could be more readily insured and maintenance more 
easily performed if loop ByPass "BP" boxes were placed at strategic 
locations in the network. The logic of these boxes is given below. Such 
boxes would not only protect the loop against "B" station malfunctions 
but also protect the system against faulty repeaters and cables. 
The "B" station in Fig. 8 would be bypassed by the "BP" box if 

any of the following conditions occur: 
(i) Missing clock pulses are detected at IN2 but NOT detected 
at IN1 within a present period of time. 

(ii) Varying data pulses are detected at IN1 but NOT detected 
at IN2 within a preset period of time. 

(iii) Could be tripped manually or automatically from a central 
office to isolate some of the more subtle and unpredictable 
faults which will undoubtedly occur as in any system. 

A "BP" box can be tripped only by a fault which occurs on the sec-
tion of the loop it parallels. When it is tripped a delay equivalent to 
the bypassed section must be introduced into the loop. This could be 
done by having a fixed delay within the "BP" box. It may however be 
advantageous, especially from an installation cost viewpoint, to add 
some loop length measurement logic to an "A" station and have it 

Fig. 8—Loop bypass box. 
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control a variable length loop closing buffer in order to compensate 
for the delay. Once a "BP" box has been tripped it can be reset only by 
the carrier. Normally the carrier would trip or reset a "BP" box only 
when the loop is being formatted. This is necessary to prevent the 
destruction of messages that may be currently circulating on the loop. 
The notion of using the detection of missing clock pulses and the 

absence of missing data pulses to transmit information about major 
loop malfunctions are especially attractive because of the ease with 
which they can be implemented. Their use, however, requires careful 
consideration of Ti repeatered line performance when subjected to 
sparse or no input pulses. 

6.1 Repeater Performance with No Input Pulses 

If no input pulses are applied to a repeater, several possible con-
sequences result. A number of these are summarized below. 
A repeater may go into self-oscillation at approximately 10 KHz. 

This state would produce missing clock pulses which would be sensed 
by bypass condition i above. 
An eight-out-of-eight pulse train may be generated due to cross talk 

from the clock circuit on the other side of the repeater. Line repeaters 
contain two complete regenerators in one case which share a common 
voltage regulator. This state would be sensed by bypass condition ii. 
A regenerator which goes into self-oscillation may draw an excessive 

current from the voltage regulator thus adversely affecting the opera-
tion of its companion repeater. This condition must be eliminated or 
careful consideration must be given to how companion regenerators 
are used in the network. 
A new Ti repeater' has recently been developed and is currently 

undergoing field trials. The availability of this repeater will eliminate 
many of the problems described above because it was designed not to 
oscillate during the absence of an input signal. 

VII. HARD WARE PARTICULARS 

Two "B" stations and an "A" station have been implemented and 
interconnected using Ti carrier system repeaters as a component part 
of the stations. The Ti system uses bipolar pulse transmission techniques 
to span up to 6000 feet between repeaters and has a bit rate of 1.544 
MHz. 
The "B" station was built with 56 chips of standard 7400 series TTL 

circuitry, 6 of which are MSI circuits. The "A" station contains all 
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the logic of a "B" station plus 7 additional chips needed for message 
supervision and reformatting control logic and a 512-bit MOS loop 
closing buffer. A photograph of an experimental "A" station is shown 
in Fig. 9. 

Fig. 9—Experimental "A" station. 

A fixed message length of 522 bits was chosen because it allows a 
complete message to circulate on a loop made by closing an "A" station 
upon itself. The additional bits in excess of 512 come from the storage 
inherent within the "B" box portion of an "A" station. Therefore, 
each local message can accommodate 54 bytes of data while a foreign 
message contains 48 bytes of useful data. The bit rate and message 
block size can be easily altered if needed. The bit rate is dictated only 
by the characteristics of the Ti repeaters. 

VIII. CONCLUSION 

The system described above has been used to interconnect two 
DDP 516 laboratory computers. The computer interface and hardware 
for this system are described in a companion paper by C. H. Coker.8 
The equal sharing property of a loop and minimal constraints on the 
data format and simple addressing scheme allow the user a great deal of 
flexibility to structure the system to his needs. 
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Two laboratory computers have been interconnected through an addressed, 
block data transmission system (ring) as described by J. R. Pierce and 
implemented by W. J. Kropfl. This paper gives an idea of the equipment, 
programming, and protocols of communication through that system. 

I. INTRODUCTION 

J. R. Pierce has described a digital communications system in which 
addressed messages are transmitted through a hierarchy of inter-
connecting loops or rings.' Components for one ring have been imple-
mented by W. J. Kropfi.2 We have used the ring to interconnect two 
laboratory computers. 

1.1 User's View of the Ring 

To the user, the system resembles a high-speed telegraph service. 
A message, headed by a destination address, can be "put on the wire," 
and a moment later, it will be delivered to the addressee. Inside the 
network, the message is multiplexed onto a loop of circulating message 
blocks. If the addressee is on the same loop as the sender, the message 
travels around until it reaches him. If the addressee is on another ring, 
the message is passed from ring to ring, up and down the hierarchy, 
until it reaches him. Thereupon it is removed and its place on the loop 
marked "empty." 
But these internal details are invisible to the user. From his viewpoint, 

he can transmit directly to anyone he designates—without prior negotia-
tion with the network to place a call, without worries of maintaining 
the connection for possible further communication, or of breaking it 
when finished. 

1167 
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II. HARD WARE: THE BASIC INTERFACE 

Electrical communication with the network terminal ("B" station ") 
is simple. To send a message, the user signals the terminal that he is 
ready to transmit (A in Fig. 1). Milliseconds later, depending on network 
timing and traffic, the terminal begins sending back clock pulses (B), 
by which the sender is to shift into the terminal first an address and 
then data (C). 
The message propagates through the network, ultimately to the 

addressee. If his receive ready line (D) is set, his terminal delivers the 
message, headed by the sender's address, serially (E) with clock pulses 
(B) for shifting. 
The main constituents of a computer interface to this terminal are 

a shift register (F), for matching the parallel format of the computer 
to the serial ring; parallel full-computer-word buffers (G, H), for match-
ing the narrow timing tolerances of the shift register to the more 
asynchronous responses of the computer; and logic (J), for controlling 
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read or write lines to the station, and for getting data into (K) and 
out of (L) the computer. Not shown in the figure are a counter, to 
segment serial bit streams into computer words, and assorted compo-
nents to control buffer loading. 
A basic interface for computer input-output at a fundamental level 

(through an "I/O bus") requires about 40 7400-series integrated circuit 
chips. Depending on the machine, some or most of these interface 
operations can be accomplished with less special design, using standard 
computer options. 
The speed of the ring allows, in most cases, computer input-output 

to be done by block transfers through data channels, or to be pro-
grammed word-by-word. Some machines, however, are not fast enough 
to keep up with the Ti carrier loop system, transmitting word-by-word. 

2.1 Options: Buffering to Receive Unexpected Messages 

The simple interface above is adequate for most computers. However, 
for the very small and the very large, certain changes are desirable. 
In a dedicated (one-user-at-a-time) computer, the situation can be 

controlled so that incoming messages are correctly anticipated and the 
computer is always prepared to receive them. In a time-shared multi-job 
computer, however, messages may arrive at any time—even when the 
computer is attempting to send a message. 
One way to guarantee reception of ill-timed messages is to provide 

separate data channels of the computer for input and output (K and L 
in Fig. 1), so that the computer can prepare for both sending and 
receiving at the same time. A less expensive alternative is to provide 
means to rescind an output command upon appearance of an incoming 
message. When it recognizes an incoming address, the loop station 
produces a pulse that can be used for a computer interrupt. The interface 
must have enough buffer capacity to store incoming data until the 
interrupt request is honored and the channel or program readied for 
input. In the computer of this study (a DDP-516), worst-case delay 
for the sequence (without contemporaneous I/O in other data channels) 
is 30 ¡Is. Three-word buffers (G in Fig. 1) are sufficient. Depending on 
the computer, buffers to receive messages by interrupt will require 
10 to 20 7400-series chips. 

2.2 Hardware Addressing: Rejection of Intruding Messages 

A different type of unexpected message problem occurs when a 
machine that is prepared to receive a message from one sender gets 
a message from another. If the receiver is an unsophisticated device, 



1170  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972 

the device might be unable to detect the intrusion, or to recover from 
it in time to receive the desired message. 
Hardware to discard messages from any but a designated sender is 

relatively simple using the 8-bit parallel output of Kropfi's station. 
Furthermore, the interface can be structured to demultiplex data and 
addresses onto separate lines, and to perform a similar multiplexing 
function for transmission. 
The address of a correspondent can then be designated once, and will 

remain the same until redefined. The user has the option of treating the 
interfaced ring as an addressed-block system, by setting a new address 
for each transmission; or of treating it as a direct line, by leaving the 
address the same for as long as he wants. Data blocks can be any size— 
possibly much larger than a loop block. At the user's option the interface 
can reject intruding messages, or set off alarms or program interrupts. 
Engineering for such features is straight-forward. About 10 integrated 

circuit chips are required if addresses of correspondents are to be set 
manually; 20 chips, if they are to be changeable under program control. 

III. USE OF THE EXPERIMENTAL LOOP 

Two identical Honeywell DDP-516 computers of the Bell Laboratories 
Acoustics Research facility have been connected to a local ring. The 
computers have 16 thousand 16-bit words of 0.96-ms memory; 800 
thousand words of 3.3-megabit disk memory; hardware multiply, divide, 
double precision, and floating point; and printers, card readers, and 
analog-to-digital and digital-to-analog conversion equipment. One of the 
machines has 300- and 2000-baud Data phone  data sets. The two 
machines are used for a variety of on-line applications in speech analysis, 
synthesis, and perception research. 

3.1 The Experimental Interface 

The two computer interfaces use 4-'2s/word data channels and provide 
hardware multiplexing of data and addresses. In addition, the interface 
recognizes a special bit in the data block, and upon receipt of a block 
with that bit set, causes a program interrupt. These interrupt or "com-
mand blocks" simplify synchronization and provide more positive 
control of a remote computer in program debugging. 
Figure 2 is a photograph of a loop station installed above its interface 

circuit. The interface is done in a card logic used for other devices on 
this computer. Engineering time was approximately 1.5 man-months. 



1171 DATA BLOCK SWITCHING 

,,..,--. -•,-e-
"'  

. ;.... .4.0e. • ie e ». ;.enege ....red.'''. 

...lie 
,.......,.«.-...,,,,,,,,,...,-,........5 ) 

- e. ,..... 0-, '1 ‘6.11 ,....• , Iregle' , , ' 

' 



1172  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972 

IV. SOFT WARE 

Programming for the ring system is essentially the same as for other 
means of transmission. Problems of error detection, correction, and 
retransmission; problems of format compatability between dissimilar 
computers; problems of distinguishing data from control information; 
etc., are in no way different for the ring. Users are free to transmit or 
receive as the network permits. There are no required self-disciplines, 
except perhaps to discourage nuisance calls or "junk mail." 

4.1 Program Synchronization 

A point that deserves mention is a result of high-speed transmission 
in general, not specifically of the ring system. Without programmed 
precautions, the speed of the Ti loop allows a slow receiver to be overrun 
by a fast sender, whereas with slower transmission, the channel itself 
might have been the limiting factor. 
A trivial solution, appropriate for simple receiving terminals, is 

simple open-loop control of transmission rate. The sender, knowing 
the limitations of the receiver, waits for a fixed time after transmitting 
each block before sending the next. With more capable receivers, a 
basic "dialogue" procedure that is good practice for other transmission 
media also works well for the loop. In an initial "handshake," sender 
and receiver agree that a fixed amount of data will be sent, after which 
the sender will hold, awaiting a "go-ahead" message from the receiver. 
Normally, the sender will retain the transmitted data while waiting, 
in case the reply is a request for retransmission. 

4.2 Software Multiplexing of Addresses 

Hardware insertion and removal of addresses and rejection of intru-
sions is attractive for a computer as well as for a simple device—especially 
in an open-shop, real-time environment where computer users want 
direct, low-level control of I/O. Hardware addressing is not necessary, 
however, for program efficiency. Multiplexing can be done in software 
in several ways, depending on the particular interface. At the worst, 
it is no more complicated than copying data to or from a transmission 
buffer headed by address information. This processing is quite modest, 
compared to the translation, reformatting, packing, and unpacking 
frequently done for storage and input-output media. 

4.3 An Example Program 

A system utility program written for the loop provides a means to 
copy data or programs from the disk of one machine to that of the other, 
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and to perform several other functions. For transmission, the same pro-
gram is used in both machines. Transmission can be controlled from 
either end. 
The idling sequence of both machines is an attempt to input from the 

typewriter. The originator of a transaction gets a command from the 
keyboard and sends it through the network as a "command block," 
which interrupts the responding computer and takes it out of the idling 
sequence. The responder appends a coded acceptence or rejection and 
returns the message. The originator checks the reply and, if there is no 
error and the responder agrees on the amount, format, and disposal 
of data, then both computers enter the data sequence. The action 
proceeds by toggling between sending a block of data and sending back 
an acknowledgment. 
In each computer, attempts to read control replies, data, and acknowl-

edgments are subject to fixed time limits. Failure to receive the message 
in time is taken as an error. Errors of any kind are reported on the 
typewriter where the command was originated. Responsibility for 
requesting status, or restarting transmission, are left to the operator. 
The program consists of 400 instructions in assembly language. 

Approximately 100 of these are ring I/O and error checking, 150 are 
typewriter I/O and command interpretation, and 150 are communica-
tions with the disk and printer, and the sequencing of subroutine calls 
to implement the commands. 

4.4 User Access to the Loop 

Commands of the loop utility program allow a user's program to be 
transported to a remote computer, loaded and placed into execution. 
Subsequently, a special interrupt-command block can cause the remote 
program to be aborted, dumped onto disk, and the general loop utility 
restored for continued remote operation. This allows both machines to 
be operated from one console, even in most program debugging. 
There are no restrictions or special disciplines for use of the loop. It 

can be used in direct access by user programs, either in assembly 
language with a nine-instruction sequence, or in FORTRAN using 
existing library subroutines. Two calls define the address of a corre-
spondent and transfer any amount of data up to 200 thousand bits, 
using data-loop blocks as they become available. For error checking, 
users may echo all transmissions, use simple checksums or use a burst-
resistant multiple-error-detecting subroutine developed for magnetic 
tape. 
Most of our uses of the loop involve the transmission of a program 
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or block of data 200 thousand bits or less in length. Transmissions are 
sufficiently infrequent to account for a very low average bit rate. 
If necessary to reduce congestion, Kropfl's station can be made to 

impose a limit on peak transmission rate. All of our uses, thus far, are 
consistent with a peak rate limit of 50 thousand bits/second. Most 
transmissions would last only one or two seconds with that constraint. 
Even a very demanding requirement—transmission of simple computer-

generated motion pictures with our graphics system—can be done within 

Fig. 3—The loop system supports rapid computer graphics. Using a dot-by-dot 
transmission code, real-time motion pictures of this complexity can be transmitted 
at 50 kilobits/second. Using a vector code, they would require only 10 kilobits. 
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this limit. The example in Fig. 3, drawn as a series of separately con-
trolled dots, requires less than 3000 bits per frame for the part that 
moves. With a vector scope, it could be drawn with 600 bits per frame— 
less than 10 kilobits/second, 1/120 of the loop capacity. 

V. OTHER APPLICATIONS 

The above applications involve transmissions between essentially 
equal computers. Addressed-block transmission is potentially very 
useful between unequal correspondents also. 
In remote-batch operation of a large computer, an interface from the 

remote terminal to the addressed-block system is the same as that for 
voice-grade and leased-line services. With conventional transmission 
the main computer has a separate modem and interface for each trunk. 
These are connected to a fairly large special processor whose job is to 
sort the simultaneously incoming streams of data into separate messages, 
and present them sequentially to the computer; and to perform an 
inverse function for output. These operations are inherent properties 
of addressed-block transmission! Messages are forced "into line" getting 
onto and passing through the network. They arrive at the computer and 
leave sequentially, through a single interface. 
The availability of low-cost but powerful processors is making on-line 

computers desirable for every laboratory. But to be most useful, a 

machine should have access to a variety of expensive but infrequently 
used peripheral devices. A local data loop will allow a number of small 
and intermediate computers to share a pool of special equipment. 
Communication instead of dupliCation combines the economy and 
versitility of centralization with the on-line computing power of separate 
machines. 

VI. SUMMARY 

We have interfaced two laboratory computers to an experimental 
addressed-block data transmission system. The project went smoothly; 
there were no disappointments or surprises. Programming for the system 
is equally pleasant and uncomplicated. The general-purpose data 
transmission program for the system was written and debugged in 
a week. We are presently extending the system to other computers. 
We see addressed-block transmission as a simple but convenient solution 
to our computer communications needs. 
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In this paper it is shown how standard linear programming techniques 
can be applied to designing finite impulse response digital filters. Attention 
is concentrated on designing filters having exactly linear phase, and arbitrary 
magnitude response. The design method is illustrated by examples of the 
design of frequency sampling filters with constraints on in-band ripple, 
optimal filters where the passband and stopband cutoff frequencies may 
be specified exactly, and filters with simultaneous constraints on the time 
response and frequency response. 

I. INTRODUCTION 

Many techniques exist for designing digital filters using optimization 
procedures. Herrmann and Schuessler have designed equiripple error 
approximations to finite impulse response (FIR) lowpass and bandpass 
filters using nonlinear programming procedures."' This work has been 
extended by Hofstetter, Oppenheim, and Siegel,' and by Parks and 
McClellan' to solve for the desired filters using polynomial interpolation 
techniques. Rabiner, Gold, and McGonegar used a steepest descent 
technique to obtain FIR digital filters with minimax error in selected 
bands with the constraint that only a few of the filter coefficients were 
variable. Steiglitz," and Athanasopoulos and Kaiser' have used non-
linear optimization techniques to obtain recursive filter approximations 
to arbitrary frequency response specifications. 
Recently, attention has been focused on the use of linear programming 

techniques for the design of digital filters! ' Many digital filter design 
problems are inherently linear in the design parameters, and hence 
are natural candidates for linear programming optimization. Further, 
linear programs are easy to implement and are generally guaranteed 
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to converge to a unique solution. The rate of convergence of the pro.. 
grams is moderately fast, thus making this technique practical for 
problems with 100 parameters or so. 
There are many areas of FIR filter design where linear programming 

can be used conveniently. These include: 
(i) design of filters with minimax ripple in the passband and/or 
stopband; 

(ii) design of optimal (minimax) absolute or relative error ap-
proximations to arbitrary frequency response characteristics, 
where the passband and stopband edge frequencies of the 
filter may be specified exactly; 

(iii) design of two-dimensional filters of the frequency sampling 
type, or with optimal error approximation; 

(iv) and design of filters with simultaneous constraints on char-
acteristics of both the time and frequency response of the 
filter. 

Several of these design areas have been examined and examples will 
be presented showing how to apply linear programming techniques 
in specific cases. In the next section, the general framework of linear 
programming is presented and several practical aspects of linear pro-
grams are discussed. The following sections show how the general FIR, 
linear phase, filter design problem is linear in either the filter impulse 
response coefficients, or equivalently the Discrete Fourier Transform 
(DFT) coefficients, and how this problem is solved in specific cases. 

II. LINEAR PROGRAMMING 

The general linear programming problem can be mathematically 
stated in the form: find {Xi}, j = 1, 2, • • • , N subject to the con-
straints: 

X > 0,  j = 1, 2, • • • , N;  (1) 

N 

E ci,x, = b, i= 1,2, • • • , M(M < N);  (2) 

such that: 

E ctiX; is minimized.  (3) 

The above problem is referred to as the "primal problem" and by a 
duality principle can be shown to be mathematically equivalent to 
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the "dual problem": find {171), i = 1, 2, • • • , M subject to the con-
straints: 

Eci, V,  a„  j = 1, 2, • • • , N, 
i=1 

such that: 

E bi Y., is maximized. 
1=1 

(4) 

(5) 

The remainder of this paper refers to the dual problem as this is the 
most natural form for the digital filter design problems under con-
sideration. 
One characteristic of linear programs is that, given there is a solution, 

it is guaranteed to be a unique solution; and there are several well 
defined procedures for arriving at this solution within (M + N) itera-
tions. There are also straight-forward techniques for determining if 
the solution is unconstrained or poorly constrained. 
The next section shows that linear phase FIR filters are linear in 

the design parameters and hence can be optimally designed using 
linear programming techniques. 

III. LINEAR PHASE FIR FILTERS 

Let {h„}, n = 0, 1, • • • , N — 1 be the impulse response of a causal 
FIR digital filter. The requirement of linear phase implies that 

=  .  (6) 

The filter frequency response can be determined, in terms of the {h„), 
as: 

N-1 
H(e" r) =  (7) 

n=0 

For the case where N is odd, eq. (7) can be combined with eq. (6) 
to give: 
H(e ic.r) =  

linear phase 
term 

(N-3)/2 

• [ h( N-1)/2  2h„ cos [((N;  1) 407111 

purely real 
linear in { h„) 

(8) 
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Equation (8) shows H(ei'r) to consist of a purely linear phase term 
corresponding to a delay of ((N — 1)/2) samples, and a term which is 
purely real and linear in the impulse response coefficients. It is the 
second term in eq. (8) which is used for approximating arbitrary mag-
nitude response characteristics. Where N is even, the result of eq. (8) 
is modified to: 

r( (N/0)-1) 
H (ei.T)  e-i.((N-1)/2)T 

E n=0   

linear phase 
term 

21t. cos iN  1 ( 2  — n)coTi•  (9) 

purely real 
linear in { 

Equation (9) shows that for N even, the linear phase term corresponds 
to a delay of an (integer ± ¡) number of samples. The center of sym-
metry of {h.} is midway between samples (N/2) and (N/2 — 1). The 
remainder of eq. (9) is again a real term which is linear in the impulse 
response coefficients. 
The DFT relation can be used to show that the filter frequency 

response is also a linear function of the DFT coefficients {IL}. It is 
derived elsewhere' that the frequency response of linear phase FIR 
filters can be written: 

. coNT 
sm 2 

H(ei'T) 

when 

N 
_ 

K (- 1 )k Hk4 cos  inc sin  
[  coll H.  N  2  

E • CO T  k=i  (  2 k 
SM —  COS coT — COS   2  N) _ 

(N — 1)/2 for N odd 
K = N 

— 
for N even 

,  (10) 

The significance of eq. (10) is that the frequency response of a linear 
phase FIR filter is linear in the f1-1,1 as well as in the (h„}; hence linear 
programming techniques can be used to optimize the values of all or a 
selected set of DFT or impulse response coefficients. 
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II!. DESIGN OF FREQUENCY SAMPLING FILTERS 

Previously, design of frequency sampling filters was accomplished 
using a steepest descent minimization.' This technique was capable 
only of minimizing the peak out-of-band ripple when several DFT 
coefficients in a transition band between passbands and stopbands 
were varied. Another limitation of the technique was that the amount 
of computation it took to optimally choose the variable DFT coefficients 
grew exponentially with the number of unconstrained variables. The 
largest problems attempted had four coefficients variable. This problem 
is readily solved in a much more general form using linear programming 
techniques. Furthermore, the computation required to calculate the 
more general solutions is considerably less than for the steepest descent 
algorithm used previously. 
A typical specification for a lowpass filter to be approximated by a 

frequency sampling design is shown in Fig. 1. The heavy points show 
the DFT coefficients, and the solid curve shows the interpolated fre-
quency response. The passband edge frequency is F, and the stopband 
edge frequency is F, . Since the length of the filter impulse response 

o Fa 

FREQUENCY - I. 

F5/2 

Fig. 1— Typical specification for a frequency sampling lowpass filter with transi-
tion coefficients T1, T2. 
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is N samples (assume N even), there are (N/2 ± 1) DFT coefficients 
(called frequency samples) to be specified. Those DFT coefficients 
which are in the passband are arbitrarily assigned the value 1.0, and 
those that fall in the stopband are assigned the value 0.0. The DFT 
coefficients in the transition band are free variables, and are labeled 
, T2 in Fig. 1. The approximation problem can be set up as a linear 

program in the following manner. We let 

Ta = peak stopband ripple. 

Then the design problem consists of finding values of (T1 , T2) to satisfy 
the constraints: 
(i) The in-band ripple is less than or equal to some prescribed 
tolerance, E. 

(ii) The peak out-of-band ripple, T3 is to be minimized. 
Mathematically this problem can be stated as: find (T1, 712 T3) subject 
to the constraints: 

CO  271-F1 ,  (11) 

—T2 F(w)  i TiD(w, ti)  T3,  2rF2 w  irF, ,  (12) 

where F(w) is the contribution of the fixed DFT coefficients (the 
1.0's in-band) and D(co, i) is the contribution of the ith variable tran-
sition coefficient and is of the form shown in eq. (10), and F. is the 
sampling frequency. 
A suitable reshuffling of terms in eqs. (11) and (12) puts the set of 

equations in the form of the dual problem of linear programming. 
The final equations are of the form: find (711 , T2 , T2) subject to the 
constraints: 

2 
E T iD(c , i) 5. 1 + e — F(co) 
i =1 co  21-F ,  (13) 
2 

- E T iD(w , i) —1 + e +  
i-1 
2 
E T  — 772 < —F(w) 
i-1 27r-F3 < w<  (14) 

- E T iD(co, i) — 712 F(ce) 
i-1 

(—T3) is maximized. 
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The inequalities of eqs. (13) and (14) are evaluated at a dense set of 
frequencies in the appropriate range of interest (an 8-1 interpolation 
between DFT coefficients is sufficient) to yield the necessary set of 
equations for the linear program. 

V. RESULTS ON FREQUENCY SAMPLING DESIGNS 

A wide variety of frequency sampling filters has been designed 
using the results of eqs. (13) and (14). Previously, using the steepest 
descent algorithm, constraints on the in-band ripple, e, could not be 
maintained!' With the linear programming design, tradeoff relations 
between in-band and out-of-band ripple can be obtained for a fixed 
number of transition samples, or equivalently a fixed width of tran-
sition band. Such tradeoff relations are illustrated in Figs. 2 and 3 
for two and three transition samples.* In both these figures, the log 

20 

-40 

0 -50 

-60 

-70 

-60 
-60 -70 -60 -50 -40  -30 

20 LOGI0 
-20 -lo o 

Fig. 2—Tradeoff relations between SI and 62 for lowpass frequency sampling 
filters with two variable transition coefficients. 

* The varying nature of the curves of Figs. 2 and 3 is due to the variance in the 
measured points (heavy dots) as a function, of filter bandwidth. Solid curves are 
shown as an underbound and overbound on the typical behavior of the tradeoff 
relations. 
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50 
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-90 

-60 -70 -so -50 -40  -30 
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-20 -10 o 

Fig. 3—Tradeoff relations between al and 82 for lowpass frequency sampling 
filters with three variable transition coefficients. 

of out-of-band ripple, 82 ,versus the log of in-band ripple, 31 , is plotted. 
Figure 2 shows that for in-band ripples larger than about 0.03 (i.e., 
20 logis _ greater than —30 dB), the out-of-band ripple is in the range 8  

—66 to —71 dB. These figures correspond to the cases designed earlier' 
when no constraint on in-band ripple was in effect. At the other extreme 
of the curve, the out-of-band ripple flattens to between —25 and —3() 
dB with the in-band ripple, Si , in the range 0.0002 to 0.0005 (-74 to 
—66 dB). The midrange of the curve shows the tradeoff attainable 
between the two ripples. Figure 3 shows similar results for the case 
of three transition samples. No simple explanation is available for the 
general shape of these curves or the differences between the data in 
Figs. 2 and 3. 
Figure 4 shows a comparison between equiripple filters and frequency 

sampling designs for the specialized case where in-band ripple and 
out-of-band ripple are equal. In this figure the normalized width of 
transition band* is plotted as a function of log 8, where ô is the ripple. 

* The normalized width of transition band is defined as D = N[(F2 — FO/Fs] 
where N is the impulse response duration, Fs is the sampling frequency, and F2 and 
F2 are the passband and stopband cutoff frequencies in Hertz. 
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Fig. 4—A comparison between the curves of normalized transition bandwidth 
versus o for equiripple filters and frequency sampling filters. 

For the frequency sampling designs, the normalized transition widths 
are 4, 3, and 2 corresponding to 3, 2, and 1 transition samples. At 
these normalized transition bandwidths the ripple is —66, —50, and 
—32 dB respectively. The equiripple designs attain the same ripple 
values at normalized transition bandwidths of approximately 3.7, 
2.6, and 1.4. The percentage difference in transition bandwidth for 
the 3 cases is 8.1, 15.4, and 42.9. Thus, except for the 1 transition 
point case, the transition bandwidths for frequency sampling designs 
are reasonably close to the bandwidths for equiripple filters. 

VI. DESIGN OF OPTIMAL FILTERS 

Just as a few of the DFT coefficients in a transition band could be 
varied to design reasonably efficient frequency sampling filters, all 
of the DFT coefficients, or equivalently all of the impulse response 
coefficients could be varied to give an optimal* approximation to 
any desired frequency response. Similar optimal approximations have 
been designed previously using nonlinear optimization procedures" 

* The filters being discussed in this section are optimal in the sense of the theory 
of Chebyshev approximation on compact sets (i.e., the error of approximation 
exhibits at least [(N + 1)121  1 alternat ions (of equal amplitude) over the frequency 
ranges of interest). In most cases, all the peaks of the error function are of the same 
amplitude, therefore, these filters are often referred to as equiripple filters. 
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and by polynomial interpolation methods." However, the use of 
linear programming techniques, although significantly slower in running, 
offers many advantages over other existing design procedures. The 
design procedure is guaranteed to converge within a fixed number of 
iterations. Critical frequencies of the desired response can be specified 
exactly. The programs converge over a very wide range of parameter 
values. Finally, with the existence and increased understanding of 
integer linear programming techniques, the design problem can be 
combined with the coefficient quantization problem to design optimum 
filters with a prescribed wordlength. 
To see how the design of optimal linear phase filters can be accom-

plished using linear programming techniques, consider the design of 
a lowpass filter to meet the following set of specifications: 

Stopband magnitude ripple ±82}  minimized or 
Passband magnitude ripple ±81  specified 

Passband edge  F  specified 
Stopband edge  F2f  specified 
F1 < F3 

(Phase response is to be linear.) 

In this example either SI , or 82 , or some linear combination is min-
imized. One can also consider the situation where 01 and 82 are pro-
portionally related (i.e., SI = k18, S, = k28 where k, and lc, are constants, 
and 8 is minimized). In this manner a constant ratio between pass-
band and stopband ripple is maintained. Consider the case where Si 
is specified, and 82 is minimized. The linear program which realizes 
the above specifications can be stated as: find (h,.}, 82 subject to the 
constraints*: 

(N- I)/2 

hp +  2 E /in cos conT  1 -I- 451 
(x)  2rF1 ,  (15) 

(N-1) /2 
-  — 2 E h„ cos conT S —1 + 8, 

n.1 
(N-1)/2 

hp +  2 E h„ cos conT — 32 S 0 
n.1  27rF2 5 co 5 ir?.  (16) 

(N-I)/2 

- hp -  2 E h„ cos renT — 02 S 
n.1 

(— 82) maximized. 

* From this point on, for convenience, we are assuming h„ is defined from (—(N — 
1))/2  n  (N — 1)/2, and is symmetric around n = O. Since N is odd, eq. (8) 
can be simplified to the form: H (ei T) = ho Ee_ 1)/2 2h, cos conT 
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Before proceeding to typical designs, it is important to note some 
properties of linear programming problems, and show how they affect 
the optimal filter design problem. The solution to a linear programming 
problem of the type shown above with L variables, and M inequality 
constraints occurs when at least L of the M equations are solved with 
equality (instead of inequality); the remaining inequalities being met 
with inequality. For the optimal filter design problem this implies that 
there are at least L frequencies at which the ripple obtains a maximum. 
The practical implications of this result are best illustrated in Fig. 5 
which shows the frequency response of an equiripple optimal filter 
with passband ripple Si , stopband ripple 32 passband edge frequency 
F1, and stopband edge frequency F2 . The length of the filter impulse 
response is N samples. If 

N, = number of ripples in the passband, and 
N. = number of ripples in the stopband, 

then 

-I 1) N, + N.  (N -  (N odd), 
2 

(17) 

since an Nth degree polynomial (the z-transform of the filter impulse 
response) has at most (N + 1)/2 points of zero derivative in the fre-
quency range from 0 to F./2 Hz. In addition to attaining a maximum 

FREQUENCY RES
PONSE 

1+8, 

I-8, 

8, 
o 

32 

o F,  F2 

FREQUENCY 

F5/2 

Fig. 5—A typical frequency response for an optimal filter, defining N,, the number 
of passband maxima, and N. the number of stopband maxima. 
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value at each of the ripple frequencies, the error attains a maximum 
value at f = F1 and at f F2 (i.e., at the edges of the transition band). 
In fact this is how the transition band edges are defined. Thus the 
number of error maxima, N. , satisfies the inequality 

(18) 
—  2 

The number of variables N, in the linear program of eqs. (15) and (16) is 

1) (N -I-N, —  -I- 1, 
2 

(19) 

where (N -F 1)/2 coefficients of the impulse response are variable, and 
one ripple coefficient is variable. Thus eq. (19) shows that the minimum 
number of error maxima from the linear program solution, although 
optimal, is one less than the maximum number of error maxima ob-
tainable.* A discussion of the effects of the extra ripple peak on the 
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Fig. 6—The impulse and step response for an optimal digital filter with a 99-
point impulse response. 

* Parks and McClellan4 have labeled the cases where all the ripples are present 
as "extra ripple" designs. 
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width of the transition band is given by Hofstetter, et al.12 For all 
practical purposes the loss of the extra ripple is negligible in terms of 
normalized transition bandwidth, etc. At this point it is worthwhile 
showing some results of the design procedure. 

VII. OPTIMAL FILTER DESIGNS—LO WPASS FILTER EXAMPLES 

Using the linear program of eqs. (15) and (16), filters were designed 
with impulse response durations of up to 99 samples. Figures 6 and 7 
show plots of impulse and step responses, and the log magnitude re-
sponse of a lowpass filter designed from the specifications: 

In-band ripple  (5 
Out-of-band ripple  (5 
Passband edge frequency  808  Hz 
Stopband edge frequency  1111 Hz 
Sampling frequency  10000 Hz. 

LOG MAGNITUDE
 IN DECIBELS 
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- 60 - 

-70 - 

-80 - 

-90 - 
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o 1000  2000  3000 

FREQUENCY IN HZ 

4000 5000 

Fig. 7—The frequency response of an optimal digital filter with a 99-point impulse 
response. 
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The minimum value of 0, as chosen by the linear program, was ô = 
0.001724 or —55.3 dB. 
Figure 8 shows a comparison of the normalized transition bandwidth 

versus log 02 for Herrmann—Schuessler equiripple filters with the 
maximum number of ripples, and the optimal linear program filters. 
The solid line in this figure shows the Herrmann—Schuessler data for 
81 = (12 , and the data points show the linear program data for several 
values of N, the impulse response duration. Clearly the differences 
between the data are insignificant as stated earlier. (The data points 
which fall below the solid line in Fig. 8 are due to the error in representing 
the equiripple data by a straight line on these coordinates.) 

VIII. OPTIMAL FILTER DESIGNS-OTHER EXAMPLES 

As stated earlier, the linear programming technique can design 
optimal approximations to any desired frequency response. To illustrate 
this feature several full band differentiatore and several filters for 
use in a digitized version of the A-channel ban e (a frequency trans-
mission system in use in the Bell System) were designed. 
To design a full band differentiator H(ei"T) must approximate the 

normalized response, 

NORMALIZED TR
ANSITION WIDT
H 

6 

5 

4 

3 

2 

1 

o 

fi(ei'T) =  

(wit) 

(20) 

-120  -100  -80  -60  -40  -20  0 
20 LOG,0(82) IN DECIBELS 

Fig. 8—A comparison between the curves of normalized transition bandwidth 
versus ê for equiripple filters with the maximum number of ripples, and optimal 
filters with one ripple omitted. Normalized bandwidth is defined as II = N(F2 — 
Fi)/F.. 
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where (w„/2) is half the radian sampling frequency. To get an optimal 
error approximation requires, 

—ö eI H(eiwr) —  I -5_ 8,  (21) 

where 8 is minimized. To get a purely imaginary frequency response 
as in eq. (20), the impulse response is required to satisfy the symmetry 
condition, 

h„ =  n = 0, 1, • • • ' —N — 1,  (22) 
2 

where N is even to take advantage of the noninteger delay.13 An il-
lustrative example of an N = 32 sample differentiator is shown in 
Fig. 9. This figure shows the impulse response, magnitude response, 
and the error curve. The peak error, 8, is approximately 0.0057. 
One could also consider designing optimal relative error filters by 
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Fig. 9—The impulse response, frequency response, and error curve for a 32-
point differentiator with optimal equiripple error. 
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changing the design equations slightly. For example, to design an 
optimal relative error differentiator requires, 

— êto  — 11(e r) I  (23) 

(i.e., the envelope of the error in approximation is linear with frequency 
because the desired frequency response is linear in frequency). An 
example of an N = 32-point differentiator designed in this manner 
is shown in Fig. 10. The peak error, 8, is now 0.0062, only slightly higher 
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-0.004 - 

-0.008 0 
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Fig. 10—The impulse response, frequency response, and error curve for a 32-
point differentiator with optimal equiripple relative error. 

than 8 in the optimal error solution. The linearity of the error envelope 
is evident in Fig. 10. 
To illustrate further the versatility of the linear programming ap-

proach, a special purpose filter for use in a digital transmission system 
was designed." The specifications of the filter were: 
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F. = 112 kHz 
Pa,ssband ripple,  0 5 f 5 2 kHz, 20 log. (1  8,) 5 0.25 dB 
Stopband ripple, 14 5 f 5 18 kHz, 20 log10 -2 — s 5 —63 dB 

30 5 I .5 34 kHz, 20 log10  —63 dB 
46 5 f 5 50 kHz, 20 log10 - â 2 :5- —63 dB 

In all other frequency bands, the frequency response was not specified. 
As an additional constraint on the impulse response, N was chosen 
arbitrarily to be 21 samples. 
Since the filter was completely constrained by the above specifications, 

it was of interest to see how close the designs could get to the desired 
specifications. A linear program was written which allowed (5, and 52 
to vary. The results of this program are plotted in Fig. 11. This figure 
shows a plot of 20 log10 ló versus 20 log10 [(1  (31)/(1 — 61)] obtained 
from the program. It also shows a triangle for the desired specifications, 
and a square for the filter obtained from a manual optimization by 
S. Freeny. Although none of the filters meets the specifications, the 
computer optimized designs come much closer than the manual op-, 
timization. Figure 12 shows a plot of the filter that comes closest to 

20 LOG,
0
 &

2
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-65 
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- 55 

-50 
0  0.2  0.4  0.6 
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I -5, 

0.8 1.0 1.2 

Fig. 11—A plot of the tradeoff relations between 20 log10 ((1  81)/(1 — al)) 
and 20 log10 Ss for a lowpa.ss filter for a digital transmission system. 
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Fig. 12—The frequency response for the closest approximation to the desired 
specifications for the lowpass filter for the digital transmission system. 

the desired specifications. The in-band response differs from specifica-
tions by about 0.1 dB, and the out-of-band response meets specifications 
by over 1 dB. The error is equiripple in each of the out-of-band regions. 

IX. DESIGN OF FILTERS WITH SIMULTANEOUS CONSTRAINTS ON THE TIME 

AND FREQUENCY RESPONSE 

The design of digital filters which approximate characteristics of 
a specified frequency response only has been discussed. Quite often 
one would like to impose simultaneous restrictions on both the time 
and frequency response of the filter. For example, in the design of 
lowpass filters, one would often like to limit the step response overshoot 
or ripple; at the same time maintaining some reasonable control over 
the frequency response of the filter. Since the step response is a linear 
function of the impulse response coefficients, a linear program is capable 
of setting up constraints of the type discussed above. Consider the 
design of a lowpass filter (N odd) with specifications: 

Passband 
(N-1)/2 

1 -  Si S ho E 2h„ cos 0ml'  1  81 ,  (24) 
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Sto pband 
(N-1)/2 

82  +  E 2h„ cos conT  32, 
,-1 

Step Response 

(25) 

-  g„  e,  n =  ][ (N 2 — )  N1, (26) 

where h„ is the symmetric impulse response of the filter (h„ =  
n = 0, 1, • • • , (N — 1)/2), g„ is the filter step response defined by 

g. = m-  CAT -11/2 

o 

(N — i\ 
\ 2 ) n 

n<  (N — 1) 
\ 2 / 

< 00 
(27) 

and NI is the number of samples of the step response being constrained. 
For optimization there are several alternatives which are possible. 
One could fix any one or two of the parameters Si , 53 , or 83 and min-
imize the other(s). Alternatively one could set 81 = a16, 62 = a25, 
and S. = a35 where a, , a2 , and a3 are constants, and simultaneously 
minimize all three deltas. 
To demonstrate this technique, a lowpass filter with N = 25 and no 

constraint on 53 was designed. This design is an optimal filter as discussed 
earlier, and is shown in Fig. 13. In this case 31 is set to 2552 and the 
optimization gives 53 = 0.12, Si = 0.06, and 82 = 0.00237. The results 
of setting 33 = 0.03 and then minimizing the frequency ripple are 
shown in Fig. 14. The equiripple character of the frequency response 
has been sacrificed in order to constrain the peak step response ripple. 
The ripple values for this new design are Si = 0.145 and 82 = 0.00582. 
Using this linear programming technique, one can obtain tradeoffs 
between any of the deltas to get a design best suited to the particular 
application. The filter of Fig. 14 was designed for smoothing char-
acteristic speech parameters where step response overshoot is a very 
important perceptual parameter. 

X. DESIGN OF TWO-DIMENSIONAL FIR FILTERS 

The techniques of FIR filter design using linear programming are 
readily extendable to two or more dimensions.' Filters of both the 
frequency sampling type and optimal type have been designed in this 
manner. 
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Fig. 13—A plot of the step response and frequency response of an optimal equi-
ripple lowpass filter. 

XI. COMPUTATIONAL CONSIDERATION 

Since one of the major aspects of digital filter design by optimization 
procedures is the amount of computation necessary to produce a 
desired result, it is worthwhile discussing some of the details of our 
simultations. 
The programs used throughout this study are APMM,18 an IBM 

scientific subroutine which computes a Chebyshev approximation of 
a given real function over a discrete range, and MINLIN, a program 
written at Bell Laboratories by Mrs. Wanda Mammel. The running 
time of these programs is highly dependent on the number of variables, 
L, the number of inequalities, P, and the "complexity" of the results 
which determines the number of iterations required to attain a solution. 
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Fig. 14—A plot of the step response and frequency response for a lowpass filter 
with simultaneous constraints on both the time and frequency response. 

The time per iteration is approximately proportional to L2P. Typical 
experience indicates that it takes on the order of ten seconds to design 
the frequency sampling filters discussed earlier (i.e., L 5 3, P on the 
order of 1000). The total range of times to design optimal filters using 
APMM on the Honeywell 645 computer is shown below. 

N  No. Iterations  Total Time 
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to design high order filters with this technique. The argument can also 
be made that the most important application of these techniques is 
in the designs of FIR filters with small values of N (i.e., N  50) in 
which case the computation time starts becoming more reasonable. 

XII. CONCLUSIONS 

The design of linear phase FIR digital filters is shown to be a linear 
programming problem, and many appropriate problems can be solved 
using this technique. Examples have illustrated several filter areas 
which are reasonable candidates for linear program designs. 
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Using coupled power equations to describe the average performance of 
a multimode waveguide with random coupling, it is shown that a Gaussian 
input pulse remains approximately Gaussian with a pulse width that 
increases proportionally to the square root of the length of the waveguide. 
The proportionality factor is determined for the model of a slab waveguide. 
Since coupling between guided modes of necessity causes coupling of 
some of the guided modes to radiation modes, radiation losses are un-
avoidable. A desired improvement in pulse distortion that is accomplished 
by coupling the guided modes intentionally to each other must be paid for 
by a certain loss penalty. This loss penalty is also evaluated for the special 
case of the slab waveguide model. Pulse dispersion improvement can be 
achieved by providing intentional roughness of the core-cladding interface of 
the dielectric waveguide. The "power spectrum" of the core-cladding inter-
face function must be designed very carefully in order to minimize the radia-
tion loss penalty that accompanies any attempt to reduce pulse dispersion. 
The dependence of the loss penalty on the shape of the "power spectrum" 
of the core-cladding interface function is studied in this paper. Design 
criteria for the improvement of multimode pulse dispersion are given based 
on the slab waveguide model. The connection between the slab waveguide 
model and the round optical fiber is pointed out. 

I. INTRODUCTION 

S. D. Personicki was the first to realize that coupling between the 
guided modes of a multimode waveguide is capable of reducing the 
pulse dispersion that is caused by the fact that modes with higher 
group velocity arrive at the receiver earlier than modes with lower 
group velocity. Multimode pulse dispersion can, of course, be avoided 
by designing the waveguide to operate with only a single mode. How-
ever, single-mode waveguides cannot be excited efficiently by incoherent 

1199 
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light sources such as luminescent diodes. A simple communications 
system using luminescent diodes instead of more expensive lasers as 
light sources needs multimode optical waveguides as the transmission 
medium. Unless multimode pulse dispersion can be reduced by some 
means, the information-carrying capacity of a multimode optical 
fiber is severely limited. Even though Personick' pointed the way for 
achieving an improvement in the multimode pulse dispersion he did 
not give design criteria for their construction nor did he discuss the 
loss penalty that inevitably must be paid for any improvement in pulse 
dispersion. Furthermore, Personick's paper deals primarily with two 
modes even though some thought is given to the multimode case. H. E. 
Rowe and D. T. Young2 rederived Personick's results using a more 
rigorous analysis but also limited themselves to the two-mode case. 
Patent applications by E. A. J. Marcatili, S. E. Miller, and S. D. 
Personick are pending. These patents describe the geometry of a fiber 
designed to improve multimode pulse distortion by means of mode 
coupling. 
The theory presented in this paper is applicable to an arbitrary 

number of modes. Utilizing coupled equations (derived in an earlier 
paper') for the average power carried by the modes of the guide and 
extending the discussion of the steady state multimode waveguide to 
the time varying case, a complete description of pulse propagation in 
multimode waveguides is formally set forth. This complete theory can be 
evaluated only approximately by means of perturbation theory. Using a 
second-order perturbation approach a solution of the pulse problem is 
presented with the assumption that the input pulse has a Gaussian shape 
(in time). Numerical evaluation of the theory requires matrix diago-
nalization that can be accomplished on a high-speed electronic computer. 
The theory is applied to the dielectric slab waveguide; and design criteria 
for this case are obtained. However, we also extrapolate the slab wave-
guide results to the more inteiesting case of the round optical fiber. 
The coupling coefficients used in this paper are derived from a first-

order perturbation theory. Therefore, they hold only for weak coupling. 
In case of strong coupling, the actual radiation losses are expected to be 
larger than predicted here. 

II, DISCUSSION OF THE PRINCIPLE OF PULSE DISTORTION REDUCTION 

S. D. Personick' discovered that coupling between the guided modes 
of a multimode waveguide with a random coupling function reduces 
the spread of a pulse whose power is shared by a large number of modes 
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traveling with slightly different group velocities. Dielectric waveguides 
have two types of modes. The guided modes that are capable of trans-
porting power through the waveguide and radiation modes that allow 
the description of the radiation field around the waveguide. Imperfec-
tions in the waveguide that couple the guided modes among each other 
also tend to couple the guided modes to the radiation field. The coupling 
of guided modes to each other and to radiation modes is well under-

In particular it is known that-to first order-two guided modes 
couple only by means of one component of the Fourier spectrum of the 
coupling function." Figure 1 shows a schematic plot of the possible 
propagation constants ,3 of the modes of a dielectric slab waveguide. 
Also shown is a bracket connecting two guided modes. The separation of 
these modes is 

=  —  .  (1) 

The coupling function can be represented as the product of a constant 
term times a function of z, the distance along the waveguide 

c,5(z) = K,„f(z). 

The function f can be expanded in a Fourier series' 

with 

i(x) = E 

27r 
4). = 

ane içb.» 

