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This paper investigates the statistical properties of the sum, S, of an 
n-dimensional Gaussian random vector, N, plus the sum of M vectors, 
Xi, • • • , Xm, having random amplitudes and independent arbitrary 
orientations in n-dimensional space. We derive expressions for the proba-
bility density function (p.d.f.) and distribution function (d.f.) of S and of 
its length, I S I, as series expansions involving only the moments of 
lxii , i = 1, • • • , M. In addition, we find the p.d.f. and d.f. of the pro-
jection of S onto 1-dimensional space. Our results are generalizations of 
the n = 2-dimensional problem of finding the statistical properties of a 
sum of constant-amplitude sinusoids having independent uniformly 
distributed phase angles plus Gaussian noise. The latter problem has been 
treated by Rice' and Esposito and Wilson,' but our results can also deal 
with sinusoids having random amplitudes. When n = 3, our findings 
treat, in the presence of a Gaussian vector, the classical problem of "random 
flights" dating back to Rayleigh. Some calculations for the 2- and 3-di-
mensional problem are presented, and an application to coherent phase-
shift-keying communications systems is discussed. 

I. INTRODUCTION 

In a number of problems arising in communications systems, in 
multipath phenomena, and in other areas, the determination of the 
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statistical properties of a sum of sinusoids and Gaussian noise is 
important for evaluating system performance. For this reason there 
has been interest in this problem for a number of years. Rice' first 
investigated the statistical properties of the sum of a single constant-
amplitude sinusoid and Gaussian noise. Later, Esposito and Wilson2 
considered this same problem but with two constant-amplitude sinu-
soids having independent uniformly distributed phase angles. More 
recently, Rice' studied the properties of a sum of M sinusoids and 
Gaussian noise. In this paper, we look at the natural generalization 
of this problem to n-dimensional space; namely, we determine the 
statistical properties of the sum of an n-dimensional Gaussian random 
vector plus the sum of M vectors having random amplitudes and in-
dependent arbitrary orientations in n-dimensional space. In the special 
case when n = 2, our results are applicable to the type of problems 
considered by Rice and Esposito and Wilson, but they can also deal 
with any number of sinusoids with random amplitudes. When n = 3, 
our findings treat, in the presence of a Gaussian vector, the classical 
problem of "random flights" dating back to Rayleigh. 
In Section II we give a definition of spherically symmetric random 

n-vectors and state a theorem which characterizes the form of such 
vectors in an n-dimensional spherical coordinate system. We consider 
M independent spherically symmetric vectors, Xi, • • • , X,, and define 
S = Eim= I X,. Using our characterization theorem, we show that the 
even moments, EE S 2h], k = 1, 2, • • • , can be easily expressed in 
terms of only the moments of I Xi , i = 1, • • • , M. Then with the 
normal vector N ,••-• i (0, cr2I) independent of the Xi's, we derive in 
Section III the probability density functions (p.d.f.'s) and distribution 
functions (d.f.'s) of S  N and of I S  NI as series expansions in-
volving the moments of I S I . In addition, we derive the p.d.f. and d.f. 
of the projection of S + N onto 1-dimensional space in terms of a 
similar series expansion. When n = 2 and M = 2, we check that our 
results agree with those of Esposito and Wilson for two constant-
amplitude sinusoids. 
Last, in Section IV we present some calculations for the 2- and 

3-dimensional problems, and discuss some aspects of the computational 
procedure that we use. Certain of these calculations provide results 
for the probability of error of a binary coherent phase-shift-keying 
communications system operating in the presence of M co-channel 
interferers and Gaussian noise. These results extend previously pub-
lished computations.'" Additionally, our findings can be used to find 
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the probability of error of this system operating in the presence of 
more general types of interference. 

II. SPHERICAL SYMMETRY 

The generalization of sinusoids with uniformly distributed phase 
angles are "spherically symmetric" vectors defined in the following 
way (see Refs. 6 and 7): 

Definition: A random n-vector X = (X1, • • • , X.), n  1, is spheri-
cally symmetric with matrix p if and only if the covariance matrix of X 
exists," E (X) = 0, and the joint characteristic function of X is of the 
form :t 

'I(u) = E[ejuil = h[(upu')i]  (1) 

for some function h on [0, x,) and where p is some n X n (symmetric) 
positive definite matrix.e Actually, h and p are defined only up to posi-
tive multiplicative factors. However, in this paper we are only con-
cerned with spherically symmetric vectors with p = I = identity 
matrix. Then h is uniquely determined and cI)x(u) = h(lu ). We denote 
such a spherically symmetric vector by the notation "X is s.s." 
Note that if X1 and X2 are two independent s.s. vectors, then clearly 

X1 + X2 is also s.s. 
The probability density function of an s.s. vector X can be found by 

Bochner's theorem.' If h( lu I) is absolutely integrable, then the p.d.f. 
of X is: 

Pa(x) =9.0/0,  (2) 

where 
1  1 

9.(r)  (2T )f12 r(n-2)12 Jo  h(X)Xn12J(.-2)12(Xr)dX r > 0, n  1. 

Thus, if X is s.s., its p.d.f. is constant over every n-dimensional sphere 
centered about the origin. This vector is precisely what is meant by a 
"random flight" in a higher dimensional space. 
For mir purposes, a more suitable characterization of an s.s. vector 

is given by the following theorem proved in Ref. 9. 

Expected value will be denoted by E(•). 
tWe denote vectors by boldface characters: u = (u1, • • •, un). The character u' 

is the transpose of u. The norm of u is denoted lu I = (uult 
For n  1, a spherically symmetric random variable has an even characteristic 

function, ex (u) = h[p4 lui]. 
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Theorem 1: Suppose X = (X1, • • • ,  n  2, is s.s. Then there exists 
a unique set of random variables R  0, ebk E [0, r], k = 1, • • • , n —2, 
O E [0, 271-] for which* 

; -1 
X; = R ( II sin (Pk) cos (Di 1 .. j .. n — 2 

k=1 

¡n-2 
X n—i = R( fl sin Ci3k) COS 0 

k=1 

In-2 
X,, = R  11 sin (1)k) sin 0, 

\k=1 

(3) 

and furthermore (R,  • ,  0) are independent and have respec-
tive p.d.f.'s: 

pR(r) = 27rn12 [11 (72 W I rn-ign(r)  r 
2 

psh(ok)  = r n — k2 + 1) [r n — k )]-1 . 
2 sm"-i-kOk 

k 
k = 1, • • • , n — 2 

1 
Pe e = —2r  0 :g 0 < 

(4) 

for the g,,(•) of (2). 
Conversely, if (R, (1,1, • • • , 43,2, 0) are independent and have the 

p.d.f.'s given by (4), and X is defined as in (3), then X is s.s. 
The utility of this theorem lies in the fact that the random variables 
(R, 4, ...,  0) are independent with specified p.d.f.'s. As an 
immediate corollary, we see from (2), (3), and (4) that: 

Corollary 1: Suppose X = (X1, • • • , X,,), n  1, is s.s. Then its p.d.f. 
is given by: 

px(x) = (2,./2)—ir (n/2) Pixi( l)  

(1 x1) "-1  

Moreover, for j = 1, • • • , n and for all i, 

(n/2)E[ X1 2] _ r(1)Erlx112i 
II(n/2)  r(-3/4 + i) 

Using Theorem 1 we can prove: 

Theorem 2: Suppose X1, • • • , Xm are independent s.s. n-vectors, n  1. 
Let Si = Eit=i Xi, j = 1, • • • , M, and define 

* We define fl, ak = 1. 
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uj2k) = E[  k = 0,1, • • •,  j = 1, • • • , M 

vr) = E[13Ci 2m],  in = 0, 1, • • •,  -= 1, • • •, M. 

Put 
à BE(2m + 1)/2, (n — 1)/2] 

c"'2"'  B[, (n — 1)/2]  ' 

where B(• ,•) is the beta function. Denote 

= (14°) , • • • , tgrm) ) 

42m) =  (40) , 42) , 

and define D,,,5 to be an (in + 1) X (m  1) matrix whose (k, 1)th 
element equals 

2/ — 2 en .2k-2 en al--2k .(21-2e. 

2k — 2  cn,2:-2  ',  if  k (   

and is 0 if 4 <k. 
Then, for j = 2, • • •, M, and m = 0, 1, 

m  9 
‘,772  en ,2i en ,2m-2i 1.11 (2/ 142m-20 . et? m) 

¿to ( 2i  en .2m 

In matrix form this is 

so that 

(2m)  (2m) D tij  — 

(5) 

ten) = ven)D2• • • Dni_iDnd  (6) 

for  = 2, • • • , M• 

Proof: By Theorem 1 we have for each Xi a corresponding vector in 
spherical coordinate space: 

Xi •(-+ (Ri, • • • , 

Since Si is a sum of independent s.s. vectors, it is also s.s., so there are 
vectors corresponding to it: 

Si 4-4 ' (Pie ei.i, - - e-2.i, 4,1). 
Note that 424  = E[ e] and 42'n) = E[Re] and that 

E[cosi  = E[cosi 

r  (n/2) 
r()r[(n — 1)] fo 

cos' a sin n-2  ada 

{ en .2i 

o 

I. 

if i is even 
if jis odd. (7) 
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Denote the components of Si and Xi as follows: 

Si =  - • •, S.,1) 
X. = (Xi,i, • • •, 

so that 

Also, 

if us odd, and 

and 

21,5 = Pi cos h. 
= R; cos (Dii. 

= &PI cosi 
= EEPOE[cosi 6] = 

E[S ] = EEPPn]E[cos2m 

p, r) era ,2m 

(8) 

(9) 

E[X123] = E[ e]E[cos2kcbi,i] = vr)c.,21.  (10) 

Noting that  is independent of X1,; since Si_1 depends only on 
X1, • • •, Xi_i which are independent of Xi, the following equalities 
follow from (8) to (10): 

i en) Cn,2m = E D21nn 

= Ef[81.5-1 4- X1.. 2m1 

= itno( 

2771 ( 2m  
= E  . i=o 

2m ) 
= E (2i  E[Si,1_1]E[Xtr2i] 
=o   

Hence, 

( 2m ) I, (2i)  i  
Cn,2m-2i• 

2m-2i) 
2i i-1 en ,2i p 

m 2m Cn,2i Cn,2m-2i  (20  (2m -21) 
(2m)  • 

i =0 ( 2i  Cn,2m 

The vector equation 

tsi2m)  iej22n2Dn,i  



In Reference 9 we proved the result: 

Theorem 3:11 X is s.s. and independent of N  T.(o, A), then the p.d.f. 
of X -I- Nie: 

1 1   
Px -i-a(z) =  du Puri (u) 27,../2G.2 r 2 fo EvIzI r -im 

1 
X exp [ -  (Y2 + I zI2)] /(n2) /2 ( v1z 21 ), n  1, (12) 

CI 

where I() is the vat order modified Bessel function of the first kind. 
From this theorem we obtain the following: 

Corollary 2: Suppose X is s.s, independent of N  91(0, u21), and 
Eito [(1/2cr2)'/iDEDX1 2'] < oo (for example, if IXI is a bounded 
random variable). Let Z be the projection of X ± N onto 1-dimensional 
space, i.e., Z is (say) the first component of the vector X  N. Then 
for n  1 the p.d.f.'s of X  N, of IX  N 1, and of Z are given, respec-

tively, by: 

px+N(z‘  _ r (n/2)  ex ,  izi2 1  \ 
(2/re)ro  kj 2cra  ) 

N  u4-2) /2] (I z I2/2,2)(- 1/2u2)¡E[ IX I"] 
X E  (13) rE(n/2) i] 

2 1 1 
Piz+Ni(u) = (20 ,2),, 12 e  eXP  172 V2) 

LP7 2) /2]  (V2 / 20'2) (  2Cr2) E [I X' 2i] ,  (14) 

X E   
i-o  r[(n/2) i] 

and 

r (n/2) (2 e)  z' pz(z) -  exp (- , i  2u 

N Lire (z2/2œ2) ( - 1/204) i.E[ I X12‘] (15) 
x E r[(n/2) i] ,  

where Lie (•) are the generalized La guerre polynomials. In addition, 
for n  1 the "distribution functions" of IX ± NI and of Z are given, 
respectively, by: 

Pr {IX  >a) 1  fn a'  ( - 2 ) - —  -  —  exp 
r (n/2)  2' 20.2 2u2 2u 

N MI/21 ((12/2472X - 1/2uTEDX1 2: 
X E  -1 (16) irE(n/2) i] 
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and 

Pr I Z > al = erfc  (2cra,)  a2 1i2(no./22)  e x p :02.2 ) 

L p2 i (a 2/20.2)  1/20-2)iEE X l"] 
X E  (17) 

iP[(n/2) i] 

where r(.,.) is the incomplete gamma function (Ref. 10, p. 337) and 
erfc (•) is the complementary error function. 

Proof: From Ref. 10, p. 242, we have the generating function 

1  Lice  (x2) — 1)'t2i  

" ia (21x) =  r(a  + i+ i) (18) 

With t = v/V P, x = Izi/-‘17-2, anda = (n - 2)/2, we substitute (18) 
into (12) to get: 

1  ( n  1 
/3" (z)  - exp [ -  1z1 2]  dvpixi (v) 

2/r"12«1 2  2« 

1   X    '  Li Pn —2)/2]  ( I Z I 2/20'2) ( —  1/202) iV2i  

(20 2) (.-2)12 E ; _0  P[(n/2) + i.] 

(1127r(na/2)22/2  exp  ( _ .1.„ i zio) 

" Li("-2)123 (1z1 2/20.2) ( - 1/20-2)'E[IX1"] 
X E  , (19) 
i-o I[(n/2) +i] 

assuming that the interchange of integration and expectation is valid. 
The second assertion of the corollary follows from Corollary 1 since 

plz+NI(IzI) - r2(n/n122) IzIn-ipx+N(z).  (20) 

To prove (15) we note that Z = X1 + N1 is a 1-dimensional s.s. 
random vector and we apply eq. (13) (with n = 1) and the second part 
of Corollary 1 to obtain the desired result. 
Next, to show (16) we integrate (14) over the interval (a, œ) and 

utilize the relationships: 

V2  1  n a2 
j« Vn-1 exp  -  dv =  (2,2)n/2r 2' 2e  (21) 
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and for i  1, 

exp — 2fr,2 )  - 2)/2]  ( -20.2  )Ja du 

1  a2 L e) (a2/ 20-2) 
—  a exp  (22) 

20•2 

Equation (21) is given in Ref. 10, p. 337, and (22) is proved in the 
appendix. 
Finally, to obtain (17) we integrate (15) and use eq. (22) with n = 1 

and the definition: 

erfc (x) =  exp (-0)dt. 
Jz 

It remains to justify the various interchanges of integration and 
expectation or summation. For example, to validate the interchange 
in (19) it suffices (Ref. 11, pp. 28-29) to show that 

r[(n/2) i] E[IX  2i1  e n -2)/2]  (  )  <  "  (23) 

Since (Ref. 12, p. 207)  L¡«) (y) I 5 evar(a i 1)/i 11' (ce + 1), 
the expression in (23) is less than or equal to: 

(1/2.-2)i  EEIX I" exp  zI2 \ 1 IT (n/2)  i]  

li(n/2) i] 402 ) i !  (n/2) 

which is finite by hypothesis. 
The utility of this corollary lies in the fact that we can evaluate the 

various p.d.f.'s and d.f.'s knowing only the moments of 13E1 and not the 
entire distribution of X. 

III. STATISTICAL PROPERTIES OF THE SUM OF INDEPENDENT 
SPHERICALLY SYMMETRIC VECTORS AND GAUSSIAN NOISE 

For simplicity, we combine the results of Corollary 2 arid Theorem 
2 into: 

Theorem 4: Suppose X1, • • • , Xm are independent s.s. n-vectors, n  1, with 
moments 742e)  = E[ I X/ I 2"], m = 0, 1, • • • , and t -= 1, • • • , .111, which 
are also independent of N  91.(0, 0-21). Let S = IX1 and assume that 

(1/ 20-2)1 E[IS  < co (for example, if the IXiI's are bounded 
random variables). Let Z be the projection of S + N onto 1-dimensional 
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Pr IIS ± NI >a - 

and 

space. Then the following relations for p.df.'s and d.f.'s are valid: 

Ps+N(z) = f2,(1:12)22/2 ex P  21tT2 1z12 ) 

Z 2/202) ( —  1/202)ia° 
X E  , (24 ) r[(n/2) i] 

Ple1-141(y) = (20.2).12 on-1 exp (_ 
2  

f«.  (n -2)/21 (V2/202) ( — 1/2q) i4) 
x E i=o  r[(n/2) i] 

r(n/2) f  z2 
Pz(z) =  ex P 

L1-4) (z2/20.2)(- 1/2cr2)igir 

-  r[(16/2) 

r in (12\  f  vii2 
r  (n/2)  2cr2 2e 

(25) 

(26) 

x exp  L111 )(c0/20-2)(— 1/20-2Yee  
2cr2 -1 ir[(n/2)  i]  , (27) 

a \ a r (n/2) 
Pr I Z> a = erie ((2,2)i j  2 (27ro-2)* 

a2 LM.1 (a2/2o-2) ( - 1/2e)ite X exp (-  (28) 
ze  .-1  il[(n/2) i] 

The moments  à  SI 21] are determined by the recurrence relations 

( 2Ic  c..2i 2i ) C7,.2k  n , 2i-2 k =    ii i2ti vr —2k) 

for j = 2, • • • , /V/ with 

Cnam 
B[(2m  1)/2, (n - 1)/2] 

B a (n - 1)/2]  ' 

(29) 

or by the matrix equation (6). 
We next look at some special cases. 

A. n = 2-dimensional space 

When n = 2, eqs. (24) through (29) reduce in an obvious manner. 
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The incomplete gamma function in (27) equals (Ref. 10, p. 339) : 

r(a2  a2 11 --272 ) = exp (- 2-072 ) • (30) 

The Laguerre polynomials LI-4) and LP) in (26) and (28) can be ex-
pressed in terms of Hermite polynomials Hi(•) using the relations 
(Ref. 10, p. 240) : 

and 

LP (x) = (-1)ix-411241(xi) )   
22i+1 

(-1)q-I2i(e) 
Li-) (x) =  I! 22i 

For example, eq. (28) can be rewritten as: 

-  (  a  \  1  a2 Pr {Z >  - - erfc 
exP  20-2  

H 2j_i (a h1202 ) (1/202)'gr 
X E i-1  (i!)222i 

We also check that 

so that 

( 2i ) Cre,2k Cn,2i-2k ( i )2 

2k  cre,2i 

i  '  2 
_  v , (i ) 

- 
k =Li 0  k 141  V2 

.. (2k)  (2t-2k) 

=  ±  ( i ) 2 (2k) ,42 _2k) 

k =0  k 

do _ ±:  ±  ( i ) 2 ( 1 ) 2 424 je t -2t)  (21 - 21) 

1=0 k =0  t  k  P3  f 

pin 

(31a) 

(31h) 

(32) 

and so forth. 
Consider the type of problem investigated by Rice3 and Esposito 

and Wilson2 in determining the p.d.f.'s of the envelope and instan-
taneous value of 

Z(t) =  A k cos (wkt âk) n (t) , 
k=1 

where each A k 0 is independent of ijk and bk is uniformly distributed 
on [0, 2w). Assume that the pairs (A,,,1  bk)} are independent of each 
other and of n( • ). Suppose n (t) is the result of the passage of zero-
mean white stationary Gaussian noise through a bandpass symmetrical 
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filter. Then n(t) can be written as (Ref. 13, pp. 142-148): 

n(t) = ni(t) cos wot — n2(t) sin wot, 

where ni(t) and n2(t) are zero-mean independent stationary low-pass 
Gaussian processes with 

= E[n(t)]2 = E[ni(1)]2 = E[n2(t)]2 

Let Ok(t) = (wk — waft  Ok and thus: 

z(t) =  Ak cos [wog Ok(t)]  n(t) 
k=1 

=  Ak cos [wot Ok(t)]  ni(t) cos wot — n2(t) sin 1141 
k=1 

E 
k=1 
[ m 

=  A k COS 0 (t) (t) cos[wot 
m 

- E k=1 
A,, sin ()kW  n2(t)] sin woe 

= A (t) cos [wot y(t)]. 

At any time to, let Oh = ni = ni(t.), and n2 = n2(t0). Put 

Xi = (A,, COS k, A k sin 0 k)  k = 1, • • • , M, 

and 
N = (ni, n2). 

Then EAkf--1 Xk  N is s.s., so by Theorem 1 it has the form (T cos 
T sin It), where r  o is independent of 4, and 4, is uniformly dis-
tributed on [0,2r). It follows that 

z(to) = r cos 1, cos woto — r sin 4' sin woto 

= r cos (wot + 4') ; 

that is, r = A (t„) and 4, = y(10). Hence, at any time to, A (to) and 
1, (to) are independent and 7(t0) is uniformly distributed on [0, 2w). 
Moreover, the p.d.f. of the "envelope" A (to) is the p.d.f. of 
r = ,X,, + NI which can be determined from (25). Thus we 
can find the p.d.f. of the envelope of the sum of Gaussian noise plus 
any number of sinusoids with random amplitudes and independent 
uniformly distributed phase angles. The case considered by Esposito 
and Wilson2 was that of M = 2, Ai = a = constant and A2 = b 
=constant, in which case 

42") = E[Prilim] = 

e n) = E[ X21 2ffi] = b21", 
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and 
2 

p en =  E a2kb21.-2k . 

k =0 k 

The envelope p.d.f. is then: 

pr(v) =  exp[—v2/202] 

Li(02726.2)(- 1/20.2)i  x E  r . 
i=0 i! Lk...10‘ki 

which agrees with the result in Esposito and Wilson [Ref. 2, eq. (12)]. 
This expression was obtained earlier by Goldman." 
To find the p.d.f. of z(t) at some time instant t, note that: 

z(t„) = A(t0) cos [wato  -Kt.)] 
= r cos (w.to 

Since Ir is uniformly distributed on [0, 2r) and the cosine function 
has period 27, the p.d.f. of F cos (wet. ± NI') is the same as that of 
I' cos if. Recall that (I' cos  r sin qe) =  E 1 Xk ±  N. Thus, Pcos 
is the first component of the 2-dimensional vector ELI Rk  N and, 
from eq. (26), its p.d.f. is: 

P.(z.)(zi) = Pr coo  (z1) 

1 
(2702)4 exP  

a2kb2i-2k] 

20. 4 
i ) E - (- 1/20.2»42,0 

i =0 i ! 
X Li-e ( e)• (33) 

In Esposito and Wilson's example, this becomes 

1 1 2\ ,_,°) (— 1/2e)i 
P.(10) (zi) = (21.0.2)i exP  ( — 20-2 zi)  

X 
2 

i   ( )[ kt o k)2 a2kb2i-21 , 

which agrees with their eq. (29). 
We also check that the d.f. in (27) is the same as that obtained in 

eq. (18) of Ref. 2, when we use the fact that (Ref. 10, p. 241) : 

xL M(x) = i[Lei(x) — (vo)]. 
Finally, consider a binary coherent phase-shift-keying communica-

tions system operating in the presence of Gaussian noise and M 
co-channel interferers modeled by a sum of constant amplitude sinu-
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soids with independent, uniformly distributed phase angles, 01, • • • , Om. 
(Details of this model and system may be found in Refs. 4 and 5.) 
The probability of error in such a system is :4.6 

Pe = Pr { E bi cos Oi + NI> al , 
i-1 

where N1  91(0, 02) and a is the amplitude of the transmitted (de-
sired) signal. This probability of error is given by the expression in 
(32) and agrees with the result found in Refs. 4 and 5. However, eq. 
(32) can also be used to find the probability of error in this system for 
a more general class of co-channel interference consisting of a sum of 
uniformly phased sinusoids having also independent random ampli-
tudes. 

B. n = 3-dimensional space 

When n = 3, eqs. (24) through (29) reduce in a straightforward way. 
Equations (24) to (26) and (28) can also be expressed in terms of 
Hermite polynomials by employing eq. (31). The incomplete gamma 
function in (27) can be written in terms of tabulated functions by use 
of the relations (Ref. 10, pp. 339-340) : 

1"(c + 1, x) = cr(c, x) + xce' 
and 

x) = ir erf (xi), 

where erf ( • ) is the error function. 
The recurrence relation for the moments becomes, for M = 2, 

_ 2i \ é 2k + 2 2i — 2k + 2 \ / 2i + l\ vimve .„), 
k=0 \ 2k A 2k + 1 A 2i — 2k + 1 A 2i + 2 

and so on for higher values of M. 

IV. SOME COMPUTATIONS 

The form of the expressions in (24) through (28) is quite similar, 
and so the computer programs used for their evaluation were only 
slight modifications of one basic (Fortran IV) program. Different 
values of n could also be treated easily. The basic program required 
computation of a sum of the form: 

º' Leo (x)(— 1/20.2)ii4r 
L  rE(n/2) i3  ' 

where x is a variable. 
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Fig. 1—Plots of p.d.f. of IS + N for e =1,m = 3, n = 2, and different sets of 
vector lengths (b1, b2, b3). 

In one part of our program, the moments  were determined from 
eq. (29): 

where 

i420 = E (i, et —n) .j=2,  M,  (35) 

A ( 2i  e n ,2k Cn,2i-2k 

2k  C”,2i 
(36) 

Using the definition of c.,2m and properties of the beta function, we can 
show that the coefficients C,. (j, k) are equal to: 

C. (i, k) 
r(i + 1)F(n/2)P[(n/2) + i]   

(37) 
F(k +  — k  1)1'[(n/2) + k]r[(n/2) + i — k] 

To efficiently compute these coefficients and to eliminate "overflow" 
problems, we utilized the simple recurrence relation 

C.(z., k) — (i — k  1)[(n/2)  i — k]  C .(i, k — 1),  k  1, (38) 
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Fig. 2—Plots of p.d.f. of IS  NI  for cr' = 1, M = 4, n = 2, and different sets of 
vector lengths (bi, b2, 193, b4). 
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Fig. 3—Plots of p.d.f. of IS + NI for e = 1, M = 6, n = 2, and vector lengths 
all equal to b. 
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Fig. 5—Plots of p.d.f. of IS + N for e = 1, M = 4, n = 3, and different sets of 
vector lengths (b1, b2, 61, b4). 
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Fig. 6—Plots of p.d.f. of IS + N I for .72 = 1, M = 6, n -= 3, and vector lengths 
all equal to b. 
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Fig. 7—Plots of Pr (Z > a} for n -= 2, 10 logio (a2/ECL, b) = 6 dB, b1 = • • • = bm, 
and for various values of M. 
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Fig. 8—Plots of Pr (Z > a) for n = 2, 10 loglo (121/EeLi b) = 8 dB, b, = • • •  
and for various values of M. 

together with C. (i, 0)  1. To evaluate 14r from eq. (35), particular 
sets of moments 142°1 could be read into the program. However, for 
simplicity we chose spherically symmetric vectors having constant 
lengths bi, • • • , bm. 
The second part of the program was concerned with computation of 

1 Lia> (x)  2,72  /r (n 2 + i) 

In order to avoid "overflow" difficulties, we actually computed 

202 
Lla)(x)X 1P (-72 i) with  _1 by. 
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Fig. 9—Plots of Pr (Z > a) form = 2, 10 logio (a2/ , b» = 10 dB, bl = • • • = bm, 
and for various values of M. 

18 

To do this efficiently we used the iterative identity: 

Lia)(X)Às (2i ± a — 1 — x) xivc4, (x) 
P[(n/2) i] iP[(n/2) i] 

+ a — 1)  XII iF[(n/2) ±  ») (x) i-2  

[which follows from the Laguerre polynomial recurrence relation 
(Ref. 10, p. 241)], together with the fact that Le (x) = 1 and 
L fa) (X) = a + 1 — x. 
The final part of the program computed the sum: 

LM(x)).%  
-0 rE(n/2) + i3  (40) 

where Pr = geg)/(Er- i b)2. [The factor 1/(EtLi be was built into 

20 22 
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the computation of eq. (35) in order to find te .] A convergence check 
was provided to end the summation after additional terms did not 
change any significant digits. Although the program was written to 
handle up to 200 terms in the sum, many computations required less 
than 50 terms. As Esposito and Wilson2 also noted, for certain values 
of z, e, and {141, the terms in (40) alternate in sign and have magni-
tudes of the order 10'5. For these cases, precision and convergence could 
not be guaranteed. The typical CPU time required to compute eq. (40) 
for 200 values of z was about 10 to 20 seconds in double precision 
arithmetic on the IBM 370/165 system. 
Some representative results of these computations are shown in 

Figs. 1 to 12. Figures 1 to 6 are plots of pis+Ni (y) as a function of y 
for «2 =  1, for various values of n and M, and for s.s. vectors having 
constant lengths b1, • • • , bm. Curves for n = M = 2 were given in 
Ref. 2. Figures 7 to 12 are plots of Pr 1Z > al versus the quantity 
10 logio (a2/2e) for fixed values of the quantity 10 logo (d/EMI M) 
and for various values of n and M. In these curves, for simplicity, we 
took b1 = b2 = • • • = bm. As we discussed in the last section, the plots 
in Figs. 7 to 12 represent the probability of error of a binary coherent 

10  12  14  16 

10 LOGiol a2 20-2 ) IN dB 

18 20 22 

Fig. 10—Plots of Pr (Z > a} for n = 3, 10 logo) (a2/Ell-1  = 6 dB, bi = • • • = bm, 
and for various values of M. 
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Fig. 11—Plots of Pr (Z > a) form -= 3, 10 logio (69/Ee1  = 8 dB, b1 = • • • = bm, 
and for various values of M. 

phase-shift-keying system versus signal-to-noise ratio, 

SNR = lo logis (a2/2e)  (dB), 

for fixed values of signal-to-interference ratio, 

SIR = 10 logio (a2/  bi)  (dB). 

These results extend those previously found in Refs. 4 and 5 to larger 
values of SNR and smaller values of SIR. 

V. CONCLUSION 

In this paper we presented expressions for the p.d.f. of a sum of 
spherically symmetric random vectors plus a Gaussian vector in n-di-
mensional space. We also found expressions for the p.d.f. and d.f. of 
the length of this sum and of the projection of this sum onto 1-dirnen-
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Fig. 12—Plots of Pr (Z>a) for n=3, 10 logio (aVEILL  b)= 1O dB, bl= • • • =bm, 
and for various values of M. 

sional space. All of these expressions were series expansions involving 
only the moments of the length of the sum of the s.s. vectors. These 
moments could be found from recurrence relations also derived in the 
paper. Some computations of the p.d.f.'s and d.f.'s were presented for 
the 2- and 3-dimensional cases, and an application to a communications 
system was discussed. However, as pointed out earlier in Refs. 2 and 3, 
there are sometimes difficulties in evaluating these p.d.f.'s and d.f.'s 
for certain parameter values, even for the case of s.s. vectors having 
constant lengths. 

APPENDIX 

To prove eq. (22) we use the fact (Ref. 10, p. 241) that, for i 1, 

d 
(Tt [e—qa+liet1)(t)] = ie—itaLia)(0. 
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Integrating this expression over the interval (a, 00) yields 

— e—nacc+iLlat1)(a) = i e—'1aLe)(1)(1t. 
ci 

(41) 

Equation (22) follows from (41) after a simple change of variables. 
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A linear, 500-element, 3-phase charge-coupled device, originally built 
as a high-resolution linear image sensor, has been chosen as a representa-
tive structure for single-level, 3-phase charge-coupled devices to exem-
plify the performance of such devices in detail. 
Charge-handling ability and transfer efficiency have been studied as a 

function of various design parameters and operating conditions. Most 
of the observed functional dependences are well understood and agree 
with the expectations based on model calculations. However, various 
problems are encountered in these structures. An unusually wide spread 
of the performance of different devices and slow instabilities are observed. 
They are attributed to a lack of control of the interface potential in the 
gaps between the transfer electrodes. 
Some emphasis is placed on a more detailed description of the various 

measurement techniques used. These techniques are of a general interest 
since they are applicable to other charge-transfer devices. 

