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The bandwidth required to transmit an FM wave is related to how much 
distortion is allowed in the signal. Here expressions are developed for the 
distortion (interchannel interference) produced when an FDM-FM wave 
passes through an ideal filter. The signal is represented by a flat (PM) 
band of Gaussian noise. The formulas obtained hold only for small rms 
frequency deviation, but fortunately this is an important case in micro-
wave communication systems. The theoretical expressions agree well with 
Monte Carlo results published recently by Anuff and Liou. 

I. INTRODUCTION 

When a frequency-modulated wave passes through a filter, distor-
tion is produced in the signal by nonlinearity in the filter phase shift 
(usually the chief offender) and by the filter attenuation. Much effort 
has been spent in devising methods for computing this distortion. 
A related problem is "What radio frequency bandwidth is required 

to transmit a given FM wave?" An approximate answer, known as 
"Carson's rule," states that the required bandwidth 2fh is given by' 

2fh = 2B -I- 2D .,  (1) 

where B is the bandwidth of the baseband signal and D . is the 
605 
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maximum amount the instantaneous frequency deviates from the 
carrier frequency. Note that (1) implies a conventional FM system. 
This is the only type we shall consider in this paper. We shall not be 
concerned with single-sideband FM or other schemes for reducing the 
rf bandwidth. 
Carson's rule has been revised recently by Anuff and Liou.2 They 

make use of Monte Carlo calculations of the interchannel interference 
produced when an FM wave carrying a multichannel signal passes 
through an ideal filter. The ideal filter has zero attenuation and phase 
shift within the passband, and infinite attenuation outside the band. 
Monte Carlo calculations of interchannel interference in microwave 
systems have also been made by Grierson and McGee.3 
Here we make a beginning on the analysis (in contrast to Monte 

Carlo) required to calculate the interchannel interference produced 
by an ideal filter. 
The FM wave is cos [coot ± e(e)] where co. = 2710 and cp(t) is a 

stationary, zero-mean Gaussian process with the two-sided power 
spectrum 

I we, 
W  fl B"(f)  I 0,  I fl > B. 

In (2), Wo is a constant and B is the top baseband frequency. In order 
to represent an idle channel at frequency fc, we take W ,(f) = 0 in 
the narrow slots f  Ifl fe + àfe, if being so small that W(f) 
can be replaced, without appreciable error, by W. in the integrals ap-
pearing in the analysis. 
The mean-square value of ço(t) and the rms frequency deviation D 

are given by the ensemble averages 

(tp2(t)) = 2W 0 B (rad) 2 
D' = (( cp' (I) / 2r) 2) = 2W0 B3/3 (Hz) 2 

where ai(t) = c cp(t) / dt. This ip(t) gives a convenient approximation to 
the preemphasized wave assumed by Anuff and Liou. A representative 
value of D max  in (1) is 4D. 
The ideal filter passband extends from fa — fh to fo fh. It is 

assumed that 2fh/fo « 1 and that nB < f, < (n  1)B where n is 
a positive integer. 
Our aim is to apply results from the theory of Volterra series to ob-

tain an expression for the dominant portion of the interchannel inter-
ference when the normalized rms frequency deviation D/ B becomes 
small. 

(2) 

(3) 
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For the moment, consider one-sided power spectra. Now the power 
spectrum of v(t) extends from 0 to B and has the value 2W.. The aver-
age signal power (FM) appearing in the channel ( f, f  àf) when it is 
busy is 

S = (27rf) 22W..àf (rad/s)2.  (4) 

Let N be the average interchannel interference power which appears 
in the same channel. The value of N depends upon whether the channel 
is idle or busy. When the channel is idle, the interference can be heard 
as crosstalk noise. In our expressions for N/S, we assume that our 
particular channel is idle, that all the other channels are busy, and 
that N/S is the limit obtained as àf tends to zero. 
The nature of our results is illustrated by the following expression 

for N/S in the top baseband channel: 

3 D'  f.  2n 
N/S = [-2 —B2 (n -I- 1 — ?-L̀ )] C.. -I- 0[(D/ B) 4n+2], 

(5) 
c _  1 (2n — 2k) !(2k — 1)1 f  1  \̀ 
"  (2n)!  (k— 1)!k!2(k  1)!  (n — k)! 

Here the integer n is determined by the filter semibandwidth ft and 
the relation nB < fh < (n ± 1)B. The first three values of CO. are 
Coi = 1/4, C.2 = 5/96, and CO3 = 19/10368. For large n, C., tends 
to 22"±I/[n!47rn(n  2)]. * 
Equations (5) are a special case, f = B, of (52) which gives N/S 

in a channel whose frequency f satisfies fh — nB  f B. When 
0  f < fh — nB, N/S is of order (D/B) 4n+4 and the formulas corre-
sponding to (52) do not appear to be known. However, comparison 
with Monte Carlo values plotted by Grierson and McGee' indicates 
that replacing n by n  1 in (52) En still given by nB < fh < (n  1)B] 
gives an expression for N/S which is not greatly in error when f is in 
o < f  fh — nB. The simplest instance of (52) holds for n = 1, 
B < ich <2B, and f in the range fh — B  f < B: 

" ,1 i; )2R2 - - IB.)2] ""). (6) 
The explicit part of (6) decreases to zero as f decreases from B to 
fh — B. For 0 -5 f < f, — B, N/S is 0(D8/B8). 

* I am indebted to a reviewer for the observation that the presence of the factor 
n!-4 in C.. and the behavior of the curves in Fig. 1 strongly suggest that the formulas 
give useful results subject only to Da% (instead of the more restrictive D/B) being 
small. 
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Fig. 1—Signal-to-noise ratio in top channel. The dashed lines show eq. (5) for 
flat baseband phase modulation. The Monte Carlo curve 4.17B is for flat baseband 
PM, and the curves 1.5B, 2B, and 3B are for the typical preemphasis used by Anuff 
and Liou. 

It turns out that the explicit portions of (5) and (52) are obtained 
by considering modulation terms of order 2n ± 1 and of type 
cos 2/1(n ± 1)B — nint. 
The curves labeled fa = 1.5B, 2B, and 3B in Fig. 1 have been 

plotted to compare our eq. (5), based on the flat power spectrum (2) 
for W„(f), with the Monte Carlo results given by Anuff and Liou for 
a typical preemphasis curve. The solid lines and dots show Monte 
Carlo values of S/N for the top baseband channel. The dashed lines 
are computed from our (5). It is seen that the slopes agree well for 
small D/B, but for fa = 3B a separation of about 6 dB appears. For 
fa = 4B (not shown) the separation increases to about 12 dB. Most 
of the separation appears to be due to the difference between (2) and 
the W,(f) used by Anuff and Liou. This is indicated by later Monte 
Carlo computations made by Anuff for the W„,(f) of (2), and labeled 
fh = 4.17B in Fig. 1. There is still a separation of 2 or 3 dB. This 
may be due to the granularity of the Monte Carlo approximation 
to W„(f) and also to the fact that the Monte Carlo filter is not quite 
ideal. 

0.6 08  10 
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Section II contains a statement of results from the Volterra series 
theory needed in our analysis. In Section III, the simplest case, 
B < fh <2B, involving third-order modulation terms is discussed in 
some detail. Section IV and Appendices C and D deal with the gen-
eral nB < fh < (n  1)B case. In Section V, formulas are given for 
the calculation of N/S. Appendices A and B contain material which 
provides some insight to the general work of Section IV. Appendix A 
discusses the case ç(t) = A cos coat, and Appendix B treats a simple 
analog of the FM problem. 
All of our work deals with the flat power spectrum W(f) defined 

by (2). The chief obstacle in going to a more general W,(f) is the 
evaluation of the multiple integrals which occur in the analysis. Pos-
sibly W9(f) = AP for if <B and y> —1 could be handled by the 
procedure used here, but this extension has not been studied seriously. 

II. RESULTS NEEDED FROM VOLTERRA SERIES THEORY 

Because the carrier frequency f, is at the center of the ideal filter 
passband, the even-order modulation products vanish. In the notation 
of Ref. 4, the Volterra series with the even terms equal to zero is 

y(t) = —1 "' dui  (ui)x(1 — ul) 
1!  

1 
•  f dill dU2  du3 g 3 (ui, u2, u3) jj x(t — uh) ± • • • • (7) 

Ic••1 

When x(t) is a stationary, zero-mean Gaussian process with two-sided 
power spectrum W.( f), the Mircea-Sinnreich' series for the two-sided 
power spectrum W(f) of y(t) becomes [eqs. (14) and (160) of Ref. 4] : 

Wi, (f) = Wz(f) Gi(f)  dfaVz(f;)Ga(f, f;, —f;) 

+  12 f df; f d1;W.(1;)W2(1;)G5(1, — fi, .6 2,2 , — 6) + • • • 

▪  f enodfilldf2W.(h)Wz(h)W.(1 — f, — h) 

X Ga(fi, f2, f — — 12) 

12 

•  foe  df;WE(1;)G5(11, 12, f — fl— f  22,  — f;) ± • • • 

▪  ildflf:df2f ldfa f ldf4W.(11)• • • 

W.(14) W.(1 — f, — • • • — 14) 1 G5( • •) + • • • 1 2 ± • • • . (8) 
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Here, Gm(fi, 12, • • • , f.) is the m-fold Fourier transform of 
gm(ti, • • • , t.), i.e., the mth-order transfer function. 
We shall need another result which can be derived from the analysis 

of Section VII of Ref. 4. Let x(t) and y(t) be as in (7) and (8), and let 
poe 

?Mt) = I dui gi (231)x(t — ul)  (9) 
-00 

be the linear part of y(t). Then the power spectrum of y(t) — yL(t) is 

given by 

W11-55(fi = [Series for Wit(f) with G1(f) replaced by 0].  (10) 

This result can be established by using the series (152) of Ref. 4 for 
(y(t  r)z(0) to evaluate the four ensemble averages appearing in 
the autocorrelation function of y(t) — yL(t). 
In problems in which cos [2710t  e (0] enters a filter with transfer 

function K(f), the normalized transfer function 

r(f) = KU. + nfic(fo)  (11) 

appears. For the ideal filter of our problem, I(f) = 1 when 

— fh < f < fh and r(f) = o when I fi > fh. Furthermore, the power 
spectrum W 6( f) of the output phase angle 0(f) is given by the expres-
sion obtained from (8) by replacing W(f) by W 0(f) and G1(f1), 
G3(f1, fa, fa), • • • by [Mircea6 and (52), (71), and (72) of Ref. 4]: 

G81(f1) = 

G03(f1, f2, f3) = i2Cr(fi + f2 + fa) — r(f e(f2 + f3) 
— r(f2)r(f1 + fa) — r(f3)r(11 + 12) 

+ 2r(f1)r(f2)r(f3)3, 
G85(11, • • • , fà) = .i4[(12345) — 1! E' (1)(2345) — 1! Ei (12)(345) 

6  10 

± 2! E' (1)(2) (345) + 2! E' (1)(23)(45) 
10  15 

— 3! E' (1)(2)(3)(45) ± 4!(1)(2)(3)(4)(5)], 
10 

(12) 

Gam(fi, • • • , f.)  jtm.l  (-1)e-1(4 — 1)! E  E' t-i (r:e.nt) N 

X r(fi + • • • +  f P1-1-1 ±  • • • +  fri-l-n) • • 

X  + • • • + f.). 
The r's and f's have been omitted and the subscripts written within 
parentheses in G85. In Gem the summation over  and (v;, n2) is es-
sentially a summation over the partitions of m, t being the number of 
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parts and p1, p2, • • • , pc the parts: 

Pi -I- P2  " • ± Pc = n1,  (13) 
1  Pi  • • ee• 

The summation E' extends over the N (not to be confused with the 

N denoting noise power) nonidentical products that can be obtained 
by permuting the subscripts on the f's. The number of terms in the 
summation E' is 

N 

N = m!/vi!92l• • • vt!rib-2!" .rk!  (14) 

where r1 is the number of equal p's in the first run of equalities in the 
arrangement pi  y2 • • • pt, r2 the number in the second run, etc. 
When the p's are unequal, the r's do not appear. A more complete 
explanation of the notation is given in (24) to (29) of Ref. 4. 
In our work, Ge(2.+1)  will be either 0 or —1 when n  1. 
When ço(t) is bandlimited to if  B and fh exceeds B, the linear 

portion of OW is equal to cp(1). This can be seen formally by assuming 
e(t) to have a Fourier transform F(f) which vanishes for I fi > B. 
Then, from (9) and G01(f) = r(f) = 1 for I fl < fh, it follows that 

OL(t) = f du g ei (u) cp(t — u) 

fdf G91(f)F(f)e" 1'  

f =  " dfF(f)e"It =  
—e 

(15) 

Most of our analysis will consist of using the combination of (8) 
and (10) to obtain expressions for W0_,(f), the power spectrum of the 
difference OW — e(t) between the output and input phase angles. 

W0_(f) W HEN B < fh <2B 

In this section we take B < f < 2B, fh. — B  f  B, and assume 
D/B (and consequently WeB) to be small. The power spectrum of the 
output phase angle O is, from (8) with O in place of y, 

W8(f) = -117,0(f) P( f) 

+ j.f2 Bdf;ft7,(j*)G03(f, f;, —f;) + 0(M132 )12 

+ f BBdfif B B d f2 W 0( f1) 1V 0 0.2) .FF e( f —  — 12) 

X I Ge3(f1, 12, f  f2) + 0(W 0B) 1 2 ± 0( M,B4). (16) 
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From (2), W(f) and TV,(fi), i = 1, 2, can be replaced by W o in 
the integrals. However, W,(f  — h) will be retained for the 
present because it serves to make the integral vanish when 
f — f, — 1'21 > B. For completeness, we shall carry the first line in 
(16) along in the analysis even though it will vanish when we calculate 
the crosstalk noise in an idle channel represented by a slot in Wo, at 

(f, 1+ ià1). 
Since the linear portion of 0(t) is equal to cp(t), the power spectrum 

We,(f) of 0(t) — e(t) is given by (16) with r(f) in the first line re-

placed by zero: 

B 
W O— f(f) =  Wv(.0 1 — f df;W.Goa(f, 1í, —1í) 

o 

1 B 
±  71  —g dfi f  df2141 Wf(f — f1 — f2)1G03(fi, f2, f — fi — 

—g 

0(B1B3). (17) 

In obtaining (17), we have used the fact that the integrand in the 
first line is an even function of fí. 
Examination of (17) shows that the dominant terms in W0_,(f) are 

0(We2) and hence correspond to third-order modulation. When f does 
not lie in an idle channel (i.e., W9(f) 0 0), some of the third-order 
terms in W2(f) arise from the cross term r(f)0( MB2) which requires 
a knowledge of Gore for its evaluation. For this reason, we prefer to deal 
with W2....,(f) [instead of Wo(f)] which requires only Ge3 for the cal-
culation of all its third-order terms. 
When 0  f B and 0 5 f; 5 B, as in (17), all of the r's in 

Gea(f, .6, — fi) = — r(f) + r(f)r(o) + r(fDr(f — fí) 
+ r(—nr(f + fí) — 2r(f)r(1)r(—f;) (18) 

are unity except possibly r(f  f;) which is unity if f  f; < h and 
zero if f  )Ç>  fh. Hence, G03(f, f;, —1;) is zero if f; < fh — f and 
is —1 if fh — f < f;. It follows that 

1 rB J 
o df;147.003(f, fí, — fí) 

{— (B — fh  f)W.,  f  B. (19) 

0,  f  fh — B 

The function Ww(f — fi — /2) vanishes for I f — fi — f2I > B, 
and the function 

Goa(h., f2, f — fi — f2) 
= —r(f) + r(h)r(f— h) + r(f2)r(f — 12) 
+ r(f —f — f2)r(f2 + 12) — 2r(h)r(h)r(f — fi — f2)  (20) 

vanishes in part of the square fl  f2 = ±B. The result is that, 

2 
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as will be shown, the region of integration for the double integral in 
(17) reduces to the shaded areas shown in Fig. 2. In Fig. 2, it is as-
sumed that fh — B  f 5 B. When 0 _«“  fp, — B, the double 
integral in (17) is zero because Gag is zero. 

In the present case, B < fp, < 2B, it is convenient to set 

13 = f — fi — 12  (21) 

so that the lines h  or fi f2 = f ± B, mark boundaries 
outside of which W,(f —fi  — 12) is zero. Equation (21) also enables 
us to write the boundaries fi = f — fh and 12 =f — fhas 12 -I- fa 
= fh and fi = fh, respectively, as shown in Fig. 2. 
The expression (20) for Ge3(f1, f2, f — fi — f2) is equal to —1 in 

the shaded areas of Fig. 2. This follows from the fact that all of the 
r's in (20) are unity except possibly r(f — ru — f2), and 
1.1(f2 f2), which are 0 when their arguments exceed fh. The possi-
bilities f —f < — fh and f — f2 < — fh are ruled out because f> 0, 
and fl + 12 < — fh is discarded because it makes fa > B. Performing 
the integration over the shaded areas in Fig. 2 is equivalent to adding 

f2 
.:,,,, 

f , = I — I,. 

fit' fe fh 

, 

f3= -B •"'"  . 

/ 
/ 

re f2" f h 

fo- f2= f - B. --

f3. 8 

o 

f2" f - fh, 

f1+ f3.  fh \  

4  
-B 

fl 

Fig. 2—The three areas of integration for the double integral in eq. (17) for Wo,(f). 
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the areas and gives 

r li dfifielidf2141 W.,(f — 11— f2)1Ge3(f1, 12,1— fi — 12)1 2 
1:(2B — fh)2 — (B — f)2FEC, (22) 

when fh — B  f 5 B. As mentioned earlier, the double integral 
vanishes when f  fh — B. 
The main result of this section is obtained by substituting the values 

(19) and (22) of the integrals in the expression (17) for We,(f): 

we_,(» = w .,(D(B + f — fh)2W2 
+ 1W1(2B — fh)2 — (B — f)2] + 0(W:B3) (23) 

where fh and f satisfy B < fh < 2B and fh — B  f B, respec-
tively. When 0  f  fh — B, the Gea's are zero in the corresponding 
ranges of integration and it follows from (16) (with r(f) replaced by 
zero) that 

W0,(f) = O(WB4).  (24) 

It also appears that the third-order part of We,(f) is constant when 
B < f < fh. 
Although it may not be obvious in Fig. 2, the areas of the three 

shaded regions are equal, and each contributes the same amount to 
We„( f). There is an underlying symmetry which becomes evident 
when the boundaries of the three regions are written as follows: 

= B  f2 = B  fa = B 

= B  fa = B  f1=B 

fa = — B  f1= —B  f2= —B 

fi+ 12 = fh  fa+ fa = fh  fa ± fi = fh. 
Furthermore, the double integral in (17) can be written as 

f dfif d f2f d fa We( fi) W9( fa) W fa)8( f — fi — 12 — fa) 
1 

X 1Gee(fi, f2, fa)1 2 

(25) 

(26) 

where, replacingâ(x) by the limit as E •-", 0 of h(x) = 11€ for ¡ x I < E/2 
and h(x) = 0 for xi > E/2, the integration extends over three por-
tions of a three-dimensional slab bounded by the planes fl + f + fa 
= f ± E/2. The three portions are cut out of the slab by the planes 
defined by eqs. (25). When the integration is accomplished by inte-
grating with respect to f3 first (the thickness of the slab is E/3i and 
f3 is integrated over a length E), the areas of integration for  and f2 
are those shown in Fig. 2. 
Thus the twofold integral is equal to the sum of three equal con-

tributions where each contribution can be regarded as arising from 
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a region near one of the corners of a three-dimensional cube. It turns 
out that the corresponding 2n-fold integral encountered later is equal 
to the sum of (2n + 1) !/n !(n + I)! contributions arising from regions 
near (2n + 1)1/n!(n + 1)! of the 22n+1 corners of a (2n + 1)-dimen-
sional cube. The corners are those whose (2n + 1) coordinates consist 
of (n + 1) plus B's and n minus B's. 

1478 (f) WHEN T/B < f < (n ± 1)B 

For fh and f such that nil < f,, < (n  1)B, n = 1, 2, • • • , and 
fh — nB  f  B, the dominant terms in We,(f) are given by 

i r we_wco -147 Wt j = ,(f)  di: . • • j B (IL; 
n. 

X G02 1 (f, f;, — f;, • • • , f,  

11  "  13 

(2k ±  1)! -s + E  dfi• • • dfn  (f —  — • • • — f2k) 
k=1   

W7,-k B  
X J o df '• df,;_kGri(2.1-2)(fi, • • • , f2k, f — fi 

2 
0( W ez-F2 B2 ni-1)  (27)  — • • • — f2k, f;, — f;, • • • ,  —  + 

where for k = n it is understood that the quantity within the absolute 
value signs becomes Go(2„+1)(fi, • • • , 2.,f — fi — • • • 12.). No Gem 
for m < 2n + 1 appears in (27) because, from Appendix D, all such 
terms vanish over the region of integration. 
To aid in the evaluation of the integrals which arise in dealing with 

(27) we shall use' 

1   L 
fdx2.  fclx,,, 'gum) = (m — 1)!J 1-1(z)zm-'clz 

K  cr„,  L (28) 

where K  0, u. = xi + x2 + • • • + x., and the integration on the 
left extends over the region specified by x,  0, j = 1, 2, • • • , m and 
K  L. The integrations with respect to the ft's in our problem 
extend over regions where f, is near +B or —B; and we shall use (28) 
by making the change of variable f, = B — x, or fi = —B  xi. 
The Go (2n+1) in the second line of (27) is different from 0 (and, from 

Appendix D, equal to —1) only if 

f f; + • • • +  > fh.  (29) 
Setting f;  B — xi, j = 1, 2, • • • , n carries this inequality into 

xi + x2 + • • • + x„ < f + nB — fh = P — Q  (30) 
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where we have introduced the parameters 

P = (n + 1)B — fh 

Q = B — f 

and have assumed P > Q. When P <Q, the inequality (29) and its 
analogues for the other terms in (27) cannot be satisfied. Consequently, 
all the Ge(2n+1)% are zero and all the modulation terms of order 
(2n + 1) vanish from (27) when P <Q. 
From (28) with m = n, K = 0, L = P — Q, and H(z) = —1, we get 

I Weit,, f P-Q 
W f( nl e n  _ 1) I j o ( — 1)e-lidz 

12 

(31) 

= Wa(f)Wgn(P — Q)2/n!4  (32) 

for the first term on the right in (27). 
Now consider the kth term in the sum in (27). For Go(2 n+i) to be —1 

instead of 0, the sum of (n + 1) of its arguments must exceed fh 
(Appendix D). It can be shown that (n — k) of the arguments must 
be fí, • » , J. n' —k and that the remaining (k ± 1) arguments come from 
the set of 2k -I- 1 elements 

fi, f2, • • • , 12k, f — fi. — • • • — fak.  (33) 

There are (2k+ 1)!/(k + 1)!k! different choices of (k ± 1) items 
from the set (33). Let fi, f2, • • • , .4+2 represent the typical choice and 

fi + f2 -I- • • • + fk+2 ± f; + fá + • • • + f,:-k  (34) 
be the typical sum of (n + 1) elements of a -9(2.+1) which exceeds fh. 
Each sum is associated with a region of integration, one boundary of 
which is obtained by setting (34) equal to fh. For k = 1, there are 
three regions and, after the integrations with respect to the fi's have 
been performed, the regions become the ones shown in Fig. 2 with fh 
replaced by fh — (n — 1)B. For k arbitrary, the regions correspond to 
the corners of a (2k + 1)-dimensional cube, the corner coordinates 
consisting of (k -I- 1) plus B's and k minus B's. By virtue of the type 
of symmetry shown by (25) and (26) for the case B < fh <2B, each 
of the (2k + 1)!/(k + 1)!k! regions contributes the same amount to 
the kth term in (27). 
The first step in evaluating the kth term (k < n) is to perform the 

integrations with respect to 1, • • • , fnio. Suppose that the values of 
the typical choice fi, • • • , fk+i are given. Then for Go(2n+1) to be equal 
to —1, it is necessary that 

1; 4- • • • + fli 2 le >  fh fi — • • • — fk+1.  (35) 
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Setting f; = B — x„ i = 1,2, • • • , n — k carries (35) into 

Xi ± x2 ± • • • ± x„_k < (n — k)B 

— fh +  + f2 + • • • + fk+i•  (36) 

Using (28) with m  n — k, K = 0, H(o) = —1, and L equal to the 
right side of (36) shows that the quantity inside the absolute value 
signs in the kth term is equal to 

wr k  f 

(n — k)!(n — k — 1)! o ( 1)z  k-idz  

= —Wrk Ln-k/(n — k)!'  (37) 
where L  O. 

Next, we integrate with respect to  f2, • • • ,  The restriction 
that the right side of (36) be positive gives 

h + • • • + fk+i > fh - (n — k)B  (38) 

and the fact that the argument of W(f — h.— • • • — f2k) must ex-
ceed —B gives 

+ f2 + • • • + fk+i < B + f — fk+2 — • • • — f2k.  (39) 

Setting fi = B — xi for i = 1, 2, • • • , k  1 and fi = —B + xi for 
i = k + 2, • • • , 2k carries (38), (39), and the L in (37) into 

xi + x2 + • • • + sk+i < (n + 1)B — fh = P 
+ X2 +  • • • +  >  B — f  X k+2 +  • "  X2k 

- Q + X10-1-2  ' • '  X2k  (40) 
L — P — Xj — x2 — • " X k+1. 

At this stage, the kth term in (27) is, for k > 1, 

W''k   (2k + 1)!  f X 1d,1.2. • • f ds2k f dxi. • • dxk-Fi W. 
(2k + 1)1 (k + 1)!k! 

-Fve,-2k(p _  _ _  xk_o)28-2k /(n — k)!4 (41) 

where (2k + 1)!/(k -F 1)!k! is the number of equally contributing 
regions of integration. For fixed xkl-2, • • • , X2k, the integration with re-
spect to xi, • • • , xk-ki can be performed by using (28) with m = k +1, 
K = Q  xk+2 ± • • • 4- x2k, L = P, and H(z)  (P — z)2"k. Ex-
pression (41) becomes 

we+ 

(k  1)!k!(n — k)I4 d.rk  - -f dx2k 

X -1 I'  •  (p  .3)2n-2kzkdz.  (42) 
k! o+kk+2+••+.2k 
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The integration in (42) extends over the region defined by x  0, 
k ± 2, • • • , 2k, and the inequality obtained by combining the 

two inequalities in (40): 

Xk+2  X2k < P - Q.  (43) 

Using (28) with m = k - 1, K  0, L = P - Q, and 

rP 
H (z) = f  (p _ en-my kdy (44) 

leads to a double integral which can be reduced to a single integral by 
reversing the order of integration: 

1  i• P—Q  1  f P 

(k - 2) ! i 0  H(z)zk-2 dz -   (k - 1)! 1 :  Yie( P  -  e ll- 2k( y  _  V — ldy 

k (2n - 2k)!(2k - 4 - 1)! e 
= k 1E,  €!(k _ t) !(2n  _ t)!  Q (P - Q)2n-e . (45) 

When (45) is used in the expression (42) for the kth term in We-,(f), 
(42) becomes 

Wg"4-1 (2n - 2k)!   
(k  1)!k!(k - 1)!(n - k)!' 

(2k - L - 1)!Q€ (P -  (46) 

,t!(k - «(2n - t)! 

It can be verified that (46) also holds for k = 1, even though k > 1 was 
assumed in the derivation. Adding the expression (32) to the sum of 
(46) from k = 1 to n and interchanging the order of summation gives 
the equation sought in this section: 

vW9_ (f) = w  (p _ 02.m- 4 ± W er -1-1  C,n Q(13 _ 02,e 

e_47 0(W' 2 B2n-F1)  (47) 

where n is a positive integer, nB < fh < (n  1)B, P> Q, P and Q 
are given by (31), and 

1 (2k - t- 1)1(2n - 2k)!   
Ce —  E 11(2n - e)! h-...(1,1) (k - t)!(k - 1)!kl(k  1)!(n - k)14. (48) 

When P < Q, i.e., f < f,, - nB , our analysis tells us only that Wo_,(f) 
is 0(  fre+3 B 2 n+2) . 

V. THE NOISE TO SIGNAL RATIO N/S 

According to (4) the average signal power (FM) in the channel 
(f, f  àf) when it is busy is 

S = (271)2(2W0).V.  (49) 
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Likewise, the average interchannel interference noise power is 

N = (21 1)2[2W6-eCfnàf  (50) 
and hence 

N/S = Wo—p(n/W 0.  (51) 

When the channel is idle, W,(f) is 0 in (f, f  AD, and if all of 
the other channels are busy, (51) and (47) give 

N/S =  L Ct.Qe(P — 0 2n-(  0[( W 0 B) 2'+ '] 

[ Vi'22r  flCit„(1 if3 

0[(D/B) 4.+2] (52) 

provided nB < fh < (n  1)B, fh — nB  f _5 B, and D/B is small. 
In going to the second line, we have used ITT ,,B = 3D2/(2/32) from (3) 
and the definitions (31) of P and Q. Equations (5) and (6) given as 
examples in Section I are obtained by setting f = B and n = 1, re-
spectively, in (52). 
The first few values of Cr. X 10" are listed below. 

= 0  1  2  3  4 

n = 1  2.5  5.0 
2  5.208  19.44  2.083 
3  1.832  9.375  3.906  0.193 
4  0.1994  1.226  1.182  0.2122  0.0060 
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APPENDIX A 

Sinusoidal Modulation 

Some idea of how the FM distortion depends upon the radio fre-
quency bandwidth when the deviation ratio, say A, is small can be ob-
tained from the case ip(t) = A cos to. t,  2Tfo. The carrier fre-
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quency and ideal filter are the same as in Section I, but now n is such 

that nf0 <  < (n  1)/a. 
The input to the ideal filter is the real part of 

exp UM.  e(01 = E C. exp  Cico.  /nu.). 0  (53) 

where cm = jrn. m(A), Ja(A) is the Bessel function of order m, and 

exp (jA cos wo = É jniJ„,(A) exp (5mcd. t)•  (54) 

Since 2fh/f. « 1, the filter output is nearly equal to the real part of 

exp [jwo t jO(t)] = Ê cn, exp (jw. t  0.  (55) 
n 

Subtracting (54) from (55) and dividing by exp pia./ ± Mt)] gives 
—n-1 

=  1 —  (  ceE  E) cm exp (jmcoot)  (56) 
—on  n+1 

where the argument t has been omitted in 0(0 and w(t). 
Replacing exp (— jço) on the right by its series obtained from (53) 

and taking logarithms give the known first-order approximation 

—  = —Im  ‘E ( E + E )cIe. exp [j(m — €)w.t] } 
m--co  m=n+1 

+ terms of order EE (E + E)]2. (57) 
t m 

Since A is small and cm = jm,1,,,(A), we have for m 

Cm =  = (jAl2)m/m!  0(Am+2).  (58) 

The interchannel interference in a microwave system corresponds to 
the exp (jw,, t) and exp (— :mat) components in the expression (57) for 
O — cp. The largest contribution to these components comes from the 
values m = n  1, € = —n, and m = —n — 1, e = n, respectively: 

(A/2) 2n+1 

(0 —  (p).. =  — inzEi— n+n-Fle3cuat  j—n+n-f-le—jcu el 
70(n ± 

0(A 2n+2) 
2 (A /2) 2n-f-1 

ni(n ± 1) ! cos coat + 0(A 2n+2).  (59) 

It follows that the average power in the cos CO. t component of û — y, is 

2(A/2)4n+2  
P(A) —  + 0(A "4-3 )  (60) 

n !2(n + 1) p 
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and dividing by the average power A2/2 in q(t) = A cos co. t gives 

P(A)   (A/2)"  + 0(A 4n+1) . 

ave. power in 4,0  n!2(n  1)!2 

If, instead of the pure sinusoidal signal A cos co« t, the signal 4c(t) 
were a very narrow band of Gaussian noise centered at the frequency 
f„, its envelope R would fluctuate slowly according to a Rayleigh proba-
bility density 

p(R) = a-2R exp (—R2/2cr2)  (62) 

where 0.2 is the average power in cp(t). Replacing A in P(A) by R and 
averaging with the help of (62) shows that the average of the total 
power in the components of O — çc clustered around fa is 

N =  P(R)p(R)dli 

(2n  1)44"4-2  

(61) 

n!2(n  1) p 22. ± 0(0."+3).  (63) 

This expression for N can be checked by using W(f) -= er26(1 fi — f„)/2 
in place of Ws( f) =  1.1'1 < B, in the analysis of Sections II to V. 
Division by the average power S = 0-2 in cp(t) gives 

N  (2n + 1)   _t_ 0(0.4n+1) !cr"  
(64) S  n!2(n  1)!2 22n 

In tp(t) = A cos co. t, A is the deviation ratio and in (64) cr is the rms 
frequency deviation ratio. The fact that N/S varies as u" in (64) 
agrees with the case in which io(t) has a flat spectrum. However, (64) 
is larger by roughly the factor (2n ± 1)! 