The two guided modes p and µ are coupled only by the Fourier corn-

AR= igv-ieg 

RADIATION MODES 

PN 
J 

,6.= n2 k (PLANE WAVE IN 
CLADDING MATERIAL) 

I  I 

/GUIDED MODES 

)fr 

I 
„ 
Pi' 

0= n,k (PLANE WAVE IN 
CORE MATERIAL) 

.1; 

Fig. 1—Schematic representation of the propagation constants et, of the guided 
modes. njc is the propagation constant of plane waves in the core material, n2k is 
the plane wave propagation constant in the cladding material. The line labeled 
Aft indicates two guided modes that are coupled by a sinusoidal core-cladding inter-
face irregularity of mechanical frequency Aft. 
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ponent whose mechanical frequency is given by 

=  — is •  (5) 

If no Fourier component at this mechanical frequency exists the modes 
remain uncoupled. In order to couple all the guided modes shown in 
Fig. 1 to each other, we need a Fourier spectrum that has components 
at all those mechanical frequencies that correspond to existing dif-
ferences (3„ — et, . However, in addition to coupling the guided modes 
among each other, the coupling mechanism also couples guided modes 
to radiation modes. The coupling law remains the same. Any Fourier 
component that has a mechanical frequency in the range 

/3. — n2k < ,  ± r4le  (6) 

(71,21c is the propagation constant of plane waves in the medium of the 
cladding material) couples the mode v to the radiation field. Coupling 
between guided modes and radiation modes results in radiation loss. 
It is thus apparent that we must avoid coupling guided modes to radia-
tion modes or at least try to couple as few of the guided modes as pos-
sible to the radiation field without destroying the coupling between 
the guided modes. It is apparent from Fig. 1 that it is possible to couple 
all the guided modes among each other and couple only the highest-
order guided mode to the radiation field. This selective coupling is made 
possible by the fact that the spacing between guided modes in # space 
decreases with decreasing mode number. Ideally we would want a 
"power spectrum" F(o) of the function f(z) as shown in Fig. 2. This 
spectrum is flat from zero mechanical frequencies to the maximum 
frequency dà = PN-2  I3N_, that is chosen to be equal to the separa-
tion between the modes N — 2 and N — 1. The last guided mode, N, 
is close to the radiation field so that the Fourier spectrum of the func-

F (0) 

teN- 2 — fiN-

Fig. 2—Ideal shape of the "power spectrum" of the core-cladding interface 
irregularities. 
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tion f(z) shown in Fig. 2 couples this mode strongly to the radiation 
field without coupling it to mode N — 1 or any other of the guided 
modes. The high-order modes are coupled only to their next neighbor 
while more than two low-order guided modes couple directly to each 
other because of their close spacing. It would be more efficient for the 
purposes of pulse distortion reduction to couple each guided mode 
individually to all the other guided modes. However, since it is impos-
sible to accomplish this without simultaneously coupling all the guided 
modes directly to radiation modes we must be content to try to couple 
each guided mode at least to its nearest neighbor. The mechanical 
"power spectrum" of Fig. 2 would accomplish pulse distortion reduction 
by means of coupling between the guided modes without any radiation 
loss penalty. The reduction in the pulse length compared to the un-
coupled case comes about because some of the power traveling in a 
fast mode is eventually transferred to a slow mode while power starting 
out in a slow mode finds itself at least partly in a fast mode so that the 
extremes of the group velocity spread are partly equalized causing the 
center of gravity of the pulse distribution to travel at an average 
velocity. 
The perfect pulse distortion reduction scheme just outlined cannot 

be realized in practice since it is impossible to build filters with in-
finitely steep slopes. We can imagine that it is possible to produce a 
mechanical spectrum of core-cladding interface irregularities by chang-
ing the pulling speed of the fiber as it is drawn from the melt or from 
a preform. If the speed modulation is derived from an electrical noise 
signal that is filtered by a low-pass filter the problem is reduced to 
designing an electrical filter with as steep a slope as possible. More 
details of the required slope will be discussed later when we study the 
results of the numerical analysis of pulse propagation in slab waveguides. 

III. THEORY OF PULSE PROPAGATION IN MULTIMODE WAVEGUIDES 

It was shown in an earlier paper' how, starting from coupled wave 
equations, it is possible to obtain stochastic equations for the average 
power P. carried by N modes. In the steady state case discussed in 
Refs. 3 and 7 the coupled power equations assume the form 

—  +  E hpmPm  (7) 

with 
N 

b, = E h„ . 
m-i 

(s) 
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The form of the symmetric matrix elements (power coupling coefficients) 
hy„ depends on the type of waveguide and the particular coupling 
mechanism that is being considered, cg„ is the power loss coefficient 
that results from the coupling of mode y directly to the radiation field. 
Our first task is to generalize the steady state equation (7) to the 

time-dependent case. This generalization is achieved by considering a 
moving observer traveling at the group velocity y, of one of the guided 
modes. Whereas a stationary observer sees the average power in this 
mode grow or diminish as a function of z without noticing any change 
in time (in the steady state), the moving observer sees the mode power 
grow in time. The derivative dP,Idz noticed by the stationary observer 
corresponds to the derivative (1/v,)dP,Idt observed in a coordinate 
system traveling at velocity y, . We can thus write for the steady-state 
case 

dP,  1 dP, 
dz  v, dt (9) 

The extension to the time-varying case consists in using the right-
hand side of (9) even if the stationary observer sees the mode field 
change in time. This extension is certainly plausible if the time varia-
tions are not too rapid. Keeping in mind that the total time derivative 
corresponds to the change seen by the moving observer, we introduce 
the space- and time-dependent functions P,(z, t) and write 

dPP  P 1P aP  aP dz _ v  a . . aPP aP P 10 
=  ) dt  at  az  =  az ' at  ( 

The partial derivatives on the right-hand side of (10) are again the 
changes that are seen by a stationary observer. The time-dependent 
coupled power equations can thus be written as 

aP  1 aP  N 
= — (cep  by)P,  E  .  (11) 

az y, at 
Equation (11) is the starting point for the study of pulse propagation 
in multimode dielectric waveguides. 
We obtain a formal solution of the time-dependent problem by 

substitution of the trial solution 
p.(z,  o =  (12) 

The parameter co would usually be considered to be the frequency of 
the time-dependent process (12). However, the average power P, 
is not sinusoidally time-varying so that it cannot be associated with a 
frequency. The parameter co is thus simply a variable of integration for 
a Fourier integral expansion of the function P,(z, t). Substitution of (12) 
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into (11) leads to the following algebraic eigenvalue problem for the 
eigenvalue a and the eigenvector B„ (B, is the pth element of an N 
dimensional vector): 

. (1   [—a  — — 1 —)113, = —(a,  b,)B,  h„Bu .  (13) 
vo v,  vo g-i 

The term with the average group velocity vo was added for reasons 
that will become clear shortly. This eigenvalue problem has N solutions. 
The complete solution of (11) is obtained as a linear superposition 
of the N eigensolutions plus an integration over the parameter cu: 

P  = E  ci(413̀,"(w)e-« e"' N (14) 

The superscript j was attached to label the eigenvalues a(cd) and the 
eigenvectors B,(w). Using the orthogonality of the eigenvectors B,(ce) 

of the symmetric real matrix defined by (13), 

E B:"B!" = a„ ,  (15) 

and the inversion of the Fourier integral allows us immediately to 
express the expansion coefficient in terms of the power distribution 
P,(0, 0 at the input of the waveguide. 

N 

Ci(CO) = Ai E  B(cd)P,(0, t)e-i" dt.  (16) 
r ,-1 

Equations (14) and (16) represent the complete solution of the time-
dependent multimode waveg-uide problem. In its complete form this 
formal solution is of little practical value. Thus we proceed to the 
perturbation solution of a particular problem. 
Equation (13) was written in such a way as to suggest a perturbation 

problem. We added and subtracted the average group velocity vo in 
order to obtain the small quantity 

1  1 
V  — —  (17) 

v, vo 

V is small since the group velocities of the N modes are only slightly 
different from each other. Provided we need not include very large 
values of co in the analysis wV can be regarded as a perturbation term 
in (13). In the spirit of second-order perturbation theory we write 

the eigenvalue as follows:* 

* To first order of perturbation theory only a change in the average group velocity 
appears. The change of the pulse width depends on the second-order term in (18). 
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au) ( w)  Ci)  C‘) •  (i)  • 2 (i) 
=  a  +  •o -r /coal -r w  . 

Vo 
(18) 

The first term, o4n, is the zero-order approximation that corresponds 
to the solution of the time-independent stationary problem for w = 0. 
The terms al and a2 are first- and second-order perturbation terms. 
Since the eigenvalue appears in the exponent of an exponential func-
tion multiplied by the large quantity z, the perturbation terms can 
influence the solution (14) very much. The eigenvector B,(co) must also 
be expanded in a similar fashion. However, the zero-order term, B„ , 
is by far the most important term in the perturbation series of the 
eigenvector. The first- and second-order terms of B,(co) are of the same 
relative importance for all values of z and t and can never change very 
much the zero-order approximation consisting of B„ alone. It is there-
fore sufficient if we approximate B,(co) by B4O. The second-order 
approximation «2 is obtained by the well known methods of perturba-
tion theory. 

N  [ jr  —  fi 1 )13 (1 S (i) 1 2 
0  PO 

(1)   V,  V°   

az  E  (3)  (,)  (19) 
ag  —  at) 

The range of applicability of the second-order perturbation theory is 
discussed in the Appendix. 
We assume that the input power at z = 0 is given by 

P,(0, t) = G, exp [— (t/r1.  (20) 

From (16) we obtain 

with 

—   k, exp [—(1 co)2]  (21) 
2 V71-  2 

N 

ki = E Geer . 
r=1 

The integral appearing in (14) is now of the form 

/ = f exp [iw(t — —e — oez)] exp [—w2(.r.2 C e.2) 1 (1Wva 4 

[t — + ai))z] 2 2V; 1 va   
(T2 + 4a"z)4 exp  I.— T2 +  Lla i'z  1. 

(22) 

(23) 
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The second-order perturbation solution of the multimode waveguide 
problem with a Gaussian input pulse is thus 

t) = E   (.7-2  4cez)i kie„i) 

J [t — + a(i)>T1 vo   
• exP (—cegn) exP 1— r 2  )z (24) 

IV. DISCUSSION OF THE RESULT OF PERTURBATION THEORY 

Equation (24) contains a description of the propagation of a Gaussian 
input pulse in a multimode waveguide in case of coupling between the 
guided modes including radiation losses. However, the solution (24) 
holds also in the absence of coupling. If we assume, for a moment, that 
there is no coupling between the guided modes, h,„ = 0, and that the 
only losses are heat losses, a, = a4, we immediately have the following 
solution of (13): 

co a,, at.  (25) 

(i)  1  1 
= v „ 

(26) 

= 0  (27) 

11") =  .  (28) 

This solution means that the modes are uncoupled, each traveling 
independently of the others with its own group velocity and with the 
common attenuation constant a4. Equation (24) can be written in 
the absence of coupling 

(_ Y 
P,(z, t) =  exp — .7;"  (29) 

The input pulse, if spread out over all the modes, arrives at the detector 
at z --= L as a succession of pulses. The total spread in the arrival 
time of the different pulses is 

(30) 

Next, we consider the case that all the modes are coupled among each 
other, h„  0. Now the eigenvalues can no longer be written down 
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explicitly. However, we know from earlier work? that there are N 
eigenvalues with their associated eigenvectors. The eigenvalues can 
be ordered in sequence such that the zero-order solution 41) has the 
smallest value while all other zero-order eigenvalues assume increasingly 
larger values. The lowest-order eigenvalue cel," assumes the meaning 
of the steady-state loss of the multimode waveguide.7 The steady-state 
distribution of power over all the modes is proportional to B2). By 
definition, the steady-state distribution is obtained when the sum in 
(24) can be approximated by its first term since the exponents a‘).z 
have grown so large that all but the first term in the sum are negligible. 
In this limit, which always exists provided that the waveguide is long 
enough, we obtain from (24) 

NZ, 0 - (T2  ± 4041 V le er 

[t _ + al.)>] 1 
J. (31)  • exp (—a"z) exp  4 41)z 

The expression (31) is very different from the expression (29) for the 
uncoupled modes. Whereas each mode traveled independently of all 
the others with its own group velocity in the absence of coupling, 
we see from (31) that all the modes travel with the group velocity 

1  
v° — 1 , (,) 

(32) 

once the steady-state distribution is established. The term «P' can 
always be made to vanish by suitable choice of y0. Furthermore we 
see that, to the approximation implicit in (31), the pulse remains Gaus-
sian. All the modes suffer identical attenuation according to the at-
tenuation constant a,V). The distribution of power over all the modes 
is determined by the lowest-order eigenvector B2). The other eigen-
vectors have no physical meaning. In fact, these higher eigenvectors 
can have negative elements whereas the power in each mode must 
be a positive quantity. Most important for our present discussion is 
the width of the Gaussian pulse. We see that at z = L it is given by 
the expression 

At  2(r2 4ce e.  (33) 

The pulse width increases as the multimode package travels along 
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the waveguide. For sufficiently large values of L we have T  4«;'1L 
and the pulse width becomes proportional to the square root of L. 
We can define an improvement factor R by the relation 

At  2(r2 4c41)L)i 
R_  —  (34) T 

('__ )L 

If the width of the input pulse is much less than 441)L, (34) simplifies: 

4 .V7er  
R —  (35) 

( 1 _ 
\vN 

It is apparent that for sufficiently large values of L the improvement 
factor R, describing the shortening of the pulse as a result of mode 
coupling, is less than unity. 
It is possible to express the loss suffered by the pulse directly as a 

function of the improvement factor R. The power loss of the multimode 
signal is given by aP)L. If we are interested only in the loss penalty 
that must be paid for a certain improvement R we can express L in 
terms of R with the help of (35) and obtain for the loss per improvement 

(1_ (1) (1) ceLR — 16  at) a2 (36) .1\ 2R2  

v,) 

The actual length of waveguide required to incur the loss (36) does no 
longer appear on the right-hand side. The loss penalty is thus expressed 
in terms of the zero-order eigenvalue ac,") and its second-order perturba-
tion 41), the difference in the group velocities of the first and Nth 
mode and the desired improvement R. Methods of minimizing this 
loss penalty occupy most of the remainder of this paper. The length 
required to obtain a certain pulse width or a certain improvement 
in the spreading of the pulse is determined by the second-order perturba-
tion 4" of the eigenvalue of the lowest-order mode. 

'V. APPLICATION TO SLAB WAVEGUIDES 

The coupling coefficients hr,. were obtained in Ref. 7 for the case of 
a slab waveguide. The coupling mechanism is assumed to be the ir-
regular boundary between the core and the cladding of the waveguide. 
The cladding is assumed to be infinitely extended. In Ref. 7 we assumed 
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that the function describing the core-cladding interface irregularity 
had a Gaussian correlation function. Dropping this restriction and 
expressing the coupling coefficient in terms of the "power spectrum" 
F(13, — Op) of the core-cladding interface function f(z) we obtain for 
the slab waveguide7 

0,, tee sin , sid ' 0   
h,„ —  FQ3, —  (37) 

2,41 +  Xi +  ) cos 8, cos Om 
.y„d  1,4 

The parameters appearing in this equation have the following meaning: 
n, = refractive index of core material 
n2 = refractive index of cladding material 
k = 27r/X = free-space propagation constant 
d = half-width of core 
0, = propagation constant of mode y 
0, = characteristic angle of mode 

7, = (13:  n:IC2)1 (38) 

cos 0 = —LI" •  (39) 

Values for the radiation losses a, were given in Ref. 7. In this paper 
we consider only relatively narrow "power spectra" F(0) coupling 
each mode only to its nearest neighbor or at the most to a few of its 
neighbors. In this case only the highest-order mode is coupled to the 
radiation field. It has been determined by trying out different numerical 
examples that the radiation losses of the coupled mode system do not 
depend critically on the loss value ay  provided that it is large enough. 
We thus use 

} a, = 0  v N . 
(40) 

The reason for this insensitivity of the multimode losses on the value 
of aN can be explained if we consider that power coupled from any of 
the guided modes to mode N is quickly lost to radiation. The actual 
rate of loss from mode N to the radiation modes is not important as 
long as this rate is high. The actual losses of the multimode guide are 
determined by the rate at which power flows from mode N — 1 to 
mode N. This rate is determined correctly by the coupling coefficient 

. It is thus not necessary to know the exact values of a.. For 
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actual computations (40) was used with values for aN that were several 
orders of magnitude larger than 41). 
In Ref. 7 we described the propagation constant of the guided slab 

modes by using the approximation that is valid far from cutoff. This 
approximation is based on using 

with 

Or 

ir 
,c4 .-- y —2 

K, = nik sin 0, 

p„ = (re,le — 2)1/2 

The mode number y assumes all values from 1 through N with odd 
numbers indicating even modes while even numbers indicate odd 
modes. For our present purpose this approximation is not accurate 
enough since we are interested in accurate values for 4" and 41), 
particularly in the region where the guided modes are coupled only 
by the tail of the "power spectrum," so that the spacing between the 
modes has a critical influence on the actual values of the parameters. 
Therefore, we chose to use the exact values for ic„ 0„ and 7, which 
are obtained as solutions of the eigenvalue equation 

tan tc„d = 11' 
K, 

for even guided TE modes and from 

(44) 

tan  KA  = -- K, (45) 
7.  

for odd TE modes. We restrict ourselves to those modes of the slab 
waveguide that have no variation in y direction and can thus be clas-
sified as TE and TM modes. However, only TE modes are being con-
sidered. The solutions of (44) and (45) with n, -= 1.5 and n,/n, = 1.01 
are given in Table I for three particular cases of 5-, 10-, 20-, and 39-mode 
operation. Also shown in this table are the differences between adjacent 
values of f3, . These numbers make it apparent how the spacing between 
the guided modes increases with increasing mode number. It is also 
interesting to compare the values of Table I with the approximation 
(41). It is apparent that (41) approximates the actual values better 
for the modes of low order in waveguides that support many modes. 
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TABLE I-PARAMETERS FOR THE TE MODES OF THE SLAB 
WAVEGUIDE FOR n1/n2 = 1 01 

K,d 

kd = 35, 5-m  case Ort 
1  1.3821 
2  2.7580 
3  4.1193 
4  5.4507 
5  6.7096 
kd = 70, 10-mode case 
1  1.4708 
2  2.9407 
3  4.4086 
4  5.8733 
5  7.3332 
6  8.7861 
7  10.2286 
8  11.6544 
9  13.0498 
10  14.3634 
kd = 145,20-mode case 
1  1.5210 
2  3.0418 
3  4.5624 
4  6.0826 
5  7.6023 
6  9.1214 
7  10.6396 
8  12.1568 
9  13.6728 
10  15.1873 
11  16.7000 
12  18.2105 
13  19.7182 
14  21.2226 
15  22.7225 
16  24.2167 
17  25.7028 
18  27.1767 
19  28.6291 
20  30.0270 

= 1.5, ?tans = 1.01) 
52.48180  0.05429 
52.42751  0.08936 
52.33815  0.12187 
52.21628  0.14679 
52.06949 

104.98970  0.03089 
104.95881  0.05140 
104.90741  0.07281 
104.83560  0.09199 
104.74361  0.11186 
104.63175  0.13115 
104.50060  0.14939 
104.35121  0.16531 
104.18590  0.17295 
104.01295 

217.49468  0.01595 
217.47873  0.02658 
217.45214  0.03721 
217.41493  0.04783 
217.36710  0.05844 
217,30865  0.06904 
271.23961  0.07962 
217.15999  0.09018 
217.06981  0.10070 
216.96911  0.11119 
216.85793  0.12161 
216.73631  0.13197 
216.60434  0.14222 
216.46213  0.15231 
216.30981  0.16218 
216.14764  0.17168 
215.97596  0.18051 
215.79545  0.18789 
215.60757  0.19023 
215.41733 

VI. THE DEPENDENCE OF THE LOSS PENALTY ON THE SHAPE OF THE 
"POWER SPECTRUM" 

We observed earlier that a "power spectrum" of the core-cladding 
interface function of the form shown in Fig. 2 would couple all the 
guided modes (except mode N) without causing radiation losses. Un-
fortunately, it is not possible to design dielectric waveg-uides with core-
cladding interfaces whose power spectrum cuts off abruptly at a given 
specified mechanical frequency. It is thus necessary to study the loss 
penalty (36) for different "power spectra" in order to determine its 
dependence on the slope of the "power spectrum." 
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TABLE I-PARAMETERS FOR THE TE MODES OF THE SLAB 
WAVEGUIDE FOR n1/n2 = 1.01 (Continued) 

Y  tc,d 

kd  290, 39-mode case 
1  1.5455  434.99725  0.00824 
2  3.0909  434.98901  0.01373 
3  4.6364  434.97529  0.01922 
4  6.1818  434.95607  0.02471 
5  7.7271  434.93136  0.03020 
6  9.2723  434.90117  0.03569 
7  10.8175  434.86547  0.04118 
8  12.3625  434.82430  0.04667 
9  13.9074  434.77762  0.05216 
10  15.4521  434.72546  0.05765 
11  16.9967  434.66782  0.06314 
12  18.5410  434.60468  0.06862 
13  20.0852  434.53605  0.07411 
14  21.6291  434.46194  0.07960 
15  23.1727  434.38235  0.08508 
16  24.6160  434.29727  0.09058 
17  26.2590  434.20671  0.09605 
18  27.8016  434.11066  0.10152 
19  29.3438  434.00914  0.10699 
20  30.8856  433.90215  0.11246 
21  32.4289  433.78989  0.11792 
22  33.9676  433.67176  0.12339 
23  35.5077  433.54838  0.12883 
24  27.0472  423.41055  0.13428 
25  38.5859  433.28572  0.13970 
26  40.1237  433.14557  0.14512 
27  41.6606  433.00045  0.15052 
28  43.1964  432.84993  0.15589 
29  44.7310  432.69404  0.16124 
30  46.2642  432.53280  0.16655 
31  47.7956  432.36625  0.17181 
32  49.3251  432.19444  0.17701 
33  50.8521  432.01743  0.18212 
34  52.3762  431.83531  0.18710 
35  53.8964  431.64821  0.19188 
36  55.4114  431.45633  0.19630 
37  56.9191  431.26003  0.20007 
38  58.4149  431.05996  0.20201 
39  59.8867  430.85796 

-  

We begin by consideripg a "power spectrum" that couples all the 
guided modes equally except for the last two modes that are coupled 
by the tail of the "power spectrum" distribution. By equally coupled 
modes we mean that the "power spectrum" remains flat in the region 
that contributes to coupling between the guided modes. The actual 
amount of coupling depends, in addition to the "power spectrum," 
on the mode angles O. [see equation (37)] so that a constant power 
spectrum couples higher-order modes more strongly than lower-order 
modes. 
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The "power spectrum" that is used as a model for a more realistic 
case is shown in Fig. 3. The flat portion of this spectrum couples mode 
N — 1 to mode N — 2, mode N — 2 to mode N — 3, etc., finally cou-
pling several of the low-order modes among each other. Mode N is 
coupled to mode N — 1 via the tail of the power spectrum distribution. 
The factor of importance in this discussion is the level to which the 
"power spectrum" has decayed from its maximum value at the point 
that is instrumental in coupling the last two modes to each other. 
Strong coupling of the last two modes leads to high radiation losses 
since it causes more power to flow from the guided modes to the radia-
tion modes. The last mode, mode N, couples strongly to the radiation 
modes since the flat part of the spectrum connects this mode with the 
continuum of radiation modes. As explained earlier, we do not bother 
to compute the exact value of the coupling coefficient of mode N to 
the radiation field since it depends critically on the exact shape of 
the tail of the "power spectrum," complicating the discussion. Further-
more, it has been established that the actual amount of coupling of 
mode N to the radiation modes has no influence on the radiation losses 
of the multimode waveguide as long as the coupling exceeds a certain 
threshold value. At worst we may overestimate the radiation losses by 
assigning a large but arbitrary value to the parameter cur. 
Using the "power spectrum" of Fig. 3, we determine the loss penalty 

of equation (36). Analytically, we express the power spectrum as fol-
lows: 

1 F O O ,-_  ON-2 — ON-1 

K  7 e2  
13 N - 2 — ON-I 

2 
1r« 

F(0) 

for I 4, I Piv-2 — SN-1 

for 

1 

I 0 I =  ON-I — ON 

4 Ot, 
/  \ 

PN-2- 144-1  'ON-1 -PN 
; 

(46) 

Fig. 3—A more realistic model of the desirable core-cladding interface "power 
spectrum." 
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The factor K determines the fraction of the maximum value to which 
the "power spectrum" has decayed at the point qS = ON-1 — /3N that 
is instrumental in coupling mode N — 1 to mode N. 
The actual calculation is based on the slab waveguide model. Ac-

cording to (13) we must solve the zero-order eigenvalue problem 

HÉ" = —ceB<".  (47) 

B"' is a column vector whose elements are B' and H is a matrix with 
the elements 

H,„  — (a„  b,)8,„  (48) 

that are determined by (8), (37), and (40). The eigenvalues ce and 
eigenveetors er are determined numerically with the help of a com-
puter. Using the result of the zero-order calculation we calculate aP) 
from equation (19). Instead of  and 4", the normalized dimension-
less quantity 

_ d (1) 
—  Cro 

cr 2k2 
(49) 

was used in Ref. 7. In this paper the second-order perturbation of 
the eigenvalues is plotted in the following normalized form: 

( 2 «21e ( 
a2" = v.  a2"  (50) 

d 

These normalizations have the advantage of removing the rms devia-
tion IT of the core-cladding interface from the equations so that we 
need not specify any particular value for this parameter. Figure 4 
shows a plot of the normalized* loss penalty leo41)LR as a function of 
the factor K defined by the second line of (46). The four curves appearing 
in Fig. 4 were calculated for kd = 35 resulting in 5 guided modes, 
kd = 70 corresponding to 10 guided modes, kd = 145 or the 20-mode 
case, and finally for kd = 290 which gives 39 guided modes. The curve 
for 39 modes seems to deviate from the straight line beyond the region 
for which it appears drawn out in Fig. 4. Since the numerical diagonaliza-
tion of a 39 by 39 element matrix is quite expensive no attempt was 
made to explore the precise shape of this curve. 
Let us study the 10-mode case in more detail. For K = 10' we find 

from Fig. 4 the value lea,V)LR = 0.01 dB. This means that if we want 
to obtain a reduction of the uncoupled pulse distortion by a factor of 

* This normalization involves only the factor le and is unrelated to (49). 
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Fig. 4—The loss penalty R2cro(1).LR (in dB) that must be paid for a pulse distor-
tion reduction R, (R < 1). The variable K is the fraction to which the "power 
spectrum" has decayed from its flat region at the point where it couples mode 
N — 1 to mode N. 

R = 0.1, we would have to pay a loss penalty of 1 dB. A reduction 
of R = 0.033 would have to be paid for with 10 dB radiation loss. Let 
us next consider the slope of the "power spectrum". For the 10-mode 
case we have according to Table I 033 —  = 0.165. The width of 
the flat portion of Fig. 3 is thus 0.165/d. Since (  —  1310)d = 0.173 
we must require that the spectrum drop from unity to 10-4 in the 
"distance" 0.008/d. The ratio of the region of the slope to the width 
of the flat region is thus 0.008/0.165 = 0.05 or the slope extends over 
5 percent of the flat portion of the spectrum. For the 39-mode case we 
obtain correspondingly 033, — 1933)d = 0.2 and 033,, — fi32)d = 0.202; 
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the ratio of slope width to the width of the flat part of the spectrum 
is thus 0.002/0.2 = 0.01 or 1 percent. This comparison shows that the 
relative width of the slope region must be smaller if more modes can 
propagate on the waveguide. The "power spectrum" considered for 
these two examples results in a steady-state power distribution that 
puts nearly equal power into all the modes with the exception of the 
last mode which carries essentially no power because of its strong 
coupling with the radiation modes. 
The pulse distortion expected for these examples can be obtained 

from the data in Table II. In the absence of mode coupling the pulse 
distortion is given by (30). The inverse of the group velocity of the 
slab waveguide modes can be calculated with the help of the eigenvalue 

equations (44) and (45), 

1  aa„  02„ ey,d (51) —  —     
cop„(i  7,d) 

The center column of Table II provides the values of T /L. The last 
column contains the normalized second-order perturbation of the 
eigenvalues of the matrix eigenvalue problem (13) which is almost 
independent of K. Given a desired improvement factor, we can calculate 
the required length L for given rms deviation ir of the core-cladding 
interface or, vice versa, obtain the rms deviation e from the given guide 
length L. Let us consider the following example. We assume that the 
waveguide length is given as L = 1 km, the wavelength of the light 
signal is X = 1 ban. The numerical values in our figures and tables 
apply to the case ni -- 1.5 and ?id% = 1.01. We want to obtain a 
pulse distortion improvement resulting in R = 0.1. Table III shows 

TABLE II—NUMERICAL VALUES FOR THE PULSE DISTORTION IN THE 
ABSENCE OF COUPLING (THIRD COLUMN) AND THE NORMALIZED 
SECOND-ORDER PERTURBATION OF THE EIGENVALUE (FOURTH 
COLUMN) IN THE PRESENCE OF COUPLING FOR THE "POWER 

SPECTRUM" OF EQUATION (46) 
(The normalized second-order perturbation is nearly independent of K) 

Number of 
Modes 

kd 
c ( UN1 1) _  cT 
flj V2  7ZI L 

er2k2 
2,02 d a2 (1) 

5 
10 
20 
39 

35 
70 
145 
290 

3.94 X 10-3  
5.02 X 10-3  
6.69 X 10-3  
8.13 X 10-3 

0.02 
0.07 
0.4 
2.0 
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TABLE III—NUMERICAL VALUES FOR THE EXAMPLE LISTED IN TABLE 
II CORRESPONDING TO THE "POWER SPECTRUM" OF EQUATION 

(46) OR FIG. 3 

(R = 0.1, X = 1 #1m, K = 10-4, Li? = 1 km) 

Number of 
Modes d(en) T(s) 0(Pm) ao  (I)LR(dB) 

5 5.57 1.97 X 10-1 1.71 X 10-2  0.63 
10 11.1 2.51 X 10-1 3.56 X 10-1  1 
20 23.1 3.35 X 10-1 9.16 X 10-1 2.3 
39 46.2 4.07 X 10-1 2.39 X 10-1 6 

the numerical values of several interesting quantities that follow 
for this example from Fig. 4 and Table II with the ordinate value of 
Fig. 3, K = 10-4 . Listed in Table III are the slab half-width d, the 
time T to which an infinitely narrow input pulse is stretched out in 
the absence of coupling (pulse distortion caused by frequency dispersion 
in the material and due to waveguide effects is not being considered), 
the runs core-cladding interface irregularity that is required to provide 
the proper amount of coupling to achieve a pulse distortion improvement 
of R = 0.1 over a distance of L = 1 km, and finally, in the last column 
of the table, the loss penalty that results from R = 0.1. The most 
remarkable result of this example is the fact that such a slight core-
cladding interface irregularity is so effective in coupling the guided 
modes. There may be problems in designing an optical fiber with such 
a slight core-cladding irregularity. In particular it might be expected 
that random core-cladding interface irregularities exist whose spectrum 
is very different from the desired shape shown in Fig. 3. Such unwanted 
core-cladding interface irregularities would be detrimental since they 
provide unwanted radiation losses. If the desired core-cladding inter-
face irregularity is made larger, the multimode pulse dispersion is 
improved more than the factor R = 0.1 assumed here. However, such 
an improved mode mixing must be paid for with a higher loss penalty 
that can be reduced only by decreasing the factor K [the ordinate in 
Fig. 4; see also equation (46)]. 
The "power spectrum" of Fig. 3 is not realizable in practice and 

was used only to gain insight into the relation between pulse distortion 
improvement and loss penalty. It is interesting to pursue this question 
further and study other "power spectra." An obvious choice is a "power 
spectrum" of the form 
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F(0) — 

2 . ir 
172o- SID — 

77/ 

z143[1 

(52) 

It can be seen in Fig. 5 that (52) approximates the idealized power 
spectrum of Fig. 3 for large values of m. The "power spectrum" (52) 
has the advantage of making it possible to study the loss penalty not 
only as a function of the slope of the power spectrum but also as a 
function of its width 449. Figure 6 shows a number of loss penalty 
curves for the 10-mode case as a function of the width parameter 40d 
of the "power spectrum" (52). The curve parameter is the exponent m. 
Figure 6 reveals several interesting properties of the loss penalty in 
relation to the shape of the "power spectrum". The curves shown in 
Fig. 6 have a maximum. To the right of this maximum the loss penalty 
is decreasing very rapidly making it appear as though this were a good 
region of operation. However, a more detailed investigation of the 
lowest-order eigenvector ./3!!' reveals that the steady-state power 
distribution in the region to the right of the maximum in Fig. 6 permits 

too 
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Fig. 5—A simple power law model for the "power spectrum." 
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Fig. 6—The loss penalty for the "power spectrum" of Fig. 5 for ni/n2 = 1.01. 

power to remain essentially only in the lower-order modes. This mode 
of operation is, of course, favorable from the point of view of pulse 
distortion. But if the fiber is to be excited with a light-emitting diode 
feeding power equally into all the modes, most of the power is lost in 
the transient before the steady-state power distribution establishes 
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itself. The region to the right of the maxima is thus considered to be 
unsuitable for efficient power transmission in a multimode waveg-uide. 
To the left of. the maxima we find a sharp drop off ending in a plateau. 
On the left slope of the curve we enter a region in which all the modes 
of the waveguide share more evenly the total amount of power carried 
by the guide. On the plateaus the power distribution versus mode 
number is flat. The plateau regions are thus desirable from the point 
of view of efficient multimode operation with reduced pulse dispersion. 
Unfortunately the level of the loss penalty is rather high for low values 
of the exponent. We see also that the plateau regions move to the left 
for decreasing values of the exponent m. This indicates that low loss 
can be achieved only if the high-order modes are coupled only through 
the tails of the "power spectrum" curve. The last column of Table I 
gives for 1, = 8 the value of (Os —  = 0.165 for the 10-mode case. 
Since (13,, — e,0)d = 0.173, this means that the ideal region of operation 
would be 0.173 > Atid > 0.165 and m —) co. Figure 6 shows clearly the 
trend in this direction. For lower values of m the point of operation 
must be shifted to much smaller values of 40c1 and is accompanied 
by an increase in the loss penalty in the plateau region. Simultaneously 
with decreasing loss we obtain a decrease in the coupling between the 
guided modes. This behavior is very apparent in Fig. 7 which shows a 
plot of the normalized second-order perturbation of the eigenvalue 
which, as we know, determines the width of the steady state Gaussian 
pulse. In the plateau regions of Fig. 6 the normalized value of c4') 
becomes very large indicating a rapidly decreasing efficiency of pulse 
delay distortion reduction. The actual value of the length of the Gaus-
sian pulse or of the improvement factor R is, of course, dependent on 
the rms deviation u of the core-cladding interface. The flattening out 
of the loss penalty curves in the plateau region can be attributed to 
the fact that the loss of coupling efficiency among the guided modes 
with decreasing width of the "power spectrum" is accompanied by a 
corresponding reduction in power transfer to the radiation modes. 
The region immediately to the left of the plateaus shown in Fig. 6 

is interesting also. We terminated the curves since the numerical 
matrix diagonalization routine failed to function for values of od 
to the left of the end of each curve. This mathematical phenomenon 
has an important physical reason. As the coupling between the guided 
modes decreases, we encounter a regime of instability where the steady-
state power distribution depends on the initial power distribution. In 
the absence of coupling each arbitrary power distribution is a steady-
state distribution since power is no longer exchanged between the 
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Fig. 7—The normalized second-order perturbation of the eigenvalue (this param-
eter determines the width of the pulse) a11> as a function of the width parameter 
of the "power spectrum" of Fig. 5. ?kin:. = 1.01. 

modes. The onset of this instability causes the matrix cliagonalization 
routine to fail. In fact, it is interesting to observe how different matrix 
diagonalization programs return different eigenvectors and eigenvalues 
in the region to the left of the plateaus. This phenomenon does not 
indicate errors in these programs but shows that the final solution 
depends on random fluctuations and is no longer uniquely determined. 
It is clear that the regions to the left of the plateaus are unsuitable for 
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purposes of pulse distortion reduction by means of mode coupling. 
Figure 6 thus shows that significant pulse distortion reduction with 
low loss penalty is possible at least in principle by using a very large 
value of the exponent m and operating at the lowest point of the steep 
slopes to the left of the maxima. The required tolerances for Aed be-
come increasingly more critical as the value of the exponent m is being 
increased. 
The curve for m = 2 in Fig. 6 remains entirely in the region, cor-

responding to the right of the maxima of the remaining curves, where 
most of the power is carried by the lower-order modes. The power 
spectrum (52) with m = 2 is thus unsuitable for our purposes. For 
comparison purposes Fig. 6 shows the loss penalty for the Gaussian 
"power spectrum," 

2V'; cr2  F(0) —  exp [ (— — 2 Ad) (53) 

as a dotted line. 
For large values of m the curves of Fig. 7 are not very suitable for 

computing the required rms deviation o- for given values of R and L 
because of their extremely steep slopes. It is advisable to use Fig. 5 
and the values for the propagation constant differences of Table I 
to define an equivalent factor K [compare (46)] and use Fig. 4 for obtain-
ing the loss penalty and Table II for obtaining the value of the nor-
malized second-order perturbation of the lowest-order eigenvalue. (This 
value is very nearly independent of K. The steep slopes of the curves 
of Fig. 7 result from their sensitive dependence on ,$d.) Instead, we 
consider as an example a moderately large value of m. Let us assume 
that m = 20 and let us use R = 0.1, L = 1 km, X = 1 ,um, and the 
10-mode case, kd = 70. Choosing as the operating point Aed = 0.1 
we obtain from Fig. 6 the loss penalty el', = 10 dB. From Fig. 7 
we find 

2 cr2k2 (1)  A n 
Vo  0(2  -= 
d 

(54) 

The difference of the group velocities of mode 1 and mode 10 follows 
from Table II. We thus obtain, with the help of (35), o = 0.27 gm. 
This example results in ten times higher loss than the 10-mode case 
listed in Table III but the required rms deviation is more easily realizable 
than that of Table III. 
Figures 6 and 7 apply to the 10-mode case. In order to explore the 

dependence of the loss penalty and the pulse length factor c4" on the 
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number of modes, Fig. 8 shows a comparison of the loss penalty for the 
exponent m = 10 [see (52)] for 5, 10, 20, and 39 modes as a function 
of the "power spectrum" width parameter od. The curve for N = 39 
was not extended out of the plateau region because of the cost involved 
in the cliagonalization of the large matrix. The curves of Fig. 8 show 
that the loss penalty decreases slowly with increasing mode number. 
It appears that the dependence of the loss penalty in the plateau region 
on the mode number is approximately given by N-1 " for large values 
of N. The curve for N = 5 does not obey this law, possibly because this 
number is still too small. 
The corresponding dependence of the normalized second-order per-

turbation of the eigenvalue on mode number is shown in Fig. 9. The 
two points for the curve of N = 39 in the region shown in Fig. 8 lie 
above the range of the figure. 
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Fig. 8—Mode dependence of the loss penalty for m = 10 is shown as a function 
of the width parameter of the "power spectrum." 
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Fig. 9—The second-order perturbation of the eigenvalue  (,) for three different 
mode numbers as a function of the width parameter of the power spectrum for 
m = 10. 

In order to obtain an insight into the meaning of these curves (Figs. 
8 and 9), Table IV presents the rms deviation that is required to achieve 
a pulse distortion improvement of R = 0.1 at Ai3d = 0.08 for X = 1 ban. 
The required values of the rms deviation are only slightly larger than 
those listed in Table III but the loss penalty for a pulse distortion 
reduction of R = 0.1 is far higher since the numbers in Table IV pertain 
to a relatively small value of the exponent, m = 10. 

VII. DEPENDENCE ON THE REFRACTIVE INDEX DIFFERENCE 

So far, all our examples applied to dielectric slab waveguides with 
a core-to-cladding-index ratio of n1/n2 = 1.01. In order to explore the 



1226  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972 

TABLE TV-NUMERICAL VALUES FOR AN EXAMPLE BASED ON THE 
"POWER SPECTRUM" OF EQUATION (52) OR FIG. 5 

(R = 0.1, X = 1 ism, à(3d = 0.08, m = 10, L = 1 km) 

Number of 
Modes (1)LR (dB) 

5 
10 
20 
39 

2.16 X 10-2  
9.44 X 10-2  
2.97 X 10-1 
7.96 X 10-1  

33 
27 
17 
12 

dependence of our results on the index differences we give a few data 
for the case n1/n2 = 1.005. Table V shows results similar to those of 
Table I for the 10-mode case. The most important differences of these 
two examples are the increase of the value of kd required to obtain 
10 guided modes from 70 for n1/n2 = 1.01 to kd --- 97 for n1/n2 = 1.005. 
In addition, we find that the values for (e, - e,÷1)d have become smaller. 
The "power spectrum" of the core-cladding interface irregularities 
must thus become narrower and have steeper slopes in order to yield 
the same loss penalty in both cases. The task of designing this "power 
spectrum" is thus more difficult for smaller index differences between 
core and cladding. The loss penalty that must be paid in this case 
is shown in Fig. 10 which is similar to Fig. 6 except that the abscissa 
is now represented on a linear scale. A few of the curves of Fig. 6 are 
also shown in Fig. 10 as dotted lines for comparison purposes. It is 
apparent that the smaller index difference causes the curves to shift 

TABLE V-PARAMETERS FOR THE TE MODES OF THE SLAB 
WAVEGUIDE FOR n1/n2 = 1.005 

[kd = 97,10-mode ease (ni = 1.5, ni/ni = 1.005)] 

y c,,d OA 03, -  

1 1.4693 145.49258 0.02224 
2 2.9375 145.47034 0.03700 
3 4.4037 145.43334 0.05166 
4 5.8665 145.38168 0.06615 
5 7.3243 145.31553 0.08036 
6 8.7746 145.23517 0.09410 
7 10.2137 145.14107 0.10699 
8 11.6347 145.03408 0.11791 
9 13.0213 144.91617 0.12071 
10 14.3012 144.79546 
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Fig. 10—The loss penalty for the "power spectrum" of Fig. 5. The solid lines 
apply to the case re,/n2 = 1.005, the dotted lines are drawn in for comparison with 
the case ni/n2 = 1.01. 

to the left. Furthermore, we see that the loss penalty is increased for 
a given value of m. 
The normalized second-order perturbation of the lowest-order eigen-

value is shown in Fig. 11 for n1/n2 = 1.005. To obtain a performance 
for n,/n2 = 1.005 comparable to the case ni/n2 = 1.01 requires a higher-
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Fig. 11—The normalized second-order perturbation of the eigenvalue as a func-
tion of the width parameter of the "power spectrum" for the case n1/n2 = 1.005. 

power m of the "power spectrum" curve (52) and a narrower spectrum. 
The discussion of the loss penalty was based on the relative improve-

ment factor R that determines how much the pulse is shortened com-
pared to the pulse distortion in the absence of coupling. For an absolute 
comparison of pulse distortion it is important to keep in mind that the 
pulse distortion in the absence of coupling is less severe in a waveguide 
with smaller core-cladding index difference. Whereas we obtain 

—c (I- — —1) = 5.02 X 10-8 
n, VN  v1 

for the 10-mode case and ni/n, = 1.01 (from Table II), we now have 
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(-1 — —1) =  1.94 X 10-3 
n, vN  v 

for ten modes and ni/n2 = 1.005. The pulse distortion is already im-
proved by a factor of 2.6 even in the absence of mode coupling simply 
by the reduction in the core-cladding index difference. The higher 
loss penalty that must now be paid for a given relative improvement 
R (provided we assume the same power factor m in both cases) is 
thus not quite as serious in absolute terms since the pulse distortion 
is already smaller for the smaller index difference. 

VIII. APPLICATION TO ROUND OPTICAL FIBERS 

Our discussion of numerical results of the pulse distortion reduction 
by means of coupling between guided modes was limited to the example 
of the slab waveguide. However, the slab waveguide results are mean-
ingful for predicting the behavior of round optical fibers. In order to 
find the connection between round fibers and the slab waveguide let 
us use one intermediate step and consider a dielectric waveguide 
with square cross section. The behavior of dielectric waveguides with 
square cross section is very similar to the behavior of dielectric wave-
guides with circular cross section if the cross-sectional areas of the 
two waveguides are comparable. The modes of the slab waveguide can 
be visualized as plane waves (traveling in the core medium) that 
are reflected at the core-cladding interface. In the case of the slab 
waveguide we were concerned only with plane waves whose propagation 
vectors all lie in a plane that is positioned perpendicular to the core-
cladding interface. The complete set of modes of the square waveguide 
is also made up of plane waves, except that now, for each plane wave 
propagating at a certain angle with respect to one parallel pair of 
interfaces, we have N waves whose propagation angle with one set of 
interfaces is fixed but whose angles with respect to the perpendicular 
set of interfaces are varying. Instead of the original N slab waveguide 
modes we find N2 modes in the dielectric waveguide with square cross 
section. This discussion becomes more accurate with increasing values 
of N. 
Turning now to the round optical fiber we can deduce from its 

similarity with the waveguide of square cross section that its total 
number of guided modes is also approximately given by AP, where N 
is the number of slab waveguide modes. We assume that the slab half-
width d corresponds approximately to the radius r of the round fiber. 
The 10-mode slab waveguide thus corresponds to a round optical fiber 
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supporting 100 guided modes. The largest number of modes considered 
in this paper, N = 40, thus corresponds to a round optical fiber sup-
porting 1600 guided modes. 
We assume that the coupling mechanism was caused by core-cladding 

interface irregularities of the slab waveguide with no variation in y 
direction. Extending our results to round optical fibers we consider a 
fiber with random core radius fluctuations with a carefully designed 
"power spectrum" but with no dependence of the core-cladding inter-
face on the azimuth. Core radius variations of a round optical fiber 
couple only modes with the same azimuthal symmetry. This means 
that whole families of modes would remain uncoupled from each other. 
However, this defect does not prevent the pulse distortion reduction 
scheme from working. We must keep in mind that the modes within 
each family (all having the same azimuthal symmetry) cover the entire 
range in space between nzk and nik. The modes in each family would 
thus give rise to the spreading of the pulse described by (30). The random 
radius changes couple all the modes within each family reducing the 
spreading of the pulse to the amount given by (33). We thus can expect 
that instead of many pulses each traveling with its own group velocity, 
we now have families of pulses each traveling with an average velocity 
but each pulse being shortened by the coupling mechanism. Only if 
the pulses composed of each family of modes traveled with different 
average velocities would the pulse distortion reduction in the round 
fiber work less efficiently than predicted by our slab waveguide model. 
However, it can be expected that the average velocity of each pulse 
lies half way between the group velocities of the fastest and the slowest 
pulse in each family of modes. These average velocities must be very 
nearly the same. We thus expect that the pulse distortion reduction 
described in this paper is applicable to the round optical fiber. In 
designing the "power spectrum" of the random radius variation function, 
we must consider the spacing iiip space between the modes of each 
family and must try to shape the "power spectrum" such that the 
guided modes within each family are coupled to each other with the 
exception of the highest-order mode whose strong coupling to the 
radiation field would cause excessive radiation losses. If this condition 
cannot be fulfilled for all mode families we may have to pay a higher 
loss penalty, losing certain families of modes more rapidly than others. 

IX. CONCLUSIONS 

We have found that pulse distortion resulting from the different 
group velocities of the many guided modes of a multimode waveguide 
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can be effectively reduced by providing coupling between the guided 
modes. We have seen, moreover, that we must be very careful to limit 
the coupling to those guided modes that are not coupled directly 
to the radiation field. Designing the power spectrum of the core-cladding 
interface irregularities responsible for the coupling mechanism in such 
a way, that the last guided mode becomes effectively uncoupled from 
the other guided modes, reduces radiation losses. The detailed dis-
cussion of the loss penalty that must be paid for a certain pulse distor-
tion reduction showed that the slope of the core-cladding interface 
"power spectrum" must be extremely steep. Ideally, an infinitely steep 
slope would be desirable. The flat region of the power spectrum, shown 
in Figs. 3 and 5, is not a critical requirement. The delay distortion 
reduction would not be impaired if the power spectrum has ripples in 
this region. 
In closing, it appears prudent to repeat the warning that our predic-

tions are based on first-order perturbation theory. They hold only 
for weak coupling. For strong coupling the radiation losses are expected 
to be larger than predicted here. Furthermore, our theory predicts 
only average power values. Higher-order effects and the fluctuation 
problem will be discussed in future publications. 

APPENDIX 

The second-order perturbation theory is valid only provided that 
certain requirements are met. It is apparent from (18) that perturba-
tion theory can be applied only if 

(i)  2 (i) 
010  a2 (55) 

with a suitably chosen value of W. Instead of air ) and 4" the normalized 
quantities 

and 

d (i) 
= 21c2a0  cr   

_ (i)  u20 0.2 k 2 
a2  =    a2 

cl 

(56) 

(57) 

are used for the actual numerical calculations. In terms of the numerical 
values used, (55) can thus be written as 

1,200.4k4 (i)  (i) 
a0  > > (22  .  (58) 

(02d2 
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The effective value for co to be used in these inequalities is related to 
the width r of the input pulse, 

1 
(59) 

The required condition for the applicability of the perturbation theory 
is thus 

vsoci ters (i)  

ao  » as ).  (60) 
d2 
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A model of voiced-sound generation is derived in which the detailed 
acoustic behavior of the human vocal cords and the vocal tract is computed. 
The vocal cords are approximated by a self-oscillating source composed of 
two stiffness-coupled masses. The vocal tract is represented as a bilateral 
transmission line. One-dimensional Bernoulli flow through the vocal cords 
and plane-wave propagation in the tract are used to establish acoustic 
factors dominant in the generation of voiced speech. A difference-equation 
description of the continuous system is derived, and the cord-tract system 
is programmed for interactive study on a DDP-516 computer. Sampled 
waveforms are calculated for: acoustic volume velocity through the cord 
opening (glottis); glottal area; and mouth-output sound pressure. Functional 
relations between fundamental voice frequency, sub glottal (lung) pressure, 
cord tension, glottal area, and duty ratio of cord vibration are also deter-
mined. 
Results show that the two-mass model duplicates principal features of 

cord behavior in the human. The variation of fundamental frequency with 
subglottal pressure is found to be 2 to 3 Hz/cm I-120, and is essentially 
independent of vowel configuration in the programmed tract. Acoustic 
interaction between tract eigenfrequencies and glottal volume flow is strong. 
Phase difference in motion of the cord edges is in the range of 0 to 60 degrees, 
and control of cord tension leads to behavior analogous to chest/ falsetto 
conditions in the human. Phonation-neutral, or rest area of cord opening, 
is shown to be a critical factor in establishing self-oscillation. Finally, 
the complete synthesis system suggests an efficient, physiological description 
of the speech signal, namely, in terms of sub glottal pressure, cord tension, 
rest area of cord opening, and vocal-tract shape. 

