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This paper describes a quantitative experimental confirmation of a 
recent theory for large-signal parametric instabilities in IMPATT diode 
circuits. The relevant parts of the theory are presented in a concise form. 
A graphical technique is given that is useful for analyzing circuit 
stability. A sufficient (though not necessary) condition for well-behaved 
circuits is also studied, and several diagrams are presented that may 
prove useful to circuit designers. 

I. INTRODUCTION 

Spurious oscillations are frequently observed in strongly driven 
IMPATT amplifiers and oscillators. Spurious oscillation is a generic 
term that means, in the case of an amplifier, that there is a signal 
frequency in the output not present in the input and, in the case of an 
oscillator, that there is a signal present in addition to the main desired 
oscillation. In IMPATT diode circuits, the type of spurious oscillation 
most frequently observed fits into one of two categories: (i) a paramet-
ric-pair-type instability in which there are two spurious signals whose 
frequencies sum to equal that of the strong signal or (ii) a subharmonic 
instability in which one spurious signal occurs at one-half the frequency 
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of the strong signal. It is evident that the second category is a special 
case of the first, and may be considered a degenerate parametric 
oscillation. 
In the course of experiments on IMPATT amplifiers and locked 

oscillators, both degenerate and nondegenerate parametric instabilities 
have been encountered. Accompanying the onset of spurious oscillation, 
it has been noted that there is often a saturation of rf output power, a 
degradation of the amplifier's noise performance, and/or a shift in the 
center frequency of the locking band. Although the spurious signals 
themselves are generally undesirable, the adverse effects upon amplifier 
performance at the design frequency are even more serious. Therefore, 
it is important to understand the nature of the spurious oscillations 
and to determine what must be done to the amplifier design to eliminate 
them. 
In a recent paper, M. E. Hines' presented a theory for parametric 

interactions in IMPATT diodes, which is based on the nonlinear 
inductive behavior of the avalanche process. He has given an expres-
sion for the stability of the IMPATT diode-microwave circuit system. 
This paper describes experiments conducted to characterize the 

diode and circuit conditions at the onset of spurious oscillation, for 
both degenerate and nondegenerate cases, and to compare the results 
with Hines' theory. Good quantitative agreement was found between 
our experimental observations and the predictions of a simplified form 
of Hines' stability expression. Thus, it appears that Hines' theory 
forms a sound basis for designing circuits to suppress parametric-type 
spurious oscillations. 
In another section of this paper, we discuss a procedure for determin-

ing a region of impedance such that, if the circuit impedance (as seen 
by the diode) lies within this region, the diode-circuit system is stable 
against parametric oscillations for all drive levels. It appears that this 
stable impedance region is physically obtainable, and further that it is 
compatible with the impedance requirements discussed by Brackett' 
with regard to suppressing bias-circuit oscillations that are due to a 
phenomenon different from the one considered by Hines. 

II. REVIEW OF HINES' THEORY 

In this section a brief recapitulation is given of the aspects of Hines' 
theory that are pertinent to the stability of parametric interactions in 
IMPATT diodes. 
Hines uses the Read' model of an IMPATT diode to derive an 

equivalent circuit for parametric interaction of the form given in Fig. 1. 
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Fig. 1—Equivalent circuit for parametric interaction. 

The equivalent circuit is applicable to small-signal parametric interac-
tions when the diode is in some large-signal "pumped" state. The 
pump frequency co„ is defined as the fundamental frequency of the 
large-amplitude pump wave that is present at the diode. The pump 
wave arises from the impressed signal in the case of an amplifier or 
from the circuit-controlled oscillation in the case of an oscillator. The 
parametrically related frequencies con, are defined as follows: 

wo -1 the lowest perturbing frequency (not the 
main oscillation frequency)  (1) 

and 
± WO, 

w_1 = 4.)23 - CO0, 

(2) 

(3) 

where the asterisk denotes complex conjugate. 
From Fig. 1, it is evident that the current /0 at coo consists of three 

components: current due to the self-admittance at coo and current 
induced by the presence of parametrically related voltages at the upper 
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and lower sidebands, wi and c , respectively. Contributions to /0 from 
the higher-order parametric signals at the frequencies n• cup ± coo for 
n  2 have been neglected. The equivalent circuit for the sidebands 
is similar. The impedance Z„,z is the external impedance presented to 
the diode wafer at the frequency com. The diode package and mount 
parasitic impedances are included in Zmr . The pump frequency of the 
diode does not appear directly in the equivalent circuit, but the pump 
state is introduced through the admittances Y,. 
From this equivalent circuit Hines derived the following charac-

teristic equation, which governs the stability of the diode-circuit 
system: 

D  1 — M1M_IS0(St1 ± S1) — M2M-2S1Sti 
+  + Ar_1m2)s0s1st1 

= O. 
(Hines eq. 23) 

(4) 

The complex quantity M. is defined as the avalanche particle current 
at the nth pump harmonic divided by the de current. Note that here 
the subscript n signifies the frequency n•wp, whereas the subscripts of 
the S quantities refer to the parametric frequencies Wm. It is also impor-
tant to note that 

M„ = Mt„  (5) 

and 

IMI  1.  (6) 

Generally, I M„ increases monotonically with the pump level and 
approaches unity as the avalanche current approaches a sharp, narrow 
pulse. 
The complex quantities Sm may be thought of as stability factors. 

They are defined as: 

= S(m) = 1 -F ( w,   )  (w.)  1/3.£0,,,CT 
—  Z.(com)  Zd (co.) 

where 

(7) 

Goa = avalanche resonance frequency of the diode, 
CT = total "cold" capacitance of the diode, i.e., that of the entire 

depleted region, 

and 

Zd(cd) = 
id — id(sin ed/Od) — (.02/(2  jid[(1 — cos 04/0d] 

, jo,C241 — (02/4  (8) 
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where 

= ratio of drift length to total length of the diode 

and 

Od = (Ord = transit angle of the drift region. 

The quantity Zd is the small-signal Read-model admittance previously 
derived by Gilden and Hines.4 
The stability of the diode-circuit system may be studied by examin-

ing the roots of eq. (4) for complex frequency. It is apparent that the 
effect of the large-signal pump state upon stability is completely 
described by the two factors M1 and M2, since the stability factors S 
depend only upon the small-signal diode impedance and the circuit 
impedance. This separation of pump level and circuit impedance effects 
is a very useful aspect of Hines' approach. It avoids entangling the 
stability discussion with the details of the large-signal nonlinear diode 
behavior. If, for a given circuit and diode, the stability factors are such 
that there are no unstable roots for 0 < IMil < 1 and 0 < 1M2 I < 1, 
then the system is stable for any pump level. 
Under certain conditions, simplified forms of the characteristic 

equation are valid and useful. For instance, if 1M2I << 1M1I , which 
corresponds to intermediate pump levels, then eq. (4) becomes 

1 — I MI I280(Sti -I- Si) --A= 0.  (9) 

Alternatively, if 1,511 << I S01 and 18_11 then eq. (4) simplifies to 

— MI 12SoSs-i  O.  (10) 

The simplified criterion given by eq. (10) is the one suggested by Hines 
for the degenerate case, but it is applicable to the nondegenerate case 
as well. We have found good agreement between our experimental 
observations and eq. (10), as is discussed in the next section. 
The approximation which leads to eq. (10) may be justified by 

examination of the definition of S : For co « co, the term co2/ ((a — (42) 
is much smaller than 1 and SW approaches unity. For w in the vicinity 
of wa, Z4(w) is quite different from 1/jwer and of course 0/ (c4, — (02) 
is large: therefore, S(w) is not in general negligible. However, there is 
no pole for S (co = wa), since the pole in Zd cancels that of w2/ (co: — 0)2). 
Since it is usually desirable to pump the diode where the negative 
conductance is large, co?, k 20., is generally true. Therefore, for (.4) > 

2  2 — 
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and also 
1  

Jae ' 

and, therefore, S((o) tends ultimately to zero. Therefore, eq. (10) seems 
to be a reasonable approximation, especially for coo  
In order to study stability, the characteristic function D is con-

sidered a function of complex frequency p =  jco. Instability occurs 
if the zeros of D lie in the right half of the p-plane. In the case of 
spurious oscillation in IMPATT diodes, it is an experimental fact that 
for sufficiently small M1 there is no instability; thus, the zeros of D 
(and the poles of SoS*-1) must lie in the left half of the p-plane for 
small MI. As M1 is increased to its maximum value of 1, the roots of 
D may or may not cross into the right half of the p-plane. Assuming 
that the roots of D vary continuously with M I, then any crossing into 
the right half of the plane implies that there is first an intersection of 
the root locus with the imaginary axis for some value of M1. The 
frequency for which the zero of D lies on the p = jco axis may be 
designated as and the corresponding value of M1 as /171. For M1 = 
the system is said to be marginally stable or at the threshold of spurious 
oscillation, where the spurious frequency is W. 
Thus, in order to determine approximately if a given diode and 

circuit are unstable for a physically attainable pump condition, it is 
only necessary to evaluate D  1 —I M 112S ogLi for real w (actually, 
just for 0 < coo < co„/2) and determine if there are any zeros for 
O < M11 < 1. If not, then the system is stable for any pump level. 
If there are zeros, then the zero with the smallest value of I MI] 
corresponds to the first spurious oscillation which we would expect to 
observe upon increasing the pump level monotonically from zero. In 
this case, we may predict the drive level and the frequency for the 
onset of spurious oscillation. 
It is evident that zeros of D correspond to real values of Soe-i. 

Thus, we may plot SeS*_1 and note the frequencies where the locus 
intercepts the real axis. The basic construction for one value of coo is 
indicated schematically in Fig. 2. There is at least one real axis intercept 
since, for coo -- cop/2, So = 8_1. This is not necessarily an instability, 
since S (cop/2) I may be less than 1. Since the phase condition for 
instability is always satisfied at the subharmonic, this suggests that 
the half-pump frequency oscillation may be a more likely form of 
spurious output, which appears to agree with the experience of many 
workers. 
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Fig. 2—Schematic diagram of the simplified stability criterion. 

It is interesting to note that eq. (10) has the same form as the 
expression for stability of a single-loop feedback control system, 
1 -I- kG(w)H (co) -= 0, where G(o) is the forward gain and kH(cd) is 
the gain of the feedback loop. Thus the modulation index M 1 is 
analogous to the gain of a feedback loop. This suggests that some 
concepts of classical control theory may be useful in the present 
problem. 

III. COMPARISON OF OBSERVED SPURIOUS OSCILLATIONS WITH THE 
STABILITY CRITERION 

In this section, an experiment is discussed in which the onset of 
spurious oscillation was observed and characterized for three diode-
circuit cases. Both degenerate and nondegenerate parametric-type 
oscillations were obtained. The predictions of the simplified stability 
criterion of eq. (10) are found to be in good agreement with the 
experiments. 
The basic idea of the experiment is to place the diode-circuit system 

in a state that corresponds to the onset of spurious oscillation. Then 
that threshold state is characterized by measuring Z( w), Zd(w), the 
pump level and the spurious frequencies. The results may be compared 
with the predictions of the stability theory. 
There are several ways in which the diode-circuit system may be 

placed in the threshold state. One way is to operate the circuit as an 
amplifier; with the diode bias current and the circuit tuning held 
constant, the input signal level may be increased until spurious output 
begins. Another way is to operate the circuit as an oscillator where the 
diode current is fixed and the tuning is varied in such a way as to 
increase the oscillation strength until spurious oscillation begins. Still 
another way is to operate the circuit as a fixed-tuned oscillator and 
increase the de bias current, thereby increasing the oscillation strength 
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until instability occurs. We have experimented with each method and 
found that the nature of the spurious oscillations appears to be the 
same in each case. For reasons of experimental convenience, the 
second method has been adopted, with the results described here. 
The experimental setup is shown in the schematic diagram of Fig. 3. 

