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A 250-element charge coupled device is described in which the transfer 
electrodes are delineated and isolated using an undercut-etch technique. 
The device has metal electrodes on two thicknesses of oxide and is primarily 
intended to be operated in a two-phase manner. Measurements of transfer 

inefficiency as a function of frequency have been made on both n- and 
p-channel devices. Below 1 AI Hz, values of 4 X 10-4 per transfer inde-
pendent of transfer frequency have been obtained. Above I MHz the transfer 
inefficiency progressively rises as the dynamics of charge motion limit the 
transfer of charge. 

I. INTRODUCTION 

A new method of fabricating charge coupled devices' (CCD) using 
the technique of undercut isolation has been reported recently.' A 
schematic cross section of a device made using this technique is shown 
in Fig. 1. The essential feature is a method of forming electrically 
isolated but self-aligned metal electrodes on two thicknesses of oxide. 
By connecting the electrodes in pairs, which may be done externally 
or using electrochemically plated regions on the device, as shown in 
Fig. 1, a two-level oxide structure3.4 that may be operated in a two-
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Fig. 1—Schematic longitudinal cross section of an undercut-isolated stepped-oxide 
CCD. 

phase mode is obtained. This structure has several advantages over 
other structures. For example, compared to the three-phase structures, 
the geometrical constraints of having three phases, the requirement to 
fabricate 2- to 3-gm gaps, and the instabilities associated with the 
exposed oxide in these gaps are removed. Compared to other two-
phase structures, " there is no need for a refractory metal technology 
or ion implantation, and the packing density of elements can be higher. 
Test devices using undercut isolation and 250 elements long have 

been fabricated, and their transfer inefficiencies measured. The increase 
in number of elements from an earlier device' has allowed the small 
values of transfer inefficiency inherent in this structure to be measured 
accurately. 

II. DEVICE FABRICATION 

The 250-element CCD, which is the subject of this paper, was 
fabricated using the same photolithographic masks, except for two, 
as an earlier 500-element three-phase device' so that the undercut-
isolated structure could be quickly evaluated. A photograph of one 
end of a finished device is shown in Fig. 2. The transfer region with the 
alternate thin and thick oxide levels is seen in the center of the photo-
graph. The transfer electrodes are connected alternately on either side 
directly to two metal buses and via diffused cross-unders to two other 
buses. These cross-unders are not necessary for a two-phase CCD but 
were retained from the earlier three-phase device design to enable 
four-phase operation to be carried out for experimental purposes. 
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Fig. 2—View of the output section of a finished 250-element device, showing output 
diode D, output gate G, electrodes El and E3 over thick oxide, and electrodes E2 
and E4 over thin oxide. 

The transfer region is defined laterally by a "channel-stopping" 
diffusion that enhances the substrate doping. A device made exactly 
to the mask dimensions would have transfer electrodes that were 11 
pm long over the thin oxide and 7 gm long over the thick oxide, with 
an 18-pm-wide channel. The devices were fabricated as described in 
an earlier paper' on both n- and p-type substrates. 

IH. MEASUREMENTS OF TRANSFER INEFFICIENCY 

In order to measure the performance of the devices, voltages and 
pulses appropriate for either p- or n-channel devices, and two- or 
four-phase modes of operation were provided. Owing to circuit limi-
tations, negative square pulses for driving p-channel devices up to 
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frequencies of 10 MHz, and positive pulses up to 2 MHz, for testing 
n-channel devices were available. However, the n-channel devices 
could also be driven at up to 7 MHz using sinusoidal drive. As has 
already been mentioned, the device was made by modifying the design 
of an existing device, which had a very narrow transfer channel, so 
that the size of the output signal was not as large as is really desirable 
for easy and accurate measurements of transfer inefficiency. With a 
pulse voltage of 20V, the maximum size of a charge packet was 0.5 pC. 
In all the measurements, a background charge was injected into the 
device so that all the elements carried a small charge so as to keep the 
interface states filled. Varying the amount of background charge in 
the range from 20 to 80 percent of a full charge packet caused no 
appreciable change in the measured transfer inefficiency. 
At frequencies up to 2 MHz, the transfer inefficiency E was measured 

by periodically injecting a single packet of charge into the device and 
observing the sequence of charge packets that emerged. The injection 
of charge was done either optically with a small light spot projected 
through a microscope or electrically. An advantage of the optical 
method is that the light spot could be moved near the output and the 
form of the output signal for a small number of transfers could be 
established. Also, by moving the spot along the device and observing 
the output signal, any discontinuities in transfer efficiency at a region 
of poor transfer, possibly caused by a partially blocked channel or 
an open electrode, could be detected and the device rejected. Obtaining 
a numerical value for E from the observed sequence of output charge 
packets is based on comparison with the expected sequences7,8 for 
different values of transfer inefficiency product ne, where n is the 
number of transfers. 
Particularly for measuring values of ne > 1, it is more accurate to 

use another technique in which a sinusoidal input at different fre-
quencies is fed to the device and the amplitude of the output measured. 
The frequency response of the device corrected for the response of the 
output amplifier is then plotted. Comparison with the theoretical 
response curves' enables values of ne to be obtained. The advantage 
of this method is that values of transfer inefficiency for high values of 
drive frequency f,, could be obtained using input signals and amplifiers 
with bandwidths much lower than the drive frequency fa. 

IV. MEASURED VALUES OF TRANSFER INEFFICIENCY 

A plot of transfer inefficiency versus frequency for both n- and 
p-channel devices operated in the two-phase mode is presented in 
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Fig. 3—Measurements of transfer inefficiency (per transfer) for both n- and p-
channel undercut-isolated CClls. The theoretical values for p- and n-channel 
devices assuming a 9-gm field free region under the transfer electrodes on the thin 
oxide have also been plotted. 

Fig. 3. The transfer inefficiencies for both the p- and the n-channel 
devices, as predicted by calculations of charge motion' for devices 
with mobilities of 200 and 400 cm' V's' respectively, are also shown 
on the figure. A 9-gm-long field free region is assumed under each 
electrode on the thin oxide, since the electric fields from the neigh-
boring electrodes will penetrate at each end of the electrode. 
Referring to Fig. 3, the transfer inefficiency of the devices appears 

to be flat below 0.5 MHz, perhaps due to limitations caused by inter-
face states." Above 0.5 MHz, the transfer inefficiency progressively 
degrades until, for the p-channel device, it rises exponentially following 
the theoretical curve. The rounding of the experimental curve is due 
to the joint contributions of the interface states and the dynamics of 
charge transfer. The greater carrier mobility in the n-channel devices 
is reflected in the lower transfer inefficiencies of these devices at 
frequencies in excess of 1 MHz. 
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Fig. 4—Showing the use of a 250-element n-channel undercut-isolated CCD to 
delay a Piciurephone® video signal by 121 ms. The direct (undelayed) display is seen 
on the left and the delayed display on the right. 

The transfer inefficiency per transfer obtained on the p-channel 
device operated in the four-phase mode at 1 MHz was 5 X 10-4, 
which is about the same as that obtained in two-phase mode. However, 
in the two-phase mode, only half the number of transfers are required 
for a CCD with the same number of elements so that a device operated 
in this way has half the transfer inefficiency product nE of one operated 
in four-phase mode. This is an important observation, not only because 
of the improved performance, but because of the additional advantage 
that two-phase interconnection gives to the design of functional 
devices. 
The p-channel device was used, as described in more detail else-

where," to delay a Picturephone® video signal by 121 eis with barely 
noticeable degradation in the display as shown in Fig. 4. 

V. CONCLUSIONS 

The structure described has given transfer inefficiencies which are 
more than adequate to permit the design of devices for many appli-
cations. The two-level oxide structure with electroplated intercon-
nections leads to some relatively simple designs of devices for various 
applications. The active region of the device is fully protected with a 
double-layer oxide and there are no exposed regions of oxide which 
can charge up and degrade the performance of the devices. There is 
no need for refractory metal electrodes and high-temperature processing 
to obtain a good second-level dielectric layer for insulation, or for fine 
features to be etched in the metallization as required in other struc-
tures. In addition, there is no critical reregistration required in the 
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cell, so that compared to other structures, a smaller cell may be 
fabricated given the same fabrication tolerances. This would lead to 
higher packing densities and a capability of operating at higher 
frequencies. An encapsulant may be required to protect the undercut 
regions from dirt, damage, and electrical breakdown. 
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Formulas on Queues in Burst Processes—I 

By B. GOPINATH, DEBASIS MITRA, and M. M. SONDHI* 

(Manuscript received July 11, 1972) 

Queues arising in buffers due to either random interruptions of the 
channel or variable source rates are analyzed in the framework of a single 
switched system. Examples of systems to which the results of the paper 
may be applied are: multiplexing of speech with data in telephone channels 
and, in certain instances, buffering of data generated by the coding of 
moving images in the Picturephone® system. The switched system con-
sists of a uniform source, buffer, switch and channel. The source feeds 
data to the buffer at a uniform rate. The buffer's access to the channel is 
controlled by the switch; if the switch is closed, the buffer empties to the 
extent of the channel's transmission rate. The on-off pattern of the switch 
is indicated by a 0 — 1 burst process !E;} , j = 0, 1, .2, • • • ; if Ej = 0, 
the switch is closed for the duration Ej,  1). The burst phenomenon is 
introduced to account for two different processes responsible for the event 
E = O. There are relatively long periods during which E; = 0 uniformly, 
and the activity separated by such periods is defined to be a burst. During 
a burst, E; = 0 only infrequently. The duration of a burst is an inde-
pendently distributed random variable with a geometric or weighted sum 
of geometric distributions. The inter-burst periods are assumed to be 
sufficiently long for the buffer to empty at some point during these periods 
of inactivity. During a burst f E;} is a Bernoulli sequence of independent 
random variables. 
Exact expressions for a variety of performance functionals related to 

the system described above are obtained, together with qualitative results. 
Recursive formulas are obtained for the following: (i) steady-state distri-
bution of buffer content for a finite buffer of size N; (ii) mean time for 
first passage across a level N; (iii) the probability of overflow, for a given 
level N, during a burst; (iv) mean time for first passage across a level N 
during a burst. The recursion in each case is with respect to N. The 
asymptotic behavior of the main recursions is determined. 

*The sequence of names was determined by coin tossing. 

9 
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I. INTRODUCTION 

A convenient framework for an unified analysis of a variety of 
digital communication systems involving buffering-some are discussed 
later-is provided by the system in Fig. 1. The source emits data uni-
formly at the rate of one symbol per unit time. The transmission rate 
of the channel is (k  1) symbols per unit time where k is some positive 
integer. The buffer has access to the channel only when the switch 
is closed. The switch is controlled by a burst process MI, j = 0, 1, 
2, • • • . Eh for every j, is either 0 or 1. If E; = 0, the switch is closed 
for the duration [j, j  1) ; otherwise the switch is open. The burst 
process is introduced to account for cases where two basically 
different types of phenomena are responsible for the event E; = O. 
There are relatively long periods during which E; -= 0 uniformly; 
the activity separated by such periods is defined to be a burst. On 
the other hand, during a burst, E; = 0 only infrequently. The dura-
tion or length of a burst is a random variable. It is assumed that 
the burst length is independently distributed with a geometric or 
a weighted sum of geometric distributions. The interburst periods 
are assumed to be sufficiently long for the buffer to empty during 
these periods. The statistical assumption made in the paper about 
the controlling sequence f Eil within a burst is that it is a Bernoulli 
sequence of independent random variables and Pr f E; = 11 = 7r where 
O < Ir < 1. In a companion paper, the case where {E;} is first-order 
Markov will be considered. 
Important aspects of various digital communication systems are 

subsumed within the framework of the system described above. 
Diverse schemes for multiplexing data with speech on telephone 
channels',2 are representative of one class of such systems. A summary 
of the main features of the system which has been described in some 
detail in Ref. 1 follows. The central idea is to utilize the telephone 
channel during the periods of silence in speech which amount to as 
much as half of the total conversation period to transmit digital data. 
The speaker needs to have priority for the use of the channel since 
otherwise the quality of speech is impaired. E; = 0(1) corresponds to 
the decision that silence (speech) exists during the interval [ j, j  1) 

UNIFORM 
SOURCE 

BUFFER 
SWITCH 

Fig. 1—Switched communication aystem. 

CHANNEL 
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so that only after it is decided that the speaker is silent does the 
buffer have access to the channel. An excellent example of the burst 
phenomenon may be found in speech monologues. Due to the presence 
of phrases in speech, two types of silences, interphrase and intraphrase 
silences, exist ;1.4 the former type consists of silences no less than 250 
ms long and this is substantially longer than the mean duration of 
(uninterrupted) intraphrase silence. 
There exists another class of digital communication systems com-

posed of systems with only one source which transmits at a nonuniform 
rate. Most of the time the source rate is less than, say, ro bits per unit 
time and ro is less than the channel rate r. Occasionally, for short 
periods of time, the source rate spurts to a level ri which exceeds r. 
During such periods buffering becomes necessary. These occasional 
bursts of overloading of the channel are indicated by the 1.E; process. 
The relation to the switched communication system of Fig. 1 is clear 
if (ri — r) is normalized to unity, and (r — ro) corresponds to k. 
An example of such a system for which the analysis of this paper is 

relevant arises in buffering of data generated by the coding of moving 
images in the Picturephonee system.' In this case, of course, ro and 
ri should be interpreted as average rates' in the two regimes, or, when 
the worst case is of interest, as the extreme rates. The results of this 
paper appear to be relevant7 for variable rate in-frame coding, since 
during bursts of high detail, the correlation of the data rates for 
successive picture elements is not high. For frame-to-frame coding 
the first-order Markov model, to be treated in a companion paper, is 
of interest. 
Exact expressions for diverse performance functionals related to 

the system in Fig. 1 are obtained, together with qualitative results. 
As a whole they provide a rather comprehensive set of criteria for the 
design of the important parameters of the system, such as the buffer 
size and the transmission rate of the channel. A summary of the main 
contributions follows.* 
(i) A recursive formula is obtained for the steady-state distribution 

of buffer content for finite buffers. The recursion is with respect to N 
where N is the size of the buffer. 
(ii) It is proved that FN, the mean time for first passage through a 

level N, is given by 
1  1 -  71"  1 

FN =   F N-k_1  -• 

* N is used to denote both the buffer size [as in (i), (iii) and (vi)] and a level [as 
in (ii) and (iv)]. In what follows, the definition of N should be clear from the context. 
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(iii) g N, the probability of overflow of a buffer of size N during a 
burst, the duration of which is distributed geometrically with a param-
eter p is given by 

1 1 
g N = (—• 

Pr  AT-1 

1 -  7r  1 

gN_à_il 
(iv) A closed expression and a recursive formula are obtained for the 

mean time for first passage through a level N during a burst; the 
recursion is with respect to N. 
(y) The asymptotic behavior of all formulas in items (i) through 
as N becomes large, is given. The derivation is dependent on the 

following: of the roots of the polynomials associated with the recur-
sions, either one or two roots, depending on which recursion is being 
considered, lie outside the unit circle. 
(vi) It is proved that under certain conditions on the initial probabil-

ity distribution of the contents of the buffer, the probability of a 
buffer being full is a monotonic, nondecreasing sequence with respect 
to time; if the buffer is initially empty, the above-mentioned conditions 
are satisfied. One of the main implications of the result is that the 
steady-state probability of the buffer being full is an upper bound 
on the probabilities of the buffer being full at any instant. Furthermore, 
a particularly simple recursion is obtained for PN, the steady-state 
probability of a buffer of size N being full: 

pN  = (1. 1  1 —  1 r 

4  P N-1  7r Px-k-ii 

(Observe that 1/FN is also the mean time for recurrence of the state 
corresponding to a full buffer.) 
The closed expressions obtained are for all k and N, and the recur-

sions hold for all N  2k ± 1. Wherever applicable, the buffer is 
assumed to be initially empty. An important feature of the given 
formulas is that they are also given in the form of recursions. The 
advantages of recursive formulas over the alternate versions need to be 
emphasized. For a given N, typically, a closed expression for a recursion 
involves inverting a matrix of order N. For large N, the effort is 
substantial. If, in addition, it is borne in mind that a designer is 
interested in functionals associated with a range of possible buffer 
sizes, the advantages of recursive formulas of the form given in this 
paper become overwhelming. This is only to be expected since the 
recursions are obtained by taking into full account the structure of 
the matrices involved. 
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II. EQUATIONS OF PROCESSES 

Let Bi be the number of symbols in the buffer at the jth instant. 
For a finite buffer of size N, 

Maxie; — k, 01 if Ei = 0 
=- Min1/3; -1- 1, N1 if .871 = 1. 

Since Bi depends only on Bi_1 and E5_1, the state of the Markov chain 
of interest at the jth instant, Si, is determined by the value of Bi 
where Bi E 10, 1, 2, • • • , NJ. Let Pm(n) denote the probability of the 
state Sm = n. Then 

Pm(0) = (1 — 7r) E P.-1(i)  (1) 

Pm(j) = 71-P  — 1) ± (1 — 71-)P„,_1(i  k) 

i = 1, 2,•• •, N — k (2) 

= rP„,_1(i — 1) 

i= N—k ±1, N —k + 2, • • • , N — 1 (3) 

Pm(N) = irlPm__1(N — 1) + P.-1(N)].  (4) 

It is well known from the theory of Markov chains 3 that the limiting 
distribution of the states P(i) is obtained from (1) through (4) by 
equating P m (i) and P m_1(i) to P (i). 

2.1 Equations for Some New Probabilities 

Central to most of what follows are the probabilities Q. (i), where 

Q.(i) = Pr( (Sm =  (131  N, j ni)1 

and the buffer size exceeds N. For convenience, let X„, denote the 
event Si E f0, 1, 2, • • • , N1 for all j, O  j m, so that 

Qm(i) = Pr{ (Sm =  L}.  (5) 

The equation governing the transitions of {Qi1 is derived. It is shown 
that there exists a matrix A which relates KM to 1Qi_11, i.e., 

N 

Q(j) =.  E AitQi-i(i)  (6) 

or, in matrix notation, Qi = AQi_i. 
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In (5) i E (0, 1, • • • , NI, so that 

Q„,(i) = Pr  =  nx,,,} 

= E Pr (8„. =  x  (sm_i = 
Hence, 

Q.(i) = E Pr { (S. = 
j O 

= E Pr{ (Sm = 1)1 
j O 

j) X,11 Pr  =  x„,i) 

(sm_i = J) n 

(1 — r) E  if i = O  (7a) 

(2„,_1(i '2 1) ± (1 — 7)Q„,_1(i  k) 

if  = 1, 2, • • •, N — k (7b) 

7r(2._1(i — 1) 

if i = N — k  1,N — k + 2, • • • , N.  (7e) 

(7) defines the (N ± 1) by (N ± 1) matrix A. Sometimes when the 
need arises, the (N ± 1) by (N -I- 1) matrix A associated with a given 
N will be specified by A (N). 

1  2  k + 1 k + 2 
(1 — 7r) (1 — 7r)• • • (1 — 7r) 

Am 

ir O (1 — 7r) • 

• 1" 

N + 1 
1 
2 

• (1 — 7r) N — k + 1 

0  0  N 
, N + 1 

(8)* 
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If the transition matrix of the basic Markov process, i.e., the matrix 
defined by eqs. (1) through (4), is irreducible, then (I — pA) is 
nonsingular for IpI 5 1. The proof follows from a well-known result 
in matrix theory° which in this case states that if all the columns of 
(I — pA) are weakly column-sum dominant and at least one column 
of (I — pA) is strongly column-sum dominant, then the matrix is 
nonsingular. 

III. STEADY-STATE PROBABILITIES FOR FINITE BUFFERS 

In this section, a formula is given for recursively generating the 
steady-state probabilities P(i) where the recursion is, with respect to 
N, the size of the buffer. To distinguish the steady-state probabilities 
for different buffer sizes, the symbol PN(i) is introduced to denote 
P(i) for a buffer of size N. 
If N  k  1, as is almost always the case, an equation of the type 

given in (2), namely, 

1  1—ir 
PN(i — 1) — —PN(i)   PN(i k) = 0  (9) 

ir  ir 

occurs at least once and since N >> k usually, the main body of equa-
tions defining the steady-state probabilities is of that form. It is 
proved in Ref. 1 what may reasonably be expected, namely, every 
solution of the homogenous set of equations that define the steady-
state probabilities is of the form 

k+1 1 
PN(j) = E be 1r-ji j = 0,1, • • • , N (10) 

where pi are the simple roots of the polynomial 

1  1—ir 
_e k 

ir  ir 

If the polynomial has multiple roots the obvious modifications must 
be made. [Note: Since 0 < ir < 1, the polynomial in (11) has distinct 
roots whenever ir k/(k  1); when Ir = k/(k  1), the only repeated 
root is 1.] 
The complete recursive formula for P11(j) is obtained in two parts. 

First, a recursive formula for a set of solutions qN(j) to the steady-state 
equations is obtained and, second, a recursive formula for the 
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normalizing constant IN is obtained. Finally, 

1 
PN(j) =  4N(j)  j = 0, 1, • • • , N.  (12) 

N 

3.1 Recursions for IgN(i)} 

Let 
qN( N) = 1  (13) 

and suppose IqN( j) satisfies the steady-state equations of a finite 
buffer of size N. Hence, q" (j) has the form given in (10).* For fixed N 
and i = 1, 2, • • • , k  1, let 

k+1 
A  i-1 

di =  E am; . 
21 

The transformation (ail —> Idi} is invertible since the Vandermonde 
matrix is nonsingular. Now, 

k+1 

di = E am; 

= qN( N — i  1)  i = 1, 2, • • •, k  1.  (14) 

Also, from the steady-state equations themselves, 

= qN( N) = 1 

di = qN( N — i  1) — 

1— ir 

(15) 

i = 2, 3, • • • , k  1.  (16) 

Hence, significantly, fd,) is independent of N from which it follows 
that {a:} is also independent of N. 

k+1 
Ar-i-k+1-j 

qN-Fki-1(i) =  E aigi 

(N+k)-j 1 — ir N_;} 
= ai 
i-1 ir  ir 

1  1 — ir 
= 

from (11) 

q (j)  j = 0, 1, • • • , N.  (17) 

The formula for I qN+k+1(j)1 is complete if (15) and (16) are appended, 

To distinguish between IPN (j)1 and lqy(i)}, denote the coefficients in the form 
for the latter by (ail, i.e., b,: = (I/ZN)ai. 



FORMULAS ON QUEUES-I  17 

1 — 7r 
QN+k-f- (N i) - 

.k-i+1 

qN+k-1-1(N  k  1) = 1. 

3.2 Recursion for the Normalizing Constant 

Let 

Now 

N 

E qN(i). 

i= 1,2, • • • , k  (16) 

k (i), 
E qN+k+I(i) = + (1 - 7r) E 

1-1  r 

1 
= 

7i 

Summing both sides of (17), 

1 ir 
Ni-k+1 k =  1  1 — 

7r Ir Irk+1  7r 

1  1 — ir 
I N-1-k+1  - Z NA-k 

ir  ir 

(15) 

(18) 

(19) 

(20) 

(20) is the recursion for the normalizing constant. The derivation of the 
recursive formula for {PN(j)} is now complete. 
Observe that in the course of the above analysis, a simple recursive 

formula for the rather important steady-state probability of the buffer 
being full, i.e., PN(N), has been obtained. 

gN(N)  1 
P" (N) =   =  (21) 

ZN ZN 

and ZN, of course, is obtained from (20). 

IV. MEAN FIRST PASSAGE TIME 

Suppose N is a fixed positive integer and the buffer capacity is 
greater than N. A functional that provides substantial insight into 
the problem of designing a buffer for which the probability of overflow 
is small is FN, the mean time required for the buffer contents to first 
exceed N. It is particularly useful in the context of burst processes 
where only incomplete data are available concerning the burst length 
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distribution-provided that the length of bursts is bounded, a simple 
comparison of the bound with FN provides an useful guide. In this 
section a recursive formula for FN, the recursion being with respect to 
N, is obtained. To correspond with the practical situation, the buffer 
is initially assumed to be empty; the same recursive formula holds for 
the other interesting initial condition, namely, the buffer initially 
contains an unit symbol. 
X,,‘ is the event that Si E ( 1, 2, • • • , NI for all j, 0  j  m. 

Pr{ overflow occurs for the first time at il (22) 

--- Pr( (E 1 = 1) n (.32, = N) 
= 7r Pr( (Si_i = N n x i_l) I , from the independence of (Et' 
=  (23) 

where { Qi } is as defined in eq. (5). It has been shown in Section 2.1 that 

Q. = AQi_i.  (6) 
Hence, 

O. = rQi_i(N) 

= v(0, • • • , 0, 1)Qi_i 

ir (O, • • • , 0, 1)A 'Qo 

= reriA  (24) 

where ei denotes the vector* with a single element equal to unity at the 
ith location and all remaining elements 0; r = N ± 1. Finally, 

FN = Mean time for first passage through level N 

Let 

= E i0i 

7r E iert Ai--1(20 

=re,' (E  Qo 

rer'(I — A)-'(I — A)-1 Q0• 

xt  ei(I — 

* The superscript t denotes the transpose of a vector. 

(25) 

(26) 



so that 

But 
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xe (I - A) = e: •  (27) 

1 
xi = - (1, 1, • • •, 1) 

7F 
(28) 

is a solution of (27) since the elements of the last, i.e., (N + 1)th 
column of A sum to (1 - 71-) and the remaining columns sum to 1. 
Moreover, (28) is the unique solution of (27) since (I - A) is non-
singular. Hence, 

FN = (1,1 • • • ,1)(I - A)-'4Q0 

= P(1 - A)-190  (29) 

where 1 denotes the vector with all elements equal to unity. In the 
following section, the above formula with Qo = el is analyzed further 
to yield a recursive formula. 