I. GENERATION OF VOICED SOUNDS IN SPEECH 

The vocal cords constitute the sound source for all voiced sounds 
in speech. The cords consist of opposing ligaments which form a con-

1233 
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striction at the top of the trachea where it joins to the lower vocal 
tract. When air is expelled at sufficient velocity through this orifice 
(the glottis), the cords vibrate and act as an oscillating valve which 
interrupts the air flow into a series of pulses. These pulses of volume 
flow serve as the excitation source for the vocal tract in all voiced 
sounds, and the passive resonances of the vocal tract are excited by 
the glottal pulses. Voice quality and prosodic features of speech are 
therefore strongly dependent upon the properties of cord vibration. 
In the synthesis of speech by machines (for automatic voice response 

from computers, for example) it is desirable to make the synthetic 
voice as natural sounding as possible. Toward this end, it is necessary 
to understand the fundamental acoustic principles of voiced-sound 
generation and how these factors might be incorporated into a machine 
voice. Further, in a rather different area, the successful medical diag-
nosis (and correction) of voice disorders depends upon an understanding 
of the critical parameters of vocal-cord behavior. As in the case of 
computer synthesis, medical diagnosis can be facilitated through an 
accurate and viable model of the human vocal cords. Applications 
such as these, together with fundamental interests in the acoustics of 
speech, provide a motivation for modeling the acoustic behavior of 
the vocal cords. 

II. SELF-OSCILLATING MODELS OF THE VOCAL CORDS 

The first quantitative self-oscillating model of the vocal cords was 
devised by one of the authors and implemented with a vocal-tract 
synthesizer on a digital computer.1.2  This model was subsequently 
elaborated to include the mechanism of voiceless sound generation as 
well,' and was used for the synthesis of simple speech samples. 
In this early work, the vocal cords were approximated as a simple 

mechanical oscillator, composed of single opposing masses, springs, and 
nonlinear damping—that is, a so-called one-mass approximation of each 
vibrating cord. The oscillating masses were permitted only lateral 
displacement and were driven by a function of the subglottal pressure 
and the Bernoulli pressure in the glottal orifice. The heretofore much-
used assumption of linear separability of sound source and vocal tract 
was not made, and acoustic factors such as voice pitch, waveform of 
glottal flow, and glottal duty factor were derived as self-determined 
functions of physiological parameters, namely, subglottal (lung) 
pressure, vocal-cord tension (or natural frequency), "neutral" glottal 
area, and vocal-tract shape. 
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The waveforms of glottal area and volume velocity obtained in this 
first study were similar to those observed in high-speed motion pictures 
of the human vocal cords and in inverse filtering of natural speech. 
Further, the results revealed how the acoustic interaction between the 
vocal cords and the vocal-tract shape (through its driving-point im-
pedance) could influence the waveform and period of the glottal flow. 
Control of the physiological parameters, subglottal pressure, cord 
tension, neutral area, and vocal-tract shape, were shown to be sufficient 
for the synthesis of voiced and voiceless sounds.' 
Although the one-mass model could produce acceptable voiced-sound 

synthesis and simulate many of the properties of glottal flow, it was 
inadequate to produce other physiological detail in vocal cord behavior. 
For example, the amount of acoustic interaction displayed between 
source and tract was greater than observed in human speech.* The 
one-mass model was congenitally incapable of sustained oscillation for 
a capacitive input load of the vocal tract—corresponding to oscillation 
at a frequency just above a formant (or eigen) frequency of the tract. 
Also, a physiologically-natural correlate of chest and falsetto registers 
and a phase-difference in the motion of the cord edges were lacking. 
To incorporate more physiological properties, multiple-mass repre-

sentations of the cords were therefore considered. " The cord ligaments 
can be mechanically represented with as distributed a system as desired, 
i.e., periodic structures of masses, springs, and losses. However, theoret-
ical work has shown that a two-mass approximation"' can account 
for most of the relevant glottal detail, including phase differences of 
upper and lower edges and oscillation for a capacitive input impedance 
of the vocal tract. An initial effort at computer simulation of these 
factors' produced realistic phase differences and chest-falsetto dichotomy, 
but nonrealistic dependence on acoustic load. The difficulty lay in the 
equivalent circuit of the glottal orifice, the manner of its control, and the 
physiological data available for the simulation. 
The present work seeks a comprehensive and definitive treatment 

of the relevant acoustic theory and the existing physiological data. As 
in the earlier study,' simulation on an interactive DDP-516 laboratory 
computer is the tool by which the model is assessed and the unknown 
constants are estimated. In the sequel, the level of understanding and 
the realism attained by the two-mass model will be discussed. 

* The amount of interaction is critically dependent upon the trans-glottal pressure 
distribution. In the first work, van den Berg's measurements of glottal pressure were 
used. 
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III. MECHANICAL RELATIONS FOR THE TWO-MASS MODEL 

The vocal cords are assumed to be bilaterally symmetric. The prop-
erties of only one cord are therefore discussed, the same being implied 
for the opposing cord. A schematic diagram of the glottal system is 
shown in Fig. 1. The trachea, leading to the lungs, is represented by 
the pipe to the left. The larynx tube, leading to the vocal tract, is to 
the right. These tubes are assumed to be cylindrical in shape and are 
fixed in size. The glottis constitutes a constriction between these tubes, 
and the size of the constriction depends upon the cord displacement. 
The inlet to the glottal constriction occurs over the contraction dis-
tance it,. Expansion back to the vocal-tract cross section occurs over 
the distance it,. Aerodynamic pressures relevant to the following 
discussion are indicated in Fig. 1. 
In the two-mass model, the vocal cord is divided in depth (thickness) 

into an upper and a lower part. Each part consists of a simple mechanical 
oscillator having a mass, spring, and damping (m, s, and r). The two 
masses of a cord, mi and m2 are permitted only lateral motion, xi and x2 , 
and the masses are coupled by a linear spring, of stiffness kt,, as shown 
in Fig. 1. Other factors shown in Fig. 1 are: 

di and d2 
81 and 82 
ri and I-, 
A poi and Ag02 

Ut, 

TRACHEA 
AND LUNGS 

P, 

the effective length of the vocal cords (or of the 
glottal slit), 
the thickness of mi and m2 , respectively, 
the equivalent springs, 
the equivalent viscous resistances, 
the cross-sectional areas of the glottal, slit when m1 
and m2 are at rest (i.e., the "phonation neutral" areas), 
the average volume velocity across the glottal area. 

PII  PI2  PZI 

d,  d2-

VOCAL 
TRACT 

22— e. LI„ pl 

4 . 
N> 

12 :11 = 
e•   

-,- --- d -- - - -  A =(A +21 z1 91 90 9 1 

CONTRACTION  GLOTTIS  EXPANSION 

21 

Fig. 1—Schematic diagram of the two-mass approximation of the vocal cords. 
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Owing to the assumption of bilateral symmetry, variations in cross-
sectional areas due to the lateral displacements xi and x2 are doubled 
to give the total area variation; that is, the cross-sectional areas at the 
two masses are: 

Api = A001  219xi 
Ag2 -  A 002 ±  21 0x2. 

3.1 Nature of the Vocal-Cord Springs 

The function of the linear coupling spring, k,, is to represent an 
effect of flexural stiffness in the lateral direction of the vocal cords. 
This variable flexural stiffness results from varying the thickness and 
stiffness of the cords by action of the thyroarytenoid muscle (vocalis). 
The springs, s, and 82 , are an equivalent representation of the tension 

of the vocal cords, which becomes firmer due to contraction of the 
anteriol cricothyroid muscle and other muscles. The springs, si and 82 , 
are given a nonlinear characteristic to conform to the stiffness as 
measured on fresh, excised human vocal cords.' The nonlinear relation 
between the deflection from the equilibrium position and the force 
required to produce this deflection is given by 

f.; = kix1(1  nkix),  j = 1, 2,  (1) 

where f.; is the force required to produce x, , k, is the linear stiffness, 
and nhi is the coefficient describing the nonlinearity of the spring, si , 
being positive in this case. 
During closure of the glottis, the model should satisfy realistic condi-

tions at the colliding surfaces of the vibrating masses, m, and m2 with 
their opposing counterparts. A contact force at collision will cause 
some deformation in the flesh of the vocal cords. The restoring force 
at this deformation can be represented by an equivalent spring 
shi (j = 1, 2). For simplicity, a nonlinear characteristic, similar to 
eq. (1), is assumed for the spring shi , that is, 

fhi = hi(xi -r- 4 2){.1.  nhi(xi -F 
, A o• 4 ) 2 

for 

(2) 

-F A00i /210 O  j = 1, 2, 

where fhi is the force required to produce the deformation to mass, mi 
during collision, hi is the linear stiffness, and nh, is a positive coefficient 
representing the nonlinearity of the contacting vocal cords. The resultant 
restoring force acting on m, during closure is, therefore, the sum of 
and fhi , that is, eq. (1) and eq. (2). This change in spring stiffness at 

closure is schematically illustrated in Fig. 2. 
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Fig. 2—Characteristics of the nonlinear stiffnesses. 

3.2 Nature of the Vocal-Cord Losses 

As in the earlier formulation,' the viscous loss of the vibrating cords 
is assumed piece-wise linear. The loss is caused to increase step-wise 
on closure of the cords to represent the "stickiness" of the soft, moist 
contacting surfaces as they form together. 
It is convenient to express the equivalent viscous resistances in terms 

of damping ratios,  and e, , for the uncoupled oscillators, where 

r, = 2e,  and r2 = 2e. -v'nc.  (3) 

and where, as shown in eq. (1), k, and k2 are the linear components of 
stiffness for the springs s, and s2. During the open-glottis condition, 
the loss is taken as e, = 0.1 and e2 = 0.6 for a typical condition of 
the cord model. As in the earlier work, the loss during the closed-glottis 
condition is taken essentially as critical damping, namely 

= (1.0 + 0.1)  and e, = (1.0 + 0.6).  (4) 

IV. PRESSURE DISTRIBUTION ALONG THE GLOTTIS 

Because of the small dimensions of the glottis (compared to a wave-
length at the frequencies of interest), and because of the high velocity 
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of the glottal flow (compared to the vocal-cord velocity), we can assume 
the glottal flow to be quasi-steady? We shall use the Bernoulli equation 
for one-dimensional flow to obtain the pressure distribution along the 
glottal flow. 
The abrupt contraction in cross-sectional area at the inlet to the 

glottis produces a vena contracta surrounded by stagnant air. The 
vena contracta makes the inlet area A., appear smaller than it actually 
is and the pressure drop greater than that dictated by an ideal area 
change. The loss factor for such a contraction has been studied in fluid 
flow experiments' and found to be on the order of 0.4 to 0.5. Flow 
measurements by van den Berg, et al.," on plaster cast models of the 
larynx set the loss figure at 0.37. This latter figure is therefore taken 
to estimate the pressure drop at the inlet, and we fix this drop at 

PB1(1.00 + 0.37), or 0.89p(U:/A:1), 

where Pal = PUL is the Bernoulli pressure, p the air density, and 
the particle velocity at the lower cord-edge. 
Within the constriction formed by the lower part of the cord, the 

pressure drop is assumed to be governed by viscous loss, which is also 
consistent with van den Berg's measurements. In this region the pressure 
falls linearly with distance according to a resistance to the volume flow 
equal to 12µd1ebta1 , where g is the shear viscosity coefficient. 
At the junction between the masses mi and m2, the volume flow U, 

is continuous, but the particle velocity changes. There is a corresponding 
abrupt change in pressure equal to the change in kinetic energy per unit 
volume of the fluid. This pressure change at the junction is 

= 1/2p(u:, — u:2) 
(5) 

= 1/2pU:(1/44  — 1/A:1). 

Throughout the constriction formed by the upper cord-edge, m2, 
viscous loss is assumed to govern the pressure drop and, like the lower 
cord portion, the resistance is taken as (12#6/2/:/A3.2). 
At the abrupt expansion of the glottal outlet, the pressure recovers 

toward the atmospheric value (assuming no constrictions in the rela-
tively large vocal tract). Van den Berg, in his model flow measurements, 
found the pressure recovery to be about 0.5 P g . However, for small 
constrictions this measurement is difficult and uncertain. It seems 
preferable to base an estimate of the pressure recovery on momentum 
considerations, which hold in the theory of fluid flow. 
Consider at the sudden expansion the relations for Newton's law, 
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f = (di dt)(mv). Then, because U, is continuous, 

pU,(ui — u,2) = A i(P22 — P1) 

or 

(PI — P22) --- 1/2pu2„2[2N(1 — N)] 

= 1/2p e [2N(1 — N)] 

= P,,,,[2N(1 — N)], (6) 

where N =  11 , PR, = 1/2p/42 , and A1 is the input area to the 
vocal tract. The value of 2N(1 — N) is typically in the order of 0.05 
to 0.40, which is somewhat smaller than van den Berg's value. This 
difference is significant to the acoustic interaction between the vocal 
tract and the cord source.' The pressure distribution along the steady 
flow through the glottis is indicated in Fig. 3. 
In the time-varying condition of the cords, the inertance of the air 

masses involved should also be taken into account. When combined 
with the loss terms just discussed, the pressure distribution along the 
glottis is described by 

P. —P„ = 1.37 II- (tiL) fg.A ) z d 611E* 
2 Adi  o  

Led, .0 pd, 
— P12 = 12  À4:1 Agi dt 

m, (111..2 2 A121) 
P12  P2I = 

P21 — P22 n•-- 12 — 
gli>12 u pd2 dU 
A:2 ° A,2 dt 

P22 — P =  ((2f 2)2 • 2 t (1 ' (7) 

V. EQUIVALENT CIRCUIT FOR THE GLOTTIS 

On the basis of the pressure difference relations of eq. (7), the acoustic 
impedance elements of the glottal orifice constitute the equivalent 
circuit shown in Fig. 4, where the U, current is continuous. The elements 

* The (U,(dL/dt)) term in (d/dt)(LU,) is negligible, where L = (pd/A). 
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of the acoustic circuit are given by 

IU I  
R. = 1.37 

2 '4-201 

1. dx  
L. = 

Jo  A0(x) 

ged,  R.1 = 12 L A:1  01  pd,  A.1 

R12 —  (A1.22 — 741--?1 ) 1[7.1 

R.2 = 12 ea:d2  L  pd,  
A:2  02  — A.2 

R —  p  2  (1 — A'2) IU I. 
°  2 A.2Ai  A1  ° 

The total acoustic impedance of the glottis, Z. , is therefore 
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Z,, = 

or 

1- 2 1-1,4 - (1 — ±e1-1 )1 

1Uu 10.k i  12 

Ai  r 

±  (Rol ±  R.2) ±  ic e p ±  Ler2  Lo)  (9 ) 

=  (Rki  R12) I U,I ± (Rol +  R.2) +  joi( Lo,  K„2 ±  L c), 

Z„ =  (Rk1  Rk2)  UpI ± (Rol ±  R„2)  jco( Loi  Lp2 +  L c),  (10) 

where 

0.19p 
Rkl —  2 

A 01 

p[0.5 — A1 ( 
Ai   RIZ • 

In general, L, can be neglected in comparison to (Lc, ±  L„2). 

The glottal impedance relation of eq. (10) can be linked to that 
obtained in flow measurements by van den Berg et al.' Using the 
pressure recovery found by van den Berg for the glottal outlet, namely 
1/2 P B2 , [instead of the momentum relations in eq. (6)] gives a value 
R.  =  — (p/4)  U.,  I/  A 2. For the case of A g, =  A,,2  =  A,,, the total 
glottal impedance becomes 

z,, = —0.87 /2 - (-±.°1 -I- 12  (11) 2 A:  A3  0•  

The real part of this impedance is identical with that given by 
van den Berg. 

VI. MODEL SYSTEM FOR VOICED SOUNDS 

A network representation of the vocal system for voiced sounds is 
shown in Fig. 5. Beginning at the left, the subglottal system—comprised 

LUNGS 

Rkil U9 I,Rvi  RkziUg1,1:421 

L91 4 21  L 
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Fig. 5—Network model for the synthesis of voiced sounds. 
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of the trachea, bronchi, and lungs-is neglected and, as in the earlier 
study,' the subglottal pressure is approximated by a constant excess 
pressure in the lungs. Neglecting the subglottal system is also based on 
the finding that its first resonance is relatively high, with a mean value 
of 650 Hz and a bandwidth of 250 Hz. These values were determined 
from direct measurements of the subglottal driving-point impedance 
made on five laryngectomized subjects." The 650 Hz figure is consider-
ably higher than the value of 300 Hz reported by van den Berg. 
The vocal tract is represented in Fig. 5 as a transmission line of n 

cylindrical, hard-walled sections, the element values of which are deter-
mined by the cross-sectional areas Al • • • A. , and the cylinder lengths 
• • • 1„ .12 The inductances are L. = pl./2A,, and the capacitances are 

C„ = (L.A./K2), where c is the sound velocity. In the present work 
n = 4. 
To account in part for tract losses, serial resistances R. are taken 

to have the form of a viscous loss at the pipe wall, namely R. = 
(S.1,4!)• 04‘17—zw/2, where S„ is the circumference of the nth section and 
co is the radian frequency. The frequency for evaluation of this loss is 
fixed at the natural frequency of the lower oscillator, f = (1/27r) 
and a multiplicative coefficient (ATT) is applied to increase the loss 
beyond that contributed by viscous loss at the walls and to produce 
formant bandwidths appropriate to a closed-glottis condition.* (The 
typical range for ATT is 20 to 25.) 
The transmission line is terminated in a radiation load equal to that 

for a circular piston in an infinite baffle, namely LB =  8p/31.  IVT•Z, 
and RR =  (128pc/9ir2A„), where A. is the final (mouth) area." 
From Fig. 5, the differential equations which relate the volume 

velocities of the system are: 

(g-loop) (Rkl  Rk2) lUgl Up ±  (R,.1  R,2) U  +  (La, + La)d dUt° 

+ Lieflug  + 6,11 (U„ — U,) dt — P, = 0 

(1-loop) (LI ± L2) 4f-jul (R,  R2)U1  -c7-21 (U, — U2) di 

— U,) di = 
0 

* Other vocal tract losses not included per se are those arising from non-rigid walls 
and from heat conduction losses at the wall. The former is quite significant in lower-
formant damping. The latter is essentially negligible. See Ref. 12. 
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(2-loop) (L2  L3)  + (R2 -F R3)U2  fot (U2 — U3) dt 

▪ fi (U2 — U,) dt = 0 
(3-loop) (La ± L4) Clcr—a  + (R3 ± R4)U3  f  ( U3  UL) di 

‘,4 0 

▪ fe (U3 —  U2) di = 

(4-loop) (L4  d(UL) LR)  R4UL — LR d(UR)  
dt  dt 

f(U L — U3) di = 
(5-loop) L„ —d (UR — UL) RR•U R = O. 

dt 
(12) 

VII. FORCING RELATIONS FOR THE VOCAL—CORD OSCILLATOR 

The masses of the cord oscillator are driven by mean pressures acting 
on their exposed faces, namely, 

Pmi = i(Pll  P,2) = P. — 1.37 P ( )2 —  (R  r '1U°  ±  dt I 

and 

P.2 = 4(P21 + P22) = P., —  {R., + R.2)U1 

± (L., ± L.2) ---(1U g}  P 7.72( 1  \ .  (13) dt  °Uf,2 4e„ I 

The exposed areas are /AI and 1,,d2, respectively. A shape of the cords 
is assumed such that the forces Fi and F2 acting on m1 and m2 over 
their displacements x1 and x2 are: 

XI x,  F1/1, dI F2// d2 

X2 > X2 m h, 

X2 > 

X2 5— X2 m i. 

X2 :5— X2 m iu 

P.,  P.2 

P.  0 

P.  P. 

P,,  0,  (14) 
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where xi mi. =  (A,01/21,), x2.h. = —(A,,,/21,), and Apo„ AK), are 
the "phonation neutral" values of the glottal area. The equations of 
motion for the two masses are therefore: 

d2xi dxi 9121 s ,, 1(.z 1) ± ke(xi — x2) = Fi 
dt2 dt 

d2x2 x,, — F2 , 
M2  de  r2 dt  s2(x2)  Mx2 — 

where 

A,i = (Ago1  244, A„2 = (A0)2  21 ,,x2), 

si(xi) = ki(xi  riki•x), j = 1, 2, for xi > — 11,;1°' , 

and 

si(xi) = Mx; 4- nkj • XD  hi{(Xi j127:)  nhi(Xi 212g1:1)3} 

for x; — —Aa01  (15) 

and Fi and F2 are given by the force table of eq. (14). These equations 
are coupled to the flow equations through the fact that xi and x2 deter-
mine A,1 and A,,,. Also note that the coupling between the masses, 
which are permitted only lateral motion, has been linearized to be 
proportional to (x2 — x1). [A more detailed consideration of the elonga-
tion produced in the coupling spring by a displacement difference 
(x2 — x,), and of the lateral component of restoring force, leads to 

modifying the coupling term to 2k,(x2 — x1)3 / (di ± d2)2.] 

VIII. DIGITAL SIMULATION 

The differential equations are approximated by difference equations 

in which 

df(t)  f(ti) — f(t1--1) fi — I  
dt =  (t, — ti_i)  T 

(-1 
f(t) dt  (ti — ti_i) E f(ti) = T E fi .  (16) 

i=0  i=o 

These discrete approximations applied to eqs. (12) and (15) yield: 



1246  THE BELL SYSTE M TECHNICAL JOURNAL, JULY—AUGUST 1972 

(g-loop) (Rkii  Rk2i)  U„,  (R„, + R„,)Uu, 

- -   
(L„1  + L, 

T i-1  
- 1 

± RI . Upi ± --,,, E (Uoi - U11) - -1' = 0 
1 ..0   

+ L iL,  2 T  i 1 (1-loop)  ± (RI + R2)} ul  L, + L2 u i - T 

T i-1  T i-1 
+  E (ui, - u.1) + (U„ - U„) = 0 cii   

(2-loop) {L, +T L, + (R, + R3)} U2,  L2 +T L3 u2  I 

(U2 —  + y (U21 - u11) = o ▪ ,3 1=0  2 1=0 
(3-loop) {L, +T L4 +  Ro } (13,  L, +T L4u3  

T T 
▪ E (u31 - [hi) + -Cf3 (U31 - U21) = 

+ LR Ra } ti _  4- T LR u 
(4-loop)  T  L i-1 

- LT); (UR, - URi-i)  - U31) = 0 
C4 l-0 

(5-loop) LTR {(URi —  — (URi _i — ULi_D} -F RRI URI = 0, 

where 

0.19p 0.5 - A.À.2(131 (1  A2'1:2(1131) 
42  e Rk2i  Fee 
--get 1-1 

L„• - A   ,  — APC12  e R„, - 141:   
L3.g21-1  A:li-1 

e)/2   R12  14,1,0 A 3 (17) 
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and 

MT; (x1  2x11-1 + X i -2) ±  (xl  — 

— x2i-1) = 

MT : (z21  2x21-1 ±  x21-2) ±  (X2i  x21-1) 

82(X21)  k0(X2i-1 —  x11-1) =  P21 1 

where 

A011 — A 201 ±  219-x11 

A cr2i  21 -002  210 -x21 

=  nk1-x311-1), for x1 > 
A  0 1 

2lp ' 

s 1) = k • (r  n01- 4-1) ±  4 ') 

• nhl •  A2°  , for xi, 2/a ' 
Agoi  

s2(s21) = /2 (r21 n •xi--1), for x21 > —  

82 (X2 i  =  k2. (X21 +  ?Pa «  h2 '{(X21  A2 r ) 

+ h2 .(X21-1  A21 01 3} for 
A00,  

X2i  —   2 4  1 

F  = P„„, = P. — 1.37  (A ffaj2 
i   

f - -  -U  4 " (U°1 —  

P21/e1210 =  P m2i =  P mli —  { 21 ( Rv11  R 021) U 

(L.„  L  ° 021 )U ' T U — i( A 21 i 

cr2i-1  4erl i-1) 

• —   

These difference equations were programmed in Fortran IV and 
compiled for experiment on one of the DDP-516 laboratory computers 

(18) 
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of the Acoustics Research Department at Bell Laboratories.' Simul-
taneous solution of eqs. (17) and (18) yields all relevant volume veloc-
ities, glottal areas, and displacement. The time derivative of the mouth 
volume velocity (i.e., through the radiation load) is a good approximation 
to the radiated sound pressure.' Time samples of all dependent variables 
are obtained by iterating the solution for as many samples as are desired. 
The sampling interval T is chosen as the longest interval that yields 

a stable solution to the difference equations. This interval is determined 
primarily by the time required for sound to transit the shortest length 
of the vocal tube. Because the distributed vocal tract is approximated 
as lumped constant T-sections, and because the behavior of these 
elements is further approximated by finite differences, the sampling 
interval T must be considerably shorter than the sound transit time 
through the shortest tube element. In the absence of appropriate 
sampling theory for this situation, the broad range of stable solutions 
was determined interactively on the DDP-516 computer and the 
longest stable interval used. In the present work, sampling rates in the 
range of 10 kHz to 30 kHz were used. 
The iteration "loop" of the equations can be closed owing to the 

manner in which the glottal impedance elements and the forcing func-
tions are taken to involve samples of glottal area; for example, current 
values of impedance and forcing function involve only past values of 
glottal areas. The iteration, therefore, proceeds as follows. 
The cords and tract are initially assumed at rest, and initial currents 

are zero. The first sample of Ugi is calculated from loop-g using Ag,_, = 
Ago (i.e., xi_1 = 0). The initial samples of all other loop currents are 
likewise calculated, out to the radiation load. The first sample of U„; is 
then used to calculate the first samples of the forcing functions and, 
from the mechanical equations, the first samples of the displacements 
i and x2,. The latter dictate new values of A„, and A, which are 

entered back into the glottal impedance elements for the calculation 
of the next sample of Ug and all other currents. The process is continued 
until as much of the solution as desired is obtained. 
For synthesis of continuous speech, the vocal-tract area values 

change as do the values of Pg , A,0, and cord constants.* These changes 
are slow by comparison to the sample variations in volume velocities, 
displacements, and pressure. The solutions for the continuously changing 
vocal system can therefore be considered as quasi-steady solutions of 

• As indicated in Fig. 5, a cord-tension parameter, Q, constitutes an input to the 
vocal-cord model. This parameter determines the mechanical constants of the oscilla-
tor. 
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eqs. (17) and (18), and the mouth output samples taken as the synthetic 
speech signal. 

IX. PHYSIOLOGICAL CONSTANTS FOR THE VOCAL-CORD MODEL 

Few numerical values are available for the physiological parameters 
of the vocal cords. Using the sparse data available, the simulation on 
the DDP-516 computer was used to establish relevant ranges for the 
parameters. 
First, the range of parameters which allows self-oscillation of the 

model was studied for a uniform vocal tract, 16 cm long, 5 cm' in 
cross-section, and terminated in the radiation load. The DDP-516 
computer was used interactively to establish the self-oscillation region. 
The allowed oscillation range as a function of k2 and Icc is shown in 
Fig. 6. In this plot, the axes are normalized by the factor mi/m2ki • 
The parameters in the figure are the damping coefficients of the mechan-
ical oscillators, e, and e.. For these cases, all other glottal parameters 
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Fig. 6—Allowed regions of oscillation for the two-mass model. The parameter is 
the open-glottis damping ratio. The vocal-tract shape is for the vowel /a/. 
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are held constant at physiologically realistic values: namely, 
P. = 8 cm H20, 1, = 1.4 cm, A,01 =  Ag02 =  0.05 cm', thickness of the 
vocal cords d,  d2 = 0.3 cm, total mass m,  m2 = 0.15 g, nonlinear 
coefficient of the springs 71 =  n1c2  =  100 and nh, = nh2 = 500, and 
h, = 3k1, h2 = 3k2. In particular, values for the spring constants are 
based upon measurements of static tensile stress versus displacement 
for an excised human larynx.8 From these measurements, for example, 
77,4 is deduced to be on the order of 50 to 100. 
For Fig. 6a, the vocal cords are divided into equal parts, with thickness 

and mass 0.15 cm and 0.075 g, respectively, and with k1 = 50 kdyn/cm. 
For Fig. 6b, the lower part of the vocal-cord model is thicker than the 
upper part, that is, di = 0.25 cm and d2 = 0.05 cm, and the masses, 
m1 = 0.125 g and m2 = 0.025 g, are chosen proportional to the thick-
nesses, keeping the same total mass of 0.15 g as in Fig. 6a. 
Kaneko" has measured the damped oscillations of a fresh excised 

human larynx when excited by a mechanical impulse and with no air 
flow through the glottis. From this data, the damping ratio for the 
excised human cords can be estimated to be of the order of 0.1 to 0.2 
(which, incidentally, is the same order as deduced in the earlier simula-
tionsi). This range of damping seems particularly appropriate for the 
bulk of the cords, that is, for m, of the model.* 
An acoustic load of the vocal tract, whose driving-point impedance 

has an inductive reactance at the fundamental frequency of the vocal-
cord vibration, acts to enhance oscillation of the model. An increase in 
damping (loss) of the vocal tract at lower frequencies, as would be 
caused by wall vibration in the vocal tract, however, acts to oppose 
oscillation. Also, the tendency to oscillate is suppressed by an increase 
in the mechanical damping of m, and especially of m,. 
The behavior of the vocal-cord model, calculated for values of 1c2 

and k,, specified by the small circle in Fig. 6b, will now be considered. 
This glottal condition is chosen as the "typical" one throughout the 
present study; namely, /GI = 80 kdyn/cm, k2 = 8 dyn/cm, and k. --
25 kdyn/cm. 

An equivalent damping ratio for the bulk of the cords can be estimated as follows: 
r2) = 2 ti  + 2 r2 •Vm2k2. 

For k, —> co, 
(ri r2) = 2 toqui V(mi m2)(ki  /es). 

Substituting (for the "typical" conditions) m, = mi /5, k, =  /10, i = 0.1, and 
= 0.6 gives 

eequi =  (1/57)  e2) = 0.16, 

which corresponds favorably with Kaneko's measurements. 
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X. RESULTS OF THE DIGITAL SIMULATION 

The vocal-cord and vocal-tract program, specified by eqs. (17) 
and (18), was used interactively on the DDP-516 computer to calculate 
waveforms of glottal flow, glottal area, and mouth sound pressure. 

10.1 Waveforms for Typical Glottal Conditions 

Measurements made at the typical glottal condition and for a uniform 
vocal tract are illustrated in Fig. 7. Waveforms of A„, , A52 , U0, and 
mouth sound pressure are shown for the initial 30 ms of voicing. The 
negative values of A., and A„ indicate glottal closure. (One can imagine 
the cords forming into one another upon contact, and the negative 
areas correspond to the continued displacement of the center of mass 
of the cords.) 
The results show that the phase difference between m1 and m2 is 

about 55 degrees, and the duty ratio (glottis open time to total period) 
is about 0.6. These values compare well with observations which have 
been made on human vocal cords by high-speed motion picture tech-
niques14 and by inverse filtering:5 One notices the differences between 

the glottal area wave and the corresponding glottal flow wave, as 
pointed out in the earlier work: The glottal flow wave is typically 
characterized by some temporal detail, asymmetry, and steep falling 
slope, while the area wave shows little temporal detail, is less steep, 
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Fig. 7—Vocal-cord and vocal-tract functions computed from the DDP-516 
simulation. Glottal areas, A and A,72, glottal volume velocity, U,, and mouth-output 
sound pressure are shown for the initial 30 ms of voicing for the neutral vowel /a/. 
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and tends to be more symmetrical. Because the cords are massive and 
are generally forced at a frequency above their natural frequency, their 
mechanical displacement does not reflect the detail of acoustic inter-
action which the glottal flow displays. The sound output wave reflects 
the periodicity established by the cord oscillator, and the greatest 
formant oscillation (or excitation) typically occurs (with about 0.5 ms 
delay) at the closing phase of the U, wave. This effect has been observed 
previously.' 

10.2 Effect of Cord Stiffnesses 

The normalized k2 versus k, plane of Fig. 6 is a convenient medium 
for demonstrating the effects of spring constants. Using this plane, 
waveforms of U, , A„„ and A„, are sketched for corresponding stiffnesses 
in Fig. 8. As before, the vocal tract is a uniform pipe Van and other 
glottal conditions are kept at their typical values. 
An increase in Icc above the typical value reduces the phase difference 

between A„ and A,2 . It also diminishes the steep falling slope of the 
flow waveform, and tends to make the wave more symmetrical and 
triangular. An increase in k, also produces an increase in the build-up 
time required for the oscillation to settle to a steady state. For still 
larger values of k„ close to the bounds of the oscillation range, both 
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Fig. 8—Sketches of cord-tract functions for points on the 1c2-k, plane. The axes 
are normalized by the function (m,/kim2). The vowel is /9/. Compare with Fig. 6b. 
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the glottal flow and area waveforms become sinusoidal on a de com-
ponent, and the glottis does not close. 
The range of the sinusoidal behavior is expanded if the damping 

coefficients are made smaller. This special case is shown in Fig. 6a for 
the damping coefficients nu. = 0.1 and nk2 = 0.15. Here, kc has no 
limitation for the oscillation when k2 is less than 20 kdy-n/cm. Owing 
to the large lcc , the two-mass model behaves just as the one-mass model 
in the extended region in which the oscillation is sustained by the 
inductive reactance of the vocal tract and glottis. This projecting tail 
disappears with an increase in the losses, either of the vocal tract or of 
the vocal cords. 
In contrast, an increase in k2, with other conditions constant, de-

creases the amplitude of A„2 without a change of the phase difference. 
Further increase of k2 leads to no closure of 21,2 while Aci can close 
completely during the cycle. Owing to the small amplitude of lip, and 
its dc component, the glottal flow increases in upward roundness and 
also increases in duty ratio. A small, broad hump appears on the rising 
slope of the glottal flow wave, at which point the area Ac, is equal to 11 ,2 

By comparison, a decrease in k2 increases the amplitude of A„2 and the 
glottal waves tend to a symmetrical form. This same dependence on lc, 
and kc also occurs for the case of equal thicknesses, d1 = d2 = 0.15 cm. 
A change in proportion of the damping coefficients, e, and ea , also 
influences the relations between Ac, and A,2. For example, the typical 
condition ei = 0.1 and e2 = 0.6 produces an amplitude of A,1 slightly 
larger than that of A,2 for /9/, as seen in Fig. 7. A smaller value of e2 
for the same values of e, and other parameters produces an amplitude 
of A„2 larger than A,, without a change in phase difference. A steeper 
rising slope of the glottal area wave also results, but the falling slope 
remains unchanged. 

10.3 Effect of Neutral Area 

The behavior of the vocal-cord model with respect to the "phonation-
neutral" area, or the equilibrium value A,,,, is another case where we 
can find correspondence between the complex behavior of the human 
vocal cords and the vibrations of the vocal-cord model. In human 
phonation the neutral area is maintained by laryngeal adjustment. 
Typical results from the simulation for different values of A„,, are 
illustrated in Fig. 9. These data were measured for the typical glottal 
conditions with g-1 = 0.1 and e2 -= 0.6 and for the vowel /i/. One sees 
that the build-up time required for the oscillation to reach a steady 
state increases as A,,, gets larger. The value Ace, = 0.30 cm' surpasses 
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Fig. 9—Effect of the "phonation-neutral" or rest area, Ago, upon the glottal area. 
The vowel is /i/. 

a critical limit (about 0.25 cmB) beyond which the model does not 

oscillate for these conditions. 
During the voicing build-up time the pitch period is much longer 

than that of the steady-state oscillation. The change in pitch at the 
onset of voicing is similar to the starting motion of the human cords 
when they are brought to the phonation position from an open position. 
In this instance, unestablished low subglottal pressure also contributes 
to the reduction of the fundamental frequency. The oscillation period 
before cord closure is a value between the damped natural frequencies 
of the two mechanical oscillators. This is consistent with the value 
calculated from the acoustic theory of the two-mass model neglecting 
the collision and the nonlinearity of the springs. 
Although the model, in this case, does not self-oscillate for Ao > 

0.25 cm', the maximum glottal area for phonation depends on the 
damping of the mechanical oscillators and of the vocal tract and on 
the subglottal pressure. For e, = 0.2 and e2 = 0.6, and with P. = 
8 cm H20, the maximum glottal area reduces to about 0.20 cma. An 
increase in the phonation-neutral area also causes an increase in the 
amplitude of the vibration with no significant change in the period of 
the steady-state oscillation. 
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10.4 Effect of Tract Shape 

Excitation of the vocal tract by the cord model was studied for 
several vowels. Area waves, glottal flow, and mouth-output sound 
pressure are shown for the vowels /i/, /u/, and /a/ in Figs. 10a, b, 
and c. For all these cases, the typical glottal conditions hold (same as 
for /a/ in Fig. 7). 
One notices that the waveforms of glottal area and the fundamental 

frequency are almost independent of the vocal-tract shape, while the 
shape can substantially influence the waveform of the glottal flow, 
similar to the results obtained from the one-mass model in the earlier 
work.' The acoustic interaction between the glottal flow and the acoustic 
load depends on the resonance characteristics of the vocal tract. Vowels 
having high resonant Q for the first formant show noticeable interaction 
in the glottal flow wave, as is seen for /a/. Also a low first formant can 
affect the glottal flow wave to a considerable extent, for example in /i/. 
However, the relatively large dissipation of the vocal tract in the 
frequency range of low first formants (such as for /i/ and /u/) caused 
primarily by vibration of the vocal-tract walls acts to reduce the 
interaction, but the glottal flow waveforms still differ markedly from 
each other. In all these cases, the tract losses are set to give bandwidths 
for the first formant equal to values measured on the human tract 
for the closed-glottis condition." 

0< 
w 

Oct 

> 

0.3 

0.2 

0.1 

o 

1.0 

o 

o 5 10  15  20 

TIME IN MILLISECONDS 

25 30 

Fig. 10a—Results of the DDP-516 simulation for the vowel /i/ showing area waves, 
glottal flow, and mouth-output sound pressure. 
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JlVLds 

The data of Fig. 10* permit a comparisbn between the glottal wave-
form and the speech pressure wave. The comparison is familiar from the 
results of inverse filtering.' " There is a delay time difference of about 
0.5 ms between the waves, corresponding to the time required for the 

* Sound spectrograms of the computed mouth-output sound pressure are shown for 
several vowels in Fig. 10d. 
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Fig. 10d—Sound spectrograms of the computed mouth-output sound pressure for 
the vowels /i, e, a, o/. 

sound to travel from the glottis to the lips. The waveforms for /a/, /i/, 
and /u/ show that the formants are excited largely at the closure of 
the cords. The output pressure waves attenuate rapidly with increasing 
glottal area during the opening phase of the glottal cycle. 

10.5 Effect of Subglottal Pressure 

The influence of the subglottal pressure on the fundamental frequency 
of the vocal-cord vibration is another important aspect of voice pro-
duction. Typical behavior of the model for these factors is shown in 
Fig. 11. The nonlinear coefficient of the spring, Ilk , is shown as the 
parameter for the vowel /0/. The data for the vowels /i/ and /a/ 
correspond to nk = 100 solely. For all these cases, the coefficient de-
scribing the nonlinearity in the deformation of the vocal cords at 
closure is taken as ny =  5 nk • 
The slope of the fundamental frequency as a function of subglottal 

pressure is seen to be about 2.5 Hz/cm H20 for nj, = 100, independent 
of the vowel configuration. This represents good agreement with mea-
surements which have been made on human speech in the chest register 
by Macon, et al.' The curve for nk = 0, that is, linear springs, shows 
a saturation characteristic for subglottal pressures greater than 8 cm 1120. 
These results suggest that pitch variations with subglottal pressure 
might be ascribed to two causes. One is the collision of the vocal cords 
at closure when the amplitude of vibration is not too large and the 
subglottal pressure is less than several cm 1120. Another is the non-
linearity of the deflection of the muscles and ligaments at large ampli-
tudes of vibration and at subglottal pressures more than several cm 1120. 
In the latter case, the nonlinearity becomes dominant when large 
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Fig. 11—Variation of fundamental frequency with subglottal pressure. The param-
eter is the nonlinear coefficient of the stitinesses, nk. 

displacement amplitude increases the effective stiffness of the springs. 
This tends to increase fundamental frequency. The minimum subglottal 
pressure for vowel production is about 2 cm 1120. 
In the earlier work with the one-mass model, significant influences 

were found on fundamental frequency as a function of tract configura-
tion. This influence was due in large part to the pressure recovery 
assumed at the glottal outlet, namely 1/2 PE according to van den Berg's 
data. When the intraglottal pressure distribution derived here is used 
in the one-mass model, the interaction across vowels and with subglottal 
pressure is much less. 
The two-mass model becomes a one-mass model if k, is increased to 

a large value. For this condition, the variation in fundamental frequency 
with subglottal pressure is shown for several vowels in Fig. 12. The 
behavior is similar to the two-mass model. Under these conditions, the 
duty ratio of the former tends to be slightly greater than the latter. 
Duty ratio is another aspect of the model that can be compared to 

human phonation. An increase in subglottal pressure produces an 
increase in glottal flow and in glottal amplitude. Duty ratio (open time 
to total period) decreases for this increase in subglottal pressure and is 
asymptotic to a value around 0.5, as shown in Fig. 13. This value 
compares well with measurements on natural speech:2 
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10.6 Effect of Cord Tension 

As in the previous studies, " it is convenient to apply a "tension 
parameter," Q, to control fundamental frequency. This can be achieved 
by causing the masses and thicknesses to be scaled down and the springs 
scaled up by the factor Q, causing the fundamental frequency to vary 
proportionally with Q. Phase difference, duty ratio, and glottal area 
waveforms are essentially uninfluenced by Q, and the amplitudes of 
glottal area and glottal flow decrease gradually with increasing Q. 
The glottal flow waveform also varies in detail depending on the funda-
mental frequency, because the formants contributing to the temporal 
detail of the glottal flow are unchanged while the period of the glottal 

1.2 

--, 1.0 
o 
O 

0.8 

0.6 
> 

û Z 0.4 
uJ 

O 

0.2 

Oct  5  10  15  20  25 

SUBGLOTTAL PRESSURE IN C M I-12 0 

Fig. 13—Variation of duty ratio with subglottal pressure, 

30 35 



1260  THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1972 

flow varies as a function of Q. Changes in flow waveform with pitch 
variation are greatest in cases where acoustic interaction is especially 
pronounced (such as for /a/). 
In human speech the duty ratio has a tendency to increase with the 

fundamental frequency." This feature can also be given to the vocal-
cord model by modifying the coupling-tension parameter k, to increase 
more than in linear proportion to Q. A variation as (22 appears more 
realistic. Physiologically this corresponds to the considerable decrease 
in compliance and thickness of the vocal cords when they are stretched 
by contraction of the cricothyroid muscle and other muscles associated 
with contracting of the vocalis. The increase of Icd more than proportional 
to Q is equivalent to shifting the glottal operation condition on a line 
parallel to the abscissa in Fig. 6. As indicated in Fig. 8, a shift to the 
right reduces the phase difference and increases the duty ratio without 
changing other features of the cord vibration, except near the boundaries 
of the oscillation range. 
Behavior of the cord model with the Q parameter so defined is shown 

in Figs. 14 and 15. Variations in waveforms with Q are shown for the 
vowel /a/ in Fig. 14. The relations between fundamental frequency, 
duty ratio, and amplitude of glottal area with Q are plotted in Fig. 15. 
Variation of the duty ratio with frequency falls into the range measured 
in inverse filtering experiments." 
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Fig. Ma—Effect of tension parameter, Q, on cord-tract output for the vowel /a/. 
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XI. INTERACTION EFFECTS WITH LARGE ACOUSTIC LOADS 
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11.1 Differences Between Two-Mass and One-Mass Models 

The measurements discussed previously show that the fundamental 

frequency and the area waveforms of the cord model are not strongly 
influenced by tract geometry. The interaction with glottal flow, however, 
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is marked. We have further investigated the effect of acoustic load by 
lowering the frequency of the lowest resonance of the acoustic load 
(the first formant) into the range of the fundamental frequency. This 
increases the driving-point impedance at the fundamental frequency 
and strong coupling between source and load is expected. 
The formant frequencies are lowered by lengthening the simulated 

vocal tract. Measurements of the fundamental frequency are shown in 
Fig. 16 as a function of the length of a uniform vocal-tract tube, 5 cm2 
in cross-section. Data are shown for both the two-mass cord model and 
an equivalent one-mass model (k, —› co). The measurements are for 
the typical glottal conditions. The shunt. impedance of the vocal-tract 
wall (wall vibration) is not taken into account per se, and this effect 
is only approximated by an increase in damping for the first 16-em 
section of the tube (as was used for the /a/ configuration). The remaining 
tube is regarded as an ideal hard-wall tube. The first resonance frequency 
of the vocal-tract tube, Fo, , is shown by the solid line. 
The frequency of the two-mass model decreases more gradually than 

that of the one-mass model with increasing the tube length. When the 
oscillation frequency of the former meets the first formant frequency 
of the vocal-tract tube, a sharp increase of the fundamental frequency 
occurs for further increase in tube length. The frequency returns to 
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almost the same value as for a short tube. The frequency jump occurs 
at the resonant frequency of the vocal-tract tube, independent of 
dissipation and of glottal conditions. For example, an increase in 
acoustic dissipation of the vocal tract and a decrease in mechanical 
damping of m, and m2 raises the onset frequency of the jump, but the 
frequency where the jump occurs is still the first resonant frequency 
of the tube. The variation of frequency with vocal-tube length is shown 
for two conditions of damping in Fig. 16. 
The curve of F2, as a function of tube length marks the boundary 

between an inductive driving-point impedance (to the left) and a 
capacitive driving-point impedance (to the right). The frequency jump 
for the two-mass model, which occurs at Fol regardless of the glottal 
conditions, places its new oscillation in the capacitive region, that is, 
between the first pole and second zero of the driving-point impedance. 
A frequency jump also occurs in the one-mass model. In this case, 

however, the jump is to the original frequency for which the driving-
point impedance is still an inductive impedance, that is, between the 
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Fig. 16—Variation of fundamental frequency with acoustic load for the two-mass 
and one-mass models. Fol shows the frequency of the first pole of the driving-point 
impedance, and Fol' shows the first zero. 
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second zero and second pole of the driving-point impedance. This 
behavior can be predicted by an analysis of the oscillator with a uniform 
transmission line as a load. 

11.2 Effects of Acoustic Load on Human Voicing 

For comparison with the model behavior, we have measured similar 
loading effects in human voicing. To bring a first formant resonance 
into the range of the voice pitch, subjects phonated into a long metal 
tube the length of which was periodically changed from 39 cm to 73 cm 
by a motor (i.e., a bazooka-like sliding pipe). The subjects were in-
structed to pronounce the sustained vowel /a/ at medium sound level 
and with constant glottal adjustment regardless of the change in tube 
length. Fundamental frequency (pitch) measurements were made at 
several frequencies in the chest register. Typical results for one subject 
are shown in Fig. 17. 
The voice pitch was measilred at 10-ms intervals by a pitch-extracting 

program.» The length of the metal tube (exclusive of the subject's 
vocal tract) is also indicated on the abscissa along with the corre-
sponding time scale for the length change. Adjacent open and closed 
points (circles or triangles) pertain to different cycles of the pipe in one 
set of measurements. One sees frequency jumps similar to those in the 
two-mass model. However, the observed onset frequencies of the jumps 
are generally higher than the resonant frequency of the compound 
tube consisting of the metal tube and the subject's vocal tract (neglecting 
the shunt impedance of the vocal-tract wall). The deviation from the 
resonant frequency becomes especially noticeable for lower frequencies. 
Toward an interpretation, it is known that the shunting impedance 

caused by vibration of the walls of the vocal tract produces a "cutoff 
frequency" of the sound transmission and constrains the lowest first 
formant frequency of the vocal tract." This effect will contribute to 
raising the resonant frequency of the compound tube in a frequency 
range near the cutoff frequency. In the present instance, one could 
conceive of the walls of the cheeks, pharynx, and soft velum to yield 
to vibration because of the vocal-tract geometry for /9/ and because 
of the long wavelength. At the cutoff frequency of the vocal tract, the 
first resonance frequency of the combined vocal tract and metal pipe 
is essentially that of the metal pipe alone. The latter is shown in Fig. 17 
by the broken line. 
From Fig. 17, we can presume the cutoff frequency of the vocal tract 

for /a/ to be a little lower than 200 Hz. The effect of the wall vibration 
could thus account for the rightward shift of the observed pitch jumps. 
The rightward shift is most noticeable at the lower frequencies as this 
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Fig. 17—Fundamental frequency measurements made for a human subject when 
the acoustic load on his vocal cords is varied. The acoustic load is varied by peri-
odically changing the length of a uniform tube fitted to the subjects' mouth. The 
broken line shows the first resonant (pole) frequency of the uniform tube. 

argument would predict. Even with these uncertainties, we see the 
close similarity in the dependence of fundamental frequency on acoustic 
load between the human larynx and the two-mass model.* It is further 
of interest that the vocal cords can self-oscillate without regenerative 

* Note added in proof: After this paper was written, we measured the "cutoff 
frequency" for the vocal tract and tube combination. We found its value to be 
195 Hz. 
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feedback from the subglottal and supraglottal system. In addition, the 
vibration of the soft walls of the vocal tract acts as a buffer to aid stable 
operation in the presence of coupling between the vocal cords and the 
vocal tract as the latter takes on a wide variety of shapes. 