The circuit is a circulator-coupled, locked-oscillator-type amplifier 
designed to operate at 11 GHz with a single 2-watt GaAs IMPATT 
diode. The oscillation frequency is primarily controlled by the capaci-
tive disc, and the tuning screws are used for impedance trimming. The 
experimental procedure is to position the screws so that the diode may 
be biased at full operating current without oscillation of any kind. Next, 
the tuning screws are adjusted so that oscillation is initiated at about 
11 GHz, the pump signal frequency. Then the screws are adjusted to 
further load the diode so that it delivers progressively more pump 
power until spurious oscillation begins. At the onset of spurious output, 
the pump output power and frequency are recorded along with the 
frequency of the spurious signal or signals, and the circuit impedance 
is then measured. 
Several cases of spurious oscillation were investigated using this 

procedure. The data characterizing the situation at the onset of in-
stability are summarized in Table I. A more complete discussion of the 
cases is given below. 
Case 1. The diode was biased to /dc = 300 mA. In the initial position 

of the tuning screws, there was no oscillation of any kind. As the screw 
penetration was increased, the diode began to oscillate near 11 GHz 
and the output power increased monotonically with screw penetration. 
There was a slight continuous shift in fp of about 200 MHz, as the 
output power was increased up to and somewhat beyond the threshold 
of spurious output. The output pump power is defined as the power 
available (at f„) at the output port of the circulator in Fig. 3. 
When the tuning was adjusted past the threshold point, both the 

subharmonic signal and the pump grew stronger. No additional 
spurious signals were observed. 
At the threshold condition, the output spectrum was carefully 

searched from 10 MHz to 40 GHz with the following results. No 
spurious signals were found other than the weak subharmonic signal. 
In particular, no signal could be detected at the upper sideband fre-
quency, wi = 1.5w,,. This provides support for the idea that Si may 
often be negligible, which is the approximation used to reduce eq. (4) 
to eq. (10). A relatively weak signal was detected at f = 2f„, but not 
at the third harmonic of the pump. Harmonics of the pump signal are 
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Fig. 3—Schematic diagram of the experimental setup. 

not considered to be spurious signals, since in any nonlinear device 
harmonic components are expected when strongly driven. Note that 
the second harmonic factor M2 does not affect the spurious oscillation 
condition when Si is small. 
The diode used for this case, diode 15, is a one-sided, uniformly 

doped, Schottky-barrier, GaAs diode. 
Case 2. The circuit used in this case is the same as in case 1; the only 

difference is in the positions of the tuning screws. The diode used here, 
diode 2, is similar in type to diode 15. The major difference between 

Table I — Summary of experimental data at the threshold 
of parametric instability 

Case 1 Case 2 Case 3 

Diode used #15 #2 #15 
Pump frequency, GHz 11.0988 11.1135 10.94 
Pump power, dBm 25.5 28.4 27.0 
Spurious type and 
frequency, GHz Subharmonic Subharmonic Two-frequency 

fo = f-i fo = f-i fo = 4.61; 
= 5.5494 = 5.5567 f_, = 6.33 

/o,,, mA 300 300 300 
Ve,,, V 59.7 67.2 59.5 
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the diodes is that diode 2 has a smaller area (by a factor of 0.73) and, 
thus, a higher impedance level than diode 15. 
The spurious threshold for this case corresponds to nearly 3 dB 

more output power than for case 1. Otherwise, the two cases are very 
similar. The pump frequency is essentially the same, the spurious type 
is subharmonic, and no other spurious signals were observed at the 
threshold. 
Case 3. In this case, diode 15 is used again. The circuit is modified 

from that shown in Fig. 3 by the inclusion of a shunt line which is 
X/4 long at about 5.5 GHz. The line is connected to the capacitive disc 
through a small resistor and is terminated with an open circuit at the 
distant end. The idea is to alter Z. at the subharmonic without affecting 
Zz at the pump frequency. 
It is apparent that the desired effect was obtained, in that the diode 

may now be driven to a higher output level than in case 1 without 
obtaining spurious tones. Further, when an instability develops, it 
turns out to be a parametric pair rather than the subharmonic de-
scribed in case 1. Other than fo and f_i, which are given in Table I, 
no other spurious signals were observed. 
It was possible to vary the tuning screws to keep the diode-circuit 

system at the threshold condition while reducing fi, by about 80 MHz 
from the value given in the table. As this was done, both fo and f-1 
decreased by approximately 40 MHz each. Thus, apparently neither 
spurious signal is frequency-dominant in this case. 

3.1 Calculation of theoretical spurious threshold 

To apply the simplified stability criterion of eq. (10) to predict the 
spurious threshold for the experimental cases, the diode impedance 
Zd(c.o) and the external circuit impedance Z(w) must be determined. 
The small-signal impedance of the diodes in question was directly 
measured for /dc = 300 mA by a method that has been described in 
detail elsewhere.' Since Hines' theory is cast in terms of the Read-diode 
model, what are actually needed are the values of the parameters in 
the Read-model expression for Zd [see eq. (8)], which best fit the 
measured impedance of the real diode. A comparison of the measured 
small-signal admittance data and the equivalent Read admittance 
expression is given for both diodes in Figs. 4a and 4b. It is apparent 
that the agreement is not exact, but it is good enough for our purpose. 
The corresponding diode parameter values are given in Table II. 
The other impedance required is Zz, the external impedance, which 

is defined as the impedance seen by the diode wafer. It, therefore, 
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Fig. 4—Comparison of measured small-signal wafer admittance with the Read-
model equivalent  = 300 mA). (a) Diode 15. (b) Diode 2. 

Table Il — Parameter values for the Read-model equivalent 
of diodes 2 and 15 

Parameter Diode 2 Diode 15 

C;, pF 
GHz 

Td, p8 
2d, dimensionless 

0.86 
8.3 
44.8 
0.83 

1.176 
7.35 
41.5 
0.83 

* These values of Cr are appropriate for the operating temperature. 
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must include the parasitic elements contributed by the diode package 
and mount. The equivalent circuit for this is shown in Fig. 5. The 
quantity Z„, is the impedance at the reference plane M (see Fig. 3) 
looking toward the circulator. The element values given in Fig. 5 
were determined by making a series of impedance measurements at the 
plane M looking toward the wafer and replacing the packaged diode 
with each of several standard impedances. Comparison of the measured 
element values with the geometry of the circuit reveals that: (i) L, is 
equal to the inductance associated with the lead wire internal to the 
package, (ii) C1 is composed partly of the package capacitance and 
partly of mount capacitance directly in parallel with the conventional 
C„,  LM is due to magnetic energy storage within the annular region 
between the package and the outer conductor, and (iv) C2 is due to the 
fringing and gap capacitance of the disc. Because of differences in 
internal construction, L, = 0.330 nH for diode 2 and L, = 0.278 nH 
for diode 15. The parameters CI, C2, and LAI are the same for each of 
the three spurious oscillation cases. The impedance Zm was measured 
at 100-MHz intervals using a Hewlett-Packard automatic network 
analyzer. In each case, the tuning screws were in the position that 
corresponded to the onset of spurious oscillation. 
The resulting Zs for cases 1 and 3 are shown in Smith chart form in 

Figs. 6a and 6b. In case 2, Zz is found to be similar but not identical to 
case 1; the differences are due to different screw positions and different 
L, values. An independent corroboration of the measured Zs may be 
obtained by observing that, since the diode oscillated at a known fre-
quency in each case, then —Z.(te„) must be equal to the large-signal 
diode impedance. Note that —Zi(co)  Z d (41 p), since the large-signal 
impedance is somewhat different from Z d. Such a comparison was made 
for case 1 using the theoretical large-signal result computed6 for a very 
similar diode structure when operated at the same rf efficiency, and 
the agreement was found to be quite good. 

-  
REFERENCE PLANE M 

Ls LM = 0.202nH 

Z WAFER 
CI _  C2  — Z x 

0.435pF  0.705pF ZM 

PACKAGE AND MOUNT 
+ CAPACITIVE DISC 

— 
Fig. 5—Equivalent circuit for the diode package and mount. 
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Fig. 6—External impedance normalized to 50 ohms. (a) Case 1. (b) Case 3. 
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Using the Z. and Zd data, the 8-factor has been computed for each 
case. When the pump frequency is established, the quantity SoSti may 
then be evaluated. This dimensionless quantity is plotted in Figs. 7a 
to 7e for each of the three cases. 
In case 1, it is evident that there is only one intercept with the real 

axis. This occurs at So$*-1 = 2.68 for fo = 5.55 GHz, i.e., at the sub-
harmonic frequency. Thus, there is only one potential spurious oscilla-

E 
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Fig. 7—Stability factor product SoSt as a function of coo. (a) Case 1. (b) Case 2. 
(c) Case 3. 
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tion for this case. Since the intercept is larger than one, the subharmonic 
oscillation is expected to occur for physically attainable pump levels, 
specifically for ¡Mil  (2.68)-1 = 0.611. Experimentally, the spurious 
oscillation observed was indeed of the subharmonic type, and it began 
at 25.5-dBm pump power. 
In case 2, it is seen that if the behavior of Soe_ at the extreme low 

frequency limit is neglected for the moment, there is again only one 
intercept with the real axis. Thus, again the diode is potentially un-
stable at the subharmonic only, and instability is expected for 
I M 11 ?: 0.678. Experimentally, subharmonic oscillation was observed 
to begin for pump power equal to 28.4 dBm. This is significantly higher 
than the threshold pump power for case 1 and is in agreement with the 
fact that the predicted threshold M 1 level is higher for case 2. 
The general appearance of the SoS*Li plot in case 2 is quite different 

from case 1. This is primarily due to the higher diode impedance level 
in case 2, since Z1 (w) is very similar in both cases. A check of the Z. 
data in the vicinity of the subharmonic reveals that they are virtually 
identical for cases 1 and 2. Thus, the predicted and observed higher 
degree of stability for diode 2 in the basic amplifier circuit is primarily 
due to the smaller junction cross-sectional area of diode 2. 
Let us now consider the approach of sos*_, toward the real axis for 

fo less than 200 MHz. This behavior indicates a potential instability 
for fo 150 MHz and f-i 10.96 GHz, which was not experimentally 
observed. A likely explanation for this is that, for very small wo, the 
upper and lower sidebands are close to co, and, therefore, the quantity 
Si is no longer negligible. That is, the more complete stability criterion 
is probably required for coo «wp/2. Also, for very small coo the rectifica-
tion effect which is neglected in this large-signal model becomes 
important and may affect the stability. 
In case 3, there are two intercepts of the real axis: 

_ { 2.07 for fo = 4.65; f_i = 6.29 GHz 
à -1 — 

1.52 for fo = 5.46 = f_1. 

Thus, there are two potentially unstable parametric pairs, and it is 
expected that the nondegenerate pair would be the instability en-
countered by increasing the pump level until spurious oscillation 
begins. The associated threshold pump level is I M1I = 0.695. The 
observed spurious oscillation was a parametric pair at 4.61 and 6.33 
GHz, which is considered to be in quite good agreement with the 
predicted values. The threshold pump power was 27.0 dBm, which is 
clearly larger than that required to initiate instability for the same 
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diode in case 1. The latter fact agrees with the predicted relative 
stability of the two cases. 
Thus, there is good agreement between the instability theoretically 

predicted, using the simplified stability criterion of eq. (10), and that 
experimentally observed in all three cases. 

IV. THEORETICAL STUDY OF CIRCUIT IMPEDANCE SUFFICIENT FOR 
UNCONDITIONAL STABILITY 

As was discussed in the introduction, spurious oscillation is usually 
an undesirable phenomenon for a number of reasons. Thus, it is of 
interest to determine what, if anything, can be done to the diode-
circuit system to insure that an instability cannot occur. Applying a 
stability criterion to this synthesis problem is generally more difficult 
than analyzing a given situation for stability. However, some useful 
information can be obtained from the simple stability criterion of eq. 
(10), which was shown in the previous section to predict spurious 
oscillation accurately for several experimental cases. 
To obtain unconditional stability, it is necessary to have an So ei 

function that does not intersect the real axis beyond unity for 0 5 wo 
5 cop/2, as indicated in Fig. 2. It is sufficient for unconditional stability 
if Soe_i lies within the unit circle. However, the latter condition is not 
required for stability except in the special case of the subharmonic. 
Figures 7a to 7c contain numerous examples of frequencies for which 
I S e' I is quite large, yet instability did not occur there, because the 
phase requirement was not satisfied. 
Although the requirement that sass-, should lie within the unit 

circle is somewhat restrictive, it has the advantage that one may con-
centrate on reducing the magnitudes of So and S._i and completely 
disregard the phase of the stability factors. This simplifies the problem 
greatly. If the additional requirement is made that So and S._i should 
each lie within the unit circle, a further simplification results. It is 
then no longer necessary to consider the pump frequency explicitly 
since, no matter what the value of co, is, Se_i must lie within the unit 
disc. Therefore, most of this section is concerned with the conditions 
that must be satisfied to give I S(w) I 5- 1, for 0 < co < cop. Note that 
it is generally necessary to consider the entire frequency range and 
not just frequencies below cep/2 since, no matter how well-controlled So 
may be, S_1 could be such as to yield an unstable product. 
The equation for the stability factor, eq. (7), may be solved for 

Z. to yield 

Z. = — Zd ±    ( i + rr — s ) (zd cT)' (11) 
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where 

(12) 

For any set of Zd, r, co, and Cr, eq. (11) may be recognized as a bilinear 
transformation' between Z. and S. Several properties of a bilinear 
transformation are useful here: 

(i) A chain of bilinear transformations is also a bilinear 
transformation. 