APPENDIX B 

Simple Analogue of Relation Between y9 and O 

The relation between the FM input ço and output O is somewhat 
similar to the relation between x and y given by 

a   
(2n ± 1) ! (65) 

where a is real and x is a stationary, zero-mean Gaussian process with 
two-sided spectrum W x(f) and autocorrelation function R,  R(r) 
= (x(1 + r)x(t)). We are given W x(f) and want to find W(f)  and 
Wv-.(f). 
Our aim here is to obtain some insight regarding the origin of the 

various terms in the series (17) and (27) for Wo-o(f). 



622  THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973 

From Volterra series theory, taking (65) to be the series, we get 
G1(f1) = 1, G2,i+1(f1, f2, • • • , f-}4) = a, and G. = 0 for all other 
values of < Ref. 4, (22), (23)]. The Mircea-Sinnreich series [Ref. 4, 
(156), (160)] for W„(f) becomes 

W(f) = W.(f)11  .df;• • • ildf,: Wx(f;)• • •Wx(f,:)ar 

f e dfl f  df2 W x(11) Wx(f2) W.(f — fi — f2) 

X  • (n  _  f;• • .11  "Wr(f;) • • • W z(f,;_i)a 2 

±  '  f  c/ 

± (2n + 1)! 1  f e cif'. • •fi df2. W.(1) • • • W.(f2n) 

X W.(f —  — f2 — • • • — f2,,)ja1 2. (66) 

According to (10), the power spectrum 147„_1(f) of y — x is equal to 
the expression obtained by replacing the 1 [i.e., Gi(f)] by zero in the 
first line of eq. (66) for W(f). 
In this particular example, W(f) can be obtained as the Fourier 

transform of the autocorrelation function (y(t)y(t  r)). Let y(t), 
Y(t  r), x(t), x(t + r) be denoted by yi, Y2, xi, x2, respectively. Then 

(YIY2) = (x1x2) +  a   (2n  1)! [(xi xrE1)  (xr+Ix2)] 

a2   
(2n + 1)!2 (xr+1 e+1).  (67) 

From 
(exp (juxi + jvx2)) = exp [-2-'(u2 + 1MR° — uvRJ 

we have the known results 

(x1 x"') = (xin+ix2) = (2n + 1)!Iir R:/(n!2.) 

(2n + 1)!2/M+1(R0/2) 2n-2 k 
(4n+lxr+1) = 

k-0  (21e + 1)!(n — k)!' 

Substituting in (67) and taking the Fourier transform: 

(68) 

roe 
W(f) = j e-12 */?(Yiy2)dr 

t oe 2ande, ,   
=  dre-'2'f ER, n!2,,  n!' 

+  a2le."AR 0/2)2 "k 1  (69) 
1,1 (2k + 1)!(n — k)!' 
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The point being made in this appendix is that the terms in (69) have 
[after using 1 + 2a + a2 = (1 ± a)2] a one-to-one correspondence 
with the terms in the Mircea-Sinnreich series (66). This can be seen 
with the help of 

R. =  W z(Mdf;, 

e—i27  rerndr  f  dfi• • • f  dfm-i.W.(f1). • •W 

X W.(f —  — • • • — (70) 

APPENDIX C 

Inequalities for Sums of Frequencies 

Let fi, f2, • • • , f2+2 denote the (2n ± 1) arguments of any one of 
the Go(2.+2)'s occurring in the expression (27) for We,(f). They satisfy 
the relations 

fd  B, i 1, 2, • • • , 2n + 1 

+ + • • • + hn+1 = f 
where f satisfies 0 < f  B and is the frequency at which W  f) is 
being evaluated. 
We shall call a set of r of the ft's an "r-tuple" and the sum of the 

ft's the "sum" of the r-tuple. 
First we show that 

(71) 

f — nB  sum of any (n  1)-tuple 5 f  nB.  (72) 

Let fi f2 ± • • • + f1+1  represent the typical (n + 1)-tuple sum. 
Then (72) follows upon using I fil B on the right side of 

fi±  — •••+f — f—f n+2   f +1. (73) 

The next inequality is 

—nB 5. sum of any r-tuple 5 nB  (74) 

where r = 1, 2, • • • , n, n + 2, • • • , (2n + 1). When r  n, (74) fol-
lows from I fd  B, and when r  n ± 2 it can be proved by using 
equations similar to (73). 

The number of different (n  1)-tuples is (2n ± 1) !/(n  1)!n! 
If, for given set of values of the fi's, any one of the (n + 1)-tuples, call 
it A, has a sum greater than nB, the sum of any one of the remaining 
(n  1)-tuples satisfies 

f — nB  sum of any (n  1)-tuple except A 5 nB.  (75) 
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The left inequality follows from (72). To obtain the right inequality, 
note that all (n  1) elements (the fi's) in A must be positive. Con-
sider any other (n  1)-tuple, say C. Then A contains k elements 
1  k  n which are not in C. Let .1.1, • • • , .f.+i represent the elements 
of C so that the left side of (73) gives the sum of C. Then the right side 
of (73) contains k elements of A. Since the elements of A are positive, 
the right side of (73) is less than f  (n — k)B, and (75) follows from 

f + (n — k)B  f  (n — 1)B  nB.  (76) 

APPENDIX D 

Values of Ge (2n-I-1)( fl, ' ' • y f2n-I- ) 
The notation used in this appendix is the same as that in Appendix 

Let G 0(2n-1-1) stand for Ge(2.-1-1)(fil f2f • • • e f2n-I-1) where the ft's satisfy 
the relations (71). Here we show that 

Ge(2n+1) = 0,  fh > (n ± 1)B  (77) 

where n  1 and fh is the ideal filter semibandwidth. Furthermore, for 
a given set of f,  12, • • • , 2.+1,it has been shown in Appendix C that 
there is at most only one (n  1)-tuple, the sum of which exceeds nB. 
There may be none. When nB < fh < (n  1)B with n  1 we shall 

show that 

C. 

Ge (2n+1) = —iii one (n  1)-tuple sum > fh,  (78) 

Ge(274÷1) = 0 if no (n  1)-tuple sum > fh. (79) 

The inequalities (72) and (74) show that all of the F's in Ge(2n+1) are 
unity (1) when fh > (n ± 1)B or (ii) when no (n  1)-tuple sum ex-
ceeds fh where nB < fh < (n  1)B. Therefore, to prove (77) and 
(79), it is sufficient to show that Ge,h(fi, • • • , f.), m  2, is zero when 
all of the F's in its expression (12) are equal to unity. 
Consider the sum 

E E' rui + • • • + fv,) • • • r(f.—,1+1 + • • • + 1.)• 
(p;t,m) 

When all of the r's = 1, this sum is equal to the number of different 
ways m different objects (fl, f2, • • • , f.) can be put in t identical boxes 
with no box empty (the t pairs of parentheses enclosing the arguments 
of the  rs). From combinatorial theory, this number is S(m, t) the 
Stirling number of the second kind given by the generating equation8, 
for n  1, 

(80) 

in =  S(n, k)t(t — 1).. • (I — k  1).  (81) 
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To illustrate (80), let m = 4 and  = 2. Equations (13) show that the 
sum over (v; C, m) in (80) now extends over the partitions of m = 4 
which have e -- 2 parts. There are two such partitions: vi = 1, P3 = 3 
and vi = 2, v2 = 2. From (14), the corresponding values of N are 
4 !/1!3 ! = 4 and 4 !/2!2!2 = 3, respectively. Hence the sum (80) is equal 
to 4 + 3 = 7. This agrees with the known value S(4, 2) = 7. To return 
to the box problem, the 7 different ways of putting 4 different objects 
into 2 identical boxes with neither box empty is indicated by 

(1)(234),  (2)(134),  (3)(124),  (4)(123), 

(12)(34),  (13)(24),  (14)(23). 

The expression (12) for Gom consists of the sum from C -= 1 to t -= m 
of pn-I( —1)€-V — 1)! times the sum (80). When all the r's are unity 
this gives 

Go. = Pn-'  (-1) "(/ — 1)!S(m, t) 
€-1 

= I 1,  m = 1 
(82) 

1 0,  m > 1 

where the summation is accomplished by dividing (81) by t and then 
letting g --> 0. Setting m  2n + 1 then gives (77) and (79). 
Now we turn to (78). Let f n+1  fn+2  '  f2n+1 be the single 

(n  1)-tuple whose sum exceeds fh. Then r(f.+1 + • • • + f2.+1 ) = 
and all the other r's in Go(2n+1) are unity. The problem is to de-
termine the contribution of all of the terms in GO(2n+1) containing 
r(f.+1 + • • • + f2.+1). Subtracting this contribution from 0 will give 
the value of Ge(2n41)• 
Setting m = 2n ± 1 in (12) shows that the terms in —0(2n+1) con-

taining r(f.+1 + • • • + f2.+1) as a factor are those for which and the 
parts Pi of the partition of (2n ± 1) into C parts are such that 

t = 2, 
-= 3, 

n  1, 

= n, 
PI +  P2 =  n, 

P1+ • • • -F v.  n 

P2 = n  1, 
P3 =  n  1, 

P.+1 = n  1. 

Therefore, with k = — 1, the terms are the product of 

i2n  (— )kle!  E E'  + • • • + fi.1) • • • 
k i  (,;k.n)  N 

r(f.„.+1+ • • • + fr.) 

(83) 

(84) 
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and r(fn+i + • • • + h.-El) where now 
Pi ± e2 +  • • • ±  P k =  n 
:g 1,1 P2  • • • :g Pk 

N = 71,1/vd• • •vklri!r2!• • 

When all of the r's in (84) are unity, (84) becomes 

i2n  (— )kk! S( n, k) = j2̂(-1)" =  1  (85) 
k=1 

where the summation is performed by setting t = —lin the generating 
equation (81). Subtracting the contribution (85) from 0 gives the 
value G6(2n1) = —I stated in (78). 
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Computing Distortion in Analog 
FM Communication Systems 

By A. J. RAINAL 

(Manuscript received November 3, 1972) 

This paper describes a method for computing baseband distortion in 
analog FM communication systems; the method is based on recent theo-
retical work available in the literature. The input baseband signal is taken 
to be a zero-mean, stationary Gaussian process having an arbitrary power 
spectral density. A variety of graphical results are presented in order to 
demonstrate the utility of this method of computing FM distortion. It is 
shown that the often-used noise loading test does not necessarily represent 
a worst-case test. 

I. INTRODUCTION 

Theoretically, analog FM signals generally possess an infinite band-
width. Thus, when such signals are passed through a linear system 
having a finite bandwidth, some FM distortion must occur. The mea-
surement of such distortion is costly and very time consuming. Ac-
cordingly, the development of methods for the computation of FM 
distortion is of practical interest. 
The purpose of this paper is to describe how we used the theoretical 

results derived by A. Mircea,' E. Bedrosian' and S. O. Rice' to develop 
a computer program to compute the FM distortion resulting from 
linear time-invariant-filter structures. The input baseband modulation 
is taken to be a zero-mean, stationary Gaussian process having an 
arbitrary baseband power spectral density. 

II. SERIES EXPANSION UNDERLYING THE COMPUTATION 

Consider the analog FM communication system presented in Fig. 
la. The associated mathematical problem for studying FM distortion 
is illustrated in Fig. lb. The problem is to deduce the double-sided 
power spectral density, Wo(f), of the output random process,  (1), 
given r (f) and the double-sided power spectral density, W 0(f), of the 
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input Gaussian modulation. Once this mathematical problem is solved 
satisfactorily, we can then compute the FM distortion at baseband. 
In the FM case, Wo,(f), the power spectral density of ce.' (0, is given 
and We, (f), the power spectral density of O' (t), is desired. In the PM 
case, Wo(f) is given and W0 (f)  is desired. However, the two problems 
are closely related because of the following relations: 

We(f)  w2Wo(f)  (1) 
and 

Wo(f) = cinVe(f)• (2) 

In fact, an FM communication system can be designed by using only 
PM equipment, as is illustrated in Fig. la. 
Using Rice's' notation, a series expansion of W0(f) is given by: 

We(f) = 40(5( f)  Wo( .f) I [AD  U*( — 

+—J  dPWe(P)Wo(f — P)i T(P, f — p) — T*(— P,  f+ p) I 2 
8 , 

+ —1 , dP f derWo(P)We(g)Wo(f — P ff) 
24   

X S(p, o., f — P cr)  S*(—  Pe  — f + P  ) 2 

0(06"Wo) (3) 
where 

* = complex conjugate 

Ode  = de part of Kt) 

T(p, f — p) = S(p, f — p) + L (brw.(,)E2s(a.,p)s(-0-, f — 13) 

s(u, f —  —  (u)r( — u)S(p, f — p) 

+ s(p + o., f — p — a)] 

11(f) =  + f e. dP W 4,(P)r(P)S( — Pe f) 

dp foe dcrW ‹b(p)W,s(cr){— e(p  cr)S(—p — o-, f) 

r(0.)[38 (-0 ", P)S( —  s(P, f — P  ci) 

S(P — o., f — p)1} 
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Fig. 1—(a) Analog FM communication system. 4'(t) is a distorted version of 
01(1). (b) Associated mathematical model for studying FM distortion. 

and 

S (p, cr, v) = (p  cr  v) — (p  cr)r (v) — (p  v)1" (cr) 

— P(o-  )r(p) + 2r(p)r (0-)r (0. 

We shall neglect the de term, OL, since we are mainly interested in 
the continuous part of W6 (f). In addition, for the range of parameters 
of interest to us, we have found that the double integral associated 
with the U(f) function can also be neglected. 
Notice that W. (fi) = 0 does not imply that We (fi) = O. This is 

contrary to the case of a linear system. That is, even if we apply no 
input power in the frequency interval (A  df), we generally get 
some "intermodulation noise" at the output in this frequency interval. 
Actually, eq. (3) is a truncated form of an infinite series of functionals 
of r (f) and Wo(f). However, we shall see that it is possible to select 
system parameters which are of practical importance and which allow 
us to neglect all of the terms represented by 0(06W4.). Accordingly, 
we shall define the signal power S(f)df in the frequency interval 
(f, f df) at the output to be 

S(f)df = 1147  o(f)  U*(— Di'df • (4) 

For the range of parameters which are of practical importance, it 
turns out that S(f) = W ( f) r (f)  r*(— f)( 2. S(f) represents the 
spectral contribution at the output which is free of intermodulation 
noise. We also define the FM distortion power D(f)df appearing in the 



630  THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973 

output frequency interval (f, f df) to be 

1 °° 
D(ndf = —8 f dPWo(P)WoU — p) 

X T—(P, f — p) — T*(— Pe — f + I 'cif 
. 

+  J dp f do-W 4,(p)W o(o-)W 4,( f — p — cr) 
24 , 

X I S(p, cr, f — p — u)  S*(—p, —u, — f + p  0-)12df•  (5) 

D(f) represents the spectral contribution at the output which results 
from intermodulation noise. 
The two quantities of prime interest in this section are the signal-to-

distortion ratio, KS (f)/D(f), and the ratio of the average signal power, 
2 es, to the average distortion power, u2D, in the output baseband. The 
latter quantities are defined by 

B 

2 f 8(f)df  PM Case 
2  0 

OS = LB W 28( nd f  FM Case 

B 

2 f D(f)df  PM Case 
2  0 

B 

L2 I co2D(f)df  FM Case 
0 

(6) 

(7) 

where B = baseband bandwidth of the modulation. When the ratio 
of crVert k 10, one is usually safe in disregarding the terms labeled 
(06W) in eq. (3)..1 

III. NUMERICAL METHODS EMPLOYED 

An input power spectral density, W,e, (f), which is often used when 
measuring FM distortion is the uniform spectrum, given by 

(2rD) 2 

III  B 
W (f) =  2B  (8) 

0,  I fi > B 

t Equation (3) is a special case of a much more general equation which was recently 
reported by E. Bedrosian and S. O. Rice in the Proc. IEEE, 59, No. 12, pp. 1688-1707, 
eq. (14) and Section 'Arc, December 1971. 
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where D = RMS frequency deviation and B = baseband bandwidth. 
From eq. (1), we have 

D 2 

wo(f) = 2B f2  Ifl  B 

0 ,  if' >B 
(9) 

When such a uniform W o, (f) is used to measure FM distortion, the 
measurement is referred to as a "noise loading test." The noise loading 
test is used, for example, to estimate the FM distortion in microwave 
relay systems resulting when thousands of telephone channels are 
multiplexed to form a composite baseband signal. 
A bandlimited form of W e (f) is very convenient numerically, since 

it serves to convert the infinite limits of integration in eqs. (4) and (5) 
into finite limits of integration. However, if we attempt to evaluate 
equations (4) and (5) using a bandlimited Wd,(f) such as is given in 
eq. (9), we would run into difficulty whenever the argument of W„,(•) 
is equal to zero. In order to circumvent this apparent difficulty, we 
have selected an integration grid such that the argument of W,,,( • ) is 
never allowed to be zero. Equations (4) and (5) are then numerically 
evaluated by using a combination of Simpson's rule and the trapezoidal 
rule. 
The particular integration grid used was obtained by setting 

p = (2i -I- 1)à  (10) 

o. = (2/  1)à  (11) 

f  (2n -F 1)à  (12) 

à = (2k + 1)—'  (13) 

B = 1.0  (14) 

where i, 1, n, k are integers. In most of our numerical evaluations, 
k =- 20. 

IV. NUMERICAL RESULTS 

4. 1 Test Cases 

In order to test the operation of the computer program, we evalu-
ated D(f) for the case when Wee (f) is uniform and r (f) is the transfer 
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Fig. 2—Baseband intermodulation spectrum resulting from FM distortion. 

function of a simple RC filter. That is, IV, (f) is defined by eq. (9) and 
F(f) is defined as 

where 

1 
r(f) =   

1+ i(7) 

f, = 1.0 

D = 1.0 

B = 1.0. 

(15) 

Figure 2 shows the resulting computer plot of cd2D(f). Figure 3 shows 
a plot of 10 log [S(f)/D(f)] for f = 0.084B, 0.36B, and B, as a func-
tion of the RMS frequency deviation D. These results compare well 
with both the theoretical and experimental results which are presented 
in Refs. 2, 4, and 5. 
As a final test case, we present the results for the case when W o(f ) 

is still defined by eq. (9), but r (f) now represents a 3-pole Butterworth 
filter with some mistuning, in which case 

1 + gito)  2(ito)2 (ie0)3  
r(f) —  (16) 

1 -I- 2(it)  2(ie)2 (q)8 
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Fig. 3—Signal-to-distortion ratio at particular frequencies resulting from r (f) 
and 1175,(f). 
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Fig. 4—Signal-to-distortion ratio resulting from r(f) and 14.(f) for particular 
values of frequency offset or mistuning. The points are from the theoretical approxi-
mation given as eqs. (17) and (18). 
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Fig. 5—Signal-to-distortion ratio resulting from r(f) and W o,(f). 

f — fe e = 

fe 
h = — 

Jo 

B = 1.0 

D = 3.12 

= 17.0 

fe = 0, 1, 2. 

10 

Figure 4 presents the computer plot for this case. The results compare 
very well with experimental and Monte Carlo results presented in 
Ref. 4. 
A theoretical approximation for the above case, with 0  Ifi B, 
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0.5  0.6  0.7 

was developed by Rice' and is given by 

D4 
D(f) = —8B2  (2B — I fi)(X2; 2-W 2X41)2 

and 

0.8 0.9 1.0 

D6 
± 48130 (3B' — .11)(X8i)2 (17 ) 

(f) = W(f) (18) 

where Xni is the imaginary part of X7, and Xn/n! is the coefficient of 
fn in the power series expansion of ln r(f) 

X21 = 2 f ef7' 

Xg¡ =  — 2fc 3 

X41 = 48 fe f r • 
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Some points which were computed from this theoretical approximation 
are indicated in Fig. 4. 
Having verified the soundness of the computer program with the 

foregoing test cases, let us present some new results. 

4.2 New Results 

In this section, we shall present some new results which were ob-
tained by using the above methods. These results will also help to 
demonstrate the general types of FM distortion problems that can be 
analyzed. 

4.2.1 n-pole Chebyshev filter 

Let We, (f) be uniform as given by eq. (8) with r(f) given by 

(1;(1 

FU) — 
k=1 

71 

ll(i — sk) 

where 

sk = - sin [(2k - ) sinh [-1 sinh-1 (10] 
2n 

i cos [(2k - 1)   cosh L11-2, sinh-1  
2n 

f — fe fe 
e =  = — 7G fc 

B = 1 = baseband bandwidth 

2f. = K2B(1 -F m) = K times Carson's rule 

= filter bandwidth 

4D 
m = — = FM modulation index 

(19) 

k = 1, • • • n 

R = 10 log (1 + b2) = in-band ripple 

fe= offset frequency or mistuning. 

r(f), defined by eq. (19), represents an n-pole Chebyshev filter. Some 
results for this case are presented in Figs. 5, 6 and 7. Also, a computer 
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Fig. 7—Signal-to-distortion ratio resulting from r(f) and two forms of W,. (f). 

plot is presented in Figs. 6 and 7 for the case when W ey, (f) is an RC 
spectrumt given by 

(27rD)2  [  Lf_ 2 —I 
If!  B 

2f0 tan-'  
A 
O  Ifl >B 

wo,(n= (20) 

fo = 3 dB bandwidth. 

An RC spectrum is often used to model a video signal. Notice that, as 
fo —› co, the RC spectrum approaches the uniform spectrum as given 

1170,(f) is the spectrum produced by passing bandlimited "white" noise through 
an RC filter. 



638  THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973 

90 

80 — 
co 

o 70 — 

cc 

o 

Z 
0 

cr 

(4) - 50 — 
o 

I - 40 — 
_à 

o 
c73 30 — 

['(f)  9-POLE CHEBYSHEV FILTER, EQUALIZED 

W O) = UNIFORM SPECTRUM 

lc = (16/15) B (1 + m) 

= RMS FREQUENCY DEVIATION 

B = BASEBAND BANDWIDTH = 1.0 

m = 4D/B = FM MODULATION INDEX 

R = 0.34IB RIPPLE 

= 0 

= , dB 
01, 

37.5 

28.2 2 

25.2 3 

m = 1 

m = 2 

m = 3 

0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  09  I 

NORMALIZED FREQUENCY, f/B 

Fig. 8—Signal-to-distortion ratio resulting from r (f) and W o, (f). 

by eq. (8). From Figs. 6 and 7, we see that more FM distortion results 
when W o ,(f) is an RC or video spectrum than when Wo, (f) is uniform. 

4.2.2. n-pole, equalized Chebyshev filter 

If the phase function associated with eq. (19) is taken to be zero,t 
(f) can be written as 

[1 + en(E0)11 
r(f) -  + b271(E) (21) 

where T7, (E) is a Chebyshev polynomial given by 

{ cos [n cos—i (en,  e 1 n(e) =  • 
cosh [n cosh-1 UM,  lEI >1 

(f), defined by eq. (21), represents an n-pole, equalized Chebyshev 
filter. Some results for this case are presented in Fig. 8. By comparing 
Figs. 5 and 8, we can determine the effect of equalization on FM distor-
tion. In this case, equalization does not reduce the FM distortion 
significantly. 

t Or linear in frequency since time delay is unimportant here. 
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4.2.3 n-pole Butterworth filter 

Let Wo, (f) be uniform as given by eq. (8) with r(f) given by 

where 

F(f) =   

(ico + P k) 
k —1 

II (Pk) 
k-1 

[i r (2k — 1 
pk = (271 c) exp 

2  n 

B = 1 = baseband bandwidth 

2f, = K2B(1  m) 

4D 
rn = B • 

1)1 = 1, 2,  , n 

1 

(22) 
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r(f), defined by eq. (22), represents an n-pole, Butterworth filter. 
Some results for this case are presented in Fig. 9. By comparing Figs. 
5 and 9, we see that the 3-pole Butterworth filter produces much less 
FM distortion than does the 9-pole Chebyshev filter. 

4.2.4 n-pole, equalized Butterworth filter 

If the phase function associated with eq. (22) is taken to be zero, 

or linear in frequency, r(f) can be written as 

r(f) = [1  (1f.)2n r• 

r(f), defined by eq. (23), represents an n-pole, equalized Butterworth 
filter. Some results for this case are presented in Fig. 10. By comparing 
Figs. 9 and 10, we see that equalization reduces the FM distortion 
significantly in this case. 

(23) 
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4.2.5 Echo, envelope delay, Butterworth filter 

Let W o,(f) be uniform as given by eq. (8) with iv) given by 

r(f)  [1 -I- rea 
1  r l   [exp {i(bace  b3w3)} 

(echo)  (envelope delay) 

X  ± 2(ito)  2(ieo)2 + (ie0)8] 
(24 ) 

1 -I- 2(ie)  2(it) 2 (iE) , 

(3-pole Butterworth filter) 

r = amplitude of echo 

T = time delay of echo 

b2 = linear envelope delay constant 

b2 = quadratic envelope delay constant 

e = f   
fc 
fe 

to= —  

fe = frequency offset or mistuning 

D = RMS frequency deviation 

B = 1 = baseband bandwidth 

2f. = K2B(1  m) = K times Carson's rule 

= filter bandwidth 

4D 
m = = FM modulation index. 

—B 

Some results for this case are presented in Fig. 11. 
Results are presented in Fig. 12 for the case when r(f) is given by 

eq. (24) and Wo(f), rather than W 0,(f), is uniform and given by 

13 D2 
W(f) =  

0 , 

If' < B 

III > B. 
(25) 

This is the case of a noise loading test applied to a phase modulated 
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Fig. 11—Signal-to-distortion ratio resulting from I' (f) and 'We (f). 

system. From eq. (1) we have 

(2TD)23f 

W gs,(f) = 1 2B3 
I fl B 

If! > B. 

1.0 

(26) 

In this case, Wo, (f) peaks at f = B in contrast to the RC spectrum 
given by eq. (20), which peaks at f = 0. These results lead us to an 
interesting question. Given W 0,(f) and r (f), can we choose a predis-
tortion characteristic such that the shape of SW /D (f)  is most suit-
able for a particular communication system? However, we have not 
investigated this question. 
We can compare the distortion resulting from PM and FM systems 

by comparing Figs. 11 and 12. In fact, if the results in Fig. 12 apply to 
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1.0 

a Phase modulation system, then the results in Fig. 11 apply to the 
corresponding Frequency modulation system. 

4.2.6 Filter characteristic determined experimentally 

In all of the results presented above, the filter characteristic r (f) 
was specified mathematically. However, many situations arise for 
which the measured amplitude and envelope delay characteristics are 
available in graphic form. Of course, one may try to fit a suitable ana-
lytical expression to these experimental points and proceed as above. 
However, there is no need to develop such an analytical expression. 
As our final case, we shall present some results which illustrate this 
point. 
Let the amplitude and phase of F(f) be given by the experimental 
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curves shown in Fig. 13. Let W 4,, (f) again be uniform and be given by 
eq. (8). Figure 14 presents some results for this case. 
Now let W e, (f) be an RC spectrum given by eq. (20). Figure 15 

presents some results for this case. We see that considerably more dis-
tortion is indicated in Fig. 15 as compared with Fig. 14. 
Thus, the often-used noise loading test which makes use of a uniform 

spectrum may not represent a worst-case situation as far as FM dis-
tortion is concerned. A theoretical proof of this interesting fact is pre-
sented in the appendix. 

V. CONCLUSIONS 

Equations (4) through (7), together with a digital computer, can be 
used to compute the FM distortion resulting from passing FM waves 
through linear networks. To demonstrate the utility of the program, 
we have presented a variety of results in graphic form. 
From this work, it is apparent that the often-used noise loading test 

does not necessarily represent a worst-case test. This was demonstrated 
for a system in which the modulating signal is a video signal. It is also 



646  THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973 

apparent that predistortion may be useful in reducing FM distortion. 
This is in contrast to the use of conventional pre-emphasis, which is 
applied to combat RF noise. 
Some important sources of FM distortion which were neglected in 

our analysis are AM-to-PM conversion, baseband and RF noise, and 
adjacent channel interference. 
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APPENDIX 

Theoretical Comparison of FM Distortion Resulting from Video and 
Uniform Spectra 

The purpose of this appendix is to present a theoretical argument 
which shows that a video spectrum can lead to more FM distortion 
than a uniform spectrum. That is, a noise loading test which makes use 
of a uniform spectrum may not represent a worst-case test when the 
information source is a video signal. 
Let the video signal cp' (t) be represented as a zero-mean, stationary 

Gaussian process having power spectral density We (f) given by 

(2..„.D)2  [1  4. f )21-1, 
fl e_ B 

f) = 2f0 tan-1 (—B)  f° (27) 
fo 

where 
D = RMS frequency deviation 

B = baseband bandwidth 

fo = 3-dB bandwidth. 

Let F(f) be given by 

r (f) = exp [i(b2w2 be's)]  (28) 
where 

b2 = small linear envelope delay constant 

b4 = small cubic envelope delay constant. 
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By applying eq. (24) of Rice,' the leading term of D (f) can be ex-
pressed as 

D(  = 2-1 ()+21  2-1D2X402 J dPW o(P)W f - P) P2(f - p)2 (29) 

where 

X2i = (2!) (27r)2b2 

Adj = (4!) (27)4b4. 

By taking S(f)  W o(f) = W 4,, (f)/e and evaluating the integral for 
D(f), we find that 

D(f)  1 ± 

8(f) 
R(f) 

fa  

D(f) 

8(f) fo—o 

2 

1 2 
[2 - JF ] tan-1  (70 ) 4 + (i0) 

1 + F8  1 
X {  F0  in  + an  ( ) -F tan -1  (1 - I F I \1 (30) 

IFI  (In - 1)2 + Fe,  F o F o 

where 

7r  it 
- -  tan'(.)  -• 
2  2 

R(f) represents the distortion-to-signal ratio for a video spectrum 
divided by the distortion-to-signal ratio for a uniform spectrum. If we 
can show that R(f) > 1 for particular values of fo, the 3-dB bandwidth 
of 1474,,(f), then we can conclude that a video spectrum can produce 
more FM distortion than a uniform spectrum. 
In order to show that R(f) can be greater than unity, consider the 

important frequency range 0 < 1FF < 1. For this baseband frequency 
range, eq. (30) yields 

4 
urn R(   > 1. 
F0-.0  2 - IF! 

A plot of R(f) for various values of Fo is shown in Fig. 16. 

