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Although a great deal is known about design techniques for optimum 
(in a minimax error sense) finite impulse response (FIR) low-pass digital 
filters, there have not been established any practical design rules for such 
filters. Thus, a user is unable to easily decide on the (approximate or exact) 
filter order required to meet his design specifications and must resort to 
tables or trial and error procedures. In this paper, such a set of design 
rules is given. In the case of very narrow bandwidth or very wide bandwidth 
filters, analytic relations between the filter parameters can be readily ob-
tained. In all other cases, exceedingly good linear and nonlinear fits to the 
data can be obtained over somewhat restricted ranges of the parameters. 
These fitting procedures lead to a practical set of simple design rules for 
estimating filter order from the desired specifications. 

I. INTRODUCTION 

The problem of designing an optimal (in the minimax sense) low-
pass FIR digital filter to meet design specifications has been thoroughly 
investigated'-5 and may be considered to be solved. Thus, given a 
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Fig. 1—Definition of low-pass filter parameters. 
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specified impulse response duration of N samples, a passband cutoff 
frequency F„ (see Fig. 1), a stopband cutoff frequency F„ and a ratio 
of tolerances K = 81/62 (where Si = passband tolerance and 62 = stop-
band tolerance), an optimal approximation to these specifications can 
be designed. The approximation is optimal in the sense that, for given 
values of N, F„, F., and K, 61 (or equivalently 62) is minimum. The 
nature of the solution is such that there are three distinct classes into 
which it may belong, depending on the specific design parameters. 
These classes have been called extraripple filters,4.6 scaled extraripple 
filters,7 and equiripple filters with one less than the maximum possible 
number of ripples. The differences between these classes lie in the 
number and amplitude of the ripples in the weighted error curve. The 
weighted error curve is defined as: 

1 — H(02.1)  
0  f F„ E(eArf) =  K  (1) 

_H(ei2.1)  F. 5 f 0.5, 

where H(ei7T1) is the frequency response of the optimal filter. Extra-
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ripple filters have (N ± 5)/2 equal magnitude extrema in their error 
curves. Scaled extraripple filters also have (N + 5)/2 extrema, all but 
one of which are of equal magnitude. The third class of solution has 
(N + 3)/2 equal amplitude extrema in its error curves. Figure 2 shows 
plots of curves of transition bandwidth, AF = F, — F„, versus pass-
band cutoff frequency, F„, for two sets of conditions.' The data in Fig. 
2a show the curves for K = 1, S1 = S2 = 0.1, N = 9, and N = 11; 
whereas Fig. 2b shows the curves for K = 100, S1 = 0.01 (62 = 0.0001), 
N = 19, and N = 21. The minima along each curve are the extraripple 
filters. (For fixed values of 61 and S2, as in this figure, there are only 
(N — 1)/2 distinct extraripple filters.) The local regions around the 
minima are the scaled extraripple filters7 and the remainder of the curve 
represents equiripple solutions with one less than the maximum number 
of ripples. As will be shown in the next section, the first and last extra-
ripple filters can be obtained analytically because they are simply re-
lated to the Chebyshev polynomial of appropriate degree.8.9 
As seen from Fig. 2, as F„ varies from 0 to its maximum possible 

value, the transition width goes through a sequence of minima and 
maxima. The variation in the transition widths of the minima and 
maxima decreases as N increases. Furthermore, the variation in transi-
tion width between adjacent maxima and minima also decreases as N 
increases. In fact, except for a narrow region at the beginning and end 
of the curve, the curve of transition width versus passband cutoff fre-
quency is relatively flat over a wide range of values of F„, 62, and K. 
Figure 3 shows a sequence of three plots of transition width versus 
passband cutoff frequency for extraripple filters (i.e., only the minima of 
the curve are plotted) of length N = 101 for various values of Si and 
K. (The entire curves are not plotted because the amount of computa-
tion required for a smooth curve of such high order is inordinately 
high.) Figure 3a shows a sequence of four curves for K = 1, 61= 0.1, 
0.01, 0.001, 0.0001, whereas Fig. 3b shows the same sequence for 
K = 10, and Fig. 3c shows the sequence for K = 100. Several observa-
tions can be made from this figure. 

(i) For a wide range of values of F„, and fixed 81 and S2, the transi-
tion width of the extraripple filters is relatively insensitive to 
F,,. The larger the value of K, or the smaller the value of 61, 
the worse this approximation becomes. 

(ii) In the regions of either very small or very large values of F„, 
the transition width generally decreases. 

Based on these curves and on previous results with window designs,10 
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Fig. 2—The transition width as a function of passband cutoff frequency for two 
sets of filter parameters. 
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Fig. 3-The transition width as a function of passband cutoff frequency for 
N = 101-point extraripple filters and K = 1, 10, and 100. 

0.06 

0.06 

0.04 

0.03 

0.02 

0.01 

it seems fairly reasonable to expect some simple design relationships 
to exist between the five basic filter parameters, N, F„, F., Si, and ô, 
(or K), at least in the extreme case of the Chebyshev solution, and also 
for a reasonably large region near Fi, = 0.25. Experience in practical 
situations has shown that the number of terms needed in the optimum 
FIR low-pass filter to meet design specifications is significantly less 
than the number of terms estimated by known relationships on win-
dows.i° Therefore, the goals of this paper are to obtain approximations 
to the actual design relationships between linear-phase, low-pass filter 
design parameters and to illustrate their use in actual design examples. 
The organization of this paper is as follows. First, the design rela-

tionships for the Chebyshev solution are derived, and approximate 
formulas for the transition width in the limit of large values of N are 
obtained. Then the results of measurements on a wide range of filters 
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where the number of passband and stopband ripples are equal are 
shown. Then minimum mean-square relative error fits to the observed 
data (for large N) assuming both linear and nonlinear dependency on 
the basic filter parameters are computed. To apply the design relation-
ships for all values of N, a correction formula is derived, based on con-
sideration of the appropriate transition width of the filter. Finally, 
a set of rules is presented for going from a set of desired filter param-
eters to an estimate of the lowest-order filter which meets these 
specifications. 

1.1 Summary of Design Relationships 

Given the low-pass filter parameters F F., 81, and 62 (or, equiva-
lently, K = 81/82), the minimum filter impulse response duration, N 
required to meet the above specifications can be estimated from the 
relation 

D,,,(61, 32) — f(K)(F — F,)2 
N — -I- 1, 

— F,,) 
where 

D.(81, 62) = [5.309 X 10-8 (logy) 80' + 7.114 X 10-2 (logic, 81) 
— 0.4761] logio 82 — [2.66 X 10-8 (logia 61)2 

-I- 0.5941 (logio SI) 1- 0.4278] 

and 
AK) = 0.51244 logio K + 11.01217. 

The above relations are valid to within 1.3 percent relative error in N 
if 61 5 0.1 and 82 5 0.1. 

II. CHEBYSHEV SOLUTIONS 

Let (h(n), n = —(N — 1)/2, • • • , (N — 1)/2J be the impulse re-
sponse of the desired digital filter. (N is assumed to be odd throughout 
this paper.) The impulse response satisfies the symmetry condition 
h(n) = h(— n) to give the desired linear phase. The frequency response 
of the filter is given by 

(N-1)I2 
H(ei2Tf) = h(0)  E 2h(n) cos (21-fn).  (2) 

By making the substitution 

cos (2rf) =   

X0 — 1 \ 
2 

Ifo -F 1 \ 
2 

(3a) 
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or 
_ ( X0 ± 1) cos  (27f)  X0 — 1) 

(3b) 2  2 

the interval 0  f 0.5 is mapped to the interval Xo  x  —1. It 
is easily shown3.7 that the mapping transforms the trigonometric poly-
nomial of eq. (1) to an algebraic polynomial in x of the form 

(N-1)12 
G(x)  E b(n)x", 

ra fl 
(4) 

where the {b(n) J are straightforwardly related to the {h(n)). 
The basic filter design problem is to find coefficients b(n) [or h(n)] 

such that the weighted error of approximation is equiripple in both the 
passband and stopband. In the case when either the passband or the 
stopband has only one ripple, the solution to the filter design problem 
may be obtained analytically based on the theory of Chebyshev poly-
nomials. In all other cases, alternative techniques must be used to ar-
rive at the appropriate solution. 
Consider the Mth degree Chebyshev polynomial, T m(x), as shown in 

Fig. 4 for M = 4. The standard representation for TM(S) is 

TM(S) = cos PI cos-ix],  Ix!  1  (5) 

TM(S) = cosh [AT cosh-' x],  1 x 1 > 1.  (6) 

In the interval —1  x  1, TM(s) oscillates between ±1 and, be-
yond the value x = +1, T m(x) grows approximately as 5M  . If we define 
X0 (see Fig. 4) as the point where Tm(Xo) = (1 + 51)/62, and X, as 
the point where Tm(X,) = (1 — 60/82, it is readily seen that 32' TM(S) 
is a polynomial of the form of eq. (4) [with M =  — 1)/2] which 
is equiripple in both the passband X, S  +Xo, and the stopband 
—1  x  +1, and hence is an optimal solution to the filter design 
problem. Of course, this solution is a special ease o,f the general solution 
in that there is only one ripple in the passband, but at least it is an 
analytically tractable case from which a great deal can be learned about 
the relationships between the filter parameters. 
It is straightforward to solve for the points X, and Xo in terms of 

61, 62, and N. If we set M = (N — 1)/2, then at x = X0 > 1.0, we get 
the relation 

and 

Or 

1 ± 81 
Tm(X0) —  — cosh [/11 cosh-1 Xo]  (7) 

02 

1  1 ±  ô1 
X 0 =  cosh [ cosh  ( -'  52 ) •  (8) 
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Fig. 4—A fourth-degree Chebyshev polynomial defining the points X0 and X„. 

At x = X„> 1.0, we get the relation 

— Si 
T m(X „) = 1  — cosh [M cosh-1 X,,]  (9) 

82 

Or 
1 

X„ = cosh [ ITI  cosh-' ( 1 32 61 )i• (10) 

The inverse mapping of eq. (3) can be used to determine the filter 
cutoff frequencies by the relation 

1  _, f 2x — Xo -1- 1 1 
f = --r cos  I_ Xo + 1  j' 

Thus, F„ (corresponding to X„) and F. (corresponding to x = +1.0) 
can be readily obtained using eq. (11) with the appropriate values for 
x. In this case, the transition width (F, — F„) can be analytically de-
termined for all values of N, Si, and (52 as: 

= F. — F„ = 2--R. cos  ( 
1 [ _1 3 — X0 \ 

1 + Xo j 
— Xo + 1 )] 

(12) — cos-1 ( 2XP 1 + Xo 

1x1 _. Xo.  (11) 
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In the limit of large values of N (or, equivalently, M), eq. (12) can be 
simplified by the following approximations. First, for sufficiently 
small values of a, 

a 2 

cosh a  1 + —2 '  a « 1.  (13) 

Thus, eqs. (10) and (8) can be simplified to the form [replacing M by 
(N — 1)/2] 

X 2, 1 + 
[( N  2_ 1)  cosh-' (1  —52 51)r 

[(N 2  L-1 
2 

cosh '  
1 +  81 Y ] 2 

82  ) 

2 

The approximation is then made that for sufficiently small E, 

cos ' ( 1 —  e) 

Thus, F, and Fi, are well approximated as 

F 1  2  
8  27r L N — 1 cosh-  62 

1 1 + Si I 

F  21 21N- (N 2-1 )[ [cosh -i é 1 -I- (31  \ 82  )]2 

— [cosh-1 (1 - 81\11 1. 
82 L] (18) 

Thus, for large N (N » 1) the approximation to the transition width 
curve is given by 

AF = F, — F,  r(N 1— 1) [cosh-' (1 ± 61 ) 32 

— [[cosh-1 (1 4- 61 )] 2 [ cos h_i é  8 
1 —  81 \ ]2] 

S2  \  2  (19) 

(This approximation is valid to within 1 percent for N  51.) Equation 
(19) shows AF to be inversely proportional to (N — 1). This identical 
inverse behavior has been noted previously for filters designed by 
windowing.i° These and other considerations lead one to consider as 
a performance measure of a low-pass digital filter the quantity D de-
fined as 

D = (N — 1)AF =- (N — 1)(F. — F)  (20) 

which, in many cases, depends only on Si and 82. 
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The curves in Fig. 5 (for N = 127) show plots of performance D 
versus 20 logio (82) both for values of K = 81/82 from K = 1 to 
K = 1000 and for values of 51 from 0.5 to 0.0001. The behavior of these 
curves is as predicted from eq. (19) and from intuition about the be-
havior of D as 51 and 82 get large. It is clear that when 81 -1- 82 = 1.0 

(51 = KAK + 1), 52 = 1/(K + 1)1 then D = 0 since there is no 
transition band. In this case, the term cosh-1 (1 — (51)/82 vanishes, and 
the first and second terms in eq. (19) cancel exactly. In the limit of 
small values of (51, the second and third terms in eq. (19) are approxi-
mately equal and cancel. Thus, D is approximately of the form 

+ D  —1 cosh-1 (1 \  (21) 
7  62  / 

Since 
(x) = ln (x  (22) 

eq. (21) can be rewritten as (assuming 81 negligible) 

1 
D (ln 2 — ln 82)  (23) 

which is independent of 81. Thus, as seen in Fig. 51), in the case of small 
81, D is essentially independent of 81. 
The curves of Fig. 8 show the behavior of D for various values of 

N  127, for K = 1, 10, and 100. The values of N used for these plots 
were N = 3, 7, 11, 19, 51, and 127. The differences between the data 
for N = 127 and the data for N = 51 are relatively small. These 
curves also exhibit another interesting phenomenon. The curve for 
N = 3 saturates at a value of D = 1. This is due to the limitation that 
the transition width, àF, must be less than or equal to 0.5. Thus, the 
saturation value of D is (N — 1)/2, or 1.0 for N = 3. The larger the 
value of K, the larger the value of 82 beyond which the curve for N = 3 
saturates. 
In the case of the Chebyshev solution to the optimal filter design 

problem, a formula can be derived for the impulse response duration 
N of a filter whose response meets specified values of 81, 82, and F,. 
Since F, is not specified, this result is useful only as a first guess of 
a value of N which meets specifications on all four filter parameters. 
From the discussion given earlier in this section, f = F, when x = 1.0. 
Thus, eq. (11) can be used to solve for Xo as 

3 — cos (2rF,)  
Xo —  (24) 

1 + cos (22-F,) 
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Equation (8) may now be used to solve for N as 

--1 
2 cosh-1 ( 1 ) + 81\  

- 
82  

N - +  (25) 
cosh-' [3 — cos (27F.) 1 

1 + cos (27F.) j 

Using trigonometric identities, eq. (25) can be simplified to the form 

cosh-' (  821 -I- Si ) 

N = 1 + 
i  1  \ 
‘cos (7F,) j 

For these values of Xo and N, F, may be obtained from eqs. (10) and 
(11). If the transition width obtained is too large (too small), N is then 
decreased (increased) until the desired specifications are approximately 
achieved. (Since there is only one Chebyshev solution for fixed 61, 82, 
and N, exact values of both F, and AF cannot usually be obtained.) 
As will be seen later, eq. (26) forms the basis for estimating a lower 
bound on the filter order required to meet given design specifications 
on AF, Si, and 82. 
As mentioned earlier, Chebyshev polynomials can be used as the 

optimal solution in the case when there is one ripple in either the pass-
band or the stopband. To see how this second case can be handled, con-
sider the Chebyshev polynomial TM(x) where Tm(X0) = (1 -1- 82)/81 
and M = (N — 1)/2. As shown earlier, this polynomial represents an 
optimal filter with passband ripple 82, stopband ripple Si, passband 
cutoff frequency F,, and stopband cutoff frequency F,. Consider the 
function R m(x) defined as 

Rm(x) =-- 1 — SIT m(—x -I- X0 --, 1),  (27) 

cosh-1 
(26) 

where —1 5 x 5 Xo. An examination of the properties of RAI(x) 
shows 

(1) Rm(x) is a polynomial in x of degree M. 
(ii) In the interval Xo — 2 5 x 5 Xo, Rm(x) oscillates between the 

values 1 — 81, and 1 + S. 
(iii) In the interval —1 5 x 5 X0 — 1 — X„, Rm(x) goes from 

—82 to 82. 

If we define P, and P, as the equivalent filter cutoff frequencies, then 
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it is readily shown that 
P, = 0.5 — F 
P. = 0.5 — F 

Thus R m(s) is a polynomial with only one stopband ripple which satis-
fies the filter optimality criterion. In summary, to design Chebyshev 
approximations with only one stopband ripple, one merely makes the 
substitution 

82 = g2 

62 = 
F = 0.5 — P. 

F = 0.5 — P, 

(28) 

(29) 

and solves for an equivalent filter with one passband ripple using the 
formulas of this section. 
The data on the Chebyshev solutions provide valuable insights into 

the behavior of the design relationships between filter parameters in 
more general cases. These data and their design relationships are pre-
sented in the next sections. 

III. MEASUREMENTS OF D 

Earlier, it was shown that the transition width or, equivalently, the 
performance measure D for the Chebyshev solutions (i.e., either small 
F, or large F.) was generally significantly smaller than for most of the 
range of values of passband cutoff frequency. To obtain data on a more 
realistic set of filters, the value of D was measured for a large number of 
extraripple filters designed with the constraint that the number of pass-
band and stopband ripples were the same. In this manner, the passband 
and stopband widths were almost equal and, thus, the measured data 
would characterize the parameter set over as wide a range of values of 
82, 82, and F, as possible. Six different values of N were used including 
N = 3, 7, 11, 19, 51, and 127. Over 1500 filters were designed to 
cover the parameter range 0.00001 S 82 e 0.5, and 1 K s 500 
(K = 81/82). Figures 7a through 7i show plots of D versus 20 logo (62) 
for the nine values of K and the chosen values of N. All these data are 
presented since they are fairly general and may be useful in a wide 
variety of contexts other than this paper. (Also, their measurement re-
quired almost 3 hours of computer time on a fairly fast processor.) 
It is remarkable how similar the plots of D versus log 82 for the more 

general case of Fig. 7 are to the identical plots for the Chebyshev solu-
tions. Similar behavior for small D is expected, since D tends to 0 as 
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01 ± 52 tends to 1.0 independent of N, F,„ and F.. However, the ap-
proximately linear behavior of D as a function of log 62 and log K (for 
large N) is unexpected. Another similarity between the two cases is the 
independence of D of (N — 1) for large N. The tendency of D to 
saturate for small values of N is yet another similarity between the 
curves. The main difference between the sets of curves is that, in the 
Chebyshev case, D is approximately independent of Si for small 81. 
This behavior is not observed for the extraripple filters of Fig. 7. 
A summary of the behavior of D for N = 127, as a function of log 02 

for various values of either K or 81, is presented in Fig. 8. The values of 
Si used were 0.5, 0.2, 0.1, • • • , 0.00002, whereas K ranged from 1 to 
500 as in Figs. 7a through 7i. In some sense, this figure represents a set 
of design curves for high-degree low-pass filters. In the next section, 
we show how the data of Fig. 8 can be approximated by linear and non-
linear fits, and how simple modifications can be made to correct the 
results for values of N less than 127. 

IV. DATA-FITTING PROCEDURES 

In order to make most efficient use of the data of the previous sec-
tion in a practical design problem, it is useful to express the relation-
ships between the filter parameters in a simple manner. Since we know 
of no way of deriving exact analytical formulas, as in the Chebyshev 
case, a minimum mean-square relative error fit to the data over a re-
stricted but reasonable range was sought. Both a linear and a nonlinear 
fit to the data of Fig. 8 (N large) were obtained. Corrections for smaller 
values of N were then obtained giving a complete set of design rules. 
The data of Fig. 8 suggest that except in the region D = 0 (large 

values of 61) a simple linear fit can be obtained. The curves of Fig. 8 
were assumed to be of the form 

DLIN  = a  b logn (00  c logio K, 
a = —0.803, 

b = —1.359, 

C = —0.737. 

(30) 

where DUN is the predicted value of D. The values for a, b, and c were 
chosen to minimize the sum of the squares of the relative differences 
between DUN and D for the N = 127 data for values of 81 in the range 
0.01 a- 81; 0.01  52. The reason relative rather than absolute errors 
were considered is that a fixed percentage error in D, SD, approximately 
gives a fixed percentage error in N, ON, when transition width is held 
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Fig. 7—Plots of D versus logio ,52 as a function of N for K = 1, 2, 5, 10, 20, 50, 100, 
200, 500 for the case of extraripple filters with the same number of passband and 
stopband ripples. 
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Fig. 8—Plot of D versus log2232 for the N = 127 data of Fig. 7 showing curves for 
various values of K and SI. 

fixed, as in most design problems, i.e., 

51)  S(N — 1) SN  
D  - N — 1  - N — 1. 

(31) 

Figure 9 shows a plot of the relative error of the predicted values of 
D versus log 62 for 81 = 0.01, 0.005, 0.002,  , 0.00002. Except for 
a small region on the curve di = 0.01, the relative error is less than 1.0 
percent for the entire range of 62 and (Si considered. Based on a value of 
N = 127, a relative error of 1.0 percent in D is equivalent to an error 
of 1.26 samples in N, or approximately one-half a filter order off from 
the correct order. Errors of this magnitude are generally considered to 
be quite small, i.e., the prediction is reasonably good. 
In an effort to improve the fit and extend the range of applicability 

of the approximation, a nonlinear formula was chosen for D. Based on 
the data of Fig. 8, it was observed that the slope of the curve of D 
versus logio 62 changes nonlinearly with log 61. The simplest approxi-
mation was to try a fit which was linear with respect to log 62 and 
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quadratic in log 81. Such a fit is of the form 

DNL  = [ai(logio  a210g10 61  a] log 10 - A 2 
[a4(logio 81)2 + a6 logro Si -I- a6]. (32) 

The constants al to a6 were chosen to minimize the mean-square rela-
tive error for the N -- = 127 data over the range 0.1  Si 0.000001, 
0.1  82  0.000001, and turned out to be 

al = 5.309 X 10-3 
a2 = 7.114 X 10-2 

a3 = —4.761 X 10-1 

= —2.660 X 10-8 

a6 = —5.941 X 10-1 
as = —4.278 X 10-1. 

Figure 10 shows the relative error of the predicted value of D as a func-
tion of log 82 for values of 61 from 0.1 to 0.00002. The peak percentage 
error is 1.3 percent, and over most of the range the percentage error is 

1.5 

—1 5 

OPTIMUM LINEAR FIT 

N - 127 DATA, Np = N, 

—100  —90  80  —40 

20 L0010 (52) 

Fig. 9—The relative errors in fitting the data of Fig. 8 with a linear curve over the 
range 61 5 0.01, for various values of 61 (N = 127). 
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Fig. 10—The relative errors in fitting the data of Fig. 8 with a nonlinear curve over 
the range az 5 0.1, for various values of SI (N = 127). 

much smaller. Clearly, this prediction formula is acceptable for almost 

any design application. 
Figure 11 shows a summary of the predicted values of D as a func-

tion of stopband attenuation for a wide range of values of passband 
ripple. In this case, passband ripple in dB is defined as 

Passband ripple = 20 logio ( 1   (33) 

Stopband attenuation = —20 logio (6.),  (34) 

where 

and 

151  = 
1 + ôi 

(35) 

SI  
&8 = (36) 

1 + (51 

These data correspond to standard design data for continuous-time 
filters where the frequency response magnitude is constrained to be less 

than or equal to 1.0. 
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Fig. 11—Plots of D versus 20 logio 82 for various values of the parameter 
20 logio (1/1 — 6,), where o, = 261/(1 ± 61), as calculated from the optimum non-
linear fits to the data of Fig. 8 (N = 127). 

V. CORRECTIONS FOR SMALL VALUES OF N 

The formulas in the previous section are accurate for predicting D 
(or, equivalently, N) for values of N greater than about 51. As seen from 
the curves in Fig. 7, as N decreases, D decreases for fixed values of 52 
and K. It is also seen from Fig. 7 that the differences increase with 
decreasing 52 or, equivalently, increasing transition width. An examina-
tion of the relative deviation of DNL, the predicted value of D, from its 
true value as a function of transition bandwidth showed that, inde-
pendent of N, the deviations could be simply approximated by a curve 
of the form 

= f(K)(AF) 2,  (37) 

where D. is the correction term and f(K) is of the form 

f(K) = (0.51244 logio K  11.01217).  (38) 

(The constants in eq. (38) were again obtained by a minimum mean-
square relative error data-fitting procedure.) Thus, using eqs. (37) and 
(38), a formula for D which depends on N, K, and 82 can be obtained. 
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Adopting the notation 

(i) D., (th, K) = DNL of eq. (32)* 
(ii) .b(82, K, N) = predicted value of D as a function of N as well 

as 02 and K 
(iii) D(62, K, N) = true value of D, 

we obtain the relation 

Dœ(82, K) — .1)(62, K, N) = f(K)(.01)2.  (39) 

Thus, in a design case where 02, K (or 81), F,,, and F, (i.e., AF) are 
specified and the problem is to estimate N, the impulse response dura-
tion required to meet these specifications, eq. (39) can be used directly 
since 

D(62, K, N) = (N — 1),AF.  (40) 

Thus, combining eqs. (37) and (38) and solving for N gives 

D"'  ' (.52 K) — f(K)(AF)2 
N =   AF  +1.  (41) 

A closed-form expression for 1(62, K, N) may be obtained by sub-
stituting eq. (40) for .19(82, K, N) in eq. (39) and solving the quadratic 
equation for F. Equation (40) is then used to give .7)(82, K, N). Thus, 

we get 
f(K)(aF)2 ± (N — 1),C.F — Dœ(82, K) = 0  (42) 

(N — f(K)  ‘ 1) i I, _,_  (N — 1)2  14f(K)D.,(82, K) ) AP' =  (43) 
2 N/ "" -I-   

(N — 1)2 (.\I  4 f(K)D.,(82, K)  19(02,  1). K, N) —  2 f(K)  1 + (N — 1)2 (44) 

In the limit, as N tends to infinity, eq. (44) shows 19(62, K, N) tends to 
D.,(452, K) as expected. 
Using eq. (44), the relative error of the predicted value of D from the 

true value was measured for the data for N = 3, 7, 11, 19, 51, and 127 
with 51 S 0.1. The relative errors for values of K from 1 to 500 are 
plotted in Figs. 12a through 12f. In all cases, the worst relative error in 
D is sufficiently small that the equivalent error in N is less than one 
sample. Thus, for all practical purposes, the design equations above 
serve as a useful guide for estimating the order of the filter required to 

meet design specifications. 

*Eq. (32) gives DNI , as a function of 81 and 32 but since r52 = Kf52, it is also im-
plicitly a function of 02 and K. 
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VI. SUMMARY OF DESIGN PROCEDURES AND EXAMPLES 

Based on the results presented in this paper, it is now possible to give 
a set of rules for estimating the filter impulse response duration re-
quired to meet given design specifications. These rules are as follows: 

(i) Check if either Si or 02 is greater than 0.1, in which case the 
graphical data of Fig. 7 are used directly to estimate N. 

(ii) Calculate a value of N, call this Ni, corresponding to the extra-
ripple case where N, = N., from the equation 

Ni  = D.(51, S2) — f(K)(AF) 2 
+1, àF 

where D.(81, S2) is the optimum nonlinear fit to the data for 
large N and is given by: 

D.(61, 02) = [5.309 X 10  Elogio 8112 + 7.114 X 10-9 logo (51 
— 0.4761] logro 82 — [2.66 X 10-3 (logro (SI)2 

+ 0.5941 log10 Si ± 0.4278] 
and f(K) is given by 

AK) = 0.51244 logio (K) ± 11.01217. 

(iii) If the desired value of F„ is less than or equal to 0.04 (let us 
call this case 1), or if the desired value of F. is greater than or 
equal to 0.46 (case 2), then the estimate of N is obtained in 
rule (iv). Otherwise, the value Ni of rule (ii) is used as the 
estimate of N. 

(iv) To obtain the value of N, for the Chebyshev solution for case 
1, eq. (26) is used to get a first approximation to N,. N, is then 
systematically varied until a Chebyshev solution is obtained 
which meets specifications on o1 #52, and AF. (As discussed 
earlier, it is not generally possible to find a Chebyshev solution 
which meets specifications exactly on all four filter parameters.) 
For case 2, Si and 82 are interchanged, and F, is replaced by 
0.5 — F9, in order to solve for N, from eq. (26). In cases where 
this rule is applied, the value N obtained is a lower bound to 
the true value of Ni. No upper bound may be given in this case. 
A discussion of this problem is given below. 

Several comments are necessary about these rules before proceeding 
to some examples. The discussion in this paper has concentrated on two 
regions of the curve of AF versus F 9—the Chebyshev solutions and the 
case of extraripple filters with an equal number of passband and stop-
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Fig. 12—Plots of the relative errors in fitting the data of Fig. 7 using the corrected 
values of D for N = 3, 7, 11, 19, 51, and 127. 
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band ripples. The justification for such emphasis was the results shown 
in Figs. 2 and 3 which indicated that the extraripple solution for 
N, = N. was fairly representative of a large region of the curve of 
àF versus F,, except in the case where F, was either very small or very 
large, in which case the Chebyshev solution became important. Also, 
as seen from Fig. 2, between extraripple solutions, the curve of àF 
versus F„ peaks up. However, it is seen that in many cases one can 
"approximately" bound the maximum between extraripple solutions 
by the next lower-degree extraripple solution. Since the design equa-
tions can predict àF for this case (the next lower-degree extraripple 
solution), a good bound on N can be obtained for a reasonably large 
region of the curve of àF versus F„. In these cases, the value given by 
rule (ii) is good to within ±4 in the worst cases, i.e., large values of 
K, and generally to within ±2. 

I 

TRANSITION WI
C 

CD) 

PASSBAND CUTOFF FREQUENCY IF,0 

Fig. 13—Explanation of the types of behavior of curves of transition width versus 
passband cutoff frequency. 
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In the region of the Chebyshev solutions, however, such bounding 
procedures no longer are valid. An explanation of the difficulties which 
may be encountered is given in Fig. 13, which shows two types of curves 
of àF versus F,. Fig. 13a shows the case, discussed above, where the 
extraripple solutions of impulse response duration N — 2 are approxi-
mately midway between extraripple solutions of impulse response dura-
tion N. In this case, the next degree solution bounds the maximum àF 
between extraripple solutions. Figure 13b shows the case where the 
extraripple solutions of impulse response duration N — 2 have ap-
proximately the same values for àF and F, as the extraripple solutions 
of impulse response duration N. In these cases, there is no good bound 
on the maximum value of àF between adjacent extraripple solutions. 
The case of Fig. 13b corresponds to regions of F, near 0.0 and F. near 
0.5, i.e., in the regions of the Chebyshev solutions. In these cases, as 
discussed in rule (iv), there is only an underbound on N, and no 
overbound. 
The choice of a value of 0.04 in rule (iii) as the width of the region 

during which the behavior of N can only be underbounded was ob-
tained from the data of Fig. 3 which shows that, beyond this region, the 
variation in the values of AF for extraripple solutions is small. 
Figures 14 through 16 illustrate typical behavior of the curve of 

minimum value of impulse response duration N, to meet given specifi-
cation on ei, 82, and AF as a function of F,. Figure 14 shows data for 
the case (31 = 0.01, 82 = 0.0001, àF = 0.158. The value of N1 from 

27 

2 25 

t1.1 

61 =0.01 

.52 = 0.000' 

= 0.'58 

15  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1   

0  0.04  0.09  0.12  0.16  0.20  0.24  0.28  0.37  03(1 

PASSBAND CUTOFF FREQUENCY 1Fpl 

Fig. 14—Optimum values of N to meet given design specifications on 81, 82, and 
,ILF, as a function of P . 
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Fig. 15—Optimum values of N to meet given design specifications on 62, 62, and 
aF, as a function of F. 

rule (ii) is 21, and the values of Ne are 19 (for small F,) and 13 (for 
large F,). Over the region 0.06 < F, S 0.32, N is within 2 of the nomi-
nal value of N1 = 21. Over the entire range of F,, N is within 4 of the 
value N1 = 21. The data of Fig. 14 correspond to the case of Fig. 13a. 
Figure 15 shows data for the case Si = 0.01, (52 = 0.0001, àF = 0.032. 

The value of N1 from rule (ii) is 101, and the values of A rc, are 95 (for 
small F,) and 55 (for large F,). Over the region 0.1  F, S 0.38, N is 
within 2 of the nominal value of N1 = 101. However, in the region 
0  F, S 0.036, the value of N fluctuates from a minimum of 95 (the 
Chebyshev lower bound) to a maximum of 117. The explanation of this 
erratic behavior of N is seen in Fig. 16. Figure 16a shows the data of 
Fig. 15 on an expanded horizontal scale, and Fig. 16b shows a plot of 
the approximate curves of àF versus F, for all values of N from 95 to 
117. The heavily traced parts of these curves show the lowest-order 
solution which just meets specifications on F. From Fig. 16b, it is 
clear that in the vicinity of the first few extraripple solutions, the curves 
of àF versus F„ are exceedingly steep. Hence, a slight change in F, 

greatly increases the required order solution to meet specifications. In 
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Fig. 16—Explanation of the behavior of the data of Fig. 15 in the region 0  F„ 
5 0.036. 

these cases, it is impossible to estimate the exact filter impulse response 
duration which is required. Instead, only a lower bound can be given. 
Fortunately, as seen in Fig. 15, the regions in which this erratic be-
havior can occur are limited. 
We conclude this section with a set of examples which illustrate the 

use of the design rules. 
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Example .1: Find the minimum value of N required to meet the specifi-
cations 61 = 0.05, 82 = 0.0001, F, = 0.19, F, = 0.21. 

From rule (ii) we get N1 = 129.7 which is rounded to 129. (Herein, 
all values of N will be rounded to the nearest odd integer.) Since F,, 
is far from the range for the Chebyshev solutions, the value of 129 is 
used as the appropriate estimate. The actual filter impulse response 
duration required is N = 131, although the N = 129 filter just missed 
meeting specifications. 

Example 2: Find the minimum value of N required to meet the specifi-
lcations 81 = 0.01, 82 = 0.0001, F,, = 0.213, F, = 0.373. 

From rule (ii) we get N1 = 19. Since F „is again out of the range of 
the Chebyshev solutions, the value 19 is used as the estimate of N. 
The actual filter impulse response duration required is N = 19. 

Example 3: Find the minimum value of N required to meet the specifi-
cations di = 0.1, 82 = 0.1, F, = 0.12, F, = 0.19. 

From rule (ii) we get N1 = 11. Since F,, is out of the range of the 
Chebyshev solutions, the value 11 is used as the estimate of N. The 
actual value of N is 11. In this case, it is interesting to note that the 
value of N, for the Chebyshev solution is also 11. This example points 
out that, for filter specifications leading to small values of N, there is 
very little variation in the actual value of N as F, varies. This observa-
tion has been made earlier with respect to Fig. 14. 

Example 4: Find the minimum value of N required to meet the speci-
fications 81 = 0.01, 32 = 0.0001, F,, = 0.36, F, = 0.497. 

From rule (ii) we get N1 = 23. Since F, is within the bounds of rule 
(iii) (case 2), A r c is computed from rule (iv) as 13. The actual value of 
N is 19. In this case, the lower bound is within three filter orders of the 
true solution. 

VII. SUMMARY 

This paper has presented a wide variety of data on the relationships 
between design parameters for optimal low-pass FIR linear-phase digi-
tal filters. Analytical formulas were derived for the Chebyshev solu-
tions, i.e., when there was only one passband or stopband ripple. Ap-
proximate fits to the data using nonlinear relationships between tiF, 
N, th, and 152 were given in the case where the number of passband and 
stopband ripples was equal, and it was argued that these relationships 
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were valid over a wide range of values of the filter parameters. Finally, 
a simple set of rules for estimating the minimum value of N, which 
meets given specifications on F, F8, 61, and 62, was discussed. Examples 
were given to illustrate the application of the rules. 
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Loss, coupling, and delay differences among the modes of multimode 
fibers influence their response to intensity-modulated optical signals. This 
"baseband" response is derived here from a time-dependent continuous 
description of the power flow in the fiber. Particular attention is given to 
the output as a function of angle and to the impulse response, its width 
and symmetry. We find that coupling narrows the impulse response 
but, at the same time, causes additional loss. Under practical condi-
tions, this loss may limit the usefulness of coupling for the purpose of 
reducing the mode dispersion. We calculate a possible data rate of 12 
Mb/s for a 10-km repeater spacing and an effective numerical aperture 
of 0.1, but we show that further improvements can be gained from an 
optimization of the coupling characteristic and of other parameters. 

I. INTRODUCTION 

Although single-mode operation of clad optical fibers is possible and, 
in general, offers very good transmission characteristics, multimode 
fibers have two advantages: They impose less stringent requirements 
on the optical carrier (they transmit even the incoherent light from 
a luminescent diode) and their larger dimensions alleviate splicing 
problems or at least relax the tolerances required for connection. 
Typically, the core diameter is of the order of a hundred wavelengths 
and the fiber therefore transmits thousands of modes, even if the index 
difference between core and cladding is only a few percent (corre-
sponding to a numerical aperture of 0.2 to 0.3). 
The usefulness of such fibers depends on their dispersion characteris-

tics. Delay differences among the many modes' distort the signal and 
certainly produce a signal response inferior to that of the single-mode 
fiber. For certain systems, on the other hand, overall system economy 
may place the desirable information rate of individual fiber channels 
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in a range where the characteristic signal response of multimode fibers 
is adequate (below 100 megabits per second, say). In such systems, 
multimode operation would surpass single-mode operation because of 
the advantages mentioned earlier. 
Effective use of the multimode fiber would presuppose the excitation 

of a large number of modes right at the input with the objective of 
transmitting all of these modes to the receiver. Experiments that have 
approximated these conditions have revealed a rather intricate re-
sponse to short input pulses both in liquid- and solid-core multimode 
fibers.2.3 For example, the width of the output pulse did not increase 
linearly with fiber length, but showed a less-than-proportional increase 
for long fibers. Coupling among the modes and a dependence of loss on 
mode number seemed to play a part.' In some fibers, this resulted in an 
optimal mode distribution (causing lowest overall loss) which com-
prised only a fraction of the modes capable of propagating. Measure-
ments of the coupling strength showed that a total exchange of power 
between two modes was likely to occur within less than a meter of 
fiber. 5 This result made it clear that a perturbation theory depending 
on small coupling rates was not applicable. A closed and unrestricted 
description was achieved by assuming a modal continuum rather than 
thousands of individual modes. In this theory, mode coupling took the 
form of a diffusion process not limited to small coupling amplitudes. 
The work discussed here extends the approach outlined in Ref. 5 by 

taking the velocity differences among the modes into account. We first 
consider fibers in which the optimal (steady-state) mode distribution 
does not include modes close to cutoff. The power in the fiber is calcu-
lated as a function of time and output angle (mode number) for the 
case of a short input pulse. Particular attention is given to the "fiber 
impulse response" obtained by integrating over all angles at the out-
put. A simple formula relates the output pulse width to the fiber length 
and to the attenuation and coupling parameters. The latter can be 
measured in short samples (a few meters in length) permitting the 
immediate computation of the pulse broadening in a long fiber and, 
hence, of the obtainable data rate for a given fiber length. 
The results may also shed some light on the prospects of mode cou-

pling introduced artificially as a means of equalization: It has been 
predicted that, under certain circumstances, increased mode coupling 
reduces the signal distortion (ultimately forcing all energy to propagate 
at an average velocity).6.7 The objective of this paper is to outline an 
analytic approach which can answer these and other questions. 
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II. TIME-DEPENDENT PO WER FLO W EQUATION 

The differential equation obtained in Ref. 5 for the power flow in 
multimode fibers was originally derived from the mode characteristics 
by assuming certain statistics for the modal field coupling. By making 
some approximations acceptable for high-order modes, a description 
results which admits a simple ray-optics interpretation. Each high-
order mode can be represented by a characteristic ray propagating 
inside the core along a meridional zigzag path. Internal reflection guides 
the rays at the core-cladding interface and limits the range of angles 
which can be formed with the guide axis. If n and ?lc are the indices of 
core and cladding, respectively, and 

A =  
n 

(1) 

is a small difference, the maximum angle is given by the condition of 
critical internal reflection which is approximately 

e rr i mix --=  (2) 

The rays form a uniform distribution within the cone of apex angle 
Onallx• 

If the core cross section permits many modes to propagate, the rays 
are so densely spaced that their distribution can be considered as con-
tinuous. The state of the fiber at a point z and at time t can then be de-
scribed by a distribution P(0, z, 1) where 0 is a continuous variable.* 
Reference 5 expresses the incremental change dP in the power P as 
a sum of two terms: 

(i) A loss — A.02Pdz; this term comprises attenuation effects in the 
cladding and the core-cladding interface and increases as the 
square of the characteristic angle O. The coefficient A is measured 
in m-1 rad-2. 8-independent loss is omitted, but can easily be 
incorporated later in the final solution. 

(ii) Mode coupling; in practical multimode fibers, coupling was 
found to occur essentially only between closely adjacent modes 
and, for this reason, takes the form of a diffusion process in the 
ray picture. The incremental increase in P(0, z) as a result of 
diffusion is (1/0(a/8e)(eDaP/a0odz, a term typical for radial 
diffusion in cylindrical configurations. D is a coupling coefficient 

* e is related to the transverse wave number u of the corresponding mode by 
u = nice where k is the vacuum wave number. 
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which, for most of the following discussion, is assumed to be 
independent of O. 

The total variation in P thus becomes 

1 a 
dP = - i102Pdz  - ao  — (or 9Ç) ) dz.  (3) 

0  ae 

If P is a function of time t, we can also write 

aP  a 
dP = —az dz  P dt.  (4) 

at 

Equating (3) and (4) and dividing by dz results in the equation 

aP  dt aP -le ( 0D (2F1)0) •  (5) 
az  dz at 

The derivative dz/dt is the velocity of the power P(0) or, equiv-
alently, the group velocity of a mode with characteristic angle O. By 
using the relation between O and the transverse wave number u, we 
can calculate this velocity from eq. (25) of Ref. 8. Except for the few 
modes close to cutoff, we obtain the simple relation 

dz 
dt  n(1 + 02/2) 

It relates the mode velocity to the vacuum light velocity, c, reduced by 
n because of the material retardation and by a factor 1 -I- 02/2 which 
accounts for the increased path length as a result of the zigzag propaga-
tion. The derivative dt/dz required in (5) is the inverse of (6) and has 
the meaning of a delay per unit length. If we ignore the delay n/c 
common to all modes (it can be added later if necessary), we obtain 
from (5) and (6) 

= -A02/3 - -  —  - —  — ) • 
2c  at  e ao(  80 

8P 

With the help of the Laplace transformation 

poe 

p(0, z, s) =I  e-"P(O, z, t)dt, 
Jo 

we can write (7) in the form 

az 
aP = _A a.202p ±  :0 (AD 

o—  a° 

= (1 + ns/2cA)i. 
where 

(6) 

(7) 
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Except for the factor u2, (9) agrees with (22) of Ref. 5; we can there-
fore use the solution derived there if we replace A by Au'. For the 
Gaussian input distribution 

we obtain 

where 

and 

with 

and 

pia = f(0,  exp (_02/e0)2'  (11) 

P(O, z, 8) = Az, 8) exp —02/82(z, 8)]  (12) 

\ 0-0: -I-  tanh try.oz 
=  Cr e . ± crEn tanh cr7.z 

f(0, s)cr e! 
Az, 8) —  (14) sinh my.,z  craî cosh sry.z 

= (4D/A)i  (15) 

= (4DA)i.  (16) 

(13) 

For cw excitation (s = 0), the angular width 0(z, 0) changes mono-
tonically from e. to e., as z increases. The width t,. characterizes 
a distribution which propagates unchanged (at steady state) and with 
the minimum overall loss coefficient 7.. It seems practical to excite 
this distribution right from the beginning. The condition 00 =e., 
will therefore receive particular attention in the following. The solu-
tions (12) through (16) assume that e. and O,. are so small compared 
to Umax = -‘irà that practically no light propagates at angles close to 
the critical one. In other words, modes close to cutoff do not take part 
in the transmission process. Experiments have shown that the steady 
state in certain liquid-core fibers (C2C€4 in quartz, for example) is of 
that type. 
Closed-form Laplace transformations of (12) exist only for the 

approximations given in the limits z « 1/-y., and z» 1/-y., and these 
two cases are discussed in Section III. Certain important character-
istics of P(O, z, t), however, can be derived for all z, as we shall see in 
Section IV. 