I. INTRODUCTION 

The principle of charge coupling was first conceived using a 3-phase 
technique with simple, nondirectional transfer electrodes.' This ap-
proach using all identical electrodes in a single level of metallization 
has been successfully demonstrated on several successive designs of 
linear devices; each structure has a greater number of elements with 
smaller electrode length than the previous design.2-4  Correspondingly, 
improved efficiency at higher frequencies has been observed. 
The charge-coupled device (CCD) discussed in this paper was de-

signed as a high-resolution linear image sensor with 500 three-phase 
elements at a spatial period of 18 en, capable of reading half a line of 
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a normal page of printed material.' The device has also been demon-
strated as an analog shift register able to delay a line of the Picture-
phone® video signal.' In these demonstrations, a few of the best 
devices have been used, and their performance has been described in 
the context of these particular demonstrations only. The following 
discussion enlarges the description of the performance of 3-phase 
single-level metal CCD's by reporting more representative results ob-
tained in a study of many devices. The goal of this study was to obtain 
an understanding of the functional dependences of charge-handling 
ability, transfer efficiency, and dark current on operating potentials, 
frequency, and temperature. In addition, devices with different 
electrode lengths and different fabrication technologies have been 
compared. However, similar devices on different slices show a wide 
performance spread and slow instabilities and show that some results 
are even irreproducible. All this is attributed to a lack of control of the 
interface potential in the gaps between the transfer electrodes. 
The techniques used to determine signal-handling ability, transfer 

efficiency, or dark current profiles are described in some detail, since 
they are applicable to the investigation of other charge-transfer 
devices. 

II. THE 500-ELEMENT DEVICE 

The device discussed in this paper was designed as a linear image 
sensor with high-resolution density. At the same time, the device was 
supposed to serve as a test structure for the high-frequency perform-
ance of 3-phase CCD's. To obtain good transfer efficiency, a 
"smooth" interface potential profile with no barriers or pockets is 
required, which transfers the minority carriers under the influence of 
electric fringe fields from electrode to electrode. Extensive computer 
modeling studies' have shown that this condition can be achieved in 
a 5 X 10" crn-3 silicon substrate with 3000 A of SiO2 as an insulator 
and electrodes shorter than 5 gm. If, in addition, the gaps between the 
electrodes are made 3 gm or smaller, the device can be operated at 
pulse amplitudes of 15 V and no barriers will form underneath the 
transfer gaps for charge densities at the Si-SiO2 interface ranging from 
about 5 X 1010 to 2 X 10" cm—z.  Thus, the unit cell was made as small 
as possible using available technology. Individual electrodes, nominally 
3 gm long, were arranged at a spatial period of 6 ism, leading to a cell 
length of 18 gm. The calculated transfer time constant for electrons 
lies in the subnanosecond range. Ideally, the transfer efficiency in the 
frequency range of this study should then be limited by the effects of 

582  THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1974 



Fig. 1—One end of the linear 500-element 3-phase CCD. Shown are the three 
sets of transfer electrodes (El, E2, and E3), the input diode (D), and the input gate 
(G). Electrodes E2 are alternately contacted to diffused crossunders (C) through 
contact windows (W) lying on either side of the transfer channel. 

interface states. This was indeed found true for the best devices, which 
showed no problems associated with the bare transfer gaps. 
A 3-phase CCD needs one crossing of electrodes per element, which 

in this device are realized with diffused crossunders. They are intro-
duced by the same phosphorous diffusion (10'8 cm—a) that forms the 
input output diodes. The crossunder bus line that addresses electrode 
system E2 (Fig. 1) is repeated on either side of the transfer channel, 
and the transfer electrodes E2 in subsequent elements are contacted 
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alternately to either one of them. In the resulting structure (Fig. 1), 
which has a periodicity corresponding to two CCD elements, con-
siderably larger and thus more reliable contact windows can be formed 
than in a conventional approach with only one bus line. 
The channel width, defined by a channel-stopping boron diffusion 

(10" cm-3 ), was designed to be 15 gm, taking into account a lateral 
diffusion of 1.5 am. This width was chosen as a compromise between 
the preference for higher signal levels and the reduction in the vertical 
resolution that would be caused by too wide a channel if the device 
is used as a line scanner with no separate means to restrict the light-
sensitive area. 
The transfer channel is terminated at both ends by input output 

diodes. They are electrostatically shielded from the pulsed transfer 
electrodes by a gate electrode, which in normal operation is kept at a 
de potential. The whole device is surrounded by large substrate con-
tacts which serve as points of reference for the driving pulses. A 
special small substrate contact near the output diode can serve as a 
reference ground for the video signal. Including these features, the 
device dimensions are 230 am X 9150 gm. 
Devices were fabricated originally on 10-ohm-cm p-type silicon sub-

strates, with 3000 A of SiO2. Devices with 1500 A of SiO2, or with a 
double insulator structure consisting of 1200 A of SiO2 and 500 A of 
Al2O3, were also built for comparison. 
In most devices, the transfer electrodes were chemically etched out 

of 1500 A of RF-diode sputtered tungsten. Some batches, however, 
used Al or backsputter delineated' Ti-Pd-Ni metallization. With two 
sets of masks, various exposure times of the photoresist, and various 
etching procedures, the electrode length could be varied in different 
batches from about 1.5 iim to 4.5 /£m. After metallization, the devices 
were subjected to annealing treatments to reduce the interface state 
density. Most commonly, the devices with refractory electrodes were 
heated in a hydrogen atmosphere at 700°C for 1 hour; the Al devices 
were annealed at 380°C. A considerable improvement in transfer 
efficiency was normally observed. 
In operation, many devices showed a strong sensitivity to changes of 

the ambient, which could be demonstrated by breathing onto the 
surface. To reduce these effects, some devices were protected with a 
second dielectric level, such as 1 gm of a phosphorous glass or 1000 A 
silicon nitride. 
Most of the results presented in the following sections were obtained 

on devices with 3000 A of SiO2, with electrodes 3.5 inn long of RF-
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diode sputtered tungsten, and with no protective dielectric layer on 
top of the electrodes. Deviations in behavior due to different tech-
nologies will be discussed in a special section. 

III. EXPERIMENTAL PROCEDURE 

After screening tests on the uncut wafer, working devices were 
mounted on ceramic substrates for the investigation. A few selected 
devices have been demonstrated as line image sensors4 or analog delay 
lines.5 The following sections present a detailed report of studies 
carried out on several different devices with reasonably good 
performance. 
The mounted devices were investigated in a test setup, illustrated in 

Fig. 2, built around an optical microscope. A set of TTL logic, three 
sets of pulse drivers with different rise times, and several preamplifiers 
with various bandwidths were used to investigate the devices in the 
frequency range from 1 kHz to 17 MHz. The devices could be operated 

BACKGROUND 
ILLUMINATION 

DRIVERS 

256 

COUNTS PULSER 

LIGHT 
SPOT 

MICROSCOPE 
OBJECTIVE 

OUT 

OSCILLOSCOPE 

Fig. 2—Schematic layout of test setup. 

FILTER 
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as analog shift registers with the driving pulses applied continuously 
and charge packets injected periodically through the input diode. 
Alternatively, the devices could be held in the storage mode, inte-
grating the dark current or carriers generated by light projected onto 
it. A sharp spot of light, about 2 pm in diameter, projected through 
the microscope, was especially useful in these investigations. By moving 
the spot along the device, singularities in transfer behavior could be 
localized and often associated with visually observable defects. The 
built-in object illumination of the microscope was used in addition to 
provide a fairly uniform background. 
The accumulated charge could be read out at various clock rates 

after various integration times. The driving pulse shapes, pulse ampli-
tudes, and bias potentials, and the mutual overlap between subsequent 
pulses could also be varied to study their effects on the performance 
of each device. 

IV. CHARGE HANDLING 

The basic task of any charge-transfer device is to carry charge along 
the transfer channel. An important characterization of a device is, 
therefore, the maximum amount of charge that can be handled at a 
given amplitude of the driving pulses. In the following section, the 
functional dependence of the charge handling ability on various 
operating parameters will be investigated. 
The maximum amount of charge that can be carried in the potential 

wells underneath the transfer electrodes for a given set of operating 
conditions is measured by observing the output signal as the device 
is driven into saturation. In the shift-register mode this can be achieved 
electrically by injecting more and more charge from the input diode. 
In the storage mode a light spot is used to fill a single well until it 
starts to spill into neighboring elements. In both cases, beyond satura-
tion the output signal pulse starts to widen rapidly and its amplitude 
increases only slowly and often in an irregular manner. 
The amount of charge that a transfer pad can hold is approximately 

determined by the product of the oxide capacitance underneath the 
pad C. and the applied voltage Vs +  Vp. Fringe effects increase that 
capacitance somewhat. On the other hand, not all the applied voltage 
will appear across the oxide. The interface potential for a full bucket 
will still be larger than zero. In fact, it cannot be lower than the 
barriers produced by the isolating electrodes, which are kept at a 
voltage Vs, without spilling charge. Neglecting fringe effects and the 
influence of the depletion capacitance, one expects a linear relationship 
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Fig. 3—Charge-handling ability as a function of applied pulse amplitudes for 
various waveforms. 

between the driving pulse amplitude Vp and the signal-handling 
ability: Q = C.2• VP. 
Experimental results derived from the saturation value of the output 

signal show good agreement with this approximation (Fig. 3). For 
ordinary 3-phase operation with square pulses, the slope of the curves 
corresponds to an electrode capacitance of 5.6 X 10—" F, which in 
turn corresponds to an area of 50 j.irn2 on 3000 A of SiO2. With a 
channel width of 15 pm, this yields a calculated effective electrode 
length of 3.3 pm, which agrees with the observed length within the 
measurement accuracy of 0.5 pm. 
Curves taken at various pulse rates are parallel but do not fall on 

top of each other. Somewhat lower charge handling is observed as the 
frequency increases, and the corresponding extrapolated curves 
cross the abscissa at higher values of Vp. Comparison of measurements 
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taken at a fixed clock rate but with pulses that have a different fall 
time show reduced signal amplitude for the slower pulses. This in-
dicates that the frequency dependence of the charge-handling ability 
may originate from the degradation of the driving pulses. Stray 
capacitance and the resistance of the diffused crossunders slow down 
the response time and reduce the pulse amplitude at higher frequencies. 
The device was also operated with sine waves and the maximum 

signal charge plotted as a function of peak-to-peak amplitude. The 
expected values in this mode are 75 percent of the square-wave 
operation, since, when one phase is at its maximum value Vp, the two 
neighbors are at a voltage Vp(1 -F cos 1200)/2 = 0.25 tp. Experi-
mentally observed values fall well upon the calculated straight line 
through the origin. These measurements show a much smaller fre-
quency dependence. 
A 3-phase device can also be operated in an asymmetric 2-phase 

mode by leaving one set of electrodes at an intermediate de potential 
V2. Using a simplistic model that neglects fringe effects, one would 
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Fig. 4—Charge-handling ability in asymmetric 2-phase mode of operation (see 
inset) as a function of the dc potential of the static phase for various pulse amplitudes. 
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expect that the largest signal current could be carried when this 
intermediate potential V2 is at half the pulse voltage Vp, and that for 
this case the signal handling should be half that of the normal 3-phase 
operation. 
Experimentally, it is seen that for all measured values of Vp, the 

maximum signal current is reached for a dc potential V2 equal to about 
one-third of Vp (Fig. 4). For this case, the charge-handling ability 
is about 40 percent of that observed in normal 3-phase operation. This 
is due in part to the fact that for higher values of V2 the transfer 
efficiency decreases, owing to the formation of insuppressible barriers 
between the de phase and an adjacent phase that is fully turned on. 
Also, in this structure that has gap widths comparable to the electrode 
lengths, the gaps themselves may play a significant role in the charge-
storage process. The inset of Fig. 4 illustrates that fact. In this model 
the de phase V2 turned on to Vp/3, together with the two adjacent 
gaps, can store the same amount of charge as the well underneath 
phase 1 or 3 in the asymmetric 2-phase mode. 
The important role of the potential in the gaps is also expressed in a 

strong dependence of the performance on the resting potential VR. 
The inset of Fig. 5 shows the function of VR serving as a bias on top 
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Fig. 5—Charge-handling ability as a function of resting potential VR (see inset for 
definition) for normal 3-phase operation and for the asymmetric 2-phase mode. 
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of which the pulse potentials and, if applicable, V2 are floating. Figure 5 
then shows the dependence of the charge-handling ability on the rest 
potential VR. In the normal 3-phase mode, the operating range of VR 
is about 8 V. This is a rather high value for a 3-phase CCD. Typically, 
these devices are much more sensitive to VR and show ranges of only 
1 to 3 V. The range of VR increases for higher pulse voltages Vp, be-
cause the stronger fringe fields can suppress larger barriers in the gap. 
In the asymmetrical 2-phase mode, where the voltage difference on 
adjacent pads is smaller, a smaller operating range of VR is found. 
Switching all electrodes to the same de potential allows one to 

operate the device as a long IGFET. Figure 6 shows two sets of curves. 
The dashed lines are the drain current versus gate voltage curves taken 
in a point-by-point measurement starting at low values of Vo. The 
electrodes were then held at a de potential of 30 V for 90 minutes, and 
the measurements were repeated working from high toward low values 
of VG. The strong hysteresis observed is produced by the slow time con-
stants involved in charging the gaps to the potential of the electrodes. 
Values for the carrier mobility deduced from steady-state curves 

obtained after the device had been sitting at a certain gate potential 
for a sufficiently long time are in fair agreement with measurements 
taken on ordinary test IGFET's with continuous gate electrodes. In 
both cases, the values range around 700 cm' V—' 8-1. 

V. TRANSFER INEFFICIENCY 

5.1 Introduction 

For practically all applications of a charge-coupled device, the most 
crucial parameter of the device is its transfer inefficiency. Figure 7 
shows some calculated output pulse trains, produced in response to 
the injection of single charge packets into the input of devices with 
different overall transfer performance. This computation was done 
using a linear small-signal approximation,' which assumes that in each 
transfer every charge packet leaves a fixed fraction of its charge e 
behind, regardless of signal amplitude or the charge contained in 
previous stations. The overall performance of the device is suitably 
characterized with a "transfer inefficiency product" ne multiplying 
the number of transfers n with the fraction of charge e left behind in 
each transfer. Experimentally, this ne product is determined by com-
paring the observed output pulse train with calculated model plots. 
For large values of ne the delay of the maximum amplitude of the out-
put pulse train is measured with respect to the calculated exit time 
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Fig. 6—Operation of the CCD as an IGFET by tying all electrodes together. 
Hysteresis is observed due to leakage of charge from the electrodes into the transfer 
gaps. 

from an ideal device. This delay, expressed in a number of time slots 
given by the inverse of the clock frequency, is numerically equal to the 
transfer inefficiency product tie.' 

5.2 Results 

A linear model describes the actual behavior of a real device im-
perfectly. Small charge packets following a string of empty buckets 
show the biggest degradation. Figure 8 illustrates the dependence of 
the transfer efficiency on signal amplitude and on background charge. A 

LINEAR 500-ELEMENT 3-PHASE CCD  591 



n-e = TRANSFER INEFFICIENCY PRODUCT 

o 

0 0.25 0.5 1 1.5 2 2.5 3 3.5 4 

, I L IL I  IIIIII.. oil  I111 ‘. IIIIIIIi_ 

100% 78%  61%  37% i = TRANSFER EFFICIENCY OF A SINGLE PACKE 

Fig. 7—Appearance of a single-charge packet at the output after transfer through 
a CCD with a total inefficiency product ne (linear model). 

sharp spot of light with a visible diameter of about 2 ihm was focused 
on the gap between two electrodes 150 transfers from the output end. 
By varying the integration time, the linear amplitude range of the 
device was determined. The output pulse train was then monitored as 
a function of signal level [Fig. 8(a)]. The inefficiency product decreases 
from 0.8 to 0.5 as the signal is increased from a fraction of 0.5 to 1.0 
of the linear amplitude range, which was defined earlier as the satura-
tion point. If more charge is injected, it can no longer be held by a 
single potential well. Some charge then overflows into the neighboring 
stations, forward as well as backward. In the output pulse train, some 
charge is observed to come out earlier than the proper time slot. 
The influence of background charge was studied by illuminating the 

device uniformly at various intensities. A signal charge packet cor-
responding to half a full well was injected with the sharp light spot and 
the output monitored as a function of the amount of background charge 
[Fig. 8(b). The infficiency product decreases from 0.8 to 0.4 as the 
background charge is increased from 0 to a fraction of 0.5 of the linear 
range. The first 20 percent of background charge yields the most 
significant improvement in performance. The measurements of Fig. 8 
have been taken at the clock rate of 1 MHz. The behavior is typical 
for frequencies below 2 MHz. 
In most of the following experiments the transfer inefficiency was 

measured by using the device as an analog shift register. Input diode 
and input gate were kept at de potentials such that the diode would 
just trickle a small amount of current into the device and thus provide 
some background charge. Every 256th clock pulse, the input diode was 
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Fig. 8—Experimentally observed signal amplitudes (a) as a function of the total 
charge placed into one packet, (b) as a function of background charge with constant 
input signal charge (1 MHz). 

pulsed to a more negative value for a time interval of about one-third 
of the clocking period and, thus, a well-defined packet of charge was 
injected. The charge packet was due to leave the device 500 clock pulses 
later. At that point, a time mark was generated that served as a refer-
ence point. 
The signal from the output diode was led into a linear preamplifier 

consisting of a cascode stage with an active load, an emitter follower, 
and a current-feedback branch to the gate of the input J-FET. A set 
of three different amplifiers was used to cover the full range from 1 kHz 
to 17 MHz. The potential of the output diode was normally kept at 
about 10 V and the output gate at a de potential of 2 to 5 V. 
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Figure 9 shows the output from two 500-element devices operated in 
that mode at 1 MHz. Comparison with the calculated plots in Fig. 7 
shows that the two pulse trains correspond to inefficiency products 
of about 0.25 [Fig. 9(a)] and 3.0 [Fig. 9(b)]. However, in both 
cases, the tail of the pulse train extends much further than in the 
calculated examples. In Fig. 9(a) at least five stations carry an 
observable amount of charge and in Fig. 9(b) the tail extends well 
beyond the range of the picture. This is due to the nonlinear depen-
dence of transfer efficiency on signal amplitude. Owing to the shape of 
the potential well, small packets lose a larger fraction of their charge 
to the following packets by trapping effects in interface states.9 The 
charge packets forming the tail of the pulse train are thus transferred 
less and less efficiently and become more and more delayed. This 
nonlinear behavior is also the reason that the addition of a small 
amount of background charge can drastically improve the performance. 

DEVICE MO 1 (F0 

I I 
1 

LEADING 
STATION 

H11 1 1 110 11 1 1 115 11 1 1 

(a) 

DEVICE MK 4 

1111111111I 1. 15 

CONSECUTIVE TIME SLOTS 
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Fig. 9—Two experimentally observed signal outputs that illustrate disagreement 
with linear model. 
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The transfer efficiency of the devices studied is a sensitive function 
of most of such operating parameters as waveform, amplitude, and 
bias of the driving pulses. The dependence on signal amplitude and 
background charge has already been mentioned. In the following ex-
periments, the latter two parameters were adjusted by trial and error 
to give the best results. Background charge ranged typically from 20 to 
50 percent. 
The devices are also sensitive to any changes occurring near the 

surface of the silicon. Some devices have shown strong sensitivity to 
the ambient atmosphere. Breathing slightly onto the device can change 
its performance considerably. A majority of the mounted devices were 
thus covered with a phosphorous glass to protect the bare gaps between 
the electrodes from the influence of the ambient. Though the sensitivity 
to the atmosphere could be strongly reduced by this means, the devices 
still showed a dependence on the history of the investigation. Pro-
longed operation (over one hour) at high potentials often considerably 
impaired the performance at lower potentials. The devices did, how-
ever, recover and resume good performance at lower potentials after 
they had been turned off for a few hours. These kinds of instabilities 
can make the experiments very tedious. To reduce their effects on the 
results as much as possible, the measurements have been performed 
first at the lower voltages and then extended to larger pulse amplitudes. 
The quoted inefficiency products refer to the linear model except 

where otherwise stated. This seems to be justified since in the follow-
ing experiments the emphasis is on the functional dependence rather 
than on absolute values. This approach simplifies interpretation for 
the reader since he can visualize that an inefficiency product ne which 
ranges between i and i 1 means that the ith station after the proper 
output time slot carries the maximum amount of charge. 
Figure 10 shows the results of an experiment designed to demonstrate 

the time dependence of the performance of a device. After the device 
was turned off for several days, an inefficiency product of 1.8 was 
measured. The device was then completely flooded with current for 
15 minutes by grounding the input diode while the pulses were left 
applied to the electrodes. The input diode was then returned to the 
normal condition and the performance measured at pulse amplitudes 
of 20 V. Figure 10 shows the strong degradation and subsequent 
recovery. A few seconds after the return to measurement conditions 
the ne value was about 20 and then recovered to 2.7 within one hour 
and to 2.4 by the next day. 
It is believed that the change in performance is due to a migration 
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Fig. 10—Strong degradation of performance and subsequent slow recovery intro-
duced by strong saturation of the transfer channel. 

of charge at the interface between the gate dielectric and the deposited 
protective P glass. The excessive charge in the flooded transfer channel 
represents a ground plane that terminates the field lines from the 
transfer electrodes. Since this charge sheet extends through the whole 
device, it is also present under the gaps between the electrodes. Field 
lines from the edges of the transfer electrodes have strong lateral 
components that can move charge along the outer surface of the gate 
dielectric and, thus, charge the surface above the gaps more positively. 
This generates potential pockets in the silicon which can trap part of 
the signal charge. In normal operation of the device, the forces that 
charge up the gaps are absent since the charge resides under the gaps 
only for a fraction of a nanosecond. 
The response to saturation is not equally strong in all devices. The 

state of the surface of the gate dielectric before the deposition of the 
protective P glass probably plays an important role. In the following 
measurements, prolonged saturation of the devices was carefully 
avoided. 
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various waveforms at (a) 100 kHz and (b) 1 MHz. 

A set of experiments was performed to determine the best operating 
conditions at a given frequency. Values of ne have been determined as 
a function of driving pulse waveforms, amplitudes, and de bias. 
Figure 11 shows the dependence on waveform. At lower amplitudes, 
shaped square pulses with slower trailing edges give best results. For 
higher amplitudes, the performance is fairly independent of the driving 
pulse form, including sine waves. 
The strong differences in the performance for the cases of square 

pulses of 10 V amplitude with mutual overlaps of 0 ne and 100 ne 
are further explored in Fig. 12. The pulses are about 300 ne long 
with rise and fall times of about 10 ne. The ne values are measured 
as a function of the overlap of the driving pulses. The results are 
plotted in two different ways. In Fig. 12(a) the overlap in time cor-
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Fig. 12—Transfer inefficiency product as a function of mutual overlap for square 
driving pulses plotted in two different ways (see inset for definitions). 

responding to the 50-percent point of the waveforms is measured in 
nanoseconds. A negative overlap thus means that the waves cross at 
less than 50 percent of their peak values. The best performance is 
reached for overlaps of more than 10 us. Figure 12(b) shows the same 
results plotted as a function of the amplitude at the crossing point. 
The best performance is reached for a crossing point higher than 90 
percent of peak amplitude, which corresponds to overlaps of more 
than 10 us. 
Square pulses with 10-ns overlap have been used to evaluate the 

influence of the resting potential on the performance. In Fig. 13(a), 
the dependence on pulse amplitude is first established. For pulse 
amplitudes higher than about 10 V, which seem to be necessary to over-
ride some barrier in the bare gaps, performance improves slowly but 
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monotonically toward higher amplitudes. For a pulse amplitude of 
15 V, the influence of the resting potential VR was studied [Fig 13(3)]. 
The device is operable in a range of VR up to about 10 V with the best 
performance near 6 V. Again, it has to be pointed out that such a 
wide operating range has not been observed too often. 
In these conditions in which there are square pulses with 10-ns over-

lap, the transfer efficiency was measured for clock rates between 1 kHz 
and 17 MHz. At each frequency, the amount of background charge 
and the signal level were adjusted to give the best results. Background 
charge ranged from 15 to 30 percent and signal amplitudes from 30 to 
50 percent of a full bucket. The devices were operated as shift registers 
in the continuous wave mode. Single charge packets were injected every 
256 clock pulses. Over more than three orders of magnitude from 1 
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Fig. 13 —Transfer inefficiency product as a function of (a) pulse amplitude and (b) 
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kHz to 2 MHz no significant differences in performance were mea-
surable (Fig. 14). Then, from 2 MFIz to 17 MHz the ne value rose from 
about 1.5 to 3.5. This decrease in performance does not stem from the 
free-charge-transfer mechanism itself. The time available per transfer, 
even at the highest frequency where it is 20 ns, is still long compared 
to the calculated transfer time constants, which are well below 1 ns." 
An increase in the interface state density toward the conduction band 
edge could account for the decrease in performance at the highest 
frequencies.' Furthermore, above 5 MHz, the driving pulses as ob-
served on the connector to the device were far from perfect, and addi-
tional degradation might have been produced by stray capacitance and 
by the diffused crossunders on the device itself. 

5.3 Discussion 

To study the transfer performance of a CCD, an optimum number of 
transfers exist, depending upon the performance of the device. If the 
device is too short, the degradation is too small to be measured ac-
curately. If the device is too long, the degradation is large and, thus, 
again ne is difficult to measure accurately. Values of n,E on the order 
of one are most easily measured. 
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For long devices another problem arises. The measured functional 
dependences might be smeared due to nonuniformities of some physical 
parameters along the transfer channel, such as flat-band voltage or 
electrode width. Figure 15 illustrates the integrated ne values measured 
with a spot of light injected at various distances from the output 
diode. It can be seen that ne is not linearly increasing along the device. 
In some other devices, sharp steps in the ne curves have been observed 
which often could be correlated with an obvious physical defect, such 
as a partly missing transfer electrode. 
The observed inefficiency products ranged from 0.2 to several hun-

dred. They are distributed in a log-normal manner around a value of 
20 with a standard deviation of about a factor of five. This spread is 
too high to be explained by variations in interface state densities. These 
devices are, however, very sensitive to variations in the fixed oxide 
charge in the transfer gaps. Too little or too much charge can lead to 
barriers or pockets in the interface potential, both of which strongly 
impair the transfer efficiency of the device. These effects associated 
with the transfer gaps are strong enough to override other parameters 
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Fig. 15—Transfer inefficiency product from various points of the device to the out-
put. The charge was injected with a light spot. 
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that could influence the measured inefficiency products. A survey of 
the storage times of MOS capacitors, of the average dark currents of 
working devices, and of their n.e values was performed on 35 slices in 
dynamic probe tests; although the observed values for the storage times 
and for the dark currents correlated reasonably well from slice to 
slice, no correlation between ne and either of the other two measure-
ments could be found. 
The best results observed are ne =- 0.2, which corresponds to 

E =  1.3 X 10-4, a value comparable to results reported on 2-phase 
devices.10.1' Values between 10-4 and 10-3 can be expected with inter-
face states densities in the low 101° cm-2 eV-'.9 The majority of devices, 
however, have E values between 10-2 and 10-2. These values lie in the 
range of what has been obtained with ordinary bucket-brigade de-
vices.12'2 This similarity leads to the suggestion that gapped devices 
often work in a similar mode. Fixed barriers in the gaps keep a reser-
voir of carriers underneath each electrode. The signal charge modulates 
the barrier height, and transfer efficiencies comparable to bucket-
brigade structures can be expected. 

VI. DARK CURRENT 

When the linear CCD is used as a line imaging device, one set of 
electrodes is switched to an integration potential Vr during the time 
that charge is being integrated. The minority carriers generated by the 
incoming light are then collected by the potential wells underneath 
that set of electrodes. After a sufficient charge pattern has been ac-
cumulated, the stored information is read out in serial form. 
In the absence of any illumination, minority carriers are still gener-

ated by thermal effects and are collected in the nearest potential wells. 
The generation rate is not necessarily uniform over the whole device 
and, thus, this dark current can generate a pattern of its own. Figure 16 
shows the readout signal of a fairly nonuniform device after integra-
tion times of 250 ms and 500 ms where in the latter case the highest 
peaks of the signal have already reached saturation. During readout 
each charge packet picks up a little bit of dark current from all the 
locations it passes on its way to the output diode. From all the other 
locations on the input end of the device, it had already received a dark 
current contribution during the readout of the previous line when 
the "empty" packet was moved from the input diode to the integra-
tion site. Therefore, the same integral contribution is added to every 
charge packet. This uniform component can be subtracted or, if the 
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Fig. 16—Integrated dark current profile for two different integration times. 

readout time is kept short compared to the integration time, it can be 
neglected. 
For low-light-level-imaging applications, the dark current should be 

as low as possible. Cooling the device is a possible means to reduce 
the thermal carrier generation. For a simple demonstration the device 
was mounted on an open cooling block. Figure 17 shows the results for 
a temperature interval from —20°C to +60°C. As expected, the in-
efficiency product showed no significant changes except below —15°C 
where the formation of ice degraded the operation of the device. The 
dark current measurements displayed in Fig. 17 were taken near ele-
ment 150 in the signal shown in Fig. 16. Within the measurement 
accuracy they follow the calculated dependence given by the intrinsic 
carrier density ni. 
There are mainly two mechanisms that produce a dark current 

component which is proportional to ni."." The generation current 
arising from bulk states in a 5-pm-wide depletion region is on the order 
of 6 nA/cm2 for a minority carrier lifetime of 100 Ps, which typically 
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can be expected in a good sample. The generation current arising 
from interface states with an estimated density of 2 X 1010/cm2/eV 
at midband is on the order of 4.6 nA/cm2. Thus, surface and bulk 
dark current contributions are of the same order of magnitude. The 
shape of the thermal relaxation curve of the MOS capacitor can be 
analyzed to determine which is the dominant component in a partic-
ular sample." In a CCD the situation is complicated by the fact that 
the two components normally do not have the same active generation 
area. While the strong depletion region is mainly localized underneath 
one electrode per element only, a small depletion region extends under-
neath all electrodes and thus the surface contribution stems from an 
area that is several times larger. 
Several devices showed a fairly uniform dark current background 

on the order of 10 nA/cm2, but superposed by highly localized point 
defects. The temperature dependence of some of these localized 
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generation centers does not show the simple proportionality with ni, 
but has a range of weaker temperature dependences. At a given tem-
perature, the number of observable current sources as well as their 
strength depends strongly on the electric field, i.e., on the potential Vr 
applied to the integrating electrode set. Most defects seem to fill the 
integrating potential well and then stop their activity as would be 
expected from states that are only active in the depleted bulk of the 
silicon substrate. Other defects, however, possibly located at the 
interface, continue to generate minority carriers and fill adjacent wells 
and eventually a whole transfer channel. These observations indicate 
that there is a variety of localized defects. 