XII. CONCLUSION 

The two-mass formulation of the vocal-cord model is seen to yield 
physiologically realistic behavior. In particular, the phase differences 
between upper and lower cord-edges corresponds well with motion 
observed in high-speed photography. The two-mass formulation also 
leads to a natural correlate to chest and falsetto register with coupling 
stiffness (lax in chest and tense in falsetto) being an important factor 
along with mass and thickness of the cords. 
The computer measurements show that the two-mass model is 

capable of oscillation just above the resonant frequencies of the acoustic 
load (i.e., the formant frequencies of the vocal tract), duplicating a 
capability of the human cords. The one-mass model cannot oscillate 
in this frequency range, where the driving-point reactance is capacitive. 
Further, the intra-glottal pressure distribution derived for use with the 
two-mass model yields cord-tract interaction similar to human speech. 
Fundamental frequency varies with subglottal pressure approximately 
as 2 to 3 Hz/cm H20, and changes in vowel configuration do not markedly 
influence the fundamental frequency. Closures tighter than those which 
occur in vowel shapes (for example, at consonant-vowel boundaries) 
can of course influence the fundamental frequency. The improved 
intra-glottal pressure distribution is also applicable to a one-mass 
formulation, and it produces physiologically realistic cord-tract inter-
actions with a one-mass model. 
The programmed cord oscillator and the digitally simulated vocal 

tract constitute a complete synthesizer for voiced sounds. The system 
so implemented has potential for speech synthesis applications such as 
computer voice response. Especially for techniques such as text syn-
thesis," the cord model and vocal tract offer means for natural control 
of tract and larynx parameters, i.e., subglottal pressure, cord tension, 
neutral area, and tract shape. These parameters appear sufficient for 
describing both voiced and voiceless sounds in continuous speech.' In 
some synthesis applications, the complexity of the two-mass model may 
not be needed and a simpler one-mass formulation may serve. In normal 
voice production, phonation occurs at a fundamental frequency always 
below the first vocal resonance (formant). Here, the driving-point imped-
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ance is inductive and the one-mass oscillator performs acceptably, 
particularly with the improved intra-glottal pressure distribution. 
The two-mass model, because of its physiological detail, also provides 

a potential tool for medical analyses of voice disorder. Although the 
present simulation assumes bilateral symmetry of the opposing cords, 
asymmetric configurations can be implemented. The effects of defi-
ciencies such as unilateral cord paralysis can therefore be investigated 
and quantified. Biomedical engineering is making increased use of 
digital simulations of physiological behavior. The simulation technique 
described here not only permits acoustic analysis of voice functions 
but of human respiration as well. 
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A special class of transmission lines is considered, in which the modes 
decompose into two noninteracting sets. Both a single transmission line 
with constant characteristic impedance and variable propagation factor, 
and two transmission lines with equal propagation factors and variable 
coupling, in which the forward modes do not interact with the backward 
modes, are investigated. Exact expressions are obtained for the reflection 
and transmission coefficients when a section of such a transmission system 
connects two semi-infinite transmission systems consisting of constant 
impedance and admittance lines. These results hold for arbitrarily varying 
propagation factors and coupling; and while they are of independent 
interest in the case of deterministic variations, we make an application of 
them here in the case of stochastic variations. 
Exact results are obtained for the ensemble averages of the transmission 

coefficient and transmitted power, and their variances, for the inserted 
section of single line, when the variable propagation factor is a random 
function involving either a Gaussian process or the random telegraph 
process. Asymptotic results are also obtained in the general case of weak 
fluctuations and long inserted sections. Analogous results may be obtained 
for the inserted section of two lines when they are randomly coupled, and 
the results are given in the case of matched lines, for which no reflections 
occur. Finally, some of the time domain statistics for lossless lines are 
considered, and expressions are derived for the ensemble averages of the 
transmitted pulse, due to putees incident on the inserted section. 

I. INTRODUCTION 

This paper deals with a special class of the generalized equations of 
telegraphy. The starting point is the following simple observation. 
Consider the telegraphist equations in the frequency domain for a 

1269 
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single transmission line 

d'U 
=  (x)(x), 

(7 = --̀Y(x)v(x), (1) 

where 1.) (x) and g (x) are the time Fourier transforms of the voltage and 
current in the line, and 3(x) and S(x) are the impedance and admittance, 
respectively. Then, if the characteristic impedance 

K = V(x)/J(x)  (2) 

is a constant independent of x, it is simple to show that (1) has the two 
fundamental solutions 

1 
+(x) = exp {—  dE} ,  g ÷(s) = k 1),(s), 

v_(x) = exp {f r() dE} ,  g_(s) = —k (m),  (3) 
o 

where 

1.1(x) =  â(x)cy(x).  (4) 

This simple result has several interesting consequences. Note that 
0̀,.(x) and g.,(x) describe a wave moving to the right and "0_(x) and 
g_(x).describe a wave moving to the left (the time factor is assumed 
to be ef ẁ). Furthermore, the wave moving to the right does not induce 
a reflected wave moving to the left, and vice versa, except possibly at 
the beginning or termination of the line. 
This decomposition into noninteracting right and left moving waves 

suggests that a similar decomposition may exist in the case of n coupled 
transmission lines. This is the subject of Section II. It is shown there, 
that when a condition analogous to (2) is satisfied by the impedance 
and admittance matrices of the system, the system of 2n equations can 
be decomposed into two noninteracting sets of n equations. Under some 
circumstances, the n fundamental solutions of one system correspond 
to waves moving to the right; and the n fundamental solutions of the 
other system correspond to the left moving waves. In particular, we show 
that the model of two interacting waves recently studied by Rowe and 
Young" corresponds to just such a decomposition. 
In addition, the form of the solution (3) for the single transmission 

line makes these models particularly convenient to study when â (x) 
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and cj(z) are stochastic processes. In Section III, we consider a finite 
section of length / of lossless transmission line with variable impedance 
and admittance satisfying condition (2). This section of line connects 
two semi-infinite lossless transmission lines having constant inductances 
and capacitances. We derive various expressions for the reflection and 
transmission coefficients of the inserted section. Using these expressions, 
in Section IV, we calculate exact expressions for the ensemble average of 
T(w, /), the transmission coefficient, and of I T(co, 1)12 and I T(co, 1) r, 
when 3(x) and 'j(x) are particular stochastic processes. Asymptotic 
results are obtained in the general case of weak fluctuations in â(x) and 
«y(x), and long inserted sections. These results are based on a limit 
theorem of Khas'minskii,3 and the details are given in the Appendix. 
In Section V, we study a more complicated model consisting of two 

coupled transmission lines. Here the model involves a finite length, /, of 
two transmission lines having equal propagation constants, with variable 
inductive and capacitive coupling, connecting two semi-infinite, constant 
impedance and admittance lines. The self-impedance and admittance 
of the inserted section are also constant, and the semi-infinite lines are 
uncoupled. We derive expressions for the reflection and transmission 
matrices of the inserted section. Exact results may be obtained for the 
ensemble averages of the elements of the reflection and transmission 
matrices in the case of random coupling, for particular stochastic 
processes, using the results of Section IV. Since the results are quite 
lengthy in the general case, we give them only in the case of matched 
lines, so that no reflections occur. 
Finally, in Section VI, we consider some of the time domain statistics 

of our models. Exact expressions are derived for the ensemble average 
of the transmitted pulse, due to a pulse incident on the inserted section 
of single transmission line with random inductance and capacitance. It 
is of interest to note that if the fluctuations in the propagation factor 
are described by a Gaussian process, the transmitted wave violates 
causality. This is not the case when the fluctuations are described by 
the random telegraph process. Analogous results are obtained for the 
transmitted pulses, due to pulses incident on the inserted section of two 
randomly coupled transmission lines, in the case of matched, lossless 
lines. 

II. CLASS OF TRANSMISSION LINES 

The generalized equations of telegraphy are the starting point of 
this paper: 



1272  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972 

a o —R(x)I(x, t) — L(x) —ati(x, 0,  (5a) 
ax 
a  a o = —G(x)V(x, t) — C(x) —at v(x, O.  (5b) 

These equations are typically used to describe the time and space 
variations of the current and voltage along n coupled transmission 
lines.' In this case, V and I are column vectors whose elements V„(x, t) 
and /9(x, t), p = 1, 2, • • • , n, are, respectively, the voltage of the pth line 
relative to some fixed voltage, and the current in the pth line. R, L, G, 
and C are n X n matrices, the resistance, inductance, conductance, and 
capacitance respectively, which typically are functions of the distance 
x along the lines. 
We will, for the most part, find it convenient to work in the frequency 

plane, and so we introduce the Fourier transforms 

V(x, co) —   fe V(x t)e-i " dco,  (6a) 

1(x, co) —  fe.1(x, t)e-i " dw. 

Then V and I satisfy the equations 

dV  dl 
= —Z(x)I,  = —Y(x)V, 

dx 

where 

(6b) 

(7) 

Z(x) = R(x)  ja(x), Y (x) = G(x)  jwC(x)  (8) 

are the impedance and admittance matrices, respectively. It should be 
noted that the frequency domain equations appear in other contexts,' 
but there, the frequency dependance of Z(x) and Y(x) is generally more 
complicated. The remainder of this section is devoted to some general 
properties of the frequency domain eqs. (7). 
It follows from (7) that 

d —dx (V̀1*  Ve I) = —It[É(x)  Z*(x)]I* — V'[Y t(x)  Y*(x)]V*, (9) 

where t denotes transpose and * denotes complex conjugate. Hence, 

for lossless lines 

Zt(x)  Z*(x) = 0,  Yt(x)  Y*(x) = 0.  (10) 
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We wish to consider the class of coupled transmission lines for which 

Z(x) = KY(x)K,  (11) 

where K is a nonsingular constant matrix. Note that, in the lossless case, 
the first condition in (10) follows from the second if K1 = K*. When (11) 
is satisfied, the solutions of (7) may be split into two groups, namely 

dV 
V = K I,  d—x = —KY(x)V,  (12) 

and 

dV 
V = —El,  d—x = KY(x)V. (13) 

If the lines are appropriately matched at both ends, then either one set 
of solutions or the other occurs, and reflections are avoided. Since K is 
constant, this matching is independent of the length of the lines. 
As a particular example, let n = 2 and 

K [K, 

Lo Ki 

Thus, from (11), 

Y= 

ri  —ic(x) 
K1 (1---(7.2) 

—Jc(x) 

= [  r,Ki —i(K,K2)*c(x)]. z 
—i(K,K2)c(x)  r2K2 

Corresponding to (12), we have 

d'U i K y 
r + l'u, = ie(X) Pre V 2 dx  1.1.2  ' 

cto2 +  = ic(x)( 001 
dx 

(14) 

(15) 

(16) 

The substitutions V, = KI, , V 2 =  KIT, lead to the equations for two 
coupled modes traveling in the same direction, which have been con-
sidered previously.' 2 We remark that if we choose K = [ffij• °„.] instead, 
then we are led to equations for two modes traveling in opposite direc-
tions. 
Next, we consider a particular class of transmission lines, satisfying 

(11), for which 

KY(x) = r(x)I — jc(x)A,  (17) 
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where I is the unit matrix of order n, and A is a constant matrix. Then 
there are solutions of (12) and (13) of the form 

V --- b exp  f [r(x) — jXc(x)] dx} =  (18) 

where b is a constant vector satisfying 

(XI — A)b = 0.  (19) 

The eigenvalues X are given by I XI — A I = O. 
We will assume that c(s)A describes only the coupling between lines, 

so that A has diagonal elements equal to zero. The case n = 1 (for which 
A = 0, and X = 0 is the only eigenvalue) corresponds to the well-known 
case of a single line with constant characteristic impedance and variable 
propagation factor. This case is considered further in subsequent 
sections. The case n  2 corresponds to n transmission lines with 
identical propagation factors and variable coupling. Such a situation 
might arise in the consideration of n twisted pairs in a cable, although 
the relationship (11) is not too realistic. In Section V, we consider the 
case n = 2 corresponding to ri = r, in (14), so that (17) holds. 

III. SINGLE TRANSMISSION LINE 

In this and the following section, we study in some detail the following 
example. Consider an infinitely long, lossless, single transmission line 
(n = 1 in the classification of Section II) which for x < 0 has the 
constant impedance and admittance 2r. = jcoLo , 'Jo = iwc , for x > 1 
has the constant impedance and admittance 2si = jcoLi and cyi = jwCi , 
while the central section 0 < z < / has the variable impedance and 
admittance â(x) = je.)1,(x), (y(x) = jwC(x). A wave traveling to the right 
in the region x < 0 will be partially reflected and partially transmitted 
on striking the central region in 0 < z < 1. We study the transmitted 
wave under the assumption that a(x) and ‘g(x) satisfy condition (11), i.e., 

K = •V3(x)1( e) =  L(x)/C(x)  (20) 

is a positive constant independent of x. 
Although this case is probably hard to realize physically, it is never-

theless of considerable interest, since it is mathematically simple enough 
so that many interesting questions about it can be answered. 
Let 

r. =  = jw  = juYy , 
Ki  wcy. = VriaTE—% , « = o , 1.  (21) 
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Then in x  0 and x  1, we can solve eqs. (7) simply. In x  0, we 
have a solution 

et)(x) = e-r e' R(w, 1)er , 

g (x) =  (Cr.' — R(w,  0er °z). (22) 

This represents a plane wave e" moving to the right and a reflected 
wave R(w, 1)e" moving to the left, where R(w, 1), the reflection coeffi-
cient, is a function of co and 1. Similarly, in x  1, the solution can be 
written 

1)(x) = T(w, 1)e-r  ̀̀'-̀)  Kig(x),  (23) 

representing a transmitted plane wave moving to the right, where 
T(w, 1) is the transmission coefficient. 
In 0  x  1 we define the propagation factor 

P(x) = Vâ(x)cy(x) = jwKC(x)  jw  (24) 

Then, from (18), we can write the general solution of (7) in 0 5 x  / as 

1)(x) = ku_,(x)  Bv_(x), 

1 
(x) = k vamx) - Bv_(x»,  (25) 

when A and B are constants and 

(x) = exp {T./. r(E) (14  (26) 

We now have a solution depending on four unknown constants 
A, B, R and T which can be determined from the condition that V(x) 
and g (x) must be continuous at x = 0 and x = 1. The resulting four 
linear equations are easily solved and yield for the reflection and 
transmission coefficients 

R(w,  K — Ko)(K  K 1)V_(1) — (K  Ko)(K — K ,)1),.(1) 
1)  (27) —  (K  Ko)(K  K1)1)-(0 —  — Ko)(K — K 1)14(0 ' 

4KKI   
T(w, 1) —  (28) 

(K  Ko)(K  K e-(1) — (K — Ko)(K — Ki)1),(1) 

Notice that if K = K0 = K , then R(w, 1) = O. 
We confine our study to the transmitted wave, although the reflected 
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wave can be studied equally well by the techniques we employ. In 
particular, there is the easily proved energy conservation relationship: 

1 = IR(w, 012 IT(co, 012. (29) 

Before proceeding, let us assume instead that a section of line 
driven by a voltage source in series with an impedance Z0 

and that the line is terminated in an impedance Z1 , as shown in Fig. 1. 
Then, V (x) and g (x) are still given by (25), but the boundary conditions, 
from which A and B are determined, are now 

0̀(0)  Z0g(0) = E0, 

V(1) = Z ag (1).  (30) 

Then, it is easily shown that 

2KZ,Eo   
'OM —  ZO(K  Z IYO-(1) —  — Z0)(K — Ze+(i) 

so the transfer impedance in this formulation is essentially identical 
with the transmission coefficient in the first formulation. We shall 
continue to use the first formulation. 
We now further specialize the model, and let 

L(x) = L(1 -1- EN(x)),  (32) 

where we assume that 0 5 E  1 is a dimensionless constant, L > 
is a constant with the dimension of inductance, and N(x) is a (dimen-
sionless) stochastic process with zero mean. It follows that L is the 
stochastic mean of L(x), 

(31) 

L = (L(x)).  (33) 

The symbol ( ) will be used throughout to denote the stochastic mean. 

zo VI 1).0/X1 

Ze, 

Fig. 1—Diagram of transmission line circuit driven by source E0 at z = 0 with 
internal impedance Zo and terminated at z = / by impedance Zi. 
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It follows from (20) that 

C(x)  C(1 ± EN(x)),  K =  —,„• 

Further define 

so that 

In addition, we let 

and 

= 

r(x) -= jory(1  EN(x)). 

0(0 = folN(E) de, 

(K — Ko)(K — K1) 4KKI   
(K  Ko)(K  K1) 

Then we can write expression (28) for T (co, 1) as 

7,(co,  = xe — i.7 0+e 0(1)11  p 27 7 (1+.811>  

1277 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

We can now derive some series expansions of T (w, 1) and some of its 
powers which will prove useful in the next section. Since K, Ko and K1 
are positive, 

pI < 1, 

hence we have the geometric series expansion 

T(cd,  =  E pre- (2r+1),.e,. (1+ ,011))  
r 

Next let 

fo ço) = X2/[(1 — Pe-")(1 — Pe'')]. 

Then f(cp) has the partial fraction expansion 

-X2 . [  1  +  p e — i f 

1  p  1 p e te 1 pe-,e 

and hence f (ço) has the series expansion 

x2  co 

f(‘P) — 1 p  2n œ    E P 1,11e iny, (44) 
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Then, it follows that 

2rwytti-tecm 
1774, 012 —   E  pirt e  •  (45) 

1 —  p 

We finally need to examine double sums of the form 

S _—_ E  E p1,11-1.1hfr  s). (46) 

If we make the change of summation variables u = r  s, t = r, we can 

write 8 as 

â = E h(u)(u),  (47) 

where 

(u) = E Piel+1,—.1 . (48) 

The series t(u) can be evaluated simply, and so we obtain 

S = lu I ±  p 1 ± P2 } lul h() 2 p  u .  (49) 

If we we now square expression (45) for T((, 1) 12, we obtain a series of 
the form (46), and so it follows that 

1 IT( , 1)1  —  { Ir p+  2}pe  2ricd7(1+edf(1)) . 
LO 4 (50) 

(1 — P2)2 1 — p2 

IV. FREQUENCY DOMAIN STATISTICS 

In this section we study some of the frequency domain statistics of 
the model described in Section III. In particular, we obtain expressions 
for the stochastic average of T(w, 1) and I T(w, 1) 12 and examine the 

standard deviation of these quantities. 
It is clear from (41), and (45) and (50) that the problem of calculating 

(T(w, 1)), (I T(w, 1) 12) and (I T(w, 1) 14) has been reduced to the problem 

of calculating (e' (1) ). 
Consider first the case where N (x) is a zero-mean, Gaussian random 

process. Then 0(1) is a zero-mean, Gaussian random variable with 

variance' 

472(1) =f f (N(x)N(y)) dx dy,  (51) 
o o 
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and 

1  (e, o(1) ) = 
(71/2ir 

Consequently, 

and 

""'"°' clO = e-a " (52) 

1111(co,  = (no, 1)) =  'rl e(2r  I , 0, 1),  (53) 
r 0 

X2  °3 
111 2(W 0 = (I ndy 012) -  p2 E.pirle(2r, co, 0,  (54) 

M.,(w, 1) = (IT (c o , 1) 4) 

x4  oo 

  E (1 2)2 {T 1 +  Pp:}p' der,  (55) 
— p 

where 

e(r, w, 1) = exp { —fried — 1-7-22-y2 éo-2(l)}.  (56) 

If N(x) is white noise, then (N (x)N (y)) =D0 5(x — y) and 

0-2(/) = D01,  (57) 

where Do is a constant having dimensions of length. If N(s) is a wide-
sense stationary Gaussian process, 

(N(x)N(Y)) =  — y ),  (58) 

with continuous g(t), then 

0•2(4 = 2 f  — Og() de. 

In particular, if g(Z) = e-2" , then 

er2(z)  =  1 —2b e2 ] 

(59) 

(60) 

Since 0-(0) = 0 in all these cases, e(r, w, 0) = 1, and so 

0) — (  )" 1 — p '  n = 1, 2, 4.  (61) 

In many cases, such as (57) and (60), u2(l) tends monotonely to œ as 
00 . In these cases we obtain the asymptotics of the moments as 

--> co simply. For coy Eu(1) > 1, we have 
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31. 1(co,   (62) 

ilf2((il, 1)  1 _x2 p2  1 + 2p cos (2o.ryl)e-2 " )} ,  (63) 

M4(o),  (1  _?1/44 p2)3 I 1 + P2 ± 4p cos (2ceyl)e-2 '' ") .  (64) 

The mean-amplitude transmission coefficient 111 i(co, 1) decays exponen-
tially to zero as 1 —› co, while the mean-power transmission coefficient 

tends to the limit 

4K e   
1 — p2 (K0 ± 1(/)(K2 K0K1) • 

This can be explained qualitatively by noting that, when the transmitted 
amplitudes are averaged over the ensemble, cancellation can take place, 
while the transmitted powers all have the same sign and so no cancella-
tion can take place on averaging. 
It is easily seen from (62) through (64) that the ratio of the standard 

deviation to the mean of T (co, 1) is 

Z1(w  /  1   
2 

(66) 
V 1  p 

while the ratio of the standard deviation to the mean of I T(w, 1)12 is 

2(w, 1)  NI1 2112 2 [1 — p cos (2ce-y/)e-2 "].  (67) 
— p 

(65) 

For the examples (57) and (60), Zi(co, 1) --> co exponentially as 1 —› co , 
while 22(ca, /) tends to the limit 

j 2132 K — K. II K — Ki I  

V 1 — P2 — s/2K(K.  K i)(K2 K.K1) 
(68) 

To get some feel for the numbers, we note that for 

1  K. Ki 
= 2' °  21'2  < 0 158 1 — p2 = • 

However, if K. and Ki differ too much from K, this ratio becomes much 

larger than 1. 
As a second example, consider the case where N(x) is the random 

telegraph process.' It is an ensemble of square wave functions {N(x) j, 
such that each sample function N(x) can assume only the values ±1. 
For fixed x, a sample function chosen at random will equal +1 or —1 
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with equal probability. The probability p(n, x) of a given sample 
function changing sign n times in an interval of length x is given by the 
Poisson process 

p(n, x) — n! (bx)"  e_br,  (n = 0, 1, 2, • • •). (69) 

This process has zero mean and correlation function 

(N(x)N(Y)) =  •  (70) 

The probability density function for the integral of the random tele-
graph process has been derived by McFadden,' and in our notation 

P(0, 1) = le-"[S(/ — 0) + S(1 ± 0) 

02)11  ± 1I,[b(12 — 02)1}— 
(1 — 0)H(1 ± 0) , (71) b{Io[b(12 —  (12 _ 02)1 H   

where H(u) is the Heaviside function 

H(u) = 1,  u > 0, 

H(u) = 0,  u < 0.  (72) 

It follows that' 

(ei " n ) = e-bl [cosh {(b2 — cx2)11 

_  sinh {(b2 — «2)141 •  (73) 

If we define 

f(r, co, 1)  exp — jrco-y1 — bfl 

b Binh  — r2(.02.y 2 e 2 ) ti I  
• [cosh (b2 — r2272e2)11  (74) 0 2 r2.272,2)1 

then the expressions for (T (to, 1)), (I T (co, 1)12) and (I T (co, 1 I4) for the 
random telegraph case can be obtained from (53) through (55) on 
on replacing e(r, w, 1) by f(r,w,1). 
If E >  O is small enough so that for a given positive integer r0 

n  (Erocey /b)2 « 1,  n2b1 << 1, 

then for 0  r _S ro , 

f (r, co, 1) = exp — jrre-yl — ir2c.)272E211b1[1  O(n)  O(n2N)].  (75) 
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If furthermore bi» 1, then from (60) for the Gaussian with correlation 

function (70), we have 

cr2(1) = [ 1 +  

Hence, for these two cases, for 0  r ro , 

1(7. '  w' — [I ± 0(n) ± 0(n2b1)].  (76) 
e(r, w, 1) 

Note that both e(r, ce, 1) and f(r, co, 1) are exponentially small for r > ro 
if nb/ is moderately large. Also, from (74), as 1  co the first-order 
moment of T(co,l) tends to zero, and the second moment and its standard 
deviation tend to the same limits as in the Gaussian case. 
We now consider a general case of weak fluctuations in the inductance 

and capacitance, and long sections of line, so that 0 < E « 1 in (32), 
and 1 = A/E2. It is assumed that N(x) is a bounded, zero-mean, wide-
sense stationary stochastic process, with correlation function given 
by (58). An application is made in the Appendix of a limit theorem due 
to Khas'minskii,' in order to determine the behavior of 

A/e. 

e0(A/e2) = e fo N(x) dx, (77) 

for A bounded and e 0. 
If the stochastic process N(x) satisfies a certain strong mixing condi-

tion,' then it is found that the process €0(A/€2) converges weakly to a 
Markov diffusion process 8(A), with probability density function 

1 1-efl 
p(e,  - (271-ti e exP  L 2-7 -1A-J ' 

where 

1 
= 2 hm  f (X — z)g(z) dzi , 

21- 0 

and g is given by (58). If, as we assume, 

then 

urn[1 —, f zg(z) dzi  0, 
0 

= 2 f g(z) dz. 

(78) 

(79) 

(80) 

(81) 
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It follows from (78) that 

(exp [jrccry€0(A/ e2)])  exp (--¡eleco27%).  (82) 

Hence, for 0 < e << 1 and 1 = A/€2, the asymptotic expressions for 
(T (co, I)), (I T(co,1)12) and (I T(co, Or) can be obtained from (53) through 
(55) on replacing e(r, co, 1) by 

h(r, co, 1) = exp — jrcel — ¡r2co2-y2 ,  (83) 

where a is given by (81). For the random telegraph case g(z) = 
exp (-2bz), so that a = 1/b, ant. the consistency of (75) with the above 
result is noted. 

V. T WO COUPLED TRANSMISSION LINES 

We consider here the case of two coupled transmission lines described 
in eqs. (14) through (16), but with identical propagation constants 
so that 

= r = r2. 

Then r is independent of x in (17), and 

A = [ o  (K1/K2) . 

(.1(2/K,) 

Thus, the eigenvalues of A are X = ±1. Let 

E(x) = f c(y) dy, 

(84) 

(85) 

(86) 

it being assumed that c(x) is real, and that le,K2 > 0. Then, from (14), 
(18), and (19), the general solution of (7), subject to (11), for this case 
may be written in the form 

= KI[eie( ')(Be-r '  Cerz) + e"'>(Ae"  Derr)], 

1..)2  K keik(r)(Be -r. _ Ce") _  _ De")], 

g1 = KMel èr)(Be-r r —  + e-"(r) (Ae-r r — Derr)], 

6 2 =  K ; i[e it(r) (B e r'  Ce") — e-n( r)(Ae-r r + Derr)]. 

(87) 

(88) 

(89) 

(90) 

We suppose that the coupled lines extend from x = 0 to x = 1, so 
that (87) through (90) hold for 0  x  1. For x < 0 and x > I we 
suppose that the transmission system consists of uncoupled lines with 
constant propagation constants r,„ and r,, , and constant characteristic 
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impedances K„, and K91 , respectively, (p = 1, 2). Then, for an incoming 

wave on line 1, 

V, = (e-r n"  Rier'"),  13 2 

— R 2 r.ox g i ==  R ie rzo.) , 
,. 

12 — K20  (92) 

for x  0, and 

= =  712e- , 

T1  ,,-r,i(z-1) T2 -r 2g(z-1) 

g1  =  K,1̀  '  =  e 

(91) 

(93) 

(94) 

for x  /. 
The boundary conditions are that V„ and g„ , (p = 1, 2), must be 

continuous at x = 0 and x = 1. The calculation of reflection and trans-
mission coefficients is tedious, but straightforward, so we omit the 
details and merely state the result. Let 

and 

K90 K„I 
= K, '  VP _ K„ ' 

(p = 1, 2), 

K =  ( K2/ K . X  =  « 1). 

Also, define 

A = [(1  i.i,)(1 + m2)(1 + Y1)(1 ± Y2)e2" —  — ,12)(Y1 — y2) 

+ (1 — /41)(1 — g2)(1 — Y,)( 1 — p2)e-Zn  

— 2(1 — p.1µ2)(1 — v1v2) cos 2xl. 

(95) 

(96) 

(97) 

Then it is found that 

= 4v,[(1  122)(1  1/2)e" — (1 — g2)(1 — v2)e-n ] cos x,  (98) 

ei T2 =  4 iKP2[( 1 g2)( 1 +  +  (1 — 1.12)(1 — Pl)e-ri ] sin x,  (99) 

AR, = [(I — mi)(1  m2)(1  vi)(1  7,2)e21i  ± 2(j4 ± P2)(Y1 — y2) 

± (1 -V P1)(1 — e2)(1 — v1)(1 — v2)e-2 " 

— 2(1 + gim2)(1 — v1v2) cos 2x1, 

and 

AR2 =  — 4i 44.2(1  ViV2) sin 2x. 

(100) 

(101) 
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We remark that the reflection and transmission coefficients correspond-
ing to an incoming wave on line 2 may be obtained by appropriate 
interchange of subscripts. 
Since the coupling function c(x) is real, x is also real, from (86) 

and (96). If k is an integer, then T, --- 0 and R 2  =  0 for x = kr, and 
Ti = 0 and R2 =- 0 for x = (k  )r. The oscillatory behavior of 
T, and 7'2 has been found earlier by Foschini," in the case of matched 
lines with equal characteristic impedances, i.e., 1.4„ = 1 =  , (p = 1, 2), 
and K =  1. In this case there are no reflections. 
In the general case, the expressions for the transmission and reflection 

coefficients T1, T2 and R1, R, may be expanded in Fourier series in x. 
Thus, in the case of random coupling between the lines, the problem of 
calculating the expectations of the transmission and reflection coefficients 
reduces to that of calculating (exp jrx) where, from (86) and (96), 

x =  c(x) dx.  (102) 

We have seen in Section IV how to carry out this calculation if c(x) is 
a Gaussian or a random telegraph process. Similar remarks apply also 
to the calculation of the expected transmitted and reflected powers, 
and their variances. We do not give the results for the general case, 
although the calculations are straightforward, since the final expressions 
are somewhat lengthy. 
However, we will consider the case of matched lines, for which no 

reflections occur. Thus, with p.„ = 1, v„ =- 1, (p =- 1, 2), we have, from 
(97) through (99), 

= c-r1 cos x,  T2 = jice-ri  sin x.  (103) 

This is for unit input voltage on line 1. Interchanging subscripts, for 
unit input voltage on line 2 we have 

Ti = CI.' sin x,  T2 =  r cos x,  (104) 

using (96). Thus, if V1(0) = v, and V2(0) = v2 , then 

1(/) = T, = C ri(vi cos x  sin x) , 

0̀2(0 = T 2  =  "(jo, sin x th Cos x).  (105) 

Note that 

K TI  12 +  I T 2 12 =  c(""" (I KV1 12 -I- 1 y2 12). (106) 
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We let 

c(x) = cN(x),  (107) 

where N(x) is a dimensionless stochastic process with zero mean. Then, 

from (37) and (102), 

x = cO(/).  (108) 

Let us consider the case when N(x) is a Gaussian process. Then, from 

(52 ), 
(eir x) 

where p2(l) is given by (51). Hence, from (105), 

(T,) = vie-n e.±' "), (T2) = v2e-n e- ) . 

Also, after some algebra, it is found that 

(109) 

(110) 

(i T1 12) — 2  12 [(I icy, 12 -I- 11,2 12)  (( al 12 —  12)e-"'em ], 
(111) 

(I 712 12) =  ie— U-l-r•)1 R1 XVI 12 ±  I% 12) —  (1 KVI 12 —  1 y2  12)e-2''''( "1, 

(112) 

and 

(1 KT 114) — (1 a 12)2 = (IT 14) — (1 T2 12)2 
i1e-2(r+rs)i [1 — C 4c2o.  v:  2y 2, 12[1 ±  e 4°'°0 (1)1 

v,  12  xvi.  12)2e-400 0)1 . (113) 

The first equality in (113) is a consequence of (106). From (111) through 
(113) it follows that the ratio of the standard deviation to the mean of 
IT, 12 approaches 

E co  Iv:  K20 
2 0 01  12 ±  I v2  12) 

(114) 

as c2cr2 (I) -4 cc., both for p = land p = 2. 
Analogous results may be obtained when N(x) is the random telegraph 

process, by using (73), and also in the case of weak general coupling and 

long sections of the coupled lines, by using (82). We remark that we have 
previously2 calculated the average modal powers in these cases for two 
coupled lines with unequal propagation constants, corresponding to 
equation (16), using entirely different methods. 
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VI. TIME DOMAIN STATISTICS 

In this section we conclude the study of our models by calculating 
some of their time domain statistics. Consider first the single line and an 
incident wave moving to the right in x < 0 of the form 

1  
V(t  702) — 1̀)(co)ei"."') du,N/7-27r 

1 
1(t — -yox) = K—o V(I — 

Then the transmitted wave in x > lis 

v T(t _ 7,) _  1  r T(co, 

Ir(t — 7,x) =  V.(1 —  

(115) 

(116) 

where T(w, 1) is the transmission coefficient. If we substitute expression 
(41) for T(co, 1) into (116) and formally interchange summation and 
integration, we obtain 

_  1  
VT( 1 — -yix) — X Ep _/  V(u) exp {MI —  — 

r=1.)  -v 27r —0 

— (2r + 1)7(/  E0(/))] I du 

= X É prV(t —  — 1) — (21.  1)-y(1  c0(1))). 
(117) 

Therefore, 

(VT(t — 71x)) = X È pr(V(I — -yi(x — 1) — (2r + 1)7(1  €0(/)))). 
r -0  (118) 

In this formulation, the randomness appears just as we should expect in 
a random change in the electrical length of the central transmission line. 
From (117) it follows that 

(I Vr(t — 71x) i") 

= X"( prV(I — -yi(x — 1) — (2r + 1)7(1  e0(1))) 
r -0 

") • (119) 

To better understand some of the implications of these formulas, 
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let V(u) be a rectangular pulse, 

V(u) = 1, 

= 0, 

u  r, 

u < 0, r < u.  (120) 

Then if N (x) is one of the Gaussian processes discussed in Section IV, 

(V(t — 71(x —  — (2r + 1)7(1 + e0(/)))) 

f V (t — 'y (x — 1) — (2r ± 1)7(1 -I- €0)) dO 
- o- V 27r — 

1  rte-71(.—:)—(2r+1)71/V;(2r+l)eya(1)1 
e's dco 

re--7 :(x-1)-(2r+1)71-r/V;(2r+l)eyo(1)1 

1  {i -  1'1(x  -  (2r + 1)71 —  
=  Lerfc  Vi (2r + 1)e711(1) 

— erfc {t — 71(X — 1) — (2r + 1)71}] (121) 
Vi (2r + 1)€7Œ(l) 

In (121) erfc (x) is the complementary error function." 
Equation (121) shows that the average field violates causality, since 

at x = 1, for example, (V(t — (2r + 1)7(1 + €0 (1)))) is positive for all 
— œ < t <  . This is really a consequence of the fact that for a Gaus-
sian process, at any point x, there is a positive probability that a sample 
function is less than — E-1 . Hence, in our model the inductance and 
capacitance can both become negative, leading to the violation of 
causality. 
If N (x) is the random telegraph process, then 0(1) has the probability 

density function given in (71). It follows that in this case 

(V(t — 71(x — 1) — (2r ± 1)7(1 + €0(1)))) 

= e-b lV (t — 71(x — 1) — (2r + 1)7/(1 + e)) 

+ V(t — -y z(x — 1) — (2r + 1)7/(1 — e)) 
1 

▪ b j {. 1 "o[b(12 — 02)1 

11▪  ,[b(12 — 02)1  
(12 _ 02)¡ }V (t — 71(x —  — (2r + 1)7(1  €0)) do]. 

(122) 
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If V(u) is the rectangular pulse (120) which arrives at x = 0 at t = 0, 
then from (118) and (122), the average transmitted signal is a train of 
nonrectangular pulses. It is seen easily from (122) that 

(V(t — 71(x — 1) — (2r + 1)7(1 + e0(1)))) 

is a pulse which begins at t = •yi(x — 1) ± (2r -I- 1)7/(1 — e) and ends at 
t =  (x — /)  (2r -F 1)7/(1 -I- e) ± T. This shows that as long as 
e < 1, causality is preserved for the average transmitted signal since 
then 71(x — /)  7/(1 — E) > 0 for all/  x. 
The duration of the rth average transmitted pulse is it = r ± 

2(2r -I- 1)71E, while the time between the end of the rth purse and 
beginning of the (r  1)th pulse is 27/ — 4(r -I- 1)71E — T. Thus, each 
pulse in the train is longer than the pulse which preceeded it and all of 
these are longer than the incident pulse. Furthermore, no matter how 
short the incident pulse is, the average transmitted pulses eventually 
begin to overlap. 
The transmitted power can be treated in the same way. However, 

due to the overlapping of the pulses, the analysis is tedious and we do not 
discuss it here. 
Analogous results may be obtained in the case of two coupled trans-

mission lines with identical propagation constants, if we consider 
lossless lines and suppose that the phase constants and the coupling 
coefficient are proportional to the frequency, so that 

= jwy,  c = wye,  (123) 

and 

re = jciry,0 ,  r„, =  ,  (p = 1, 2).  (124) 

It is also assumed that the characteristic impedances K„ , K,,,,, and 
K,, , (p = 1, 2) are independent of w. We will confine our attention to 
the case of matched lines, so that no reflected waves occur. 
Let us consider an incident wave on line 1 moving to the right in 

x <0, and of the form 

1 r Vi(t — 710x) =  , Vi(w)ei"""'") dcu, 

ii(t — 710x) =  V  — "yiox).  (125) 

Then, from (93), (94), (96), (103), (108), and (123) through (125), the 
transmitted waves in x > / are 
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V1T(t —  711X) =  T(t  711X) 

—  f 1̀31(co)e- "1 cos (c)-y€0(1))ei'(̀-7 "('-')) 1 

= { Vi(t - yiz(x - - cey[l — €8(0]) 
-I- VI(t — 7,1(x — 1) — y[l  e0(1)11,  (126) 

and 

V2T(t — 'Y2IX) = K 2II27.(t  T2iX) 

j (K 2 y  (co , e— yl sin  (eyto(we i.(1-7,1(x-1)) cito  
K,  ) 

— 1 21(x — 1) — coy[l — e0(1)]) 

- 1710 — 721(x —  — co-Y[l  €0(/)]) •  (127) 

The transmitted waves in x > 1 corresponding to an incident wave 
on line 2 moving to the right in x < 0, and of the form 

V2(t —  —  1  r 
Nr2i 

co2(6) )eit, (1-7..x) 

1 
/2(t — 720x) = — V2(t — 720x),  (128) K20 

are obtained by interchanging the subscripts 1 and 2 in (126) and (127). 
The transmitted waves corresponding to incident waves on both lines 
are obtained by linear superposition. The ensemble averages of the 
transmitted waves may be calculated as before. 

APPENDIX 

We here apply a limit theorem due to R. Z. Khas'minskii,a in order to 
determine the limiting probability density function for the process 
eO(t/e2), for bounded E, and e O. Now, from (37), 

d 7-6 [e0(x)] = eN(x),  e0(0) = 0.  (129) 

We assume that N(x) is a bounded, zero-mean, wide-sense stationary 
stochastic process, with correlation function given by (58). Since O is 
a scalar rather than a vector, and moreover the derivative of O depends 
only on x, and not on 0, we have just about the simplest nontrivial 
application of the limit theorem. 
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There is only one quantity to be considered, namely, 

a(x, y) = (N (x)N (y)) = g(I x — y I), 

from (58). Then, in accordance with Khas'ininskii's definition, 

(130) 

io rx"'  fox+"  = urn x—oo — r  a(x, y) dx dy 

r1 1 
= 2 l  X hm Jr'  (X 

z)g(z)  dzi  (131) 

after some integrations by parts. As required by the hypotheses of the 
limit" theorem, a is independent of So. It is also required that the 
stochastic process N(x) satisfy a certain strong mixing condition, and 
the reader is referred to Khas'minskfi's paper for a precise statement 
of this condition. 
For the case under consideration, the limit theorem states that, on 

the interval 0  t  to , where eo is an arbitrary positive number, the 
process EO(E/62) converges weakly as e --> O to a Markov diffusion process 
O (e) with zero drift and diffusion coefficient a. The drift coefficient X is 
zero since the right-hand side of eq. (129) is independent of O. The 
probability density function of the limit process satisfies the equation 

(2E _  _ a2p 
— 2 a 82  P(0, 0)  8(e),  (132) 

in view of the initial condition 0(0) = 0. Thus, 

pce, e) 02 —  xp e [ 
_ 1 
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By adding a pseudo-random "dither" noise to a signal X that is to be 
quantized, and by subtracting an identical noise sequence from the quantizer 
output, it is possible to break up undesirable signal-dependent patterns 
in the quantization error sequence, without increasing the variance of the 
error E. The idea has been widely discussed in the context of picture coding, 
and it is the purpose of this paper to demonstrate application of the tech-
nique to the quantization of speech signals. Computer simulations have 
shown how the use of dither whitens the quantization error sequence in 
PCM encoding, and renders it more acceptable than signal-correlated 
errors of equal variance. We demonstrate, for conditions of dither and no 
dither, typical speech recordings, illustrative error waveforms, and data on 
signal-to-error correlation C, and indicate how the advantage of dithering 
increases monotonically with crudeness of signal quantization and becomes 
significant when the number of bits per sample is less than about six. While 
the parameter C is a simple criterion for demonstrating the effect of dither, 
it must be emphasized that the truly relevant criterion is the statistical 
independence of E and X, and not merely the decorrelation of these func-
tions. Thus, for example, we show that for the case of a reciprocal PDF 
(probability density function) for X, a zero value of C can be achieved 
without dither. For purposes of implementation, it is desirable to employ 
dither noise values characterized by a discrete PDF, with a support that is 
equal to an integral multiple of the step-size àx in the quantizer. We show 
that for effective dithering, the step-size AN in the noise PDF need be no 
smaller, typically, than Ax / 4. Finally, we indicate an application of dither 
to the quantization of speech signals by delta modulation. 

I. INTRODUCTION 

Signal quantizers, in general, produce quantization error sequences 
that have signal-dependent patterns. The perceptibility of such patterns 

1293 
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tends to be very small for quantizations that are fine enough to provide 
practically useful signal-to-error ratios; while with relatively cruder 
quantizations, the perceptibility of signal-dependent errors increases to 
a point where techniques that can make the errors independent of 
signal samples become very attractive, even if they do not decrease the 
error variance itself. Dithering' is precisely such a scheme. It is based 
on the concept of forcing the quantization error E, conditional to a given 
input X, to be a zero-mean random variable, rather than a deterministic 
function of X. The randomization of conditional error E(X) is accom-
plished by the addition of a random dither noise sample N to the input, 
and quantizing (X + N) instead of X. The use of a pseudo-random 
dither sample N permits the subtraction of N from the quantizer 
output (X + N)Q , and this insures an error variance that is essentially 
no greater than that in the uhdithered system. Roberts' provided an 
excellent demonstration of the above concept in his pioneering paper 
on the use of dither for picture coding. Subsequent work on dither" has 
also referred to picture signals. Specifically, Limb2 has studied applica-
tion to differential quantizers, and Lippel, et al.,3 have demonstrated 
the use of two-dimensional, non-random dither patterns the inherent 
low visibility of which makes dither subtraction from (X ± N)0 irrele-
vant, perceptually. 
The purpose of this paper is to demonstrate the utility of dithering 

for the quantization of speech signals. We have confined our attention 
to the use of a pseudo-random dither of the type Roberts' employed, 
but we have considered application to differential quantization also; 
specifically, to the simplest type thereof, viz, delta modulation. 
Section II will describe results from a computer simulation which 

studied dither for uniform quantizers of the PCM type, and showed 
that the use of dither whitens the quantization error sequence without 
increasing its variance, and renders the errors more acceptable than 
the signal-dependent errors in the undithered system. Results are in the 
form of speech recordings, error waveforms, and data on the signal-to-
error correlation C. These data show how the utility of dithering in-
creases monotonically with crudeness of quantization, and becomes 
significant for quantizers operating with less than about six bits per 
sample. The parameter C is a simple criterion for our demonstration, 
but it is emphasized that the truly relevant criterion is the statistical 
independence of E and X, and not merely the decorrelation of these 
functions. In fact, we show that in the example of a reciprocal PDF 
(probability density function) for X, a zero value of C can be achieved 
without dither. Section III discusses how, for implementation, it is 
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desirable to employ dither noise values characterized by a discrete 
PDF with a support that is equal to an integral multiple of the step-size 
Ax in the quantizer, and shows that for effective dithering, the step-size 
AN in the noise PDF need be no smaller, typically, than à1/4. 
Finally, in Section IV, we indicate a possible application of dither to 

the quantization of speech signals by delta modulation. 

IL DITHERING FOR PCM QUANTIZATION OF SPEECH 

Referring to Fig. 1, the input X was speech sampled at the Nyquist 
rate (6 kHz) and included about 6,000- samples from a 1-second male 
utterance, "Have you seen Bill?". The dither noise N had a uniform 
PDF with a zero mean and a range equal to the step-size of the B-bit 
quantizer: 

1  à  à 
(1) 

Peak-to-peak value of X 
A —  (2) 

2B 

The uniform quantizer was described by the output-input relation 

X0 = [La L j +  (3) 2 ' 

where the square brackets denote the "greatest integer in." The input X 
also has an integral part X, and a fractional part Xp : 

X = [Le] •4C,  Xp =  +  ;  0  X p <  à  (4) à 

and the quantization error E. , without dither, is simply the difference 
between à/2 and X, : 

Fig. 1—PCM quantizer with dither. 
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= X (i  X  =  (5) 

The signal-independent, random dither noise N has the effect of 
making the quantizing error with dither, 

ED = (X + N )0  N — X,  (6) 

statistically independent of X; and the subtraction of N from the quan-
tizer output insures that the variance of E is no more (forgetting a 
correction term for the end steps of the quantizer) than that in the 
undithered case, which is given by the well-known expression (assuming 
a uniform distribution) 

a/2  L1/2 

(E2) = f  e2 • p(e) de = f  e • de = 12 42-' (7) 
-A/2  -à/2  A   

where (• ) denotes "average value of." The reader is referred to Roberts' 
paper' for a demonstration of the effect of dither on the properties of E, 
but we will briefly indicate here how E is statistically independent of X. 
Let us rewrite eq. (6) in the form 

=  ( X +  —  ( X ±  N).  (8) 

Referring to the example in Fig. 2b, one sees that for any given X, the 
dithered quantizer input (X + N) has a uniform PDF of width à, 
centered around X. In general, a portion of this range (the hatched area) 
falls outside of the quantizer slot that included X. In view of eqs. (8) 
and (3), this portion is equivalent, for error calculations, to a corre-
sponding portion (the horizontally striped area) in the quantizer slot 
including X. In other words, the fractional part (4) of (X + N) can 
have any value between 0 and A, irrespective of the value of X. Hence, 
the error ED (8) has the following X-independent distribution: 

Pen/X) =  ' —1 ' —4 < ED < 2—A " any X 
2 

while the error E, [Fig. 2a and eq. (5)] is a deterministic function of X. 
Figure 3 illustrates typical waveforms of ED and E. , the quantization 

errors with and without dither for three illustrative values of B. The 
following observations emerge: 

(i) The perceived signal dependence of E. is a monotonically 
decreasing function of B. 

(ii) The introduction- of dither serves to decorrelate the error ED 
from the input X even for the worst case of B = 1. 

(9) 
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(iii) A broad similarity between the Eo and ED waveforms, attained 
at B = 5, suggests that for larger values of B, the advantage 
gained by dither tends to become insignificant. 

These observations are confirmed by speech recordings of several 
sentences, which compare, for values of B in the range 1 to 10, the 
speech output X01 without dither, and the speech output IXD 1 with 
dither. The quantizing error in the latter ha,s an obvious white-noisy 
nature, while that in the undithered case is perceived to be signal 
dependent, especially for crude quantizations (B < 5 or 6). Recordings 
of the respective error waveforms Eo and ED confirm the point; the 
Eo waveforms begin to sound more and more like speech as the quantiza-
tion gets coarser; and for all values of B, the signal-dependent distortion 
in X0 is more degrading than the white-noise in X, . Incidentally, we 
have also verified that, for all B, the use of dither has no effect on the 
error-variance itself, as shown by Roberts.' 
We have compiled, as a further quantitative description of the effect 

X0 

Kà  (K+1/2)A  1K+1)4 

\\ 

IK:23/4)à 

(a) 

(X+N)Q1F(X+N)<(5+1)A 

(K+3/2)A 

RANGE OF (X+N) 

1K+1/2)A It•  IK411A 

(K+3/4)A 

(b) 

Fig. 2—Illustration of quantization error characteristics (a) without dither, 
(b) with dither. 
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213*[OUANTIZING  2a*[QUANTIZING  INPUT 
ERROR WITHOUT DITHER] ERROR WITH DITHER]  SIGNAL 

_ 

8=1 

8=5 

Fig. 3—Waveforms of quantization error. 

B=8 

of dither, values of the signal-to-error correlation (both X and E are 
assumed to be zero-mean functions) 

<XE)   
C —   •  (10) 

V(r)(e) 

Figure 4 plots Co (without dither) and CD (with dither) as functions of B. 
It is clear once again, that there is a value of B, say 6, below which the 
perceptibility of signal dependence in E0 (as reflected by Co) is large 
enough for the decorrelating effect of dither to be significant. 
Notice that CD oscillates, without any obvious structure, in the range 
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(-0.01, 0.01). Speech recordings mentioned earlier indicate that the 
ear cannot really resolve colorations corresponding to different values 
of C in the above range; and, in fact, we believe that a useful criterion 
for perceptually sufficient signal-to-error decorrelation would be an 
empirical requirement of the form 

—0.01 < C < 0.01.  (11) 

We should emphasize, however, that while the correlation measure 
C is very demonstrative, the truly relevant criterion in question is the 
statistical independence of E and X, and not merely the decorrelation 
of these quantities. As a matter of fact, C can be forced to be zero even 
without dither, as seen in the following example: 
Assume that X has a reciprocal PDF. Let us compute, for all values 

of X in the Kth quantizer slot, the expected value of X•Eo: 
(IC+1)à 

=  1(K  -})à — X} •X•p(X)dX.  (12) 

Obviously, if p(X) = 1/X, (XE„),, vanishes, for all K, and, as per 
eq. (10), Co will be zero, without the use of dither! To reiterate, there-
fore, the idea of using dither is not merely to decorrelate E and X, 
but to make E statistically independent of X; which, of course, also 
ensures that C is zero, by definition. 

1.0 

0.50  • 

0.10 

0.05 

0.01 

0.005 

-0.005  0 

-0.01 

-0.05 

-0.1 

• 

o 

•WITHOUT DITHER 
0 WITH DITHER 

• 

o 

• 

o 
• 

• 

O 

• 

o 

o 

Fig. 4—Signal-to-error correlations. 