(ii) A bilinear transformation is one-to-one. 
(iii) A bilinear transformation always maps circles into circles (the 

straight line is regarded as a circle of infinite radius). 

The third property is particularly useful, since it states that circles of 
constant IS I map into circles in the external impedance plane. It may 
be shown that the family of constant IS I circles in the Z. plane are 
determined by the graphical construction given in Fig. 8. 
It is evident from Fig. 8 that there exists a simply connected region 

in the Z. plane such that, for any Z. within this region, IS I 1. 
Further, the region is bounded by a circle; in some cases, it may be 
the entire Z. plane "outside" a circle. The circle in the Z. plane for 
SI = 1 has several important properties. It must pass through the 
point Z. = j(l/coCT), as may be readily seen from eq. (7). Also, the 
circle cannot be tangent to the imaginary axis at Z. = j(l/coCT), but 
rather must subtend a portion of the positive-real half of the Z. plane. 
The latter property can be seen from Fig. 8, where it is evident that 

the line of centers cannot be horizontal since, in general, Im 
(Zd) 1/jcoCT. Thus, it is apparent that there is always some region 
of positive-real Z. such that IS I 1. Therefore, we can contemplate 
synthesis of a Z. function sufficient to give stability using only passive 
elements. 
The boundaries of the stable regions of the Z. plane have been 

computed for a specific case, and the results are shown in Fig. 9. By 
"boundary of the stable region" we mean here the locus of Z. for which 
S I = 1. The case considered is that of a diode with Read-model 
parameters; Cr = 1 pF, Za = 0.83, rd = 40 ps, and fa = 7.5 GHz. 
These parameters are comparable to the experimental diodes of the 
previous section, i.e., they are representative of a typical X-band 
GaAs diode. In Fig. 9, the stable regions are shown for a discrete set 
of frequencies spanning the range from zero through X-band. The 
boundaries of the stable regions are circular arcs in the Smith chart, 
since the transformation from rectangular to Smith chart coordinates 

is another bilinear transformation. 
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Fig. 8—Construction of constant IS I circles in the Z. plane. 

A graph such as Fig. 9 may be used to synthesize a Zz function to 
give unconditional stability or to check a proposed Zz in the following 
manner. If a proposed Z2(w) is such that at f = 2 GHz it falls within 
the 2-GHz circle, at 4 GHz Zz lies within the 4-GHz circle, and so on 
for all frequencies 0 < f < f,„ then the diode for which Fig. 9 is 
applicable is unconditionally stable in the circuit corresponding to 
Zz. That is, it will not develop parametric-type spurious oscillation for 
any physically attainable pump level. 
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Fig. 9—Stable regions of external impedance for a typical diode. (Arrows indicate 
stable region. Cr = 1 pF, 2d = 0.83, rd = 40 pa, fa = 7.5 GHz, Zo = 50 ohms.) 

The location of the stable regions in Fig. 9 is governed entirely by 
the four independent parameters of the Read-diode model. Thus, it is 
of interest to determine the effect of these parameters individually 
and to construct a more universal diagram. Figure 9 may be inter-
preted in a more general fashion as follows. Equation (11) may be 
rewritten as 

Z. = frd  -1  [  ( 1 ±  rr— S ) (z + j)] 
VT WI-a L  \   

=  rd  g(fd "  cord Ward, 43)1 
CT   

where 

(13) 

z A wCTZd.  (14) 

In eq. (13), the function g depends only upon the parameters ia, 
ward, S, and the normalized frequency cord. Therefore, it is apparent 
that Fig. 9 may be applied to any diode that has ±a =  0.83 and 
ward = 0.671- radians. Of course, the labelled frequencies must be 
reinterpreted as normalized frequencies, i.e., f = 2, 4, • • •, 12 GHz 
corresponds to W U =  0.167r, 0.32r, • • • , 0.96r radians. Also, the 
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normalizing impedance needs to be reinterpreted as 

ZoCT/rd -- 1.25 ohm F  (15) 

Thus, it is evident that the parameters rd and CT affect only scale 
factor but not the relative size or location of the stable regions in Fig. 9. 
Since a chart such as Fig. 9 is applicable to the family of diodes with 

fixed 2,1 and wura, it is worthwhile to consider briefly the usual ranges 
for these parameters that are obtained in practice. The parameter id 
is the fraction of the total depletion layer occupied by the drift region. 
Although this depends in general upon the semiconductor material 
and doping profile, for a uniformly doped diode id is essentially constant 
over a wide range of doping leveLs.6 That is, for a GaAs one-sided, 
uniformly doped, nonpunch-through IMPATT, it is a reasonable 
approximation to take id = 0.83 for devices that operate within the 
approximate frequency range 4 to 20 GHz. The transit time Td de-
termines the frequency for optimum large-signal operation. In practice, 
the diode is usually designed so that wed (A-' 0.87r. The avalanche 
frequency depends upon material parameters and also upon the bias 
current density. However, in practice, it is usually found that cop/2 
<w. <w,,. Thus, the usual range of wara is 0.47r < cu.rd <0.8T. 
Figures 10a and 10b give the stability charts for 2d = 0.83 and 

word = 0.47r and 0.87r rad. These normalized charts together with 
Fig. 9 may be used for studying the stability of the most common type 
of GaAs IMPATT diodes, namely, one-sided, uniformly doped diodes. 
For other doping profiles or semiconductor material, it is simple to 
construct similar charts using eq. (13) or the graphical procedure of 
Fig. 8. It is evident from Fig. 10b that the region of Z. which gives 
SI < 1 is quite small at the higher frequencies. This suggests that 
diodes with large values of Ward may be quite difficult to stabilize. 
Some additional remarks should be made concerning the choice of 

a Z. that is sufficient for unconditional stability. One concerns the 
possibility of compensation at complementary frequencies. Thus far, 
the discussion has been devoted to finding Z. (w) so that IS M I 1 
for 0 < w < w„. In some practical situations, there may be a portion 
of this frequency range where it is undesirable or impossible to keep 
S(w) e 1, perhaps because of the influence of package parasitics. 
In such a situation, it is still possible to guarantee stability by introduc-
ing compensation at the complementary frequency. For example, if 
for some coo I Sol > 1, the S-product still lies within the unit disc if 
IS-il < I So  Thus, it may be useful to construct circles in the Z. 
plane corresponding to IS I other than unity, to assist in the design of 
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Fig. 10—Normalized stability charts for external impedance. (Arrows indicate 
stable regions. ZoCT/rd = 1.25 ohm F 8-1.) (a) ea = 0.83, werd 0.47r. (b) 
ta ..., 0.83, CohTa = 0.81r. 
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a compensated Z. One drawback to any compensation procedure, 
however, is that the complementary frequencies are related by cop. 
Therefore, a diode-circuit system that is compensated at cop°, i.e., that 
has Soe_i within the unit circle for wpo, may be unstable for pump 
frequencies that are sufficiently different from wo. 
Furthermore, it is not necessary for unconditional stability that 
I Soe_i 5 1, except at the subharmonic frequency. In applications 
where this condition is too restrictive of Zx, it is possible to analyze 
proposed circuits for stability and study the effect of various circuit 
parameters. The stability criterion of eq. (10) may be used or, since 
such an analysis is most conveniently done by computer, the more 
general expression of eq. (4) may be used with little more cost. 
A question arises concerning the compatibility of the impedance 

requirement resulting from Hines' theory of parametric interaction and 
the impedance requirements for preventing bias-current oscillation 
which were recently discussed by Brackett.2 The origin of the oscillation 
which Brackett considered is in the de negative resistance produced in 
an IMPATT by the large-signal rectification properties of the ava-
lanche process. This is a different physical process from the one Hines 
considers and, in fact, Hines assumed the induced de resistance to be 
zero. Brackett concluded that, to prevent bias-circuit oscillations, the 
diode should see a high impedance below some cutoff frequency f,. 
The value of fc depends upon the Q of the microwave circuit, but 
generally f, is less than about 500 MHz. It may readily be seen from 
eq. (3) that, for f < fc, the factor 0)2/(w — co2) becomes so small that 
S  1 for any finite value of Zz. Thus, Zz may be chosen to satisfy 
Brackett's requirements without appreciably affecting the stability 
factor. 

V. CONCLUSIONS 

The aspects of Hines' recent theory of parametric interactions of 
IMPATT diodes that are most pertinent to the study of stability in 
strongly driven oscillators and amplifiers have been reviewed. A 
simple, approximate stability criterion has been developed from Hines' 
theory. An experiment was performed in which several cases of spurious 
oscillation were observed, and the diode and circuit impedances were 
carefully characterized for each case. The predictions of the stability 
criterion were found to be in good quantitative agreement with the 
experimental observations in each case. 
Using the simple stability criterion, a procedure has been developed 

for determining a range of circuit impedance sufficient for uncondi-
tional stability, i.e., stability under all physically attainable drive 
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levels. The desired circuit impedance is expressed in terms of the 
Read-model equivalent of the IMPATT diode in question. A set of 
normalized stability charts has been given that may be used for 
designing stable circuits for a class of GaAs IMPATT diodes. The 
procedure is also given for constructing similar charts for other types 
of diodes. 
The desired circuit behavior appears to be synthesizable using 

positive-real impedance functions. Finally, it has been shown that the 
circuit requirements are compatible with the restrictions described by 
Brackett to prevent bias-circuit oscillations and low-current burnout. 
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APPENDIX 

This appendix compares the values of modulation index M1 which 
were measured at the threshold of spurious oscillation to those predicted 
by the stability criterion, for the cases discussed in Section III. The 
measured values of M1 are calculated as follows: 

/al  
2/da ' 

where 
-= (1 —  — jed)'1., 
p = (1 — e---"pra)/.p,rd, 

I, = ir(v, — iwper)/Yd, 

linl = (2P /R.)*, 
Yd = (— Z 0)-1 , 

and 
= injected current (full wave amplitude), 

L = induced current, 

IT = terminal current, 
= diode large-signal admittance at the pump frequency, 

P = output power at the pump frequency, 

Rz = Re (Zr). 
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Table Ill —Modulation index M1 at threshold of 
spurious oscillation 

Measured Theoretical 

Case 1 
Case 2 
Case 3 

0.49 
0.69 
0.58 

0.61 
0.68 
0.69 

The magnitude of the modulation index was evaluated using the data 
given in Section III. The results are compared to the theoretical 
spurious threshold in Table III. The agreement is considered to be 
reasonably good, when the approximations of the stability criterion 
and the diode model are considered. 
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The noise introduced into charge packets transferred through and 
stored in charge-transfer devices is calculated in a manner that includes 
all important relaxation, suppression, and correlation effects. First, the 
noise induced into each packet during each transfer phase from thermal, 
trapping, emission-current, and leakage-current fluctuations, whose 
statistics are nonstationary, and from clock-voltage fluctuations, whose 
statistics are stationary, is determined. Relaxation of the transferring 
charge to these fluctuations is found to suppress their size. Second, the 
accumulation (collecting) of the noise as each packet is transferred through 
the device is calculated neglecting the role of incomplete charge transfer. 
Attention is drawn to the significant differences between the collecting of 
storage-process noise, which is unsup pressed, transfer-process noise, 
whose spectral density is nearly totally suppressed at low frequencies, and 
modulation noise, which is nearly totally suppressed for digital and 
analog signals. Third, the role of incomplete charge transfer in suppressing 
the collecting of the noise is shown for digital signals and indicated for 
analog signals. We conclude with a numerical calculation of the maximum 
possible signal-to-noise ratio that can be expected from charge-transfer de-
vices. The presentation is sufficiently general and detailed that, with a 
minimum of background in formal noise theory, one can use the approach 
to evaluate noise in many novel, solid-state devices. 