VII. LIGHT SENSITIVITY 

The described device can be used in slow-scan-imaging applications 
as a simple line scanner that integrates the information incident upon 
the transfer region itself. The transfer electrodes are opaque and, thus, 
about 50 percent of the light incident on the transfer region is lost. 
The resolution of such a system in the direction of the electronic scan 
has been discussed elsewhere and experimental results presented.4 
The resolution in the direction of the mechanical scan depends on the 
effective light-collecting line width of the device. This width has been 
measured by probing the device with a very narrow spot of light 
(approximately 2 i.im wide) produced by an incandescent bulb from 
which the IR radiation has been filtered out. This spot was moved 
along two different lines across the transfer channel of the device (see 
Fig. 18). Line A lies beside one of the integrating electrodes, and the 
generated charge, thus, will spill mainly into the potential well under-
neath. Carriers generated deep down in the bulk can reach adjacent 
wells by diffusion. To measure the total amount of charge, the signals 
of the two adjacent stations were added to the main station. To elimi-
nate effects of transfer inefficiency, the experiment was performed close 
to the output diode. 
In a second experiment, the spot of light was moved along line B 

lying midway between two integrating electrodes. The charge was then 
distributed more or less equally into the two potential wells and the sum 
of the two signals was used in plotting Fig. 18. 
Both experiments yield the same sensitivity across the channel. 

The 50-percent point is about 10 iim outside the edge of the transfer 
channel, indicating that the channel stopping diffusion does not provide 
adequate definition of the optical integration region. The equivalent 
line width of this image sensor is, thus, 35 emi or about twice as large as 
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Fig. 18—Normalized light sensitivity measured with a narrow light spot in two 
different traces across the transfer channel. 

the length of a CCD element. Such a device should, therefore, give a 
much better resolution in the direction of the electronic scan than in 
the direction of the mechanical scan. This agrees with experimental 
observations. To improve the vertical resolution of this imaging system 
to match the horizontal resolution, the light-sensitive line width would 
have to be confined to about half the element length. 

VIII. VARIATIONS IN TECHNOLOGY 

Devices with different insulator thickness, electrode length, and 
metallization have been built to study the influence of these parameters 
on device behavior. While the effect on signal-handling ability followed 
a predictable pattern, the influence on transfer inefficiency was often 
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concealed by the large spread of the observed values. Still some 
trends became evident. 
If operated at the same potentials, a thinner insulator leads generally 

to a higher signal-handling ability, as expected from the higher capaci-
tance. When the operating voltages are lowered proportionally to the 
reduced insulator thickness, the devices show poor performance. High 
potential differences between adjacent transfer electrodes are still 
necessary to produce fringe fields that can overcome the fixed potential 
barriers in the gap. With a thinner insulator, the dependence on VR 
becomes more critical, and the devices show a narrower operating 
range. This trend can be compensated for if, at the same time, the 
gaps are narrowed. With an oxide thickness of 1500 A, 2 jan seemed to 
be an appropriate gap width to achieve an average operating range for 
VR on the order of 1 V. No significant change in behavior could be 
attributed to the replacement of 1500 A of SiO2 with a double insulator 
structure consisting of 1200 A SiO2 and 500 A A1208. 
Three different metallizations have been compared: W, Al, Ti-Pd-Ni. 

No specific difference in performance was observed in devices with 
chemically etched W or Al electrodes. On devices with a Ti-Pd-Ni 
metallization on a SiO2-A1203 insulator a backsputtering process.' 
was used to obtain the required accuracy in the delineation of the 
transfer electrodes. Figure 19 compares the results of the dynamic 
probe tests on all operating backsputter delineated devices with a 
control batch with chemically etched electrodes on the same double 
insulator. The backsputtered devices showed ne values that were on 
the average about a factor of six higher than the values obtained on 
devices with W or Al electrodes. Among possible causes, differences in 
the interface state density underneath the electrodes and variations in 
gap width due to a possible undercutting of the Ti have been ruled out 
experimentally. Thus, it is conjectured that the backsputter process 
degrades the integrity of the Si-SiO2 interface in the region of the gaps 
where the metal is thinned to within 1000 A of the insulator surface 
during backsputtering.'s In spite of the wide spread of values, this 
particular trend in ne was clearly visible, because its origin itself is 
associated with the transfer gaps, which are the single most significant 
cause for high transfer inefficiency. 
To reduce the sensitivity to the ambient, some slices were protected 

with a dielectric level of, for example, 1 pm of phosphorous glass or 
1000 A of silicon nitride. While the reaction to such simple tests as 
"breathing onto the device" was strongly reduced, transfer efficiency 
did not improve on the average, nor did the slow instabilities disappear. 
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Fig. 19—Plot of ne distribution for all operating backsputter delineated devices 
and for a control batch with etched electrodes. 

The results generally leave the impression that the condition of the 
surface of the gate insulator in the gaps during the deposition of the 
protective dielectric is crucial to the final performance of the device. 
In another attempt to control the potential in the gaps, six finished 

devices with 1500 A of SiO2 and 3 gm gaps, which orginally operated 
with ne products of 5 to 10, were overcoated with a strip of poly-
crystalline silicon, with sheet resistances ranging from 10s to le 
ohms/square. In two cases the ne product improved to values around 
two and in one case even below one. The performance of the other 
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three devices worsened and showed some erratic behavior. Still, these 
results suggest that a properly developed resistive sea might possibly 
yield a solution to the gap problem. 

IX. SUMMARY 

Signal-handling ability, transfer efficiency, and dark-current profiles 
of over a hundred individual linear CCD's have been studied. The 
total spread of the result is surprisingly wide. Many erratic effects have 
been observed but not investigated in detail and, therefore, are not 
fully understood. On several devices which showed reasonably good 
performance and no erratic behavior, a thorough investigation of the 
functional dependence of the performance on various parameters has 
been carried out. These dependences are well understood and can be 
explained with simple models. Deviations from these simple models 
as well as the limitations in performance seem to be mainly associated 
with the gaps between the transfer electrodes. Poorly controlled surface 
potential can lead to the formation of barriers or pockets that produce 
poor transfer efficiency, slow instabilities, and nonuniformities in 
large devices. 
Three-phase COD's with gaps between the electrodes have been an 

invaluable tool for the investigation of charge coupling and for an 
early demonstration of charge-coupled image sensors. But the tech-
nologies presently used to make these structures do not produce reliable 
devices with consistent performance. With some technological effort 
a solution to the gap problem can probably be found, for instance in 
the application of a resistive sea on the surface of the device. It is 
questionable, however, if it is worthwhile to put such a development 
effort into this structure. In big devices the large number of narrow 
gaps cause a serious reduction in yield. Furthermore, the peripheral 
structures in more complex devices might require more than one level 
of metallization. It seems more advantageous to build the actual CCD 
with overlapping gates and to provide a completely sealed channel. 
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The sampling switch in a time-division switching system is, in general, 
different from the sampler of sampled-data system theory. A general 
approach is developed for characterizing such a switch as an ideal sampler 
plus some modified transfer functions. With this approach, a time-division 
switching circuit containing a sampling switch can be converted easily 
to a typical sampled-data system, and the well-established mathematical 
tools for sampled-data systems, such as the Z-transform, can be applied. 
In addition, a simplified approach is described that will lead to a very 
good approximation of the "exact" solution. 

I. INTRODUCTION 

The transfer function approach developed for sampled-data systems 
has proved to be a very powerful tool for analyzing time-division sys-
tems.'-' It yields information useful for both analysis and synthesis of 
the system. However, its application is often limited due to the fact 
that the sampling switch in a time-division circuit is different from the 
sampler of sampled-data-system theory. This difference can be seen 
from the fact that the voltage at the output side of a sampler in a 
sampled-data system is always zero between sampling instants, while 
the voltage at the output side of a sampling switch in a time-division 
circuit is not necessarily zero between sampling instants, if, for ex-
ample, the switch is connected to a capacitor. As a consequence, one 
cannot treat a time-division circuit as a sampled-data system unless 
the sampling switch can be modeled by a sampler plus a modified 
system-transfer function. 
Of the few who have worked on time-division-system analysis,'-9 

only Desoeri has come close to using functional blocks to model a 
sampling switch, but no general approach has been developed. It is 
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the purpose of this paper to present a general approach for solving this 
problem. With this general approach, any time-division circuit con-
taining a sampling switch can be converted to a typical sampled-data 
system, and the well-established mathematical tools for sampled-data 
systems, such as the Z-transform, can be applied. 

II. FORMULATION 

In a sampled-data system, the sampled signal is related to the original 
signal by a sampling device such as is shown in Fig. 1. The output of 
the samples is a train of amplitude-modulated pulses. The interval T 
between the consecutive pulses is called the sampling period, and the 
pulse width p is referred to as the sampling duration. In the ideal ease, 
we assume that the sampler operates in zero time so that the pulse 
width p is equal to zero. Then the output of an ideal sampler is a train 
of amplitude-modulated impulses and is related to the input by 

v* (t) =  v(nT)5(i — nT),  (1) 

where 8 is the Dirac Delta function. We note that whether the operating 
time of the sampler is zero or not, the sampled voltage is always zero 
between samplings. 
A switch operating periodically in a time-division system is not 

equivalent to a sampler in a sampled-data system, because the signal 
at the output side of a switch is not necessarily zero between samplings. 
However, if an ideal amplifier with zero output and infinite input 
impedances is added to the switch, as shown in Fig. 2, then the output 
signal of the amplifier is equal to zero between samplings. In fact, if 
the sampling duration is much shorter than the sampling period, then 
an input-output signal relation identical to (1) can be obtained. Thus, 
if the switch in a time-division circuit is followed by an amplifier, then 

v(t) 

v(t) 

T-SAMPLING DEVICE 

roi  
CLOSE FOR p SECOND 
EVERY T SECOND 

elt) 

Fig. 1—Sampling device. 

O(t) = 
FOR (n-1) T+p<t<nT 

n= 1,2,3,•• • • 
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IDEAL AMPLIFIER 
SWITCH 

LOAD 

Fig 2—Time-division switch followed by art ideal amplifier. 

the sampled-data system techniques are directly applicable. In practice, 
this is not always the case. Sampling in a time-division system is 
frequently performed by a switch connected directly to a time-division 
bus. Our objective is to characterize the switch by a sampler plus some 
modified system-transfer function so that any time-division system 
employing periodic sampling can be treated as a standard sampled-
data system. 
In general, the time-division system we are interested in has the form 

shown in Fig. 3. It consists of two networks connected by a switch in 
series with some finite impedance Z0. The switch is closed periodically 
for a brief interval of p seconds every T seconds. The smallest time 
constant of the input signal and the sampling period T are both much 
greater than p. Referring to Fig. 3, we define v12 (t) as the difference 
between vi(t) and y2 (t), the voltages at terminals 1 and 2, respectively; 
vo,(t) is defined as the open circuit Thevenin equivalent voltage at 
terminal 1 and i(t) as the current in the switch. The current i (t) can 
be found from the equivalent circuit (Fig. 4) obtained by connecting 
the driving source e(t) = voo(t) in series with the time-division switch 
and impedances Zo, Z1, and Z2, where Z1 and Z2 are the output im-
pedance of network 1 and input impedance of network 2, respectively. 
As the switch is closed only for a time interval from t = nT to 

NETWORK 1 

SWITCH 

ill.) 

i l 

-- - 

2 

v2(t) 

z2  
Fig. 3—General time-division system. 

NETWORK 2 
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SWITCH 

e(t) i(t) 

Fig. 4—Equivalent circuit for solving for g(t). 

t = n7'  p, n = 0, 1, 2, • • • , we may express i(t) as 

{ (t)  nT  t nT  p 
i (t) =  otherwise 

Or 

i(t) = i„(0•Eu(t — nT) — u (t — nT — p)], 
to-0 

where u(t) is the unit step-function, T is the sampling period, and p 

is the sampling duration. 
To solve for in (t), we let the switch in the equivalent circuit (Fig. 4) 

close only for a time interval from t = nT to t = nT  p. The driving 
source e(t) should be modified to v0(t) — vio(nT-) — v20(nT-), where 

vio(t) = voc(t) — vi(t) = i(t)ok(t) 

v20(t) = v2 (t) = (t)oz2(t) 

and o denotes the convolution product. Note that vio(nT) and 
v20(nT-) are the voltages across Z1 and Z2 just before the switch is 
closed. For the small time interval nT < t < nT  p, voc(t)  voc(n T) 

Therefore, e(t)  v0(nT) — vio(nT-) — v20(nT-). Defining• 

vd(t) = v0(t) — vio(r) — v2.2(r) 
= voc(t) — vio(t — E) — v20(t — E), 

(4) 

(5) 

where e > 0 is an arbitrarily small number, the current ni (t) can be 

expressed as in. Lvd(nT) y (8)  e_nrs ] 
s (6) 

where Y(S) = 11 EZ 0(8)  Z1(S)  Z 2(S)] is the admittance func-
tion of the equivalent circuit and  denotes inverse Laplace trans-

• From (5) we note that at the sample instant t = (nn, va(nT) -= vi (nT-) — v2 (n T-) 
for n  1, and va(0) = v..(0) = 0 for a physically realizable system. Hence, va(nT) 
= vu (nT-), the difference between vi(t) and 1)2(t) just before the switch is closed. 
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formation. Substituting (6) into (3), we have 

i(t) =  vd (n  [-sl- • Y (S) • e-nr2 ] 

• [1. 0 — nT) — u(t — nT — p)].  (7) 

Equation (7) suggests that we may characterize the switch by a 
sampler plus a transfer function G(S), as shown in Fig. 5, to relate va 
and i by 

/(S) = II(S)G(S),  (8) 

where /(S), V(S), and G(S) are the Laplace transforms of i(t), 
v:(0, and g (t), respectively (similar notations will be used hereafter 
without explanation). By the definition of impulse-modulated signal, 

4 t(t) =  v4(nT)&(t — nT).  (9 ) 
.-0 

In the ti me do main, eq. (8) corresponds to the convolution integral 

i(t)  v:(r) et — r)dr. o  (10) 

Substituting (9) into (10) and integrating we have 

i(t) =  vd(nT)g(t — nT)u(t — nT).  (11) 
rfflO 

Comparing (7) and (11), we have 

g(t)u(t) =  • Y (8)]. Eu(t) — u( t— p)]  (12) 

G(S) = .,C  [ Y (S)]• [u(t) — u(t — p)]},  (13) 

where 2 is the Laplace transformation operator. Equation (13) yields 
the transfer function we need to characterize the switch. Note that 
the function £-'[(1/S)Y(8)] is the current i(t) in Fig. 4 with a unit 
de driving source. Once G(S) is found, a functional block diagram 

and 

I  v,11t) 

Vd(S)  NQS) 

SAMPLER 

GIS) 
ES) 

G(S) = L WO] 

Fig. 5—Characterization of the switch. 
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IDEAL 
SAMPLER 

V0 (S) V d{S) 

1 

e —ES 

DELAY ELEMENT 

E -•"' 0. 

1 0  20 

GCS) 

Z,(S)+Z2(S) 

Z2 IS) 
Vi(S) 

Fig. 6—Transfer function block diagram between V,,c and V. 

describing the signal flow from network 1 to network 2 can be con-
structed easily, as shown in Fig. 6. Now the system in Fig. 3 is con-
verted to a standard sampled-data system. 
The transfer function from voc to v2 can be obtained from Fig. 6: 

Vd(S) = V0(S) — Via(S)e's — V20(8)e--"s 

= oc(S) — I (S)EZ 1(S)  Z2(S)]e-*8 
= V oc(S) — 11(8)G(8)[Z1(S) -F Z2(S)]e-1s 

Vi(S) = V(S) — 11(S)EGZi(S)e-'s -F GZ2(S)e-1s]* 

or 

1 + EGZ1(S)e-'s  GZ2e--(5]* 

where GZ,(S) = G(S)Z1(8) and i = 1, 2, and E > 0 is arbitrarily 
small. From (14), 

V2(S) = /(S)Z2(S) = 1/7/(S)G(S)Z2(S) 

GZ2(S) 

v:c(s) 
V(8) — 

:V c(S). 1 + [GZ1(8)e--'3 GZ2(8)e--.'s1* 

To find [GZ,(S)e-"5]*, we need to know the relationship between 
gei(t) and [gz,(1 — E)] *. The function g(t) is defined in (12): 

g(t) = oe-1 su  0(s) + z1(8) + z2(8)1 } [u(t) — u(t — p)] 
1   

= h(t)u(t) — h(t)u(t — p), 

(14) 

where 

(15) 

h(t) = 2-1 I   S[Zo(S)  Z1(S)  Z2(S)] 

Note that h(t) is the step-response of a linear passive network and, thus, 

1 
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is continuous for all t > O. Now 

gzi(t) = g(r)zi(t — r)dr 

=  It(r)z,(t — r)u(r)dr —  h(r)z,(t — r)u(r —  

From the convolution of two continuous time functions, gzi(t) will be 
continuous for all 0 < t < p and t > p. Since p < T, gzi(t) will be 
continuous at t = nT for all n  1, i.e., 

gz,(nT — e) = gz,(nT)  (16) 

as e approaches zero. At t = 0, since gz,(t) = 0 for all t < 0, we have 

gz1(0 — E) º 0.  (17) 
From (16) and (17), 

gzi(nT —  (t —  nT) =  gzi(nT)S(t — nT) 
n-o  n=1 

= gz1(nT)S(1 — nT) — gzi(0)6(t) 
n=0 

for arbitrarily small E. Therefore, 

[gz,(t — E)] * =  gz*a(t) — gz,(0)6(1)  (18) 
and 

[GZ1(S)e-.8]* = GZ*,(S) — gz,(0). 

From (15) and (19), we have: 

V2(8) _  GZ2(8) 

and 
Ve(S)  1 -- gzi(0) -- 922(0) A- GZI(S) 1- G eS) 

V(S) _  GZI(S)   

Ii:e(8)  1 -- gzi(0)  gz2(0) -E Ge(S) -E G4(s) 

If we are interested in the transfer function V2(S)/VI(S), then since 
VI(S) = V0(S) — /(S)Zi(S), we have: 

V7(S) = V(S) — V:(S)Ge(S).  (22) 

Substituting (14) into (22), 

1 I- 6;(8) -- 921(0) -- gz2(0)   TI(S) = n(S)  (23) 
1 ± G eS)  GZ;(S) — gz1(0) — gz2(0) 

(19) 

(20) 

(21) 
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From (20), (21), and (23), we have: 

V2 (8)  GZ2 (8)   
V(8)  1 — gzi(0) — gz2(0)  G eS) 

and 
V;(8) _  GZ;(S)   
V:(S)  1 — gzi (0) — gz2(0)  GZ12̀(S) 

Since gzi(0) = lim. S • GZ i(S), it will be equal to zero when the func-
tion GZi(S) has at least two more poles then zeros. In such cases, (20), 
(21), (24), and (25) become 

V2(8) —  GZ2(S)   
V(S)  1 4- GZ(S)  GZ;(8) 

V;(8) _  GZ;(S)   
Ve(S)  1 + GZ(S)  GZ;(2) 

V2(8) _  GZ2(S)  
VUS) 1 + GZ;(8) 

(S) GZ;(8)  
V7(S)  1 ± GZ;(8) 

As a simple example, let us refer to Fig. 7, which shows an ideal 
sample-and-hold circuit with a capacitor C. For this circuit Zo = Z1=0, 
Z2 = 1 /CS, and it can easily be found that G(S) = C. Therefore, 

1 
— 

(24) 

G (S)Z2(S) 

(25) 

(20A) 

(21A) 

(24A) 

(25A) 

(26) 

Since it has only one more pole than it has zeros, eq. (24) should be 
used to find V2(S)/V(S) : 

V2(8) _  1/S 1 —   
MS)  [1 — u(0)] -F [1/8]* —  S 

The general approach used to characterize the time-division switch 
can be summarized as follows: 

(i) Form an equivalent circuit (Fig. 4) by using a unit step 
voltage source to drive the impedances Zo, Zi, and Z2 con-
nected in series, where Z1 is the output impedance of N1 and 
Z2 is the input impedance of N2. 

(ii) Solve for the current i (t) in the equivalent circuit. 
(iii) Let g(t) = iffl[u(t) — u(t — p)]. Calculate G(S) = .e{g(t)1 

and GZi(8) = G(S)Z ;(S), i = 1, 2. 
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SWITCH 

sit.) 

Tc 
Fig. 7—Ideal sample-and-hold circuit. 

(iv) Now the energy transfer between N1 and N2 can be described 
by a sampler plus some transfer functions. Either one of the 
following formulas may be used: 

V2(S) _  GZ 2 (S)   (28) 
VL(S)  1 - gz2(0) - gz2(0)  Ge(S)  GZ:(S) 

V2 (S)  GZ2 (S)   
(29) 

VI(S)  1 - gz2(0) - gz2 (0) -I- G eS) 

where voc is the open circuit voltage at terminal 1 in Fig. 3. When the 
function GUS) has at least two more poles than zeros, we know 
immediately that gz1(0) = 0 and can be removed from the above 
formulas. 

III. AN APPLICATION 

The switch we model here is a practically realizable sample-and-hold 
switch for a time-division switching system. It is shown in Fig. 8. The 
series resistor R represents the gate resistance during sampling. The 
series inductor represents the lead inductance whose value depends 
on the bus structure. 
For this circuit, Z1 = 0, Z2 = 1/CS, and Zo = SL ± R. Therefore, 

g (0 can be found by solving a simple series RLC circuit with unit de 
input and a switch closed at g = 0 and open at t = p for the rest of 
the time. The result is 

1  
g (t) -  (e-so - e-P")[u(t) - u (1 - p)],  (30) 

24/a2  - 4 

SWITCH 

T 
GATE RESISTANCE R=300 
LEAD INDUCTANCE L 
SAMPLE-AND-HOLD CAPACITANCE C = 1000pF 
SAMPLING PERIOD T = 83.3 µs 
SAMPLING INTERVAL p =300ns 

Fig. 8—Practical sample-and-hold switch. 
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where « = R/2L, coo = 1/1rtiè,  = a - a2 - 4, and 02 = a 
+1/a2 - w. From (30) we have: 

1   1 - e-pcs-Foo  1 - e-p(e+02) 
G(S)  _ 2  +  s + 02  (31) 

The transfer function H (S) = V 2(S) / Vi(S) can now be found from 

V2 (S)  G(S)Z2 (S)   
H (S) -  (32) 

VI(S)  1 + [G(S)Z2(8)]* 

The calculation of G(S)Z2(S) and [G(S)Z2(8)]* is given in the ap-
pendix. With G(S)Z2 (S) and [G (S)Z2 (S)]* known, we have 

H S - 1 - e—TS  0102  r 1 — e—p(s-Foi) 1 _ e-pcs-Fe2) 
()   

S  (32  S+$1  s + 02 

1   
1 + ke-Ts ' (33)  

where 

From (33), 

k - Ole-192 P - 02e- Pip • 
02 - 

V(S) 
H* (S) - 

Vi(S) 
1 

1 - e-Ts  1  
i+  e- Ts  1 + k 

1 + k  
- ere  k• 

When the driving function is sinusoidal, we have: 

1 -I- lc  
H*(,j<4) - eicuT  k 

1 + k 
1-11* (3.0 )1  (37) 

1,r1 -F 1c2 + 21c cos cuT 

This shows that, for k  0, the magnitude of the voltage gain at the 
sampling instant will be a function of frequency. The maximum (or 
minimum, depending upon the sign of k) occurs at caT -= ir, i.e., the 

(34) 

(35) 

(36) 

*It can be easily verified from (34) that k will be positive only if the equivalent 
RLC circuit is under damped. 
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f = fs/16 

W V \A 
f = fs/8 

f = fs/4  f fs/2 

Fig. 9—Variation of magnitude of output signal at sampling gate with respect to 
input frequency f. 

half sampling frequency: 
1 + k  

=  (38) 

Figure 9 shows the laboratory observation of such an effect for k  1. 
When the lead inductance is negligibly small, i.e., L -> 0, then 

and 01 -› 1/RC. Equations (33), (35), and (37) now become: 

1 - e 7'5  a 1 - e—a Pe—P8  
H (S) -  (39) 

S  S-Fal -e-'Pe-TS 

1 —  e—a5  
H* (8) -   (40) 

er8  e—aP  

1 —  e-aP 
H*(ico) i - 

where a = 1/RC. 

±  e-2cip  2e-aP cos  ' 
(41) 

TIME-DIVISION SWITCHES  621 



In this case, the RLC-series circuit reduces to an RC circuit. In a 
practical time-division-switching system, the typical values might be: 
sampling period T = 83.3 µs (sampling at 12 kHz), sampling duration 
p = 300 ns, hold-capacitor C = 1000 pF, and gate resistance R = 30 9. 
A simple calculation will show that 

300 X 10-9 
aP  10.  (42) - RC - 30 X 10-9 - 

Hence, e-aP = e-"  0 and the transfer function H (S) in (39) becomes 

1 
1 - ,-TS  RC 

1  
H (S)  (43) 

S  ' 
S ± RC 

which indicates that the switch-and-hold circuit can be approximately 
considered as an ideal sample-and-hold device in series with an RC 
circuit, as shown in Fig. 10. 
It is also interesting to note that if both the gate resistance R and 

the lead inductance L approach 0, we will have an ideal sample-and-
hold switch. From (43), we can see that H (S) will approach the ideal 
sample-and-hold transfer function 1 -  as expected. 

IV. AN APPROXIMATION 

In this section, we shall present a simplified approach which in 
general leads to a very good approximation of the results found by the 
general approach described in Section III. The basic idea here is to 
approximate the current i(t) in the switch by an impulse-modulated 
signal, 

i(t)  i(t), (44 ) 

and characterize the switch by the energy transfer during the sampling 
duration: 

v2(nT+) = v2(nT-) -y[vi(nT-) - v2(nT-)],  (45) 

IDEAL 
SWITCH 

VIt) 

IDEAL 
AMPLIFIER 

Fig. 10—Equivalent circuit for Fig. 8 when L approaches 0. 
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where nT— represents the instant just before the switch is closed, and 
nT+ the instant just after the switch is reopened. The determination of 
7, which is related to the transfer loss, will be discussed later. From 
(45) we have: 

(I) = 7[V1  En* + (1 — [V2 (1 — e)]* (46) 
Erne 

V(S) --- yEi i(S)e— es:* + (1 —  

where E is arbitrarily small. 
Substituting 

and 

Vi (S) = Yoe (S) — P(S)Z1(S) 

172(s) = 7*(s)z2(s) 

into (47), we have 

Pe(s)4(s) = .yrvoc(s)e-.8]* + r*(s){ --yEzi(s)e-.83* 
+ (1 — 7)Ez2(8)8-1831. 

(47) 

(48) 

As V0(t) is continuous for all t 0, and z(t) is continuous for all 
t> o, 

(S)Z:(S) = -y V:, (S) + i* (S) —  (S) — zi (0)] 
+ (1 — y)Ee2(S) — 52(0)1 

or 
717:c (S)   

r*(2)  = 7E4 (S)  Z;(8)] — 751(0) — ('Y — 1)52(0) 
Therefore, 

V2(S) _  (S)Z2(8) 
V:c(8)  Ve(S) 

-yZ2(S) 
TEZi(S)  Z(S)]  — 7z2(0) —  — 1)52(0) ' 

and 
V2 (S)  r*(s)Z2 (S)   
(S)  17:e (S)  P (S)e (S) 

7Z2 (S) 
7Z(S) — -rzi(0) —  — 1)22(0) 

t Note that as vi(t) m ay not be continuous at t = nT, n = 0, 1, • • •, 

EVi(S)e-e r  17:(S)  (0). 

(49) 

(50) 

(51) 
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To determine the constant y, we note that the change in y2 during 
the sampling duration is a function of the current in the sampling 
switch: 

àv2(nT) = v2(nT) — v2(nT-) 

=  (52) 

As mentioned earlier, in(t) can be solved from Fig. 4 with the driving 
source e(t) = vd(nT) and the switch closed at t = nT. Since voc(t) is 
continuous for all t 0, vd(nT) = vi2(nT-) = vi(nT-) — v2(nT-). 
Hence, in the equivalent circuit of Fig. 4, we let e(t) = v12(nT-) and 
close the switch at t = nT. Solving this circuit, the current will be 
in(t) and the voltage across Z2 at t = nT ± p will be Av2(nT); i.e., 

3iv2(nT)  = 2_, I., r vi2(nT--) v (s) , e-n TS . Z i OS) ] I  , 

i_ s  .  t..nT-I-p 

where Y(S) = 1/[Z0(S) -F Z1(S) -I- Z2(S)J. From (53 ), 

7= 
v2 (n T)  

vil (nT-) 

Y= 2 T3 [•  (S) • e-n " • Z2 (S) ] / 
S t....nT-1-2, 

=  .C-1  i £ r 1  Y (S)• Z2 (S)  •  (54) 
i L S  f.-.7) 

Hence, in Fig. 4, if we let e(I) = u(t) and close the switch at t = 0, 
then the voltage across 22 at t = p will be the value of y. After y is 
found, either (50) or (51) may be used to enable us to replace the 
switch by an ideal sampler plus a transfer function, as shown in 
Fig. 11. 
To illustrate how this approach works, let us return to the practical 

sample-and-hold switch in Fig. 8. As stated in the last section, Z1 = 0, 
Zo = R + SL, and Z2 =  1/CS. Solving the series RLC circuit with the 

(53) 

IDEAL 
SAMPLER  

r —  1 voc v • 
I  I 

H(S) 1---v-= 
YZ,(S) 

H(SI.  , 
YLZ.T(S)4.2(S)1 -Yz i (0)-(Y-1) z2(0) 

Fig. 11—Transfer function diagram for the approximate approach. 
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driving source of u(t), the current io(t) is found as shown in (30): 

1   
(55) 

i°(t)  - 2/, \Ice  _ (e-B"  

Now y, the voltage across Z2 at t = p, can be found: 

=  fP io(t) dt 

i3 :3 _1#2 ,31  [  (1 —  e-131P ) —  (1 —  e—fe1P )1 

="-- 1 +  k,  (56) 
where 

Oie-s" k -  - 02e-sip 
a, 

P2 —  Pl 

is the same k given by (34) in the last section. Therefore, 

(1 + k) s 

MS) = * V2 (S) 
V1 (S)  (1 +  k)[ 11  k 

CS j  C 
1 - e-TS  1 +  k  

S  1 + ke-T 
(57) 

We now want to show that ./?(S) of (57) is a good approximation of 
H (S) of (33). From (33), we have: 

1 - S—TS  F (S) 
H (S) -  (58) 

S  1 + ke-Ts ' 
where 

F (S)  -  e1fi2  [1 - e-p(s-i-so 1 _ e-p(8+02) 
02 - S +01  S+ 132 _I (59) 

To show that H (S)  (S), we want to show that F(S)  1 + k. 
Since p is small, we have: 

02 - ei  2 
= 01482 

1),2 2 

TIME-DIVISION SWITCHES  025 



and 
1 k = 1  Rie-82 P - 132e-s1P 02(1 - e  f3 -s1P) - 1(1 - e-s2p) 

e2 - /31  02 +  ei 

1 0iP2 0eP2 
(32 _ 0, [R2  - 2 - /31 [02p - —2-

= 
2 r 

Hence, F(S)  1 k and H(S)  H(S). 
Finally, we note that as Zo approaches zero, the current i(t) does 

approach an impulse-modulated function. Thus, the approach de-
scribed in this section will always lead to the true answer when Zet =  0. 
For example, when R, L -› 0, the switch we modeled above becomes 
the ideal sample-and-hold switch. In this case k -› 0 and I-7(S) of (57) 
approaches 1 - e-Ts/S, the familiar ideal sample-and-hold transfer 
function. It can also be easily seen that if we start with this ideal 
sample-and-hold switch, i.e., Zo = Z1 = 0 and Z2 =  1/ C S, then y = 1 
and Z;(8) = 1/C(1 - e-Ts). From (51), we shall again have 
V2(S)/171*(S) = 1 - e-Ts/S as expected. 
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APPENDIX 

Calculation of G(S)Z2(S) and [G(S)Z2(S)]* 

Since Z2(S) = 1/GS, 01 = a - .N[a2 - 
co8 = 1/LC, we have: 

/32  a ± -Va2 - cd, and 

1  1   1 
GZ(S) = G(S)Z2(S) - 

LC 211,2  _ S 

f 1 _ e-pcs+ao 

1 S 

} 1 _ e_p(s+fil) 

S -1- e2 

0102  1 { 1 - 5-pcs+th)  1 -se+-pocs2+o2) 
02 - 01  S+ 13i 

and 

GZ*(S) -  /31132   

p2 - pi  i=1 
(-1)1+1 
0. 