O 

• 
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III. IMPLEMENTATION 

The discussion of the previous section has assumed a dither noise 
with a continuum of sample values uniformly distributed with a zero 
mean and a support equal to à. It is clear, however, that the error 
randomization or signal-smearing mechanism of Fig. 2 can work even if 
the support of the noise distribution is equal to an integral multiple 
of à; further, that the noise distribution can be discrete, allowing only 
a finite number of equiprobable, equally spaced, values; and that for 
successful dithering, the step-size  N in the noise generator (spacing 
between consecutive allowed values of N) must be much smaller than 
the step-size of the signal quantizer itself. 

AN (13) 

The above description of the dither noise turns out to be an important 
one for purposes of practical implementation. Computer simulations 
were carried out to demonstrate the condition (13). above. Results 
appear in Fig. 5 which plots the signal-error correlation CD as a function 
of (AN/à) for different values of B. (The speech input used here was 
different from that of Fig. 4, but this is immaterial.) Recall now, from 
(11), that a criterion for perceptually sufficient signal-to-error decorre-

0.20 

0.15 

0.10 

0.05 

0.01 

0.005 

Co 

-0.005 

-0.010 

-0.015 

VALUES OF B 
• 2 

3 
04 

6 
• 8 

2° 

Fig. 5—The effect of discrete dither noise. 

• 
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lation is the requirement that C lie within the range (-0.01, 0.01). 
It is hence apparent from Fig. 5 that dither is quite ineffective for 
relatively fine quantization (B > 6) while, for coarse quantization, a 
safe requirement for achieving the error-smearing effect of dither can 
be expressed typically in the form 

AN 1 
—  —  (14) 
A  4 

It is interesting that (14) is also borne out by previously mentioned 
literature on picture-coding." 
Finally, the observation that CD does not decrease monotonically 

with A/AN is very interesting, especially since it can be shown that 
there are other important properties of discrete dither which are indeed 
monotonically related to A/AN . For example, it can be shown that the 
PDF of the quantization error ED , with discrete dither, is given simply 
by eq. (9) with a correction term that is inversely proportional to '/ N. 

IV. THE USE OF DITHER IN DELTA MODULATION 

Limb2 has mentioned the applicability of dither to differential quan-
tizers for picture coding. The differential quantizer that we will discuss 
here for speech, is a simple one-bit differential quantizer, or a delta 
modulator (DM); and the dither noise that we will consider is the 
simple pseudo-random noise considered by Roberts' and discussed in 
Sections II and III. 
Figure 6 is a block diagram of a simple delta modulator,' which builds 

a staircase approximation Y to a band-limited input X on the basis of 
the equation 

Y, = 17,-1 ± 6,. sgn (X, — Y,-1)• (15) 

In other words, each increment in Y follows the direction of the dif-
ference between the current value of X, and the latest staircase approxi-
mation to it. With a linear delta modulator (LDM), the step-size or is 
time-invariant and is tailored to the slope statistics of the input for 
optimal encoding:5 

or =  &OPT f (16) 

while in adaptive delta modulation (ADM), 5, is allowed to follow the 
slope variations in the input.5'5 As a result, encoding errors in ADM not 
only exhibit a smaller variance than in LDM (for a given sampling rate), 
but are also less dependent on the input signal. The dependence of 
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Xr ee t 

OUTPUT 

Y 

r-i 

sgncxr-vr_i) 

INTEGRATOR  0 • 
Fig. 6—Block diagram of a linear delta modulator. 

encoding error on the input in LDM takes the very specific form of 
"slope-overload" distortion encountered in the encoding of relatively 
steep segments of the input. The dither experiment to be mentioned 
was thus motivated by LDM; and indeed, it proved to be less applicable 
for ADM. 
We ought to emphasize, before proceeding, that for useful encoding, 

the sampling rate in LDM is at least an order of magnitude times greater 
than the Nyquist frequency of the input, and the perceptually relevant 
part of the encoding error in DM is the "in-band" noise as obtained by 
low-pass-filtering the high-frequency DM noise to the frequency band 
of the band-limited input. This error is shown as ED in Fig. 7; here, the 
input was the utterance, "This is a recording of delta modulated speech," 
about 3 seconds long, and band-limited to 3.3 kHz. It was sampled for 
LDM at 60 kHz. The optimum step-size &op.', was determined in an 
earlier simulation using signal-to-in-band-error-ratio as a criterion of 

INPUT e 

X+N  
LDM WANTIZER 

X+N 

N PSEUDO-RANDOM 
NOISE GENERATOR 

(X+N)Q-N X 

-  + 

LOW- PASS 
FILTER 

./ ED 

Fig. 7—LDM quantizer with dither. 
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good encoding. The pseudo-random dither was a zero-mean, uniformly 
distributed quantity (also sampled at 60 kHz), and had a variable 
range &N: 

1 — 
P(N) = z  < N < —2-8e • (17) 

The low-pass filter was a recursive 3-pole filter with a nominal 3.3-kHz 
cutoff. 

Figure 8 plots the signal-to-error ratio SNR as a function of dither 
range (5, . One notices a peak SNR advantage at the value 

3N rse  eOPT •  (18) 

In the figure, the case of 8,,, = 0 represents the case of no dither. 
The SNR advantage due to dither in LDM is significant in that there 

is no parallel result in PCM. In the quantizers reported by earlier 
workers, and in Section II, the role of a pseudo-random dither was 
merely to smear the error sequence, without changing its variance; and 
this left the SNR unaltered in spite of dither. The same preservation of 
error variance is expected to hold in LDM, but only with reference to 
the unfiltered (high-frequency) encoding error. Once again, the role of 
dither is to smear or whiten this error sequence. But since the unfiltered 
error in LDM is expected to have considerable low-frequency com-
ponents (recall the signal-dependent slope-overload distortion), the 
whitening of this error has the effect of decreasing the error variance 
within the signal band, hence, the increase in signal-to-error ratio. 
A comparison of LDM speech, without dither and with an optimal 

dither (18), reflects the 2-dB SNR advantage in Fig. 8, and, more 
obviously, a desirable whitening of the encoding error. 
Without going into details, it should be mentioned that the advantage 

0.25  0.50  1.0  1.25  1.51 1  0  1.75 

(800pr) 

Fig. 8—LDM performance with dither. 

2.0 
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of dither was considerably less in evidence when sampling rates of less 
than 60 kHz were employed, or when the delta modulation was adap-
tive. This is probably due, in the first case, to a lesser out-of-band noise 
rejection factor, and, in the second, to the fact that ADM starts out with 
much lesser signal-to-error dependencies than LDM, and hence, has less 
to gain from the dither technique. 

V. CONCLUSION 

The concept of an error-whitening dither noise, utilized so far generally 
for picture quantization, has been shown to be applicable to the coding 
of speech signals via PCM and LDM. The demonstrated advantages 
of dither have considerable practical significance at values of B (bits-
per-sample) in the range 4 to 6, for PCM; and typically, for 60-kHz 
sampling in LDM. The qualities of speech encoding in the two cases 
are comparable, but they both fall short of toll-quality. However, they 
still represent a quality range that is obviously quite usable; and the 
error-whitening property of dither appears to be a very efficient way of 
enhancing the acceptability of speech in this quality range. 
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In a queueing system with two independent input streams, as exists, 
for example, when first-routed and overflow traffic streams are offered 
to a common sender-group, the state of the system encountered by the two 
different types of customers upon their arrival will generally be different. 
Consequently, in a system where delayed customers wait for service, the 
service rendered to the individual streams may also be different. 
The delay distribution in a single-server queue for each type of customer 

is derived under the assumption that one stream is Poissonian and the 
other is described by a renewal process. The difference in service received 
by the two streams is examined with the aid of numerical examples for 

two interarrival time distributions of the renewal stream. We show for 
two cases that a practical indicator of service received by the renewal cus-
tomers is the coefficient of variation of their interarrival time distribution. 
If the coefficient is less than unity, then the renewal customers receive 
better service than the Poissonian customers. The converse is true when the 
coefficient exceeds unity. 
The stationary distribution of the number of busy servers in an infinite-

server system as seen by the two types of customers is also derived. 

I. INTRODUCTION 

The concept of a piecewise Markov process' is used to analyze two 
queueing systems the inputs of which are composed of two independent 
streams. One of the streams is Poissonian with intensity X and the other 
(called a GI stream because of its General Independent Distribution 
of intervals between arrivals) ,is assumed to be a renewal process with 
intensity y. We assume the service times of all the customers are in-
dependent and identically distributed according to an exponential 
distribution with mean  Such models are denoted by GI  M/M/c 
in Kendall's notation, where the "M" refers to the Markovian character 

1305 
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of Poissonian arrivals and of exponential service and c refers to the 
number of servers. 
The state of the system (number of customers waiting and in service) 

seen by an arriving Poissonian customer will generally differ from that 
of the GI customer. Consequently, in a system where delayed customers 
wait for service such as in the GI ± M/M/1 queue, the service received 
by the two types of customers will differ. Whether the GI customers 
receive better or worse service than the Poissonian customers depends 
on the variability of the interarrival times of the GI stream. 

In Section II, we analyze the GI -I- M/M/1 queue. The delay distri-
bution with order-of-arrival service for the two types of customers is 
derived for GI streams the interarrival time distributions of which 
have rational Laplace—Stieltje,s transforms. The coefficient of variation 
of the interarrival time distribution is introduced as a practical measure 
of the variability properties of a stream of customers. Its usefulness 
in predicting service is evaluated through some numerical examples 
and its relation to the common measure called peakedness is examined. 
In Section III, in order to describe the intrinsic character of the two 
streams of customers as they would be observed in a system without 
delay, we derive the stationary distribution of the number of busy 
servers seen by the two types of arriving customers in a GI -I- M/M/00 
system. 

II. THE GI  M/M/1 QUEUE 

Let Y (t) be the number of customers in the system (those waiting 
and in service) at time t. Since the GI stream is a renewal process and 
Y (t) is Markovian between any two consecutive arrival epochs of the 
GI customers, { Y(t), t 01 is a piecewise Markov process' with state 
space {0, 1, 2, • • • J. The regeneration points are the arrival epochs 
of the GI customers. Thus the distribution of the length of the 
Markovian segments is given by A (e), the interarrival time distribution 
of the GI customers. The regeneration matrix is given by 

0 1 0 0 • • • • 

0 0 1 0 • • • 

0 0 0 1 • • • 
(p,) = (1) 

The elements of this matrix are the transition probabilities across a 
regeneration point; that is, pi is the probability that immediately 
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after regeneration the process is in state j, given that, immediately 
prior to regeneration, the process was in state i. 
The Markov process operating within the segments is a birth-death 

process with birth rate X and death rate jz, the same for all segments. 
The transition probability functions of this process are given in Ref. 
2, page 13. 

P(t) = e -"e-('+'"{/ (2t )  p-Ii1+1+1(2g1/Tet) 

+ (1 — p) E  , 
k-1 

where p = X/ At (X/g < 1) and I,() is the modified Bessel function 

I()  =  k! (j1+ k)! ( Yik 2e  

The regeneration matrix (1), the distribution Affl, and the transition 
functions 11%1(0 determine the piecewise Markov process completely. 
We will first derive the distribution of the state of the system seen by 
an arbitrary GI arrival and then use the rate conservation principle 
to find the stationary distribution 

qi = lim P{Y(t) = j I Y(0) = , 

j = 0, 1, 2, - • • , for all i, (2) 

which is the same as the distribution of the state of the system seen 
by a Poissonian arrival. Having found the two distributions, we can 
readily determine the individual delay distributions for an order-of-
arrival service discipline. 

2.1 Delay Sustained by GI Customers 

Let I pi l be the stationary distribution of the Markov chain imbedded 
at points immediately preceding a GI arrival. If r„ is the one-step 
transition probability from state i to state j, then 

7.11 =  P1+1,;(0 dA n  j, =  0, 1, 2, • • • • 

The distribution l p, satisfies the Chapman-Kolmogorov equations 

.0 
Pi = EPirii i-0 

j 0, 1, 2, • • • , 
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and hence the solution to the linear system 

P =  
i=0 

subject to the normalization condition 

E Pi = 1 
i=0 

is the stationary distribution {pi 
Let 

j= 0, 1, 2, • • • ,  (3) 

p(u) =  .-0 
be the probability generating function of {pi }. Multiplying (3) by u' 
and summing over all j, we obtain 

p(u) = foe 

where 

e dim (4) 

ricu, = E Pii(Oui 
i =0 

is the probability generating function of P, M, j = 0, 1, 2, • • • . This 
function is not readily available. Its Laplace transform 

8) = f 8—tr1(u, 

though, has the following form2: 

u'+' — (1 — u) "(s)/[1 — n(s)] 
s) — 

u[s — h(u)] 

where 

and 

1 
h(u) = it (1 — u)(g — Xu), 

x + ±  V(À  s)2 — 4X» n(s) —  • 2X 

We will transform the real integral 

e) d21() 
.10 

(5) 
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appearing in (4) into a complex integral involving y+ 1(u, s) and a(s), 
the Laplace-Stieltjes transform of A(E). 
If we set 

dA(e) = e dB(e),  a > 0, 

then (5) becomes the Laplace-Stieltjes transform integral 

f -.E e   (6) 

But the transform of a product is the complex convolution of the 
transforms of its factors and so (6) becomes 

1 
2Ti  z)/3(a — z) dz , 

where c is any positive number, i =  and 

d(s) = e e dB(), 

the Laplace-Stieltjes transform of B(s). But 

13(s) =  e-t(0-0 ' dA(e) = a(s — a), 

and we finally have 

oc 

o 

(7) 

1 f . 
fi(14,  d  =  +,(u z)«(—z) dz •  (8) 21.2  _ 

Substituting for y.4.1(u,  z) on the right-hand side of (8), and using the 
resulting identity in (4), we obtain the following integral equation 
for p(u): 

1 T .' rep(u) — (1 — u)11(z)] 
a(—z) dz (9) P(u) = L  u[z - h(u)] 

where 

H  n2(2)P[n(z)]  (z) — 
— n(z) 

We will evaluate the complex integral in (9) for the class of a(s), the 
members of which are rational functions; but first we note some prop-
erties of the integrand which suggest a contour to be used in applying 
the calculus of residues. 
Since P, 1() is a probability function, r,(u,  is uniformly convergent 
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for I u I 1 and •ys(u, z) is holomorphic for I u I 1 and 61(z) > 0, 
where 61(z) denotes the real part of z. Hence the bracketed part of the 
integrand in (9) is holomorphic for I u I  1 and 61.(z) > 0 since it is 
the convergent series 

E Pey,(u, z). 
i=0 

Since A() is a probability distribution function, a(z) is holomorphic 
for 61(z) > 0. For 61(z) < 0, a(z) may or may not be holomorphic. 
The predominant ease is where a (z) is meromorphie in the half-plane 
(R(z) < 0 and we shall address ourselves to this case. 
Let —z, , —z2 , • • • , —z„ be the poles of a(z). Since the poles of a(z) 

are in the left-half plane, the poles of a(—z) are in the right-half plane. 
Hence, the integrand in (9) is meromorphic in the right-half plane 
and we can use the residue theorem to evaluate the integrand over 
the contour consisting of the line (c  iR, c — iR) and a semicircle of 
radius R in the right-half plane which connects c — iR with c  iR. 
We choose c and R such that all the poles of a( —z) are interior to this 
contour. 
Since a(z) is meromorphic, we can write 

Qm(z)   
a(z) — 

(z -F zi)k'(z  z2)" • • • (z  z„)k" 

where lc, is the order of the pole at z, , Q„,(z) is a polynomial of degree m, 
and we assume that m -F 1  ki k, -I- • • • + k„. Two examples are: 
(i) A(0 is the gamma distribution with density 

a(k) — (k  — 1)! Zk-Ie-k. kv   (kv) 
e E >  0 1 

and transform 
(  \k 

a(z) —   
kv +  ' 

(ii) A (E) is the mixture of exponentials (hyperexponential) 

(10) 

A(t) = E a1(1 — e-"),  e > o, 

where a, > 0, y, > 0 and a,  a2 ± • • • + a„ = 1, and transform 

a(z) =  -r E 'I,'  , • 
vi  
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If we now let R  co , then the contour integral along the line z = c 
tends to the desired limits and it can be shown that the integral along 
the semicircle tends to zero. Hence, using Cauchy's integral formula 
with 

J(z) _ u2P(u) — (1 — u)H(z) I 
u[z — h(u)]  

we have 

" (-1)k f(z)   

(z  zi)k'(z  z2)k' • (z  dz z.)" 

÷,  1  (k • -1) r, 

=  ( - 1) +1  (1c1 — 1)! gi 
where k = k1 -F lc, -F • • • -I- lc„ and 

(12) 

f(z)   g i(z) — 
(z — z1)" • • • (z —  — zi„,)ki+' • • • (z  zjk" 

If all the poles are simple, such as in example (ii) , then the integral 
in (12) is equal to 

(_1)+1 j gi(zi). 
i =1 

(13) 

If z/ is the only pole and it is of order lc, , such as in example (j), then 
the integral in (12) is equal to 

(-1P+1  (ki  1)! f(k -1) (zi).  (14) 

Detailed analysis for the case k = 2 will be carried out later when we 
give numerical examples. The case of two simple poles will also be 
analyzed. 
In general, after the integral has been evaluated, and the result 

substituted into (9), an equation in p(u) results. This equation can be 
solved for p(u). The values of the unknown function H(z) at the poles 
zi and the values of its derivatives may be determined by first applying 
the normalization condition p(1) = 1 and then, since p(u) is holo-
morphic in I u I  1, forcing the zeros of the numerator in the unit 
circle to coincide with the zeros of the denominator in the expression 
for p(u). This procedure will be illustrated later by an example. 
We return to the delay distributions. Let W be the delay, or waiting 

time, from the arrival instant until the beginning of service for an 
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arbitrary GI customer. The GI delay distribution is defined by 

D(t) -=  t], t O. 

If Di(t) is the conditional delay distribution, given that the arriving 
customer finds j other customers in the system, then 

D(t) =  D,(t)pi . 
0 

Obviously, Do(t) = 1. Since service is in order of arrival, 

Di(t) = 1 — 

and D i(t) for j > 1 is the convolution of j identical exponential distri-
butions, each with mean 1.4'. If s(s) is the Laplace—Stieltjes transform 

of D(t), then 
m 

3(8) = Po  jr E pi C" dDi(t) 
-1  0 

g  
= Po + E Pr 

since the transform of a convolution is the product of the transforms. 
Consequently we have 

3(s) —  4_4 ) 

This equation can now be inverted to obtain the delay distribution 
for the GI customers. 

2.2 Delay Sustained by Poissonian Customers 

Let E(t) be the delay distribution of Poissonian customers; that is, 
E(t) is the probability that an arbitrary, arriving Poissonian customer 
will be delayed no more than t units of time. If E(s) is its Laplace— 
Stieltjes transform, then, by the same argument as above, 

e(s) — (+ /h)' 

where 

q(u) = E gm' 
i=o 

is the probability generating function of fq, 1, the distribution of state 
seen by an arbitrary, arriving Poissonian customer. 
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Using the rate conservation principle' we can write 

vPi  Xqi = gqi+i  j = 0, 1, 2, • • • ,  (15) 

where the left-hand side is the asymptotic rate of transition from j 
to j  1 and the right-hand side is the asymptotic rate of transition 
from j + 1 to j. Multiplying both sides of (15) by ui and summing over 
all j, we obtain the following relation between p(u) and q(u): 

vP(u)  Xq(u) = [q(u) — go]. 

Thus, if p(u) has been found, then q(u) is given by 

q(u)  _ go + uffP(u) 
1 — pu ' 

where a- = v / p and p = X/p. Applying the normalization condition 
q(1) = 1, we get qo , i.e., 

= 1 — p — 

and hence 

q(u) — 1 -  ji -  (I uo-p(u) 
— pu (16) 

In terms of the probabilities themselves, we solve (15) for f qi } and 
obtain 

qi = (1 P  0")Pi E j= 1, 2, • • • . 

2.3 Som,e Relations Between the Two Results 

If l is the mean of the distribution { Pi} and 12 is the mean of the 
distribution {q.}, then using (16) and differentiating, we obtain 

12 —  e  (1 ± 
1  

Note that the first terna on the right-hand side of (17) is the mean 
number of customers in the system in the M/M/1 queue with traffic 
intensity p. Hence, the second term may be considered to be an increase 
in the mean number due to the presence of the GI customers. 
Since the probability distribution functions p(u) and q(u) are related 

through (16), the transforms of the delay distributions are related 
through the following equation: 

(17) 
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+   e(s) — +  - X (1  p  0-)    8(s).  (18) s  — X 

Taking the inverse transform of both sides of this equation and re-
arranging the terms, we obtain 

E(t) = 1 —  —  ±  f [p — D(t —  clE}•  (19) 

If T1 is the mean delay of the GI customers and r2 is the mean delay 
of the Poissonian customers, then from (18) we have 

r2 -     + MT 1) • 
jt(l - p)  p(1 — p) 

Again, the second term on the right-hand side of this equation can be 
thought of as the added mean delay due to the presence of the GI 

customers. 

2.4 Measures of Variability of a Traffic Stream 

The delay suffered by an arbitrary customer in an input traffic-stream 
depends on how the customers' arrival epochs are distributed. Roughly, 
it can be said that the less "variation" in the arrival epochs, the better 
is the service received by the customers. We discuss two measures of 
this variation. 
Let A(E) be the interarrival time distribution of a traffic stream and 

Ai the jth moment of A (E): 

Pi = dA (0, j= 1,2, • • • . 

We define V, the coefficient of variation of A (E),  by 

y— Vt2 I1  

This measure is dimensionless and depends only on the properties of 
the stream itself. 

Another measure which is used extensively in telephone traffic theory 
is defined with the aid of an infinite server system. The traffic stream 
is offered to an infinite number of servers with exponentially distributed 
service times. The ratio of the variance to the mean of the number of 
busy servers in statistical equilibrium is taken as a measure of the 
variation of the traffic stream. This number is called peakedness and 
is customarily denoted by Z. 
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We shall classify all traffic streams into two categories: smooth and 
peaked. A stream is smooth if V < 1 and peaked if 1 < V.' The same 
dichotomy is effected by the inequalities Z < 1 and 1 < Z; however, 
Z is a function of the stream's intensity and thus is not as convenient 
in measuring variability properties. For example, if a(s) is the Laplace— 
Stieltjes transform of A n p is the stream's traffic intensity, and it-1 
is the mean holding time, then it follows (Ref. 3, Chapter 3) that 

1   
p. (20) 

Using Jensen's inequality,' one can show that for a fixed X, the 
stream's peakedness (20) attains a minimum whenever A (e) is the 
one-point distribution 

= 

In this case, 

a(s) = e -(1/X)a 

at s = 

a(g) = e-11 " 

and with this substitution into (20) we see that Z can vary from 4. 
(when p = cc) all the way up to unity (when p = 0). In contrast, 
V = 0, independent of p. We conclude that Z is not a desirable measure 
of variation for smooth streams. We shall see later that for peaked 
traffic, Z turns out to be a good measure. Incidentally, the above argu-
ment also shows that with exponential holding times the minimum 
possible value which peakedness can attain is ¡. 

2.5 Examples 

We now give two examples: a case with GI being smooth and another 
with GI being peaked. 

Example 1: GI Smooth. Let { Xi be a sequence of independent, expo-
nentially distributed random variables with corresponding means { Of }. 
Let the interarrival time distribution of the GI stream be given by the 

* A Poissonian stream (V = 1) is considered the norm to which the relative 
properties of smoothness and peakedness are compared. 
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distribution of the sum 

Y= E x, , 
= 1 

where n > 1. Then the GI stream is smooth since 

01 + 02 + • • • +   < 1 . (21) 

In particular, if all the means are the same, then Y has a gamma distri-
bution and GI is E„ , an Erlangian stream. For this case, we have 

1 
V = 

Nrn. 

which, moreover, is also the minimum value of (21). For our numerical 
example, we take n = 2. 
From (10) we have 

a(z) —  2v )2 
\z + 2v) 

and hence (9) becomes 

42 d fu2p(u) — (1 — u)H(z)} 
p(u) = — 

u dz  z — h(u) 

with the derivative being evaluated at z = 2v. This follows from (14). 
Carrying out the differentiation, collecting terms, and solving for 
p(u), we obtain 

R(u) 
p(u) = (22) 

where 

R(u) = 42 141 iu2 — [(X —  — 2v)Hi — H2]u + pH, } , 

T(u) = p2u3 — 00 .2  p2 + 2p  + .per s Ytt2 ± (2p ± 4a. -I- 1)u — 1, 

and 

= H' (2v), H2 = H(2v). 
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It is easy to verify the following inequalities: 

T(0) < 0, T(1) > 0, T(1/p) < O. 

Since p < 1 and T(u) is a polynomial of third degree, these inequalities 
imply that T(u) has three positive roots with one root being less than 
unity. Hence, if u, , uo , u3 are the roots of T(u), then 0 < u, < 1 < 
uo < u3 . Since p(u) is a holomorphic function of u for I u I 5 1, the 
root u, must also be a root of R(u). Using this requirement and the 
normalization condition p(1) = 1 we can find H, and H3. 
Omitting the intervening algebra we see that 

(1 — pu,u)K   
p(u) —  (23) 

(1 — w2u)(1 — co3u) ' 

where 

K — (1 — W2)(11 — co,)  

(1 PI) 

and 

1 
= 

U2 
1 

CO3 — • 
u3 

Note that po , the probability of not being delayed at all, is given by K. 
Recall that for the Poissonian customers this quantity was given by 
qo = 1 — p — 
Expanding (23) in powers of u, we obtain 

p(u) — , K   E Rce2 — gui)22 — (wa — gui)coluk, 
(42 — w3) k-0 

and hence, the distribution f p,1 is given by 

Pi —  \ (W 2 —  PU1)W  —  (W3 —  PUI)Wi3 
(.02  ‘03/ 

j= 0, 1, 2, • • • . 

The mean of this distribution can be computed by differentiation. 
We have 

p ,( 1) w2 ee +   3 PU1   

1 —  0)3  1 — pu, 

The corresponding quantities for the Poissonian stream of customers 
can easily be obtained using differentiation and relation (16). 
If D(t) is the delay distribution for the GI customers, then, as we 
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already have seen, its Laplace-Stieltjes transform is given by 

8(8) - P(   s + J. 
From (23) we have 

K(8 -I- 1.4)[8 + (1 - Pul)4] , 
8(s) - [e ± (1 - (0);4[8 + (1 -  

Inverting this transform, we obtain the delay distribution for the GI 
customers: 

D(t) = 1 -  (24) 

where 

A _ (02(1 - ws)(0.12 - el)  
2 (1 - Pui)(wa - co3) 

A.  _ w3(1 - w2)(0J3 - Pul) 
(1 - pu1)(402 - (.03) 

Using (19) we can obtain E(t), the delay distribution for the Poissonian 
customers. Performing the indicated integration, we have 

E(t) = 1 -  - ot1       e 
P  P 

,   e-(1-co,)gt  0-A3  e-(1-w3)µ1 : 
P  wa 

(25) 

Figure 1 shows complementary delay distributions for the GI customers 
and the Poissonian customers in the E2 M/M/1 model. Note that 
E2 customers receive better service since they arrive in a smoother 
stream (V = 1/V2-). For the Poissonian stream we, of course, have 
V = 1. While significant at low traffic intensities, this advantage 
diminishes as the traffic intensity increases. 

Example 2: GI Peaked. We can generate a peaked traffic stream using 
the interrupted Poisson process.5 For a given cr and Z, the interarrival 
time distribution of such a stream is given by Ref. 5. 

A(0 = kl(1 - e-"E) k2(1 - 
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• =  +  + 7 — 1/(r  w +7)2  — 4rcoj 

k, — T —  r,  
r, — r, ' 

k, = 1 — k,, 

and 
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r = crZ  3Z(Z — 1), 

— 9r[TZ--1 —fr  11 ' 

'Y =  — 11W. 

The Laplace-Stieltjes transform of A (E) is given by 

kin  ±  k,r2  • 
s r,  s r, 

Carrying out the same steps as in the previous example, we see that 
the probability generating function of [p,} has the same form, that is, 
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(1 — w2)(1 — (03)(1 — Puet)  
p(u) — (1 — co2u)(1 — co3u)(1 — pu,) ' 

where 

1  1 

= 1.72  W3 = - , U3 

and u, , u2 , u3 are now the roots of the following polynomial: 

p(p  k,r,  ice2)12 — [rir2 + kin  k2r2  (r,  r2)P + 2p ± p2]u2 

(ri ± 2p + 1)u — 1. 

Hence, the delay distributions for the GI customers and the Poissonian 
customers have the same forms as those in Example 1, but with different 
values of u, , b.)2 , and cL)3 . 

Figure 2 shows the same information as Fig. 1 of the previous example. 
Note that the peaked stream with Z = 3.0 (V = 2.3) receives poorer 
service than the Poissonian stream. Again, this effect diminishes at 
higher traffic intensities. 
Figure 3 shows the effect of peakedness and smoothness on the 

quality of service received by all customers. Holding the total traffic 
intensity constant (p + a = 0.8) and comparing the results with the 
case when all the customers arrive in a Poissonian stream (GI = M), 
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Fig. 3—The effect of peakedness on delay in the GI -I- M/M/1 queue. 

we see that the service provided to all the customers either improves 
or deteriorates according to whether the GI stream is smooth or peaked. 
Figure 4 shows the effect of mixing the traffic. Note that as the 

proportion of peaked traffic in the total offered traffic stream increases, 
the service deteriorates for everyone. 
We now clarify a remark made earlier about the suitability of the 

peakedness factor Z for measuring variability properties of a stream. 
It was found numerically that the relation between Z and V in a peaked 
stream is monotone and nearly independent of the stream's intensity. 
In fact, by direct computation from A (e) , we have the two relations 

2  3(1 ± V2) A- 2a 

and 

V 
2(Z — 1)   = {1 +  }4 

1 — 1/(3Z + 

Figure 5 shows this relation for two streams, one with traffic intensity 
of 1 erlang and the other with 100 erlangs. Since the inverse relation 
is also monotone and nearly independent of the traffic intensity, the 
peakedness seems to be a suitable measure of the variational properties 
of a peaked stream. 
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III. THE GI ± M/ M/ cc SYSTEM 

Let Y(t) be the number of customers in the system at time t. Since 

there are an infinite number of servers, Y(t) is equal to the number of 
busy servers at time t. Again, we see that 1Y(t), t  01 is a piecewise 
Markov process. The regeneration points are the arrival epochs of 
the GI customers; the distribution of the length of Markovian segments 
is given by A (E), the interarrival time distribution of the GI customers; 
and the regeneration matrix is given by (1). This is the same identifica-
tion as that made in the GI + M/M/1 queue. The difference here is 
the Markov process operating within the segment. 
The Markovian development of the process within the segments is 

governed by a birth-death process with birth rate X, the arrival in-
tensity of the Poissonian stream, and death rate jg when the process 
is in state j, where j.4-1 is the mean service time. The transition functions 
of this process are given by the transient solution to the M/M/00 

system (Ref. 2, page 24): 

pi,(0  lc ) f i e-po ni 

where 

g(t) = 1 — e-"̀ , 
X 

P 

(26) 
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Let { pi} be the stationary distribution of the Markov chain imbedded 
at points immediately preceding a GI arrival. This distribution satisfies 
the Chapman-Kolmogorov eqs. (3). If p(u) is the probability generating 
function of { pi I, then from (4) we have 

p(u) 

where 

PiGi+i(u,  dA(0, 
:=0 

Gi(u, ) = E Pii(Oul 

But from Ref. 2 we have 

Gi(u, e = (1 _ e—E ue -geye-pci-ooce) , 

and we see that p(u) satisfies the following integral equation: 

p(u) =  r(u, Z)p[r(u, Me-Pci- u)°-"" dAffl,  (27) 
.10 

where 

r(u,  = 1 —  ue't. 

Now let X, be the number of Poissonian customers and X 2 the 
number of GI customers in the system seen by an arbitrary GI arrival. 
Since the number of servers is infinite, X, and X2 are independent. 
If b(u) is the probability generating function of the distribution of X 2 , 

then 

p(u) = e-P(' Ib(u). (28) 

1 ER LAN G 

•100 ERLANGS 

2.0  30  4.0  S.0  6.0 

Z, THE PEAKEDNESS OF THE STREAM 

70 8.0 

Fig. 5—Relation between V and Z in an overflow stream for two different means. 
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Since the arriving GI customers are sampling a Markov process ac-
cording to a renewal process, they will see the stationary distribution 
of the process' and, hence, X, has the Poisson distribution 

P{X, =  = e-P 11+; ,  (29) 

the stationary distribution of the number of customers in an M/M/ co 
system. 
Substituting (28) into (27) we obtain an equation for b(u): 

b(u) =  r(u, )b[r(u, k)] d A (t)  (30) 

In solving for b(u), it is convenient to consider the expansion of b(u) 
about u = 1, rather than about u = 0. Hence, we set 

b(u) =:14 d,(u —  

where 

d — b̀n (1) •  1  1 ! 

If 

b(u) = E 

is the expansion of b(u) about the origin, then the two sets of coefficients 
are mutually related through the equations 

(k.)bh 

k=, \.7/ 
di = 

b; =  (k)(-1) ' dk . 
k=i 

Differentiating (30) j times and setting u = 1, we get 

di = de; j = 1, 2, 

do -= 1, 

where 

ei = a(j) =  e'' dA(0. 
0 

(31) 
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Solving for d•, we obtain 

ai  
d• = 

1 — ai 

Thus, we have 

j= 1,2, • • • . 

p(u) = e-P"-") E di(u — 1)s 
i 

= e-e('-") E biui , 

and the distribution { pi} is given by the convolution of {14 } with (29): 

pi = e E . • 

k! k=0 

Now 

qi = lim PI Y(t) = j},  j = 0, 1, 2, • • • , 

the distribution of the number of busy servers seen by an arbitrary 
Poissonian arrival, can be found using the rate conservation principle. 
If If is the mean of A() and o- = vh.t, then equating the asymptotic 
rate of transition out of the set of states (0, 1, 2, • • • , j} to the rate 
into that set we get 

«Pi + Pqi = (j  1)9.1+1  j = 0, 1, 2, • • • •  (32) 

If q(u) is the probability generating function of lqi 1, then it follows 
from (32) that q(u) satisfies the differential equation 

q'(u) = pq(u)  up(u). 

This equation has the general solution 

q(u) = e"ff f e-P'p(e) de. 
Substituting for p(s), carrying out the integration and using the nor-
malization condition q(1) = 1 to determine the integration constant, 
we obtain 

{ } q(u) = e—fin—u) 1 — cr ito i _ ' 1 1 ± , °± b. .ui+1  
i=o ' .7 + 1 

Since q(u) is the product of two probability generating functions, the 
distribution (q, } can now easily be determined by convolution. Another 
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way of obtaining fqij is by solving (32), i.e., 
i 

qi = •1 {U0 I g E i-I-1.} 1 i = 1, 2, • • • , 

qo = e-"{1 — o-  

The means of the two distributions are given by 

E iqi = q'(1) = P + u 
i-1 

°È iPi = P' (1) =  a(e) • 1  

We make two observations. First, the mean of iqi) is independent of 
the form of the interarrival time distribution of the GI customers; 
it depends only on v', the mean interarrival time. Second, using 
Jensen's inequality one can show that the mean of f p, l is minimized 
whenever the interarrival times of the GI customers are constant. 
For this special case we have 

1   
PM) = P 

01/ — 1 

q'(1) == P Hh u, 

and hence 

p'(1) < q'(1) 

since 

1 1/cr 1  < e 

for o. a > O. 
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Optimal Equalization of Wideband Coaxial 
Cable Channels Using "Bump" Equalizers 

By YO-SUNG CHO 
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Two methods are described for the optimal equalization of a channel 
with "Bump" Equalizers cornposed of several adjustable-gain Bode Net-
works. The first method is a general one and applies a steepest descent 
algorithm which minimizes the total mean-squared error (M SE) of the 
equalized channel. It requires continuous gradient information on the 
error-gain relationship in order to determine exactly the optimum equalizer 
adjustments and involves a relatively complicated procedure to calculate 
the gradient. However, the second method, which also applies a steepest 
descent algorithm, develops the necessary gradient information with knowl-
edge of the error signal only at selected frequencies across the bandwidth 
occupied by the channel. Under idealized assumptions, it is shown that the 
gradients obtained by the second method are exact. When the assumptions 
do not apply exactly, it is shown by computer simulation that the difference 
between the gradients obtained by the two methods is very small. A signifi-
cant potential advantage of the second method lies in the hardware realiza-
tion which only requires the measurement of the channel error at 2M — 1 
frequencies at the equalizing station (where M is the number of Bode 
Networks in the equalizer). From these frequency domain errors, the 
gradients can be generated as real-time signals and applied to the ap-
propriate adjustable elements to obtain the optimum gain settings for 
minimum M SE. 

I. INTRODUCTION 

The ideal communication channel exhibits a constant input-output 
gain characteristic over the entire transmission band. In the case of 
a 3/8-inch coaxial cable system, the cable loss varies from 4 dB/mile 
at 1 MHz, to 30 dB/mile at 60 MHz; and to compensate the cable 
loss, repeaters are required at periodic intervals. As is well known, the 
cascaded repeaters cannot exactly compensate the cable loss and this 

1327 
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mismatch results in the so-called "misalignment" of the cable system. 
In addition to the mismatch which is present initially, the channel 
misalignment is affected by the seasonal temperature variation and 
the aging of the components in the system. The objective of the main 
cable equalizers is that, after the equalization, the total input-output 
gain characteristic of the system should be, at all times, as nearly zero 
dB as possible over the entire message band. 
Since the transmission of amplitude information is of major im-

portance in analog coaxial cable systems, various schemes of input-
output "amplitude-only" equalization have been studied in the past." 
It should be noted that the analog signal in the coaxial cable channel 
may contain either voice or digital information, and the transmission 
of voice-type information can be accomplished without phase equaliza-
tion. For the transmission of high-speed digital information, the neces-
sary phase equalization is usually furnished in the digital terminals 
and not in the main coaxial cable path. 
In this paper, the Bump Equalizer,' which is an "amplitude-only" 

equalizer, is studied and a new adjustment method is presented. The 
Bump Equalizer is composed of a number of Bode Networks,' each of 
which can be controlled independently without affecting the other 
networks in the set (Fig. 1). A typical Bode Network is shown in Fig. 2a 
and its transfer function has the form of a bump shape in the frequency 
domain. In the Bump Equalizer of Fig. 3, several Bode Networks are 

0 

a3 

W I 

\  EQUALIZER RESPONSE EQ12w)=  gkBk(w) 
k= 

/..-g2 B2 (w) 

/  2nd BODE NETWORK 

giB, (w) 
st BODE NETWORK 

- -CHANNEL MISALIGNMENT M (W) 

w2  w3  Ve4 

FREQUENCY W 

Fig. 1—Channel equalization with Bump Equalizer. 
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Fig. 2—Bode Network and its input-output transfer function. 
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connected in the feedback and feedforward paths of linear wideband 
amplifiers and the transfer function of the equalizer can be expressed by 

EQL (w) =  gkBk(w) (dB),  (1) 
k-i 
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Fig. 3—Equalizer block diagram. 

where w indicates the frequency, g, and .13, represent the gain and 
response of the kth Bode Network respectively, and M is the number 
of Bode Networks in the Bump Equalizer. 
In the past, the so-called "Zero-Forcing" (ZF) method has been used 

for the adjustment of Bump Equalizers.' Although the ZF method 
results in zero error at the center frequency of each Bode Network, 

relatively large errors may exist at other frequencies, and as a result 
the ZF method may not be optimal in any overall sense. A better 
error criterion is to minimize the mean-squared error (MSE) over the 
entire bandwidth, and it is this error criterion which is used in this 
paper for equalizer gain adjustment. 
In Section II, the channel and the transfer function of the equalizer 
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are characterized, and several assumptions are made before deriving 
the algorithms which will minimize the MSE of the equalized channel. 
Before the steepest descent method' is used to obtain the minimum 
MSE, it is discussed in Section III that the MSE of the equalizer has a 
unique minimum point (no local minima) in the gain parameter space 
of the equalizer, so that this method is assured of finding the true 
minimum MSE at all times. It is shown that under certain conditions, 
the gradient of the MSE, with respect to each gain, can be obtained 
as a real-time signal by measuring the error at only three points in the 
frequency domain. The gradient signal derived can be applied to an 
integrator to adjust the appropriate equalizer gain setting until the 
gradient becomes zero, and the desired optimization is achieved. 
This equalization method is called the "simplified MSE" algorithm. 
Hardware implementation of the algorithm is also discussed in Section 

Various computer simulations have been carried out and some of 
the results are discussed in Section IV. Both the conventional expres-
sion for the transfer function of a Bode Network and the measured 
transfer function of a physically realized network have been used in 
the simulation to verify the effectiveness of the derived algorithm 
when used in practical applications. One of the channel misalignments 
used in the simulation resulted from measurements on a working coaxial 
cable system in the field. 
The general steepest descent MSE algorithm is applied to all cases 

to obtain the absolute minimum MSE for each case; and the resulting 
values are compared with the MSE obtained by the simplified MSE 
algorithm. The computer results verify that the simplified algorithm 
derived under the idealized conditions is, in fact, sufficiently close to 
the general algorithm in each case so that the former, which permits 
simplified hardware implementation, can be used as an effective means 
to achieve optimal control of the Bump Equalizer. 

II. CHARACTERIZATION OF CHANNEL AND BUMP EQUALIZER 

The coaxial channel is discussed in this paper principally with respect 
to analog signal transmission. Due to the characteristic of the coaxial 
cable, the bandwidth of the transmitted signal can be quite wide. 
The objective of the equalization discussed is to achieve a constant 
input-output gain characteristic over the entire message band, and 
the transfer function derived is concerned only with the amplitude 
characteristic and not the phase characteristic. Since the transfer 
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function of the Bode Network is symmetric on the "log f" plane, the 
transformed frequency w, to be used in this section is given by log f 
where f is the natural frequency in Hertz. 

2.1 Characterization of Coaxial Communication Channel 

Let M(w, t) represent the time-varying channel misalignment which 
is a real-valued function of frequency in units of dB. From the practical 
point of view, however, the channel can be represented as simply M(w), 
since the time-variance can be assumed negligible during the interval of 
any equalization process. Assume also that the Fourier transform of 
the channel misalignment M(w) is limited by a positive constant, 
since the Bump Equalizer to be used is strictly a frequency domain 
equalizer.* Hence, the channel can be characterized in the frequency 
domain by the following series: 

M(w) C sin  (22rPN(w  w,,)) (dB), 
" Irpm(w — w,,) (2) 

where C,, , pm , and tv>, are certain real numbers, w = log f, and w,i — w.. 
1/2p1., for all n = 0, 1, • • • . 
Eq. (2) also may be expressed as 

M(w) =f E c„ cos (2irpN(w — w„)x) dx 
n 0 

f0E c„ cos (211-pNw„x) cos (2%-pArwx) n = 0 

+ E C„ sin (27rpNw„x) sin (2irpmwx)} dx 

{ F(x) cos (27rpNwx)  H(x) sin (27pNwx)} dx,  (3) 

where 

F(x) = E c„ cos (27rpywnx) and H(x) = E C„ sin (21rpNw„x). 
0  11..0 

Since 0  x  1, eq. (3) implies that the shortest frequency domain 
ripple period found in the channel M(w) is 1/p, . 

* It should be noted that the Fourier transform of M(w) does not result in an 
impulse response of the channel because of "dB" dimension of M(w). For this 
assumption, however, there is an implicit dual relationship with time domain equal-
izers, e.g., the tapped delay line equalizers, in which a frequency band limitation of 
the channel is assumed. 
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2.2 Characterization of the Bump Equalizer 

As briefly discussed in the introduction, the frequency do main 
response of the equalizer can be written as 

EQL (w) =  gek(w) (dB),  (4) 

where M is the number of Bode Networks in the Bump Equalizer. 
A typical Bode Network is shown in Fig. 2 and its loss is controlled 

by the resistor R. The transfer function, Bk(w), can be analytically 
derived and, with a suitable flat-gain amplifier, can be expressed by 
the following equation: 

[Ek(1  Ek) Dk(w)]2 — Dk(w) 
Bk(w) —  [(1  Ek)2 .lik(w)r  (dB),  (5) 

where 

and 

RI» 
E k 

R 1k 

(W/ W alk 
Dle( W)    

(W/ Wk)2 -  1 

ek 
H j, -    D 2 T 

11,0kLik 

wk = log (1/1r -Vik-Fk). 

Since Bk(w) of eq. (5) is a quite complicated function of w, the follow-
ing assumption is made before analyzing the equalizer in detail. 

Assumption 1: Let Bk(w) be approximated by 

, r ,  r , 
BILI —  VD — 'WO COS w v On — wk) ,dew   

cosine (—r (w — wk)) =   2  (dB).  (6) Aw  r , 
—  V•V — WO  1  4('W  — Iv') Aw  eiw 

Moreover, if there are M Bode Networks in the equalizer, and if they 
are spaced equally on the w scale at intervals Aw,* such that Lw = 

— wk for all k = 1, • • • M — 1, M, then the transfer function of 

* Usually the number of Bode Networks, M, is determined from the practical 
consideration of equalization objectives. pm defined in eq. (2) determines the Aew 
which is the interval between two adjacent Bode Networks. 
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the equalizer can be expressed by 

EQL (w) = E gk cosine (  (w — wk))  
k=1  Aw 

Equations (5) and (6) are plotted in Fig. 2b; and it can be seen that 
cosine (Ritàw(w — wk)) approximates the actual transfer function of 
Bode Network given in eq. (5) reasonably well. The maximum dif-
ference between the two curves of Fig. 2b is 0.0327 dB when I w — wk I 5 
Aw and 0.0404 dB when I w — wk I > Aw. 

(7) 

III. GAIN OPTIMIZATION USING MEAN-SQUARED ERROR CRITERION 

After a Bump Equalizer has been physically realized and connected 
to the channel, the Aw, which is characteristic of the particular set of 
Bode Networks, cannot be easily altered in the equalizer even though 
the channel misalignment M(w) (and hence pN) may vary. The optimiza-
tion here consists of determining the gain parameters gk which will 
minimize the value of MSE defined in this section. On'e approach to 
the optimization is the employment of the steepest descent method.4 
In seeking the minimum MSE by this method, the present values of 
gk's are changed by small amounts in the opposite direction of gradients 
which are the partial derivatives of MSE with respect to each gain 
parameter gk . The process is continued until all the gradients of the 
MSE with respect to the gains gk reach zero or a stationary point. 
Hence, it is implicit in the use of the steepest descent method that the 
surface of MSE in the gain parameter space is a bowl shape, and that 
there exists a unique stationary point which is the global minimum. 
The unique existence of such a stationary point is established before 
a general steepest descent algorithm is derived for the Bump Equalizer; 
then a simplified algorithm is obtained which is shown to be equivalent 
to the general algorithm. Finally, hardware implementation of the 
simplified algorithm is discussed. 

3.1 General Mean-Squared Error Algorithm 

On the dB scale, the residual error after equalization will be 

E(11) = E gek(w) - id(w) (dB).  (8) 
k=i 

If C(w) is the channel characteristic, the channel misalignment is 
defined by M(w) = — C(w) and the MSE can be represented in the 
frequency domain by 
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MSE = f E(w)2 dw.  (9) 

It should be noted that the definition in (9) is a bounded functional, 
since E(w) can be made small as w > w , where wm is the upper limit 
of the band to be equalized and, moreover, there is complete freedom 
for the assumption of M(w) for w > wm 
Let Gk be a gradient of MSE with respect to gain gà . Then, Gk is 

obtained by differentiating MSE with respect to gk : 

Gh  a(MSE) _ 2 f ea  g k(w)E(w) dw •  (10) 
gh 

This may be stated as: the gradient Gk with respect to gain gk is found 
by cross-correlating the Bode Network function, Bk(w), and the error 
function, E(w). The cross-correlation method to obtain the gradient 
in practice has been used elsewhere and can be found in Refs. 5 and 6. 

Theorem 1 (General MISE Algorithm): Let Gh., be the gradient of MISE 
with respect to the kth gain, gk , measured at time t = j (also, let gk,i 
indicate the value of the kth gain at time t = j). For the Bump Equalizer, 
the next gain setting of gk (denoted by gb,i+i ) which will reduce the MISE 
is a function of the gain setting gk,, and the gradient G„,, , as given by 

gk,i+1 = gk.,  AeGk,i  (11) 

for all k =- I, 2 • • • M where ekc is a small positive constant. As the iterative 
process described by eq. (11) is continued, the gradients Gk —› O and the 
equalizer reaches the optimum state. 

Proof: Since an equalizer described by (4) is composed of linearly 
independent networks, there exists a unique set of es which satisfies 
= 0 for all k = 1, 2, • • • M, and this set of gk's results in the mini-

mum MSE defined in eq. (9) (see Chapter 2 of Ref. 7). Hence, a steepest 
descent algorithm described by (11) must bring the gains to this opti-
mum stationary point. A general theory on the steepest descent algo-
rithm is given in Ref. 4. 
Since no specific assumptions were made on the channel and the 

Bump Equalizer, the gradient required for the optimum gain adjust-
ment may be obtained by eq. (10). 

3.2 Simplified MISE Algorithm and Hardware Implementation 

In the general steepest descent method described by Theorem 1, 
the gradient Gk is obtained by the cross-correlation of the error E(w) 
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and the Bode Network function Bk(w). For the hardware implementa-
tion of the gradient calculation, the error function is multiplied by the 
Bode Network response Bk(w) and the product is integrated in the 
frequency domain. Computation of frequency domain cross-correlation 
should be done on a real-time basis, and this fact may prohibit the 
practical application of Theorem 1. However, the following theorem 
shows that the gradient Gk can be obtained by measuring E(w) only 
at three different frequencies for each of the given Bode Networks 
Bk(w). 