I. INTRODUCTION 

Charge-transfer devices (CTD's), such as the bucket-brigade' (BB) 
and charge-coupled-device' (CCD) shift registers, are currently of 
great interest. These devices consist of a chain of charge-storage 
elements along which charge packets are transferred from input to 
output. Noise accompanying each individual transfer of each charge 

1211 



packet will be introduced into each packet. It is the purpose of this 
article to calculate this noise and its cumulative effects on the output 
signal. 
Noise generated in solid-state devices has been treated extensively,'—' 

and this prior work will be of great assistance to us here. However, 
there are three major, significant differences between much of this 
prior work and the present treatment.7•8 The first difference arises 
from the nature of the transfer process.' The usual treatments of 
noise discuss situations in which the (noiseless) currents, charge 
densities, conductances, etc. associated with the signal are time-
invariant. Under such conditions, the statistics of the noise are also 
time-invariant and the noise is said to be stationary. Stationary noise 
is readily treated in the frequency domain using spectral-density 
functions. Frequency-domain, linear-circuit analysis of equivalent 
circuits greatly facilitates the usual treatments. (Sometimes, as in 
mixer theory, periodic rather than time-invariant situations are con-
sidered, and frequency-domain analyses are still convenient.) 
In CTD's the situation is quite different. During the transfer of the 

charge from one storage region to the next, the (noiseless) currents, 
charge densities, conductances, etc. associated with the transfer of the 
signal packet are rapidly time-varying. As a result, the noise generated 
during transfer is nonstationary ; that is, the statistics of the current 
fluctuations that give rise to noise vary appreciably with time. Once 
the transfer is complete, a certain amount of noise has been introduced 
into the signal independently of the noise acquired in prior or sub-
sequent transfers. The processes of interest, therefore, are nonperiodic 
as well as nonstationary. Under such conditions, we have found it best 
to work in the time domain using correlation functions. 
The second basic difference between this treatment and other 

treatments arises from the physical structure and operation of the 
device. Ordinarily, we can externally control the noiseless portion of 
the voltages and currents associated with the signal. In CTD's, 
however, the size of the charge packets, in addition to the charac-
teristics of the clock voltages, controls the charge transfer. Thus, the 
noise currents that we usually calculate function as additional driving 
terms in calculating charge transfer and, of course, result in fluctuations 
in the sizes of the packets. But it is the reaction of the charge transfer 
to these currents, and not the currents themselves, from which we 
must calculate charge-packet fluctuations.'°.11 (Normally, we control 
either the voltage across, or the current through, the device of interest 
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and calculate fluctuations in the other. Here we control neither 
directly.) 
A third basic difference is that it by no means suffices to calculate 

only the noise introduced during a single transfer. The collecting' of 
the noise must also be carefully calculated to include correlation 
effects that lead to a suppression in the cumulative noise added to each 
packet while being transferred by the device. The number of un-
expected effects makes treating noise in CTD's truly interesting.'2 
At first the nonstationary feature of the noise coupled to the reaction 

of the charge transfer might seem to preclude a reasonably simple, 
analytic treatment that produces useful results. Indeed, some of our 
expressions will be a bit complicated. However, owing to certain 
suppression effects, which will be discussed in detail, the mean-square 
induced fluctuation in the size of a given charge packet at the end 
of a single transfer is nearly independent of the size of the packet. 
Thus, having calculated the magnitude of this fluctuation, it will be 
possible to obtain a simple, meaningful expression for the spectral 
density of the accumulated noise at the output which is independent 
of the signal. This quantity is quite useful for evaluating the effects 
of noise on the analog performance of a CTD. By contrast, for digital-
performance evaluation, only the accumulated mean-square fluctuation 
in the size of a charge packet at the output is needed. As we shall see, 
this quantity is arrived at in a straightforward manner using our 
time-domain analysis without the necessity of working in the frequency 
domain at all. 
In what follows, we shall outline briefly the noise sources whose 

effect on the output charge packets we shall calculate. Then, following 
a review of the lumped-charge model of a CTD, which has proven to 
be so useful in the analysis and calculation of incomplete transfer 
coefficients, we calculate the statistics of the noise charge introduced 
in a single transfer in terms of the statistics of the microscopic fluctua-
tions inducing this noise. Thermal, trapping, clock-voltage, emission-
current, and leakage-current fluctuations are considered. Three 
different types of compounding, storage-process, transfer-process, and 
modulation, are then treated neglecting incomplete-transfer effects. 
Following this, the general problem of compounding in the presence 
of incomplete charge transfer is treated and interesting suppression 
effects are uncovered. The paper ends with calculations of the maxi-
mum signal-to-noise ratio expected for state-of-the-art devices. As the 
techniques employed in calculating nearly all aspects of the noise are 
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of necessity different from those usually encountered, we have chosen 
to elaborate our methods in some detail. From a knowledge of the 
noise at the output, the operational limitations" and error rates" 
associated with CTD's can be assessed. 
The remainder of this article is long and intricate. This arises not 

from the nature of the noise treated per se, but rather because of the 
complexity of the devices considered. Nonetheless, familiarity with 
the physical operation of CTD's as well as acquaintance with Brownian 
motion and shot noise are the only prerequisites needed. No use is 
made of highly developed, sophisticated techniques of noise theory. 
This is not because such techniques are not considered applicable; 
rather, it is felt that the methods used here are the simplest available 
for a rigorous treatment. In addition, it is felt that these methods will 
be useful in treating noise in other dynamic devices as well. Readers 
well versed in noise theory may feel that this problem is amenable to 
existing methods. While the contrary is not claimed here, we believe 
that such treatments will be more involved than might be expected 
at first sight. 

II. SOURCES OF RANDOM NOISE 

We should at the outset stress that we are concerned here only 
with random noise. We are not concerned with signal distortion arising 
from sampling, incomplete transfer,"•'' direct clock coupling, nonideal 
regeneration, or any other deterministic process. This is not because 
we feel that such problems are unimportant. Rather, our philosophy 
is that random noise is unavoidable, whereas, in principle, deter-
ministic "noise" can be greatly reduced or compensated for by careful 
design.'3"4 Thus, it is random noise that plays a major role in setting 
the operational limits of CTD's, which is a problem of general current 
interest. 
Figure 1 indicates schematically the sources of CTD noise with which 

we shall be concerned. At the input, if the charge packet is created 
by photon absorption as in imaging application, or if it is injected by 
an emission-limited mechanism, full shot noise [(((2 — Qo)2) = eQoi 
will accompany the signal Q. If, on the other hand, the packet is 
injected into the input via a resistor-controlled circuit, as in regenera-
tion and storage applications, no shot noise will be introduced. 
The CTD itself simultaneously transfers charge and stores charge.' 

In its charge-transfer capacity, thermal noise from the Brownian 
motion of the carriers composing the transfer current and trapping 
noise from the fluctuation in occupancy of interface states" arise. Care 
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Fig. 1—Sources of noise for a M D. 

must be exercised in calculating this transfer noise because of the 
tendency of relaxation effects to suppress thermal and trapping 
fluctuations.7 Since the transfer of charge from one storage region to 
the next is controlled by the conductance of the storage regions them-
selves (or portions thereof), shot noise in the transfer current is 
totally suppressed for all practical purposes. (Exception: Should such 
current become barrier-limited, then some shot noise can result. This 
special case is treated in Section 6.1.) In its capacity of charge storage, 
noise from leakage-current fluctuations and trap-occupancy fluctua-
tions is introduced. Although intrinsically much smaller than transfer-
noise sources, storage noise is unsuppressed, and, hence, it can be 

important in some cases. At the output, we have the usual problems 
with detector noise, but we shall not consider these problems at 
this time. 
What is of basic interest is, of course, the cumulative noise in the 

charge packet by the time it reaches the output of the device. As it 
turns out, one must be very careful in calculating the collecting of the 
noise introduced into each packet during each phase of each transfer 
cycle. For example, if at the end of a transfer phase, a transfer noise 
of +iQ has been added to the signal, by conservation of charge, a 
quantity of charge — 4 has been added to the charge left behind. 
These two contributions to the noise are highly correlated, and this 
correlation must be taken into account in calculating the noise spectral 
density at the output.7 Incomplete transfer of charge distorts the 
noise as well as the signal, and must also be included in collecting 
effects. Fluctuations in the clock voltage coupled to fluctuations in the 
sizes of the storage capacitances of the individual storage cells of the 
CTD give rise to modulation noise, which collects quite differently 
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from the noise induced by fluctuations in the clock voltage in the 
absence of cell-parameter variations along the CTD. 
These, then, are the aspects of the noise produced by CTD's that 

we shall discuss. In calculating these various contributions to CTD 
noise, we were surprised by the variety of the results: the presence or 
absence of suppression in individual transfer phases, differences in 
compounding suppression, stationary fluctuations in charge-packet 
fluctuations induced by nonstationary noise sources, etc. Athough we 
by no means treat all aspects of CTD noise, the methods we develop 
should be helpful in calculating the influence of nearly any source 
of noise on the output of a CTD. 

III. MODEL OF CHARGE-TRANSFER DEVICE 

All device noise arises ultimately from fluctuations inherent in the 
transfer of charge carriers between states characterizing the flow of 
charge through the device." It follows that to calculate CTD noise, 
we must first understand how a CTD operates under noiseless con-
ditions."." As this topic has been the subject matter of a large number 
of papers,'°.11 a detailed elaboration here is not necessary. We shall, 
however, briefly review a lumped-charge model"." of charge transfer 
within a single transfer unit of a CTD, which has proven useful in 
discussing and calculating incomplete charge transfer in CTD's. This 
model enables us to express the device current as a function of several 
characteristic voltages, which in turn control the charge passing 
through the device. Using this model, we can then calculate fluctuations 
in the sizes of the transferred charge packets in terms of the current 
fluctuations which accompany the charge transfer and which can be 
calculated by standard means." 
The lumped-charge models we shall use to calculate CTD noise are 

shown in Figs. 2a and 2b. Charge Q. stored on capacitor C. is trans-
ferred to capacitor Ca during the transfer cycle. (The clock voltage 
which determines the duration of the transfer cycle is V..) In sub-
sequent cycles, the charge on Ca is transferred to the right step by 
step to other storage sites, and charge from the left is brought into 
C.—both processes are modeled by repetitions of this model for a 
single transfer unit. For the present, we shall be concerned only with 
a single transfer unit, either of type (a), if the charge transfer is 
characterized by a single-step process, or of type (b), if the transfer 
is characterized by a two-step process. In the latter process, an inter-
mediate capacitor CI, is inserted between C. and Cd to enhance their 
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Fig. 2—Lumped-charge model including the effect of interface states for the 
transfer of charge through a single stage of a CTD. (a) Single-step transfer. (b) 
Two-step transfer. 

mutual isolation so as to reduce the incomplete transfer. As we shall 
see, this also has the effect of reducing the noise acquired by the 
transferred packet. 
Let us now review the dynamic features of the lumped-charge 

model of Fig. 2a in some detail. Stored on C. = C.(V„ Vd, Ve,, V) is 
a time-dependent quantity of stored charge Qs given by 

v. 
Qs = f Cs(V's, Va, V V „„)dV's;  (la) 

V88 

stored on C..(V., Vd, V, Va.) is a relatively small, time-dependent 
quantity of interface (trapped) charge Q., given by 

. Qss = j Caa(V., Vd, 
V83, (lb) 

The total charge Q to be transferred through the conductance 
I -= I(V.,Vd,V„V es) is given by 

Q = Qs ± Q8.  (lc) 
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Stored on Ca is a charge Qd given by 

ird 
j" Qd = Q.— Q   Ca(Vc, V, Vc, Vss)dird,  (1d) 
Va. 

where Q0 is the total charge to be transferred through this single 
transfer unit. (Q,,  is some constant for each transfer event: it is the 
quantity of charge initially distributed between Q. and Q., to be 
transferred to Ca.) The time dependence of the decay of Q. during 
the charge transfer is governed by the equation 

=  = (2) 

where i,, (t) is the device noise current induced by microscopic fluctua-
tions within the conductance I. To determine CTD noise we must 
(i) solve eqs. (1) and (2) for fluctuations in Qd induced by in(t) (and 
by fluctuations in Vc and in trap occupancy), and (ii) express in (t) 
in terms of the microscopic fluctuations from which it is induced. 
For two-step transfer processes, as modeled in Fig. 2b, the dynamics 

of the charge transfer are more complicated. One must now be con-
cerned with Q., the; Qd, Q.81, and Q882 defined by 

Q. = j Ca(rs, V b, Vc, V 8.1.)dra,  (3a) 
V., 

Vb 
Qb = f Cb(V8, V;), Va, V c, V881, V882)Ci n  (3b) 

v0.  