(60) 

e— P(S+fit) 1  6-1)(S-1-00 1*1 

S +  0 
X  i +  S + 
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Hence, 

01132  I  ( — 1) e+1 r  i.  e-oce-Ts 
GZ* (8) — 

0  1 2 — Sl  i =1  Si i 1 - 8—T8  1 — 8—T8  

1  11 

1 — e—T88   + —13iT  1 — 8—T8 8-8 iT 

8—SiT8—T8  if 

where 

= . 

0102   2 (- 1) "4  [1 — 8— SiPe—T8  

02 —  i-1  1 _ e-TS 

0102   8—T8  [1 — e— OIP  1 — e—ea " 

132 —  1 — ,Ts Si  (3, 

1  e—TS 
02 — Si 1 — e—TR [Si  Si + 01e-132P 

e—TS  028-131P] 

= (1  k) 
1 — 8—T8  

k — 1316-829  — the-sly 
Si — 01 

(61) 

(62) 
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A 6.3-Mb/ s repeater for fiber optic communication systems is described 
which incorporates a high-impedance input amplifier. It is shown that 
by utilizing an input circuit with a time constant which is long compared 
to the bit interval and equalizing after the signal has been sufficiently 
amplified to set the signal-to-noise ratio, thermal noise can be decreased. 
As a result, a reduction can be realized in the required signal and, with 
an avalanche detector, in, the optimum gain. 
The repeater, which was realized in a compact form employing standard 

integrated circuits, utilizes a GaAs light-emitting diode as its optical 
source. Other features include automatic gain and threshold controls and 
recovered timing. 

I. INTRODUCTION 

Digital communication systems utilizing low-loss optical fibers are 
presently being investigated. The realization of fibers with losses as 
low as 4 dB/km' has opened the way for numerous applications. 
System configurations will depend on such factors as fiber dispersion, 
fiber cost, desired information capacity, and terminal costs. Trans-
mission rates near 6.3 Mb/s are attractive because fiber group delay 
dispersion is not expected to be a problem even with an incoherent 
source, and a wide variety of low-cost integrated circuits are applicable. 
If, as now appears likely, the fiber cost is low, then space multiplex 
could be an attractive alternative to time multiplex in achieving high 
capacity. 
The repeater described here incorporates a high-impedance input 

amplifier which is similar in approach to ones that have been used for 
other applications incorporating a capacitive detector such as nuclear 
particle counters2 and television cameras.' As a result of the high-input 
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impedance, the power required to achieve a specified error rate is re-
duced, as is the optimum gain if an avalanche detector is used. The 
latter advantage is important since it eases the fabrication of the de-
tector diode and increases its thermal stability. 
The repeater employs return-to-zero pulses with 50-percent duty 

cycle. The only word pattern restriction is that an occasional "one" 
be included so timing can be recovered and signal level can be deter-
mined. The optical signal is generated by a gallium arsenide light-
emitting diode (LED) operating at 0.91.4 wavelength.4 Diodes of the 
type employed have been built with output powers of up to about 
5 mW. Optical powers to 1 mW have been coupled from these diodes 
into a fiber with a 0.63 numerical aperture. The repeater was fabricated 
in a compact form using standard integrated circuits. Automatic gain 
and threshold controls were provided so the optical input power could 
vary over a wide range. Clamping was employed to prevent baseline 
wander with an unbalanced data content of the signal, and timing 
was extracted by a phase-locked loop. 

THEORY 

A typical circuit for a photodiode driving an input amplifier is shown 
in Fig. 1(a) and its equivalent circuit in Fig. 1(b). The current gener-
ator id is the photo current. li r is the de return resistor for the detector, 
and i,. is the noise generator associated with it. The capacitor Ca is the 

BIAS 

hv 

14  

BYPASS 

(a) 

DIODE 

AMPLIFIER 

AMPLIFIER 

(b) 

Fig. 1—(a) Input circuit. (b) Equivalent circuit. 

630  THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1974 



output capacitance of the diode, Ci is the input capacitance to the 
amplifier (excluding feedback effects), and Ri is the input resistance of 
the amplifier. The quantities ee and ieh are the spectral noise densities of 
the series voltage and shunt current generators which characterize the 
noise properties of the amplifier. 
A common approach to circuit design has been to set 

r=  RC 
< 1/baud rate, 

where 

R R R•  
— 

± Ri 
and 

C = Ca Ci 

to minimize noise while not introducing significant intersymbol 
interference. 
To achieve this, i,. and id, are often major sources of noise. There-

fore, from the standpoint of noise, it is preferable to make R,. very 
large and employ an amplifier with low ish, even if r>> baud interval, 
to amplify the signal sufficiently to set the signal-to-noise ratio, and 
then to equalize the resulting distortion to eliminate intersymbol 
interference. 
Two possible limitations to the high-impedance approach exist, both 

related to the low-frequency component of the signal developed across 
the detector. The difference in voltage between a long string of "ones" 
and a long string of "zeros" is proportional to the de load resistance on 
the diode. Thus, the required dynamic range of the amplifiers preced-
ing the equalizer increases with increasing R. Furthermore, with an 
avalanche detector this voltage could change the avalanche gain since 
it is in series with the diode bias. These two factors, which increase in 
importance as baud rate decreases, ultimately limit the magnitude of 
the detector load resistance. 
In the remainder of this section the relationships between error rate, 

signal power, and the circuit parameters are discussed for a binary 
signal with both states equally likely. It is assumed that Gaussian 
noise statistics apply, that dark current is negligible, and that the 
amplifiers preceding the equalizer are linear. 
Personick5 has shown that for a pulse of average power po with 

avalanche gain of mean square (g2), if we assume the optical pulses are 
distinct, the ratio of the pulse peak to the root mean square thermal 
noise in the baseband circuit is equal to the ratio of the average cur-
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rent of the received pulse to the square root of the quantity 

ne2pof h(g2)  12(p.) — ni, 
hv (1) 

where ni, the mean square thermal noise current* weighted to correct 
for input and output pulse shape, is given by 

ni Rah  2kT  II + (22 rf bC)2eLl 2] f b.  (2) 

The constants are 

T = temperature 

h = Plank's constant 

ii = optical frequency 

= detector quantum efficiency 

e = electron charge 

.fh = bit rate. 

The weighting functions I and  2, which take account of pulse 
shape, are given by 

Ii _L  1:,, HOUpt((i.0C;) 124)  

2 —  1  f  Ho ut (W) 
(27r)3f  H p(w) 

where H. 0ut(w) is the Fourier transform of the output voltage pulse 
shape, 11,(w) is the Fourier transform of the optical power pulse shape, 
and the pulses have been normalized so that the area of the optical 
pulse is unity, as is the magnitude of the output pulse at the center of 
the time slot. The functions I and /2 can be shown to depend only on 
pulse shape relative to the time slot length, not on baud rate. 
The probability of error can be readily derived from eq. (1), assum-

ing Gaussian noise statistics. For Gaussian-distributed noise, the 
probability that the noise current will exceed a value D is given by 

P(D)  erfc  i(p0)v2  , 
1  D   

where erfc is the error function complement and I the root mean square 

(3) 

2 
w2c.h.o, 

• Note that amplifier shot noise has been included in nt. 
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noise current.' We assume an ideal regenerator where a "one" is 
produced if the input exceeds a threshold level D and a "zero" other-
wise. Then if a "zero" is transmitted, the condition that the probability 
will be P. that the noise will exceed the decision threshold is given by 

D > QI(0),  (5) 
where 

Q =  erfc--1 (2P.).  (6) 

Similarly, so that the probability that the noise will not exceed the 
signal when a "one" is transmitted, the expected value of the signal, 
given by p,„„xne(g)/hv, where (g) is the mean avalanche gain and p..x 
the average power for all "ones," must exceed the threshold by Q 
times the noise current; that is, 

p.„„ne(g) D > Q1,-„„x. 
hv (7) 

From eqs. (1), (5), and (7), the average power required to achieve 
a specified error probability with avalanche gain is given by 

P h2PnQ [ ((g922))f  
(8) 

where (g2) is the mean square avalanche gain. (In the case without 
avalanche gain when thermal noise predominates, the first term in the 
bracket of eq. (8) can be neglected.) For avalanche photodiodes, it has 
been found that 

(0,2) =  )2+ x (9) 

and for silicon units x = 0.5. 
A value of (g) exists which optimizes performance.7 The value which 

minimizes the power required to achieve a given error rate, found by 
minimizing eq. (8), is given by 

2413  

(efb1Q) 1 

At optimal gain the power required to achieve a specified error rate 
is given by 

3h4  
P = negopt 

3hv elint 
P  2 1 e1 

(10) 

(12) 
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It is interesting to note that eq. (11) can also be put in the form 

3  p=  --p',  (13) 
Yopt 

where p' is the required power without avalanche gain. From eqs. (8), 
(10), and (12), the required power without avalanche gain, the optimum 
avalanche gain, and the required power with optimum avalanche gain 
are proportional to the second, third, and sixth roots of the thermal 
noise, respectively. 
The series noise source of a junction field effect transistor (FET) is 

virtually independent of the circuit parameters in the normal range of 
operation, and the shunt noise source is negligible at 6.3 Mb/s without 
input tuning. For an FET8 

(14) 

where gm is the transconductance of the device, so the thermal noise 
referred to the detector is 

1  0.7  )  + 0.7 (27 r f bC)2 12 ] , 
nt fb[( x + gmR , (15) 

gm 

assuming all the noise is due to the first stage of the input amplifier. 
For a good FET the input resistance is virtually infinite, so 

R = R. 

In a common-source configuration, C is the sum of the drain-gate, 
gate-source, diode, and gate wiring capacitances. 

III. CIRCUITRY 

Figure 2 is a block diagram of the repeater, which was constructed 
in a 51 X 4 X 11. inch enclosure. The main signal path is represented 
by heavy lines and boxes. The signal, which is detected by either a PIN 
or a silicon avalanche photodiode, is first amplified by a high-impedance 
input amplifier. Following this, additional gain is provided by an 
SN52733 integrated video amplifier. Next, the signal is equalized, then 
further amplified by another SN52733 video amplifier and filtered by 
a single-section maximally flat LC filter with a 7-MHz bandwidth 
which, in combination with the other amplifiers, gives a 3-dB point of 
about 6.3 MHz. From this point the signal is fed to the timing circuits, 
the automatic gain and threshold circuits, and the regenerator. Finally, 
the regenerated signal is amplified and applied to the LED. 
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Fig. 2-6.3 Mb/s repeater. 

TIMING 

DRIVER LED 

3.1 Input amplifier 

A 3-stage input amplifier was employed, as shown in Fig. 3. The 
amplifier consists of a 2N4416 junction field effect transistor followed 
by a 3N159 tetrode amplifier, and finally a 2N4416 in a source follower 
configuration. It was found experimentally that input amplifiers with 
a 2N4416 input stage had an input noise equivalent power about 1 dB 
less than with the 3N159. However, the tetrode can provide more gain 
for a single stage because of its low drain to first gate capacitance. 
Furthermore, the tetrode is well suited to automatic gain control since 
the g. of the device is highly dependent on the voltage applied to the 
second gate. Thus, the configuration of Fig. 3 was chosen. It was found 
that the input noise dropped by 6 dB when the first gate of the tetrode 
was shorted to ground, so 75 percent of the thermal noise originates in 
the first stage. Thus, this configuration is very close to optimum. The 
source follower was provided to decouple the input amplifier from the 
subsequent circuits. 

3.2 Equalization 

In order to compensate for the distortion introduced by the long 
input time constant, the circuit of Fig. 4 was employed. With a source 
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-90V AGC 

, 

Fig. 3—Input amplifier. 

+35V 

TO 
EQUALIZER 

of resistance R. and a load whose resistance is included in R2, it can be 
shown that the transfer function has a pole at 

and a zero at 

1 R1   \ s = C1lii(1 -I- R, ± R2 I 

1  
s — 

Gail ' 

Thus, the position of the zero can be adjusted by varying either C2 or 
R1 and, as long as 

R1>> R. + R2, 

the pole will be above the band of interest and have a negligible effect. 

3.3 Clamping and Peak Defection 

Since the amplifiers of the repeater are ac-coupled, the de level 
would be a function of word pattern unless suitable provisions are made. 

131 

Fig. 4—RC equalizer. 
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INPUT 
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D2 

3 

4 

1 C2 

PEAK 

Fig. 5—Clamp and peak detector. 

In addition, provision to measure signal level must be incorporated to 
set the threshold and to control gain. Clamping and peak detection 
were employed to solve these problems. 
By incorporating both automatic threshold and gain controls, the 

AGC gain need only be high enough to assure that the phase-locked 
loop will function properly and to prevent compression. This reduces 
the tendency toward instability because of a high-gain feedback loop. 
Figure 5 shows the circuit employed. Diode Di and capacitor CI 

serve as the clamp, and diode D2 and capacitor C2 serve as the peak 
detector. The diodes Ds, D4, and D5 are included to cancel the diode 
drops of Di and D2. 

3.4 Digital Circuits 

The timing coincidence and regenerator circuits, Figs. 6 and 7, share 
an SN72810 dual comparator and an SN7474 dual D flip-flop. The 
comparator has the property 

Vo = 1,  Vi > V2 

Vo = 0,  vi< v2, 

where 1 and 0 represent states. For the D flip-flop, the output Q takes 

INPUT 

PEAK 
DETECTOR 
OUTPUT 

Fig. 6—Regenerator. 
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Fig. 7—Timing coincidence. 

on the value applied to the D input when the clock input changes from 
low to high. This value is held until either the clock again shifts from 
low to high or the clear c is returned to ground. The output Q is the 
complement of Q. 
In the regenerator, Fig. 6, the comparator serves as a quantizer and 

the D flip-flop retimes the signal. On the flip-flop, feedback from Q to c 
is provided so the D flip-flop output will be a pulse of proper duration 
whenever the clock goes positive and the D input is high. 
The circuit shown in Fig. 7 is used to adjust timing coincidence 

between the phase-locked loop output and the regenerator. The D 
input to the flip-flop is kept high at all times. Adjusting the input to 
V2 of the comparator adjusts the delay between the time when a 
positive clock pulse is applied and the voltage of the clear (c) drops to 
a sufficiently low value to clear the flip-flop. The rising edge of the Q 
output is used to trigger the regenerator. 

3.5 LED and driver 

The LED driver consists of a cascade of two emitter followers. The 
driver is capable of generating 1.5-A pulses into a diode load. For the 
tests to be described, the diode was driven with 300-mA peak current 
pulses and generated optical pulses of about 0.3-mW peak power. 

IV. RESULTS 

Both signal-to-noise ratio and error-rate measurements were made 
to evaluate the input amplifier and repeater performance. The 2N4416 
JFET employed for all the tests had an input capacitance of 5 pF 
and g. of 0.006 mho. An additional picofarad of capacitance was added 
by the diode load circuit. The measurements without gain were per-
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formed with an SGD-040A PIN photodetector which had a capacitance 
of 2 pF and a quantum efficiency of 83 percent. For the measurements 
with gain, a TIXL56 silicon avalanche photodetector was employed. 
This diode had a capacitance of 1 pF and a quantum efficiency of 
55 percent. For both diodes, the noise calculated from the measured 
dark current was negligible. 
The constants II and /2 have been evaluated by Personick5 for 

rectangular optical pulses and pulses with a raised cosine spectrum 
and maximum eye opening at the regenerator input. He found Ii -= 0.6 
and /2 = 0.26. The theoretical curves presented here were obtained 
using these values. 
Measurements of noise equivalent power, that is, optical power to 

achieve a unity signal-to-noise ratio at the regenerator, were first made 
to evaluate the performance of the input amplifier. As shown in Fig. 8, 
the results for the input amplifier of Fig. 3 with equalization closely 
approximates those predicted from eq. (8) by setting Q = 1. The 
difference between the theoretical and the experimental curve is 
mainly due to the noise of the second stage, which was about 1 dB 
with the 1-Me diode load resistor. 
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Fig. 8—Noise equivalent power circuit vs. diode load resistance. 
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Other input amplifiers were also tried. It was found that with a com-
mon-drain first stage and a common-source second stage, with a 
1-MS2 diode load resistor, the noise equivalent power was about 1 dB 
higher. With smaller values of diode load resistance, where the resistor 
noise predominates, the common-drain input amplifier's performance 
was identical to that of the common-source input amplifier. Similar 
results were obtained with a cascade configuration using a bipolar 
transistor for the second stage. 
Figure 9 shows "eye" diagrams taken at key points in the receiver 

with a 1-11412 diode load resistance. Before equalization, the "eye" is 
fully closed, as is expected. After equalization, the "eye" is almost 
fully open. The regenerated pulse was photographed with recovered 
timing. 
The tracking of the threshold level with peak signal is shown in 

Fig. 10. The tracking in conjunction with the AGO is adequate, as will 
be apparent from the error performance. With germanium or Schottky 
barrier diodes in the clamping and peak detection circuit, the tracking 
could have been held even closer to the ideal, had this been necessary. 
The AGO also functioned properly. The signal level could be held 
within about a 20-percent range with the power up to 10 dB above the 
signal required for 10-8 error probability. Greater range could be 
achieved by cascading tetrode FET stages, if required. 

(a) 

N I « 
Fidlltdrima 

M >  V 
yin 

IA wpm" al ifilik 1  

I g i l l i e 1  c ) 

(b) 

Fig. 9—"Eye" diagrams: (a) Before equalization. (b) After equalization. 
(c) Regenerated pulse. 
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Fig. 10—Threshold voltage vs. peak voltage. 

2.0 24 

Error probability measurements were made under a variety of con-
ditions. The results are shown in Fig. 11. The signal source was a 215-1 
bit pseudo-random word generator. The signal consisted of 15 bit 
blocks each separated by a zero. The measurements were made with ex-
ternal timing and performance was optimized at each point, except 
the points indicated with es. For these points, which were taken to 
check the performance of the automatic gain and threshold controls, 
as well as the timing recovery, the system was optimized with recovered 
timing and AGC at an error probability of about 10-8 . Then all the 
points were taken without further adjustment to the repeater. 
The theoretical curve for a 4-k“ diode load resistor is shown along 

with the measured points. These points were taken with the source-
follower input amplifier because this amplifier introduced less inter-
symbol interference with the 4-k2 diode load resistor. The improvement 
with a 1-Ma diode load resistor over a 4-kSZ one was about 8 dB, which 
is in agreement with the theory. 
Measurements of repeater performance were made with a TIXL56 

silicon avalanche photodiode. This diode exhibits a significant diffusion 
tail. A second stage of RC equalization was employed to remove the 
resulting intersymbol interference. 
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Equation (10) indicates that the optimum avalanche gain is a 
function of error rate. However, since it is not practical to optimize the 
gain at extremely low error probability, the gain was optimized at an 
error probability of 5 X 10—' and then held constant for all the points. 
Table I shows a comparison of the measured and predicted values of 

gopt for 4-k0 and 1-Me diode load resistance. In view of the assumption 
of noise statistics and diode characteristic, the agreement is satisfactory. 

V. CONCLUSIONS 

It has been demonstrated that a simple compact low-cost* repeater 
suitable for fiber optic applications can be built which functions close 
to theory at 6.3 Mb/s. The high-impedance input amplifier and its 
associated equalizer were realized in a straightforward manner, and 
compression did not turn out to be a serious problem. A significant 
reduction in required signal power to achieve a specified error rate with-

The cost of the active components was about $30, exclusive of the detector and 
LED. An SUD-040 PIN detector costs about $15 and a TIXL56 avalanche detector 
$65. 
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Table I 

Detector Load Ohms Theoretical Gain Measured Gain 

4K 
1M 

171 
44 

188 
62.2 

out avalanche gain was achieved. With an avalanche detector, the 
optimum gain was greatly reduced with high impedance input, as 
predicted. Thus, the temperature stability will be greatly increased and 
the diode fabrication requirements eased with an avalanche detector. 
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The slab-coupled waveguide, consisting of a dielectric rod lying on a 
slab that in turn covers a substrate, is a multidielectric waveguide that 
includes such special cases as the single-material fiber, the rib waveguide, 
and the strip-loaded film guide. These guides have recently become known 
as potentially useful either for long-distance optical transmission or for 
integrated optics. 
Simple, closed-form, approximate solutions have been found to describe 

the following properties of the guide: number of modes, their field con-
figurations and propagation constants, numerical aperture, requirements 
for single-mode operation, field penetration in the slab, tolerance to curva-
ture of the guide axis, dispersion, and impulse response. 

I. INTRODUCTION 

Descriptions of three novel dielectric waveguides of wide potential 
use in long-distance optical transmission and in integrated optics have 
appeared in the literature recently. These guides are the single-material 
fiber1.2 (Fig. 1) made of low-loss undoped fused silica; the rib wave-
guides (Fig. 2) made of two materials, and the strip-loaded film guide" 
(Fig. 3) made of three materials. In all these fibers n3 is air or an inert 
atmosphere, while in a more general guide it could be another dielectric. 
Although these guides have different shapes and different distribu-

tions of refractive indices, they have essential elements in common 
that make them close relatives of the same family. A more generic 
member of this family of waveguides (Fig. 4), from which all the others 
can be deduced, is a fiber of arbitrary cross section at a distance I from 
a slab mounted on a substrate. The way in which this guide operates 
is simpler to understand than the others, and is described below. 
The modal spectrum of the fiber (1 = co) is shown in Fig. 5(a). In 

this example, five modes are guided and their axial propagation 
constants k2 lie between kn3 and kn2 where k is the free-space propaga-
tion constant 2r/X. Smaller propagation constants than km3 belong to a 
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Fig. 1—Photographs of an experimental (a) multimode single-material fiber and 
(b) single-mode single-material fiber (top), with magnified core region (bottom) 
(n > na)• 

continuum of radiating modes that are unimportant for this discussion. 
On the other hand, the isolated slab (1 =  ) supports modes with q 
extrema in the y direction. For simplicity we will assume that the 
field is well confined within the slab. The field components vary 
sinusoidally along x, y, and z and the respective propagation constants 
kx, k,, = rq/t and k, are related by the characteristic equation 

k, = \I/A' - - 7- )2 • 

Since k. can take any value between zero and infinity, the propagating 

n3 

Fig. 2—Rib waveguide (n > n1 and n8). 
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I .2 I 
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À 
Fig. 3—Optical strip line (n > ni, n: and ni). 

modes of the slab with one maximum along y, (q = 1) constitute a 
continuum with axial propagation constants ranging from zero to 

iik2„ _ ( 7 )2, 
as shown in Fig. 5(b). Similarly, propagating slab modes with two 
extrema along y, (q = 2) constitute another continuum with propaga-
tion constants k. ranging from zero to 

.\/k2n2 — (  ) 2, 

as shown in Fig. 5(c), and so on. 
Now let us imagine that, as in Fig. 4, the fiber and the slab are 

separated by a finite distance 1 which is far enough that their respec-
tive spectra are only slightly perturbed by the coupling. Modes with 
the same propagation constant kz will couple to each other. Therefore, 

,) Y 

_ ..e'ltd re , 
r  Ár 1. 

Fig. 4—Slab-loaded waveguide. 
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Fig. 5—Modal spectrum in: (a) isolated fiber of Fig. 4; (b) isolated slab of Fig. 4 
(only for modes with one half period across t; (c) isolated slab of Fig. 4 (only for 
modes with two half periods across 0. 

modes 1 and 2 of the fiber will remain guided without attenuation, 
though there is indeed an electromagnetic field in the slab that decays 
exponentially in the x direction (Fig. 4) away from the fiber. Mode 3 
will couple to the slab mode with the same kz of the spectrum in Fig. 
5(b) ; modes 4 and 5 will couple to modes of spectra in Figs. 5(b) and 
5(c), etc. The net result is that modes 3, 4, and 5 of the fiber will be 
attenuated by coupling to slab modes. The smaller the distance 
between fiber and slab, the tighter the coupling and consequently the 
higher the attenuation of these leaky modes. From Fig. 5 it becomes 
obvious that by adjusting the thickness t of the slab, the number of 
lossless modes can be selected. 
The most important point from this discussion is that only fiber 

modes with axial propagation constants kz larger than the propagation 
constant 

ik2n2 —  e. )2 
:Fig. 5(b)] of the slab's fundamental mode are lossless. Therefore, 
throughout the paper we will be concerned with the coupling between 
the field in the core's guide and the fundamental mode of the slab. 
Having identified the three basic elements of this waveguiding struc-

ture, a slab, a guide (also referred to as a fiber or strip), and the coupling 
between them, we will use the generic name of slab-coupled guides, 
fibers, or strips for all the members of this prolific family. Of course, 
we will reserve the names given by the original authors to identify 
individual guides. 
The general solution of the slab-coupled guide in Fig. 4 would en-

compass as particular cases those in Figs. 1, 2, and 3. However, only 
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Fig. 6—Slab-coupled waveguide. (a) Original guide. (b) and (c) Equivalent simpler 
guides. (d) Single-material guide. 

two extreme cases seem amenable to closed-form calculations: the 
case of feeble coupling described in Ref. 6 and the case of strong cou-
pling occurring when the separation between fiber and slab vanishes, 
and which is the subject of this paper. 
In Section II we consider the properties and characteristics of a 

somewhat generalized slab-coupled guide [Fig. 6(a)]. These are the 
following: 

(i) the equivalence to a much simpler guide shown in Fig. 6(c), 
(ii) the number of guided modes, 
(iii) their propagation constants and field configurations, 
(iv) the numerical aperture, 
(v) the design for single-mode operation, 
(vi) the field penetration in the slabs, 
(vii) the tolerance of the guide to the curvature of its axis. 

These general results are applied to the multimode and single-mode 
single-material fibers, rib guides, and strip-loaded guides in Sections 
III, IV, V, and VI, respectively. Furthermore, dispersion and impulse 
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response in single-material fibers are considered in Sections III and IV. 
The simple but burdensome mathematics involved are placed in the 
appendices to this paper. 

II. SOLUTION OF THE SLAB-COUPLED GUIDE 

Consider the somewhat generalized slab-coupled guide of Fig. 6(a). 
It is shown in Appendix B that if 

most of the electromagnetic energy travels within the region 
of refractive index n, 

(ii) the height and the width of the core are almost constants, 
(iii) there are no turning points within the core (0 < x < wmax ) 

or, in other words, exponential decay of the field components in 
the region of refractive index n occurs only in the slabs, and 

(iv) (1) 

then the four-dielectric guide with somewhat arbitrarily shaped core 
in Fig. 6(a) is equivalent to the single-dielectric guide with rectangular 
core in Fig. 6(c). Surrounding the dielectric of refractive index n, 
there is a material into which there is no field penetration and the 
x and y field components of the guided modes vanish at the interface. 
The dimensions of this equivalent guide are, according to eqs. (83), 
(84), and (85), 

T = 1(1 + ct), 

W = w(1  c.), 

H = h(1  ch), 

(2) 

(3) 

(4) 

in which the quantities c,, c., and eh, which are small compared to 
unity, are from (73), (74), (79), (86) to (89), (100), and (101). 

t vi ' v3 

h /  \ 
t77,2 

C f = 

Cw = 

I 2h ni 
wv3 n2 

2h 
wv3 

for modes polarized along x 

for modes polarized along y 

for modes polarized along x 

for modes polarized along y 
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Ch = 

where 

1  h2  V2 ) 
—  — tanh ( —h V2 +  tanh--1. — 
th. V2  V3 

for modes polarized along x 

2 i id  2  ) ni h2  n3v2 
n2vi -r n2v2 tanh ( —h v2 + tanh-1 

for modes polarized along y, 

th.2,3 =-- kin In — ny.2.3 ,t 
h=  h"  s, 

Win a. 

W max 
W  = V — 8,  

'max 

(7) 

(8) 

(9) 

(10) 

and hm and wmax are the maximum height and width of the portion 
of the core with refractive index n in Fig. 6(a) and s is its cross-sectional 
area. All these expressions are valid for  

{ if  Vn2 — n 
-2 — tan-1   i 

ni — ni 

v >   

2 

.. — tan-1 ni  n2  —  2.4.  
2  2 

ir 
n ni — n1 

where 

for modes polarized along x 

for modes polarized along y, 

y = khln2 — 4  (12) 

Four parameters, then, n, T, W, and H, determine the guide in 
Fig. 6(e) and we proceed to characterize its transmission properties. 
The guided modes are hybrid; however, the longitudinal field com-

ponents (along z) are small compared to the transverse ones; there-
fore, the modes are almost transverse electromagnetic (TEM). Within 
the core, these transverse field components vary sinusoidally along 
x and y. Within the slab, the field components also vary sinusoidally 
along y but decay exponentially away from the core. All these com-
ponents vanish at the edge of the guide. 
There are two families of modes, El, and E 5. The first family, Fig. 

7(a), is mostly polarized along y, and the main transverse field com-
ponents are E,, and H. Within the core, a mode has p field extrema 
(approximately p half periods) along x and q field extrema along y. 

l' Throughout this paper numbers or letters separated by commas must be con-
sidered one at a time. 
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Fig. 7—Two families of modes. (a) E„ modes and (b) E modes. 
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The second family of modes, Fig. 7(b), is mostly polarized along x 
and the main transverse components are E. and H. 
For both families, the axial propagation constant kg and the field 

penetration in the slabs dpg, that is the distance over which the field 
components decay in the slabs by 1/e, are according to (98) and (99), 

k. =- 
W(  - —H k2n2 [  " i2 ( 11 

1 + cg)   

1 7 li r PT   
k" = d,g --- -TY \I ' L WU -1- cg) f  ( HT Y ' 

where cg taken from (97) is 

2 T2 1 
r WH \b. i 0, v 

H ) 

The highest-order modes, which we will designate with indices 
p = P and q = Q, are those for which the penetration depth dpil is 
infinite. For them, eqs. (13) and (14). are reduced to 

(13) 

(14) 

and 

cg = 

k2 V 2 Exalo n - 
k2 

= —X = N A 
2T  ' " 

PT./,7 - .‘1 1 - ( CË-' )  72 - 2  712  
H  - WH 

While for ordinary fibers, the numerical aperture (N.A.) ili-r a 
is an exclusive function of the refractive indices of the core n, and the 
cladding ng, the N.A. of a slab-coupled guide defined in (16) is mostly 
a function of the wavelength and the slab thickness. The longer the 
wavelength and the thinner the slab, the larger the numerical aperture. 
This statement is true provided that the inequality (11) is satisfied. 
Naturally, an equivalent cladding refractive index 

(15) 

(16) 

n. = \/712 - (2.  )2 
2T 

(17) 

(18) 

is derived by equating k„,,i.lk to ng. 
The easiest property to observe in slab-coupled guides is, probably, 

the number of spots of the highest order mode guided. That number is 
the product of P and Q which are related to each other by eq. (17). 
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Fig. 8—Waveguide dimensions for E14 mode at cutoff. 