4.1 Recursive Formula for FN 

Henceforth, it is necessary to be specific about the dimensions of 
A-the matrix A associated with a given N is denoted by A (N). 
The buffer is assumed to be initially empty, i.e., So = 0 or, equiv-
alently, Qo = ei. 
Since* II - A (N) I[I - A (N)]-Iel is the vector of (signed) 

cofactors of the 1st row of [/ - A (N)] 

II - A (N)I1e[I - A(N) 4e1 = ID (N) I  (30) 

where D (N) is the (N + 1) by (N +1) matrix obtained from A (N) by 
replacing all elements of the first row of A (N) by unity. Then, from 
(29), 

ID(N)I 
FN =   (31) 

I/ - A (N) I 

Adding rows 2, 3, • • •, (N + 1) of [/ - A (N)] to the first To w, 
it can be verified that 

II - A (N) I = 7F N +1 .  (32) 

In Appendix A it is shown that 

ID(N)I = ID(N - 1)1 - (1- r)7rkID(N - k - 1)1 ± TN . (33) 

* 1X I denote the determinant of the matrix X. 
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Hence, 

I D(N)1 = 1 1D(N — 1)1 (1 — 7r)irk I D(N — k — 1)1  1 
  + — , (34) 

N+1  N  k+1  N—k ir  ir  ir  ir  ir r 

i.e., 

1  1—ir 1 
FN = —F N-1   FN—k-1 

7T ir 7r 
(35) 

The above relation is the desired recursive formula for the mean first 
passage time. It was obtained under the assumption that the buffer 
is initially empty. An alternative assumption about the initial distribu-
tion, which is also of interest, is that the buffer contains an unit symbol, 
i.e., So = 1. It may be shown that even for this case the mean first 
passage time satisfies the formula (35) though, of course, the initial 
conditions to the recursion in the formula are different. 

V. PROBABILITY OF NO OVERFLO W IN A BURST 

The results of this section are useful when information concerning 
the length of bursts is available. It is assumed that the distribution of 
burst length may be expressed as a weighted sum of geometric distribu-
tions. Given below are formulas which yield the probability that the 
contents of the buffer during bursts do not exceed N, a given positive 
integer. 
At this stage, assume that the distribution of burst length is geomet-

ric; the generalization to distributions that are weighted sums of 
geometric distributions will be taken up later. If the burst length is 
denoted by 1, then 

1311/ =  = (1 — p)pi—O i = 1, 2, • • • .  (36) 

for some p, O < p < 1. Let GN g Pr buffer contents do not exceed N 
during a burst) . The usual decomposition into mutually exclusive 
events yields 

GN = E Pr IS; E (0, 1, • • • , N),  j = 0, 1, • • • , m; 
m 

= E Pr {Xm n ---

= E Pr {X„,}Pr{/ = ml. 
m >1 

and burst length = m 

(37) 



FORMULAS ON QUEUES-I  21 

The last relation holds since, Pr( X. Il = ml = Pr { X„.1. Now, 

Pr { X„,} = E PriS.  n xml 

= E Q.(i)  from (5), 
1=0 

= PQ. 

= l'AmQ0 (38) 

where A is the (N  1) by (N ± 1) transition matrix defined in 
Section 2.1 and Qo is the vector given by the initial distribution—it 
may be assumed that So E (0, 1, • • • , N). Hence 

GN = E PA-Qo(1 — p)p"" 

(1 — p) 
 P E (pA)"} Q0 
P  mk1 

- p 
  l'[(1 — pA)-1 — I1Q0 

(1 - p) 
  11'(I — pA)-1(20 — 11 •  (39) 

In the sequel, a recursive formula for GN is developed for the case 
where So = 0 or, equivalently, Qo = el. 

5.1 Recursive Formula for GN 

The matrix A associated with a given N is denoted by A (N). 
II — pA (N) I II — pA (N)I —'el is the vector of (signed) cofactors of 
the first row of I I — pA(N)I . Therefore, I I — pA (N) Ilt {1— pA(n)j —'ei 
is the determinant of the matrix B(N) obtained by replacing every 
element of the first row of II — pA (N) I by unity. 

IB (N)   

II — pA(N) I 

Let the (signed) cofactor of the element II — pA(N)1 be denoted by 
C", i = 1, 2, • • • , N ± 1. From the definition of B(N), 

1'j1 — pA(N)I —lei — 

IB( N)I =  E 

(40) 

(41) 
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The elements of the (N ± 1)th column of II — pA (N)I sum to 
{ 1 — p (1 — .11)1 and the elements of the remaining columns sum to 
(1 — p). Hence, by adding the rows 2, 3, • • • , N + 1 to row 1, it follows 
that 

N 
II — pA(N)I = (1 — p) E C" + 11 - p (1 — ir)1C1.1v+' 

i-.=1 

= (1 — p)IB(N) ± pirC1,N+1 from (41) , 

I B (N) l  1  Pr  

I I — pA (N)l  1 — p  1 — p II — pA (N) l 

Recapitulating, 

1 — p 
GN =  Ele{1 — pA (N)} -1 e 1 — 1]  from (39) 

= 

P 

1 — p r  !BR)!   1 
P  L I / — pA (N)  

from (40) 

(42) 

C,N+1 
— 1 Ir   from (42).  (43) 

II — PA (N) I 

The remainder of the derivation is in two parts. First, a closed form 
expression for C1.1"-' is obtained. The second part is on the recursive 
formula for II — pA (N) I and this formula is derived in Appendix B. 

I — pA (N) = 

1  23 k-I-1 k+2 

lL  1O  X 

N +1 

• p.1 0  x 

' ii 1 0 
g 1 

1 
2 

N —k +1 

N 
N +1 

(44) 
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where — p(1 —  7r) = X and —  CI,N-1-1, the (signed) cofactor to 

{ / — pA(N)11,N+1, is the signed determinant of an upper triangular 
matrix; 

CI ,N +1 =  1) N-F2  =  1)N +2 ( _ inr ) N 

= pNR.N. 
(45) 

In Appendix B it is shown that if x,v, a scalar, is used to denote 
1/ — pA (N) I , then the following recursive formula holds: 

Hence, 

Let 

so that, 

XN = XN-1  p  k(l  7r)xN-k-1. 

XN  1  X N-1  )  1 —  ( 

N N  N-lp N-1 71" p Ir 

A  XN  I — pA (N) 
YN =   

IT N Np 

1 
YN =  YN-1 

irp 

From (43) and (45), 

GN = 1 

N Nir  p 

1 —  7r 

7r 
YN-k-1. 

Ir N+1p N 

— pA (N) 

7r 
G N = 1 - - • 

YN 

(46) 

(47) 

(48) 

(49) 

(50 ) 

(49) and (50) together provide the desired recursive formula for the 

probability that the contents of the buffer does not exceed a given level 
N during bursts if the buffer is initially empty and the distribution of 
burst lengths is geometric. 

Suppose the distribution of burst lengths is the weighted sum of 
geometric distributions; i.e., 

Pr (burst length = i} = E ai(1 — pi)(p  (51) 
j=1 

It may then be shown that G2v = E=IociGi,N where G j,N is obtained 

from (50) and (49) with p replaced by pi in the latter equation and 
Gj,N identified with U N. 
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VI. MEAN TIME FOR FIRST PASSAGE IN A BURST 

In Section IV certain formulas for the mean time for first passage 
across prespecified levels are given. In burst processes where data 
regarding the length of bursts is available, a more meaningful functional 
is one in which a level is defined to be crossed only if this event occurs 
during a burst. Bursts, then, may be visualized as a period of observa-
tion of the buffer. First passage across N, a positive integer, is defined 
to occur at i if 

IS; N, j = 0, 1, 2, • - • , i — 1 and Si N  1 and, 
burst length  . 

Let Ri denote the probability of this event. The functional of interest 
is HN = E7-- iiRt. The burst length distribution is assumed to be 
geometric; generalization to larger classes of distributions may be un-
dertaken as indicated in the preceding section. Hence, if 1 denotes 
burst length, 

Prl/ =  = (1 — i = 1, 2, • • •  (52) 

for some p, O < p < 1. 
In the notation of Section 2.1, 

Ri = Pr {8_i = N (.1 Xi_1  = 1 nt 
= PriEi_i = 111Dr(S1_i = N n xi_iit ilPr{/ 
=  = N (1 Xi_i}Prl/ 

=71-e:(pA)i--1(20.  (53) 

A is, of course, the (N ± 1) by (N + 1) matrix defined in Section 2.1 
and Qo is the initial condition vector. 

HN = rer( Ei(PAY-5(20 

HN =  —  — pA)-1Q0.  (54) 

The above concludes the derivation of the closed formula for H,v—the 
rest of the section is concerned with recursive versions of the formula 
for the case where the buffer is initially empty, i.e., Qo = ei. Once again, 
it is necessary to revert to the use of the symbol A(N) to denote the 
matrix A associated with N. 
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For fixed N, 

z(P) =  E pi+'A i(N)ei 

Hence, 

= pet, E (PA (N)I iei 
‘() 

— pA (N)} 

d 
(p) = —z(p) = e,. E (i+ 1) p'.21' (N)ei 

dp 

= E t PA (N) 
1 

1 
= H N • 

(55) 

(56) 

Returning to z(p) and (55), observe that 

pC1,N-1-1 
(p) —   (57) 

I I — pA(N)I 

Hence, 

and, from (56), 

Let 

Cl ,N+1 -  N N 
P 7r • (45) 

p  N 

z (p) —   (58) 
/ — pA (N)I 

d  p  N NA-1 
H N 

dp  — pA(N)If 

P N-1-1 N+1 à   
viv — pit (N)I 

(59) 

Since vN = (1/p7)yN where yN has been defined previously in (48) and 
the recursion in (49) for yN is linear, vAr satisfies the same recursion. 
Hence, with UN (d/dp)vN(p), the following formula is obtained: 

UN 
H N = — — 

2 
UN 

(60) 
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and, 
i 1  1 - 7r 
UN =  - VN -1   V N-lc-1 

Pr ir 

1  1 - r  1 
UN = - UN-1   UN-k-1 - - VN-1 • 

Pr ir  P27r 

VII. ASYMPTOTICS OF RECURSIONS 

(61) 

(62) 

The main recursions occurring in the paper are of the following 
forms: 

1  1—ir 
Xiv =  

ir ir 
XN-k-1 

1  1 —  7r  1 
YAr = - yet-1 

7r 

(63) 

(64) 

1 — ir 
Zs = —   XN-k-1  where 0 < p < 1.  (65) 

pir ir 

Equation (63) occurs in the formula for the (unnormalized) steady-
state probabilities and in the formula for the normalization constant; 
(64) occurs in the formula for the mean first passage time; (65) occurs in 
the formula for the probability of no overflow during bursts. The 
fundamental solutions of these recursions are obtained from the roots 
of the following polynomials. 

A  1  1—ir 
F(u) ek+1 

Ir 7r 

1  1 - r 
G(11) = m k+1  ±    

pir ir 

Equation (66) is associated with (63) and (64) ; (67) with (65). The 
two results given below enumerate and estimate the roots of F(p) and 
G(p) outside the unit circle. 

Lemma 1': Except for one positive real root 1/0, and 1, all other roots of 
F(p) lie inside the unit circle 1µ 1 1. The root 1/0 lies outside the unit 
circle if and only if k> ir/ (1 — 

Lemma 1 is a specialization of a result proved in Ref. 1. Bounds on 
O are also given there. 

Lemma 2 : G(11) has k roots inside the unit circle I ill 5 1, no roots in the 
annular ring 1 5 141 5 1/p, and one real, positive root outside the 
circle 11.41  11p. 

(66) 

(67) 



FORMULAS ON QUEUES-I  27 

Proof: 
- 

G(0)  1   > 0 

1 
G(1)  - (1 - 1/p) < 

1  77" [  1 

G(1/p)    1 —  < 0 . 
ir k+1 p 

Since G(0) > 0 and G(1) < 0, there exists a real positive root of 
G(M), r, where r < 1. Since G(1/p) <O and G(u) -> co as µ -> co , 
there exists a real positive root of G(g), R, where R > 1/p. The 
following theorem which is stated without proof may now be applied. 

Pellet's Theorem:" Given the polynomial 

f(s) = ao  aiz + • • • -F ape -I- • • • -F anz., ap  O. 

If the polynomial 

F „(z) = aol  lads + • • • -I- la,_ilzP-1 

- laplzP  lap+i lzP+' -F • • • lanizn 

has two positive zeros r and R, r < R, then f(z) has exactly p zeros in or 
on the circle 121 < r and no zeros in the annular ring r < Izi < R. 

Identifying p with k, n with k  1 and f (z) with G(1.4) the rest of 
the proof follows. 
The reader may now verify that, for large N, 

ZN Cl if  h< 
ir 

1 - ir 

C2N if  k = T/1 - 71" 

Ci +  C2 (-1 ) N ir if  k>   
1 — ir 

-F NC2  if  k < 
ir 

1 - ir 

ef- C1 NC2 + AnC3 if  k =-- 71-/1 - r 

Ci + NC2 + C3(1-1 )\N 
ir 

0  if  k>   
1 - ir 

zri  Ci(R)N 
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where, R and 1/0 are roots previously defined and the C's are constants. 
The constants may be obtained by fairly straightforward computations. 
The qualitative difference between the forms of the expressions 

corresponding to k < r/ (1 — 7r) and k > 7r/(1 — 7r) are noteworthy. 
This is not unexpected, since it may be recalled that in Ref. 1 it was 
proved in a more general context that the Markov chain associated 
with the infinite buffer is positive recurrent if and only if k > Tin — 

VIII. A MONOTONICITY PROPERTY OF THE PROBABILITY OF A FINITE 

BUFFER BEING FULL 

The steady-state probability of a buffer being full, i.e., P(N) where N 
is the size of the buffer [see Section III and, in particular, eq. (21)] 
may be expected to be an important factor in the practical design of 
buffers. This is so not only because of the immediate implications of 
the definition but also because 1/P(N) is the average recurrence time 
of state N. However, this approach would appear to overlook the 
possibility that the probability of the buffer being full in the transient, 
i.e., in the approach to steady state, is seriously underestimated by 
P(N). Such an event is not easy to rule out because, after all, P(N) is 
an element of only one (normalized) eigenvector of the transition 
matrix while all the modes or eigenvectors and eigenvalues of the 
matrix contribute to yield Pm(N) when m is finite. However, one of the 
implications of the result in this section is that, under certain conditions 
on the initial probability distribution of the contents of the buffer, 
P(N) is indeed an upper bound on P 7.(N), i.e., Pm(N) 5 P(N), 
m = 0, 1, • • • ; furthermore, the important case of the buffer being 
initially empty satisfies the conditions just mentioned. 
For a buffer of size N, the result states the following. Suppose at the 

mth instant the state probabilities satisfy the inequalities: 
i+k 

— (1 —  E P,,,(j)  Oi = 0,1, • • • , N — k  (68) 
j-i+1 

irP,n(i) — (1 — 7r) E Pm(j) 
/-i+1 

= N — k  1, N — k -I- 2, • • • , N — 1. (69) 

Then (a) P.,(N) 5 P .1_1(N), and, as shown below, (b) the inequalities 
in (68) and (69) are satisfied with Pm(l) replaced by P..4.1(/) for / = 0, 
1, 2, • • • , N. Therefore, if (68) and (69) hold, Pi(N)  P 1(N) for 
all j, i m; i.e., the probability of the buffer being full is a monotonic, 
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non-decreasing sequence. (a) may be trivially verified. The proof of 
(b) is as follows. 

(i) i = O. 

7rP.+1(i) — (1 — 7r)  ± 1) ±  ± 2) • • • +  k) 

= (1 — 7r)[P. (0) + P.(1) + • • • + P .(k)] — (1 — 7r)ir 

X LP. (0) ± P.(1) ± • • • P ni(k — 1)] — (1 — 7r)2EP .(k ± 1) 

P .(k + 2) + • • • + P.(2k)] 
(1— 7r)D rP .(k) — (1 — ir){ P .(k + 1) 

P .(k + 2) • • • -1- P.(2k)}] k 

(ii) 1 i N — 2k. 

rP  — (1 — 7r) P + 1)  P + 2) • • • -I- P  k) I 

— 7r)EP„,(0) P„, (1) ± • • ± P .(k)] — (1 — 7r)r [P.(0) 

P„, (1) + • • • + P .(k — 1)] — (1 — ir)2LP .(k ± 1) 

P .(k + 2) ± • • • + P .(2k)] 

= (1— 7r)D rP .(k) — (1 — 7r) { P .(k + 1) 

P .(k ± 2) ± • • • ± P „,(2k)j] k 0 

—k -1. 

rP  — (1 — 71-)1P.1_1(i ± 1) 

P.+1(i + 2) + • • • + P.+1(i k) 
IrEP .(i — 1) + (1 — 7r) P .(i k)] — (1 — ir) 

X 'IrEP .(i) P .(i + 1) + • • • + P .(i k — 1)] 

— (1 — 7r)2[P .(i k  1)  P .(i k  2) ± • • • ± P .(N)] 

= IrDrP.(i — 1) — (1 — r) P.(i) P .(i ± 1) 

+ • • • ± P  k — 1) H + (1 - 71-)D rP .(i k) — (1 — r) 

X 1P.(i k  1) + P .(i k  2) ± • • • + P .(N)}] k 0 

(iv) i = N — k. 

rP .+1 (i) — (1 — 7r) IP.4.1(i + 1) 

+ P.-I-1(i + 2) + • • • +  k)) 
= IrD rP (i — 1) + (1 — 7r) P  k)] — (1 — 7r)r[P.(i) 

P .(i + 1) + • • • + P .(i  k — 1)] — (1 — 7r)7rP .(N) 
= 7r•Dr/I)„,(i — 1) — (1 — r)1P.(i) 

Pm(ti + 1) + • • • ± P .(i  k — 1)1] k 0 
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(v)  1. 

71'.4.1(i) —(1 —  + 1) + P„,+1 (i + 2) + • • • -F P,,,+,(N)1 

7r2P  — 1) — (1 — 7r)7r[1) .(i) P m(ti -I- 1) + • • • + P .(N )] 

= 7rE7 .(i — 1)— (1 — 7r) {Pm()  Pm(i + 1) 

+ • • • P .(N)11 e_ 0 
(b) is proved. 
Observe that P„,(0) = 1, Pm(1) = 0, i = 1, 2, • • • , N satisfies the 

inequalities (68) and (69). However, the other initial distribution of 

interest, namely, P.(0) = 0, P.(1) = 1, Pm(j) = 0, = 2, 3, • • • , N 
does not satisfy the inequalities. Also, it may be verified that for the 

latter set of initial conditions, the monotonicity property does not hold. 
It is interesting to note that if (68) and (69) hold, then P.(0) 
P.+1 (0), so that together with (b), Pi(0)  P1+1(0) for all i, i m, 

i.e., the probability of the buffer being empty is a monotonic, non-

increasing sequence. 

APPENDIX A 

Recursive Formula for ID (N) 

1  2  le+1  N  N +1 

' 1  1   1  1 ' 
—'-  1  0  (7r -  1). 0 

D(N) = 

../r "1  0 
1. 0 

• • 1 
• — w  1 

1 
2 

N —/c +1 
N —k +2 

N 
N +1 

Expanding D (N)1 along the (N + 1)st row yields 

1D(N)1 = 1D(N — 1)1 + TIX1  (70) 

where 



1 2  k + 1 
-1  1   
-7r 1 0 (ir - 1) . •  . 

x º 

FORMULAS ON QUEUES-I 

L ir 1 0 

-ir 1 0 

-ir 1. 0 

N - 1  N 
1  1 

' . (7r - 1)  0 

0  0 

0  (w - 1) 

-Ir . 1 

-Ir 

0 

0 

31 

1 
2 

N - k - 1 

N - k 

N- k+ 1 

N 

Expanding 1X1 along last column: 

1X1 = (-1)N-1-1(-7r)N-1 ± (ir - 1)(-1)N+(N-H-1) I yl  ( 7 1 ) 

where 

Y -4 

1  2  k + 1  N - 1 

1  1   1 
-Jr  1 0  7r - 1 . 

- 7r • 1  0 
-ir 1 

-7,- - 1 
O 

-ir  ' 1 
- ir 

1 
2 

N - k - 1 
N - k 

N - 1 

Expanding 1Y1 along the last (k - 1) row. 

1Y1 = (-w)k---1 1D(N - k - 1)1.  (72) 
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Combining (70) through (72): 

ID(N)I = ID(N— 1)1 — (1— r)irkID(N — k — 1) 1 . (73) 

APPENDLX B 

Recursive Formula for I — pA(N)I 

I — pA(N) is given in (44). Let x. denote II — pA(N)¡.  Also, 

X = —p(1 — ir) and  = —pr. 

(i) Expand 1J — pA (N) I along the last, i.e., (N + 1)th row, of 
[/ — pA(N)]. 

xN = xN--1  1£1)C1  (74) 
where 

1  2  k+1 
1+X  X. . . ),  0 
12  1 0 X . 

x 

N 
0'  1 

2 

O 0A O  

O X 

N -k -1 
N -k 
N-k +1 

J.!  1  0 
•  N 

(ii) Expand (XI along the last, i.e., Nth column of X. 

IXI = (-1)(N—h-Fi)+NxIY I 

= (-1) "XlY1 
where 

1  2  k+1 
1+X  X . . X 
p  1. X 

• 

p .1 0  • X 
P  1 0  0 
O p 1 0 0 

• p• 1 

1 
2 

N -k -1 
N -k 
N -k-F1 

N -1 

(75) 
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(iii) Expand I VI along the last k — 1 rows. 

Y = 

Hence, 

— pi X1 

- g( -1 )"X Y 

— g( - 1) b-l )tg "-xy-k-i 

— pk4-'7k(1 — r)XN-k-i• 

REFERENCES 

33 

(76) 

from (74) 

from (75) 

from (76) 

(77) 

1. Mitra, D., and Gopinath, B. "Buffering of Data Interrupted by a Source with 
Priority," Proc. Fourth 21éilo mar Conf. Circuits Syst., 1970. 

2. Sherman, 10. N., i "Data Buffer Occupancy Statistics for Asynchronous Multiplex-
ing of Data n Speech," Proc. Intl. Conf. Commun., IEEE, San Francisco, 
1970. 

3. Brady, P. T., "A Technique for Investigating On-Off Patterns of Speech," 
B.S.T.J., 44, No. 1 (January 1965), pp. 1-22. 

4. Brady, P. T., "A Model for Generating On-Off Speech Patterns in Two-Way 
Conversations," B. S. T. J., 48, No. 7 (September 1969), pp. 2445-2472. 

5. Limb, J. O., "Buffering of Data Generated by the Coding of Moving Images," 
B.S.T.J., 51, No. 1 (January 1972), pp. 239-259. 

6. Limb, J. O., private communication. 
7. Haskell, B., private communication. 
8. Karlin, S., A First Course in Stochastic Processes, New York: Academic Press, 

1966. 
9. Taussky, O., "A Recurring Theorem on Determinants," Amer. Math. Monthly, 

58, 1949, pp; 672-676. 
10. Marchen, M., 'Geometry of Polynomials," Mathematical Surveys, 3, Amer. 

Math. Soc., Providence, Rhode Island, 1966. 





Copyright 0, 1973 American Telephone and Telegraph Company 
THE BELL SYSTEM TECHNICAL JOURNAL 

Vol. 52, No. 1, January, 1973 
Printed in U.S.A. 

A Frame-to-Frame Picturephone® Coder 
For Signals Containing Differential 

Quantizing Noise 

By D. J. CONNOR, B. G. HASKELL, and F. W. MOUNTS 

(Manuscript received July 18, 1972) 

The frame-to-frame coder described in Ref. 1 used an 8-bit PC M signal 
for input. If, instead, the signal is obtained by digitally integrating the 
output of an element difference coder, the quantization noise may be mis-
interpreted as motion, and cause unnecessary transmission. In the 
particular example of the Phase I coder,2 the quantization noise loads the 
frame codec to the extent that it produces an unacceptable picture. 
In this paper, a frame-to-frame coder for Picturephone® signals is 

described which is capable of coding the digital output of a Phase I codec 
for transmission over a 2-megabit/second channel. Improved methods are 
used to segment the noisy picture into moving areas and background areas. 
The moving areas are then transmitted using a number of data reduction 
techniques. During periods of slow movement, clusters of frame-to-frame 
differences in the moving area are transmitted. For moderate movement, 
frame differences are sent only in every other field, the moving areas of 
intervening fields being transmitted by a conditional field interpolation 
technique. For rapid movement, 2:1 horizontal subsampling is used, and, 
finally, during violent motion when the buffer fills, frame repeating is used. 
The picture quality obtained from a laboratory simulation of this 

system is believed to be satisfactory even for a very active subject. With 
small amounts of motion the subjective quality is actually improved because 
the visibility of the quantizing noise from the Phase I codec is reduced by 
the inherent frame repeating action of the coder. 