(31) 
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4 

r(f) = EXP i (1)2w2+ be.1411 

W e) = VIDEO SPECTRUM, fo = 3-dB BANDWIDTH 

B = BASEBAND BANDWIDTH 
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Fig. 16—R (f) denotes the distortion-to-signal ratio for a video spectrum divided 
by distortion-to-signal ratio for a uniform spectrum. 

Accordingly, we conclude that a video spectrum can produce more 
FM distortion in the baseband frequency range than a uniform 
spectrum. 
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This paper studies a general description of interchannel and intra-
channel crosstalk interference created in a communications system. This 
description is in the form of a Volterra series expansion of the interference 
signal in terms of the signal which produced the interference. From it we 
are able to precisely define the "intelligible" part of the crosstalk. This 
description also provides us with quantitative measures of the amount of 
crosstalk created in some communications channel by signals in another 
channel, as well as a measure (intelligible crosstalk ratio) of the amount 
of intelligible crosstalk produced. We then consider a particular model for 
the generation of intelligible crosstalk [or direct adjacent channel inter-
ference (DAC I)] between two neighboring angle-modulated channels in 
which the signal in one channel adds to the signal of the second channel, 
the sum is filtered, and the filter output then passes through an AM-PM 
conversion device. Using our definition, a simple expression for the intel-
ligible crosstalk ratio for this model is derived in terms of the filter charac-
teristic. We observe that this crosstalk ratio exhibits a number of properties 
usually associated with DAC I. 

I. INTRODUCTION 

Crosstalk interference is an important consideration in transmission 
system engineering.' It is defined2 as the disturbance created in one 
(desired) communications channelt by the signals in another (interfer-
ing) communications channel. Crosstalk is classified as due to inter-
channel or intrachannel effects and may be of either intelligible or 
unintelligible type. Interchannel crosstalk occurs between two different 
communications channels as, for example, when the transmitted signals 
of an interfering channel pass through the channel selectivity filters of 

t Here "channels" refer to different communications paths (which are distinguished 
by, e.g., different frequency bands or different physical transmission media) together 
with the receivers associated with each of these paths. 

649 
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xd  (t) + x (1) 

CHANNEL 1 
SELECTIVITY 
FILTER 

CHANNEL 2 
SELECTIVITY 

FILTER 

DEMODULATOR 1 

DEMODULATOR 2 

OUTPUT CONTAINING 
CROSSTALK 
INTERFERENCE, y (t), 
DUE TO SIGNAL x(t) 

Fig. 1—Example of interchannel crosstalk. xa (t) is the desired signal in channel 1. 
x(t), the desired signal in channel 2, creates interference in channel 1. 

the desired channel and appear at its output (see Fig. 1). Another cause 
of interchannel crosstalk is electrical coupling between various trans-
mission media, e.g., between wire pairs in a multipair cable. Intra-
channel crosstalk occurs in a single communications channel and is due 
to nonlinearities in the receiver which act on the received signal to 
produce some disturbing signals in addition to the desired (linear) 
signal. Intrachannel crosstalk is also known as "intermodulation dis-
tortion."' If the signals in the channels are speech signals, crosstalk 
interference is described as intelligible or unintelligible, depending on 
whether the created interference is "understandable" or not. These 
terms are also applied to nonspeech signals, in which case intelligible 
means that the crosstalk is of "the same type as the desired signal."' 
In this paper, we study a general mathematical technique which can 

be used to describe interchannel and intrachannel crosstalk created in 
a communications system. The description is in the form of a Volterra 
series expansion' of the interference signal in terms of the signal which 
produced the interference. This expansion furnishes some insight into 
which part of the total crosstalk interference is intelligible, and thus we 
will be able to precisely define what is meant by intelligible crosstalk. 
In this way, some of the subjectivity inherent in the earlier "definition" 
of intelligible crosstalk is removed. In addition, our description will 
provide quantitative measures of the amount of crosstalk created in 
some communications channel by signals in another channel, as well 
as a measure of the amount of intelligible crosstalk produced. The latter 
quantity will be called the intelligible crosstalk ratio. These measures 
may be valuable tools in systems design applications. 
The Volterra series analysis of nonlinear systems with memory was 

first introduced by Wiener' and was further developed by Bedrosian 
and Rice." In Section II, we discuss some definitions and results of this 
theory which will be needed in our analysis. A general description of 
crosstalk interference and a definition of intelligible crosstalk are given 
in Section III. We also define the intelligible crosstalk ratio in this sec-
tion and compare it with previous measures of intelligible crosstalk. As 
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an application of these results, we consider an example in Section IV 
of a model for the generation of intelligible crosstalk [or direct adjacent 
channel interference (DACI) 6] between two neighboring angle-modu-
lated channels in which the signal in one channel adds to the signal of 
the second channel, the sum is filtered, and the filter output then passes 
through an AM-PM conversion device. Using our definition, a simple 
expression for the intelligible crosstalk ratio for this model is derived in 
terms of the filter characteristic. We will see that this crosstalk ratio 
exhibits a number of properties usually associated with DACI. We 
conclude by calculating the crosstalk ratio for the case of a k-pole filter. 

H. VOLTERRA SERIES ANALYSIS 

In this section, we will discuss some definitions and results in the 
Volterra series analysis of nonlinear systems with memory. These re-
sults will be needed in the sequel. The reader is referred to Bedrosian 
and Rice' for a complete account of the theory of Volterra series as well 
as their application to the analysis of PM and other nonlinear systems. 
For any two signals y(t) and x(t), possibly complex-valued, we will 

say that y(t) has a generalized Volterra series (OVS) expansion in terms 
of x(t) with Volterra kernels (functions) {ez} if and only if we can write: 

Q° 1 g(t) =gge E — foe f .) du, • • du. ceui,  • , un) n! 

• fi x(t — u,) (1) 
r•-1 

=  L dui gfe(ui)x(t — ui) 

f ' 
+  dui du2ge•e(u1, u2)x(t — ui)x(t — u2) 

i rrr▪ ,  ,dui du2 dua  u2, u2)x(t — u1) 

• x(t — u2)x(t — u3) -I- • • • 

where the functions gie , n P_" 1, are symmetric functions of n variables 
and gr is a constant. For convenience, we denote this fact by the nota-
tion y(t) = GVS[x(t); {W} J. If x(t) is the input to a system and y(t) 
is its output, then the Volterra kernels {e } completely characterize 
the system. If  = ao and ez(ui, • • • , un) = a,5(u1) • • • b(un) for 
n  1 where 8(u) is the delta function, then 

e, a.   
n! 

represents the input-output relationship of a memoryless system. 
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The n-fold (n  1) Fourier transform of ge,e(ui, • • • , u.) is denoted 
by: 

Gt•z(fi, • • • ,  = f • • • f dur • • du. ex (14, • • • , u.) 
—00  — o3 

•exp[— i(coi ui + • • • + con un)] (2) 

where co2 = 2r fi, i = 1, 2, • • • . Observe that if gr = 0 and de ---- 
for n  2, then gr(u)  is the familiar impulse response of a linear time-
invariant system and GI4x(f1) is its transfer function. By analogy, we 
will call G(fi, • • • , f.) the nth order Volterra transfer function. Since 
{grs•r} are symmetric functions, then so are IGV1. 
If x(t) has Fourier transform X(f), i.e., 

X(f) =  x(t)e-mdt,  w = 2irf, 

then it is easy to see* that y(t) and its Fourier transform Y(f) are given 
by: 

- fe y(t) = gri.e + E  • • • f dfi• • -df. Mix(fi, • • • , 1;) 
,,-in! , 

IL 

x(fr) (3) 
r=1 

and 
1 

Y(i) = g6(f) +  Gi'z(nX(f) 

+  d fl Gle(  f— fi)X(h)X(f — fi) 

+  f e dfi df 2 %VII /2, f — fi — f2)X(fi)X(f2) 

•X(f —  — f2) + • • • • (4) 

Next, suppose we apply a harmonic input of the form  ei" to 

a system whose input and output are related by a generalized Volterra 
series expansion. Then the output of the system is an infinite series of 
harmonic terms. The following property, which is easy to demonstrate,* 
shows that the coefficients of these harmonic terms are the Volterra 
transfer functions of various orders. 

Property 1: Suppose y(t) = GVS[x(t);  ]. If x(t) = t eiwit where 

= 2rf1, i = 1, • • • , n, and { fil are incommensurable,t then for 

t Frequencies f,,• • • , f,, are said to be incommensurable if for any integers in1, 
• • • , m„, not all zero, mifi +  + nt.f.  O. 
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n  1 and for k 5 n: 

GI•x(fi, • • • , fk) = the coefficient of the exp [Awl ± • • • -I- tok)t] term 
in the expansion of y(t). 

Methods of measuring the Volterra kernels and transfer functions of 
a system having a Volterra series representation have been studied by 
George,' Schetzen,8 and Lee and Schetzen.9 These methods rely on the 
use of realizable input probing signals. 
Bedrosian and Rice4 have also shown the following: 

Property 2: Suppose y(t) = GVS[x(t); fg ]. If x(t) = P cos cot, 
• = 27rf, then 

Y(t) = )n exp [i(2k — n)cot] re.z  
E ,n—kk J  (5 ) 

n=1 k=0 

where GI:f_k(f) denotes Grez(fi, • • • , fn) with the first k of the f,'s equal 
to f and the remaining n — k equal to — f. The leading terms in (5) 
are: 

y(t) = ..] 

• ei""[ 1. Glect)  f, —f) + • • •] 

+  f) +  f, —  + • 

±  [  Ge•zu, + •] 

▪ e-fic" [1; Gr(— f, — f) ± • • •1 

+ • • •] 

+ e—"[ 1 Gg'z(— f, — f, — + • -1+  (6) 

When x(t) = P cos wit  Q cos co2t, then y(t) is a sum of complex ex-
ponentials, the exp [j(Arcol Mco2)t] component of y(t) being, for 
M  0 and N  0, 

eitxt.,i+mn,2)t :to ur  ±/2)1;;+IN! ((‘12," 2+)"k±)muc!  f2)  (7)  

where coi-= 27rft, i=1, 2, and GYe+1,1:m+k.t(fi, 12) denotes GV(fi, • • • , In) 
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with n=N+21+M-1-2k and the first N+1 of the fi's equal to fi,  the 
next t equal to —fi,  the next 111±k equal to fi,  and the last k equal 
to —12. 
In Appendix A we show that the input-output pairs of a certain class 

of nonlinear systems can be related by a Volterra series expansion with 
certain Volterra kernels. The result is a slight generalization of one 
proved in Ref. 4. 

Property 3: Suppose 

y(t) = F [ recg(u)ii[x(t — u)]clu]  (8) 

where F and sit are functions of a complex variable having series 
expansions: 

with 

Let 

í(z) = E h„ 
—0  v: 

(z — zo) 1 
F(z) = E F1 

1=0  1! 

zo A  f g(u)du. 

(9) 

(10) 

G(f) gf g(u)e-'du,  co = 2wf. 

Then y(t) = GVS[x(t); 10,1] with ez = Fo and 

G(f1) =-- Fi Ai G(fi) 

Gr(fi, 12) = F1 112 GUI  f2) + F2 M G( 11) 0 ( b) 

G ( 11, 12, 13) =  F1 11 3 G( 11 ±  12 +  13) +  F2 hl 112E G( 11) G( 12 ±  13) 

G(f2)G(f1 + fa) + G(fs)G(fi  f2)] 
±  F3 M G( 11) G( 12) 0 (13)• 

Expressions for the higher-order Volterra transfer functions are given 
in eq. (49) of Ref. 4. 
Finally, suppose that y(t) and x(t) are related by a Volterra series 

expansion, and that y(t) is transformed by some function P(•) to pro-
duce a signal w(t) = 'fr[y(1)]. Then, for a certain class of functions 
«fi( • ), the following result, which is proved in Appendix B, shows that 
w(t) also has a Volterra series expansion in terms of x(t) with specific 
kernels. 
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Property 4: Suppose y(t) -- GVS[x(t); {WI] and w(t) = fi[Y(t)] 
where P is a function of a complex variable having series expansion: 

P(z) _ É° fili (z — ggil 

Then w(t) = GVS[x(t); {ern where gr --- A and 

Grz(h) = Pi Gr(h) 

GY.z(fi, 12) = P1GV(fi, 12) + P2 G V( f1) G ( f2) 

G r( fl, f21 /3) =  P1 G le(fly he fa) ±  P2 [ Gfe(fl) G F( f2e f2) 

±  G itz(f2) Gle ( f1y fa) ±  G 11.3 (f3) Gle(f1, f2)] 
+ P3 uti(h)Gr( fe( f3). (11) 

Expressions for the higher-order kernels can be obtained from the 
method discussed in Appendix B. 

III. MATHEMATICAL DESCRIPTION OF CROSSTALK INTERFERENCE 

With the Volterra series analysis discussed in the last section, we can 
now give a mathematical description of interchannel and intrachannel 
crosstalk. Consider interchannel crosstalk first. Suppose x(t) is some 
signal in one communications channel which enters a second channel as 
a signal et), where t(t) is x(t) (possibly) transformed by some opera-
tion. Assume that the second channel contains some devices which 
operate on ±(t) to produce a signal, y(t), at the output of the channel. 
If the operations which transformed x(t) into t(t) and *i(t) into y(t) 
consist of, for instance, nonlinear operations described by power series 
in cascade with time-invariant linear operations, then it is clear from 
Properties 3 and 4 that y(t) will have a generalized Volterra series ex-
pansion in x(t): 

y(t) -- de + É° lie 
to 

n ,1 n! —  ' ' .  co 

• il x(t - ut). (1) 
r=1 

That is, the crosstalk interference, y(t), appearing at the output of the 
second channel, can be expressed in terms of the signal in the first 
channel, x(t), which created it. The first term in the summation in (1) 
will be denoted by 

ilL(t) = 1 dui yi.z(ui)et — 24).  (12) 



656  THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973 

It is that part of y(t) which is linear in x(•); yL(t) can be obtained by 
passing x(•) through a time-invariant linear filter with impulse re-
sponse glz( • ). If Y(f) is the Fourier transform of yL(t), then: 

YL(f) = Utz( f)X(f).  (13) 

The higher-order terms in the summation in eq. (1) represent greater 
nonlinear distortions of the signal x(t) than do the lower-order terms. 
This can be seen from eq. (4), where we observe that each term in (1) 
has a spectrum which contributes to the spectrum of y(t), the higher-
order terms distorting the spectrum of x(t) to a greater degree. The 
spectrum of the linear part of y(t) given by (13), however, is simply 
X(f) multiplied by a weight function. Because of this, we might expect 
yL(t) to be more intelligible than the other terms in (1), in the case 
when x(t) is a speech-like signal. In fact, we will define y L(1) to be the 
intelligible part of the crosstalk, and y(t) — yL(t) will be called the 
unintelligible part. 
The Volterra kernels {WI and especially the Volterra transfer func-

tions {Grim} can be used as a measure of the degree of nonlinearity of 
each of the terms in (1). Moreover, since by Property 1 the Volterra 
transfer functions are the responses at certain frequencies to a har-
monic sum input, they have further intuitive appeal as appropriate 
measures of system performance. In particular, as a measure of the 
intelligible crosstalk created in one channel by signals in the other 
channel, we will define the intelligible crosstalk ratio at frequency f, R(f), 
to be 

R(f)  A I yL(f) 1 
I X ( f)  22 -  I cp.(.1)12.  (14) 

Previous authors followed two different approaches in defining in-
telligible crosstalk and intelligible crosstalk ratio. One idea, followed 
by Ruthroff,6 Bennett," Curtis," and Hatch" was to assume that the 
signal, x(t), in one channel is a constant amplitude sinusoid at fre-
quency f and having power P1. Then, for certain models, they were 
able to show that y(t), the resulting interference in the second channel, 
contained a sinusoid at frequency f with power P2. They defined the 
intelligible crosstalk ratio at frequency f to be P2/Pi. Extending this 
idea a little further, one might let x(t) be a sum of sinusoids at incom-

mensurable frequencies fi, • • - , f. (cuiL 2rfi), i.e., x(t) = E sin wit. 

If, for some problem, we can express the resulting interference y(t) as 
a sum of sinusoids, with b the coefficient of sin wit in this sum, then the 
intelligible crosstalk ratio at frequency fi would be taken to be lb1'. 
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Our definition of intelligible crosstalk ratio in (14) is similar to this ex-
cept that we use complex exponentials instead of sinusoids. But Prop-
erty 2 shows that G(h) is in fact the leading term of the coefficient 
of sin col t (when x(t) is a sum of sinusoids), and thus the two definitions 
may in some cases yield approximately the same numerical result. 
Lundquist" followed another approach. He assumed that x(t) was arbi-
trary and, for a certain model, was able to express the interference y(t) 
as a series of products of powers and derivatives of x(t). He took the 
intelligible crosstalk to be that part of y(t) which was "linear in x(t)." 
Expressing this part as a linear filtering operation on x(t), having 
transfer function HL(f), he then defined the intelligible crosstalk ratio 
to be I H L( DI'. The intelligible crosstalk ratio given in (14) is identical 
with that of Lundquist once the part of y(t) linear in x(t) is identified. 
The preceding discussion is also applicable to the problem of intra-

channel crosstalk. Earlier Volterra series techniques4." had been ap-
plied to one such problem, namely, distortion in angle-modulated sys-
tems. In the intrachannel crosstalk problem, x(t), the signal at the 
input of a channel, is transformed by some nonlinear devices into the 
output signal y(t). If these devices consist of, for example, nonlinear 
operations described by power series in cascade with time-invariant 
linear filtering, then y(t) has a generalized Volterra series expansion in 
terms of x(e) as in (1). Assume that the desired output signal yo(t) in the 
absence of the (parasitic) nonlinear devices should be a time-invari-
ant linear operation on x(t) with impulse response k(.) and transfer 
function K(.), i.e., 

yo(t) = f ee k(UOX(t — ul)dui.  (15) 

Then the distortion or crosstalk at the channel output is 

= y(t) — yo(t) 

gtz + L dui[gfr(u1) — k(tti)].z(t — /4) 

+ E —, •'' Loe du,. • • dun gr,•z(ui, • • • , u.) 
-05 

• Inj x(t — u,.).  (16) 

The intelligible crosstalk is: 

E. dui ofx(ui)x(t — ui) 

014x(iii) 4 gie(ui) — with 
with 

(17) 

(18) 
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The intelligible crosstalk ratio is: 

R(f) = I ei'2(i) 2 

cy...(n G(f) - K(f). 
where 

(19) 

(20) 

The remainder of our preceding discussion for interchannel crosstalk 
is also valid for intrachannel crosstalk. The Volterra transfer functions 
may be used as measures of system performance. They are similar to 
(generalized) "intermodulation coefficients"2 except that they are the 
response to complex exponentials and not to sinusoids. 

IV. INTELLIGIBLE CROSSTALK RATIO FOR A PARTICULAR MODEL 

In this section we look at a model for the generation of intelligible 
crosstalk [or direct adjacent channel interference (DACI)] between 
two neighboring angle-modulated channels in which the signal in one 
channel adds to the signal of the second channel, the sum is filtered, 
and the filter output then passes through an AM-PM conversion device. 
An example of such a situation occurs in the TD-2 microwave radio 
relay system"." where the principal channel discrimination is provided 
by IF filters. The main AM-PM conversion in this system occurs in the 
transmitter amplifier. This model will illustrate the ideas and tech-
niques of the previous sections. While we seek only the first Volterra 
transfer function (for intelligible crosstalk), the higher-order transfer 
functions can be found in a similar way. 
Consider, in general, two neighboring phase-modulatedt communica-

tions channels (labeled "1" and "2"). (See Fig. 2.) In channel 1, the 
received "desired" signal or carrier is taken to be: 

vii(t) = cos (cui t OM))  (21) 

where 40) is the phase modulation and the amplitude of vii(t) has 
been normalized to unity. We assume that vii(t) passes through a linear, 
time-invariant filter in channel 1 without distortion so that at the filter 
output the signal is: 

v01(t) = cos (w1 t OM)).  (22) 

In channel 2, the received "undesired" or interfering signal is assumed 
to be: 

v2(t) = K cos (.132 t e(t))  (23) 
so that the signal (or carrier)-to-interference ratio is 

A 
= 
Kz 

(24 ) 

t Frequency-modulated channels can be treated in a similar way, and the results 
are the same. 
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= COS k4, I 4 'hi lti) 

DESIRED SIGNAL 

I INTERFERING 
SIGNAL 

= tc cos lia2t Mt)) 

H f 

vo (t) = vo  v02(t)  

= P  cos twit + 1,1 + YU)) 

AM—PM CONVERSION 
DEVICE WITH 

CONVERSION CONSTANT cp 

P (t) cos wit +  +y(t) +4)(0) 
WITH 4)(0 e cp (P It) —1) 

A 

Fig. 2—Model for generation of intelligible crosstalk between two neighboring 
phase-modulated channels. 

and in decibels: 
CIR = 10 logio g (dB).  (25) 

The signal v2(t) is presumed to pass through the filter of channel 1 and 
produce the filter output: 

va(t) = ro du h(u)r42(t — u) 
=  K  du h(u) cos 5)2(t — u) + y6(t — u)] (26) 

where h( • ) is the filter impulse response. We will denote the filter's 
transfer function by: 

H(f) =  h(u)e-i'udu, 

Using the relation 

and setting 
cosa -= e-1"1 

= 2/rf. 

A(t) 14 e  du  

B(t) g du h(u)emue-ie,-,,), 

we can rewrite (26) as: 

v02(i) = KnA(t)elwe ±  (t)e- ¡we]. 

It is easy to see that with 

and 
V(1) g [A(i)B(t)ii 

02(t)  In A(1)  23  B(t) ' 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 
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va(t) equals: 
v02(t) = Kv(t) cos (oht + 42(t)).  (34) 

We will assume that I KV(t)1 < 1. The output, vo(t), of the filter in 

channel 1 is: 

vo(t) = v01(t)  v02(t) 
= cos (col t 01.(t))  KV(t) cos (w2 t 02W) 
= [1 + x2V2(t)  2KV(t) cos 0(t)]4 cos (Col t  01(t)  T(1)) 

= P(1) cos (Cd, t + oi(t) + 7(t)) 
where 

(35) 

P(1)  E1 + K2v2(t) + 2Kv(t) cos 0(i)]4,  (36) 

Kt) 1 (.2 — wi)t + (wt) —  
KV(t) sin 0(0   

-y(t)  tan-1 r L 1 + Kv(i) cos 0(1) j 
The amplitude function, P(t), can be expanded in the power series:17 

P(t) = C; (cos 0(t))(-1)"(KV(t))" 

= 1 +  (cos 0(t))(-1)"(KV(1))" 

where {C, M-)} are the Gegenbauer polynomials of degree n and order 

By definition," if a(t) cos (coct 1,b(t)) is the input to an AM-PM 
conversion device with conversion constant c„ (radians), then its out-
put is â(t) cos [cot +1,140  cp(a(t) - 1)1 So if vo(t) passes through 
such a device, the undesired output phase in channel 1 is y(t)  (1)(t) 

where 

cp(P(t) - 1) = c„  Cji (cos 0(0)(-1)"(KV(0)".  (37) 
n=1 

From Ref. 17, we also have: 

CJ'(cos 0(t)) =  r(m -)r(n - m -  .-0 m!(n -  !Er(_1)i2 cos [(n - 2m)0(t) 

where r(•) is the gamma function. Then, 

(Kt) = c„  .-0 m!(n - m)![P(--1)]2  cos [(n - 2m)0(t)] 

• (  1) (,c V W )".  (38) 

Assuming that f, -  (f1 = ù4/2/r) is greater than the baseband 
frequencies of channel 1, we see from (36) that terms of the form 
cos [p0(t)], p  0, do not contribute to the baseband interference in 
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channel 1. In addition, it can be shown that 7(t) is outside the base-
band. Thus, retaining only the terms for n even and m = n/2 in (38), 
the undesired output phase or crosstalk interference is just: 

y 12 
(t)  c  r(11  (KV(1))2n 

V ei p(—¡)/!)! 

= cp[F(-4, —4.; 1; (KV(t))2) — 1.]  (39) 

where F(a, b; c; z) is the Gauss hypergeometric function" defined by: 

F( b  r(c)  r(a n)r(b  n) z c; z)  n a, ;   r(b)r(a) Tfl'o  r(c  n)  n! 

We next show that the crosstalk interference y(t) has a generalized 
Volterra series in 0(1), the signal creating the interference, and we find 
the Volterra transfer function GM( f). We begin by rewriting (32) as: 

V2(t) = exp [In A(s) ln B(t)] 

= exp [Ai(t)  Bi(t)] 
where 

A1(t)  In A (t) and Bi(t) 11- ln B(t). 

Recalling the definition of A(t) in (29), we apply Property 3 with 
g(u) = h(u)e—i.2., lb(x) = ex, and F(z) = In z] to get that Ai(t) 
= GVS[ç6(t) ; ge14 1] with 

geo = Fo = ln ro = In H(f2) 

Gp.ocn= Flucn = Jig/2 + f H(f2). 
Similarly, for BM): 

= In H( — f2) 

Gf"*(f) = — iH(f — f2)/H( — f2). 

Setting D(I) = A,()  H i(t), we have D(t) = GVSE4)(t) {g"}]il] and 
clearly 0.4' = 0'4 ± ep.0. Since h(u) is real and H(— f) = H*(f) we 
have: 

gèe = In H(f2) ± In H(— fa) = In H( fo) 2 

4,\ H(f2 + D • HU — f2) G(/) — H(f2)  H(— fo) 

Next we apply Property 4 to V2(t) = exp [D(t)] with P(z) = e1 and 
Po = Pi= • • • to get: 

a"2.° Fo = exp [e] = I H(f2)1 2 

GN(f) = P1GP4(f) = iH*(f2)H(f2  — ill(f2)11*(f2 — f). 
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Finally, we apply Property 4 to (39) with 

P(z) =  —4; 1; K1/4) — 1] 

to get that y(t) = CrVS[0(t); {01,4 }]. Also 

Po = P(z) evaluated at z = gj,'2•4' 

= cp[F(-1, —1; 1; I KH(f2)12) — 1] 
and 

d P(z) K2F(1- 1 2 KH(f2)1 2). v2.4, 4 2, 2 
z=00 

Hence, 

grs =  = cp[F( — —4; 1; I KH(f2) I 2) — 11 
G(  f) Pare(f) 

22 Q(K I H(f2) ) • iri-P(f2)H(f, + f) 
4 

where 
— H(f2)H*(f2 — 1)] (40) 

Q(z)  F(, 1; 2; z2) 

4 
= — 2 EE(z) — (1 — z2)K(z)] 

T Z 
(41) 

and E and K denote complete elliptic integrals of modulus z (Ref. 19, 
pp. 47 and 358). 
Then the intelligible crosstalk ratio equals: 

R(f) =IGM(f)1 2 

C2 K4 Q2(K  H( f2) I ) 1H(f2 pie(f2) 

1-1* (f2 — DH(f2) 
2 
(42) 

where 

Q(K H(f2) ) = 1 + i(KIH(f2)1) 2 
25  

+ —3 (KIH(f2)1) 4 1024 IH(f2) I + • • • . (43) 
64   

For a given value of x (or CIR), we need only calculate the value of 
Q(K I H(f2)  j) once for any filter transfer function having attenuation 
IH(12) 1 2. When K 1 (or CIR  0 dB) and 10 logio ¡H(f2)j 2 —10 
dB, we can approximate, with very good accuracy, Q(K I H(f2) I)  1, 
and then: 

2 
R(f)  K 4 1 H(f2  f)11* (f2) — II*(f2 — f)11 (f2)1 2.  (44) 
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If C(f) and 0(f) are the magnitude and phase of H(f), 

H(f) = C(f)e»(/),  (45) 
then 

H(f,  f)H*(12) — H*(f2 — f)H(f2)1 2 = [C2(f2 + 

+ C2(f2 — f)]C2(f2) — 2C(f2 + DC(f2 — f)C2(12) 
• cos [0(f2  f) 4- 0(f2 — f) — 20(f2)].  (46) 

The last expression together with either (42) or (44) is well suited for 
computational purposes requiring only the values of the amplitude and 
phase of H(•) at frequencies 12, f2  f, and 12 — f. 
One should note that in this analysis we have assumed that the 

filter gain at fi was unity. It is easy to see that, if the gain is not unity, 
the only difference in eqs. (42) to (46) is that H(f) is replaced by the 
normalized transfer function H(f)/ 1H(fi) I. 
The expression for the intelligible crosstalk ratio given in (44) ex-

hibits a number of properties usually associated with DACI. "." For 
example, noting that j.i = 1/ K2 and CIR = 10 logio g (dB) and expres-
sing the intelligible crosstalk ratio in decibels as 10 logic, R(f) (dB), we 
see from (44) that if CIR decreases 1 dB then the crosstalk ratio in-
creases 2 dB. We observe that the way in which we have defined R(f) 
also makes R(f) independent of the power of the input (phase). More-
over, by assuming that the amplitude of the desired signal in (21) is 
arbitrary (instead of unity), it is easy to check that, for fixed CIR, R(f) 
is independent of the desired signal power. 

V. EXAMPLE 

The intelligible crosstalk ratio was calculated for the example con-
sidered by Lundquist" with CIR = 0 dB. The crosstalk ratio for other 
values of CIR can be found by adding 2 dB to the crosstalk ratio for 
each dB decrease in CIR. We assumed an AM-PM conversion constant 
of 5 degrees/dB" or c, = 5(0.1516) = 0.758 radians, and a k-pole filter 
having transfer function: 

H(f) =   (47) 
1 

Given the number of poles k, the frequency separation àf = f2 - fly 
and the value of the "attenuation at the adjacent channel" defined as 
—10 logia I H(f2)1 2 (dB), we can determine f„ from (47). Equations 
(44) and (46) were used to compute R(f) for various values of k, base-
band frequency f, frequency separation if, and adjacent channel at-
tenuation. The results are given in Figs. 3 to 5. Figure 3 shows the de-



664  THE BELL SYSTE M TECHNICAL JOURNAL, M AY—JUNE 1973 

—40 

co 
-o 

o • —50 

1P 

cc 

• —60 

1— 
cc) 
cc, 
o 
o cc 
—70 

o 
o 

• —80 

—90 
o 2  3  4  5  6  7 

BASEBAND FREQUENCY IN MHz 

8 9 10 

Fig. 3—Intelligible crosstalk ratio versus baseband frequency, for if = 20 MHz 
and adjacent channel attenuation = 20 dB. 

pendence of the intelligible crosstalk ratio on the baseband frequency 
f, for fixed frequency separation  f = 20 MHz and adjacent channel 
attenuation of 20 dB. We see from Fig. 3 that DACI is greater at higher 
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Fig. 4—Intelligible crosstalk ratio versus frequency separation, for baseband fre-
quency = 5 MHz. 
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Fig. 5—Intelligible crosstalk ratio versus attenuation at adjacent channel, for 
àf = 20 MHz and baseband frequency = 5 MHz. 

baseband frequencies, increasing approximately 6 dB when f is 
doubled. For a fixed baseband frequency of 5 MHz, Fig. 4 shows the 
relation between R(f) and the frequency separation Af. We observe 
that there is not much variation of R(f) with f for a given adjacent 
channel attenuation. In Fig. 5 we show the effect of increasing the ad-
jacent channel attenuation for a fixed baseband frequency of 5 MHz 
and a frequency separation of 20 MHz. Here a 1-dB increase in attenua-
tion produces about a 2-dB decrease in crosstalk ratio. 