Vd 
Qa =  Cd(Vb, v;i, vc, v„,„,)dV:i,  (3c) f„,,,, 
v„.,i Q..= j. c..„(va,vb,vc,v;.,)dv;.„,  (3d) 
le..10 
Ç Vgg2 

(23.2 = Cs82(Vb, Vd, V., V;„)dV:„.  (3e) 
V.20 

In addition, we have 

Q = (Q + Q..1) + (Qb + Q.2) —= Qi + (221  (3f) 

and 

Qd = Q. — Q = Q. — (Q1+ Q2).  (3g) 

The corresponding dynamic equations governing the time dependence 
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of Q., Qb, and Qd are 

=  + 0.4 = —11(V., V b, V., V..1) — 
=  Qms2 =  Il(V 3, V b, V c, V,,1) ± i1(t) 

— I2(V b, Vd, V6, V,.2) —  

cid =  I2( V by V d, V 3, V,32)  i,2( 0) 

where again the noise currents i,11 and i„2 are the device noise currents 
induced by microscopic fluctuations within the conductances Ii and 
/2, respectively. To calculate the fluctuations in Qd, we shall solve 
eqs. (3) and (4) for the influence of i i,,2, and fluctuations in Vc and 
in trap occupancy (2.0. and Qu a, on Qa. 

IV. NOISE INTRODUCED IN ONE CHARGE-TRANSFER CYCLE 

Let us now inquire into the influence of device noise on the size 
Qd of a charge packet transferred through one single-step transfer 
element of a CTD. (Owing to the additional complexity associated 
with a two-step transfer element, we shall relegate the noise treatment 
of this case to Appendix A). It is the purpose of the remainder of this 
section to write the mean-square fluctuation in Qd, qd, in terms of the 
independently fluctuating voltages and currents characterizing the 
transfer and storage process. By expressing all dynamic quantities in 
terms of a minimum number of independent ones at the outset, we 
can greatly reduce the number of cross-correlations which we must 
eventually include. 
If we assume that the fluctuations themselves are sufficiently small, 

then we can linearize eqs. (1) and (2) about their time-dependent, 
noiseless solutions. The form taken by eq. (2) upon expanding to 
lowest order in the fluctuations (and subtracting out the noiseless 
portion) is 

.al  al al al 
W8 v8+ 19V d5d + a vc v. ± av,„ y.. ± in, (5) 

in which lower-case letters indicate the fluctuation portion of the 
quantity of interest, e.g., Q = Q° + q, Qd = Q + qd, etc. Since v, and 
vd depend upon q, we must also linearize eq. (1), which will yield this 
dependence. In calculating incomplete charge transfer, it was necessary 
to pay special attention to the dependence of C. and Cd on V., Vd, 
Vc, V... This was because most terms in the small-signal expansion of 
Q. and Qd contributed to the incomplete transfer of charge. For our 
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purposes here, however, we can recognize such terms as small; that 
is, we can drop terms of the order of incomplete transfer times noise 
compared to terms of the order of unity times noise. As incomplete 
transfer per transfer is at most 3 X 10-3 in devices of interest, this 
is certainly warranted. Proceeding in this manner, we obtain 

q = C.(17%  — C.(Vfo, .17/  vt)v.. 
+ c.„(vcs., ve„ — Cis( V's, d,V°C,  

— C.v. — Csys.  C B ess —  0;82)81w  (6a) 

and 

q. = —q = Ca(V% Tit «Pc, 173)V d — C d(17% ro, riTs)Vd. 
C dV d —  do. (6b) 

It is these equations that must be solved for v, and v./ in terms of q, 
v., and v,.. 
At this point a minor subtlety enters. In Fig. 2a, contact 1 is tied 

to the clock voltage V,. Since a fluctuation v. in V, cannot instan-
taneously alter the amount of charge stored on C„ fluctuations v, and 
v., must be correlated, and indeed this correlation is contained in 
eq. (la). A similar argument also applies to contact 2, vd and vac, and 
eq. (1d). (Since the capacitance C„ is not tied directly to the clock, 
we need not concern ourselves with trapped charge at this point.) 
It follows from eqs. (la) and (1d) that 

ay. ay. c. vs. =  ° v. —  — v, = (+1) —C. v.  (7a) ay.  ay. c;  c°, 

and that 

aVdo  avd cd  cd v. =  vc = (—l) el  v,.  (7b) 
vd° = ay. 

[In (7b), a Vd/a17. = —1 because it is —V, that is connected to 
contact 2.] With respect to the traps, since V., is the effective level 
to which traps are occupied during the transfer cycles, V.. ° is un-
affected by the dynamics of the operation of the device and, hence, 
v... = O. We may now solve eq. (6a) for v., (6b) for va, and insert 
into eq. (5) to obtain 

gm gr ar  qd  d) qd + (g. + gr av j vc 

ar ) 
v  v.. + i.,  (8a) a.. 
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from which it follows at once that 

qd(t) =  exp — Jo  ft, dr/r(t")][(g„,  er,)levc(ti) 

I C,5  al 
ev..(e)  i.(e)] , (8b) 

where we have taken g,.« gm and defined the time-dependent relaxa-
tion time r by 

1/r  gm/Ce.  (8c) 

(The capacitances C. and Cd are of comparable size.) In eq. (8), gm 
is the forward conductance (al/a V,) and g, is the reverse conductance 
(— 81/3 Vd). Because of the inherent unclirectionality, gm » g,. The 
statistical distribution of Mt), which we seek, can be determined from 
(8b) and the statistical properties of v., v.., and i.. 
Our expression for the noise fluctuation in the transferred charge 

given in eq. (8) has several interesting features which should be 
carefully noted. The charge fluctuation that accumulates is not simply 
the integral of the noise current over the time interval. Rather, it is 
the integral of the noise current times a damping (relaxation) factor. 
Physically, this arises because if an excess quantity of charge — q( -----qd) 
has been transferred, then the subsequent current (which depends 
most strongly on q,) is reduced from what it would have been in the 
absence of the fluctuation. The reduced current causes less charge to 
flow from C. to Cd, which in turn tends to partially compensate (null 
out) the effect of the previous fluctuation. This leads to a suppression 
of the device noise, which is shown explicitly in eq. (8b). During the 
initial portion of the charge-transfer cycle, the transfer current is 
largest, as is the conductance gm. Hence, although the larger the 
current, the more noise is present in the charge transfer, because the 
damping is also largest initially, the effect of this noise on the trans-
ferred charge can be expected to be greatly suppressed. On the other 
hand, near the end of the charge-transfer cycle, while the noise from 
the transfer of charge and its accompanying noise is much reduced in 
size, so is the damping. As it turns out, it is the noise produced during 
the end of the transfer cycle that is most important. This is con-
venient, because it means that the size of the noise produced by the 
end of the transfer cycle is independent of the size of the initial charge 
packet (as long as some charge is transferred). 
Of primary interest is the mean-square fluctuation in the transferred 

charge (qa(tf)2), where ti• is the time at the end of the transfer cycle. 

NOISE IN CTD'S  1221 



Since the fluctuations v„ v„„, and in are mutually independent, as we 
shall see when we determine their statistical distribution, it follows that 

(qa(tf)2) = I dti dt2 exp [ — f tie r (41 
o  o 

g„.  r 

el 

X exp [ — f t I e/ r(1)1[(gm + 7—ef, ) (gm ± aavl j 
e,  (-, v c el if 

X  (Vc (t1)Vc (t2)) ±  f i _   aI  ) (1 _ 7- aï  ) 
ai ls  ti  r  aQs. t, 

X lq..(11)q.,.(t2)) + (i.(11)i.(12))1 . (9) 

In (9), we have used C,„v„„ = q,,,, and gm/C. = 1/r. Thus, to determine 
(q», we must calculate the autocorrelation function of vc, va„ and  
For stationary noise, such quantities are well known. " The purpose 
of the next section will be to calculate these autocorrelation functions 
for the nonstationary conditions that enter the present problem. The 
reader should note carefully at this point, moreover, that the factors 
multiplying these correlation functions involve time-dependent quan-
tities characteristic of the detailed (but noiseless) solutions to the 
nonlinear device equations [eq. (1)11. Although further simplifications 
can be made in some cases, it should be evident that, in general, one 
must understand the noiseless problem in order to do the problem 
with noise. 
Two other important aspects of our results (8b) for qd(t) and (9) 

for (qa(t8)2) are these. First, as a result of the suppression factor, 
qd(tf) and, hence, (qd(ti)2) are for all practical purposes independent 
of the size of the signal. Owing to the suppression, qd(t,,) depends most 
strongly on details of the charge transfer for t fr:-..1 tf. However, consider-
ing the typical size of a, the coefficient of incomplete charge transfer 
(a .. 10-8), the details of the charge transfer for t r-z-'., ti can deviate by 
only about 10-8, which for our purposes is quite insignificant. Second, 
qd(tf) is a stationary random variable, even though its statistics must 
be derived from the nonstationary distributions of vc, v.., and in. 
These two results greatly simplify our treatment of compounding of 
the noise in Section V. 
(Note that, to avoid undue complication, we have left out leakage 

current into the storage regions, as well as the noise associated with this 
current. As this noise source is uncorrelated with the other sources 
considered above, we can treat it in a separate section. When this 
component of noise is included, it is no longer the case that qd = — q 
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[eq. (6b)], and, hence, greater care must be exercised when we sum 
the noise added with each transfer. This effect also shows up in the 
distinction between transfer process and storage noise, which is 
discussed in more detail in Section V.) 

V. NOISE INTRODUCED BY MICROSCOPIC FLUCTUATIONS 

In the preceding section, we expressed the mean-square fluctuation 
in the charge transferred during a single transfer cycle in terms of the 
autocorrelation functions of the various contributions to the device 
noise. In this section, we shall calculate these correlation functions 
and then use the results to estimate the noise of each type introduced 
during a single transfer cycle. Our task is eased considerably because 
of the extensive effort that has already gone into the study of noise 
in solid-state devices.3-6  
Although at first sight the character of the charge transfer from 

C. to Cd in a CCD appears to be rather different from that in an 
IGFET bucket-brigade device, in fact, the two types of charge transfer 
can be treated in a similar manner. We shall carry over this similarity 
in treating the device noise associated with i, (t): we shall make use 
of the understanding available of noise in IGFET's and then apply 
these results to the CCD as well. In so doing, we must (and shall) 
be careful to make note of certain important differences between 
CCD-mode and BB-mode transfers which can affect the noise 
calculated. 

5.1 Thermal noise 

Of the primary sources of noise present in IGFET's—thermal noise 
at high frequency," generation-recombination (g — r) noise at inter-
mediate frequency," and 1/f noise at low frequencyn—by far the 
most important source of noise associated with in(t) is the thermal 
noise arising from the Brownian motion of the charge carriers in the 
inverted region of the semiconductor, which forms the conductance I. 
(This is evident because the spectral densities of 1/f and g — r noise 
have dropped considerably from their peak values by 10' Hz, the 
lower bound on CTD transfer frequencies.) (In CCD's the proximity 
to the semiconductor-insulator interface of the charge being stored as 
well as transferred greatly enhances the role of interface trapping on 
(0). In fact, for CCD's, it appears that interface noise is the dominant 
form of device noise in these devices. For reasons that are apparent in 
the next subsection, we shall treat this contribution as a trapping noise 
associated with v„„ rather than as 1/f noise associated with is.) 
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Of the early theoretical work on thermal noise in IGFET's, the 
treatment by Jordan and Jordan" seemed clearest to us on first 
reading. These authors note that a spontaneous current fluctuation 
1.(x, 0 at x along the channel of the IGFET (0  x  L) will give 
rise to a voltage fluctuation vs(x,  = i8(x, Odx/ 1.to-(x, t), where 14 is 
the mobility of the carriers and cr(z, t) is the mobile charge per unit 
length of channel at time t. The spontaneous voltage fluctuation 
V,(x, t) will in turn induce an s-dependent voltage fluctuation all 
along the channel, which in its turn induces a fluctuation in the 
source-to-drain current id given by 

id(t) =  o-(x, t)v.,(x, t). 

Making use of the above relation between y„ and i,, we obtain 

id(t) = i.(x, t)dx/L. 