I. INTRODUCTION AND SUMMARY 

In Ref. 1 an 8-bit-per-picture element (pel) Picture phone-type signal 
is coded using only 2 megabits/second (Mb/s). Clusters of significant 
frame differences are transmitted using a double-length code (four-bit 

35 
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and six-bit) for the frame differences and eight-bit addresses for the 
clusters. During periods of moderate movement, every other significant 
frame difference along the line is transmitted, the intervening elements 
being obtained by linear interpolation. If, during violent motion, the 
buffer fills, frame repeating is used. 
In this system a frame difference was deemed significant if its 

magnitude exceeded some threshold value (T = 4, 5, 6, 7) which 
depended on the buffer fullness. Two exceptions to this criterion were 
made, however: (i) if a significant change was surrounded on both 
sides by two insignificant changes, then the change was deemed 
insignificant, and (ii) if two clusters of significant changes were 
separated by three or less insignificant changes, then the clusters were 
joined by relabeling the intervening changes as significant. 
For maximum flexibility of the Picturephone transmission system, it 

is desirable that an interframe coder be able to accept as an input a 
signal that has previously been coded by an intraframe coder, such as 
an element difference coder. Such a signal will have a significantly 
higher level of quantization noise than an 8-bit PCM signal. The 
Phase I code& is an example of an element difference coder. Since the 
quantization noise from this coder has been carefully shaped for 
minimum visibility, the signal it produces probably contains the highest 
noise level of any signal likely to be encountered by an interframe 
coder. Designing an interframe coder to work with such a signal thus 
reveals many of the problems involved in working with signals having 
realistic noise levels. 
If the input signal contains element differential quantizing noise, 

the system in Ref. 1 does not perform well at all. An inordinate 
number of sizable frame-to-frame differences arise due to the quantizing 
noise, and in the case of the Phase I codee, acceptable video transmis-
sion at 2Mb/s is impossible. Raising the threshold of significance 
reduces the number of background frame differences which are trans-
mitted, but it also reduces the number of subjectively important frame 
differences in the moving area which are sent. Unacceptable picture 
quality results. 
Averaged over a small region in space and time, the frame differences 

due to quantizing noise differ in many ways from the subjectively 
important frame differences due to movement. For example, frame 
differences due to movement are correlated spatially, whereas frame 
differences due to quantizing noise are not. 
These properties have been exploited to give a method for segment-

ing the picture into moving areas and stationary areas.' The moving 



FRAME-TO-FRAME CODER  37 

area as defined by the segmenter tends to be slightly larger than the 
actual moving area, but it has been found that this is necessary if a 
subjectively acceptable picture is to be obtained. 
The number of picture elements which must be transmitted using the 

noisy input and this segmenter is much larger than with the 8-bit input 
and the segmenting criterion of Ref. 1. Thus, even with a good seg-
menter, the data rate is larger than 2 Mb/s using only the data reduc-
tion techniques of Ref. 1. Other means of data compression are required 
if a 2-Mb/s rate is to be obtained. 
Two techniques are proposed. First, since the segmenting criterion 

used here requires that all picture elements in the moving area be 
transmitted, a large number of zero frame differences are sent, i.e., 
the average transmitted frame difference is much smaller than in 
Ref. 1. Under these circumstances, variable word length codes can be 
used to good advantage. Using a variable word length code optimized 
for moderate motion, only about two bits per frame difference are 
required on the average. Using this same code during periods of active 
motion requires about three bits per frame difference on the average. 
Using the new segmenter and variable word length coding of frame 

differences, transmission below 2 Mb/s is easily accomplished during 
periods of slow movement. When motion becomes a little more rapid, 
however, the 2-Mb/s rate is surpassed, and another data compression 
technique must be used. Two-to-one horizontal subsampling generally 
results in subjectively unacceptable picture quality because the 
movement is too slow to hide the resolution loss. Thus, a conditional 
field interpolation technique" is used as the second method of data 
rate reduction. 
With this technique, frame differences in the moving area are 

transmitted only during every other field. Each pel in the moving area 
of the intervening fields is obtained at the receiver by a four-way 
average of vertically adjacent picture elements in the two fields 
adjacent to the one being coded. However, if the four-way average is in 
error by an amount larger than some prescribed threshold, then a 
quantized correction value must be sent to maintain acceptable 
picture quality.' 
The receiver as described above would still have to be told 

which picture elements in the intervening field are in the moving 
area, and which are in the background. However, since movement is 
so highly correlated from field to field, we believe that this information 
can be extracted from the two fields adjacent to the one being 
interpolated. 
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With rapid motion, 2: 1 horizontal subsampling can be employed. 
This is brought in under buffer control. When motion becomes violent 
and the buffer fills, then transmission ceases for one frame period and 
the previous frame is repeated. 
Using the data compression techniques described above, a laboratory 

simulation was constructed to test the important aspects of a 2-Mb/s 
frame-to-frame codee that is capable of coding the digital output of a 
Phase I codee. A simplified block diagram of the simulation is shown 
in Fig. 1. A digital signal identical to the output of the frame-to-frame 
codee was passed through another digital Phase I codee without degrad-
ing the picture noticeably. The system described is capable of accom-
modating about the same amount of movement as that in Ref. 1, 
with a picture quality comparable to that of the Phase I codee. 
The Phase I codee was designed, of course, without any thought of 

frame-to-frame coding. It is not surprising, therefore, that many 
difficulties arise when frame-to-frame coding techniques are applied 
to the output of a Phase I codee. Changes in the Phase I coder to reduce 
the quantization noise would not only result in a simpler interframe 
coder, but could also lead to a data rate less than the 2 Mb/s obtained 

here. How much less will have to await further study. 
The next four sections describe in more detail the operation of the 

frame-to-frame coder. The last section describes the simulation. 

II. SEGMENTING THE PICTURE INTO "MOVING" AND "STATIONARY" AREAS 

An essential preliminary to the development of the coder described 
in this paper was the development of methods for detecting or segment-
ing the moving area in a video signal which has already been corrupted 
by noise due to an in-frame coding operation. A full description of the 
work done on this problem will be given in subsequent papers. In this 
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TO DISPLAY 

Fig. 1—A simplified block diagram of the simulation showing the signals used 
and produced by the segmenter. 
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section, we will simply state the various properties of the video signal 
and the coding noise which can be exploited in detecting the moving 
area. Following that, we give a description of the actual segmenter 
that was developed for use in the system described in this paper. 
In order to separate the frame-to-frame brightness changes caused by 

movement from those caused by noise from an element difference 
quantizer, advantage can be taken of certain distinguishing properties. 
The most important property of the movement-generated frame 
differences is that they are spatially correlated. Two properties of the 
noise are important: 

(i) It is almost entirely uncorrelated spatially; 
(ii) The magnitudes of individual noise spikes are equal to the 

spacing of the representative levels used in the element differ-
ence quantizer. 

The second property of the noise results from the fact that in stationary 
areas a small noise perturbation from one frame to the next can cause 
a change in the representative level used to encode a particular element 
difference. This change will be to an adjacent representative level in 
the quantizing scale, and, consequently, the resultant frame difference 
will be equal to the spacing of those levels. The more widely spaced 
outer levels of the companded quantizing scale are used to encode 
detailed areas and contrasty vertical edges. Thus, the frame difference 
noise is greatest in these regions. 
Finally, a useful property of moving areas is that they are spatially 

and temporally contiguous. In other words, if a pd l is in the moving 
area, it is highly probable that the spatially adjacent pels and the same 
pel in the next frame are in the moving area. 
The signals employed by the segmenter in detecting the moving 

area are indicated in Fig. 1. A block diagram of the processing of the 
quantized element difference signal and the frame difference signal is 
given in Fig. 2. The frame difference signal undergoes two separate 
spatial filtering operations which increase the signal-to-noise ratio for 
the spatially correlated frame differences caused by movement. 
Filter A is designed to enhance the frame difference signal associated 
with moving edges and particularly with vertical edges moving 
horizontally. This signal is characterized by high horizontal spatial 
frequencies and lower vertical spatial frequencies. By averaging the 
frame difference signal from adjacent lines, these low vertical fre-
quencies are enhanced relative to the spectrally flat frame difference 
noise. 
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Filter B is designed to enhance the frame difference signal associated 
with the movement of relatively flat areas. This signal has most of its 
energy at low spatial frequencies. By averaging the frame difference 
signal in an 8-pel-by-2-line area, an increased S/N ratio is obtained. 
After the averaging operation, the signals from both filters are rectified 
since the frame difference signal can be of either sign. 
Although filter B enhances the movement-generated frame differ-

ences in relatively flat areas, it is found that in highly detailed, 
stationary areas its output commonly exceeds the output arising in 
slowly moving, flat areas, such as hair. Thus, simple threshold detection 
is no good. However, it is possible to compensate the output of filter B 
for these detail-dependent variations in the frame difference noise by 
subtracting a filtered estimate of the magnitude of the noise signal. 
As mentioned above, individual frame differences caused by quantiz-

ing noise are equal to the spacing between representative levels of the 
element-difference quantizing scale. Thus, in blocks C and D in Fig. 2, 
the filtered estimate of the noise signal is derived from the quantized 
element-difference signal by generating at the output of block C a 
non-negative signal that is proportional to the spacing between the 
input representative level and the adjacent smaller level in the element-
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difference quantizing scale. (Because the probability distribution of 
element differences is monotonic and peaks at zero, the most probable 
transition between representative levels due to a noise perturbation is 
from an outer level to the adjacent smaller level.) The estimated 
frame-difference, noise-magnitude assignment for the representative 
levels is modified for the four inner levels of the 16-level quantizing 
scale of the Phase I codee as shown in Table I, which gives the output 
versus input for block C. This modification reflects the fact that noise 
frame-differences are relatively small in flat areas of the picture. 
Experimentally it was found that flat, stationary areas could be more 
easily distinguished from flat, moving areas if no noise compensation 
was used in these regions.  Thus, the estimated frame-difference 
noise magnitude for the four inner levels is set to zero. 
The filtered and noise-compensated frame-difference signals serve 

as inputs to the decision logic of block E. This logic takes advantage of 
the fact that moving areas tend to be contiguous both spatially and 
temporally. Thus, if movement is occurring at a particular pel, there 
is a high probability that movement is occurring at pels that are 
spatially and temporally adjacent. Consequently, the philosophy for 
the design of the decision logic was to use a high decision threshold for 
the detection of movement in regions of the picture which were 
previously stationary, and a lower threshold in regions where move-
ment had recently been detected. 
A block diagram of the decision logic is given in Fig. 3. (For simplic-

ity, a number of delays required to keep the binary signals in register 
have not been shown.) The filtered and noise-compensated frame-
difference signals serve as inputs to this logic. They are first converted 
to binary signals by threshold operations having the following transfer 
characteristics, 

B, = 1 if F Ti 

B = O if F  T, 

where F is the input, T, the threshold, and B, the corresponding binary 
output signal. A control signal from the interframe coder that indicates 
the amount of movement by measuring the buffer fullness is used to 
raise the thresholds 711 and T3 during periods of fast motion.' Move-
ment detection is easy in this situation, and the segmenting accuracy 
can be increased. 
In order to best describe the operation of the decision logic, we will 

start with the block labeled "Binary Threshold Logic with Hysteresis." 
This block will be referred to as an N out of M (N/M) device after 
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TABLE I— REPRESENTATIVE LEVELS OF PHASE I CODEC QUANTIZER AND CORRE-
SPONDING ESTIMATES OF FRAME DIFFERENCE NOISE MAGNITUDE 

Quantized Element 
Difference 

Estimate of Frame Difference 
Noise Magnitude 

±2/256 
±6 
±14 
±30 
±46 
±62 
±78 
1).1 

0/256 
o 
4 
8 
8 
8 
8 
8 

Limb and Pease., A block diagram of this device is given in Fig. 4. 
The accumulator in the N/M device keeps a count of the number of 
ones in the 8-by-3 block of 24 pels adjacent to the pel of interest as 
shown in Fig. 5. (Thus, M is 24.) If the output of the accumulator is 
greater than or equal to the threshold N1 = 9, the output flip-flop is 

set; and segmenter output function B6 becomes a one to indicate 
moving area. In keeping with the design philosophy mentioned above, 
the flip-flop can only be reset by having the output of the accumulator 
drop below the lower threshold N2 = 4. Note that by setting N1 equal 
to nine, the signal B3, which indicates the occurrence of flat area 
movement on the present line can never by itself cause the flip-flop to 
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Fig. 3—Decision logic. The N/ M device processes binary signals from the present 
nd previous fields to produce the moving area signal. 
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the moving edge signal 134. 

be set. Initially, the only way the flip—flop can be set is for a one to 
occur in the signal Bg. Since this function indicates movement of edges, 
edge movement must be detected before flat area movement. However, 
once edge movement is detected, the flip-flop is set and the lower 
threshold N 2 determines whether adjacent pels on the same line will 
be designated as moving. In addition, referring to Fig. 3, if B2, which is 
a more sensitive but noisier indicator of flat area movement than B3, 

is a one when the flip-flop is set, B6 will be a one. Hence, in keeping 
with the design philosophy, the value of N1 for the spatially and 
temporally adjacent pels in the next field will be effectively lowered by 
the appearance of these ones in B7 and Bg. As a result of the interactions 
described above, the N/M device tends to fill in moving areas, and to 
designate areas as moving for a short while after they become 
stationary. 
Given the above description of the N/M device, the functions and 

choice of design variables for the various other blocks in Fig. 3 become 
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Fig. 5—Arrangement of the 8-by-3 block of pels monitored by the N/M device. 
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evident. The threshold T1 is set relatively high ( -s,10 on an 8-bit PCM 
scale of 256 levels) to insure that a binary one in the function B1 is 
indeed caused by the movement of an edge. This function undergoes 
further processing so that isolated ones (no other ones within two pels 
horizontally in either direction) arising from noise spikes are set to 
zero.' Similarly, the threshold T3 is set relatively high (—.4/256) to 
insure that the condition B3 -= 1 corresponds to movement in flat areas. 
The threshold T2 on the other hand can be set lower ( --2/256), since 
it causes ones to occur in Bg only if the segmenter output, 115, is a one. 
However, it eliminates from Bg most of the "fill-in" pels generated by 
the N/M device. This process stabilizes the feedback loop around this 
device. 
If the thresholds T1 to T3 are fixed, they must be set quite low in 

order to detect very slow motion. Given the level of quantization noise 
from a Phase I coder, such low thresholds inevitably lead to the 
inclusion of some background points in the moving area. By using the 
control signal from the buffer, the thresholds can be made speed 
dependent. For even moderate motion, the segmenting is then virtually 
ideal. 

III. VARIABLE WORD-LENGTH CODING OF FRAME DIFFERENCES 

In Ref. 1, the 9-bit frame differences ( — 255 • • • 0 • • • +255) were 
quantized into 64 levels. Since the Phase I coder gives an effective 
6-bit signal (6 bits with the seventh bit alternately 0 and 1 along the 
line), only frame differences that are multiples of 4/256 can occur. 
This set of frame differences is sufficiently coarsely quantized for 
efficient transmission. 
Also, in Ref. 1 it was very much easier to separate the subjectively 

important frame differences from those few due to camera and system 
noise. In the system described here, where a Phase I signal is used as 
an input, once the moving area has been identified, all frame differences 
in it must be transmitted since it is not possible to tell which are due to 
movement and which are due to quantizing noise. Within the moving 
area, as defined by the segmenter, many zero frame differences do occur. 
However, since they are randomly interspersed among the nonzero 
frame differences, it is much more efficient to transmit them than it 
would be to delete them and address the remaining nonzero frame 
differences.' 
This causes the average magnitude of transmitted frame differences 

to be considerably smaller than in Ref. 1 where an 8-bit input is used. 
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Fig. 6—Typical histogram of moving area frame differences during moderate 
motion. Huffman code word lengths are shown for each level. 

Thus, a more complex variable word-length code can be used to good 
advantage in reducing the average number of bits required to transmit 
a frame difference. Preliminary measurements indicate that with a 
good variable word-length code, less than two bits per frame difference 
are required on the average during periods of slow movement. During 
moderate movement, a little more than two bits per frame difference 
are required; and during rapid movement, about three bits are needed. 
Figure 6 shows a typical histogram of the magnitude of the frame 

differences in the moving area during moderate motion. Also shown are 
the Huffman code word lengths corresponding to this distribution. 
The average word length per frame difference is 2.05 bits. 

IV. CONDITIONAL FIELD INTERPOLATION 

During very low-speed movement, variable word-length coding of 
frame differences in the moving area is sufficient to code at a rate 
below 2 Mb/s. Unfortunately, the speed at which the bit rate rises 
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Fig. 7.—Four-way vertical averaging. Fields 1 and 3 are sent via frame differences 
in the moving area. Information about moving area peis (E) in field 2 is sent only if 
the interpolation error 1E — (A+B±C-FD)/4 I exceeds a threshold. 

above 2 Mb/s is still too slow to hide the resolution loss incurred by 
2: 1 horizontal subsampling. Thus, another data compression technique 
is used. 
With conditional field interpolation (called conditional vertical 

subsampling in Ref. 4) only every other field is transmitted by sending 
frame differences in the moving area. The moving area pele in the 
intervening fields are obtained from a 4-way average of vertically 
adjacent pele in the two adjacent fields. In Fig. 7, fields 1 and 3 
have been transmitted via frame differences in the moving area, and 
pel E is to be sent via conditional field interpolation. Pele A and C are 
directly above E, and pele B and D are directly below E. The 4-way 
average (A ± B  C  D)/4 is computed and used as a prediction 
of E. If the interpolation error does not exceed some prescribed 
threshold value, then nothing is sent, and the 4-way average is used 
in place of E. If the interpolation error does exceed the threshold, then 
a quantized correction value is transmitted. 
Since the receiver treats background area in the interpolated fields 

differently than it does moving area, it must be told which picture 
elements are in the moving area and vice-versa. Preliminary measure-
ments indicate that addresses for the moving area of the interpolated 
fields could probably be transmitted using less than 0.1 Mb/s. Alter-
natively, the moving area of the interpolated fields might be satisfacto-
rily obtained from the union of the moving areas in the two adjacent 
uninterpolated fields. This would not require any additional informa-
tion to be transmitted. 
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In order to determine whether or not the field interpolation error 
was acceptable, threshold values between 7 and 15 out of 255 were used. 
These values gave acceptable to marginally acceptable picture quality, 
and a data rate which was drastically reduced compared with sending 
frame differences. 

V. BLOCK DIAGRA M 

Figure 8 shows a block diagram of the system. (The segmenting 
operation is shown in detail in Figs. 2 to 4.) During very slow movement, 
every field is transmitted by sending frame differences (B' — D) in 
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1-1. MOVING 
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_.--FOUR WAY INTERPOLATION ERROR 
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e  DURING INPUT OF INTERPOLATED FIELDS 
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LINE DELAY 

LINE DELAY 
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D 
A+B+C+D 

4 
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FIELD + 
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PHASE 1 
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Fla. 8.—Frame-to-frame coder for Pic,turephone® signals with Phase I quantizing 
noise. During field interpolation, information from two fields is fed to the buffer 
simultaneously. 
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the moving area as defined by the segmenter. S3 is in the 0 position to 
give an uninterrupted frame memory, and SI is in the 0 position so 
that no interpolation error information reaches the buffer. Si is 
controlled by the segmenter. When in the 0 position, the previous frame 
value D (see Fig. 7) is fed to delay I, and no frame difference is fed to 
the buffer. When in the 1 position, the new pel B' = D  (B' — D) 
is fed to the delay, and a frame difference is fed to the buffer for coding, 
addressing, and transmission. 
When movement becomes more rapid and the buffer fills beyond 

some prescribed threshold, only every other field is sent via frame 
differences in the moving area as outlined above. Mode switching occurs 
only at the end of a field. During input of a field which is to be inter-
polated, S2 and S3 are in the 0 positions allowing uninterpolated fields 
to enter delay II unchanged. Si is controlled by the segmenter as 
before; however, no frame differences are fed to the buffer for transmission. 
Coding and transmission of this field takes place at a later time. Thus, 
during input of interpolated fields no amplitude information is fed to 
the buffer. Addressing information needed to specify the moving area 
at the receiver could be sent at this time if it is found to be more 
efficient; however, this information could just as well be obtained from 
the output of delay III and sent later during the actual coding and 
transmission of the interpolated fields. 
During input of uninterpolated fields, coding and transmission of 

frame differences in the moving area are carried out as usual by means 
of switch Si. However, at the same time, coding and transmission of 
interpolated fields are also performed. When pel E in an interpolated 
field (see Fig. 7) emerges from delay I, pels A, B, C, and D are emerging 
from their respective delays as shown in Fig. 8. The output of delay 
IH identifies E as either a background or a moving area pel. 
If E is a background pel, S2 and S3 are switched to the 0 positions. E 

enters delay II and no information is fed to the buffer. If E is a moving 
area pel, then S3 is switched to position 1, and S2 is controlled by the 
threshold logic T. The threshold logic compares the magnitude of the 
interpolation error [E — (A + B  C  D)/4] with a prescribed 
threshold. If the error is smaller than the threshold value T, then S2 is 
opened (0 position), nothing is fed to the buffer for transmission, and 
the 4-way average enters delay II in place of E. If the interpolation 
error is too large, S2 is closed (1 position), a quantized interpolation 
error generated by the quantizer Q is fed to the buffer for transmission, 
and the corrected interpolation value is fed to delay II in place of E. 
A number of implementation aspects have not been discussed. 
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Fig. 9—Receiver configuration. Information is read from the buffer two fields at 
a time during field interpolation. 

For example: 

(i) All moving area picture element information fed to the buffer 
must, of course, be accompanied by addressing information, 
and efficient addressing may require that some of the switch 
control functions be modified, e.g., isolated point rejection, gap 
bridging (see Ref. 1). 

(ii) During field interpolation, information from two fields is fed 
to the buffer simultaneously. Thus, some multiplexing arrange-
ment must be devised in order to implement the system as 
described. For example, a buffer might be provided for each 
field and the outputs switched. 

(iii) The receiver configuration is very similar to that of the 
transmitter (see Fig. 9). 

(iv) Two-to-one horizontal subsampling, and frame repeating have 
not been discussed here since they are covered elsewhere." 

VI. SI MULATION OF THE SYSTEM 

A number of short cuts were taken to simulate the system described 
above. First, no coding, buffering or transmission of the data was 
undertaken. In the simulation, only the picture processing performed 
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at the transmitter was undertaken. The picture which would have 
appeared at a receiver in the absence of transmission errors was 
equivalent to the output of field memory II in Fig. 8. As in Ref. 1, 
buffer control of the picture processing was obtained by using an 
analog integrator to keep track of the number of bits that would have 
been in a real buffer had one been built. Also, as in Ref. 1, a buffer size 
of 67,000 bits was chosen so that it would completely empty if the 
input of data were stopped for one frame period. 
Second, the effect of the variable word-length coding was only 

partially simulated. Recall from Section III that with a good variable 
word-length code, pels in the moving area could be transmitted using, 
on the average, less than two bits per frame difference during periods of 
slow movement, approximately two bits during moderate movement, 
and about three bits during rapid movement. This was simulated by 
counting two bits per frame difference during periods of slow and 
moderate movement and four bits during rapid movement when 2: 1 
horizontal subsampling was employed. 
During conditional field interpolation, the same bit assignment 

scheme was used to account for the transmission of interpolation 
errors. Although transmitted interpolation errors were not quantized 
in the simulation, preliminary results indicate that they can be 
quantized quite coarsely. Thus, a 2-bit, 4-bit assignment is not 
unreasonable. 
Transmission of moving area addresses for the interpolated fields 

was not simulated. Preliminary measurements indicate that with rapid 
motion, the number of clusters requiring addressing is, on the average, 
about two per line. If 16 bits are used to address each cluster, then 
about 0.1 Mb/s would be required to transmit them. If, as was con-
jectured in Section IV, this moving area can be obtained adequately 
from the uninterpolated fields, then no extra information need be 
transmitted. 
Finally, transmitted information from interpolated fields was delayed 

by a field period before being fed to the buffer simulator purely for 
reasons of expedience. This means that during most of conditional 
field interpolation, information from two fields does not enter the 
buffer simulator at the same time as is described in Section V. This 
should not affect the results very much since much less data is gen-
erated during interpolated fields than during uninterpolated fields. 
However, frame repeating due to buffer filling may occur slightly 
more often in the actual system than it did in the simulation if the same 
buffer size is used. 
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The acceptability of the pictures obtained using the simulation 
described above was determined mainly by comparison with pictures 
from the Phase I codec alone. This codec gives pictures that have 
moderate amounts of both granular noise and edge busyness through-
out the picture. The frame-to-frame codec described above transmits 
information only about the moving area. Consequently, the Phase I 
codec noise in the background becomes stationary and, hence, much 
less noticeable. In this sense, the pictures are improved. 
Some loss of quality is caused, however, by the use of subsampling. 

Under some conditions, a slight jerkiness in the movement being 
depicted is noticeable as the codec enters the vertical subsampling 
mode. Also, for very high-speed movement, a slight checkered pattern 
at contrasty edges is detectable. This is caused by the use of both 
horizontal and vertical subsampling. 
On an overall basis, the picture quality produced by this 2-Mb/s 

codec is felt to be equal to the quality of the input Phase I codec 
signal. 
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A DC-to-2.3-GHz Amplifier Using an 
"Embedding" Scheme 

By GERARD WHITE and GEN M. CHIN 

(Manuscript received July 26, 1972) 

A novel circuit technique is described for embedding a high-frequency 
amplifier in a low-frequency circuit to achieve a defined, fiat gain from dc to 
the cutoff frequency of the hf amplifier. The technique provides this low-
frequency gain without compromising the hf design optimization. An 
embodiment of this technique is described which has provided, experi-
mentally, amplifier gain from dc to a half-power point of 2.3 GHz. 

I. INTRODUCTION 

This paper describes a novel circuit technique for providing broad-
band amplifier gain response from de to extremely high frequencies. 
The technique provides this wide spectrum response without com-
promising either the hf response or the de stability. This performance is 
obtained by "embedding" a parameter-optimized hf amplifier within a 
de gain-defining circuit, and providing means for ensuring a smooth 
transition between the low-frequency to high-frequency operating 
modes. This technique avoids the compromise of hf performance which 
is frequently present in direct coupled amplifiers.1.2 
Amplifiers with response to de are frequently required in communica-

tion systems employing a baseband Pulse Code Modulation (PCM) 
type encoding scheme where the entropy of the information signal is 
unknown. Because of the simplicity afforded by binary PCM, its use 
has been adopted in many optical systems.3.4 In such cases, the channel 
information rate is restricted mainly by the bandwidth of the electronic 
driving circuits. The economics of noncoherent optical systems again 
dictate the use of extremely broadband amplifiers and, if the system 
simplicity is not to suffer,' a gain response to de is required. Such 
systems should benefit from an hf optimized amplifier providing gain 
to dc. A particular realization of the embedding technique is described 
in this paper which may find use in such systems. This realization 
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provides essentially flat gain response up to approximately 0.5 of the 
constituent device common base cutoff frequencies. The technique 
results in an amplifier voltage gain of 8 dB over the range de to 2.3 
GHz with a step response rise time of 200 Ps. At frequencies below the 
pre-cutoff resonance, inband ripple is typically less than 1.5 dB. 