III. CLOSED-FORM SOLUTIONS FOR THE IMPULSE RESPONSE 

In a practical communication system, the multimode fiber is likely 
to be fed with a pulse F(0, t) whose width is typically of the same order 
as the broadening expected in the fiber. Its Laplace transform f(0, s), 
appearing in (12) and (14), and its dependence on s therefore cannot 
be ignored. We assume, however, that the input is simultaneous in all 
modes being excited, in which case O. is independent of s. Sacrificing 
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generality for clarity, we restrict this discussion to the practical input 
condition Bo = 9,0; the general case can be treated in exactly the same 
way, but leads to more complicated results. 
In the case of a short fiber, we replace sinh cryz,z and tanh crycoz in 

(13) and (14) by the argument cry,oz and set cosh 0--N0z = 1. With the 

help of (10), (15), and (16), (12) then becomes 

e' 8) 1 ± 700z exP  [ —0, (  n2zcs)] 
f(0, s)  

which has the Laplace transform 

exp (—O M) z, t) =  F(0, t — n02z/2c).  (18) 
1 + 

The denominator 1 + -Not expresses the loss in the short distance 
z; exp ( — e2/ BD indicates that the input condition has been conserved, 
and F(0, t — nez/2c) shows that the portion of the input pulse F(0, t) 
which propagated at an angle O was delayed by n92z/2c. Clearly, 
coupling has not affected the propagation at this distance. 
The total output is obtained from the integration6 

00 

q(z, s) = 2ir f p(0, z, s)OdO. 

(17) 

(19) 

For z« 1/y, we obtain with (17) 

11(0, s)cq.   
q= (1 + -y.z)(1  nœzs/2c)  (20) 

If we now set f(0, s) = 1, which corresponds to an infinitesimally 
short input pulse of energy 1, the Laplace transformation of (20) yields 
the impulse response of the fiber: 

2C71" 
Q(z, t) —   exp ( —2ct/ (  n0z).  (21) 

nz1  -ye° z) 

The assumption of a mode continuum has the consequence that the 
impulse response is a continuous and well-behaved function, in spite 
of the somewhat artificial condition of an infinitesimally narrow input 
pulse. That Q extends mathematically to infinity results from the as-
sumption of the unbounded distributions (11) and (12). Remember 
that this assumption was acceptable since Bo = B00 < 0.„,„. The same 
condition limits Q(t) practically to a time interval narrower than 
n0,o1z/2c, which is the delay between the fastest and the slowest mode. 
Since (18) and (21) neglect mode coupling, they could have been ob-
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Fig. 1—Impulse response according to (24) normalized for equal peak values and 
plotted versus normalized time for different fiber lengths. 

tamed without the help of the power flow equation. They were derived 
here merely for a better understanding of the physical implications 
involved. 
In the case of a very long fiber, we may use the approximation 

tanh cr-y.z = 1 and sinh crye,a = cosh cryz = exp oz in (13) and 
(14). Equation (12) thus assumes the form 

2cr  
P = 1 + o. exp  0(O2/ e + -r.z)]  (22) 

2r e:  
q = 1 +  exp (—o—y.z)  (23) 

where p is integrated over all angles O with the help of (19). After intro-
ducing (10) for cr into (23) we can form the Laplace transform of q(s). 
By using the condition 7.„z > 1, we arrive at 

where 

Q(z,  \ t  1\ -1 Tt  exp  .Y2.2277  t 41  T)  (24) 

n  n 02 
2cA  2c (25) 
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An evaluation of (24) is shown in Fig. 1 for various normalized lengths 
7.z. The plotted impulse responses are normalized for equal peak 

values. 
The normalizing distance 1/7 is the distance within which a 1-neper 

loss is incurred as a result of the 0-dependent loss characteristic. Note 
that additional 0-independent loss can be present. As indicated by (21), 
T is the 1/e-width, which the impulse response Q would assume at the 
distance 1/-y. if no coupling were present. Closed-form solutions for 
Q are available only in the two cases discussed here, but another very 
practical characterization of the fiber output distribution can be ob-
tained without performing the Laplace transformation, 

IV. PULSE DELAY AND PULSE WIDTH 

Because of a general relation between P(t) and its Laplace transform 
p(s), we obtain the mth moment of P(t) from 

amp 
( —1)"' asm = f tmPdt. 

a 

To achieve a suitable normalization we set m = 0 which yields 

p(s = 0) = f Pdt 
o 

and divide (26) through (27). This leads to 

where 

( —1) an'Mp 'n 
asm 

0 

I 

(t — (5)̂sPdt 

fPdt o 

(26) 

(27) 

(28) 

(-1)Pdt 
& _  o   atnpl  (29) 

as I s_o* 
f o Pdt 

The second derivative represents the variance of P(t) and, hence, 
a measure of the width of P(t): 

_ f  (t — 6)2Pdt 
2  0   a2trtp 

as2 
Pdt 

Jo 
a-0 

(30) 
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The third derivative 

= f(t — (5)3Pdt o   (33€np 
773  

a Pdt 883 - 
(31) 

is generally called the "skewness" of the distribution P(t). The ratio 
77/7- is a measure of the asymmetry of P and, as we shall see later, per-
mits an immediate estimate of the value of 7.z without the knowledge 
of any other fiber parameters. 
The fact that the Laplace term ns12c appears in (9) as part of the 

sum A0-2 -= A + ns/2c permits us to use the relation 

amp(, z, s) =  1\m amp(O, z, 0) 
(32) 

Os"'  18=0  2c)  Mm ' 

which will greatly simplify the following calculations. 
Let us now apply (30) and (31) to the general solution (12) assuming 

again the special but practical condition 000 = ecc. We obtain 
02 

10) =  [-y.z  —  (1 — e-2 )]  (33) 

for the mean delay (in addition to the overall delay nz/c) and 

02 5  02 
p(0) =  -4) —2y,z (2 -s-2  — 1) e-2 7.2 

e-27.. _ (17:,e; _ .41) e_47.]  (34) 

for the half-width of the pulse. Figure 2 shows op and T p plotted as 
a function of 7.z for O = 0 and O = 0o. At first, a replica of the input 
pulse (T = 0) propagates in every mode without broadening and 
merely suffers a mode-dependent delay ne/2c, as we learned already 
from (18). Very soon, however, the pulses in the individual modes 
widen; they begin to overlap even before the length 1/7, is reached. 
Once 1/7,,, is passed, the pulse width in all modes increases mainly as 
T(7.z)i. Compared to this increase, delay and pulse width differences 
in different modes become negligible since they cease to increase for 
large z. Specifically, 

and 

sp(e) = TI — for 7,z » 1  (35) 

p(0) = —T (7.z —  )¡ for -y.z >> 1.  (36) 
2  4  OU 
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Fig. 2—Delay and time spread of the fiber output on axis and at an angle O  

1.6 

To calculate delay and width of the impulse response Q(t), we must 
first apply the integration (19) to the general solution (12). This yields 

q =  sinh cry,oz + cosh cry.,z)-'.  (37) 

Now, by forming the first and second derivative of q according to (27) 
and (28), we obtain 

1 
e5Q -=  [- z  — (1 —  

2  2 
and 

(38) 

3  1 
7-42 — [7.z(1 — 2e-'7-z)  - —  e_47.].-  (39) 

2  4  4 

The ratio T/T is shown in Fig. 3 plotted versus the normalized fiber 
lgangth 7.z. For z « 1/7., the width T approaches T-y.z, as expected 
for negligible coupling. At z = 1/47., r begins to follow a new 
asymptote 

= (17 2) (7*D Z)  (40) 

The quality of the approximation (40) is amazingly good even for 
small z. 
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Fig. 3—Relative width of the impulse response plotted versus the normalized 
fiber length. The two straight lines show the asymptotic behavior for very short and 
very long fibers. 

The amount by which r deviates from Py.,,z indicates the (desirable) 
effect of coupling: The width of the impulse response increases less 
with coupling than without,' the increase being proportional to zi 
rather than z. 

V. SOME GENERAL RESULTS FOR LONG FIBERS 

The simple approximation (40) can be obtained directly from (23) if 
cr in the denominator of that equation is set equal to unity. In this case, 

q = ret exP — crYoz)  (41) 

independent of the input condition. By applying (32) to the approxi-



812  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1973 

mation (41), we obtain 

L. tinQdt ...  (n V.  am  
I - Qdt  2c) aAm .   

( -y.z)  (42) 

where Q is the inverse Laplace transform of q(s) and hence the impulse 
response as before. Equation (42) is an important and powerful rela-
tion which permits us to calculate all moments of the impulse response 
from the steady-state loss coefficient of the time-independent power 
flow equation. 
If we let m = 2 in (42), we obtain (40) as expected. For m = 3 we 

have 
T 

77 = 2 (3z7e)à  (43) 

which according to its definition (31) describes the "skewness" of Q(t). 
The ratio 

n/r = (9/7.z) 1/6 (44) 

is a measure of the asymmetry of the impulse response. For large z, 
17/r approaches zero and, hence, Q(I) becomes a symmetric function. 
We can compute this function by introducing t = t' + Py.0z/2 with 
t' « 717.4/2 in (24). The impulse response 

Q(t) -= Ot(2/r/yz)i exp ( --y,oz — 2t"/T17.z)  (45) 

is then Gaussian in time with the variance r of (40). 
The asymmetry parameter (44) can be used to determine 7.. Par-

ticularly if merely the order of magnitude of 'Y. is of interest, this can 
be obtained, with some experience, from a quick look at the asym-
metry of the impulse response. 
Another conveniently measurable fiber characteristic is the angular 

width 9., of the steady-state mode distribution. It can be obtained 
from a scan of the (angular) far-field distribution at the end of a long 
fiber (z > 1/7.). If we define the effective numerical aperture NA of 
the fiber as the sine of the apex angle of this cone of radiation (measured 
at the 1/e-points of the intensity), then 

NA = n sin 0.0 ••••-• n19...  (46) 

Using (15), (16), (25), and (40), we can now write the width of the im-
pulse response as 

r (NA) 2 —  2nc (z/ 47.)i. (47) 



OPTICAL MULTIMODE FIBERS  813 

This formula clearly shows the improvement, and the penalty, that 
results from coupling. Uncoupled, uniformly attenuated modes cause 
the impulse response to broaden to an effective width of z(NA)2/2nc 
in z km of fiber. This width can be reduced by a factor (47.z) in ex-
change for an increase in the overall attenuation by 4.35y. dB/km. 
The physical contents of these results can best be summarized if we 

define a "coupling length" L = 1/4'y.. As shown in Fig. 3, this length 
marks the point at which the width of the impulse response changes 
from a linear to a square-root dependence on length. Together with this 
change, the impulse response undergoes a transition from the exponen-
tial shape (21) to the Gaussian shape (45). The inverse of the coupling 
length (in km) is very nearly equal to the excess loss (in dB/kin) in-
curred because of the coupling phenomenon. 
Equation (47) as well as the previous results are limited to fibers in 

which the coupling coefficient D is independent of O. The study of 
liquid-core fibers, on the other hand, has given us reason to believe 
that, in some fibers, D decreases with increasing O. This characteristic 
could have a desirable effect on the impulse response and the excess 
loss, since it reduces the power flow toward the lossy modes (large 
angles) while, at the same time, enhancing the coupling among all 
other modes. We therefore studied the general case 

D(0) = D00,  is = 0, 1, 2, ... ,  (48) 
in some detail. 
The steady-state parameters Q. and 7., can be obtained as general 

functions of A, D., and y by using the Rayleigh-Ritz procedure. Due 
to (42), twofold derivation of 7 with respect to A then yields directly 
the effective width of the impulse response. This calculation leads to 

T = (NA)2  [z/(4 ± v)-Y.,]i  (49) 
2nc 

where NA -= n8, denotes the effective width of the output radiation 
as before. For is -- 0, (49) reduces to (47). An exponent Y > 0 indeed 
narrows the impulse response, although not very significantly. For 
D = Do/et for example (a strong angular dependence indeed), T is 
only 0.7 times narrower than in the case D = const. 
Another limitation of these results is the requirement that 

0. « (2g) i. If this is not the case, the steady-state distribution is 
generally determined by a sharply rising loss term at 0,„.. = (2g)i 
rather than by the quadratic term A02. Under these conditions we find 
that the functional relation (47) still holds, although with different 
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coefficients, so that for practical distributions D(0) the width r can be 
up to three times smaller than indicated by (47) or (36). 
As a typical example, we shall use (36) to compute the data rates 

achievable. Let us assume that we had means to design and manu-
facture a coupling structure in the fiber which produced the desired 
excess loss 7,,, and the desired numerical aperture. For simplicity we 
assume the input pulse to be somewhat narrower than the fiber impulse 
response so that (36) gives a good measure of the half-width of the ex-
pected output pulse. We then choose a data rate 

B = 1/2r.  (50) 

We assume the core loss common to all modes to be 4 dB/km and al-
low 50 dB of loss between repeaters. 
Using (36) we can then calculate the excess loss and the repeater 

spacing necessary for a desired data rate. These results are plotted in 
Fig. 4. A 1-dB/km excess loss decreases the possible repeater spacing 
by only 25 percent but, at the same time, triples the data rate. An at-
tempt to further increase the data rate by even more coupling is costly: 
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Another threefold increase in the data rate requires 4 dB/km excess 
loss, and divides the repeater spacing in half. The results of Fig. 4, of 
course, are based on a uniform coupling distribution and an excess loss 
increasing as O. As mentioned earlier, more favorable distributions 
could result in an impulse response permitting a higher data rate, al-
though there may be practical limitations to the extent of this 
improvement. 

VI. CONCLUSIONS 

The description of fiber modes by a continuum results in a partial 
differential equation whose solution yields the response function of the 
fiber. We find a characteristic length indicating the region in which the 
impulse response changes from an exponential to a Gaussian shape. 
Beyond this length, the width of the impulse response increases only as 
the square root of the fiber length. In practical fibers, the inverse of 
this length turns out to be proportional to the excess loss incurred be-
cause of the coupling phenomenon. The latter may represent a prac-
tical limit to the improvement that can be gained from coupling. As 
an example, we find a data rate of 12 Mb/s achievable for 10 km re-
peater spacing and an effective numerical aperture of 0.1. The data 
rate is inversely proportional to the square of the numerical aperture. 
Thus half the numerical aperture permits a fourfold increase of the 
data rate. Another increase of the data rate without a penalty in loss 
or numerical aperture is theoretically possible by artificially creating 
a more suitable coupling characteristic in the fiber, but it seems that 
the technological requirements for doubling or tripling the data rate 
in this way are high. 
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This paper presents a comprehensive theory of mode coupling in 
optical fibers with imperfections. The paper begins with the derivation of 
a general coupled wave theory based on the modes of the ideal fiber. The 
general theory is applied to a simplified description of guided and radia-
tion modes of the fiber that is valid for small core-cladding index differ-
ences. The simplified theory results in expressions for the coupling coeffi-
cients that are nearly as simple as those of the slab waveguide. As an 
example, the theory is applied to the calculation of radiation losses caused 
by pure core diameter changes and by elliptical deformations of the fiber 
core. 

I. INTRODUCTION 

Dielectric optical waveguides support a finite number of guided 
modes and an infinite number of radiation modes.' Even if the number 
of guided modes that can be supported by the waveguide is reduced to 
one, the presence of the infinite number of radiation modes forces us 
to be concerned about mode conversion phenomena. Coupling among 
the guided modes of a multimode optical waveguide (multimode wave-
guide refers to the guided modes) is caused by imperfections in the 
refractive index distribution or the geometry of the optical waveguide. 
Its effects may be beneficial for reducing the delay distortion that re-
sults from uncoupled multimode operation.2.3 Coupling between guided 
modes and the continuum of radiation modes is usually not desired 
unless the waveguide is intended to serve as an antenna. However, a 
certain amount of coupling is unavoidable and results in scattering 
losses.'.4.5 
E. G. Rawson has calculated light scattering from fiber waveguides 

with irregular core surfaces by an approximate technique.' However, 
his method is not suitable to calculate coupling between guide modes. 

817 
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A theory of radiation losses in round optical fibers has been presented 
in Ref. 7. This theory was based on a field expansion in terms of the 
exact modes of the fiber. Because of the complicated mode fields, a 
theory based on the exact modes of the guide is very tedious and re-
sults in equations whose numerical evaluation is difficult and costly. 
However, Snyders and Gloges have shown that the description of the 
modes of dielectric waveguides can be greatly simplified if it is assumed 
that the difference of the refractive indices of core and cladding is only 
very slight. This assumption allows an approximate treatment of the 
mode problem, resulting in very much simpler field expressions. The 
coupled mode theory based on approximate modes yields expressions 
for the coupling coefficients that are almost as simple as those for the 
slab waveguide. The entire coupled mode theory thus becomes simpler 
and its numerical evaluation becomes cheaper. 
This paper starts out with a derivation of the coupled wave equations 

in terms of modes of the ideal guide. This mode description is somewhat 
different from the coupled mode theory in terms of local normal modes 
used by Snyder.'°,11 It results in simpler expressions for the coupling 
coefficients. The exact coupled mode theory is then applied to the 
problem of coupling between the simplified waveguide modes. We limit 
the discussion to coupling caused by changes or imperfections in the 
waveguide geometry. Coupling caused by refractive index inhomo-
geneities, which could be handled in a similar fashion with the use of 
the exact expressions for the coupling coefficients and the approximate 
mode description, is not discussed in this paper. 
Finally, we apply our results to the problem of scattering losses of 

guided modes caused by diameter changes and elliptical deformations 
of the waveguide core. We also derive simplified expressions for the 
coupling coefficients between guided modes far from cutoff and discuss 
coupling between guided modes caused by deformations of the fiber 
core and by curvature of the waveguide axis. 

II. EXACT COUPLED MODE THEORY 

The dielectric optical waveguide with imperfections is defined by 
a certain refractive index distribution n = n(x, y, z) that enters 
Maxwell's equations: 

V X H = iree JOE  (1) 

V X E  —  (2) 

E and H are the electric and magnetic field vectors of a general field 
distribution in the waveguide. The fields are assumed to have the time 
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dependence eibit, with radian frequency co; Ea and go are the vacuum 
values of the electric permittivity and magnetic permeability. In addi-
tion to the refractive index distribution n of the real waveguide, we 
consider the index distribution n, that defines an ideal guide from which 
the real guide deviates in some way. 
We decompose the fields into their transverse and longitudinal parts. 

The electric field is thus represented by the equation 

(3) 

and the magnetic field is given by 

H =  + H..  (4) 

By using a similar decomposition of the V operator (ez is a unit vector 
in the z-direction), 

a 
V = V,  ez (5) 

Maxwell's equations can be written in the form 

V, X H. ± (e. X  = itde0n2E,  (6) 

and 

V, X E. -I- (e. X —a—aEzt) = 

The longitudinal field components are expressed in terms of the trans-
verse field components 

and 

1  
E. = z.cof on2 V, X H, 

H, = — . 1 V, X Eg. 
20)14 0 

(7) 

(8) 

(9) 

The modes of the ideal waveguide with index distribution n 0(x, y) are 
defined as solutions of the equations 

V, X 3Cps — ier(e. X 3C,,)  icoeongzi (10) 
and 

V, X 8 — e,(e. X 8,t) = (11) 

The index 1, is a mode label and ,3„ is the propagation constant of the 
pth mode. The longitudinal components of the mode fields are similarly 
expressed as 

1  ,r , 
Sys —  •  2  t 

tweono 
(12) 
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and 
1 0 

3Cps =  •   V  c,,q•  (13) 
uogo 

The transverse field of the waveguide with the index distribution 
n(x, y, z) is now expressed as a superposition of modes of the ideal 
waveguide. 

and 

Et = E a,,Cyt (14) 

= E b, C,,.  (15) 

The summation symbol in (14) and (15) indicates summation over 
guided modes and integration over radiation modes. Indicating the 
index v by the symbol p in case that it belongs to the continuum of 
radiation modes, we have to replace 

E Ef dp.  (16) 
o 

The sum in front of the integral on the right-hand side of (16) indicates 
a summation over the various types of radiation modes. 
For the derivation of coupled differential equations for the expansion 

coefficients ao and b, we need the orthogonality relations of the modes 
of the ideal waveguide. 

—..e.-(C X 3C,„*,)dxdy = 2 ,13",  
le pl 

(17) 

The asterisks indicate complex conjugation. The symbol 8,,,‘ indicates 
Kronecker's delta for discrete values of ii and g; it is zero if one of the 
indices labels a guided mode while the other labels a radiation mode, 
and it becomes Dirac's delta function if both indices label radiation 
modes. 
The series expansions (14) and (15) are now substituted into the 

equations (6) through (9). Making use of the fact that the mode fields 
satisfy the equations (10) through (13), we obtain 

{(cTz. 
db,  (e. X 3e„,) — ico€0(712 — n)a, t} = 0  (18) 

and 

1 
{( da,  ¡Sib.) (e X C,e)  b,,Ve 

udEo 

ri  \ x  - 72) (vt  = 0. (19) 
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We take the scalar product of (18) with El and of (19) with Jest. After 
integration over the infinite cross section, we obtain with the help of 
the orthogonality relation (17) 

u db 1:j• ± it  2 E R.„„ a„  (20) 

and 

da,, b = 2 E k ,b,  (21) 
dz 

with the coupling coefficients 

K " 13 J I0.1 f  2  * (n — no) E,‘, • t,.Édxdy  (22) 
4iP  , ,  „ 

and 

k„ — Ir31+ /0 *  Tr 

4iw€ oP  - 
x _ 1.) yt X Kvel dxdy. 

n2  (23) 

Equation (23) can be brought into a simpler form with the help of (12) 
and by performing a partial integration 

we. 10.1  no 
—  (n2 —  6:8• Epidxdy.  (24) 
2 

4iP 0: 

Finally, we introduce the amplitudes 4+) and c,(,-) of forward and back-
ward traveling waves by means of the transformation 

au  =  4_)e„„.  (25) 

bp = 4+)e-cia — 4,-)e5o.  (26) 

Substitution into (20) and (21), addition and subtraction of the result-
ing equations, and regrouping of terms results in the desired coupled 
wave equations 

dz = E {Ke•+)c,+)ei(19P-Imz  Ke.-)e )ei(0P-Elmg I  (27) 

and 

dc,(4-) E  + (28) 
dz 

The coupling coefficients are defined as 

oe  2 O  * 
K (g)  ==  (n2 — n { Ia) p — P gw• Ept 

4iP  OP 
IS pi  * •gp.}dxdy.  (29) 
0: n2 
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The factors and superscripts p and q indicate the symbols (+) or ( — ) 
or the corresponding factors +1 and —1. The propagation constants 
,3„ are positive quantities. The coupled wave equations (27) and (28) 
provide an exact description of the imperfect waveguide in terms of 
normal modes of the perfect guide. The use of normal modes of the 
perfect guide results in the simple general form (29) for the coupling 
coefficients. 
Our coupled mode theory can be applied to any type of waveguide 

problem such as waveguides with refractive index inhomogeneities, 
tapers, or bends. It may be that the expansion in terms of ideal modes 
of the waveguide does not provide the most convenient basis for some 
problems. For the description of tapers, for example, we face the follow-
ing situation. Consider a waveguide which is perfectly straight and uni-
form up to a point where its cross section begins to increase. After 
some distance, the taper connects to a uniform waveguide of constant 
cross section. If we use the modes of the smaller guide for our mode 
expansion, we see immediately that the coupling coefficients have non-
zero values not only on the taper itself but also throughout the entire 
waveguide of larger cross section. Even though our description is 
precise and yields the right answers, it is inconvenient for the problem 
at hand. It would be far better to use so-called local normal modes that 
do not themselves describe wave forms in any real waveguide but corre-
spond at each point z along the nonuniform guide to the modes of 
a hypothetical uniform guide whose cross section coincides locally with 
that of the waveguide under study. Using local normal modes results 
in coupled wave equations of the form (27) and (28) but with different 
coupling coefficients. In case of the taper, these coupling coefficients 
would be nonzero only on the taper itself but would vanish on the uni-
form waveguide sections. Local normal modes are obviously better 
suited for the description of tapers. For the description of waves in 
bent waveguides it would be most convenient to use modes that locally 
correspond to a straight waveguide whose axis is tangential to that of 
the actual guide. In addition to these problems of convenience, there 
exist problems of convergence of the series expansions (14) and (15). 
A series expansion in terms of ideal modes may converge more slowly 
than an expansion in terms of local normal modes. However, we shall 
see that we can use the series expansion in terms of ideal modes to treat 
most problems of waveguides with only slight refractive index differ-
ences between the core and cladding materials. In addition, it is usually 
possible to guess the form of the coupling coefficients of a particular 
expansion from the coupling coefficients for the ideal mode expansion. 
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For the purposes of this paper, we restrict ourselves to the descrip-
tion of waveguides with piecewise constant refractive index distribu-
tions and allow only deformations of the cross section of the waveguide 
core. Figure 1 shows a typical waveguide imperfection. The refractive 
index distributions n and n0 coincide inside of the core and in the clad-
ding region. They differ only near the core-cladding boundary. If the 
boundary has moved outward from its ideal position, the index differ-
ence n' — ?a equals n1 — n1 in the region where the actual core over-
laps the ideal cladding; it vanishes everywhere else. If the core bound-
ary has moved inwards, we have n' — ne, = — (ni — 711) in the region 
where the actual cladding overlaps the ideal core and zero values 
everywhere else. The field components that multiply the refractive 
index difference term in (29) are either continuous, if they are tangen-
tial to the boundary of the ideal waveguide, or they jump by a factor 
(ni/n2)2 if they are normal to the ideal core boundary. If we restrict 
the discussion to core boundary displacements that are so slight that 
the fields can be considered constant over the region of the displace-
ment and to weakly guiding fibers with (ni/n2 — 1) « 1, we obtain 
from (29) 

= _ io.160(n1 — n1)a r 23- [r(x,  y,  z) — a] 
" PP  4P  / 0 

X [p c . 8.., + q60* • L,.,.]} d.  (30) 
It is noteworthy that the approximate coupling coefficient (30) is 

identical to the coupling coefficient (13) of Ref. 12 for the local normal 
mode expansion. The only difference in the appearance of these two 
coupling coefficients consists in the fact that the derivative of the 
boundary function instead of the function itself appears in Ref. 12 and 
that the entire expression is divided by O. — 0». It has been explained 

..-- ACTUAL CORE—CLADDING BOUNDARY r(x,y,z) 
/ 

 ------.-....- , 
T 
1 

ni  2a 

l 
____ _  _ _1_, _ 

n2 

- - 7- - - - - 

, 
IDEAL CORE—CLADDING BOUNDARY --"" 

Fig. 1—Sketch of a fiber with distorted core-cladding interface. 
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in a different place" that it is the Fourier component of the boundary 
function at the spatial frequency p, - 0„ that determines the coupling 
behavior of the modes. This fact makes it clear that (we write f instead 
of r — a for simplicity) 

1   df 
¡O. — Om) dz 

is fully equivalent to the function f itself as far as its effect on mode 
coupling is concerned. We can carry the argument one step further and 
replace f with 

1   d2 f 
— u)2 dz2 

(31) 

(32) 

If we replace f = r — a in (30) with (32), we obtain a coupling coeffi-
cient that vanishes in straight, uniform waveguide sections. It is not 
hard to guess that a coupling coefficient of this type belongs to an ex-
pansion in terms of local normal modes of a hypothetical waveguide 
that is tangential to the curved axis of the actual guide. The modifica-
tion of (30) that is indicated by (32) is thus particularly suitable for the 
description of mode coupling caused by bends of the waveguide axis. 
A description in terms of ideal modes or even in terms of local normal 
modes of a hypothetical guide with straight axis is unsuitable for a de-
scription of waveguide bends since it leads to coupling coefficients that 
do not vanish on the straight waveguide section behind the bend. This 
brief discussion shows that it is not hard to modify the coupling coeffi-
cients of the ideal mode coupling theory to extend it to the case of local 
normal mode expansions of different types. 

III. SIMPLIFIED DESCRIPTION OF GUIDED MODES OF THE FIBER 

A. W. Snyder8 realized that the modes of round fibers and their 
eigenvalue equations simplify considerably if use is made of the fact 
that (n 1/n2 — 1) «1 applies to most fibers of practical interest. D. 
Gloge9 went one step further and showed that the mode fields become 
simple in appearance if they are expressed in Cartesian instead of 
the more conventional description in cylindrical coordinates. Gloge's 
technique is useful for even more complicated waveguide structures 
such as tubes." 
We write down the field expressions for the guided modes of the 

round fiber without derivation.8 The mode fields can be polarized in 
two mutually orthogonal directions. We have for one polarization in 

the core region for r < a 
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iAK  { sin (v  1)0} 
—cos (v -I- 1)0 =  —2/3„ [J,14(icr) 

f sin (v — 1)  ] (33)0 } 
-I- 4-1(Kr) t —cos (v — 1)0 

8. = AJ,(Kr) tseine3  Pp: } 

ie\r/E- [4+1(Kr)  {se: ((vv ++ 12)160} 

— .1,-1(0) te°8 (e — 1)4 ' 1 
si (v — 1) n  (1) 

(34) 

(35) 

3C„  —nA 7  J„(Kr) tc°8et. 1'1. 1,7  g  sin v  (36) 

The field in the (infinite) cladding region for r> a is obtained from the 
field expressions (33) through (36) by replacing the amplitude constant 
A with DI,(Ka)/1-1P(i-ya)]A. In addition, we replace K with ey and the 
Bessel function J(Kr) with the Hankel function of the first kind 
H, 1)(eyr). The parameters K and 7 are defined as (1e2 = co2e.g.) 

(Mk' —  (37) 

= (ie —  (38) 

The remaining field components vanish, 8. = 0 and 3C1,, -= 0. The two 
sets of circular functions that are shown in the field equations are neces-
sary to obtain a complete set of orthogonal modes. The functions in the 
upper as well as those in the lower position belong together. We have 
used n to indicate n  n1 n2. 
The set of guided modes is still not complete unless we also include 

the orthogonal polarization. We have again for r < a( 8„ = 3Ct = 

—  [ 
iAtc  „  cos (v  1)44  iier\  fc?s (v — 1)0 8,  J,4.1vcr)  1 1 
2/38.  sin (v  1)4>f  ism  — 1)ef j 

= Ame) tc?sell sin vcp  (40) 

—2k  g—.[. 4+1(Kr)  — COS  1)0 

{ sin (v  1)0 3e' } 

I sin (v — 1)01 1 
± 4-1(Kr)  (41) 

1—cos (v — 1)011 

3Cie = nA  , \F ) J,(Kr) {c?"(1}. 
¡to  sin vçt, 

and 

(39) 

(42) 
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The field in the cladding is again obtained by the replacements men-
tioned above. 
The mode amplitudes must be related to the power P (that is the 

same for all the modes). We have for the fields (33) through (36) and 
for the orthogonally polarized field (39) through (42) 

l  4 i 72P 

evira  r4 2n(nî — 1)10 1.1 p_i(Ka)4.+1 (Ka)I 

N rL"   
€0   

52  for  v 0 
e" = 11  for  p 0 

The eigenvalue equation of these simplified fiber modes is 

( J,_1(ac) _   i(iya) 45 
IC  ) 
.1,(Ka)  1-1,1"(iya) 

With the help of the functional relations of the cylinder functions, it 
is easy to show that (45) is also valid if y — 1 is replaced by y + 1. 
The simplified guided modes listed here are not the same as the usual 

HE and EH modes of the round fiber. It can be shown',15 that the simpli-
fied modes listed in this paper result from the usual fiber modes as super-
positions of an HE and an EH mode. The HE,+i ,„ and  modes 
have very nearly the same propagation constant, they are almost de-
generate. Since this degeneracy is not perfect, our simplified modes are 
not modes in the true sense of the word. They decompose into the 
HE„+i ,„ and  modes of the round fiber as they travel along the 
waveguide thus changing their shape. A true mode is defined by the 
fact that only its phase changes (in the lossless case) as it travels down 
the guide. However, the approximate modes do form a complete 
orthogonal set of modes and can thus be used to express any field that 
can exist in the fiber. Even after one of the approximate modes has 
decomposed into HE and EH modes, it can again be expressed in terms 
of approximate modes at this point. The fact that the approximate 
modes are not true modes in the usual sense does not limit their useful-
ness for studying mode conversion and radiation problems. 
The important fundamental HEn mode of the fiber corresponds to 

the lowest-order approximate mode with Y =  O. This is a true mode 
that does not decompose as it travels along the waveguide. 

with 

(43) 

(44) 

IV. SIMPLIFIED RADIATION MODES OF THE FIBER 

The radiation modes of the fiber can again be simplified by using 
(ni/n2 — 1) « 1.16 There is a slight complication, however. The simpli-
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fled description of the guided modes was made possible by the fact that 
they are very nearly transverse modes, their transverse components 
being much larger than their longitudinal components. The radiation 
modes are nearly transverse only if their propagation constants are 
nearly 0 = n2k. Since the continuous spectrum of radiation modes ex-
tends from 13 = — n2k to 0. = n2k, only the modes in the immediate 
vicinity of the two end points of this interval are also nearly transverse " 
modes. Throughout most of the spectral region of 0 values, the ap-
proximation corresponding to that for the guided modes does not 
work. However, we can still use the fact that the refractive indices of 
core and cladding are nearly identical and use the radiation modes of 
free space in the region where our mode approximation technique fails. 
A simplified treatment of all the radiation modes is thus also possible. 
The two approximations complement each other. In the region near 
= ±n2k, where we use the approximate radiation modes of the guide, 

the free-space radiation modes do not work very well because reflec-
tions at the core-cladding interface at grazing angles are important. 
Inside of the 0 range, where the waveguide mode approximation 
method fails, we can use the free-space radiation modes with confidence 
since the interface does not cause much reflection for waves passing 
through it at reasonably steep angles. 
We begin by listing the approximate radiation modes of the fiber for 
e near En2k. The field equations are very similar to those of the guided 
modes. In the fiber core at r <a we have 

Ca. sin 
—20 [Jr+i(°19  ((,,y +4- 11))0(11 

sin (y — 11] 
4_1(«r)  (y — 1)  (46) 1—cos  0 

8, =  p(ur) {cos } 

iBo- ri,  "4'  (v + 1)0} 
2k  L  sm + 1)0  

{ cos (y — 1)0 _  11  (48) 
Ism  — 1.)0   

3C. = —nB   
1131  go sin vik 

\r:!2 j,icrr  {cos vckl . 
(49) 

The remaining field components vanish. The propagation constant 0 is 
a continuous variable for radiation modes unrestricted by an eigenvalue 

(47) 
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equation. The parameter o- is defined as 

o- = (nîle2 — 02)+  (50) 

Instead of specifying the modifications that are required to transform 
the expression of the field inside of the core into the expression for the 
cladding field, we state the field in the region r > a in detail. 

8, = iep [ (H41(pr)  I-P D 241(Pr)) 2e  —Cos (y 1)0 I 
sin (y + 1)01 

(1-Cii(pr)  Dieli(pr)) { —Cos  (v 
sin (y 

8„ = C(H?)(pr)  DH?)(pr)) {scions :1)4) 

3C. =   iCp  [ (M1WPr) 

— (HP2i(Pr) 

- 1)0 
— 1)0 j 

\\ cos (y  1)(e' 
DH?4iliorn {sin  1>e 

c?s (v — 1)4)11 
DH,921(Pr)) { sin (1) — 1)4) 

5c = —nC iii  e fHp)(pr)  DH?)(Pr)) { cos  pi 1,0  sin ,,t, f .  .\1  

(51) 

(52) 

(53) 

(54) 

11 1) and H?) are the Hankel functions of the first and second kind. The 
parameter p is defined as 

p = (nîlc2 — e2)è.  (55) 

The amplitude coefficients are 

C =  [0.,/,.+1 (aa)1-1;.2)(pa) —  „(cra)H?Wpa)]B  (56) 
4 

and 
cd,+1 (o-ag e(pa) — p.1",(cra)11 P41(pa)  

D —  (57) 
ra 1(cra)H,2)(pct) — pJ,(cra) rn41(pa) 

For the field with the orthogonal polarization, we simply state the field 
expressions inside of the core. It should be apparent from inspection of 
(46) through (57) how the field expression in the cladding is obtained 
from that of the core. The relations between the amplitude coefficient 
are the same in either case. We have for r < a 

8» = iBff  [J,44 (ar) t sin (y  1)0 {cos (e  1)°  
j 

20 
_ jp_i(a.r) te .os (v 

(y 
(58) 

— 1)0 
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Sr = BJ„(ur) fe.°8 14 } 
sm (59) 

sin (y ± 1)01 
2k  p o [ —coz (y + 1)0 j 

± Jr-1(0') [ sin (y — 1)0 1} 
—cos (y — 1)0 j  (60) 

3Cv = nB --4 Vif J,(ar) { c°8 vii 1" • (61) 
IM  120  sin vii]   

It remains to relate the amplitude coefficient to the power P. Because 
of the continuous mode spectrum, it is not possible to normalize the 
radiation modes with a finite amount of power. The parameter P is 
defined by the relation 

I I E co ( 8, X 3C7?) • e.dxdy =  P6(p — p').  (62) 

The amplitude coefficient B is thus Ee, is defined by (36)] 

e) )1(8PP) 
B    (63) 

1,Ziairil  _l(Œa)H')(pa) — pJ,(cra)H ,12.1(Pa) 

It is important to remember that the radiation modes listed so far are 
valid only in the immediate vicinity of # = ±n2k. Inside the e range, 
we use the radiation modes of homogeneous space with refractive 
index n2. These modes can be expressed in a number of different ways. 
The simplest expressions would result from a plane-wave representa-
tion. However, for our present purposes, it seems advisable to use field 
expressions that resemble most closely the radiation modes (46) 
through (54) and (58) through (61) in order to achieve continuity of the 
field expressions throughout the entire 13 range. The modes of the 
homogeneous medium (in vacuum we would say free-space modes) are 
simpler than the radiation modes of the fiber, since one expression ap-
plies throughout all of space. There is no need to treat the fields inside 
and outside of the core separately. The field expressions that satisfy 
our requirements are [p is defined by (55), we use n = n2] 

icp r 
Le I .+1(Pr)  —scinos  ±± 12):} 

J,-i(Pr) { sin  (v 1»  1 _cos  _ 1)4, 1 j (64) 
8. = O (65) 
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8Y = Cj "(Pr)  seins v1.74, 

3c iCp  r) f cos (y 
z  2k \Imo L '+' P t in (y 

+ 1)0 } 
± 1)0 
_ jp  {cos (y — 1)4)1 1 

‘I'  sin (y — 1)4) j 

ae. = — c!.\i [2  +  J,,(pr) c°s P4) } 4 mo k  (3  sin y4) 

_L n2k _ ,3 ij _,.«.r‘  cos (y 2)4)} 
\ 13  j\ P+"  tun (y 2)40 

C 17. 
3CY =  NÍ i0 

JP-2(Pr)  cc)s  (v 2)95 })] sin (y — 2)4) 

17,2k \Í  { sin (y + 2)4)1 
;I_  " j —COS (1/ 2)4) 

r sin (1, 
J >-2(Pr)  — cos (I, 

The orthogonally polarized modes are 

— 
— 2)0 f 

cos (x, 1)0,  ) {cos (p — 1)4911 
8' — iCp  2i3 V +1(Pr)  {sin (v + 1)0} — P-1  Pr  sin (y — 1)4, 

COS v4) 
Sx = CJ(pr) 

sin y4)_, 

8v=0 

5cp  iCp [  f sin (I) ± 1)1> 
2k Niga L ‘" 1—cos (p + 1)4) 

sin 
Ji—i(pr) { _cos  (1, 

— 1)4) 11 
— 1)4) j 

C „re--0 ( 0  n2k )k,+2(Pr) { _sci:s(uv ++sin22)(04:}_ 2)0  1]  ex =  17 e 

— Jp_2(Pr) { _cos  (I, — 2)4, f 

C .\I- r2 # ± n2k  .1,(Pr) Ise ¡Lice  : 1 =  ii i[2 2" I i L  e  ' 
4 go L \ l'•  ij / 

±  ( fl . _ 11' 21 _C ( J v ±± 2 ( 7 0_,) 2.1( pseri n: S {(( :se i nots ((22:))041_122 L4)  1)  ii . \k  e i \ 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 
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The amplitude coefficient C is related to P 

4 \F-' kpeP C  14 =   
(76) evir(e2 elc2) 

The modes of the homogeneous medium, like all the other modes, are 
mutually orthogonal among each other. With the help of the relations 

and 

2 
J(x)H 1(x) — J+1(x)H'>(x) = i—rx 

2 
Jp(x)11 ,91(x) — J,1-1(x)112) (x) = — 

(77a) 

(77b) 

it is easy to show that the radiation modes of the homogeneous medium 
and the radiation modes of the round fiber reduce to the same expres-
sions in the limit fil = n2k, n1 = 712 = n. 
V. COUPLING COEFFICIENTS FOR CORE-CLADDING IMPERFECTIONS 

We consider a fiber whose core-cladding interface is described by the 
function 

r(x, y, z) = a + f(z) cos (m ci,  (78) 

If we choose a different function f(z) and different phase 4, for each 
integer m and sum over the second term on the right side, we generate 
a Fourier series which allows us to describe core-cladding imperfections 
of the most general kind. 
We assume that a given mode labeled Y is traveling in the waveguide 

and ask for the coupling from this mode to all other guided and radia-
tion modes. The function f(z) can be separated out from the coupling 
coefficient by defining 

K„ = .1? „f(z).  (79) 

We have mentioned earlier that the longitudinal field components 
of the guided modes are much smaller than their transverse compo-
nents. The same statement is true for the radiation modes only if their 
propagation constant /3 is very nearly equal to  n2k. For l fil values 
much smaller than n2k, the longitudinal field components of the radia-
tion modes can be as large as or larger than the transverse components. 
The coupling coefficients contain scalar products of the two fields that 
are coupled together. Coupling coefficients that involve at least one 
guided mode are thus determined primarily by the transverse compo-
nent of both fields, since the product of the longitudinal components is 
small over most of the range of e values. We thus neglect the contribu-
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tion of the longitudinal components and gain the advantage of much 
simpler expressions for the coupling coefficients. The only region of the 
13 range where the longitudinal components could make a significant 
contribution to the coupling process is near 0 = 0. Outside of a small 
region near  = 0, our approximation is reasonably accurate. To this 
approximation, modes with orthogonal (transverse) polarization are 
not coupled by core-cladding imperfections of the form (78). 
For coupling between two guided modes y and IA we obtain from (30) 

and (79) with the help of the field expressions 

=   „-y „(e„a)J m(e pa)   

2iank1I p-I(K,a).1,+2(tc,a). »AK ma).1 p+i(K pa) I Y 

The factor eu,,,, can assume the values 4, 2, 1, or 0. It is zero unless 
= p ± m. Table I shows the values of e „ni for all possible cases. The 

factor e, is defined by (44), i, and 7, are determined by (37) and (38). 
Coupling between the guided mode le and radiation modes µ must be 

described by two different coupling coefficients depending on the value 
of the propagation constant 0 of the radiation mode. For values of 1/31 
close to n2k, we use the radiation modes of the fiber and obtain 

e W en K(P oa)  = 

eye „ 

p(— — 1) y7,.1,(e,a)J m(Gra) nz   
ni 

X elf-al J ,_1(K,a)J p+i(ocya)  I ea 0-1(0-a)H ,(1) (pa) — pJm(cra)He-i(Pa) 

(80) 

(81) 

For fi values inside the range —7/21e < e < n2k excluding the end points, 
we use the radiation modes of homogeneous space and find 

p En (71e — I) kp01 7,J ,(e,a)4(pa) 
K  e . q)   n2 (82) 

i[2(02 + n20) I J,_2(4c1)4+1(K.a) IY 

Use of (77) allows us again to see that (81) and (82) become identical 
in the limit ni = ni = n, IiI = n2k. 
The coupling coefficients for the approximate guided and radiation 

modes of the round optical fiber allow us to solve a large number of 
problems involving fibers with core-cladding interface irregularities. 