A plot using PT/W and QT/H as coordinates and r/WH as the 
parameter is shown in Fig. 8. Given T/W and T/H, the parameter 
T2/ WH, which selects one of these curves in Fig. 8, is also known. For 
the ordinate T/W corresponding to P = 1, the abscissa Q . T/H is 
determined and from it the maximum number of half periods Q . 
of the modes Efe... in the y direction. Similarly for the abscissa T/H 
corresponding to Q = 1, the ordinate Pr... T/W yields the maximum 
number of half periods P . of the modes EM..1 in the x direction. 
Example: For T/H = 0.5 and T/W = 0.1, the values Pm&x = 8 

and Q... = 1 (rounded off to the immediate lower integer) are 
obtained. 
The explicit values of Pm.. and Qr... derived from (17) are 

T 2 2 T21 
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and 

Q.=  Hr i _ é T \2 f 1 _  2T 21  

Y L ‘ w j \ TH ) j 

From this last equation, 
H 

T < r) . 
,,ern a% 

(20) 

(21) 

Consequently, for any guided mode the slab thickness T is always 
smaller than the half period of the mode in the core along y. This 
justifies one of the assumptions in Appendix B. 
The guide is largely overmoded if 

and 

T 
—W <<1 

—T <<1. 
H  ' 

(22) 

(23) 

then, the number of modes for each polarization deduced from (19) 
and (20) results in 

irWH 
N = 4 7, (24) 

Unlike ordinary fibers, the number of modes of a slab-coupled guide 
is mostly determined by its geometry. 
To dimension the slab-coupled guide for single-mode operation, 

eq. (17) has been plotted in Fig. 9 using T/H and T/W as variables 
plus two sets of parameters P = 1, Q = 2 and P = 2, Q = 1. The 
coordinates of the first line give the dimensions of a guide with the Ef2 
and EL modes at cutoff while those in the second line yield the guide 
dimension with the EL and Eg, modes at cutoff. The solid portions of 
both curves determine the smallest possible ratios T/W and T/H 
compatible with single-mode guidance. The discrete numbers on the 
curves indicate the ratio HI W. For a square core (H = W) we deduce 
from the figure that T/W '••-•-• T/H ''•-• 0.5. 
For the fundamental mode, the field penetration in the slabs, d11, 

is obtained from (14), making p = q = 1. With rearranged terms, 
eq. (14) reads 

W _  1   2T  1 
T  if  v i T V  T H V i _  /T\2 

\I1 - H ) _ kirdn )  k H ) 

(25) 
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Fig. 9—Waveguide dimensions for ee and Er modes at cutoff. 

and it is plotted as solid lines in Fig. 10 using T/H and T/W as co-
ordinates and T/dii as the parameter. 
In the same figure, the dotted line is a reproduction of the curve of 

Fig. 9 corresponding to the cutoff condition of the Efe and EV modes. 
The intersection of this curve with the others yields, then, the field 
penetration of the fundamental modes in guides designed to be at 
cutoff for the next higher order modes. 
The region between the solid curve with parameter T/dii = 

(infinite field penetration in the slab) and the dotted curve delimits 
the possible choices of T/H and T/W for single-mode waveguides. 

The region within the dotted curve corresponds to multimode wave-
guides. 
Let us consider now the attenuation of the fundamental mode due 

to radiation induced by the curvature of the guide's axis. If the guide 
axis is bent in the plane of the slab along a constant radius of curvature 
R, the attenuation of the fundamental mode in a 900 bend" is pro-
portional to 

R exp [  1  X2R 
Gen' d1 j 

656  THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1974 

(26) 



and it is negligibly small if7 

R > 24( )2d1. (27) 

The tolerable radius of curvature decreases rapidly with dn.. 
Shorter radii of curvature can be negotiated in the plane perpen-

dicular to the slabs if, as it happens in general, the field penetrations 
from the slabs into the media of indices n1 and 7/3 are smaller than d11. 
We can reuse Fig. 10 by substituting the parameter T/dii with its 

equivalent 
n.217' \i 

6.2 
RX2 

deduced from the equality in (27). For single-mode waveguides, the 
shortest dii and consequently the shortest tolerable radius of curva-
ture is achieved for TIH  T/W c-2 0.5. 
The pertinent calculations for curvature-induced losses in multi-

mode slab-coupled guides are carried on in Section III, where multi-
mode single-material fibers are considered. 

0.4  0.6  0.8  1.0  1.2  1 4 

T/H 

Fig. 10—Field penetration in slab du and tolerable radius of curvature R for 
fundamental mode. 
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III. MULTIMODE SINGLE-MATERIAL FIBERS 

Single-material fibers supporting any number of modes, Fig. 1(a), 
are characterized by 

nl = n2 = 713 = 1. (28) 

Under these circumstances, the location of the slab with respect to 
the core in Fig. 8(a) is not taken into account by the theory presented 
in this paper and, consequently, a more general cross section of single-
material fibers is shown in Fig. 6(d). Figure 6(c) is still its equiva-
lent (Appendix B). 
Multimode single-material fibers satisfy not only (28) but also the 

following inequalities 
h 

»l_  (29) 

2t 

Therefore, parameters (2), (3), and (4) defining the guide are sub-
stantially simplified 

T = t 

= w 

H = h 

(30) 

(31) 

(32) 

and are valid for all polarizations. 
According to (30), (31), and (32), the electromagnetic field is well 

confined within the guide. Using these values, the numerical aperture 
(16), the equivalent external refractive index (18), the number of 
modes for both polarizations (24), and the propagation constant for 
each mode (13) are 

N.A. =  « 1' 

7r S 
N = - - 

'2 t2 

(33) 

[1 — 1(- )21 2t  —  8 nt j  (34) 
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and 
2 

(36) 

where S is the core cross-sectional area. 
Unlike ordinary guides the number of modes N is independent of 

the free-space wavelength X. In other words, by keeping X fixed, the 
scale of the guide's cross section could be changed without vary-
ing the number of guided modes! How is it possible? The follow-
ing is a plausible argument. For a given wavelength, if S is increased 
the number of guided modes in the core should increase, but simul-
taneously the number of modes that can escape through the enlarged 
slabs is also increased. The fact that both increases compensate for 
each other can only by justified with the mathematics. 
Let us turn now to modal dispersion. Calling L the length of the guide 

and c the speed of light in free space, the group delay spread between 
any mode with propagation constant k, and the fundamental ones 
(which has a propagation constant very close to that of a plane wave 
in a medium of refractive index n) is 

With the help of (36) 

L d 
r -- —c dk (kz — kn). 

Ln (kn 
7' = -- —  - - 1 ) • 

c ki 

(37) 

(38) 

The maximum time spread occurs for the highest order mode which 
has the smallest k, value, kn.. Then, using (34) for the value of ne, 

7.  = /2 n / 72., _ 1\ __ L i 1._ V . 
c ‘ ne )  8nc‘t f (39) 

The impulse response is similar to that of clad fibers. A short im-
pulse feeding equally all of the guided modes arrives at the other end 
as many impulses unequally displaced in time.° However, the power 
density of the arriving pulse is uniform over the time interval 7' max 

given in (39) and zero elsewhere. This impulse response width being 
inversely proportional to the square of the slab thickness can be 
shortened by increasing t. 
Since there is more familiarity with clad fibers than with single-

material fibers, it is of interest to make a comparison between them, 
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assuming both guide the same number of modes N, and have the 
same modal dispersion spread Tmax. For a clad fiber of radius a and 
core and cladding refractive indices n and n(1 — à), those values 

are"•2 

and 

N k
f 2/ran y 

x ) à 

L A 
Tnia , =  fl. 

(40) 

(41) 

These two equations together with (35) and (39) are plotted in Fig. 11. 
The group of curves on the lower part corresponds to single-material 
guides, and those on the upper part correspond to the equivalent clad 
fiber. Dotted lines are for the modal dispersion spread and solid lines 
for the number of modes. The parameters are either the core diameter 
of the clad fiber or the square root of the core cross section of the single-
material fiber normalized in both cases to the free-space wavelength. 
Example: For a dispersion spread T of 26 ns/km and N/n = 100, 

the single-material fiber dimensions are t/X = 4 and -,r,g/x = 31.6, 
while those of the equivalent clad fiber are nà = 0.008 and 2a/X = 36. 
If the multimode single-material fiber is bent, all the modes become 

somewhat lossy; however, as in ordinary clad fibers the radiation loss 
is significant only for those modes whose plane wave components ex-
ceed the critical angle. Unlike clad guides, though, a bend in the plane 
of the slabs produces higher losses than a similar bend in the perpen-
dicular plane. This is due to the fact that, for a given mode, the field 
penetration in the slabs is far larger than in the material of index n1. 
The single-material fiber bent in the plane of the slabs on a radius 

of curvature R has a numerical aperture N.A.' and guides a number 
of modes" N', both of them smaller than the N.A. (33) and the 
number of modes (35) of the straight guide. As a matter of fact, 

(42) 
2t  R  X n 

and 
N , =  L.S1  i2nty] 

2 t2 L  R\ X 
Only half of the modes remain guided if 

Ri  4nt = w  
\.T )'  
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Fig. 11 —Multimode single-material fiber and its equivalent clad fiber. 
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Example: For n = 1.5, t/X = 2 and w = 50  from the previous formula 

follows 
R4 = 7.2 mm, 

a small radius indeed. 

IV. SINGLE-MODE SINGLE-MATERIAL FIBERS 

In single-mode single-material fibers, Fig. 1(b), of interest for 
optical communication, all of the dimensions are large compared to 

the wavelength of operation. Therefore, eqs. (28) through (32) are 
valid and all formulas and figures of Section II related to the funda-
mental mode in slab-coupled guides are applicable just by changing 
T, H, and W into t, h, and w, respectively. 
The dimensional requirements for single-mode operation with the 

next higher order at cutoff are determined by the solid line in Fig. 9. 
For example, it may be that for splicing purposes it is desirable to 
have a core of square cross section; then, from that figure, 

h = w = 2t.  (45) 

As in the multimode case, these dimensional requirements are inde-
pendent of the wavelength and, consequently, the cross section of 
the guide can be scaled to satisfy other demands, such as relief of 
splicing tolerances, simplicity of fabrication, etc. 
The propagation constant of the fundamental mode for both polar-

izations (13), the field penetration in the slabs (14), and the tolerable 
radius of curvature (27) are 

and 

where 

1 
k. = \Pc2n2 — R-2 [  1   

h2 w2(1  ci)2 

1 _  1   1   
din Ni t2 112 w2(1  c1)2' 

R 24 (n)2   

X [1  h"2 tv2(1  ci)2 1 

ci = 
212  1 
wh \b. .1)_\2 

Normalized values of d11 and R can be found as parameters in Fig. 10 

(46) 

(47) 

(48) 
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Table I 

e/h 0.33  0.5  0.9 0.33 

(gm) 
t/w 

0.53  0.51  0.33 0.1 

2 
5 
10 

0.23 mm 
2.1 
17.0 

0.32 mm 
4.9 
40.0 

2.6 mm 
40.0 
330.0 

74 mm 
115 
925 

Mode at Cutoff eiv EL'w Ere 

for different values of tlh and t/w. Points on the dotted curve belong 
to single-mode guides with either the EN' or Ee modes at cutoff. 
Continuing with the practical example above in which h = w = 21, 

we obtain either from (47) or from Fig. 10 

d11 = 0.42t.  (50) 

With the help of (48) or Fig. 10, one can calculate a table of tolerable 
radii of curvature (Tablé I) for the fundamental mode in a guide 
with either the Eff or Efiv modes at cutoff and assuming n = 1.5 and 
X = 1 lari. 

Shorter radii of curvature are achieved for smaller t and t/h ratios 
if the guide is designed for the Ee modes at cutoff (see Table I, first 
three colunms). As seen from the last column, guides designed for EN, 
modes at cutoff have longer tolerable radii of curvature. The guidance 
is not as tight and consequently less desirable. 
Let us turn to dispersion. Knowing kz (46) it is possible to calculate 

the dispersion (L/c)(8k0/9k) in a guide of length L. However, a more 
interesting result is the guide response to a Gaussian input pulse of 1/e 
width To. Following standard techniques to calculate responses 
through linear devices, one finds the output to be close to another 
Gaussian whose 1/e width is 

_ To  V 1 r 2L 32k012 51 
L c2Te, 81G22 j  ( ) 

The second derivative is to be calculated at the wave number k0 of the 
carrier and c is the free-space speed of light. 
For a given length of fiber L', the input pulse width To that mini-

mizes the output pulse width (T' = VT 0) is related to L' by 

L' = c2Tg  1 
2 ( a2k. 

ik_ko 

(52) 
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Assuming (46) to be applicable and ci « 1, 

c2r h2w2  
L = 4rn ° 

Example: For 

and 

then, 

n = 1.5, 

T0 = 10 PS, 

h = w = 20 gm, 

X = 1 gm, 

L' = 34 km. 

(53) 

As expected, the waveguide dispersion of the fundamental mode in a 
single-material fiber is very small and material dispersion may be more 
significant." 

V. RIB WAVEGUIDES 

These slab-coupled guides, Figs. 2 and 6(b), are characterized by 

n2 =  = 1, 

n — n1 «1, 

(54) 

(55) 

and h slightly larger than I. Substituting (54) and (55) in (2), (3), and 
(4), the dimensions of the equivalent guides in Fig. 6(c) are 

t (1 +  for Ef,« modes 
v 

T = .  (56) 
n; 

t (1  —  for Ey„ modes, 
n2v 

and 

where 

TV = w  for Ef,v, modes, 

[h (l ± 17vt for .67, modes 
H= 

h (1 ± nn211 v)  for Ey,, modes, 

(57) 

(58) 

y = kh1n2 — nY.  (59) 

Simplified by (54) and (55), eq. (11) says that expressions (56) and 
(58) are valid provided 

664  THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1974 



V> 
T  1 in2 — nf 
2 — n2 n —1 

for Er,„ modes 

for EL modes. 
(60 ) 

Using the values T, W, and H given by (56), (57) and (58) in 
previous equations and figures, the following results can be ascertained: 

(i) Propagation constants of different modes and polarizations 
(13), 

(ii) Maximum number of half periods P... and Q..., in the highest 
order modes Eta... and EX..., [(19) and (20) or Fig. 8], 

(iii) Dimensions of the guide for single-mode operation with the 
next higher order mode at cutoff [(17) or Fig. 9], 

(iv) Field penetration in slabs du for the fundamental modes [(25) 
or Fig. 10], 

(v) Tolerable radii of curvature in the plane of the slabs for the 
fundamental mode [(27) or Fig. 10]. 

VI. STRIP-COUPLED GUIDE 

This guide, Figs. 3 and 6(b), is characterized by 

n3 =- 1,  (61) 

(62) 

n —n n3 « 1, 

and 

(63) 

h = I.  (64) 

Substituting (61) through (64) in (2), (3), and (4), the dimensions 
of the equivalent guide in Fig. 6(c) are 

1 t (1 + 1)  for E 2 modes 
vi 

T=  (65) 

t (1 +   for Ef,„ modes, 

W = w  for ET,.„'' modes,  (66) 

t (1 ± t71 tanh hr)  for EL modes 

H=  (67) 

t (1 ± 77 -11% + n14 ,2tanh h2:2 for El modes, 
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where 

v1,2 = kt.in2 — ri12-  (68) 

These expressions are valid only if, according to (11) simplified by 
(61) through (64), 

r  2  7:21 1 

1 

V1 > 

7r  1 Ini —ni 
2  n2 "V  — 1 

for Ef„ modes 

for .67,„ modes. 

(69) 

It should be noticed that H cannot be made much larger than T just 
by increasing h2 because the field decays almost exponentially along 
y in the material of index n2, Fig. 6(b). As a matter of fact, the maxi-
mum value H is 

t (1 ±  ±   Vi V2) 

hmax = 
2  2  t (1 +  n2  ) 

n2vi n22,2 

for EL modes 

for EY,« modes. 

(70) 

As in the rib waveguide the values of T, W, and H in (65), (66), 
and (67) can be entered in previous formulas and figures to find 
propagation constants of modes polarized along either x or y (13); 
number of guided modes [(19) and (20) or Fig. 8]; dimensions of guide 
for fundamental mode operation with the next higher order at cutoff 
[(17) or Fig. 9]; field penetration in slabs for the fundamental modes 
[ (25) or Fig. 10]; tolerable radius of curvature for the fundamental 
mode [ (27) or Fig. 10]. 
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APPENDIX A 

Approximate solution of the slab 

Consider the two-layer slab in Fig. 12(a). Propagating along z, the 
field components are independent of x and the characteristic equa-
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h, 4 

h rl 

nl 

(a)  (c)  (b) 

Fig. 12—(a) Two-layered slab. ( b) Equivalent slab. (e) Field distributions (E1 
and 11,, or Et, and 112) in original slab (solid line) and in equivalent slab (dotted line). 

tion" is 

irq =  + tan-1    
— 4,2 

h2   
± tan-1 { K2# tanh [ — 

11 n— =1—fr2  h -Nitel — 4,2 tanh-' K3  V v1 4/2 , (71) 
K2 

where 
= kyh  (72) 

is the electrical height of the slab of index n; g is the number of field 
extrema within the slab; 

Assuming 

K1,2,3 
for polarization along y 

for polarization along z, 
(73) 

vi.2.3 = kidn2 — 742,3 •  (74) 

(75) 
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the field components vary sinusoidally along y in the medium of index 
n and exponentially in the others. 
Real solutions of (71), which correspond to guided modes, exist for 

values of vi larger than 

1  \in2  vrnia =  —  — tam-' IK2   —2  ,,2 
n1 — 

_ K a 
• tanh [  -Vva2 — d + tan1 1 —  n'   I 

h   K 2  — 

is 

(76) 

The simple asymptotic solution of (71) for 

vi >> Vmin  (77) 

irq  
(78) 

where 

Ch 
_L K 2  h2 -r  K a V2 ) —  —  2 1- — V  lall11,  --  —  •  (79) 

vl  y2  h  /12 Va 

The asymptotic solution (78) and the exact solution have been 
plotted in Figs. 13(a), (b), and (c) for several cases of interest. 
Since the percentile errors are small, even close to the cutoff values 

of vi, expression (78) will be used throughout the paper. 
Now we proceed to find a much simpler slab [Fig. 12(b)] that is 

equivalent to that of Fig. 12(a) in the sense that both have the same 
propagation constants 

and 

irq   
kM — h(1  ch) 

kz — 14. 

(80) 

(81) 

That is indeed the case if the slab in Fig. 12(b) has refractive index n, 
height 

H = h(1 ch), (82) 

and is surrounded by a hypothetical dielectric • such that all the 
transverse field components (components along x and y) vanish at the 
interfaces. This dielectric plays only the role of confining the electro-
magnetic field within the slab. 

•This hypothetical dielectric has infinite conductivity if E.  0 or infinite perme-
ability if II. 0 O. 
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/ 
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vi =01 •vrn2—n.î 

ni 

nni V, FOR ARBITRARY ni 

Eciv2 FOR nt 7in <.0 1 

Eji FOR ARBITRARY n1 

E0Y1 FOR °1: " 

(a) 

12 14 16 18 20 

Fig. 13—Exact and approximate width of dielectric slabs. (a) Symmetric slab. 
(b) Asymmetric slab (polarization along y). (c) Asymmetric slab (polarization 
along z). 
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A geometrical interpretation of the equivalence of the slabs can be 
gained from the field intensity distributions shown in Fig. 12(c). 

APPENDIX El 

Solution of the slab-coupled guide 

The exact solution of Maxwell's equations for the dielectric guide 
whose cross section is shown in Fig. 6(b) is very difficult because the 
boundaries are not analytical. However, a good quantitative insight 
can be gained if, as in Ref. 14, good guidance is assumed, that is, if 
most of the electromagnetic energy is contained within the guide. 
Then the field in the shaded areas, Fig. 6(b), can be ignored and the 
slab solution of Appendix A can be applied independently to each of 
the finite slabs of widths h, w, and t that make the guide. Thus, another 
dielectric guide, Fig. 6(c), is derived which is equivalent to that in 
Fig. 6(b) in the sense of having the same axial propagation constant k, 
and the same field penetration in the slabs of thicknesses t and T. 
Unlike the original guide that has four dielectrics, the equivalent one 
has a single dielectric of index n and is surrounded by a hypothetical 
material that forces the transverse field components (along x and y) to 
be negligibly small on the boundaries and confines the electromagnetic 
energy within the guide. The dimensions of this equivalent guide are 
related to the original one by the following expressions derived from 

(82), 

and 

where 

and 

H = h(1  ch), 

W = w(1 -F c.), 

(83) 

(84) 

T = t(1 -F cd),  (85) 

K. 
c. = 2 --

vw ' 

h Ki , K , \ 

C I =  V1  5 3  e 

r 
= 1?'  for polarization along x, 

Kt,   
1  for polarization along y, 

(86) 

(87) 

(88) 

= kw-Nin2 — i, (89) 

and, because of the choice of symbols, ch coincides with (79). 
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To solve the boundary value problem of Fig. 6(c) we make further 
assumptions. One is that the slabs do not perturb the sinusoidal dis-
tribution of field in the core and vice versa. Another assumption, 
justified qualitatively in the text, is that only the fundamental mode 
of the slabs of thickness T contribute significantly to determine the 
propagation constants of the modes of the guide. Then, the character-
istic equations of the core and slabs are 

k2n2 = (we y + ( )2 + 

k1/4 2 =  ± ( )2 

(90) 

(91) 

where p and q are the number of half periods along x and y, kx. is the 
propagation constant in the x direction within the slabs, and W. is 
the equivalent width of the core. W. is somewhat different from W 
because of the field penetration from the core into the slabs. 
To calculate W., we imagine the core divided by the dotted line in 

two regions, a and b. In region a the width is W. In region b the elec-
trical width 4i hW is given by the slab equation" 

rp =  -I- 2 tan-i - 4 
lexaW (92) 

With the value of Icz. deduced from (90) and (91) and considering that 
W.  W, eq. (92) becomes 

irp = qs -I- 2 tan-1 

and its asymptotic solution is 

r ITV  )2 -  vq11;7 )2  (ir e 

7rp 

1 + 
VV f qT 

H 

1 

(93) 

(94) 

Following the procedure described in Appendix A, the equivalent 
width of the region b of the core results in 

Wb = W [1 +  2T  1 

Vi — (e)21 H 

(95) 
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We will assume the equivalent width of the core W to be a linearly 
weighted average of W and W b. Therefore, 

= W (11  W bT 
H 

or 

in which 

W. = W(1 ± ce) , 

2  T2 1   
— mr ,   

7 VI' II 

) 

(96) 

(97) 

From (90), (91), and (96), we derive the explicit values of the prop-
agation constant of a mode and the penetration depth d" in the slab 
over which the field decays by 1/e: 

and 

IrP   Prq)2 
k, = •\ilen2  [W (1 + 4) j _ H I  (98) 

1 ir pT (qT )2 (99) kx. c777« = yi [ w  (1 ± cg)  H 

These results apply not only to the guides in Figs. 6(b) and 6(c) 
but also to the somewhat more general guide in Fig. 6(a) provided 
that (i) the curved edges depart only slightly from those in Fig. 6(b), 
(ii) no exponential decay of the field or, equivalently, no turning point 
is introduced by the wall deformations, and (iii) h and w are chosen 
to be 

and 

h =  s 
wmax  

/ Winax 
W = .\  S, 

nrn ax 

where hm«  and tv,,,„„ are the maximum height and width of the core 
portion of index n in Fig. 6(a) and s, its cross-sectional area. 
If exponential decay of the field were introduced by the wall de-

formation, the simple expression (98) developed for kx would not be 

applicable. 
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The choice of h and w in (100) and (101) are derived from the WKBJ 
method" or from the almost obvious demands: 

hw = s 
and 

h hm.  _ _ 
"  SX 

which mean that both portions of core with index n in Figs. 6(a) and 
6(b) have equal surface and equal aspect ratio. 
After so many approximations one wonders about the percentile 

errors in the final results (98) and (99). We can have some impression 
of the precision achieved by checking (98) against the more exact 
results developed elsewhere" in order to dimension an optical fiber of 
circular cross section at cutoff for the second mode, assuming small 
difference of refractive indexes between core and cladding. 
Calling a the radius of the fiber core, the pertinent values for (99) 

are 

n2 =-- no, 

t = 0, 

h --- w =  

2 
Ch = Cw 

-Nrir V 

c, = 

and 

where 

d,, -= 0, 

from (100) and (101), 

from (79) and (86), 

from (83) and (84), 

from (97), 

V = ka n2 — nî.  (102) 

Substituting the values of d„„, c, H, and W in (99), one obtains for 
p = 1 and q = 2, or for p = 2 and q = 1, 

V = 2.83, 

while the exact result is 2.4. The error of 18 percent is small indeed 
considering that at cutoff the assumption of negligible field outside 
of the guide is crudely violated. 
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The number of modes that can propagate without radiation loss in 
oversized waveguides is sharply reduced if the waveguide is coupled to a 
structure supporting radiation modes, the loss mechanism being analogous 
to Cerenkov radiation. The coupling formula derived in Part  is used 
to evaluate the loss for a specific configuration: a reactive surface (e.g., 
a thin dielectric slab) acting as a waveguide, coupled to a semi-infinite 
dielectric acting as a mode sink. The method consists in first assuming 
that the substrate is finite in size and lossy and adding the losses associated 
with each substrate mode. The substrate dimensions are subsequently 
made infinite and the dissipation loss is made to vanish. The expression 
obtained for the radiation loss coincides with an expression obtained by 
solving the boundary value problem. The method is then applied to the 
problem of mode selection for dielectric rods coupled to dielectric slabs, 
which is of particular importance for optical communications and inte-
grated optics. A 2-dB/m radiation loss is calculated for the first higher 
order mode when the rod radius is 10 um, X = I gnz, n = 1.41, and the 
rod-to-slab spacing is 0.15 gm. 

I. INTRODUCTION 

An expression for the coupling between lossy single-mode open wave-
guides was derived in Part  We now investigate the coupling of a 
waveguide with finite cross section with a waveguide with infinite 
cross section (called a substrate), the latter supporting radiation modes. 
Radiation losses are suffered whenever the propagation constant h of 
the guided mode is smaller than the highest propagation constant h. 
of the radiation modes carried by the substrate. Radiation then takes 
place at the Cerenkov angle O = cos-1- (hilt.). By properly choosing 
the dimensions and permittivities of the waveguide and those of the 
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substrate, it is possible to reduce the number of modes that can 
propagate without attenuation (in the absence of dissipation and 
scattering losses). This arrangement is of great practical importance 
because optical fibers are usually highly overmoded to facilitate fabrica-
tion and splicing.2 (For a coherent source, it is important to reduce the 
number of modes because different modes usually have different 
group velocities. If a short optical pulse is sent through the fiber, mode 
conversion takes place because of the imperfections of the fiber; this 
causes the pulse to spread in time.) The mode selection mechanism 
just described is also of practical importance in the microwave range 
for oversized waveguides such as oversized microstrips on dielectric 
substrates and oversized dielectric strips. • Multimoding in traveling 
wave tubes can also be avoided with the help of mode sinks. 
We investigate the loss mechanism for two specific configurations. 

First, a reactive surface acting as a waveguide coupled to a semi-
infinite dielectric acting as a mode sink. We show that, by adding the 
losses associated with each substrate mode, an expression for the total 
loss is obtained that coincides with an expression obtained by solving 
the boundary value problem. Then the method is applied to the prob-
lem of a dielectric rod coupled to a dielectric slab.2 The case of dielectric 
rods coupled to dielectric cylinders supporting whispering gallery 
modes and acting as mode sinks' will be discussed in another paper. 

II. RADIATION LOSSES IN SUBSTRATES —GENERAL FORMULA 

To evaluate the radiation losses, let us first assume that the trans-
verse dimensions of the substrate are finite, and let ho. = hor 
be the propagation constant of a trapped mode in the substrate, with 
h, real and hoi real positive (the subscript s stands for "substrate").t 
If ho denotes the propagation constant of a trapped mode of the wave-
guide in the absence of the substrate, the propagation constant h of 
the coupled wave is, from eq. (6a) in Part I, 

h = ho  4.(hoo — ho) — [1(h88 — h0)2 C2]i,  (1) 

where C2 sac 1)/ Pa P b denotes the coupling coefficient defined in Part 
I. The minus sign before the square root has been selected because it 

*In the microwave range, there are no compelling reasons for using dielectric 
waveguides that are large compared with the wavelength in all dimensions, but we 
may want to use strips (either metallic or dielectric) whose widths exceed one 
wavelength for improved accuracy. 
The dependence of the field on time (t) and on the axial coordinate (z) is denoted 

exp [i(112 — wt)]. This term is henceforth omitted. 
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corresponds to the mode whose field is concentrated in the waveguide 
cross section rather than in the substrate (that is, we require h = h. 
when C2 = 0). 
Let us now assume that h0 is real (lossless waveguide) and that 

h.i>> C.  (2) 

Using this condition, eq. (2), we can expand the r.h.s. of eq. (1) in 
power series of C2 and keep only the first two terms in the expansion. 
The loss is given by the imaginary part hi of h. Because the imaginary 
part of C 2 can be neglected in the case that we consider, we have 

hi C'hai[(h„,- — h.)2 h]-1.  (3) 
The total loss .,C experienced by the waveguide is now obtained by 
summing over the various modes of the substrate: 

= E ch„,[(h„,0 — ho)2 (4) 

where the subscript a refers to the substrate modes. We have assumed, 
for simplicity, that h„, does not depend on a. It is shown in the next 
section for a simple configuration that in the limit of dense substrate 
modes eq. (4) is in agreement with an exact result, obtained from a 
boundary value method. 
If we let the cross-section area S of the substrate tend to infinity, 

the substrate modes become denser and denser, and the summation 
in eq. (4) can be replaced by an integral 

= Ern E Chai[ (hora — h0)2 
a 

= f e (h.,•)h.i[(har — h0)2 111]-1dh,r, 

where we have defined a coupling density e by 

e(h.,.)dh,  1jiT E C!, 
a 

the range of a being defined by the condition 

har < hora < 

(5) 

(6) 

This density exists because, as S —› co, the coupling coefficient C2 
decreases at least as fast as S-1, the power in the substrate being 
proportional to S if the power density is kept a constant. 
We can now let Ii0, tend to zero, the condition eq. (2) being pre-

served. The second factor in the integrand of eq. (5) is sharply peaked 
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at h.,. = h0 and behaves as a symbolic S-function. Thus, in the limit 
—› 0 we have 

= ire(h.).  (7) 

It should be noted that the subscript a in eqs. (4) to (6) stands for 
three subscripts in, n, and s, where rn refers to modes in the x direction, 
n refers to modes in the y direction (we assume for simplicity that the 
substrate modes are separable in Cartesian coordinates), and s refers 
to the state of polarization (e.g., H or E modes). 

III. COUPLING TO A SEMI-INFINITE SUBSTRATE 

Consider a reactive surface coupled to a semi-infinite dielectric 
(Fig. 1). We consider only H modes and assume that the field is 

-  D - - 

(a) 

(b) 

Fig. 1—(a) Reactive surface, with normalized susceptance a, coupled to a semi-
infinite dielectric with permittivity o We.. For H modes, the structure is assumed 
terminated in they direction by electric walls. Radiation takes place at the Cerenkov 
angle O = cos-' [(le + a2)1/16-n], k  2r/X. (b) Variation of the field as a function 
of z. 
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independent of the y coordinate. Except for the changes x ,=-9 y and 
--> — i, we use Shevchenko's notation.4 
For waves propagating along the z axis, the electric field has only a 

y component that we denote E. In a region with constant e, E obeys 
the wave equation 

d2E/dx2 (w2 ego — h2)E = 0, 
H. = —h(e.w0)-1.E, 
H. = (i4,420)-idE/dx.  (8) 

If e has a finite discontinuity, E and dE/dx remain continuous. 
The general solution of eq. (8) for e = Eo and E are, respectively, 

E .=. A+eix.  A-e-ix., (e.)  (9a) 

E. = A7e1g1 (e)  (9b) 

X2  0,2,44  (10a) 

g2 eu.  h2 = u 2  x2, 
(10b) 

u 2  e.)m..  