II. THE EMBEDDING TECHNIQUE 

Amplifier embedding is applicable to a number of circuit realizations 
but is best described in terms of the simple common emitter stage 
shown in Fig. 1. At dc, this stage exhibits a gain of 

Rei  Rc: 
Gdc    

-r R E2 

and at high frequencies the gain is simply Ghf = Rci/RE„ so that, 

by making the equality 

Rc1  Re: 

RE1  RE2 

Ac 

III 
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I I  4. n II AMPLIFIER 

I  I l 

I I J 
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RE 
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Fig. 1—Embedded common emitter stage. 
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the two portions of the gain spectrum, shown in Fig. 2, will be equal. 
In addition to this requirement, a flat transitional crossover is required. 
This critical crossover point has always been the major difficulty in 
split-band additive amplifiers.6 To analyze the requirements for a 
flat crossover, it is more meaningful to consider the practical circuit 
arrangement shown in Fig. 3. The circuit also incorporates emitter-
follower buffering stages at the input and output. The additional 

CA 

—HIGH FREQUENCY 
AMPLIFIER 

— Cc 

CE 

Fig. 3—Practical hf amplifier embedded in a low-frequency gain-defining circuit. 
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capacitances are for minimization of the lengths of the constituent 
current loops in the circuit for good high-frequency gain performance 
and the improvement of stability by effecting a reduction in the points 
of interaction of these loops. The condition for a flat gain spectrum 
can be analyzed using the simple equivalent circuit shown in Fig. 4. 
The simplicity of this circuit is afforded by the frequency of crossover 
(approximately 3kHz) being much less than the cutoff frequency of the 
transistor so that a low-frequency model is permissible. 
The transfer function of this circuit is readily shown to be 

vo src _ i 
V jn  R E1 L1  STE] 

ruic,/REI(1+,7„)± 1.11D —[sC BRc2(1 + E) + sC BR E2(1+ sr c)il 

L[licd R EI (1 + ST E) +1]D —ESC ERC2(1+STE)+sCERE2(1+STE)Ii 

where 

D = (1 + 87-c) (1 1- STE)  sRc2CB (1 + STE) ±  ERB2 C B(1 +  81-c) 

re = C 'CRC2, 

rE = CERE2, 

for 

= CC ± CD 

= CA CE 

R EI  R Ei  R E2 
- =   and  
Re, Rc1 + Rc2 

It is clearly seen that by making TE = re, the poles and zeros of the 
system cancel, thus producing a flat crossover. The value of GB is 
seen to be unimportant. Large values of C 5 will produce a dominant 
pole and zero which will tend to mask the required equality of Tc 

and TE. 

IN 

CE + CA = C'E 

Fig. 4—Equivalent circuit of embedded gain cell. 
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Ac  Rc + Rc2  

RE RE + RE 2 

Rc Rc + Rc 2 

R11 111 + R12  

Fig. 5—Embedding technique applied to (a) modified cascode stage, (b) shunt 
feedback stage. (Gain equality requirement indicated for lf and hf cases.) 

The consequence of separating the If and hf gain-determining 
components is that the If portion may be designed to ensure a high 
de stability (e.g., RE, large) without impairment of the hf optimization. 
The technique has more general applications to any gain stage where 

the stage gain is defined by the ratio of two real impedances; these 
further applications of embedding are shown for the modified cascode 
and shunt feedback stages of Figs. 5a and b. The realization of Fig. 5a 
is particularly important since the optimization of the high-frequency 
circuit parameters leads to frequencies of operation where the elimina-
tion of the Miller effect afforded by this circuit is important. Also, 
the low external emitter impedances presented provide an enhanced 
stability, important at these high frequencies. 
These circuits constitute a class of split-band additive amplifiers. 

Split-band amplifiers were first described by Wheeler' many years ago, 
but their successful realization has been retarded by the difficulties of 
achieving a satisfactory crossover mode in extremely high-frequency 
amplifiers. The embedding scheme provides a crossover transition at 
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relatively low frequencies so that its physical synthesis is straight-
forward. Although the internal gain is provided in a product sense, the 
embedding technique is essentially additive, and thus related to the 
distributed amplifier of Percival8 and the Gilbert9 gain cell. 

III. A DC—T0-2.3—GHZ EMBEDDED AMPLIFIER 

The embedding principle has been embodied in a broadband amplifier 
of the type shown in Fig. 3. This amplifier has been designed for 
optimum hf performance. To demonstrate the way in which this 
optimization is achieved without compromising the low-frequency 
stability, it is pertinent to indicate briefly the hf design optimization. 
The design procedure is based on the simplifying assumptions that the 
major frequency-limiting mechanisms are the frequency fall-off of the 
transistor current gain a (modeled as a single pole fall-off), and the 
collector-base capacitance of the gain transistor (this being assumed 
to be the dominant parasitic reactance). For simplicity, both effects 
are evaluated separately. The consequence of the former effect is 
evaluated by substituting the single-pole approximation for a in the 
gain transfer function for the stage, assuming negligible loading at the 
output of the gain transistor (this latter approximation is justifiable 
since the practical realization employs double emitter follower buffer-
ing to the output). The gain transfer function is 

V0 aRe, r  RE1,(1 _ a)2  

V i= RE, LRE1 (1 — «)° + 

R. being the source resistance. Upon substitution of the single-pole 
approximation to a, and making the further simplification that ao, the 
low-frequency, common-base, short-circuit gain, is equal to unity, the 
following equation results, 

Vo Re,  (1 + sr,.) 

Vi  REI L  2ST,„ —I— (1 + R»/ RE1)82Te,1 

where ra is the time constant associated with the single-pole approxima-
tion to the frequency-dependent current gain (r„,  1/w T). The 
dominant time constants here are a conjugate pair of poles at 

—1  11R./RE, 
pi, P2 =   

1 —I— R1/ RR,  1 ± R a/REI 

The position of these poles, normalized to 7«, is shown in Fig. 6. 
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Selecting a normal Butterworth response (Q = 0.7) gives 

1  •NtR./RE, 
Or  RE, = R.. 

1 + R./RE, 1 + R./RE, 

This may be interpreted as an upper limit on RR, which, of course, 
prohibits the achievement of a high de stability factor. Practically, 
the upper value of RE, is restricted by considerations of providing 
high-stage gain while maintaining a corner frequency, due to the 
collector base capacitance, of not less than the corner frequency due to 
high-frequency fall-off of the current gain. The devices used exhibited 
an fr of 4 GHz and a C ob of 0.25 pF. This output capacitance (plus 
other additive capacitance due to loading) restricts the value of 
Re, to 100 52 for a stage gain of 8 dB, with the concomitant effect 
that Rjr, (including the dynamic internal emitter resistance) be ap-
proximately 30 ohms. For efficient quiescent point definition, and 
hence de stability, the value of external emitter resistance should 
be of the order of 1000 ohms. These parameter values allow a com-
plete description of all other parameter values used. The embedded 
amplifier was designed with a band transition frequency of approx-
imately 3 kHz; this allows easily realizable synthesis. The actual 
circuit was fabricated using a hybrid technology consisting of tantalum 
nitride and gold thin films on alumina substrates with beam leaded 
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Fig. 7—Embedded amplifier in thin-film, beam lead technology. 

device chips. A photograph of this realization is shown in Fig. 7. The 
pulse response (see Fig. 8) exhibits a 200-ps rise time with a gain of 
8 to 10 dB; the frequency response (Fig. 9) shows a flat gain curve up to 

Fig. 8—Embedded amplifier pulse response. Upper trace, input. Lower trace, 
output. (200 mV/cm, 100 Worn.) 
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Fig. 9—Eight-decade gain response of broadband embedded amplifier. 

2 GHz with the exception of some parasitic resonance-induced devia-
tions just below 2 GHz. The conjugate pole resonance at 2 GHz is also 
apparent at the cutoff. This should easily be eliminated by choosing a 
suitable ratio of R„/RE, to provide a subcritical Q factor. 
The effect of mismatch of the emitter and collector circuit time 

constants, Tc and TE, is shown in Fig. 10. These waveforms illustrate 
the effects of gross mismatches where the relaxation times observed 
are commensurate with a 3-KHz transition frequency. 

IV. CONCLUSIONS 

A technique has been described for providing gain to de in hf 
amplifiers without compromising the hf circuit optimization. This 

Fig. 10—Mismatch of emitter and collector time constants. Upper, TE«rc. 
Lower, Tg aeTC. (5 ps/cm.) 
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embedding technique can be applied to a number of types of gain 
stage. The common emitter stage, from which results have been 
obtained, exhibited a dc-to-2.3-GHz bandwidth with a voltage insertion 
gain of approximately 2.6. The gain was restricted to this value to 
minimize the effects of collector-to-base junction capacitance. With 
other stages, such as the modified cascode, this restriction is not as 
severe, and much higher gains are to be expected. The high-to-low-
frequency transition is easily realized, in contrast to other split-level 
amplifier configurations. 
The enhanced dc stability available from the embedding technique 

favors a cascading of individual gain cells to obtain larger amplifier 
gains. It is worth noting that the freedom of choice of device operating 
point inherent in the embedding technique allows an optimization of 
biasing conditions for low-noise operation, appropriate to post-detec-
tion amplification in optical PCM terminals. 
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Coupling Coefficients For Imperfect 
Asymmetric Slab Waveguides 

By D. MARCUSE 

(Manuscript received July 6, 1972) 

This paper presents a collection of formulas that are necessary for the 
treatment of radiation and mode conversion phenomena of imperfect 
asymmetric slab waveguides. The coupled mode theory of dielectric wave-
guides is briefly reviewed, and general expressions for the coupling coeffi-
cients are given. The field expression of the guided and the radiation TE 
and TM modes of the asymmetric slab wave guide are stated, and are used 
to derive formulas for the coupling coefficient for slight core boundary 
irregularities. 

I. INTRODUCTION 

Mode coupling phenomena and radiation losses caused by core-
cladding interface irregularities have been studied extensively for 
symmetric slab waveguides and for round optical fibers.'-7 These 
results are not immediately applicable to the asymmetric slab wave-
guides used in integrated optics circuits. It is the purpose of this paper 
to collect the formulas for the normal modes of the asymmetric slab 
waveguides, and for the coupling coefficients between guided modes 
and guided and radiation modes caused by core boundary irregularities 
of these waveguides. 
The coupling coefficients between guided modes are useful for the 

design of distributed feedback sections for lasers and for an evaluation 
of unintentional mode coupling caused by core boundary roughness. 
The results collected in this paper are further necessary for the evalua-
tion of radiation losses caused by core boundary roughness. 
Because of the many parameters that enter into the theory, it is 

impossible to evaluate the formulas in graphical form for all cases of 
practical interest. This paper is thus a collection of the required 
formulas which the reader can use to evaluate his particular problems. 
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II. SUMMARY OF THE COUPLED MODE THEORY 

The coupling theory is based on an expansion of the solution of 
Maxwell's equations in terms of normal modes. The general theory of 
the mode expansion and the derivation of the coupling coefficients have 
been published by A. W. Snyder.2.3 His theory is based on local normal 
modes. Local normal modes resemble the modes of the ideal asymmetric 
slab waveguide with perfect core boundary. However, the boundary 
of the perfect guide is allowed to change in such a way that it coincides 
with the actual deformed core boundary at the particular point z along 
the waveguide axis at which the coupling coefficients are to be eval-
uated. Since the waveguide width parameter is no longer a constant, 
the local normal modes are not themselves solutions of Maxwell's 
equations. They must be superimposed with z-dependent expansion 
coefficients to form such a solution. The fact that these modes form a 
complete orthogonal set and coincide with the modes of a fictitious 
waveguide, the width of which is locally (at the point z under consider-
ation) the same as that of the deformed waveguide, explains the name 
"local normal modes." It is also possible to express the general field 
in terms of the modes of the ideal waveguide, the constant width of 
which differs slightly from that of the actual waveguide. This expansion 
suffers from convergence difficulties that are caused by the fact that 
the normal components of the electric field are discontinuous at the 
core boundary. The modes of the ideal guide are discontinuous at the 
dielectric interface of the ideal guide which does not coincide with that 
of the actual guide. The expansion in terms of ideal modes of the 
waveguide is thus discontinuous term by term at a point where the 
entire series must be continuous, and furthermore, it must describe a 
discontinuous field at the interface of the actual waveguide at a point 
where each individual term of the expansion remains continuous. The 
expansion in terms of local normal modes, on the other hand, describes 
the field discontinuity with a series, the individual terms of which 
are discontinuous in just the right way at the point of discontinuity of 
the entire series. The convergence behavior of this latter expansion 
can thus be expected to be superior to the expansion in terms of ideal 
modes. 
The electric and magnetic fields of the imperfect asymmetric slab 

waveguide are expressed by the series expansions 

(-0 (4.)  (--) 
E E (c, E,  cp 6, ) (1) 

(2) 
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The expansion coefficients c,(+) and c„(-)  are functions of the length 
coordinate z. The superscripts (±) and (—) indicate waves traveling 
in positive and negative z-direction. The sums in (1) and (2) are 
symbolic representations of a summation over guided modes plus an 
integration over the radiation modes of the continuum." In order to 
simplify the notation, both sum and integral are indicated by the 
same symbol. In the integral, the summation index y is replaced by 
the continuous variable v, and the sum must be understood as the 
integral 

E --> f oe dv. 
Jo 

The local normal modes E, and H, are solutions of the equations 

Fi/9,(e. X 3e)) 1- v X 3e) = iz.zeon2E,() 

(±)  (±) (±) 
TiOp(e. X ay ) + V x ay  = — icobion> . 

(3) 

(4) 

(5) 

The upper and lower signs and superscripts belong together. The 
symbols appearing in these equations have the following meaning. 

= propagation constant of mode v 
ez = unit vector in z-direction 
V, = transverse part of the operator V 
= radian frequency 

E0 = dielectric permittivity of the vacuum 
izo = magnetic susceptibility of the vacuum 
n = dielectric constant of the waveguide [n = n(x, y, z)]. 

Substitution of the field expansions (1) and (2) into Maxwell's equa-
tions and use of the orthogonality relations [see (9)] lead to the set 

n2 

x = fiz) 

n1 

x = — cl+h(z) 

CORE 

CORE BOUNDARIES 

Fig. 1—Sketch of the asymmetric slab waveguide with distorted core boundaries. 
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of coupled wave equations2 .4 

(+) 
de„ (+)  (+,+) (4-)  (4,-) (-) 

-  if3„cp  ± E (K„  cr + K„  cr ) 
dz  r 

(-) 
dc,,  (-)  (-,+) (+)  (-.-) (-) 
  - il3„cp  - E (K„„  cr -I- K„  cr ). 
dz  ,, 

The coupling coefficients have the form2,3 

(+) 

K (1 )  =  1 I.' 1 ± (" x Je l-ez 
4P J _op [ \ ûz 

ax„  
- p (6,,(+)*  X  (+) ) ez dx• 

az 
(8) 

The asterisk indicates complex conjugation. The superscript p stands 
for (±) or ( - ) while the factor p assumes the values +1 and -1. 
P is a normalization parameter which is related to the power carried 
by the modes via the relation 

oe  

Zr alry•  ) • ezux = 2 f  _co  (+)  , 

The symbol S„, indicates the Dirac delta function if both y and y' 
represent continuous variables, it represents the Kronecker delta 
symbol if both y and y' are discrete labels, and it is zero if one subscript 
belongs to discrete modes while the other indicates a mode of the 
continuum. 
The coupling coefficients (8) are not very easy to evaluate since they 

are expressed in terms of derivatives of the mode functions. A. W. 
Snyder' has shown that the coupling coefficients can be transformed 
to the following more useful form. car(-) =  0„(+)) 

(±,P)   E0  8112  (1) * (P) 

LI P W I)  e(p)) f  az p 
K„  =  --Z„  • tr dx.  (10) 

The coupled wave equations (6) and (7), with the coupling coefficients 
(10), provide an exact description of imperfect dielectric waveguides. 
The one-dimensional integral in (10) constitutes a specialization to a 
two-dimensional problem in view of our interest in the asymmetric 
slab waveguide. By extending the integration over the cross-sectional 
x, y plane, the general coupling coefficients are obtained. 

(9) 
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For our purpose, it is advantageous to derive approximate coupling 
coefficients for asymmetric slab waveguides with discontinuous index 
distributions. We use the fact that the normal component E, of the 
electric field obeys the relation 

= n22E.,2. 

It is shown in Fig. 1 that ni and n2 are the values of the refractive 
index at either side of the interface. In order to derive the desired 
expression for the coupling coefficient, we assume that the discon-
tinuous index distribution is smoothed out (in an arbitrary way) into 
a continuous distribution. We assume that the wavelength of the 
radiation is very much larger than the region over which the refractive 
index varies continuously and write 

2 

ni 
E., =  i. 

n' 
(12) 

We show in the appendix how the integral in (10) can be evaluated and 
obtain the result 

2 

E o  {  2  2 Cif [  (p)  (±).  (p) 

  (ni —  n2)— —4. 89.   4P(3(±) _ so,))  dz n' 
»  2 

2 ( *) •  

}12  0 1,2 

me.=f (z) 

2  2 dh rn1 (±)• (p) 

— (ni — na) —  Spz  6 vx 
dz Ln2 

3 

+  ( v± )* is,v( 12) + 8 ( r 8 (zp ) 

h (2) 
(13) 

The index distribution can now again be considered as discontinuous. 
The functions f (z) and h(z) describe the deformation of the upper and 
lower side of the core boundary (see Fig. 1). The field components are 
taken inside the core region at the core boundary. The refractive index 
of the core is ni while n2 and n3 are the indices above and below the 
core region. The electric field components are related in the following 
way. 

,(--)  2 (4-) 

•  =  up. 

(—)  (4-) 

pv  =  I. 
0 -1  0 
•  =  elm 

(14) 

The approximation involved in the coupling coefficient (13) consists 
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in using the x component E„ and z component E„ of the local normal 
modes instead of their normal and tangential components with 
respect to the interface. The approximation is valid provided that 

df  dh 
— « 1  and  — « 1.  (15) 
dz  dz 

For many practical applications it is sufficient to use an approximate 
solution of the coupled wave eqs. (6) and (7). In particular, for the 
calculation of the radiation loss coefficient, we use the approximate 
solution of (6) OA = p) 

(±)  (P) . (±) f g (±,P) 
Cr (z) = ±  Cr é—s e e 9 z  K,  (u) 

o 

. (z) • exp [ — i f (13; (V) —  ep(±))dvidu. (16) 
o 

The coefficient c(e) is the amplitude of the guided mode, the losses of 
which we want to calculate, taken at z = O. The propagation constant 
0, is a function of z since it belongs to a guided mode in a non-uniform 
waveguide, Op is independent of z since it belongs to a radiation mode. 
The relative power loss AP„/P, that mode y suffers in traveling from 
z = 0 to z = L is given in Refs. 5 and 6. 

A,./3,  1  nsk  

—  12 j E  1 c,,'- (L)1 2dp.  (17) 
c(P)  i, 

The sum in front of the integral sign indicates that we must add up the 
contributions of forward and backward traveling modes as well as 
the contributions from the various kinds of radiation modes that will 
be discussed in the next section. The integral extends over the range 
of p values that belongs to propagating (non-evanescent) radiation 
modes. We show below that the functional form of the radiation 
modes is not the same over the entire integration range. 

III. MODES OF THE ASYMMETRIC SLAB WAVEGUIDE 

We consider only the special case in which there is no field variation 
and no waveguide distortion in y direction. This fact is symbolically 
expressed by the equation 

(18) 
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With the restriction (18), the fields of the slab waveguide can be 
classified as either TE or TM fields.8 The TE fields have only the 
following non-vanishing field components 

E„, H, H.  (19) 

The TM fields have the non-vanishing field components 

Hy, E., E.  (20) 

It is assumed that the refractive indices of the waveguide are ordered 
in the following way 

nl > n2 n3.  (21) 

IV. GUIDED TE MODES 

The x and z components of the magnetic field follow from the E„ 
component by differentiation 

aE„ 
H. = 

wmo az 
(22) 

aE, 
H1=   (23) 

W/.Lo  ax 

The guided TE modes of the asymmetric slab waveguide are obtained 
as follows (the factor exp[i(cot — 13z)] is always suppressed) : 

8, = iloe—Y'  for  0 x <œ  (24) 

A g(cos ¡ix — — sin Kx)  for  —d 5 x 0  (25) 

= A„(cos  — sin icd)e9('-1-a)  for  — co < x —d.  (26) 

The parameters appearing in these field expressions are defined by the 
equations: 

= e2  n2,k2  (27) 

02 = 2 — 71321c2 (28) 

2 
K2 = nik2 — 2  (29) 

Ic2 = w2e01i0.  (30) 
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The propagation constant (3 is determined from the eigenvalue equation 

K(7 -I- 8) 
tan Kd =   (31) 

K2 — •y0 

The normalization of the mode is obtained by expressing the amplitude 
coefficient A in terms of the power P carried by the mode. 

A: =  4K2wpoP 
(  1  1 d _  _)(K2  

'Y 

(32) 

The mode labels y, that were used in the coupled wave equations and 
the field expansions, are suppressed. The modes are labeled according 
to the solutions of the eigenvalue equation (31). 

V. TE RADIATION MODES 

The propagation constants of the radiation modes do not have a 
discrete set of values. However, the asymmetric slab waveguide has 
different types of radiation modes. In the range 

n2k 5 0 5 n2k  (33) 

we find only one type of radiation mode, the fields of which decay 
exponentially into the region three with refractive index n3, but are 
standing waves in the space above the waveguide with refractive 
index n2. We can visualize the physical mechanism for exciting these 
modes by assuming that a source at infinity sends a plane wave that 
impinges on the core of the slab waveguide under an angle that is 
given by 

cos a -= — • 
n2k 

(34) 

The incident plane wave penetrates into the core region but is totally 
internally reflected if the angle a stays in the range given by (33). 
This total internal reflection occurs because we assumed that na < nz. 
In the space above the core we find a reflected wave added to the 
incident wave supplied by the external source. This explains the occur-
rence of standing waves in this region. It is not possible to find solutions 
of Maxwell's equations satisfying the boundary conditions which have 
only traveling waves outside of the core region. 
In the range of propagation constants given by (33) we find the 
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following expression for the field of the radiation modes 

0-
8, = A. cos px —Bi. sin px  for  0  x <  (35) 

Sy = A. cos ox + Br sin ux  for  —d 5 x < 0  (36) 

= (Ar cos o-d — Br sin ad)e—imx÷d) for  — .0< x  —d.  (37) 

H. and H. are obtained from Ey with the help of (22) and (23). The 
constant B is related to the constant A by the equation 

à — ia tan erd 
—  Ar 
à tan ed tia 

(38) 

and the parameters appearing in these equations are defined as follows 

2 
o- — 2  ni k2  132 — 

2 
p 2 =  n2k2 —  f32 

A2 = 
2 

ne' — /P. 

(39) 

(40) 

(41) 

Note that à is imaginary for e values in the range given by (33). 
It is convenient to identify the parameter p with the mode label 

to label the radiation modes. We thus use the identity 

= (5(p — p')  (42) 

in (9) and find for the amplitude coefficient A the relation 

p2(o- cos o-d  — sin ad) 
442 = 4coihoP 

71-10i A  2  A 
p2(a cos ad  — sin ad) ± o-2( o- sin o-d — — cos ad 

2 

(43) 

With 13 in the range (33) we find that p is confined to the region 

0  p  (n: — n28)41c.  (44) 

Next we proceed to list the radiation modes that belong to propagation 
constants in the range 

and 
n3k 

01 < fi 

e real 

imaginary 
(45) 
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The corresponding range for p is given by 

2  2 
(n2 — na)41c < p <o0.  (46) 

For real values of 3, these modes propagate along the z axis while they 
are evanescent waves in z direction for imaginary values of 0. It is 
again possible to visualize the modes in the range (46) as being excited 
by a source outside of the waveguide core located at infinity. This 
source sends a plane wave toward the slab whose angle of propagation 
with respect to the z axis is given by (34). However, there is now no 
longer total internal reflection at the lower boundary of the core so 
that we obtain an incident and reflected (in x-direction) wave in the 
space above as well as inside the core. Below the core there is a trans-
mitted propagating wave. However, we may now assume with equal 
justification that a second source sends a plane wave in the direction 
of the core from below. If both sources are turned on simultaneously, 
we obtain standing waves (in x-direction) below as well as above the 
waveguide core. The exact form of the radiation field depends on the 
relative phases between the two sources. It is thus not surprising that 
there should be an infinite number of ways in which orthogonal sets 
of radiation modes can be constructed. 
We list only the E, components of the modes and obtain the H z and 

Hz components by differentiation from (22) and (23). (i = 1, 2) 

o. 
= Cr(cos px —Fs sin px)  O  x <°°  (47) 

8,, = C ,.(cos o-x + F., sin o-x)  —d < x  0  (48) 

= Cr{(cos  — F i sin ad) cos A(x  d) 

cr 
—(sin ad  P' cos o-d) sin A(x  d)}  —  < x  —d.  (49) 

The parameters o-, p and A are given by (39), (40) and (41), à is now 
a real constant. Whereas the amplitude coefficient B,. in (35) through 
(37) was related to A,. by the boundary conditions, we now face the 
situation where the amplitude coefficient F i remains arbitrary. Equa-
tions (47) through (49) satisfy Maxwells' equations as well as the 
boundary conditions without any further restriction having to be 
imposed on the coefficient F. This freedom of choice is related to the 
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arbitrary amplitude and phase of the two plane wave sources of the 
radiation mode mentioned above. We must choose Fi in such a way 
that two radiation modes with the same value of the propagation 
constant, but different values of Fi become mutually orthogonal. But 
even this requirement does not specify the possible values of Fi 
uniquely. We are thus free to choose F values according to our own 
convenience. Of the infinitely many possibilities, we choose the F, 
coefficients such that in the limit n2 = n3, even and odd radiation modes 
result. In the asymmetric slab waveguide no even or odd modes exist. 
But the guided modes become either even or odd as n2 approaches 
n3. We obtain the same symmetries for the radiation modes by a 
suitable choice of the Fi coefficients. 

1  A 
F3 2 —   { (0-2 —  A 2) cos 2o-d  —(o-2 — p2) 

(cr2 — à2) sin 2ird 

à 
±[(a2 — à2)2 + 2— (2  — à2)(0-2 — p2) cos 2o-d 

p2 
—(u2 — p2)21 . (50) 
p 2 

The ± sign ( — sign) belongs to the odd (even) mode in the limit 
n2 = n3, à = p. We identify the mode label y again with the transverse 
propagation constant p, and obtain from the normalization condition 
(9) and (42) the relation between the amplitude coefficient C, and the 
power P 

2 1.4.10P[A 
Cr —   (cos ad — F sin ud)2 

P 

a2 cr2 
—(sin ad + Fi cos 0-d)2 ± 1 ± —Fi2 I . (51) 

p2 

We have thus obtained two distinct sets of radiation modes, the 
propagation constants of which lie in the range (45). The two sets are 
distinguished by the labels i = 1 and i = 2. F1 and F2 follow from (50) 
if we use both signs of the square root expression. It is noteworthy that 
the following relation holds. 

F1F2 = —1.  (52) 

This listing contains the complete set of TE guided and radiation 
modes consistent with the restriction (18). All modes are mutually 



74  THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1973 

orthogonal to each other. We have concentrated on the forward 
traveling modes. The backward traveling modes are obtained simply 
by changing the sign of 0, (0(—) =  e(+)). 