VI. FAR-FROM-CUTOFF APPROXIMATIONS 

For purposes of multimode operation it is often desirable to have 
simple expressions for the coupling coefficients which are valid far from 
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TABLE I—TABULATION OF THE FACTOR ep,m FOR ALL POSSIBLE 
COMBINATIONS OF ANGULAR FIELD DEPENDENCE OF THE MODES 

AND THE CORE-CLADDING INTERFACE DISTORTION 

e„„„, = 0 unless specified otherwise 

incident mode 
cos po 

spurious mode  distortion 
cos lop  cos 

4  v=p= m =0 
2  =0» g = 11Z 

O  
0 <11 = Y ± M 

< 4 = M - v 

incident mode 
sin ye 

spurious mode  distortion 
sin AO  cos nub 

{ 
0 y or 1.4 = 0 
0<p p =±m 

—1 0 < es = m — p 

incident mode 
cos 

e„„, 

spurious mode  distortion 
sin go  sin m4» 

O = 0 
2 v = 0, g = 712 

1  µ = v -I- M 

- 1  0 < g = v - M 

1  0 < g = M - v 

incident mode 
cos yl» 

spurious mode  distortion 
sin pe cos me 

• = 
incident mode 

cos vo 
spurious mode  distortion 

COS jyt,  sin mo 
• = 

incident mode 
sin iek 

spurious mode  distortion 
sin po sin mo 

•  = 

cutoff. We obtain such approximations by using the approximation for 
large argument of the Hankel function (»ya » 1) 

H p)(eya)  \4 _2 
ir-ya 

With (83), we obtain from (45) for 'ya » 1 

'y./,(,ca) = — KJ,,_1(Ka). 

(83) 

(84) 

We remarked earlier that (45) is also valid if » -  1 is replaced with 
V + 1. We thus also have 

-yJp(Ka) = K../„+I(Ka).  (85) 
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Multiplying (84) with (85) and taking the square root results in 

-yJp(ica) = K[-Jp_i(tca)J,i_1(Ka)14 
= icE Jp-i(Ka)Jp+I(Ka) I (86) 

Far from cutoff, (86) allows us to write the coupling coefficient (80) 
between guided modes in the simple form 

Pegym Key 
LI "  —    

-‘1e7,e»2iank 
(87) 

Very far from cutoff, 'ya -> œ, we obtain the approximate eigenvalue 
equation 

Jp(K>a) = 0  (88) 

from (84) or (85). The roots of the Bessel function Jp(tc,a) thus deter-
mine the values of Ka that appear in (87). For higher-order modes icpa 
becomes large so that we can approximate 

1 r 
J( a) P-•-•.\Jiiii—  cos [Kva - (v  ) - - • 

ricva  2 2 
(89) 

Equation (88) requires that the argument of the cosine function equal 
(2N  1)7/2. This leads to a direct determination of 

tc  -I-
, 3) zr 

K a  (v + 2N   - 
2 2 

(90) 

with N = 0, 1, 2 • • • . The equations (87) and (90) provide us with an 
approximate determination of the coupling coefficient between two 
guided modes without the need for solving a transcendental eigen-
value equation. In a strict sense, we would have to label lc and the 
coupling coefficient with N as well as v. We refrain from burdening the 
symbols with too many indices. 
The coupling coefficients between guided and radiation modes can 

similarly be simplified far from cutoff of the guided modes. The far-
from-cutoff approximation of (81) is 

Rea) = 
iwa I o-J,r_1(0-a)He)(pa) - PJv(aa)He-i(Pa) 

This equation is valid only for 1131  values very close to n2k. The coeffi-
cient that describes coupling between guided modes and the radiation 
modes of homogeneous space, eq. (82), leads to the far-from-cutoff 

p (n1 - -  1,1pKytig(a.a) 
nz   (91) 
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approximation 

Kee = esjy m p [n1 n (— — 1) kpa] 444(pa) 
n2 

0(02 n2k2)]i 

This expression is valid inside the range — n2k <f < n2k but not near 
1131 = n2k. For most scattering problems, it is sufficient to use the 
coupling coefficients to the radiation modes of the homogeneous 
medium. Only if the scattering is sharply forward or backward directed 
do we have to use the slightly more complicated expression (91) of the 
coupling coefficients to the true radiation modes of the round fiber. 
In the remainder of the paper, we apply our results to special cases. 

VII. COUPLING CAUSED BY WAVEGUIDE BENDS 

(92) 

We consider the case of a straight fiber that is connected to a fiber 
section that is bent with a constant radius of curvature and finally con-
tinues in a straight section. If the curved piece of waveguide causes 
considerable mode conversion, the system of coupled equations (27) 
and (28) must be solved. However, for slight mode conversion, we can 
use the approximation that the incident mode does not change very 
much while power builds up in some of the spurious modes. In this 
case, we obtain the following approximate solution from (27): 

c(L) = MO) f  (93) 

We assume z = 0 at the beginning of the curved section of length L. 
The description (32) is most appropriate in this case. The second de-
rivative assumes the constant value 1/R, with R being the radius of 
curvature of the circular bend. We thus obtain from (79) with f 
replaced by (32)] and (93) 

I cu(L)  1 2 1 4 g.„ 2 . 
lc,,(0)1  _  sul20» — Op)  (94) 

We obtain R. „, from (80) or in its "far-from-cutoff" approximation 
from (87). The integer m appearing in (78) must be set m = 1 in this 
case, since we want to describe a continuous offset of the fiber which 
results in a bend. It is apparent that the amount of power transfer be-
tween the incident and the spurious mode depends critically on the 
separation between the two propagation constants. The sine factor in 
(94) describes the phasing between the two modes. If the incident and 
spurious modes travel with equal phase velocity, power would be 
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transferred from the incident mode to the spurious mode in proper 
phase so that all the power could be exchanged between the modes. If 
both modes have different phase velocities (and our formula holds only 
in this case), the two modes get out of step so that after some distance 
the power that is fed from the incident mode to the spurious mode tends 
to interfere destructively and destroys the power that has already been 
transferred. The power in the spurious mode thus builds up and decays. 
This process does not involve reconversion of power from the spurious 
to the incident mode, since this process is not included in our perturba-
tion solution. 
It can be shown that a guided mode of the type (34) produces a ring-

shaped far-field pattern if it is allowed to radiate out of the end of the 
fiber. The maximum of the ring as seen from the end of the fiber ap-
pears at an angle 

0 = ' • 
"  k 

(95) 

The circular far-field pattern on a screen is broken up into 21, bright 
dots corresponding to the angular intensity maxima of the field dis-
tribution in the fiber. The angle 0,, is useful to distinguish guided modes 
experimentally. It may thus be of interest to express (94) in terms of 
this mode angle. Using (87), (95), and 

2 Ky k c,,2 
f3 „ ••:--e nik — 2n 11c  2 = nik — — 5,  (96) n i 

we can write (94) in the following form: 

Cu _ 
c, 

2 e 1 26n4e0,2,   .  L 
=  ,  p) • e,e, k1/4 210(0! — 0 2 u)6 see — O 

(97) 

For all practical applications, the separation between the angles 0,, and 
0, is so small that we can replace them with one angle O. According to 
(90) we get for the difference 

r 
0, — Ou = 3,0 = ± — 

2ka 
(98) 

if m = V ±  1. We restrict the discussion to coupling between modes 
with the same value of N but adjacent y values. If the results of this 
discussion are implemented, (97) assumes the form 

Cu _ 
C, 

2  e2 i 28k2a4n4  L 
r=  en '   Sill 2 OP - ¡3,)-2 
e„e u eli°02 

(99) 
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This equation shows that the amount of power transfer caused by 
waveguide bends decreases with increasing mode angle. 
Next we consider random bends. It has been shown in Refs. 3 and 17 

that the exchange of power among randomly coupled modes can be 
described by coupled power equations. The power coupling coefficient 
is given by 

hp. = igp.1 2F(13u —  (100) 

F(0„ — ,9,) is the power spectrum of the coupling function f(z) or of its 
equivalents (31) or (32). Using (32) and writing 1/R instead of d2edz2, 
we obtain for the power coupling coefficient for random bends 

2  2 2 
h epyi  K„K„   

epeu4a2n2k2(0,, — 9„)4 

with the power spectrum of the curvature function 

= (1 1.  L ei(deii--8,)zdz 
R  R(z) 2) 

(101) 

(102) 

The symbol ( ) indicates an ensemble average. 
The guided modes suffer radiation losses even in uniformly bent 

waveguide sections, R(z) = const.18.3 These curvature losses cannot 
be obtained by perturbation theory and thus are not included in our 
discussion. However, our perturbation theory includes mode conver-
sion losses between guided modes and radiation losses caused by 
changes in the waveguide curvature. 
In terms of the mode angle 0, (102) can be written in the form 

e2 4n2k2a2 (1 
e 

h„ = '  C --R-)• pe  ir p a (103) 

The dependence on the mode angle is contained only in the power 
spectrum of the curvature function. 
With the help of the coupling coefficients (91) and (92), radiation 

losses caused by random bends can be calculated. However, the explicit 
expression will not be given here. 

VIII. MODE CONVERSION AND LOSSES DUE TO DISTORTED CORE—CLADDING 

INTERFACES 

Instead of writing down the general formula for the power coupling 
coefficient between guided modes based on (80), we restrict ourselves 
to the far-from-cutoff approximation. From (87), (95), and (100) we 
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obtain 

with 

e2 100202 
h„ — e'm  " F(,8» — a,) 

eve, 4a2n2 
(104) 

F(19u — tip) = (1 -1-  1 1 Az)ei(fi e—m zdz1 2) • -e, o  (105) 

f(z) is the function that appears in (78). Equation (104) is remarkably 
similar to eq. (37) of Ref. 3 which was derived for the slab waveguide 
model. For comparison of the two equations, it is necessary to re-
member that we have assumed that the angles Op and O„ are much 
smaller than unity and that 7c1 » 1 according to our far-from-cutoff 
approximation. The difference in the position of n in the two equations 
is attributable to the different definitions of the mode angles. In our 
present discussion, we consider O„ as the angle of the far-field radiation 
cone outside of the fiber, while this angle was defined as the angle of 
the plane waves inside of the fiber core in Ref. 3. The correspondence 
between the two coupling coefficients requires us to consider the case 
of pure diameter changes, m = 0, and assume that both modes have 
no circumferential variation, V = 0 and g = O. In this case, we have 
el„,/(4e 080) = 1 instead of the factor 1/2 appearing in (37) of Ref. 3. 
The difference is accounted for if we remember that the round fiber 
corresponds to a slab in which both interfaces have irregularities which 
are perfectly correlated. The slab waveguide theory of Ref. 3 assumed, 
on the other hand, that the two interfaces had uncorrelated irregulari-
ties. This comparison shows that the results of the slab waveguide 
theory and the round fiber are in very good agreement. Our present 
formula (104) holds for core-cladding interface irregularities of a much 
more general kind. Not only pure diameter changes but elliptical 
deformations and deformations of even more general shapes are 
included. 
Next, we turn to the problem of radiation losses. The power loss 

coefficient is defined by [compare (9.3-14) and (9.3-42) of Ref. 1] 

n2k  I/3 I 
a., = E j. IR.„12F(ft - 0,) - 0  (106) 

P —112k  P 

with ie„ being the coefficient for coupling between a guided mode v 
and a radiation mode with angular symmetry g and propagation con-
stant /I. The power spectrum F is defined by (105) with ei,‘ replaced by 
f3. Not much can be gained from substituting (81) and (82) or their 
far-from-cutoff approximations (91) and (92) into (106). The integral 
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in (106) is hard to solve and useful approximations covering the whole 
range of correlation lengths have not yet been found. However, using, 
for example, (81) and (82) in (106) simplifies the numerical integration 
compared to the problem discussed in Ref. 7. The radiation losses can 
be calculated from (81), (82), and (106) with much simpler computer 
programs and at considerable savings compared to the theory of Ref. 
7. We use an exponential correlation function 

R(u) = (Az) f(z + u)) = e2 exp ( — ju l /B)  (107) 

and obtain (Ref. 1, p. 371) 

F(13 — Ov) —  2e2 (108) 
B[(13 — )2 d- ili2 ] 

The resulting radiation losses for pure diameter changes, m = 0, are 
plotted for the HEii mode, y =  0, in Fig. 2 as functions of the ratio of 
correlation length B over core radius a for n1/n2 = 1.01. The curves 
were obtained by numerical integration of (106) with 1?„ of (81) in 
the range 0.95n2k 5 101 5 nk and with K„ of (82) in the range 
—0.95n2k <13 < 0.95n2k. For small index differences between core 

7 b 

10-3  1  1 1 11  I  i 1 1  1  1 1 1 1  1  1 1 1 1 

10-2  10-1  1  10 1 102 
B/a 

i 
103 

Fig. 2—Normalized radiation losses of the HEI, mode, I, =  0, as functions of the 
ratio of correlation length B to core radius a for different values of ka = 2ira/X for 
pure diameter changes, m = O. ni/n2 = 1.01. The dotted line resulta from using 
only "free space" radiation modes. 
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and cladding, the losses calculated from our simplified theory are in 
perfect agreement with the theory of Ref. 7. For larger index ratios, our 
approximate theory begins to fail. For ni/n2 = 1.43, the error caused 
by our approximation is in the order of 60 percent. The simplification 
gained from using (81), (82), and (106) is apparent by glancing at the 
complex formulas of Ref. 7. 
The dotted line in Fig. 2 was computed by using the radiation modes 

of homogeneous space alone so that (82) instead of a combination of 
(81) and (82) was used in (106). It is apparent that the radiation modes 
of homogeneous space are not suitable to calculate the radiation losses 
for large values of B/a. It was pointed out in Ref. 5 that large B/a 
ratios lead to forward scattering. The radiation makes small angles with 
the core-cladding interface so that reflection at this interface becomes 
important. It is thus necessary to use the radiation modes of the fiber 
for a values near n2k. 
Our theory allows us to calculate radiation losses for more general 

core-cladding interface distortions. As a second example, we consider 
elliptical deformation, m = 2, and plot the result of the numerical inte-
gration of (106) in Fig. 3. The power spectrum (108) of the function 
f(z) [defined by (78)] was used again. We also used a combination of 
radiation modes of the fiber and of free-space radiation modes in the 
same way as indicated before. The radiation losses caused by elliptical 

n1 /n2. 1.01 

m- 2 

v 

¡L.  2 

10-1 

10-2  —  ka=27 

14 

7 
10-3 j I 1 I  I —.1.-.1"+"--- "r".... 1\1 I I  I  I Ill  I I I  

10-2  10-1  1  101  102 103 

B/a 

Fig. 3-1-1E,1 mode radiation losses caused by elliptical deformations, m = 2, of 
the core-cladding boundary. ni/n2 = 1.01. 

27 

ka. 20 
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core-cladding interface irregularities are smaller than those of pure 
diameter changes. 
Actual numerical values of radiation losses obtained from curves 

like Fig. 2 and Fig. 3 were discussed in previous publications.' ," 

IX. CONCLUSIONS 

We have presented a simplified theory of mode coupling in imperfect 
round optical fibers. The simplification was a result of restricting the 
discussion to fibers with small values of ni/n2 — 1. The simplified 
theory results in much simpler expressions for the guided and radiation 
modes of the fiber and consequently leads to simple expressions for the 
coupling coefficients. For small core-cladding index differences, the 
simplified theory is in excellent agreement with more general theories. 
The principal contribution of this paper is a tabulation of coupling 

coefficients for coupling between guided and radiation modes that are 
necessary for solving mode coupling problems caused by general core-
cladding interface imperfections. A general coupling theory based on 
the modes of the ideal fiber is also presented." 
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This paper is concerned with a systematic approach to the design of the 
"linear channel" of a repeater for a digital fiber optic communication 
system. In particular, it is concerned with how one properly chooses the 
front-end preamplifier and biasing circuitry for the photodetector; and 
how the required power to achieve a desired error rate varies with the bit 
rate, the received optical pulse shape, and the desired baseband-equalized 
output pulse shape. 
It is shown that a proper front-end design incorporates a high-imped-

ance preamplifier which tends to integrate the detector output. This must 
be followed by proper equalization in the later stages of the linear channel. 
The baseband signal-to-noise ratio is calculated as a function of the pre-
amplifier parameters. Such a design provides significant reduction in the 
required optical power and/or required avalanche gain when compared to 
a design which does not integrate initially. 
It is shown that, when the received optical pulses overlap and when the 

optical channel is behaving linearly in power,' baseband equalization can 
be used to separate the pulses with a practical but significant increase in 
required optical power. This required power penalty is calculated as a func-
tion of the input and equalized pulse shapes. 

I. INTRODUCTION 

The purpose of this paper is to provide insight into a systematic ap-
proach to designing the "linear channel" of a repeater for a digital fiber 
optic communication system. 
In particular, we are interested in how one properly chooses the bias-

ing circuitry for the photodetector; and how the required power to 
achieve a desired error rate varies with the bit rate, the received optical 
pulse shape, and desired baseband output pulse shape. 
Throughout this paper, performance will be measured in terms of 

signal-to-noise ratios. Efforts to calculate exact error rates and bounds 
843 
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to error rates are difficult to carry out, and, in the past, the results of 
such efforts have shown little deviation (for practical design purposes) 
from calculations of error rates using the signal-to-noise ratio (Gaussian 
approximation) approach. (See Refs. 2 through 5 and Appendix A.) 

II. INPUT-OUTPUT RELATIONSHIPS FOR AN AVALANCHE DETECTOR 

An avalanche photodiode is the device of interest in fiber applica-
tions for converting optical power into current for amplification 
and equalization, ultimately to produce a baseband voltage for 
regeneration. 
In order to appreciate its performance in practical optical systems, 

we have to characterize the avalanche photodiode from three points of 
view: the physical viewpoint, the circuit viewpoint, and the statistical 
viewpoint. 
When we study the device from the physical viewpoint, we ask 

how does it operate, how do we develop circuit and statistical models 
of its operation, and what are the limitations of the models. 
From the circuit viewpoint, we investigate how to design a piece 

of equipment in which the device will perform some function. 
From the statistical viewpoint, we investigate the probabilistic 

behavior of the device to allow us to quantify its performance in a 
circuit. 

2.1 The Physical Viewpoint 

The avalanche photodiode is a semiconductor device which is nor-
mally operated in a backbiased manner—producing a region within the 
device where there is a high field (see Fig. 1). Due to thermal agitation 
and/or the presence of incident optical power, pairs of holes and elec-
trons can be generated at various points within the diode. These car-
riers drift toward opposite ends of the device under the influence of the 
applied field. When a carrier passes through the high-field region, it 
may gain sufficient energy to generate one or more new pairs of holes 
and electrons through collision ionization. These new pairs can in turn 
generate additional pairs by the same mechanism. Carriers accumulate 
at opposite ends of the diode, thereby reducing the potential across the 
device until they are removed by the biasing and other circuitry in 
parallel with the diode (see Fig. 2). The chances that a carrier will gen-
erate a new pair when passing through the high-field region depends 
upon the type of carrier (hole or electron), the material out of which 
the diode is constructed, and the voltage across the device. To the ex-
tent that carriers do not accumulate to significantly modulate the 
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Fig. 1—Avalanche detector. 

voltage across the device, it can be assumed that all ionizing collisions 
are statistically independent. This assumption also requires that the 
mean time between ionizing collisions be large compared to the time it 
takes for a carrier in the high-field region to randomize its momentum. 

2.2 The Circuit Viewpoint 

From the discussion above, and of course more detailed investiga-
tions,8." it has been concluded that a reasonable small-signal model 
of an avalanche photodiode with a biasing circuit shown in Fig. 2 is the 
equivalent circuit of Fig. 3. In Fig. 3, Cd is the junction capacitance of 
the diodet across which voltage accumulates when charges produced 
within the device separate under the influence of the bias field. The 
current generator i(e) represents the production of charges (holes and 
electrons) by optical and thermal generation and collision ionization in 
the diode high-field region. In order to use the photodiode efficiently, 

Fig. 2—Detector biasing circuit. 

t Not to be confused with the large power supply bypass capacitor of Fig. 2. 
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Fig. 3—Equivalent circuit of biased detector. 

we must design a circuit which will respond to the current i(t) with as 
little distortion and added noise as possible. 
In order to derive information from the circuit responding to i(t), 

we must understand the statistical relationship between i(t) (the equiv-
alent current generator) and the incident optical power p(t). 

2.3 The Statistical Viewpoint 

In Fig. 3, the current source i(t) can be considered to be a sequence 
of impulses corresponding to electrons generated within the photo-
diode due to optical or thermal excitation or collision ionization. We 
shall now specify, in a statistical way, how many electrons are produced 
and when they are produced. 
From various physical studies,8,7 .9 it has been concluded that for 

cases of current interest the electron production process can be modeled 
as shown in Fig. 4. 
Let the optical power falling upon the photon counter be p(t).t In 

response to this power and due to thermal effects, the photon counter of 
Fig. 4 produces electrons at average rate X(t) per second where 

X(t) = E(n/hn)P(t)] + Xo,  (1) 
where 

= photon counter quantum efficiency 

= energy of a photon 
Xo = dark current "counts" per second. 

X(t) is only the average rate at which electrons are produced. In any 
interval T seconds long, the probability that exactly N counts are pro-
duced is given by 

P[N , (to, to + T)] 

where 

ANe-À 
N ! ' 

to+T A =J" X(t)di.  (2) 
lo 

t The reader is cautioned not to confuse p(t), the optical power, with the prob-
ability densities (e.g., P[N, [tk I]) in this paper. 
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Given p(t), the number of electrons produced in any interval is sta-
tistically independent of the number produced in any other disjoint 
interval. 
A process of impulse (electron) production satisfying (2) and the 

above independent increments condition is said to be a "Poisson im-
pulse process" with arrival rate X(t).10 

A useful equivalent description of the above process follows. 
If T is an interval, the probability that exactly N electrons will be 

produced at the (approximate) times ti ± 4 , t2 ±IA, • • • tiv ¡à 
where the widths à are very small is 

PEN, {tk } = {c"  [X(tk)à]/N ! )  o(s), (3) 

where A is defined in (2) and o(à) is a term such that 

o(à) 
nm  = O. 

It is important to note that in (3) the times {tk ) are not in order, that is, 
in (3) it is not necessarily true that ti < t2, etc. 
Each of the "primary" impulses (electrons) produced by the photon 

counter enters a random multiplier where, corresponding to collision 
ionization, it is replaced by g contiguous "secondary" impulses (elec-
trons). The number g is governed by the statistics of the internal gain 
mechanism of the photodiode. Each primary impulse (electron) is 
"multiplied" in this manner by a value g which is statistically inde-
pendent of the value g assigned to other primaries. 
Thus the current leaving the photodiode consists of "bunches" of 

electrons, the number of electrons in the bunch being a random quan-
tity having statistics to be described below. For applications of in-
terest here, it will be assumed that all electrons in a bunch exit the 
photodiode at the time when the primary is produced. This implies that 
the duration of the photodiode response to a single primary hole-
electron pair is very short compared to the response times of circuitry 
to be used with the photodiode. 
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Fig. 5—Receiver. 

Different avalanche photodiodes have different statistics governing 
the number of electrons in a bunch, i.e., the gain. For applications be-
low, we will only need to know the mean gain (g) and the mean square 
gain (g2). For a large class of avalanche photodiodes of interest, it has 
been found that's,/ 

(g2) ,"*., (g )2+x, (4) 

where (g) is determined by the applied bias voltage and x, a number 
usually between 0 and 1, depends upon the materials out of which the 
diode is constructed. For germanium photodiodes, x L'-'- 1; for well-
designed silicon photodiodes, x --,1 0.5. 

III. AN OPTICAL RECEIVER 

Figure 5 shows a fairly typical receiver, in schematic form, consisting 
of an avalanche photodiode, an amplifier, and an equalizer. 
The amplifier is modeled as an ideal high-gain infinite-impedance 

amplifier with an equivalent shunt capacitance and resistance at the 
input and with two noise sources referred to the input. For the purposes 
of this paper, the noise sources will be assumed to be white, Gaussian, 
and uncorrelated. Extensions to other amplifier models will be straight-
forward when the techniques of this paper are un ders too d./ 
It is assumed that the amplifier gain is sufficiently high so that noises 

introduced by the equalizer are negligible. 

t With this model, the noise sources of the amplifier do not change when the input 
and output load circuitry changes. 
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The power falling upon the detector will be assumed to be of the form 
of a digital pulse stream 

p(t) =  b 0,4(1 — kT),  (5) 

where bk takes on one of two values for each integer value of k, T = the 
pulse spacing, hp(t — kT) = pulse shape and is positive for all t. We 
shall assume j  14(t — kT)dt = 1, therefore bk is the energy in 
pulse k. The assumption that the received power will be in the form (5) 
appears reasonable for intensity modulation and fiber systems of 
interest.' 
From (1) we have the average detector output current (i(t)) given 

by 

«.(1) , _ n(g)eP(t) ,  , 
h„  jeAo, 

where 
(g) =- average detector internal gain 

e = electron charge 

Xo =- dark current electrons per second 

—k11 p(t) = average optical primary electrons per second. 

Therefore, the average voltage (neglecting dc components) at the 
equalizer output is 

=   
An(g)eP(1)  (vout.(0)  hl *hre(t)*h.q(t), 

where "*" indicates convolution and A is an arbitrary constant. 

hfe(t) = F   
1 

jw(Cd + CA) 

(6) 

= amplifier input circuit current impulse response, 

RT = [-1 R  = total detector parallel load resistance, 
Rb A 

and 14,(t) = equalizer impulse response. 
Clearly, (v„„t(t)) is of the form 

(vout (t)) =  bkhout(t — kT) (7) 
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and vout(t) is of the form 

vout(t) = E bkhout(t — kT) ± n(t), 
-CO 

where n(t) represents deviations (or noises) of vout(t) from its average. 
The fundamental task ahead is to pick Rb (the bias circuit resistor) 

and h,(t) so that a system which samples vout(t) at the times {Oi} can 
make decisions as to which value bk has assumed (by comparing the 
sample to a threshold) with minimum chance of error. 

IV. CALCULATING SIGNAL—TO—NOISE RATIO IN TERMS OF THE EQUALIZED 

PULSE SHAPE 

Having defined the receiver and its statistics in the above sections, 
we can now calculate the variance of n(t), the noise portion of the out-
put v0(t) of the system of Fig. 5, defined as follows: 

N = ((n(t)) 2) = (v(1)) — (v0ut(t))2.  (8) 

The noise, N, of (8) above depends upon the coefficients Ibk I defined in 
(5) and upon the time t. 
We shall first of all restrict consideration to the set of times t = {kT1 

when a decision as to the values { bk I will be made by sampling vout(t). 
We shall next assume that the equalized pulses satisfy 

h0ut (0) = 1  (9) 
h0(t) = 0  for  t = kT,  k 0 0. 

That is, we shall assume that the equalized pulse stream has no inter-
symbol interference at the sampling times kT. t Therefore, 

vout (kT) = bk + n(kT).  (10) 

In eq. (10) the noise, n(t), still depends upon all the { bk 1 and the 
time t. This is a property which distinguishes fiber optic systems from 
many other systems where the noise is signal-independent and sta-
tionary (not time-dependent). Consider, without loss of generality, 
the output, v(t), at t = 0. We define the worst-case noise, NW(b0), 
for each of the two possible values of bo as follows: 

NW(bo) = max [(vLt(0)) — (vout(0))2],  (11 ) 
(bh ).koo 

where in (11) the maximization is over all possible sets {b,01 for k 0 0, 
and where bo can take on either of two values as previously stated. The 

t The limitations imposed by this assumption are discussed in Section VII. 
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quantity NW(b0) shows, for the two possible values of bo, what the 
noise for the worst combination of the other symbols is. 
We shall next calculate (dut(t)) — (v0ut.(0)2 as a function of the set 

{bk. 
Examine Fig. 5. We shall define the two-sided spectral density of the 

amplifier-current noise source io(t) as SI and the two-sided spectral 
height of the amplifier-voltage noise source ec(t) as S. The two-sided 
spectral density of the Johnson-current noise source Íb(t) associated 
with Rb is 2k0/Rb, where k is Boltzmann's constant and O is the ab-
solute temperature. 
We can write the output noise as follows: 

v0(t) — (vout(t)) = ns(t)  nR(t)  ni(t)  nR(1),  (12) 
where 
ns(t)  is the output noise due to the random multiplied Poisson pro-

cess nature of the current is(t) produced by the detector, 
n R(t) is the output noise due to the Johnson noise current source of 

the resistor Rb, 
fir(i)  is the output noise due to the amplifier input current noise 

source ia(t), and 
?WO is the output noise due to the amplifier input voltage noise 

source ea(t). 

We have 

(vgut(1)) — (v0ut(0)2 

= ((vout(i) — (v0ut(t))) 2) 
(n(t))  (4(1))  (ni(t))  (74(0) 

= (4(0)  (2k0/Rb)  f 

isg , 1 I-- 
)177-J  Heq(w)  4_ 

jce(Ca + CA) 
Re 

+ (SE) Fr , I Heci(w)1 2c/0).  (13) 
1 

In (13), the last three terms were evaluated using the well-known for-
mula for the average-squared output of a filter driven by white noise. 
We must now calculate the "shot noise" term (n(t)). 
Recall that i,(1) consists of impulses of random charge corresponding 

to "bunches" of electrons with a random number g per bunch, this 
number being independent from bunch to bunch. 

1 2 

dce 
Heq(w)   

Te; + i(u(cd + CA) 
1  2 

dC/I 
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Consider a finite interval of duration L. Let gk be the number of elec-
trons in bunch k in the interval; where the bunches are labeled not in 
order of time but at random. Let tk be the arrival time of bunch k. 
Let hi(t) be the response of the RC circuit, amplifier, equalizer com-
bination to a current impulse from i.(t). Then the output v0(t) just 

due to the current i„(I) in the interval L is 

N 

eut(t) = E egkhr(1 — tk), 
1 

(14) 

where N is the number of bunches. 
Recall that the probability density of N bunches at the times (tk l is 

e-A [NJ  X(tk) 
p[N, ftk ] —  1 N!  (15) 

where 

X(t) = P(t) io + Xo. 

Thus combining (14) and (15) and leaving out some tedious algebra we 
obtain" 

gum» =f  e(g)(p(e)n/ h9 + Xo)hr(t — t')dt'.  (16) 
interval L 

In a similar manner, we obtain 

((eut(t)) 2) — (v.i'ut(t))2 = f  e2(g2) (7)(1') il, + xo) 11.1(t — t')dt, 
interval L 

where (g) is the mean internal gain of the detector and (g2) is the mean-
squared internal gain. 
We therefore obtain, letting L —›00 , the result 

(n3(t)) = hm Meut(t)]2) - (vut(t))2] 

=J . .e2(g2) {[E bkhp(e — kr] en- + X01- hi(t — t')cle . (17) 

Further, 
1   

Hr(co) = F ihr(t — t1)1 = Heq(co)  (18) 
1  1  . 

lib + FA + 3w(Ca  ± CA) 

Thus we have the remaining term in (13) in terms of the input optical 
pulse, the equalizer response, and the RC circuit at the amplifier input. 
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Converting everything to the frequency domain and recalling that 
we have normalized the equalized output pulse h0(t) to unity at g = 0, 
we obtain 

W(bo)  = [(J— )2 Ar   
tbeeo)  27 /  0)2 bkeiwkr ) 

x H0(w) H0(w) dw 
Hp(w) * Hp(co) ; 

(h/) 2 /2k0 
2T(g)2e2  Rb + SI + e2(g2)X0)) f 

j_ (h 1bi)2 " -f- —  2T(g)2e2 , 

H out(w)1 2 de»  
H ,(co) I 

Hot(co)  .ica(Cd ± CA)) 

H„(cd) 

where 

H(w) = F fh,(1)1 = input power pulse transform, 

Hout(co) = F {hout (t)) = output pulse transform, 

"*" = convolution, 

bo = coefficient multiplying zeroth input pulse, 
and 

1 
Floot(w)dw (20) 

In principle, we wish to minimize NW(b0) by choosing Rb and 1 I n(w) 
for the worst-case combination of symbols fbkl, subject to the zero 
intersymbol interference condition on the ouput pulse stream v(t) 
[recognizing that we have normalized h0(t) and 1-10.t(co) as given in 
(9) and (20) above]. 

4.1 Comments 

(i) One observation, which follows regardless of the choice of 
1/.0, W, is that the noise is always made smaller when Rb is 
increased. Therefore, subject to practical constraints and for 
a fixed amplifier and a fixed desired output pulse shape (which 
is determined by the equalizer and Rb), it is always best to 
make Rb, the bias circuit resistor, as large as possible. 

(ii) It is also clear, from (17) and the fact that the input pulse 
h,(t) is positive for all t, that the worst-case noise occurs when 
all the bk (except bo) assume the larger of the two possible 
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values. Recall that we are interested in the noise for both values 
of bo. 

(iii) Furthermore, for a given Sr and Sr and a given output pulse 
shape, it is desirable that the amplifier input resistance be as 
large as possible and that the amplifier shunt capacitance be as 
small as possible. 

(iv) It is desirable that the diode shunt capacitance be as small as 
possible. 

V. CHOOSING THE EQUALIZED PULSE SHAPE 

In principle, using (19) and given H 3,(tie), (g), (g2), Si, Sr, Rb, RA, 
Ca, and CA one can find the equalized pulse shape H0(w) for each value 
of bo that minimizes the worst-case noise. 
In practice, other considerations in addition to the noise are also of 

interest. In particular, it is important not only that the intersymbol 
interference be low at the nominal decision times kT, but that it be 
sufficiently small at times offset from IkT) to allow for timing errors 
in the sampling process. 
Therefore, rather than seeking the equalized pulse shape that mini-

mizes the noise, we shall consider various equalized pulse shapes to see 
how the noise trades off against eye width. 
Before proceeding, it is helpful to perform some normalizations upon 

(19) to reduce the number of parameters. 
Make the following definitions: 

RT R +  = total detector parallel load resistance,  (21) 
b RA 

Cr = Cd + CA = total detector parallel load capacitance, 
b  = larger value of bk, b.'. = smaller value of bk, 

H(w) =  (2f ) , 

enit(to) -=•  Hout (2÷ 1• 

In this normalization, the functions H(w) and I-16;ut(w)  depend only 
upon the shapes of 1-1,(w) and Ho(w), not upon the time slot width T. 
The previous normalizing conditions on H(w) and H0ut(0.1) imply con-
ditions on II;,(w) and HLt(co) 

Hp(0) = 1 Hp' (0) = 1  (22) 
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which implies 

Also, 

h0(0) = 1  2ir f 1 1 aua (co)dco = 1 j 11:2ut(i)d = 1. ,  -00 

With the above normalizations, (19) becomes 

SHOT NOISES 

hu  NNW =  D 
)2 { (0) 71 

—  0/1  bmax[Ei — Ii]] 
(g)1 

SHOT NOISE 

T  r  s i 
((g)e) 2 Ls  2kO  r (g2)e2)1/4d  B i 12 

THERMAL NOISES 

(2.ne 2,)25 sl  
T ((g)e) 2 .1-

where 

(23) 

I1 = f" H;(nrieff))*l Iid d f 

Ei = f , k, eaut(k) *ent(k) 1 
14(  ' L .11,;(k)  H;(k) J 

= 1.°)  clf 
J —01 1-19(/) I 

I a = 1"" IH +(f)  12 f 'cif . 
J-oe1 1-1,(/) I 

In (23), the first shot-noise term is due to the pulse in the time slot 
under decision, the second term being shot noises from the other pulses 
which are assumed to be all "on." From this normalized form of (19), 
we see that for a fixed input pulse shape and a fixed output pulse shape 
and with fixed Rb, RA, CT, SE, and Sr, the noise decreases as the bit 
rate, 1/T, increases (a consequence of the square-law detection) until 
the term involving /3 dominates. After that, the noise increases with 
increasing bit rate (due to the shunt capacitance CT). 
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Fig. 6a—Input pulse families. 

Example of Normalization: 

Suppose the input optical pulse is a rectangular pulse of unit area 
having width equal to one-half a time slot T; then 

14(w) =f IT  —2  etweclt 
-tT T 

1 ( 2 T ) (e;‘,,t/4 _ e-iwr14) 

= sin (w774)  
W T/4 

(24) 
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Fig. 6b—Frequency domain, time domain, and eye diagram representations of 
raised cosine family. 

Therefore, 

H;(f) = H p (27 1) sin (Irf/2)  
71/2 
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As expected, the normalized pulse spectrum 1-1(f) is independent of 
the time slot width T arid merely reflects the fact that the pulse h(t) 
is a rectangular pulse with width equal to half a time slot. 
In order to obtain the noise for various input and output (equalized) 

pulse shapes, one needs to calculate the three integrals II, /2, and 13 and 
the sum  
Consider the following three families of input pulse shapes (see Fig. 

6a) and single family of output pulse shapes (see Fig. 6b). 

(i) Rectangular input pulses: 

1  aT aT 
Mt) = cx „ 2 < < — 2 '  0 otherwise  (25) 

sin (cad) 
= H't)   f 

(ii) Gaussian input pulses: 

1  
th p(t) = -‘127ra T r— e t2/2(4ir)2] 

H(f) = e—(27ra1 )212. 

(iii)  Exponential input pulses: 

1 h(t) =  e—Eicer 

aT 

1   
H  ;)(f)  = 1 + j27ra f 

(iv) "Raised cosine" output pulses: 

= [sin  ( rTt ) cos  (ir Tat )][74 (1 (21;!) 2)] -1 
h0(t) 

H ( f) = 1,  for  0< I fl < (1 ;$) 

21  - sin ( 7-r1  — 7- )], r for 1 —2  < ¡fi < 1+S 
a   2 

= 0 otherwise. 

(Time, frequency, and eye diagram representations of the 
raised cosine family are shown as a function of 5 in Fig. 6b. 11) 

In Figs. 7 through 18 calculations of Ii, /2, /3, and 14 are given 
graphically for each input pulse family as a function of a and /3. 
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5.1 Comments on the Numerical Results 

For the rectangular input pulses with widths between 0.1 and 1 time 
slot, /1, El, /2, and /3 vary very little. Thus, if one expects to receive 
rectangular optical pulses which are fixed in energy, the required en-
ergy per pulse is insensitive to the pulse width for widths up to 1 time 
slot. 
The curves for Gaussian-shaped input pulses imply very strong sen-

sitivity of required energy per pulse to pulse width. This is a conse-
quence of the rapid falloff of the spectrum of a Gaussian pulse with 
frequency. It is suspected that, although for certain fiber systems the 
received pulses may appear approximately Gaussian in the time do-
main, the frequency spectrum will not suffer such a rapid falloff. The 
results for the exponential-shaped input pulses seem much more 
realistic. 
For exponential-shaped optical pulses we notice, from Figs. 15 and 

16, that the shot noise coefficients I and Ei are sensitive to the optical 
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pulse width, but that these sensitivities imply a practically useful 
tradeoff in required optical power vs allowable bit rate. That is, one 
might take a certain power penalty to allow equalization which can 
substantially increase the usable bit rate on a channel having a fixed 
optical output pulse width. The sensitivity of /2 and /3 to the optical 
pulse width is similar to that of E and less significant because in-

1000 
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05 
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Fig. 13—Gaussian family II vs a and 8. 
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Fig. 14—Gaussian family /a vs a and 0. 

creases in the thermal noises of the receiver are for the most part com-
pensated for by adjustment of the avalanche gain, with only a small 
penalty in excess shot noise. The above statements will be made quan-

titative in Section VI. 

VI. OBTAINING THE RELATIONSHIPS FOR FIXED ERROR RATE BET WEEN 

THE  REQUIRED ENERGY PER PULSE,  OPTIMAL AVALANCHE GAIN, 

AND OTHER PARAMETERS 

Suppose that in (23) all parameters are fixed except (g), (g2), 
and b,„... 

Fig. 15—Exponential family Ii vs a and 
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The receiver equalized output at the sampling time, due to an opti-
cal pulse of energy bo, is bo. 
When bd = bmin , we must be sure that the probability that noise 

drives the receiver output vout(t) at the sampling time above the 
threshold D is less than 10-9 .: Using the signal-to-noise ratio approxi-
mation,: we require the noise variance, NW (b .), to be less than 
f¡ED — 
Therefore, we require that 

1 
NW(bmin)  3-6 ED — b min] 2. (26) 

Furthermore, when bo = bmax we must be sure that the probability 
that the noise drives the receiver output below the threshold is less 
than 10-9 . Therefore, we require that 

NW (b .) <  bmax — D]2.  (27) 

t An error rate of 10—' is arbitrarily chosen here. Dependence of required optical 
power on error rate is discussed in Part II of this paper. 
I See Appendix A. 
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a 

Fig. 17—Exponential family /2 vs a and p. 

Using equality in (26) and (27), we require for a 10-9 error rate 

-ariV(b .)  -gNW(bmin) = *(19 . — brnin).  (28) 

Very often we have a fixed ratio (bmin /b,„„„) = p. 
Rearranging (28) we obtain 

b. =  p [1,I N W(bani x)  *VIV W(pba,..)].  (29) 

In order to obtain numerical results, we shall make the following 
reasonable assumptions. Let the dark current be negligible and let 
baiia /bmax be much less than unity. Therefore we shall set X0 = 0, 
bmia = 0.1" We obtain from (23) 

t Quantitative discussion of the consequences of these approximations are given 
in Part U. 
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1  
ri <9)2 hn NW(b0)  [  2 { _<g2)  rb011 b,„„,,(E1 —  (02 1Z]} , 

where 

865 

z {Tr si  2kO + SE 1 12 (27CT)2 sE/3 1. 
(30) 

e2 L Rb Te2 

In (30), Z includes all the thermal noise terms of (23). 
From (29), taking the limit as p — O (b.i. —> 0), we obtain the con-

ditions to achieve a 10-9  error rate as follows. 
Case /: Thermal noise (Z) dominates (i.e., little or no avalanche 

gain). 

bma . — 12h9  Zi. 
n(g) 

(31) 
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Case II: Optimal gain (i.e., (g) adjusted to minimize the required 
optical energy in an "on" pulse b...)• 

Let the relationship between (g2) and (g) be specified in the usual 
way: 

(g 2) =  ( 02-1-s, (32) 

where x depends upon the type of detector. We obtain the following 
formula for the optimal gain: 

(g)opti mal =  (6)-1/(1-1-x)( Z)1/(2-1-2x)(71)1/(2-1-2x)(1,2)-1/(1-Fx), 

where defining /5 =  E l —  /1 [see eq. (23)] 

± /5] + V(E, + /5)2 + 16 (1 -I- x) E, /6 
X2   

=  2 Ei /5 

72 = -%/1/71  ± /5 ± -\11/71 ± 

We obtain the following formula for b.: 

That is, 

— (p) (2+.) /(1+x) (Z). /(2+22) (71 ) x/(2±2) (72 ) (2+) /(1+x) . 

bmax  

(33) 

(34) 

(35) 

(36) 

We therefore see that for these assumptions and x ---- 0.5 correspond-
ing to a silicon avalanche detector the minimum required energy per 
pulse varies as the one-half power of the thermal noise term, Z, without 
avalanche gain, and as the one-sixth power of the thermal noise term, 
Z, with optimal gain. 
However, this does not mean that at optimal gain the value of Z is 

unimportant. By reducing Z (the thermal noise terms) through proper 
choice of biasing and amplifier circuitry, we still minimize the opti-
mizing avalanche gain [see (33)] and obtain some reduction in the 
required energy per pulse (see Part II). 

6.1 Example 

From eqs. (23), (30), (34), and (35) we can calculate, for various 
shaped optical pulses, the effect of intersymbol interference on the re-
quired energy per "on" pulse (b .) and therefore on the required 
average optical power needed for a 10-9 error rate.t We shall assume 

t That is, if pulses are "on" half the time, the required optical power equals 
b.../2T • 
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Fig. 19—No avalanche gain. 

that the detector amplifier shunt resistance RT is sufficiently large so 
that the term ((27C2) 2/Te2)8E13 dominates the thermal noise in (23) 
and (30). 
The minimal required optical power is obtained for very narrow op-

tical input pulses. t For other pulse shapes, the excess required optical 
power can be defined as a penalty in dB for not using narrow pulses. 
This penalty is plotted in Figs. 19 and 20 for the case of no avalanche 
gain and optimal avalanche gain using the pulse shapes of (25), as-
suming a silicon detector (x = 0.5). In those figures, the abscissa is 
the normalized rms optical pulse width defined as follows: 

0'2 (37) T2 —  T2   

where T = time slot width. 

VII. CONCLUSIONS 

7.1 Conclusion on Choosing the Biasing Circuitry 

From the results of Sections IV and VI, and from (23), it is clear 
that, to minimize the thermal noise degradations introduced by the 
amplifiers following the detector, it is necessary to make the amplifier 
input resistance and the biasing circuit resistance sufficiently large so 
that the amplifier series noise source dominates the Johnson noise of 
these parallel resistances. When designing the amplifier, one should 
keep in mind that for a silicon avalanche detector the required optical 

t See Appendix B. 
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energy per pulse at optimal gain varies roughly as the_one-sixth power 
of the thermal noise variance at the receiver output, and therefore it 
is not wise to spend too much money on thermal noise reduction. On 
the other hand, if one is not using avalanche gain, the required energy 
per pulse varies roughly as the one-half power of the thermal noise 
variance at the receiver output. 
In order to minimize the effects of the thermal noise, the total capaci-

tance shunting the detector should be as small as possible and the 
equivalent series thermal noise source of the amplifier should also be 
as small as possible. 