Theorem 2 (Simplified M SE Algorithm): Let the Bump Equalizer satisfy 
Assumption 1 and let the interval Aw between adjacent Bode Networks 
be no greater than the shortest frequency domain ripple period in the 
channel shown in (3), i.e., 

tetv  1 (12) 
PN 

Then, the optimum gain setting of the kth Bode Network is obtained by 
repeating the following process: 

g , = gk,i — Ac{1 E i(w — -41  E i(wk)  E i(wk  -  , (13) 
2  k 2  2 

where 

k = 1,2,3, • • • M, 
Ac is a small positive constant, and 
E i(wk — Aw/2), E i(wk), and E1(wk Aw/2) are the frequency domain 
errors measured at time t = j at w = wk —  w = wk , and w,, 
Aw12 respectively. 

Proof: The proof is given in the Appendix. 

In the derivation of the results stated in Theorem 2, it is specified 
that the channel has a shortest frequency domain ripple period 1/7» 
which is greater than, or equal to, the interval Aw between two adjacent 
Bode Networks. If the channel has ripples having components of 
shorter periods than Aw, then the gradient shown in Theorem 2 only 
approximates the true gradient which would be obtained by the cross-
correlation technique in eq. (10). However, the accuracy of the ap-
proximation depends on the amplitude of ripples whose periods are 
shorter than aw, and if there exist such ripples of large amplitude, 
one cannot expect a satisfactory equalization even if a general algo-
rithm is employed. 
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The feedback equation for the optimum gain adjustment using the 
simplified MSE technique is as follows: 

gh(T) = gk(o) — ac 

• fr 41.4 —  + E(wk) + -1 E(wk + -1} d' i (14) 
0 2  2  2  2   

where k = 1, 2, 3, • • • M, and gk(0) is an initial value of gain gk . The 
hardware implementation of (14) can be achieved in various ways. 
In the block diagram shown in Fig. 3, the input signal source at the 
transmitting station is composed of 2M — 1 unit-amplitude sinusoidal 
oscillators whose frequencies are w, , w,  Aw/2, w2 , w2 Aw/2, • • • , 
wm — tuo/2, and wm . In the block diagram, the band to be equalized 
extends from w = w, to w = W. [It is assumed that E(wi — Aw/2) 
and E(wm Aw/2) are zero.] It is possible that in some cases the 
frequencies of the oscillators could be located in the guard bands of 
the channel such that interference between the oscillators and the 
message is avoided and the process could be carried out "in service," 
i.e., in the presence of a "live" message load. At the equalizing station, 
the gradient can be generated by adding the errors with the weighting 
indicated in Theorem 2. Now this gradient, which is a real-time signal, 
is fed to the integrator the output of which can be used to adjust the 
corresponding gain until the optimum condition is reached with respect 
to MSE. In Fig. 3, the function of addition and integration is combined 
by using operational amplifiers. 

IV. RESULTS OF COMPUTER SIMULATION 

In the previous section, two algorithms were derived to obtain the 
MSE optimization. The general algorithm (Theorem 1) can be applied 
for the adjustment of a Bump Equalizer to obtain the minimum MSE, 
but a complex hardware implementation of this scheme may prohibit 
its practical application. Consequently, a simplified algorithm which is 
relatively simple to implement and equivalent to the general one was 
derived. To demonstrate the equivalence of the two algorithms, the 
following two conditions were assumed: 

(i) The channel is represented by a sin x/x series in the frequency 
domain. 

(ii) The Bode Network transfer function 13,(w) can be approximated 
as in Assumption 1. 

In practice, these restrictions on the channel and the equalizer are 
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not met exactly. Bode Networks spaced equally in w, for example, 
do not necessarily give the best results. In fact, it has been shown 
experimentally that, when the number of Bode Networks is limited, 
unequally spaced Bode Networks are likely to achieve better equaliza-
tion.' Hence, to verify the effectiveness of the new algorithm, the 
practical limitations were simulated on a digital computer, and the 
resulting performance compared for the two algorithms. 

Case 1: The assumed channel misalignment M(w) is shown in Fig. 4, 
over the natural frequency range from f = 1 MHz to f = 65 MHz. 
Transforming the lower and upper ends of the natural frequency band 
to the logarithmic scale, such that the message band extends from 
w = O ( = log. 1) to w = 4.1744 (= log. 65), ten Bode Networks are 
specified and spaced equally on the w-axis. The transfer function of 
a physically realized Bode Network was measured and stored in the 
computer for this simulation. 
The results of the simulation are shown in Fig. 5. The total MSE 

of M(w) within the message band is 9.115. The values of MSE obtained 
by the simplified algorithm and the general algorithm are 0.45 and 
0.42, respectively, with the difference resulting mainly from the 
following; 

(i) Since there are sharp corners in M(w), there exist some ripples 
whose frequency domain periods are shorter than 1/pm [con-
tradiction to the inequality (12)]. 
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(ii) The measured transfer function of the actual Bode Networks 
used in the simulation differs slightly from the cosine function 
of Assumption 1. 

Case 2: The channel misalignment /11(w) used is one actually measured 
on an existing 20- MHz coaxial cable system, with the bandwidth 
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arbitrarily extended to 65 MHz. The misalignment M(w) used in this 
case is shown in Fig. 6. Ten Bode Networks represented by eq. (5) are 
used in the equalizer, and, in this case, the center frequency of each 
Bode Network is initially optimized for the specified M(w). Con-
sequently, the resultant array is not spaced equally on the w-axis. 
To apply the simplified MSE algorithm, however, the errors are mea-
sured at 19 frequencies, 10 of which are the center frequencies of Bode 
Networks and 9 fall between the center frequencies. Total MSE of 
M(w) is 30. Applying the simplified MSE algorithm, MSE = 0.201 
is obtained for the equalized channel and this result is shown in Fig. 7. 
When the general MSE algorithm is used, the absolute minimum 
MSE = 0.186 is obtained. The equalized channel with the general 
MSE algorithm applied is also shown in Fig. 7. 
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Fig. 7—Equalized channel, case 2. 

V. CONCLUSIONS 

Two algorithms based on the steepest descent method are presented 
in this paper for the optimal gain control of a Bump Equalizer. In 
both cases, the performance index used to evaluate the equalized 
channel is the MSE. The first algorithm is a general MSE algorithm 
and requires MSE gradient information with respect to each gain. 
The required gradients are obtained by a frequency domain cross-
correlation between the error and the Bode Network to be adjusted. 
For this algorithm to be used, the error signal must be known at all 
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frequencies and this requirement can be a difficult one to implement 
physically. The simplified MSE algorithm derived in Section III, 
however, needs error information at only 2M — 1 frequencies to form 
all of the gradients. Hence, the hardware implementation of the algo-
rithm is more easily achieved. To derive the algorithm for the simplified 
case, two basic assumptions were made regarding the loss shape of 
the Bode Network and the characteristic of the channel. Under these 
assumptions, the true gradient of the kth Bode Network is given by 
the weighted sum of the error signal measured at frequencies wk , 
wx ± Aw/2, and wk — àw/2, where &au = /Di, — wk and wk+1  is the 
center frequency of the next higher frequency Bode Network. For the 
hardware realization, the gradient information is applied to integrators, 
the outputs of which in turn control the gain settings, the process being 
continued until all the inputs to the integrator, i.e., gradients, become 
zero (see Fig. 3). 
The computer results given in Section IV show that the reduction 

of total MSE of the equalized channel is negligible by changing from 
the simplified MSE algorithm to the general MSE algorithm, verifying 
the reasonableness of the assumptions made in Section II. 
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APPENDIX 

Proof of Theorem 2 

If we can show that the gradient 

G,. =  AW{1' E(Wk —  1  ± E (W k) ±  1  E(W +  1 1 ' }  (15) 
2  2  2  k 2   

the theorem is proved by the result of Theorem 1.  Fro m eq.  (10), 

w here 

oe 

G,. =  2 L. Bk(w)E(w) dw 

= 2 fe Bk(w)[EQL (w) — M(w)] dw 

= 2(G: — Gh2), 

Gk1 =  f : Bk( W) EQL (w) dw 

(16) 
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and 

Gâ2 = f" Bk(w)M(w) dw. 

By Parserval's relationship,' 

Gki = f 2i-b(t) eql (—t) dt,  (17) 

where 

bk(t) = -71.- fe B k(w) exp (jwt) dw 

Ir 
=  -''tv /1+ cos (4 —2 t)) exp (jwkt) for 
47r  I t I ,v 

2r 
=0  for I t I > —Alp 

and 

eql (1) =  roo EQL (w) exp (jwt) dw 

=  (1 + cos e  t)) g, exp (jw,t) for 
i=1 

=0  for 

Hence, 

I t I 

I t I > 
27r 
Aw 

41w 2 f 2 r/àto  .6f 

Gkl =  E gi exp (j(wk — 40(1 + cos (411 -1' t))2 dt.  (18) 
i=i  2 

Since wk — wi = (k — i)ziw and the integration with the imaginary 
term in (18) is zero, 

A w 2 j ar/,2  M 

Gkl =  g; cos ((k — i) Awt) 

• ± 2 cos ( D cos (wt)} dt 2  2  2 

A w 2 f2 1r /A le {3  1  1 
gfr. =  gk-7  gk+i} dt 

841- —2 r/d w  2  4  4 
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Aw {3  1  1 
= —2 -2 gh  ±  -4 fik-1  + -4 gh+1 } • 

However, 

F,QL (wk -  1 =  (g-1 k  gk) 2 EQL (wk) =  , 

and 

(19) 

1 
EQL (wk  =  (gk+1  gk). 

Hence, eq. (19) becomes 

Gki = e±v- [1. EQL (wk -  EQL (wk)  EQL  1)] • (20) 

Now 

Gk, =  f . 13 k(w)M(w) dw.  (21) 

From eqs. (3) and (6), 

Gk2 =  f cosine  (w - wk)) f {F(x) cos (27rpNwx) 

▪ H(x) sin (IrpNwx)} dx dw 

where 

and 

11 eosin' c ( 7r —Aw (w - wk)) f f1(x) cos (21-pN(w - wk)x) 
▪ h(x) sin (27r-pN(w - wk)x)) dx dw, 

F(x) = f(x) cos (2rpNwk) - h(x) sin (27rpNwk) 

(22) 

H(x) = 1(x) cos (27rpNwk)  h(x) sin (27rpNwk). 

Since cosine (7r/Aw(w - wk)) and sin (27rpN(w - wk)x) are even and 
odd functions, respectively, with respect to w = wk axis, 

h(x) cosine (—aw  (w - wk)) sin (27rpN(w - wk)x) dw dx = O. r i :  

Replacing w = u  wk and changing "cos" to exponential form, eq. (22) 
becomes 
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1f- .  r1 
2 j cosmc IT u) J i(x)(exP Ci2TPNux)  exp (— PirPrvux)) dx du o   

= fol f(x) f œ. cosine (tu) 

• (exp (j27rpNux,)  exp (—j2irpNux)) du dx.  (23) 

Since 

cosine (— u ir ) exp (jut) du 
f-œ  Aw 

and 

eq. (23) becomes 

and 

=  (1 + cos (41 -1-) t)) for 
2  2 

= 0 

2ir 
I t  370  

for  

,env  f 
—e-2 o 1 =  f(x)1 ± cos (Trpy Awx)) dx for pNx 5_ — 

=0 
1 

for pNx > —àw • 

However, 0  x  1 and Aw  1/py by definition (12). Hence, 

G k2 =  fol f(x){1 + cos (irpN awx)} dx 

—  {1 M (wk  1) ± 31(wk)  + 1111 (wk  

Combining (21) and (24), the gradient in (16) becomes 

G  =  2( G k  —  G12) 

(24) 

= Aw{eEQL(w,, —  — M(wk — ))  (EQL(wk) — 211(w1)) 

(EQL (W I ± -te) m(wk 1))} 
=  E(wk — 41) ± E(wk)  1)} ,  (25) 

which is equal to (15). This proves the theorem. 
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We study the dimensionality for the class of near-end crosstalk functions 
in a cable. The dimensionality is closely related to the distribution of 
eigenvalues for a particular integral operator that we call the energy op-
erator. We find bounds for these eigenvalues in terms of the eigenvalues 
associated with the prolate spheroidal waveforms studied by Landau, 
Pollak, and Slepian. The important technical observation, permitting u.s 
to use their results, is that though the crosstalk functions are not band-
limited, the degree to which they are band-concentrated can be uniformly 
specified. 

I. INTRODUCTION 

The class of functions bandlimited to the interval (— W, W) and 
considered over the interval (— T, T) has long been held to have es-
sentially [2W7T] degrees of freedom. This goes back at least as far as 
the discovery of the sampling (or cardinal) series, since exactly this 
number of terms in the series is available with knowledge of the function 
over the interval (— T, T).' The notion was made precise and validated 
by Landau and Pollak.' The fundamental quantity in their approach 
was the energy (or r-norm) of the bandlimited function over (— T, T). 
The energy is computed as a quadratic form of the function and to this 
there corresponds a positive definite, compact operator. We shall call 
this the energy operator. The distribution of the eigenvalues for the 
energy operator, i.e., the energy eigenvalues, determine the approximate 
number of degrees of freedom or dimensionality of this class of functions. 
The idea is that energy eigenfunctions with small enough eigenvalues 
(or energy) can contribute only minimally to the energy in the interval; 
hence, they can be disregarded. They find that [2W77] energy eigen-
functions span this space of functions within an error bound which 
they compute. 
To be more definite, let DT denote the operator which acts on square 

integrable functions as follows: 

1347 
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D T1()  te (—T, 
LO te(—T, T) 

and let Bw denote the operator which similarly chops off the Fourier 
transform of the function outside (— W, W); thus, if F(w) is the Fourier 
transform of f (t), then 

1 r w 
Bwf(t) = —  e' 'FM du>. 27r _„, 

Whenever f is bandlimited to (— W, W), then 13,vf  f. The energy 
of this function in the interval (— T, T) is 

II DTI 112 = 11 D TB wf II 2 = (DTB wf DrBwf) = (I, DrBwf), 

where we have made use of the fact that DT is a projection operator 
and Bwf = f. Note: 

(i g(t) 112 =  g(t) 2 dl and (g, h) =  g(t)ii(t) dl). 

The combined operator Dr./3w is the energy operator, and its eigen-
values are the energy eigenvalues studied by Landau and Pollak. 
This paper concerns the generalization of these results on dimen-

sionality to the class of functions representing near-end crosstalk 
transfer functions within a multipair cable. As an approximation of 
the coupling within a cable, it follows from the telegrapher's equation" 
that these transfer functions have the form 

N(w) = iw f or" %(x) d,x, 
0 

where r(w) = i/3(w)  a(w) (a(w) k 0) denotes the propagation func-
tion for a pair in the cable, lis the cable length, and the coupling function 
between two pair, u(x), satisfies 

fo! 110) I2dx < e • 
The physical meaning of N(w) is specified in more detail in Section III. 
We wish to find the approximate dimensionality for the class of such 
functions either as viewed over some finite interval or, more generally, 
as weighted by some fixed square integrable function F(w). Our ap-
proach, again, is to set up an energy operator, then study the energy 
eigenvalues to reach conclusions about the dimensionality. 
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The paper goes from the general to the particular. We first introduce 
a class of compact, integral operators and derive upper bounds for 
their eigenvalues. Next, we show that this class includes the energy 
operator corresponding to the crosstalk equation; this gives us bounds 
on the energy eigenvalues. From these bounds, one can draw quan-
titative conclusions about the dimensionality of the class of crosstalk 
functions. 

II. A CLASS OF INTEGRAL OPERATORS 

The first problem is to determine the distribution of eigenvalues 
for a special class of integral operators on the space of square integrable 
functions, L2(0, 1). We characterize these operators by kernels of the 
form 

K(x , y) = f: I F (co) 12 P(x, co)P*(y, co) dco  O  x, y e /, 

where F (w) is bounded and square-integrable, and P(x, w) has the 
following two properties: 

(i) The function P(x, co) is bounded and the integral 5:f P(x, 412 
dx dco is bounded. As a consequence: 
(a) The co-function, U(w)  f;) P(x, co)u(x) dx is square-integrable 
when u(x) is square-integrable over (0, 1). We assume its 
norm is nonzero. 

(b) U(w) has a Fourier transform. 
(c) The operator, By , limiting the Fourier transform to the 
interval (— Y, Y) can be applied to the functions U(w). 

(ii) For all u(x) in L2(0, 1), 

F(co)(/ — By)[u(w)] 11.7 e(Y)  u(x) 11x 

and E(Y) —+ 0 as Y --> co . [Note: 11 • 11w denotes the standard 
norm on L2(— co, co) and 11 • 11x on L2(0, 1). Also, "I" denotes 
the identity operator on L2(— co, co), i.e., I[G(w)] = G(co).] 

Suppose K is the operator having the kernel K(x, y) above; then, 
since the kernel is square-integrable jointly in x and y, K is compact; 
i.e., it has a sequence of eigenvalues, say X. , n = 0, 1, • • • , which 
approach zero as n gets large (see Ref. 5, p. 264). We shall bound the 
X„ in terms of the eigenvalues, say X: (F, Y), of the compact operator 
denoted by My which acts on functions in L2(— Y, Y) and has the 
kernel 
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r(n,  =  2 el 1 F(co)  e'"-e) 
T „.„ 

These eigenvalues are more directly accessible and better studied than 
the X,,, and when 

F(w) =-  I w 27W  
10 IwI > 2irW 

they are exactly the eigenvalues of the operator DyBw studied by 
Landau and Pollak. Also included in our bounding expression will be 
the eigenvalues, p,, , n = 0, 1, • • • , of the compact integral operator L 
acting on functions in L2(0, 1) and having kernel 

L(x, y) = fe° P(x, w)P*( y, co) ch». 

[Note: Using Schwarz's inequality on the co-integral above and then 
property "(a)" for P(x, co), we conclude that L(x, y) is jointly square-
integrable in x and y, and this assures the compactness of the operator L.] 

Theorem: For the eigenvalues X,„ X(Y, F), and p„ just defined, we have 
for each n = 0, 1, • • • 

X„  min (inf  F))4 (Y)]2,e  
Y 

where 0 5 a. 5 PO , O  b„  max., 1 F(w) 12, a,, approaches zero as n 
becomes large. 

Proof: The Weyl-Courant Lemma (See Ref. 6, p. 251) implies that 

x. inf  (sup  (Ku, u)) 
B.  (u, u) I 

for any n = 0, 1, 2, • • • , where S. denotes an n-dimensional subspace 
of L2(0, 1) and the infimum is taken over all such subspaces. Since 
(Lu, u) is nonnegative for all u(x) in L2(0, 1), we have 

X  (Ku, u) (La, u)  
=„ inf sup  • (Lu, u) (u, u) 

So for all choices of S„ , 

(Ku, u) (Lu, u)  
X. -5 sup  sup 

uis.  «.1.3„ (u, 

Choose S„ so as to minimize the latter factor. But the minimum value, 



DIMENSIONALITY OF CROSSTALK FUNCTIONS  1351 

by the Weyl—Courant Lemma, is exactly the nth eigenvalue of L. 
Thus, when S is the appropriate subspace, then 

x.  ( sup (Ku' u)  b 
(Du, u) en ')  en  • 

We claim (Ku, u) =  F(co)U(co) n and (Lu, u) = II U(co) 1 It with 

U(co) = f P(x, co)u(x) dx, 
o 

from which it follows that 

0 5 b„ S max F(co) 12 for all n. 

To prove the claim, we have 

(Ku, u) =  f u(y) f u(x) f  F() 12 P(x, co)P*(y, co) dca dx dy 
27 0 o 

1 
= 2-71. L F(co) 12 (f P(x, co)u(x) dx)(f P*(y, co)u(y) dy) dco 

0 

= fe. F(w)U(co) 12 dco =  F(co)U(co) 

and similarly for (Lu, u). (The integrand above is clearly absolutely 
integrable, so the conditions for the Fubini Theorem are met, and the 
order of integration can be switched freely.) 
For the second part of the bound, the Minkowski inequality implies 

(Ku, u)  (II F(co)By[U(co)] IL, ± II F(co)(I — By)[U(co)] 

So by assumption (ii) on the function P(x, co) we get 

(Ku, u) (II F(co)By[U(co)] II. ± e(y) y. 

Now choose the subspace S„ so as to minimize the quantity 

11 F(w)By[U(co)] I I.  
Cre,  I BY[U(w)] 

But this minimum value is upper bounded by the nth eigenvalue of 
the operator My , defined previously, because the Weyl—Courant Lemma 
implies 

)1/4,°,(F, Y) = jrrf sup  (My V, V),.  
V_LR.  ( V, .10y 
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where R. represents a subspace of L2( — Y, Y); and by the calculation 

above 

(myv, V) = II F(w)r(w) Ir. , 

where 
Y 

V() = f e' V (y) dy = By[r(w)] 
—Y 

and the argument is finished by applying the Plancherel Theorem, 

(V, V), = [17(w), 17(w)],„ . 

Therefore, when Sf,' is the appropriate subspace of L2(0, 1), 

(Ku, u)  
, 5 [(a„X(F , Y)) + E( Y) r, 

(z, u) — 

where 

11 By[U4)] 112.  
a, -- sup  .  , 2  . 

ulSn' •  I l U (1 ) I I. 

Note that 

Il U(co) II„ ( (Lu, u)\ 
0 5 a, _5 sup 

. I 1 u(x) I I! — 811.P (u, u)) — //' • 

Also, since L is compact, a, --> 0 as n —> 00. The inequality is good for 
all values of Y, so it is good for the infimum over Y. We have two upper 
bounds for the )1/4„ ; thus the minimum of the two is also an upper bound. 
This proves the theorem.  Q.E.D. 

III. APPLICATION TO CROSSTALK 

The near-end crosstalk equation for multipair cable leads to an 

integral operator of the type in the theorem. The crosstalk transfer 
function N(cd) (in the frequency domain) is related to a coupling func-

tion along the cable, u(s), by 

N(w) = icu fo e -2Y(  (x)w)zu,, dx, 

where 1 denotes the cable length and P(w) denotes the propagation 
function of a pair in the cable. A good approximation to 11(w) over the 

frequency range 0.1 to 10 mHz is 

T(co) = ki VI 0.) I + i 112 co -I- i sgn (w) k1  I, 
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where the exact values of the constants ki and k2 depend on the gage 
of the wire. More precisely, when a pair in a cable is excited by a signal 
with spectrum G(w), the coupling within the cable will produce a signal 
with spectrum G(w)N(w) at the near end of an unexcited pair. The 
energy of the crosstalk signal is 

.1 1  2 
—217 fe 1 G(co)N(w) 12 dco = 271.  L. I .G(.) 12 f  e-2r(ûj) M X) dx1 dco 

By Fubini's Theorem [applicable when wG(co) e L2( — oo , 00) ]we get, 

f u(y) f u(x) —1  I co«co)  12 e-2r/.).-2r•wy dw  dx  dy  = (Ku,  u).  
2r   

Here K is a compact integral operator with the kernel 

1 K(x,  = —2w f  (»Gm  12 e-2C(ra)z-21'.(m)1l (1,0.  

We call K the energy operator and its eigenvalues, say, X„ , n = 0, 1, • • • , 
the energy eigenvalues. With a slightly more restrictive assumption 
on the function G(co), we obtain for the X„ the same bounds as before. 

Proposition: When (1 ± lu 12)(oG(co) is in L2( — œ, oo ) for q > I- and 
asymptotically for large co, Re(r (0))) ---- co' with r 1, then the previous 
bounds apply to the energy eigenvalues. 

Proof: Let 

P(x, co) — 
1 ± lu 

then the previous properties assumed for P(x, co) are satisfied. To 
demonstrate this: first, it is clear that P(x, co) is bounded and it is 
tailored (i.e., the q values are just large enough) to be square-integrable 
jointly in x and w. Since f e'"u(x) dx is analytic in z, it follows from 
the Plancherel Theorem that U(co) has nonzero norm for all u(x) in 
L2(0, 1) with nonzero norm. Finally, using the Fubini Theorem, 

By[f P(x, co)u(x) dx] 1 =  r sin Y(2/ — co) f P(x, cou(x) dx do) 
(n — co) 

e-2r(m)x 

fu(x) œ sin Y(n — co) P(x, co) ciw  dx f_. 
= fo By[P(x, co)]u(x) dx; 
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but By[P(x, co)] is uniformly bounded in co for all values of x in the 
interval [0, 1], so 

py(x, co) = (I — By)[P(x, co)] 

is square-integrable in x and for all (.0, 

I (I — B y)[U(co)] 12 f o I py(x, co) 12 clx fo I u(x) I2 &v. 

Therefore, 

where 

F(co)(I — By)[U(co)]  _5. e(Y) II u(x) IL, 

e(Y) = [-1 ri F(co)py(x, co) V (lx (Li • 
2ir 

Put F(co) = (1 + I co 1°)oe(co); then 

1 -2r(w).  e   

K(x, y) = — 27r  IF(w) 12 1'+ co I« 1 + I co I« (lie  

1 roeoo I F(w) 12 P(X, (e) P * (Y, Ce) d(e. 

This is exactly the same form as before and so the energy eigenvalues 
have exactly the same bound.  Q.E.D. 

Corollary: When 

F(ce) =  (A) 
10 I co 

W 

> 

X„  min (inf [(1.4,a„(2YW))  E(Y, W)r, 

where a„ denotes the eigenvalues associated with the prolate spheroidal 
waveforms (Cf. Ref. 2), and E(Y, co) is e(Y) with the W-dependence in-
dicated. 

Proof: Since an , we can substitute go for cs„ . The eigenvalues 
X°.(Y, F) in this special case are those studied by Landau and Pollak; 
they depend on the product of Y and W. Finally, b„  1 in this case. 

Q.E.D. 
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IV. DIMENSIONALITY OF CROSSTALK FUNCTIONS 
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When approximating crosstalk functions over some interval (or as 
weighted by some square-integrable function) by linear combinations 
of functions, two practical questions arise. What is the most efficient 
set of functions, i.e., the one requiring the fewest number of functions 
to approximate any function in the class to a specified error tolerance? 
Then, for a given error tolerance, how many of these functions are 
required, i.e., what is the dimensionality? 
There are at least two practical ways that information on crosstalk 

dimensionality can be used. For a specified error tolerance, the dimen-
sionality gives the minimum number of independent measurements 
required to determine the crosstalk as a function of frequency. Thus 
it provides useful information to crosstalk measurement programs. 
Also, in efforts to reduce crosstalk over a specific range of frequencies, 
by subtracting linear combinations of fixed functions, the dimensionality 
indicates the minimum number of independent controls needed to 
meet a given criterion. Thus, dimensionality is a general concept, not 
tied to any particular method, either for measuring or for controlling 
crosstalk. 
Before discussing dimensionality further, we answer the first question 

stated above. We show that the most efficient set is the set of eigen-
functions for the energy operator, i.e., the energy eigenfunctions. This 
result is a variant of Theorem I in Landau and Pollak's paper.' Our 
proof differs from theirs; and also we strive for the greatest generality 
by considering crosstalk functions multiplied by an arbitrary square-
integrable function, G(w). Later, in dealing with dimensionality, we 
shall take G(w) as zero outside the finite frequency range of interest. 

Theorem: The quantity 
J -1 

sup  min  N(w)G(w) — E a iN ;WO W 
N(.)  -11 , 

where the supremum is taken over all crosstalk functions with normalized 
coupling function, is minimized by choosing AT i(w), j = 0, • • • , J — 1, 
as the crosstalk functions with coupling functions ui(x) equal lo the 
(j /)th normalized energy eigenfunction (ordered according to decreasing 
eigenvalue). 

Proof: Suppose N i(w), j = 0, • • • , J — 1, are linearly independent 
crosstalk functions and let P., denote the projection operator onto 
the J-dimensional subspace in  (— co, co) spanned by {G(w)Ni(w)J '; 
put PJ  I — P, . Then, 
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min N(w)G(w) —  aiNi(w)G(w) 
2 

=  I PfrN WG(co) Ir. I. 

Let A denote the operator taking coupling functions in L2(0, /) to 
L2(— oc, oc) such that 

Au(x) = iwG(0)  e-2  ( go )sto ) dx  G(w)N(w). 

(Note: If A* denotes the adjoint of A, then A*A = K, the energy 
operator.) The problem is to choose u(x) (with II u I L = 1) to maximize 
the quantity II P jAu(x) 11.2 and then to choose the minimizing pro-
jection P ; . 
Since P ; is a projection operator, 

I I P'jAu 112. = (Pf jAu)„ = (A*PfrAu, 

and the maximization over u(x) gives the operator norm of the operator 
A*P ;A, i.e., the greatest eigenvalue. We denote this by I A*P ;A I. But 

AP A  = I(A*P)(PJA-)I = I(DSA)(A *P;)I = I PriA•A *P;  , 

which follows from the more general result that BB* and B*B have 
the same nonzero eigenvalues when B is compact (Cf. Ref. 5, p. 262). 
The Weyl—Courant Lemma implies that I PjAA*Pj I is minimized 
when P1 corresponds to the subspace spanned by the first J eigen-
functions of AA* with the (J  1)th eigenvalue as the minimal value. 
Since K = A*A and AA* have the same nonzero eigenvalues, this 
minimal value is X., , i.e., 

inf I A*PfrA  I = X.,. 
P 

When P., is associated with the subspace spanned by IG(co)N ;M g', 
where the Ni(cd) are crosstalk functions with the first J energy eigen-
functions for coupling functions, then clearly 

1 AP J'A I = xj . 

Thus, this set of functions is most efficient.  Q.E. D. 
We note that the supremum in the theorem has been taken over all 

N(w) (with associated coupling function having unit norm, i.e., 
1 u(x) 12 dx = 1). One can show that the suitable approximating 

functions are the same even if the supremum is taken over N(w) with 
the additional constraint, II N(w)G(co) j I = b for a fixed value of b. 
The main issue is dimensionality. Again, let N(co) be an arbitrary 

crosstalk function. Suppose one wishes to approximate N(w)G(w) by a 
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linear combination of fixed linearly independent functions to within 
a mean square error of 12. The preceding theorem indicates that, for 
greatest efficiency, one should use the energy eigenfunctions N ,(co). 
The dimensionality relative to G(co) is the smallest integer D such that 

min 
tail 

D-1 

G(co)N(w) — E aiG(co)Y i(co) 
i =0 

2 
2 

for all N(w) with normalized coupling function. In terms of the energy 
eigenvalues this means 

XD :5- I but XD_1 > ô. 

This is so because for any such function N(w) there are coefficients 
fbi 1 such that 

Thus, 

min 
lail 

00  00 

N(w) = E biN i(co) and  E I 0I -= 1. 

D-1 

G(co)N(co) — E aiG(co)N i(co) 
c -0 

2 

G(co)b,N ,(co) 

E  . 

2 

01 

Since the eigenvalues X. are in descending order, this quantity is maxi-
mized by putting b, =  rD and, therefore, it must be less than 12 
for all choices of 1141. 
Now we wish to work out the dimensionality for the practical case 

where one is concerned with a fixed frequency interval, (— W/27r, W/27r). 
We modify the assumption of the corollary in Section III to say that 

(1 + I ke 10) De(w) = 11  I co I 

Icd  W 

The corollary indicates that the dimensionality (relative to 1) is upper 
bounded by the smallest integer D such that 

(((mocED(2YW))4 E(Y, W))2, pp) < I (for some Y) 

and the modification means only that E and the AD undergo a corre-
sponding change. The eigenvalues aD(2WY) are tabulated and plotted 
in Ref. 7. They decrease rapidly for increasing D greater than the 
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threshold value, 2C/ir  2/r[2YW], as indicated there. This is gen-
eralized in Ref. 8. What must be calculated is the behavior of the 
eigenvalue sequence, {g,,I , and the function E(Y, W). 

Assume q = 2 and 

r(c) =  + sgn  + ik2w. 

Though we leave k2 unassigned, we assume relative to mile units, 
= k2 . (A typical value of k2 is 8.0 X 100 second/mile for 19-gage 

wire.) An upper bound for E(Y, W) is E(Y, co) and naturally it is tighter 
for larger values of W. Explicitly, 

€2(17, W) < 217r -By) ( e-2r(w)x ) 

1 -E (1k202 
2 dre dx. 

To estimate this, note that the Fourier transform of e-2 "'")'/1 + (k2w)2 
is the convolution of the transforms for each factor taken separately, 
each of which is standard. Denote this by f(y, x); then 

1  Xki  2X2k 2i 
4 k2  'f(y, x) = f — e (y. — z)-1 exp (—  dz, 

N771"  Yo  z 

where y,, = y — 2k2x. By the Plancherel theorem, we have 

r 
€2(Y, W)  f(Y, x) 12 dy dx. 

o luI>Y 

To arrive at specific bounds on e(Y, W), we bound the convolution 
and then perform the y and x integrations on this bound. The derivation 
appears in the Appendix; the result is 

1 —  [e-2' , 3e-2P " 9/2  2 + min {9/e-P13  3/e-P13 V1 
E2 (Y, W) 

k2 64  64  64TP  32P1 ' 8P  

where P = (Y — 2k21)/k2 . 
The remaining unspecified quantities in the bounding expression for 

the energy eigenvalues, X,, , are the eigenvalues, ir,, , for the operator L. 
Note first that these depend on the two parameters, k2 and 1. The 
former is easily handled: 

m  e -2r ( )z  e -2r*(w)u 

L(x, y) = f_. 1 1- 012C e 1 -I- (k2û))2 

Put kaw = e, then we obtain 

0  x, y  1. 

L(x, y) =  e-2 '+e).Ve  cos [2(t + -0)(x — y)] (1  t2)2 
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and so the k2-dependence is completely specified. The /-dependence, 
on the other hand, is not so easily isolated. The most important element 
of the sequence, 11.4,1 is i.i, because it appears in conjunction with 
E(Y, W). In fact, 

X,, 5 I.40[(a2(2YW))* + e(Y, W)/e2 for all Y. 

Thus knowledge of g. gives us one completely specified bounding 
expression for each X„ . At this point, the question is whether this bound 
is better or worse than the 12„ for a given n. We do not calculate the µ„ 
here and leave this question open. Rather we shall study the former 
expression in an example. 
Let / = 0.1 mile. In this case, we have done a computer calculation 

for g. ; the result is 1.57(k2)-1. The problem is to find the value of Y 
which minimizes the bound for a given W and k2 . For a fixed W, the 
first term, c•V-7,—,(2T —IY) , is reduced by decreasing Y, and e( Y, W) is 
reduced by increasing Y; therefore, the best Y is some compromise 
value. Let W = (mr/k21) and Y = 8k21 for m > 0 and a > 2; then 

X. e iii,[(,),„(2r8m))' 

(\ 1 1 (e-" 3e-"" _,  3  3e-P11    \V-12. 
±  5.7 \ 6 _, 4 ' 64  ' -671(s --§ -I-' 2)  8 V10(s — 2))) -I 

For the first eigenvalue, (n = 0) when um  1, then .20(211m) -̂.'.1 
since s > 2 (Cf. Ref. 7, Fig. 2); consequently, p0 is the best bound 
available here. But when, for example, irm = 0.25 and s is chosen as 
2.5, then 

(a2(2wsm))4 ',--:-..1 0.8 (Cf. Ref. 7, Fig. 2) 

and 

Ào e. p0[0.80 ± 0.17]2 '74..-1 po(0.94) < po . 

In this case, it behooves us to use the more complicated bound. For 
19-gage wire, this choice of m corresponds to a highest frequency of 
about 5 X 104 Hz. 
For the tenth eigenvalue (n = 9) when z-m = 1, choose s = 5.5; 

then (a0(27sm))4 çz-.2., 0.99 and 

Ào  140.09 +  0.09r  0.032 1.42 . 

This is in the vicinity of the best choice for s. This means that for 
W = (1/k2i) and / = 0.1 mile, the dimensionality of the crosstalk 
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functions relative to an error criterion, 0.032 go , is at most 10. It may 
be less than 10, but one needs lower bounds on the eigenvalues to 
determine that. Our technique does not carry over in any obvious way 
to a determination of lower bounds. 

V. CONCLUSIONS 

We have calculated bounds on the energy eigenvalues to determine 
the dimensionality of the crosstalk functions. Our analysis uses ideas 
developed by Landau and Pollak,' but our problem has a different 
character. Since any crosstalk function approaches zero for increasing 
frequency at a certain minimal rate, independent of the coupling 
function u(x), the eigenvalues are insensitive to increases in the band-
width W after a certain point, i.e., they saturate. This is indicated in 
the bounding expression by the presence of the p, which are independent 
of W. Hence, the question of which part of the bound is better depends 
on W: if W is large enough, the X. will have nearly saturated to IA, 
and these are better, whereas smaller W-values are better handled 
by the more complicated expression which is sensitive to changes in W. 
This phenomena came up in our example for n = 0. 
The dimensionality, as we have seen, presumes an error criteria. 

Given this, one can calculate from the bound, in any specific case, an 
upper bound on the dimensionality. The significance of this in a measure-
ment program or in a crosstalk control scheme is to provide a realistic 
goal for reducing the number of independent measurements or controls, 
respectively. Since we have not derived lower bounds for the X. , the 
tightness of the upper bounds remains in question. Thus, the possibility 
of achieving greater reductions than our results would indicate is open. 
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APPENDIX 

We wish to bound the function 

f(y,  — V  
sk i f" -1.1,k , 
4k, ;  e .‘Yo  exp \ 

2x2k; dz 
yo — z 
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by a more convenient function of y and x, both when y > Y and when 
y < —Y. First suppose yo 0; then 

22k1 2 --1.1ko• e (y., — z)  x -1 exp (—  dz 
.110  yo — z 

e- /k 

Also, 

zyi  exp  (_  2x2k; dz  
e 

itto/3  Yo  e/ 

dz = 3k2y0 e(=22)4 

e-Y°13k,  f 7-4  exp (-2x2k2iy)  = e-ire"" (7r/2)1  
xki ' 

where we have put y = 1/(y. — z) in the change of variables. Thus 

/(y,  3xk, ( 3 )1y1  1  
4 \27r/  4k2V- —  

Next, suppose y. = y,; with yt, > O. Then, after changing z to —z 
in the integral above, we have 

f(y,  /k. j'e  2x2k;  

Ali  — m) lee  4k2 11; e vo' 

1  e 
4k2 v2 

The details of this calculation parallel the former case. 

Since 

E2(Y, W)  f  I f(y, x) 12 dy dx, 
o  IiiI > Y 

we can bound ê(Y, W) by performing the integrations on the above 
bounds for f(y, x). First we have 

1  e -2 0 (x)  3e-2I (r)J3 27x 2 

f 
f(y, x)  dy — lc,  64  64  647rP(x)2 12,1>y 

± min  {9xe-P  '')" 3xe-P( x)11 
16(P(x))1 ' 4(P(x))4 j ' 

where P(x) = (Y — 2k2x)/k2 . In the latter term we have upper bounded 
3/7r by 1 and have put (Y — 2k2x) for yo (in the former case before 
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the y-integration and in the latter after one integration by parts). 
Before doing the x-integration, replace P (x) by P  P(1), thus ob-
taining a greater bound; then the x-integration gives us 

< / 1- -2P  -2P/3  _L.  912 . 17 {91e-P13  3k-P/3  
e2(  W)  = 112 L e 64  3e ' 64  ' 647P7 min  32P1 ' 8P1 }I « 

We shall always assume that Y > 2k21, i.e., that P > O. 
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A communication system for multiple-address messages is described, 
in which a message waits in parallel queues until it can be transmitted 
simultaneously to all the addressed receivers. An idealized mathematical 
model of this system leads to a nonlinear integral equation for the stationary 
distribution of delays in receiver queues. A phase-plane analysis shows 
this equation to have a one-parameter family of solutions, one member of 
which is found to be the unique limiting distribution of receiver delays. 
Even though service times (message lengths) are not bounded, the receiver 
queues in this model can operate in the steady state at critical load. Under 
these conditions, the probability that a server is idle is positive; and all 

moments of the delay distribution are finite. Computation of the delay 
distribution is discussed, numerical examples are given, and the behavior 
of the transmitter queues is analyzed. 
Predictions of this model are compared with performance parameters 

of simulated systems. The model is shown to be very accurate up to its 
critical load. For higher loads, performance depends strongly upon the 
number of receivers in the system. The model's discontinuity in receiver 
occupancy is not physically realizable, but is approached asymptotically 
as the number of receivers tends to infinity. 
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I. INTRODUCTION 

The frequency of conference calls in voice telephony is very low; 
but many of the messages carried by some data communication systems 
are directed from a single transmitter to two or more destinations. 
In the mathematical analysis of some types of data traffic, it is the 
presence of these multiple-address (MA) messages that raises problems 
essentially different from those encountered in the classical congestion 
theory of telephone systems. 
Methods of coping with MA traffic fall into three classes. One involves 

message switching (also called storage, or the store-and-forward method), 
in which a transmitter sends a message to a switching center or other 
central location at which it is stored. Copies of the message are then 
retransmitted more or less independently to the desired receivers. A 
second class makes use of selective calling. In the simplest example, all 
stations are connected to a single channel, which may be thought of 
as a loop without a central switch; a message on this channel may be 
directed to any or all of the receivers. The number of simultaneous 
transmissions that is possible in a system of this class is limited by the 
number of space-, time-, or frequency-division channels in the loop. 
The third class of methods is based on line switching, in which a switching 
center merely establishes connections between the terminals of a system 
instead of providing storage for messages in transit. Line switching 
for MA traffic has itself two extreme forms, sequential and simultaneous, 
between which lie many other types of line switching. The sequential 
technique requires the transmitter to send each copy of a message to 
the proper receiver as a separate transmission, so that the transmitter 
sees an MA message as a sequence of single-address messages. With 
simultaneous line-switching, all copies of a message are sent at once 
after the transmitter has been connected to all the addressed receivers. 
The term "camp-on" refers to one natural implementation of simul-

taneous line-switching. Suppose that a transmitter serves messages 

* A nonmathematical statement of the problem and of the results obtained may 
be found in the starred sections. 
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offered to the system in order of arrival, and that a queue of delayed 
messages can form at each transmitter. When a message reaches the 
head of a transmitter queue, it gives its set of addresses to some control 
device, thereby requesting connection to several receivers. The simplest 
plan is for such requests to be entered into first-come, first-served 
queues corresponding to individual receivers. When a message (or copy 
thereof) reaches the head of a receiver queue, it (i.e., other copies) 
may still be awaiting other receivers that are not yet idle. Then the 
message camps on the available receiving line, so that the receiver, 
although idle, appears busy to other traffic. Thus it is possible for a 
delayed message to be waiting for two receivers neither of which is 
actually engaged in receiving a message; but reshuffling of the order 
in which messages are handled, so as to avoid this situation, would 
require involved computations, not to mention precautions against 
indefinite postponement of some transmissions. 
For systems in which the lines to terminals radiate from a switching 

center, we may think of message switching, camp-on, and sequential 
line-switching as the three basic or "pure" techniques for handling 
MA traffic, in the sense that other schemes are really combinations 
of these three. There is much to be said for and against each of them. 
Message switching requires expensive storage-facilities, and saddles 
the communication system with the responsibility for messages in its 
possession. Sequential line-switching leads to excessively heavy loading 
of transmitters; and receivers are used with corresponding inefficiency 
in camp-on systems. I cite these disadvantages in order to point out 
that, in many situations, a practical system must combine some 
features of at least two of the pure techniques. In fact, the advantages 
of many compromise schemes are well-known. One possibility is to use 
storage for all MA messages, while sending single-address traffic over 
line-switched connections. In another plan, described as simultaneous 
transmission to available destinations (STAD), the transmitter is 
connected• to all the addressed receivers that are not occupied. When 
this transmission is complete, a new attempt is made to reach the 
remaining addresses. STAD avoids factitious loading of receivers while 
holding down the number of transmissions needed per message. 
The invention, design, and analysis of good arrangements for handling 

MA traffic are very difficult.* Our understanding of this subject is 
limited, although approximate analysis, simulation, and field measure-

* These difficulties are greatest in connection with line switching, practical interest 
in which has decreased as technological changes have made other schemes more 
attractive. 
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ment have yielded considerable data. It seems clear that a first step 
toward an adequate theory must be a thorough comprehension of each 
of the basic techniques mentioned above. 
The presence of storage in message-switching systems decouples 

the two stages of blocking (at the transmitters and at the receivers) 
enough to allow application of standard delay-theories to each stage. 
No satisfactory analysis of sequential line-switching has been published; 
but the structure of such systems is not of deep theoretical interest, 
partly because the key question is that of the order in which the 
addressees of a message are served. The camp-on situation is of crucial 
importance because of its combinatorial structure. This structure is 
described in the next section. Here it is enough to say that the service 
process in the transmitter queues depends on the way in which messages 
interact in the receiver queues. 
This paper describes the analysis of a very simple and idealized 

model of a line-switching system with camp-on. The answer obtained 
is a description, valid in the limit of very large systems, of message 
delays during steady-state operation. This problem is one of a large 
class of problems, characterized by complex interactions between 
queues in parallel, which forms an important domain on the frontier 
of congestion theory. The analysis presented here is important for two 
reasons: It yields insight into one of the basic procedures for handling 
multiple-address traffic, and should therefore lead toward an under-
standing of more realistic models; and it embodies a modification, 
which may prove useful in similar problems, of a standard method in 
queuing theory. In addition, the remarkable behavior exhibited by 
this idealized model renders it of independent interest. 
The problem treated here, and others not dissimilar, have been 

discussed by other authors. The most relevant paper is by Haenschke.1 
But discussion of other work is deferred until Section VII so that 
different approaches may be compared in detail. 

H. A CAMP-ON MODEL 

2.1 The System 

We first consider a system with one switching-center, X transmitters, 
and R receivers. Messages are offered to the system in X independent 
arrival-processes, one for each transmitter; and each process is Poisson 
with rate a. Every message is addressed to exactly m of the receivers. 
This m. is an integer greater than 1. The m addresses of a message are 
chosen at random uniformly from the R possibilities, and the addresses 
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of any two messages are chosen independently. The unit of time is the 
mean length of the messages, and these lengths are independent random 
variables with the negative exponential distribution. By symmetry, 
all the receivers experience identical arrival processes. Let their mean 
rate be X. If the system can operate in equilibrium, the number of 
copies of messages that must leave the transmitters is maX per unit 
time. Since XR copies per unit time arrive in the receiver queues, the 
conservation equation in equilibrium must be maX = XI?. A useful 
form of this equation is 

R  ma 
— = X — = k X ,  (1) 

where we have introduced the parameter k to denote the ratio of the 
numbers of receivers to transmitters. 
The previous paragraph, together with the description of camp-on 

given in Section I, completely specifies the traffic characteristics of 
a communication system. Except for its mean rate X, we are ignorant 
of the arrival process at the receiver queues; but it is determined by 
the stated requirements. We also know nothing of the conditions for 
the existence of a steady state, although clearly X and a cannot be too 
large. The "service time" of a message in a transmitter queue consists 
of all the time spent at the head of that queue before departure—that 
is, of the transmission time plus the time spent waiting for the last 
of the addressed receivers to become available. The situation is shown 
in Fig. 1 for the case in which m = 2. Each circle at the upper level 
represents a message in a transmitter queue, and at the lower level a 
copy in a receiver queue. The lines in the figure connect each message-
symbol at the head of a transmitter queue to the symbols for the two 
corresponding copies. The head messages at transmitters I and V are 
being transmitted, to receivers 1 and 2 in the former case and 5 and 6 
in the latter. The message at II is awaiting receiver 2 and camping 

o 

TRANSMITTERS 
o 
o 
o 

TRANSMITTER 
QUEUES 

RECEIVER 

3  4  5  6 QUEUES 

RECEIVERS 

Fig. 1—The queuing discipline in a camp-on system. 
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on 3; and similarly for the head message at IV. Although neither of 
receivers 3 and 4 is receiving a message, both are being camped on and 
act occupied. Therefore the message at III, which announced its ad-
dresses after the head messages at II and IV did so, is, as shown in 
Fig. 1, effectively in third place in queuing for receivers. 
The system just described is unrealistically simple in several ways. 

First, it consists of a single switching-center with lines to receivers 
and transmitters radiating from it, whereas a physical system could have 
many switching-centers interconnected by trunks. This difference is 
not critical, because we are studying principally the effect of having 
to wait simultaneously in m receiver-queues. Blocking due to inadequacy 
of trunk facilities could be made negligible in comparison. Second, 
signaling and switching times are taken to be zero, a mathematical 
convenience of long standing in queuing theory and often justified 
in practice. Third, each message has the same number of addresses. 
This assumption is far indeed from being realistic, but we shall see in 
Section 5.2 that it does not seriously restrict the usefulness of the model. 
Fourth, the transmitters and receivers are equally and independently 
loaded. This is a genuine restriction, especially for the receivers. A 
wide variation among receiver loads would represent reality better, 
particularly if a destination with heavy traffic could have several 
receivers sharing the load. Traffic flow in some physical systems is 
further complicated by more restrictive geometries. For example, a 
transmitter and receiver can be connected to a switching-center by a 
single line not capable of full-duplex operation (simultaneous trans-
mission in both directions). The simple model adopted here is required 
to avoid prohibitive mathematical complexity, but it has the corre-
sponding virtue of introducing no complications other than that inherent 
in the camp-on discipline itself. 
In order to proceed, we need symbols for various portions of the 

time that a message spends in the system. Figure 2 shows this time-
interval for a particular message, and is drawn from the viewpoint 
of one of the m receivers to which the message is addressed. At the 
point A in Fig. 2, the message arrives and joins a transmitter queue. 