VI. GUIDED TM MODES 

The TM modes are very similar to the TE modes except that the 
roles of the field components are interchanged. We now list only the 
Hi, component and obtain the Ez and Ez components of the field by 
differentiation 

(53) 
n2wEo az 

-i. OH, 
E2= 

n2weo ax 

= Due-7 z  0  x < œ 

2 

(  n1 7 .  ) 
3C, = D, cos Kx — — — sm Kx 

n2 N 
2 

-d 5- x  0 

2 
fi 

3C/, = Do(cos xd  — - sin Kd)ee(r+d) 
n2 iC 
2 

(54) 

(55) 

(56) 

—  < x 5 —d.  (57) 

The parameters x, -y and O are defined by (27) through (29). The 
eigenvalue equation is 

2  2  2 

ne(ney  n28) 
tan id = 

n2n2x2 — n4-y0 
2 3  I 

and the amplitude coefficient is given by 

D 2 =  4C0 Ed) 

101 

(58) 

2 4 

nin2K2 
X   (59) 

2 2  2 2 

nes 4  4 nin2 K2 ± 72 K2 + 02 1 
(n2x2 ± n 2) [d +   +    

7 ny + n 4,,2  0 n 4,2 +  n 402 

2  II 3  1 
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VII. TM RADIATION MODES 

The TM radiation modes must again be split up into two ranges. 
In the range 0  p < (4 - 4)iic, the fields have the form 

2 
n2 u 

KJ, = D, cos px  — -G, sin e  1:1-x <00  (60) 
n' p 

3C1, = D, cos crx  G, sin ox  -d  x  0  (61) 

Cy = (D, cos cd - G, sin ad)e-"A(x+ d)  — CC>  z < -d.  (62) 

The boundary conditions require that G, is related to Dr in the following 
way: 

G, - 

2 
nià cos cd - inso sin ad 
 Dr. 
n'A sin cd  inc cos cd 
1  3 

(63) 

The parameters u, p and à are defined by (39) through (41), -ià is 
a real positive quantity. The amplitude coefficient D, is related to 
the power coefficient P 

2 
2  4n 2C0E0P 

D, = 
1 

7r1/31 4  2 
2/2 cr2 G, 

1  — — — 
n 4 p 2 D2 
1 

(64) 

In the range (rd - nU) 11c  p  op the radiation modes have the form 
= 1, 2) 

2 
2(7 

3C1, = Sr(  71 cos px  — -R1 sin px)  O  x <  (65) 
nip 

= Sr(cos crx  R, sin cx)  -d  x 

= Sr { (cos ud - R, sin ad) cos A (x  d) 

2 

—  —(sin ad  R, cos o-d) sin A (x  d)I 
n2 A 

n3 

(66) 

- ec> < x  -d.  (67) 
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The coefficients .1i are again arbitrary. Our choice 

1  { 4  4 
R1,2 =    (n3cr2 — n2 2) cos 2crd 

(n40.2 _ n4p2) sin 2crd 
3  1 

2 

A2 4 ns A 4  4  4 _ nip 2) ± (n3 ,2 _ ni à2)2  n ip 2)2 

n 2 p  n4 p2 
2  2 

2 

na  4  4  4  4 

-F 2— —(n2,72 — niA2)(n 20.2 — ne cos 20-d] J (68) 
n2 p 
2 

causes the modes with index i = 1 to be orthogonal to the modes with 
index i = 2 and, in addition, assures that these modes become even 
and odd in the limit n2 -= n3. [The  sign (— sign) belongs to the 
odd (even) mode.] The normalization is given by 

2  2 

2  4WEO P { 1  n2 Cr  2  113 0-2  

Sr —   —R 1 — — (sin cid R, cos cid)' 
w ipl  n2  nI4 p 2  n 4 p à 

2   

1 A  -1 
— —(cos cid — R, sin cid)'} . (69) 
n' p 
3 

All amplitude coefficients for the TE and TM modes were taken to 
be real quantities. This assumption does not lead to a loss of generality 
since the necessary phase factors are incorporated in the expansion 
coefficients 

VIII. COUPLING COEFFICIENTS 

With the help of the expressions for the normal modes and the 
coupling coefficients (10), any problem of the asymmetric slab wave-
guide with arbitrary irregularities of its refractive index distribution 
can be solved, provided that the restriction (18) is imposed. Problems 
caused by core boundary irregularities or by gentle tapers can be solved 
with the help of the coupling coefficients (13). For convenience, a few 
coupling coefficients will be worked out explicitly. 
As long as the restriction (18) applies, TE modes do not couple to 

TM modes. All coupling coefficients between TE and TM modes 
vanish. We restrict the discussion to listing the coupling coefficients 
between guided TE modes, guided TM modes, and to coupling from a 
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guided TE or TM mode to its respective radiation modes for the case 
of core boundary irregularities. 
The coupling coefficients between two guided TE modes can be 

obtained from (13) and (25). (p = ± or —) 

[df  sin K„d sin Kpd dhl 

(±.p) 
K„  = 

K ey 

dz  I sin 14d sin xell dz 

pa)  t i mpi (d  + 1 + 1)(d  + 1 + 1)T 
p Op 

The eigenvalue equation (31) was used to express (70) in this simple 
form. This coupling coefficient (and all others to be listed below) holds 
for the special case f(s) « rbc, h(z) « Tb( with K of (29). Instead of 
using the values of the field at x = f (z) and x = —d + h(z), the field 
values at x = 0 and x = —d were used. In order to see the agreement of 
this coupling coefficient with the coupling coefficient for the symmetric 
case [eq. (7) of Ref. 7], it is necessary to note that the core thickness 
d of this paper corresponds to 2d of Ref. 7. In addition, we need to 
keep in mind that only the Fourier components of f(z) and h(z) 
with spatial frequency e,*(±) — e„(P) contribute to coupling between 
modes g and y. The derivatives appearing in (70) are thus equivalent 
to the products i(13p(') — 13„(P)) f(z) and ice,‘(±) — ")h (z). Keeping 
these remarks in mind, complete agreement of (70) with (7) of Ref. 7 
is obtained for the special case ni = ni, y = O. 
The coupling coefficient for coupling between a guided TE mode 

and a TE radiation mode p follows similarly from (13), (25), and (36) 
for radiation in the range 0  p < (4 — nl”k 

(ni — ni)ikK,p(o cos od  — sin od) 
2  2 

(±.P) 
K„  = 

(3(±) —  (A)) 

Id f  sin K,,d (n2i. —  
dz  sin I sin K,d1 7/2 — nil  dz 

1  2  0" cos o-d  — sin ad 

r (d + — + --)[p2(cr cos od  — sin ad) 
1  1  à 

8„ 

± 0-2(o- sin od — — cos a-d)] 1  (71) 
A 

(70) 
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The coupling coefficient of the guided TE mode y to the TE radiation 
mode p in the range (22 - nDik  p < co is given by 

Ki„ - 

2 2 
(n1-n2)11c4 

1  1) 4 

(0 (±)  fi (s) )[ T spevi(d+—+ - 
P  71,  

df  sin icpd (ni-n2 2 3)i  dh 
(cos ad - F sin  

dz  I sin tcpci I - n2 dz 1 2 

r à 
—(cos  - F sin ad) 2+ —(sin  F cos a-d)2+1+—Fi 

a 2 

L p  PA  P2 

The factors F1 and F2 are obtained from (50). The radiation modes do 
not all propagate along the z-axis. Propagating modes are confined to 
the range 0  p < n2k. 
The reader should not be startled by the fact that the coupling 

coefficients (70) have the dimension 271-' while the coupling coefficients 
(71) and (72) have the dimension m--4 . The different dimensions are 
attributable to the fact that the coupling coefficients between guided 
modes occur under a summation sign while the coupling coefficients 
that describe coupling to radiation modes occur under an integral sign. 
The integration is performed with respect to p, the dimension of which 
is m-1. The product c,K,dp has the dimension m-1 in agreement with 
the dimension of the coupling coefficients for guided modes.t 
Finally, we list the coupling coefficients for the TM modes. Coupling 

between guided TM modes is described by the coupling coefficient 
(p = + or -) 

2 
(.p)  (n1 - n22)D„D„. K„  { 2 (A) (P)  2  df 

(n t Ov  n1.7v7P) — =    e 
4P(13(±) - J3(P))cueon2n4 dz 1 2 

sin KA sin Icpc/ ni - n32 (n34,42 + ne ) ln24 -h neu l 

I s  ic in KA sin „dI n2 - n2 (ny  n402)  (ny + n402) 1  2  3v  1v  3 ;I  1 µ 

(72) 

2 (±) (p)  2  dh 
•• (naOm  + n20,0) — 1  (73) 

dz 

The coupling coefficients for the TM modes are far more complicated 

t Note that f Ic„[ 2d, is dimensionless so that the dimension of cs, is mi. 
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than the corresponding coefficients for the TE modes. To simplify the 
notation, we did not substitute expression (59) for the mode amplitude 

into (73). 
The coefficient for coupling from a guided TM mode to a TM 

radiation mode in the range 0  p  (4 — WI) ik is 

2  2 

(± p) (ni — n2)D„D„,  1( (±) (p)  f 
K,,,  = e P  ep— u-y, — 4.1-  (0(1) — ,3(P))coeon2n2 D,,,J dz 

p  r  1 2 

2  2  42  4 2 

sin Kyd  — n3 [n2K, [e e P (A) (p) (p)  G, 
cos (Id — — sin ad) 

!sin KAI  — n 2  n 4K2 +  n4 02  D„ 
1  2  3v  1 

G„  dh 
crO„ (sin cd — cos ad)] --} • (74) 

D„  dz 

The amplitude coefficients D„, D„ and G„ are obtained from (59), 

(63) and (64). 
The coefficient for coupling from a guided TM mode to a TM 

radiation mode in the range (4 — n)ik  p  co is given by 

2  2 
(A D) (ni — n2)D „Sr,  {, ,,(A)  „(p)  d f 

  V.3 =  p  P  Cer 
4 P (L3 a) — (3(P))wEon1/4 2 dz 

1 2 

sin Kyd n21 — n23 n42K2,  7h4c2„ 3/4r (±) (p) 
/3,, /3, (cos cd — Ri sin cd) 

I sin xrd n2 —  1 n2 n4K2 + n402 
2  3 y  1 y 

dh 
cr8„(sin Ri cos crdl —dz } • (75) 

The amplitude coefficients D„, S„, and Ri are obtained from (59), 
(68), and (69). The index i assumes the values 1 and 2, and corresponds 
to the two types of radiation modes that are distinguished by the + 
and — signs in (68). The superscripts, ± and —, attached to the 
coupling coefficients are supposed to indicate whether the modes 
travel in ± or — z-direction. 
It can be shown that the coupling coefficients derived in this paper 

specialize to the correct expressions" of the symmetric slab waveguide 
in the limit n2 = n3, -y = à, p =0 .t 

t Equations (9.5-26) and (9.5-27) of Ref. 5 must be divided by 4, eq. (9.5-31) 
must, correspondingly, be divided by 4 
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IX. CONCLUSIONS 

We have collected the formulas for the modes of the asymmetric 
slab waveguide and have used this information to derive the coupling 
coefficients between guided modes as well as between guided and 
radiation modes for the case of very slight core boundary imperfections. 
Also presented is the general theory of coupled modes of dielectric 
waveguides and the general formulas for the coupling coefficients. 
The theory collected in this paper is useful for the description of mode 
conversion and radiation phenomena. Phenomena such as the grating 
coupler and the interaction of acoustic waves and guided light waves 
can readily be treated with the theory presented here. For an applica-
tion to statistical irregularities of the core boundary, the reader is 
advised to consult Refs. 5, 6, and 7. 

APPENDIX 

Evaluation of the Integral (12) 

We consider the index distribution of the slab waveguide as being 
smoothed out to avoid the discontinuity at the core boundary. It is 
assumed that the index varies only in a direction perpendicular to the 
core boundary. We use a coordinate system x', z', the axes of which are 
perpendicular, and parallel to the tangent at a particular point of the 
core boundary as shown in Fig. 2. In this coordinate system, we assume 
that the refractive index is of the form 

n' = F (x').  (76) 

For values of x'  0 we have F = nî; for values x' >  we have 
F = 4. At the end of our discussion, we let  —> 0. The scalar product 

n2 

-- TANGENT OF 
CORE BOUNDARY 

Fig. 2—Sketch of the coordinate systems used for the evaluation of integral (10). 
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of the electric field vectors can be expressed as 

=  + 4„ (77) 

The coordinate t indicates a direction parallel to the core boundary. 
is continuous at the core boundary and can be taken out of the 

integral. &ye, on the other hand, is discontinuous. We express it in 
terms of the field just inside of the core and, using (12), write 

2 

Spe =   
F(e) 

The scalar product can thus be written in the form 

(78) 

4 
ni 

Em• E. — (8 pz'• SW)  + 8 'A• pt •  (79) 
F2(x') 

We thus have to deal with two different integrals. We first consider 
the integral 

r aF(x')  ax' r OF(x1) 
 dx = —I  dx.  (80) 

Jo  az  dz Jo  ax' 

We obtain from Fig. 2 the relations 

ax' 
— ---- sin a  (81) 
(3z 

and 
dx' 

dx =   (82) 
cos a 

The integral can thus be evaluated 

aF(xi) 
dx  [F(E) — F(0)] tan a.  (83) 

j0  a 
At the upper core coundary, we have tana = df(z)/dz, and at the 
lower core boundary we have tan« = dh(z)/dz. Taking both core 
boundaries into account, we find with the help of (76), 

an2 2 df 
— 8„g&ptdx (ni  no — 
az  dz 

2  2, dh  • 0 
— no — t.e, ogt•ox---a+h • 

dz 
(84) 
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The integral associated with the normal field components is essentially 
of the form 

œ  1  aF(x') œ 1 OF (2) 
J0 F2 (x')  Oz dx  (tan a) f o F2 ax' dx' 

F(e) — F(0) 
= (tan a) 

F (0)F (e) 

The integral containing the normal field components results in 

2 
an 2 •  2  2 fl  •  d f 

= — (ni — n2) —n2 (6'6,')..., —dz 
as 

2 
2 

2  2, ni /0 . o dh 
(ni — n3) — usageow).---d+h —• 

n2 dz 
3 

(85) 

(86) 

In (13) we replaced x' with x and t with z. These approximations are 
valid provided that the inequalities (15) apply. The error is of second 
order in the derivatives of ¡(z) or h(z). 
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Batch Input to a Multiserver Queue with 
Constant Service Times 
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(Manuscript received July 26, 1972) 

Delay probability formulas for batch input to a finite number of con-
stant-holding-time servers are derived under the assumption of statistical 
equilibrium. The service-delay distribution (delay until a first request from 
the batch enters service) is given in terms of the roots of a transcendental 
equation, while the probability of no service-delay and the average delay are 
expressed directly in terms of the number of servers, the holding time, and 
the parameters of the input process. A numerical example with a fixed 
batch size is discussed. 

I. INTRODUCTION 

Batch arrivals constitute an important class of input processes in 
the theory of queues. The investigation of the problem of batch input 
to a group of constant-holding-time servers was motivated by the 
existence of installations with multiple Automatic Calling Units 
(ACU). Customer-based computer equipment controlling the ACU's 
is capable of originating simultaneous requests. The dial-tone markers, 
the first common control equipment in a No. 5 Crossbar central office 
to serve the requests, can be modeled as a group of constant-holding-
time servers. 
Another example comes from an information transmission system. 

Messages containing a (small) random number of characters (a batch 
of characters) arrive according to a Poisson process and must be 
transmitted to some destination. Delayed messages are stored in a 
buffer. Since the transmission time per character is usually fixed, this 
system provides another example of the model studied. 
In Section II, the mathematical model used in this study is de-

scribed and the input process defined; the state equations are written 
and used to derive the generating function for the equilibrium state 
probabilities. The probability of no service-delay is found in Section 

83 
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III, while the average delay is computed in Section IV. The service-
delay distribution is given in terms of the roots of a transcendental 
equation in Section V. A numerical example with a fixed batch size is 
discussed in Section VI. The effect of this batching scheme on the 
average delay and the service-delay probability is examined. 

II. MATHEMATICAL MODEL 

The model studied here is that of a queuing system with a finite 
number of servers, batch arrivals, and constant holding time. The 
assumptions are 

(1) Requests arrive according to a compound Poisson process, that 
is, requests arrive in groups or batches and the instants at 
which the batches arrive constitute a Poisson process. 

(ii) There are c servers and each request has access to any one of 
them. 

(iii) All requests have the same constant service time, T. 
(iv) The delayed batches wait until service becomes available and 

are served in order of arrival. The service discipline for requests 
within a batch is arbitrary, i.e., not specified here. 

(y) The system is in statistical equilibrium. 

Systems with simple Poisson input have been studied as early as 
1920, when A. IC. Erlane obtained expressions for the probability of 
delay for arbitrary values of c and the average delay for c = 1, 2, and 3. 
The first complete treatment of such systems was by Pollaczek.2.6 
Crornmelin,4.5 using a method which is simpler than that of Erlang 
or Pollaczek, also derived general formulas for the probability of delay, 
the average delay, and the delay distribution. A simplified and concise 
account of Crommelin's work is given by A. Descloux,6 who also shows 
how Pollaczek's formulas can be deduced from Crommelin's results. 
The development herein is an extension of Crommelin's results to the 
case of compound Poisson input using the simpler methods employed 
by Descloux. 
We now define the input process. Consider events which happen in 

groups rather than singly, that is, requests arriving in batches at a 
group of c servers. For k = 1, 2, • • • , let Nk (t) be a Poisson process 
with intensity Xk which governs the arrival of k-sized batches. Assume 
independence of the processes Nk(t), k = 1, 2, • • • . Let N(t) be the 
total number of requests that have arrived in the interval (0, t]. 



BATCH INPUT TO MULTISERVER QUEUE  85 

Then 

N(t) = E kNk(t)  (1) 

k=1 

is called a compound Poisson process (Ref. 7, page 271). 
The probability that an arriving batch is of size k is equal to Xk/X, 

where cc, 
= E Ak. 

k=1 

From eq. (1), we see that the mean and variance of the number 
of arrivals per unit time are 

eti  E kxk  and  p,2 -= E 
k=1  k=1 

(2) 

respectively. The generating function of the probability distribution 
n(t) = PfN (I) = nl, n = 0, 1, 2, • • •, is given by 

r(te) = E 7r n(t)Z n =  et°  

n=0 

where 

fl(z) = E xne — 
n=1 

and hence the probabilities 7r (t) are given by 

(xit ) (x2t )k2. . . (xat ) k. 
(t) =  E   n = 0, 1, 2, • • • ,  (3) 

gn  ki!k2! • • •kn! 

where gn is the class of all sets of nonnegative integers {k1, k2, • • • , kni 
such that k1  2k2 + • • • + nkn = n. 
The expression given in (3) is not suited for computing ir,, (t). These 

probabilities are more conveniently computed from the recurrence 
relation 

k+1(t) =   E (k — j  1)Xk_i_E1n-i(t),  k = 0, 1, 2, • • • , 
k  1 ,=0 

ro(t) = e—x'. 

Equation (4) is easily obtained from the relation khrk(t) = (k) (1, 0), 
where the superscript denotes differentiation with respect to z. 
Special cases of the compound Poisson process are obtained by 

choosing different convergent sequences of the positive constants 

(4) 



86  THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1973 

Xi, X2, • • • . One such sequence is obtained by setting X; = 
r > 1, j =- 1, 2, • • • . This special example has become known as the 
"stuttering" Poisson process.8 In this case, a simple expression for 
rn (t) can be obtained by noting that the generating function has a 
power series expansion in z, the coefficients of which are given in terms 
of the Laguerre polynomials Ln, that is, 

z 
et() = e t (1 — --) E L,( —o-ti') (  , 

r 
since 

crz 
0(z) =   À 

1 — z/r 
It follows that 

ro(t) =-

e—xt 
ir(t) =  [L„(—crtr) — L„_1(—crtr)1, 

rn 
n = 1, 2, • • • . 

(5) 

We will now obtain the equilibrium state equations, and find the 
probability generating function of the stationary distribution for the 
general case. Let X(t) be the number of requests (waiting or in service) 
in the system at time t. Let 

pii(t) = P{X(t) = jIX(0) = 

be the transition probability functions of the process 1X(t), t Ol. 
It is clear that X(t) is not Markovian. If, however, we examine 

Xi, = X(kr),  k = 0, 1, 2, • • •,  (6) 

we see that this sequence is Markovian and, in fact, {Xk, k =0, 1, 2, • • • } 
is a homogeneous Markov chain with one-step transition probabilities 

given by 

pi; = P Xk+1 =  Xk = k = 0, 1, 2, • • •, 

1 i(r);  for 0 i c r 
=  ri_i+c(r),  for  c<i. j+c 
0,  for j + c < i. 

We will be interested in the distribution of the number of requests 
in the system encountered by an arbitrarily arriving batch (a batch 
arriving at a time point a long way from the origin, i.e., after statistical 
equilibrium has been reached). But since the instants at which the 
batches arrive constitute a Poisson process, this distribution is the 
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same as the stationary distribution 

p,=  = 0, 1, 2, • • • , 

87 

of the process {X(t), t 01. Moreover, if this limit exists, then so does 

Jim  = j1X0 = 
k•oo 

and they are equal. Consequently, the distribution of interest to us is 
given by the stationary distribution of the imbedded Markov chain 
(6). This distribution is obtained by solving the Chapman-Kolmogorov 
equations 

Po =  

p =-- Irn(r)ac  E Pnarn—m+c(1")) 
m=c+1 

where 

n = 1, 2, • • • , 
(7) 

We will assume that Air < c so that the stationary distribution {P} 
exists. 
We need to solve the system (7) for the unknowns pr,. To do this we 

introduce the probability generating function 

f(z) = E Paz' 
n=0 

Multiplying both sides of (7) by zn and summing over n, we have 

where 

n 

f(z) = ace's(r)  E E pc.firn_i(r)zn 
n=1 j=1 

= acers (') + E E Pc+.ern—i(r)z. 
j=1 

= acee (z)  - -ern(z) Ef(Z) — g(z)] 
z. 

g(z) = E pen• 

Thus the probability generating function of the sequence p., 
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n = 0, 1, • • • , is given by 

(z) - eac 
f (z) =   

1 - zee-fs(g) 
(8) 

III. PROBABILITY OF NO SERVICE-DELAY 

We say that the service of a batch is delayed if upon its arrival all 
servers are busy. Hence, the probability of no service-delay will be 
defined by ac_i, that is, the probability of at most c - 1 servers busy. 
An explicit expression for this probability will now be found. 
We start with eq. (8). Since the pn's are probabilities, f (z) is hole-

morphic in I z I 1 and, therefore, the zeros of the denominator and 
numerator in z  1 must be the same and have the same multi-
plicities. We will show that the denominator of (8) has c distinct 
roots in I z  1 and that all of them, with the exception of z = 1, lie 
inside the unit circle. 
For I z I = 1 + 8, with 3 sufficiently small and positive, we have 

IeT0( 2)1 ‹ e— XT eXp r E   
k=1 

where gi is defined by (2). 
Since r;e1 < c by assumption, we have 

er,16+0(62) < (1 ± â)c  Izl c, 

and by Rouché's theorem, the equation 

est.) _ zc 

has exactly c roots within the region Izl = 1+ b. Let these roots be 
denoted by z1, z2, • • •, zc_i, ze( = 1). Then 

(i) 1, z1, z2, • • •, zc_i are distinct. 
(ii) IzI <1 for n = 1,2, • • •, c - 1. 

To prove (1), first note that the root z = 1 is simple because 

1 - zde-row 
lim   -TM1 C O • 
„_„.1 z - 1 

Similarly, for any root z, i =- 1, 2, • • • , e - 1, 

1 - zee-7s(2)  c-1 
lim   = z, e-ro(z) [7 E kxkz, — ci • 

z — Zi  k-1 
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The first two factors cannot vanish for any admissible choice of the 
root z„ so that if z, is to be a root of second or higher order, we must 
have 

2X2d  3X34 + • • • ) = c. 