7.2 The Effect of Bit Rate on Required Energy Per Pulse 

The effect of bit rate on the required energy per pulse is small if the 
received pulses remain well confined to a time slot. In (23), assume II, 
E ly 12, and /3 are fixed corresponding to a fixed received pulse width 
relative to a time slot. Then the shot noise terms due to the signal are 
independent of the bit rate 1/T, and the shot noise due to the dark 
current decreases with increasing bit rate. If the series noise from the 
amplifier dominates, then the thermal noise increases with increasing 

t This subject will be discussed in more detail in Part II. 
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bit rate, but is for the most part compensated for by the avalanche gain 
with little penalty in required energy per pulse. 
If considerable equalization is being used, then the required energy 

per pulse increases with the bit rate (because a higher bit rate neces-
sitates greater equalization). For the equalization assumed above, 
where the equalized pulses are forced to go to zero at all sampling times 
except one, the required energy per pulse is a strong function of the bit 
rate. For example, with exponential-shaped received pulses, the re-
quired optical power at optimal avalanche gain was roughly 6 dB higher 
for a pulse 1 time slot wide to the 1/e point compared to a pulse only 
0.25 time slot wide to the 1/e point (see Fig. 20). 
On the other hand, it is clear that zero-forcing-type equalization is 

not optimal, particularly for received pulses whose spectra fall off 
rapidly with frequency. It is more likely that some compromise between 
eye opening and output noise variance results in minimum required 
energy per pulse. 
For the assumed zero-forcing equalization, we still can conclude that 

a usable tradeoff exists between required energy per pulse and bit 
rate, and this will allow some extension of the usable rate on "disper-
sion-limited" fibers. 

7.3 Comments on Previous Work 

The purpose of this paper has been to illustrate the application of 
the "high-impedance" front-end design to optical digital repeaters, to 
take into account precisely the input pulse shape and the equalizer-
filter shape, and to obtain explicit formulas for the required optical 
power to achieve a desired error rate as a function of the other 
parameters. 
Previous authors"." working in the areas of particle counting and 

video amplifier design have recognized that a high-impedance front 
end followed by proper equalization in later stages provides low noise 
and adequate bandwidth. However, optical communication theor-
ists5,8•14,15  have in the past often used the criterion "RC  T"—loading 
down the front-end amplifier so as to have adequate bandwidth with-
out equalization—therein incurring an unnecessary noise penalty. Some 
optical experimenters"." have recognized the high-impedance design 
for observing isolated pulses or single frequencies, but failed to recog-
nize the use of equalization. 
Many previous authors3.4.6.'5 have used simple formulas (which 

usually assume isolated rectangular input pulses and a front-end band-
width of the reciprocal pulse width) to obtain the required power in 
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optical communication systems for a desired signal-to-noise ratio. 
Often these formulas average out the signal-dependent nature of the 
shot noise. If modified to include the high-impedance design concept, 
such formulas are very useful for obtAining "ball park" estimates of 
optical power requirements. Such formulas are, in general, special 
cases of the formulas described here. 

7.4 Experimental Verification 

In work recently reported," J. E. Goell has shown that, in a 6.3-
Mb/s repeater operating at an error rate of 10-9, agreement of experi-
mentally determined power requirements and the above theory were 
within 1 dB (0.25 dB in cases without avalanche gain). In particular, 
using an FET front end and the "high-impedance" design, the optical 
power requirement without avalanche gain was 8 dB less than with the 
front end loaded down to the "RC = T" design. 

APPENDIX A 

Signal-to-Noise Ratio Approximation 

In this paper we have calculated the mean voltage (b..x or b min) 
and the average-squared deviation from the mean voltage (NW(b...) 
or NW(b.i.)) at the receiver output at the sampling times. In order to 
calculate error rates, we shall assume that the output voltage is ap-
proximately a Gaussian random variable. This is the signal-to-noise 
ratio approximation. Thus if the threshold, to which we compare the 
output voltage, is D, and if the desired error probability is P., we have 

1 f D  exp [ — (v — b \212  21d =  (38) 

where 
=  NW (b „,i„) 

and 

1 to , exp [ — (v — b „„.) 2 /2alielv =-- P 

where 
fri = NW (b...). 

Changing the variables of integration we obtain the following ex-
pressions, equivalent to (38): 

1  rn  e_ 
'"ds, = P,  (39) 

Q 
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where 

and also 

Thus we must have 

and 

0-9  6-9  

Q = (D — bi„,„)/a-0 

Q = (b  — D)/ i. o-

a. = .NINW(bmin) = (D — bmin)/(2 

al =  = (b,„.„ — D)/Q. 

Therefore we must also have (eliminating D) 
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10-10  10-11  10-12 

-arW(b .)  liNW(bmin) = (bma. — bmin)/Q• 

The value of Q is determined by the error rate through (39) above. 
Figure 21 shows a plot of Q vs P, which can be obtained from standard 
tables. 
Equation (39) states that the threshold must be Q standard devia-

tions (of the noise at bmin) above bz„„n, and also must be Q standard 
deviations (of the noise at b.,..) below b.ax to insure the desired error 
rate. For an error rate of 10-9 (P, = 10-9 ) Q is roughly 6 (5.99781). 
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APPENDIX B 

Optimal Input Pulse Shape 

We now wish to show that the optimal input pulse, h,(t) shape 
(which minimizes the required average optical power) is ideally an 
impulse; and for practical purposes a pulse which is sufficiently narrow 
so that its Fourier transform is almost constant for all frequencies 
passed by the receiver. To do this, we shall show that such a narrow 
pulse minimizes the noises NW(b...) and NW(bmi„) defined in (23). 
We begin with the already established condition that the area of 

Mt) is equal to unity and that h p(t) is positive (power must, of course, 
be positive). 

fh,(t)dt = 1;  h„(t) > 0.  (40) 

These conditions imply the following weaker condition: 

H ,;( f) I =1  hp(t)e-nrigiTdt 

f = f h,(t)dt = H;(0) = 1. (41) 

Consider first the thermal noise terms of (23) involving the integrals 
/2 and /3: 

I 11 4;ut(f) I 2 —  f.  I -   f2df. (42) 

Using (41) in (42) we see that these terms /2 and 13 are minimized for 
any desired output pulse 11 (f) by setting I 14(f)I = 14(0) = 1 for 
all frequencies, f, for which I H ( f) I > 0. Thus, ideally, to minimize 
/2 and /3, h(t) is an impulse of unit area which also satisfies the condi-
tions (40). 
We must now show that the shot noise terms of (23), /1 and Ei - 

are minimized by a very narrow pulse h(t). 
First recall that (El —  is the worst-case, 

mean-square shot noise at the sampling time due to all other pulses 
except the one under decision, and assuming all of those pulses are "on" 
(bk = bnikx for k e 0). Thus, from (17), we obtain 

(43) 
where 

Ei —Ii = f (E h„(t' —  
k00 
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and where 14(0 is the overall receiver impulse response relating hp(t) 
to ho(t). 
Now let the optical pulse h,(t) be an impulse of unit area. Then the 

overall impulse response hi must be equal to h0(t) and therefore using 
(43) and (9) we obtain 

Ei — Ii = ic,  h(—kT) = 0 
(44) 

(for h„(i) = a(t)). 

Because condition (9) requires zero-crossing equalization, we have 
shown that an impulse shape for h(t) minimizes (removes) the shot 
noise from pulses other than the one under decision. 
Finally, consider the shot noise from the pulse under decision given 

by ii(hil/n)be(g2)/(g)2 where 

Ii = 1 h,(e)113(—e)de > 0.  (45) 

We already have the condition (9) 

h0ut (0) = I h,(e)hr(-1')de = 1.  (46) 

We can next use the Shwarz inequality on (46) 

(h011t(0)) 2 = 1 = ( f ht(t)ht,(t)hr(—t)dtr 

fh„(t)dt f h,(011E—t)dt.  (47) 
Since fhp(t)dt = 1, we have from (47) and (45) 

ii k 1.  (48) 

Now set h(t) equal to a unit area impulse. It then must follow from 
(46) that MO) = 1. We finally obtain 

Jh,(t)M(t)dt = M(0) = 1.  (49) 

From (48) and (49) we see that an impulse-shaped h(t) makes Ii 
achieve its minimum value of unity. 
Summarizing, an impulse-shaped optical input pulse h,(1) (for prac-

tical purposes a sufficiently narrow pulse so that its Fourier transform 
is approximately constant for all frequencies passed by the receiver) 
minimizes all the pulse-shape-dependent coefficients (II, E i — Ii, /2, 
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and /3) in the noise expression (23) and thereby minimizes the required 
average optical power to achieve a desired error rate (using the signal-
to-noise ratio approximation of Appendix A). 
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This paper applies the results of Part I to specific receivers in order to 
obtain numerical results. The general explicit formulas for the required 
optical average power to achieve a desired error rate are summarized. A 
specific receiver is considered and the optical power requirements solved 
for. The parameters defining this receiver (e.g., bit rate, bias resistance, 
dark current, etc.) are then varied, and the effects on the required optical 
power are plotted. 

I. INTRODUCTION 

This paper will apply the theory of Part I to illustrate in detail how 
the required received optical power in a digital fiber optic repeater 
varies with the parameters such as the desired error rate, the thermal 
noise sources, the bit rate, detector dark current, imperfect modula-
tion, etc. We shall begin by first applying the formulas of Part I to 
a specific realistic example to obtain reference point. We shall then 
derive curves of how the required power varies around this point as we 
vary the system parameters. 

II. REVIE W OF RESULTS OF PART I 

In Part I we derived explicit formulas for the required optical power 
at the input of a digital fiber optic communication system repeater to 
achieve a desired error rate. One formula was applicable when little 
or no internal (avalanche) detector gain was used, so that thermal noise 
from the amplifier dominated. The other formula was applicable when 
optimal gain was being used. These formulas are repeated below: 

QD hS2 
Preguired = GT n ' 

(Thermal Noise Dominates)  (1) 

875 
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where 

2k0 ,SE 1  
Z = te-2[8 ±  -r R, /2 ± (21-CT)2SE/3Te2 f' 

= Prequired  (2-1-x) /(1-1-x)r(Z) z/(2-1-2x)(7 ) r/(2+2x)(72 ) (2+z) / (1-1-x)] _hS2 
2T 

where 

(la) 

(Optimal Avalanche Gain)  (2) 

Goptimal = (Q) -1 /(1-1-x)[(Z)1/(2-1-2.)(71 ) 1 i(2+2x)(72 )-1 /(1-Er) 

where (referring to Fig. 1) 

n/h9 = detector quantum efficiency/energy in a photon 
T = interval between bits = 1/bit rate 
G = average detector internal gain 
Gr = detector random internal gain excess noise factor 
Q = number of noise standard deviations between signal and 

threshold at receiver output. Q = 6 for an_error rate of 10-°. 
(See Fig. 21 in Part I for a graph of error rate vs Q.) 

e = electron charge 
ko = Boltzman's constant • the absolute temperature 
RT = total parallel resistance in shunt with the detector including 

the physical biasing resistor and the amplifier input resis-
tance 

Rb = value of physical detector biasing resistor 
CT = total shunt capacitance across the detector including the 

shunt capacitance of the detector and that of the amplifier 
Sr = amplifier shunt noise source spectral height (two-sided) in 

amperee/Hz 
SE = amplifier series noise source spectral height (two-sided) in 

volte/Hz. 

/2, /3, 71, and 72 are functions only of the shapes of the input optical 
pulses and the equalized repeater output pulses, where the length of 
a time slot has been scaled out. These functions are defined in eqs. (23) 
and (34) of Part I. 
Formulas (1) and (2) neglect dark current and assume perfect modu-

lation (received optical pulses completely on or off). We shall investi-
gate deviations from these idealizations later in the paper. For silicon 
detectors and bit rates above a few megabits per second, these idealiza-
tions are reasonable approximations. 
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III. A TYPICAL OPTICAL REPEATER 

Consider the following practical optical repeater, operating at a bit 
rate of 2.5 X 107 bits per second and an error rate of 10-9 . The detector 
is a silicon device with excess noise exponent z = 0.5, quantum effi-
ciency 75 percent, dark current before avalanche gain of 100 pico-
amperes, and an operating wavelength of 8500 angstroms. The front-
end amplifier is a field-effect transistor in a common-source configura-
tion. The total shunt capacitance across the detector is 10 pF. The de-
tector biasing resistor is 1 megohm. The amplifier input resistance is 1 
megohm. The amplifier shunt-current noise-source spectral height is 
equal to the thermal noise of a 1-megohm resistor. The amplifier series-
voltage noise-source spectral height is equal to the thermal noise of 
a conductance with a value equal to the transistor transconductance, 
g„„ which is 5000 micromhos. The received optical pulses are half-duty-
cycle rectangular pulses. The desired equalized output pulse is a raised 
cosine pulse [see Part I, eq. (25)] with parameter 13 = 1. 
We must first calculate the value of Q which depends only upon the 

desired error rate. From Part I, Fig. 21, we see that for an error rate of 
10'9, Q = 6. 
Next we must obtain the constants 12, 13, -yi, and -y2. These depend 

only upon the input optical pulse shape and the equalized output pulse 
shape. From (23) and (34) of Part I we obtain 

= 0.804046,  I = 0.071966,  -yi = 21.4106, 
-y2 = 1.25424. (3) 
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Using the above data we obtain the thermal noise parameter Z as 
follows: 

Z = 

T 
21c0 

f 
f 

4 X  10-8  (1.6 X 10-")2 [8.28 10-21  (10-6 ± 10-8 

i/ 
e 

/2 

+ 4 X 10-'2) /I 0.804046  ] 
5 X 10-8 

/3 

(2T X 10-11)2 (8.28 X 10-21 ) 11  (0.071966) 
5 X 10-e   

± (1.6 X 10-18 )2(4 X 10-8 ) 
— 4.8027 X 106. (4) 

From the data we have hO/n = 3.117 X 10-19  joules. 
We obtain from (1), at unity internal gain (no avalanche), Prequired 

= 3.25 X 10-8 watts = —44.89 dBm (no gain). 
We obtain from (2), at optimal avalanche gain, Prequired =  1.6409 

X 10-9 watts = —57.85 dBm, Gopttmal = 56.89. 
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Fig. 2—Required power penalty vs Rb. 
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We therefore observe that optimal avalanche gain buys a 13-dB 
reduction in required optical power in this example. Before proceeding, 
we can check the validity of neglecting dark current. The average num-
ber of primary photoelectrons produced by the signal per pulse inter-
val T is the required optical power multiplied by nT/hSI. When shot 
noise is important (with avalanche gain) this number is 210 primary 
signal counts per interval T. The number of dark current counts per 
interval T is the dark current in amperes multiplied by T/e, which in 
this example is 25 primary dark current counts. Thus, the shot noise 
due to the dark current is about 10 percent of the signal shot noise. 
It is therefore a reasonable approximation to neglect this dark current 
noise. In Section VI we shall calculate precisely the effect of dark cur-
rent upon the required optical power. 

IV. VARYING THE PARAMETERS 

In this section, we shall calculate the effect of varying parameter 
values used in the example of Section III. 

4.1 Biasing Resistor Value 

It was pointed out in Part I that the biasing resistor Rb should be 
sufficiently large so that the amplifier series noise source SE dominates 
in the expression for Z of (la). This was in fact the case in the example 
of Section III. We can calculate the penalty in required optical power 
for using a smaller biasing resistor. This penalty is plotted in Fig. 2 in 
dB with zero dB being the penalty associated with an infinitely large 
biasing resistor. The exact penalty of Fig. 2 is applicable with the other 
relevant parameters (which make up Z) given in the example above. 
However, the qualitative conclusions are that significantly more optical 
power is needed if one adheres to the "RC = T" design rather than the 
"large R" (high-impedance) design, in the absence of avalanche gain. 
Figure 3 shows how the optimal avalanche gain varies when R b is 
changed. The qualitative conclusion is that the "RC = T" design re-
quires significantly more avalanche gain that the "large R" (high-
impedance) design. It should be pointed out that, for lower bit rates 
and/or a smaller capacitance CT, the improvement associated with use 
of a large Rb rather than a value to keep RbCT = T is more pronounced. 

4.2 Desired Error Rate 

As mentioned before, the error rate is coupled to the parameter Q in 
(1) and (2). Figures 4a and 4b show plots of the variation in the re-
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Fig. 3—Optimal gain penalty vs Rb, G,, = optimal gain at Rb = œ. 

quired power in dB with the desired error rate without gain and with 
optimal gain. The absolute power in dBm is only applicable to the ex-
ample of Section III above. However, the difference in required power 
in dB between any two error rates is applicable in general, as should be 
apparent from (1) and (2), provided a silicon detector (x = 0.5) is 
being used. 

4.3 Bit Rate (1 / T) 

As mentioned before, the pulse spacing T is scaled out of /2, 18, 1,1, 
and 72. These numbers depend only upon the input and output pulse 
shapes (e.g., half-duty-cycle rectangular input pulse, raised-cosine 
equalized output pulse). Therefore, the effect of the parameter T is 
explicitly given in (1) and (2) without any hidden dependencies. (This 
of course assumes that the input pulse shape is not limited by disper-
sion in the transmission medium and can therefore be held to a half-
duty-cycle rectangle.) If we assume that the high-impedance design is 
being used and that this dominance of the term proportional to 1/T 
in Z of (1a) can be maintained as the bit rate is varied (becomes difficult 
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at low bit rates), then we have the following dependence of the re-
quired optical power upon the bit rate 1/T without gain and with opti-
mal gain: 

Preqm ired 

Prequired 

Gop td ma 1 

io-9 10_ 10  1G_ 11 10_ 12  

Ex T-1 (no gain) 
(4.5 dB/octave of bit rate) 

cc T-7 /6 (optimal silicon gain) 
(3.5 dB/octave of bit rate) 

cc T-1 

(1 dB/octave of bit rate). 

One should be careful extrapolating (5a) and (5b) to very low bit 
rates. First, the shot noise is no longer negligible compared to the 

(5a) 

(5b) 
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thermal noise at bit rates where the optimal gain is low. Thus (5a) 
loses validity at very low bit rates. Further, (5b) is only valid for opti-
mal gains greater than unity. Near unity optimal gain, the silicon 
excess noise factor departs from G-5. In addition, at low bit rates, dark 
current may not be negligible. It is reasonable to use (5a) and (5b) to 
extrapolate the results of the example in Section III to bit rates be-
tween 5 and 300 Mb/s. 

V. THE EFFECT OF IMPERFECT MODULATION 

The above formulas (1) and (2) assume that there is perfect modula-
tion. That is, it was assumed that each optical pulse is either completely 
on or completely off. In this section we shall investigate two versions of 
imperfect modulation. 

Case 1: Pulses Not Completely Extinguished 

This case is illustrated in Fig. 5. In each time slot the optical pulse 
is either completely or partly on. The partly on pulse has the same 
shape as a completely on pulse, but has area EXT times the area of 
a completely on pulse. This may correspond to an externally modulated 
mode-locked laser source. Thus the ratio of the power received when a 
sequence of all "off" pulses is transmitted to the power received when a 
sequence of all "on" pulses is transmitted is EXT. Using the results 
of Part I eqs. (23) and (34), we obtain the following power require-
ments which are modifications of (1) and (2) above: 

Prequired f i EXT \QZI itS2 
1 — EXT  GT II ' 

1 EXT f  Q   \ (2+x) /(1-1-x) 
Prequ Ired  2T i — EXT) 

[(z)./(2+2x)(7 )x1(2+2x) (72') (2-1-x) /(1-1-x)]  , 

where defining from Part I (23) and (34) 

/6 = Ei — (1 — EXT)/1 

we have 

=  

= -11/7 1  Ei  -‘11/1'; + /6. 

[Compare (6) and (7) to (1) and (2).] 

(Thermal Noise Dominates) (6) 

(Optimal Gain)  (7) 

— (Li + 16) ± V(E1 + /)2 +  E1 /6 2:2 
16(1 +   
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Using (1), (2), (7), and (8), we can calculate the extra required opti-
cal power due to a nonzero value of EXT with and without avalanche 
gain. When avalanche gain is being used, this power penalty depends 
upon the input and output pulse shapes. We plot in Fig. 6 the power 
penalty vs EXT, assuming the pulse shapes of the example in Section 
III above for the avalanche gain ease. 

Case 2: Pulses on a Pedestal 

This ease is illustrated in Fig. 7. The received optical pulses arrive on 
a pedestal, which may correspond to inability to completely extin-
guish the light from a modulated source which is not in a pulsing (mode-
locked) condition. We set the ratio of average received optical power 
when all pulses are "off" to average received optical power when all 
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Fig. 6—EXT penalty (dB) vs EXT. 
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Fig. 7—Imperfect 7—Imperfect modulation, pulses on pedestal. 

pulses are "on" to be EXT in analogy to Case 1 above. This ratio will 
remain fixed if the pulse changes in propagation from transmitter to 
receiver. Using the results of Part I we Obtain the following formulas 
for the required optical power: 

1 + EXT QZ4 MI 
P""fred — 1 — EXT GT n ' 

1 + EXT (Q) (2+z) /(1+z) 

Prequired = 1 — EXT  2T 

X E(Z) z / (2+2z) (y;')21 (2+2x) (72") (2+z) /(1+z)1 ivl° '  (Optimal Gain) 
j n  

where defining from Part I (23) and (34) 

E; = Ei + i  EXT  \ 
\1 — EXT) 12 

17 = zi  _ .17 + i  EXT  ) r 
2 .1 

1 —  EXT 

we have 

1/1' = 
— (E; + /7) ± Ni(E; + /7) 2 ± 16(1 +2 x) (E;)17  

2(E;)17 x 

(Thermal Noise Dominates)  (8) 

(9) 

7; = '11/71 + E; + -‘11/7;' + /7. 
Once again we can use (1), (2), (8), and (9) to calculate the penalty for 
nonzero extinction. This penalty is plotted in Fig. 8 vs EXT where we 
assume the input and output pulse shapes of the example in Section III 
when there is optimal avalanche gain. 

VI. THE EFFECT OF DARK CURRENT 

In order to allow for dark current, we must solve the following set of 
simultaneous equations which treat the dark current as an equivalent 
pedestal-type nonzero extinction. (When thermal noise dominates, 
dark current is either negligible or its shot noise can be added trivially 
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(At optimal avalanche gain)  (10) 

where defining from Part I (23) and (34) 

= Ei  sr, 
18= Ei— 11+ (512 

we have 

71  = 

ItO 

'Y2 

id 

—(E;'  /8)  V (E;, +18)1  -I- 16(1 + 
x 2  L./ I 1 8 

2 E;' /8 

= *V1/71" + Et + -J1/7; + /8 

-= (2Prequired)  eâ 

where id = primary dark current in amperes. 
There are various ways to solve (10) and (11) simultaneously. One 

way is to solve (10) first with ô  0 for Preq u 'red • Then one can solve 
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Fig. 9—Required power vs dark current. 

(11) for a new value of S. One then resolves (10) and then (11), etc.— 
repeating the iterations until satisfactory convergence is obtained. 
Figure 9 shows a plot of the required power in dBm for the example in 
Section III vs dark current in nanoamperes. We see that a dark current 
of 100 picoamperes results in an optical power requirement which is 
about 0.5 dB more than that which would be required with zero dark 
current. Thus it was reasonable to neglect dark current when calculat-
ing the required power in Section III. Dark current will result in even 
less of a penalty at higher bit rates. Although the curve of Fig. 9 is ap-
plied to the specific example of Section III, it is apparent in general 
that, at bit rates above a few megabits per second and with primary 
dark currents less than 0.1 nanoampere, dark current will have a small 
effect upon the required optical power. 

10 -2 1 10 
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The properties of modes in a slab structure with gain in the center region 
and loss in the surrounding medium are investigated. The propagation 
constant and field distribution of the lowest-order modes are determined. 
The cutoff frequencies and propagation constants of the next-higher mode 
are given. Furthermore, the effect of a refractive index depression or in-
crease in the center region is determined. The depression does not destroy 
the mode, as may be expected, but causes it to have a cutoff frequency. 
Comparison of these results to the experimental data shows that gain-induced 
modes play an important part in the lateral confinement in stripe-
geometry GaAs lasers. 

I. INTRODUCTION 

Modes in cylindrical structures with refractive index boundaries are 
well known. Their existence and basic properties are generally visual-
ized by superposition of plane waves reflected at the index boundaries. 
Much less is known about modes in structures with spatially non-
uniform gain or attenuation. 1.2 However, it seems intuitively possible 
that some kind of mode should also exist in that case; indeed, Kogelnik8 
showed that a cylindrical structure with a radial gain profile can sup-
port a Gaussian beam of constant diameter even if there are no refrac-
tive index differences present. Evidently, the nonuniform transparency 
of the medium counteracts the natural tendency of the beam to spread. 
In this paper we will consider a planar structure with stepwise dis-

continuities of gain or absorption. This geometry is of considerable 
practical interest. As will be shown in this paper, the lateral confine-
ment of the optical field in a stripe-geometry GaAs laser is due to the 
gain-loss interface at the edge of the stripe. Furthermore, it is easy to 
create nonuniform gain distributions in planar structures either by 
masking and optically pumping or by nonuniform injection current 
distribution. The modes induced by these gain distributions can be 
easily influenced from the outside by changing the pumping intensity 
or injection current. 

887 
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II. GAIN-INDUCED MODES IN A THREE-LAYER STRUCTURE 

The physical configuration with which we will concern ourselves in 
this paper is shown in Fig. 1. All material parameters are assumed to 
be constant throughout the regions and differ only at the boundaries 
x = d a. As is well known from the theory of refractive guiding,' the 
modes can be divided into four classes: TE even and odd in x direction 
and TM even and odd in x. The two lowest-order even modes have no 
cutoff frequency, whereas the odd modes can be guided only above a 
certain cutoff frequency. For our application, the lowest-order even 
modes are of greatest interest and we will deal with them first. 
Before going into details, let us explain the notation which we will 

use subsequently. 

(i) The complex relative dielectric constant E is split into refractive 
index n and extinction coefficient k according to 

(1) 

(ii) u determines the x dependence of the fields inside the center 
layer 1x1 5 a, i.e., they have the functional form 

sin  x  \ . 
lu — 

cos \ a J 

(iii) w gives the dependence of the fields in the cladding 1 xl k a 
which follow the function e-avizial. u and w are related by 

u2 -I- w2 = (Cl — e2)(koa) 2. (2) 

With these quantities we can derive the characteristic equations (the 

a 

+a 

X 

g 

—a 

a 

Fig. 1—Cross section of slab waveguide. 

Y 



MODES IN PLANAR STRUCTURES  889 

field components are listed in Appendix A) for the even modes. 

TE Mode TM Mode 

w = u tan u El 
- w  =  u tan u 
E2 

(3) 

They are formally the same as in the case of purely reactive modes but, 
since ei and €2 are complex, the solutions will be complex. 
We determine under which conditions eqs. (3) have a solution. We 

restrict ourselves to cases where the fields cannot increase exponentially 
with increasing distance from the interface nor can there be any move-
ment of wavefronts from infinity toward the guiding structure. This 
limits w to the first quadrant. It is then easy to derive a necessary but 
not sufficient condition from eqs. (2) and (3): ei — E2 has to stay in the 
first or second quadrant, i.e., Im (€1 — €2) > 0, which is equivalent to 

niki — n2k2 > O. (4) 

Let us interpret this inequality for some special cases: 

(i) k1 = k2. Condition (4) reduces to ni > nz which is the well-
known requirement for refractive guiding. 

(ii) ni = nz. The condition (4) now reads ki > k2, equivalent to 
saying that the center region should be more transparent than 
the sides, which agrees with physical intuition. 

(iii) ni = n2 ± An, where An is small compared to n2 but not neces-
sarily small compared to k. In this case (4) can be expressed by 

àk  An 
(4a) 

xi  n2 

where àk = k1 — k2. This inequality shows that there can be modes 
even if An or Ak is negative, as long as the other mechanism is strong 
enough to generate the mode. However, since (4) is only a necessary 
condition, this case requires further examination. 
The second problem we have to address ourselves to is that of the 

cutoff frequency. For refractive guidance the lowest-order even modes 
have no cutoff frequency. We will now establish the conditions under 
which gain-induced modes have no cutoff frequency either. For small 
values of (€1 — ez) (koa)2, w and u will be small and the tangent in 
eq. (3) can be replaced by its argument. The solution of eqs. (2) 
and (3) is thus w = (ei — €2) (ako)2 for TE modes and w = (€2/€1) 
X (ei — €2) (ak0)2 for TM modes with ako very small. This result 
shows that the solution of (3) exists no matter how small Calco) is, 
independent of the guide parameters, as long as ei — E2 is in the 
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first quadrant. In other words, a gain-induced mode will have no cutoff 
frequency as long as there is a refractive index difference to keep El —  E2 

in the first quadrant. If there exists a refractive index depression, i.e., 
Re (61 —  E2) <  0, the modes do have a cutoff frequency. 
We will now consider the case of gain-induced modes without a refrac-

tive index change. We specialize the discussion to small extinction co-
efficients in the order of 10-4, whereas n is typically greater than one. 
This covers typical laser applications reasonably well. The character-
istic equations for TE and TM modes [eqs. (3)] differ only by a factor 
of 61/ 62 =  1  j(2/n)(k — k2) which is sufficiently close to one to 
cause only a negligible perturbation. In the following, we will therefore 
neglect the difference between TE and TM modes. 
To simplify the discussion we define two new quantities: A normal-

ized frequency is given by 

= ak ei — 62.  (5) 

For gain-induced modes, y reduces to the form 

(k1 — k2)  
v = akon Vj2  (6) 

which means that in this particular case the phase angle of y is inde-
pendent of the material parameters. It is furthermore customary" to 
use a normalized propagation constant b 

W W 2 E2 b — 
El —  E2 

or (  -E )2  E2 (E,  ) E, b. 0..   
(7) 

Since in our application EI — Ei is a small quantity, (3./k0)2 is always 
equal to €2 plus a small perturbation, whereas the variation of f b I is in 
the order of one, thus alleviating some computational problems. The 
two parameters u and w are related to y and b by u = tr\  b and 
= 

With these new quantities, the two characteristic eqs. (3) are trans-
formed into 

= e.=-6 tan (y1,1 — b).  (8) 

It should be noted that the normalized propagation constant b is 
exclusively a function of v. It is, therefore, only necessary to solve the 
characteristic eq. (8) once to cover all material parameters and di-
mensions, assuming, of course, the validity of the initial assumptions. 
The solution of the characteristic equation was done on the com-

puter. Figure 2 shows the normalized propagation constant b for the 
lowest-order mode as a function of I v I . We can interpret b more easily 
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Fig. 2—h( 12)1) for lowest-order even mode (ni = na)• 

if we rewrite the propagation constant ez [eq. (7)] to show its real and 
imaginary parts. 

n — Mk' — k2)  j(k2(1 — br)  kibr)•  (9) 

The attenuation or gain of the mode as represented by the imaginary 
part of Oz/ko is solely dependent on b„ which varies between 0 and 1. 
For small values of b„ the attenuation will be determined by the outer 
medium and only for higher values of I), will the gain in the center 
region be of significance. This situation corresponds very closely to the 
case of refractive guidance. For further reference we have included in 
Fig. 3 the field distribution with I y I as parameter. 
For any practical application, it is important to know up to which 

frequency or dimension the guide is single moded. We will therefore 
determine the cutoff frequency of the lowest-order odd mode and of the 
first-order even mode. We define the cutoff value of b as the one at 
which the radiation condition just ceases to be fulfilled. It turns out 
that this is the case when w is purely imaginary, i.e., only power is 
radiated away from the guiding structure, but the amplitude does not 
decrease with increasing I s . Re (w) = 0 is equivalent with the condi-
tion Re (b) = O [eq. (7)]. The solution of this problem has to be found 
on the computer. The results are 

vodd  I = 1.877 = 2.759. 

For future reference we have included b(Iy I) for the first-order even and 
the lowest-order odd mode (Figs. 4 and 5). 
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III. THE INFLUENCE OF ADDITIONAL REFRACTIVE INDEX DIFFERENCES 

In general, if there is a gain or loss difference between two regions, 
the refractive index will be different as well. Gain and refractive index 
are related by the Kramers-Kronig relations and thus the presence of 
gain can change the refractive index. Furthermore, in the case of the 
injection laser, the injected carriers change the refractive index due to 
the plasma resonance. In this particular case, the gain region can be ex-
pected to have a lower refractive index than the side regions. It is thus 
necessary to explore the effects of refractive index increases and depres-
sions in the center region in conjunction with gain-loss differences. 



1.8 

1.6 

1,4 

1.2 

.0 1.0 

0.8 

0.6 

0.4 

0.2 

o 

1.2 

1.0 - 

0.8 - 

.0 0.6 - 

0.4 - 

0.2 - 

MODES IN PLANAR STRUCTURES 

2  3 

Iv, 

Fig. 4—b (Iv') for first-order even mode. 

4 5 6 

893 

vCUTOFF = 1.877 

LOWEST ODD MODE 

o  1 3 

Ivi 

4 

Fig. 5—b(10) for lowest-order odd mode. 

5 6 



894  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1973 

If there is an increase in refractive index in the center, we can expect 
the confinement of the energy to increase with increasing index differ-
ence. However, in the case of a refractive index depression in the center, 
the two confining mechanisms will counteract each other. 
Let us consider the effect of increased refractive index in detail. In 

contrast to the case of gain-induced modes where the phase of s was 
r/4 [eq. (6)] independent of material parameters, it is now dependent 
on the complex difference El  Eo. This precludes a representation of 
the guiding parameters independently of the waveguide parameters as 
it was possible in the previous case. We are thus forced to determine 
a solution of the characteristic equation for each set of parameters. It 
is therefore of importance to develop approximations for the propaga-
tion constant. We treat first the case, Ak/Ain « 1. We regard the wave-
guide as a perturbed refractive guide. The b(v) characteristic is plotted 
in Fig. 6. Obviously, both y and b are real. A small perturbation àk has 
two effects: (i) the characteristic eq. (8) becomes complex and yields 
an imaginary part bi, whereas the real part is to a first order unper-
turbed; and (ii) the propagation constant (9) is now approximated by 

- n  ànb,. — bi Ak  ./(k2  14. Alc  bi in),  (10) 
ko 

i.e., there appears a second imaginary component b, àn, which acts 
like a gain since àn and bi are both positive. This effect is due to the 
improvement in guiding by the gain-loss mechanism. The calculations 
are straightforward and are listed in Appendix B. We note here only 
the result: 

àk (1 — bo)vo eo 
bi = 

An 1 ± voeo 

where the quantities indexed with a zero denote the unperturbed state. 
In particular, vo = akon1,12 /n. We notice that bi contains a factor 
1 — bo, which decreases with bo approaching unity. Inserting (11) into 
eq. (10) yields an expression for the loss (or gain) of the mode: 

(1 — bo)yol[170 
a  ko [k2  ak (bo  (12) 

1 ± vo-‘rb-0 

We note that the function 

(1 — bo)vo eo 
f(vo) = bo 

1 + vo eo 
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Fig. 6—b(v) for lowest-order even mode in a refractive slab guide and loss-weighing 
function f(v0) for lowest-order even mode. 

associated with àk is only dependent on vo and we have thus again 
achieved a representation valid for all waveguide parameters. Figure 
6 shows that f(vo) approaches unity much faster than bo(vo); the loss 
is approaching the loss or gain in the center region indicating improved 
confinement due to the gain-loss difference. 
We will now consider the refractive index depression in the center 

region. From our discussion of cutoff frequencies, we know that modes 
in this case do have a cutoff frequency if they exist at all. It can be 

determined from the condition that w = eNT6 is purely imaginary. 
In Fig. 7 real and imaginary parts of b are plotted as functions of 

s/X with the parameters listed in the figure caption. Since br is larger 
than one, eq. (10) shows that the effective refractive index is smaller 
than that of either medium (An is negative). The phase velocity is 
therefore larger than that of a plane wave in either medium, as in 
metallic waveguides. Altogether, this is quite a different behavior from 
the ordinary dielectric waveguide. One would expect the index depres-
sion to counteract the confinement and, if the depression is strong 
enough, to destroy it completely. As discussed before, this is only the 
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case below the cutoff frequency. To ensure that the solution of the 
characteristic equation is real and not a freak of the computer program, 
we have derived an approximate solution for  Ic/An « 1 in Appendix 
C. The normalized propagation constant is given by 

b = 1 +  1 + J  1 + v 21ànl ff 
.2/  k  \1 

s  / 2 An 1  
v = irn 

where 

(13) 

IV. GAIN-INDUCED MODES IN STRIPE-GEOMETRY GaAs LASERS 

The function of the stripe geometry has been viewed as selecting 
a filament and preventing others from forming.' We will now show that, 
in contrast to a laser with a wide area contact, the stripe geometry 
does provide a confining mechanism for the optical power and is not 
merely "selecting" the filament. 
In stripe-geometry lasers, the flow of carriers is confined in a stripe 

region parallel to the junction (laterally). This is done by proton born-
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barding the adjacent regions.' The proton bombardment and subse-
quent annealing alter the free-carrier density but not the optical prop-
erties of the materia1.8 There are no deliberately built-in refractive 
index changes between the active and the passive regions. The experi-
ments show that with stripe widths of --12 gm the lasers operate gen-
erally in a single lateral mode; the origin of this confinement has not 
yet been explained. Figure 8a gives a linear scan of a typical nearfield 
distribution. However, at high current levels or wider stripe widths, 
numerous deviations from such a single-mode field distribution occur. 
Figure 8b gives an example of the nearfield in such a case. The field still 
fills essentially the whole stripe width but is highly nonuniform. Fre-
quently the intensity maximum changes its position with changing 
current. It is clear that the simple case we have been analyzing so far 
cannot explain these effects. However, not enough knowledge is avail-
able at this time about the numerous parameters involved. We there-
fore try only to isolate the common properties of the majority of stripe-
geometry lasers and explain them in terms of gain-induced modes. We 
had three major facts to consider: 

(1) For stripe widths in the order of 12 gm and less, there is gen-
erally a single mode for current levels close to threshold. 

(ii) At stripe widths above —48 gm, the field distribution is very 
often nonuniform even at threshold. 

(iii) The threshold current increases steeply with decreasing stripe 
width. 

Since we know that there must be a gain-loss difference between the 
stripe and the surrounding regions, we will apply the previous results 
on gain-induced modes and investigate if the experimental results can 
be explained by this effect or if additional mechanisms have to be in-
voked. In doing so we must keep in mind that we can expect the 
agreement between experiment and this theory to be only qualitative 
since a number of effects are neglected. We mention the few most 
obvious: 

(i) The loss in the layers above and below the active region 
contributes to the overall loss. This contribution is dependent 
on stripe width. 

(ii) The gain depends on the field intensity and is therefore not 
constant. 

(iii) The mirror loss may depend on the stripe width. 

The mirror reflectivity R of the lowest-order mode was determined to 
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Fig. 8—Linear scan of nearfield distribution of stripe geometry lasers with stripe 
width of  pm. One division = 3 . 7 p111. Current in both cases is ,-20 percent above 
threshold. 

be , 0.3 and hence the mirror loss, defined by am = 1/L in 1/R, to be 
10/cm for L = 400 1.im sample length.' The attenuation of GaAs is 

-̂10/cm. We ask now how much gain would one need to reach thresh-
old with an active region width of "42 gm. In the following, we will 
call gain g the excess gain over the intrinsic attenuation in the active 
region. To reach threshold, the effective gain of the lowest-order mode 
(gb, — a(1 — br) from eq. (9)) must equal the mirror losses: 

gb, — a(1 — b,) = am,  (14) 
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Fig. 9—Threshold gain as function of stripe width. Mirror loss am - 10/em, 
n = 3.56, a = 10/cm, and refractive index depressions n = 10-', 10-4. 

where a is the loss in the side regions. 14—as pointed out before—is ex-
clusively a function of I v¡ (Fig. 2). gX/47r is plotted as a function of 
stripe width in Fig. 9. We can see that the gain value corresponding to 
12 min stripe width is quite realistic and we conclude that the gain-

induced guiding must play at least some role in the stripe-geometry 
confinement. As a further piece of experimental evidence, it has been 
shown by Dyment'° that the threshold current in a stripe-geometry 
laser increases strongly with decreasing stripe width. There is, unfor-
tunately, some uncertainty about the relationship between current 
and gain. Generally, an exponential dependency is assumed (g 
where g varies between 1.5 and 3). We have used g = 2 to insert 
Dyment's measured results into Fig. 9. We have furthermore intro-
duced g(s/X) curves for refractive index depressions of 10-4 and 10-8 
which correspond to carrier densities of 1018 and 10"/cm, respectively. 
The agreement is satisfactory considering the accuracy of the measure-
ments. It therefore seems reasonable to conclude that the gain-induced 
modes provide the dominant confining mechanism in stripe-geometry 
lasers. In view of this conclusion we will now derive a few properties of 
the gain-induced modes which should be useful for predicting some 
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properties of the stripe-geometry lasers. Wherever the ouput of the 
laser is to be coupled into an optical system, it is desirable to reduce the 
stripe width without increase in threshold current. Equation (14) was 
therefore evaluated for various loss values in the side region. Figure 10 
shows that—at least for zero refractive index difference—a has very little 
influence on the necessary gain. Evidently the increased loss in the 
higher a case is compensated for by improved guidance. 
A refractive index depression generates a gain-width relationship of 

the form [eq. (13)] 

g 
/co 1  1 

= am ± 471-n2 (s/X)3 e n 

n 

(15) 

It is quite evident that it is very difficult to compensate for the very 
strong s/X dependence by proper choice of An. It is, however, possible 
to reduce the stripe width with a refractive index increase, in which 
case the effective gain is given by [eq. (12)] 

am -I- a(1 — f(v)) 
g =  f(v)  ,  (16) 

where f(v) is plotted in Fig. 6. However, at present, the technological 
difficulties of this approach have not been solved. 
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Fig. 10—Threshold gain as function of stripe widths for different attenuation a in 
the side regions. a,v = 12.5/cm. 
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V. CONCLUSION 

Modes caused by gain attenuation differences in a slab structure 
have been investigated. They can exist without refractive index differ-
ences, in which case the lowest-order even modes do not have a cutoff 
frequency. The cutoff frequencies for the next-higher modes are given. 
The influence of additional refractive index increase or decrease in the 
center region is studied. One particularly interesting result is that, in 
the presence of gain, a refractive index depression does not remove the 
mode, but it causes it to have a cutoff frequency. 
An application of these results to the problem of lateral confinement 

in stripe-geometry lasers shows that gain-induced modes are mainly 
responsible for the optical confinement. Thus the stripe geometry does 
not just select a filament, but provides a confining mechanism for the 
optical power. (A similar conclusion was reached independently by F. 
R. Nash.") The sharp increase of the threshold current with reduced 
stripe width is a direct consequence of this gain-induced confinement. 
It therefore appears impossible to reduce the stripe width significantly 
below -,10 eim without a substantial sacrifice in the threshold current. 
A deliberately built-in refractive index increase in the center region 
should alleviate this situation. 

APPENDIX A 

Field Components in Slab Guide 

TE TM 
1x1  a 

= Awg, cos u Le Hy = Aweoei cos u a   a 

H. = —A13, cos u x-  Ex = AO, cos u 71 e g 

H, = —JA u-a sin u x- e-josz  E. = jA  _ua sin  u -sa e8" 

I xi  a 

= Ac,420  Cos ue—Li8zzi-wOx/41-1/1  H y  =  Aw€ ,E2 cos ue -teisz+wcwai-1)] 

H, =  cos us-10 -1-w o  Ez = AO,  cos  
€2 

H2 jA e—a cOS  .=  _w 
a f2 

X COS Ue—ths•g-H.OzIal—in 
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The notations are explained in the list of notations at the end of the 
paper. The separation parameters are related to each other by 

(3,a)2 u2 = (k 0a) 2,  (132a)2 — w2 = E2(koa) 2, 

and u2 w2 = (Ei — i) ( k oa) 2. 

APPENDIX B 

Approximate Solution of Characteristic Equation for Refractive Index 
Increase in Outer Region 

We assume that 3.1c/An « 1, i.e., the refractive index step is govern-
ing the guiding properties. The normalized frequency 2, can then be 
expressed by 

—s irn \i2 —àn n (1  j k 
X  2,An 

(17) 

We treat the characteristic equation for TE modes first [eqs. (3)]. The 
regular solution for àk = 0 will yield real values for u and w. For 
small &c/ n, both will be complex with a small imaginary part. We 
list the real and imaginary part of the characteristic equation separately, 
neglecting second-order terms: 

ur sin u, = w, cos /4.  (18a) 

u,[(1  w„) sin u,  u, cos uy] = wi cos u,..  (18b) 

The real part (18a) is identical to the unperturbed equation and we as-
sume, therefore, u, and wr to take the values of u and w, respectively, 
of the Ale = 0 case. Combining (18a) and (18b) yields the following 
relation between u, and w,: 

w,(1  w„)] — wu, = 0.  (19) 

Now we have to relate u„ w, to bi, the quantity we really want to 
determine. 

w = 2nii)  u = v1/17 7). 