The loss can be evaluated by solving the boundary value problem. 
At the reactive surface (x = —D), we have the condition (see Ref. 4) 

dEldx  ceE = 0,  x = —D,  (11) 

where a is a positive real number proportional to the susceptance of the 
surface. • We assume that, in the dielectric, the wave propagates away 
from the structure, that is, 

E, = A;eigx.  (12) 

Note that h is expected to have a small positive imaginary part ex-
pressing the radiation loss in the dielectric. Assuming that e is real, 
that is, that the dielectric is free of dissipation losses, eq. (10b) shows 
that g has a small negative imaginary part. Thus, the wave amplitude 
grows exponentially as the distance to the structure increases. This 
solution of Maxwell's equations is called a "leaky wave." 4 It is not 
difficult to show that the curves of constant irradiance in the dielectric 
are straight lines making with the z axis an angle O = cou' (ho/kn) 
(Cerenkov angle). 

• A thin dielectric slab with permittivity e and thickness d, supported by a 
magnetic wall, is equivalent to a reactive surface with normalized susceptance 
a = co2(e — „.An equivalent configuration, obtained by symmetry with respect 
to the magnetic wall, is a thin slab of width 2d with dielectrics symmetrically located 
on both sides. Note that a has the dimension of a propagation constant. 
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From eq. (12), the boundary condition at x = 0 is 

dE/dx — igE = 0,  x = 0.  (13) 

From eqs. (9a), (11), and (13), we obtain the equation defining x, or h, 

(x — ia)(x ± g) = (X -I- ia)(x — g) exp (2ixD).  (14) 

If we let aD tend to infinity, the reactive surface is uncoupled to the 
dielectric and eq. (14) reduces to x  xo = ia; that is, 

X2 4  w2€01.40 — h = —a',  (15a) 

g2 g ."=" w2(e — €.)11. + X.  (15b) 

Equation (15a) defines the propagation constant h0 of the uncoupled 
reactive surface. 
Let us now consider 

exp (2ix0D)  S  (16) 

as a small parameter and set 

x = xo xi5 ± • • •, 
(17) 

g = go ± gi& ± • • • , 

in eqs. (14) and (10b). Collecting terms of first order in 5 we get 

2ia(ia — go)/ (ia  g.).  (18) 

From eqs. (10a) and (17) we have, to first order, 

Im(h) = — (a/h0) Re (x1).  (19) 

Thus the loss ‘,C  Im(h) is 

2 = 4a3u-2h; lg. exp ( — 2ap),  (20a) 

or, explicitly, in terms of k, n, D, and a, 

4.2Ek2(n2 _ 1)]--i(k2 ± «2)-1 

X Ele (n2 — 1) — a2]i exp (-2aD).  (20b) 

If the micron is used as the unit of length, the loss in dB/km is ob-
tained by multiplying the r.h.s. of eq. (20b) by 8.7 X 109. 
This expression for the loss, applicable to small couplings, can be 

obtained alternatively from the equality 

h — h. = co (€ — €.)E+ •E„de  (E+ X H„ — E„ X H+) • dS,  (21) 

where (E, H) and h0 denote the field and propagation constant of the 
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wave guided by the reactive surface in the absence of the dielectric 
and (E+, H+) denotes the field adjoint to (E, H) (see Part I). (E,, H,) 
and h denote the field and propagation constant in the presence of the 
dielectric. The integral in the numerator extends to the dielectric cross 
section, and the integral in the denominator extends to the whole 
cross section. Equation (21) is exact and is readily obtained from Max-
well's equations.' The field (E,, H,), unfortunately, is not known. It 
may differ considerably from the unperturbed field (E, H) when the 
dielectric supports modes almost synchronous with the waveguide 
mode. This is why this expression, eq. (21), is, in general, not practical 
to evaluate the coupling between waveguides, or waveguides and mode 
sinks. The configuration presently considered, however, is sufficiently 
simple to be handled on the basis of eq. (21). 
For our case, eq. (21) becomes, with the approximation h  h., 

h — h.  — (w2µ.12h.) f (e — e.)EE,dx  f edx.  (22) 
-D 

The unperturbed field, normalized to unity at x = —D, is 

E = exp (ixx) exp (ixD).  (23) 

The perturbed field is obtained by assuming as before an exp (igx) 
dependence in the dielectric, matching E and dE/clx at the vacuum-
dielectric interface (x = 0), and stating that E, P.e., 1 at x = —D. 
We obtain 

E, = 2(1 + g/X)-1 exp (iXD) exp (igx),  x  0.  (24) 

Substituting in eq. (22) and integrating, a result identical to eq. (20) 
is obtained. 
Let us now apply to the same problem the method explained in 

Section II of this paper, which consists in adding the losses associated 
with each mode of the substrate. The coupling coefficient between two 
H modes, with fields E and E., was given in Part I. With our present 
notation we have 

C2 = 4221472(E2 f E2c1x)(E  f Lidx),  (25) 

where the integrals are over the whole cross section, and E, E, are 
defined at some point located between the two waveguides. 

• The contribution at infinity is assumed to vanish. Thus, it is implicitly assumed 
that the rate of decay of the unperturbed field exceeds the rate of growth of the 
perturbed field. This condition is always satisfied for small couplings. 
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The field E of the reactive surface alone is, as we have seen, 

E = exp (—ax).  (26) 

Thus, at x = 0, 

E2/ f .E2dx = 2a exp ( —2aD).  (27) 
-D 

Let us consider next the dielectric alone and first assume that its 
thickness Lx is finite. By matching E and dE/dx at x = 0 and x = L., 
we obtain the field at the vacuum dielectric interface, and 

L 
E28/ f  edx  W. /I . edx = 2du-2L;'.  (28) 

Substituting eqs. (27) and (28) in eq. (25), we obtain the coupling 
coefficient 

C l =  40 3 gb4-2 hj2 exp ( — 2aD)Lj'.  (29) 

Let us now evaluate the number of modes (N dh) in the dielectric 
whose propagation constants lie between h and h + dh. Because we 
are far from cut-off, the boundary condition is almost the same as for 
a metallic waveguide, E = 0. Thus, the condition on g is 

g. = mir/Lx, ni = 1, 2, • • • .  (30) 

Using the relation 
co2éjÀ. — h2,  (31) 

the mode number density is, from eq. (30), 

N =  (32) 

The radiation loss is obtained from eqs. (29), (32), and (7), and h = ho, 
g = go, 

2 = irC2N = 4a1/4 -2 11,71g. exp (-2aD).  (33) 

This result coincides with the result eq. (20) obtained by taking the 
limit of large D in the exact solution. The variation of the loss expressed 
in dB/km is given in Fig. 2 as a function of the normalized susceptance 
a of the surface, for X =- 1 gm, E/  = 2, and D = 1.5, 1.75, and 2 $.4m. 
For comparison, when the dielectric permittivity has the form 

E =  Ea je, (the dielectric is perhaps a lossy foam) and the spacing 
D is chosen as large as consistent with a loss of 10 dB/km at a = 6.28, 
the loss experienced is shown on the same figure as a dotted line. The 
comparison clearly shows the advantage of mode sinking over dis-
sipation for mode selection. 
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/ 

WAVEGUIDE 

100 

5.5 

--- -MODE SINK 

X = 1/am 

a(In -i) 

Fig. 2—Radiation loss in dB/km as a function of the normalized surface suscep-
tance a of the waveguide for a wavelength )1/4 -= 1 am, n2 ... 2, and D  1.5, 1.75, 
and 2izm. The dotted line is applicable to a dissipative dielectric. 

IV. COUPLING TO PLANAR SUBSTRATES 

Let us now consider a waveguide with propagation constant h1 
coupled to a substrate that extends to infinity in the y direction, but 
has a finite thickness in the x direction. This substrate is perhaps a 
reactive plane (e.g., a corrugated conductor) or a dielectric slab, as 
illustrated in Fig. 3. In any case, homogeneity of the substrate in the 
y, z plane is assumed. 
Because of the assumed homogeneity of the substrate, plane wave 

solutions 
Ea(x, y, z) = Es(x) exp (ilia„y -I- ih„z),  (34) 

where 
h„ = f(1,, co),  (35) 

exist at some angular frequency co (co is now considered a fixed param-
eter and is omitted). 
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2d 

  Es 

A 

Fla. 3—Dielectric rod coupled to a dielectric slab. The rod field E is shown for the 
spurious 1101 mode, and the slab mode is Hi, (v is a continuous index in the limit 
L„  re). Coupling takes place at rt,  O. 

In the discussion that follows, we consider only waveguide and sub-

strate modes that are even in y. Assuming that f is even in h„, and 
that the slab is terminated by electric walls, even modes satisfy the 

relation 
h„,L„ = 2nr,  n = 0, 1, 2 • • • ,  (36) 

where La, denotes the width of the substrate. La, will be later assumed 
to tend to infinity. The density N of even modes is from eqs. (35) 
and (36) 

N = (df/dh„)-1 (4/27r). 

If the substrate is isotropic, with wave vector h„ eq. (35) is 

h az f (h,„) = h2—h2 — hV , 

and the mode density is, from eq. (37), 

N = (h55/h55)4127r. 
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The loss is then obtained from eqs. (7) and (39). 

= ith1/f-1 (h1)]C2L5,  (40) 

the coupling coefficient C2 being evaluated from eq. (6) in Part I. 
It should be noted that, when the propagation constant of the wave-

guide mode (h1) is just equal to the propagation constant (h.) of the 
2-dimensional substrate, hay is equal to zero and the loss, according to 
eq. (40), is infinite if C2L5 remains finite. (This was not the case for 
the 3-dimensional mode sinks considered in Section III because, as 
La —› œ, the field at the surface of the dielectric tends sufficiently 
rapidly to zero to make CLa vanish in the limit.) This infinity at 
h1 = ha would be removed if some finite dissipation loss in the substrate 
were present. Even in the absence of dissipation losses, the radiation 
loss remains finite at h1 = ha, because the perturbation method on 
which eq. (40) is based is no longer applicable. The peak in the loss 
curve predicted by eq. (40) (analogous to a sound barrier) is pro-
nounced only for small couplings. 
Our general result, eq. (40), is now applied to a dielectric rod coupled 

to a dielectric slab. The thickness and permittivity of the slab can 
always be chosen in such a way that only the fundamental mode of the 
rod propagates without radiation loss. The calculation of the loss of 
higher-order modes is carried out for the case where the rod diameter 
and the slab thickness are very large compared with the wavelength; 
that is, when the rod is highly multimoded in the absence of coupling. 

Approximate expressions for the modes and propagation constant 
in the slab and the rod are given in the next subsections. 

4.1 Modes of the slab 

Let us consider first the modes in the dielectric slab. If the thickness 
2d of the slab is very large (more precisely, if s.)2(e — e0)1442 >> 1), the 
propagation constant of the fundamental H1 mode is approximately 
given by the condition that the field E vanishes at the boundary 

E(x, z')  Ea° cos (gax) exp (ihaz'). 

Thus, we have 
eeEma — h = (T/2a)2.  (41) 

*A more accurate and general expression is (see Ref. 5) g„d = m(w -12)(1 — 17-1 ) 
for H modes and gei = m(7/2)(1 — re-2V-1 ) for E modes, where m = 1, 2. • • is the 
mode number and V  ud. These expressions show that the H1 mode that we are 
considering in this section is the fundamental mode; that is, the mode that has the 
largest propagation constant. The difference M in propagation constants is, for 
m = 1, equal to d-i(r/2knd)2(1 — 1/n2). 
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(The axial coordinate is denoted z' instead of z to avoid changing our 
notation when waves propagating at some angle to the z axis are con-
sidered. The origin of the x axis is, in this subsection, at the center 
of the slab.) The axial (z') and transverse (x) components of the 
magnetic field are, within the slab, as we have seen before 

H. = —h.(cop,o)--iE,  (42) 

H., = (iw 0)-1dE/dx,  (43) 

and the power per unit width is approximately 

- I+d EH .dx = dh.(cogy).-'EL. 
—d 

The field at the boundary is in fact not exactly equal to zero. To 
obtain its value, we use the fact that the dependence of E on x in 
vacuum is exp (-29.x), where pi = I-a — ceedto, and the continuity of 
dEldx. We obtain 

(44 ) 

E(d) = (7/2d)p7'E so.  (45) 

Now let the slab have a finite width Ly with electric walls at 
y = ± L1,/2. The modes even in y can be described as a superposition 
of two infinite slab waves whose propagation constants are such that 

h., = ± 271-n/ Ly,  n = 0,1, 2, • • • .  (46) 

We have, by definition, 
kl, + he, _L2  (47) 

h8 being given in eq. (41). 
The field has all its components different from zero with the exception 

of E., which vanishes. The components Ey and H. are obtained by 
adding the field of the two waves. We obtain 

E„ = 2h88h;-1 cos (hayy) cos (rx/2d)E..,  (48) 

H.. = —2(i.c44)—ih88h,71(1112d) cos (h,y) sin (rx/2d).E.0.  (49) 

The energy flowing through the slab is obtained by multiplying P, 
given in eq. (44), by 2h.81171L1, 

P. = 2h.8(wg.)-1/41L1,.a„.  (50) 

The y component of the field at the boundary (x = d) is obtained 
from eq. (45) or directly from H.. = (icog0)-18E/ ax: 

E.„(d) = —p7licoi.e0H.8.  (51) 
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4.2 Modes of the rod 

Let us now turn our attention to the modes of the dielectric rod. 
We assume that the radius a of the rod is much larger than the wave-
length (a >> X). 
In the limit of large radii, the propagation constant of the funda-

mental HEn mode is given (see the appendix) by the first root of 
Jo(goa), namely, 

goa -a---- Wog. — hDia = 2.4. • •,  a—. co .  (52) 

The next higher order mode of the dielectric rod is the H01 mode.' 
In the limit of large radii, the boundary condition at r = a is E4, = 0, 
as for a round metallic pipe. The propagation constant h1 is therefore 
given by 

Ji(gia) = 0,  (53) 

whose first root is 

gift ---:-. Meg. — e ct = 3.8. • •,  a—" œ,  (54) 

Within our approximation, the field of the Hu mode in the rod (r < a) 
has components 

E0 = .1 i(gir), 
Hr = —hi(ún..)—iJ i(gir), 

H. = (icoit0)-191. I o(gir), 

and the energy flow is 

(55) 

a 
P = — ¡ E0H,.2irrdr = Thi(wg.)—Ia2J8 (gia).  (56) 

o 

To obtain the field Ee at the boundary (r -= a), we use the fact that 
dE/ dr is continuous and that the r dependence of Eo in vacuum is 
apprœdmatelyt exp ( —pir) where A  hi — w2Eds.. We obtain 

Ee(a) = PFli(41011.•  (57) 

4.3 Synchronization conditions 

For simplicity and because this is a case of practical significance, 
we assume that the rod and the slab have the same permittivity e. 

*The EN and HE,, modes have almost the same propagation constant as the Bat 
mode for large rod radii. For small radiation losses, they can be considered indepen-
dently of the Hol mode (see appendix). 
t The exact dependence of Eo on r is Ko(pir), where Ko denotes the modified 

Bessel function of the second kind. For large arguments, Ko(x)  (2/o,-x), exp (—x) 
and ro(x) = — (2/ii-) i exp (—x)  —1‘0(x). 
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The fundamental HEn mode of the rod is free of radiation loss if its 
propagation constant h. given in eq. (52) is slightly larger than the 
propagation constant h. in the slab given in eq. (41). For simplicity, 
we set h. = h. or, equivalently, g. = g.; that is, 

ir/2d = 2.4/a,  (58a) 

Or 

d = 0.65a.  (58b) 

Thus the ratio of the slab thickness to rod diameter is 0.65. (In practice, 
the slab has finite dissipation losses and a finite width. Furthermore, 
it is difficult to control accurately the thickness of the slab. For these 
reasons, it might be preferable to choose the -value of h. midway 
between the propagation constants of the HEn and 1101 modes rather 
than equal to the propagation constant of the liEll mode. If the 
former condition were to hold, we would find that the slab thickness 
should be equal to half the rod diameter.) Figure 4 gives the propa-
gation constants of the rod and the slab for n = 1.41 and a rod radius 
of 10 gm (X = 1 pm). 
Let us now consider one of the next higher order modes of the rod, 

the Hol mode. This mode radiates into the substrate modes that have 
the same propagation constant along the z axis (h.. = h1). Using eq. 
(54), we obtain 

col Ego — h = (3.8/a)2.  (59) 

Since 
r 3V  =  (60) 

and h. has the value he, given in eq. (52), we have 

he, = (3.8/a)2 — (2.4/a)2,  (61) 

or 
h„„ = 3.0/a.  (62) 

In the next subsection we evaluate the coupling coefficient between 
the 1101 mode of the rod and the substrate mode defined by eq. (62). 

4.4 Coupling coefficient 

The contour of integration for the evaluation of the coupling 
coefficient being arbitrary, it is convenient to choose this contour as 
the rod boundary, r = a. Along that contour, the I/01 mode field is a 
constant. 
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Fig. 4—Propagation constants (h) of the trapped modes of the rod and maximum 
value (h.) of the propagation constants of the radiation modes in the slab. It is 
assumed that 71 = 1.41, X = 1 pm, and a = 10 pm. The modes circled are those 
whose coupling is discussed in this paper. 

Let  denote the angle from the x axis shown in Fig. 3 and D the 
spacing between the rod and the slab. We have 

x = —D — a(1 — cos 0), 
y = a sin 0. 

(63) 

Because a >> X, the coupling takes place near the point of closest 
approach of the rod to the slab; that is, 95  O. We can therefore write 

x  —D — a02/2, 

y Pe airk. 
(64) 

The y dependence of the field slab is cos (h,y) = cos (h„5a4)). How-
ever, since, according to eq. (62), h.„ is of the order of a-1, the argu-
ment of the cosine function is small compared with unity in the range 
where the coupling is significant. Thus, we can neglect the dependence 
of the field of the slab on y. This approximation could be relaxed with 
little additional complication. 
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Using the above approximation, we obtain for the field of the H07 
mode (rod) at r = a, from eqs. (55), (56), and (57), 

H. = (iwee.)-1gao(gia),  (65a) 

= pFlicopoH.,  (6513) 

P = 7r1/7(wg.)-la2J8(gia),  (65c) 

where 
(02€12. — hi = (3.8/a)2, 

— (02€41.%=-1, c,2(€ — €.),.4.7  u2. 

For the slab we have, at r = a, from eqs. (49), (50), and (51), 
setting the arbitrary constant E„„ equal to unity, h„, r-z-i h, and taking 
into account the exp (73 .x) dependence of the field below the slab 

= —2(icoi.t.)-l(7r/2d) exp —73.(D  a4,2/2)],  (67a) 

E„„ =  (67b) 

P. = 2h,(cogo)-ML,,,,  (67c) 

with 
h. ,-r:z1h1 kn, 
pa  pi u = k (n2 — 1)1, 

7r/2d = 2.4/a. 

The coupling coefficient C2 is c2/PP., where 

(68) 

+3" 

C = a f  — E„„ cos (4,)H,]d4).  (69) 

From eqs. (65) and (67), it is apparent that the two terms in the 
integrand in eq. (69) are equal and add up if we make the approxima-
tion cos 4,  1. Thus, 

+.0 
c  2aEo (70) 

Using eq. (67a) for I-18z, we have 

11,,dcp = — 241.4-4 (r/2d) exp ( —738D) (27r/p,,a) 1, (71) f_. 
if we make use of the identity 

Loe+.0  e-b"dx = (7r/b)i.  (72) 

(66) 

Thus, 
c = 4apFigi(iwyo)-1 (7/2d)J0(gia) exp (—p.D)(2/r/pia)1, (73) 
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and 
C2 = (32/71-)gî(1r/2(1)3(u3h2aL„)-' exp (-2uD).  (74) 

Since the mode number density is given by eq. (40), the loss 

= 4-(h,z/h3)C2L,  (75) 

is finally obtained from eqs. (74), (62), (66), and (68), 

= 340n-1 (n2 — 1)--1 (kda5)-' exp — 2 (n2 — 1)ilcD].  (76) 

The loss in dB/km is obtained by multiplying the r.h.s. of eq. (76) 
by 8.7 X 102, the gm being used as the unit of length. Thus, for 
n = 1.41 and n = 1.01 we have, respectively, 

.edBikr. = 1.35 X 109X(a/X)-5 exp (-12 .5D/X), 

aed B/km = 675 X 109X;;(a/X)-b exp (-1.76D/X), 

n = 1.41,  (77) 

n = 1.01.  (78) 

For example, if D = 0.15 mm, n = 1.41, X = 1 gm and a = 40 gm, 
we find that the radiation loss of the 1101 mode is  = 2 dB/km. If 
D = 1 gm, n = 1.01, X = 1 gm, and a = 40 gm, the loss is as high 
as 1140 dB/km. The radiation loss is shown as a function of a/À and 
D/X in Figs. 5 and 6 for a wavelength of 1 gm, and for n = 1.41 and 
1.01, respectively. The amount of loss required to prevent the power 
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Fig. 5—Radiation loss in dB/km of the rod Ho, mode in the slab as a function of 
spacing D with the rod radius a as a parameter, for n,od = n„ie, = 1.41. These curves 
are valid for large values of D. 
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Fig. 6—Continuation of Fig. 5 for n = 1.01. 

transferred to the 1101 mode to be transferred back to the HEn mode 
and to cause pulse spreading depends on the fiber irregularities and is 
not accurately known. 
The above results are approximate and, to some extent, incomplete. 

In particular, the perturbation method that we used is not accurate 
when D is small. Also it would be useful to ascertain that the radia-
tion losses of the other higher-order modes are at least equal to the 
loss calculated for the 1101 mode. For some of these higher-order modes 
of the rod, it is necessary to take into account the higher-order modes 
of the substrate, both E and H, and this involves some complication.° 
In spite of these limitations, our result, eq. (76), should provide pre-
liminary information concerning the mode-selection mechanism 
afforded by 2-dimensional mode sinks. In particular, the very fast 
dependence of the loss on the rod radius (a—°) indicates that very 
large rods cannot be used if single-mode operation is to be achieved 
in air. However, if the gap between the rod and the slab is filled up 
with a material whose permittivity is only slightly smaller than the 
rod and slab permittivities, the rod radius a and the spacing D can be 
large, as Fig. 6 suggests. 
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APPENDIX 

Limit forms of the propagation constants in optical fibers 

Two approximations can be made, applicable to low-order modes 
in highly multimoded fibers and to fibers with small transverse varia-
tion of permittivity. A simplified presentation is given in this appendix. 
Low-order modes propagating in highly multimoded fibers cor-

respond to waves propagating almost along the axial direction, z. 
The propagation constant h is therefore close to km if n denotes the 
refractive index on axis. If the fiber refractive index is a constant 
within some contour and assumes a lower value outside that contour, 
the wave near a section of the contour can be assumed plane. Because 
it is incident at grazing angles, the electric and magnetic fields tend to 
zero compared with their values in the bulk. Thus, the electric and 
magnetic fields at the boundary of a dielectric rod vanish, compared 
to their values on axis, as the transverse dimensions of the rod tend 
to infinity for a given mode number. 
For a round fiber with refractive index n and radius a, the exact 

equation defining h is, using the notation of the main text,6 

n2J(u2) K(u2)  ir ./c(u2)  
upl.„(u1)  u2K,(u2)  u2Kp(u2) j 

[ viz (14 +u) 2 e ] 
(79) 

the axial and azimuthal variations of the field being denoted 
exp (ihx  imp) and 

ui  ga  (k2n2 — 10)4t, 

/42  pa  (h2 — k2)1a,  (80) 

k  ce(Eco.) 4. 

In the limit a —3 00, u2 tends to infinity and the second terms in the 
brackets on the 1.h.s. of eq. (79) vanish [K(x)/K(x) —+ —1 if x  col 
On the r.h.s. of eq. (79), h can be replaced by kn. Thus, it is apparent 
that eq. (79) becomes 

J(ui)/J,(ui) = ± p/ui,  (81) 

or, equivalently, using well-known formulas involving Bessel's func-
tions and their derivatives :̀ 

Jp-±1(u1) --= 0.  (82) 

We have vJ, 9 zJ = xJ,±1 and (for later use) FK, ±x1C; =Tx1C,±1. 
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Table I 

v < 0 

—2  —1  0  1  2 
-EH: J _a =  0  J -2 = 0  J_I = 0 Jo =  0 Ji = 0: HE 

7 7 /7 7 
(it = —2)  0£ = —1  11 = 13)  (, = 1)  Oh = 2)  P >  0 

7  

HE: J_I = 0  Jo = 0  J1 = 0  J., = 0 Ja =  0 :  EH 
V V 

[Note:  —  0<- >J =  0] 

For symmetry reasons, modes with opposite values of if have the same 
propagation constants. For is = 2, for instance, the propagation con-
stants of the two sets of modes are given by the roots Ji and J3. For 
is = —2, they are given by the roots J-3 and J_I. However, these are 
the same because J =  Equation (82) was given by Snitzer.7 
For the ElEn =  1) and I101  = 0) modes, the relevant solutions of 
eq. (82) are the first roots of 

Jo(ui) = 0, 
and 

ulo = 2.4. • • 

= 0,  Uio = 3.8» • . 

These are the results used in the main text. 
Because the modes Hoi, E01, and HE21 have almost the same propaga-

tion constants (see Table I), the validity of the calculations given in 
the main text can be questioned where the mode H01 was considered 
independently of the two other modes. It is therefore important to 
evaluate the actual splitting between these three modes. For simplicity, 
we consider only the Hol and En modes. The expressions giving the 
exact propagation constants of the H01 and E01 modes are, setting I, = 
in eq. (79), 

J1(ui)/uiJo(u1) = —K1(u2)/u2Ko(uo),  (Ho),  (84) 

(Eo).  (85) 

(83a) 

and 

Setting 

where 

Ji(ui)luao(ui) = — 77,2 i(u2) u2K0(u2) 

(83b) 

u1 = u.  (3,  o « 1,  (86) 

J1(u0) 0,  u. = 3.8. • •  (87) 

on the 1.h.s. of eqs. (84) and (85) and 

u2 = k(n2 — 1)4ci  (88) 

694  THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1974 



on the r.h.s., we obtain for the difference àh in propagation constant 
between the 1101 and E01 modes 

àha .-- (3.8/kna)2(1 — 1/n2)i.  (89) 

Except for a numerical factor, this result is the same as for a slab (see 
Section 4.1). If a = 10 gm, n = 1.41, and X = 1 gm, the beat wave-
length 2T/Ah is, from eq. (89), equal to 5 cm. 
The individuality of the H01 mode is preserved and the calculations 

given in the main text are valid if the loss .e is small over that length 
(e.g., 2 << 1 dB/cm for a = 10 pm). In fact, this restriction on ..0 
may be even less stringent than that calculated above because the de-
generacy between the three modes may be lifted further by the pres-
ence of the slab when the coupling is increased. 
The second approximation referred to at the beginning of this ap-

pendix is the scalar approximation widely used in optics. If the trans-
verse variations of the medium permittivity are small, the x and y 
components of the field satisfy approximately the scalar Helmholtz 
equation 

(02/ ax2 ± a2/8y2)E. ± Ek2n2(x, y) — h2J.E2 = 0.  (90) 

A similar equation holds for Ey, which need not be written down. 
Because all quantities are bounded in eq. (90), E. and its first 

derivatives are continuous functions of x and y. 
For the rod considered earlier, eq. (90) becomes, assuming an 

exp (iI.4) dependence of E. on ek, 

d2.E./dr2 + r-'clE./dr + (k2n2 — h2 — a2/r2)E. = 0,  r < a, 
cl2E./dr2 + r-1/41E./dr + (le — h2 — 122/r2)E. = 0,  r> a. 

(91) 

These are differential equations for Bessel functions. The bounded 
solutions of eq. (91) are 

E. = Jy(gr),  g2 -- kW — h2,  r < a 

E. = AK,s(pr),  p2 10 — k2,  r> a. 

Continuity of E. and dEx/dr imposes 

Jm(ui)/Kg(n2) = (Iii./122)4(u1)/K;(142), 

or, using the transformation formulas given before, 

up4+1(ui.)/Jm(ui) = u2K,,i-i(u2)/K»(u2), 

(92) 

(93) 

(94) 

a result previously derived by Snyder' from the exact equation, eq. 
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(79). In the limit a —+ 00, eq. (94) reduces to 

„(u1) = 0,  (95) 

in agreement with eq. (82). To each value of g we must associate modes 
corresponding to the two states of polarization of the electromagnetic 
field. This is illustrated in Table I. 
The physical significance of the scalar approximation is that if, 

for instance, a linearly polarized field, solution of eq. (90), is launched 
into a fiber, this field configuration is approximately maintained over 
a certain length. Eventually, however, the polarization is transformed 
because the two electromagnetic modes have slightly different real 
propagation constants as we have seen (for a report of experimental 
observations, see Ref. 8 in which the mode 1.4 = ±1 is illustrated in 
Figs. 3 and 4d) and/or different losses. The scalar approximation is 
useful to obtain approximate expressions for the propagation con-
stants. This approximation is not applicable to the evaluation of 
radiation losses if these losses are polarization dependent. This is the 
case, for instance, if the propagation constant of the rod mode lies 
between the propagation constants of the slab E and H modes. Because 
the split between these two modes is very small, this is unlikely to 
happen unless the optical waveguide has been specially designed for 
that purpose. In that sense, the scalar approximation may be applied 
to problems of radiation losses. 

REFERENCES 

1. J. A. Arnaud, "Transverse Coupling in Fiber Optics—Part I: Coupling Between 
Trapped Modes," B.S.T.J., 53, No. 2 (February 1974), pp. 217-224. 

2. E. A. J. Marcatili, "Slab-Coupled Waveguides," B.S.T.J., this issue, pp. 845-674. 
Experimental results for the case D = 0 were reported by P. Kaiser, E. A. J. 
Marcatili, and S. E. Miller, "A New Optical Fiber," B.S.T.J., 52, No. 2 
(Feburary 1973), pp. 265-469. 

3. J. A. Arnaud, "Note on the Use of Whispering Gallery Modes in Communication," 
September 1971, unpublished uork. 

4. V. V. Shevchenko, Continuous Transitions in Open Waveguides, Boulder, Colorado: 
The Golem Prams, 1971, Chapter 2. 

5. A. W. Snyder, "Asymptotic Expressions for Eigenfunctions and Eigenvaluea of a 
Dielectric or Optical Waveguide," IEEE Trans. on Microwave Theory and 
Techniques, MTT-17, No. 12 (December 1969), pp. 1130-1138. 

6. R. E. Collin, Field Theory of Guided Waves, New York: McGraw-Hill, 1960, p. 482. 
7. E. Snitzer, "Cylindrical Dielectric Waveguide Modes," J. Opt. Soc. Amer., 51, 

No. 5 (May 1961), pp. 491-498. 
8. E. Snitzer and H. Osterberg, "Observed Dielectric Waveguide Modes in the 

Visible Spectrum," J. Opt. Soc. Amer., 51, No. 5 (May 1961), pp. 499-505. 
9. J. A. Arnaud, "Transverse Coupling in Fiber Optics—Part III: Bending Losses," 

to appear in B.S.T.J., 63, No. 7 (September 1974). 

896  THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1974 



Copyright  1974 American Telephone and Telegraph Company 
THE BELL SYSTEM TECHNICAL JOURNAL 

Vol. 53, No. 4, April 1974 
Printed in U.S.A. 
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Low-loss strip-loaded guides, consisting of 7059 glass film on fused 
quartz substrate with sputtered SiO2 as the loading strip, have been in-
vestigated. The number of modes supported by the strip-loaded structures 
were determined experimentally and compared with the values predicted 
by the application of an equivalent index analysis. Agreement between 
theory and experiment is good in the case of the smaller number of modes 
which result from small loading, with the 7059 film thickness far away 
from cutoff. 