But this is not possible since 

r I  2X24  3X34 -F • • • I rj < c, 

and the roots 1, zl, z2, • • • , zc...1 are therefore all distinct. 
To prove (ii), suppose that iz. I = 1 for some n, n = 1,2, • • • , c — 1, 

then I exp [r13(z.)] I = 1 and hence the real part of r(z) must be 
zero, that is, (R[a(z.)] = 0. Hence we must have 

= at  E Àk (1 —  = 0. 
km.1 

Since all terms in the sum are nonnegative, we have (R(1 — ;Lk) = 
for all k, and therefore z. = 1, contrary to the assumption. It follows 
that lz„1 < 1 for n = 1, 2, • • •, — 1. 
Since the numerator of (8) is a polynomial of degree c, f (z) has 

the form 

f (z) = A 
(z — 1)(z — zi)(z — z2) • • • (z —   

1 —  
(9) 

The condition f(1) = 1 determines A : 

µIT — c 
A=   (10) 

(1 — xi) (1 — z2) • • • (1 — z,1) 

In computing a„1 it is convenient to introduce the generating function 

F (z) = E a.z.• 

Then, since a. —  = p„, n = 1, 2, • • • , we have 

(1 — z)F (z) = f (z), 
Or 

f(z) 
F (z) = 

1 — z 

Now, making use of (9), we obtain 

(z — zi) (z — z2) • • • (z — 
(z) —  A 

1 — zee— row 

Zc_1) 
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The probability of no service-delay, ac_i, is given by the coefficient 
of ze-' in the expansion of F(z): 

= —A = 
(1 — z1)(1 — z) • • • (1 —  

An expression for ac_i which does not involve the roots zi is obtained 
through an application of the generalized argument-principle (Ref. 9, 
page 151). That is, suppose lie (z) is holomorphic and 4,(z) is meromorphic 
on and inside the contour C. Let ak, k = 1, 2, • • • , be the zeros with 
multiplicities rk, and 0,, k = 1, 2, • • • , the poles with multiplicities 8k 
of the function q5(z) inside C. Then the generalized argument-principle 
states that 

C  I.LIT 

1  tie,t,‘(z)dz  r 

2ri o ) 0(z)  ki(ak) — E soli (0k) • 

Taking the logarithm of eq. (11), we have 

log ezc_i = log (c — Air) —  log (1 — zi) • 

We will eliminate the roots zi from the second term of the right-hand 
side of the preceding equation. Let 

yt,(z) = ers (g) — z°, 

and note that OW has simple zeros at z = z1, z2, • • , zo-i. Choose 
(z) as the principal branch of log (1 — z). The generalized argument-
principle yields 

a-1 

E log (1 — z,,) =  f log (1 — z)d[log 4)(z)] = J 
27ri 

where C is the contour Izi = 1— e and E( > 0) is chosen so that 
zn, n = 1, 2, • • • , c — 1, lie inside C but z(=1) is exterior to C. We 
will now show that 

1 " 
J = log (c — 77,4)  E — E rj(nr) 

1 n j=nc 
and hence 

log ac_i = — E — E ri(nr) • 
n=1 n i nc 

(12) 

d 
Note first that the principal branch of log (1 — z)  [z9-1 log (1 — z)] 
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is holomorphic in I z I 1 - E. Since its integral on C is zero, we have 

1  1 -  
J= — f log (1 - z)d [log   

2ri  1 - z-1 

Integration by parts yields 

dz 1 _  
J = - — f log   

2ri c  [ 1 - z- z - 1 

The integrand above has a simple pole at z = 1, and its residue there is 
equal to log (e - pir). Choose 8( >0) such that the only zeros of 
95(z) in the disk Izi 51 + ô are 1, zi, z2, • • • , zé_1, and let Ci be the 
contour In = 1 + 8. Noting that the integral of log (1 - z-')/(z - 1) 
on Ci vanishes, we have 

1 dz 
J = log (c - pir)  log [1 - z-cero(z)]   

27ri L,  z - 1 

Now since I z-cers (s) I < 1 on Ci, the power series for log [1 - z-cevt3(s)] 
converges uniformly on Ci, and terrawise integration is allowed, so that 

1 e 1  z—ne 

J = log (c - 1.41r)  — -  ernii(g) dz 
27ri /t 1 n f CI  z - 1 

1  1 - 
= log (c - sir) + E — [1 — E f ens(s)z—n.+Idzi• 

n  arri. j-0 

Expanding the integrand in powers of z, and integrating term by term, 
we see that the integral is zero for all terms except one, and that there 
it is equal to 27ri times the coefficient of z-1. But the coefficient of z-1 
is exactly r nc_i_i(nr), so that 

n ir ne-1 

J = log (e - pir) —Il+E  — E 7r„c_i_1(nr) 
n 

1 " 
= log (c - pir) E — Eiri(nr) , 

n j=nc 

and this is the result stated earlier. 
For the case of a simple Poisson input, we have Xi = X, X; = 0, 

j = 2, 3, • • and (12) reduces to [Crommelin, Ref. 5, eq. (5)] 

" 1 e (XT)1 
log a6-1 = - L— E  e-Xnr . 

n j.ne 
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Note that this expression and eq. (12) differ only in the terms 7r,(nr) 
and ((Xnr)j/j!)e-"7, which represent the same probabilities in two 
different systems: both are equal to the probability of exactly j 
arrivals in the time interval nr. As we shall see later, these probabilities 
appear again in the expressions for the average delay and the service-
delay distribution. 
For "stuttering" Poisson input, eq. (12) reduces to 

e—donTri(*-1)]  c.  1 
log a6_1 = — E  E - [L,(—unrr) — Li_2( — crnrr)] 

n-1  7-1 

where the L. (E) are Laguerre polynomials. 

IV. AVERAGE DELAY 

Under equilibrium conditions, the average delay D is equal to the 
average amount of waiting per unit of time divided by the average 
number of arrivals per unit of time. The average amount of waiting 
per unit of time is equal to 

E (n — c)p. , 
n 

so that D is given by 

1 loe 
D = — E (n — c)p„ = —  np„ — T 

rt c-1-1 n».0 

where pi is the average number of arrivals per unit of time defined by 
(2). An explicit expression for D can be readily obtained by noting that 

d 
hm [—f(z)1 ,  I z I < 1, 

n-o z.1  dZ 

where f(z) is the generating function given by (8). Straightforward 
differentiation of (8) and application of L'Hospital's rule lead to 

D  1 e-1  1 1-427 1411. (i117 —  1) — c(c — 1) =  E   (13) 
T   1 - zi  2pir  - P1r) 

where zi, z2, • • • , zc_1 are the roots defined previously. Again we wish 
to eliminate these roots. The method used in the previous section 
suggests the application of the generalized argument-principle with 
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(1 - z)-1 asI,L(z), and 4)(z) as before. Thus we have 

c--1  1  1 f  1 yb'(z) 
E   =  ,   dz = K.  (14) 
n-i -  2/ri J c 1 - z (11(z) 

d 
Noting that the integral of (1 - z)-1 - {log [zc-1 (1 - z)]) on C is 

dz 
equal to (c - 1)2/ri (the residue at the simple pole z = 0 is c - 1), eq. 
(14) becomes 

1 f  1  [ log 1 — z—cer0(2)1 
K = (c — 1)  —    

2/ri  (1 - z) d 1 - z-1 

Integration by parts yields 

1 1 — z—cers(z)1  dz 
K = (c — 1) — — f log   (15) 

2/ri  [ 1 - z-1 J (1 - z)2 
The integrand in (15) has a pole of second order at z = 1, and its 
residue there is found to be 

c(c - 1) - 7-µi(rpi - 1) - Tet2 
(c — 1) • 

2(c — 7-121) 

Consequently, 

K 
c(c — 1) — rgi(rgi — 1) — rp,2 

= 
2(c — riz,) 

1 1 — z—ce'0(1  (16) dz 
— — f log   
2/ri  [ 1 - z-1 J (1 - z)2  

Combining (14) and (16) and noting that the integral of 

(1 - z)-2 log (1 - z-1) 

vanishes on C1, we obtain 

D  1  dz 
- =    log[l - z-cere(z)]   

2/rigi L,  (1 _ z)2 
Recall now that lz-cers (2)1 < 1 on CI, and hence log [1 - z-cero (g)] 
has a uniformly convergent power series representation in z-cerft(g) on 
Ci, so that 

D 1  1 °D 1 f enrowz-n. 
  E   dz.  (17) 

r ir 27ri n fl JCL (1 — z)2 
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The integrand in (17) has poles at z = 0 and z = 1 with residues 

nc-1 

E (nc — k)irk(nr) 
k=0 

and 
n(120- — c), 

respectively, giving us the final result 

D  1  
— = — E - E kr„c÷ k(nr) . 
T  go- n=1 n k=1 

V. SERVICE-DELAY DISTRIBUTION 

(18) 

For the purpose of obtaining the service-delay distribution (delay 
until a first request from the batch enters service), let us define gm(t) 
as the probability that among the requests present at some time to, 
at most m of them are still in the system at time to -I- t. Considering 
the state corresponding to gmc+c-i.(t), we see that, at most, mc + c — 1 
of the requests preceding the given batch will be in progress at time t 
later, and consequently, at most, c — 1 of them at time mr ± t later. 
This is the condition for the service-delay d to be less than mr + t, 
or in symbols 

PI d < mr ± tl = gmc+-1(t),  0 s t < r.  (19) 

To determine gm(t), we introduce the generating function 

. 
G(z,t) = E gm(t)en. 

In =0 

Upon noting that E 0 irn-m(t)g.(t) = an, we have 

.  . 
G(z,t) = e-0( z) E gm(t)en E irn(t)z-

ne.-0  n=0 

co  cc 

= e- 1°(z)  E Zn E ...-.(t)g.(t) 
n=0  m=0 

CO 
= e-ts(z) E (Lae = e-0( .)F(z). 

n--0 

Substituting for F(z) we obtain 

G(z,t) =  A (z — z) (z — z2) • • • (z —  
1 —  

(20) 
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A direct expansion of the right-hand side of (20) in powers of z is 
not desirable because the coefficients of z involve sums the terms of 
which have alternate signs and, therefore, are not well suited for 
computation. To circumvent this difficulty, we first obtain a Laurent 
series expansion of G(z,t) in the annulus 1 < Izi < I el, where e is 
that root of e exp L —119(z)] — 1 = 0 which has the smallest modulus 
exceeding 1. The existence of such a root can be proved as follows. 
Since xc exp [— e(x)] takes on the value 1 at x = 1 (x = real part 
of z), has a positive derivative there, and vanishes at infinity, the 
equation ze exp [—I-0(z)] — 1 = 0 has at least one root outside the 
unit circle. 
For 1 < Izi < IEl, the absolute value of z--c exp [TO(z)] is less than 

unity. Expanding the denominator in powers of z—c exp Era (z)] and 
the exponential function in powers of z, and collecting like-power terms, 
we obtain, for 1 < zl < 1E1, 

G(z,t) = E  E q. E  + 1), —t  zk  (21) 

le=0  n=0  j=0 

where qr, is the coefficient of zn in the polynomial 

A (z — z1)(z — Z2) • • • (Z  Ze—I). 

Since z = 1 is the only singularity of G (z, t) in Izi G Itl (a simple pole 
with residue —1), G (z, t)  (z — 1)—' is holomorphic in Izi < Iel and 
hence for lzi < ¡El 

1 
G(z,t) 

z — 1 
— expansion (21) ± E 2—n  . 

Therefore, for I z I < 1, we must have 

a=1 

G (z ,t) = E zn + expansion (21) ± E z ". 

n=0  n=1 

From this equation, we obtain the service-delay distribution 

c-1 

Pfd < mr  = 1 — E q. E 7r(nt-Fi+2)e—n—l[(3  1)7  ti, 

n=0  j=0 

771 = 0, 1, 2, • • •,  0  t < T. (22) 

VI. A NUMERICAL EXAMPLE 

We examine a fixed-size batching scheme which provides some 
insight into the effect of batch arrivals on the average delay and the 
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probability of service-delay. Suppose customers arrive in batches of 
size m. Then X, = 0 for j O M, j = M X. and 

-X  (X„,t)k 
.t   

ri  = k! 
for  j = km 

otherwise. 

Figure 1 shows the average delay experienced for an arbitrary customer 
as a function of the occupancy p = rµ 1/c, for various values of m. 
We assume that the holding time is unity, and that c = 4. 
Equation (18) written in the form 

1 ce 1  nc-1 

D  - E - in(hl - + ce-nx-) +  (nc - hiri(n)} 
Pi n-1 n j l 

was used to obtain the curves drawn in Fig. 1. We might point out 
here that the above series converges slowly when the occupancy is near 
unity. In the interest of speedy computation it may be necessary to 
solve for the roots of the denominator in eq. (8) and then use (13) 
to calculate the average delay. The same remarks apply to eq. (12) 
which is used to compute the probability of no delay. 

Because holding times are constant, several interesting phenomena 
are observed. First, if the batch size is an integer multiple of the number 
of servers, say m = kc, then the mean time until the service of an 
arriving batch (or the first customer from the batch) begins is the 
same as the average delay in a one-server system with single Poisson 
arrivals and holding time k. From the Pollaczek-Khintchine formula, 

this number is given by 

kp 

2(1 - p) 

Hence the mean delay which an arbitrary customer experiences is the 
average of the above number and the mean delay experienced by the 
last customer in the batch to be served. Thus we have 

k - 1  pk 
D=   (m = kc). 

2  2(1 - p) 

Note that as p -> 0, D -> (k - 1)/2. 
On the other hand, if the number of servers is an integer multiple 

of the batch size, say c -= jm, then the system may be viewed as a 
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Fig. 1—Average delay in an M/D/4 queue when arrivals occur in batches of size m. 

collection of single-server systems with constant holding time and 
j-phased Erlangian input of mean offered load ii/ j. This can be seen 
by imagining that the sets of ni servers required to serve the arriving 
batches are chosen in cyclic order. 
Figure 2 shows the probability of service-delay (the probability that 

the service of an arriving batch is delayed) as a function of the oc-
cupancy, for various values of the batch size m and e = 4. From eq. 
(12) we obtained and used the following expression for the service-



98  THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1973 

PROBABILITY T
HAT THE SERVI
CE OF AN ARRI
VING BATCH IS
 DELAYED 

1.0 

0.8 

0.6 

0.4 

0.2 

0.10 

0.08 

0.06 

0.04 

0.02 

0.01 

0.008 

0.006 

0.004 

0.002 

0 001 
0.01  0.02  0.04 0.06 0.08 0.1  0.2 

p, OCCUPANCY 

0.4  0.6 0.8 1 0 

Fig. 2—Probability of service-delay in an M/D/4 queue when arrivals occur in 
batches of size m. 

delay probability: 
c° 1 

1 — exp  — z-Ii 
n 

nc-1 

- E ri(n)jO  1 } • 

Phenomena similar to those observed in Fig. 1 exist here also. For 
example, if the batch size is an integer multiple of c, say m = kc, then 
the probability of service-delay is the same as the probability of delay 
in a one-server system with single Poisson arrivals, i.e., it is simply p. 
On the other hand, if c = jm, then the service-delay probability is 

the same as would be found in a system with single Poissonian arrivals 
of intensity X. and j constant-holding-time servers. 
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Crosstalk in Uniformly Coupled Lossy 
Transmission Lines 

By J. C. ISAACS, JR., and N. A. STRAKHOV 

(Manuscript received July 5, 1972) 

The crosstalk between two identical, uniformly coupled, lossy transmis-
sion lines is examined. Equations are derived which can be solved to obtain 
formulas for the near-end crosstalk (NEXT) and far-end crosstalk 
(FEXT). An example is worked which illustrates the mutual influence of 
the two lines in terms of the modal voltages and currents. The mutual in-
fluence of the two lines is also studied by comparing the results of this 
example with the "classical" crosstalk formulas which assume weak 
coupling and neglect the influence of the disturbed line on the disturbing 
line. It is shown that the influence of the disturbed line on the disturbing 
line can be neglected for NEXT for most weak coupling situations. For 
sufficiently high frequencies and/or long line lengths, however, this in-
fluence cannot be neglected for FEXT . 

I. INTRODUCTION 

One of the earliest analyses of crosstalk in coupled transmission lines 
was made by Campbell;' later Shelkunoff and 0darenko2 used a similar 
method to analyze the crosstalk in coaxial structures. These "classical" 
formulas were derived for two parallel transmission lines with weak 
coupling and matched terminations. One drawback of these analyses 
is that they do not take into account the effect of the disturbed line 
on the disturbing line. However, their crosstalk formulas are simple in 
form and easy to analyze. Also, they are applicable to any parallel, 
uniformly coupled transmission lines with weak coupling. 
Somewhat later an analysis of coupled transmission lines was made 

by Rice.3 His results apply under quite general conditions and are 
expressed in compact matrix notation. However, his results have 
apparently not influenced current analyses, possibly because the 
formulas are more complicated to analyze than those in Refs. 1 and 2. 
Coupling between two pairs under similarly general conditions is 

101 
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given by Kuznetsov and Stratonovich.' Although the emphasis is in 
obtaining results for the time domain, the basic approach is similar to 
the one we will follow. The specific time domain results do not apply 
to the transmission lines of interest here because the frequency de-
pendence of the primary constants is not taken into account. More 
recent analyses6.6 have relaxed the assumptions of weak coupling and 
matched lines and do take into account the effect of the disturbed line 
on the disturbing line. Unfortunately, these analyses focus attention 
on the lossless case in order to obtain crosstalk formulas which can be 
readily calculated. While the lossless case may be of interest for some 
line lengths and frequency ranges, it does not cover many applications 
which are of great practical interest. 
In this paper, a fairly general analytical model is presented for two 

identical, parallel, uniformly coupled transmission lines with a common 
ground return. This model does not assume weak coupling, matched 
terminations, or lossless lines. The resultant crosstalk equations, al-
though somewhat unwieldy, can be evaluated with the aid of a 
computer. 
The motivation for this study was, in part, to assist in the analysis 

of special cables being utilized in the interconnection of equipment 
racks. These cables, referred to as flat flexible cables, have conductors 
that are not twisted and therefore can couple to each other strongly 
under certain conditions. The results of this study are also of interest 
to those studying longitudinal mode coupling effects in multipair 
cable. 

II. DERIVATION OF CROSSTALK BET WEEN TRANSMISSION LINES WITH 

ARBITRARY CONSTANT COUPLING 

The starting point for this analysis is the set of coupled differential 
equations which are assumed to govern the two transmission lines. 
They are 

dE 

dx 
dl 

dx 
dE2 

dx 
dl, 

dx 

= — (R  jwL)I — jcoLc12  (la) 

= — (G ± jwC)E — jc0C cE 2 (lb) 

= — (R  jcoL)I 2 — jcuIdc1  (lc) 

— (G + jcoC)E2 — jwCE,  (1d) 
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where 

Ei is the voltage across transmission line i, i = 1, 2 
Ii  is the current flowing in transmission line i, i = 1, 2 
R 
L are standard distributed resistance, inductance, 
G conductance, and capacitance, respectively 
C 
w is frequency in radians/s 
Lc 1 are "coupling" inductance and capacitance; the relationship to 
Cc physical quantities will be derived in a later section. 

A number of assumptions are tacitly implied in order for the equa-
tions to describe the physical situation. These will now be discussed. 
The first and most basic assumption is that only two sets of voltages 

and currents are involved in the coupling mechanism. This assumption 
is readily met in the case of unbalanced transmission lines shown in 
Fig. la. However, for balanced transmission lines, depicted in Fig. lb, 
other voltages and currents may play a role in the coupling mechanism. 
They will only be negligible if each transmission line is well balanced 
with respect to ground. 
Another important assumption is that the power propagating down 

the transmission lines is essentially described by TEM modes. This 
assumption is required to assure that the telegrapher's equations 
[i.e., (1) with Lc = Cc = 0] are valid. 
For the time being, it is not necessary to specify whether or not R, 

L, G, C, Cc, and L, are frequency independent. However, if these 
results are translated from the frequency domain to the time domain, 
the frequency dependence of these parameters will have to be specified. 

12 

E+2 

12 E2 'c =3  

2 I 
E 

GROUND- GROUND--

PLANE  PLANE 

(a) (b) 

Fig. 1—(a) Unbalanced transmission lines. (b) Balanced transmission lines. 



104  THE BELL SYSTE M TEC HNICAL JOUR NAL, JA N UARY 1973 

Of course, it is a fundamental assumption of this analysis that the six 

parameters are independent of x. 
Differentiation of (la) and (1c) with respect to x and substitution 

of (lb) and (1d) for the appropriate quantities result in 

d2E1 

dx2 

d2E2 

dx2 

where 

= A 22E2  A 12E2 

= Al2E1 ± A 22 E2 

(2a) 

(2b) 

A n =  (R  jw L)( G  jw C) —  w2Lc ec  (3) 

A 22 =  A11  (4) 

A l2 =  (R  jw L) jw C  ±  (G +  jw C) jca Lc.  (5) 

Assuming a solution of the form El = ilex and E2 = A 2e .ez for (2) 
yields 

where 

and 

= ±7+ or  ±7-

-y+ = .\ÍA11 ± A 1 2 
=  {[ R  jw( L  L c)][ G  jw( C  Cc)1 1 (6) 

= JA11 — A l2 

Ere  jw( L —  Lc)][ G  jw( C —  C  (7) 

A 2 =  I 111  — A 1 

if  y =  7+ 

if  y = 

Therefore, the general solutions for E1(x) and E2 (z) are expressed as 

Ei(x) = A + e7+ '  A — e7—e  B + e— 'r+z  B — e-7—z  (8a) 

E2(x) =  A + e'r+x  —  B + e—r÷z  —  B e  (8b) 

where the four constants A + , A — , B + , and B —  will be determined from 
boundary conditions. The corresponding expressions for the two 
currents can be obtained by solving (la) and (lc). After the required 
algebraic manipulations, one obtains 

1  1  1  1 
Ii(x) = — — A + e*Y+ ' —  — B + e-74-x  (9a) 

Z +  Z —  Z +  Z -

1  1  1  1 

I2(x) =  —  — B + e-7+ ' —  (9b) 
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Fig. 2—Boundary conditions imposed on coupled transmission lines. 

where 
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z._ rR +   
(10) LG  ± Cc)] 

z— 
FR+ jie(L — L.)11 

(11) = LG jco(C — 
The boundary conditions that will be imposed are shown in Fig. 2. 

The corresponding boundary condition equations are: 

V, = Z1/1(0)  Ei(o)  (12a) 

O  
O = Z2/1(/) — E1(1)  ((1.122b0) 
= Z312(o)  E2(o) 

O = Z412(1) — E2(1).  (12d) 

Substituting (8) and (9) into (12) results in four equations for the 
four unknowns A+, A—, B+, and B. Solving for these quantities and 
substituting them into (8) yield a solution* of the form 

El(x) 
— I R+(x)  #R—(x)  (13a) 

Vi 

E2(x) 
= il?+(x) — 1R—(x)•  (13b) 

V, 

The near-end crosstalk is given by E2(o)/E1(o) whilet the far-end 
crosstalk (equal level) is given by E2(/)/E1(/). 

* In principle, (13) could be derived from eqs. (1.25) and (1.30) of Ref. 3. 
However, applying the boundary conditions (12) to these equations leads to sufficient 
algebraic complication that it is easier to derive (13) directly. 
t The conventional definition of near-end crosstalk is E2(o)/Vi which is equivalent 

to the above definition (except for a factor of 2) under the conditions of loose coupling 
and matched terminations. 
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Obtaining expressions for R±(x) and R- (x) involves very extensive 
algebra for arbitrary impedances and in general does not lend insight 
into the coupling process. For applications where switching circuits 
are involved, several special cases of interest partially simplify the 
algebra in obtaining expressions for the near-end and far-end crosstalk. 

Some of these cases are: 

(i) Z1 = Z3 and Z2 = Z4,7 (possible application to analog switch-
ing systems). 

(ii) Z1 = Z3 = Z, Z2 = Z4 = CO (possible application to switching 
systems using "totem pole" logic). 

(iii) Z1 = 0, Z2 = Z3 = Z4 = co (possible application to switching 
systems using simple transistor logic). 

These cases all involve somewhat bulky expressions, but they can be 
obtained with perseverance. 
The case that will be studied in detail in the following section is 

Z1 = Z2 = Z3 = Z4. This case is of special interest for three reasons: 

(i) The coupling capacitance and inductance can be related easily 
to physically measurable quantities. 

(id.) The conditions under which the "classical" crosstalk formulas 
apply can be studied. 

(iii) This case is of interest for many applications involving analog 
circuits. 

III. RELATIONSHIP TO PHYSICAL QUANTITIES 

The behavior of the coupling process is most easily illustrated by 
modifying the excitation assumed in (12). Instead of only exciting 
circuit 1, an excitation will also be applied to circuit 2 as shown in 
Fig. 3. The set of equations, (12), is modified by letting Zi = Z2 = Z3 
= Z4 and replacing (12b) by 

pVi = Z1/2(o) + E2(o)  (14) 

where p is a complex scalar. Obviously, the case p = 0 corresponds to 
the situation in Fig. 2 with equal terminating impedances. With this 
substitution, (13) becomes 

Ei(x)  1 + p A:, (x)  +  2 1 — p _ 
R 

2 
 =    R o (x)  (15a) 
VI  

E2(x)  1 + p R+ , x \  1 — p _ 
 R o (x)  (15b) 

V1 ..=  2  6' )  2 
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E1(o)  
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12(0)  1200 
- 8..  

+  + 
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Fig. 3—An alternate means of exciting the coupled transmission lines. 

where 
+ p0o 7+(i-.) -  
Ro(x) - 

pz el +i _ pz e--7-1-1 
00  10 

Poe"- (1-2)  - Pue-1-  (1- z) 
R7, (x) =   (16b) 

P2 e7-1 - P2 e-7-' u 11 
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(16a) 

and 
Z1 

Poo = 1 +  (17a) 
Z+ 

Z1 
P10 = 1  (17b) 

Z÷ 

Z1 
P01 = 1+ —z (17e) 

Z1 
Pp. Z-  (17d) 

It is now apparent that any excitation of the two coupled trans-
mission lines depicted in Fig. 3 will result in a response which will be a 
linear combination of the two functions R(x) and re 0- (x). Therefore, 
these functions will be referred to as modes. They will now be examined 
in somewhat greater detail. 
If p = 1, then (15) reduces to 

Ei(x)  E2 (X)  ....-1- „ 
— —  = no(x).  (18) 

VI VI 

Therefore, if the two lines are energized with equal and in-phase 
sinusoids, the resulting voltage distributions are given by Re (z) . Note 
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that Re(s) contains terms with a ± superscript and does not contain 
any terms with a — superscript. This, in turn, signifies that the 
propagation constant and the characteristic impedance associated with 
Re(x) are given by (6) and (10), respectively. This result will now 
be interpreted in terms of the distributed capacitance and inductance 
associated with the two transmission lines. 
Figure 4 shows a cross section of the two coupled transmission lines, 

assuming symmetric excitation (p = 1). According to (18), the voltages 
on the two lines are equal at every point x; this fact is indicated on 
Fig. 4. The capacitance per unit length of each conductor to the 
ground plane is denoted by Cp, while the coupling between conductors 
is denoted by Ci2. 
Since there is no potential difference across C12, the signals propagat-

ing along the two transmission lines are not affected by it. Therefore, 
each signal propagates along its respective transmission line as if the 
two lines were uncoupled and with distributed capacitance: 

C -I- C. = Cp.  (19) 

The distributed inductance can be expressed in terms of C. using the 
relationship: 

(C + C.)(L ± Lc) = ALE,  (20) 

(See, for example, Chapter I, Sec. 4, eq. (31) of Ref 8.) This 
formula is applicable to the case where the frequency of excitation is 
sufficiently high that the magnetic field penetrating the metal con-
ductors contributes a negligible amount to the coupling inductance. 
Thus 

Ile 
L ± L, = —•  (21) 

C. 

Turning now to the case p = —1, eq. (15) yields 

Ei (X)  E2 (X)  - 
=   = L(x).  (22) 

Vi  Vi 

The propagation constant and characteristic impedance associated 
with this mode are expressed by (7) and (11), respectively. As with the 
previous mode, this mode behaves as if the two lines were uncoupled 
but with primary constants R, G, C — C., and L — L. To see how 
these are related to the physical capacitance, it is convenient to 
depict the voltages and capacitances as shown in Fig. 5. 
As indicated by (22), the voltages on each transmission line are 

equal but opposite in sign. A vertical line between the two conductors 
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Fig. 4—Cross section of two coupled transmission lines—symmetric excitation. 
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must therefore constitute a surface of ground potential. Thus, the 
total capacitance to ground influencing a signal propagating along 
either line is given by 

C — C, = Co + 2C12.  (23) 

As in the previous case, one may take (C — C,)(L — Lc) = ge if the 
frequency is sufficiently high. Thus 

6 
L — Lc =   (24) 

C,  2C12 

Combining (19) and (23) to solve for C and C, yields 

C = C, + C12  (25) 
and 

C, = —C12,  (26) 

while combining (21) and (24) to solve for L and Lc results in 

Ca -I- Cl2  
L= µE  (27) 

C,(C, + 2C12) 
and 

C 1 2 
Lc =  (28) 

C„(C,  2C12) 

One final observation is that, in the higher frequency bands of in-

2C 12 

1E-0 

2C 12 

17:774). 