- - RECEIVE R SERVICE -TIME - - 

I 
8  B  (D  C  Z 

TRANSMITTER  RECEIVER 
DELAY  DELAY 

DI E X   

TRANSMISSION 

- - - - RECEIVER SOJOURN-TIME= - - - 
p =TRANSMITTER SERVICE -TIME 

TIME 

Fig. 2—Composition of the time spent by a message in the system. 
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At B the message reaches the head of this queue and notifies the control 
of its addresses; thus the message arrives in the distinguished receiver's 
queue (and in those of the other m — 1 receivers) at time B also. The 
interval from A to B is the transmitter delay, and is represented by the 
random variable b. 
At C, after the receiver delay (or waiting time) w, the message reaches 

the head of the receiver queue and camps on the receiver. The longest 
of the m receiver-delays ends at time D, and transmission then begins. 
The random variable E represents the excess of the longest of the receiver 
delays over the delay at this receiver (the one for which the diagram 
is drawn). Of course e = 0 if the longest delay occurs at this receiver. 
If w ̀‘) is the delay at the ith receiver, then E is defined by the equation 

w"'  E(1) --- max W I', • • • , w(m)) for each j = 1, • • • , m. 

The dummy indices run, of course, over the addresses of one message. 
Omitting superscripts for "our own" receiver, we write the simpler 
formula 

+ e = max  wu) . (2) 

The message is actually transmitted during the interval of length x, 
with density function exp (— x), that runs from D to E. At time E the 
message ends and departs from the system. 
The interval from B to E, of random length p  e + x, is the 

sojourn time of the message in the receiver queue. During this entire 
time the message occupies its transmitter, so that p is also the service 
time in the transmitter queue. Indeed, the transmitter queue is a single-
server queue, with Poisson arrivals, whose service times p have an 
unknown distribution and are not independent. 
The reader who is interested in the results of this investigation, 

rather than in their derivation, may now skip to Section VII, which 
contains a summary of the argument and a discussion of its conclusions. 

2.2 Passage to a Limit 

The trick that makes this model amenable to analysis is this: We let 
R and X both go to infinity while holding their ratio constant. In 
fact—see eq. (1)—we keep k, a,  and m all fixed as the system gets 
larger. In general terms, the purpose of this trick is to decouple the 
queues that operate in parallel, while preserving the essential inter-
action caused by each message's having to wait in m queues at once. 
The detailed consequences of this procedure are three in number, all 
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of them necessary to further progress. The first of these is that the 
receiver queues become independent. In other words, in the infinitely 
large system obtained by letting R and X approach infinity, the m 
copies of the random variable co that are encountered by each message 
are independent. I have no rigorous proof of this fact, which is, however, 
buttressed by the following heuristic argument. 
Consider the m receivers addressed in a particular message. Before 

this message reaches the head of a transmitter queue, the m receiver-
queues may have various lengths. Then, at time B in the sketch of 
Fig. 2, the message arrives simultaneously in all m queues. When, at 
time E, the message departs from the system, it leaves behind it the 
same expected number of messages in each of the m queues: For this 
message had the same sojourn-time in each of these queues, which are 
all subjected to arrival processes of the same intensity X. Let us then 
call the departure of this message a synchronizing event (S-event) for 
these m queues, using "synchronizing" in a rather weak sense. 
Each receiver queue participates in X S-events per unit time, on the 

average, if the system is in equilibrium. Consider a fixed pair of receivers 
which have just participated in the same S-event. The probability 
that any single subsequent message addressed to receiver 1 will generate 
an S-event involving receiver 2 is (m — 1)/(R — 1), since the m — 1 
addresses of such a message (other than receiver 1) are chosen with 
equal probability from among the R — 1 other receivers. The S-events 
involving receiver 1 form a sequence of Bernoulli trials with respect 
to the probability of involving receiver 2, because the addresses of 
different messages are chosen independently. Therefore the mean 
interval between successive S-events involving two particular receivers 
is (R — 1)1 (m — 1) events (corresponding to one of the receivers), 
and this is equal to (R — 1) /[X(m — 1)] units of time. This quantity 
increases without bound when we let R —› co while holding X and m 
constant. In other words, in the infinitely large system obtained by 
means of our trick, the mean time between successive "synchronizations" 
of two given receiver queues is infinite. 
Indirect methods of "synchronization" also affect the receiver 

queues. If receivers 1 and 3 participate in an S-event, and if shortly 
thereafter receivers 2 and 3 do so, we might say that the queues at 
receivers 1 and 2 are connected by "an S-chain of length 2." The effect 
of such chains is, of course, to increase the degree of statistical de-
pendence between the states of the queues involved. But the longer 
an S-chain is, the less effective it can be in "synchronizing" two queues, 
because of the time-lag between the S-events that form the ends of 
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the chain. Here we do not investigate the relative efficacy, in increasing 
the dependence of the states of any pair of receiver queues, of S-chains 
of different lengths. But the time required, on the average, to complete 
an S-chain of given length between two specified queues clearly ap-
proaches infinity as R —> co, so that the efficacy of any such chain 
vanishes in the infinite model. 
This argument for the independence of receiver queues can be sum-

marized by saying that as R —> co the frequency of occurrence, of 
events through which the state of one receiver queue can influence 
the state of any other particular receiver queue, goes to zero. Also, 
each receiver in this statement can be replaced by any fixed, finite set 
of receivers. 
We come now to the second consequence of passing to an infinitely 

large system, which is that the service times of successive messages 
in any transmitter queue are independent. In the finite system, the 
probability that the sets of m addresses of two messages have one or 
more receivers in common is easily found to be m2 /R  0(R-2). This 
quantity tends to zero as R —> CO . A similar calculation shows that, 
in the infinite system, the address-sets of any finite group of messages 
overlap with probability zero. The service times of any set of messages 
in a transmitter queue, which are just their respective sojourn-times 
in the receiver queues, therefore depend on the states of nonoverlapping 
(with probability one) sets of receiver queues; and these we have already 
found to be independent. Thus each transmitter queue is of type 
M/G/l-that is, has Poisson arrivals, one server, and general independent 
service-times. 
(Notice that both these arguments are not uniform in X: Fixing R, 

we can choose X large enough to ensure a significant degree of de-
pendence between the states of various receiver queues and also between 
successive transmitter service-times. Thus we must allow R to go to 
infinity before varying X.) 
The third consequence of our trick is that the arrival process at 

each receiver is Poisson. In the finite system each such process, or, in 
Khinchin's2 words, stream of events, is the union of X substreams, 
each of intensity X/X or ma/R. Each event in one substream (except 
for an arrival at an idle transmitter) coincides with the departure of 
a message from a transmitter queue, for that is the instant at which 
the next message, if any, announces its addresses and joins m receiver-
queues. Such a substream is obtained by selecting at random a fraction 
mIR of the events in the departure process from one transmitter, this 
process being itself a stream of intensity a. The resulting substreams 
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which make up the arrival process at one receiver have, in the steady 
state, these properties: They are orderly and stationary (see Khinchin2), 
and, by the arguments given above, they approach mutual independence 
as R and X  co . A limit theorem (see Ref. 2, Chap. 5, and the similar 
but slightly earlier results of Cox and Smith') suggests that as X --> co 
the arrival stream becomes Poisson. This result requires that one 
technical condition [Ref. 2, p. 50, condition (2)] be fulfilled; this is 
easily verified. It also requires that Khinchin's version of the theorem 
hold when the substreams of decreasing intensity X/X are not in-
dependent, but merely approach independence as X --> 03; and this is 
assumed here. 
Let us review the properties of our final model, focusing, as in Fig. 2, 

on what happens to a single message. The queuing system consists of 
two stages. The first stage is an ordinary M/G/1 queue with an un-
known distribution of service times. Service in this queue consists of 
a sojourn in the second-stage queue. The latter has Poisson arrivals 
and an exponential departure-mechanism (known as transmission) with 
unit mean. But transmission in the second queue begins only after the 
expiration of the longest of m independent, identically distributed 
intervals, each of which is what would ordinarily be called the waiting 
time in the second queue. 
We constructed this model by starting with a very simple but physi-

cally realizable finite system and modifying it in an appropriate way. 
The properties of the final model were deduced informally. But this 
model is of interest in its own right, and could have been proposed 
for study at the start. Its properties are derived here in order to demon-
strate its connection with the camp-on problem. It is also fair to say 
that the interactions which it is the purpose of our limiting-procedure 
to remove—namely, dependence of receiver delays, dependence of 
transmitter service-times, and deviation from Poisson character of 
receiver arrivals—are demonstrably small in a large finite system at 
moderate loads. (A system is large in this sense, if a receiver gets hardly 
any of its messages from any single transmitter and every message is 
addressed to a very small fraction of all receivers.) The effects of such 
interactions are discussed further in Section 5.4. 

2.3 Equation for Delay Distribution in Equilibrium 

If we knew the distribution of sojourn times in the receiver queues, 
which are identical with the service times in the transmitter queues, 
we could in principle determine the distribution of transmitter delays 
from the well-known formula of Pollaczek and Khinchin [Khinchin,z 
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p. 116; Cox and Smith,' Section 2.6, eq. (28)]. Lacking closed forms for 
the various quantities involved, we could still find the mean transmitter-
delay, given the mean and variance of the receiver sojourn times 
[Khinchin,2 p. 117; Cox and Smith," Section 2.6, eq. (22)1. We therefore 
turn our attention exclusively to the receiver queues, which can be 
studied without reference to the larger system of which they are a part. 
The results of this investigation are then used to describe the trans-
mitter queues, which are not mentioned again until Section VI. 
We now reproduce in Fig. 3 the relevant part of Fig. 2, drawn as 

before for one receiver, but extended so as to show the relation between 
two successive messages addressed to that receiver. Subscripts refer 
to messages, in order of arrival; in particular, co„ is the delay suffered 
by the nth message and co.+, that of the next. We also need symbols 
for the as-yet-unknown distribution functions for the receiver delays co 
and sojourn times p. These are respectively F and G. Thus G„ is the 
sojourn-time distribution for the nth message, and F.+1 the delay 
distribution for its successor. 
Proceeding in the spirit of Lindley' (or see Cox and Smith," Section 

5.3), we now relate the delay distributions of successive customers. 
We can do this by using two simple integral-relations, each of which 
amounts merely to a definition. Note first that p„ is the sum of two 
random variables: x„ , whose density function is the unit exponential, 
and co. + E. , which we know from (2) to be the maximum of m in-
dependent copies of co„ . The probability that this maximum does not 
exceed t is the product of the probabilities that each of the m variables 
co„ does not exceed t. Thus the distribution function for co. + E„ is 

Prim,  ti =  
The usual convolution-formula gives for G„(t), the probability that p„ 
does not exceed 1, the value 

G„(t) =  e 'F:(u) du,  (3) 

a n+1  ..-'.TIME 

D  E 

Pn - I> 

Fig. 3—Receiver delays of successive messages. 

TIME 
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where F(u)  [F„(u)]m 
An equally simple calculation yields F„41 . Let a in Fig. 3 be the 

interval between the arrival time of the nth message (at B) and that 
of the next (at H). The delay co.+1 runs from time H to time E, stopping 
then because the nth message departs. (Message n -F 1 can be trans-
mitted only after a further interval of length L., , which may of course 
be zero.) Certainly co„11 is less than t if p. is less than t, since time H 
cannot precede time B. Suppose, on the other hand, that p. has the 
value u> t. Then con+i  is less than t if and only if a is greater than u — t. 
But a is an interarrival time in a Poisson process of intensity X. It 
exceeds u — t if and only if no arrival occurs during an interval of 
length u — t, and this event has probability exp (— X (u — t)). Rewriting 
this argument in symbols, we get the formula 

F,.+1(t) = G.(0  f e '̀ ) dG.(u). 

Integration by parts gives us the useful equivalent formula 

(4a) 

F,. 1(t) = X f e '')G„(u) du.  (4b) 

We can represent F„,i directly in terms of F. by eliminating G. 
between eqs. (3) and (4). We note first from (3) that 

G„(0) = 0.  (5) 

This says that no message has a sojourn time of length zero; this is 
to be expected because p. is at least as long as 4, , whose distribution 
has no mass at the origin. Equation (5) also removes any doubts about 
the integration by parts that yields (4b), in case t = O. 
Equation (3) also tells us that G. has a derivative. Differentiating 

the right-hand member explicitly, and denoting time-differentiation 
by a dot, we find that 

Ó„(t) = —G.(t)  Mt).  (6) 

Writing dG„(u)  Ô.(u) du, we can substitute (3) and (6) into (4a). 
Using (4b) to eliminate the remaining appearance of G. , we obtain 
the important equation 

X to 
— 1 +X [f. e-(' )F,7(u) du 4- f e-1( "-"F u) du].  (7) 

A useful special case of (7) comes from setting t = O. This is 
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x _> _ 1 +f e.F.(u) du.  (8) 

If we multiply both members of this equation by exp (At) and divide 
the interval of integration into two parts at t, we find that 

X  
F  —  1 f e-14- )̀ n  1 ±  tu) du ±  f e `)F,7(u) du. 

+ X o   

We can use this to eliminate the integral from t to 00 in (7), obtaining 
the "retrospective" formula 

X  X(  )  F+(t) = F.+1(0)e  1 -I- X f '  [e i—u  — e t 7,7(u) du.  (9) 
o 

It is possible to base the analysis of this problem entirely on the 
equations obtained so far, but much of the argument is simpler if we 
use an equivalent formulation which involves differential instead of 
integral equations. Differentiation of eq. (4b) shows that .P.+1 exists 
for t > 0 and is given by 

= X2 f e->d '-"G(u) du — XGn(t). 

For t = 0 this must be interpreted as a derivative on the right; the 
jump in F.+1 at 0— can be ignored if we remember that F 1(0) > O. 
Substitution of (4b) and suppression of the argument t yield 

P.+1 = XF.+1 — XG.  (10) 

Since both terms of the right member have derivatives, it is also true 
that 

Pm +1 —  X Én+1  X Ón 

where P..,1 is also a right-derivative at t = O. The sum of the last two 
equations is 

+ (1 — X)É.+1 — XF,.+1 = — X(Ùn ± G.). 

Using (6) to eliminate G. and its derivative, we obtain 

PR+, ± (1 — x)É„.1 — xF„,1 =  (11a) 

the differential version of (7). This must be accompanied by the bound-
ary condition 

= XF,,, (0),  (11b) 
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which comes from (10) with the aid of (5). Also, since F. is a distri-
bution function, 0 < F.(t) 5 1 for all t  0. Substitution of 1 as an 
upper bound for F. in (7), where both kernels are positive, easily yields 
the fact that 

< 1 for all t O.  (11c) 

This inductive result, based essentially on the assumption that F1 
is a distribution function, serves as a second boundary-condition for 
(11a), one of whose homogeneous solutions is exp (Xe). 
The derivations of (7) and (11) given above are chosen for brevity, 

and both make use of equations involving G. . The discussion that 
follows rests on the fact that, as self-contained descriptions of the 
sequence {F,J, (7) and (11) are equivalent. We should therefore verify 
that each can be obtained from the other. We got (11c) from (7) anyway, 
and explicit differentiation of (7) quickly yields (11b) and (11a). On 
the other hand, treatment of (11a) as an inhomogeneous linear equation 
with driving function — XF: allows us to use the standard formula for 
its general solution. Application of (11b) then yields the representation 
(9), which is the natural form when integrating in the positive t-direction. 
As it stands, equation (9) seems to contain the wrong homogeneous 
solution, but actually the integral term is a negative correction which 
offsets the growth of exp (Xe). We can rearrange (9) so as to represent 

as the sum of two quantities: One is the right-hand member of 
(7), which we know is bounded when 0  F. 5 1, and the other is the 
correction 

— 1  +X e-"F'."(u) du]. 

Since the bracketed quantity is independent of t, either it vanishes 
or I F,.+1(t) I grows without limit as t —) co . The condition (11c) selects 
the former possibility, proving that both (8) and (7) hold. Thus the 
systems (7) and (11) are indeed equivalent. 
Again following Lindley,' we impose the condition of equilibrium 

by specifying that two successive messages must have the same delay-
distribution. The distinction between the nth message and its successor 
can be removed by omitting the subscripts in (7). This leaves the 
formula 

F(t) --  +  [f e' ''F(u) du 4- f  nu) du}  (12a ) 
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This is our fundamental nonlinear integral equation for F, the equi-
librium distribution of receiver delays. (Thus the distribution function 
for co  E is F".) Since (12a), unlike (7), makes no implicit reference to 
the initial distribution F1 , we must adjoin to it the explicit condition 

O  F(t)  1.  (12b) 

HL SOLUTIONS 

3.1 Reduction to a First-Order System 

We are looking for distribution functions F that satisfy our basic 
system of equations (12) on the interval 0  1 < œ. We expect on 
physical grounds that (12) has solutions for sufficiently small positive X. 
We also expect that, for large enough values of X, (12) has no solutions; 
for these large arrival-rates the queue lengths and delays should in-
crease without limit, and no steady state should exist. 
In this section we show that indeed there exists a critical arrival-rate 

A above which (12) has no solutions, and that for X  A it has infinitely 
many solutions. In the latter case the solutions fall into two groups, 
one of which contains a single distribution and the other a one-parameter 
family of distributions. One's natural inclination to choose the dis-
tinguished solution as the answer to the physical problem encounters 
a major difficulty: The set of distinguished solutions obtained by 
varying X has the property that their initial values, which represent 
the respective probabilities of finding a receiver idle, are bounded away 
from zero as X approaches A from below. The paradoxical implication 
that the receivers have spare capacity at their critical load makes it 
unclear whether the idealized problem (with R = co) has a unique 
solution at all. This issue is discussed further below and resolved in 
Section IV. 
We begin by observing two consequences of the system (12). First, 

its solutions must be what we may call unlimited. According to (12b), 
the right member of (12a), evaluated for F = 1 = e, is an upper 
bound for F; explicitly, 

X X  -t. 1+  [e- fo et' du +e" f e'" du] = 1  e  (13) 1 + X 

[This is the formula alluded to in the derivation of eq. (11c).] This 
result rules out functions F (called limited) which reach 1 at finite 
values of t. They would correspond, if they existed, to operation with 
receiver delays bounded above by some finite limit; and this situation 
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seems physically unreasonable because transmission times are not 
bounded. In particular, F cannot reach the value 1 with positive slope. 
Improper equilibrium-distributions, corresponding to a positive 

probability of infinite delay, also cannot occur. This situation is repre-
sented by distributions which never increase beyond some positive 
value less than 1. That this cannot happen is shown next; but here we 
note in passing the trivial exception that F = 0 is a formal solution 
of (12). 
By defining the kernel 

k(t, u)  Í[X/(1 ± x)] exp (— (t — u)), (14) 
[X/(1  X)] exp (— X(u — t)), 

we can write (12a) in the form 

F(t) = u)F-(u) du. 
o 

u  t, 

u  t, 

(15) 

Suppose there were a bound b < 1 such that 0 < F  b for some solution 
F of (12a) and (15). Then, kx being positive, 

F(t)  b- f icx(t, u) du < btm, 

with the final inequality coming from (13). Substitution of this result 
into (15) shows that F(t) < bn thus F(1) < bm' for arbitrarily large j 
by iteration, and so F(1)  O. Therefore all nontrivial solutions have the 
property that 

as t—*  (16) 

and are called proper. 
One other useful formula comes directly from (12a). Differentiation 

of that equation tells us that 

F(t) = XF(t) — X f e-( -̀')F"(u) du. 
0 

Since the last term is nonpositive, 

É(t) < XF (0,  t 0.  (17) 

It is now convenient to switch to the differential formulation of 
the problem. Omitting all subscripts from (11), we get for equilibrium 
the system 

P (1 - x)É = XF — XFtm,  (18a) 
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/1(0) = XF(0), 

0 S F(t) < 1 for 0  t < co, 

(18b) 

(18c) 

which can also be derived from (12) and the fact that solutions of (12) 
are unlimited. Since t does not appear explicitly in (18a), we can trans-
form it into an equation of first order by introducing a function p(F) 
with these properties: 

P(F) = É; 
(1È  dp  dp dF 

P =  = - = -  =  dt  dt  dF . dt 
(19) 

where p'  dpldF. We also use the notation Fo = F(0) so that the 
integration for p(F) can begin with p (F0); the previous subscripts 
should cause no confusion, since there is no zeroth message. Equations 
(18a) and (19) yield, after some rearrangement, 

X(F —   
—  — (1 — X).  (20a) 

The boundary condition (18b) becomes 

p(F0) = XFo .  (20b) 

Admissible solutions of (20a) must have three other properties. Since 
we are seeking only solutions corresponding to distribution functions, 
which must be monotone, p must be nonnegative. Second, (17) holds. 
We also have the condition (18c), except that, since every solution of 
(18) satisfies (16) but is unlimited, every solution of (20a) must include 
the point (F, p) = (1, 0) (though with parameter t =  ). In symbols, 

O  p  XF; 0  F < 1 except at (F, p) = (1, 0).  (20c) 

Our original problem is now reduced to that of solving the first-order 
system (20). One more integration then yields F(t), as we see from the 
first part of (19), which can be written dt = dF /p(F). 

3.2 Trajectories in the Phase Plane 

Equation (20a) is best studied in the Fp-plane, which is properly 
called the phase plane for (18) because p = É. Figure 4 shows the 
relevant region of this plane for the case in which X < A. According 
to (20c), meaningful solutions must lie above the F-axis, within the 
strip 0  F  1, and below the oblique line p = XF. The formula 
(20a) defines a vector field, and we must study those of its integral 
curves that lie within the triangle just described. These integral curves, 
or trajectories, are parametrized by t according to the results of the 
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F =0 

m=2, X =0.15 

VERTICAL EXAGGERATION X 3 

yi=-0.6  y2=-0.25 

Fig. 4—Phase-plane trajectories for subcritical load. 

second integration. The boundary condition (20b) tells us that the 
desired trajectories begin (with t = 0 and F = Fo) on the line p = XI?. 
What does the vector field look like? Since F is nondecreasing, the 

field points to the right (for increasing t), or vertically if p = O. Along 
the right edge of the triangle, where F = 1 and p > 0, (20a) shows 
that p' = —(1 — X). Some of these field vectors are shown in Fig. 4. 
They are drawn for X < 1; this inequality is shown below to be ap-
propriate. Along the top edge of the triangle, (20a) reduces to p = 
X —  This agrees with the right-edge field at the corner (1, X), 
and points increasingly upward as we progress toward the origin. 
The field points into the triangle everywhere on the open top edge; 
in the limit it is parallel to the top edge at (0, 0). Along the bottom 
edge, p' =  œ. The plus sign is chosen because, for fixed F and small 
positive p, p' assumes large positive values. The field is singular at 
the two corners (0, 0) and (1, 0), since p' assumes different limiting 
values depending on the direction from which each of these points 
is approached. 
In studying these two singularities we mainly follow Chapter 15, 

"Perturbation Theory of Two-Dimensional Real Autonomous Systems," 
of Coddington and Levinsoie however, the present discussion is self-
contained, though succinct. We begin by writing (20a) as a pair of 
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simultaneous parametric equations. The standard form, obtained from 
(19) and (20a), is 

E = 

= XF — (1 — X)p — XF"̀. 

The system (21) is suitable for studying the singularity at (0, 0), but 
it is convenient to examine the one at (1, 0) first. For this purpose we 
introduce the variable 4) = 1 — F, which transforms (21) into 

= 

p= X(m — 1» — (1 — X)p — X È2 (7)(-42Y 
i-2 1 

in the Op-plane. (Of course the binomial expansion terminates when 
m is an integer. The significance of nonintegral m is discussed in Section 
5.2.) Omission of the higher-order terms leaves the unperturbed system 

e =  (23) 

(21) 

(22) 

= x(m —i» — (1 — X)p, 

which is linear and has its only singularity at (0, p) = (0, 0). As on 
p. 371 of Ref. 6, this can be written in the form 

1= A = IM  [X071 0— 1)  X)) s7)  •  (23a) 

The determinant of A is X(m — 1), which does not vanish because 
X > 0 and m> 1. 
The eigenvalues of Ai satisfy the quadratic equation 

(24) 

with discriminant (1 — X)2 — 4X(m — 1), and can therefore be written 

71 = —(1/2){1 — X -I- [(1  X)2 — 

72 = —(1/2){1 — X — [(1  X)2 — 4Xm]ll 

The discriminant of these expressions vanishes when X2 — 2(2m — 1)X ± 
1 = 0; that is, at these two values of X: 

A(m) = 2m — 1 — 2(7/22 — m)1,  (26a) 

T(m) = 2m — 1 ± 2(m2 — m)1.  (26b) 

(25) 
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(These symbols are mnemonic for "lower" and "upper"; also A(m) 
turns out to be the critical load A mentioned above.) The discriminant 
in (25) represents a parabola in X opening upwards, and it takes the 
values 1 at X = 0 and 4(1 — m) at X = 1. Since m > 1, we see that 
O < A(m) < 1 < T(m) and that the discriminant is negative only 
when X lies between A and T. When the discriminant is positive it is 
smaller than (1 — X)2, so that the eigenvalues •y,• are of one sign. The 
range of arrival rates X can now be divided as follows, according to the 

nature of the eigenvalues of A1 : 

Case 1. 0 < x < A: -y, distinct, real, negative; 
Case 2.  X = A: both-y1 = (X — 1)/2  0; 
Case 3. A < X < T: -y, complex conjugate; 
Case 4.  X = T: both -y, = (X — 1)/2 > 0; 
Case 5.  X > T: -y, distinct, real, positive. 

This classification allows us to put A, into the canonical forms listed 
in Ref. 6. We treat the cases in order, beginning with the first and 
most important, which is represented in Fig. 4. 

Case 1: We introduce new coordinates (x, , yi) by means of the linear 
transformation 

[x1  T,  y [1:1 

If we choose for this operator the real nonsingular matrix 

T1 = [X(m — 1) 721 

X(m — 1) 71 

with inverse 

(27) 

(28a) 

bi  — 72  I (29a) 
—X(m — 1) X(m — 1) 

where the determinant Si < 0, then the linear system in (23a) becomes 

XII,Y1 , J, =  = 
O 'Y1 

(30a) 

The transformed matrix J, has the canonical form listed as (II) on 
p. 371 of Ref. 6; the trajectories of (30a) near the sly,-origin (an improper 
node) are sketched in Fig. 5 on p. 373 of Ref. 6. All these trajectories 
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approach (x, , yl) = (0, 0) as t  co. The positive and negative y,-axes 
are trajectories; all the other integral curves have zero as their limiting 
slope at the origin and reach the origin tangent to the xi-axis. 
Since the nonlinear system (22) can be written 

{4.91  Ai  1 { + 

0 

P  2 (n:)(-0)71 

the corresponding transformed system is 

, II T, 

t  —X 

O 

("14)(— bi) i(Yei — 72Y1)'J 

in which, by virtue of (27) and (29a), the expression 5,-1(7,x, —  
has been substituted for 0. Thus the canonical form of the nonlinear 
system is 

= 

2/1 

tin\ 
—x•vir;‘ )(— birienx, — 

—krir;(7)(—  — 72Y1)' 

•  (31a) 

If we call the perturbing vector in this equation (f, , 12), we can apply 
Theorem 5.1 on p. 384 of Ref. 6 by establishing two properties of the 
fi . Let r2 = e, y. Then f, and 12 must be o(r) as r —> 0; and also 
af,/ax, and 812/8x, must exist and be continuous in a neighborhood of 
the xlyrorigin. It is easy to see from the expressions in (31a) that the 
perturbing functions fi satisfy these hypotheses. The theorem cited 
then says that the trajectories of (31a) have the same topological 
behavior near the x,yrorigin as those of (30a); namely, that all tra-
jectories near the origin approach the origin as t —› co: one each be-
coming tangent to the positive and negative y,-axes at the origin, 
and all the rest with limiting slope zero. 
This improper node in the x,y,-plane can be transplanted back to 

the Fp-plane through application of T¡I and then of the substitution 
F = 1 — yb. From (27) and (29a), and because (24) shows that 7172 
X(m — 1), the negative yraxis has direction (1, —7,) in the first quadrant 
of the (1:,p-plane; likewise the positive x,-axis has the (pp-direction 
(1, —72). These directions then become lines of slope 7, and 72 re-
spectively, passing through the point (F, p) = (1, 0). Thus exactly 
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one trajectory of (21) reaches (F, p) = (1, 0) with slope yi from inside 
the triangle of Fig. 4; and infinitely many trajectories reach this singular 
point, from inside the triangle, with slope 72.  (Note that 7, <72 < 0.) 
Typical trajectories near (F, p) = (1, 0) are shown in Fig. 4. 
A similar analysis covers the singularity at the Fp-origin. The un-

perturbed form of (21) involves the matrix 

— (1 — X) 

with determinant — A < 0. The eigenvalues are —1 and X-that is, 
real and of opposite sign for all relevant values of X. The real non-
singular matrix 

(23b) 

with inverse 

A° = [0  1 

-111 

71,7' = (1 + X)-1 [1 
—1 X 

(28b) 

(29b) 

brings in new coordinates (xo , yo) as in (27), and puts Ao in the canonical 

form 

Jo = Toilo7ïl = {-1 
0  X 

(30b) 

listed as (IV) on p. 371 of Ref. 6. The corresponding singularity is a 
saddle point, as sketched in Fig. 9 on p. 374 of Ref. 6. The nonlinear 

system (21) transforms into 

[±1 = jo x Rxo  Yo)/(1  X)r1 

Yo  Yo  —[(x0 yo)/(1  X)rj 

Calling the perturbing functions 11 and 12 again, we invoke part (a) 
of Theorem 6.1 on p. 387 of Ref. 6. The required hypothesis is that 
both f, be o(r) (with 7.2 = y:), which is true because m > 1. Then 

the trajectories of (31b) behave as follows: One pair of integral curves 
leaves the origin tangent to the yo-axis; at least one pair approaches 
the origin along the 4-axis; and the other nearby trajectories resemble 
modified hyperbolae. (Whether the pair reaching the origin tangent 
to the xo-axis is unique or not, depends on m; but this question need 

(3 lb) 
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not concern us.) From (29b), the direction of the positive yo-axis is 
(1, X) in the Fp-plane-that is, along the upper edge of the triangle of 
Fig. 4. The xo-axis has Fp-direction (1, —1). Thus the field near the 
Fp-origin has integral curves as shown in Fig. 4. 
To support the remaining features of Fig. 4, we need only show 

that the trajectories passing into the triangle through some (leftmost) 
portion of its oblique upper edge do in fact reach the point (1, 0). 
[The contrary possibility would be that all such trajectories pass out 
through the right edge of the triangle, while the family of trajectories 
that have been shown to reach (1, 0) are among those that enter the 
triangle vertically through its bottom edge.] In fact all trajectories 
beginning to the left of F = (1 — X)/(1 + X) have the desired property; 
for this point is the intersection of the upper edge p = XF with a straight 
line of slope —(1 — X)/2 passing through (1, 0), and we now show 
that no trajectory can cross this line from left to right. 
To prove this we must demonstrate that the vector field points 

more steeply downward, along this straight line, than the slope of the 
line itself; the field is so shown in Fig. 4. If we substitute the equation 
of the line in question, p = (1 — X)(1 — F)/2, into the expression 
(20a) for p', we obtain [2X(F — Fm)/(1 — X)(1 — F)] — (1 — X) as 
the slope of the vector field along this straight line. This quantity must 
be more negative than the slope — (1 — )0/2 of the straight line. The 
corresponding inequality can be written, after rearrangement, 

(F — F')/(1 — F) < (1 — X)2 /4X,  (1 — X)/(1 ± x)  F <1.  (32) 

The left member of this inequality is an increasing function of F on 
O < F < 1 for all real m> 1. (The proof is trivial for integral m, when 
the division can be carried out explicitly. For nonintegral m, it is 
perhaps easiest to show that the numerator of the derivative of this 
fraction is a strictly decreasing function which reaches zero at F = 1.) 
This function of F approaches m — 1 as F  1. Therefore (32) is satis-
fied if and only if 

m — 1 e (1 - X)2/4A.  (33) 

But this statement is true (with strong inequality) for Case 1, as the 
discussion on pp. 1381-2 shows. 
We have shown that a trajectory can cross the line p = 

(1 — X)(1 — F)/2 only downward. Since the slope of this line is 
(71 -I- 72)72, the qualitative aspects of Fig. 4 (which is in fact drawn 
to scale for m = 2, X = 0.15) are verified. In particular, the unique 
trajectory that reaches (F, p) = (1, 0) with the steeper slope -y, must 
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begin, with g = 0 on the line p = XF, at an abscissa  that lies to the 

right of the intercept (1 — X)/(1 + X). 
Before discussing the bearing of Fig. 4 on the original problem, we 

investigate the form of the integral curves of (21) for the remaining 
ranges of X. 

Case 2: When X = A and y, = 72 = -y < 0, the trajectories near the 
Fp-origin are as shown in Fig. 4, since the analysis on pp. 1384-5 goes 
through unchanged. For the other singularity we follow the calculation 
of the previous case, beginning with the introduction of new coordinates 
(x2 , y2) at the Op-origin by means of the matrix 

T  1 • 2 = 
1 4/(X — 1)i 

It has determinant unity and the inverse 

77 , = [4/(X — 1) —1) 

—1 y 

and so A, in (23a) assumes the canonical form 

= [1' 
1 7 

listed as (III) on p. 371 of Ref. 6. The trajectories of the linear system 
are as shown in Fig. 7 on p. 373 of Ref. 6, and all reach the origin tangent 
to the y2-axis in the first and third quadrants of the x2y2-plane. From 
(29c), we can substitute cia. = (2x2h) — Y2 into (22) and obtain the 
canonical form 

(28c) 

[±2I  =  J 2 [X2) 

e2  Y2 

—xr e.)(-7) 12x2 — 7112Y 

— 7112)' 

(29e) 

(30c) 

(31c) 

for the nonlinear system. 
This system is treated in problem 10 (p. 346), Chapter 13 of Ref. 6. 

(No general theorem, analogous to the one used for Case 1, is given 
in Chapter 15. Rather than establishing a new framework suitable 
for importing such a theorem from another source, it seems simpler 
to use this weaker but adequate result.) Again calling the vector that 
perturbs the linear system (fi , fu), we must show that both the f, have 
continuous first partial derivatives in a neighborhood of the x2y2-
origin; that the f, and their first partials vanish at the origin; and that 
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each f. is DUI x2 I + ly2 I ]6) for some b > 1. These hypotheses are 
easily verified. Then the answer given to the problem just cited is that 
all trajectories in a neighborhood of the origin can be represented 
parametrically in the form 

xa(t) = c1 exP (70 ± 0(exP (er — EA),  (34) 

y2(t) = cit exp (70  c2 exP (70  0(exP ((Y — 

for some E > O. (The coefficients e1 and c2 are appropriate constants, 
and every choice of cl and c2 corresponds to a trajectory.) Thus, in 
particular, all these trajectories approach the x2y2-origin, as t  co , 
tangent to the y2-axis. 
As in Case 1, ni and the relation F =-- 1 — 4, enable us to move this 

(degenerate) improper node back to the Pp-plane. The ya-axis becomes 
a straight line of slope y passing through (F, p) = (1, 0). The tra-
jectories differ from those shown in Fig. 4 only in that all those reaching 
(1, 0) from inside the triangle have limiting slope 7. But again there 
is an uppermost trajectory, which corresponds to the y2-axis for the 
unperturbed system (± 2  =  J2(X2  y2) and to the choice c1 = 
in (34). This distinguished trajectory crosses the edge p = XF (with 
t = 0) to the right of the abscissa (1 — X)/(1 -I- X) by the argument 
used in Case 1, since (33) holds (with equality) in Case 2. Higher 
trajectories pass out of the triangle through its right-hand edge. 

Case 3: When X lies between A and T, the eigenvalues of A1 are complex 
conjugates. The transformed matrix J2 assumes the canonical form 
(V) of Ref. 6, p. 371; except that when X = 1, so that from (25) the 
real part of 7, vanishes, form (VI) occurs. In these situations, the x2y2-
origin is a spiral point and a center, respectively, for the unperturbed 
system. According to Theorems 2.2 (p. 376) and 4.1 (p. 382) of Ref. 6, 
the nonlinear system also has either a center or a spiral point at (z3 , y2) 
= (0, 0), and therefore behaves likewise at (F, p) = (1, 0). In this 
case, the system (21) can have no trajectories which reach this point 
from the edge p = XF and stay within the triangle of Fig. 4. 

Cases 4 and 5: Similar arguments cover the situation when X T> 1; 
but it is even easier to observe from (20a) that p' > 0 everywhere in 
the relevant triangle, so that each trajectory which starts with t = 
on the edge p = AP' must pass out through the right-hand edge of the 
triangle with an ordinate exceeding p(F 0) at F = 1. 

*  *  * 

We saw in Section 3.1 that an admissible solution to the systems 
(12) and (18) corresponds to a parametrized trajectory of (20a) that 
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starts (with t = 0) on the line p = AF, proceeds to the right within the 
triangle shown in Fig. 4, and ends (with t = 00 ) at the point (F, p) = 
(1, 0). The preceding discussion of Case 1 shows that, when X < A(m), 
there are two classes of admissible solutions. The first contains a single 
member corresponding to the unique trajectory, shown in Fig. 4, 
which reaches (1, 0) with slope 1,, and starts with abscissa F,T. We call 
this solution n. This function is represented in the phase plane by 
the graph of a function p(F), but the latter corresponds through another 
integration to a distribution Fr(t): hence the symbol. The superscript 
is explained below; and the function  also depends on the suppressed 
parameter m. 
The second class of solutions is a one-parameter family represented 

in the phase plane by the trajectories which reach (1, 0) with slope 72 
and begin on p  AF with abscissae lying in the open interval (0, F,D. 
Each member of this family is called an Fx . The superscript T was 
introduced as a mnemonic for "top": Not only does FT lie on top of 
all the Fx in the phase plane, but also, because dt = dF I p(F), it has 
a smaller value of the parameter t for given F than any Fx and therefore 
lies above all the Fx in the tF-plane. 
The integral curves of (20a) in the triangle of Fig. 4, including those 

that enter through the F-axis and those above F77: that correspond to 
distributions that are not unlimited, constitute a partition of the 
interior of the triangle: That is, each point of the interior lies on exactly 
one integral-curve. Nevertheless, thoEie that end at (1, 0) do so only 
with the slopes given by (25). An F>, starting very close to For, for 
instance, lies just below Fr and turns, very near (1, 0), to make the 
angle arctan 72 with the F-axis. 
As shown in the discussion of Case 2, the situation is similar when 
= A(m). The only difference is that Fr and all the trajectories FN 

reach (1, 0) with the same slope  =  =  . On the other hand there 
are no admissible solutions when X > A, for in Cases 3, 4, and 5 every 
trajectory corresponds to a distribution which is not unlimited. That is, 
when X exceeds A, there is no equilibrium distribution of receiver delays; 
and this is why we call A the critical load. 
Is it possible that 17 and all the members of {Fj are meaningful 

"answers" to the original problem when X 5 A? Certainly it is not 
clear how one would select the "correct" solution: On the one hand, 
the family IF), forms an open set corresponding to the open interval 
(0, FeT) containing its end-points, and it is hard to see why any par-
ticular member of such a family should be "better" than its fellows. 
On the other hand, there is a substantial objection to the idea that 
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, the only distinguished solution of (20), should be the unique answer. 
For if F;,' is the meaningful solution, then F (7 represents the probability 
of finding a receiver idle, and (FD" the probability of finding all m 
addressed receivers idle. Is it possible that this quantity should be 
positive even when X = A(m)-that is, when even the slightest increase 
in load would preclude the possibility of an equilibrium distribution 
of receiver delays? On the contrary, innumerable other problems in 
queuing theory suggest that the value of F0 corresponding to the true 
solution of (12) should approach zero as X 't A(m). Yet it seems that 
even the idealized problem should dictate a unique solution. 

W. UNIQUENESS 

We are now faced with a one-parameter family of stationary delay-
distributions satisfying eqs. (12). But not every stationary distribution 
need be a limiting distribution; and so we return to (7) and other 
equations of Section 2.3 to study the sequence of delay distributions 
corresponding to successive messages arriving at a particular receiver 
queue. (Since the argument of this section is more suited to formal 
exposition than the preceding material, the results are given as theorems 
rather than discursively.) 
Some additional notation is required, and we begin with a restatement 

of the key equation 

X  
— 1 ± x [f o e-( -̀')F:(u) du + f e-7'('- )̀F,7(u) du] •  (7) 

It is convenient to define the power operator 6),,, such that 

Ftm = (3)F  (35a) 

for real m and the integral operator 

9111, fo du 1c),(t, u)  (35b) 

where the kernel lc), is given by (14), so that, with 

(35c) 

we can write (7) in the form 

(36) 

(The dependence of 9tx on m is suppressed.) All functions of t mentioned 
in this section have domain [0, co). 



1390  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972 

Lemma I: If F„ is a (nontrivial) distribution function (d.f.), then F.+1 

is strictly increasing. 

Proof: By hypothesis F„ is nondecreasing, so that F,7(t)  F:(u) 
for 0  u < t. Thus eq. (3) shows that for all t  0, of course) 

G„(t)  F(t) f e"̀ -") du = F:(t)(1 — e') 

[We write this G„ < F,T; such inequalities between functions, written 
without restriction, are to be interpreted pointwise on [0, oo n Therefore 

by (6) Ô„ > 0, and so also, using (4a), 

e-""> dG„(u) = F,,+1(t) — G„(1) > 0. 

[Notice that this inequality holds even when, because F„(v) = 0, the 
preceding strong inequalities fail for u  v.] From (10) we see that 

P.+1 > 0. 
The next lemma shows that F„,, is unlimited-that is, assigns positive 

probability to arbitrarily long delays. 

Lemma 2: If F„  I, then F,, 1 < I. 

Proof: The statement of the lemma is contained in (11c).  El 

Lemma 3: If F„ --> I as t —> co , then F„,(1) —> 1 as t —> 0 0 . (In words, 
F,,,, is proper if F„ is proper.) 

Proof: We showed in proving Lemma 1 that F„,.1 > G,, . Thus G„ < 1 
by Lemma 2. If G„ were bounded away from 1, then by (6), & would 
be positive and bounded away from 0 for sufficiently large t. This is 
impossible; therefore G„  1 as t —> oo. Since F.+1 > G„ , F„.,., —> 1 

also.  D 

[The fact that solutions of (12) must be proper and unlimited was 
discussed on pp. 1377-8.] 

Theorem I: If F, is a proper distribution function, then the remainder 
of the sequence generated by (7) and (36) consists of d.f.s which are proper, 
unlimited, and strictly increasing. 

Proof: Apply Lemmata 1, 2, and 3 inductively on n. D 

The hypothesis of Theorem 1 covers the case in which F1 = 1; that is, 
Fi(t) = 1 V t > 0. In this case, with probability one the first message 
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suffers no delay at the receiver. In physical terms, the first message 
finds the system idle. We now study the system's simplest kind of 
transient behavior, beginning with no messages present and letting the 
receivers run indefinitely at a fixed subcritical load. In the discussion 
that follows, we represent by F.[F„ X] the nth element of the sequence 
generated by (36); this notation specifies both the starting function 
F, and the parameter X of the operator 9-4, . The value of this function 
at t is F.[F, , X](1). 
We need this preliminary result: 

Lemma 4: Let F, be a d.f. lf F.[F, , X] --) L as n—) co , then L is a solution 
of (12). 

Proof: Because L is a pointwise limit of functions which satisfy (11c), 
L itself must satisfy (12b). Using (35) and (36), we can write (7) in 
the form* 

F„.,,(t) =f kx(t, u)F:(u) du,  (37) 
0 

which corresponds to the equilibrium equation (15). For each t, the 
sequence {Mt, u)F:(u)) approaches kx(t, u)Lm(u) as n —) 00 and is 
bounded by kx(t, u), which is an integrable function of u according to 
(13). These are the hypotheses of Lebesgue's Dominated Convergence 
Theorem, which tells us that 

lirn f  u)F:(u) du = f kx(t, u)L'"(u) du. 
n—no  0 

By (37) and the hypothesis of the present lemma, the left member 
of the last equation is L(1). Thus L indeed satisfies (12a).  El 

We are now ready to prove 

Theorem 2: Let F, = I and choose a fixed X  A(m). Then the sequence 
A]) approaches n. 

Proof: Setting F, = 1 in (7) shows as in (13) that F2(t) .= 1 — [X/ 
(1 ± X)] exp (-0, so that Fo <  F1 . From (35) and (36), F.+1 = 914Fr. 

Writing this also for F. , we get by subtraction 

*Since the difference kernel kx is the density function of the difference x — a 
between a transmission time and an interarrival time, we recognize (37) as a con-
sequence of the equation con+ , = maxi°, maz(i.in(i), • • • , 6.1„('")) -F x„ — an]. This 
relation generalizes the familiar recurrence for a single-server queue, in which 
max con(i) reduces to w,. 
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F„ — Fai.i = Urtx(F 1 — F:).  (38) 

Since Mx is monotone-that is, has a strictly positive kernel-the left 
member of (38) is strictly positive if the operand is so. Therefore, by 
induction on n, F,,+1 < F„ V n. 
The sequence {F„(t)] is strictly decreasing and bounded below by 

zero. Thus it has a limit L(1), and this defines a function L on [0, co) 
such that F.—>Lasn —> co. By Lemma 4, L is stationary under Mx . 
Thus L must be either 0, one of the Fx , or F. 
Let H be any solution of (12), so that H = M,H". If F„ > H then 

F'„n > Hm, so that F.., > H because, as in (38), F..1 — H = 
— In. Every solution of (12), being unlimited, is less than 1, 

so that H < Fi . By induction on n, H < F,, Vn. That is, H is a point-
wise lower bound for {F„}. As we found on p. 1388, the largest solution 
of (12) is n, so that F,7: (t) is the greatest of the lower bounds repre-
sented by H (t). Therefore L = F. 

We can write Theorem 2 as the statement that F„[1, X] 1 MT when 
X  A. (Actually the convergence is uniform in this case, but there 
is no need to prove this.) This result is in essence the answer to our 
problem, although we must now generalize it considerably in order to 
remove the strong restriction that F1 = 1. 
Before going on to strengthen Theorem 2, we observe that receiver 

delays increase indefinitely if the system continues to operate with 
more-than-critical load. This fact is stated accurately in 

Theorem 3: Choose a fixed X > A(m). Then the sequence {F,,[1, )1/4]} 
approaches zero. 

Proof: The proof of Theorem 2 applies here with one exception. Again 
{F.] has a limit L which is stationary under Mx , but with X> A the 
only solution of (12) is identically zero.  D 

In this case the convergence is not uniform; the probability masses 
associated with successive members of {F„} are located farther and 
farther to the right. We may conclude our discussion of the super-
critical case with 

Corollary 1: Let Fi be any d.f. and choose a fixed X > A(m). Then the 
sequence {F„[F, , X]) approaches zero. 

Proof: Since F1 is a d.f., Fi 1. Thus Fr  1", and so F2[F1 , X] — 
F2[1, Al = Ntx(F'," — 1')  O. Likewise F„[Fi , X] 5 F„[1, X] V n by 
induction. But F.[Fi , X]  0, and F„[1, X]  0 as n --> co by Theorem 3. 
Therefore F.[Fj , X] --> 0 as n —) co . 
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Thus, no matter what the delay distribution encountered by the first 
message, delays increase without bound when X exceeds A. 
Our first step in generalizing Theorem 2 is to consider the case in 

which the system, instead of starting empty, is first allowed to reach 
statistical equilibrium with a receiver arrival-rate u  A. In effect, 
the system starts operation at time — co and comes to equilibrium 
before the arrival (in receiver queues) of the message we label number 
one. At that instant we change the receiver arrival-rate to a new value 

A and thenceforth keep it fixed. This mathematical model is a 
very idealized one, since it is not clear how the receiver interarrival-
times can suddenly acquire the density X exp (— At) at a specified instant. 
With k and m fixed, the arrival rate can change from to X only through 
a change in the rate a of transmitter arrivals; and the effect of a change 
in a will be felt gradually as the number of occupied transmitters 
increases to its new equilibrium-value. However, since eqs. (7) and (36) 
form our only tool for studying the evolution of receiver delays, the 
best we can do in the present case is to take F1 = F» (by Theorem 2) 
and to generate { F„[F,T, X] ) by applying 9'4 . We begin with 

Lemma 5: If 0 < A <  < A(m), then O > 72(X) > 72(g) > •y1(t4) > 
7,(X) > —1. If 1.4 = A, then 720.0 = 7,(y)  7(a) = (A — We. If 

0, then 72(A) = 0 and 71(X) = —1. 

Proof: The result for et = A was stated on p. 1382. The result for X = 
is obvious from (25). From (25), 

dyi  2m — (1 -I- A)  
2 dA  = 1 ± [(1  X)2 — 4Xm]5 

which is clearly positive because m > 1 and X  A < 1. Thus u > 
implies that 71(u) > 1,1(X) > —1. By definition 72(1.0 > yi(1.4) when 
< A. To show that 0 > 72(X) > ,(u), we need only prove that 

2m — (1 + X)  
2-  = 1 — dX  [(1 + X)2 — 4Xm]4 <O 

and this follows after trivial manipulation from the fact that m> 1. D 

The next lemma expresses another kind of "monotonicity" property 
of 91Zx , this time with respect to the parameter X. 

Lemma 6: Let H» be any nonzero d.f. stationary under 91.„ . If X < 
then 911,H» > H» ; and if X > g, then 91x1/,, < H». 