With a small imaginary part of b we get 

w  [1  d rb )1 

(20) 

(21a) 

U = 1441 —  [1  jv, (vv ; — 2(1  b: b))] •  (21b) 

These equations show that, if the real parts of w and u are unperturbed 
to the first order, the real part of b will be unperturbed also. If we intro-
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duce eqs. (21) into the characteristic eq. (19), bi can be determined 

Ak (1 — bT)vr-Nrlir 
bi = 

An  1 ± vr eir 
(22) 

The characteristic equation for the TM mode has an additional factor 
01/E2. It is easy to show that the real part of b is altered by Ab from the 
TE value bo 

Ab, An 4(1 — b)  
bo =  n 1+w 

(23) 

The imaginary part is to a first approximation the same as for the TE 
mode [eq. (22)]. 

APPENDIX C 

Approximate Solution of Characteristic Equation for Refractive Index 
Depression in Center Region 

Again we assume Ak/ I An'  1. An will be negative. The normalized 
frequency y is now expressed by 

21An I (.. . .  Ak .  Ak  
v  j nr  n (24) -F 21,coil  

I 21à7x I 

Let us assume that u is very close to 7r/2, 

u = 7r/2 ± je, (25) 

where ô and e are small quantities. Since 

2 
=  - 

we use M21 ,  (26) 

where we note that u/v is small compared to one. The characteristic 
equation to a first-order approximation takes the form 

(27) 

The solution is 
r  1 Ir Vi   

&   1 +  (28) 2  - 2 1 -I- vl 
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It is now easy to calculate b, which is related to u by 

(29) 

The result is 

b = 1 -I- 11.  j 2— (1 ± v„)} 
4vI  vi 

keeping in mind that 14/14 <K 1 and yl » 1. 

NOTATIONS 

(30) 

42rk 
a =  attenuation constant 

a  halfwidth of slab 
normalized propagation constant [defined in eq. (7)] 

s = 2a  width of slab 
An = ni — n2 
Ak =- k1 — k2 
ea  dielectric constant of vacuum 
E2  relative dielectric constants (subscript 1 refers to 

the center and 2 to the outer region) 
g  gain in center region 
ko =  free-space wave number 
k1,2  extinction coefficient (subscript 1 refers to the center 

and 2 to the outer region) 
free-space wavelength 

¡to  permeability of free space 
refractive index (subscript 1 refers to the center and 
2 to the outer region) 

22r-c 
= —  angular frequency 
X 

u    separation parameter 
y -- akoN/E1 — €2 normalized frequency 

separation parameter 
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The trend in electronic circuit design is toward increasing power dis-
sipation density. The performance and reliability of increasing number of 
electronic systems are now seriously threatened by thermal effects, so that 
it is necessary to reappraise the relevant thermal design procedures. This 
paper examines natural convection cooling and concerns the prediction 
of maximum temperatures of electronic cabinets containing arrays of 
vertically oriented circuit cards with unequal power dissipation levels. By 
means of a vertical channel model, the effects of channel spacing, channel 
height, and power dissipation level are assessed with emphasis on asym-

metric powering of the channel walls. Methods are indicated for rapid 
evaluation of maximum temperatures and optimum channel spacing with 
asymmetric heating. The present results show that asymmetry reduces the 
thermal performance of the channel. Consequently, the power dissipation 
on the channel walls should be made nearly equal. 

I. INTRODUCTION 

For the past several years, the trend in electronic equipment design 
has been toward ever-increasing circuit speeds. Now it is common for 
response times of telecommunication equipment to be specified in 
terms of nanoseconds while, in high-performance data processing sys-
tems, the required response times are given in the picosecond range. 
The increase in circuit speed is facilitated by integration of circuit 

functions, circuit miniaturization, and higher-density packaging. Al-
though the miniaturization of circuits results in decreased power dis-
sipation per circuit, the power generation per unit volume, which is the 
important parameter in determining the circuit temperature, is actually 
increased due to the much higher packaging densities. The thermal 
problem is also compounded by the lower operating temperature re-

907 
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quirements of integrated circuits. This gives rise to a challenging under-
taking in thermal design. And yet a poor thermal design could pos-
sibly lead to complete failure or unreliable performance of equipment. 
Thus, it is imperative that a sound thermal design be initiated, and this 
at the earliest possible stage of system planning. 
The thermal design of a modern electronic system is based on a ra-

tional selection of a cooling option followed by a thoughtful design con-
sideration. A design should not only be practicable, but also economi-
cal, serviceable, reliable, and compatible with other system compo-
nents. It is the purpose of this paper to present design data on natural 
convection cooling of modern electronic systems. The emphasis is on 
the prediction of maximum temperatures in equipment. Although na-
tural convection is the oldest method used in electronics cooling, the 
method is still employed extensively in new generations of equipment 
both in the communications and the data processing fields. In many 
cases, this method is used in conjunction with one or more of the newer 
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Fig. 1—Schematic diagram of electronic equipment. 
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Fig. 2—Two-dimen2ional vertical channel model. 

methods such as forced flow and the application of heat pipes and 
liquid cooling. 
The present paper concerns equipment wherein circuit boards con-

taining heat-dissipative components are mounted vertically in channel-
like fashion as shown in Fig. 1. Since the circuit boards are not iden-
tically powered, the average heat fluxes from the columns are different, 
giving rise to asymmetrical air flow. In each channel, the heat transfer 
may be modeled by that in a vertical, two-dimensional, smooth-walled 
channel as shown in Fig. 2. The channel walls are treated as uniformly 
heated. However, the two wall heat fluxes need not be identical. 
A number of investigations have been reported in the literature 

concerning free convection in vertical channels. Ostrachl solved the 
combined free (natural) and forced convection problem in a vertical 
channel in fully developed flow with symmetrical uniform heat flux and 
internal heat generation. By fully developed flow is meant a situation 
in which the fluid velocity is invariant in the direction of flow. Engel 
and Mueller' investigated the effect of nonisothermal channel walls by 
assuming constant heat fluxes. Their results, however, are limited to 



910  THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1973 

symmetrical wall heating. Lauber and Welch' considered the combined 
free and forced convection between vertical flat plates which are heated 
at uniform but different heat fluxes. Their work is confined to fully 
developed flow. 
Two standard references widely applied to heat transfer in electronic 

equipment are the experimental work of Elenbaas4 and the numerical 
solution of Bodoia and Osterle.5 Inasmuch as the above references deal 
with a channel whose walls are at a constant temperature, two factors 
are therefore ignored in their results: the effect of nonisothermal sur-
faces and asymmetric heating. These effects are considered in the 
present paper. 
It is to be noted that, as in the references cited above, radiative trans-

fer of heat is ignored in this paper. In some electronic systems, radiation 
may be a significant factor in heat removal. Inasmuch as temperatures 
of heat sources are of interest, the neglect of radiation usually results 
in conservative (too high) estimates of the temperatures. 

II. ANALYSIS 

Referring to Fig. 2 which shows a two-dimensional, straight vertical 
channel, let the channel height be € and width be b. The channel walls 
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Fig. 3—Relation between dimensionless maximum wall temperature rise and the 

dimensionless parameter L (from Aung, et al.6). 
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are heated causing fluid to rise between them by free convection. The 
thermal conditions of the walls are characterized as uniform heat flux 
(UHF), but the individual values for the two walls need not be the 
same. The fluid that enters the channel at the ambient temperature To 
is assumed to have a flat velocity profile uo. The equations expressing 
conservation of mass, momentum, and energy for free convection in 
the constant-property (except for density in the buoyancy term) 
laminar flow may be written respectively as: 

au  av 
—  —  0 ax  ay  ' 

au  au  82u d ' 
u We + =  dPx  

aT  aT) = ,a2T pe, (u rx- + 
a y2 

where p' is the pressure excess above the hydrostatic pressure. 
The boundary conditions are: 

For x = 0 and 0 < y <b: 
U = uo,  T = T o; 

For y = O and x  0: 
aT 

u = 0,  v = 0,  k -  = —q2; 
ay 

For y = b and x  0: 
aT u = o,  v = 0,  k  = ay 

(4) 

At x = 0 and x = 1: p = po, where po is the hydrostatic pressure. 
The system of eqs. (1) to (4) may be cast in nondimensional form and 

then solved by numerical integration using a digital computer. Details 
are contained in Refs. 6 and 7. The latter references show that the nu-
merical results agree well with experimental data. It may be pointed 
out that, for a channel whose height is large compared to the spacing so 
that the so-called fully developed flow condition exists, the governing 
eqs. (1) to (3) may be simplified and the solution is then obtainable in 
closed form. This is indicated in Ref. 8. In the present paper, these re-
sults will be applied to indicate the effect of operating parameters on 
maximum wall temperatures. The cooling fluid considered is exclusively 
air. 
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III. RESULTS 

When the channel walls are individually heated at uniform heat 
fluxes, the quantity that is of design interest is generally the maximum 
temperature rise on the hotter wall. This quantity may be obtained 
from the general results shown in Fig. 3. It is clear from the latter that 
the maximum temperature increase depends on the parameter L 
which in turn depends on the quantity «05. When the latter quantity 
is large, fully developed flow is approached6 and the desired informa-
tion on the maximum temperature increase is given by a rather simple 
expression which follows. 

3.1 Results at Large t/05 

At large values of the quantity -e/06, the flow in the channel exhibits 
interesting characteristics whereby the velocity distribution across the 
channel remains unaltered with axial distance. All axial temperature 
variations are also given by linear relations. Typical velocity and tem-
perature distributions in this situation are given in Fig. 4. This is the 
so-called fully developed flow situation. Clearly, it prevails most com-
monly in a channel whose height € is large compared to its width. In 
a channel with developing flow, typical velocity and temperature dis-
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Fig. 4—Typical temperature and velocity distributions in a channel having nearly 
fully developed flow. 
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veloping flow. 

tributions are as indicated in Fig. 5. In both Fig. 4 and Fig. 5, the quan-
tity M is a dimensionless mass flow parameter which is related to L 
(see Refs. 6 and 8). 
Figure 3 shows that, as fully developed flow is approached, all curves 

coalesce into one. Based on the derivations given in Ref. 8, it can be 
shown that, in fully developed uniform heat flux channels with asym-
metric heating, the maximum temperatures on the hotter and cooler 
walls become practically identical and may be evaluated using the 
equation: 

&mix  = L ax ,2 = 6.9285(Pr)-1 /2(L)", 
5,  all r H f  (5) 

For air at 120°F, the Prandtl number (Pr) is about 0.7. Evaluating the 
thermal physical properties for air in eq. (5) at a temperature of 120°F, 
we may rewrite eq. (5) as: 

— T0— Tmax.2  To = 0.1610(q)°•5(€)"(b)-7 .9 

t   for = L19 X 109,  all TH (6) • 
qb5 

In eq. (6), (is expressed in ft, in W M', and b in ft. Note that, if Tinax.1 
alone is to be evaluated, eq. (6) is applicable at tab, 4.76 X 107. 
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The reason is apparent from Fig. 3 where at L k 0.2 the deviations 
among curves of éma x,i at all values of rH may be neglected. 

3.2 Results at Small tiqb5 

The counter-case to the situation just discussed is the one in which 
the channel height .4 is relatively short compared to its width b. Again, 
in this situation the maximum temperature rise on the channel walls 
may be calculated by a simple relation. Note that, to use this relation, 
which will be given below, it is not necessary that be smaller than b. 
It is only necessary to fulfill the validity limit attached to the equation. 
For relatively short channels, the results in Ref. 6 indicate that the 

maximum temperature in each wall is independent of the other wall, 
and may be calculated using the result for a single vertical flat plate.' 
The latter result is valid for the asymmetrically heated channel when 
L s 10-'. Thus, we may write: 

= 2.05(L)11'  at L s 10-°.  (7) 

Again, inserting thermal physical properties of air at 120°F, the above 
may be written: 

T. - To = 8.66.4116 e 6 

at —4 5 2.35 X 10',  all rH (8) 
qb8 - 

In eq. (8), (T . - To) is in degrees Fahrenheit, e in feet, and q in 
watts per square foot of surface area. Equation (8), which gives the 
maximum temperature on either the hotter or cooler wall when q is 
appropriately replaced by qi or q2, shows that the maximum tempera-
ture on the hotter wall, subject to the attached condition, is indepen-
dent of the channel spacing which is to be expected. It may also be 
noted for reference that 

_ (1.-1-rH\ 
qib5 2  f qb, (9) 

3.3 Results at Intermediate 4/0° 

If the proposed design is such that neither eq. (6) nor eq. (8) may be 
applied, then the maximum temperature increase in the channel can 
be evaluated using Fig. 3. Parametric curves can be generated from 
Fig. 3 to display the effect of various operating variables on the maxi-
mum temperature rise on the hotter wall. Since the value of L depends 
on the channel spacing, the average heat flux, and the channel height, 
any one of these may be varied while others remain constant at typical 
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1 1 

operating values. The following conditions are chosen as an example: 

b = 0.0365 foot (0.4375 inch) 
= 6 feet  (10) 
q = 5.75 watts per square foot. 

The resulting curves are shown in Figs. 6 through 8 which can be used 
by the designer. To obtain Fig. 6, and q are obtained from eqs. (10) 
and, corresponding to each pair of assigned values of b and rH, L is 
calculated. A value of - max,1 is then obtained from Fig. 3. The maximum 
temperature rise can then be obtained. By varying rH and b, the solid 
curves in Fig. 6 result. The range of validity of eq. (8) is also indicated. 

Figures 7 and 8 are obtained in the same manner. The dashed lines in 
Figs. 6 and 8 pertain to optimum spacing which will be discussed later. 

From Figs. 6 through 8, it can be seen that at any fixed maximum tem-
perature rise the effect of asymmetry is to increase the necessary chan-
nel spacing, decrease the channel height, or decrease the heat flux when 
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any one of these quantities is taken as the sole variable in the 
equipment. 
The effect of asymmetric wall heating may be more conveniently 

examined by replotting Fig. 3 in the manner of Fig. 9. In the latter, 
the maximum temperature increase on each wall of an asymmetric 
channel is normalized by the maximum temperature increase on a 
similar channel wherein the same average heat flux is distributed evenly 
on the two walls, so that Tr! = 1. Clearly, as the degree of asymmetry 
is increased so that rH is decreased without affecting the average heat 
flux, the result is that the maximum temperature on the hotter wall is 
raised while that on the cooler wall is depressed. Therefore, in equip-
ment design, it is desirable to obtain equal heating on the two channel 
walls. This is also desirable from the standpoint of optimum spacing, 
as will be seen. 
With the help of Fig. 9, the maximum temperature increases in an 

asymmetric channel may be evaluated once the symmetric heating 
value is known. The latter may be obtained rapidly with the aid of the 
nomogram shown in Fig. 10 once 4, b, and q are known, rH being 1 in 
Fig. 10. The use of the latter has been described in Ref. 7 but is repeated 
here for ease of reference. To use Fig. 10, first locate Points 1, 2, and 4. 
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Draw a line connecting Points 1 and 2. Extend this line to intersect 
with the Pivot Axis fi to give Point 3, and with Pivot Axis a to give 
Point 6. Draw a line joining Points 3 and 4. The intersection of this 
line with Pivot Axis ,y gives Point 5. Draw a line connecting Points 5 
and 6. Read the a value at Point 6 which for the case illustrated is 2. 
The intersection of line 5-6 with the appropriate «-branch (« = 2 in 
this case) in the center of the nomogram (Point 7) gives the maximum 
card temperature rise over room ambient, which in this example is 
38°C or 68°F. It should be noted that each «-branch is made up of 
three segments: a left-side vertical line which corresponds to flow 
around a single flat plate, a right-side vertical line which corresponds to 
fully developed flow, and an inclined straight line joining the two verti-
cal ones. Moreover, the asymptotes of the vertical lines coincide for all 
values of a. Hence, if the line joining Points 5 and 6 does not intersect the 
appropriate a-branch on its inclined segment, either the left or the 
right vertical segment should be chosen depending on whether the 5-6 
line passes above the inclined segment or below it. 

3.4 Optimum Spacing Including the Effect of Aeymmetry 

Consideration may now be given to the overall performance of the 
channel as a heat-removing device. In electronic equipment the maxi-
mum device junction temperature is usually specified. Since the junc-
tion temperature is related to the wall temperature, the maximum wall 
temperature is therefore implied. In modern equipment, it is desirable 
to increase the packing density and hence the total power dissipation of 
the entire equipment without increasing the maximum wall tempera-
ture beyond the allowable limit. As shown in the appendix, the task 
here is to select b so as to maximize the heat transfer. The latter value 
will be designated g.pt, and the corresponding spacing is called b09t. 
Design curves for finding b,t and q„„t will be given below. The emphasis 
here is on asymmetrically heated channels. A more detailed discussion 
of optimum spacing in a symmetric channel may be found in Ref. 7. 
Note that maximum power dissipation is realized only when the equip-
ment is strictly operating at b„t and q.pt. If a different (smaller) spac-
ing is used, then a different (smaller) heat flux must be employed to 
yield the same maximum temperature increase. For this purpose, de-
sign curves such as those in Figs. 6 through 8 can be consulted. 
Following Bodoia," it can be shown that the power dissipation is 

maximized if the channel parameters are so selected that the channel is 
operated at the point where the slope of a log-log plot of Nu versus Ra 
is one-half, where Nu is the Nueselt number and Ra the Rayleigh 
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number defined as: 

qb 
Nu =  1 

(Tmax,1  TO) k  emax,1 

—  Ta)b 4 
Ra = Pr X   0.7 X émax,1 X L. 

From Fig. 3, a relation between Nu and Ra can be obtained. This is 
shown in Fig. 11. Calling the values of Nu and Ra for maximum power 
dissipation Nuopt and Raopt, respectively, Table I may be constructed 
from Fig. 11. In Table I, E is an efficiency of heat transfer defined as 

where 

E -- \pi rhr l 

= Nuopt/(Raopt)in 

hopt cc -  

bopt 

In the above, lic,pc and b.pt are optimum values of hms.,1 and b which give 
maximum power dissipation. 
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TABLE I—OPTIMUM RAYLEIGH AND NTJSSELT NUMBERS 

921 

fil Raopt Nuop, E 

0 42 0.43 65% 
0.1 51 0.51 70% 
0.5 70 0.73 86% 
1.0 135 1.18 100% 

From Table I, it is seen that the efficiency E varies in the same 
manner as rH. Asymmetry therefore decreases the efficiency of heat 
transfer. From the thermal standpoint all equipment should therefore 
be designed to yield symmetrical heating as closely as possible. 
Using values of Raapt from Table I, it is possible to obtain optimum 

spacings for different maximum temperatures once the channel height 
is specified. In like manner, the necessary heat flux at optimum spacing 
corresponding to different prescribed maximum temperatures can also 
be obtained from Nuopt. Results have been obtained for a 6-foot chan-
nel with ry = 0.0 and rH = 0.5 and compared with the case ru = 1 
in Figs. 6 and 8 (indicated by the dashed line). It may be ascertained 
from these figures that the effect of asymmetric heating is to decrease 
b.pt, and q.,,t. The net effect of asymmetry is to decrease the total power 
dissipation in the cabinet (see appendix). 

1.0 

lo-o 
cc,!, 0.6 

2 0.4 

0.2 0.4. 0.6 0.8 1.0 
H 

Fig. 12—Optimum spacing and optimum heat flux as a function of the heat flux 
ratio rH. 
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Using the values of Rao and Nuopt given in Table I, it is possible to 
obtain a general relation between optimum spacing b.„1 or optimum 

heat flux q.pt and rH, since 

and 

bopt 
(bopt) rif  (Raopt) i.e.= 1 

(Raopt) 1/4 

qopt N Uopt   

(quid)  =  (NHopt) rig-1 

The results are indicated in Fig. 12. With the aid of this figure and the 
nomogram given in Fig. 13 which yields (b,t),Er=i, the optimum spac-
ing at specified rg,  , and maximum hotter wall temperature rise 
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(T„u„,,i — To) can be rapidly evaluated. Note that the maximum tem-
perature rise to be entered in Fig. 13 is also the specified value of 
(Tmax ,i — To). 

IV. CONCLUDING REMARKS 

In the present paper, consideration has been given to the free or 
natural convection cooling of electronic cabinets containing arrays of 
vertical circuit cards with asymmetric heating. It was indicated that 
fully developed flow prevailed in a channel whose height is large com-
pared to its width. In this case, the maximum temperature in the chan-
nel can be calculated using the simple relation presented here. In con-
trast, when the channel spacing is relatively large, the maximum tem-
perature on each wall is independent of the conditions on the other 
wall but can again be calculated by a simple equation. 
In situations where neither of the above two approaches can be ap-

plied, the maximum temperature in the channel can be evaluated 
rapidly using the graphical procedure outlined in this paper. The opti-
mum channel spacing for maximizing the power dissipation is discussed 
and it is emphasized that to reduce adverse thermal effects channel 
walls should be powered as equally as possible. 

APPENDIX 

The total power dissipation in the cabinet per unit depth can be 
written as 

Power = 2lNg 
= 201h(T.,..1 _ To), 

where N is the number of channels (see Fig. 1). If the thickness of the 
channel wall is neglected, we have 

Hence, 

= II N  - 
b 

\ h 
Power = 2€147(Tmax  ,,1 —  i 0) b 

h cc i 

for fixed (Tm3x,1 — TO, W, and C. Clearly, to obtain the largest pos-
sible power one needs to obtain the maximum h (that is I) and the 
minimum b, the combination of which gives the specified (Tmoz ,i — To). 
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NOTATIONS 

b  clear channel or card spacing in feet (ft) 
cp  specific heat of air in W-s/lbrn-F 
g  acceleration due to gravity in Ws' 
h  1/(T.„„,i — To), average heat transfer coefficient, in W/ft2-F 
k  thermal conductivity of air in W/ft-F 
L1 (€1,2k)/(g0q1b6), dimensionless 
L  (6.2k)/(006), dimensionless 
t  channel height in ft 
Pr  Prandtl number defined by mc„/k, dimensionless 
p  pressure in 1b1/ft2 
po hydrostatic pressure in 1b0/ft2 
p'  (p — po) in 1b0/ft2 
q  heat flux on channel wall per unit surface area, in W/ft2 

q  (qi + q2)/2, W/ft2 
r,,  q2/qi, dimensionless 
T  temperature in degrees Fahrenheit (F) 
To  ambient temperature in degrees Fahrenheit 
u, y axial and transverse velocity in ft/s 
1,17 width of cabinet 
x, y axial and transverse coordinates in ft, see Fig. 2 

e  thermal expansion coefficient of air in 1/F 
g  dynamic viscosity in lbni/ft-s 
p  kinematic viscosity of air in ft2/s 
p  density of air in lb,n/fta 
à  dimensionless temperature rise defined in Fig. 3 

Subscripts 

1  refers to hotter wall 
2  refers to cooler wall 
max  maximum value 
max, 1 maximum value on hotter wall 
max, 2 maximum value on cooler wall 
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of Phase Jitter and Gaussian Noise 
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A long-standing communications problem is the efficient coding of 
a block of binary data into a pair of in-phase and quadrature components. 
This modulation technique may be regarded as the placing of a discrete 
number of signal points in two dimensions. Quadrature amplitude modu-
lation (QA M) and combined amplitude and phase modulation (AM-PM) 
are two familiar examples of this signaling format. Subject to a peak or 
average power constraint, the selection of the signal coordinates is done so 
as to minimize the probability of error. In the design of high-speed data 
communication systems this problem becomes one of great practical sig-
nificance since the dense packing of signal points reduces the margin 
against Gaussian noise. Phase jitter, which tends to perturb the angular 
location of the transmitted signal point, further degrades the error rate. 
Previous investigations have considered the signal evaluation and design 
problem in the presence of Gaussian noise alone and within the framework 
of a particular structure, such as conventional amplitude and phase modu-
lation. We present techniques to evaluate and optimize the choice of a signal 
constellation in the presence of both Gaussian noise and carrier phase 
jitter. The performance of a number of currently used or proposed signal 
constellations are compared. 
The evaluation and the optimization are based upon a perturbation 

analysis of the probability density of the received signal given the trans-
mitted signal. Laplace's asymptotic formula is used for the evaluation. 
Discretizing the signal space reduces the optimal signal design problem 
under a peak power constraint to a tractable mathematical programming 
problem. 
Our results indicate that in Gaussian noise alone an improvement in 

signal-to-noise ratio of as much as 2 dB may be realized by using quadra-
ture amplitude modulation instead of conventional amplitude and phase 

927 
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modulation. New modulation formats are proposed which perform very 
well in Gaussian noise and additionally are quite insensitive to moderate 
amounts of phase jitter. 

I. INTRODUCTION 

A very attractive modulation format for coherent high-speed data 
transmission is the family of suppressed-carrier, two-dimensional signal 
constellations of which quadrature amplitude modulation (QAM) and 
combined amplitude and phase modulation (AM-PM) are two ex-
amples. In this paper we will consider using this more general signal 
format, which is equivalent to the arbitrary placement of a discrete 
number of signal points in the plane, subject only to a peak or average 
power constraint. The object will be to mitigate the major statistical 
transmission impairments encountered on the voice-grade telephone 
channel, such as carrier frequency offset, carrier phase jitter, and 
additive noise. Our attention is focused on constellations of 16 points, 
since this seems to be the largest constellation which is practical 
for the typical telephone channel. However, the techniques we develop 
are applicable to constellations of arbitrary size. 
The placing of signal points in the plane is a long-standing problem 

that has received considerable attention in the past. Previous investi-
gations'-3 have considered the signal evaluation and design problem in 
the presence of Gaussian noise alone and within the framework of 
a particular structure such as combined amplitude and phase modula-
tion. When Gaussian noise is the only transmission impairment, it is 
well known that at high signal-to-noise ratios ( > 25 dB) the signal 
points should be placed as far apart from each other as possible (the 
circle-packing problem). In the application to high-speed digital com-
munication systems, the two-dimensional signal design problem be-
comes one of great practical significance because the dense packing of 
a large number of signal points markedly reduces the margin against 
random noise and phase jitter. The signal design problem in the pres-
ence of both phase jitter and Gaussian noise has not been solved before 
and is the subject of our discussion. 
Coherent receiver structures have recently been proposed which em-

ploy an adaptive equalizer' to compensate for any linear distortion, 
low-frequency phase jitter, or small amounts of frequency offset intro-
duced by the channel. A phase-locked loop5 may be used to suppress 
high-frequency phase jitter and frequency offset. Of course, the output 
of a phase-locked loop will still deviate somewhat from the optimum 
demodulating phase angle. One purpose of this study is to assess the 
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effect of such phase errors on the system error rate and to indicate how 
this knowledge can be incorporated into the system design. 
By system design we have in mind the selection of both a particular 

two-dimensional signaling format and the decision device placed at the 
demodulator output. In order to pursue these objectives, we discuss: 

(i) the relative immunity of various signal constellations as a func-
tion of the degree of noncoherency (i.e., the size of the phase 
error); 

(ii) an efficient iterative procedure for determining optimum signal 
formats under a peak power constraint; 

(iii) system performance for the following hierarchy of decision de-
vices: easily implementable, optimum in Gaussian noise, and 
a maximum-likelihood detector which uses the statistics of the 
phase error; 

(iv) the accuracy required in any phase-locked loop to attain a satis-
factory error rate; and 

(y) the resulting error rate when no attempt is made to track the 
jitter. • 

Our approach is to assume that intersymbol interference has been 
effectively eliminated by the equalizer while the phase-locked loop, if 
there is one, has only partially removed the phase jitter. Thus the 
equalizer output will be the sum of the partially coherenfr transmitted 
signal and additive Gaussian noise. We adopt a phenomenological 
model which assumes that the (slowly varying) phase error has 
a Tikhonov density. 6 The Tikhonov density is associated with a con-
ventional first-order phase-locked loop whose input is the sum of a 
sinusoid (whose phase is being tracked by the loop) and Gaussian 
noise. Under our assumed operating conditions of high signal-to-noise 
ratio, this density will closely approximate the actual phase density. 
When no attempt at tracking is made,* the jitter is modeled as being 
uniformly distributed in a reasonable peak-to-peak range. For each 
of these jitter densities, the probability density of the demodulator 
output, conditioned on the transmitted symbol, is used to estimate the 
error rate. This estimate is of the minimum distance type, where the 
"distance," which reflects the presence of phase jitter, is measured in 

• In the sequel, we will use the term jitter as a catch-all when referring to phase 
jitter and/or frequency offset. 
A partially coherent signal is one whose carrier phase is uttered by a random com-

ponent which is not uniformly distributed in the range (  7r). 
Since the passband equalizer4 will determine the optimum static demodulating 

phase, the absence of a phase-locked loop does not imply the use of an arbitrary de-
modulating phase. 
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a non-Euclidean manner. The error rate is given for various signal 
constellations and detector structures under peak and average power 
constraints. By discretizing the received signal space, an iterative 
procedure is developed to determine (locally) optimum signal formats 
under a peak power constraint. This technique, which assumes a maxi-
mum-likelihood detector, makes use of an efficient search procedure 
developed by Kernighan and Lin.6 
The system model and the problem formulation are presented in 

Section II. An asymptotic estimate and an upper bound on the error 
rate are developed in Section III. A comparison of the relative im-
munity of some popular signal constellations and detectors to phase 
jitter is described in Section IV. Section V discusses a technique to 
obtain locally optimum signal structures under a peak power constraint. • 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

2.1 Preliminaries 

We consider the two-dimensional synchronous data communication 
system shown in Fig. 1. Binary data are first grouped into blocks of 
bits, and each block of M bits is then mapped into one of Vf two-

tuples (a, b). The sequences I ak and { bk } amplitude modulate, re-
spectively, an in-phase and quadrature carrier to generate the trans-
mitted signal 

m(t) = E akp(t — kT) cos wet + E bkp(t — kT) sin wet,  (1) 

where 1/T is the symbol rate,t p( • ) represents the transmitter pulse 
shaping, and we is the carrier frequency. It will be assumed that the 
two-tuples are equiprobable. The received signal at the output of the 
bandpass filter is given by 

r(t) = (E akx(t — kT) — E bky(t — kT)) cos ((we + à)t + 0(t)) 

— (E aky(t — kT)  E bk(t — kT)) 

X sin ((we A)t  0(t))  n(t),  (2) 

where x(t) and y(t) are the system (baseband) in-phase and quadrature 
impulse responses,:  is the carrier frequency offset, 0(t) is the random 

The present authors have recently treated the two-dimensional signal design 
problem under an average power constraint', 
t Note that the data rate is MIT bits/second. 
t These pulses represent the cascade of the transmitter shaping filter, the channel, 

and the receiving filter. 
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6 

phase jitter, and n(i) is additive Gaussian noise. The received signal, 
which is sampled at the symbol rate, is adaptively equalized and 
then coherently demodulated with the aid of a phase-locked loop.' 
The demodulated output, denoted by the sequence of two-tuples 
zk = (5k, Ïk) is then processed by the (simple) detector to give the 
output sequence f  bk)J. The system error rate is just the probabil-
ity that (dk, bk) differs from the transmitted two-tuple (ak, bk). 

2.2 Basic Model 

For the purposes of this study, it will be convenient to assume that 
the equalizer has completely eliminated the intersymbol interference 
present in x(t) and y(t), but that the phase-locked loop has only par-
tially compensated for the carrier phase jitter. The in-phase and 
quadrature demodulator outputs, at the kth sampling instant, are 
then given by 

z(kT) = ak cos 4 — bk sin q5k  nc(kT), 
(kT)  ak sin ok bk cos ek n.„(kT), (3) 
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Fig. 2—Effect of Gaussian noise and phase jitter on transmitted symbol. 

where ce.k is the (slowly varying) phase error in the tracking loop, and 
nc(kT) and na(kT) are, respectively, the in-phase and quadrature 
Gaussian noise components. • Dropping the time index, eq. (3) can be 
rewritten to give the basic model 

z = Rs + n,  (4) 

where the vectors are given byt 

( 

z \  ( /a\  (n,\ z=) s =  n = '  b )  

and the matrix R is the rotational (by an angle 0) transformation 

R = (cos ° 
sin cb 

—sin 4) \ 
cos 0 f ' 

(5) 

*Recall that nc(kT) and n, (kT) are independent Gaussian random variables with 
equal variance, No. It should be noted that 2N0 is the noise power contained in the 
bandwidth of the received signal. 
t We denote the values that a and b can assume by aw and b(i), respectively, and 

the values of the transmitted symbols by su) = (a(i),b(1)). 
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Fig. 3—Quadrature amplitude modulation. 

As we show in Fig. 2, the effect of the phase jitter is to rotate the trans-
mitted symbol, s, by an angle ; thus the demodulator output, z, is dis-
persed in an angular manner due to phase jitter and in a circularly sym-
metric way due to the Gaussian noise. The receiver will make an error 
when these perturbations move the demodulator output across the 
decision boundary associated with the transmitted symbol. For a par-
ticular transmitted data sequence, the demodulated sequence will be 
scattered about the transmitted points in a manner which reflects the 
combined effects of phase jitter and Gaussian noise. For the transmitted 
signal constellation of Fig. 3, which is known as QAM, a typical scat-
tered demodulated sequence is shown in Fig. 4. As one might expect, 
for those signal points further away from the origin, the angular dis-
placement becomes more apparent. An estimate of this effect is given 
by the mean-square error between the transmitted and demodulated 
symbols. For small values of jitter, this error is obtained from (4) by 
noting that 

( cos (1) — 1  —sin 0   
z — sci) = 

averaging the norm-squared of both sides gives' 

Eilz — 5(1) 112 -= Aro ± cf:iis("112, (6) 

• The notation lid denotas the Euclidean norm of z; additionally the notation 
s) will be used to denote the inner product of z and s. 
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Fig. 4—Received signal points in a QAM system. 

t  t 

where 4, is the variance of 45 and E denotes the statistical average. 
Thus, because of phase jitter, signal points located further from the 

origin are subjected to a larger mean-square error. 

2.3 Probability Density of the Demodulator Output 

In order to evaluate the system error rate, the probability density 
function (pdf) of the phase error must be specified. The pdf of the phase 
error in a phase-locked loop that is tracking the angle of the two-
dimensional data signal given by (2) is not yet known, but as explained 
below it can be approximated by the following (Tikhonov) density': 

1 e' °°  'e 

P( 0)  — 4 1  (7) 2r lo(a) ' 
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where /0( • ) is the modified Bessel function of the first kind and a is 
a positive number. As is shown in Fig. 5, a = 0 implies a completely 
incoherent system, while a = co corresponds to a completely coherent 
system. For large values of a (a > 100), we have the useful relation 

2  1 
174,  (in radians).  (8) 

a 

Since the above density arises from a first-order phase-locked loop 
whose input is the sum of Gaussian noise and a sinusoid (whose phase 
is being tracked by the loop), it is felt that for high signal-to-noise 
ratio, for negligible intersymbol interference, and for slowly varying 
phase jitter the actual phase-error density will closely resemble the 
Tikhonov density. This simple model will be quite useful in studying 
the effect of phase jitter on the system error rate. 
The pdf of the demodulator output, conditioned on the transmission 

of s(1), is given by 

P(z su)) Pi(z) = f Pi(z10)P(0)&b,  (9) 

where it is noted that the output density conditioned on both sco and 
4) is given by 

pf(z I ck) = 21-  exp [ — 2Arl oliz  — Rs(J)11 2]  (10a) 

= 27r1"No exP  2N1 Ellz — s(12 + 2(z, s(2)) 

— 2(z, Rs(j))]1••  (10b) 

Substituting the Tikhonov density into (9) gives 

pi(z)  exP {— ././01 Olz — 5<1)112 + 2(z, s(j))i} • 

(/0(a))-1 -1 f , 27  exp —1 [((z, s(i))  4, allo) cos No 

(z, s(i)) sin yte]clo,  (11) 

(where if sw = Neil (cos a, sin a) then s(Di = Ila n (sin a, —cosa)), 
and we recognize the latter integral as 

/0 (-1  s') allo) 2 (z, s(j)i)21) • No ' 

Assume a = k/No (k a constant). Employing the well-known result 
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a = 30 
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o 

Fig. 5—Tilchonov phase jitter density p (0) = exp  cos 4))/2rie (a). 

that for large values of argument /o(x)  ez/I -Nixl, and assuming a is 
sufficiently large and No is sufficiently small, we get 

1  1  aN o   (  1  
p(z) —   exP 

271-No \I •Ni((z, so))  allo) 2 ((z, so)1))2 2N0 

X {11z, s(i)112 + 2(z, so)) + 2allo 

— 2-Ni((z, so)) + ceN0) 1 (z, 8(1)1 )21) • (12) 

In the error rate computations we shall eventually make, we will have 
k so large compared to the practical range of (z, s(1)) that the coeffi-
cient multiplying the exponential of pi(z) can be taken to be (27rN0) -1 . 

Thus, for our purposes, 

1  1  d s (1) 
  2 ( 

Pi(Z) 27N0 exP  2No u" 1/4z'  ) 

where 

d2(z, s) 4 liz — slI 2 ± 2(z, s)  2allo 

(13) 

— 21-V11494'  2allo(z, s)  (01N0)21. (14 ) 

The form of eq. (13) is very reminiscent of the density in Gaussian 
noise alone, and to further suggest such a similarity we refer to d(z, s) 
as the "distance" between z and s. It is important to emphasize that 
this function is the key to assessing the combined effect of Gaussian 
noise and phase jitter on the system performance; through its use we 
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are able to give a very suggestive geometric interpretation of the jitter 
phenomenon as well as accurate estimates of the error rate. In Fig. 6 
we show some contours of constant "distance" (i.e., points which are 
equiprobable) about a given point. Note the angular orientation and 
similarity of these "banana" shaped contours to those obtained ex-
perimentally (Fig. 4). 
Our procedure will be to use (13) and (14) to estimate the error rate 

for various constellations and detector structures; however, before we 
do this, we first wish to discuss some properties of the function d(z, s) 
which will be useful in estimating the system performance, and then to 
consider the conditional density pi(z) in the absence of a phase-locked 
loop. 

2.4 Some Properties of the Jitter Distance d(z, s) 

(i) A requisite property that d(z, s) should possess is that for vanish-
ingly small jitter the distance between points becomes Euclidean. This 
is easily verified by expanding (14) in terms of 1/a and observing that 

lim  s) = liz — s112. (15) 
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(ii) Since we do not expect the distance between an arbitrary point 
and the origin to be affected by phase jitter, it is reassuring to note that 

d2(z, O) = 1141 2, 

and that a similar property holds for points on the same ray, i.e., 

d2(z, kz) = (1 — k)21142,  k > O. 

(16) 

(17) 

(iii) A "bonus" property is that even though (14) was derived for 
large a (small jitter), the expression 

lim d2(z, s) = I lizii — 114 12 (18) 

is quite reasonable in that, for completely incoherent systems, all 
points on the same circle are indistinguishable. 

(iv) An interesting consequence of (14) is that points are now closer 
together than their Euclidean distance. To demonstrate this, we use 
the Schwartz inequality to show that the non-Euclidean part of d2(z, s) 
is always negative, i.e., 

(z, s)  aN o  11.1Z11 211811 2 2allo(z, s)  (allo) 2I  (19) 

since squaring gives 

(z, s)2 2allo(z, s)  (aN o)2 1411 211S11 2 2allo(z, 13) + (aN 0)2 

which upon cancelling becomes the Schwartz inequality 

(z, s)2 lizi1 2411 2. 

(v) If both the signal and noise power are scaled by the same con-
stant for a given jitter level, a, it is clear that the conditional density is 
unchanged. Thus the signal-to-noise ratio and the mean-square jitter 
a are the natural parameters for characterizing the system. 
(vi) A natural question to ask is whether or not d(z, s) is a convex 

metric* in the plane or, of more practical interest, if some sufficiently 
accurate approximation to d(z, s) is a convex metric in some circle 
centered about the origin. As we shall see later, if such an approximate 
representation can be obtained, some tedious error rate computations 
may be done quite simply. While the requirements of symmetry and posi-
tivity can easily be shown to hold in the entire plane, J. E. Mazo has re-
cently informed us that his results in Ref. 8 imply that d(z, s) is not a 

• A convex metric is a metric which possesses the midpoint property, i.e., for any 
two pointa x and y there is always a third point z such that d(z, z) = d(z, y) 
(1/2)d(z, y) . 
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convex metric in any circle about the origin for any value of 2N0. The 
question remains open as to whether or not d(z, s) admits an accurate 
convex metric approximation in a neighborhood of the origin. Appendix 
B reports the results of an investigation of this question. 
By considering the above properties, it is apparent that a signal 

constellation will be relatively immune to small amounts of phase jitter 
either if the error rate (or minimum distance) is determined by a point 
at the origin and any other signal point, or if signal points on the same 
circle are widely separated (the more circles the greater the Gaussian 
noise penalty). 

2.5 Probability Density in the Absence of a Phase-Locked Loop 

In a subsequent section we will compare the performance of various 
signal constellations, and the following question naturally arises: Can 
we, by judicious signal design, eliminate the need for a phase-locked 
loop?* Preliminary to answering this question we must obtain the den-
sity of the demodulated signal in the absence of a phase-locked loop. 
For simplicity we model the jitter as arising from the single tone 

0(0 = A cos (wit +  (20) 

where 2A is the peak-to-peak jitter, co; is the jitter frequency, and # is 
a uniformly distributed random phase. For this model, the jitter den-

sity is given by w 
P(0) = lAr  — (A) 2 

A 
> 

To determine the density of the demodulated samples we use (9) and 
(10) to write 

1 
191(z)  = 2rNo 

(21) 

ex') 2N0  rilz — s(i)112  + 2(z, s(»)1} 
1  

exp {IT°  E(z, s(')) cos 4' (z, s(D) sin cp]} p(o)d0 
1 

which for small ( <12 degrees) peak-to-peak jitter becomes 

pi(z)  2, 01 exp [ — 2201. liz  e V] Mo(t1),  (22) 

• The equalizer' is capable of determining the optimum demodulating static phase, 
so that the demodulation is noncoherent only to the degree that the untracked jitter 
degrades the error rate. 
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where 34-4,( • ) is the moment-generating function of 4), and 

1 
=  (z, s("I)-

For the jitter density given by (21) it is easy to show that 

Me(ei) = io(A  ); 

thus we have the familiar form 

where 

(23) 

(24) 

1  1  1 
pi(z) — 2— e-07r  eXp [  2N0 D2(z, s(i))]  (25) 

D2(z, s) = Ilz — sij 2 —  2Ar0  n /0 (..To  I (Z, S(i)l) ) •  (26) 

It is useful to summarize our work up to this juncture. Using the 
simple model (4) and the phase-error densities (7) and (21), we have 
derived the conditional density of the demodulated two-tuple with 
and without a phase-locked loop. Equations (13) and (14) and (25) 
and (26) are the desired expressions. In the next section we will use 
these densities to estimate the system error rate. 

III. ESTIMATING THE ERROR RATE 

In this section we give two estimates of the error rate: an asymptotic 
(high SNR) evaluation and an upper bound. Consider the arbitrary 
signal constellation shown in Fig. 7, where the decision regions are de-
noted by RJ. The detector, which is specified by the decision regions, 
will declare that su) has been transmitted if and only if the demodu-
lated vector z falls inside R. Because of various practical considera-
tions, principally ease of implementation, the mathematically optimum 
detector will not always be the one which is built. 

3.1 Asymptotic (High SNR) Error Rate 

The probability of error is given by 

Pe =  E 
j=-1 

(27) 

where the pi's are the (taken to be equal) a priori probabilities and Pei 
is the conditional error rate. The conditional error rate is just the prob-
ability that z falls outside Ri when s(1) is transmitted, i.e., 

P,i = Pr [z Ee R)Is(i) transmitted].  (28) 
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Fig. 7—Typical decision region about signal point s, with minimum distances to 
boundary shown for Gaussian noise alone (no phase jitter) and for large jitter (angu-
lar displacements highly likely). 