9  E2 

GROUND PLANE 

Fig. 5—Cross section of two coupled transmission lines—asymmetrical case. 
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terest, the following approximations can be made with little error: 

R 1 
(29a) 

R 1 
(29b) 

2 Z-

z+  Lic\è 
(29c) 

-F Ci 

-- Z- (29d) 
- C,/ 

(See Chapter II, Sec. 13, eqs. (18), (8), and (6) of Ref. 8.) 
Substituting eqs. (25) to (28) into the above equations yields 

1 RC, 
..140\17:"  (30a) 

1 R(C,  2G12) 
(30b) 

2 

Z+  (30c) 
C, 

Irj€   
Z- (30d) 

C, -h 2C12 

Thus, the R0- (x) mode has a higher loss and smaller characteristic 
impedance than the R(x) mode. 
It is now possible to outline a measurement procedure that will yield 

all quantities required to evaluate (13). Since the effective dielectric 
constant surrounding most physical transmission lines is determined 
by the detailed geometry of the insulation and shields surrounding 
each conductor, the quantity 4-1.--LE will be assumed unknown for the 
following procedure, even though p. and E may be known for each 
constituent material in the transmission line. 

Step 1. Measure C, and C12. 
Step 2. Terminate the coupled pairs in four equal impedances Z1 

and energize the two lines from the same voltage generator. The 
generator frequency should be in the range for which the approxi-

"\117E 
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mations leading to (29) and (30) are valid. In other words, terminate 
and excite the lines as shown in Fig. 3 with p = 1. 
Step 3. Adjust all four impedances, Z1, until Re(1) is a maximum. 

It is easy to show that in this case Zi = Z. Using (30c) and the value 
of C„ from Step 1 gives -sli.-Ce. 
Step 4. With Z1 = Z+, measure R(l) which equals () exp (--y+1). 
With .y+ given by (30a), R can be solved for directly, given the length 
of the coupled lines, I. 
Step 5. The remaining quantities, 7— and Z—, can now be evaluated 

using (30b) and (30d). Note that there is an additional check on the 
value of Ibii through the imaginary part of 1,1*. 

IV. COMPARISON OF RESULTS WITH CLASSICAL CROSSTALK FORMULAS 

We now use the results of the previous section to analyze the 
"classical" crosstalk formulas as derived by Shelkunoff and Odarenko.2 
Their analysis assumed uniform weak coupling between two parallel 
transmission lines terminated in their characteristic impedances. 
Assuming the two transmission lines had identical primary and 
secondary constants, they derived the following formulas for near-end 
crosstalk (NEXT) and far-end crosstalk (FEXT) : 

Z12  , 
N (w) —  (1 — e-21o(.)1) ,  (31) 

4Z070 (w) 

Z1 
F(w) =  l,  (32) 

2Z0 

where Z12, Zi2 are the mutual impedances between the two lines for 
NEXT and FEXT, respectively, Zo and -yo the secondary quantities 
of an isolated line [i.e., (10) and (6) with Lc = C, = 01 and 1 the 
length of the lines. The above formulas were derived neglecting the 
effects of the disturbed line on the disturbing line. In the discussion 
that follows, we shall examine the validity of this assumption. 
Referring to (6), (7), (10), and (11), and assuming L, «L, Cc «C, 

and Zi = Zo, it can be shown that 

Z1  Zo ± 6  (33a) 

i°  (Lc — C,Z02 —  )  (33h) 
2'o 

(5 = 

& 

-i, « 1  (33c) 



N(w) = 
E1(o)  Zo  16 

where the approximation is obtained by only assuming weak coupling. 
Now for sufficiently small I d , the term in brackets is approximately 
unity so that (35) becomes 

o 
N(w)  — (1 — e-2701) 

Ze 

=-- — (Li„   — C eZ20) (1 — e 2701) 
470Z0 

This agrees with the Shelkunoff and Odarenko result, (31), with 
Z12 = jco(Le — C 241) 
For larger values of l, the exponential term in (35) can usually be 

neglected for lossy lines. In the lossless case, the term in brackets will 
cause a departure from the classical formula for sufficiently large I ell ; 
however, in weak coupling situations, the length and/or frequency 
required to invalidate the approximation cosh (261)  1 are usually 
large enough to invalidate the lossless assumption. Thus, for most 
practical situations involving weak coupling, eq. (31) is adequate. 
We now consider far-end crosstalk. Again referring to (13), (16), 

and (17), letting x = l, and assuming the conditions for weak coupling 
exist, it can be shown that 
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and 
7  = lio 

(Lc + ccz.2) 
O -= jco 

2Z0 

Now using (33), (34), (13), (16), and (17) one can show that 

(1 — e21 01 [cosh (2d) — j — sinh (2E4o  
E2(o)  80  Zo 

(34a) 

(34b) 

(34c) 

— ev il 
F (co) 

+ e7÷' 

Substituting (34a) into (37) results in 

e-al - e.c 
F (w)   , 

+ ea 

—tanh (d) . 

(35) 

(36) 

(37) 

(38) 
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Referring to (34b), for sufficiently large w, Zo is a real constant and E 

is an imaginary number; thus, (38) can be written as 

F (w)  — j tan ( — jE/)  (39a) 

71-
- E/  for  I d e. — 

6 

L + c )  
—  3w 

2Zo 
(39b) 

Therefore, for  El l  (r/6), eq. (39b) agrees with (32) with Zi2 
= — jw(Lc ZÎIC c) Shelkunoff and 0darenko2 point out that (32) 
must not be carried to an absurd conclusion: namely, that most of 
the far-end power will reside in the disturbed circuit for sufficiently 
long transmission lines. They conjecture that, in the limiting case, the 
far-end power will divide equally between the two lines. Equation 
(39a) indicates that the far-end power oscillates back and forth between 
the two lines as a function of 1 (or frequency, since E is a function of w). 
Equation (39a) is valid over a larger range of 1 than (32) (or 39b), 
although it is not valid for all 1, since it is based on an approximation, 
(34), which is multiplied by 1. To be more specific, (6) and (7) can be 
written as 

2 

Le n — (421. cC c) ± jary o(Z 0C ± L,/ Z0))] 

--= 0[1  —  (L  C ce) 
7er) 

CO2 

(40) 

Assuming the conditions for weak coupling (L, «L, C0 «C), the 
third term in the brackets is much smaller than the second term, and 
the second term in the brackets has a magnitude much less than unity, 
so (34) is a good first-order approximation to (40). Now for Zo a real 
constant, e is an imaginary quantity. However, for any given frequency 
the higher order terms from (40) contain real parts which will dominate 
the behavior of the exponential terms in (37) for sufficiently large 1. 
Thus, referring to (37), in the limit as 1 —+ OD 

firn F(0)) I = hm 
1 —  

1  e (7'7- )L 
— 1.  (41) 

The same result is reached by fixing 1 and letting w —› 00• 
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In summary, when weak coupling conditions exist, the effect of the 
disturbed line on the disturbing line can be neglected for most NEXT 
calculations; however, for a sufficiently large / and/or co, the effect of 
the disturbed line on the disturbing line cannot be neglected for 
FEXT calculations. This is because, for certain values of / and/or w, 
the far-end power in the disturbed line will be comparable to the far-
end power in the disturbing line. 

V. CONCLUSION 

An analytical model for analyzing crosstalk between two identical, 
parallel, uniformly coupled transmission lines with ground return has 
been presented. Using this model, formulas were developed for the 
two sets of modal voltages and currents on the transmission lines. It 
was found that each mode has associated with it a propagation factor 
and characteristic impedance which, in general, are different for each 
mode. 
By applying different sets of excitation voltages to the two lines 

(changing boundary conditions), the effect of each line on the other 
can be analyzed in terms of the modal quantities. Using this technique, 
formulas were derived for the coupling capacitance and inductance in 
terms of the distributed capacitance and distributed inductance of an 
isolated line, the distributed capacitance to ground for the nonisolated 
lines, and the permeability and permittivity of the medium surround-
ing the transmission lines. 
The mutual influence of the two lines was also studied by assuming 

weak coupling between them and then deriving NEXT and FEXT 
formulas using this model. These formulas were compared with the 
classical formulas which do not take into account the influence of the 
disturbed line on the disturbing line. In the case of NEXT, the effect 
of the disturbed line on the disturbing line was found to be negligible 
for most practical cases. In the case of equal level FEXT, however, the 
effect of the disturbed line on the disturbing line can be quite signifi-
cant for sufficiently large line length and/or frequency. 
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Previously published results on the performance of optical direct de-
tection digital receivers using avalanche detectors are extended to the case 
where incoherent noise due to quantum amplifiers in the transmission 
medium is present at the detector. These calculations are applied to de-
termine the usefulness of quantum amplifiers in simple digital transmission 
systems where the optical source instability results in a required amplifier 
bandwidth which may be orders of magnitude greater than the modulation 
bandwidth. It is concluded that practical applications exist where quantum 
amplifiers can be used in analog repeaters between regenerating repeaters in 
a hybrid digital system; and also as front ends of regenerating repeaters to 
increase their sensitivities. 

I. INTRODUCTION 

Quantum amplifiers can be used in optical communication systems 
even if the optical sources are only partially coherent. They can serve 
as optical analog repeaters between regenerating repeaters in a 
hybrid digital system to compensate for transmission loss (see Fig. 1), 
and also as the front ends of regenerating repeaters which demodulate 
back to baseband. 
This paper investigates the applications for quantum amplifiers 

in simple digital communication systems employing "on-off" intensity 
modulation. It will be assumed that due to source instability, the 
optical system bandwidth may be orders of magnitude greater than 
the bandwidth of the modulation, and that the quantum amplifiers 
have limited gain. 
We shall calculate Chernov bounds on the required signal energy per 

pulse at the detector of a digital repeater (to be described in detail 
below) to achieve a 10-9 error rate as a function of the received sponta-
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SOURCE MODULATOR FIBER I T 
QUANTUM AMPLIFIER HFIBER f—  

EQUIVALENT EQUIVALENT  NOISE NOISE   
  QUANTUM AMPLIFIER - — f FIBER H  REGENERATOR H  FIBER 

Fig. 1—Fiber communication system. 

neous emission noise level from quantum amplifiers, or of the incoherent 
background noise level for some typical values of dark current of the 
detector, mean detector gain, and thermal noise introduced by circuitry 
following the detector. For these Chernov bound calculations, we shall 
assume a unilateral gain detector. Numerical results for other detectors 
and parameter values can be obtained by using the moment generating 
functions to be derived below with the results of two previous papers' .2 
concerning Chernov bounds for direct detection intensity modulation 
systems using avalanche gain. 
We shall also derive some signal-to-noise ratio results which can be 

used to approximate the energy required per pulse to achieve a desired 
error rate. These signal-to-noise ratio results are consistent with 
previous published work of other authors.'—' 
Throughout this paper it will be assumed that the modulation 

consists of varying the intensity of the transmitted signal in each 
baud interval to produce pulses at the regenerating repeater which are 
of one of two amplitudes, and such that the pulses are approximately 
constant in a baud interval of length T seconds. Generalization to 
other pulse shapes should be straightforward using the results below. 

II. A MODEL FOR THE QUANTUM AMPLIFIER NOISE 

Throughout this paper we shall model the source as follows. Its 
voltage in a single spatial mode will be given by 

E.(t)  -ere pleico+.)ti  (1) 

where 1(01 < 2vB/2. 
That is, the source will be nominally at optical frequency SI/27r but 

due to source instability there will be an uncertainty of bandwidth B. 
(The conclusions and numerical results that follow also hold if the 
source is a randomly phase-modulated sinusoid having a bandwidth B 
of the form E.(1) = Narefilei m+in)1.) 
If the modulated signal is to be transmitted over a channel with 

quantum amplifiers and possibly with optical filters as well, then these 
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devices must have a bandwidth of at least B + 1/T to accommodate 
the modulated signal for all possible values of co. (The term 1/T is due 
to the increase in bandwidth of the source due to the modulation.) 
At the regenerating repeater input, the classical field will be modeled 

as follows (assuming only a single spatial mode) 

Er(t) =V7relm(t)ei(2±6')t + n(t)1  (2) 

where m(t), the modulation, assumes one of the two possible pulse 
amplitudes (a pulse which is approximately constant in each baud 
interval T) and n(t) is a complex Gaussian random process which 
represents the incoherent spontaneous emission noise introduced in 
the quantum amplifiers or represents incoherent background noise.6 
In each baud interval T, we can expand the field complex envelope in 
a Fourier series e taking only enough terms to include the "system" 
bandwidth B'.$ 

(L-1)12  [e,(2.kii n i 

Er(t) =  m(t)e" + n(1) =  E ak   (3) 
-(L-1)/2  VT _I 

where L (the number of temporal modes) is given by L = B'T 
+ BT. Defining 

nz k = 

nk 

1 

-yT L ind interval 

nz Weicute—i(2rkt/T)dt 

1 
=  Laud interval n(t)e—i(2rktiT)dt T   

we have for each value of k, ak = mk + nk. Because we have a digital 
system, the signal components, nik, take on one of two values for each 
k. The noise components nk are complex Gaussian random variables. 

(4a) 

(nkn;) = N06k1, (nkn» =  O  (4b) 

where No is the classical incoherent noise spectral height§: (n(t)n*(r)) 
NoeS(t — r), and (x) stands for the expected value of x. 

$ A more rigorous and general approach taken in the Appendix is to expand the re-
ceived field in a Karhunen-Loéve expansion' using the autocorrelation function of the 
noise n(t) at the detector input as the kernel. The approach taken here is justified on 
grounds of simplicity and intuitiveness. 
$ The system bandwidth B' is the minimum of the quantum amplifier bandwidth, 

the detector optical bandwidth, and the bandwidths of any filters in the optical path 
preceding the detector. Of course B' > B  (1/T), if we are to accommodate all 
possible signals with the unstable source described above. 
That is, the number of watts of incoherent power falling on the detector in the 

bandwidth B' is NJ'. 
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At the regenerating repeater it will be assumed that the field falls 
upon a detector with internal gain (e.g., an avalanche detector) and 
causes the detector to emit "primary" hole-electron pairs at rate 
(average pairs/second) 

X (t) = Is(t)I 2 (5) 

where h = Planck's constant/27r, I = optical frequency in radians/s, 
n = detector quantum efficiency, and Er(t) was defined in eq. (3) above. 
Due to internal gain, each primary "count" (hole-electron pair) 

produces a random number of additional secondary counts. Because 
the modulation pulse is approximately constant throughout a baud 
interval, we will be interested in the total number of counts produced 
by the detector due to signal and incoherent noise in each baud interval. 
The moment generating function7 of the random total number of 
counts, N, produced in each baud interval, T, is defined as 

00 

MN(S) = E einp(n)  (6) 

where 
p(n) = probability that N = n. 

From previous work' we have 

MY(8) = Mc(11/0(8)) 
where 

e G(8) is ln[M G(8)]. 

(7) 

M 0(s) is the moment generating function of the random internal gain 
G and M c(s) is the moment generating function of the total number of 
primary counts, C. 
We can evaluate M c(s) as follows. Define the quantity A as 

(I..-1)/2 
A = — ET(t) I 2cIt = —  E  I ak I 2 (8) 

ha baud interval  /AZ -(L_l) /2 

where A is the average number of received primary counts in a baud 
interval given €,.(t). A is a random variable, since the {arc} are random 
variables having the following joint complex Gaussian probability 
density 

p {al, a2' • •aLI 

L „ Ha. —nall/N.. 
irN 0 

The probability distribution of the total number of primary counts 
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Fig. 2—Twin-channel system. 

( 1) 

C in a baud interval given A is Poisson, i.e., 

Ace-A 
P(cIA) =   - probability that C = c given A. 

C! 

It follows that Me(s) is given by 

Mc(8) =  [Ece p (cl A)ealp(A)dA 
o  o 

Leme.--up(A)dA 

[ nNo 
1     

M2 

"ONE" 

< ° 
"ZERO" 

xe[wrin>m Inikl ,(e. — 1)/[1. — (v/h11)No(e. — 1])  (9) 

III. SIGNAL—TO—NOISE RATIO RESULTS 

From (7) and (9) we obtain the mean number of counts, (N), 
emitted by the avalanche detector in a baud interval as follows 

a  a a 
(N) = —as M N(8) =  11/1 c(11,G(s))  ,&o (S) 

a[iG(8)] os 
= C[m2 + (10) 
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where (L-1)12 
m2 =  !m(t)12d = E Imk12, 

J band interval  —(L-1)/2 

N. = (1%12) = classical spectral height of the incoherent noise 
at the detector input, 

L  [B  1/T]T = BT  1, 

and a is the mean avalanche gain. 
The variance of the total number of counts is 

a2 
(N2) — (N)2 = — M N(s) 

as2 

ta 
M O) 

s-0  as 
1..0)2 

n 2 

(m2 ±  LN.)  Ml 1G2  2Nom2)(0)2 (--- Kt) (11) 

shot noises  beat noises' 

where G2 is the mean square avalanche gain. 
Consider a typical twin-channel digital system, shown in Fig. 2. 

There is light incident on each detector containing "on-off" modulated 
signal pulses of duration T and incoherent noise. A channel is in the 
"on" state when its signal pulse has optical power p. In the "off" state 
the signal pulse power is p•EXT, where EXT is small compared to 
unity. During each baud interval, one or the other channel is "on." 
The detectors are assumed to have internal random gain (e.g., av-
alanche gain or photomultiplier gain) and there are assumed to be 
thermal noises added to the detector outputs due to the amplifiers 
following the detectors. It is assumed that the signaling rate is slow 
enough so that each signal pulse of light of duration T produces an 
output current from its detector of duration T that does not overlap 
with the currents from other pulses. The detector output current 
pulses plus the corresponding noises are integrated in each period T 
(or equivalently filtered). The output variable x is compared to the 
threshold after each integration to decide which channel is "on." An 
error is made if x > 0 when the "zero" channel is on, or vice-versa. 
The baseband noise-to-signal ratio is defined as the variance of the 

output voltage x divided by the square of the mean of the output 
voltage x. 

t The term "beat noise" has been used in literature to describe those noise terms at 
the output of a square law detector which are due to fluctuations in the instantaneous 
power of a carrier which has a fluctuating amplitude. 
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(x2) — ((x))2 4kOT 
 _   

(x)2 Re2X2a(1 — EXT)202 

thermal noise 

i7 + 2Xd ± 2LX. ± X1(1 ± EXT) e 
x2,(l - EXT)2 (0)2 

,   
shot noises 

217   2LX. + 2X,X1/  . (1 + EXT) 
±  (12) 

X.2(1 — EXT)2 

beat noises 

where 

k0 = Boltzman's constant • absolute noise temperature referred 
to the integrator input. 

R = integrator equivalent thermal noise input resistance. 
Ad = mean dark current counts per detector per interval T before 

avalanche gain. 
X, = m2n/M2 = mean signal counts per interval T in "on" chan-

nel before avalanche gain. 
LX,, = mean incoherent noise counts in either channel per baud 

interval T before avalanche gain. 

L _k. BT ± 1, and equals the number of temporal modes de-
tected. 

EXT = Signal power in "off" channel/signal power in "on" channel. 

In eq. (12), terms which are due to the incoherent spontaneous 
emission noises of the quantum amplifiers (or background noise) are 
marked with arrows. 

We see that the optical incoherent noise, when detected to baseband, 
causes additional shot noise and also contributes two beat noise terms. 
One of these is proportional to the signal X, and one is proportional to 
L. One can use these signal-to-noise ratio results to approximate the 
error rate by assuming that the output variable x is roughly Gaussian 
in distribution. 
In the next section we shall generate some curves that may give a 

clearer picture of the effects of L, X., X,, etc., on performance. 
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IV. CHERNOV BOUNDS 

The moment generating function defined in (9) was used with 
previously published results" on avalanche photo-diode gain statistics 
to obtain Chernov upper bounds on the energy per pulse required at 
the input of a digital twin-channel regenerating repeater of Fig. 2 to 
achieve a desired error rate as a function of the other parameters. 
The general Chernov bound is given as follows.' Let X be a random 

variable with moment generating function M r(s). Let Prx(x > y) be 
the probability that an outcome x of X exceeds -y. Then it follows that 

Prx(x > -Y) e("(°)-'7] for s > 0  (13) 
where 

4.,(s) = ln[M,(s)]. 

The bound is optimized for s such that (a0(s)/(3s) = y provided 
that value of s is greater than zero. 
Similarly, 

Prx(x < ŷ)  elex( 3)— »71 for s < 0  (14) 

where the optimal value of s is given by (atk(s)/as) = y provided that 
value of s is less than zero. 
To obtain Chernov bounds upon the probability of error for the 

twin-channel system of Fig. 2, one needs the moment generating 

2  4  6  8 M r I 2 4  6  8 100  2  4  6 8 101 

NOISE COUNTS PER MODE, )in 

Fig. 3—Required energy per pulse normalized by n/en vs the incoherent noise level 
No at the detector, also normalized by  
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Fig. 4—Same as Fig. 3. 
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function of the output variable x. This can be obtained using (9) and 
the results of the Refs. 1 and 2, which are too detailed to duplicate here. 
From simple cases where error rates can be calculated exactly, the 

differences in required power between those results and the bounds 
are typically a few dB or less. Experimental results also confirm the 
tightness of the bounds. Therefore, in this paper we shall take the 
liberty of comparing the effects of various parameters upon the 
required energy per pulse to achieve a desired error rate by comparing 
the bounds. 
It was decided that the calculations should be presented graphically 

in two ways. 
First, in Figs. 3 to 5, the required energy per pulse normalized by 

7j/h2 (i.e., the mean number of detected signal photons per pulse) is 
plotted vs the incoherent noise level N. at the detector also normalized 
by n/hil. This is done for various values shown of L, mean avalanche 
gain, thermal noise, dark current, error rate, and extinction ratio, for a 
low-noise unilateral gain avalanche detector (i.e., a detector in which 
only one type of carrier causes ionizing collisions, and where carrier 
injection is from one end of the high field region). The avalanche gains 
used in these calculations do not minimize the required energy per 
pulse for the given values of the other parameters, but were used for 
illustration. 
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Fig. 5—Same as Fig. 3. 
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It was recognized that in a hybrid system, if the loss between the 
regenerating repeater and the analog repeater closest to it is in-
creased, then the signal energy per pulse at the regenerating repeater 
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Fig. 6—Required energy per pulse normalized by nth.t1 vs the ratio Z of spontane-
ous emission noise spectral height to signal energy. 



QUANTUM A MPLIFIERS  127 

ui 

Z  2 
o 
C.) 

L I 0 000 

WC' 
Z 10. — 

(73  8 

6 - 

2 
10-4  2  4  6  8 10-3  2  4 6 B 10-2  2 

ERROR RATE= 10-9  

EXT =0.001 

Ad = 5 

1000 
100 

10 

G = 20 

„1210T 

Re 

I  I  I 

NOISE COUNTS 
An  PER MODE 

As  SIGNAL 
COUNTS 

Fig. 7—Same as Fig. 6. 

4  6  8 10_ 1 

input will decrease while the ratio of signal energy per pulse to spon-
taneous emission noise spectral height at the regenerating repeater 
input will remain fixed. Thus in Figs. 6 to 8, the required energy per 
pulse normalized by n/h11 is plotted vs the ratio Z of spontaneous 
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emission noise spectral height to signal energy, for the various values 
shown of other parameters. 

V. APPLICATIONS AND EXAMPLES 

5.1 Analog Repeaters 

Suppose one used quantum amplifiers in analog repeaters placed 
between regenerating repeaters so as to increase the distance between 
regenerating repeaters. See Fig. 1. Each quantum amplifier introduces 
a spontaneous emission noise which has spectral height referred to its 
input given by9 

(Gg G. 1 — 1 \ Ninput = Fha   (15) 

where Gg is the quantum amplifier power gain and F is a noise figure 
which can be near unity for good quantum amplifiers and is typically 
less than 10.t If the input to analog repeater k is ak nepers (in power) 
higher than the signal level at the input of the regenerating repeater, 
then the total spontaneous emission noise spectral height N. at the 
input of the regenerating repeater is 

(G 61 — 1) 
N. = E Fkh9  e—a e  (16) 

1  GQIc 

where R = number of analog repeaters. 
The ratio of N. in (16) to the signal energy per pulse, p • T at the 

regenerating repeater input, see Fig. 2, is the parameter Z defined in 
Section IV above. Since the incoherent noise and the signal both 
experience equal loss per unit length from the fiber, the ratio Z is 
constant between the regenerating repeater and the analog repeater 
closest to it. 

Example: Suppose we make the following assumptions. A twin-channel 
system is used with a unilateral gain detector having mean gain 100 
and with all the other parameter values necessary above so that the 
Chernov bound curves of Fig. 8 are applicable. The source is a 
Nd :YAIG laser having bandwidth 1 A at wavelength 1 pm, i.e., 
3 • 101° Hz. The modulation rate is 300 Mb/s so that T ••••• 3.33 X 10-9 s. 

t F is related to the population inversion in the amplifying medium which is as-
sumed constant in this analysis. 
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We then have L = 100. There are 10 analog repeaters and they are 
spaced so that the signal level is the same at the input to each one. 
From Fig. 8 (assuming that the upper bounds are tight enough so 

that we can comment upon the effects of various parameters on the 
required energy per pulse by observing their effects upon the boundst) 
we see that when Z is less than 10-3, the required signal energy at the 
regenerator input is 600 counts, i.e., p• T = hn/n • 600. This value of 
signal energy is the same as that which would be required if no sponta-
neous emission noise were present (Z = 0). 
Thus for spontaneous emission noise to be negligible in this example, 

we must have the ratio of the signal energy per pulse at the regenerator 
input to N. larger than 10'. 
This means [from (16)] that at the analog repeater inputs the signal 

level must exceed 10' • idIRFUG,— 1)/G.0 where 

R = number of analog repeaters = 10 in this example 
G. = gain of analog repeater (assumed the same for all repeaters) 
F = noise figure of an analog repeater (assumed the same for all 

repeaters). 