VI. CONCLUSION 

By use of Volterra series analysis, we have presented a general 
mathematical description of the crosstalk interference created in a 
communications system. From this description, we were able to isolate 
the part of the crosstalk that was intelligible and to define the intel-
ligible crosstalk ratio as a measure of the intelligible crosstalk created 
in the system. We then looked at a model in which intelligible crosstalk 
was generated between two neighboring PM channels. Using our re-
sults, we derived an expression for the intelligible crosstalk ratio for 
this model. This expression exhibited a number of properties usually 
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associated with direct adjacent channel interference. The crosstalk 
ratio was computed for the case of a k-pole filter as a function of various 
parameters. 

APPENDIX A 

In this appendix we sketch the proof of Property 3. Following 
Bedrosian and Rice4 we define the functiont 

so that from (9): 

.0(e) =L g(u)h.[Ex(t — u)]du 

É(0) = /to  g(u)du = Jo. 
—CO 

From (10) we see that: 

F[11(0)] = F (zo) =- Fo. 

Expanding the function F[É(E)] in a Maclaurin series we obtain: 

FEÉ(E)] = P*2i; [  ni/(E)]] t_o 
Then 

(48) 

(49) 

(50) 

(51) 

y(t) = F[11(1)] = F[É(0)]  nt:1771).[en Fur/an] e-o 
= F0  cÉ 7[ eftmen.  (52) n1   

Applying the results in eqs. (49), (114), and (115) of Ref. 4 we get: 

y(t) = Fo °Élr ..•F dui— • dun glz(til, • • , tin) 
n! 

• fl x(t — ut) (53) 
r-1 

for some kernels (gel with 

Gr(f) = F1 ki Gcn, 
Ge.e(f2, f2) = F2 Â2 G UI ±  f2) +  F2 Id G UO G( 12), 

(54) 

and 

Grub fa, fa) = F1 A3 G( f1 ±  fa ±  f3) 

+  F2 Al 1 2E G( f1) G( f2  f3)  G( f2) G( f1 +  fa) + G(fa)G(fa  fa)] 
±  F3 MG(fa)G( MG(fa)• 

The dependence of fi(t) on t will be suppressed. 
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The higher-order Volterra transfer functions are given by eq. (49) of 
Ref. 4. Thus, y(t) = GVS[x(t); e l] and fig.' = Fo which is the de-
sired result. 

APPENDIX 1.3 

Here we derive Property 4. Define the function me) by fr 

nu) en 
f e  gg- + E • • • f dut. • • dun gli(ui, • • • , un) 

n!  -00 
71 

• II s(t — ur). (55) 
Then, 

11(0) = 

and the pth derivative of .11(e) evaluated at E = 0 equals: 

(') (0) -= • • • dui• • du,. g(ui, • • • , u.)  x(1 —  
- 02  f  -00 

OD  CC 

r= 

1. (50) 

Y(t) = 11 (1) 

w(t) = Étet)] = PEÉ(1)]. 

Note that with F(')(z) denoting the /th derivative of P(z): 

P("C11(0)3 = P(')[gg•z] = 
Expanding ffncen in a Maclaurin series, 

we get: 

O. 

- , PUN)] =  at- Ian] b.° 

w(g)  P[i/(1)]  PE R (0 11 ±  :±11 7-17! [  Ptil( E n 

=  cci÷: [,[,,(,),] • E4) 

(57) 

(58) 

(59) 

(60) 

Using the results in eqs. (98) and (112) through (115) of Ref. 4 we can 
write (60) as: 

w(t) — po + E —,  • • • du i• • • du. g:'(ui, • • • , 
n  -ocf  

t 

• II 1.(1 —  (61) 

t The dependence of X(E) on g will be suppressed. 
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where, in particular, 

gr(ui) = Fi g(ui), 

gr(ui, u2) = Pi gr(ui, u2)  P2Egie(ui)gr(u2)], (62) 

and 

gre(ui, 212, U3) = P1glx(Ui, U3, U3) 

P2Egille(111) 02(U2, U3) ± gr1(U2) 0e(Ui, U3) + e x(243) ez(41, U2)] 

P 1 Egi.e(111)gfx(U2)gie(U3)].  (63) 

Therefore, w(t) -= GVS[x(t); {01] with gr = PO and the Volterra 
transfer functions given in the statement of Property 4. 
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A two-dimensional analysis of the potential in charge coupled devices 
is presented. It is assumed that there are no mobile minority carriers, that 
the plate separation is zero, and that the plate voltage does not vary with 
time. The depletion layer approximation is used to linearize the equations, 
which are then solved exactly with the use of Fourier series. Both surface 

and buried channel devices are analyzed. These solutions can typically be 
evaluated on a computer in less than a tenth of the time it takes to obtain 
a solution by the method of finite differences. The solutions obtained here 
provide an important tool for the designer of charge coupled devices. In 
addition to describing the method of obtaining the solutions, we evaluate 
them to show the effects of a number of different design parameters, and 
compare the cost of these solutions with the cost of obtaining finite difference 
solutions. 

I. INTRODUCTION AND SUMMARY 

The recent invention" and development of charge coupled devices 
(CCD's) has led to renewed interest in the mathematical analysis of 
MIS-type structures. Ideally, one would like to solve the nonlinear 
equations describing the three-dimensional motion of charge as a func-
tion of the time-varying plate voltages. So far no one has succeeded in 
doing this for even the simplest geometries. For the most part, one-
dimensional static models have been solved which yield only qualita-
tive information about the behavior of such devices. A much more 
sophisticated, one-dimensional, time-varying model of a CCD has been 
developed and analyzed by Schryer and Strain.' 
A static, two-dimensional model of a CCD has also been studied by 

Amelio4 using finite difference techniques. He calculated the potential 
distribution in a two-dimensional model in the absence of mobile 

669 
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charge and with given static plate potentials. The results of this calcu-
lation are of great interest. The use of finite difference techniques in 
these cases has drawbacks, however. In even the relatively simple 
geometries considered so far, it is expensive to obtain reasonably ac-
curate solutions for the potentials, and for more complicated devices, 
it soon becomes prohibitively expensive. Furthermore, as we shall 
show, even for simple geometries it is difficult to obtain accurate ex-
pressions for the fields from the finite difference solutions for the 
potentials. 
In this paper, we show that when the plates on a CCD are close 

enough together so that they can be assumed to be abutted, and when 
the depletion layer approximation can be used,' the resulting linearized 
model can be solved analytically. These solutions can then be evalu-
ated cheaply and quickly on a computer. This analysis will be valid for 
both surface and buried channel COD's with an arbitrary number of 
plates. In a separate paper, we will show that these solutions can be 
used to obtain solutions for the potential in a CCD when there are 
gaps between the plates.' 
In Section II we write down the equations describing the model and 

put them into appropriate dimensionless form. We then introduce the 
depletion layer approximation which linearizes the equations and dis-
cuss conditions under which this approximation is valid. 
This paper has two main purposes: to show the behavior of the po-

tentials and fields in a CCD and to demonstrate techniques by which 
these potentials and fields can be calculated cheaply and accurately. 
In Section III we present a discussion of how the solutions depend on 
the various parameters defining the devices. 
In Section IV we derive the solution of the linearized potential equa-

tions. The reader interested only in the physical design of CCD's can 
skip the rest of the paper. 
In Section V we discuss in some detail the solution by finite differ-

ence methods of the exact, nonlinear equations describing a surface 
CCD. Our purpose in doing this is twofold. We wish to show the diffi-
culties involved in obtaining an accurate solution cheaply, especially 
if an accurate knowledge of the fields is required. Secondly, we want 
accurate solutions of the exact problem to compare with the analytic 
solutions of the linearized problem. 
Finally, in Section VI we compare in detail some solutions of the 

exact problem obtained by finite differences with the corresponding 
analytic solutions of the linearized equations. It is shown that in many 
cases of interest the solutions of the linearized problem provide excel-
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lent approximations to the true potential and much more accurate ap-
proximations to the gradient of the potential than can be obtained from 
the finite difference solutions. Furthermore, the solutions of the linear-
ized equations are at least an order of magnitude cheaper to obtain 
than are the finite difference solutions for any reasonable accuracy. 

II. DERIVATION OF THE EQUATIONS 

A surface CCD' consists of a layer of silicon covered with a thin 
insulating layer of silicon dioxide, and on top of the oxide layer, a 
sequence of closely spaced electrodes. Such a device is shown schemati-
cally in Fig. 1 with some typical dimensions indicated. Mobile charge 
trapped at the oxide-semiconductor interface is transferred from plate 
to plate by appropriately changing the potential of the plates. We con-
sider the case where the substrate is n-type silicon and the mobile 
charges are injected holes. In this case, the plate potentials must be 
negative. Our analysis can be modified in an obvious way to describe 
the case where the substrate is p-type silicon and the mobile charges 
are electrons. 
Some losses are introduced by the trapping of the mobile charges by 

surface states at the oxide-semiconductor interface. Smith and Boyle' 
have proposed a solution to this problem by inserting between the oxide 
and the substrate an additional layer of p-type silicon, thus forming 
a buried channel CCD. The p-layer is kept completely ionized, which 

0 1 gm 
—A— 

Fig. 1—A schematic diagram of a surface CCD. 
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Fig. 2—A schematic diagram illustrating plate overlap structure. 

causes the potential minimum to occur near the center of the p-layer. 
Thus the mobile positive charge stays at the potential minimum, safely 
away from the surface traps. 
It is desirable to have the plates as close together as possible in order 

to minimize the transit time of the mobile charge between plates. The 
minimum plate separation presently obtainable from photolithog-
raphy is —3-5 pm, but a plate overlap structure,'" as shown in Fig. 
2, or undercut isolation° allows for plate separation of --0.1 pm. 
We propose to study the static potential in either a surface or buried 

channel CCD with plate overlap structure, in the absence of mobile 
charge. We begin by noting that since the length in the z-direction of 
each plate is much greater than its width in the x-direction, near the 
center of the plates (z = 0) the field is essentially two-dimensional. 
Hence we will treat the problem as two-dimensional. We assume that 
the plates are zero distance apart. Since in the overlap structure there 
should be little flux leakage between the plates, we feel this is a 
reasonable approximation. We make the additional assumption that 
the bottom substrate is infinitely thick. The field can penetrate into 
the substrate little beyond a depletion depth, and since for typical 
voltages the depletion depth ranges from 7 1.cm to 20 pm, and the thick-
ness of the substrate in a typical device is 100 pm, this is a very rea-
sonable approximation. Finally, we assume the structure is periodic in 
the x-direction, which in the usual mode of operation is an excellent 
approximation. 
We begin by defining the boundary value problem describing a 

buried channel device. In all that follows, starred quantities have 
rationalized MKS dimensions; unstarred quantities, except for a few 
obvious physical parameters, are dimensionless. In the strip 
0  x*  L*, let ye; denote the potential in the oxide layer, 0 5 y* 
M; e,o; the potential in the p-layer, 14 5 y* .. h;; and io; the po-
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Fig. 3—A schematic diagram of one cell of a three-phase, buried channel CCD. 

tential in the substrate, h; 5 y* <m (see Fig. 3). Then 

V;sel = 0, 

E2 

v .„24.4 eN1 =-- — —  (1 — exp (ee;/kT)). 
E2 

(1) 

(2) 

(3) 

In eqs. (1) through (3), V: is the two-dimensional Laplacian; —e is the 
charge of an electron; trit(y*) is the acceptor number density in the 
p-region; NI is the donor number density in the n-region; ei and E2 

are the permittivity of the oxide and silicon, respectively; k is Boltz-
man's constant; and T is the absolute temperature. The conditions 
under which eq. (3) can be expected to be valid are discussed in Ref. 
11. 

In the usual method of fabricating a CCD, the substrate donor 
number density, Ni,, is a constant, independent of position. However, 
in a buried channel CCD, the p-layer is formed by diffusing the ac-
ceptor ions into the n-type Si, and so N*A(y*) is typically a function of 
y* — l, the distance from the oxide surface. In many cases we have 
the representationn 

IV(y*) =-- C exp I Y*  —  )2 Ln —  (4) 
h;  hi N"D 
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where C.; is the number density of acceptor ions at the upper surface of 
the Si. The average value, Fr„, of N(y) is easily shown to be 

1  
eìt = h; N  A( Y*)d Y* 

C.   erf (lien(C:s/ n)) —  (5) 
2 "Nien(CVN) 

where erf (x) is the error function." 
Before writing down the boundary conditions, we introduce dimen-

sionless variables. Define the Debye length 

XI) =  (€2kT/e2N)i.  (6) 

Then normalize all lengths with respect to Xi), 

x = x*/XD, y = y*/XD,  L = L*/XD, 

= h;AD,  (k = 1,2), 
and define 

(7) 

ea(x, y) = e(x*, y*)/kT,  (a = 1, 2, 3),  (8) 

u(y) = NA(0)/in,  = ei/E2.  (9) 

Equations (1) through (3) become 

V2soi = 0,  (10) 

V2s02 = cr(y),  (11) 

V2e3 = ee3  —  1.  (12) 

The boundary conditions can be written now as follows: For 0  x  L, 

yol(x, 0) = V(x),  (13) 

and 

491(x, hi) = ‘,02(x, h1), 

4,2(xl /12) = e3(x, 112), 

,(x,.0) = 0, 

.4 a seq. (z,  = a e2 14) + Q(x), 
ay  ay  

n 
84'2 Ô 3 L \ 
ay (x, h2)  8  2)) y 

‘p(0, y) = so(L, y) 
a e  a io 

= — (L Y) ax  ax  " 

(14) 

(15) 

(16) 

0  y < 00.  (17) 

In (13), V(x) is a given, periodic function, assuming on each electrode 
the constant voltage of the electrode; and in (14), Q(x) is a known, 
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periodic surface charge density, which may include deliberately im-
planted charges. 14 

For future use, we record the expression for a(y) when NA(V) is 
given by (4). If 

then 

and 

Cs =  (18) 

0-(y) = Cs exp  hY,2 )2 tri,C, s} — 1,  (19) 

1ri-r Cs erf (litnCs)  
e —  1.  (20) 

2 *nCs 

The equations for the surface CCD are essentially the same, except 
that the p-layer is eliminated. In what follows, we will only give the 
analysis for the buried channel CCD. The results for the surface CCD 
can be obtained from those for the buried channel CCD by setting 
--- 0, hl = h2, and ço3 = y92. 
We now introduce the important depletion layer approximation.' 

v24,1 0 SiO2 

v 2 e 2 = p—TYPE Si 

tt‘ 

2Ji3 = _ 1 
n—TYPE Si 
(DEPLETION 
REGION) 

v2 1,4 = th4 n — TYPE Si 

Fig. 4—A schematic diagram of the depletion layer approximation for one cell 
of a three-phase, buried channel CCD. 
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In most cases of interest, cpa (X, h2)  —1 for 0 < x 5 L. For example, 
in a typical buried channel CCD, ço3 (x, h2)  —1000 [and in a typical 
surface CCD, cp2(x, hi)  —150]. Thus, for y — 132 small and positive, 
— 0. However, for y» ha, 14031 «1, and en  1 + es. There is 

thus some curve y = R(x) such that for h2 5 y 5 R(x), e — 1 r-e —1. 
The region /32 5 y 5 R(x) is the depletion region. For R(x) < y, we 
have ein — 1 •̂-• cp3. If R(x) varies but little about its average value, 
P, these remarks suggest that we replace eqs. (10) through (12) by the 
system of linear equations 

V'i(x, y) =- 0,  0 <y <h1,  (21) 

V21h (x, y) = 0"(Y),  h1 < y < 1/2,  (22) 

/22 < y < h3 = 112 P,  (23) 

'724,4 (x,  = lfr4 (x, 0,  ha = ha  < y < co  (24) 

where 1//3 is the potential in h2 5 y 5 h3 and Via is the potential in 
h3 5 y < co . (See Fig. 4.) In addition to i, ea, and ea satisfying 
boundary conditions (13) through (15), we have the boundary condi-
tions, for 0  x  L, 

ae3  L ea (z, ha) = e. (x, h3),  - - n2j = —ay  n3), ay 

-5V -10V  -5V 

h; ! 1 D 

y* = h; + 51 D 

I  I  I  I  I  1  1  1  1 
15  30  45  60  75 

e(µm) 

so 

(25) 

Fig. 5—The potential «p*(x*, y*) plotted as a function of e in a surface CCD for 
y* = 0.2 pm, 2.275 am, and 4.35 pm. The 45-pm plates are alternately at —5 V and 
—10 V, and the oxide thickness is hp = 0.2 am. 
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Fig. 6—The field — (aço*/ax*)(x*, y.) plotted as a function of x'' in a surface CCD 
for y* = 0.2 pm. The 45-am plates are alternately at —5 V and —10 V, and the oxide 
thickness is lit = 0.2 pm. The dashed curve is a plot of — (aio*/ax*) for the same 
device obtained from a finite difference calculation. 

t/'4 (x,  0,  (26) 

and the 1,1,« (a  1, 2, 3, 4) all satisfy (17). 
It has been shown that for a one-dimensional version of this problem, 

the choiceb 

hl  2 = — (1 ± h-- hl  —)  [(h2 —  ±  — 1 — 2V. 

2h1  h2 
— —  Qs,s ± 2f  —  a(E)« 
77  hi 

11 (27) 

yields a solution which approximates the solution of the nonlinear 
problem very accurately in the region h1 y h2. Furthermore, the 
solution in this region is quite insensitive to the choice of P. Since an 
accurate knowledge of the potential is only necessary in the p-layer for 
the buried channel CCD and near the oxide-semiconductor interface 
for the surface CCD, we feel this approximation is well justified. In 
this two-dimensional problem, we determine Ê from (27) by letting V. 
and Q23 be the averages of V(x) and Q(x): 

°  V =  V(x)dx,  n  SS  LfoL Q(x)dx.  (28) L 0 
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-5V -10V  -5V 

+ 15,1D 

= hi + 10À0 

y • = h; + 5X0 

2.5 7.5  100 

Fig. 7—The potential te (x*, y*) plotted as a function of e in a surface CCD for 
y* = 0.2 pm, 2.275 pm, 4.35 pm, and 6.425 pm. The 5-pm plates are alternately at 
—5V and —10V, and the oxide thickness is hr = 0.2 pm. 

In Section VI we will present a comparison of the solution of the 
linearized equations with the solution of the nonlinear equations ob-
tained by finite difference methods. This will confirm for this example 
that the approximate solutions are accurate as claimed. 

III. GENERAL BEHAVIOR OF THE POTENTIALS AND FIELDS 

In this section we present graphical representations of the potentials 
and fields for both surface and buried channel CCD's for a number of 
design parameters. The graphs were obtained by evaluating the ana-
lytic expressions for the solutions, derived in Section IV, of eqs. (13) 
through (15), (17), and (21) through (26). 
In all cases, we assume that the doping in the n-type substrate is 

ND = 10"/cm3, that €2/e0 = 12, where co is the permittivity of free 
space, that E1/E2 = ¡, and that Q(x)  0, i.e., there is no trapped or 
implanted charge at the semiconductor-oxide interface. Then at 
T  300°K, the value of AD defined in (6) is AD = 4.15 X 10-' cm. 
Also, in all the examples presented here, we have used the factor (kT/e) 
= 0.025 V to convert dimensionless potentials to volts, and the factor 
(kT /eXD) = 600 V/cm to convert dimensionless fields to V/cm. 
We consider first the effect of plate width in surface devices. The first 

pair of graphs illustrate a surface CCD with 45-ym plates, the second 
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pair a surface CCD with 5-gm plates, and the third pair a surface CCD 
with 1.5-gm plates. The oxide layer in each of these CCD's is 0.2 gm 
thick, and the voltages on the plates are alternately —5 V and —10 V. 
These examples show the storage mode, and as a result there is no 
asymmetry to introduce a perferred direction of flow for the holes. 
However, they do exhibit the effects of plate width, and are easy to 
compare with finite difference calculations. In Figs. 5, 7, and 9, (p* is 
plotted along the oxide-semiconductor interface (y* = h) and along 
the lines y* = 11;  5AD, h;  10XD, and h;  15XD inside the sub-
strate. In Figs. 6, 8, and 10, — (a cp*/ax*) = E; is plotted along the 
oxide-semiconductor interface. The dashed curve is the field calculated 
by finite difference methods. The discrepancy between the two curves 
will be discussed in Section V. 
In all three cases, the peak field available for moving positive charge 

from the left-hand plate to the center plate is about 4.8 X 104 V/cm. 
However, in the 45-gm plate device, the field penetrates only about 
7 gm under the plate from the edge, leaving most of the region under 
the plate field free. This would clearly be a very poor CCD. On the 
other hand, in the 1.5-gm device, there are substantial fields under the 
whole plate. These graphs show that if field penetration under the 
plates were the sole criterion, the narrower the plates the better. How-

iô 
-5V  -10V  -5V 

4.8 - 

3.6 

2.4 

1.2 

-2.4 

-3.6 

/ 

--E; (FS) 

---E; (FO) 

-4 8 - 

o 
I  I  1  1  1  I  I 
1.25  2.50  3.75  5.00 

x• (µm) 
6.25  7.50  8.75  10.0 

Fig. 8—The field — (a v* ae) y*) plotted as a function of e in a surface CCD 
for y* = 0.2 pin. The 5-pm plates ale alternately at —5 V and —10 V, and the oxide 
thickness is he = 0.2 pm. The dashed curve is a plot of — (a io*/ax*) for the same 
device obtained from a finite difference calculation. 
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Fig. 9—The potential  (x*, y*) plotted as a function of x• in a surface CCD for 
y* = 0.2 pm, 2.275 pm, 4.35 µ111, and 6.425 pm. The 1.5-pm plates are alternately at 
—5 V and —10 V, and the oxide thickness is hr = 0.2 pm. 
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ever, recent work by Tompsett15 has shown that in surface CCD's 
the difference in losses of ones and fat zeros due to surface states be-
comes greater as the plate width decreases. His work shows that this 
puts a lower bound on plate widths in the neighborhood of 5 1.im. How-
ever, Fig. 8 shows that for 5-gm plates there is still considerable field 
penetration under the plates. 
Our calculations show that increasing (decreasing) the thickness of 

the oxide layer decreases (increases) the peak values of the fields, but 
does not materially affect the penetration of the fields under the plates. 
We next consider buried channel CCD's. As for surface devices in 

general, the narrower the plates the better as far as field penetration is 
concerned. However, the plate width is apt to be determined by cur-
rent photolithography tolerances, so this is a parameter not easily 
varied. In addition, if the plates are too narrow, the charge-carrying 
capacity of the CCD becomes very small. 
Instead of considering the effects of plate width, we examine what 

happens for a given plate width if the thickness of the p-type layer is 
varied. We consider first a three-phase, buried channel CCD with 
5-µm plates. The plates are at —5 V, —10 V, and —15 V, so charge is 
to be moved from under the —10 V plate to under the —15-V plate. 
The thickness of the oxide layer is Iii' = 0.1 gm. The doping profile 
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Fig. 11—The channel field — (a v*/ ax*) plotted as a function of x* along the chan-
nel for three buried channel CCD's. The 5-gm plates are at —5 V, —10 V, and —15 V, 
and the oxide thickness is ht = 0.1 /Am.  = 4.6 X 1011/cm3, and the p-layers are 
0.1 gm, 2 gm, and 4 gm thick, respectively. 

An operating buried channel CCD has been reported" in which the 
gaps between the plates have been filled with a resistive material so 
that the potential drop between the plates is essentially linear. The 
butted plate model can be easily adapted to describe this. In Figs. 13 
and 14 we show the channel fields and potentials in such a CCD. This 
is a three-phase CCD with 10-gm plates and 5-gm gaps. The voltages 
on the plates are —5 V, —10 V, and —15 V and in the gaps the voltage 
varies linearly from one plate to the next. The thickness of the oxide 
layer is hi* = 0.1 gm. The doping profile in the p-type layer is given by 
(4) with C; = 4.6 X 10"/cm' (Cs = 46). The remaining physical 
parameters are as described at the beginning of this section. In Fig. 
13 we plot the channel field, E; = — (a tp*/ax*), as a function of x* 
for two different p-layer thicknesses, h; — h = 3 gm and 7 gm. In 
Fig. 14 we plot the corresponding channel potentials, ye,* . Again, it is 
seen that the p-layer thickness is a sensitive parameter in terms of field 
penetration and charge-carrying capacity, and there is undoubtedly 
an optimal thickness. In Figs. 15 and 16 we plot the same quantities 
for a three-phase CCD which is identical to the one of Figs. 13 and 14, 
except that the gap spacing is zero. The devices seem to have essentially 
the same fields and charge-carrying capacities. 
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IV. ANALYTIC SOLUTION OF THE LINEARIZED EQUATIONS 

In this section we briefly derive the solution of eqs. (21) through (24) 
subject to the boundary conditions (13) through (15), (17), (25), and 
(26). We assume as given the Fourier series expansions of V(x) and 

Q(x) 

V(x) = iao+ (an cos A,, x  sin X,, x),  (29) 

62(x) = j,, + E (en cos X,, x  e„ sin x„  (30) 
n=1 

where 
Xn = (27or)/L.  (31) 

Since in most cases of interest V(x) and Q(x) are either piecewise con-
stant or linear functions, it is trivial to obtain the coefficients of these 
series. 
Since ex, y) must be periodic in x with period L, we can expand the 

solution in each of the four regions in a series of the form 

1P(x, y) ¡A (y) (A (y) cos X. x  B (y) sin X „ x).  (32) 
Iv= I 

On substituting expressions of the form (32) for C' into (21) through (24) 

—5V —10V —15V —5V 

-2.5-

-5.0 

-7.5 

-10.0 

5-

-12.5 

—15.0 

—17.5 

—20.0 — 

—22 5 0 

0.1 prn 

7.5 

x* (pm) 

10.0  12.5  15.0 

Fig. 12—The channel potential yo* plotted as a function of e along the channel 
for three buried channel CCD's. The 5-pm plates are at —5 V, —10 V, and —15 V, 
and the oxide thickness is hi = 0.1 pm. Ct = 4.6 X 10"/cma, and the p-layers are 
are 0.1 pm, 2 pm, and 4 pm thick, respectively. 
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Fig. 13—The channel field — (a4,0*/43x*) plotted as a function of e along the chan-
nel for two buried channel CCD's. The 10-am plates are at —5 V, —10 V, and —15 V 
and are separated by 5-gm gaps in which the potential varies linearly between plates. 
ht = 0.1 am, C't = 4.6 X 10n/cm3, and the p-layers are 3 pm and 7 pm thick, 
respectively. 
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Fig. 14—The channel potential e* plotted as a function of e along the channel for 
two buried channel CCD's. The 10-µm plates are at —5 V, —10 V, and —15 V and 
are separated by 5-am gaps in which the potential varies linearly between plates. 
ht = 0.1 mm, C; = 4.6 X 10"/cm3, and the p-layers are 3 pm and 7 Mm thick, 
respectively. 
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Fig. 15—The channel field — (adp*/âx*) plotted as a function of x* along the chan-
nel for two buried channel CC D's. The 10-An plates are at —5V, —10 V, and —15 V, 
itj> = 0.1 pm, C = 4.6 X 10"/cm', and the p-layers are 3 gm and 7 gm thick, 
respectively. 

and equating to zero the coefficients of cos X„ x and sin X. x, n = 0, 1, 2, 
• • • , we obtain an uncoupled system of second-order, constant-
coefficient, ordinary differential equations from which the A,, (y) and 
B. (y) can be determined simply. Each A,, (y) and B. (y) is the sum of 
two linearly independent solutions and thus each involves two con-
stants of integration which must be determined by making use of the 
boundary conditions (13), (14), (15), (17), (25), and (26). Since the 
Fourier series representing the solutions must be equal term by term 
at the boundaries, this yields a simple set of linear algebraic equations 
for the unknown constants of integration. These equations can be 
solved explicitly, yielding the integration constants as linear functions 
of the coefficients an and b., and en and e., of the Fourier series for V(x) 
and Q(x) given in (29) and (30). The algebra involved is elementary 
but involved, and we only record the final answer here. 
Let 

F (x) = a. cos X. x  b„ sin X„ x,  (33) 

(x) = en cos x. x + en sin X. x,  (34) 

so that we can write 

V(x) = ¡a. + DÉ,F,, (x),  (35) 
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Fig. 16—The channel potential ip* plotted as a function of e along the channel for 
two buried channel COD's. The 10-gm plates are at —5 V, —10 V, and —15 V, 
he = 0.1 gm, CI' = 4.6 X 10"/cm2, and the p-layers are 3 gm and 7 gm thick, 
respectively. 

-15v -5V 

Q(x) = .+  n-i (36) 

Furthermore, let 

E * = 1 ± 1/n,  (37) 

= 1 ± (1 + Xj2)i, 

M n (y) =  {E+ At  E_ Aje—" 1,3-1,1)}e—xny 
fE_ .A.,te-2 " "  E+ Aje-21,, h3jex,,Y, (39) 

(y) = 2 f Ate—x.v  Aje—x.(2h3—y)  (40) 

Then we can write 

(x, y) =  B)  (Can ± D)Y 

IF „ (x) .31-  '(Y)  ± n-1  n (0) N n„  (41) 
(x), M n (0) Ian   x(h1) sinh X. y 

4/2(x, y) = [Ci. (1 + h3 — h2) — (h3 — h2)2 

—  ± 2h2 — 2h3)(y — h2) + 2 iv (y — twee] 
+ IF (x) (x)+  sinh X „ hi 1 L. (y)  „  cpn 

n=1  nX.  M. (0) '  (42) 

(38) 
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(x,y) = [a (1 + ha  Y) —  113)2] 
„ (r)  sinh X. h,  (y)  tIF „ (x)  (43) 

.-1  27X.  M,, (0) ' 
#4 (z, y) = 

sinh X. hi 
+4  

I 

exp [-1.11  XZ(y — h3) — X. h3] 
X  (44 ) M (0) 

where 

A =  (1  h3 — hi + hi) , (45) 
17 

B =  h, + umde — [(h3 — h2)(h. + hz — 214) h, 

Ill 

1-77 + 2h3 — 2h2)] , 
C =-0277), 

D = [e. + 203 — h2) — 2f crWde ]/(2n), h, 
Ph, 

and 
(la. — B)/A. 

(46) 

(47) 

(48) 

(49) 

Equations for 4/ax and (I,c/ay can be obtained by differentiating 
eqs. (41) through (44) term by term. To obtain the equations for a sur-
face CCD, drop equation (42) and set o- = 0, 1/2 = h1, and relabel ha, 
#3, and e4 as h2, #2, and th in the remaining equations. 
V. FINITE DIFFERENCE SOLUTION OF THE EXACT EQUATIONS 

In this section we describe the finite difference (FD) solutione of 
a surface CCD described by equations (10) through (17). We will 
assume that Q(x) = 0, 0-(y)  0, and h1 = h2 = h. 
The infinite region 0 - L,h --y < co is replaced by the finite 

rectangle 0 1<_ x  L, h y H, with H >> h, and the boundary con-
dition (16) is replaced for 0  r  L by 

y02 (x, H) = 0.  (50) 

This may be done, because the solution tends to zero rapidly as y —)00. 
In fact, a one-dimensional analysis5 shows that cp2 tends to zero ex-
ponentially in y. 
A uniform FD net is now placed over region 1 (the oxide layer) and 
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region 2 (the silicon layer) with N points in the x-direction and M1 and 
M 2 points in the y-direction in regions 1 and 2, respectively. Let 

hz = L/(N — 1),  h1„ = h/(Mi — 1), 

h2„ = (H — h)/(M2 — 1), 

and then, for (1 S I N), (1  j  M.), and (a = 1, 2), define 

= ((i — 1)h, (j — 1)h.„)  (52) 

where ea (x,y) is the exact solution of (10) through (17), and define 
as the FD solution which approximates (pa,ci . 