This quantity may be written, using the conditional density ps(z), as 

P ei = J pi(z)dz.  (29) zeRi 
Let ej denote a point of global minimum for the function c12 or D' on 
the decision region boundary and let Mi be the number of times this 
minimum is achieved on the boundary. Let (u, y) denote an orthogonal 
coordinate system erected at z; with the positive u axis pointed along 
the boundary line in a clockwise direction and y pointed outside R. 
Then, as is shown in Appendix A, for a high signal-to-noise ratio 
(No --+ 0) with allo = k, the conditional error rate is given by 

M l • \I No —(12 
= P.•  '  exp wo l._ .•  (30a) I ad2  ed, . 
—  22- , 
av  au2 

For the case of Gaussian noise alone (no phase jitter) d2 becomes the 
ordinary Euclidean distance and the partials in (30a) are easily evalu-
ated. In this case, with 0) the signal(s) closest to sce), we have 

. sci) ± sco 
zi =   

2 
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and 
ad2 
av 

aa:id: 

z—e; 

Hence, for the Gaussian case, 

=  s 

2 1Is ")  0 11 NiAro 71- 8No 

Mi _ 5(112 
P e, =  exp  " 

a useful formula in its own right. 
In terms of the distance functions d(•) and D(•), the asymptotic 

error rate is determined by the point on the decision boundary "closest" 
to the transmitted signal. Of course, in the presence of phase jitter, 
this point will generally differ from the closest point according to 
a Euclidean measurement. In Fig. 7, the indicated point on the vertical 
boundary segment is the closest point to si in the Euclidean sense. 
As phase jitter increases, those points with a radial coordinate nearly 
equal to that of si becomes closer to si. So for large phase jitter, 
the point indicated on the boundary segment above si is the "closest" 
point. Thus the exponential decay in error rate is quite similar to the 
asymptotic Gaussian result since it is of the form 

exP C—cglin(i)/2No],  (31) 
where dmin(j) is the minimum distance (measured in a non-Euclidean 
manner) to the jth decision boundary. The minimum distance can 
sometimes be obtained analytically, but most often must be obtained 
by a computer search of the boundary. 
The minimum distance to the jth decision boundary is particularly 

easy to determine if the function d(•,•) is a metric which possesses the 
midpoint property, i.e., for each distinct pair of points s(i) and s(i) 
there exists a third point z* such that 

¡d(s(i), s(i)) = d(s(i), z*) = d(z*, s(1)). 

If this is the case, let zi denote any point on the decision boundary be-
tween s(i) and s(1) and the triangle inequality gives 

d(s('), zi)  d(s(i), zi)  d( 0), s(1) ).  (32a) 

Since for maximum-likelihood detection 

d(s(i), zi) = d(s(i), 

(30b) 
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minimizing both sides of (32a) over the decision boundary gives 

d(s(j), z*)  min ¡d(s(i), en) 
iej 

943 

(32b) 

where z* is the point on the boundary closest to stn. Note that (32b) 
would provide an upper bound on (31). Since the midpoint z* clearly 
lies on the boundary, z* = z*, and (32b) is satisfied with equality, 
the minimum distance is given by 

d(s(i), z*) = min ¡d(s(i), su)). (32c) 
i I 

Since the Euclidean metric is convex, eq. (30b) could be directly 
obtained from (30a) by using (32c). 

3.2 An Upper Bound on the Error Rate (for Small Jitter) 

In systems which use a tracking loop, an upper bound on the system 
error rate may be obtained, for small jitter, by considering Fig. 8. This 
figure shows the transmitted point SU>, the decision boundary Ri, and 
several nested regions Ci (defined by contours of constant probability), 
where 

Ci = {z:d2(z, s co) 5 c.d. 

Fig. 8—Nested equidistance contours [distance defined by eq. (13)] about signal 
si in arbitrary decision region. Contour ci*, at distance di*, defines di* as the shortest 
distance to the boundary. 
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If we let CI denote the first contour which touches the boundary, then 

it is clear that 

Pe; = Pr [z  Ril sco transmitted] < Pr [z EE  I s ci>] 

= f p.,(z)dz 
zEcI 

da‘z,.„›, erel , exp [ — 2 ez, s(J)) dz. (33) 

For small jitter, the exponent may be expanded in the first power of 
1/a, to give 

ex, s) = IIx — s112 1 N  31)2, a o 
(34) 

for which the contours of constancy are ellipses. Transforming the 
ellipses into circles and changing to polar coordinates enable us to inte-
grate (33) to get 

1  
P „   exp [—dg,:/2N 0]. 

115(d) 112 
«N o 

(35) 

Again dâ, is the minimum distance to the jth decision boundary which 
for convex polygonal decision boundaries can be determined analyti-
cally. For high SNR, the above bound is useful up to 1.5 degrees rms 
jitter. Because of the similarity of (30a) and (35), we will use only the 
former asymptotic results in the sequel. 

IV. A COMPARISON OF VARIOUS SIGNAL CONSTELLATIONS 

In the preceding section we have presented a means of evaluating the 
asymptotic (high SNR) error rate for a given signal constellation and 
detector structure. In terms of the minimum distance, measured via 
the appropriate noise/phase-jitter distance function to the jth decision 
boundary, we have 

211s () —  L NFV--°  exo [ — 2N  1  e]. (36) 
Pe —  ‘ o 

The minimum distance will be obtained by a computer search of the 
decision boundary. It should be emphasized that comparisons based on 
the asymptotic error rate are not exact but rather indicate order-of-
magnitude effects. 
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Our comparisons will be made by varying the following quantities: 

(i) signal constellations 
(ii) signal-to-noise ratios 
(iii) rms jitter 
(iv) decision boundaries 
(y) phase-error density. 

Clearly the pie may be sliced several ways, so let us first say a few 
words about each of the above variables. 
(i) Signal constellations: For the purposes of signal evaluation we 

will consider the existing 16-point constellations QAM, 8-8, and (4, 90°) 
shown in Figs. 9a through 9e. The circular constellation (4, 90°) has 
signal points equally spaced (i.e., 90 degrees apart) on four circles. This 
large angular spacing of points on the same circle suggests that this 
constellation will be insensitive to small amounts of phase jitter. The 
ratio of outer radius to inner radius (r2/ri) for the 8-8 constellation is 
1.59, found by Lucky' to minimize the error rate in Gaussian noise. 
8-8 is an optimized form of AM-PM in which signal points on the outer 
circle do not lie on the same radial lines as those on the inner circle. It 
offers an order-of-magnitude improvement (over AM-PM) in error rate 
in the presence of Gaussian noise. We will also consider the new circu-
lar modulation formats 1-5-10, 1-6-9, 5-11, shown in Fig. 10. The 
optimum ratio (r2/ri) is very close to 2 for these constellations as we 
have determined by equating the three smallest nearest-neighbor 
distances. 
(ii) We consider peak and average SNR's, Pk and P vg respec-

tively, chosen so that P. (no jitter) is <10-5. These quantities are 

.  3 
le T 

1 I 
I  I 
1 I 

1 I 

1-3  1-1  I 1  31 

•-i - - 

(a) (b) (c) 

Fig. 9—Existing signal constellations: (a) quadrature amplitude modulation 
(QAM), PpeakiPav = 1.8; (b) modified AM-PM (8-8), PPeakiPs. = 1.43; (c) circular 
constellation, (4, 90°) p,,,,,,k/pav = 1.85. 
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(a) (b) (0) 

Fig. 10—New signal constellations: (a) 1-5-10, pr.,,,k/p. = 1.42; (b) 1-6-9, 
pponk/p.v = 1.525; (o) 5-14 Ppeak/Pav = 1.31. 

defined by 
Ppk = max 4(1)1 2/2No, 

1 16 
P., =  Ilsc712/2No. 

(iii) Our attention is focused on the practical range of residual 
(from a PLL) jitter of <3 degrees rms. 
(iv) We will consider both the boundaries which are optimum in 

Gaussian noise (straight lines) as well as more practical boundaries for 
the circular formats (polar wedges). 
(v) The Tikhonov density will be taken as representative of those 

systems which use a tracking loop, while the peak-to-peak density will 
be used to model the raw (untracked) phase jitter. 
The error rate curves are grouped as follows: Figure 11 shows the 

error rate vs rms residual phase jitter (Tikhonov density) under aver-
age and peak power constraints for the six constellations described 
above. For each constraint, a Gaussian noise power (and thus an SNR) 
is assumed which places the curves in a useful operating range, and the 
receiver is presumed to use the Gaussian optimum decision region 
boundaries. These boundaries are piecewise-linear contours constructed 
from segments of perpendicular bisectors of lines joining signal points as 
shown in Fig. 12a for the 1-5-10 constellation. This is equivalent to 
deciding in favor of the signal point closest in Euclidean distance to the 
demodulated point. Figure 12b shows a more "practical" set of deci-
sion boundaries for the 1-5-10 constellation. Figure 11 indicates the 
immunity of the (4, 90°) constellation to small amounts of phase jitter 
at the expense of an error rate more than an order of magnitude greater 
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Fig. 11—Error rate vs jitter with a phase-locked loop: (a) average power con-
straint; (b) peak power constraint. 

than those of the 1-5-10, 1-6-9, and QAM constellations. In practical 
operation with a tracking loop, any of these alternative constellations 
will almost always outperform the (4, 900) constellation. 
Figure 13 shows the error rates vs SNR, again under average and 

peak power constraints, in the presence of Gaussian noise alone (no 
phase jitter) and with 1.5 degrees rms residual phase jitter in addition 

• 

(a) (b) 

• 

• 

Fig. 12—Decision region boundaries for part of 1-5-10 constellation: (a) Gaussian-
optimum decision region boundaries; (b) practical decision region boundaries. 
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aries for the 1-5-10 constellation and with phase-locked loop: (a) average power con-
straint; (b) peak power constraint. 

to the Gaussian noise. Although some of the curves shift their relative 
positions (at least under the average power constraint) when phase 
jitter is added, the good performances of 1-5-10 and 1-6-9 are main-
tained. QAM performs respectably and the (4, 90°) constellation comes 
in last. 
Figure 14 is similar to a reduced Fig. 11 except that the "practical" 

set of decision region boundaries is presumed for the 1-5-10 constella-
tion. As can easily be seen, the Gaussian optimum boundaries for QAM 
are also practical boundaries, and the jitter-immune (4, 90°) constel-
lation is shown to best advantage by presuming Gaussian optimum 
boundaries. Under the average power constraint, QAM is superior to 
1-5-10 below about 1.5 degrees rms jitter. Under the peak power con-
straint, 1-5-10 is uniformly superior to QAM. The (4, 900) constella-
tion does not show an advantage until the rms jitter reaches 2.5 to 3 
degrees. 
Figure 15 is a set of error rate vs SNR plots with practical decision 

region boundaries for 1-5-10. Curves are shown for Gaussian noise 
alone (no jitter) and 1.5 degrees rms jitter. Only the average power 
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cal" decision region boundaries for the 1-5-10 constellation and with phase-locked 
loop: (a) no jitter, average power constraint; (b) rims jitter = 1.5 degrees, average 
power constraint. 

constraint is presumed. As before, QAM shows an advantage in the 
absence of phase jitter and still does well in the presence of moderately 
severe residual phase jitter. 
Figure 16 presents some data for receivers which do not use tracking 

loops. In this case the peak-to-peak density of eq. (22) describes the 
raw jitter. Curves are plotted vs peak jitter under average and peak 
power constraints. Some interesting features are the resistance of 1-5-
10 up to a threshold of about 8 degrees peak-to-peak jitter and the 
rapid deterioration of the performance of QAM. 
Figure 17 shows the performance vs SNR for the receivers without 

tracking loops when the peak-to-peak jitter is 12 degrees. This is the 
only instance for which the (4,90°) constellation looks relatively good, 
but here, too, the 1-6-9 constellation performs slightly better. QAM, of 
course, does rather poorly. 
The advantage of using a phase-locked tracking loop with QAM and 

1-5-10 can be seen from the above data and a simple calculation. If 
the raw phase jitter is modeled by 

Q(1) = A cos [wit + 

21 21.5 22 22.5 23 
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Fig. 16—Probability of error vs. peak-to-peak jitter for Gaussian-optimum receiver 
without a phase-locked loop: (a) average power constraint; (b) peak power constraint. 

where 1,1/ is uniformly distributed from —71- to ir and 2A is the peak-to-
peak jitter, then a rule of thumb' suggests that the residual rms jitter 
out of a tracking loop is of the order of 0.1 X 2A. For A = 6 degrees, 
this rms value is 1.2 degrees. A comparison of the curves of Figs. 11 and 
16 shows that substantially lower error rates are achieved by the re-
ceiver with a tracking loop. The performance of constellation (4, 90°) 
is relatively unaffected by the introduction of a tracking loop. 
A further conclusion that can be drawn from the numerical data is 

that the QAM constellation, which is simple to generate and to de-
modulate, performs quite well in Gaussian noise alone or (with the aid 
of tracking loop) Gaussian noise plus phase jitter. More circular con-
stellations, such as 1-5-10 and 1-6-9, appear to offer a moderate fur-
ther advantage at the expense of greater complexity. 

V. OPTIMUM SIGNAL CONSTELLATIONS UNDER A PEAK POWER CONSTRAINT 

In this section we discretize the received signal space to obtain a 
tractable optimization problem. The discretizing is such that the M 
signal points are selected from a circle containing L points while the 
received points lie in a circle of N (N > L) points (note: M < L) . We 
make the following two comments concerning this approach to solving 
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Fig. 17—Probability of error vs SNR for Gaussian-optimum receiver without a 
phase-locked loop: (a) peak-to-peak jitter = 12 degrees, average power constraint; 
(b) peak-to-peak jitter = 12 degrees, peak power constraint. 

the problem: 

(i) the level of discretization must be fine enough to provide a good 
approximation to the continuous problem, and 
(ii) the outer radius must be chosen so that for all practical purposes 

the probability that a received point lies outside the outer circle is 
negligible. The peak power constraint simply means that no signal 
points can be selected outside the L circle. 

5.1 Discrete Maximum-Likelihood Formulation 

If we denote the received point, z, by "i" and the transmitted signal, 
s(1), by "j," then the perturbation of the transmitted signal due to 
Gaussian noise and phase jitter may be summarized by a transition 
matrix whose elements are defined by 

p(i I j) = Pr [receiving "i" transmitting  
i = 1, 2, • • •N  (37) 
j= 1, 2, • • - M. 

The transition probabilities may be computed by integrating the condi-
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tional densities pi(z) over an appropriate region. It is convenient to 
work with the maximum-likelihood receiver (i.e., the optimum decision 
boundaries are used) which receives "i" and declares that "ti" was 
transmitted, where 

P(1: I ti) > P(il j), j  4  j, = 1,2, • • •11/".  (38) 

Note that we have (temporarily) fixed the M points in the signal con-
stellation. It is easy to see that the probability of being correct is given 
by 

Pr [correct] = E Pr [correct I receive "1"] Pr [receive "i"], (39) 

but by Bayes rule 

Pr [correct I receive "] 

-= Pr [send "ti" I receive "i"] 

Pr [receive "i" I send "41"] Pr [send "i"] 
(40) 

Pr [receive "i"] 

Substituting (40) in (39) and recalling that the transmitted signals 
are equiprobable gives 

1 
Pr [correct] = — 

M 
Pr [receive "i" I send "i"] 

i N 
p(iiti),  (41) 

and the optimum constellation is the M signals (or columns) that 
maximize 

P(i I ti).  (42) 

Note that since p(i ) is the maximum entry in the ith row of the 
transition matrix, the problem is one of selecting M out of L columns 
such that the sum of the row maxima is maximized. The error rate may 
be determined from (41). 

5.2 Optimum Constellations 

A heuristic program for solving the combinational optimization 
problem posed by (42) has been developed by Kernighan and Lin.6 
Their process is based upon iterative improvement of either known 
initial constellations or random initial starts. For each start, a "locally 



954  THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1973 

optimum" solution is found in the sense that no change of position of 
a single signal can improve the criterion. The heuristic process is very 
fast and, for the resolution we require, 20 random starts can be pursued 
to completion in 25 seconds. For particular values of rms phase jitter 
and noise power we find, among the best of 20 local optima, reaffirma-
tion of known solutions and in some instances new competitive con-
stellations. For example, for a peak signal energy of SNR = 22 dB, 
Figs. 18, 19, and 20 give the best among the 20 local optima for an 
rms of 0, 1.5, and 3 degrees, respectively. As expected, the 0-degree 
solution has a 5-11 character and the 1.5-degree solution has a 1-5-10 
character. On the other hand, the 3-degree solution is somewhat of 
a surprise; it has a 1-6-9 character. The (4, 90°) constellation, which is 

•  •  •  • 

•  •  • 

•  • • 

• • e • • • •  • • . • 
•  •  •  e 

• 

• 

•  •  • 

Fig. 18—Optimum signal constellation: Peak SNIi. = 27 dB, no jitter (courtesy of 
B. W. Kernighan and S. Lin). 
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Fig. 19—Optimum signal constellation: Peak SNR = 27 dB, 1.5 degrees rms jitter 
(courtesy of B. W. Kernighan and S. Lin). 

best at 3 degrees among heretofore considered designs, has an error 
rate only a few percent worse than that of the 1-6-9 constellation. 
A byproduct of the development of the above procedure is the 

demonstration of the fact that numerical quadrature routines offer 
a competitive alternative to asymptotic techniques and bounding 
methods for the estimation of system error rates. 

VI. CONCLUSIONS 

Comparisons have been made of several well-known two-dimen-
sional signal formats in the presence of Gaussian noise and phase 
jitter, at high signal-to-noise ratios and under both peak and average 
power constraints. It has been demonstrated that, under an average 
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Fig. 20—Optimum signal constellation: Peak SNR = 27 dB, 3 degrees rms jitter 
(courtesy of B. W. Kernighan and S. Lin). 

power constraint for systems which have a high-quality phase-locked 
loop (rms residual jitter <1 degree), QAM had the lowest error rate 
of all candidate constellations. If the residual jitter is <1.5 degrees 
rms, the 1-5-10 constellation becomes extremely attractive since it is 
immune to phase jitter in this range and provides the same asymptotic 
(no-jitter) error rate as QAM. For small amounts of jitter, 1-5-10 and 
QAM have a 2-dB SNR advantage over the (4,900)  constellation which 
is "immune" to phase jitter. Both these constellations offer a 0.5-to-1-
dB advantage in SNR over conventional AM/PM signaling techniques. 
Thus, under an average power constraint, both QAM and 1-5-10 merit 
consideration. 
For a peak power constraint, in addition to making comparisons 

similar to the above, we have been able to attain the optimum signal 



T WO-DIMENSIONAL SIGNAL CONSTELLATION  957 

constellations for various levels of jitter. Our comparisons indicate 
that, for jitter <1 degree, QAM suffers a 1.5-dB SNR penalty with 
respect to the 5-11 constellation, while 1-5-10 suffers a 0.1-dB penalty. 
At 1.5 degrees rms jitter, 1-5-10 again is superior to both QAM and 
5-11 (by 4 and 1 dB respectively). 
Based upon the peak and average power constraints, the new modu-

lation format 1-5-10 appears to make extremely efficient use of avail-
able signal power and for a slight increase in modulation/demodula-
tion complexity offers considerable immunity to moderate ( <1.5 
degrees rms) residual phase jitter. QAM systems which employ high-
quality phase-locked loops will also be operating very efficiently, pro-
vided that the residual phase error is <0.8 degree rms. 
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APPENDIX A 

Method of Laplace 

Let g(x) and h(x) be continuous real functions on [a, b] where h(x) 
is also twice continuously differentiable. Then, if h(x) attains a single 
maxima at c (a <c <b), we have that 

I: g(x)e(hIk)h( c)dx  
I— 27k 
NI h" (c) 

(k --> 0) 

(read -.., as asymptotic to). The proof is not difficult and the key steps 
can be found in Papouliso or in Jones.° This analysis technique for 
estimating an integral for large values of the parameter k is called the 
method of Laplace. 
An immediate application of this method used in the body of this 

paper is 
A  1 1. ee 

1.0(a)  2w f •• —   
_..  

For estimating system error rates, a certain two-dimensional version 
of Laplace's method is needed. Particularly, we shall investigate the 
following two-dimensional integral: 

I â if exp {ile: h(z)} dz  [z = (u, v)] 
. ko 
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for small k. The function h(z) we shall be concerned with is assumed 
to have the following properties: 

(i) h(z) is twice continuously differentiable such that 14(0) <O, 
h„„(0)  0, and 0 is the unique point of maximum for h(z) in 

O.* Thus we also assume h. of (0) <O. 
Let  G=  
(ii) For some r> 0, 

lim f f exp  fi h(z)} // —*1. 
k  é 

G, 

Rewriting I as 
1 

e(hFe mo) f f exp  — [h(z)  

Iv OI 

it is easy to conclude that for each e > 

eullohe) f ff exp {-1 [h(z) — h(On} • 
—e  0 

We shall proceed to integrate with the exponent in the integrand re-
placed by its local representation 

e  e 

k 
e(11k)h(0) f  exp  { _1 [hi,(0)v  h(0)u2/2 + h.,,(0)uv]} dvdu. 

—e  0 

The absence of hg(0) and h,(0) follow directly from (i). Integrating 
(dv) we get 

e(l/k)h(°) f e k 
-exp  [h.„(0)E  h.(0)ue]} — 11 

h.(0)  hu,(0)u 

X en "-- (0)( "mdu. 

We appeal to the first paragraph to integrate each term involved in 
this subtraction. Take E small enough to avoid the singularity at 
u = —h.(0)/h.(0). The first term is asymptotic to 

kai , Vh —2(0) {ex _ 1 [ii(0) ± /4(0)e  
.. P k 

In this appendix, subscripts are used to denote partial derivatives, e.g., 
ah 

h, (0) = 
13V I (u. e)—(o. 
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while the second is 
k8'2 r , k 
h.(0)  h.(0) e(0)1 

Since for E small enough h(0) E — [h(0)/h (0)]E2 < 0, we conclude 

I
—Icai2V  —2r  —   ehcome. 
h,(0)  h(0) 

In error rate computations one is often integrating over the exterior 
of a convex polygon. In the body of this paper we encounter the case 
where h(z) has a finite number of global maxima on the boundary, at 
most one on each side, and none at the vertices. Let z: be the nth local 
maximum. Map the exterior half-space containing z„'" into the upper-
half plane via a rotation, composed with a translation taking z:  O. 
Then the method of the last paragraph can be applied. The process is 
repeated for each maxima and the results sum to the required asymp-
totic estimate of the exterior integral. The fact that the exterior half-
spaces containing distinct points of maxima may overlap is of no conse-
quence. Furthermore, in our applications, h(z) is symmetric with re-
spect to each e and the process need only be completed once and the 
answer multiplied by the multiplicity of the maxima. 

APPENDIX B 

The Nature of d(x, y) 

B. 1 Introduction 

Let V be a vector space endowed with a scalar product (z, y) and 
a norm derived therefrom. It is not known whether ci,(x, y): V X V —› 
R I defined by 

(17(x, y) (11x11 2 411 2 — 21  27-1 (xe Y) I )112 

is a metric for any values of 7 (0 <'y <te). Nor is it known whether 
4.(x, y) is a metric in any sphere centered about the origin. Similarly, 
the status of the midpoint property is also unknown to us. However, 
from Ref. 8, we know that these two properties cannot hold simultane-
ously for any ̂y in any sphere about the origin. 
Concerning the metric question, the difficulty (as usual) is the 

triangle inequality. By definition c/7(x, y) is symmetric in its arguments. 
Positivity follows easily from the Schwartz inequality, 

d,(x, y) ljx — 312 + 2(x, y) -I- 27-1 

— 21.044312 ± 'Y-2 1f  I !xii — iiYil I 0. 



B.2 One-Dimensional Case 

In the special case V = R we can show di(x, y) is a metric. In one 
dimension we have (the "1" subscript will now be suppressed) 

fix — Ill   xy - - 1 k 0 

L I .NI(x +  + 221 xy + s o' 
To show the triangle inequality, first notice that, if three points a, b, 
and c are on the same side of zero, the distances are all Euclidean. So 
for the remaining cases to be investigated we assume one point has 
a different sign than the other two. Notice d(x, y) = d(—x, —y) so we 
lose no generality by assuming ckbk0> a. Two subcases remain: 
(i) only d(c, a) is non-Euclidean;  d(c, a) and d(b, a) are non-
Euclidean. For (i) the distances involved are (c — b), (b — a), and 
lua ± 02  2211121. Now I [(a ± e)2 ± 2211/2 1 c — a since, by squar-
ing, this is equivalent to 1 + ac  O. To show 

(c — b)  (b — a)  I [(a -I- c)2 + 221112 1 

(b — a) e (e — b)  I[(a  2211/21, 

it is enough to show 

[(c + a) — 2b]2 [(a -F c)2 + 22] 

since squaring both sides when the right-hand side is positive can only 
weaken the inequality. The last inequality can be simplified to 
b2 — be S 1 ± ab for which the left-hand side is negative and the right-
hand side is not. On the other hand, (ii) is immediate since c — b, 

•sl(a  c)2 ± 4, and .%/(b  a)2 + 4 can be identified as sides of a tri-
angle with apex ( —a, 2) and base points c and b. Notice d does not 
have the midpoint property since d(10, —10) = 2, yet the only points 
y satisfying d(10, y) = 1 are 9 and 11, but both d(9, —10) 
d(11, —10) exceed 2. 
This last observation shows that the open spheres in this metric 

space are not all connected. In two dimensions, the boundaries of cer-
tain open spheres are disconnected; specifically, it can be shown that 

for certain values of q > 

and 
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Notice 4(x, y) > 0 unless x = y. If d(x, y) is a metric on V X V for 
a particular value of 7 then it is a metric for all y (0 <  < co ) ; this is 

easily obtained by employing the mapping z —) -ry I z. 

d(x, y) = 

IYId(x,Y) = 

is a disconnected set if Ily11 27 > 1. 
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B.3 Approximating 417(x, y) on the Unit Circle 

As mentioned in the text, an important open question is whether 
d(x, y) can be accurately approximated by a convex metric. There 
are, of course, many ways in which one can approximate d,(x, y). In 
this section we dispose of two approximations which suggest themselves 
immediately. 
Let us view d(x, y) on the unit circle. Notice, as y 0, 

+ 27-1(x, y) 

,y- ( + 1 ,( x , y ) ±  72 ( 114 21131 2 2—  (X, Y) 2 )) 

Hence, for small phase jitter, 

d(x, y) ee iix  31 2 — 1114 2031 28 in' 0, 

where O is the angle between a and y, or what is the same, 

4(x, y) lix — y11 (1 —  lAk 2(x '33:1)12)112, 

where A(x, y) is the area of the triangle Oxy. Let h.„ denote the altitude 
of Oxy perpendicular to xy; then 

d(x, 37)  11x — Y11(1 — 'Yht) 12. 
Since h S 1, 

Ilx — y11(1 — 74,)112 ?.- o 
with equality if and only if x = y so long as 7 < 1; also, the left-hand 
side is symmetric. Notice 

a(x, 3T) = !Ix  Yli( 1 ht)112 

has the midpoint property. Indeed, if z lies on the line segment joining 
x and y, 

d(x, z)  d(z, y) = d(x, y) 

since h. = .,= h„. 
So we are strongly motivated now to see if 4(x, y) is a metric on the 

unit disc. Note that if F is any finite subset of the unit disc, then for 
7 sufficiently small, d(x, y) is a metric on F. This follows from the fact 
that for noncolinear triples, the triangle inequality holds properly for 
the metric Ilx — yll. Perhaps surprisingly, the triangle inequality for 
A7(x, y) does not hold for all triplets in the unit disc. This was dis-
covered by linearizing à(x, y) to get 8(x, y) = lix — y11(1 — 7/214) 
which is likewise a valid approximation for d(x, y) for small y. 
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For 6(x, y), the midpoint property and all requirements for a metric 
hold except for the triangle inequality. The triangle inequality question 
is easier for us to investigate for (5(x, y) than for à(x, y) as it de-
velops into a geometrical extremal problem which we can handle. In 
solving the extremal problem, a class of vector triplets in the unit disc 
emerge for which no value of 'y > 0 exists such that the triangle in-
equality holds uniformly for the class. Although these triplets arise in 
the analysis of 8(x, y), they serve just as ruinously for à(x, y). 
In order to discuss this geometric extremal problem, we require some 

notation. Suppose we have a triangle (nontrivial—positive area) in the 
unit disc with side lengths a, b, and c and opposing vertices A, B, and 
C, respectively. Let ha, ha, and ha denote the distance from the origin 
to the line containing the side of length a, b, and c, respectively. 
Write the "triangle inequality" expression for 8(x, y): 

r  7 
lix — yjl (1 — i ht)  !ix — zji (1 — -ir hx2.) 

+ !lz — yil (1 — ir lz) • 

Changing to the notation just introduced, we have directly that the 
triangle inequality holds for 0 5 7 5 y where y -- inf r(a, b, c). 

+ b — c 
r (a, b  a, c) -º. { ah  + bhg — ch2a 

and the infimum is over all triangles for which the bracketed expression 
is positive. This geometric extermal problem is disposed of by substitut-
ing a triangle of the form depicted in Fig. 21. It follows easily 
lim, _,0 r = O. Thus y = 0 and the only d(x, y) metric is the obvious 
one. A straightforward substitution of the three vectors depicted 
above into the "triangle inequality" for à(x, y) yields again that for 
no fixed 7 > 0 can the triangle inequality hold for this family of 
triangles. 
Strikingly, for the class of triplets in Fig. 21, it is easily demonstrated, 

via substitution, that the triangle inequality for der(x, y) holds for an 
open interval including 1, = 0! 

B. 4 A Metric on the Boundary of the Disc 

We end on a positive note: 6(x, y) is a metric on the boundary of the 
unit disc for a nontrivial interval [0, y]. s Iis enough to show inf 

'We anticipate applications in phase-modulation systems. 
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Fig. 21 —Infimizing family of vectors. 

P(a, b, c) > 0 where the infimum is over those triangles circumscribed 
by the unit circle for which P is positive. Now 14, = 1 — a2/4 and 
similarly for ha and h, so 

P(a, b, c) = (1  1 a'  + b3 — c3  \-1 • 

4 a+b —c ) 
Dividing gives 

(a, b, c) = (1 — 1 [a2 ± V + c2 — ab ± ac ± bc   3abc   1\ -1.  

4  a ± b —  

So y > 0 if and only if 
abc < co. sup a + b _ c 

At this point, we must digress and recall some plane geometry from 
Ref. 12. First abc/ 4 is the area of the triangle and 2-1 (a + b ± c) is 
called a semiperimeter. Given any triangle ABC, extend the two lines 
emanating from the apex A. Construct bisectors to the two exterior 
angles complementary to the angles B and C respectively. The bisec-
tors meet in a point equidistant from the three lines containing a, b, 
and c. The circle tangent to these three lines is called an excircle. See 
Fig. 22. The center of the excircle (where the bisectors meet) is called 
the excenter and of course the radius is called the exradius. Each tri-
angle has three excircles. Finally from Ref. 12 we need: 
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Fig. 22—Excircle tangent to c. 

(01) 

UPPER BOUND 
ON EXRADI I 

Fig. 23—Upper exradiu.s bound for excircles tangent to c. Since 0 5 c 5 2, the 
exradii are uniformly bounded. 
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Theorem: An exradius of a triangle is equal to the ratio of the area to the 
difference between the semiperimeter and the side to which the excircle is 
tangent internally. 

So if the set of exradii of triangles circumscribed by the unit circle is 
uniformly bounded away from infinity, then y> 0 and f 8,10<.,.<-,. are 
metrics. 
To complete the proof, consider any triangle with vertices on the 

unit disc boundary. With an isometric transformation of the circle into 
itself, we can situate c horizontally with apex C above c in the left 
half-plane. The more obtuse the exterior angles at A and B, the larger 
the excircle tangent to c. So take a horizontal line a' through B and a 
line h' going through A and (0, 1) and replace a and b with a' and b'. 
Clearly, bisectors constructed using a' and h' will intersect at a point 
further away from c than the excenter of any excircle tangent to c. By 
similar triangles, the primed bisectors intersect at a distance 
2(1 ± 1./1 — c2/4) from c where the sign is plus if c lies in the lower 
half-plane and negative otherwise (Fig. 23). 
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A theory of traffic-measurement errors for loss systems with renewal 
input is developed. The results provide an accurate approximation for the 
variance of any differentiable function of one or more of the following basic 
traffic measurements taken during a given time interval: 

(i) The total number of attempts (peg count) 
(ii) The number of unsuccessful attempts (overflow count) 
(iii) The usage based on discrete samples (TUB measurement) or on 

continuous scan. 
The approximation is given in terms of the individual variances and 

covariance functions of the three measurements. Asymptotic approxima-
tions for these moments are obtained using the concept of a generalized re-
newal process, and are shown to be sufficiently accurate for telephone 
traffic-engineering purposes. 
As an application of the theory, we examine the variances of the standard 

estimates of the load and peakedness (variance-to-mean ratio) of an input 
traffic stream for a time interval of one hour. Other possible applications to 
Bell System trunking problems are discussed. 

L INTRODUCTION 

In the Bell System, there are a number of traffic measurements 
which can be made on any given trunk group. For a standard time 
interval (0, t] of one hour, the three most important measurements are: 

(i) A(t), the number of attempts (peg count); 
(ii) 0(1), the number of unsuccessful attempts (overflow count); 

and 
(iii) Ld(t), an estimate of usage based on 36 discrete samples (TUR 

measurement). 

When all three measurements are available, several statistics can be 
formed to estimate traffic parameters of interest. For instance, the 

967 
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ratio 0(t)/A(t) is an estimate of call congestion. Two other important 
parameters are the peakedness (variance-to-mean ratio) and the load 
of the input traffic. An estimate of the load is given by the function 

— L(t)/36  
â  

1 0(t) ' — 
A(t) 

while an estimate of peakedness is a complicated function of A(t), 
0(t), and Ld(t) which is usually obtained by iteration using the Equiv-
alent Random method.' 
Since the trunk-engineering procedures are based on such estimates, 

it is important to know their statistical accuracy. For instance, it 
would be useful to know the error inherent in a prediction of the re-
quired size of a trunk group (to obtain a specified grade of service) 
based on the estimates of offered load and peakedness of the input 
traffic. Such a result could be used to determine the number of single-
hour measurements necessary to ensure a desired accuracy in the pre-
diction, to determine the optimum number of measurements from a 
cost-effectiveness point of view, or to evaluate the consequences for 
trunk provisioning of using a given number of measurements. 
Many results concerning the accuracy of the individual traffic mea-

surements (i) through (iii) have been obtained previously, but most of 
these have assumed the arrival process to be Poisson. For example, 
assuming Poisson arrivals, the variance of the usage measurement 
Ld(t) was obtained by Rene,' and the variance of the measured call-
congestion OW/ A (t) was given by Descloux.8 More recently, the vari-
ance of OW/ A(t) was obtained for arbitrary renewal input by Kuczura 
and Neal.' The variances of some nonstandard traffic counts were 
considered by Descloux,' and numerical results were obtained for the 
case of Poisson input. 
Using the concept of a multidimensional renewal process, we develop 

a general theory of errors which provides an estimate of the variance of 
any differentiable function of the measurements (i) through  Con-
sequently, our results can be used to answer many questions similar to 
those mentioned above. The variances of the estimates of offered load 
and peakedness of the input traffic will be derived in Section IV as 
examples which illustrate our general theory. 
Section II contains the derivation of an approximation for the vari-

ance of a function of the three traffic measurements. The approxima-
tion is given in terms of the individual variances of (i), (ii), and (iii) 
and the covariance functions between them. 
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Section III contains the mathematical model used to derive the vari-
ances and covariances. Section V contains a summary and an outline 
of other possible applications. 

II. STANDARD ERRORS OF FUNCTIONS OF RANDOM VARIABLES 

For completeness, we present those results from the theory of stan-
dard errors' which are required below. Let el, ea, and E3 be random 
variables and g a real-valued function. Assume that  has a mean 
8, 0(ti, ka, Ea) has finite mean and variance, and g is differentiable at 
the point (01, 82, 83). Using a Taylor series expansion we have, to first 
order, 

E2, e3) — 9(01, 02, 0a)  (ti — ot) ag  •  (1) ae, 

We are assuming that the observation period will be sufficiently large 
so that the contribution of the higher-order terms can be neglected. 
This assumption will be justified in our model. 
Taking the expectation of (1), we see that the mean value of g is 

approximately g(0i, 02, 02) since EL  — 01] = O. We also have 

Var [g(ei, t2, Ea)] 

E [ (e, — 
2—. 

- (—g-8 )2 Var [E1] + 2 -À8 ae  cov Eei, 

,n ag  Coy EEI, E3] + 2 Ae + _ —  Coy [E2, Ea} 
0,91 ou3 

After setting Ei = A(t)/t, ea = 0(t)/t, and t3 = Ld(t)/36 the above re-
lation becomes the starting point for our theory of traffic-measurement 
errors. It approximates the variance of any differentiable function of 
the measurements in terms of their variances and covariances. 
In the next section we derive expressions for the required moments. 

These, together with the first partial derivatives of g, approximately 
determine the variance of g. If the function g is too complicated to be 
differentiated analytically, differencing may be used to approximate the 
partial derivatives. An example of this procedure is given in Section IV 
where we discuss the variance of an estimate of the peakedness of a 
stream of offered traffic. 

(2) 
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HL MATHEMATICAL MODEL 

Consider a system of c servers serving customers whose arrival 
epochs constitute a renewal process. We assume that the interarrival 
times are independent and identically distributed according to the dis-
tribution F having mean 1/X, and that the service times are in-
dependent and identically distributed according to a negative-exponen-
tial distribution with unit mean. If all servers are occupied when a 
customer arrives, he leaves and has no further effect on the system. If 
an idle server is available when a customer arrives, service begins 
immediately. 
Let (0, t] denote a time interval of length t which commences at a 

stationary point for the arrival process.* (Such a point is often said to 
be chosen at random on the time axis.) Let A (t) be the number of 
arrivals and 0(t) the number of blocked attempts in (0, t]. Finally, let 

L(t) = f C(u)du ,  (3) 

where C(u) is the number of busy servers at time u, be the total usage 
in (0, t]. Note that L(t)/t is a continuous-scan estimate of the carried 
load. 
As was pointed out in Section II, the individual first two moments 

of A(t), 0(t), and Ld(t) and the corresponding three covariance func-
tions are sufficient to obtain an estimate of the variance of any func-
tion of these measurements. By numerical experimentation, we 
found that the covariance functions Cov[A(t)/t, Ld(t)/36] and 
Cov[0(t)/t, Ld(t)/36] are, for our purposes, well approximated by 
Coy  (t)/t, L(t)/t] and Coy [0(t)/t, L(t)/t], respectively. However, 
the variance of L(t) can be significantly smaller than the variance of 
Ld(t) so that, in general, we must use Var [Ld(t)] in our applications. 
In the next two sections, we derive the individual and joint moments 

of A(t), 0(t), and L(t). In Section 3.3, we obtain the variance of Ld(t). 

3.1 A Multidimensional Renewal Process 

Assume that the system described above is in statistical equilibriumt, 
let t,, n = 0, 1, 2, • • • , be the instant of time at which the nth overflow 

• That is, the time until the first arrival after t = 0 has the remaining life-time 
distribution H (t) = X fot [1 — F(x)]dx. 
t That is, the system has been in operation sufficiently long prior to t = 0 so that 

system-state probability distribution at t = 0 is the limiting (or stationary) dis-
tribution P C(0) =  = pk  P f C (u) = Id. It follows that for any t 0, 
PC(t) = k = Pk, i.e., the process IC(t), t -()I is stationary. 
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- 

occurs, to <  < t1 < to < • • • , and define Xn = tn — tn_i. Now let 
K„, n = 1, 2, • • • , be the number of arrivals in ft.  t,,] and 

i„ =  tn  C(u)du , n = 1, 2, • • • , 

be the total usage in (t._1, tn]. 
Since holding times are exponential and arrival epochs constitute a 

renewal process, the sequence of times t,z, n = 0, 1, 2, • • • , are regenera-
tion or renewal points in our model. Hence X., K., and ./n, n = 1, 
2, • • • , are sequences of independent and identically distributed 
random variables. 
If we now define the row vector 

= (1, K„, I„),  n = 1, 2, • • • , 

then it follows that {x,,, X„}, n = 1, 2, • • • , is a multidimensional 
renewal process.' Moreover, setting 

n(t) =  

where the sum is taken over all n such that 0 < t,, < t, we see that for 
large t, 

ri(t)  (0(t), A(t), L(t)). 

Since this formulation corresponds to the concept of a generalized 
renewal process as communicated by J. M. Hammersley in the dis-
cussion of W. L. Smith's paper,' his results apply directly to our model. 
In particular, we shall use his equations (25) and (26) to compute the 
moments of n(t). 
Let 1.4.(c) = E(X) be the nth moment of the interoverfiow times 

from a group of c servers and 

= f o endF(E) • 

For brevity, we denote the arrival intensity FF1- by X. From Ref. 4, we 
have the first moments of A (t) and 0(t) already computed: 

E[A(t)] = Xt , 

E[0(t) ] =  t 
ihi(C) 

From eq. (25) of Ref. 7, we have 

E[L(t)] — twi(c) 
iti(c) 

(4) 

(5) 
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where 
cen(c) = E[in • 

Again, from Ref. 4 and Ref. 7, the variances and covariances of the 
three measurements for large t, omitting terms which behave as o(t), 
are given by 

Var [A(t)]  ,?t [p2 — p¡], 

Var [0(t)] —  52(0 — 
id(c) 

Var [LW]  I(c)c02(c)  i£2(c)cd(c) 

— 21.41(c)wi(c)E[Xiii]l , (6) 

Coy [A (t), 0(t)]  mî(c)  {X42(c) — E[K1X1]} , 

Cov [0(t), L(t)]  LL(C)  /12(c)(01(c) — 2(c)E[XiIii 1, 

Cov[A(t), L(t)] « 2(  Imi(c)E[KI/1]  42(c)wi(c) 

mi — xmi(c)E[X1/1] — wi(c)E[XiKi] } • 

We now need to compute the various moments and joint moments of 
X1, K1, and I appearing on the right-hand side of (4), (5), and (6) 
in order to evaluate the approximate expressions for the moments and 
joint moments of A(I), 0(t), and L(t). Note that the mean and variance 
of A(t) are known since À = vil and I/2 are computed directly from F. 

3.2 The Joint Distribution of K1, X1, and II 

The development here parallels that of Section 2.2 in Ref. 4. Let 
hc(w,r, n) be the joint density function defined by 

a2 
hc(w, r, n) = awar P{.2f1 _ w, Ii < r, K1 = n} • 

By considering the two mutually exclusive events (the cth trunk re-
mains busy throughout (0, w) J and I its complement J, and using a 
renewal-type argument, we arrive at the following integral equation: 

.-1 f  u  r- v 

hc(w, r, n) = e-whc_1(w, r — w, n)  E  ,  e—vhc_i(u, s, k) 
/e•=1  JO  0 

X  h(w — u, r— 8 — v, n — k)dsdvdu , (7) 
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in which the time variables u and e run concurrently from an overflow 
epoch. 
The following boundary conditions hold: 

h,(w, r, n) = 0, for r > cw or r < 0, 
hc(w, cw, n) =  

where f = F' and /51,,, = 1 for n = 1 and is zero otherwise.* 
If we define 

7c(x, y, z) r, n)zndrdw, ,  (8) 
rt...1  0  o 

then it follows from (7) that 

(y + 1)y,_1(x + y + 1, y, z)   (9) 
"M X , Y z ) =  y + 1 — -ye_i(x, y, z)  7.-1(x + y + 1, y, z) 

Motivated by the work of Riordan' and the success of the approach 
taken in Ref. 4, we set 

(y + 1)Dc(x, y, z)  
z)  Dc+ i(x, y, z)  ' 

where Do(x, y, z) = 1, and, as can be seen by setting c = 0 in (8), 

where 

Furthermore, for m > 1, 

D„,+i (x, y, z) 

Di(x, y, z)  Y  + 1 z(x) ' 

cb(x) = f e-11 c1F(t) • 

= D.(x, y, z)  [ Y 1 1] D,n(x 
z4(x) 

If we now define 

+ 1, y, z) • 

(10) 

(12) 

y + 1   
X, = Xf(x, y, z) = 1  (13) 

zci)(x + jy + j) ' 

then using (11) and (12) and mathematical induction one can show that 

D„,(x, y, z) = 1+  (— 1)i ( )XoXi• • •  (14) 

• In our model we assume that the interarrival-time probability distribution func-
tion is differentiable. However, with more formalism, the same results can be obtained 
for the more general case; e.g., the one-point distribution function for constant 
interarrival times. 
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Now, since 

E[X11{1e] =  ax ,ayiaz „ 70(x, y, z) x =y=0 
z=1 

for k = 0, 1 and i, j 0, we can compute the required moments di-
rectly by means of differentiation. Omitting all of the details of the 
operations indicated, we obtain 

= 
coi(c) = Do — 1. 

where 

Do = D o(1, 0, 1) = 1+ É (-1)i (c.) 410Al• • • Ai-1, 

with 

(15) 

1 
Ak =  1 (1)(k ± 1) 

Note that Do is the reciprocal of the generalized Erlang-B blocking 
probability Bo. Moreover, with the aid of the results obtained in Ref. 
4, we have 

W2(C) = 25)1(c) + 1] É [wi(j) ± 1] — 2[Diue  mcno)], 

Az ( c) =  ill(C)  2)21(c) É pi(k) — 2viDjno, 
vi  k-1 

where 
ai-I-j+k 

—   Do(x,  z) 
ox'ayiazk 

The required derivatives are given by 

st,; 
DJ  10°) = É (-1)i (  noAl • • • A5_1 [ tVo ' o;  

n' 
D r. 0) =  (c) AaAi• • •A,1 [ ie , +,+  + iv;i 1 

11 .0 

where 12; is the derivative of Xic(x, 0, 1) evaluated at x = 1, i.e., 

_ ce(k ± 1) 

112 (k ±  1) 

and IEZ is the derivative of X1(1, y, 1) evaluated at y = 0, i.e., 

1   
e 02(k ± 1)  4)(k + 1) 

y.•O 
x=z=1 

(16) 

(17) 
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Similarly, we have the joint moments 

E[Xiii] = 21,15)1(c)  É [ol(i) + 1] 

975 

fl(100)  (1 + v 1) M100) _ pippio), 

E[KiXi]  mi(c)  yi(c)  É mi(k)  viDP°') —  (18)V1  k.1 

E[K 111] = 2[wi(c) + 1] É Dei(c) + 1] 

—p p:» ___ mom  Dpon , 

where 

1  1 
D °'°> = É (- 1)J( c) A.Ai• • •4_, [— + — + •  + 41 

A.  AI  iki_, 

3.8 Variance of Discrete-Scan Estimate of Usage 

Our present mathematical model assumes that the measurement of 
usage, L(t), is made by means of continuous scanning, as can be seen 
from the definition of L(t) in eq. (3). In practice, however, usage is 
estimated by discrete scanning. The number of busy trunks is sampled 
at constant intervals of time, say r, and the integral in (3) is replaced 
by the finite sum 

n(t) 

Ld(t) =  E C(kr), 
le«.1 

where 

(19) 

n(t) = max (k:kr  t). 