Looking again at Fig. 8, we see that for L = 100, Z can be as large 
as 5 X 10-' before the required signal level at the regenerating repeater 
becomes large and enters the sensitive region. This means that the 
signal level at the inputs to the analog repeaters might be as low as 
200 • KIRF[(G. — 1)/G6] in which case the signal required at the 
regenerating repeater is somewhat larger, but still not extremely 
sensitive to small changes in Z. Suppose F = 10, 7, = 1, G. = 100, and 
the maximum power output of any repeater is 1 mW. Suppose the loss 
of the medium is 10 dB/km. When spontaneous emission noise is 
negligible, we need 600 ha = 1.2 X 10-16  joules per pulse at the input 
to the regenerating repeater and we have 3.33 X 10-12  joules per pulse 
at the output. Without analog repeaters we can have about 44.5 dB of 
loss or 4.45 km between regenerating repeaters. Suppose on the other 
hand we use 10 analog repeaters starting where the signal level is 200 
ASZRF[(G. — 1)/G6] = 4 X 10-" joules per pulse (i.e., Z = 5 X 10-3); 
or about 28.8 dB (2.88 km) from the regenerating repeater output. 
The string of 10 analog repeaters spaced at 20-dB intervals spans 200 
dB or 20 km of distance; and we can have an additional 13 dB or 1.3 km 
of distance to the next regenerating repeater input resulting in the 
required 2 X 10-" joules per pulse at that regenerating repeater input. 

See comment Section IV. 



130  THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1973 

The total distance between regenerating repeaters is now about 24.2 
kra. t 

It seems prudent that for a given value of L, one should avoid values 
of Z which are so large that small changes in Z result in large changes 
in the required signal energy at the regenerating repeater. Such small 
changes in Z might come about if the source power or quantum ampli-

fier gains fluctuated slightly. 

5.2 Regenerator Repeater Front End 

Suppose that in the example above we had just one quantum 
amplifier (or equivalently, the spontaneous emission noise from any 
additional quantum amplifiers was negligible). 
In the absence of spontaneous emission noise, the energy per pulse 

required at the regenerative repeater input is approximately 600 kR/n. 
Now suppose we place the quantum amplifier immediately before the 
regenerating repeater. If the gain is sufficiently large, then we can 
operate with Z as large as 7 -10-3 . This means the energy per pulse at 
the input to the quantum amplifier need only be about MF / (7 X 10-3 ) 
140h2F (for large Gq). Thus, we see that if 140F < 600/1 then the 

quantum amplifier increases the sensitivity of the regenerative repeater 
over that associated with an avalanche detector alone (in this example 
with L = 100). 
For other values of L in this example, the condition for a quantum 

amplifier front end to increase the regenerative repeater sensitivity is 

F  600 

Zmax < 

where Z . is the maximum value of Z for reasonable required energy 
per pulse at the input to the regenerating repeater (following the 
quantum amplifier). 
For other systems with different types of avalanche detectors and 

different parameters (avalanche gain, dark current, etc.) the number 
600 in the above equation should be replaced by the required mean 
number of detected counts in the absence of a quantum amplifier. 

t A slightly larger total distance between regenerating repeaters can be obtained by 
starting the chain of analog repeaters 20 dB (rather than 28.8 dB) from the regener-
ating repeater output. In that case Z  5.10-4 and the next regenerating repeater can 
be about 45 dB from the last analog repeater for a total span of 24.5 km between re-
generating repeaters. Placing the analog repeaters as described in the above example 
allows some margin for overload. 
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5.3 Background Noise 

As a final comment, it is clear from eq. (12) that if the incoherent 
noise spectral height, No, at the regenerating repeater input is small 
enough so that (n/h2)N « G2! (0)2 then only the additional shot noise 
term is important amongst the three noise terms associated with the 
incoherent noise. 
This inequality always holds for the case where the incoherent 

noise is background (thermal) radiation in equilibrium at temperatures 
below 10"K, since for thermal background radiation we have 

kn 
N0 (Thermal) 

-  1 

k0 = Boltzman's constant • absolute temperature. 
At room temperature and at a wavelength of 1 gm, he/k0  50. 
Therefore, in analyses where incoherent background radiation is 

included, one usually only includes the additional shot noise term 
LN0(n/ha) = LX„ in the signal-to-noise ratio formulae. 

VI. CONCLUSIONS 

We have shown that quantum amplifiers can have applications in 
both analog repeaters to extend the distance between regenerating 
repeaters and as front ends of regenerating repeaters. Their usefulness 
is a function of the ratio of the optical bandwidth of the system to the 
modulation bandwidth; but is not limited to small values of this ratio. 
To choose system parameters, for example, the required signal levels 
at the analog and regenerating repeater inputs, various component 
parameters such as the mean avalanche gain, avalanche detector type, 
source bandwidth, baseband thermal noise, etc., must be given. 
Computations in addition to those presented, upper bounding the 
error rates, can be carried out with previously published Chernov 
bound results ;1.2 or approximate error-rate calculations can be made 
using the signal-to-noise ratio results of Section III above. 

APPENDIX 

Use of the Karhunen-Loéve Expression 

Starting with eq. (2) of the text, we could expand the received 
complex envelope Er(t) =  M (t)e""  n(t) in a baud interval in terms 
of the Karhunen-Loéve eigenfunctions of the band limited incoherent 



132  THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1973 

noise n (t), i.e., define 

Ro(t,u),  14,k(u)1,  and  1-ykl 

Ro(t,u) = (n(t)n*(u)) 

th(u)Ro(t,u)du = 7 ki,k(t)  for te baud interval, 

k = 1, 2, 3. • • . 

as follows 

fbaud interval 
Then 

where 

and 

kr (I)  E a kilik(t) 

ak = Ink + nk 

for t  71) 

mk = m(t)eigatek(t)dt 
baud interval 

nk =  
baud interval 

(nkn;) =- -ykSki,  (mn) = 

fbaud interval (41.11; (i)dg =- ôicj. 

Then we would find that M e(s) of eq. (9) could be more rigorously 

given by 

Mc(s) =  rl —  (ea — 
k=1  hfl 

exp  limk1 2(e.-1)/[1—  -yk(e. — 1)1}1. 
ha 

Thus in eq. (9) N„ has been rigorously replaced by  for each k 
and the finite number of terms L has been replaced by an infinite 
number of terms. 
If we make the reasonable assumption that the incoherent noise 

is fiat with spectral height No in a band of width B'  1/T then 

7k :re. No for 1 k  L 
0 otherwise  (17) 
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where 
L = B'T  1. 

Thus the form for M c(s) derived in the main text is identical to the 
more rigorous result under this approximation. 
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A Proper Model for Testing the Planarity 
of Electrical Circuits 

By A. J. GOLDSTEIN and D. G. SCHWEIKERT 

(Manuscript received August 25, 1972) 

The question of whether an electrical circuit can be laid out on a plane, 
without resorting to crossovers or multilayer wiring, is usually answered 
by testing the planarity of a graph representing the circuit. 
Two commonly used representations are shown to be inadequate. We 

present the following new representation, and show it to be complete and 
unrestrictive: The graph has one node for each circuit module, and one node 
for each net; for every net with k modules, there is a "star" of k edges 
connecting the net's node to each of the modules of the net. 

I. INTRODUCTION 

Electrical networks frequently consist of a set of modules (beam-
leaded chips, DIPs, etc.), and a set of electrical interconnections or 
"nets" among two or more modules. Each net specifies a set of modules 
to be interconnected with a single conducting path. The planar design 
problem consists of placing the modules and the net wiring in the 
plane. The question of whether the interconnections can be accomp-
lished in the plane without resorting to crossovers or multilayer 
wiring is usually answered by testing the planarity of a graph represent-
ing the circuit. 
This graph is typically constructed by one of two mappings: 

(i) Module-to-Node Mapping. The modules are represented by 
the nodes (or points) of the graph; and the nets are represented 
by its edges (or lines) ; or 

(ii) Module-to-Edge Mapping. The modules are represented by 
the edges and the nets are represented by the nodes. 

Since the edge of a graph connects exactly two nodes, these mappings 
are not uniquely defined and a priori design decisions must be made 
which may be either improper or restrictive, and may produce spurious 
crossovers (see Sections II and III). 

135 
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We give a unique representation that maps both nets and modules 
into the nodes of a graph, G. In this representation, a k-module net 
will appear as a "star" with an edge from its node to each of the 
modules in the net. We show that this mapping is a complete and 
unrestrictive representation of an electrical circuit. The main result 
of this paper (Section IV) is that the network can be laid out in the 
plane without crossovers if and only if G is planar. Thus the practical 
problem of planarity of these networks is solved since there are good 
computer algorithms for testing planarity.i-5 Such algorithms will do 
a good but not optimal job of minimizing crossovers in a nonplanar 
graph. As with other mappings, we are ignoring certain practical 
restrictions, such as a specified cyclic terminal order for a module. 
Usually, these restrictions can be forced on the graph by auxiliary 
strategies. 
The representation presented here is similar to that given by Engl 

and Mylnski :6 in order to properly represent a k-node net, the conven-
tional definition of an undirected edge, i.e., a set of two nodes, was 
generalized to a set of k nodes. We demonstrate here that such general-
Wed concepts are unnecessary. By mapping both nets and modules 
into nodes, we retain the conventional definition of an edge, which 
greatly simplifies the presentation and proof, and most importantly, 
permits the use of conventional planarity testing algorithms. 

II. INADEQUACY OF THE MODULE-TO-NODE MAPPING 

Since nets map into edges, and an edge connects exactly two nodes, 
there is an inherent restriction to two-module nets. A common embel-
lishment of the module-to-node mapping, is to decompose a k-module 

2 

Fig. 1—Planar circuit (ignoring dashed net). 
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Fig. 2a.—Planar graph constructed using the module-to-node mapping on Fig. 1. 
Note A' and A" are adjacent on 1. 
Fig. 2b—Alternative planar graph. Terminals for A' and A" are not adjacent 

on 1. 

net (k > 2) into a string of k — i two-module nets.* Thus k — 2 of 
the modules are formally permitted to have two terminals contacting 
the same net. Since the cyclic order of edges leaving a node is irrelevant 
in deciding whether a graph is planar, these two terminals may not be 
adjacent in a planar layout of the graph. If not adjacent, these two 
terminals may necessitate a crossover inside the module; we will 
term this a "module crossing." 
For example, the electrical circuit in Fig. 1 has a three-module net A. 

If A is represented as two two-module nets A' (3, 1) and A" (1, 6) then 
the module-to-node mapping yields a graph having a planar layout 
shown in Fig. 2a. Since the A' and A" terminals on 1 are adjacent, they 
can be merged, and planarity is legitimately indicated. 
However, this graph has a second, and equally acceptable, planar 

layout (see Fig. 2b) in which the A' and A" terminals on Module 1 are 
not adjacent, and a physical realization (see Fig. 3) of this second layout 
may require an unnecessary crossover inside Module 1, i.e., a module 
crossing. 
If one adds the additional net (3, 5) (shown as a dashed line in Fig. 1) 

then the graph has only one planar layout (Fig. 2b), and that layout 
requires a module crossing for its physical realization (Fig. 3). 
These two examples demonstrate that the module-to-node mapping, 

by arbitrarily inserting two terminals per module for certain nets, 
cannot distinguish layouts which are physically planar from those 

* The use of the complete graph for k nodes (all pair-wise connections), commonly 
but inaccurately used7 in graphical representations for partitioning and placement 
algorithms, is clearly unacceptable here since the complete graph for five or more 
nodes is nonplanar. 
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1 

H 

2 

Fig. 3—Physical implementation of graph in Fig. 2b. Note "module crossing" 
at 1. 

which use module crossings. Furthermore, if a planar layout of the 
graph requires the use of module crossings, there may or may not be 
an alternative planar layout of the graph which does not require the 
use of module crossings. 
When a k-module net is decomposed into two-module connections, 

it is possible to choose a decomposition which will produce a nonplanar 
graph even though the circuit is planar. For example, the circuit in 
Fig. 4 is planar, and the module-to-node mapping will produce a 
planar graph if net A is decomposed into the string of three two-module 
nets: (1, 2), (2, 3), (3, 4). However, one may have chosen the alterna-
tive decomposition (1, 3), (2, 4), (3, 4) which yields the nonplanar 
graph shown in Fig. 5. 
Certain technologies permit a limited amount of "under-module" 

wiring, which may permit the required module crossing in the above 
examples. However, even if this capability exists, there are two 

G 
i - 

Fig. 4—Planar circuit. 
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Fig. 5—Nonplanar graph resulting from an inappropriate decomposition of Net A 
in Fig. 4. 

objections to the use of this mapping: (i) the set of two-module nets 
which best represent the k-module net (k > 2) is difficult to determine 
a priori, and an arbitrary choice may result in unnecessary crossovers; 
and (ii) unnecessary module crossings may result. 

III. INADEQUACY OF THE MODULE-TO-EDGE MAPPING 

A module which connects to k > 2 nets cannot be simply represented 
as a single edge. A typical elaboration of this mapping8 is to represent 
a k-net module as a ring of k two-net modules. For example, the 
four-net Module 2 in the circuit above (see Fig. 1—ignoring the dashed 
connection) could map into the four edges shown in Fig. 6a. With 
similar representations for Modules 1, 5, and 6, the module-to-edge 
mapping for this circuit has the planar layout shown in Fig. 7. 
However, without the obviously planar schematic in Fig. 1 for 

guidance, one may have arbitrarily chosen the equally acceptable 

(a) (b) 

Fig. 6—Alternative decompositions of Module 2 in Fig. 1. 
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Fig. 7—Planar graph constructed using the module-to-edge mapping on Fig. 1. 

representation of Module 2 shown in Fig. 6b. In this case, the graph is 
not planar. 
Basically, the representation of a k-net module (k > 3) as a ring 

of edges, requires the specification of the sequence of terminals leaving 
a module—a specification which may not be required by the physical 
problem. As demonstrated in the above example, an arbitrary choice 
of terminal sequence may be restrictive and may yield a false indication 
of nonplanarity. 
For certain designs, where the modules are predesigned and the 

terminal sequence is specified, the choice of ring sequence is obvious 
and not a restriction, but a practical requirement. Note, however, 
that the ring may appear as a mirror image in the planar layout of the 
graph; where the module cannot be physically mirrored, additional 
restrictions are necessary. 

IV. MODULE-AND-NET-TO-NODE MAPPING 

The previous two mappings fail to produce graphs which always 
reflect the planarity aspects of the circuit. In this section, we construct 
a graph, G, to represent the circuit and show that the circuit is planar 
if and only if G is planar. The graph G constructed from the net infor-
mation has one node for each module plus a "net node" for every net. 
For every k-module net there is a "star" of k edges connecting the net 
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Fig. 8—Planar graph constructed using the new module-and-net-to-node mapping 
on Fig. 1, 

node to each module in the net. Using this mapping, Fig. 8 shows the 
planar graph representing the circuit of Fig. 1. 
The star-like subgraph is selected somewhat arbitrarily and can be 

replaced by any tree attached to the net's modules. Recall (Section I) 
that the cyclic order of edges at a module is unrestricted. 

Theorem: The circuit is planar if and only if G is planar. 

Proof: If G is planar, then clearly the circuit is planar. Conversely, 
suppose the circuit is planar. Consider the planar subgraph of any net. 
(Since they are electrically unnecessary, we may assume the subgraph 
has no loops.) We will modify it to form a star. First, create a node s at 
any point of the subgraph which is not a terminal. Continue to modify 
the subgraph by repeating the following process at s until a star 
subgraph results: (cf. Fig. 9). 

Choose an edge (s, t) of the modified subgraph with t having at 
least two edges. Let (t, u) be the first edge at t in, say, clockwise 
order from (t, s). Create a new subgraph by replacing the edge 
(t, u) by an edge (dashed in Fig. 9) from s to u "running parallel" 
and on the left side of the path s, t, u. If t now has only two edges, 
then delete t and coalesce its two edges into one. 

Since the subgraph of the net was planar, the resulting star subgraph 
is also planar and has a node s corresponding to the net. By replacing 
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y s 

Fig. 9—Net A of planar circuit in Fig. 4. 

every net subgraph by a star subgraph, we obtain a planar graph, G, 
of the desired type. Q. E. D. 
Two observations may substantially reduce the size of the graph 

which is tested for planarity. Since a two-module net results in a star 
with only two edges, it is clear that planarity is unchanged if this net 
node is deleted and the two edges are coalesced into one. Similarly, a 
two-net module results in a node with only two edges connected to it; 
again, that module node can be deleted and the two edges coalesced 
into one. 

REFERENCES 

1. Auslander, L., and Parter, S. V., "On Imbedding Graphs in a Sphere," J. Math. 
Mech., 10, 1961, pp: 517-523. 

2. Goldstein, A. J. "An Efficient and Constructive Algorithm for Testing Whether a 
Graph Can Be Embedded in the Plane," Proc. Conf. on Combinatorics and 
Graphs, Princeton, May 1963. 

3. Fisher, G. J., and Wing, O., "Computer Recognition and Extraction of Planar 
Graphs from the Incidence Matrix," IEEE Trans. Circ. Theory, 13, 1966, pp. 
154-163. 

4. Hoperoft, J., and Tarjan, R., "Planarity Testing in V Log V Steps," Proc. of 
IFIP Congress, Ljubljana, Yugoslavia, 1971, Booklet TA2, pp. 18-22. 

5. Tarjan, R., "An Efficient Planarity Algorithm," Stanford University Report 
STAN-CS-244-71, November 1971. 

6. Engl, W. L., and Mylnski, D. A., "Topological Synthesis Procedure for Circuit 
Integration," Proc. 1969 IEEE Int. Solid-State Ciro. Conf., pp. 138-139. 

7. Schweikert, D. G., and Kernighan, B. W., "A Proper Model for the Partitioning of 
Electrical Circuits," Proc. 9th Design Automation Workshop, Dallas, 1971, 
pp. 57-62. 

8. Rose, N. A., and Oldfield, J. V., "Printed-Wiring-Board Layout by Computer," 
Electronics and Power (October 1971), pp. 376-379. 



Contributors to This Issue 

GEN M. CHIN, Electronic Technology, 1967, RCA Institutes; Bell 
Laboratories, 1967—. Since joining the System Elements Research 
Department, Mr. Chin has been involved in the development of high-
speed digital circuits and laser modulation. He is now working on 
Pierce data ring switching systems. 

DENIS J. CONNOR, B.A.Sc., 1963, M.A.Sc., 1965, and Ph.D., 1969, 
University of British Columbia; Bell Laboratories, 1969—. A member 
of the Visual Communications Research Department, Mr. Connor is 
currently working on techniques for the efficient coding of television 
signals. 

A. JAY GOLDSTEIN, B.S. (Physics), 1948, and M.A. (Mathematics), 
1951, Pennsylvania State University; Ph.D. (Mathematics), 1955, 
Massachusetts Institute of Technology; mathematics faculty of 
Polytechnic Institute of Brooklyn, 1954-1957; Bell Laboratories, 
1957—. Mr. Goldstein has worked on network analysis and synthesis, 
computer-oriented combinatoric algorithms, and interactive computing 
systems. He is now supervisor of the Mathematical Techniques Group. 

B. GOPINATH, M.S. (Mathematical Physics), 1964, University of 
Bombay, India; M.S.E.E. and Ph.D. (E.E.),  1968, Stanford 
University; Postdoctoral Research Associate, Stanford University, 
1967-1968; Bell Laboratories, 1968—. Mr. Gopinath's primary 
interest, as a member of the Mathematics of Physics and Networks 
Department, is in the applications of mathematical methods to 
physical problems. 

BARRY G. HASKELL, B.S., 1964, M.S., 1965, and Ph.D. (Electrical 
Engineering), 1968, University of California; Research Assistant, Uni-
versity of California, 1965-68; Bell Laboratories, 1968—. Mr. Haskell 
is engaged in TV picture processing studies. Member, Phi Beta Kappa, 
Sigma Xi, IEEE. 

143 



144  THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1973 

JAMES C. ISAACS, JR., B.E.E., 1964, M.S.E.E., 1967, Ph.D. (E.E.), 
1970, University of Virginia; Bell Laboratories, 1970—. Mr. Isaacs 
is a member of the Exploratory Transmission Media Department, and 
is currently engaged in studies relating transmission media characteris-
tics to system performance. Member, IEEE, Eta Kappa Nu. 

DAWON KAHNG, B.Sc. (Physics), 1955, Seoul University, Korea; 
M.Sc. (E.E.), 1956, and Ph.D. (E.E.), 1959, Ohio State University; 
Bell Laboratories, 1959—. Mr. Kahng has worked on feasibility 
studies of MOS transistors and hot electron devices, and on silicon 
epitaxial film doping profile studies. Since 1964, he has been super-
vising a group concerned with the development of surface barrier 
high-frequency diodes, and with studies of large gap and ferroelectric 
semiconductors, and, more recently, luminescence in the visible and 
charge coupled devices. Member, IEEE, Sigma Xi, Pi Mu Epsilon, 
AAAS ; life member, Korean Physical Society. 

BERNARD B. KOSICKI, B.A., 1961, Wesleyan University; M.A., 
1962, and Ph.D., 1967, Harvard University; Bell Laboratories, 1967—. 
Mr. Kosicki has worked on the growth and structural properties of 
GaN thin films and in areas related to the evaluation of gallium arsenide 
for use in silicon diode array camera tubes used in the Picturephone 
system. He is presently concerned with advanced silicon device 
processing, as it applies to fabrication of large charge coupled devices. 
Member, Phi Beta Kappa, Sigma Xi. 

ANATOL KUCZURA, B.S. (Engineering Physics), 1961, University of 
Illinois; M.S. (Mathematics), 1963, University of Michigan; M.S.E.E., 
1966, New York University; Ph.D. (Mathematics), 1971, Polytechnic 
Institute of Brooklyn; Bell Laboratories, 1963—. From 1963 to 1966, 
Mr. Kuczura worked in military systems engineering. Since 1966, he 
has been engaged in research on the application of probability theory 
and stochastic processes to the analysis of telephone traffic and 
queuing. Member, ORSA, SIAM, American Mathematical Society, 
Mathematical Association of America, AAAS, Chi Gamma Iota, Pi 
Mu Epsilon. 

DIETRICH MARCUSE, Diplom Vorpruefung, 1952, Dipl. Phys., 1954, 
Berlin Free University; D.E.E., 1962, Technische Hochschule, Karls-



CONTRIBUTORS TO THIS ISSUE  145 

ruhe, Germany; Siemens and Halske (Germany), 1954-57; Bell Lab-
oratories, 1957—. At Siemens and Halske, Mr. Marcuse was engaged 
in transmission research, studying coaxial cable and circular waveguide 
transmission. At Bell Laboratories, he has been engaged in studies 
of circular electric waveguides and work on gaseous masers. He spent 
one year (1966-1967) on leave of absence from Bell Laboratories at 
the University of Utah. He is presently working on the transmission 
aspect of a light communications system. Mr. Marcuse is the author 
of two books. Member, IEEE, Optical Society of America. 

DEBASIS MITRA, B.Sc. (E.E.), 1964, and Ph.D. (E.E.), 1967, 
University of London; United Kingdom Atomic Energy Authority 
Research Fellow, 1965-1967; University of Manchester, U.K., 1967-
1968; Bell Laboratories, 1968—. Mr. Mitra, a member of the Math-
ematics of Physics and Networks Department, is interested in the 
application of mathematical methods to physical problems. 

F. W. MOUNTS, E.E., 1953, and M.S., 1956, University of Cincinnati; 
Bell Laboratories, 1956—. Mr. Mounts has been concerned with 
research in efficient methods of encoding pictorial information for 
digital television systems. Member, IEEE, Eta Kappa Nu. 

S. D. PERSONICK, B.E.E., 1967, City College of New York; S.M., 
1968, E.E., 1969, and Sc.D., 1969, Massachusetts Institute of Tech-
nology; Bell Laboratories, 1967—. Mr. Personick is engaged in studies 
of optical communication systems. 

D. G. SCHWEIKERT, B.E., 1959, Yale University; Ph.D., 1966, 
Brown University; Bell Laboratories, 1966—. Mr. Schweikert's 
current interests are in the exploratory development of computer aids 
to the design of large-scale integrated circuits. His previous interests 
involved general scientific computing, including work in underwater 
acoustics at General Dynamics/Electric Boat (1961-1964). Member, 
Sigma Xi, Tau Beta Pi, Association for Computing Machinery, 
Society for Industrial and Applied Mathematics. 

M. M. SONDHI, B.S. (Honours), 1950, Delhi University (Delhi, 
India) ; D.I.I.Sc., 1953, Indian Institute of Science (Bangalore, India) ; 



146  THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1973 

M.S., 1955, and Ph.D., 1957, University of Wisconsin; Bell Labora-
tories, 1962—. Mr. Sondhi is working on problems concerning the 
processing and transmission of speech signals and modeling the detec-
tion of auditory and visual signals by human beings. 

NICHOLAS A. STRAKHOV, B.S.M.E., 1959, Massachusetts Institute of 
Technology; M.E.E., 1961, New York University; Ph.D., 1967, New 
York University; Bell Laboratories, 1959—. Mr. Strakhov has been 
designing and developing electronic test sets for transmission media 
maintenance. Since 1967 he has been engaged in analysis of trans-
mission media properties with particular emphasis on crosstalk in 
multipair cable. He is currently supervising a group responsible for 
developing cable design rules. Member, Sigma Xi, Pi Tau Sigma, 
IEEE. 

MICHAEL F. TOMPSETT, B.A. (Physics), 1962, and Ph.D. (E.E.), 
1966, Cambridge University, England; English Electric Valve Com-
pany, Chelmsford, England, 1966-1969; Bell Laboratories, 1969—. 
Mr. Tompsett is presently engaged in the development of charge 
coupled devices. Member, Institution of Electrical Engineers (London), 
Institute of Electrical and Electronic Engineers, Institute of Physics 
(London). 

GERARD WHITE, B.Sc., 1963, and Ph.D., 1966, University of Wales, 
Bangor; Bell Laboratories, 1967—. Mr. White is a member of the 
Electronic and Computer Systems Research Laboratory where he has 
been engaged in studies of Gunn effect devices, high-speed communica-
tion circuits, and optical communication systems. His current research 
interests are in the field of Pierce data ring switching systems. Senior 
Member, IEEE; Member, Sigma Xi. 