(10a) 

(10b) 

[The same result can be obtained using the impedance field method 
(IFM)." Alternatively, one can develop a current-current method 
analogous to the current-voltage method employed in the IFM. This 
is outlined briefly in Appendix B.] The contribution to the noise 
current j,, (t) due to id (t) induced by fluctuations all along the channel 
is from (10b) 

so that 

(11a) 

(in(ti)i,i(t2)) = fL dxi  dx2(i,(xi, ti)i,(x2, t2))/ L 2. 

f L 

(11b) 
o  o 

The autocorrelation function of i, (s, t) for thermal noise can be 
found from that of the current density j, (x, t) obtained from micro-
scopic noise theory " and given by 

(ja(xi, ti)j.(x2, t2)) = 2k711.cp (xi, ti)S (xi — x2)5(ti — ta), (12) 

where p(xi) is the charge density at xi. Inserting (12) into (11b) 
and noting that p(x) = o-(x)/ A (x), A (x) being the cross-sectional area 
of the channel at x, we obtain 

(in(ti)i.(t2)) = 21c77(5(11 — ta) f i.co-(x, ti)dx/  (13a) 
o 

in(t) = f i.(x, t)dx/L, 
o 

The integral in (13) must be found from a knowledge of the noiseless 
operation of the device at time ti. In general, the integral is directly 
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proportional to the forward conductance" so that 

(in(ti)in(t2)) = 2kTS(ti — t2)gm(ti)H.(ti),  (13b) 

where H, = 1 for the IGFET operated in the linear region, H,, = 
for the IGFET operated in saturation, and H„ =  for diffusion-
limited current." In most cases of interest, the CTD is operated in 
saturation so that H =  For very long clock periods, If = ¡e 
appropriate near the end of the cycle, can be used. As the 30 percent 
uncertainty between  and  is tolerable at present for noise calcu-
lations in these devices, we shall not concern ourselves with the 
additional dependence of H„ on the time ti. (Setting Hn = 1 and 
H = gives adequate upper and lower bounds on the thermal noise.) 
[Although (13b) was derived for the bucket-brigade type of charge 

transfer, we shall assume that it is valid for CCD-type transfer as 
well, where, of course, one uses gm appropriate to the CCD device.'°." 
This assumption clearly breaks down, however, when (0)i becomes 
comparable to or larger than the amount of free charge incompletely 
transferred in a single transfer phase. The reason for this difficulty 
goes back to the assumption of linearity in eq. (5). This, of course, 
also applies, mutatis mutandis, to all other noise contributions as well. 
Treating these interesting nonlinear problems is, unfortunately, 
beyond the scope of this paper.] 
Returning now to (9), we can calculate the contribution to (01) 

arising from thermal noise during a single transfer cycle. If we set 
H„ = I ignore the time dependence of Cs (a 0.1 percent effect if 
a = 10-'5, and recall that T-1  =  g,„/C., inserting (13b) into (9) and 
integrating over ti and t2, we obtain 

(0) kT -  lkTCa 

in the limit that 

(14a) 

f 
exp [ — fi de/r(e)1 «1, 

o 

as it must if the incomplete transfer a is to satisfy a « 1. (In deriving 
the above, we have not assumed that gm is independent of time.) A 
corresponding result was first given by Boonstra and Sangster ;" 
however, their (0) was four times larger than the right-hand side of 
(14a). We believe that (14a) is in fact correct. 
[If one ignores the nonstationarity of the noise, a result similar to 

that of Boonstra and Sangster can be obtained in the following manner. 
For thermal noise, the mean-square current fluctuation is given by 
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(d) = 4k ng„,B, where gm is the conductance and B is the bandwidth. 
If T =  C./g„, is the characteristic relaxation time, then B  7--1 and 
(0) = (41)T2 = 41c711C8. (The quantities (e) and (4) are mean-square 
fluctuations, not Fourier coefficients. The quantity (4) is obtained 
from the spectral density of id using the Wiener-Khinchin theorem.) 
While this result is not too bad, attempting to calculate noise in more 
complicated, nonstationary situations using stationary results can 
lead to trouble. For example, for a two-step transfer process, we obtain 
for the thermal contribution to (e) the result [from eq. (62)] 

(el) I kT =  lk T C  +  lkTC8(1  (14b) 

where b = (g.2/Cb)(g,,,i/C.)-', and is assumed to be independent of 
time. This result is more of a challenge to obtain from arguments 
based on stationary noise sources.] 

5.2 Interlace (trapping) noise 

We now focus attention on calculating the statistics of 

g,,&(t) =  

the fluctuations in occupancy of the interface states during charge 
transfer. To proceed, we must first write down the dynamic equations 
governing the trapping. These are simple since we are working in the 
lumped-charge approximation. If greater accuracy is desired, one can 
be more microscopic and include the position and energy dependence 
of the trapping states, as well as their capture cross section and 
thermal-release time. The procedure is similar but much more involved. 
The dynamic equation relating the flow of charge into and out of 

the traps is 
=  Q.,) — 1,(Q8.) i„„„, 

where the trapping current I is given by 

It = I(cr./A)(QL — Q85)/q3s, 

and where the release current I,. is given by 

= Q../Tr(t). 

In (15), in., is the noise current associated with the filling and emptying 
of traps; in (16a), I is the transfer current, 0-z/A is the ratio of the 
effective cross section of all the traps to the area A through which I 
flows, and the factor (Qt. — Q..)/Os is the fraction of the total number 
of active sites Qtzs that are empty; in (16b), Tr is the thermal-release 
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time. Writing Q.. -= e. + q.„ expanding to first order in the noise 
q.., and subtracting off the zero-order equation, we obtain for the noise 

.  al, ai , aQ q" al, air  q.. = --- q.3 -I- q.. + L.  (17a) al« aQa.  a.  aQ,T.   

=-1 -__ it ar +  1  ±  1  1 
I_ 1 aQ..  Taw  T,.(t) ]  

= — gas/ ras(t) + ¡a m 

(17b) 

(17c) 

where 7" is the effective trapping time (aid aQ..), and where 
equals the bracketed quantity in (17b). (Ordinarily Ir « I, so that 
the first term in T,;1 can be neglected. Under these circumstances, the 
noise contribution from different types of traps will be independent, 
and the traps may be treated independently.) 
Proceeding now, we solve (17c) for q,.(0, obtaining 

qa.(t) = cle exp [ —  dt" / r (t")] ti. (e).  (18) 

To obtain the correlation function of q.8(1), we must calculate 
(q..(ti)q88(t2)j. The resulting expression involves the correlation func-
tion of i..(i), which, since  is an elementary microscopic process, 
is given by" 

(i„.8(ti)in88(tz)) = e[P,(t,)  ./.(t1)35(t, — to),  (19) 

where e is the charge on an elementary carrier. (The above is not 
obtained from a spectral density, since for a time-dependent current, 
a nonstationary process, spectral density is not defined.) For to > ti, 
it follows that 

.2 
(4.8(ti)48.(12)) = exP [ — ./ dt/r..(t)] 

ti 
• f dt exp [ — j-t / r (1')] e[I1(t)  e(03.  (20) 

If this result is inserted into (9), summation over all trapping states 
yields the contribution to the transfer noise arising from these states. 
As is evident from (20), in general, one must know the noiseless 
solution, especially T a 8(0, rat) and e(t), in order to actually calculate 
the noise. A few simplifications, however, permit us to recover 
Tompsett's result'7 for a single-step, CCD-mode transfer, which is 
valid in the limit of I, « I„ i.e., near the end of a transfer cycle. 
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To calculate the contribution to (0) arising from interface-state 
trapping, we must, according to (9), know not only (q88(t1)q.8(12)), 
which we found above (20), but also (al/a Q88). This quantity entered 
into a previous discussion" of the role of surface states on incomplete 
transfer. There it was noted that one could write 

al/aQa. =—a(t)/7-(t),  (21) 

where for CCD-mode transfer a = 0 and for bucket-brigade-mode 
transfer a falls from a = Ca/Cch during most of the transfer cycle 
(Ca, being the channel capacity) to a  0 toward the end of the cycle, 
where the IGFET current becomes emission limited. [The vanishing 
of a for CCD-mode operation is due to the fact that the field felt by 
a mobile carrier due to another carrier is independent of whether the 
other carrier is free or trapped. The large value of a for BB-mode 
transfer arises from the fact that relatively small changes in the 
threshold voltage, induced by changes in trap occupancy in the channel 
region, can result in relatively large changes in transfer current. If a 
is large, it enters (9) as a', while, as we shall see, (e) is proportional 
to C„„ («Cch for the IGFET channel). This implies that the ratio (R) 
of the surface-state-noise contribution to (e) for bucket-brigade to 
that for CCD is C8/C8,,. If, on the other hand, the BB-mode is not 
turned off until the channel current becomes emission limited, then 
a rf,..-1 0. If we assume that the suppression factors in (9) damp out the 
noise introduced while a» 1, then the above ratio (R) becomes 
Cc h/Cg, which means that the contribution to (0) of q.5 can be ignored 
for BB-mode transfer. We shall assume that this is the primary 
operational region of interest, pointing out, however, that if the 
BB-transfer mode is terminated while a is large, one should expect an 
increase in that portion of (0) arising from trapping.] 
Returning to CCD-mode transfer where we expect interface states 

to play the largest role, if we assume in eq. (9) that (q58(11)q.8(t2)) 
varies in time slowly compared to 1' (t), then we can integrate over 
ti and t2 to obtain 

(qd(tf)2)  (q.8(t.r)2).  (22) 

If, in addition, we focus attention on long transfer cycles (10-6 second 
or longer), taking  » I and 7., >> T„  then from (20) we obtain 

(q..(t1)2) = e j" dt / 

• exp [ — 2 f  / r (e)] es(t)/r(t)  (q.8(t.)2). (23) 
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If we make one more assumption that at time 1,(0 < t. < ti), 
Q.. = Q308 =  qt.,  and for subsequent t(tc < < gf), Q̀:.3 decays as if 
It = 0, then 

08(0 = (X, exp [ — f de/rr(e)] ,  (24a) 

(qt.(gc)2) = 0. 

Inserting these into (23), we find that 

(q..(tf)2) 

(24b) 

f 

= qq„ exp [ — j" de/7,(e)1{ 1 — exp [ — f dt'Irr(t1},  (24c) 
t, 

as found by Tompsett" using other reasoning. Should conditions be 
such that any of these assumptions are unwarranted, then, of course, 
the result [(20) in (9)] is more complicated. 
The result given in (24c) has the following significance. If on the 

average Tr »  (tf — t.) or Tr « (t1 — t.), then (es) for such states is 
negligible. In the former case, the transfer process occurs too rapidly 
for the traps to respond; in the latter case, the trap occupancy can 
follow the transfer current quite closely; in either case, the noise is 
greatly suppressed as a consequence. Thus, only when TT er:e, tf  tc 

can the traps influence the charge transfer. 
If we now sum over the distribution of traps, assumed uniform in 

energy E, and take T171  proportional to exp (—E/kT), then following 
Strain" we obtain 

(es) = e'leTN,.A ln 2,  (24d) 

Tompsett's result," where N,. is the number of interface states per 
unit energy per unit area, and A is the active trapping area. Like 
Tompsett," we conclude that the noise introduced into Qd  from 
trapping has a mean-square value of 

= e2kTN„,A ln 2,  (25) 

that is, 
(e) = (es). 

5.3 Clock-voltage noise 

The influence of fluctuations in clock voltage on the noise added to 
the transferred charge in a single transfer can be treated very quickly, 
especially if it is white as we shall assume. If the spectral density of 
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the noise at zero frequency is 8„(0), then " 

(v0(ti)v0(t2)) = iS8(0)S(t1 — t2).  (26) 

From (9) it follows that the contribution to (0) from clock-voltage 
fluctuations is 

(e) jdock  = S8 (0) f dl 

• exp [ — 2 ftf de/T(1 1(g. -I- 81/av-0)21,. (27a) 

We recall that g. = Ca/T. The direct dependence of I on Va depends 
strongly on the type of device, and one must be careful not to include 
in ar/av,, terms already included in (ai/ay.)(ay./ay.). Thus, for a 
single-step bucket brigade, ai/ay. = +gm, while for a single-step 
CCD, at/ ay. = O. If we set 81/8 V,, =  bg., then 

(el clock — (0) M1  b)2 ftf dl 

• exp [_2 f f de/r(e)] T-2 (t).  (27b) 

In general, (27b) must be evaluated from a knowledge of r(t) obtained 
from the noiseless charge-transfer characteristic. If, however, we 
assume that we can write al/aQ. = dI/dQa, then 

dt/T(e) = g.dt/Ca dtaI/aVa/Ca = dial/8Q. = dtdI/d(2„ =—dI/I. 