This procedure introduces a sampling error in the evaluation of the 
integral. As we shall see later, the difference between the variances of 
L(t) and Ld(t) can sometimes be large enough that the discrete-scan 
variance of usage must be used to estimate accurately the variance of 
g in eq. (2). In this section we indicate how the variance of Ld(t) is 
computed. 
Let n = n(t) be the number of discrete samples in (0, t]. In trunldng 

applications, t is usually taken to be one hour (about 20 mean holding 
times) and, since T is normally set at 100 seconds, n = 36. Since the 
process f C(t), t 0} is stationary, from (19) we have 

Var [Ld(t)] = nR(0) ± 2 f (n — j)R(jr),  (20) 

where R is the covariance function defined by 

R(t) = E[C(0)C(t)] — E[C(0)]E[C(t)].  (21) 
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Since P C(0) = kj = P{C(t) = Ic = pk, 

R(t) = kpk É jPki(t) — mî,  (22) 
k-0  J-0 

where 
PL.,(t) = PIC(t) = AC(0) = kJ,  (23) 

and 

ni1 = E kpk.  (24) 
k-1 

The problem of determining the transition function in (23) has been 
treated by Takács in Chapter 4 of Ref. 9. However, he uses a renewal 
point for t = 0, i.e., his origin is chosen at a point immediately after an 
arrival has occurred. His result, though not directly applicable, can be 
modified in a straightforward manner to take account of our different 
location of the origin. We state here the analogue of his Theorem 3 for 
the case of a stationary origin and give a proof in the appendix. We 
use 1/AL to denote the mean service time throughout the statement and 
proof of the theorem. 

Theorem: Let t = 0 be a stationary point for the arrival process described 
above. Then the Laplace transform of (23) is given by 

co 

71" kj(8) = f  e-"Pki(t)dt = É  .) 13ki(8),  (25) 
3 

where 

Pki(s) = 

tPki(s) = 

1 — (6(s +   ,,tki(s) ( k \  1 ecs +  
ocs + 4i)  (8 + ig) i/ (s + ig) L- (P(s  im)J 

[cvs)/ ci1(s)1 
jr e\ 1 ir le\  1  ci(s j g)1 

Ii - \  Ci(s) _IL ,o j)  0(8 + jet) j 

_ r  c\  1 É  k\  1  4(8 + ji.4)11 

L Ci(8) L  ,a• c';_i(s) 4,(3 + jg) if' 

c5(8)  q5(8 + ig)  
i.0 1 _ 4,(s = 0, 1, 2, " • , 

= 1, 

ck(s) =Jo' e-8tdF(1), 
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and i(s) is the Laplace-Stieltjes transform of the distribution (24), that 
is, 

i(s) = [1 — (Ms)]. 

Taking the Laplace transform of (22), substituting for s-ki(s), and 
simplifying, we obtain the following expression for p(s), the Laplace 
transform of the covariance function R(t): 

tn2  X   1-1_(s + 1)11 msî 
p(s) = s 1{ 1 8 ±  L 0(8 + 1)  

where 

±[1/(8± 1) (;)   
+ (sX+m2 1) Ci(s) ei cj) C1(s) 
—  e, (s+ 1i)ci(s) [  1 _ + 1) 11 1)(i + 1) 

(  C 

B A(ci)VEoCci)ci 

(26) 

.e  04)  C, =  = 1, 2, • • • , 
1 — 04) 

Co = 1, 

and m1 and m2, the first and second moments of the distribution (ph), 
are given by° 

mi =  kpk = (1 — B.), 
k-1 

In2 =  É k2p1 = m1 + x[Bi — cBc]. 
k—i 

Note that m1 is the carried load and B0 is the generalized Erlang-B 
blocking 

Bc = 1/ É  c. pi-

Equation (26) has been inverted analytically for the case of Poisson 
input.2 When 41(s) does not have the simple expression of this special 
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case, analytical inversion appears to be complicated. However, for the 
purpose of computing the variance of Ld(t) for our trunlçing applica-
tion, it is unnecessary to obtain an explicit inverse of p(s). We found 
that the numerical inversion scheme described by Eisenberg" is com-
putationally efficient and gives satisfactory results. 
To illustrate the difference between continuous-scan and discrete-

scan measurements for the case when the input traffic is of the overflow 
type, we computed the estimates of the variances of L(t)/t, the con-
tinuous-scan estimate of the carried load, and Ld(t)/36, the discrete-
scan estimate, for various trunk-group sizes and t = 20 mean holding 
times—i.e., about one hour. For these results, the interarrival-time dis-
tribution of the arriving traffic was obtained by using the Interrupted 
Poisson process with a three-moment match." 
The case for ten trunks is typical and is presented in Fig. 1 where 

crLa = -NiVar [Ld(t) /36] and eL = liVar [L(t)/1] vs a are graphed for 
z = 1, 2, and 4. 
Since the variance of La(t)/36 must be at least as large as the vari-

ance of L(t)/t, our results show that the asymptotic estimate of 
Var [L(t)/t] has a small positive bias, especially for low loads. Our 
simulation results verify this observation and also indicate that the 
asymptotic approximation becomes more accurate as the input load 
increases. Notice that the variance of La(t)/36 is about equal to the 
variance of L(t)/t at low loads. As the load increases, the relative error 
introduced by discrete scanning can increase substantially. Finally, we 
found that for fixed load and peakedness, the relative difference be-
tween Var ELd(t)/36] and Var [L(t)/t] decreases as the trunk-group 
size increases (an effect not shown in the figure). 

IV. TWO APPLICATIONS 

We give two applications of our results, in which we obtain the ac-
curacy of the estimates of two traffic parameters. In the first example, 
the parameter is the offered load as given in Section I. For the second 
example, we discuss an estimate of the peakedness of the offered traffic. 

4.1 Accuracy of an Estimate of Offered Load 

Suppose we have observations A(t), 0(1), and La(t) recorded. Then 
for the measurement period (0, t], te, an estimate of the offered load (in 
erlangs), is given by 

Ld(I)/36 
= g[A(0, 0(t), La(1)1 —  — 0(t) 

1  
A(t) 

(27) 
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Fig. 1—Standard deviation of carried load measurements vs offered load using 
discrete-scan and continuous-scan measurements on a 10-trunk group for t -= 20 
mean holding times. 

Obtaining the required derivatives of g as indicated in eq. (2), sub-
stituting into (2), and simplifying, we have the following expression 
for the variance of the offered-load estimate in (27): 

1   
Var [a] —  t2(1 — B)2 Var [0(t)] + Var [I, d(t)] (43)2 

c 

+ 132c Var [A (0] ± 2 Coy [L(t), 0(t)] 

— 213c Coy [L(t), A(t)] — 213c Coy [0(t), A(t)]} • (28) 

Now using eqs. (6), (15), (16), and (18) to substitute for the various 
quantities on the right-hand side of (28), we can compute Var [e]. 
To test the approximation (28), we computed the variance of d, as 

outlined above, for trunk-group sizes of c = 10 and c = 40 trunks, for 
input traffic streams of the overflow type having different combinations 
of load and peakedness values. We also used a computer simulation to 
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Fig. 2—Standard deviation of offered-load estimate vs offered load for c = 10 
trunks. The measurement interval is 20 mean holding times. 

estimate Var Eci] at several points. The numerical results are displayed 
in Fig.  2 for  c = 10 trunks and Fig. 3 for c = 40 trunks where 
cr« = liVar [a] vs a is displayed for z = 1, 2, 4, and 10 (again for t = 20 
mean holding times). 
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Fig. 3—Standard deviation of offered-load estimate vs offered load for c = 40 
trunks. The measurement period is 20 mean holding times. 
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The simulation results indicate that for c = 10 and c = 40 the 
asymptotic approximation for Var [à] is quite accurate for all ranges 
of load and peakedness of interest in trunking applications. 
We obtained almost identical results for Var [à] regardless of 

whether we used Var [Ld(t)/36] or Var [L(t)/t]. Apparently, for low 
loads (low blocking probability) the accuracy of à is dominated by the 
accuracy of the usage measurements while at high loads (blocking 
near 1) the accuracy of the call-congestion estimate is the dominant 
factor. Since the relative difference between Var [La(t)/36] and 
Var [L(t)/t] is small for low blocking probabilities, we see that the 
accuracy of à is not significantly affected by the TUR sampling error. 

4.2 Accuracy of an Estimate of Traffic Peakedness 

When all three of the measurements A(I), 0(t), and Ld(t) are avail-
able for a final trunk group of c trunks in an alternate-route network, 
the peakedness z of the input traffic is estimated in the following man-
ner: First an estimate of offered load à is determined as described in 
the preceding section. Then an estimate t of z is obtained by iterative 
methods (using the Equivalent Random method'), such that a single 
overflow stream having load à and peakedness e would experience the 
call congestion 0(t)/A (t) or, equivalently, the resulting carried load 
would be La(t)/36. 
Thus, there is a well-defined procedure for determining a unique 

value for k corresponding to A(I) _e_ 0(1) > 0 and Ld(t) > 0, i.e., we 
have the estimate r A(t) 0(t) Ld(t) 1 

'=gi t ' t ' 36 j 
in the required form. However, there is no explicit analytical expres-
sion for g which can be used to obtain the derivatives needed in (2) to 
obtain the variance of k. 
In such cases, it is natural to estimate the partial derivatives by first 

differences. For example, 

ag I  g[01(1 + ei), 02, 03] — g[01, 02, 03] 
— 

axl 1 8,,e,,e,  eiA  e (29) 

where à is a small positive number. Numerical experimentation indi-
cated that à = 0.001 gives sufficient accuracy for the present applica-
tion. Using the first-difference approximations as illustrated in (29) 
for the derivatives in (2) we have an estimate for the variance of e. 
We computed the resulting approximation for c = 10 and c = 40 

trunks for a range of offered loads a, several values of peakedness z, 
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Fig. 6—Comparison of the standard deviation of peakedness estimates using 
discrete-scan and continuous-scan measurements of carried load on a 40-trunk group. 

In general, the simulation results are in good agreement with the 
approximation. The curves are plotted either for a  z, or else for call-
congestion exceeding 0.01, the range of interest for trunking applica-
tions. When a is smaller than z or the call-congestion is much smaller 
than 0.01 (not shown in the figures), the value obtained from the ap-
proximation for Var [k] occasionally tends to be larger than that ob-
tained by simulation. Hence, the approximation may not be adequate 
for such applications. 
In the preceding section, we noted that essentially the same results 

were obtained for Var [a] regardless of whether we used Var [L(t)/t] 
or Var [Ld(t)/36] in the computations. In contrast, the variance of k 
is very sensitive to the variance of the usage measurements. That is, 
Var (1(0/36] is required to obtain an accurate approximation for 
Var Dj. The errors which can result from using Var [L(t)/t] instead 
of Var [La(0/36] are illustrated in Fig. 6 for the case of c = 40 trunks. 
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V. SUMMARY AND OTHER APPLICATIONS 

5.1 Summary 

We derived an approximation for the variance of any differentiable 
function of the three basic traffic measurements—namely, peg count, 
overflow count, and usage (TUR). The approximation is expressed in 
terms of the first partial derivatives or first differences of the function, 
and the individual variances and covariances of the measurements. 
Except for the variance of the TUR measurements, asymptotic ap-
proximations for the required moments were obtained by an applica-
tion of Hammersley's generalized renewal theory. 
The variance of the TUR was given as a sum involving the covari-

ance function for the number of busy servers at equally spaced scan 
intervals. The Laplace transform of the covariance function was de-
rived and inverted numerically using an inversion technique described 
by Eisenberg. 
The results were then applied to obtain approximations for the 

variances of estimates of offered load and peakedness (variance-to-
mean ratio) of a stream of traffic of the overflow type submitted to a 
loss system. The approximations were in good agreement with results 
obtained by simulation. 

5.2 Other Applications 

5.2.1 Offered Load Estimates Based on Usage Measurements 

At present, A(t) and 0(t) are not always measured on primary high-
usage trunk groups. Estimates of the single-hour offered load and call-
congestion for such groups are obtained from the TUR measurement 
L d(t) with an iterative procedure based on the Erlang-B theory. Using 
the techniques presented above, one could compare the accuracy of 
these estimates with that which would be obtained by using all three 
measurements. It should then be possible to evaluate the difference in 
statistical accuracy that results from using (or not using) the additional 

measurements. 

5.2.2 The Optimum Number of Single-Hour Measurements 

Normally, 20 single-hour measurements are used to obtain estimates 
S of the correct number of trunks s required to obtain a specified grade 
of service. For example, on final trunk groups, the 20 single-hour esti-
mates of call-congestion  / A(t) and usage La(t) are first averaged 
and then used to estimate an average load and peakedness of the input 
traffic. These average values are used to obtain S. 
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It has been proposed that the number of measurements be reduced 
in order to lower the data handling costs. However, reducing the num-
ber of measurements would increase the variance of g, i.e., decrease the 
accuracy of the trunk estimates. It appears that an optimum number of 
measurements could be determined by minimizing a function of the 
form 

e(N) = 3C Var [§(N)]  CN,  (30) 

where CN is the cost of taking and processing N measurements, eN) 
is the estimate of s based on N measurements, and 3C is a cost associ-
ated with inaccurate trunk estimates. The precise form of the function 
might require modification. However, the basic idea is to trade off an 
increase in the accuracy of the provisioning process due to more ac-
curate trunk estimates (as N increases) against a corresponding in-
crease in cost. 
It appears that one can obtain an approximation for Var [g(N)] 

using an extension of the ideas presented in Sections II and III in order 
to account for the effects of day-to-day variation in the offered loads. 
However, a realistic model to justify (30) or to obtain 3C and CN will 
require further study. 

APPENDIX 

We prove here the theorem stated in Section 3.3. We shall need the 
following lemma. 

Lemma: For the model described in the text, let Y(t) be the number of busy 
servers at time t, t = 0 be a stationary point, and Y(0) = i. Now let Y „ 
be the number of busy servers found by the nth arrival and t, be the time of 
the nth arrival. For n = I, 2, • • • , and r = 0, I, • • • , c, define 

(s) = E (Y ') Y(0) = i} ,  (31) 

and 

= É A. 
Then we have 

r(s) [cT(') / AC) c ,Cq)] 
.fr( c.\   \  1  i,(s - gyi 

fr̀ r  3 ) C i(s) L  j)  4)(8 ± ji2) 

—Velo(c3)c*1[,+,(;)c,11(s):((88,".1} 

(32) 

(33) 
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where 

and 

yb(s  ig)  
Ci(s) = IT 

i=0 1 - 0(8 + 1Y) 

C_1(s) = 1, 

cb(s) = L c° e-"dF(t), 

j= 0, 1, 2, • • • , 

i(s) =f  0 e—"dP(t) = o e—I'[1 — F(t)]dt 

= L1 — OW]. 

The proof below is essentially the same as the proof of Lemma 1 of Ref. 
9, modified to account for the stationary origin. For n = 1, 2, • • • ,we 
have 

E le-",=-Fi ( 17- '1) Y. = j, t.+1 -  = X} 
1' 

-(R-1-r»)x 

+ 1) Eie-""I Yn = jh 

c)Eic" «. = cl 
r 

for  j< c, 

for j = C, 

because under the given conditions Y. has a binomial distribution 
with parameters j + 1 (for j = 0, 1, • • • , c - 1) or c (for j = c) and 

If we remove the condition t.+1 -t, = x, that is, multiply by 
dP ft.+1  - t,,  xl and integrate over all x, we obtain 

E le-et,.-1-1 = j}- = 0(s ± rg) (i + 1) „ =  

for j = 0, 1, • • • , e - 1 and 

E ie-8t.+1  Yn+1 =  Efe-ii.IY. = cl. 

If we multiply the corresponding equations by P{ Y. = ji and add 
them for j = 0, 1, • • • , c, then we get 

Air+"(8) = tii(s  [A>(s) + A e,9-1(s) -  r c ) A )],  (34) 
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for r = 1, 2, • • • , c and 

A)(8) = cie(s)Eck(sn'l• 

Since Y(0) = i and t = 0 is a stationary point, we have 

Ag)(s) =  g,(s  rm). 

Forming the sum (32) we get 

Pir(s) —  )(8  + rit) 

= 0(8 + rra) [ W  — (r _1)  , 

or 

4)(80i's Z  (  )rii)] [G) '4:(ss rr'22 = [1  ) 
—  r 1) bic(s)] • 

Dividing both sides of this equation by Cr(s) we get 

ri.t) f c 
Oir(s) _  cle(s  rih)  r —  eicksj  
Cr(s)  C?-1(8)  

Adding these equations over r, r — 1, r — 2, •• • , 1 we obtain 

—  +  i'4)  1 co(s) A G — 1) C1(8) c , 1 c,(8) .7_, 3) 4)(s + 34) Ci—i(s) 

(35) 

i = 1,2, • • • ,c. (36) 
Setting r = c in (36) we get 

ifricts)  =  yr)(s  jiÀ)  1  /  c\  1  
; 45(s + jet) C1-1(8)/  fZi)  j  Ci(S)  (37) 

Substituting (37) into (36) we obtain iki,.(s) for r = 1, 2, • • • , c. If 
r = 0, then 

ei0(8) =  

gr/(3)   

1 —  cgs) 

This completes the proof of the lemma. 
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We now prove the theorem stated in Section 3.3. Again, the proof is 
a slight modification of the proof of Theorem 3 in Chapter 4 of Ref. 6. 
Let us define the binomial moments 

(k 
Bir(t) =-- Ê  P,k(t),  r = 0, 1, • • • , c. 

r  r 

From the definition it follows that 

Pk(t) = Ê (-1)r-k kr .13 ir(1),  (38) 

so that setting 

13„.(s) = f e-ater(t)dt 

and forming the Laplace transform of (38), we get eq. (25) of the 
theorem. It remains to determine  
Let Y(t) be the number of busy servers at time t and let t = 0 be 

a stationary point. The times between those successive arrivals which 
find j servers busy are independent and identically distributed ran-
dom variables. Hence, the sequence of epochs immediately preceding 
those arrivals which find j servers busy constitutes a renewal process. 
If Y(0) = i, we will denote the renewal function of such an imbedded 
renewal process by M„(t). 
It may be helpful to recall that M O) is the expected number of 

those calls which arrive in the time interval (0, t] and find exactly j 
servers busy, given that initially there are i servers busy. Hence, we 
can write 

M=J(I) =  iP{t.  t, Y. = il Y(0) = i), (39) 

where t. and Y. have the same meaning as in the statement of the 
lemma. 
If no calls arrive in (0, t], then Y(t) has the binomial distribution 

with parameters i and e, and B1(t) is given by 

e-"[1 —  
) (  

where 

P(t) = X fo [1 — F(x)]clx. 

If one or more calls arrive in (0, t], let the last call's arrival epoch be 
u and at that instant let the number of busy servers be j. Now Y(t) has 



TRAFFIC-MEASUREMENT ERRORS  989 

the binomial distribution with parameters j  1 (if j = 0, 1, 
e — 1) or e (if j = e) and e-00- "). Thus, together we have 

e-r0T1 — P(t)] 

+r 1) ft e-"(̀—) E1 — F(t — u)idM ii(u) 

(er)  e-r»('-'0[1 — F(t — u)]dl I ic(u).  (40) 

If we introduce the Laplace-Stieltjes transform 

ij(s) =f o 
then from (40) we have 

= 1 — ck(s  ri.4) \ 1 _ 93(8 -I- ru)  
S,r(s)  (s  rei)  L  1 — 0(s ru) 

(i 1)g,)(8) + (re) u,c,(8)1 

From (39) we have 

gii(8) =  P Y. =  = j, Y(0) = ij 

and hence by (31) and (32) we get 

\ 
jr  
(jr.) m„(8) =  E te-"' r ( Y. ) Y(0) = 

• • • , 

(41) 

= 

Thus, fl,,.(s) can be written in the following form 

_ 1 — 0,(s + rg) r \ 1 _ ri.4) ri 
+ ri.i  1 —  rg)  Yt  1/4 

r e 1)  (8)] • 

If we take relation (35) into consideration, then this formula can be 
simplified to 

1 — o(s -F rg) i  1  r  f(e  ry) 1 
i3(s) + rg)  (s  rg) ' \r  (s  reh) L  (b(s + rp) 
This completes the proof of the theorem. 
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Switching Networks of 
Planar Shifting Arrays 
By R. S. KRUPP and L. A. TOMKO 

(Manuscript received June 2, 1972) 

An array of shift registers that may operate in two orthogonal directions 
can be called a planar shifting array. This article shows how two basic 
building blocks, fashioned from planar shifting arrays, may be inter-
connected to form a time-division switching network of arbitrary size. The 
characteristics of magnetic bubble and charge-coupled devices are com-
patible with the concept of planar arrays, and it is in these emerging 
technologies that switching networks of planar shifting arrays may become 
practical. 

I. INTRODUCTION 

Switching machines in the Bell System have grown in both number 
and capacity to meet the growing traffic demand. Early machines con-
sisted of a small amount of distributed logic embodied in electrome-
chanical devices but, as technology has permitted, the machines have 
evolved into largely solid state systems with central processor control. 
The environment in which switching machines must operate has also 
changed from a relatively small collection of analog voice grade circuits 
to an overwhelming number of circuits of various bandwidths with an 
increasing proportion of digital facilities. It is the purpose of this paper 
to look at a possible future realization of one portion of a switching 
machine that might have advantages in meeting future requirements 
in a largely digital environment. 
We may consider that a switching machine consists of three major 

subdivisions. One is a switching network, which makes cross comiec-
tions for each call. A controller, used to direct the operation of the 
network, is another. Finally, some interface is needed between the 
network, the controller, and external circuits. The subject of this paper 
is a switching network, one that may reduce the complexity of the tasks 
of the other two subdivisions of a switching machine as well as have 
advantages of its own in conjunction with some emerging technologies. 

991 
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Most switching networks in the past have been "space-division" net-
works; that is, a spatially distinct path is assigned to each of the many 
simultaneous calls that might pass through the network. The present 
paper, however, refers to a "time-division" network, in which inter-
leaved samples of several simultaneous calls may share parts of the 
same spatial path. A potential savings of equipment is implied by this 
time-sharing process, and its merits have already resulted in plans for 
a large-scale digital electronic switching machine with some time shar-
ing in the switching network (the No. 4 ESS, now under development 

in Bell Laboratories).' 
The possibility of constructing a somewhat different time-division 

digital switching network from two basic building blocks is explored in 
this paper. The two blocks, or subsystems, may be realized in the form 
of planar shifting arrays which are basically shift registers that can 
perform shifting operations in two orthogonal directions. These capa-
bilities seem to be consistent with those of the emerging technologies 
of magnetic bubble and charge-coupled devices,2,8  which do shift data 

on a plane. Although these types of devices may be particularly well 
suited for use as planar shifting arrays, the concepts presented below 
are not restricted to implementation by any particular type of device. 
The first building block, a time-slot interchanger, is the only actual 

switching element in the system. The other type of block, a mass 
serial-to-parallel converter, performs a time-space mapping and thereby 
acts as the interconnection links between successive stages of time-slot 
interchangers. Networks of arbitrary size and blocking probability can 
be fashioned from these two building blocks. 
In the sections that follow, the basic interconnections of time-slot 

interchangers and mass serial-to-parallel converters necessary to per-
form multistage switching functions are explained, and some logical 
details of the two building blocks are presented. Although the network 
is only a part of a total switching machine, the concepts presented here 
may simplify the interface with digital external circuits and may help 
reduce the burden on the central control processor. 

II. NETWORK ARCHITECTURE 

In this section, multistage switching network structures are described 
that use pure time-division techniques only. Such a network may be 
diagrammed using two types of functional blocks, as in Figure 1. 
Each block labelled TSI denotes one time-slot interchanger—a 

familiar subsystem in the time-division switching art. The attached 
notation N X M indicates that the TSI rearranges words from an 
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Fig. 1—Three-stage switching network. 

OUT, 

N-slot input frame into an M-slot output frame. The TSI is the only 
actual switching element in the network. It corresponds to an N X M 
array of crosspoints in an analogous space-division network. 
Each block labelled S—P denotes a mass serial-to-parallel converter. 

The S—P does not perform switching functions, but corresponds to the 
links between crosspoint stages in a multistage space-division network. 
Its basic function is that of interchanging the space and time co-
ordinates of each word it handles. As inputs to one S—P, the figure 
shows L time-division multiplexed lines, each carrying M time slots 
per frame. The output is M lines with L slots per frame. An input word 
in slot m of line 4 will always be routed by the S—P to slot 4 of output 
line m, where 1 5 m 5 M and 1 5 4 5 L. Thus, the mth words of all 
L input frames are combined to form a single output frame on line m, 
and conversely the input frame on line 4 gets distributed into the lth 
slots of all the M output frames. 
A three-stage switching network is diagrammed in Figure 1 using the 

two functional blocks. To illustrate its operation, suppose that a word 
in slot n of input line 4 must be sent to time slot y on output line X, 
where 1 5 n,v 5 N and 1 5 4,X 5 L. First an intermediate time slot 
m is assigned for some 1 5 m 5 M, which permits the middle stage to 
complete a connection. Thereafter: 

(i) The 4h input TSI switches word n to slot m. 
(ii) The first S—P places this word in slot 4 on line m. 
(iii) The mth intermediate TSI switches word 4 to slot X. 
(iv) The second S—P places the word in slot m on line X. 
(v) The Xth output TSI switches word m to slot v, and the task is 
finished. 

The portion of the figure surrounded by a dashed line performs the 
same function as the time-shared space-division switch (TSSDS) stages 
of the No. 4 ESS.' That is, all words that enter the first S—P in time 
slot m will exit the second S—P in the same slot. In their passage through 
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IN OUT 

Fig. 2—Spiderweb graph for Figure 1. 

the S—P's and the mth intermediate TSI, however, these words may be 
spatially rearranged to different output lines. A direct realization of the 
same TSSDS function using magnetic bubbles has been suggested by 
P. I. Bonyhard.' 
Figure 2 is the probability linear graph5 (also called spiderweb or 

Lee graph) of all paths for one call in Figure 1. It is the standard Lee 
graph for a three-stage network and yields the usual blocking formulas. 
In particular, if M  N — 1 and we assume independent occupancy p 
of all input and output time slots, then a modification of C. Y. Lee's 
argument' yields the mismatch blocking probability first given by M. 
Karnaugh" in 1954: 

(p2)m-N+I D _ (1 _... p)212N-Af-2(N _ 1) !2 

M i (2N — M — 2)1.  (1) 

On the other hand, if M 5 N — 1 and we assume all intermediate 
time slots m have independent occupancy p, a more appropriate esti-
mate is: 

PB = [1 — (1 — P)2]m.  (2) 

When M  2N — lin Figure 1, PB vanishes and the network is non-
blocking.' Figure 3 illustrates such a case for M = 2N. A part of the 
time-space interchange is accomplished, not by the S—P, but by split-
ting each input and output TSI into two separate TSI's. Now each 
TSI in the network handles input and output frames of equal size. This 
might prove convenient for certain applications or implementations. 
Note that Figure 3 may also be interpreted as a pair of three-stage net-
works whose inputs and outputs are tied in parallel. A third, inactive, 
network could be placed in parallel as well, and held in reserve against 
failure of one of the first two. 
There is an unavoidable signal delay of at least one frame for each 

stage of the TSI's. This could contribute to the cost of echo suppression 
on long toll circuits; however, the duration of the frame itself may be 
shortened within the switch to mitigate this effect. 
The three-stage network of Figure 1 has a capacity of C = LN 

terminations. Such networks may be nested to achieve a higher switch-
ing capacity. A five-stage example having capacity C = JLN is dia-
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Fig. 3—Nonblocking three-stage network. 
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grammed in Figure 4. Shown are M three-stage TSSDS sections 
within dashed lines, as well as one large overall TSSDS which re-
arranges JL words spatially in each of M time slots. Blocking probabili-
ties for the five-stage nested network are obtained by arguments simi-
lar to those for eqs. (1) and (2), using the spiderweb graph in Figure 4. 
A different kind of five-stage network organization is shown in Figure 

5. No section of this network performs the TSSDS function. In fact, 
a word entering its first S—P in time slot m may exit its last S—P in any 
time slot µ for 1 5 m,m  M, depending upon the path it follows 
through the network. The number /1/2 of possible pairs (m, 4) yields 
the same number of possible paths for routing a message, as the spider-
web graph in Figure 5 shows. At full occupancy, this graph reduces to 

N x M L x K 

Fig. 4—Nested five-stage network. 
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Fig. 5--Cross-connected five-stage network. 

Figure 2, but with M' = (M — N -I- 1)2 center-stage switches, so that 
(2) applies with link occupancies p = N(L — l)/M° to yield the fol-
lowing blocking probability expression: 

PB = [1 (1 p )2]( M—N+1)2. (3) 

Thus, parameters L = N = 48 and M = 60 yield PB < Dr" at any 
occupancy level; essentially, this is a nonblocking network. The same 
parameters in a nested arrangement produce a much higher degree of 
blocking, PB > 0.027 at full occupancy, based on (1) for the case p = 1. 
To illustrate operation of the network in Figure 5, suppose that a 

word in time slot n on line € of input block j must be transmitted to slot 

y on line X of output block  for 1 s n,y S N and 1 S  L with 
1 S j,r s J. First, intermediate time slots m and g must be chosen 
for some 1 S m,4 M which permits completion of the connection. 
Then TSI's in the five stages perform the following switching opera-
tions consecutively to complete the task, as indicated on Figure 5: 

(i) Switch word n into slot m 
(ii) Switch word € into slot g 
(iii) Switch word j into slot P 
(iv) Switch word m into slot X 
(y) Switch word  into slot y 

(Stage 1). 
(Stage 2). 
(Stage 3). 
(Stage 4). 
(Stage 5). 

The networks of Figures 4 and 5 each have a center section consisting 
of the third-stage TSI's and the two rows of S—P's to which they 
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attach. A total of J independent input and output blocks of LN termi-
nations each connect to the center. Each pair of blocks consists of an 
input S—P, an output S—P, and their attached TSI's in the first, second, 
fourth, and fifth stages. This structure immediately suggests an ap-
propriate strategy for growing the network capacity in modules of LN 
terminations. 

III. NETWORK PATH SEARCH 

Section II mentioned the need to choose one or two intermediate 
time slots m before setting up a message path through the network. This 
amounts to specifying which of the many possible paths in the spider-
web graph is currently free and will be used. The decision might be 
made by a central control processor after consulting its memory records 
of the current status of the network. In this section, an alternate pro-
cedure is described by which some simple operations within the network 
itself can identify suitable paths for routing a new call. A possible ad-
vantage is reduced demands upon processor time and memory for call 
processing. 
To provide necessary information about network status, a "busy-

bit" is used. This is a bit in each word which travels through the net-
work with that word and serves to indicate whether or not the word is 
part of a call currently in progress. The busy-bit may occur in every 
word of a message or less frequently, perhaps every tenth or hundredth 
frame. For concreteness, assume the busy-bit is "one" for a call in 
progress and "zero" otherwise. 
To determine occupancy of a time slot on some line in the network, 

we merely consult the busy-bit in that slot. For example, in routing a 
word from input line 4 of Figure 1 to output line X, an intermediate time 
slot m was chosen that was vacant both at the output of the 4th first-
stage TSI and at the input of the Ath third-stage TSI. Such m may be 
found by comparing the two corresponding streams of busy-bits. This 
is illustrated by Figure 6a for the case = X = 1. Output from the first 
input TSI and input to the first output TSI are sent to a NOR gate. 
When simultaneous zeroes are found in the busy-bit positions of words 
m, an output pulse is produced by the gate identifying an available 
path through the network by its timing. 
Other means of sampling and matching busy-bits are possible. For 

instance, the stream of busy-bits from the lth input TSI will exit the 
first S—P simultaneously in word time 4, while the busy-bits entering 
the second S—P at word time X are those for the Xth output TSI. 
Hence, timed sampling pulses to the two S—P's can select the two de-
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Fig. 6a—Path search in three-stage network. 
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sired strings of busy-bits rather than use spatial selection of an input 
and output TSI. Such an option might serve to reduce the amount of 
control and signal wiring associated with the network. 
Once an intermediate time slot m is chosen, a central processor could 

issue the necessary orders to the first-, second-, and third-stage TSI's 
to establish the path. But again some additional logical apparatus in 
the network could perform the same task. The significance of this ob-
servation is that the dependence of the network upon external inter-
vention may be reduced. Indeed, for each new message, the principal 
external control required would be a specification of which input and 
output terminations must be connected. Such a structure might lend 
itself, for example, to applications in which all processor functions are 
performed by a remote computer that sends its instructions to the net-
work over a data link. 
The path search procedure in the nested five-stage network of Figure 

4 would consist of two nested three-stage path searches. That is, the 
busy-bit streams of the input and output TSI's are compared, as above, 
to determine which one m of the M. intermediate three-stage networks 
will carry the message. Then the mth three-stage network is searched 
for some intermediate time slot 1 k  K which will complete the 
connection. 
A different search procedure is required for the cross-connected net-

work of Figure 5, since all /1/2 paths in the spiderweb graph must be 
tested. This involves sorting the M busy-bit streams leaving the second-
stage TSI's of the input block j by using them as inputs to an S—P with 
M output lines. The S—P outputs are then compared by a set of OR 
gates to the M busy-bit streams entering the fourth-stage TSI's of the 
output block I'. A "zero" at word time m from gate µ identifies a pos-
sible path in Figure 6b. Note that, if time slot m from the first-stage 
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TSI or time slot ii. into the fifth-stage TSI is busy, then path (m, la) 
cannot be used. To eliminate such possibilities, all the OR gates should 
be pulsed during each busy first-stage slot m, and all gates iL correspond-
ing to busy fifth-stage slots should be pulsed for the entire frame, as 
is accomplished in Figure 6b by feeding parallel "ones" to the S—P. 
This last path search requires only one pass instead of two nested steps. 

IV. PLANAR SHIFTING ARRAYS 

To understand the role of planar array devices in the realization of 
the functions described above, it is helpful to study the building blocks 
at the logical level, with a notation suggestive of the two-dimensional 
nature of the devices. The device technologies mentioned in Section I 
differ considerably in their physical principles. Nevertheless, certain 
common features of their operation may be abstracted to aid in discus-
sing their use for switching applications. To this end, a "planar shifting 
array" (PSA) notation will be introduced, exemplified by Figure 7. 
Circles 0 represent fixed word-storage locations in one-dimensional or 
two-dimensional shift registers. Diamonds 0 stand for shifting ap-
paratus, which can move the contents of each circle to the next in line, 
under control of clock pulses A and B. Gates ll) allow transfer of 
individual words between the adjacent circles under control of switch-
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L4J  L6J 
-°̀2-0 00 00 09 00 00 

Fig. 7--Switch elements for time-slot interchanger. 

ing signals n. The distinction between 0 and u  is one of function 
rather than physical structure. In this section, a word, rather than a bit, 

is the basic quantum of information. It is not necessary to specify 
whether this word is in a serial or parallel digital representation or some 
other form. 
A basic scheme for performing switching functions in a time-slot 

interchanger appears in Figure 7. Gates 1 to 6 allow transfer of input 
words from a frame stored in the upper shift register into output slots 
in a frame stored in the lower shift register. The input and output 
frames move, relative to one another, in the two adjacent shift registers, 
and the switching strategy is: For each input word a, wait until its des-
tined output slot fi lies directly underneath and then transfer through 
the appropriate gate. 
It is important to note a particular difficulty. If both the input and 

output frames are shifted simultaneously, then word a in the diagram 
will pass slot ,3 halfway between gates 3 and 4, so that it is not possible 
to transfer. This we will call the "half-word" problem. At least three 
kinds of solution can be suggested: 

(i) Alternate clock pulses A and B, so that only one frame shifts at 
a time. 

LBJ  LBJ  LBJ    
0 0 0 0 0 0  

Fig. 8—Switch elements for time-slot interchanger with buffer. 
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(ii) Omit one set of clock pulses, say A, so that one frame is held in 
stationary buffers. 

(iii) Let each circle contain only a half-word, so that two consecutive 
locations hold an entire word. Then it is never necessary to 
transfer between first and second half-word locations. 

A fourth solution, based on the technique of bubble expansion, has been 
found by P. I. Bonyhard.4 
The first solution above may be illustrated by Figure 7. The basic 

switching cycle would consist of the following four steps: 

(1) Diamonds <C> move the input words right one slot. 
(ii) Gates ID may transfer input words to output slots. 
(iii) Diamonds <> move the output words left one slot. 
(iv) Gates C7 may transfer input words to output slots. 

For an M-word frame, switching is completed in M cycles. Each shift 
register operates M times, and the M gates each have as many as 2M 
chances to operate in every frame. 
The second solution to the half-word problem is illustrated by Figure 

8. The diamonds < > read in an entire input frame, which is stored in 
buffers 0 by simultaneous operation of all gates  at the end of the 
input frame. Then the following two-step switching cycle: 

(1) diamonds <> move the output words left one slot, 
(ii) gates C7 may transfer words from buffers to output, 

is repeated 2M times, and the M gates each have M chances to operate 
in an M-word frame. This scheme has the additional advantage that 
the input and output clocks need not be synchronous. Each solution to 
the half-word problem has advantages with respect to particular 
hardware. 
Figure 9 uses the PSA notation to illustrate a simple scheme for 

implementing the S—P function. The S—P shown has L = 4 input lines, 
each carrying six-word frames, and M = 6 output lines, each with 
four time slots per frame. The diamonds <i>. operate to load an entire 
frame into the S—P from each input line. Then the diamonds <> oper-
ate to unload an entire frame from the S—P onto each output line. 
Loading and unloading may proceed at twice the external basic word 
rate so that the S—P empties in time to receive the next frame, or else 
an alternate S—P may handle the next frame while the first one is un-
loading. Other schemes permit the S—P to load and unload simulta-
neously. While the S—P is drawn as a distinct unit in preceding figures, 
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Fig. 9— Mass serial-to-parallel converter. 

only its function need be distinct. The S—P as a device may be broken 
up and its parts integrated onto the same chips as the various TSI's 
which it serves. Schemes to obviate the S—P completely using specific 
device properties have been proposed by W. F. Chow and P. I. 
Bonyhard.4 

V. MEMORY STRUCTURE 

In the switching schemes described above, each gate  J should 
operate at the same word times in each consecutive frame; it is natural 
to place it under the control of a recirculating local memory. This could 
consist of a shift register fabricated from the same materials as the 
switching elements and preferably integrated onto the same chips. 
Such an arrangement is diagrammed in Figure 10, using the PSA nota-
tion. The switching elements appear at the right. The rest of the dia-
gram is the local memory array to control these elements. Each shift 
register in the control memory moves its contents one word to the right 
under the action of clock pulse C whenever a pulse A or B occurs. A 
word in shift register n is read when it reaches the box ,r  , which is 
considered to generate a pulse n that operates gates C. . For example, 
the gating operations might be realized through repulsion between 
control bubbles and message bubbles. Gates 3 at the left start new 
words down the shift registers to accomplish recirculation of the local 
memory. 



SWITCHING NET WORKS OF PLANAR ARRAYS  1003 

The size of the local memory array depends on the number of words 
Q in each register and the number R of such registers, which is the same 
as the number of switching gates. Although the exact size depends on 
the particular solution chosen for the half-word problem presented 
above, we can conclude in each case that the local memory in a TSI 
grows quadratically in frame size (as QR), while the number of switch-
ing elements grows only linearly (as R). For moderate-size frames (say, 
20 words or more), each TSI becomes a large recirculating memory 
plane with a small quantity of logic elements at the edges. A word in the 
control memory corresponds most closely to a crosspoint in a space-
division switch, since the number of crosspoints also grows as the square 
of the number of circuits, and each crosspoint stores just one bit of 
information. 

VI. CONTROL INSERTION AND ERASURE 

The switching operations of a TSI are fixed from frame to frame on 
a short time scale (say, thousands of frames); thus, the contents of its 
local memory array are fixed. On some longer time scale, though, it is 
necessary to be able to change portions of local memory; for instance, 
in response to external signals emanating from a central control 
processor. 
Specifically, one requires the capability to address single word posi-

tions in the local memory in order to close or open a "crosspoint" by 
writing or erasing a bit. In the case of erasure, it would be sufficient to 
simultaneously erase all memory locations affecting a given input 
word, or alternatively a given output slot. This is due to the following 
two properties of the TSI: 

(A) Each input word is switched into one output slot at most. 
(B) Each output slot receives at most one input word. 

tOUT 

O CI O 

0  0 

0  0  < > 0  < > 0  0  < > 0  (1 0 

Fig. 10—Recirculating memory array for TSI gates. 
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Hence, one can provide for erasure of a control word without knowing 
exactly where it is in the local memory by erasing a whole class of 
words. 
The fact that local memory recirculates will greatly simplify the 

problem of addressing specific locations, since this allows access to any 
location from the edge of the array. Indeed, one efficient and convenient 
scheme would be to build an analog of the switching elements and oper-
ate it "backwards" to insert control bits into the local memory. Inser-
tion could be directed by two external control pulses whose timing 
would specify an input word and the output slot for which it is in-
tended. Such an approach is illustrated in Figure 11, in which switch-
ing elements are deleted to concentrate attention on the memory plane. 
Control insertion elements appear at the right-hand side. A bit is in-
serted in order to control gate n at word time m as follows: 

(i) At the start of a frame, CD gates a "one" into the vertical 
shift register, where it propagates downward. 

(ii) After n of the A clock pulses, gates a operate to place the 
"one" in buffer Q  at the right of the nth recirculating shift 
register in local memory. 

(iii) In the next frame, gates cl operate with the mth clock pulse 
C, to place the "one" in word m of memory line n. This is indi-
cated formally by reading the "one" at E, but the actual 
details of bit injection will depend on the type of hardware. 