The FD equations are obtained as follows. The boundary condition 
(50) is replaced by the N equations 

02.i, m, --- 0,  (1 i s N),  (53) 

while the boundary condition (13) is replaced by the N equations 

V((i — 1)11.) = V,  (1 5_ i N).  (54) 

If x. =  — 1)h is the edge of a plate, the jump discontinuity in 
V(x) there is handled by setting 

Vi = 1(V10+ 1  V1.-1).  (55) 

At each interior mesh point 72(p„, 1j is approximated by the standard 
five-point difference formula" 

•  =  — 20«,i,i)fi 2z 

— 2 sea,i,i)/ 4.  (56 ) 

Equation (56) can also be used to evaluate VØa,i,j and 
(2 S j  — 1) by making use of the periodicity relations 

iP* Oct. N-1.i;  Ore. N-1-1,j  (57) 

Thus, eqs. (10) and (12) are replaced by (M1 ± M 2 —  4)N equations 

•  = 0,  (1 i N),  (2 < j  M 1— 1),  (58) 

•  = exp (#2.1,1) — 1,  (1  I N), 
(2 S  Al2 — 1).  (59) 

There remain the interface conditions (14). The first of these is re-

placed by the N equations 

01,i,mi #2,1,1, 

(51) 

N).  (60) 

To obtain an equivalent set of equations for the second condition, we 
could replace the derivatives by the first differences from each side. 
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However, it is well known that this approximation is not very good. 
This is easily seen from the prototype equation V2(p = 0, where, for 
simplicity, we take h. = h„ = h. Then as is well known,17 

(Pi+ Li  — 4 (pi,i -= h217249i; -I- 0(10), (61) 

while 
, 

—  = n (z , y) 0(h2).  (62) 

Thus, the errors in the FD equations, after scaling the left-hand sides 
to have coefficients of order 1, are out of balance. The interface condi-
tion is 1/10 less accurately modeled than the differential equation. This 
leads to the following scheme which balances the errors equally. We 
want a,/ay using only values of (pi, similarly for as02/0y, and the 
approximation must be good to O(h'). This may be done using the 
values of  (M I — 3  j e_ M I). Simply use the derivative of the 
cubic interpolation polynomial through these values. It is easily seen 
that 

(xi, h) = 11 (pi. i. — 18 (pi. mi-i 
ay 

Similarly, 

a cp2 

0çPti.,14-2 — 2  mi-31/(6hiy)  0(ht)• 

(xi, h) = {2‹,o2,;,4 — 9 ip2.i,a + 18 ço2,i,2 
ay 

(63) 

— 11 (p2,1,11 /(6h2„) ± 0 (4).  (64) 

Then the second boundary condition (14) is replaced by the N equa-
tions 

71{11 01,i,  -  18 01.i. .1/1-1 ±  9 01.i.  201,,,11-31/h,„ 
=  - 92i,3 + 1802.,,2 -  

(l i N).  (65) 

Equations (53), (54), (58), (59), (60), and (65) comprise (MI + M 2)N 
equations in the (M I -I- 1112)N unknowns  i,j, (a -= 1,2), (1 i N), 
and (1  j < M.). From the standard FD theory, the solution of this 
set of transcendental equations differs from the solution of the true 
boundary value problem by a factor of order 0(10). We used a nonlinear 
overrelaxation scheme developed in Refs. 18 through 20 to solve the 
FD equations for 02 and standard overrelaxation methods" to solve 
the yei FD equations. 
An initial estimate of the solution, co,(,?1,„ was obtained by computing 

the one-dimensional matching solutions as functions of y along the 
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lines x = x, (1 .5 i N), using the methods of Ref. 5. This provides 
a solution which is a fairly good estimate under the middle of any plate 
and a very bad one near the edge of any plate. These one-dimensional 
solutions also give a good estimate of the greatest depth of the transi-
tion region, call it Yiitnx. Since ço2 ---> 0 exponentially for y > y., we 
chose H = y..„ + 20. 
This estimated solution yiej is now refined iteratively by the method 

of successive overrelaxation (SOR). The (n  1)st iterate is obtained 
from the nth as follows. For all n = 0, 1, 2, • • • , set 

Vi,  = 0,  (1 i N).  (66) 

For (2 -‘ i N — 1) and (2  j < M 1— 1), let Of l) be defined by 

(2/1;2 2/1,71,2) Oa" = (0172+1.J  015--F-V.,)/1;2 
▪ (tieit+i  (,,e.i1)1/C-  (67 ) 

Then set 
= col O(5t1) (I — wi) et  (68) 

where w1 is an overrelaxation parameter satisfying 1  Wi < 2. For 
(2 i N — 1) and (2  j  M 2 — 1), let rp2,ij be the solution of 

(2h;2  2ho oe-3-1)  exP (04e1)) = 1 ± (0e+i,J  ø±)h 2 

▪ (02d+1  iag,i,P1)h27,2. (69) 
Equation (69) has the form 

Aw  eiv = B  (70) 

where A and B are known and A > 0. Given any approximate solution 
w° of (70), Newton's method22 yields the sequence 

wk+' = [A -I- etvk]-TB  (w k _  (k = 0, 1, 2, - •),  (71) 

which converges to the solution of (69). The convergence of this scheme 
is global and quadratic because the function Au' + en', for A > 0, is 
a monotone increasing, convex function of w. After solving for  

we set = on.ti) + (1 - Lih) 0 e,2j  (72) 

where 1 -g co2 <2. 
The interface values 01,i. ,11, and 02,1,1, (2 :gI  N — 1) are re-

laxed by combining (60) and (65), defining 

Otte, = era" =  +  - 9 01:3R-2 

2 çe iTM-1)  h'(180 2 — 9 0e, + 247,i2,4)]/(11),  (73) 
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and setting 

where 
ein,à1). = ea" = w  (1 - w) 017?,m.  (74) 

= 1(£01  (.02).  (75) 

Equations (66) through (75) describe the manner in which the in-
terior nodes of the FD mesh are relaxed. The nodes at i = 1 and N 
involve periodicity and require more detailed study. By using the 
periodicity relations (57), equations (66) through (75) can be extended 
to the nodes at i = 1, N. We could next do one of two things. First, we 
could treat  a,I,j and 0„,N,.; as separate quantities and relax each of 
them separately using the periodicity relations (57). Then, each time 
ce«.1,, was relaxed, this new value could be substituted for  to 
preserve periodicity, and vice versa. This was tried but gave very poor 
convergence rates. The problem is that in treating  and yer,Jjr 
as separate quantities, the same quantity (that is .1.; and 0a.nr.;) 
gets relaxed twice rather than once in each SOR sweep. This can be 
avoided by letting O'ad v.; e,6«.1.), (a = 1, 2), (2  j  M. — 1) and 
then relaxing only the quantities Oaa .,. This produces quite acceptable 
convergence rates. 
The overrelaxation parameters wi and w2 were set equal to the opti-

mum values of these parameters for the Laplace equation on regions 
one and two respectively. These values for coi and co2 were estimated as 
follows. Let 0,(,n) denote the vector of values of the nth iterate of the 
solution to '7?,(ea = 0 in region a, (a --- 1, 2). Define the nth residual 
vector as R e) = oc+1) — or). Then, starting with any initial guess 

e 0, standard theory shows" that hm Ille+1)11/1IRell = n‘, exists 
and 

coci.opt = 2/11  1,11 —  (76) 

where FIRIn)II denotes the norm of the vector Re and is called the resid-
ual. In practice, we calculated the residuals for n large enough so that 
na was obtained to the desired accuracy using the L2 norm. 
A further important point is solving the transcendental equation 

(69), which must be done at each SOR step. In the (n  1)th SOR 
sweep, the initial estimate for oeli-1) in the Newton iteration (71) was 

There is no reason to compute the rper,P) very accurately when 
is far away from its final value. Conversely, the quadratic con-

vergence of Newton's method means that when the error in yeri),i is 
small, one Newton iteration will produce a very good approximation 
for ep e). For this reason, only one Newton iteration was used in solv-
ing (69) during each SOR sweep. 
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Some theory has been developed to show that the SOR scheme we 
have outlined above converges to the true solution in some mildly non-
linear Dirichlet problems.'8," However, to the best of our knowledge, 
no theoretical analysis exists of the boundary value problem of this 
paper. Nevertheless, as we will demonstrate by numerical examples in 
the next section, the scheme works in practice. 
We conclude this section with a few remarks on the estimated ac-

curacy of the FD solution. Since little is known of the general theory 
of a complicated nonlinear boundary value problem such as we are 
considering, we argue by analogy with the Dirichlet problem for 
Laplace's equation on a square. Let (p(x, y) be the true solution of 
V2yo = 0 in 0 < x, y < L, with cp specified on the boundary, let 
h = LAN — 1), cpij -= ye((i — 1)h, (j — 1)h), and let 0 be the 
solution of the corresponding FD equations. Then it is well known" 
that under reasonable conditions on the boundary values, 

— Ii = sup  I ci — iiI = 0 2). 
je_N 

(77) 

This relationship assumes that we know the FD solution exactly. How-
ever, we don't know 0 exactly, all we know are the various iterates 0(n) 
which have been calculated and the residuals II 0 (n+1) — ("I.. Now 
it is known, though not as widely as it should be, when calculating 0 
by the method of SOR that" 

_  = c(,,,)110 (R-1-1) _ 0(n) ii.,  (78) 

and if cob is the optimal choice of co, 

C(cob) = 0(N).  (79) 

It can also be shown, if the optimal value of 0.1 is underestimated by ten 
or fifteen percent, that C(co) = 0(N2). This means that to obtain an 
approximate solution accurate to 0(h2) = 0(N-2) by the method of 
SOR, we must iterate at least until the residuals are 0(N-3), and since 
in the nonlinear problem we can only crudely estimate the optimal co, 
we should really iterate until the residuals are 0(N-4). 
As we will show by example in the next section, it is necessary to 

calculate the potentials with great accuracy if one wishes to obtain the 
fields from them with any accuracy at all by differencing them. From 
the previous paragraph, however, we have shown that this is expensive 
in even a moderately complicated problem, since then the residuals 
must be made so small. To estimate the cost of increasing the size of the 
problem or decreasing the mesh size (both equivalent to increasing N), 
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we note that typically in SOR,26 

ji,e(n+i) _  

for optimal w, while for nonoptimal w, 

N(n14) _ 0(.)jj. 

693 

(80) 

(81) 

If we wish to specify that jj —  e, then, for optimal w, it 
is easy to show from (78) through (80) that the number of iterations 
must be 

n  

while for nonoptimal w, it follows from (78), (79), and (81) that 

n = 0(N2tn(N/E)). 

(82) 

(83) 

Thus, if we decrease the mesh size by one half, then from (82) or (83), 
we must double or quadruple the number of iterations to obtain the 
same accuracy. Since there are now 4 times as many mesh points, the 
time required to obtain a solution goes up by a factor of 8 or 16, de-
pending on the knowledge of w. 

VI. COMMENTS ON THE ACCURACY OF THE SOLUTIONS 

In Section IV we derived the Fourier series solution (FSS) of the 
linearized problem, and in Section V we outlined the finite difference 
solution (FDS) of the nonlinear problem. In this section we compare 
several of these solutions with regard to accuracy and cost. All calcu-
lations discussed were performed on a Honeywell 6070 computer, and 
all programs were written in Fortran IV. 
We solved the nonlinear equations (10) through (17) by the method 

of finite differences for the two-phase surface COD's discussed in Sec-
tion III, some of whose properties are presented graphically in Figs. 
5 through 10. The three CCD's have plate widths of 45 gm, 5 j.tm, 
and 1.5 gm, respectively. The plate voltages are —5 V and —10 V, 
Q(x)  0, ND = 1014/cm2, tile() = 4, EWE() = 12, and XD = 0.415 gm. 
In all cases, a FD net was chosen with N =- 25, M1 = 25, and M 2 = 41. 
In the case of the 45-gm-plate device, this corresponds in the dimen-

sionless units to h. =- 9, h1„ = 0.02, h2„ = 1. After 273 SOR iterations, 
the residual was -̂,4 X 10-7 , the running time was 195 seconds, and 
35 K of memory was used. This should ensure that the difference be-
tween the true FDS and the iterated solution will never exceed 
-̂25 X 65 X 4 X 10-7 = 6.5 X 10-4 . We have calculated the FSS at 
the same mesh points, this took 33 seconds to run, and 33 K of memory 
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was used. Let ÇOFD (x, y) denote the FD solution of the nonlinear prob-
lem and ex, y) denote the FS solution of the linearized problem, and 

e(x, y) = r (soFD (x ,y) — ex, y))/ ippEo(x, y) l .  (84) 

Then we found that along the oxide-semiconductor interface, e(x, h1) 
< 1.14 X 10-2 , 0 Lç x - L, and five Debye lengths below this inter-
face, e(x, hl ± 5) <2.89 X 10-2 , 0 - x -- L 
We have for the 5-gm-plate device h. = 1, hh, --= 0.02, hay = 1. 

After 288 SOR iterations, the residual was --4 X 10-7 , the running 
time was 190 seconds, and 35 K of memory was used. This should again 
ensure that the difference between the true FDS and the iterated 
solution does not exceed 6.5 X 10-4 . For this case, we found that 
e(x, hi.) < 2.8 X 10-3 , e(x, hl ± 5) < 1.4 X 10-3 , e(x, hl ± 10) <3.14 
X 10, e(x, hl ± 15) <9.81 ± 10-3  for 0  x  L. The running 
time to evaluate the FSS was 10 seconds and 33 K of memory was used. 
Finally, for the 1.5-gm-plate device, we have h. =- 0.3, h1„ = 0.02, 

and /tau --= 1. After 300 SOR iterations the residual was -̂6 X 10-4 , 
the running time was 196 seconds, and 35 K of memory was used. Note 
that in this case the residual is three orders of magnitude greater than 
in the other two cases. We found that e(x, h1) < 1.8 X 10-2 , the run-
ning time to calculate the FSS was 4 seconds, and 33 K of memory was 
used. 
In Ref. 5 it was noted that as long as 104 (ha) + 11 < 10, one could 

expect the solution of the linearized problem to be a good approxima-
tion to the solution of the nonlinear problem, at least in the p-region 
for buried channel devices or near the oxide-semiconductor interface 
for surface devices. In the examples considered here, for the 45-gm-
plate case, —5.15 < Ill 4 (X, h3) < 3.00, for the 5-gm-plate device, 
—1.20 < &, (z, ha) < —0.96, and for the 1.5-gm-plate case, 4,4 (z, 113) 
.=- —1.077. This again suggests that the smaller liP4 (x, ha) + 1 I , the 
more accurate the approximation. 
These examples show that if one only needs a knowledge of the po-

tential in the neighborhood of the oxide-semiconductor interface, the 
FSS provides a highly accurate approximation to the true solution 
much more cheaply than can be obtained by FD methods. In fact, to 
analyze three-phase devices, the cost of obtaining a FDS goes up 
sharply while the cost of a FSS remains nominal. For example, it took 
only 15 seconds and 34 K of memory to obtain the solutions presented 
graphically in Figs. 15 and 16. 
In reality, we are as much interested in the fields as we are in the 

potentials, and it is at this point that the difficulty with using the FD 
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method for solving these problems becomes most acute. In Figs. 6, 8, 
and 10, the dashed curves are plots of — (a gonilax) along y h1, ob-
tained from the FDS just discussed by differencing. In Fig. 6 for ex-
ample, the two curves differ by nearly an order of magnitude at their 
peaks. If we take the FSS and difference it to estimate the first deriva-
tive, we get a result which, in the neighborhood of the peaks, differs 
by at most 3 percent from the derivative obtained by differencing 
the FDS. We can conclude that the fields obtained from the FDS are 
badly in error. In order to calculate the fields from the FDS with any 
degree of accuracy, even for these simple examples, we would have to 
take a mesh so fine that the cost would become prohibitive. 

VII. ACKNO WLEDGMENTS 

The authors would like to thank G. E. Smith for originally suggesting 
this research and for many subsequent conversations. They are also 
indebted to R. H. Krambeck, R. J. Strain, and R. H. Walden for many 
fruitful conversations on CCD's. 

REFERENCES 

1. Boyle, W. S., and Smith, G. E., "Charge Coupled Semiconductor Devices," 
B.S.T.J., 49, No. 4 (April 1970), pp. 587-593. 

2. Amelio, G. F., Tompsett, M. F., and Smith, G. E., "Experimental Verification of 
the Charge Coupled Device Concept," B.S.T.J., 49, No. 4 (April 1970), PP. 
593-600. 

3. Strain, R. J., and Schryer, N. L., "A Nonlinear Diffusion Analysis of Charge-
Coupled-Device Transfer," B.S.T.J., 50, No. 6 (July-August 1971), pp. 
1721-1740. 

4. Amelio, G. F., "Computer Modeling of Charge-Coupled Device Characteristics," 
B.S.T.J., 51, No. 3 (March 1972), pp. 705-730. 

5. McKenna, J., and Schryer, N. L., "On the Accuracy of the Depletion Layer Ap-
proximation for Charge Coupled Devices," B.S.T.J., 51, No. 7 (September 
1972), pp. 1471-1485. 

6. McKenna, J., and Schryer, N. L., unpublished work. 
7. Walden, R. H., Krambeck, R. H., Strain, R. J., McKenna, J., Schryer, N. L., 

and Smith, G. E., "The Buried Channel Charge Coupled Device," B.S.T.J., 
51, No. 7 (September 1972), pp. 1635-1640. 

8. Boyle, W. S., and Smith, G. E., "Charge-Coupled Devices-A New Approach to 
MIS Device Structures," IEEE Spectrum, 8, No. 7 (July 1971), pp. 18-27. 

9. Engeler, W. C., Tiemann, J. J., and Baertsch, R. D., "Surface Charge Transport 
in Silicon," Appl. Phys. Lett., 17, No. 11 (December 1970), pp. 469-472. 

10. Berglund, C. N., Powell, R. J., Nicollian, E. H., and Clemens, J. T., "Two-Phase 
Stepped Oxide CCD Shift Register Using Undercut Isolation," Appl. Phys. 
Lett., 20, No. 11 (June 1972), pp. 412-414. 

11. Lewis, J. A., McKenna, J., and Wasserstrom, E., "Field of Negative Point, Line 
or Plane Charges in an n-Type Semiconductor," J. Appl. Phys., 41, No. 10 
(September 1970), pp. 4182-4189. 

12. Grove, A. S., Physics and Technology of Semiconductor Devices, New York: John 
Wiley & Sons, 1967, pp. 49-50. 

13. Abramowitz, M., and Stegun, I. A., Handbook of Mathematical Functions, 
Washington, 1). C.: National Bureau of Standards, 1964, p. 297. 



696  THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973 

14. Krambeck, R. H., Walden, R. H., and Pickar, K. A., "Implanted-Barrier Two-
Phase Charge-Coupled Device," Appl. Phys. Lett., 19, No. 12 (December 
1971), pp. 520-522. 

15. Tompsett, M. F., "The Quantitative Effects of Interface States on the Perform-
ance of Charge-Coupled Devices," IEEE Trans. Elec. Devices, ED-12, No. 
1 (January 1973), pp. 45-55. 

16. Elson, B. M., "Charge-Coupled Concept Studied for Photo-Sensors," Aviation 
Week & Space Technology, 96, No. 21 (May 22,1972), pp. 73-75. 

17. Varga, R. S., Matrix Iterative Analysis, Englewood Cliffs, N.J.: Prentice-Hall, 
1962, chapter 6. 

18. Bers, L., "On Mildly Nonlinear Partial Difference Equations of Elliptic Type," 
J. Res. Nat. Bur. Standards, 51, No. 11 (November 1953), pp. 229-236. 

19. Ortega, J. M., and Rockoff, M. L., "Nonlinear Difference Equations and Gauss-
Seidel Type Iterative Methods," SIAM J. Numer. Anal., 3, No. 9 (September 
1966), pp. 497-513. 

20. Wasserstrom, E., and McKenna, J., "The Potential Due to a Charged Metallic 
Strip on a Semiconductor Surface," B.S.T.J., 49, No. 5 (May—June 1970), 
pp. 853-877. 

21. Varga, R. S., op. cit., chapter 4. 
22. Hamming, R. W., Numerical Methods for Scientists and Engineers, New York: 

McGraw-Hill, 1962, p. 81. 
23. Forsythe, G. E., and Wasow, W. R., Finite Difference Methods for Partial Differ-

ential Equations, New York: John Wiley & Sons, 1960, p. 257. 
24. Ibid, section 23. 
25. Weinberger, H. F., "A Posteriori Error Bounds in Iterative Matrix Inversion," in 

Numerical Solution of Partial Differential Equations (Proc. Symp. Univ. 
Maryland, 1965), ed. J. H. Bramble, New York: Academic Press, 1966, pp. 
153-163. 

26. Varga, R. S., op. cit., p. 204. 



Copyright  1973 American Telephone and Telegraph Company 
THE BELL SYSTEM TECHNICAL JOURNAL 

Vol, 52, No, 5, May-June, 1973 
Printed in U.S.A. 

Semilattice Characterization of 
Nonblocking Networks 

By V. E. BENEâ 

(Manuscript received August 30, 1972) 

A connecting network is called strictly nonblocking if no call is blocked 
in any state; it is nonblocking in the wide sense if there exists a rule for 
routing calls through the network so as to avoid all states in which calls 
are blocked, and yet still satisfy all demands for connection as they arise, 
without disturbing calls already present. Characterizations of both senses 
of nonblocking have been given in previous work, using simple metric and 
closure topologies defined on the set of states. We give new characterizations 
based on the natural map 7 ( • ) that carries each state into the assignment 
it satisfies. This map is a semilattice homomorphism, such that 
(x) n (y) 7 (x r) y). It turns out that the case of equality in this 
inequality is very relevant to nonblocking performance. In particular, let 
a subset X of states be said to have the intersection property if for every 
x in X and every assignment a there exists y in X such that y realizes a 
(i.e., 7(y) = a) and 7(s, r) y) = (x) n (y). Then a network is non-
blocking in the wide sense if and only if some subset of its states has the 
intersection property, and it is strictly nonblocking if and only if the 
entire set of states has the intersection property. 

I. INTRODUCTION 

In a nonblocking network, no call need be lost because of link mis-
match or junctor unavailability. Efficient nonblocking networks were 
invented by Charles Clos and, although they are not in common use 
at the present time, they are distinct possibilities for practical appli-
cations in the future, and they have substantial theoretical interest as 
outer limits on possible designs. 
Two degrees or strengths of the nonblocking property have been 

distinguished." 3 A connecting network is called strictly nonblocking if 
no call is blocked in any state; it is nonblocking in the wide sense if 
there exists a rule for routing calls through the network so as to avoid 
all states in which calls are blocked, and yet still satisfy all demands 
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for connection as they arise, without disturbing calls already in 
progress. These properties have been given1,2 topological characteri-
zations, and examples of each are known, although it must be said 
that examples of efficient wide-sense nonblocking networks are yet to 
be found. 
Our aim in this paper is to give new alternative characterizations of 

the nonblocking properties in terms of the semilattice structures of the 
set of network states and of the set of assignments the states realize; 
a key role is played by the homomorphism y ( • ) that carries each state 
into the assignment it realizes. 
The property of being nonblocking in the wide sense lies between 

two other properties: that of being strictly nonblocking (nonblocking 
in the strict sense) and that of being rearrangeable. In a strictly non-
blocking network, no call is blocked in any state; in a rearrangeable 
network, calls can always be given new routes (rearranged) so as to 
unblock any blocked call. The three properties (along, doubtless, with 
others not yet studied) form a spectrum of possible ways of operating 
switching equipment that exhibits or summarizes the tradeoff obtain-
able between efficient usage of switches and amount of calculation: 
the richer the network is in crosspoints, the less one has to do to use it 
so as to achieve desired load and loss. In a strictly nonblocking network, 
any path for an idle call will do; there always is one, and no traffic 
advantage is gained by use of one rather than another. In a wide-sense 
nonblocking network, the right choice of a path may mean the differ-
ence between zero loss and blocking some calls. By calculation, though, 
one can always find a route that will result in no blocking. In a re-
arrangeable network, finally, nonblocking behavior is again attainable, 
but, in general, only at the cost of constantly recalculating new routes 
for all the desired calls simultaneously, and reswitching them as 
necessary. 

II. PRELIMINARIES 

We shall use a model for the combinatorial aspects of a connecting 
network. This model is called a semilattice,3 or partially ordered sys-
tem with intersections, and it can be thought of as arising as follows: 
a connecting network 1, is a quadruple 1, =  (G, I, SI, S) where G is a 
graph depicting network structure, I is the set of nodes of G which are 
inlets, SI is the set of nodes of G that are outlets, and S is the set of 
permitted states. Variables w, x, y, and z at the end of the alphabet 
denote states, while u and y denote a typical inlet and a typical outlet, 
respectively. A state x can be thought of as a set of disjoint chains 
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on G, each chain joining I to a Not every such set of chains 
represents a state: sets with wastefully circuitous chains may be ex-
cluded from S. It is possible that I = l (one-sided network), that 
I ri  =ci, (two-sided network), or that some intermediate condition 
obtain, depending on the "community of interest" aspects of the 
network P. 
The set S of states is partially ordered by inclusion 5 , where x y 

means that state x can be obtained from state y by removing zero or 
more calls. If x and y satisfy the same assignment of inlets to outlets, 
i.e., are such that all and only those inlets u E I are connected in x 
to outlets u E l which are connected to the same u in y (though possi-
bly by different routes), then we say that x and y are equivalent, 
written x y. 
We denote by A z the set of states that are immediately above x 

in the partial ordering 5, and by Bz the set of those that are im-
mediately below. Thus 

Az = {states accessible from x by adding a. call) 

Bz = {states accessible from x by a hangup) J. 

It can be seen, further, that the set S of states is not merely partially 
ordered by -5, but also forms a semilattice, or a partially ordered sys-
tem with intersections, with x ri y defined to be the state consisting 
of those calls and their respective routes which are common to both 
x and y. 
An assignment is a specification of what inlets should be connected 

to what outlets. The set A of assignments can be represented as the 
set of all fixed-point-free correspondences from subsets of I to 2. The 
set A is partially ordered by inclusion, and there is a natural map 
-y(•): S --> A which takes each state x E S into the assignment it 
realizes; the map 7(•) is a semilattice homomorphism of S into A, 
with the properties 

7(x)  

X k  7(x - y) =  (X) -  

'Y(x fl y) (x) n (Y) 
ŷ(X) =4, :r --=0 = zero state, with no calls up. 

Variables a, b are used for members of A. 
A unit assignment is, naturally, one that assigns exactly one inlet 

to some one outlet, and it corresponds to having just one call in 
progress. It is convenient to identify new calls e and unit assignments, 
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and to write y (x) U c for the larger assignment consisting of y (x) and 
the call c together, with the understanding of course that none of the 
terminals of c is busy in y (x). Not every assignment need be realizable 
by some state of S. Indeed, it is common for practical networks to 
realize only a small fraction of the possible assignments. 
A simple pseudometric topology on S is defined by the "distance" 

formula 

d(x,y) = I l' (X) AY (Y) i 

where A denotes the symmetric difference, and I • I cardinality, of sets. 
The distance between states d(x,y) is the number of pairs (u,v) e I X St 
that are either connected in x and not in y, or connected in y and not 
in x. Clearly, d(x,y) = 0 if and only if x -̂, y, and the d-closure of a set 
X is just 

X" = I y: y --, z for some x e XI. 

A set X is dense in a set Y in the d-topology if 

Y c Xd. 

III. INTERSECTION PROPERTY 

We shall introduce a property of subsets X of the set S of states, 
called the intersection property, and then show that a network v is 
nonblocking in the wide sense if and only if some subset of S has the 
intersection property. We call it the intersection property because it 
involves the equality case 

7(x n y) = 7(x) n 7(y) 
of the semilattice homomorphism inequality 

(1) 

'Y (z n y) 7 (X) n 7(y);  (2) 
the latter is always true. Our result therefore says roughly that if 
equality in (2) holds for enough states, then y is wide-sense nonblocking 
and this condition is necessary. 
A subset X C S is said to have the intersection property if and only 

if for every x €X and every a E A, there exists y e X such that -y (y) = a 
and 

7(y) n -y(x) = 7(x n y). 
A subset X C S is closed below if x e X and y .. x imply y e X. The 

lower closure of a subset X is the set X = ly: y e S and y 5 x for some 
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x e X); this is just all the states reachable from a member of X by 
hangups. 
Our first result is an important lemma to the effect that the inter-

section property is preserved by lower closure. 

Lemma I: If X has the intersection property, then so does X. 

Proof: Take x e X, a e A. We are to find y E X such that -y (y) = a 
and 7 (y r 1 x) = '(y) r) -y (x) . Since st X, there is a zeX such that 
x .. z. X has the intersection property, so there is a weX such that 
7(w) = a and 

..y(w n z) = 7(w) n 'V (z).  (3) 

We show that we can choose y to be w. Obviously w e X and 'y (w) = a. 
Also, intersecting (3) with 7(x) we find 

7(x) n 7 (w fl z) = 7(x) fl 7(w) rl 7(z). 

Since x  z, we have 7(x) _. 7(z), 7(x) (") 7(z) -= 7(x), and so the 
right-hand side is just 7(w) n 7(x). The left-hand side consists of 
calls which are in progress in x, and are also in progress in both w and 
z, on the same routes in each. Since x  z, these must use the same 
routes in x as they do in z and w. Thus the left-hand side comprises 
exactly those calls which are in progress in each of z, w, and x, on the 
same routes in each, namely 7(z n w n x). This equals 7(x n w) 
because x  z. Thus 

7(x n w) = -Kz fl w n x) 
= y(x) n "Kz n w) 

= -y(x) n 7 (z) n -Kw) 
= y(x) rl 7(w), 

and this proves the Lemma 1. Our next result notes that a subset X 
having the intersection property must lie entirely in the set N of 
states in which no call is blocked. 

Lemma 2: If X has the intersection property and x e X, then no call 
idle in x is blocked in x, i.e., X C N. 

Proof: Let x t X, c idle in x, a = -y (x) I,. ) c. Then there is ay 6 X such 
that 7(y) = a and -y (x n y) -= 7(x) r) -y (y). Thus the calls in progress 
in -both x and y, and on the same routes in each, are all and only the 
calls up in x. Hence x n y = x, or x y, so that y e A., and c is not 
blocked in x. Thus X C N. 
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IV. WIDE-SENSE NONBLOCKING NET WORKS 

We shall need a lemma that identifies the intersection of two states: 

Lemma 3: If z x, z y, and 7(z) = 7(x) (1 ,y(y), then z = x (") y. 

Proof: The hypothesis implies that 

7 (z  z) = y(x) -  (z) = 'Y (x)  (x) n 7(0] 
7 (Y z) = (Y) -  (z) = 'y (y)  17 (x) n (2/)]. 

The right-hand sides are disjoint, so 7(x — z) ("1 (y — z) = (p, and 
the homomorphism inequality for y (•) gives 7[(x — z) r) (y — z)] = 
whence (x — z) ("1 (y — z) = 0. Since z is included in each of x and 
y, we have 

x = z U(x — z), y = z U (y — z) 

znY = zUz(21 — z)U  — z)z U (x — z)(II — 

(here we have used a more convenient notation for intersection on the 
right-hand side). The last three terms on the right vanish, so 

= z. 
The following characterization of wide-sense nonblocking was 

given in an earlier work 

Theorem I: I, is nonblocking in the wide sense if there exists a subset 
X Ç N with X = X, and such that for every x e X, A. n X is d-dense 
in A, i.e., A. Ç (A. n 
The principal new result is now proved. It is 

Theorem 2: v is nonblocking in the wide sense if some subset X C S 
has the intersection property. 