Current interest in optical fibers and thin film devices for use in 
optical communication systems has prompted the development of 
several new guided wave structures. One of these is a single material 
(SM) fiber' representing an unclad fiber with a structural support. 
Basically, this is a planar slab waveguide structure with an increase 
in slab thickness in the central region where the guided light is con-
centrated. The region with the increased thickness can be considered 
a strip which loads a planar slab waveguide.2 
Another type of a strip-loaded structure is shown in Fig. 1(a) where 

the planar waveguide has the higher index material and a strip of 
slightly lower index material acts as the loading. Since, within the 
region of the strip, most of the energy is confined in the fi/m, require-
ments on the edge roughness of the strip are no longer as severe as in 
rectangular film waveguides3 and therefore strip-loaded structures 
seem easier to fabricate. 
Recently, Noda et al.4 have demonstrated guiding in curved strip-

loaded guides using a glass film waveguide with photoresist strip 
loading. They also analyzed the modal distribution of the structure 
by using a variational technique which, however, requires extensive 
computer calculations. 
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Fig. 1—Geometry of (a) strip-loaded film waveguide and (b) equivalent symmetri-
cal waveguide. 

In this paper we report studies on a strip-loaded guide consisting of 
7059 glass film on quartz substrate with SiO2 as the loading strip. We 
use this structure to explore the characteristics of strip-loaded guides 
in greater detail. We confirm the observations of Noda et al. on the 
guiding properties of strip-loaded structures. In addition, we use our 
low-loss structures to determine the number of modes supported by the 
strip-loaded guides and compare these results with the values predicted 
by the application of an equivalent index approach. This equivalent 
index concept is helpful in understanding the guiding characteristics 
of the relatively complex structure in a simple manner. 
Figure 1(a) shows the geometry of a strip-loaded film waveguide. 

Wave propagation effects can be studied conveniently by dividing the 
structure into two regions. Region II represents an asymmetrical 
planar waveguide with no, nu, and no as the refractive indices of the 
cover, film, and substrate, respectively. D is the thickness of the guid-
ing film. Region I, on the other hand, includes a strip of superstrate of 
width W, thickness t, and index no. 
The energy is confined in the x direction because of the high index 

film. When viewed from above, we see that the structure is symmetrical 
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about the x-axis and can be considered an equivalent symmetrical 
guide [Figure 1(b)] with the loaded section having a higher index, 
thereby providing the confinement of energy in the y direction. We 
assume, however, that this equivalent symmetrical guide is unbounded 
in the x direction. Each mode in regions I and II can be characterized 
by its own phase velocity and the corresponding effective refractive 
index,' N1 = eific and NH i911/k. The difference in effective index 
between the two regions is responsible for the confinement of the energy 
within the loaded section in the plane of the film and is given by 

AN = eiek =  NH. (1) 

In order to determine the effective index N, in Figure 1(b), we as-
sume W » t so that region I can be considered a planar 4-layered 
structure. We assume that no > n., n., > n„. Using Maxwell's equations 
and matching the tangential field components at the interfaces, we can 
obtain the transcendental equation describing the propagation char-
acteristics of the TE modes 

KD = (14o érk. mir m =-- 0, 1, 2, 3 • • •,  (2) 

where 44 and 440 are the phase changes on total internal reflection at 
the film boundaries given by 

and the parameter 

= tan-1  
K 

Oc. = tan-1 7c 1 —   
K 1 + ne-h1, 

7 —   
= 
7 ± 

The transverse propagation constant in each layer is given by 

•y! = 0.2 — (kno)2,  (6) 

72 = 02 — (kn,)2,  (7) 

K2 = (kn0)2 — 02,  (8) 

= 02 — (kns)2,  (9) 

where k = co/ c = 27/A is the free-space propagation constant and fi 
is the propagation constant in the planar structure of region I. 
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Fig. 2—Dependence of effective refractive index N on film thickness D and loading 
height t. 

The effective index N can be obtained by solving eq. (2) by means of 
a computer. As an illustration, Fig. 2 shows the behavior of the effec-
tive index N as a function of film thickness D with the loading height t 

as the parameter for a specific set of values of the layer indices. By 
letting t = 0 in (4), we can obtain the propagation constant e of the 
planar guide in region II. We note the effective index N. (t) for a finite 
t is always larger than the case when t = O. Therefore, the loaded 
region of the equivalent symmetrical guide [Fig. l(b)] has an index N 
which is higher than that of the unloaded region by an amount AN. 
Figure 3 shows the plot of AN for the same parameters of the waveguide 
structure illustrated in Fig. 2. It is clear from Fig. 3 that, while àN 
increases with the height t of the loading, it does not have to be very 
large to achieve a reasonable value (of the order of 10-2 ) of N. In 
fact, the difference in àN between the cases t = 0.3 1.4 and t = co is 
indeed very small. 
The total number of modes p in the equivalent symmetrical guide is 

obtained from the cutoff condition& as 

2W 
p = 1  —2W x !N2(t) — N2(0)}  1 +  (2NAN)i, AN « 1. (10) 
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By -using the computed values for N (t) and N(0) in (10), the number 
of modes in the strip-loaded structure can be determined. 
We made several strip-loaded guides using RF-sputtered 7059 film 

waveguides on glass on fused quartz substrates. The film thickness was 
above cutoff, allowing at least one propagating mode in the film 
without the loading. To avoid using photoresist in the sputtering sys-
tem, a thin layer of SiO2 was sputtered on the 7059 film first and then, 
using photolithographic techniques, the SiO2 film was etched every-
where except over a strip region using buffered HF as the etchant. Etch-
ing was carried out in small steps to control the depth carefully. The 
loading strip width W was varied from 5 to 12.5 y. The height of the 
loading strip was 0.1 to 0.4 y, and the values for the thickness of the 
film were chosen to be between 0.2 to 0.5 g. 
A Gaussian He—Ne laser beam was apertured and used to excite the 

strip-loaded guide by means of a prism coupler placed directly on the 
strip (Fig. 4). Coupling to the strip-loaded guide was easier when the 
height t was small. In addition to the use of a rotating table in the 
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Fig. 3—Difference in effective refractive index between regions I and II vs film 
thickness D. 

STRIP-LOADED FILM WAVEGUIDE  701 



Fig. 4—Propagation of light beam guided in a strip-loaded guide. At the point 
where the strip is scratched, the light is radiated. 

prism coupler arrangement, provision was made to tilt the entire 
assembly in the plane perpendicular to the plane of the table. Each 
mode was excited by varying the position of the beam as well as by 
changing the angle of excitation. Where there are only few modes and 
very little mode conversion, the modes can be identified by viewing 
the far field pattern, and the number of modes can be counted by vary-
ing the exciting conditions. 
In order to compare the measured number of modes with the predic-

tions of eq. (10), we determine N and AN from Figs. 2 and 3. For this 
purpose, the refractive index nu and thickness D of the 7059 film was 
obtained by measuring the synchronous angles using a prism coupler.7 
The thickness t was measured using a Tally-Surf thickness measuring 
machine and the width W by viewing the structure in a microscope. 
The index of SiO2 film was assumed to be the same as that of the quartz 
disc used in sputtering. By computing N(t) and N(0), the number of 
modes p was calculated and is shown in Fig. 5. 
Each measured point (A) in Fig. 5 represents one guide structure. 

We find the agreement between theory and experiment is good in the 
case of smaller number of modes which result from small loading with 
the film thickness D far away from cutoff. Since it was rather difficult 
to excite the structure with a large strip thickness using the present 
techniques, investigation of structures with large strip thickness was 
not possible. Moreover, as the number of modes increased, the higher-
order modes could not be resolved because of mode conversions result-
ing from imperfections. In the case of higher-order modes, the measured 
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Fig. 5—Number of modes in the strip-loaded guide. The A points represent the 
experimental results. Note that N and AN are functions of X to be determined from 
Figs. 2 and 3. 

losses in the structure were as high as 1.5 to 2 dB/cm when the strip 
edge roughness was  6000 A and the lowest measured loss was 0.5 
dB/cm for the fundamental mode. It is also interesting to note that 
the edge roughness problem once again becomes important with the 
increased loading resulting from the increase in the energy content 
in the strip. 
A more generalized approach to these new guided wave structures 

has been developed by Marcatilis and our results are in agreement with 
his analysis. 
The author is grateful to H. W. Kogelnik for his encouragement and 

many helpful discussions; in particular, for the suggestion of the 
equivalent index approach. Thanks are also due to E. A. J. Marcatili 
for helpful discussions. The assistance of F. A. Braun and M. D. 
Divino in the fabrication of the structure is greatly appreciated. 
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Rayleigh Scattering and the Impulse 
Response of Optical Fibers 

By D. MARCUSE 

(Manuscript received September 7, 1973) 

The impulse response of multimode optical fibers is distorted because 
each mode carries the signal al a different group velocity. Mode coupling 
tends to reduce the width of the impulse response. Rayleigh scattering, 
being the most fundamental scattering process in optical fibers, serves as 

a mode-coupling mechanism. However, it also causes radiation loss. The 
penalty of a seemingly apparent improvement of the impulse response 
through Rayleigh scattering is calculated in this paper. We conclude that, 
because of the high loss penalty, Rayleigh scattering is not a suitable 
technique for pulse-width improvement. 

I. INTRODUCTION 

The term "Rayleigh scattering" describes light scattering from re-
fractive index inhomogeneities whose linear dimensions are much 
shorter than the wavelength of light. Most of the scattered light 
escapes from the core region of the fiber and enters the cladding or the 
space outside of the fiber. Some of the scattered power goes into other 
guided modes. Rayleigh scattering thus contributes to the losses in 
the fiber and also influences the impulse response through mode 
coupling. 
Since mode coupling tends to improve the impulse response of optical 

fibers,' ,2 the question may be asked: How beneficial is Rayleigh 
scattering for light transmission in multimode fibers because of its 
mode-coupling ability? To answer this question we investigate the 
loss penalty that is incurred if Rayleigh scattering is assumed as the 
only mode-coupling mechanism. 
For simplicity, our study is limited to a slab waveguide model (see 

Fig. 1) assuming that there is no variation of the refractive index or 
the light field in the y direction. Ignoring coupling between guided 
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2d nl 

WAVEGUIDE CORE 

n2 

Fig. 1—Schematic of slab waveguide. The scattering centers are distributed 
randomly throughout the core and the outside medium. They are infinitely thin 
threads of slightly different refractive index extending in the y direction. 

modes traveling in opposite directions, we calculate the width of the 
impulse response and the amount of scattering losses. These calcula-
tions allow us to establish the loss penalty. We find that the loss 
penalty for any significant pulse-width reduction caused by Rayleigh 
scattering is intolerably high. Thus, it is not feasible to improve the 
pulse dispersion of multimode fibers by intentionally implanting 
Rayleigh scatterers into the dielectric material of the fiber. However, 
improved pulse transmission is obtainable by using other carefully 
engineered mode-coupling mechanisms.' 

II. THE COUPLING COEFFICIENT 

The even guided TE modes of a slab waveguide consisting of a 
perfect dielectric are determined by the y component of its electric 

field.' 
.E„ = A cos Kx  1x1 < d.  (1) 

Ey = A cos Id e-7(1 z1-d) I x I > d.  (2) 

The odd guided modes are given by 

E„ = A sin ¡cd 1x1 <d.  (3) 

E, = x A sin kd e-70  zl-d>  I x I > d.  (4) 
x I 

The magnetic field components are obtained by differentiation: 

and 

aE, 
Hz = — 

wiÀo az 

aE 
H, = — 

WILO  d X 

(5) 

(6) 

The factor exp [j (cet — )3z)] is omitted from these and all subsequent 
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field equations. The width of the core of the slab is 2d. The parameters 
K and y are defined as follows: 

=-- (riîk2 — 02)+  (7) 
and 

-y = (e2 — 4k2), (8) 

with k  coli€ 74,1), ni = core index, and n2 = cladding index. The 
propagation constant 19 is obtained as a solution of the eigenvalue 
equations: 

and 

tan Kc/ = for even modes 

tan IA = — —  for odd modes. 

(9) 

(10) 

The amplitude coefficient is related to the power P carried by the 
mode 

A 27£42oP  \i 
(1 + -yd),3 ) • (11) 

In addition to guided modes, the slab with infinite cladding has radia-
tion modes. The magnetic fields of the radiation modes follow from Et, 
by means of (5) and (6). The E, component of the even radiation modes 
is' 

E = B cos ax  1x1 < d  (12) 
and 

(2copoP ! ) cos [p(1x I — d) Ira  I x I > d,  (13) 

with tk defined by 
cr sin ad 

tan' —  (14) 
p cos crd 

The amplitude coefficient B is given by 

2p2cogoP   
B (p2 cos2 crd  a2 sin' cid) ) Y (15) 

The parameters o• and p are defined by 

=  (nîlc2 — 192)1  (16) 
and 

= (nek2 02)1 •  (17) 

Similarly, for the odd radiation modes we have 

Et, = C sin ax  1x1 < d  (18) 
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and  

( 244:reee  Ey =  Y sin [p( x I - d) ±  1x1 > d.  (19) 

Phase (1) is defined by 
p sin ad 

tan 4, - 
ci cos ad 

and the amplitude factor is given as 

c 2p2o4toP  t 
irj3(p2 sin' ad ± 0-2 cos' cid)) 

(20) 

(21) 

The coupling coefficient between two modes has the form5-7  
f . 

K, = -°-we  (n2 - ni)E„E;dx.  (22) 
4iP , 

Ep and Ey are the y components of the electric fields of two modes 
labeled p and /L. The index distribution n = n (x, z) describes the wave-
guide with slight random fluctuations around the average value, and 
no = no (x) is the index distribution that defines the ideal slab wave-
guide. It is no = n, in the core and no = n2 outside. The ensemble 

average of n' - n8 vanishes, 
(n' - n8) = 0.  (23) 

The power-coupling coefficients are obtained from the expressionm 

1 L h„ =  dz  dz' (K„(z)K:y(z'))e“#1,- 
o o 
w 2  f  e f L 

CiX  dx'  dz  dz' ( (n2 -  _ ne)) 
16LP2 o  o 

X E  (2-2'). (24) 

The prime indicates quantities depending on x' and z'. 
The purpose of this calculation is to study Rayleigh scattering. For 

this reason we may assume that the correlation of the index fluctuations 
reaches only over distances that are much smaller than the wavelength 
27r/flp. The following correlation function is used: 

((n2 - n8) (n" - n42) = D2( (n2 _ 74,2, ) (x - x')(5(z - z'),  (25) 

where D is the correlation length of the index fluctuations. Substitution 

of (25) into (24) leads to 
2 2 
Eo  h„ - D' ((n' - n8)2) f  E 121E ,12dx.  (26) 
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The remaining z integration (after integration over the delta function) 
over the distance L resulted in a factor L that canceled from the 
equation. 
To evaluate the remaining integral in (26) we make the following 

assumption. All modes are considered sufficiently far from cutoff so 
that the guided mode fields are very weak at the core boundary, x  d, 
and negligible outside of the core. For a guide supporting very many 
modes, this assumption is justified for most of them. Thus, the integral 
in (26) effectively extends only over the region of the core. The 
integrals are of three different types: 

çd 

.12 =  I  cos' tc„x cos' ic,x dx,  (27) 
—d 

fd 

12 =  I  sin' ix sin' ic,‘x dx,  (28) 
—d 

and 

= j.d cos' K...z sin' x»x dx. —d 
(29) 

Since almost all modes have rapidly oscillating fields in x direction 
inside of the core, we approximate these integrals by 

d 
12 = 12 = Ig r.. "/ — • 

2 

With the help of (11) and (30) we obtain from (26) 

1c47,7,4   h, —  D2( (n2 _ 42). (31) 
8(1 ± *Y4)(1 ± -re0049,. 

In the spirit of our approximation, we may assume 74 » 1 and 
ni/c, where n1 indicates the core index. Thus, the power-coupling 

coefficient can be approximated as follows: 

h = h, = —10 1)2((71.2 — n8)2).  (32) 
8red 

(30) 

In this far-from-cutoff approximation, the power-coupling coefficient 
is independent of mode number. Rayleigh scattering couples with 
equal strength all of the modes. 
With the same type of approximations, we obtain from (11), (15), 

(26), and (30) the coupling coefficient between a guided mode labeled 
y and an even radiation mode with propagation constant : 

p2kars ( (n2 _ 42) 
h!e) (s) —   (33) 8l/  al (p2 cos2 crd  cp.' sin' crd) 
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Coupling to odd radiation modes leads to the same type of coupling 
coefficient, 1e) (0), except that cos Œd and sin cid are now interchanged. 
The power (scattering) loss coefficient for mode Y is 

ink 

ap =  2f  [le (0) + he» (e)]d,.  (34) 

This expression can be justified as follows. The power-coupling co-
efficient indicates the amount of power flowing per unit length from 
the guided mode to each individual radiation mode. The sum of the 
contributions to all radiation modes gives the total loss. Since radia-
tion modes form a continuum, the sum becomes an integral. The 
factor 2 in front of the integral indicates the doubling of the loss 
caused by power flowing not only into forward but also into backward 
traveling radiation modes. The integral over p can be converted to 
integration over  as follows: 

= 2 I
r
sk  
i [he) (0) -I- h!!') (e)] 11 co.  (35) 

The integration includes only propagating radiation modes. The con-
tribution of even and odd modes is very nearly the same, so that we 
use only the coupling coefficient (33) and double the factor in front 
of the integral: 

k3 D2(( n2  n 8)2)  [Ink  pd13 
—   (36) 2rni  o p2 cos2 cid CT2 sin' cid 

To the approximation used in this analysis, the power-radiation-loss 
coefficient of the guided modes is independent of mode number. 
An exact solution of the integral in (36) is hard to obtain. If we 

consider the fact that for large values of d the sine and cosine functions 
pass through many periods throughout the range of integration, we 
can replace the integrand by its average value over a few periods 
of the periodic functions. This average is 

(  P   p2 cos2 cid + a' sin' ud),,,,,,,,,, 

It now remains to solve the integral: 

f .2k 0  f C nee 
—  =  O     — arcsi n2 n — , (38) 

JO 0- 0 '‘Infk2 — 02 n1 

In most cases of practical interest the ratio n2/ni is very close to unity 
so that we can approximate the integral by ir/ 2. We thus obtain the 

1 

ci 
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following equation for the radiation power loss coefficient 

k3D2( (n2 — 4)2) 
a = a, =  — 2n1khd. 

4n1 

The last part of the equation follows from (32). 

(39) 

III. CALCULATION OF IMPULSE RESPONSE 

Pulse propagation in optical fibers can be described by the following 
equation for the average power2•7 

aP ° 1 aP,  N 
az + —v,—at = —cc,P ± E h,,(P, — P,).  (40) 

p -1 

This system of coupled power equations holds only for modes traveling 
in the same direction. Rayleigh scattering scatters power in forward 
as well as backward directions; however, we must ignore the back-
ward scattered power flowing into guided modes. Physically, it appears 
that this approximation should pose no difficulty, since only those 
modes that travel in near synchronism have a chance to interact 
thoroughly. Backward scattered power travels away from the pulse 
that created it; thus, it cannot alter the shape of the impulse response 
except, perhaps, by repeated reflections. Backward scattered power 
contributes mainly to the scattering losses. We have taken backward 
scattering into radiation modes into account, but the additional loss 
caused by backward scattering into guided modes contributes far less 
loss and is ignored in our treatment. Thus, we recognize that the ap-
proximation may lead to a slight underestimation of the total scatter-
ing loss. 
To solve (40) we use the trial solution 

P, .  

Substitution into (40) leads to 

A „ = h  .A. a — o-± Nh 0=1  ± i.  (_1 _ ni \ 1 (42) 
v,  c Jj 

(41) 

We used the fact that the loss coefficients and the coupling coefficients 
are independent of the mode number. The quantity N is the total 
number of modes. 
We obtain the group velocity of the modes from an approximation of 

the propagation constant. Using' 

K„d ,•̂,-', le 11  (43) 2 ' 
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we obtain from (7) 

13 Re. [nile — (I) -12fi n e • 

The inverse group velocity of mode 71 is 

1  dO  1 C1/3 _ 
V,  dw  c dk  ca 

Using nik >> pirl2d we obtain approximately 

1 ni GO), 
c 

with 

(44) 

(45) 

(46) 

7r2  
G —   8 (n d)2 (47) 

The solution of the equation system (42) is accomplished with ease, 
since we realize that the sum term in the numerator is independent of 
the mode label. Thus, the coefficients A, must be of the form 

A, = 
a —  Nh  GO 

(48) 

Substitution of (48) into (42) leads to an eigenvalue equation for the 
determination of u: 

N 

h E 1 

a —  Nh _ G122 

The sum can be approximated by the integral 

fON  dx   
a —  Nh  Gx2 

— 1.  (49) 

1   

[ico n: G(a — u + Nh)]4 

liw- GN2 
X arctan    

a — u  Nh 
(50) 

Thus, we obtain from (49) and (50) the eigenvalue equation 

GAP y  

a — 
  = tan { -1 (ito  G(a —  Nh)) } • (51) 

cr + Nh  h  c 

Fortunately, we need only the lowest-order eigenvalue since it has the 
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significance of the steady-state loss of the system of coupled modes 
and also determines the shape of the impulse-response function.2.7 
The solution of (51) is accomplished by using the fact that the lowest-
order eigenvalue must be close to the loss coefficient a. Thus, we set 

(52) 

Next, we expand the tangent function in series and solve for n. In 
this way we obtain the approximate solution 

4 ni N' 
ti = a -F —  — G I h co2 ita  GN2. 

45  c   (53) 

For our purposes the coefficient p of co' is of most importance. We 
obtain the general pulse shape by substituting (53) into (41) and 
integrating over co from —  to CO . Neglecting the w dependence of 
A „, we find a Gaussian-shaped pulse whose width j2 .7 

8 n1 NI 
at = 4V TL =  — G —  (54) 

1145 c 

The width of the signal in the absence of mode coupling is 

¿T =  
VN  V1  C 

(55) 

The relative improvement of the width of the steady-state pulse in 
the presence of mode coupling is expressed by the factor2,7 

àt    R  8   
—  —   (56) 
iT 1,145NhL 

Using (39) and (56), we define the loss penalty by the expression2,7  

eaL = 2.8 %led (57) 
N 

The number of modes is obtained from (44) with the help of the cutoff 
condition /3 = n2k for y = N; thus, 

2kd   
N = —  '.ni — n.  (58) 

The expression for the loss penalty thus assumes the form 

4.4 3.1   R2ceL —   r's/    

n2 
ni  n1 

(59) 
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IV. DISCUSSION 

We can now answer the question that was asked in the introduction: 
Is Rayleigh scattering significantly beneficial because of its ability to 
shorten the width of the impulse response? Let us assume that we 
have a slab waveguide with a core-to-cladding index ratio of n1/n2 
= 1.01. From (59) we obtain in this case 

leaL = 31.2 = 135 dB.  (60) 

We may now ask how much loss is associated with a relative decrease 
of the width of the impulse response by a factor 2, or R = 0.5. We see 
from (60) that the amount of scattering loss associated with this 
"improvement" is 

aL = 540 dB.  (61) 

This shows that if we are hoping for a reduction in the width of the 
impulse response with the help of Rayleigh scattering, we have to pay 
an intolerably high price in added loss. Since Rayleigh scattering 
losses are known to be quite small, (59) indicates that this mechanism 
does not help to reduce the width of the impulse response under 
ordinary conditions. 
We are thus forced to consider Rayleigh scattering as detrimental 

to light transmission in optical fibers. Fortunately, it is a small effect 
that does not provide prohibitively high losses at visible or infrared 
wavelength. 
It is easy to understand why Rayleigh scattering is not more effec-

tive in reducing the width of the impulse response. It has been shown 
that a very carefully shaped power spectrum of the function describing 
fiber irregularities is required to reduce the loss penalty for pulse 
width reduction.' Rayleigh scattering is particularly poorly suited for 
this purpose since its power spectrum is flat. Only a very small frac-
tion of the total amount of scattering is used for mode mixing, most 
of it is used for light scattering into radiation modes leading to scatter-
ing losses. 
Our calculation was based on a slab waveguide model. However, 

the result is expected to be representative of round optical fibers. 
Experience has shown that estimates of the performance of round 
fibers can be obtained from scattering data calculated on the basis of 
a slab waveguide model. 
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Coupling of Nearly Degenerate Modes in 
Parallel Asymmetric Dielectric Waveguides 

By L. O. WILSON and F. K. REINHART 

(Manuscript received May 15. 1973) 

The coupling of modes in two parallel dielectric waveguides is studied. 
The individual waveguides are assumed to be asymmetric and unlike each 
other. If the individual waveguides support modes with nearly equal 
propagation constants (32 and 04 = '92 + 2, then the double waveguide 
system will support two new modes with propagation constants 13-= i32— 
and (3+ = (34+ à. The shift à is related to A and to the shift (5 which would 
occur if the original modes were degenerate; f5 is expressed in terms of the 
parameters describing the asymmetric double waveguide system. The field 
distributions of the new modes are approximately even and odd combina-
tions of those of the original modes in the isolated waveguides; the relative 
amplitudes with which they are combined depend upon the amount of 
mismatching A. As the modes travel down the waveguide system, they 
partially cancel and add, thus transferring power. A power transfer ratio 
F is defined and is shown to decrease rapidly as à/ 45 increases. The beat 
length L depends upon both ê and A/ S; it also decreases as ,di/S increases. 
A numerical example is given to illustrate the effects of mismatching and 
to demonstrate the feasibility of constructing a mode-coupling device. 
Possibilities of tuning the device to reduce mismatching are discussed. 

I. INTRODUCTION 

Coupling of degenerate modes of parallel optical waveguides has 
been discussed by Kapany' and, to a greater extent, by Marcuse.' 
Such coupling is of particular interest in the field of fiber optics, since 
it may cause undesirable crosstalk between adjacent optical fibers used 
for light transmission. Marcuse' has applied the theory of degenerate 
mode coupling to the problem of crosstalk between cladded optical 
fibers embedded in a lossy medium and between cladded dielectric 
slab waveguides. The fabrication of devices which would actually 
take advantage of mode coupling, such as for light switching, modula-
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tion, or power transferra1,3 is fraught with practical difficulties, since 
the specification of physical parameters must necessarily be stringent. 
These difficulties require us to view the theory of optical waveguide 
coupling from a new vantage point. 
Let us first sketch briefly what is known. If two optical waveguides 

each have a mode with the same propagation constant a, then when 
the two waveguides are placed parallel to each other, the double wave-
guide system supports two new modes whose propagation constants 
are 0+ = fi ± 3 and 13_ = p - 8. These two modes are approximately 
symmetric and anti-symmetric combinations of the original modes in 
the isolated waveguides. The shift in propagation constant, 5, is 
related to the coupling coefficients involved in a description of the 
modes by means of general coupled line equations. It can also be ex-
pressed via a perturbation treatment of Maxwell's equations. Since 
the superimposed modes travel down the double waveguide system at 
different phase velocities, they alternately add and cancel. If the wave-
guides are lossless, power is transferred back and forth over a beat 
length L = 7/(20. On the other hand, Marcuse shows that, if the 
waveguides are lossy, they tend to equalize the power they carry, 
provided the modes travel far enough. A lossy external medium also 
causes mode loss. Marcuse further states that only degenerate modes 
exchange a significant amount of power if their coupling mechanism 
is independent of length. 
With this abbreviated version of the present theory in mind, we see 

several criteria which a mode coupling device should satisfy: (i) the 
core and cladding of each waveguide should be lossless, (ii) the medium 
external to the waveguides should be lossless, and (iii) the two wave-
guides should have a degenerate mode. (There are also other criteria, 
such as that the waveguide walls be free from imperfections, but they 
are not discussed.) 
The first criterion is an important one and certainly merits further 

study. In this paper, however, we avoid the issue by assuming that the 
device we fabricate has lossless waveguides. A subtler way to put this 
is to say that the device is short enough that losses can be ignored. 
The second criterion is satisfied by assuming that the claddings of 

the two waveguides are contiguous and that there is no medium ex-
ternal to them. Instead of thinking in terms of two optical fibers, we 
consider two dielectric slab waveguides placed next to each other. 
Fabrication would be similar to that currently used in the production 
of double heterostructure lasers and modulators.4' Each waveguide 
will consist of a slab of high refractive index surrounded by two slabs 
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of lower index. Since the double waveguide device will have a central 
slab common to both waveguides, the device can be modelled by a 
5-dielectric-slab model. 
The third criterion, that the two waveguides have a degenerate mode, 

motivates our present study. In practice, it is very difficult to fabricate 
a device with degenerate modes. It is therefore quite important to 
know how well the device will operate if the propagation constants for 
the modes are slightly mismatched. We study the effect of mismatching 
on the beat length and on the capability of the device to transfer power. 
We also discuss methods of tuning the device after it is fabricated. The 
tuning could be used to match the propagation constants more closely. 
It might also be used dynamically, thus offering the possibility of 
utilizing the double waveguide system as a light switch or a modulator. 

II. FORMULATION 

We adopt the standard slab model of an absorptionless dielectric 
medium. The optical dielectric K (s), i.e., the square of the refractive 
index, is assumed to vary only with x and to take the piecewise con-
stant form shown in Fig. 1. If the waves are assumed to travel in the 

K(x) 

K4 

2 2w4 

Fig. 1—The optical dielectric profile K (x) for the five-slab model. 

MODE COUPLING IN WAVEGUIDES  719 



z-direction with propagation constant 3, then the electric and magnetic 

fields are independent of y and can be expressed as 

E = e(x) exp i(cot — ez), 

H = h(x) exp i(wt —  

where co is the angular frequency of the light and t is the time. Both 
TE and TM modes exist. It follows from Maxwell's equations that the 
electric field e(x) of a TE mode is described by 

d'e —2 [1c2K(x) —  = 0,  (1) 

and that the magnetic field h(x) of a TM mode is described by 

K(x)  ddx K1(x)ddh;)  [1c2K(x)  e2]ity = 0.  (2) 

It is required that 
de, 

ev, dx ' 
1  dh„ 

K(x) dx 

be continuous. Since K(x) is piecewise constant, solution of eqs. (1) 
and (2) subject to the above conditions is straightforward. The 
solution of (1) is 

e(x) = A exp pix  x < 
= il[(Pi/P2) sin p2x + cos p2x]  O <X < 2w2 
= AC2[1 4- (pi/p2)T2I-X sinh p3(x — 2w2) 

± cosh p3(x — 2w2):  2w2 <x <2(w2 + w3) 
= A C2C3E1  (PdP2)T21[1 — XT3] 
X [(p3/p4) Y sin p 4(x — 2w2 — 2w3) ± cos pa (x — 2w2 — 2w3)] 

2(w2 w3) < X  2(w2  w4) 
= AC2C3C4[1  (pi/p2)T2][1 — XT 3] 
X [1 + (PalP4)Yr4] exp  P6(2w2  2w3  2w4 — x) 

2(w2  w3  gel) < x, (3) 

with 
Pi(e) = (02 — leKi)  i = 1, 3, 5, 
pi(e1) = (1c2Ki — 02)i  i = 2, 4, 

= cos 2 P2 W23 

C3(0) = cosh 2p3w3, 

C4(3) = cos 2p4w4, 

T2 ($) = tan 2P2 W2, 

U P) = tanh 2p3w3, 

T4(e) = tan 2p4w4, 
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1 [  pan —p   
X(13)  pa 1 + (Pi/P2) T2 (6) 

1 [  P4T4  P5  
(7) p3 1 ± (p6/p4) T4 

The amplitude A is arbitrary. Equation (3) satisfies the continuity 
condition on e(x) everywhere, and that on deml dx at all but the point 
x -= 2 (w2 w3). The continuity condition at this point leads to the 
eigenvalue equation 

T3(3) — 1xe  ±(a) 1717((%)) (8) 

which determines the values of the propagation constant e for which 
discrete modes can exist. 
For TM modes, the analogous equations are formed by replacing 

pi by 16i and wi by s, where 

K,4 (fl) = (e — k2Ki)1 i = 1, 3, 5, 
Ki (a) = (k2K4 — i = 2, 4, 

= Kiwi i = 2, 3, 4, 

and a- denotes the propagation constant for a TM mode. For simplicity 
of exposition, we have mainly confined our analysis to that of TE 
modes. It should be clear how to do the corresponding analysis for 
TM modes. 
We remark that the above analysis is quite general and makes no 

assumptions about the relative heights or widths involved in the 
dielectric profile K(x) sketched in Fig. 1. By making appropriate 
choices of the parameters, we could deduce from eqs. (3) to (8) the 
corresponding equations for a single asymmetric or symmetric wave-
guide, for example. Two cases which interest us particularly are: (i) 
K3 = K4 = K5 with K2 > K1 and K2 > K3, and (ii) K1 = K2 = K3 
with K4> K3 and K4 > K5. Each of these models an isolated wave-
guide. We call the first of these (with high dielectric region K2) guide 
II and the other (with high dielectric region Ka) guide IV. The eigen-
value equation (8) then reduces to 

X(9) = 1 
Y(13) = 1 

guide II, 
guide IV. 