It is clear now that any word location in the local memory may be 
addressed employing a pair of time-coded pulses I and J. The scheme 
shown would be particularly appropriate to the case of buffered input, 
since n then becomes the number of the input word to be switched. 

oD,O3o<>0<> 

10301Do<>o<> 

cD,D,O o<>0<>•• 

•o<>11100C10 

•o<>111G000 

• o<>E2OCI0 

Fig. 11—Addressing and erasure schemes for the TSI local memory. 
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Indeed, the nth shift register contains only those locations that can 
affect input word n. By property (A) above, at most one location on this 
memory line has nonzero contents. It is sufficient now to erase the en-
tire shift register, by interrupting recirculation, for example, before 
a new control word is inserted. 
The left side of Figure 11 shows a simple scheme for erasure in 

the case of buffered input, which also guarantees that at most one 
nonzero word is resident in each memory line. Once each frame, 
the buffers 0 at the left are loaded with "ones." Gates  ID then 
start these "ones" down the various shift registers at the appropriate 
times to accomplish recirculation. Clearly, at most one nonzero word 
can circulate. To erase memory line n, the "one" is simply deleted in 
its recirculation buffer for a single frame. 
A single time-coded pulse will suffice to specify erasure of any word 

in the local memory above, if the buffers are loaded serially. Just such 
an arrangement appears at the left side. Gate C) enters "ones" in 
the vertical shift register at each input word time, and these are loaded 
into the buffers by gates  at the start of each frame. By deleting 
the B pulse at the nth word-time, a "zero" is sent to the buffer for the 
nth memory line, erasing it and opening any "crosspoint" which might 
affect the nth input word. The deletion of pulse B could coincide with 
pulse /, which routes a new control word to memory line n. Then the 
pair of external signals f and J would accomplish erasure together with 
address insertion. Examples at device level of this procedure have been 
given by P. I. Bonyhard and W. F. Chow.4 

VIL BUSY-BITS FOR PATH TAKE-DO WN 

The preceding section considered two schemes for erasure in the local 
memory: 

(i) A direct instruction from the central control processor. 
(ii) Automatic erasure when a new control word is inserted. 

A third scheme is to provide for automatic erasure when the message 
that is being switched terminates. This might be accomplished through 
use of the busy-bits introduced previously. Recirculation of a word in 
local memory would be made contingent on the presence of a "one" in 
the busy-bit position of the particular input word which that control 
word switches. When the message terminates, the path along which it 
was routed through the switch is taken down simply by sending through 
one word with a "zero" busy-bit. This function is analogous to that of 
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the sleeve-lead in electromechanical switches and might be considered 
an "electronic sleeve-lead" application of busy-bits. 
This strategy of making recirculation in the local memory contingent 

on busy-bits can be easily implemented in Figure 11. It is merely neces-
sary to read the busy-bit stream for the input frame into the left-hand 
shift register and load it into the recirculation buffers once each frame. 
Now each busy-bit will prime the recirculation of the memory register 
associated with the word of that busy-bit. 

VIII. CONCLUSION 

The possibility of constructing a time-division switching network 
using two building blocks of planar arrays was discussed in this paper. 
The compatibility of planar arrays with the emerging technologies of 
magnetic bubble, charge-coupled, and bucket-brigade devices" may 
lead to application of these concepts in the construction of relatively 
inexpensive large-capacity switching machines. 
The need for external connections to a network composed of these 

building blocks can be minimized by including path search and path 
maintenance functions with the blocks. As a result, a relatively small 
amount of information must be exchanged between the network and 
the supervisory processor, and some of the processing burden on the 
controller is shared by the network itself. 
Some examples of compatible network architecture have been given, 

although no specific design is proposed. The process of switching is ac-
complished by time-slot interchangers within the network rather than 
a space-division crosspoint array, but the task performed by some of 
the described subnetworks, when viewed from their external ports, is 
the same as a time-shared space-division switch. 
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This paper studies charge distribution in buried-channel charge-
coupled devices. Detailed development of a one-dimensional electrostatic 
model is presented and a numerical solution of the resulting nonlinear po-
tential equations is described. Graphical results show the charge-filling 
mechanism and the relationship between the oxide-semiconductor interface 
potential and total free positive charge. 

L INTRODUCTION 

This paper describes a numerical determination of the distribution 
of charge in a one-dimensional model of a buried-channel charge-
coupled device (CCD). 1 Several calculations have recently been made 
of the static potential in CCD's in the absence of stored charge.2-4  In 
addition, the motion of the stored charge under dynamic conditions 
has been studied by means of essentially one-dimensional models which 
do not involve a true knowledge of the distribution of stored charge or 
the charge-carrying capacity of the CCD.2.5 However, so far it has not 
been possible to calculate even the static stored-charge distribution in 
a two-dimensional model of a buried-channel CCD, much less to follow 
the motion of this charge under dynamic conditions. In this paper a 
start is made on the problem by calculating the static distribution of 
stored charge in a one-dimensional model of a buried-channel CCD. 
The resulting information on the charge distribution is of interest in 
itself. However, an additional important objective has been to find 
numerical techniques which can be extended to the two-dimensional 
problem. 
The paper is divided into three parts. Section I treats the physics of 

the model and Section III gives numerical results. Section II deals 
briefly with the numerical techniques used and it may be omitted by 
the reader without loss of continuity. 
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...SILICON DIOXIDE 

METAL  p - TYPE SILICON  n - YYPE SILICON  ,  
h,  x 

Fig. 1—Buried-channel device struettive: 
• •  I  • 

The buried-channel device ,has' a layered ,stiiicWre ,which wWla.n 
modeled in one dimension as follows (l'ig.1.):  • :. 

.  • •  .• 
O   x  h1: silicon dioxide (SiO2) with relatile dielectric cdnetánt 

= 4. (E„ is capácitiVity of free spaée.). 
h1 x  h2: p-type silicon with acceptor nitnriber derety /V:i(x) 

and relative dielectric constant E2/E9 =.12. - 
h2  x  œ: n-type silicon uniformly doped With 'constant ,.ddnor 

number density Nb end rdielectrie .conEittalt E3 

The point x = 0 is a perfectly conducting bounda‘y lied at a-potntift1 
V0. The potentials 4/1(x), .4.2(), and 02(2), 1n'tle.,S102; p7t2inii and 
n-type regions, respectively, satisfy the' one-dirneeientil ÉOidt6n 

• ,•• 
equation, 

d2(x) —  pi(x)/vi,-  â = 1, 2, 3,   ei • .  • 
dxa 

where the pi(x), the lineal charge densities, ate nottlineiti itiretiefi, of 
the potentials ciu(x).  . . - 
The functional forms of the pi(x) are deterrtiined by the esSuinptions: 
(i) The SiO2 is a Perfect insulator. 
(ii) The generation and recombination ri,t,3é for hélas arid iiiée.rénii 

are zero.  • 
(iii) Hole and electron currents aie zero at the time of obieriktion. 
(iv) The flat-band voltage is zero. 
(y) The injected free holes and electrons are separately in 
equilibrium.  •  1 - 

Conditions (i) through (y) define a stem clevice fo• r ihich7the pi(a) 

pi(
PPe  r 4-.7.P(Tx1(e) %(411: (2) 
x) =-- 0, 

where n(x) and p(x) áre the number densities df free  And 
holes, respectively. The most general elejeeàt3ibill4r iF(7),113 

n(x) = f á(EIF.keciÉe  (35 
/i.(a) 
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where g(E) is the density of states, F e(E) is the Fermi distribution for 
electrons, and E c(x) is the conduction band edge. Substitution for g(E) 
and F „(E) yields 

oe (E — Ec(x))idE   
n(x) = eci.EG(x) 1  exp ((E — E f)/kT)  (4) 

This specific choice for the density of states corresponds to the simplest 
possible band structure. E f is the equilibrium Fermi level for electrons 
and N: is the constant 

N: = 47r(2m./112)1,  (5) 

where mc is the effective mass of an electron in silicon and h is Planck's 
constant.' 
A similar expression for the distribution of holes is 

Bo (z) 

p(x) =f g(E)F h(E)dE, (6) 

where Fh(E) = 1 — F 0(E); substitution for g(E) and F h(e) yields 

p(x) = N: f E: (z)  (E ,,(x) — E)idE   
(7) 1 -F exp ((Eft, — E)/kT) 

E 0(x) is the valence band edge and E f h is defined as the pseudo-Fermi 
level' for the holes. N: is the constant given by 

N: =  (8) 

where m. is the effective hole mass in silicon.' E0(x) and E v(x) are func-
tions of ei(x) given by: 

E c(x) = E: — qcps(x),  (9) 

E „(x) = E: — ql),(x).  (10) 

E: and E: are the valence and conduction band edges at x = co , and 
q is the magnitude of an electronic charge. p(x) and n(x) are functions 
of the yet undetermined constants E f  and E f h. Later they will appear 
only in the forms 

= (E:  E f)/kT, 

= (E: — E fh)/kT. 

Since only difference terms appear, no energy reference need be estab-
lished for the model. n will be determined from the electron charge 
neutrality condition at x = co. 77' is fixed by the total amount of free 
positive charge Q+ = fh," p(x)dx in the device. In reality, determina-
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tion of n' is difficult, so the alternative scheme of choosing n' and cal-
culating the resulting Q+ is employed. Substituting eqs. (2), (4), and (7) 
into eq. (1) results in the system of differential equations which charac-
terize the device described above. In the appendix these equations are 
reduced in a straightforward manner by using the Boltzman approxi-
mation; justification for its use is given. The resulting equations which 
will be solved are (' denotes d/dy): 

= 0, y hi/X,  (11) 

= 0. —  

ip3”(y) = ewv) — 1 — (m./mc)lePa—ea(v), 

where 

hi/x y _4. h2/X,  (12) 

h2/X y co,  (13) 

= gekT, 

= x/X,   
X = •NikTe2/eND, 

N = N(kT)I, 

N, = N(kT)I, 

Eg =  the bandgap energy in kT's, 

= (E°, — E f)/kT is a constant dependent 
on doping levels, 

n' = (E°, — E fi.)/kT is a parameter depend-
ing on the pseudo-Fermi level, 

P. = n + n' — Eg, 
o. = NA/ND. 

m, and m. are the effective masses of holes and electrons in silicon; 
they are 1.08m0 and 0.59 m., respectively.' Equations (11), (12), and 
(13) satisfy boundary conditions 

V.  (14) 

and, consistent with eqs. (9) and (10), 

th( = 0.  (15) 

At y = hi/X and y = h2/X the continuity conditions are 

1111 1(h1/X)  Ite1(h1/X) 

e1ltel(h1/X) =  €21k2(h1/À) 

1P2(h 2/X ) =  11/3(h2/X) 

02(/12/X) =  ei (h2P 0 • 

(16) 

(17) 
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IL NUMERICAL SOLUTION 

The system of differential equations (11), (12), and (13) together 
with boundary equations (14), (15), (16), and (17) are solved numeri-
cally by the method of finite differences. 
For computational convenience the length of the device will be 

truncated from the whole half-line to the segment [0, L]; the distance 
L is chosen such that I #2(00) — ea) I and 14( cc) — ei(L) I are 
suitably small. [0, L] is partitioned by a mesh of N points and the 
solution at each point y, is denoted by e. The mesh lengths (distance 
between successive points) are (5., 15„, and 8„ in the oxide, p-region, and 
n-region, respectively, and are chosen such that yet, = hi/X and 

= h2/X. The boundaries are #0= #,(o) = V. and 4,N =  
( co) = O. The subscripts on 1,/,(y) can now be dropped since the 

superscripts identify the solution point. The second derivative is ap-
proximated by the second difference 

elf/(2/) _ (0i-F1 _ 2ei + ,fri-1)/62 
do 

in each region; 8 is one of 5,, 8., or 82, as appropriate. Using this ap-
proximation to discretize eqs. (11), (12), and (13) results in the matrix 
equation 

= [P(Yi, ei)]  (18) 

which has rows generated by eq. (19); p(yi, gii) is defined in the three 
regions by the right-hand side of eq. (19). 

10,  
e+i _ 2,1,‘ + oi-1 = (a. _ (m./me)leP*-4")(5,, N1 < i < N2,  (19) 

(se — 1 — (m./m0)leP.-44 )8n, i > N2. 

Rows corresponding to the solutions at the boundary points ?AT, and 
YI*12 are obtained from eqs. (16) and (17) where the first derivative is 
approximated by 

(+11'(Y) — me(y ± (5) 
± 91,e(y ± 28) — 21,e(y ± 38))/68,  (20) 

and 8 is the appropriate mesh size for each region (the positive or for-
ward derivative uses points to the left of y). Equation (20) results from 
simultaneous solution of the Taylor expansions for (y ± 8), '(y ± 249, 
and 7,14y ± 38) with terms O(5) and higher dropped; the result is ac-
curate to 0(8a) which is consistent with the second difference approxi-
mation to d2Wdy2. In the oxide layer, a first-difference approximation 

ex) = cei — ei—wes.  (21) 
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is adequate since the solution in this region is linear. The boundary 

equations are: 

for I = NI, 

—(66,,e1/80E2»NI-1 -I- (11 + 646i/450E24Ni 
_ 184,Ni.+1  9,frivi+2 _ 24,N1+3 = 0; (22) 

for i = N2, 

(-11 t5p)(211/N2-3  9N2-2 18N2-1 )  111,1/N2(1/  ± 1/62,) 

— (1/.50)(181,LN2+1 — 91,1/e2+2 2e/11 +2) = 0. (23) 

The matrix A in eq. (18) is tridiagonal except for the Nith and N2th rows. 
For each choice of the parameter Po, the Pi of eq. (18) are solved for 

iteratively using a combination of successive under- and over-relaxa-

tion1° (SOR) on the equation 

[1,0] = [11 ]-1 5(Y., 4,)  (24) 

The procedure described here differs slightly from the usual SOR in 
that the transformed equation (24) is solved instead of eq. (18). For 
the ith row of eq. (24), the j  ith estimate of 1//s is given as 

44+1 = 1,14  c,(ei - e.1),  (25) 

where to is a relaxation parameter with values 0 < Cal  2.  is a New-
ton's method solution of eq. (26), a transcendental equation in  result-
ing from the ith row of eq. (24) with the remaining N — 2 variables 4,0 
held constant. The coefficients  in eq. (26) are elements of A-1 . 

i-1  N-1 
— E aVP(Yk,1,14+1) — aVP(Yi,  — E a&ip(yk, 4,1) = 0.  (26) k-H-1 

Criteria for convergence of the process, as well as the choice of the 
value of (.3, is based on the residual r; defined at the jth iteration as 

N-1 
(27) 

It can be shown that if (18) were a linear system of equations and if 
were the true solution at yi then 

sup  kV — '/4+'J/  sup  C(w)ri+i,  (28) 
1 14, 1 1,1 

where C(co) is a constant dependent on the choice of co." For the opti-
mum value of co, C(w) is 0(N) while for values of ca only slightly different 
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from the optimum C(0) can be 0(N2). In the computations presented 
in the next section, N 5 100 so the iterative process was stopped when 
the residual terms were less than 10-8 ; this allowed margin for the fact 
that (18) is nonlinear. A discussion of the choice of w is necessarily even 
more heuristic. It was found that for a mesh of N = 50 points and large 
negative values of po corresponding to small positive charge densities 
(i.e., eP.-e << 1 for all i), the iterative scheme was convergent for any 
choice of w and any initial estimate of the WI . For less-negative values 
of po and the corresponding larger values of  the scheme was con-
vergent for over-relaxation (co > 1) only if r; < 10 for all j (approxi-
mate figure); but using under-relaxation the process was well behaved 
with ris as great as 104. It should be pointed out that due to the ex-
ponential nature of the right-hand side of eq. (19) even a very good initial 
estimate typically resulted in r1> 108 when over-relaxation was ap-
plied. Although the SOR process described above may well be stable's 
regardless of r; values, the magnitude of the exponential terms in (19) 
limits machine computations. The combination of under- and over-, 
relaxation detailed below eliminates this problem. 
Good initial estimates for the { V.ii} were obtained by choosing he p. 

'values with equal spacing 4; the first po value being the small positive 
charge-density case described above. With ap < 10 a linear estimate 
of the f 0i} for successive values of po was adequate. The iterations were 
under-telaxed (w = 0.5) until the residual term was less than 10; suc-
cessive iterations were over-relaxed so as to increase the rate of con-
vergence. The choice of w for the SOR steps was not critical; values in 
the range 1 < w 5 1.5 had approximately the same rate of conver-
gence. Values above 1.5 did not converge for all values of po. 
Total positive charge in the device for a given value of po is calcu-

lated by 

Q+  j 
IIN,  L ePo- 41(W)dy -I- f p ePo— el(Y)dy. (29) . ymi  

m, 

Using a piecewise linear approximation for e(y) on Eyk, yk+1], 

ek + ((y — yk)/5)(ek-Ei — ek),  (30) 

and summing the integrals over each such interval in [y N„ L] gives the 
approximation 

Q+ _ e 9/(e+1 ..-

N-1 

+ ô,E e'°(C"'" — e-e '+1) / (IV" — e),  (31) 



1016 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1973 

which can be modified to include the case  =  Dimensional 
charge in coulombs can be calculated from Q+ by Q = Q+NDX. 
The operational scheme may be summarized as follows: 

(i) Choose a value of po corresponding to small total charge Q+ 
(p0 —' — oo in eq. (24)  Q+ --> 0), 

(ii) Solve for ey), thus determining p(y), 
(iii) Integrate p(y) to find Q+, 
(iv) Increment po by Ap and repeat (ii), (iii), and (iv). 

The technique of starting with Q+ 0 and slowly adding positive 
charge to the device is important since it is this scheme of operation, 
in conjunction with the successive under- and over-relaxation, that 
avoids the exponential overflow limitations in machine computation. 

III. COMPUTATIONAL RESULTS 

In this section, numerical results for two specific device configura-
tions will be given. The first device has a constant doping profile 
(NA = a constant) and dimensions 

hi/X = 0.48, 
h2/X = 12.48, 
L = 42.48. 

POTENTIAL IN 
THERMAL VOLTS
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Fig. 2—Potential versus distance for a buried-channel device with uniformly 
doped p-region and V. = —4 volts. 
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Fig. 3—Charge density versus distance for a buried-channel device with uniformly 
doped p-region. 
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24 

X in this case is approximately 0.415 mm. Doping levels are 

NA = 2 X 10" cm-3 , 
ND = 1 X mis cm -3, 

SO 

= NA/ND = 20. 

28 

N, is calculated by" 

N, = 4.831 X 10"(mc/m0)4TI, 

with T = 300°K and nic as before. 
Using eq. (46), 77 is found to be 

= 12.09. 

The nondegeneracy condition for this device may now be stated using 
eq. (45) 
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Fig. 4—Potential at the Si-SiO2 interface versus total positive charge in a buried-
channel device with a uniform p-region and V. = —4 volts. 

or 
11' — eg — ey) < — 3.5. 

Adding n to both sides of the inequality gives 

Po — 41(Y) < n — 3.5. 

POTENTIAL IN 
THERMAL VOLTS
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Fig. 5—Potential versus distance for a buried-channel device with a Gaussian 
p-region doping profile and V. = —4 volts. 
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Fig. 6—Charge density versus distance for a buried-channel device with a Gaussian 
doping profile. 

Then for each choice of the parameter po, the solution set bkil must 
satisfy: 

Po —  < 8.59.  (32) 

From eq. (12) it is clear that if one assumes the Boltzmann approxi-
mation to hold, then as long as Q+ < a(h2 — hi)/X the equilibrium con-
dition causes the lineal charge density to have constant sign so 

Po — 1,1.1 < log a(mt/m 0)1 (33) 

for all i; for this device, eqs. (32) and (33) are always consistent if 
NA < 1.3 X 10" cm-3 . 
Computation was performed using a 90-point mesh and took ap-

proximately 4.8 minutes of processor time on a Honeywell 6000-series 
machine. 
Figures 2, 3, and 4 summarize the computational results. Figure 2 

shows potential solutions I'M versus the points yi for a family of po 
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Fig. 7—Potential at the Si-SiO2 interface versus total positive charge in a buried-
channel device with a Gaussian p-region doping profile and V. = —4 volts. 

120 140 160 

values with V. = —4 volts. The range of total charge values is indi-
cated. Figure 3 is a plot of the linear charge density with Q+ values 
indicated. Figure 4 is Q+ plotted against le' (the oxide-interface 

potential). 
A realistic modification to the device studied thus far is to allow cr to 
have y variation. The second set of results presented are for the same 
device as described above but with the p-region having a doping profile 

In (D.4-1)  2.  (34) cf(y) = (D. + 1)e-usi-himh2-hi)12 

The values for hl, h3, and V. are as before, L = 32.48, and D. = 46. 
[This value of D. corresponds to an average doping level in the p-layer 
of ÑA = 1.9 X 10"/cm3, and eq. (34) describes a doping profile as if 
the p-layer were formed by drive-in diffusion. 14] The solutions {pi} 
must still satisfy eq. (32). Figures 5, 6, and 7 are a summary of results. 
Comparison of the two cases shows that for the doping profile in eq. 

(34) the potential minimum is greater and the "channel" is shifted 
toward the oxide. In both cases the added positive charge is contained 
entirely in the p-region and it fills the region starting from the side 
remote from the oxide interface (see Figs. 2 and 5). 
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APPENDIX 

Substituting eqs. (2), (4), and (7) into eq. (1) results in (' denotes 
d/dx): 

(x) = 0,  0  x  h1,  (35) 

1,;(x) =  {NA —  f 

(E E2  (x) — E)idE   
1  exp [(Efh —  

E.(x)  ,   

hi x  h2,  (36) 

E2  E( x) 1  exp [(E — Ef)/kT]  N D 

(E — Ec(x))idE   

E  (E(x) — E)dE   
N /  1+ exp [(Efh —  

°(e)  , i 
— N° 

o;(x) = 

h2 x  0. (37) 

Transform the integral involving .E(x) by making the substitutions: 

E =  (E — Ec(x))/kT, 

L(x) = E°, —  
= (E: — E f)/kT. 

For the integrals involving Eu(x) make the substitutions: 

E =  (E,(x) — E)/kT, 
E(x) = E: — Dp(x), 

77' = (E: — E 1 h) 

o  =  ( Ejc  E:)/kT. 

ibl/(x)  Dp(x)/kT 

and make the change of variables 

= x/X, 

For both cases let 

where 
X = •NikT€2/q2N D. 

These substitutions and some straightforward manipulation reduce 
eqs. (35), (36), and (37) to 

sb;(Y) = 0,  0 5_ y hi/X,  (38) 

NA  N° œ f  eid€   
= N D ND ,p\i O'c  1  exp (E  Ea —  77' ± 2(Y))'ip 

hi/X y h2/X,  (30) 



1022 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1973 

eidE 
e(Y) -N4)N (kr if: 1+ exp [e + n — 11,3(y)]  1 

N° fir fr,   EYE   
Nei) )4J o 1 exp (E  Eg — /7'  lks(Y)) 

h2/X 5 y co.  (40) 

These equations are further simplified by making the classical Boltz-
mann approximation for the electrons: 

eid€ 
fo exP (E  — (y)) —J o exp (E  n.— 11,(y))  (41) 

which holds since 71 — 4/(y) is always positive by several kT (see Fig. 
8). The last result is integrable and simplifies the approximation to 

T() exp  (4,(Y)  n),  (42) 

where P(•) is the usual gamma function. This approximation has been 
shown to be less than one percent in error if" 

77 — ei(y) > 3.5.  (43) 

Similarly, for the holes, 

f EidE   
r(1.  (77' 

Jo 1 exp (€  Eg — n' ± TP(0)  ) exp  — 

if 

- ey))  (44 ) 

EL, n' +  > 3.5.  (45) 

The validity of this last approximation is not clear since 4,(y) is de-
pendent on n' and ey) becomes large and negative. Note that requiring 
the inequalities (43) and (45) to hold is equivalent to requiring the 
device to be nondegenerate. Computational results show this approxi-
mation to be consistent. 
Ti is expressed in terms of the constants N, N0, and ND by requiring 

electron charge neutrality at x = œ• It should be stated that the cor-
rect condition to use at this point is complete charge neutrality. This 
requirement, however, is computationally indistinguishable from the 
algebraically simpler condition used here. Using eqs. (40) and (15), the 
neutrality condition is 

(Nc/ND)e-nr(4) — 1 = 0, 
SO 

Nc/ND = eg/r(4)•  (46) 
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Equation (46) defines the Fermi level for the electrons. Using eqs. (5) 
and (8), 

Aru/ND = (N./N,)•(Ne/ND) = (m./m0)ten/r(1),  (47) 

where m. and mo are the effective masses of holes and electrons in 
silicon; they are 1.08 mo and 0.59 mo, respectively.n Using eqs. (42), 

(44), (46), and (47) in eqs. (38), (39), and (40) results in equations 
(11), (12), and (13) which are to be solved. 
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The Effect of Rain on Circular Polarization at 18 GHz 

By R. A. SEMPLAK 

(Manuscript received February 14, 1973) 

Limitations imposed by attenuation during heavy rain on the reli-
ability of microwave systems are well known,' and some calculations 
of the depolarization of linearly' and circularly' polarized waves have 
been made. Recently, measurements of rain-induced rotation' of linear 
polarization at 30 GHz indicated that depolarization by large oblate 
raindrops' may limit efficient utilization of a microwave channel where 
orthogonal polarizations are employed. However, an advantage in 
using circular polarization is that less-stringent mechanical stability 
may be required of some antennas; also, in satellite systems, circular 
polarization is not affected by Faraday rotation. As the effect of rain 
on transmission of circular polarization had not been measured, an 
experiment was initiated. Data have been collected for the period June 
1, 1972, through January 24, 1973. 
A frequency-swept Gunn oscillator operating at a frequency of 18.5 

GHz is used as a source in circular polarization on a 2.6-km path ori-
ented in a southeasterly direction from Crawford Hill, Holmdel, New 
Jersey, the site of the receiver. The receiver has a ferrite switch which 
looks sequentially at the received fields, i.e., the desired circular polari-
zation and then the depolarized component, the opposite sense, are 
observed.* Paper strip chart recordings are made of both the desired 
and depolarized components. 
The clear-day polarization discrimination of the system is better 

than 32 dB. In view of the ambiguities' associated with measuring cross 
polarization below —32 dB, none of the data below —32 dB are 
included. 
The total data obtained from the circularly polarized system are 

shown in Fig. 1 where the depolarized component (the field measured in 
the undesired sense) is plotted as a function of the rain-induced at-
tenuation. One can see that rain has a strong depolarizing effect. For 
example, the very deep rain-induced attenuations of 39-40 dB have 

The switching rate is 17 Hz; this is much faster than the changes in attenuation 
produced by rain. 
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Fig. 1—Data on circular polarization from Jurie 1, 1b72, through January 24, 1973. 
Depolarized component plotted as a function of rain-induced attenuation. 

depolarized components that are only 9-15 dB below that level.. The 
curve shown in Fig. lis an estimate of the Median of the data. Friim the 
figure, we observe, for example, that a Min-induced fade of 20 dB his 
associated with it a depolarized component with a median value of the 
order of — 15 dB. Likewise, for a modest rain-induced fade of 10 dB, 
the median value of the depolarized component is about 23 d13 belów 
that level. 
From measured data at 18 GHz it is concluded that there are serious 

polarization discrimination problems for circular polarization during 
periods of rain. However, circular depolarization should not be as 
serious for frequencies of 60 GHz and higher, since at these frequencies 
the small raindrops have the strongest effect on transmission, and these 
small drops tend to be spherical rather than oblate. Measurements not 
discussed here show by comparison that the attenuation of circularly 
polarized waves by rain lies between that for horizontally and vertieally 
polarized waves.' 
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Attenuation Through the Clear Atmosphere at 30, 19, 
and 13 GHz for Low Elevation Angles 

By PAUL S. HENRY 

(Manuscript received February 21, 1973) 

I. INTRODUCTION 

Synchronous satellite service for Alaska, and possibly other places, 
requires that ground station antennas point at low elevation angles. 
For example, from Point Barrow (71°N, 155°W), such a satellite would 
never be more than 11 degrees above the horizon, and for satellite 
longitudes 45 degrees east or west of Point Barrow, the elevation is only 
5 degrees. At such low angles, the attenuation of a nominally clear 
atmosphere is significant in the 18- and 30-GHz bands of proposed 
domestic satellite systems. There are also satellite bands near 13 GHz, 
where the attenuation is expected to be somewhat lower. Predictions 
of this attenuation have been made,' but as a check direct measure-
ments have been obtained with the Crawford Hill Sun Tracker as re-
ported below. 

II. APPARATUS AND PROCEDURE 

The experimental setup, described in detail elsewhere,' is briefly 
this: the antenna temperatures of the sun and a nearby patch of sky 
are compared by means of a radiometer. The temperature difference, 
A T, is related to the excess attenuation above the solar noon value, 
A, by the formula 

A (dB) = 10 log [T/ To],  (1) 

where à710 is the antenna temperature difference at solar noon on a 
clear day. As the antenna follows the setting sun, attenuation as a 
function of elevation angle is measured directly. 
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Attenuation Through the Clear Atmosphere at 30, 19, 

and 13 GHz for Low Elevation Angles 

By PAUL S. HENRY 

(Manuscript received February 21, 1973) 

I. INTRODUCTION 

Synchronous satellite service for Alaska, and possibly other places, 
requires that ground station antennas point at low elevation angles. 
For example, from Point Barrow (71°N, 155°W), such a satellite would 
never be more than 11 degrees above the horizon, and for satellite 
longitudes 45 degrees east or west of Point Barrow, the elevation is only 
5 degrees. At such low angles, the attenuation of a nominally clear 
atmosphere is significant in the 18- and 30-GHz bands of proposed 
domestic satellite systems. There are also satellite bands near 13 GHz, 
where the attenuation is expected to be somewhat lower. Predictions 
of this attenuation have been made,' but as a check direct measure-
ments have been obtained with the Crawford Hill Sun Tracker as re-
ported below. 

II. APPARATUS AND PROCEDURE 

The experimental setup, described in detail elsewhere,' is briefly 
this: the antenna temperatures of the sun and a nearby patch of sky 
are compared by means of a radiometer. The temperature difference, 
401, is related to the excess attenuation above the solar noon value, 
A, by the formula 

A (dB) = 10 log [AT/A N,  (1) 

where An is the antenna temperature difference at solar noon on a 
clear day. As the antenna follows the setting sun, attenuation as a 
function of elevation angle is measured directly. 
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The measured attenuations are increases above the noontime value. 
Thus the absolute attenuation is the measured value plus the atmo-
spheric attenuation at noon; the latter has been estimated to be 0.3, 
0.3, and 0.1 dB at 30, 19, and 13 GHz.' For the remainder of this paper, 
quoted attenuations are referred to noontime as the zero of attenuation. 
A small correction must be applied to the Sun Tracker raw data to 

account for different antenna temperatures in the "sun" and "sky" 
positions due to differences in atmospheric radiation. This correction 
is readily determined by measuring AT for low elevation angles of the 
antenna beam, while the sun is high in the sky and thus out of the 
beam. The magnitude of the correction is less than 3 percent of the 
measured attenuation in dB for elevations of 5 degrees or greater. 
Below 5 degrees, the correction rises to a maximum of 8 percent at 

3 degrees elevation. 

III. DATA 

The measured attenuations, corrected as described above, are shown 
as a function of elevation angle in Fig. 1. The data, collected during 
four sunsets in August 1972, are shown as bars spanning the full range 
of the values observed. During the measurements the absolute surface 
humidity was about 12.5 gm/ma, which is typical of summertime New 
Jersey. The curves through the bars represent the average behavior 
of the data. At 5-degree and 10-degree elevations are indicated the 
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Fro. 1—Attenuation vs elevation angle, normal summer weather (average hu-
midity 12.5 gm/ma). 
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Fia. 2—Attenuation vs elevation angle, humid weather (August 7, 1972, humidity 
23 gm/ma). 

attenuation predictions of Hogg, normalized to zero dB at noon. Also 
shown for the 30-GHz attenuation are the points corresponding to a 
cosec O law, normalized to agree with observation at 10 degrees and 
12 degrees. 
Figure 2 is a plot of measured attenuation versus elevation for very 

humid air. These measurements were made on August 7, 1972, shortly 
after a rainstorm when the atmosphere had cleared. The surface hu-
midity was 23 gm/m3 at the time of observation. For comparison, the 
curves from Fig. 1 also are shown. The increased attenuation is clearly 
visible. Even larger attenuations are possible. Hogg and Semplaka have 
calculated that very humid weather can result in attenuations more 
than double those shown in Fig. 2. 

IV. EXTRAPOLATION TO OTHER AT MOSPHERIC CONDITIONS 

The atmospheric attenuation is due primarily to oxygen and water 
vapor. In summertime New Jersey, the fraction of the total attenua-
tion attributable to water vapor is roughly 50, 75, and 50 percent at 
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30, 19, and 13 GHz, respectively.' Thus one can convert attenuations 
measured at one humidity to values corresponding to a different water 
vapor content. For example, we can predict the attenuations that 
should have been observed under the conditions of Fig. 2 (23 gm/ma) 
by doubling (very nearly) the contributions due to water vapor in 
Fig. 1 (12.5 gm/m3). This simple extrapolation rule predicts the ob-
served attenuation to an accuracy of 10 to 15 percent. 
Compared with New Jersey, the Point Barrow atmosphere contains 

essentially no water. In winter the humidity is 0.5 gm/ma and in 
summer 5 gm/ma.' Therefore, a first approximation for conversion of 
the attenuations of Fig. 1 to Alaskan conditions consists in neglecting 
the water vapor entirely and simply reducing the observed attenua-
tions by 50, 75, and 50 percent at 30, 19, and 13 GHz. 

V. ERRORS 

There are two main sources of systematic error. The first is occul-
tation of the setting sun by objects near the horizon. At the Crawford 
Hill location the Sun Tracker has a clear view down to about 3 degrees 
elevation. The second error is an increase in antenna beamwidth in the 
vertical plane due to the gradient of atmospheric refraction within the 
antenna beam.' The forward gain of the antenna is thus reduced, re-
sulting in an apparent increase in attenuation. The magnitude of this 
effect depends on the size of the source being observed. A "point" 
source, such as a synchronous satellite, would show an attenuation 
about 0.1 dB above the values reported here. 
Strictly speaking, the points calculated by Hogg shown in Fig. 1 

should not be compared directly with the data. Although the attenua-
tion at solar noon has been subtracted from them (they are normalized 
to 0 dB at noon), they still do not correspond to the conditions of this 
experiment. Hogg assumed a humidity of 10 gm/ma—a value 20 percent 
below the prevailing humidity during the observations. A rough 
correction to Hogg's values would involve scaling his attenuations 
(in dB) up by 10, 15, and 10 percent at 30, 19, and 13 GHz. 
Fluctuations in the data are attributable to three sources: (i) error 

in reading attenuations on the chart recorder, (ii) error in reading the 
time on the chart, and (iii) changes in humidity over the course of the 
observations. The first-mentioned error, called SA below, is estimated 
to be about 0.2 dB rras, one-fifth of the smallest chart division. The 
timing error is significant because it leads to an uncertainty in the 
elevation angle, 60 below, at which a particular measurement was made. 
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A reasonable estimate for this error is 1 minute rms, which means SO is 
0.25 degree. Finally, the diurnal changes in humidity, a, were about 
20 percent. All these errors add in quadrature to give a resultant over-
all error estimate 

E2 = (SA)2 82(80)2 (faA)2,  (2) 

where S is the slope of the attenuation versus elevation angle curve 
(see Fig. 1), f is the fraction of the attenuation due to water vapor, 
and A is the measured attenuation. The errors represented by the 
three terms of eq. (2) are of comparable magnitude. Thus the noise in 
the data must be ascribed to both instrumental and "external" sources. 
The rms fluctuations predicted by eq. (2) can be compared with the 

observed scatter in the measurements at various frequencies and 
angles. Typically the two differ by only 0.2 to 0.3 dB, indicating that 
the stochastic processes operating in this experiment are reasonably 
well understood. 

VI. CONCLUSIONS 

The 13-, 19-, and 30-GHz attenuation of a clear atmosphere at low 
elevation angles has been measured by the Crawford Hill Sun Tracker. 
The results are in good agreement with predictions. Extrapolation of 
the measurements to Alaskan conditions yields attenuations sub-
stantially below those measured in New Jersey. A significant improve-
ment in the measurements using the Crawford Hill Sun Tracker can 
be made only under conditions of reduced and/or more stable atmo-
spheric water vapor content. 
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Attenuation Through the Clear Atmosphere at 30, -19, 

and 13 GHz for Low Elevation Angles 

By PAUL S. HENRY 

(Manuscript received February 21, 1973) 

I. INTRODUCTION 

Synchronous satellite service for Alaska, and possibly other places, 
requires that ground station antennas point at low elevation angles. 
For example, from Point Barrow (71°N, 155°W), such a satellite would 
never be more than 11 degrees above the horizon, and for satellite 
longitudes 45 degrees east or west of Point Barrow, the elevation is only 
5 degrees. At such low angles, the attenuation of a nominally clear 
atmosphere is significant in the 18- and 30-GHz bands of proposed 
domestic satellite systems. There are also satellite bands near 13 GHz, 
where the attenuation is expected to be somewhat lower. Predictions 
of this attenuation have been made,' but as a check direct measure-
ments have been obtained with the Crawford Hill Sun Tracker as re-
ported below. 

II. APPARATUS AND PROCEDURE 

The experimental setup, described in detail elsewhere,' is briefly 
this: the antenna temperatures of the sun and a nearby patch of sky 
are compared by means of a radiometer. The temperature difference, 
¿ST, is related to the excess attenuation above the solar noon value, 
4, by the formula 

A (dB)  10 log [tir/à7P0],  (1) 

where ,à710 is the antenna temperature difference at solar noon on a 
clear day. AS the antenna follows the setting sun, attenuation as a 
function of elevation angle is measured directly. 
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I. INTRODUCTION 

Synchronous satellite service for Alaska, and possibly other places, 
requires that ground station antennas point at low elevation angles. 
For example, from Point Barrow (71°N, 155°W), such a satellite would 
never be more than 11 degrees above the horizon, and for satellite 
longitudes 45 degrees east or west of Point Barrow, the elevation is only 
5 degrees. At such low angles, the attenuation of a nominally clear 
atmosphere is significant in the 18- and 30-GHz bands of proposed 
domestic satellite systems. There are also satellite banda near 13 GHz, 
where the attenuation is expected to he somewhat lower. Predictions 
of this attenuation have been made,' but as a check direct measure-
ments have been obtained with the Crawford Hill Sun Tracker as re-
ported below. 

II. APPARATUS AND PROCEDURE 

The experimental setup, described in detail elsewhere,1 is briefly 
this: the antenna temperatures of the sun and a nearby patch of sky 
are compared by means of a radiometer. The temperature difference, 
te, is related to the excess attenuation above the solar noon value, 
A, by the formula 

A (dB) = 10 log [AT /à7'0],  (1) 

where AT, is the antenna temperature difference at solar noon on a 
clear day. As the antenna follows the setting sun, attenuation as a 
function of elevation angle is measured directly. 
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The measured attenuations are increases above the noontime value. 
Thus the absolute attenuation is the measured value plus the atmo-
spheric attenuation at noon; the latter has been estimated to be 0.3, 
0.3, and 0.1 dB at 30, 19, and 13 GHs.' For the remainder of this paper, 
quoted attenuations are referred to noontime as the zero of attenuation. 
A small correction must be applied to the Sun Tracker raw data to 

account for different antenna temperatures in the "sun" and "sky" 
positions due to differences in atmospheric radiation. This correction 
is readily determined by measuring AT for low elevation angles of the 
antenna beam, while the sun is high in the sky and thus out of the 
beam. The magnitude of the correction is lees than 3 percent of the 
measured attenuation in dB for elevations of 5 degrees or greater. 
Below 5 degrees, the correction rises to a maximum of 8 percent at 
3 degrees elevation. 

III. DATA 

The measured attenuations, corrected as described above, are shown 
as a function of elevation angle in Fig. 1. The data, collected during 
four sunsets in August 1972, are shown as bars spanning the full range 
of the values observed. During the measurements the absolute surface 
humidity was about 12.5 gm/m3, which is typical of summertime New 
Jersey. The curves through the bars represent the average behavior 
of the data. At 5-degree and 10-degree elevations are indicated the 
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FIG. 1—Attenuation vs elevation angle, normal summer weather (average hu-
midity 12.5 gm/m”. 
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Fro. 2—Attenuation vs elevation angle, humid weather (August 7, 1972, humidity 
23 gm/mi). 

attenuation predictions of Hogg, normalised to zero dB at noon. Also 
shown for the 30-GHs attenuation are the pointa corresponding to a 
cosec 0 law, normalised to agree with observation at 10 degrees and 
12 degrees. 
Figure 2 is a plot of measured attenuation versus elevation for very 

humid air. These measurements were made on August 7, 1972, shortly 
after a rainstorm when the atmosphere had cleared. The surface hu-
midity was 23 gm/m1 at the time of observation. For comparison, the 
curves from Fig. 1 also are shown. The increased attenuation is clearly 
visible. Even larger attenuations are possible. Hogg and Semplak3 have 
calculated that very humid weather can result in attenuations more 
than double those shown in Fig. 2. 

IV. EXTRAPOLATION TO OTHER ATMOSPHERIC CONDITIONS 

The atmospheric attenuation is due primarily to oxygen and water 
vapor. In summertime New Jersey, the fraction of the total attenua-
tion attributable to water vapor is roughly 50, 75, and 50 percent at 
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30, 19, and 13 GHz, respectively.' Thus one can convert attenuations 
measured at one humidity to values corresponding to a different water 
vapor content. For example, we can predict the attenuations that 
should have been observed under the conditions of Fig. 2 (23 gm/ms) 
by doubling (very nearly) the contributions due to water vapor in 
Fig. 1 (12.5 gm/ms). This simple extrapolation rule predicts the ob-
served attenuation to an accuracy of 10 to 15 percent. 
Compared with New Jersey, the Point Barrow atmosphere contains 

essentially no water. In winter the humidity is 0.5 gm/ms and in 
summer 5 gm/ms.' Therefore, a first approximation for conversion of 
the attenuations of Fig. 1 to Alaekan conditions consists in neglecting 
the water vapor entirely and simply reducing the observed attenua-
tions by 50, 75, and 50 percent at 30, 19, and 13 GHz. 

V. ERRORS 

There are two main sources of systematic error. The first is occul-
tation of the setting sun by objecte near the horizon. At the Crawford 
Hill location the Sun Tracker has a clear view down to about 3 degrees 
elevation. The second error is an increase in antenna beamwidth in the 
vertical plane due to the gradient of atmospheric refraction within the 
antenna beam.' The forward gain of the antenna is thus reduced, re-
sulting in an apparent increase in attenuation. The magnitude of this 
effect depends on the size of the source being observed. A "point" 
source, such as a synchronous satellite, would show an attenuation 
about 0.1 dB above the values reported here. 
Strictly speaking, the points calculated by Ifogg shown in Fig. 1 

should not be compared directly with the data. Although the attenua-
tion at solar noon has been subtracted from them (they are normalized 
to 0 dB at noon), they still do not correspond to the conditions of this 
experiment. Hogg assumed a humidity of 10 gm/m'—a value 20 percent 
below the prevailing humidity during the observations. A rough 
correction to Hogg's values would involve scaling his attenuations 
(in dB) up by 10, 15, and 10 percent at 30, 19, and 13 GHz. 
Fluctuations in the data are attributable to three sources: (i) error 

in reading attenuations on the chart recorder, (ii) error in reading the 
time on the chart, and (iii) changes in humidity over the course of the 
observations. The first-mentioned error, called &A below, is estimated 
to be about 0.2 dB rms, one-fifth of the smallest chart division. The 
timing error is significant because it leads to an uncertainty in the 
elevation angle, id below, at which a particular measurement was made. 
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A reasonable estimate for this error is 1 minute rms, which means SO is 
0.25 degree. Finally, the diurnal changes in humidity, a, were about 
20 percent. All these errors add in quadrature to give a resultant over-
all error estimate 

El  (8A)2 + S2(80)2 + (faA)2,  (2) 

where S is the slope of the attenuation versus elevation angle curve 
(see Fig. 1), f is the fraction of the attenuation due to water vapor, 
and A is the measured attenuation. The errors represented by the 
three terms of eq. (2) are of comparable magnitude. Thus the noise in 
the data must be ascribed to both instrumental and "external" sources. 
The rms fluctuations predicted by eq. (2) can be compared with the 

observed scatter in the measurements at various frequencies and 
angles. Typically the two differ by only 0.2 to 0.3 dB, indicating that 
the stochastic processes operating in this experiment are reasonably 
well understood. 

VI. CONCLUSIONS 

The 13-, 19-, and 30-GHz attenuation of a clear atmosphere at low 
elevation angles has been measured by the Crawford Hill Sun Tracker. 
The results are in good agreement with predictions. Extrapolation of 
the measurements to Alaskan conditions yields attenuations sub-
stantially below those measured in New Jersey. A significant improve-
ment in the measurements using the Crawford Hill Sun Tracker can 
be made only under conditions of reduced and/or more stable atmo-
spheric water vapor content. 
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