It follows that 

(el clock M O (1 ± b)2 110 cY (If )2  1 '  (27e) 

where I,  =  1 (1  =  t )  and Ia = 1(1 = 0). In this form it is clear how 
the integral yields the effective bandwidth B of the white clock-voltage 
noise. One can replace the 7---4 in (27c) by dI/dQ,, which in turn may 
be calculated as a function of I using eq. (8) of Ref. 11 (Q„ = CaVa). 
For our purposes, we shall be content with 

olook = 18„(0)B61(1  b)2.  (27d) 

Of course, if the clock-voltage noise is not white, (26) should be 
replaced with the actual correlation function, which then introduces 
an additional time-dependent function in the integrand of (27). 
Relation (27d) will be useful in discussing modulation noise. 
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VI. OTHER NOISE SOURCES 

In the preceding section, we discussed the three primary sources of 
noise that contribute to the fluctuations in the size of a single charge 
packet as the result of a single transfer. In this section we examine 
two other sources of noise which do not readily fit into (9) without 
undue complication. For simplicity, we shall not include the thermal, 
trapping, or clock-voltage fluctuations discussed in Section V, as these 
can be superimposed linearly on the results discussed below. 

6.1 Emission-limited-current shot noise 

In describing the types of noise expected to be generated in CTD's, 
we noted that shot noise would not play a significant role under 
ordinary circumstances. This is because, in simplest terms, a single 
transfer unit of a CTD is like two capacitors connected by a resistor, 
and, owing to strict charge neutrality in the resistor, shot noise is not 
present. If, however, the clock period to of an IGFET CTD becomes 
long (to > 10--e second), the channel current becomes partially emission 
limited at the source towards the end of the transfer cycle." In this 
case the shot noise associated with the emitted current will not be 
totally suppressed. We shall now show how this can be treated. At 
the same time it will become clear why "ideal" resistors totally sup-
press shot noise. 
In Fig. 3 we represent the barrier region between the diffused source 

and the channel by a conductance with current I. and the channel 
by a conductance with current I. The voltage Va at the source end of 
the channel is set V. as in Ref. 11. In Section V we ignored Je, assuming 
its conductance was much greater than that of I. We now consider 
the more realistic situation in which the conductances of la and I are 
comparable near the end of the transfer cycle. (In such circumstances, 
the g,n introduced in Section IV and used extensively in Section V, must 
be replaced by the series conductance of I. and I in the expressions 
for thermal, trapping, and clock-voltage noise.) 

cp 
Va 

i(va,v,,vci 

Fig. 3—Lumped-charge model for a CTD including a barrier conductance L. 
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What is happening physically can be outlined as follows. Voltages 
Va as well as V, and Va can fluctuate in response to fluctuations 
induced in the conductances. If a small, spontaneous current fluctua-
tion i., (positive, say) occurs through Is, then V. will increase, simul-
taneously inducing a (positive) fluctuation i in I and a (negative) 
fluctuation is in I,. The net current fluctuation is i = i, ± is. If the 
conductance of Is is much larger than that of I, then Va will change 
very little, i 0, and hence  In other words, a current is is 
induced by is which nearly cancels is; with the larger conductance of 
Is, a small v0 induces an is sufficient to suppress the is fluctuation, 
while with the smaller conductance of I, v0 induces a much smaller i 
and I. In the limit of an "ideal" resistor, since it is the bulk which 
controls the current and not the contacts, i —› 0 in the limit of zero 
contact resistance, and the shot noise is totally suppressed. 
Let us now calculate the shot noise introduced during emission-

limited operation. We start as before with the equations of the model: 

ie(V„, V.) = Is(V„ — V.),  (28a) 

I = I(V., Vd, V,),  (28b) 

rv, 
Q. = cs(rp, v., V.),  (28c) v, 
= I. + is = I.  (28d) 

In (28a) we have assumed that Is is primarily a function of (V, — V.), 
anticipating that for barrier current, Is is well-described by a diode 
equation. Since the variations of I with Va or Vc and of C. with V. 
or V, are small, we shall ignore these dependences as we did in Section 
IV. Setting Is = I° + is and I = I° i, it follows from (28) that 

. are , te = av  — 1, 4  -  u0), , 

q. =  

—4. =e + is = 

Solving for q, in terms of is, we obtain 

. ar (e/a-vp)(q./Cp) +is 
q. = W -0 avav,z+ 81/av, 
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(30a) 



or letting g. = al" aVa, go = avav, and solving for qa, 

qd = —q. --- .1.' de exp [ — f t dt"/ro(1")][ia(1 + g&/g.)']1 1,, (30b) J' I, 

where Tb = [(g.71 + gil)C p]. This expression tells us the fluctuation 
induced in the transferred charge packet qd resulting from the shot 
noise associated with the current emitted into the channel from the 
source. In the go — > 00 limit (zero barrier resistance), qd —O. In the 
go —> 0 limit (infinite barrier resistance), qd —> f iadt, full, unsuppressed 
shot noise. 
In deriving (30b) our primary goal was to determine (q). Since 

(i.(ti)i.(g2)) = e10(ti)(5(ti — to), 

(e) 1 shot = j. if dtexp [ — 2 f if dt'/To(t le1°(t) O 
• D. ± WO/ gm(t)]-2 . (31) 

To evaluate (31) requires, in general, a knowledge of the noiseless 
solution to the charge-transfer equations. We can obtain a feel for the 
result if we recall van der Ziel's expression for the current spectral 
density of diode shot noise :6 

/0 -I- 21. 
Si(f) = 2e(I0 + lc) -= 2kTgo jo  + 10 (32a) 

(I. is the diode leakage current that we have neglected.) Although 
derived for stationary noise, it is straightforward to redo the derivation 
for nonstationary noise to obtain an autocorrelation function of 
the form 

(i.(11).1.(12)) = e[I°(t) ± 1.)15(12 — 12] 

10(t1) -1- 21. 
= kTgo(ti) /0(t1) ± I 5(ti — t2)  (32b) 

Or 
e/0(1).3(ti — 12) re:ikTgb(11)&(11 — 12),  (32c) 

where in (32c) we have (again) ignored the diode leakage current 
/0. Now then, given the barrier, (e) will be largest if go «g,,. Inserting 
(32c) into (31) and integrating on t, it follows that 

(0) l shot  < "k71Cp,  (33) 

which is comparable with the thermal noise produced by I (leTC). 
If one may assume that towards the end of the cycle WO = dg,,,(1), 
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then 
(0)1  = ¡.kTC9(1  d)-1 .  (34) 

While (33) and (34) should be sufficient for estimating the contribution 
to qd of shot noise, if more accuracy is desired (31) should be used. 

6.2 Leakage-current noise 

Although leakage currents are small and, hence, fluctuations in 
them even smaller, it is of interest to briefly analyze leakage-current 
noise. This is because (i) a portion of the contribution to qd from 
leakage-current fluctuations is not suppressed and (ii) no longer does 
qd = — q.. We shall restrict ourselves to the role of leakage current 
which flows into the source, drain, and channel of an IGFET, bucket-
brigade, single-step transfer CTD. Leakage current into the source 
and sink of a CCD can probably be treated in a similar manner. 
If we assume that a leakage current per unit length of the channel 

J ch(z, t) enters the channel, following Jordan and Jordan,22 we find 
that a fraction (L — x)/L flows towards the source and x/L flows 
towards the drain. We have assumed, of course, that f  t)dx «I. 
From the standpoint of noise this means that 

= —q./r +  dx j ch(x, t)(L — x)/ L  dx j,(x, t),  (35a) 

and 

çîd =  f  dx (sit)x  + f dxj d(x, t),  (35b) 
i. o d 

where J = J° + j. Solving (35a) for q„ and (35b) for qd, we obtain 

qs(t) = ft  exp [ —  dt"h(t")] 

• [ f dx L  L x j  +f dxj z(x,  (35c) 

and 

qd(t) = fo' [q;g: foL dx  t')x ddxj(x, tl•  (35d) 

Comparing (35c) and (35d), we note that while the fluctuation j is 
suppressed in q, and, therefore, in the first contribution to qd, it is 
not suppressed in the second or third contributions to qd. Thus, even 
though leakage currents may in themselves be small, since a portion 
of their noise is not suppressed, one may expect to see some contribution 
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to qd from this source. As a rough estimate, if after many transfers 
the size of Qa is increased by Q. (leakage charge), one may expect 
(0> due to leakage to be about qQ.. The autocorrelation and cross-
correlation functions of qd and q, can be calculated at once from (35b, 0) 
if one notes that for full shot noise, 

ti)i(x2, t2)) = i(xi, ti)8(t1 — t2)3(xi — x2).  (36) 

Since an accurate calculation of the results again requires some 
detailed knowledge of the noiseless charge transfer and the role of 
leakage current, we shall not pursue this topic further. 

VII. STORAGE-PROCESS AND TRANSFER-PROCESS NOISE 

Up to this point in our discussion, we have been concerned solely 
with the various contributions to qd that result from a single charge 
transfer of a single charge packet. A charge packet reaching the 
output of a CTD has, however, been transferred typically 102 to 103 
times. The noise in the output packet is an accumulation not only of 
the noise acquired by the packet of interest during each transfer, but 
also the noise contained in incompletely transferred portions of pre-
ceding packets. In addition, there is correlation between the noise in 
successive packets at the output. Some of this correlation arises, of 
course, from the incompletely transferred portions picked up along the 
line.7 However, even in the absence of incomplete charge transfer, 
there is substantial correlation from packet to packet (see Fig. 4). For 
example, for thermal and interface-state noise, we noted that through-
out a single transfer cycle qd = — q. While qd accompanies the packet 
of interest, q(= — qd) is picked up by the next packet.8At the output the 
correlation will affect the spectral density of the total noise accompany-
ing the signal. In this section, we consider this correlation and in the next 
section, we consider modulation noise, both in the absence of incom-
plete transfer; in Section IX, we discuss the output noise including 
incomplete transfer effects. (Finally we remind the reader that all 
along we have been concerned with random noise which is generated 
in addition to the signal distortion resulting from incomplete transfer. 
In many cases, physical processes which contribute to random noise 
also contribute to incomplete transfer. However, it should be kept in 
mind that while the noise is random and characterized by stochastic 
processes, the incomplete transfer is deterministic and characterized 
by a specific transfer function for the entire device.) 
We noted in the case of contributions to qd arising from thermal, 

trapping, clock-voltage and barrier-current fluctuations that conserva-
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Fig. 4—Schematic illustrating the difference between the origin of storage-process 
and transfer-process noise. 

tion of charge led to the relation qd  q = 0, where qd is the noise 
added to the transferred charge packet and q, which is picked up by 
the following packet, is the noise added to the untransferred charge. 
Using the notation of Ref. 8 in which qD,e is the transfer-noise charge 
introduced during the 0-th phase of the sth transfer cycle as charge 
flows from the (g — 1)th to the ifth phase of the mth CTD cell, the 
accumulated noise Mg in the charge at the last phase of the Nth cell 
at the end of the rth transfer cycle is given by 

N p 

erV  =  E E (02(N  — q'rn2(N —nt) —1,g) • 
m =1. ¡à 1 

(37) 

[In (37), p is the number of charge transfers per cell. If n is the total 
number of charge transfers in the CTD, then n = Np. During the 
(r  1)th transfer cycle, e(- 0(2;Y + ) flows from the device to 
the output through a low-pass filter. If by g(t) we designate the output 
current per total charge transferred for a single packet, then the 
output noise current is given by 

1(0 = E Aeg(t - rt.),  (38) 

where to is the clock period. One can calculate the spectral density of 
(t), obtaining 

Si (f) I TP = 4n (q2)Tpf. Ig(f) 2(1 — COS 21ril fa),  (39a) 

where TP denotes transfer process and fo is the clock frequency 
(fo t7'). [Here we have assumed that (q2) is independent of 
(8, (r, m, ih) or, equivalently, of the signal. This is quite reasonable 
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since the suppression effect renders the noise dependent only on the 
final portions of the charge transfer. And owing to the smallness of 
the coefficient of incomplete transfer, the dependence of the final 
portion of charge transfer on the signal is negligible for noise purposes.] 
For f « b/2, Seri. is greatly suppressed below its mean value, Si(f./ 4) 
(see Fig. 5). This effect results from the fact that at low frequencies 
one is averaging over such long times that nearly all the gd are cancelled 
by their corresponding q = — qd. For f  fc,/2 (f is constrained by 
the relation I fl < f0/2), Sap is in fact enhanced by the strong, 
mutual correlation between adjacent packets. The suppression of the 
transfer process noise at low frequencies is advantageous, since by 
increasing fc, one can increase the signal-to-noise ratio (S/N). 
For the moment, we ignore the transfer-process noise associated 

with leakage and consider only storage-process (SP) noise, which we 
define as fluctuations that influence the size of each packet inde-
pendently during each transfer phase. Since, under such circumstances, 
there is no correlation between the noise in different packets, the 
spectral density of the filtered current at the output is independent 
of frequency (white) and is given by 

M D's? = 2n(e)sPfoigcnr 2 (39b) 

[ig(f)I  1 for f fl < fo/2]. If (q2)TP  = (e)sp, the integral of Si(f) 
over 0 < f < fa/2 is twice as large for TP as for SP noise. This is 
because in the case of TP noise each fluctuation contributes to two 
charge packets, whereas in the SP case, only one packet is affected. 
We note that Si(f) for SP noise is not suppressed for f « fo/2. Thus, 
although leakage noise is expected to be small, since neither is a portion 
of it suppressed in forming (e)sp nor is Si(f) suppressed by packet-
packet correlation, the role of leakage-current noise may in some cases 
be more important than is usually appreciated. 