Proof (sufficiency): By Lemmas 1 and 2 we can assume that X is 
closed below, and that X C N. By Theorem 1 it is enough to prove 
that for every x E X, A. n X is d-dense in A., i.e., 

A. c (A. n x)d, zX.  (4) 

Let x E X and z e A. There exists then y e X such that 7(y) = 7(z) 
and 'y (x fly) = 7(x) () 7(y); thus also 

(x fi y) = 7(x) fl 7(z) = 7(x), 

the second equality following from x  z. As in Lemma 2, we conclude 
from -y n y) = 7(x) that y E A.. Then y e A. n X and y -- z, or 
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E (A z n x)d. Since z was an arbitrary state in A, we have shown 
(4), and so the sufficiency. 

Proof (necessity): Since y is nonblocking in the wide sense, there exists 
by Theorem 1 a subset X of states which is closed below, is contained 
in N, and is such that any call new in a state of X can be put up salva 
staying in X. We show that X has the intersection property. Let then 
x E X and a e A. Obtain a state z x by removing from x all the calls 
that are not part of the assignment y (X) ri a. Next, starting at z, 
put up the (additional) calls comprising a — y (z) so as to reach a state 
y E X with y (y) = a. This is possible because any call new in a state 
of X can be put up so as to keep the system in X. We now claim that 

n y) = .y(x) n 14). 
Since z r, z y, this follows from Lemma 3 as soon as we prove that 
-y (z) = y (x) fl 7(y). To see this, note that y (z)  (x) and -y (z)  
so that y (z)  7(x) n -r(y). Conversely, by construction, any call up 
in both x and y is either up in z (never having been disturbed), or 
else was taken out to reach z and then put back up. However, only 
calls not up in a were taken down, and only calls up in a were put back. 
Thus the second alternative is ruled out, and any call up in both x 
and y is up in z, i.e., -y (x) n (y) = (z). Lemma 3 now implies that 
z = r (") y, so that 

-y(x) n 7(y) = -y(z) 
= 7(x rl y)• 

Hence X has the intersection property, as claimed. 

V. STRICTLY NONBLOCKING NET WORKS 

Because of Lemma 2, the intersection property can also be used to 
characterize the property of being strictly nonblocking, as is shown 
by the following result: 

Theorem 3: y is strictly nonblocking iff (the set of states) S has the inter-
section property. 

Proof: Sufficiency is obvious, by Lemma 2. Conversely, if V is strictly 
nonblocking, then -y(S) = A and 

Az C (Az n s)d, for every x €8. 

Thus y is nonblocking in the wide sense; indeed, trivially, S has the 
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property that any call new in a state of S can be put up salva staying 
in S. The necessity argument of Theorem 2 now shows that S has the 
intersection property. 

VI. COMPARISON, EMBEDDING, AND ISOMORPHISM 

We next relate the intersection property to a certain partial ordering 
S of networks, introduced in an earlier work,4 and used there for clarify-
ing some problems of comparison of networks. This partial ordering 
was defined over the set N (I ,Q) of all networks y =  (G, I, 2, S) for 
which the set I of inlets and the set n of outlets are fixed, while the 
graph G and the set S of states may vary in any way consistent with 
their defining a network in the sense of Ref. 2. 
N (I ,n) is partially ordered by the following relation S : vi S p2 iff 

a domain D C S(vi) and an onto map g : D --> S (v2) such that D is 
closed below and 

(i) 1.1 preserves assignments: 7(itx) = -y(x) 

(ii) x, y E D, gx k gy  x y. 

The relationship vi S vi means intuitively that one can mimic y2 

within vi. That this is so is not obvious. Indeed, using the notion of 
isomorphism as a precision of the mimicry in question, it has been 
proved' that vi S v2 if and only if there is an isomorph of v2 in vi. 
Roughly, in the definition, p maps the states of vi doing the mimicking 
onto 8(v2) ; it tells what state mimics what. Condition (i) then naturally 
states that the mimicked state satisfies the same assignment. Condition 
(ii), finally, insists that mimicry preserve inclusion, in the sense that 
only states x, y with x _?: y can mimic similarly related states gx, gy. 

Remark: In the definition of the partial ordering S for the set N (I ,S1), 
the condition D = D, that the domain of the map p be closed below, 
may be dropped, because it is implied by the other conditions. To see 
this, let D, th be as in the definition of S except omit D = D, and take 
x E D, y :5 x. We show y E D. Clearly, 7 (y) S 1,(x) = 7 (gx), so there 
is a state z e p(D) with z ¿ix and 7(z) = 7(y), because µ (D) is 
closed below, since p is onto. Hence there exists w E D with z = gw. 
Thus pw 5 px, so by the second property of p, w 5 x. We now have 
y x, w  x, 7(y) = -y(w). This implies y = w and soy e D, because 
a state x can have below it at most one state satisfying a given 
assignment. 
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Theorem 4: is is nonblocking in the wide sense iff gvi, is -.5- vi and v1 is 
strictly nonblocking. 

Proof: If is S is,, there is a domain D C 8(v) and an onto map g: 
D --> S(vi) such that y(x) = .y(x), and Mx _e_ py implies x k y. 
We show that D has the intersection property. Take x E D and a e A 
and focus on px e S(vi). Clearly, since Y i is strictly nonblocking, there 
exists a state y of vi with 'Y (0 = a and 

7(gx) n 7(y) = 7(gx n y). 
(It suffices to take down the calls in x not up in a, and then put up the 
ones in a not up in x.) Since ià is onto, y = pz for some z e D, with 
a = y(y) = y(z). Since -y(ix) = y(x), we have 

7 (x) rl 7(z) = 7('4x (1 Mr). 

Since Aix and pz are both states of vi, so is px n gz; there is a state 
w e D with pw = px n gz, since g is onto. Now note that ¿ix k pw 
and my ..k jew, so that the second property of g implies x  w and 
y w. Together with -y(x) n 7(z) = 7(w) this implies by Lemma 3 
that w = x ("1 z, and so 

.7(x) CI -KZ) = 7 (x n z). 

Thus D has the intersection property, and so 8, is wide-sense nonblock-
ing, by Theorem 2. Conversely, if y is nonblocking in the wide sense, 
there is a subset X of S with the intersection property. Define vi by 

is, = (G, I, II, X). 

Taking D = X and p = identity, we conclude is S is,; Lemma 2 
implies that vi is nonblocking, and Theorem 3 is proved. 
Our intuitive feeling is that a wide-sense nonblocking network has 

embedded in it a largest strictly nonblocking network, to whose states 
the system is restricted by any rule for routing that guarantees no 
blocking. An appropriate sense of "embedded" is provided by the con-
cept of isomorphism.' An isomorphism between two partially ordered 
systems is a one-to-one correspondence that preserves order in both 
directions. An isomorph of is, within is, would be a subset M C 8(v1) 
and a correspondence i: M 4--> 8(v2) such that x y if ix  iy. In 
Ref. 4, the existence of an isomorph was related to the partial ordering 
S for networks, by this result: 
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Theorem 5: y1 S y2 if 5TM Ç S(vi), ¶ correspondence 
M 4-> S (y2) such that 

(i) y(ix) = y(x) 
X y iff ix k iy. 

Therefore Theorem 4 can be rephrased as 

Theorem 6: is is nonblocking in the wide sense if and only if there is an 
isomorph of a nonblocking network embedded in S (y), and the isomorphism 
preserves -y ( • ). 

This is a precise form of the intuitive feeling voiced above. 

Note added in proof: It should be noticed that Theorems 4 and 6 imply 
that the quest (mentioned at the top of p. 698) for efficient wide-sense 
nonblocking networks is in a sense vain: there is no "intermediate" 
amount of switching equipment that will give wide-sense nonblocking 
behavior but is not so expensive as (it would have to be to give) a 
strictly nonblocking network; as soon as you have a wide-sense non-
blocking network, you have at most to throw away some states to 
obtain a strictly nonblocking one. 
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Definite integrals of analytic functions can often be evaluated efficiently 
by the trapezoidal rule after a suitable transformation. Here the work of 
Moran' and Schwartz2 along this line is extended. First the dependence of 
the error on the spacing is discussed, and then several types of transforma-
tions are described and applied to integrals of technical interest. 

I. INTRODUCTION 

Quite often the problem of determining the value of a definite in-
tegral arises. When the integral cannot be readily evaluated by analysis, 
we must resort to numerical methods. Here we discuss a method of 
numerical quadrature which gives promise of being useful in evaluating 
some types of integrals that are difficult to handle by conventional 
numerical methods. 
In particular, we consider the problem (Moran' and Schwartz') of 

transforming a given integral of an analytic function f(x) into a rapidly 
converging one (with limits ± co) which can be efficiently evaluated by 
the trapezoidal rule, 

f(x)dx = h  f(nh) — E. (1) 

The integral and series are assumed to converge. In addition to the 
trapezoidal error E, a second error is introduced when the series is 
truncated in the process of computation. It is supposed that both 
errors are made negligible, E by taking h small, and the truncation 
error by taking enough terms in the series. The feature which makes the 
use of (1) attractive is that E often decreases in proportion to 
exp ( — C/h ) as h decreases, C being a constant. Thus if h gives three-
figure accuracy, h/2 will give six-figure accuracy in many cases. 

707 
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The transformations, i.e., the changes of variable of integration used 
to carry the limits of the given integral into ± co, are usually con-
structed by combining functions which are readily computed, such as 
powers and exponential functions. 
Schwartz' recommends the following procedure for evaluating the 

integral of an analytic function f(u): (i) change the variable from u to 
y so as to make the integration with respect to y extend from — co to 
-I- co, (ii) make the further transformation 

v = ex — e-x 

to increase the rate of convergence, and then (iii) evaluate the trape-
zoidal sum, truncating when contributions fall below the desired ac-
curacy, and reduce the spacing h until the answer has the desired 
accuracy. 
Here we present a summary of several variations of Schwartz's pro-

cedure. Details are given in a report by the author.3 The dependence of 
the error E on the spacing h is first reviewed, and then examples are 
used to illustrate the evaluation of various types of integrals. 

IL THE DEPENDENCE OP E ON h 

The trapezoidal error E can be expressed in several ways. For ex-
ample, it is the remainder in the Euler-Maclaurin sum formula. Again, 
it can be written as the sum of contour integrals with integrands 
f(z)/[exp (±i27rz/h) — 1] (Ref. 4, p. 145, Problem 7, and Refs. 5, 6, 
7, 8, and 9). Here we follow Pettis' and use Poisson's summation for-
mula which, when applied to (1), gives 

E = ( -I- É° ) .1.°' f(z) exp (i2rzk/h)dz.  (2) 
k=—co  k=1  —co 

Let f(z) be analytic throughout a strip in the z-plane containing the 
real z-axis and assume that suitable convergence conditions are satis-
fied. Then the paths of integration in the terms for k > 0 in (2) can be 
displaced upwards to make Im (z) > 0. It follows that texp (i2rkz/h)1 
= exp ( —2rk Im (z)/h) becomes small when h becomes small and z is 
on the path. Furthermore, as h —) 0 the terms for k> 1 become 
negligible in comparison with the term for k = 1. A similar argument 
holds for the k < 0 terms, and as h -40 we have the asymptotic result 

where R÷ and R_ are the k = 1 and k = —1 terms, respectively, in 
(2). For the important case in which f(z) is real on the real z-axis, R_ 
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is equal to the conjugate complex 1r+ of R+ and E is given asymptoti-
cally by 

R+ = f f(z) exp (i2rz/h)dz. 
-. 

(3) 

When h is small, the trapezoidal error E given by (3) can be viewed 
as the sum of contributions from singularities of f(z) and saddle points 
of f(z) exp (i2rz/h). At the saddle points the derivative dcp(z)/dz is 
zero, c p (z) being defined to within a multiple of 27r1 by exp [p(z)] 
= f(z) exp (i2rz/h). 
This picture of E is suggested by the following remarks. The path of 

integration in (3) can be deformed upwards towards z = i 00 in the 
complex z-plane until it becomes an optimal path comprised of paths 
of steepest descent and ascent passing through one or more saddle 
points. The path runs from — 07) to ± 00 and may have detours running 
out to, and returning from, infinity. It may also have loops around 
some of the singularities of f(z). When h is small, the factor exp (i275/h) 
decreases rapidly as Im (z) increases, and the only significant contribu-
tions to R+ come from the portions of the path near the singularities 
and near the saddle points not associated with singularities. 
An approximate expression for a typical contribution can be obtained 

by expanding the contribution about the corresponding singularity or 
saddle point and taking the leading term. Such expansions are usually 
asymptotic in h. For estimating orders of magnitude we can use the 
dominant factors in the leading terms: 

(Contribution to R+ of a saddle point at zo) .----- exp [q(zo)], 
(Contribution to R+ of a singularity at zi) ez exp (i27z1/h). 

As h decreases, E may either decrease steadily or may oscillate with 
decreasing amplitude depending upon how the dominant contributions 
combine. 
If there are no singularities or saddle points in the finite part of the 

z-plane, the trapezoidal rule may give the exact value of the integral 
when h is less than some fixed value. This is associated with the 
sampling theorem for band-limited functions. For example, if m and n 
are positive integers such that m — n = 0 or 2, 4, • • • , the integral 

. 
I =- 1 siirtxdx/xn  (4) 

-. 

is exactly equal to the trapezoidal sum when h < 27/m (h can equal 
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2ir/m if n  2). The proof follows from the fact that all of the terms 
in the series (2) for E vanish when h <2r/m, as can be shown by de-
forming the paths of integration into infinite semicircles and using 
Jordan's lemma (Ref. 4, p. 115). As a check, note that for m = n = 1 
or 2 we can take h = w. Then I = 7r because there is only one nonzero 
term in the sum. 
The foregoing discussion shows that the structure of E can be de-

termined by computing the saddle points and associated paths of 
steepest descent for f(z) exp (i2Tz/h). This is done in the report' for 
the examples (6) and (25) given below. The path for example (6) is 
shown in Fig. 1 and discussed in the appendix. However, computations 
of this sort are laborious. In practice it appears that the dependence of 
E on h is most easily determined by computing the trapezoidal sum for 
a sequence of decreasing values of h, bearing in mind the possibility 
that E may go through zero for some values of h. 
Incidentally, arguments similar to those given in this section show 

that the trapezoidal rule also works well when it is used to evaluate in-
tegrals of periodic analytic functions in which the integration extends 
over a period. 

HI. CONTRIBUTIONS TO E—EXAMPLE 

Goodwin' has pointed out that the trapezoidal rule usually performs 
well for integrals of the type 

I = f g(x) exp ( — bx2)dx. 

5 

zo 

z„ 

4 

3 

2 

- PLANE 

(5) 

-5  -4  3  -2  -1  0  1  2  3  4  5 

Fig. 1—Steepest descent paths for exp  (2)] when a = 2.4 and h = 0.8 in both 
(30) and example (6). The points zo, za,, 22 are saddle points; 22, 22 are branch points. 
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Computations' made with b = 1, 

g(x) =- (x4 + a4)--4 ,  (6) 

and a -= 2.4 show that, as h decreases, E first decreases steadily and 
then near h = 1 (where E / I = 10-4) E starts to oscillate with decreas-
ing amplitude. This behavior can be explained in terms of a contribu-
tion to E of approximately 

27i Re Eg(ir/h) exp (—v2/10)]  (7) 

from a saddle point near z ir/h (see Fig. 1, eq. (32), and Goodwin') 
and contributions from the branch points at z, = a exp (tir / 4) and 
= a exp (i37/4). The expressions for the branch point contributions 

are somewhat more complicated than (7), but all that need be noted 
here is that they contain exp (i2rzk/h), k = 1, 2, as a dominant factor. 
Adding the three contributions and neglecting multipliers such as 
g(ir/h) in (7) shows that E is roughly 

exp ( --71-2/h2) -I- (cos ot) exp (—fi) (8) 

where e = 2471-a/h and cos a oscillates with increasing frequency as h 
decreases. The steady decrease of E with h, dominated by exp (— 
changes to an oscillating decrease when e = r2/h2. Solving for h with 
a = 2.4 gives h = 0.93, which agrees with the observed h = 1.0. 
When g(x) in (5) is algebraic and g(z) has no singularities inside the 

rectangle with corners at ±zo, ± I zo , where zo = ir/(bh) and Re (b) 
> 0, the error E tends to be dominated by the saddle point contribu-
tion. This contribution is approximately I exp (bz,)1 in the sense that 
exp ( 72//t2) approximates the approximation (7). When the rectangle 
contains singularities, their contributions dominate. For the example 
(6), zo = ir/h and the rectangle becomes a square which expands as h 
decreases. The behavior of E changes when the sides of the square 
sweep across the branch points. 

IV. INTEGRALS WITH BOTH LIMITS FINITE 

Consider the integral 

I = f  (21 - a)a-1 (b — u)s--1 f(u)du,  a, a > 0,  (9) 

where f(u) is analytic and 0(1), f(a) and f(b)  0, and a and b are 
finite. The transformation 

u = (ber  ae-e)/ (ev 
(10) 
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carries the limits into le = ± œ• The associated equations 

u - a = ev(b - a)/(ev  e-v), 

b - u = e-e(b - a)/(e"  e-v), 

and du/dv show that the dominant factors in the integrand when 
-> + co and y -> - 00 are exp (-20v) and exp (22y), respectively. 
One might expect, and it is confirmed by computation, that in a good 
transformation the final integral should converge at - co at nearly the 
same rate as it does at -I- œ• Therefore the further change of variable 

= c(13-lee - cx-le-z) 
(11) 

dv/dx = c(13-'e' aie ) 

is made to equalize the rates of convergence at x = ± . The transfor-
mation (11) makes the integrand behave roughly as exp [-2c exp x I ] 
as x -) ± co when the effect of f(u) is ignored. 
The constant c in (11) can be chosen somewhat arbitrarily. It is 

helpful, but not necessary, to have 

c r(13a)i/4.  (12) 

The inequality (12) for c guarantees that the singularities in the com-
plex x-plane due to the vanishing of ee  e—e  are at least 7r/2 distant 
from the real x-axis. It says nothing about the singularities and saddle 
points introduced by f(u). 
Thus the integral to be evaluated by the trapezoidal rule is 

I = f (u - a)a-i(b - u)s-If(u) V i de  (13) 

which can also be written as 

f(u) —dv dx. I = 2(b - a)a+P-1 L (e.  ± e-.)a-F0  dx  " 

Here x is the variable of integration and, in writing the program, u, y, 
du/dv, and dv/dx are given by (10) and (11). 
As an example of (9) and (13), consider the beta function 

I = f[sin u]a-1 [sin ( 7-1:' - 24)] 15-1  du o  2 

ir/ 2   

= f[sin u]a-1 [sin ( i- - u)] 0-1 du dv dx -.  Tv cTX 

. 

eca-s). 

co 
ire I  Didn u].-1 [sin  ( 7i  u)-1,3-1 r 

= (ee  e-92 j dx 
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where the third line is to be evaluated by the trapezoidal rule. For 
a = 0.95 and a = 0.05, the value of I is known to be 20.748 732 • • • 
and the inequality (12) for the multiplier c gives c  0.171. 
Computations show that the values 0.171, 0.1, and 0.05 for c all 

give six-figure accuracy with h = 0.5 and about 20 terms in the trape-
zoidal sum (e.g., for c = 0.1, h = 0.5, and 21 terms, the computed 
value is 20.748 729). When c = 1, about 70 terms (with h = 0.075) are 
required to achieve the same accuracy. 
Instead of computing the a — 1 power of simply [sin u], it was 

found better to compute the a — 1 power of [(e°  e-v) 2 sin u], and 

similarly for sin ( — u) • In general, it is usually helpful to combine 

as much as possible of the 1/(e y e -  V) 2 contained in du/dv with other 
factors in the integrand in order to avoid underflow and overflow. 
When a =  = 1, the transformations (10) and (11) reduce to the 

ones used by Schwartz2 except for the coefficient c  T/4 = 0.785. To 
illustrate this case take (Kajfez'°) 

15 

I = (-7r/ 40) I exp (u/4) sin [0.47- exp (u/4)]du 
10 

in which the integrand oscillates through about 6 cycles. Using (10) 
and (11) with a = 10, b = 15, c = 0.785 shows that the trapezoidal 
rule with h = 0.09 and 60 terms gives I = —0.0195495 compared with 
the true value — 0.0195488 • • • . For relative errors less than about 0.01, 
the trapezoidal rule requires less terms than the spline quadrature 
methods considered in Ref. 10, but this is offset somewhat by the more 
complicated terms introduced by (10) and (11). 

V. INTEGRALS WITH LIMITS 0, 00 CONTAINING /6 '1(1 + 

The integral 

I = f u*-1 (1  u)-a-sf(u)du,  a,  > 0,  (14) 

where f(0)  0 and f(u) is analytic and 0(1), can be handled by the 
transformations 

u -= ey, y =- c(er'ex — a--'e--x)  (15) 

where c  r(ae1) 1/2. For a = 3, 13 = 2 the inequality for c becomes 
c 5 3.85, and for a = 0.2, a = 0.1 it becomes c 5 0.222. Computations 
were made for these values of a and  with f(u) = 1. Values of h and 
the number of terms N in the trapezoidal sum required for seven-
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figure accuracy were found to be as follows: 

a e  h  N 
3.0  2.0  3.85  0.25  15 

2.00  0.35  15 
5.00  0.10  40 

0.2  0.1  0.22  0.45  25 
0.08  0.45  25 
0.45  0.25  35 

VI. INTEGRALS WITH LIMITS 0, œ CONTAINING le-I  exp ( —u) 

For the integrals 

I = j œ  f(u)du,  a > 0,  (16) 

where f(0)  0 and f(u) is analytic and 0(1), we can use 

u = e", y = x — a-le-e.  (17) 

Computations for the case f(u) = 1 and a = 1 gave the following 
results: 

h  N = No. of terms  Trap. values of I 

0.4  15  0.9999 9997 
0.6  10  0.9999 8711 
0.8  7  0.9998 2442 

Repeating the computations with u = c exp Ex — e exp ( —x)] and 
c = 0.5, 2.0, and 4.0 showed that the magnitude of the error depends 
only slightly on c. 

VII. INTEGRANDS WHICH CHANGE RAPIDLY NEAR A POINT 

When the integrand contains a factor, say P(t) where t is the variable 
of integration, which changes rapidly near a point it is sometimes help-
ful to change to a new variable of integration u where du/dt = F(t) 
and the constant of integration is chosen at our convenience. The suc-
cess of the transformation depends upon the ease of inverting to get 
t as an easily computed function of u. 
As an example, consider 

I =  e€(t2 a2)-1 dt  (18) 
-1 

where a is small (Smith and Lyness"). Taking du/dt = F(t) 
= (t2 a2)-1 , u = arcsinh (t/a), and t = a sinh u carries (18) into an 
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integral of the form (9) with b  = A anda = e = 1: 
edu  r et du dv dx  

—A  dv dx 

= 4Ac  et(e  e-')dx/(ea  e—e )2. 
—co 

Here A  arcsinh (1/a), t = a sinh (A tanh v), r = 2c sinh x, and 
c  w/4 = 0.785. Computations with c = 0.3, h = 0.2, and 40 terms 
in the trapezoidal sum show that I = 29.538 618 ± 10-6 when 
a = 10-6 . 
If the rapidly changing factor has the more general form 

F(t) = (t2 a2)-6 , 

the transformation t = a sinh u can still be used to carry the integral 
into the form (9), but computation shows that the trapezoidal rule re-
quires more terms as O moves away from 4. For example, when the 
exponent —4 in (18) is replaced by --î, i.e., O =  computations with 
a = 10-6, c =- 0.785, and h = 0.03 show that 100 terms give the value 
5240.808 for I whereas the true value is 5240.806 • • • . 

VIII. THE FERMI—DIRAC INTEGRAL 

The Fermi-Dirac integral (tabulated by Blakemore") 

I =  fon° ta-idt/(1 -I- et-a),  a > 0,  (19) 

raj has an integrand which changes rapidly near t = a when a is large. 
Section VII suggests taking du/di = F(t) = 1/(1 + et-a). Choosing 
the constant of integration to make u = 0 at t = 0 gives 

u = tk(1  e-a) — In(e-t e-a), 
t =  fn(e-"  — e-a), 

I =  b 
r(a)j o 

where b = en(1 + ea). When u tends to 0, t —> (1 + e-a)u, and hence 
the integral (20) is of the form (9) with e = 1. 
The transformations (10) and (11) carry I into 

1 fe , du dv 
I = —r(a) „ ex--  —dv —dx ax 

2bc 
1"(a)  ta-1 (es  a-le.--')dx/(ea e-a)2 

(20) 

(21) 
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where c  0.785ai, t is defined in terms of u by (20), and 

u = be"/(e"  e-"),  e = e(e" — ale ). 

The integral (21), with c = 0.5, was used to compute I for a = 
and 4 with a between 0 and 20. Difficulty in computing t for small 
values of u was avoided by using three terms in the expansion of 
-Cn(1 — z) when z = exp (u — a) — exp ( — a) was less than 0.001. The 
following tabulation shows the results for the typical values a = 4 and 

a -- 10. 
h  N = No. of terms 

0.2  34 
0.3  22 
0.4  17 
0.5  14 

Trap. values of I 

3.5527 792 
792 
795 
742 

The above transformation has been used by W. K. Kent in a study 
of the charge distribution in a charge coupled device and I am indebted 
to him for helpful discussions regarding his experience with (21). 

IX. INTEGRALS WITH LIMITS 0, oc AND OSCILLATING INTEGRANDS 

Kluyver's Bessel function (random walk) integral for the probability 
P that the resultant of the sum of m randomly phased unit vectors in 
a plane be less than r in length is (Bennett", Greenwood and Durand") 

P=I (ru)L o (u)Indu.  (22) 
0 

This integral is typical of a class of integrals that are difficult to evalu-
ate by any means. They are characterized by rather slow convergence 
and an integrand which tends to oscillate at a regular rate as u —› co . 
In this section we consider the evaluation of such integrals by the 
trapezoidal rule when the rate of convergence is not too slow. 
Some general remarks can be made concerning integrals that behave 

like (22). In order that 

I =  f(u)du 
o 

may represent the typical integral of this section, f(u) must tend, as 
u  œ, to a form that can be written as a steadily decreasing factor 
times the sum of a finite number of sinusoidal terms whose periods tend 
to constant values (as u —)00 ). Define ho to be the shortest con-
stant period (so that the most rapidly oscillating term varies as 
cos [(27ru/h.)  $]). The interval ho is related to the sampling theorem 
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for band-limited functions in that 1/ho plays the role of the "band-
width" of f(u) at u = 00 . Quite often the required accuracy in I can 
be obtained by using values of h which are close to ho. 
If the integrand is an even function of u, the trapezoidal rule can be 

applied directly. If the integrand is not even, the integral can be evalu-
ated by setting 

u = atn(1  en/0),  du/dx = ezia/(1  eria)  (23) 

and then using the trapezoidal rule. Computations described below 
show that the choice a = 1 works well for (22). More will be said later 
about the choice of a. The transformation (23) takes advantage of the 
fact that the trapezoidal error E is often small, or zero, for regularly 
oscillating integrands. Although many terms may be needed in some 
cases, the present method compares favorably with competing ones. 
The choice of a in (23) depends upon the behavior of f(u) near u = O. 

Suppose that f(u) tends to Cu as u --> O. Here C is a constant and 
> —1. After the change of variable (23), the integrand is a function 
of x which approaches 0 as exp [(v  1)x/a] when x  — 00 . When 
(v + 1)h/a is too small, successive terms in the negative x portion of 
the trapezoidal sum are nearly equal and an unduly large number of 
terms must be taken to achieve a small truncation error on the left. 
When (v + 1)h/a is too large, the successive terms differ by a large 
amount and the trapezoidal error E tends to be large. The problem is 
to choose a value of a which balances these two effects and at the same 
time allows h to be large. The choice a = (v  1)h0 works well for all of 
the cases that have been tried. 
Some insight regarding a good choice of h for (22) can be obtained as 

follows. Consider the integral, say K, obtained by replacing Ji(ru) by 
Jo(ru) in (22) and taking the limits of integration to be u = E00. With 
the help of the asymptotic expression for Jo(z) and the procedure used 
to deal with (4), it can be shown that when K is evaluated by the trape-
zoidal rule the error is zero if h < ho where ho = 27r/(r  m). Further-
more, when P is transformed by (23) and then evaluated by the trape-
zoidal rule the error E is relatively small when h is only slightly less 
than ho—as might be hoped from the similar behavior of the integrands 
in P and K as u CO . A saddle point analysis of R+ in (3) leads to the 
rough estimate 

1E1  2r4(272)-(m+1)/2 exp Dr(r  m — 27rh-')]  (24) 

for the error in the trapezoidal sum for P when a = 1. 
In the example (22) the asymptotic expression for the integrand con-
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tains the product cos [ru — (37r/4)] cos"' [u — (7r/4)] which can be 
written as the sum of m  1 sinusoidal terms. The most rapidly oscil-
lating term is proportional to cos [(r  m)u — (m  3)(7r/4)] and 
the quantity ho = 27r/(r  m) now appears as the shortest period. 
Now we turn to the details of the evaluation of the integral (22) for 

P. Let r and m have the representative values r = 4 and m  6. Then 
ho = 2/r/(r  m) = 0.628. Since Jo(z)  1 and Ji(z) —) z/2 as z —> 0, 
the exponent y is 1. The suggested value a = (y 1)ho gives a = 2h0 
= 1.26, and since the choice of a is not critical, we take a = 1. Putting 
a = 1 in (23), substituting in (22), and using the trapezoidal rule gives 
the values of P shown in column 3: 

h  No. of terms  P  Error: Col. 3  I E f from (24) 

0.475  286  0.9375 5485 
0.500  272  5475  —10. X 10-8 3.5 X 10-8 
0.525  259  5437  — 4.8 X 10-7 2.8 X 10-7 
0.550  247  5354  — 1.3 X 10-6 1.3 X 10-6 
0.575  236  5791  -I- 3.1 X 10-6 6.9 X 10-8 
0.600  226  0.9375 9798  ± 4.3 X 10-6 2.4 X 10-5 
0.625  217  0.9376 9974  + 1.4 X 10-4 0.94 X 10-

The fourth column gives the error estimated from column 3. The 
fifth column shows the approximation (24) for I El . The trapezoidal 
sum was truncated at x = 124. Beyond 124 the absolute value of the 
integrand remains less than 2 X 10-8 and its amplitude decreases as 
X-712 . Note that the error starts to be appreciable as h approaches the 
critical value ho = 2r/ (r  m) = 0.628. 