Proof: We express the action of 9lx as in eqs. (35), with kx given by 
(14). First assume that X < 4, and define 7" as the value of u at which 
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lex and km intersect; see Fig. 5. That is, kx(t,  =  r), so that T is 
a function of t. [Explicitly, T = t  — X)-1 • ln ([1 ± 01/[1 + 41)1 
It is easy to see that, as indicated in Fig. 5, kx(t, u) < k„(t, u) when 
u < T and Mt, u) > Mt, u) when u > T. 
For any fixed t 0, 

etxH5(t) — H5(t) = 0-4H m(t) — 91,1/ p(t) 

= [Mx — 01-011 ,7](0 

= fe [kx(t, u) — k„(t, u)111,7(u) du 

= f [kx(t, u) — km(t, u)]H,7(u) du 

—  [k„(t, u) —  u)]H,r(u) du. 
0 

We know that in each of the integrals the bracketed quantity is positive. 
Also H5 is nondecreasing; thus H5(r)  m(u) for u > r and 1-15(r) - 
H5(u) for u < T. Therefore 

94H5(t) —  H,7(7){f,re [kx(t, u) — k„(t, u)] du 

—  [km(t, u) — kx(t, u)] du} 

= M(r) fe [kx(t, u) — k,(t, u)] du 

= H,;(r) ex(1) — 911„(1)1 

= 117(7.)e-li   -  x} 

k (u) 
12 

O 

INTERSECTION OF k x WITH k 12 
FOR A GIVEN VALUE OF t 

Fig. 5—The kernels kx and ku cross at r. 

u 
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where the last equality comes from (13) as noted in the proof of Theorem 
2. The explicit formula for r shows that r > O V t, so that Hu(r) > 
because H„ is nonzero. [By the equilibrium form of (8) on p. 1375, 
1-1„(0) > O.] Since X < IL, each factor of the last expression displayed 
above is positive, and thus 9ixH„(t) > II„(t) V t. This proves the first 
conclusion of the lemma. 
When X > p, the proof goes through as before except that the ap-

propriate inequalities are reversed. The modified proof shows that 
9'4H u(t) — HM(t) is less than or equal to the final expression in the 
calculation above, and that expression is negative in this case.  13 

Lemma 7: If X <  A(m), then F)1; > 

Proof: Because Fur is unlimited, 1 >  Applying 9i.), , we find that 
F2[1, X]  etx1 > 91),FT > FL where the first inequality comes from 
the argument used with (38) and the second from Lemma 6. Repeated 
application of gl,), shows that F„[1, X] > 91),F„T V n, so that, using 
Theorem 2, 

lim F„[1, X]  OrtxF,7,' >  . E 

Lemma 8: Let F be any solution of (12), and let the corresponding phase-
plane trajectory p(F) reach (F, p) = (1, 0) with slope -y < O. Then for 
any E >  0, there exist constants e3 , c4 , and T such that, whenever t > T, 

ce("" < 1 — F(t) < ce("1“.  (39) 

Proof: From (19), dl = dF/p(F), so that we can write 

du 
— • 

t(F)  = f F. P(u)  (40) 

Given e > 0, there is an abscissa F. such that the integral curve p(F) 
lies in the wedge —(-y e)(1 — F) < p <  — E)(1 — F) when 
F. <F  1. Choose T so large that F(T) > F.. For t> T, (40) becomes 

F r̀) du  F du 
t(F) = 

F.  p(u) f F (T) P(U) 

and the first of these integrals equals T by definition. When F> F(T), 
p(F) satisfies the inequalities defining the wedge just mentioned, and so 

du du   
T — fre (T) (7 ex ,  < t(F) <T — 

fF(r) ('Y e)(1 — u) " 

Thus 
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1 ln  1 — F(t)  
T  7 ln 11 FF-((7')0  < t < T  - e 1 — F(T) ' 

and the conclusion (39) follows after rearrangement. The constants are 

e3 = [1 — F(T)Je T, e4 = [1 —  . 

[The facts that 1 — F(t) behaves nearly exponentially for large t, 
that the decay constant y must take one of the forms (25), and that no 
admissible solution exists when X > A(m), can all be inferred non-
rigorously by considering linearized versions of (12a), (18a), or (20a) 
for very small values of 1 — F.] 

Lemma 9: When X < u, no member of the open family {Fx} lies above F 

Proof: For any given FA and e> 0 and all sufficiently large t, we know 
from Lemma 8 that there exist constants CA and eu such that 

F,(1) < 1 —  and F (t) > 1 —  

By Lemma 5, 72(X) > yi(g). So long as the e that appears above is 
small enough to make 72(X) — E >  'yi (g)  E, we can find T such that 
FT(t) > FA(t) when t> r. 

Theorem 4: Let X < A(m) and µ< A(m). Then F,[Fr, X] —> n as 
n  œ• 

Proof: If X = II., the result is obvious because F „r is stationary under 97.„ • 
If X > g, then PUP,' , X] = 91An < Ftir by Lemma 6. Therefore, by 

the argument based on monotonicity and induction that was used in 
proving Theorem 2, the sequence {F,[F,r, X]) is strictly decreasing. 
Thus it has a limit L  0 which by Lemma 4 is stationary under etx . 

Exchanging X with g in Lemma 7, we see that n < F. . Continuing the 
argument of Theorem 2, we see that F,T is a lower bound for the sequence 
{F[Fs', X]], and greater than any of the other lower bounds FA. Thus 
F4F, X] 
If X < g, a similar argument shows that  is an upper bound for 

the strialy increasing sequence { F„[F  X]], which again has a limit 
stationary under MA . By Lemma 9, no other function FA that is sta-
tionary under 9ix can be an upper bound for this sequence. Therefore 
F,[F„T, X] 't  D 

It is natural to consider the communication system as initially idle 
and thenceforth, after the arrival of the first message, subjected to a 
load of constant intensity. Theorem 4 generalizes this situation by 
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considering changes from a previously attained equilibrium state. But 
the most realistic and therefore useful statement about limiting distri-
butions would involve initialization of some nearly arbitrary kind, so 
that any queue-length distribution might be encountered by message 
number one. We now study a model of this kind in two lemmata and 
a theorem. In this model the system begins empty, receives messages 
at a sequence of different arrival-rates which may be supercritical, 
and is then subjected to a single submitical load indefinitely. A real 
system operating with time-varying load would experience a sequence 
of receiver interarrival-times with different and presumably non-
exponential distributions. We consider an idealized counterpart in 
which these distributions are indeed exponential. 

Lemma 10: Let the sequence IF41, I X,}11 be generated by applying 
91x, ki times, i = 1, • • • , j, so that n = 1 -I- E..  k1 , with each X; > 0. 
Then F41, IX111(t)  1 — cnt"-2 exp (—t). 

Proof: We suppose that the exact expression for F„ is a series beginning 
with the two terms shown and continuing with exp (-0 times lower 
powers of t, exp (-20 times higher-degree polynomials in t, and so on. 
We know that F41, X11 = 1 — [X1/(1  X,)] exp (-0, which has the 
assumed form. Also 

f )t) ] = 911;91.i::: • • • 91.17::(1) = 9ZxiF.-1[1, IX$1]. 

Assume F„,[1, (X1}] has the stated form, substitute into (7), expand 
using the binomial theorem, and integrate explicitly. This very 

tedious procedure, which, being straightforward, is not recorded here, 
yields the conclusion of the lemma by induction. The constant c„ is 
a function of m and of the X,. 

Corollary 2: The conclusion of Lemma 10 holds if, in generating {F„}, 
the receiver arrival-rate is set equal to zero during a finite number of finite 
intervals. 

Proof: If the load is zero for an interval of length to between the arrivals 
of messages n — 1 and n, then F„ is simply shifted to units to the left; 
that is, the probability that would have been F41, {X1}i(t)  becomes 
F41, [ X,[1(t — to). This expression, with F„ calculated as in Lemma 10, 
defines a new function of t having the same form as F41, [Xi I] but with 
different constants. This process does not affect the proof of Lemma 10 
and can be repeated finitely many times.  D 

Note that the loads {X1) in Lemma 10 need not be less than or equal 
to A(m). In describing transient loads, we measure the length of time 
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during which X, is the receiver arrival-rate by specifying k , the number 
of messages which follow their predecessors by intervals with the 
density Xi exp (— Xit). Since this procedure cannot account for a period 
with zero arrival-rate, we must assume Xi > 0 in Lemma 10 and then 
show separately in Corollary 2 that the form of the sequence {F,J1, Xill} 
is not affected by the existence of periods during which no messages 
can arrive. The effect of shutting off transmitter arrivals in an actual 
system would be approximated by a sequence of Xi gradually decreasing 
to zero .as the transmitter queues empty out. 

Lemma 11: Let F be any element F„[1, {X,}] of the sequence defined in 
Lemma 10. Then there exists a member FA , of the open family of d.f.s 
stationary under MA , such that F.., G F. 

Proof: We know from Lemma 5 that y(A) > —1; choose e < [1 -I-
7(A)]/2, so that y(A) — E > —1 ± E. According to (39) we can find 
T1 and c such that 

FI(t) < 1 — ce[7( '-‘" for t > r1 • 

Also, by Lemma 10, we can choose 1-2 and c„ such that 

F(t) > 1 — c„t"-2e-(1- '" for t > T2 

since for large enough t, the error term in Lemma 10 can be made small 
enough to be bounded by the effect of the factor exp (et). (Here n is 
the index of F in {F,}.) There exists T3 such that cf-2/c < exp ([1 + 
7(A) — 2e]t) when t > r3. Let r = max (ri , r2, r3). Then FI(t) < F(t) 
for t > T. Since FA < Fl for every member of the family {FA}, we have 
F (t) < F(t) when t > r for each FA-that is, uniformly in the parameter 
FA (0) that we use to specify an element of [FA I. 
By Theorem 1, every element of the sequence {F.} is proper, and 

so by (8) F(0) > O. Choose FA (0) < F(0) exp ( — Ar). From the equi-
librium form of (9) we have FA (T) < FA (0) exp (Ar) < F(0). Since 
FA and F are nondecreasing, FA (t) < F(t) when t  T. We have now 
proved this inequality for all t, so that FA < F. D 

Theorem 5: Let F be any element F„[1, {X,}] of the sequence defined in 
Lemma 10. Choose X < A(m). Then F„[F , X] --> FT as n —› co . 

Proof: Given F, choose FA by Lemma 11 so that FA < F. By Lemma 5, 
72(X) > y(A). Thus Lemma 9 remains valid with F„T replaced by any 
member of {FA 1. Therefore Theorem 4 is valid with F,,e replaced by 
FA , so that F,[FA , X] I FT. By Theorem 2, F„[1, X] 4, FT. By Theorem 1, 
F is unlimited, and we can write FA < F < 1. By the monotonicity 
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argument of Theorem 2, Fn[FA , X] <  X] < F41, X] for all n. 
Therefore {F1F, X]] is bounded term by term on both sides by sequences 
which approach Fr, and so F„[F, X] —> F7. as n —> 00  D 

This theorem does not cover the case of a system operated at its 
critical load after being subjected to an arbitrary transient of finite 
duration. Part of the gap is filled by 

Corollary 3: Let F be chosen as in Theorem 5 but with F  F , for 
example because max IX;)  A. Then F,[F, A] —> Fr as n —÷  . 

Proof: Fl  F < 1; F„[1, A] 1, Fr by Theorem 2; and F,[F1 , A] 
F 41. V n. Thus {Fn[F, A] I is squeezed between two sequences with the 
same limit.  Ill 

This kind of argument does not work when F is not greater than or 
equal to F1 . We can bound F below by a member of the family {FA}, 
but FA is stationary under et, ; thus, if { F1F, A]] or a subsequence of 
it has a limit L, we know only that V t L(t) lies in the interval [FA (t), 
FI(t)]. We could choose X < A and bound F below by a particular Fx , 
but this would not help because NAP), < F. by Lemma 6: [F e, A]] 
would be bounded below by a decreasing sequence. I have not been 
able to determine the behavior of the sequences in question more 
precisely than is stated in 

Corollary 4: Let F be chosen as in Theorem 5 but with F not bounded 
below by Fr . Then there exists an FA t IFAI: F[F, A] > FA V n; and 
if {F„[F, Ail has a limit L, then L is either F r or a member of {F A). 
Proof: By Lemma 11 we can find FA < F, and by the monotonicity 
of MIA , this inequality is preserved throughout the sequence {F e, A] J. 
By Lemma 4, L is stationary under NA j and our first conclusion shows 
that L is bounded away from zero.  D 

The limitations of this result are not surprising. If the system is operated 
at its critical load after being temporarily overloaded, we see that 
delays still do not increase indefinitely; but on the other hand we have 
found no assurance that there is a limiting distribution or that, if there 
is, it agrees with the one (Fr) that would have resulted if the period 
of critical load had begun with the system idle. 
We defer discussion of all these results to later sections, merely 

observing that the argument given on pp. 1388-9 makes Theorems 2, 
4, and 5 quite remarkable. Another interesting point is raised by the 
strong dependence of these proofs on the asymptotic behavior of the 
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functions involved-in particular, on the rate at which Fi(t) —› 1 for 
large t, where Fi is the initial distribution of a sequence {  , X]}. 
It may seem that our results are too sensitive to such decay rates-that 
this feature somehow represents an "instability" of the mathematical 
model. But in fact the essentials are the general properties recorded 
in Theorem 1, and the decay behavior of F which Lemma 10 shows 
is dominated by 1"-2  exp (—t). All these properties are in turn controlled 
by the density exp (—t) of the transmission times, and the expression 

exp (— t) in particular is related to the fact that the sum of the 
n — 1 preceding transmission times or their tails has an Erlang distri-
bution of order n — 1. The most interesting implication of the de-
pendence of our arguments on asymptotic behavior is that our results 
are accessible only to analytic techniques: A computer could not be 
successfully used to study experimentally the properties of sequences 
generated by eq. (7). 
The situation for m = 1 puts the argument of this section in per-

spective. All solutions of (12) and (18) have the form F(t) = C[1 — 
X exp (—(1 — X)t)] in this case, with 0 < C  1. Only the one of these 
with C = 1 is proper, and it is Erlang's well-known delay-distribution 
for the single-server queue. 

V. DISTRIBUTION OF RECEIVER DELAYS 

We have found that the meaningful solutions of the stationarity 
equations, (12) and (18), are the limiting distributions  This section 
is devoted to four questions; How can these distributions be calculated 
explicitly; how do we proceed when the number of addresses per message 
is a random variable of which m is the mean; what are the properties 
of the delay distributions; and how closely do these results represent 
the behavior of systems with finite R? 

5.1 Computation of Delay Distributions and Their Moments 

In answering the first of these questions we take X and m to be fixed 
and interpret the symbol F to mean Fn likewise the symbol yi refers 
to the quantity defined in (25). The first step is to carry out the first 
integration, based on 

= EIX(F — F-)) /1)] — (1 — X),  (20a) 

which yields the phase-plane trajectory p(F). (See Fig. 4.) This can 
be done numerically using any standard integration-formula of the 
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predictor-corrector type, and is best done as follows: Beginning at the 
corner (1, 0), integrate the vector field to the left, starting at an angle 
with the F-axis whose tangent is 71 . Follow the resulting path until 
it intersects the edge p = AF at the abscissa Po , which is an estimate 
of the true initial value F(0) of the distribution sought. Since the vector 
field diverges in the leftward direction, this integration is numerically 
quite unstable, so that Po need not be an accurate estimate of F(0). 
Explore the neighborhood of Po for the true value of F(0) by selecting 
a set of abscissae (spaced about 10-5 units apart) and calculating, 
for each one, the integral curve that passes through it. These cal-
culations are performed by integrating to the right; and since the vector 
field converges to the right, the resulting curves are quite accurate. 
For each such curve, find the ordinate at which it intersects the line 
F = 1. These ordinates can be plotted against the abscissae at which 
the integral curves start on the edge p = XF. Beginning at some point 
well to the right of Po , the graph so constructed has an ordinate of 
considerable positive magnitude. As the abscissa decreases, approaching 
the true F(0) from above, the ordinate must decrease to zero, remaining 
there for all lower values of the abscissa; for trajectories beginning to 
the left of For must all end at (1, 0). This ideal pattern is perturbed by 
noise arising from roundoff and from the numerical integration itself, 
but it is not difficult to find F(0) from this graph of p-intercepts to an 
accuracy ranging from about 10-4 to about 10-5 units, so long as X is 
not very close to A. The function p(F) is then found by integrating 
the vector field to the right from F(0). [Trajectories lying below FZ' 
cannot be found precisely; they have very large curvatures near (1, 0) 
because of the singularity there.] 
This technique must be modified when X = A(m) (and in fact when 

X/A  0.9), for in this case the graph just described is erratic and 
appears to have quite a high-order contact with its abscissa, the Fir 
axis. Less than two decimal-places of precision can be obtained in this 
way. Barbara R. LaCava suggested looking for the trajectory which 
has the smallest number of corrector cycles per predictor step in in-
tegrating leftward; and this yields an order-of-magnitude improvement. 
in order to find F(0) to five-place accuracy, we had to obtain an accurate 
value of p(F) analytically for F  0.9998 and to use numerical tech-
niques only for smaller values of F. The analytical values came from 
a pair of parametric power-series about (1, 0) for the coordinates of 
the desired trajectory. Such series, describing trajectories in the neigh-
borhood of an improper node, can be found from the method of Picard,' 
of which the existence and relevance were pointed out to me by 



1402  THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1972 

A. Kuczura. (This method is also mentioned by Kaplan,' who does not 
cover the case of X = A in which y, =  .) 
The curve p(F) can be parametrized by numerical evaluation of 

the integral 

u 
t(F) = LP d. p(24) •  (40) 

This process yields the inverse t(F) of the desired distribution function. 
As (F, p) —> (1, 0), the numerical integration becomes inaccurate and 
must be replaced by analytical approximation. The values F(t) for 
large t can be estimated by the exponential obtained from (40) by 
assuming that p(F) represents a straight line to the right of some point 
(F, p). This can be taken, for example, as the straight line of slope 7, 
that passes through (1, 0) or as the chord from (F, p) to (1, 0). 
These procedures* yield a table of triples (F, p, t) from which the 

distribution F and the density p can be plotted, and the sojourn-time 
distribution G and its transform computed. The moments M, of the 
receiver delay about zero can also be found from p(F), as follows: 
By definition, 

M i(F)  E(wi)  f t dF(t) = i f tf-1 [1 — F(t)] dt,  (41) 

where E is the expectation operator. The integration by parts that 
leads to the final expression above is valid whenever 1 — F(1) goes to 
zero faster than  as t —> co. By Lemma 8 this is true V i if 71 < 0, 
as is always the case for 0 < X  A(m) according to Lemma 5. (Indeed, 
we see that F has finite moments of all orders, as do the members of 
the other family Fx } of stationary distributions.) We can rewrite (41) 
as an integral with respect to F, using dt = dF/p(F) from (19): 

11/1 i(F) = i f [t(F)] -1 1(1 — F)/p(F)} dF.  (42) 

Because these integrals are hard to evaluate precisely, we divide 
them into two parts as shown next for the case of M2 . From (42), 

(71  1  F dF ± 2 f (T) t(F) 1 — F dF . M2(F) = 2 ¡P t(F) 
p(F)  p(F) 

°  F  

Following the proof of Lemma 8, for sufficiently large T we can write 
the approximation 

* A simpler and more accurate method can be used when m is an integer. 
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T 
in 1 — F(T) 

Then the last integral above becomes 

_2 r1 [T + 1 in  1 — F idF 

(T)  7t  1 - F(T)  71 

where we have replaced (1 — F)/p(F) by —1h, because the approxi-
mation p(F)  —7,(1 — F) improves as p(F) —> 0. This integral can 
be written as 

--2 [1 — F(T)][T  in u du] , 
71 71 Jo 

and so M 2 becomes 

F(7')  1 -  F  
31,(F):',-_' 2 J. t(F)  dF — —2 [1 — F(T)][T — (1/7,)].  (43) 

p(F)  71 

The integral term can be calculated from the previous evaluation of 
F(t). As with F, we get a slightly different estimate of 3/2 by using the 
slope p(F(T))/[1 — F(T)] of the chord, in place of 71 . 
Also, we have not yet specified the value T of the time-parameter 

at which the integral defining M 2(F) is "broken in two." Each such 
choice leads to a particular estimate of M 2 . If T is too small, p(F) is 
not accurately approximated by a straight line to the right of (F(T), 
p(F(T))); but as T increases, accurate evaluation of the integral in 
(43) becomes more difficult. Thus it is useful to evaluate (43) for many 
values of T. As T increases, at first the calculated values of M 2 smoothly 
approach a limit which can be estimated graphically; subsequently 
these values start to behave erratically as the numerical integration 
loses precision. (A similar method applies in the simpler case of 1/1 .) 

5.2 Variable Number of Addresses per Message 

The number m, which we first took to be an integer, enters the 

problem only through the function F„ in (3), by way of the definition 

CO +  =  max (4(0 (2) 

and the property that the random variables w") are independent. 
But suppose instead that the number of addresses of a message takes 
the value j with probability vi , independently of the numbers of ad-
dresses of all other messages; and that 
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m = E(j)  E  (44) 
i=1 

is the average multiplicity. Then with probability vi we have w  E 
we', so that the distribution of co  E is Fi with probability 

. Thus the true distribution of co„  that appears in (3) should be 

E v.Fi 

which also appears in the recurrences (7) and (37) and leads to the 
equilibrium equation 

F = 914(Z1viFi).  (45) 

[The operator Mx is defined in (35b).] 
This equation fits nicely into the framework of our earlier results. 

We now think of the distribution of co  t as being represented by a 
function MF), defined by 

à(F) =  vF1 (46) 

rather than by the distribution F"' as in Section 2.3. Then the phase-
plane differential equation (20a) becomes 

p'(F) = - [F — MF)] — (1 — X),  (47) 

which leads to an analogue of (22) with m replaced by ,Y(1) in the 
linear term and each binomial coefficient (7) replaced by a multiple 
of the jth derivative à '>(1) (which is assumed to exist). The analysis 
of Cases 1 through 5 proceeds as before. In particular, eqs. (25) and 
(26a) [for yi and A(m)] are valid with m replaced by .C;(1). But here, 
by (46) and (44), A'(1) = m; and so the critical load A and the limiting 
slope -y1 are meaningful and correct even when m is merely the average 
number of addresses per message! It is this result that justifies treating 
m as a real number exceeding 1 in the analysis of Sections III and IV, 
in contrast to the original appearance of m as in integer in eqs. (2) 
and (3). 
We may obtain explicit numerical results for a distribution Ivil 

by means of the procedure of Section 5.1, using (47) to find the phase-
plane trajectory. No new difficulty is encountered, because we know 
71 exactly. It is convenient to have a simple expression for A(F), as 
is possible when [ I); has a form allowing explicit summation of the 
series in (46). For example, when vi is geometric with parameter g, 
so that m = (1 — q)-1 , we find that ,A(F) = F/[m(1 — gF)]. 
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Unless 1I1 =  , we know that [1(F) > FP' when E(j) = m in (46). 
It follows from (20a) and (47) that  > Fr.„, , where F)7:.p is the 
(uppermost) solution of (45) and  that of (12) and (20). For our 
purposes, in view of the invariance of A and 71 under m-preserving 
changes in {pi }, it is sufficient to take F?:,,n as an approximation to 

; the latter could be found numerically if needed for engineering 
purposes. We could also construct a quantitative theory for approxi-
mating F. à by some other n, A, with properly chosen M, proceeding 
by way of (47), (40), and this analogue of (38) (with superscript T 
suppressed): 

Fx,„, — P'x à =  (Fr,. - (F)  

Such an investigation does not seem worthwhile; we merely note that 
certainly M <m. 

5.3 Numerical Results 

We begin by examining the function 

A(m) = 2m — 1 — 2(m2 — m)4. (26a) 

that specifies the maximum rate of receiver arrivals that allows of an 
equilibrium delay-distribution. This function [eq. (26a)] is plotted in 
Fig. 6. Its most striking property is its rapid decrease as m increases 
from 1: Indeed, the slope dAldm is — cc at m = 1+. The critical load 
A is down to 0.5 at m = 1.125 (corresponding, for example, to one-
eighth of the messages having two addresses and all the rest, one); 
other values are A(2)  0.172, A(3)  0.101, and A(10)  0.0263. 
Since m ranges from 2 to 3 in a number of practical situations, we see 
how severely the camp-on discipline limits the possible efficiency of 
a very large multiple-address system. As discussed in Section VII, 

3/4 

1/4 

2 

Fig. 6—The critical load for m addresses per message. 

10 
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this fact was known qualitatively; but explicit knowledge of the function 
A(m) is new. It suggests, as mentioned in Section I, that in practice 
a good system is likely to employ a mixed discipline. 
Eight typical functions n„, are shown in Figs. 7-9, as computed-

with considerable perseverance, necessitated by the singularity at 
(F, p) = (1, 0)-by LaCava. Figure 7 shows the receiver-delay densities 
for three values of X when m = 2 addresses per message. The logarithm 
of the probability density iT,T is plotted against time in units of the 
mean length of a message, as in Figs. 8 and 9. [The probability Fo of 
no delay, and the relative traffic intensity X/A(m), are shown in Table I 
for each pair (m, X) appearing in these figures. This table also shows 
the mean and the variance for each distribution.] For a given delay, the 
probability density is least for the lowest load. All these densities 
appear as not-quite-straight lines, slightly convex, in semi-logarithmic 
plots. The departure from straightness shows the nonexponential 
character of these functions, which stems from the nonlinearity of the 
problem. The uppermost curve in Fig. 7, which corresponds to A(2), 
appears to have the greatest curvature near t = 0, as the phase-plane 
geometry suggests. The long straight tails in Figs. 7-9 show how good 
the exponential approximation is for large t. 
The delay densities for X = 0.10102 and m = 1.25, 2, and 3 appear 

in Fig. 8. For the uppermost curve, X = A(3), the critical load. 

$0-0 

Io-1 

o-3 

o-6 

A 

0-e0  4  a  12  16  20  24  28 

t IN UNITS OF MEAN TRANSMISSION TIME 

Fig. 7—Delay densities for m = 2 and X equal to (A) 0.10102, (B) 0.15, (C) 0.17157. 
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Fig. 8—Delay densities for X = 0.10102 and m equal to (A) 1.25, (B) 2, (C) 3. 

These functions are shown in Fig. 9 for X = A(m) and m = 1.05, 
1.25, 2, 3, and 10. We see that the probability of a given delay decreases 
as m rises; this effect is due of course to the very rapid decrease in critical 
load with increasing m. In other words, for a large number of addresses 
per message, equilibrium requires such a small value of offered load 
that long•delays are not likely to occur! 
Table I shows that as X increases for fixed m, or as m increases for 

fixed X, F5 goes down, the mean and variance of the receiver delays 
increase, and the coefficient of variation goes down. As m increases 
and X is kept at its critical value A(m), all these effects are reversed! 
However, it is in some ways more instructive to examine the conditional 
coefficient of variation, C in Table I: the coefficient of variation of 
the delay density function, conditional upon the delay being positive. 
It is G% that really measures the departure from straightness of the 
density plots in Figs. 7-9, and we see that these densities become less 
exponential as X increases for fixed m, or m increases for fixed X, or 
as m decreases when X = A(m). 
If the phase-plane trajectory p(F) were straight and the distribution 

FZ' exponential, all the quantities'of interest could be calculated exactly 
without numerical integration. Since C is never very far from 1 in 
Table I, we replace p(F) by a straight line of slope 7,L and obtain the 
following approximations for the receiver occupancy and the moments 
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Fig. 9—Delay densities for critical loads and m equal to (A) 1.05, (B) 1.25, (C) 2, 
(D) 3, (E) 10. 

of delay: The line p = —71(1 — F) intersects the edge p = XF at the 

abscissa 

Po = —71/(X — 71).  (48a) 

Likewise we can substitute —1/71 for (1 — F)/p(F) in (42). When 
i = 1 this yields the estimate M I(F)  (F. — 1)/y, , or using (48a), 

É(co) = — X/[71(X — 7i)]•  (48b) 

When i = 2 it is easier to use (43) directly with T = 0, so that M 2(F) 
(2/7) (1 — F.). Substitution of (48a) then gives us 

2(2) = 2X/[7:(X —  (48c) 

The estimate (48a) is quite accurate when X lies well below A(m). 
Po is always too small, but the error does not exceed 1 percent for the 
three cases in which X < A in Table I; and for the case m = 1.25, 
X = 0.10102 it is only 0.01 percent. For critical load, the error is 19 
percent when m = 1.05 and X = 0.64174, and it decreases to less than 
1 percent for m = 10. 
The error of eq. (48b) is virtually constant when X = A(m), ranging 

from 24.5 percent at m = 1.05 to 27.3 percent at m = 10. È(ce) is always 
too large. Like Po , it is a better approximation when X < A, being 
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off by 6 percent when m = 2, X = 0.15 and by only 0.15 percent when 
m -- 1.25, X = 0.10102, and X/A = 0.2645. 
The variance of co, as estimated from (48b) and (48c), is always on 

the high side and generally less accurate than the approximate mean. 
The variance is overestimated by 23.5 percent when m = 1.05 and by 
32.5 percent when m = 10, for X = A. The error is 7 percent for m = 2, 
X = 0.15, and 0.17 percent for the best case in Table I—that is, when 
in = 1.25 and X = 0.10102. 

5.4 Behavior of Systems with Finitely Many Receivers 

In a physical system with fixed finite R, the extent of interdependence 
among the delays 0.1") suffered by the copies of one message must in-
crease with X, as noted on p. 1371. Thus the true distribution of co  t 
is less well approximated by F"̀ as X grows, and m must be replaced 
in (26a) by some function of X which departs increasingly from m. 
[Cf. p. 1404, where A'(1) replaces m.] The critical load for such a system 
may therefore differ substantially from A(m). 
The predictions of the present theory have been tested against the 

behavior of physically realizable systems in a modest series of simula-
tion experiments. A few runs were first made to compare the behavior 
of receiver queues with Poisson arrivals to that found with transmitters 
in the system. Since there was no perceptible difference with R = 50, 
the remaining experiments simulated only the receiver queues. Arrivals 
were Poisson; all messages had exactly 2 addresses; and most runs were 
made with 50 or 200 receivers, although there were several with R = 100 
and one each with R = 400, 500, and 1000. 
Representative results are shown in Fig. 10, in which a quantity 

called "lim Fo" is plotted against load for m = 2. The ordinate "lira Fe" 
represents the asymptotic probability, approached as t —› œ, of finding 
a receiver idle. In the steady state this quantity is just F. ; and for 
loads above the critical value, for which the queues grow without 
bound, it is zero. The theory described in this paper (for infinite R) 
predicts the lower curve in Fig. 10, which is discontinuous at A(2) 
0.172. In a system with exactly m receivers (here R = m = 2), all 
messages go to all m receivers, and the m queues behave as identical 
copies of a single-server queue. In this case, the critical load is unity; 
F0 = 1 — X; and "lim F." is the linear function, reaching zero at X = 1, 
which is shown as the upper curve in Fig. 10. In this case, the dependence 
among the receiver queues is complete, and it raises the critical load 
from A(2) to 1. The intermediate curves are for R = 50 and 200 as 
shown, and the isolated cross marks an approximate (because of the 
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Fig. 10—Idle capacity of receivers as a function of load. 
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expense of simulation in this case) value for R = 1000. We see that the 
critical load, identified for finite R as the point where "lim F." reaches 
zero, approaches A(m) from above as R increases. The curves for finite 
R are shown as slightly above that for infinite R in the region just to 
the left of A(m); the difference is small, and the simulated values are 
not so precise as to guarantee its existence. 
Figure 10 indicates that the asymptotic theory is extremely accurate 

for loads well below A and for practical values of R—say from 50 to a 
few hundred. For loads just below A, the behavior of finite systems 
rapidly approaches that of the infinite model: Even for R = 50, the 
relative error in "lim Fo" at A is at most a few percent. The discon-
tinuity in "lim F0" is not physically realizable: For each finite R, 
"hm Fo" decreases quickly but smoothly to zero as X approaches its 
critical value from below. The family of response curves appears to 
lie between the straight line for R = m and the discontinuous curve 
for R = co and to approach the latter from the right as R --> œ . This 
approach is clearly quite slow for X > A, so that the true critical load 
lies significantly above A until R reaches a value at least several 
thousand. The evidence is similar for the other parameters measured 
in the simulations: E(w), E(c...) + ), mean queue-length, and occupancy. 
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More than this we cannot learn by experiment, at least at acceptable 
cost. 
In summary, the evidence from simulation indicates that our model 

represents reality well in the range X 5 A, and that for X > A it is 
valid asymptotically but with very slow convergence in R. A precise 
analysis of the effects of dependence for finite R remains an interesting 
and difficult question for further research. 

VI. TRANSMITTER DELAYS 

We now return to the question of transmitter delays which was 
left behind on p. 1373. The distribution of delay O could be found 
numerically from the results of the previous section by evaluating the 
equilibrium form of (3), 

G(t) =  f eur(u) du, 

to find the distribution G of transmitter service-times p; calculating 
numerically the Laplace transform of G; and numerically inverting 
the transform, which is obtained from Pollaczek's formula, of the 6-
distribution. Such extensive computations do not seem justified in a 
study of the present kind, and we consider here only the mean delay. 
We recall from Fig. 2 and p. 1369 that the receiver sojourn-time is 

also p =  x. The receiver queue can be viewed as a single-server 
system with delay 4) and service time E  x. Its occupancy is therefore 
xme + re) and can also be written 1 — F0. Since E  x = p — co, we 
have XE(p — co) = 1 — F0, so that 

1 — Fo 
E(p) = E(co) X 

(49) 

The total receiver-delay suffered by the average message, through having 
to wait in m queues before transmission, is E(co  E)  E(p. —  = 
E(p) — 1, or 

E(co -4- E) = E(co) — 1 + X-1 (1 — Fo). (50) 

We call this the receiver queuing-time. 
In order to evaluate E(S) by means of the Pollaczek-Khinchin 

formula, we need two more quantities, of which the first is the trans-
mitter occupancy. Recalling from (1) that the transmitter arrival-rate 
is a = kX/m, where k is the ratio R/X of the numbers of receivers 
and transmitters, we can write the transmitter occupancy as 
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aE(p) = (k/m)[1 — Fo XE(w)]  (51) 

from (49). The second quantity required is E(p2), the second moment 
of transmitter service-times. Differentiation of the equilibrium form 
of (10) yields XÓ = XÉ' — P, which, after multiplication by t2 and 
integration from zero to infinity, becomes 

XE(p2) = XE(02) — f t2P(t) dt. 

We integrate by parts and divide through by X to obtain 

E (p2) = E(2) ± (2 /X)E (cd). (52) 

The Pollaczek-Khinehin formula (Ref. 2, P. 117) for the mean 
transmitter-delay involves the transmitter occupancy and the first and 
second moments of its service time p: 

aE(P)   B(P2)  
E(3)  — 2[1 — aE(p)] E(p) 

If we cancel the factors E(p) and substitute into the resulting equation 
the relations (1), (51), and (52), and simplify, we find that 

E  E(0.1)  (X/2)E(2) (53) — 
(S)  (m /k) — [1 — F  XE(co)] 

Adding (50) and (53), we obtain the total delay suffered by the average 
message, prior to transmission, in both transmitter and receiver queues. 
We are now in a position to consider the choice of k. The simplest 

approach is to let k = m, which results in equal utilization of receivers 
and transmitters; that is, all terminals spend the same fraction of time 
with transmission of messages actually taking place. In this case, (53) 
reduces to 

E(0) 01/4/2M 02) 
"'i Fo — XE(co) (53a) 

The denominator of this expression need not be positive. From (49), 
— XE(w) = 1 — XE(p), and the last term is the average number of 

messages present (waiting and being served) at a single receiver, which 
need not be less than 1. For fixed m and k, the transmitter delay becomes 
infinite as the load (a and X) increases, and this may occur at a value 
X < A(m). In other words, for fixed m and X < A(m), it may be im-
possible to utilize transmitters as efficiently as receivers: The ratio 
k may have to be smaller than m. As shown in Table II below, this 
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phenomenon occurs only for m quite close to 1, so that A(m) is relatively 
large. 
We could also choose the ratio of numbers of receivers to transmitters 

by making their occupancies equal; that is, all terminals spend the 
same fraction of time with at least one message present (waiting, 
camping on, or being transmitted). The condition for this is that 
1 — F0 aE(p), which from (51) becomes 

k = m(1 — F0)/[1 — Fo XE(w)].  (54) 

The corresponding expected transmitter-delay is 

(1 — F0)[E(w) ± (X /2)E(co2)]  
E„(8) —  — Fo  XE(w)] •  (53b) 

Fo[l   

As a third alternative, we could require the mean delays suffered 
by a message at the transmitter and receiver stages to be equal. The 
condition for this is that E(co  = E((,), which from (50) and (53) 
yields 

= 1 — F Xi?(co) + Ind) + (X2 /2)E(co2)  
1 — F o — X  XE(w) 

In this case E(S) is given simply by (50). 
In a practical context, m and a would be given, and k (and hence X) 

would be determined by an appropriate balance of hardware and delay 
costs. An optimum design can be found only in terms of receiver costs, 
transmitter costs, and a cost per unit of delay time. We do not pursue 
this (still oversimplified) system-design problem, but merely illustrate 
relative performance of transmitters and receivers in terms of the 
criteria mentioned above. This is done in Table II, which was con-
structed by calculating the receiver-transmitter ratio k, the transmitter 
arrival-rate a, the mean transmitter-delay E(6), and the mean total 
delay for a message "Del" = E(6  k). These quantities are shown 
for each design-criterion mentioned above and for each combination 
of mean number of addresses m and receiver arrival-rate X listed in 
Table I. For each choice of m and X, the mean receiver queuing-time 
per message E(0)  ), which is not affected by the choice of k, is also 
shown. This quantity comes from (50); the others come from (54), 
(55), (1), (53a), and (53b). "Del" is the sum of E(S) and E(co  E). 
In the two configurations for which Fo — XE(w) < 0, E(S) is not 

defined; it becomes infinite at some smaller value of a. We indicate 
in Table II how far beyond this singularity a lies by giving the ratio 
Fo/(XE(0)). The locus of this singularity could be determined, but is 

•  (55) 
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not of sufficient theoretical interest to calculate here. Suffice it to 
observe that the delays are in some sense dominated by the transmitter 
queues for small m and by the receiver queues for large m: For m = 
1.05 and X = A, transmitter arrival-rates must be much smaller than X 
in order for the transmitter queues to be in equilibrium at all; for m 
greater than some value not much above 1.25, k can equal m for any 
permissible X; and for in = 10, a very small number of transmitters 
can handle, without excessive delay, all the traffic that can pass through 
the receiver queues. This phenomenon is another consequence of the 
extent to which the camp-on discipline limits receiver utilization at 
high address-multiplicities. The latter effect is partly illustrated by 
comparing the mean time spent camping on, E(E), with the ordinary 
receiver-delay E(co): The ratio E(cd  E)/E(w) generally increases with 
m, ranging from 1.04 for the first case listed in Table II to 9.1 for the 
last, and being always a little smaller than m. 
The approximation based on assuming n: to be exponential, with 

decay-constant  , can be used to estimate the quantities of interest 
in this section as it was in the last. Direct substitution of eqs. (48) 
yields these "linear" estimates in terms of X and yi alone: First, from 

(50), 

(co +  = —(1 -I- 71) hi •  (56a) 

This estimate is always on the high side. Its error is largest in the 
eighth case in Table II: about 40 percent for m = 10, X = A. Next, 
for the criterion of equal utilization, (53a) leads to 

2«(8) = VIT A + "Yin  (56b) 

This approximation too is always high, and is worst, with an error of 
43 percent, in the third case of Table II, with m = 2 and load A. [Of 
course it must get still worse near the singularity of E„(d), which (56b) 
estimates wrongly as occurring where X = —71 .1 For the criterion of 
equal occupancy we get 

ke = 

from (54) and 

= 

(56c) 

(56d) 

from (53b). The value ko is too low in the eight examples considered 
here, the largest error being about 11 percent at m = 1.05; and e(o) 
is too large in these examples, with a maximum error of 46 percent at 
m = 1.05. Last, (55) becomes 
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= —m-y1(1  ),1)/[X(2  71)],  (56e) 

which corresponds to the criterion of equal delay. The error of this 
estimate takes both signs in these examples, and is worst, at about 
—10 percent, when m = 1.05. 
No rigorous analysis of the errors of these approximations has been 

performed. However, all the estimates in eqs. (48) and (56) are better 
for X < A(m) than for critical load; and the cases reported in Tables I 
and II include a representative sample of values of m from 1.05 to 10, 
for X = A. Furthermore, all the errors behave monotonically in m for 
X = A(m). Since the aforementioned range of m covers all the values 
that seem likely to arise in communications engineering, it is reasonable 
to conclude that the estimates (48) and (56), with yi known exactly 
from (25), can be used in place of exact results of the asymptotic 
theory whenever a maximum relative error of 50 percent—larger than 
any of those encountered in these examples—is tolerable in the tabulated 
quantities. 
The present theory predicts no startling qualitative behavior of the 

transmitter queues, as it does for the receivers. As noted in Section 5.4, 
the receiver queues behaved no differently in the presence of trans-
mitters than they did with Poisson input, in the few cases simulated 
(with both sub- and supercritical loads). Thus no detailed records were 
kept of the transmitter-queue parameters in these simulation runs; 
and the remarks of Section 5.4 may be considered to apply to the whole 
system as well as to the receivers alone. 

VII. DISCUSSION 

This section includes a brief summary of the argument and results 
of this paper, a discussion of its relation to other literature, and a 
statement of problems that remain open. 

7.1 Summary 

After an Introduction relating the camp-on problem to the question 
of engineering for multiple-address traffic in data communication 
systems, a specific model of a camp-on system is described in Section II. 
This model is reduced by an informal argument to an idealized mathe-
matical model of receiver delays, of interest in its own right and char-
acterized by Poisson arrivals, exponential transmission-times, and the 
fact that each message can be transmitted only after the longest of m 
independent delays in receiver queues has ended. [Key symbols appear 
in eq. (1) and Fig. 2.] The mathematical model yields the integral 
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recurrence (7) for the distributions of successive delays at a given 
receiver. This recurrence leads to an integral equation [eq. (12)] in 
statistical equilibrium and also to an equivalent differential system 
[eqs. (18), given in Section III]. The method used to establish the 
fundamental recurrence, though based on Lindley's equation, is new 
in its treatment of the delays suffered by a message in parallel queues, 
and very simple; it should prove useful in other traffic problems in-
volving messages which must wait in several queues at once. Another 
important element of our approach is a method for separation of the 
transmitter and receiver delay-analyses, which should be useful in 
other two-stage queuing problems in which servers in both stages are 
released (or seized) simultaneously. 
In Section III the equation for the equilibrium distribution of receiver 

delays is reduced to the first-order differential system (20). Analysis 
of the corresponding vector-field and its topology in the phase plane 
shows that, for receiver arrival-rates X not exceeding a critical load A, 
a one-parameter family of distributions exists, each of which satisfies 
all requirements for a solution to the problem of delays encountered 
in equilibrium. The uppermost member of this family is qualitatively 
distinct from all the others. The critical load A is found explicitly 
[eq. (26a)] as a function of the number m of addresses per message; 
above this load, statistical equilibrium cannot exist. 
In Section IV we return to the recurrence (7) to show that, although 

the integral equation (12) has infinitely many solutions, any reasonable 
assumption about the previous history of the system leads to a unique 
limiting-distribution when the load X is held constant indefinitely at 
a value smaller than A; and the distribution in question is the uppermost 
of the equilibrium solutions. A slightly weaker result holds when X = A: 
The existence of the limit can be guaranteed only if the system has 
not previously been subjected to too great an overload. Even if it has, 
delays do not increase indefinitely when the load is held at its critical 
value; instead, the distributions of delay encountered by all subsequent 
messages are bounded below by some member of the family of stationary 
distributions corresponding to X = A. (See Theorems 4 and 5 and 
Corollaries 3 and 4.) So far as I am aware, no other example has been 
reported of a queuing system which can operate in equilibrium—and 
with delays having finite moments of all orders—at (not just below) its 
critical load when the basic service-process (here exponential) admits 
of arbitrarily long holding-times. This startling result applies, of course, 
only to the asymptotically large system which is not physically 
realizable. The structure of the proofs in Section IV also shows that 
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analytical techniques are necessary, and that numerical study of the 
sequences generated by (7) could not solve the uniqueness problem. 
A procedure for calculating the limiting distributions of receiver 

delay is described in Section V. The computation of the phase-plane 
trajectories near a singular point required considerable effort, and when 
X was near A rested on the use of a generally neglected series expansion 
developed by Briot and Bouquet in 1856 and by Picard in 1908? Graphs 
of eight typical distributions are shown (Figs. 7-9) along with their 
means, variances, and probabilities of no delay (Table I). The receivers 
spend so much time being camped on, and this factitious loading so 
limits their useful capacity, that mean delays and probabilities of delay 
generally decrease as the number m of addresses per message rises and 
X stays at the same fraction of critical load. This remarkable behavior 
shows how inefficient is the camp-on discipline in its pure form. In 
Section V, it is also shown that the previous analysis can be validly 
interpreted with minor quantitative changes when m is not an integer. 
A consequence of this model is the explicit representation of A(m), 
which is shown (cf. Fig. 6) to decrease so rapidly above m = 1 as to 
account for the curious reduction of delays mentioned above. 
The numerical predictions of the asymptotic theory are compared 

with simulation results in Section 5.4. For a physical system with a 
finite number R of receivers, the true critical load, along with other 
indicators of performance such as the probability F. of finding a receiver 
idle, depends on R. Convergence to the predicted behavior as R in-
creases is rapid for X  A(m), so that in this range the idealized model 
is very accurate for such values of R as are likely to arise in engineering. 
When X > A(m), the effects of interdependence among the receiver 
queues dissipate very slowly as R approaches infinity. For fixed finite R, 
the critical load exceeds A(m) and the idle capacity of the receivers 
tends to zero as the load increases toward its critical value. The critical 
load falls with increasing R, approaching A(m) from above, and the 
changes in performance parameters that occur as X approaches its 
critical value from below become more abrupt. The discontinuity in 
system behavior at A(m), that is characteristic of the idealized system, 
cannot be realized and is approached only asymptotically by response 
curves for increasing R. Fig. 10 illustrates these effects. 
In Section VI the earlier results on receiver performance in the 

asymptotic model are related to the behavior of the transmitter queues. 
The choice of the design parameter k is considered (k being the ratio 
of numbers of receivers to transmitters), and the mean transmitter-
delay is calculated for some representative configurations (Table H). 
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Each transmitter queue behaves as an ordinary M/G/1 system whose 
service time is the receiver sojourn-time. Critical receiver-loads are so 
strictly limited for large m that queuing at transmitters is not a severe 
problem; but when m is near 1, receiver delays contribute so greatly 
to transmitter occupancies that transmitter arrival rates must be held 
substantially below those for receivers. 

7.2 Related Literature 

Many of the most important unsolved problems of congestion theory 
relate to queues in parallel or in series which interact in complex ways. 
The work reported here is significant partly because it constitutes 
a partially successful attack on a problem of this type and may, as 
discussed above, lead to the solution of others. An early example of 
studies of the same class is the elegant paper by Kingman° on two 
queues in parallel, where each new arrival joins the shorter queue. 
Studies of other important mechanisms of interaction are gradually 
becoming more common in the literature. I cite as a recent example 
involving communications traffic the paper by Cooper and Murray." 
Hunter" surveys the literature on exactly two queues in parallel; and 
a heavy-traffic approximation for many such queues, with customers 
randomly choosing which queue to join, is given by Whitt." 
It was mentioned in Section I that the camp-on problem itself is 

treated in a paper by Haenschke.1 He does not consider the delays 
encountered at transmitters, or the relation between the transmitting 
and receiving stages of a camp-on system, but analyzes the receiver 
queues—the essential component of the problem—by means of a clever 
approximation. He assumes, as we do, that arrivals at each receiver 
are Poisson, that transmission times are exponential, and that delays 
in different receiver queues are independent. He also assumes that all 
receiving locations have the same number of lines; in our model this 
number is always 1, but in Haenschke's paper it can be any positive 
integer. His technique is based on the assumption that the receiver 
service-time e + z. is exponentially distributed, so that by Erlang's 
delay theory (see Ref. 2 or Ref. 4, for example) the receiver delay 
distribution F is also exponential. The resulting model is in essence a 
linear approximation to the nonlinear one analyzed here. Haenschke's 
results (which are not directly comparable with those presented in 
Section V above) are adequately convincing with regard to the draw-
backs of the camp-on discipline in practice. They do not, on the other 
hand, yield any inkling of the qualitative implications of assuming 
the receiver queues to behave independently. 
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This system is also discussed by Webern in an unpublished report 
which includes extensive simulation results. At loads below our values 
of A(m), where the magnitude of R is not very important, his figures 
agree closely with those presented here. For example, when m = 2 
and X = 0.102, Weber's simulation gives for the receiver occupancy 
and the mean queuing-time per message [1 — Fo and E(w  ) in our 
notation] the values 0.116 and 0.287. Our calculation for X = 0.101 
(from Tables I and II) yields 0.115 and 0.290 respectively (and see 
Fig. 10). There being no extant record of the values chosen for R in 
Weber's runs, his results cannot be compared in detail with ours when 
X> A(m). However, examination of his printout shows no inconsistency 
with the discussion in Section 5.4 above. 
It is amusing to observe in closing that our basic differential equation 

(18a) agrees, except for the sign of the coefficient of F, with the homo-
geneous (zero driving-term) equation for the anharmonie oscillator. 
This equation has recently been studied (see Bloembergen," for example) 
in connection with nonlinear optics. However, the necessary methods 
do not overlap: We are interested in decaying solutions, while in optics 
the oscillatory solutions (cf. the change of sign just mentioned) are 
relevant and are obtained by perturbation techniques good only for 
very small values of the parameter we call X. 

7.3 Open Questions 

A number of issues raised in this paper are clearly in need of further 
investigation. Most important, of course, would be an exact analysis 
of the receiver queues for finite R, quantifying the effects of dependence 
among them and the rate of convergence to the asymptotic model as 
R  °O. It would be particularly useful and interesting to have an 
analytical expression for the critical load as a function of R as well as m. 
Our results should be extended to cover other arrival and trans-

mission-time distributions, especially the case of constant message-
length. It would be important to solve the present problem (and many 
other queuing problems!) without the assumption of complete 
symmetry—that is, of equal loads on all receiving stations. And the 
present work should of course be extended to the case of more than 
one receiving line per location, which was treated by both Webern 
and Haenschke.1 
This paper reports on a technique which is new in detail, though not 

in principle, and describes a curious qualitative result on the behavior 
of a queuing system (albeit not a physically realizable one) at critical 
load. It will be interesting to test the technique on other problems 
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involving complex interactions between queues, and to find the domain 
of validity of the qualitative result. 
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