These may appear more familiar to the reader when east in the standard 
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form for a single asymmetric guide' 

(pi/p2)  (p3/p2)  
tan 2w2p2 — 1 _ (pi/p2)(p3/p2) 

(Pa/p4) + (P5/P4)  
tan 2W4P4 — 1 _ (p3/p4)(Ps/P4) 

For the model of two adjacent waveguides, we place guides II 
and IV adjacent to each other as illustrated in Fig. 1, with 
K2 > max (K1, K31, K4 > max (K3, K51, and wi > O (i = 1, 2, 3,4). 
It is also a relatively straightforward procedure to write down 

precisely how many modes can exist with a given dielectric profile 
K (x) .7 Although we omit such expressions here, we do comment that, 
just as a single asymmetric guide may not be able to support a propa-
gating mode, so also an asymmetric double waveguide structure is 
not always capable of mode propagation. If K1 = K3 = Kb, though, 
so that the structure is composed of two parallel symmetric (but not 
necessarily identical) waveguides, then there is always at least one 
mode. 

guide II,  (9) 

guide IV.  (10) 

M. NEARLY DEGENERATE MODES 

Let 03 and r34 denote solutions of X(/3) = 1 and Y($) = 1, respec-
tively; 02 and 04, then, are propagation constants for modes in guides 
II and IV if the guides were isolated from each other. We need make 
no assumption about the order of each mode. In practice, though, both 
propagation constants are likely to be associated with zeroth order 
modes. For definiteness in notation, we assume that 04  '32 and write• 

04 —  = 2. 

We now assume that à is "small," i.e., that the two modes are nearly 
degenerate. This assumption, which is fundamental to the remainder 
of the analysis, is stated more explicitly later [eq. (18)]. Frequently, 
it does not matter (to the order of approximation used) whether 02 or 
04 is used in the evaluation of an expression. In such instances, it 
sometimes is helpful to use the notation Po('' P2  04). 
Our task is now to determine values of i3 which satisfy (8). Our 

experience with the degenerate case (à = 0) leads us to expect that 

• In the numerical example of Section VI, we relax this notation to read 
I/34 —  = 2, where it is not known a priori whether p, or el, is larger. This 
should not be confusing when taken in context. 
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there will be two solutions 0+ andol_ close to 02. A study of the coupled 
line equations' for the two modes would demonstrate that 0+ = 04  à 
and 0_ = 02 -  à, where à is expressed in terms of the (unknown) cou-
pling coefficients.' We prefer to attack (8) directly; we shall verify the 
expressions for $+ and 0_, prove that à > 0, and give an explicit formula 
for à. 
We first show that, if 02 and 04 are close enough together, then (8) 

has no solution a such that 02  a 04. Since X(32) -= 1 and 
X' (13) e 0 for all we know that if (T3- 132)/132«1, then 0 < x(a) el. 
Similarly, y(a)› 1. Thus, 

X() + y(a) _1+ x(a)y-t(a)  
1+ xow(a) 're+ Y-1(4) — 

But T3(0) = tanh 2w3173 < 1 for all 0, so (8) is not satisfied. 
Next, suppose (8) has a solution  = 04 -I- à, with à > O. Then if 
3 is small, we know that 0 < X(3+) < 1 and 0 < Y(0+) < 1, so (8) 
may be written as 

T(e)  tanh tv8p3 = tanh  (tanh-' X -I- tanh-, Y)] 

X[1 + (1 — Y2)i]  YE1 + (1 — X2)] 
XY + [1 + (1 — X2)1][1 + (1 — 

We have 

= X(02 + 211 + 8)  1 + (2à  3)X1(/3,), 
Y(0+) = Y(04 ± à) = 1 ± àr(00)• 

If we substitute (12) in (11) and perform a perturbation analysis 
under the two assumptions, 

[à (2à  à)X'  (00)]i « 1,  (13) 

E— (2à  â)X'(00)]1 [— àY'(0o)]1« 1,  (14) 

we find 

so that 

where 

TO9o)= 1 — [— (2k + 3)X' (M K — à r (30)34, 

(12) 

= — à  (à2 32)4,  (15) 

1 — (30)  
8 —  (16) 

EX'  r (30)]' 
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On the other hand, if we suppose that (8) has a solution f3- = 132 — 8, 
with 8 > 0, then X(_) > 1, Y(_) > 1, and (8) becomes 

T(0)  tanh w3p3 = tanh [4(tanh-1 X 1 + tanh-' Y-1)] 

X + (X2 — 1)1 + Y + (Y2 — 1)1   
1 + [X + (X' — 1)4][Y + (Y2 — 1)4] 

By a procedure very much like that used to determine à = 134. — /34, 
we find that 8 = à, as anticipated. Here, the roles of X' and Y' must 
be interchanged in (14). 
The effect, then, of placing guides II and IV next to each other is to 

shift their (isolated) propagation constants fi2 and /94 symmetrically 
outward by à to 0_ and 0+. The physical meaning of 8 in (16) is clear: 
it is the magnitude of the shift which would occur if guides II and IV 
had degenerate modes (A = 0). We shall call 8 the "degenerate shift." 
Let us consider assumptions (13) and (14) in more detail. By means 

of (15) and (16), (13) becomes 

1— 7'(30) = 1 — tanh tvap3  1.  (17) 

This, then, is essentially a restriction on the separation between the 
two waveguides. If they are too close, our approximations will break 
down. Assumption (14) and its counterpart with the roles X' and Y' 
reversed are, by (15), satisfied if 

Ddi + (à2 + 82)1]1{[— r (e0)]1 + E—  (30341 «1.  (18) 

This tells us how large à can get without invalidating the approxi-
mations. 
By using eqs. (4), (6), and (7) cleverly, we see that the expressions 

foi x,(130) and Y' (i30) reduce to the simple forms 

—13 Pá) X'(30) —  0(P1 2  [2P1 W2 +  1 +  (pi/pa)],  (19) 
PiPiP 8 

- 00(7)1 ±  Pi) (e.) —  2  [2 P5 W4 +  1 ±  (P5/P3)].  (20) 
P3P4P5 

Thus, by (16), 

=  p2p3p4r1— tanh Wed 

001— (P14-PD (PU+7120[2piw2+1+21 [2p5w4+1+L'i I 4 
PiP5  P 3 P 3 

1 
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If we take the case of two identical symmetric waveguides 
(pi = ps = pa, P2 = pa, /D2 = W4) and use the approximation 

tanh w3p1 A 1 - 2 exp (— 2w3Pi), 

then (21) reduces to 
pfpl exp ( — 2w3pi)  

3 =  (22) 
00(p + p) (l + p1w2) 

which is in agreement with results of Marcuse.' For TM modes, we 
arrive at 

= 4+ Lf  o2 — 3,  à =fi4 2, 
where 

= 

à = — + (32 + 8, 

8 1 — tanh   

— &cm +  [2 2 Ktmedig. lc-jape-v-2 
+ K1(  Krbi + Kpu u\ r), Kum + Kgm 

) 3  Pi + Pi  J ' 
7,(a0) _ —a.(-01+ m)[ - 

-2-  2K2K2p5 de 
Keialap3p4p5  3 5 - 

• Ke I K  + K \ _LT4 KiPi + lam 
+  I ' a  + /32  J• 

IV. A LOOK AT THE MODES 

We now discuss what the modes e(x) associated with 01 are like in 
guides II and IV. The expressions for e (z) are given by (3). Both the 
shapes of the modes and their relative amplitudes will be of interest. 
We see from (3) that the shape of e±(x) in guide II is given by 

f( , x) = [(pi/p2) sin p2x ± cos p2x] Ia„  (23) 

Since 

f(+,  f(,32,  + (2A  3)  02 , 

f03-,  f032,  — à tfi3a 102, 

the shapes of both modes differ just slightly from the unperturbed 
shape f($, re); furthermore, the shifts for the two modes are unequal 
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and are in opposite directions. The unperturbed shape can be deter-
mined with the aid of (9). We find 

pi 1  pi  P a 
-  =  tan [w2p2 + i (tan-1 - - tan-1 - )]  tan U 
P2  P2  P2 

for even-numbered modes and 

El- = — cot U 
P2 

for odd-numbered modes. Thus, 

f(r12, x) = tan U sin p2x ± cos p2x 

= sec U cos (p2x - U) 

= P 2 COS [p2x - w2p2 
(Pi ± Pi) 1  

- -1.- (tan-1 7:1 - tan-1121  )]  (24) 
P2  P2   

for even-numbered modes and, similarly, 

f( ,, z) -  (PI  ±  e t  sin [p2x - w2p2 
P2 

- -1 (tan-1 PI - tan-1 Pi )] 2  p2  P2  (25) 

for odd-numbered modes. The mode shapes in guide IV can be deter-
mined in an analogous manner, with perturbations performed about 
04 instead of 02. We leave the details to the reader. 
The above results are not surprising. If the double waveguide 

system has a mode with propagation constant fi+ or 0_ which is close 
to the propagation constants 02 and 04 of modes that can travel in the 
individual isolated waveguides, then we would indeed expect the shape 
of that double waveguide mode to deviate only slightly in each wave-
guide from the shape of the mode that could propagate in the isolated 
waveguide. 
The amplitudes of e±(x) in guides II and IV prove to be more inter-

esting. Let the arbitrary amplitude A in (3) be written as A.± for 
e(x), and let BM and Bll denote the amplitudes of the modes in guides 
II and IV, respectively. Then (3) and (24) or (25) show that the mode 
amplitudes in guide II are given (to our order of approximation) by 

=  (pî + AP Bli  A± 
P2 
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In guide IV, the amplitudes are, by (3), 

= A± [C2C3 (1 + 11'1- T2) (1 — XT3)(731 
P2  P4  j 

(27) 

Care must be taken in the evaluation of C8(1 - XT3) at 0±. Since 
X(134) < 1, Y($+) < 1, and by (8), 

X + Y  
T3 = 1 ±  tanh (tanh-' X + tanh-' Y), 

we have 
1 ± XV   

C8 -= cosh (tanh-1 X ± tanh-1 Y) = 
(1 — X2)I(1 — Y2)I ' 

so that 

/1- (2A 'â)X'  • 
c3(1 - XT3)!  =  —  Is+  L  31" 

We find in a similar manner that 

C3(1 — XT3)  =  [  àX'   
(2à  à)Y' 

Thus the mode amplitudes in guide IV are 

Bqf  A+c, (1  T2)(1)14-   r (2A +  
P2  P4  L 3r 

B11 = - A_C (i T2)(1)1 + 14) 1 r  3.7c,  11 
P2  /  734  L (2A + à) j 

We observe that the mode amplitudes will have the same signs in one 
waveguide and the opposite signs in the other. Thus, e÷(x) might be 
termed quasi-even and e_(x) quasi-odd. More startling, however, is 
the realization that, if A > 0, then the ratio I Bg/ ./31 = 11+1A_ may 
be quite different from the ratio I BiVelr = (i1±/ A_)[(2A  à)là]. 
As we see in the next section, this will have serious implications when 
we consider the double waveguide system as a device for transferring 
power. 
For future reference, we write e, (x) for a system consisting of two 

symmetric, but not necessarily identical, waveguides (K1 -= K3 = Kg). 
In this instance, (9) and (10) imply that 

C2E1 + (pi/p2)112] = 1, 
C4[1  (pi/p4)T4] = 1, 

(28) 
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so that we have by (3) and our previous analysis 

e+(x) = A+ exp pis  x < 0 

= A+ (pî + A'  cos p2(x — 1,v2)  0< x < 2 w2 

P2 

= AA-E — X sinh pi(x — 2w2) ± cosh pi(x — 2w2)] i 0+ 
2w2 < x < 2(w2 + w3) 

[ (2à + à) X' p (pî + pip cos p4(5 — 2w2 — 2w3 — wa) = A+ 
à Y'] p4 

2(w2 ± w3) < s <2(w2 + w3 + W4) 

= A+ r (2à ± à)  X'  Y'  ]i  exp P1(2W2 + 22(4 + 2w4 — s) 

L à   
2(w2 + wa + w4) < x, (29) 

e_(x) = A_ exp pix  x <0 

= A_ (pî + A'  cos p2(x — W2)  0< x < 2w2 
P 2 

= A_[— X sinhpi(x — 2w2) ± cosh pl.(x — 2w2)] I a_ 
2w2 < x < 2(w2 ± w3) 

_ _ A_ r  DC   11 (pi ± le 
(2à ± à) Y' J  p4  cos p 4(x — 2w2 — 2w3 — w4) L   

2(w2 + w2) < s < 2 (w2 ± w3 + w4) 

r ix-,_ )Y' ] i - _ A_ (2à ±(,  exp pi(2w2 + 2w3 ± 2w4 — x) L   
2(w2 ± w3 + w4) < 5. (30) 

V. BEAT LENGTH AND POWER TRANSFER 

Suppose the two modes E± = e±(x) exp i(wt — 01z) travel down the 
double waveguide device. Since they travel at different phase velocities, 
the quasi-even and quasi-odd modes will alternately add and (par-
tially) cancel in each waveguide. Hence, power is transferred between 
the two waveguides. 
The beat length L over which this transfer takes place is given by 

= ir  ir   
L  _  —  (31) 

20 + à)  28[1 ± (à/S)21t 

Note that, if the degenerate shift o is fixed, then as the mismatching à 
increases, the beat length L decreases. We can conceive of ways to 
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tune the double waveguide device and thus to change the beat length. 
This might be useful for light switching or modulation. 
It is important to learn just how much power can be transferred 

in the waveguide system. Suppose, for definiteness, that we excite just 
one waveguide at z = 0 (say, guide IV), with the intent of transferring 
power to guide II via the mode-coupling mechanism. If guides II and 
IV have degenerate modes (A -- 0), then as the modes travel down 
the waveguide system, they will alternately add and then cancel (to 
order b2) in each waveguide, with addition occurring in one wave-
guide when at the same position cancellation occurs in the other. If 
guides II and IV have nondegenerate modes (à > 0), however, then 
complete cancellation cannot take place in both waveguides: by (27) 
and (28), we see that if the amplitudes of e±(s) and e_(x) are adjusted 
so that the modes cancel at z = 0 in guide II, then they will never 
cancel fully in guide IV. 
From a practical point of view, a parameter which is likely to be of 

interest in this matter is the fraction of the total power introduced into 
the system which can be transferred into guide II. If the modes are 
poorly confined, an appreciable fraction of the power carried by a 
waveguide may actually be outside the high dielectric guiding region. 
If the reader is interested in the fraction of the power which can be 
transferred not only to the guiding region of guide II, but also to its 
vicinity, we would need a power transfer ratio G to be defined by 

G --- fa [e+(x) + e_(x)]klx / r [4(.) + e2_(x)]clx, 
where a is some number between 2w2 and 2 (w2 + w3) which defines 
the "boundary" between guides II and IV. The numerator of this 
expression, then, is proportional to the power carried by the entire 
guide II. 
Unfortunately, for a general asymmetric waveguide system, it is 

not at all clear how to define the position of the "boundary" between 
the two waveguides. If the system consists of two symmetric wave-
guides which are nearly identical (except for a small deviation if the 
modes are slightly mismatched), then it seems clear that the boundary 
should be midway between the two dielectric regions, i.e., at 
a = 2w2 -I- w3. By using (29) and (30), we find in this instance that 
we have to first order 

G = D. ± (A05 )2]-1. 

Thus for perfectly matched waveguides (à = 0), the power transfer 
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is complete, to first order. As the mismatching increases, the power 
transfer ratio decreases rapidly. 
Complete power transfer (to first order) is a direct consequence of 

assumption (17), which implies little overlap between the field as-
sociated with guide II and that associated with guide IV. A higher 
order perturbation analysis would show that in fact there is some field 
overlap and that, even if à = 0, the power transfer is not complete. 
As the waveguide separation increases, there would be less field overlap 
and the power transfer would be more nearly complete. 
For a general asymmetric waveguide system, we might define the 

"boundary" between the two waveguides to be, say, at the position 
where the "quasi-even" field attains its minimum. Such a definition 
can be cumbersome to apply mathematically. In general, though, we 
would expect results similar to those obtained for the symmetric 
system. If the modes are degenerate and one waveguide is excited, then 
virtually all the power can be transferred to the vicinity of the other 
waveguide. The power transfer ratio decreases as the mismatching 
increases. 
It will be instructive to introduce a second power transfer ratio F, 

which can be defined precisely. It will be the fraction of the total power 
introduced into the system which can be transferred into the high 
dielectric region of guide II, the waveguide which was originally un-
excited. If terms of order ,à/ea are neglected, this power transfer ratio 
is defined by 

F =  [e+(x)  e_(x)]2dx  L [e2+(x)  e2_ (x)1clx , (32) 

where the mode amplitudes A+ and A_ are equal. 
If the modes are poorly confined in guide II, the power transfer 

ratio F may be considerably less than unity even if the waveguides 
are perfectly matched (à = 0). The definition of F is concerned only 
with the power which can be transferred into the high dielectric region 
of guide II; hence, F depends upon the confinement factor of the 
waveguide (to be defined below) as well as upon the amount of mis-
matching A. 
Evaluation of (32) can be very messy for the general case of two 

asymmetric waveguides. We simplify the subsequent analysis and yet 
retain its essential flavor by assuming that the double waveguide 
structure is composed of two symmetric, but not necessarily identical, 
waveguides (K1 = K 3 = K 5) . The modes e±(x) are then given by (29) 
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and (30). For the numerator of F, we find 

/ Jo  

Ee-F(X)  e_(X)J2dx  421 2+ (Pi ±   Pe  (2.2 Jo c0s2 p2(x — w2)dx 

(pi  Pe) 52w2 + 4 sin 2p2w2]. =4A  a 
P2 

But since (9) implies that 
42712 

sin 2p2w2 
-r P2 

for a symmetric waveguide, we have 

f 2,02 = ;   \ 
1  [4(x) ± e_(x)]2dx  4A2+ [  ice+ pe P2 W2  2  )  1 .  

JO  P2  P2  P2 

Similar procedures can be used in the evaluation of the denominator 
of F. Special care must be taken in evaluating the integral in the 
interval 2w2 <z < 2(tv2 + Iva), where e+ (z) and e_(x) have the same 
functional description, but the function is evaluated at 0, and 0_, 
respectively. In the resulting analysis, Cg and Sa must be evaluated at 
0±. Procedures similar to those used following (27) are helpful. The 
power transfer ratio turns out to be 

F = 4 (PH/ P2)   
2[(Prdp2)  (1/Pi)J  2[(Piv/P4) + (1/pi)](1.  2à2/•52)X7Y" 

where 
Pe +  Pe )  P 1 

P2 W2 (  2 3 
P2  P2 ' 

PIS, = pep,' P!  )  P-1- \  p4  (33) 

The expression for F can be simplified. By using (19), (20), and 
(33), we find that 

± 1  r ( Ply 
P2  pi  r \ P4  pi / 

so that 

(34) 

F = PI1/p2   (35) 
E(Pn/p2) + (1/791)][1  (42/s2)] 

Both (34) and (35) have interesting physical interpretations. In 
order to discuss them, we make a brief digression. Suppose that, 
instead of the double waveguide system, we just have an isolated 
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guide II, which for generality we assume is not necessarily symmetric. 
(In the notation of Section II, we have K 3 = K4 = K2.) If the electric 
field is given by e(x) exp i(wt — 02z), then the power carried by the 
entire waveguide is proportional to 

P = fe2 (x)dx  

. 

. 

and the fraction of the total power which is confined to the high 
dielectric region is given by 

C = j«2w2  w e2(x)dx / L e2 (x)dx. 
o 

It is not difficult to show that 

Pi + Pi P —  [213 it o 2 + 1 4- (pi/p3)], 2p IA 

where e(x) was assumed to have unit amplitude at x = O. Upon 
comparing this expression with (19), we find that 

2ío (pi ± A)  
X' —  P, 

PS (WI ±  A ) 
so that X' is related in a simple manner to the power carried by the 
waveguide with which it is associated. Now if the isolated guide II 
happens to be symmetric, then it is also true that 

P2  pi 

x' = - 2ILI° P. 
Pi 

Since a similar relationship holds for an isolated guide IV, (34) follows. 
The physical implication of (34) is that, if a single waveguide is ex-
cited in a matched double waveguide system (à = 0), then the power 
is distributed between the two modes in such a manner that 

f°' 4(x)dx = f  

If an isolated guide II is symmetric, then the confinement factor C 
can be shown to be given by 

Pu/P2   
C — 

(PH/Ps) + (1/791) 
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Hence, the power transfer ratio F is simply given by 

F = C[1 + (A/ 02]-1. (37) 

Note that F is completely independent of the parameters of guide IV, 
as well as of w2 because of assumption (17). 
We remark once more that these results are first-order approxima-

tions. If a higher order perturbation analysis were undertaken, it 
would show that F is also dependent upon the amount of field overlap 
between the two waveguides. 
It is important to note that the amount of mismatching à can have 

a significant effect on the power transfer ratio: as à increases, F de-
creases rapidly. We might remark that, while the beat length L 
depends upon ô and the ratio à/8, the power transfer ratio F depends 
only upon à/8. Thus, by proper device design, it may be possible to 
adjust 8 and à/8 to get both appreciable power transfer and a desirable 
beat length. 

VI. A NUMERICAL EXAMPLE 

To illustrate our results, let US give an example, using parameters 
which could be realized in a GaAs — Al.Gai_zAs heterostructure. We 
consider two waveguides which are each symmetric, but which have 
different widths and dielectric step heights. Our intent is to excite one 
waveguide and thon to transfer power into the other by means of mode 
coupling. The parameters of one waveguide, say guide II, are taken to 
be fixed. The width of the other waveguide is considered a variable. 
For any given width 2w4, we adjust the dielectric height K 4 so that 
the propagation constants /32 and 134 for the zeroth order TE modes of 
the two waveguides match. 
We learn how the degenerate shift 8 varies with the spacing 2w2 

between the two waveguides and with the width 2w4 of guide IV. We 
look at the beat length L and the power transfer ratio F for an idea of 
how much mismatching of the propagation constants (32 and /34 can be 
tolerated. We then discuss the amount of mismatching 2à =  - 
which might occur in a practical situation and show how tuning can 
reduce this. 
To be specific, suppose that 

K 2 =  11.868, 

ICI = 0.91C2 = 10.681, 

w2 = 0.1 gm, 

k = 5.4494 X 104 cm—'. 
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The dielectric constant K2 corresponds to an index of refraction 
= 3.445 of GaAs at a wavelength X = 2ir 1c-' --= 1.153 gm. The 

halfwidth Wi of guide IV will be assumed to vary between 0.1 gm and 

0.8 gm. 
For the zeroth order TE mode of a symmetric waveguide, we find 

that (9) reduces to 
tan p2w2 = p1/p2, 

pi = e — 

P2 = (k2K2  a)•  (38) 

The above parameters for guide II give us 

e, = 1.8049 X 106 cm-1, 
131 = 2.9311 X 104 cm-1 , 

p2 = 5.1631 X 104 cm-1 . 

Equation (38) holds for guide IV if each subscript 2 is replaced by a 4. 
For any given value of toi, we adjust K4 so that e, is the same as 02. 
Some values of K4 and pi are given in Table I. 
The parameters for K1, K2, w2 and any given pair K4, W4 then define 

two waveguides which have a degenerate mode at the given wave-
length X. The degenerate shift (5 is given by (21) for symmetric wave-
guides: 

=  plp2p4(1 — tanh wei)   
8  

202[(p;  p)(pi  A)(1 + Pe2)(1 + P1w4)11 
Figure 2 shows 6 as a function of w2 for various values of mt. We see 
that the coupling decreases rapidly as the waveguide separation in-
creases or as the width of guide IV increases. The beat length L, then, 
will increase rapidly with w3 or wi if à is small enough. If, however, the 

Table I — Values of K4 (and hence p4) needed to match  for the 
zeroth order TE mode in guide IV (of halfwidth w4) 
to the 132 for the corresponding mode in guide ll 

W4 (01M) K 4 Pi (10' cm—') 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

11.868 
11.381 
11.222 
11.145 
11.100 
11.071 
11.051 
11.037 

5.1631 
3.4917 
2.7340 
2.2763 
1.9619 
1.7295 
1.5494 
1.4048 
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Fig. 2—The degenerate shift  as a function of half the distance between the two 
waveguides wa, with the halfwidth w4 of guide IV as a parameter. 

waveguides cannot be fabricated to match as closely as desired, the 
story can be different. If we take, quite arbitrarily, à = 100 cm-', we 
would find for example from (31) and the data in Fig. 2 that if 
= 0.6 gin, 

L = 

0.113 
0.137 
0.150 
0.157 

mm if 'W3 

while if à = 0, 

0.162 
L = 0.279  mm if 

0.490 
W3 = 

gm  (à = 100 cm-') 

1 0.4 
0.5 
0.6 

(à = 0). 
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Thus, L is reduced significantly and changes less rapidly with w3 if A 
is large enough. Similar results are found if w3 is fixed and wa varies. 
Next, suppose we wish to excite one waveguide and to transfer 

power to the other one. If the propagation constants for the two 
waveguides were perfectly matched (A, = 0), then by (35) to (37) 
the power transfer ratio F would be the confinement factor C which 
is plotted in Fig. 3. The upper curve is used if guide II is excited and 
power is transferred to guide IV; the lower curve is used if guide IV is 
originally excited and power is transferred to guide II. The power 
transfer ratio is larger if power is transferred from a narrow guide II 
to a wide guide IV than if the power is being transferred the other 
way, since the power is more tightly confined within the guiding region 
in the wider waveguide. 
Lest the reader become confused, we recall that F is defined as the 

fraction of the total power introduced into the system which can be 
transferred into the high dielectric region of the guide which was 
originally unexcited. F does not concern itself with how much power 
in the high dielectric region of one guide can be transferred into the 
high dielectric region of the other guide. 

1.0 

0.8 

0.6 

0.4 

0.2 

o 
0.2  0.4  0.6 

w 4 IN iirn 

0.8 1.0 

Fig. 3—The confinement factor C for degenerate modes. Guide II is fixed, and the 
halfwidth w4 of guide IV varies. 
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Again, the mismatching à can have a significant effect. If, for ex-
ample, we assume that w4 = 0.6 jam and transfer power from guide II 
to guide IV, we find from (35) (evaluated with the parameters for 
guide IV) that if à = 100 cm-', 

0.66  10.41 
F= 0.44. 1 0.44 if w3  I. 0.5 1 pm. 

0.22  0.6 

(The maximum value of F is 0.91 for à = 0.) 
If we know that the fabrication procedure will likely make à of 

significant size, then the only way (for given waveguide parameters) to 
get good power transfer is to make t large enough. A trade-off thus 
must be made between good power transfer and a long beat length. 
Fortunately, tuning can be a viable alternative to making such a 

trade-off for badly matched waveguides. To tune a device which has 
already been fabricated, we would need to alter one or more slab 
widths or dielectric heights. 
Some possible methods of tuning are to change K2 or K4 by altering 

the free carrier density or using the electro-optic effect, or to change the 
outer slab levels K1 or K5 by diffusion or ion implantation. This can 
be achieved, in principle, by growing at least one waveguide with a 
small gradient in the slab width. Phase matching then can be achieved 
by lateral positioning of the light beam, which travels approximately 
perpendicular to the gradient of the slab width. 
We compute a possible value of for a specific example and then see 

how much tuning is needed to reduce à to zero. Suppose that (for any 
given w4) the double waveguide device is fabricated according to the 
specifications for matched propagation constants, but that there are 
slight errors in w2, w4, K2 — K1, and K4 — KI. Assume the following 
errors, which are probably reasonable if the device is fabricated by 
molecular beam epitaxy :5 the ratio w2/w4 is nearly constant, and w2 
varies by ±0.02  ; the ratio (K2 — K1)/ (K4 — K1) is nearly con-
stant, and K2 — K1 varies by  0.10. We shall take K2 to be fixed. 
Then the extreme cases would be given by uí2 = 0.12 (0.08) gm, 
Ki = 10.781 (10.581), and 

td4 = (w4/w2)wá, 

K2 — K;\ K4,  
kK2 — Ki Ka — KI 

where the primed parameters refer to the values in the fabricated 

= 
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Fig. 4—The mismatching à as a function of the ratio of the guide widths. 

device. We just treat the extreme case for which w'2 = 0.12 gm and 
= 10.781, since the other gives changes of comparable size. 
We find from (38) that, with these fabrication errors, 02 =  1.8156 

X 105 cm-1 and e, varies from 1.8156 X 105 cm-1 for /4 = w; to 
1.8119X 105 cm-1 for w'4= 8/1;2. The resulting values of à =4-- 04 - 021 are 
plotted in Fig. 4. Although both 02 and /34 have changed significantly 
from the value 1.8049 X 105 cm-1 for which the device was designed, 
they both change in the same direction, so A reflects a less radical 
change. 
In tuning the system, suppose we consider guide IV, and hence e, 

as fixed for any given w4; we shall alter either the dielectric height or 
the symmetry of guide II to adjust 02. 
If we lower K2 to make e, match i34, we find by (38) that the altered 

values K2' are those given in Table II. The change in K 2 is thus less 
than 0.4 percent. Such a change is feasible with free carrier injection 

Table Il— Values of K2 needed to tune the mismatched 
waveguide system 

w /214 % change 

1 
2 
3 
4 
5 
6 
7 
8 

11.868 
11.846 
11.840 
11.831 
11.829 
11.825 
11.824 
11.823 

o 
0.19 
0.24 
0.31 
0.33 
0.36 
0.37 
0.38 
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Table Ill —Values of K1 needed to tune the mismatched 
waveguide system 

tuVw's 

1 
2 
3 
4 
5 
6 
7 
8 

10.781 
10.716 
10.697 
10.670 
10.663 
10.657 
10.647 
10.643 

% change 

O 
0.6 
0.8 
1.0 
1.1 
1.2 
1.2 
1.3 

and is about an order of magnitude larger than can be handled com-
pletely by the electro-optic effect. 
Another possible method of tuning would be to make guide II 

asymmetric. If we keep K 2 =  11.868, K2 = 10.781, w'2 = 0.12 pm, and 
alter K1 to match 132 to /34, we use (9) in the form 

P2 tan 2w;p2 — 7)3  
Pi — 1  (p3/p2) tan 2w;p2 

fo get pl and then use (4) to find K1. The altered values Ki are given in 
Table III. The change is thus no more than 1.3 percent. This can be 
handled by diffusion or ion implantation. 
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