X. THE INTEGRAL OF uk exp ( —u2 — au-') FROM O TO co 

The integral 

k(a) = f uk exp ( —u' — au-')du,  Re (a) k 0,  (25) 
o 

is of interest in some physical problems (I wish to thank J. N. Lyness 
for calling my attention to this example). First let k be 0 and a be posi-
tive real. We seek a change of variable from u to x, with new limits 
x = ± œ, which will make u' tend to exp (2x) as x —> co and a/u tend 
to exp ( —2x) as x —> — œ• This leads to 

u = azi / (a + e-z).  (26) 
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Substituting (26) in (25), taking the special case k  0, a = 1, and 
applying the trapezoidal rule gives the values of /0(1) shown in column 
3: 

h 

0.1 
0.2 

0.3 
0.4 

No. of terms 

38 
19 
12 
10 

Io(1) 

0.1500 4597 
0.1500 4597 
0.1500 4835 
0.1501 2711 

Obs. error 

2 X 10-8  
2 X 10-8  

2.40 X 10-6  
8.12 X 10-5  

1E1 from (27) 

5 X 10-9 
7 X 10-6  
20 X 10-5  

The last column lists a rough approximation obtained by saddle point 
analysis: 

( 2r 4 
E  7-1) exp [ —  •  (27) 

The observed error shown in column 4 is the trapezoidal sum (column 
3) minus the value 0.1500 4595 of /.(1) computed from 

k (a) =  r( _s)r  (k — 2s + 1) ceds  f c-Fix 

(—a). r(k—n+ 1) r   2 +  _1) tt-l-ka 2n-l-k 

n-o 2(n!)  fr-.1 2 (2n + k)!r(n 

€n(a) — 1,142n  k ± 2) — -14(n ± 1)] 
( 1) n+k a2n+k+1  

n!(2n  k  1)! 

where c < min (0, k  1), I P(x) = (dr (x)/dx)/T (x), and the series 
holds for k = — 1, 0, 1, 2, 3, • • • except that the first sum is omitted 
when k = — 1. 
When a is complex, say a = pe' " where 1 al  r/2, we tilt the path 

of integration in (25) by setting u = vei° where 101  r/4 and la — Oj 
< 7r/2. If we choose 0 to be a/3, the new integral 

/k(peia) = exp [i(k + 1)a/3] f vk exp[— (v2 ± pv-i)e"am]dv  (28) 

can be evaluated by using the substitution (26) with u and a replaced 
by v and p, and then applying the trapezoidal rule. For the physically 
important case of k = 3 and imaginary a [1-3(ip) and I k(a), k = 1, 2, 3, 
are tabulated in NBS Handbook, 15 Section 27.5], the error can be kept 
below 1 X 10-6  for a = i0.001 by using h = 0.04 and 95 terms in the 
trapezoidal sum. As a increases to i10.0, h can increase to 0.08 and the 
required number of terms decrease to 40. 
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APPENDIX 

Examples of Paths of Steepest Descent for R+ 
For the example (6), the integral (3) for R+ becomes 

R+ = I exp [4o(z)]ciz, (29) 

cp(z) = —z2 ± i2irh-lz — 4-en(z4 ± a4).  (30) 

The saddle point equation cle(z)/dz ----- 991(z) = 0 is of the 5th degree 
in z. Solving by Newton's rule or otherwise gives 5 saddle points, 3 of 
which are in the half-plane Im (z) > 0. They are shown as small circles 
in Fig. 1 for the case a = 2.4 and h = 0.8. One is on the imaginary 
z-axis at zo = 14.14, and the other two (z,.., z28) are at ±1.648 +11.629 
near the branch points (zi, z2) at a(±1 ± i)/24 = 1.697(±1 + 1). 
The path of steepest descent through the saddle point zo (a path on 

which lm [ç(z) — '(zo)] --- 0) was computed by: (i) evaluating the 
phase of the coefficient [-22r/ip"(zo)]i in the saddle point contribution 

.1" exp[v(z)jdz -- [-27r/v"(zo)]lexp Eço(zo)]  (31) 

to determine the direction of the path through zo; (ii) selecting two 
starting points (one for each branch of the path) on opposite sides of, 
but close to, zo; and (iii) applying 

zt = z4_1. + cl1-1,  (it = — I ço'(zt) I  

to compute the path step by step, à being the step length. The other 
paths of steepest descent shown in Fig. 1 were computed in the same 
way. Paths of steepest descent through a saddle point may run down 
into a "lower" saddle point, i.e., one having a more negative Re ip(z), 
or may end at a point (possibly z = co) where Re cp(z) = — 00 . 
Figure 1 shows that the path of integration for R+ can be deformed 

in a natural way into three portions: the loop around z2 (which encloses 
the branch cut from z2), the path from — co -I- irk-1 through zo to 
-I- co -I- iirh-', and lastly the loop around zi. The path directions are 
denoted by arrows. 
As h increases (from 0.8), zo in Fig. 1 moves downward towards the 

origin. Eventually h reaches a critical value at which the path of 
steepest descent from zo runs directly into xi. and 22,,. For still larger 
values of h, the loops around xi and 22 lie above the path through zo, 
and the deformed path of integration for R+ consists only of the path 
running from — co -F irh-1 to -F co + irh-' through zo. The sudden 
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change in the path as h passes through the critical value is related to 
Stokes phenomena in the theory of asymptotic expansions. 
The approximation (7) for the contribution of zo to E -̂, 2 Re (R+) 

can be obtained by approximating the saddle point equation e'(z) = 0 
by 49,;(z) = 0 where 

(PA (z) =- —z2 + i2Th-1x  (32) 

is the most important part of the expression (30) for ip(x) near z = zo. 
The equation cp,i(z) = 0 gives the approximation zA = i71-/h for 4. 
Substituting yoA"(zA) = — 2 and (Z A) from (30) in place of io"(zo) and 
yo(zo), respectively, in the saddle point contribution (31) to R+ leads 
to (7). 
Figure 2 shows the paths of steepest descent and the path of integra-

tion used to estimate E for the integral (25), /.(1), when h = 0.2. For 
k = 0 and a = 1, the ye(z) in the integral (29) for R+ is 

r e2.(e. ± 2) 1 
l_ (e. + 1)2 j 

where u is given by (26) with z in place of x. The deformed path of in-
tegration for R. shown in Fig. 2 contains the arbitrary bridging seg-
ment AB and shows that the saddle points z1 and za are the main con-
tributors to R+. 

ip(z) = —u2 — u-' + i2rzh-i ± tn 

- 

(33) 

Fig. 2—Steepest descent paths for exp [f (z)] when h = 0.2 in (33). The arrows 
mark a deformed path of integration for R+ corresponding to I.(1) in (25). The points 
z1, z2, • • • , z0 are saddle points. 
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Finally, if one wishes to integrate along a path of steepest descent, 
a combination of the above path computation and the trapezoidal 
rule with spacing à suggests itself. However, greater accuracy can be 
achieved by either (i) first computing the entire path, approximating 
it by several straight-line segments (sometimes one will do), and using 
Romberg integration on each segment, or (ii) taking the step size à 
relatively large in the path computation, and then using Romberg 
integration over each linear segment of length A (by dividing de into 
lengths of, say, A/8). 
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A new approach to time-domain pulse shaping in digital sampled sys-
tems is described. The proposed method allows time-limited impulse re-
sponses with optimum specified energy distribution in the frequency 
domain to be generated. Additional constraints to guarantee zero inter-
symbol interference are easily taken into account. Nyquist-type pulses 
which have the maximum possible amount of their total energy concen-
trated below some given frequency are one particularly important applica-
tion. An example of such an impulse response with only 6 percent excess 
bandwidth is presented which shows that 99.96 percent of the energy can be 
concentrated in the desired bandwidth with a pulse 16 baud intervals long 
that can be generated using a read-only memory (ROM) with only 256 
bits of storage. This new class of signals can be used advantageously for 
waveform generation and processing in digital data systems. 

I. INTRODUCTION 

The joint optimization of functions in both time and frequency do-
main is a classical problem in communication theory. Hilberg and 
Rothe' have recently found the lowest possible product of pulse and 
one-sided spectral widths and have numerically evaluated the impulse 
and frequency response—which is not Gaussian—that corresponds to this 
minimum. Landau, Pollak, and Slepian2-4  in their classical papers have 
derived the pulse-form of given duration that has a maximum of its 
energy concentrated below a certain frequency and vice versa; the 
solutions to this problem are given by the now well-known prolate 
spheroidal wave functions. Additional comments on this problem have 
recently been given by Hilberg.' A widespread opinion is that pulses 
with minimum energy at high frequencies should have a rounded form 
with many continuous derivatives. This is not true; in fact, the optimum 
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pulses based on the prolate spheroidal wave functions are usually not 
continuous at the limits of their truncation interval. Hilbere has shown 
that constraints of continuous derivatives tend to increase substantially 
the total out-of-band energy. 
Steep spectral roll-off above the Nyquist frequency and small 

residual out-of-band energy are desirable properties for signals in data 
transmission systems to achieve maximum signaling rate over band-
limited channels and to avoid fold-over distortion in modulation and 
demodulation. We have here, however, a very important additional 
constraint: The generated signal must also have negligible intersymbol 
interference. One method of deriving shaping filters which simultane-
ously minimize intersymbol interference and stopband response was 
proposed by Spaulding.7 His procedure generates better results than 
the traditional approach of approximation to the raised cosine roll-off 
in the frequency domain only. 
In this paper we will again carry out optimization in the frequency 

domain only; but we constrain the intersymbol interference to be ex-
actly zero and we truncate the pulse duration to a chosen number of 
baud intervals. The impulse response is represented in sampled form. 
This new class of signals will have particular application in digital 
modem design. 

II. THE SAMPLED APPROACH 

A sampled Nyquist-type impulse response with samples ai is shown 
in Fig. 1. For convenience, we will assume even symmetry, an integral 

Fig. 1—Impulse response given by samples ak. Truncation at / = ±MT; sample 
spacing t = Thz. 
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number  of samples per baud interval, and coincidence of every pth 
sample with the zero crossings; thus 

a±k ,i = O  for k = ±1, ±2, • • • , * M 
ai = a_, 
a, = 0  for 

The resulting spectrum is 
PM 

S(W) = W(w)  E 

• (1) 

(2) 

where W(w) is an associated weighting function which may take into 
account the conversion from impulses to a staircase waveform or any 
other form of interpolation network. Let us define the (2,tiM  1)-
sample vector 

aT = (a-gm, • • • ao, • • • , amm)  (3) 

and the transformation vector 

PT = Pi},  with pi =  (4) 

so that we can write the spectrum in the simple form 

= W(w)arp. 

The power density spectrum is given by* 

I 8(0))12 = 1W(w) raTPPTa• 

(5) 

(6) 

If we assume that the function w(t) has energy E., and is nonoverlap-
ping (width  T/g), the total energy E(00) is simply 

E(00) = araE.  (7) 

The energy below wo is of course 

1 I" wo 
E( '") = rir J ,  repp ta 

Our goal is again to find a, so that 

E(w0)  
X =   -max 

E( co) 

or, by combining the last three equations, 

xaTa = arRa 

where the elements of the symmetric matrix R are defined by 

1 fo 
rik = — 

7rE,„ o  
1W(w)12 cos (coT i k) dw 

(8) 

(9) 

(10) 

(11) 

and a has to satisfy the constraints (1). This constraint reduces the 

* A dagger is used to indicate the conjugate transpose, a = a*T. 
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degree of the quadratic form (10), since a,k = 50k and thus all terms 
rpi,»k are immaterial. After elimination of the zero elements and con-
centration of the remaining elements, the new form 

XâTâ = *V A  (12) 

evolves, which is now free of constraints. The desired solution is then 
simply given by the eigenvector of Ñ which corresponds to the largest 
eigenvalue X,,,„„ (since no other choice of d will give a larger X). The 
original vector a can easily be obtained by inserting zeros in the correct 
positions of â. 
The elements rik in (11) will of course depend on the choice of coo and 

numerical integration generally will be necessary to evaluate them. 
Because of the Toeplitz and symmetric nature of R, only a small num-
ber of terms need really be calculated. Numerical integration and de-
termination of eigenvectors are available as subroutines with most 
computers, so that no complex programs need be written for the pro-
posed optimization method. We also would like to emphasize that the 
described method is very flexible. One might, for example, try to mini-
mize the energy contribution within some given frequency range 
WI <w < w2; this may easily be achieved by changing the integration 
limits in (11). 
Two cases of W(w) are of practical interest. The first one is the zero-

order-hold function which generates a staircase waveform (this is the 
usual output of D/A converters). In this case, we have* 

W(w) _ T sine  cdT 
k 21A 

and therefore 

(13) 

;LT  smc2( ) cos [ — (r — kldx 2g  g  (14) rik = 
1 f .(i+o)  x . 

where we have expressed wo in terms of the normalized Nyquist excess 
bandwidth 0. 
In the second ease we will assume w(t) = (5(t), so that the spectrum 

W(w) is flat. Due to the periodicity of the resulting spectrum, it is rea-
sonable to consider the energy distribution within one period only. The 
resulting elements of the matrix  can then be expressed in closed form 

1 + e si — ne 71-(1 ± /3) if i k 

rii  = 1 + i 
if i = k 

which further simplifies the optimization procedure. 

* We define einc(x) = sin (x)/x for convenience. 

(15) 
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III. GENERALIZATION FOR ARBITRARY SPECTRAL BANDS 

Equation (10) is a special case of the more general problem of maxi-
mizing the energy in one or more specified frequency bands with re-
spect to the energy in some other frequency bands. Taking into ac-
count the desired integrating limits and the constraints (1), a quadratic 
form 

xi nit =  tirptt (16) 

will then evolve, containing (12) as a special case with Q = I. By sub-
stituting 

b =  

we have now to deal with the new form 

xbrb = 

(17) 

(18) 

which is identical to (12). We are looking for the particular b satisfying 

= Ab. 

By premultiplying both sides with -‘1F2--', we get 

= 

(19) 

(20) 

so that the desired â is simply the eigenvector of Q--'1? which corre-
sponds to the largest eigenvalue  The matrix Q is guaranteed to 
be nonsingular since it is not possible to have zero energy in a finite 
frequency interval with a time-truncated impulse response. 

IV. EXAMPLE 

To get some feeling for the capabilities of the described optimization 
procedure, the samples of a Nyquist-type impulse response were calcu-
lated using the following parameters: 

Excess bandwidth factor  = 0.06 

Truncation for I t I > 8T (M = 8) 

= 4 samples per baud interval. 

The unusually tight roll-off would allow full 4800-baud operation over 
voice-grade telephone channels with a QAM or a VSB system. If the 
sample values are coded into 8 bits plus sign, the chosen resolution will 
bring down the quantization noise to a negligible level of —65 dB. The 
storage requirement is still only 256 bits, so a rather small bipolar 
ROM may be used. 

* Note that () A need not be symmetric, but its eigenvalues are the same as those 
of the symmetric matrix in (19). 
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The resulting spectrum is shown in Fig. 2. Attenuation is 6 dB at the 
Nyquist frequency and 17.6 dB at the 6-percent edge. The sine( • ) 
weighting caused by the staircase output is not included; it would pro-
duce additional attenuation at higher frequencies. The resulting eigen-
value was X... = 0.99963, showing that in fact the residual out-of-band 
energy is very small. 

IN DECIBELS 

-40 

08 

f N 

PARAMETERS: 

AL- 4, M=8,  = 0 .08 

Fig. 2—Spectrum of optimized impulse response with X = 0.99963. 
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V. CONCLUSIONS 

A new optimization method for sampled Nyquist-type impulse re-
sponses has been proposed. Minimum energy in one frequency band as 
compared to the energy in any other frequency band is achieved. The 
computation is straightforward and involves the determination of 
eigenvectors of a symmetric matrix. It is shown how the constraint for 
zero intersymbol interference can easily be included. Applications of 
this method are numerous in digital signal synthesis and processing. 
Storage can be achieved with high accuracy using ROM's of moderate 
size. Any desired scaling of time and frequency response is possible with 
such a system and the well-known disadvantages of traditional filters, 
namely aging and tuning, are nonexistent. 
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Recent advances in solid-state optical-frequency sources and detectors 
and low-loss optical fibers make feasible the consideration of optical com-
munication systems for low- and moderate-bandwidth channels (a few 
kHz to, say, 100 MHz). This paper explores the use of optical-frequency 
carrier systems for transmission over such channels. Analog intensity 
modulation, pulse position modulation, delta modulation, and pulse code 
modulation are considered. This paper is intended to be tutorial in nature. 

I. INTRODUCTION 

Since the advent of the laser, communication engineers have been 
intrigued by the promise of fantastic bandwidth capability in optical-
frequency communication systems. As a result, attention has been 
focused on high-capacity, high-bandwidth considerations. Recent ad-
vances in component fabrication—for example, light-emitting diodes 
(LED's), junction lasers, avalanche photodiode detectors, and low-loss 
optical fibers—have made it feasible to consider the use of optical-
frequency carrier systems for moderate- and even low-bandwidth 
channels. 
Fundamental and practical differences between optical-frequency 

channels and radio-frequency channels* necessitate a reevaluation of 
concepts acquired from experience with the latter. To this end, in the 
following sections we consider four potentially attractive forms of 
modulation of optical-frequency signals and derive results for the re-
quired average received signal power in terms of system requirements 
and parameters. In Section II we consider a system using analog inten-

* We use the term "optical frequency" to mean frequencies roughly in the range 10 
to 1000 THz and the term "radio frequency" to indicate frequencies below roughly 
3 THz. 
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sity modulation (IM) of the light source. In some respects such a sys-
tem is analogous to a baseband system. In Section III we consider pulse 
position modulation which, because of the nature of optical-frequency 
sources and detectors, is particularly attractive. In Section IV we con-
sider binary PCM and also delta modulation which we treat as a special 
case of a binary PCM channel. It is not within the scope of this paper 
to identify and analyze optimal receivers for these types of modulation. 
The approach adopted here is rather to analyze the performance of 
receivers which can be realized and which hold hope of providing an 
economically attractive approach to transmission of low- and moderate-
bandwidth channels. 
The four types of systems to be discussed in the following sections 

are considered in terms of their applicability to the problem of trans-
mitting a comparatively narrow information bandwidth b over a 
channel with noise (signal) bandwidth cE. The features which these sys-
tems have in common will be discussed in this section. 
Two types of signal sources are considered in this discussion—lasers 

and light-emitting diodes. For the purposes of this discussion, the differ-
ence in these two sources is that the laser possesses a substantial degree 
of temporal and spatial coherence, while the LED does not. The effect 
of this incoherence is to give rise to an additional type of noise (later 
referred to as beat noise) in an LED system. We shall see in the follow-
ing calculations, however, that this noise is usually negligible in systems 
of interest. This is because the beat noise is proportional to the ratio 
(BA WJ) where W is the spectral width of the LED and J is the number 
of spatial modes of the signal viewed by the receiver. For typical GaAs 
LED's, W e•-.• 20 X 1012 Hz and J is an integer which depends on the 
details of the channel between transmitter and receiver and which is 
usually very large. 
The receiver in all cases is assumed to begin with an avalanche photo-

diode with quantum efficiency n and avalanche current gain G. This 
photodiode is followed by a baseband amplifier which presents a load 
resistance R to the photodiode and which has a noise figure F. Only 
direct detection receivers are considered in this treatment, since re-
cently developed avalanche photodetectors make heterodyne and 
homodyne methods look quite unattractive in view of the difficulties 
encountered in phase-front matching in such systems.* 

H. ANALOG INTENSITY MODULATION 

The simplest form of modulation is analog intensity modulation. 
Both light-emitting diodes and double-heterostructure junction lasers 

* See appendix for elaboration on this point. 
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have output power versus bias current characteristics which are suffi-
ciently linear over a reasonable range that they can be modulated di-
rectly by modulating their bias currents. Modulation depths of up to 
about 85 percent can be achieved with suitable light-emitting diodes 
with very small harmonic distortion. It should be noted that the optical 
power, not amplitude, is proportional to the drive signal but, since the 
photodetector is a square-law device, its output current is proportional 
to the received power. Thus, in many respects, an intensity-modulated 
optical system can be regarded as equivalent to a baseband system with 
a transducer (the light-emitting diode or laser) which converts electrons 
into photons and a subsequent transducer (the photodetector) which 
converts photons back into electrons. 
For a sinusoidally modulated carrier with modulation index m, the 

mean-square signal current in the photodetector output is given by 

2 

(71) =  2-1 [n h—ev GMP 0] • 

When a coherent source is used, the mean-square noise current in the 
photodetector output is the resultant of the five noise currents de-
scribed below. 
The most important (in most applications) of the noise currents is 

the quantum noise with its mean-square given by 

(is) = 2e  G2F d b --= N G2F a 

where in this and the following equations e is the electronic charge, hv 
is the energy per photon, n is the quantum efficiency of the photodiode, 
Po is the average received optical power, b is the bandwidth of the in-
formation source (which in the case of analog intensity modulation is 
equal to the bandwidth of the channel), G is the avalanche gain of the 
photodetector, and Fa is a noise figure associated with the random na-
ture of the avalanche process. F d is, in general, a function of G which 
for silicon is well approximated" by F d =-• "SID. NQ is the value of the 
quantum noise in the absence of avalanche gain. 
The next most important noise source is the thermal-noise current 

with mean-square value 

4k  (ii) T =  Ur,  t N 
Ito(' 

where k T is Boltzmann's constant times the absolute temperature, Re, 
is an equivalent load resistance, and F1 is the noise figure of the (base-
band) amplifier. 
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The dark-current noise can be rendered negligible by suitable choice 
of photodetector. At the present time, this generally dictates that the 
photodetector be made of silicon. There are actually two kinds of dark-
current noise. The first, which will be referred to simply as dark current 
in the following, consists of electrons (and/or holes) which are ther-
mally liberated in the pn junction and which experience the avalanche 
gain G. The mean-square value of this current is given by: 

(a) = 2e1áG2F db = G21 d ND 

when Id' is the primary detector dark current. The other "dark cur-
rent," which will henceforth be referred to as leakage current, bypasses 
the drift region and experiences no avalanche gain. The mean-square 
value of this current is therefore given by: 

(d) = 2e1 Lb = NL 

where LE, is the leakage current. 
Finally, if there is incoherent background radiation with average 

power pa incident on the detector, there will be an additional noise 
current given by: 

(a) = 2e  nPGG2Fdb = G2FdIV0. 

(This assumes that the background radiation is at about the same 
wavelength as the signal. This is justified since other wavelengths could 
be effectively removed by filters.) 
Since (is) and (ii) have the same form, we can simply write 

, e 
Id = Id+ hv nPa 

and lump both of these terms into an effective dark current. This is 
done in the following calculations. 
When an incoherent source such as a light-emitting diode is used, 

there is an additional noise term due to the beats between spectral 
components within the spectral width of the source. This phenomenon 

gives rise to a noise current with variance 

b  1 b (ij) = 2 ( G .)2 - (i —  = G2 Ng 

where W is the spectral width of the source and J is the number of 
spatial modes of the source which are viewed by the receiver.' (In most 
cases the ratio b/JW renders this term negligible.) The factor 
(1 — b/(2W)) is always very nearly unity in cases of interest. 
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In each case, (ii) represents the mean-square value of the corre-
sponding noise current after avalanche gain and N x represents the 
value it would have in the absence of avalanche gain. 
Thus, the signal-to-noise ratio is given by 

1  e ,  )2 
-  — UlTtp 
2  hp 

SNR =  .  .  (1) 
(4)  (1 4) -F (d) -F (11) + (a) 

It is instructive to consider the behavior of (1) for some particular 
cases. For our examples we use the following numerical values through-
out this paper: 

X = 0.85 1.an 

n = 0.5 

m = 0.85. 

= 10' ohms 
b = 4 kHz 

Figure 1 shows the signal-to-noise ratio (expressed in dB) computed 
from (1) for Id = 10-9 A, IL = 10-8 A, WJ = 10" Hz, and G = 10. It 
must be emphasized that these values are chosen for illustrative pur-
poses only and are not meant to be typical of a real receiver. This choice 
of parameters allows us to consider the form of the contribution of 
each noise source to the resulting SNR. The curves labeled Q, T, D, L, 
and B are the ratio of the mean signal power to the mean quantum-
noise power, mean thermal-noise power, mean dark-current-noise 
power, mean leakage-current-noise power, and mean beat-noise power, 
respectively. We observe that for this comparatively low value of G 
the thermal noise is dominant over a large range of incident light power 
Po. Then for —30 dBm <Po < —15 dBm the quantum noise domi-
nates the picture. Finally, for larger po, the beat noise clamps a ceiling 
on the SNE. The dark current and leakage current are unimportant. 
Figure 2 shows the same curves for the same illustrative parameters 

as Fig. 1 except that G is now taken to be 100. Two differences between 
Fig. 1 and Fig. 2 are immediately apparent. First, the increased gain 
has caused the quantum-limited region to extend to lower values of po 
and, second, the dark-current noise is more important relative to the 
thermal noise. 
In Figs. 1 and 2, F d has been taken to be given by GI. Thus, in Fig. 

2, for example, Fd = 10 and one must be cautious about referring to 
the behavior as "quantum limited" in the "quantum-limited region." 
It is "quantum limited" only in the sense that the quantum noise term 
dominates the other noise terms, but the actual results are 10 dB poorer 
than could be achieved if the avalanche gain process were noise free. 
Figure 3 shows the same curves but for the values Id = 10--10 A, 
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/L, = 10-9 A, which are typical of good, but available, silicon photo-
diodes;4 WJ = 10" Hz which is typical of GaAs luminescent diodes 
and multimode optical fibers; and G = 17. We see that in this case beat 

100 

BO 
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40 

20 

0 
—70 —60 

B 
L  D  T 

—40 

Po IN dBm 

—20 

a 

o 

Fig. 1—Signal-to-noise ratio, SNR, and ratio of mean signal power to each com-
ponent of the mean noise power for the illustrative parameters: X = 0.85 ,Lm,?? = 0.5, 
M = 0.85, R = 1000 ohms, Id = 10-1' A, I. = 10-8 A, W,I -= 101s Hz, b = 4000 
Hz, G = 10, for an IM channel. B = ratio of mean signal power to beat-noise power, 
L = ratio of mean signal power to leakage-current-noise power, D = ratio of mean 
signal power to dark-current-noise power, T = ratio of mean signal power to thermal-
noise power, Q = ratio of mean signal power to quantum-noise power. 
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noise, leakage noise, and dark-current noise are unimportant and the 
quantum-excess noise controls above p. = —30 dBm with thermal 
noise controlling below. 

5 

100 
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40 

20 

o 
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-60 40 

p. IN dEim 
-20 o 

Fig. 2—Signal-to-noise ratio, SNR, and ratio of mean signal power to each com-
ponent of the mean noise power for the illustrative parameters: X = 0.85 pin, 77 = 0.5, 
M = 0.85, I? = 1000 ohms, Id = 10-' A, IL = 10-8 A, WI = 101s Hz, b = 4000 
Hz, G = 100, for an IM channel. B = ratio of mean signal power to beat-noise power, 
L = ratio of mean signal power to leakage-current-noise power, D = ratio of mean 
signal power to dark-current-noise power, T = ratio of mean signal power to thermal-
noise power, Q = ratio of mean signal power to quantum-noise power. 
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It is now well known'," that the excess noise figure Pd of an ava-
lanche photodiode increases (in most cases) with increasing gain. In 
particular, for silicon photodiodes, Pd is well approximated by GI. 

—70 —60  —40  —20 
Po IN dBm 

Fig. 3—Signal-to-noise ratio, SNR, and ratio of mean signal power to each compo-
nent of the mean noise power for the typical parameters: X = 0.85 gm, 71= 0.5, M = 0.85, 
R = 1000 ohms, Id "= Kr" A, IL -- lfre A, W.1" = 10" Hz, b = 4000 Hz, G = 17, 
for an IM channel. B = ratio of mean signal power to beat-noise power, L = ratio 
of mean signal power to leakage-current-noise power, D = ratio of mean signal power 
to dark-current-noise power, T = ratio of mean signal power to thermal-noise power, 
Q = ratio of mean signal power to quantum-noise power. 
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When a form Pd = Gr is assumed, SNR as a function of G has a maxi-
mum given by 

SNR ma. - 2,yr (2+r)#2 (2-1-r) (1  2 r 4_ N B 

r )  ) 

(i)G-2 

for 
G I 1 ( 2 + r ) 

where 

= (ii)  = NT N LI 

the variance of the gain-independent noise, and 

a = G-"1- 1(4) + (d)] = N4 + ND, 
the variance of the gain-dependent noise before the gain process. For 
r = + (silicon) this reduces to 

Goo = [ 1,trQ  N  D 4(N T  N L)] 215  (2) 

[71 he7, mP° 12  
SNRmax =(47)1i 504/ 5 ± NB (3) 

It is interesting to note in passing that the condition for G to be 
optimum is that 

2 _= 
°Pt r 

But the left-hand side of this equation is the total mean-square current 
due to gain-dependent noise (excluding beat noise), while the right-
hand side is 2/r times the total mean-square current due to gain-
independent noise. For r = 0.5, for example, the gain is optimum 
when the gain-dependent noise exceeds the gain-independent noise 
by 6 dB. 
This result is illustrated in Fig. 4 for the same parameters used in 

Figs. 1 and 2 except that in Fig. 4 G = Gopt, which is a function of po 
according to (2). First we observe that G.pt varies from 132 to 1 over 
the range of po plotted in these figures. These are values which are 
readily achievable with existing photodiodes. We see that the thermal 
noise (leakage noise remains negligible) is just a constant 6 dB below 
the sum of the quantum- and dark-current noises as the condition for 
optimum gain dictates. 
Figure 5 illustrates the optimum gain behavior for the typical device 
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parameters used in Fig. 3. Note that here the optimum gain becomes 

rather large below about Po = —60 dB and might be difficult or im-

possible to realize in practice. 

Fig. 4.--Signal-to-noise ratio, SNR, and ratio of mean signal power to each com-
ponent of the mean noise power for the illustrative parameters: X = 0.85 mm,  = 0.5, 
M = 0.85, R = 1000 ohms, íd -= 10-9 A, I 1, = 10-8  A, 1VJ = 1019 Hz, b = 4000 
Hz, G = Gopt, for an IM channel. B = ratio of mean signal power to beat-noise power, 
L = ratio of mean signal power to leakage-current-noise power, D = ratio of mean 
signal power to dark-current-noise power, T = ratio of mean signal power to thermal-
noise power, Q = ratio of mean signal power to quantum-noise power. 
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The value of R = 103 ohms is used consistently in the numerical 
examples throughout this paper. The detector c is usually presumed to 
dictate the maximum value of load resistance R through the relationship 

1  
R < 4c63 

where (B is the bandwidth of the signal; but in practice it is often bene-
ficial to use a much larger value of R than this and equalize the result-
ant signal distortion later on in the receiver. It is valid to object to the 
use of so low a resistance for a 4-kHz channel [the value is more ap-
propriate to the other types of systems (without equalization) to be 
considered in the following sections]. However, (3) shows that at opti-
mum avalanche gain when, as is usually the case, the leakage current is 
negligible, SNR cc R'15, so very little is gained by going to larger load 
resistors except in the region where G0p5 is so large that it is difficult to 
achieve. Here the fact that G,„„t cc R-215  may be important. 
It is useful to present the results of (3) graphically in a form suitable 

for system design. This can be done in a very general and simple man-
ner, when the leakage current is negligible, by defining the quantities 

10 log 
SNR,„..b 1 
1  m2 I 

10 log { 7117--1?,-: } 

where, in the argument of the first logarithm, b is taken to be dimension-
less, i.e., it is interpreted as the ratio of bandwidth in Hz to 1 Hz. W vs 
x is plotted in Fig. 6 for R/Fe = 10' ohms. Figure 6 can be used as a 
computational aid as follows. Suppose one needs to design a system 
with an SNR of 70 dB, a bandwidth of 4 kHz. Suppose further that 
a modulation index of 0.85 is possible with available devices. Then the 
value of ‘11 which characterizes such a system is 107.4 which, Fig. 
tells us, can be achieved if x = 121. Now x = 121 means that npa/hv 
= 1.26 X 1012; for n = 0.5 and )% = 0.85 this gives po = 5.88 X 10--7  
W which corresponds to —32.5 dBm. If a value of R/Fe which differs 
from 1000 ohms is desired, W. can be modified according to 

= 2 log [(R/Fe)/1000]. 

Figure 7 can be used to determine the value of G required to achieve 
the result computed from Fig. 6. If a value of R/Fe which differs from 
1000 ohms was used, recall that G.,,t cc R-215. 
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III. PULSE POSITION MODULATION 

Considerable improvement in noise immunity can be achieved by 
properly exploiting the wide available bandwidth of optical systems. 

—70  —60  —40 
po IN dBm 

—20 O 

Fig. 5—Signal-to-noise ratio, SNR, and ratio of mean signal power to each compo-
nent of the mean noise power for the typical parameters: X = 0.85 am, n = 0.5, 
M = 0.85, R = 1000 ohms, Id = 10-1° A, IL = 10-9 A, TirJ = 10" Hz, b = 4000 Hz, 
G = .t, for an IM channel. B = ratio of mean signal power to beat-noise power, 
L = ratio of mean signal power to leakage-current-noise power, D = ratio of mean 
signal power to dark-current-noise power, T = ratio of mean signal power to thermal-
noise power, Q = ratio of mean signal power to quantum-noise power. 
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Pulse position modulation (PPM) offers an attractive method of ac-
complishing this end. Figure 8 shows a block diagram of the system to 
be analyzed in this section. 
The pulse-position modulation signal is encoded by sampling the 

message signal periodically at times nT (where n is an integer and T is 
the sampling interval or time slot duration). The value v. of the nth 
sample is transmitted during the nth time slot by sending a short pulse 

130 

---

110 

90 

70 

50 

30 
70  80  100 

TI P. 
x = 10 LOG {- A 

120 140 

Fig. 6—ik = 10 log {sNR M   = 10 log { -71P. } for RIFT = 1000 ohms. 
2 hp 
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of optical energy at a time which is shifted from the center of the nth 
time slot by an amount proportional to v.. 
At the receiver, the values of v. are recovered by measuring the time 

interval between the center of the time slot and the time at which the 
amplified output current from the photodetector crosses a threshold. 
This system is described in some detail in Ref. 6. 
Consider a PPM signal consisting of a sequence of light pulses whose 

t 
o 
o 

7)Po 
10 LOG lx1= 10 LOG ( -} 

h v 

Fig. 7—Optimum gain vs z = 10 log {'el -°} for R/Fr = 1000 ohms. hv 



OPTICAL-FREQUENCY CARRIERS  745 
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MODULATOR 

BANDWIDTH - 

AVALANCHE 

PHOTODETECTOR 

GAIN = G 

LIGHT 

SOURCE 

AMP 
PPM 

DEMODULATOR 

Fig. 8—Block diagram of a PPM channel. 

OUTPUT 

power P(t) is of the form 

P(t) = (1 + cos (7r  ))P.  < t < r  (4) 

where Pm is the peak power achieved by the pulse and 2T is the total 
pulse duration. The average power Pr, in this signal is related to Pm by 

1 P = —T "' P = — (5) 

where K  T/27-. The detected current pulse in the receiver (neglecting 
noise) is given by 

i(t) = (1 + cos (7r .)) im 

where  m = n(e/h Opm = n(e/hv)G(T/np0 is the peak current, 
Pm = AP., po = AP., A = attenuation between transmitter and re-
ceiver. 
Noise affects the SNE of a PPM signal in two ways. First, it can per-

turb the time of the threshold-crossing of the received signal and there-
by effectively shift the position of the pulse. This is the predominant 
effect when the bandwidth expansion is small. Second, the noise can 
cause the received current to exceed the threshold in the absence of the 
signal pulse, thereby triggering a "false alarm" in the circuit. 
First, we consider the perturbation of the time of threshold-crossing 

due to the noise. Assume that the threshold current level is one-half of 
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FALSE ALARM 

o 

Fig. 9—Illustration of a "false alarm" or threshold violation. 

the peak current level,* i.e., F.. The perturbation 7' in the position of 
the pulse due to a noise current i„ ist 

1 
di(t) 
de 

2 i = _ 4-' 9. 
If im 

The expectation value of T1 is then 

4 (i,2,) 
(r2) = 

1 (i)7 

(6) 

(7) 

where (i,2,) is the expected value of the square of the noise current. 
Now consider the contribution to the noise due to "false alarms" gen-

erated when the noise current exceeds the threshold value ¡i,„. Consider 
a time slot (0, T) as illustrated in Fig. 9. Let I E (0, T) be the time at 
which the signal pulse crosses the threshold. Assume that a false alarm 
occurs in this time slot. It must occur (with uniform probability den-
sity) on the interval (0, 0, since the receiver, having sensed a pulse at 
t, is disabled on the interval (t, T). The mean-square value of the error 
in t is therefore 

e  t2 
( W) = I p(8t)(St) 2d(r3t) = 3- • 

o 

* In practice, a slightly different threshold may be optimum due to the details of the 
pulse shape. 
t The remainder of this paragraph follows the derivation on pages 256-257 of Ref. 6. 
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Since we have no statistical information on t, we make an approxi-
mation which is clearly very conservative: We assume that t always has 
its largest possible value, T — 2T. This gives 

(u2)  (T —32T) 2 
t 7-2(K — 1)2.  (8) 

Define II as the probability of a fase alarm occurring during a time 
interval T — 2T. The mean-square value of the error in t due to false 
alarms is then H(St 2). 
Let ±0 be the limits of the allowable variation of the pulse position. 

The baseband signal-to-noise ratio at full load,* SNR, is determined as 
follows. The output signal power due to a sinusoidal input signal which 
swings the pulse position by an amount ±O about its mean is propor-
tional to 102, the output noise power due to perturbation of the thresh-
old crossings of the signal is proportional to (7-2), and the output noise 
power due to false alarms is proportional to 11 (St2). Thus we can write 

102 
SNR    (9) (7-2) +  Hoo> 

Since T is the duration of time slot, O is constrained by the requirement 

2(0  T. 

Choosing equality in the above expression gives the best possible SNR; 
substitution of this along with (7) and (8) into (9) gives 

SNR — 
7,2  e  — 1)2 (17 —hv Kp 0)2 G2 

(ea) + 73472  (K — 1)II (71 11, Kp.) 2 0 2 

The next steps are to evaluate (a) and H. We begin by evaluating 
(i,z2). The noise currents which make up (a) for the PPM systems are the 
same as those which made up (a) for the analog system except that the 
noise bandwidth Ci3 is not equal to the signal bandwidth b; and the 
signal-power-dependent noises are evaluated not at po but rather at 
p,./2 since this is the expected value of the signal when the threshold 
crossing is to occur. 
In the remainder of this section, the reciprocal pulse width, 1/r, 

and the noise bandwidth, ed, are assumed to be equal. From (5) one 
sees that the threshold level ip„, is related to the average power by 

iP. = KP.• 

(10) 

*SNR is the ratio of mean signal power when the signal is a sinusoid of maximum 
allowable amplitude to the mean noise power. 
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Therefore, the mean-square values of the noise currents given in Sec-
tion II are appropriate for PPM signals with the substitution of Kpo 
for p. and 433 for b. Thus, 

(e) = (a) ± e) + (a) + (ii) + (a)  (11) 
where 

(is) •= 2e h—ev 77KpoG2Fd œ, etc. 

Now we turn to the problem of evaluating II, the probability of a 
threshold violation on the interval (0, T — 2T). We assume for the 
purposes of this calculation that the noise current,* in, during the 
interval when no signal pulse is present, can be treated as a Gaussian 
random process strictly bandlimited to the interval (0, a3). S. O. Rice7 
computes the probability of such a signal passing a particular value II, 
with positive slope, on the interval At to be 

1 
-‘e  exp — (W2(2))(Bat. 

Thus the probability of the noise alone crossing the threshold ai3O) 
during the time T — 27" is 

TI 1 = -17.3 exp [(i,n) 2/2(C)D3(T — 2) 

2 =  (K — 1) exp (—i1/8(g)).  (12) 

Now the noise current in, which is important for threshold violation, is 
not the same as the noise current in characterized by (11) because there 
is no signal during the interval between pulses (when threshold viola-
tions can occur) and two of the terms which contribute to i., namely, 
the quantum-noise current iQ and the beat-noise current iB, are corre-
spondingly absent. Therefore 

(2) = (12D) ± (4) -I- (ii). 

It will turn out that in many cases of interest (0,) « (g). This result, 
which has no classical radio-frequency analog, allows considerably more 
bandwidth-for-signal-power trade in optical systems than in radio-
frequency systems. 
It is convenient to write (12) as 

2 =H  — (K — 1)e-XN11/2  (13) 
V=3 

* Note the distinction between i. and i. of the preceding paragraphs. 
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where 
en,  

XNR = 
4(ie) 

We can now substitute (13) into (10) to obtain 

(K —  1) 2 (71 h —  Kpo)  G 2 
v 

7,2  e  2 

(14) 

SNR—   (15) 
(K — 1)3e_ 112 3e 

Equation (15) is plotted in Fig. 10, for the same parameters used in 
Fig. 2, with IC =  250. A certain similarity in the relative positions of the 
corresponding curves is evident in the two figures, but two differences 
are also immediately apparent. First, the curves in Fig. 10 are trans-
lated (horizontally) to smaller values of po and (vertically) to larger 
values of SNR; second, a threshold is introduced (by the threshold 
violation term) below which the SNR degrades extremely rapidly. In 
fact, this threshold term goes from negligible to dominant over about 
a 1-dB change in po. 
As in the ease of analog IM, there is an optimum value of G in PPM 

systems. It can be found by differentiating (15) with respect to G and 
solving for the value of G, which renders this derivative equal to zero. 
Unfortunately, the resulting expression for G,t is quite complicated. 
The fact that the threshold effect sets in so rapidly, however, can be 
exploited to simplify the determination of Gopt. Over the range on which 
the threshold effect is negligible we neglect it, and, as before, obtain 
Gopt as given by (2) [but with the noise terms redefined as described in 
connection with (11)]; over the range on which the threshold effect is 
dominant, one readily obtains 

_ [ 4(NL N ) 1215  
vc — ND 

Figure 11 illustrates (15) for optimum gain for the same set of param-
eters used in Fig. 4. Figure 12 presents these results for a typical set of 
parameters. 
It is interesting to compare (15) for SNR with the result obtained in 

Section II for the signal-to-noise ratio in an intensity modulated sys-
tem with modulation index m. In order to do this, we first observe 
that, in order to properly sample a signal of bandwidth b, the sampling 
rate must be (at least) 2b. This gives the relationships 

1  T 
T =  '  (16) 

2b  
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If we substitute 4bx for da in the noise terms in (15), we find that, 
above threshold, the expression for SNR in a PPM system is formally 
identical to that in an analog IM system (1) except that we make the 
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Fig. 10—Signal-to-noise ratio, SNR, and ratio of mean signal power to each com-
ponent of the mean noise power for the illustrative parameters: X = 0.85 gm, n = 0.5, 
M = 0.85, R = 1000 ohms, Id = 10-' A, IL =10-8 A, WJ = 10" Hz, b = 4000 
Hz, G = 100, for a PPM channel. B = ratio of mean signal power to beat-noise power, 
L = ratio of mean signal power to leakav-current-noise power, D = ratio of mean 
signal power to dark-current-noise power, r ratio of mean signal power to thermal-
noise power, Q = ratio of mean signal power to quantum-noise power, X = ratio of 
mean signal power to noise power due to threshold violations. 
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replacements: 
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Fig. 11. —Signal-to-noise ratio, SNR, and ratio of mean signal power to each com-
ponent of the mean noise power for the illustrative parameters: X = 0.85 pm, i = 0.5, 
M = 0.85, R = 1000 ohms, Id = 10-9 A, IL = 10-8 A, WJ = 1016 Hz, b = 4000 
Hz, G = Gopt, for a PPM channel. B = ratio of mean signal power to beat-noise 
power, L = ratio of mean signal power to leakage-current-noise power, D = ratio of 
mean signal power to dark-current-noise power, T = ratio of mean signal power to 
thermal-noise power, Q = ratio of mean signal power to quantum-noise power, 
X = ratio of mean signal power to noise power due to threshold violations. 
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From this we see that the PPM system yields considerable improve-
ment over the IM system. For PPM, the average signal power is effec-
tively increased by a factor K and the modulation index (which is less 
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Fig. 12—Signal-to-noise ratio, SNR, and ratio of mean signal power to each com-
ponent of the mean noise power for the typical parameters: X = 0.85 gm,  = 0.5, 
= 0.85, R = 1000 ohms, Id = 10-10  A, IL = 10-9 A, WI = 1017 Hz, b = 4000 

Hz, G = Gopt, for a PPM channel. B = ratio of mean signal power to beat-noise 
power, L = ratio of mean signal power to leakage-current-noise power, D = ratio of 
mean signal power to dark-current-noise power, T = ratio of mean signal power to 
thermal-noise power, Q = ratio of mean signal power to quantum-noise power, 
X = ratio of mean signal power to noise power due to threshold violations. 
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than 1 for an IM system) is replaced by (r/2) (x — 1)Rii which can be 
substantially larger than 1. 
In practical applications, bandwidth expansion factors of over a 

thousand are sometimes possible before threshold violations become 
important. 

3.1 Power Available 

It is tempting to hypothesize that the average light power obtain-
able from a given diode is proportional to the average thermal power 
which can be dissipated in the device without causing catastrophic 
failure. The thermal power dissipated by the device, PI [for the signal 
given by (4)], is 

Pi =  1;1T f  (1 ± COS r )2dt 

= —3 can 
8r 

where GI is the effective resistance of the device. This gives 

/2 Pr 
130  = eLV 3 Wit 

(17) 

(18) 

where 1.i is a constant of proportionality such that P. = e rn. Thus for 
Pr and CR fixed, P. (and hence po) varies as  
Unfortunately, the behavior of real LED's and injection lasers is not 

this simple. First, the heat capacity of some LED's is so small that if 
a step function change occurs in the diode current, the diode tempera-
ture reaches its new steady-state value very quickly. For example, 
some diodes have such small heat capacity that burnout occurred 
whenever pulse duration exceeded a few microseconds (independent 
of duty cycle) if the peak pulse current exceeds the tolerable de value.8 
Second, even when the pulse is short enough to avoid this problem, the 
concept of constant power dissipation is not exactly correct. For ex-
ample, the peak current may be limited by saturation effects. 
We observe experimentally for diodes of the type described in Ref. 

8 that, for a pulse repetition rate of 8 kHz, the maximum peak pulse 
power achievable with pulses of 0.1 to 0.25 Ais duration is about 5 dB 
less than that predicted by the constant power dissipation model. 
Nevertheless, the model is useful as a qualitative guide to diode be-
havior in pulsed operation. 

IV. DIGITAL BINARY PULSE CODE MODULATION 

A second method of trading bandwidth for noise immunity is the use 
of pulse code modulation (PCM). This also has the advantage of being 
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Fig. 13—Block diagram of a single-channel PCM optical communication system. 

readily compatible with digital data transmission. Analysis of a digital 
PCM channel is somewhat different from that of an analog channel in 
that the parameter used to characterize a PCM channel is not SNR 
but rather the error probability P. 
Memoryless binary optical digital communication systems can be 

divided into two broad classes—single-channel systems in which the 
information is coded such that a pulse of energy represents a "1" and 
no pulse represents a "0"; and twin-channel systems in which energy 
is transmitted for both information states, but the signal is modulated 
in such a manner that an appropriate device in the receiver routes the 
signal energy into one of two channels when a "1" is transmitted and 
into the other when a "0" is transmitted. It has been shown,' however, 
that unlike the classical radio-frequency case, the twin-channel receiver 
offers little, if any, advantage in an optical system. In fact, if the trans-
mitter is average-power limited, a single-channel receiver has at least 
a 1.5-dB advantage in noise immunity over a twin-channel receiver; 
if the transmitter is peak-power limited, the single-channel receiver 
suffers, at worst, a 1.5-dB disadvantage. Since the single-channel sys-
tem is considerably easier to implement than the twin-channel system, 
and since the twin-channel system offers no significant advantages, we 
confine our treatment to a single-channel system. Figure 13 is a block 
diagram of such a system. 
It has previously been shown9.1° that if we assume that the ava-

lanche current gain G is deterministic,* the probability that the receiver 

*By this we mean that if m primary electrons are liberated, exactly Grn electrons 
will be delivered to the load. This artificial constraint will be relaxed in the next 
section. 
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mistakes a "0" for a "1" is given by 

P(110) = 4  po(n) erfc  —  (19) 
n-o  V2(x) 

and the probability that it mistakes a "1" for a "0" is 

nG — xr p(011) =  pi(n) erfc  (20) 

where (e) = (4)/(eB) 2 is the mean-square thermal noise current ex-
pressed as the mean-square average number of electrons flowing during 
a time slot due to thermal noise and xt is the decision threshold also 
expressed in terms of the number of electrons per time slot. This normal-
ization will turn out to be very convenient in that it will allow us to 
present the results in a form which is independent of bit rate. And 
where 

mr 
pi(n) =  iern, i = 0,1, 

B = bit rate, 
mo = mean number of primary electrons liberated when a "0" is 

transmitted, 
mi = mean number of primary electrons liberated when a "1" is 

transmitted, 
erfc( • ) is the complement of the error function. 

These equations are derived under the assumption that the thermal 
noise is Gaussian and that the statistics of the primary electrons liber-
ated in the photodetector due to signal photons, background-illumina-
tion photons, and dark current are independent Poisson processes. 
Then mo represents the sum of the means of the background illumina-
tion and dark current processes and m1 = mo  m, where m, is the 
mean number of photoelectrons liberated due to the signal. The ma-
jority of this section is devoted to the problem of determining the re-
quired value of m, in order to achieve a specified error probability. The 
required average optical power is, of course, just 

1 km, 
P6 = 2 

where the factor 4 comes from the assumption that O's and l's are 
equally probable. 
The threshold value ze is, of course, chosen to minimize the total 

error probability. To a very good approximation, this is achieved when 

(21) 
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Fig. 14—Number of "signal photoelectrons" for a 10-8 error probability from the 

deterministic gain model vs -r x Ion Coul-I. (Note -r x  G for 
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reasonable system parameters.) 

P(011) = P(110). Thus, in practice, one can compute xi from (19) set-
ting P(110) equal to the required error probability P.; and then, know-
ing xi, compute the required value of m1 from (20). In the remainder 
of this section, it is assumed that the noise bandwidth 133 is equal to the 
bit rate B. 
Figure 14 illustrates the results of the calculation described in the 

preceding paragraph. It is expedient to introduce the dimensionless 
parameter P  G/(e)i. Examination of this figure reveals that, for 
small values of r, the required signal power is inversely proportional to 
r. However, as r is increased, a limiting value, set by the dark current, 
is soon reached. This sets a maximum value of useful gain (for a given 
(4)), dependent only on mo, beyond which no further significant im-
provement can be achieved. Note that this is true even here for the 
deterministic gain model with no excess noise factor of the sort to be 
discussed in Section 4.1. 

4.1 Gain-Dependent Excess Diode Noise Factor 

The gain-dependent excess diode noise factor* Fd played a very im-
portant role in the behavior of analog IM and PPM systems. There is 

"' Recall that Fd results from the random nature of the avalanche gain process. 



OPTICAL-FREQUENCY CARRIERS  757 

no reason to believe that it has any less significant role in a digital sys-
tem. The statistics of the avalanche gain process are very difficult to 
analyze except in two limiting cases, namely, when the ionization 
probabilities of holes and electrons in the avalanche region are equal, 
and when only one carrier contributes to the avalanche process.',9." 
Unfortunately, neither case applies to silicon and germanium photo-
detectors, the two most promising candidates. 
Recently S. D. Personick '2 has obtained a rigorous upper bound to 

the error rate which is applicable to the general case (arbitrary ioniza-
tion-probability ratio). The result of Personick's calculation is in the 
form of an integral equation, however, which must be computed nu-
merically. In this section, we derive an approximate relationship 
between m, and G which is in excellent agreement* with Personick's 
result. 
This gain-dependent noise figure will have two effects on system be-

havior: (i) it will establish an optimum value of gain in the sense that 
m, will have a minimum as a function of G, everything else held con-
stant, and (ii) it will cause a larger number of signal photoelectrons to 
be required, for a given value of G, to satisfy a given error-probability 
requirement. 
The expression we seek is derived as follows. We approximate the 

Poisson probability density function which describes the primary elec-
tron emission by a Gaussian probability density function with the same 
mean and variance. This approximation, which is discussed in detail in 
Ref. 13, turns out to be valid for most cases of interest. We also assume, 
without justification, that the statistics of the output of the photo-
detector are still Gaussian with variance equal to F d times the variance 
of the primary electron distribution f where Fd is the excess detector 
noise factor used in Sections II and III. 
With this assumption, eqs. (19) and (20) can be reduced to: 

xt — moG   
P(1 0) = erfe  [2((xl) m. F d G 2)Jt 

P(11 0) = erfc  [2((x17-1-Gm—, G2)]4} 

We choose xt in such a way that 

P(110) = P(011) = P. 

(22) 

(23) 

* The results of this approximation are typically less than Personick's upper bound 
by about 1.0 ± 0.5 dB. 
It is not difficult to show rigorously that this is the correct value of the variance. 
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where Pe is the error probability. Defining a quantity Q by the rela-
tionship 

PC = erfc  ) 

enables one to write 

—meG   _  mi G — xi   
«e)+77z,,Fd G2)4 —  — (<4>+ m,Fd G2)1 

Eliminating xi between these equations and setting Fd  GI gives 

m, = m1 — mo = 2Q [  ) m Gil -I- Q201.  (24) 
G' 

It is clear from (24) that m. has a minimum in G. 
It was previously stated that (4) is independent of bit rate. This 

comes about as follows. From its definition and that of (4), 

4kT F 
(el)  = 

but R is inversely proportional to bit rate. In fact, for a well-designed 
detector,* one can write 

1 
R = 4Bc 

where c is the capacitance of the photodetector. Then 

16kTFi c 
— 

(xl)   e2 

A value of e(4)1 = 4(kTF tc)i = 10-" Coul implies a value of F = 15 
pF which is typical of good avalanche photodetectors. This value is 
used in the example illustrated in Fig. 15. In this figure, we observe 
that for small values of avalanche gain, where the system performance 
is thermal-noise limited, the behavior is identical to that of the deter-
ministic gain case. As the gain is increased, however, m1 reaches a 
broad minimum at G = G.pt and then increases slowly as the gain is 
further increased. 
With proper exclusion of background illumination, typical values of 

dark and leakage currents are 10-'° and 10-° A, respectively. The back-
ground count, m., is given by 

ib u_ IL 1o9 
= eB  eBG = 1.613  1.6BG 

From Fig. 16, we observe that Gc,„t 100 over a wide range of condi-

• Note added in proof: Recent work by S. D. Personiek shows that some advantage 

may be obtained by using larger R and post-detection equalization. 
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Fig. 15—Number of "signal photoelectrons" for a 10'-error probability from the 
gain-dependent noise model (Fa = (71) vs avalanche gain. e(x.1.)1 = 10-" Coal. 

tions and therefore the dark-current term usually dominates the leakage-
current term. Typical values of mo would therefore be from about 600 
at B = 1 Mb/s down to about 0.6 at B = 1 Gb/s. 
Figure 17 shows the value of m, required for P. = 10-9 (Q = 6.00) 

for e(4)3 = 10-'5 Coul [from (24)] for G -= 100 and for G = Gopt. The 
value of G0pt. is also shown in Fig. 17. Two important results are ap-
parent from Fig. 17: m0 is not important until it exceeds about 100, 
and using G = 100 instead of G = G.0 costs no more than about 1 dB. 
This last result is important because G.pt is so large over much of the 
region of interest that it would be difficult to obtain. 
We now turn our attention to the use of nonadaptive delta modula-

tion (AM) for transmitting analog signals. Delta modulation is a form 
of digital modulation which allows a trade-off between bandwidth and 
both terminal cost and signal power. 
Noise in LM systems has been studied in detail by several au-

thors.“-" We present here a sketch of how one might estimate the 
bit-rate requirements for a AM system. Suppose that the frequency 
band of the information source extends from 0 to b and that the step 
size of the coder is s. The maximum slope of a sine wave with amplitude 
A and frequency f is 2z-A f, while the maximum slope of the quantized 
signal with step size s and sampling rate B is sB. The limiting condition 
for slope overload is then 

sB = 2wA f.  (25) 
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Fig. 16—Optimum gain (Fd = 0+) vs primary background count, m.. 

In order to compute the mean-square error in the quantized signal 
we assume, following Van de Weg," that there is no correlation be-
tween samples and that the difference between the source signal and 
the quantized signal is uniformly distributed on the interval (—s, s). 
We obtain: 

(f S e)  =  - J 8 X 2d X =  1S2 =  mean quantizing noise power.  (26) 
2s , 

The spectrum of the noise is quite complicated, but for our immediate 
purpose it is sufficient to assume that this noise is spread more or less 
uniformly over a bandwidth B so that the fraction b/B of the quantiz-
ing noise power falls into the information band b. (The remainder of 
the noise can then be eliminated by a low-pass filter of bandwidth b.) 
Assuming that quantizing noise is the only significant noise source, 
the signal-to-noise ratio, SNR, is then given for a sinusoidal signal of 
amplitude A by: 

IA' 3B i A \ 2 _  3 B3 
SNR =  —  (27) 1 2b  2 b\s)  82-2bf 

5 8 É 

where f is the highest frequency we are required to transmit with the 
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Fig. 17—Number of "signal photoelectrons," m., vs background count, m, for 
P. =  

specified value of SNR.* For a voice channel, we take (as conservative 
values) b = 4 X 10' Hz and f = 2 X 10' Hz. Then 

8/r 2 ea =  bf2(sNR)] = 7500(SNR)i Hz.  (28) 

For SNR = 70 dB, this gives B = 1.6 MHz. Van de Weg's calcula-
tion" takes into account the correlation between samples (which we 
have neglected) and the details of the quantizing noise spectrum. His 
result (for B / b  4) replaces the factor 8e/3 = 26.3 in (28) by the 
factor 25.0 (and leaves it otherwise unaffected). Thus, his result is es-
sentially identical with the one derived above. Experimental work by 
Laane and Murphy" indicates that a value of B = 1.5 MHz is ade-
quate for transmitting a single voice channel by AM; we use this value 
in the following calculation. 
For a 1.5-Mb/s rate, /D = 10-9 and 'L = 10-I.° gives 

m. = 417 -I- 4170/G  460. 

From Fig. 17, the required value of ma is 1450 (which is 2.2 dB poorer 

* A AM system is limited by slope overload as indicated by (25). The limiting con-
dition is set not by amplitude or by frequency alone, but by their product A f. We 
define the SNR for the AM system in terms of the ratio of full load power in a sinu-
soidal signal at some frequency f to the mean quantizing noise power. At higher 
frequencies, the available SNR degrades at a rate of 6 dB per octave. One could, of 
course, choose f to be the highest frequency in the information source bandwidth, b. 
For voice signals, however, this turns out to be an unreasonable constraint.'8 
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than the case of no dark current and optimum gain, and 1.1 dB poorer 
than the case of no dark current and G = 100). The corresponding 
value of p, is (for X = 0.85 ym, j = 0.5) 0.51 X 10-9 W = —63 dBm. 
This is based on a tolerable error probability of 10-1 , which is probably 
much better than necessary. However, the error probability varies at 
the rate of about one order of magnitude for every 0.5 dB change in 
optical signal power. Therefore it makes little difference what value of 
error probability is chosen for this calculation. 
It has been stated in the preceding sections that dark current and 

leakage current are generally negligible with good silicon photodiodes. 
The case of 1.5-Mb/s PCM is just on the border line of being dark-
current limited with the numbers used in this example. The values of 
In and 'L used in this example must not, however, be regarded as 
ultimate performance. Indeed, photodetectors with In  10-11  A have 
been built.' 

V. CONCLUSIONS 

Because light-emitting diodes and diode lasers can be directly modu-
lated, analog intensity modulation is the simplest form of modulation 
to implement. Considerable improvement in noise immunity can be 
obtained, however, by judiciously exploiting the wide available band-
width in optical systems. 
Thus, pulse position modulation is particularly attractive because 

the square-law nature of the detector makes the "bunching" of the 
optical power beneficial and because the signal-power-dependent na-
ture of the noise makes very large bandwidth-expansion factors fea-
sible. Improvement of over 40 dB (relative to intensity modulation) is 
theoretically possible with pulse position modulation. Improvement of 
about 30 dB for a single high-quality 4-kHz voice channel appears to 
be realizable with existing light-emitting diodes. Ilse of delta modula-
tion affords a theoretical improvement in noise immunity of about 25 
dB relative to analog intensity modulation. 
Optical carriers appear attractive for pulse code modulation even at 

low bit rates. At a bit rate of 6 Mb/s, only about —58 dBm of signal 
power is required for 10-1 error rate. 

APPENDIX 

Comparison of Practical Direct Detection Receivers With Homodyne Re-
ceivers and With Ideal Reception for Binary PCM Channels 
It is instructive to compare the performance of a direct detection 

receiver of the sort described in Section IV with a homodyne receiver 
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operating on a similar signal. Consider a signal in which a "1" is repre-
sented by a pulse with peak power P „ and a "0" is represented by the 
absence of a pulse. Let PLO be the local oscillator power. The detected 
photocurrent (with no avalanche gain) is then 

e 
ie = y 17„  [2 pN1-7:1=T:0 + PLO ± pm] (29) 

at the peak of the pulse when a "1" is transmitted and is n(e/hv)PL0  
when a "0" is transmitted. In practical operation, PLO >> pm and the 
last term in (29) is negligible. The quantity n(e/iiv)PL0 is just a de shift 
and can be neglected in the following calculation. 
The mean-square noise current is given by 

4kTFiG1 
(et) = 2e 1- e n(PLo  p.)(53  25I d B + 

But once again PLO >> p. and in any reasonable receiver one also has 
n(e/hP)PLo >> Ía, so (ie,) becomes 

4kTF  
(ie) = [ e hen —hp rim 

For large PLO, this (Poisson) noise can be regarded as Gaussian. The 
optimum decision threshold will be near (4)i.. Therefore, the probabil-
ity of error is well approximated by 

1  f.  x' 
P =   dx 

ee h..).  exP  {— 2(g) 

1 
erfc 

4kTFI hv63 
• 2hK13 

eRn  PLO 

In order to fully exploit the advantages of homodyne detection, one 
must require 

2k7TFi  
PLO » 

e -e- NR 
hp 

When this condition obtains, one has 

Pe = erfc  ]‘ /21P:  ea 
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Assuming a square pulse of duration 1/03 gives 

'ern m. = 
hvG3 

and 

Pa = erfc  -17-11 } •  (30) 

We model an "ideal receiver" by a device which unerringly distin-
guishes between the case when no photoelectrons were liberated and 
the case when one or more were liberated. Since the photoelectrons are 
Poisson distributed, the probability that none were liberated when the 
expected number was m, is just 

e-el 

and for the ideal receiver this is twice the probability of error. For a 
P. = 10-9 this gives: 

Ideal receiver:  ma = 20 
Homodyne receiver:  m. = 72. 

Thus the homodyne receiver is 5.5 dB poorer than the ideal. From 
Section IV we see that a practical direct detection receiver requires 
m, •-•,:e 1000 which places it 17 dB worse than the ideal receiver and 
about 12 dB worse than the homodyne receiver. Of course, 12 dB is not 
insignificant; but homodyne (or heterodyne) detection requires both 
a coherent source and precise phase-front matching between the signal 
and the local oscillator. With LED's this is impossible, with existing 
diode lasers it is at best extremely difficult. Even if adequate phase-
front matching could be achieved, phase-lock for the homodyne re-
ceiver would be extremely difficult—if at all possible; heterodyne 
detection would reduce the advantage to 9 dB. 
Direct detection without avalanche gain requires m. = 7.2 ± 104 

(for e(x1)1 = 10-1 ' Coul) which is almost 36 dB worse than the ideal re-
ceiver. Thus, in the example of Section IV the avalanche gain (G = 100) 
gives almost 19 dB improvement. 
These relative performance numbers are based on Pe = 10-9 but 

over the range 10-10 < Pe < 10-4 the relative performance of the ideal 
detector, the homodyne detector, and the avalanche photodetector 
varies by less than 1 dB while the performance of direct detector with-
out avalanche gain relative to the ideal detector varies by no more than 
2 dB on this range. 
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