STP 

S, p 

)( 

to/2 

FREQUENCY IN HERTZ 

Fig. 5—Noise spectral densities Sep and STp plotted versus frequency f. 
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In discussing TP and SP noise above (and in Ref. 8), we have 
assumed that different, or rather independent, mechanisms contribute 
to (en, and (q2)Tp, and, for TP noise, that qd = —q. For leakage-
current noise, we found that in fact the same fluctuation could con-
tribute to both SP- and TP-like noise, and that qd  —q = —q,. The 
question is raised: What is the spectral density of such noise? 
To calculate the spectral density of the noise in casas where TP-

and SP-like effects are correlated, we proceed as follows. Let the noise 
accumulated on the source in a single transfer phase be q, (s, u, m, ei) 
and the noise on the drain be qd(s, u, m,, g), where (s, Cr, m,  is defined 
above. Then 

p 

e e =  E {TE[r — (n  m),  m, it] 
m-1 p 1 

q„[r — (N — m) — 1, m,  , (40) 

where we continue to ignore incomplete transfer effects. It follows 
that the spectral density of i(t) defined by (38) is given by 

Si(f) = 2n foi (f) j2[(0) + (0) + 2(qaq.) cos (271-f/ fo)]. (41a) 

For pure TP noise, q. = —qd, and we recover (39a) ; for pure SP 
noise, q, «qd owing to suppression, and we recover (39b).] By rewrit-
ing (41a) slightly, it separates into SP and TP portions: 

Si(f) = 2nfolg(f)1 2((qd + q.)2) 
4nf0l g(f)1 2(—qaqd)[1 — cos (27f/f.)].  (41b) 

Thus, we find that even when the sources of noise leading to TP and 
SP noise are correlated and, hence, more complicated than those 
treated in Ref. 8, we still obtain an unsuppressed, white-noise con-
tribution and a suppressed contribution. If incomplete transfer effects 
are included, the spectral densities become much more complicated. 
We take up this matter again in Section IX. 

VIII. MODULATION NOISE 

In Section 5.3, we calculated the noise introduced into the signal 
during a single transfer resulting from fluctuations in the clock voltage. 
To calculate the effect that this modulation noise has on the output of 
the CTD, we must notice that each clock-voltage fluctuation is felt 
simultaneously by each transferring packet throughout the entire 
device. If the elements of the CTD are physically quite similar, each 
fluctuation will induce nearly the same noise contribution to the 
(q,, qd —q„) pair generated in each CTD element during each cycle. 
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This means that modulation noise can be expected to be substantially 
suppressed, which is in fact what we find. In calculating modulation 
noise, we shall first assume that the transfer parameters of each pair 
of transfer elements of the CTD are identical, and then we shall 
include some variation in these parameters. 
If by q we represent that portion of qd introduced by clock-voltage 

fluctuations, since q is purely TP noise, it follows from (37) that 

N-1 
= EI — etN,, + q + E (C.Ë(N-.>„ - (42a) 

ià=1 L  n=1 

=  (el" —  (42b) 

The simplification attained in (42b) results from the above observation 
concerning the similarity of contributions to the noise throughout the 
CTD, which stated quantitatively is that 

=  (43) 

for all cells m, n during a given cycle s. It follows from (42b) that the 
contribution to the total mean-square fluctuation in the output due 
to clock-voltage fluctuations is simply 

I cloOk = 2 (q ) clock,  (44) 

where (e) is given by (27d) and p is the number of phases per cycle. 
The most interesting feature of (44) is that it is independent of n, 
the number of transfers each charge packet is subjected to in the CTD. 
Thus, this portion of modulation noise is not compounded and as 
such can be expected to be small. 
If we introduce the possibility that the physical parameters charac-

terizing each transfer stage of the CTD are slightly different, then 
(43) will not hold, and, as a consequence, the clock-voltage fluctuations 
will not essentially cancel. Let us assume that these physical param-
eters are distributed according to some probability distribution. Then, 
in place of q in (42a), let us write (q  q') where q is the charge fluctua-
tion averaged over the distribution of the device parameters, and q' 
is the deviation from this average. Inserting (q  q') into (42a) for 
q, expressing AQ as (à0  àQ'), a straightforward calculation leads to 

(ed2Prag) = 2P (12)(5,.8 — (Ôr,.-N  (5,.8+N)]  (45a) 
and 

(àQ;NàQ;') = 2n( )[5,, — 4-(6,8-1 (45b) 
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in which the bar denotes averaging over the device parameters. To 
calculate (q,2) = (( q.  1,)2) =  -2 , ) for clock-voltage fluctua-
tions, it is perhaps simplest to carry out the average first over the 
clock-voltage fluctuations obtaining (27), and then average over the 
device parameters. If we assume that the primary variation from cell 
to cell is the size of the storage capacitance C., then (27d) yields 

((à(2;N)2) = 2n • ¡Sy (0)B (1 -I- b)2((C„ — C.)2).  (45c) 

This result expresses the effect on the size of the charge packet of the 
coupling between fluctuations in clock voltage and deviations in 
storage capacitance. Unlike (cAer,2) given in (44), ((4.11f2;')2) is 
proportional to n, expressing the fact that during each transfer event, 
noise is added to the signal. Finally, we note from (45b) that .CiQN has 
the character of transfer process noises so that its spectral density is 
suppressed for f « f0/2. The spectral density of Ader, which can be 
obtained from (45a), is weird. It oscillates once between 0 and 4p (q2)  

each time f changes by only fo/N. It is probably best approximated 
as white of size 2p(e). 

IX. INFLUENCE OF INCOMPLETE CHARGE TRANSFER ON COLLECTING 

In the two preceding sections we have ignored the influence of 
incomplete charge transfer on the noise accumulated in charge packets 
by the time they reach the output. In Section VII, we took a = 
to illustrate as simply as possible the suppression in the spectral 
density of transfer-process noise at low frequencies. In Section VIII, 
we took a = 0 to treat the multicorrelated charge fluctuations induced 
by the clock voltage in a straightforward manner. We now include 
incomplete transfer and find that, even though it alters only a small 
fraction of the signal and, hence, of the noise on each transfer, typically 
10-3 to 10-4, its accumulated effects are extremely important in 
some cases.7 
The effects of incomplete transfer on a charge packet are not simple, 

even when linearity is assumed. The key is to write down a general 
expression for the charge, seen as a function of time at the output, 
which arises from a given charge packet introduced at an earlier time 
on an arbitrary cell. Once this is done, one can combine the effects on 
the output of fluctuation-induced noise charge which is created on 
each stage during each phase of each cycle. The result is a complex, 
combinatorial expression which for na 1 is nontrivial to evaluate 
numerically. Despite these complications, the results obtained are 
worth the effort needed to obtain them.7 
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To calculate the effect of incomplete charge transfer on the collecting 
of noise, we first calculate the portion of the noise qr added to the 
charge packet in the mth cell during the rth clock cycle which is 
observed at the output during the sth clock cycle. As defined, qr is 
related to the qrf of Section VII according to 

= y.  (46) 
p=1 

Thus, for purposes of simplicity, we shall ignore for the moment the 
fact that the transfer of charge within each cell involves p distinct 
(independent) transfers. The error involved in so doing is of the order 
of noê, which for devices of interest is less than 0.01. Since the linear 
model we shall use to treat incomplete transfer is probably not this 
accurate, this approximation is justified. However, we must be careful 
to use (46) when we calculate terms such as (CO) so that we do not 
neglect correlation effects. 
The dynamic equation that governs the transfer of the charge 

q(r, m) on the mth cell during the rth cycle is 

q(r ± 1, m  1) -= q(r, m) — Eq(r, m)  Eq(r, m  1),  (47) 

where E is the coefficient of incomplete transfer per cell." [One can 
relate E to  a, the coefficient of incomplete transfer per transfer," 
through E =  pa, or more accurately, through (1 — E) = (1 —  
Using (47), it is straightforward to calculate the charge qm(s, N + 1) 
observed during the sth cycle at the output, the (N + 1)th stage of 
an N-cell register, as a function of charges q0(r, m), which are added 
to the packet present in the mth cell during the rth cycle. The result is 

qm(s, N + 1) = (1 — 6)e-m+1 L r + N — m 

• Erq0D9 — (r  N — m ± 1), m].  (48) 

[If e --= 0, the limit of negligible incomplete transfer q,0(8, N -I- 1) 
becomes 

N ± 1) = q„[s — (N — m ± 1), m]. 

Thus, the additional output charge seen during the sth cycle is just 
the charge added to the mth cell, N — m + 1 cycles earlier.] Using 
(48), we calculate the total noise charge à(273̀" observed at the output 
of an N-cell CTD during the sth cycle by replacing q0(r, m) by the 
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noise charge qr and summing overall cells m. The result is 

.= (1 e) r1 (1—  e)e _m r N — 171 ) 

r 0\ 

• Erest(r+N—m+1),  (49) 

where 
= qd(r, m)  qi(r — 1, m).  (50) 

In (50), qd(r, m) is the noise added to the charge on drain during the 
cycle of interest, and q, (r — 1, m) is the noise added to the charge 
remaining on the source during the preceding cycle and picked up by 
the charge packet coming by on the next cycle. [The expression in 
(49), as well as our treatment of collecting, is valid whether or not the 
statistics of the individual qd's and qs's must be calculated using a 
nonlinear approach.] From eq. (49) we can calculate nearly all com-
pounding effects of interest, a few of which we now consider in some 
detail. 
For digital purposes, the most important quantity of interest is 

((àQn2), the mean-square fluctuation in the size of the output charge 
packet. This quantity can be calculated from (49) keeping in mind 
that the only nonzero, cross-correlation function that enters is 
(qa(r, m)qs(r, m)) for all r and m. The result is 

(( en') = ((qd + qa)2)Hsp(p, N) + 2( — md)HTF(p, N),  (51a) 

where qd and qs are noise added to the charge in the drain and source, 
respectively, during a single transfer cycle, the statistics of which we 
calculated in Section V and Section VI, H sp is the collecting factor 
for storage-process noise qs = 0, and HTp is that for transfer-process 
noise (—q. = qd). The analytical expressions for HST, and HTP, 
ignoring an unimportant factor of (1 — E)2, are 

N 
Hsp(P, N) = P   

and 

(1  )2(N_.)  ( r  — m )2 €2, (Sib)  

r =0 \ 

H TP(Pe N) = P E (1 —  
m=1 

(r + N — m  y  e2, (1  E r + 1 + N  ) 
r + 1 

These can be evaluated exactly (Appendix C) as well as approximately 
(Appendix D). [The latter is necessary because the former, although 
exact, is difficult to evaluate for the large N and small E of greatest 
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— (1 — E)  
t (1+ E)' 

b = 2(N ± DE(1 - 

interest. These calculations are nontrivial. For example, except when 
N€ « 1, attempting to calculate (51b) or (51c) using Stirling's formula 
to approximate the factorials is doomed to failure.] One may note at 
the outset that for E = 0, Hep = H Tp = pN = n the number of 
transfers, as expected. This result is also approximately valid for 
Ne = na « 1. 
The approximate results obtained from evaluating the sums in 

(51b, c), 

lisp(p, N) = pxpr(e) = p(N  Drie-b[10(b) ± I i(b)] —  (52a) 

and 

HTp(P, N) = Pew(e) 
= pi (1 - E) €-'(x  1)--ItEXN-i(e) + 1 — XN(E)1,  (52b) 

where 

and 

(52c) 

(52d) 

(1 ' 7) x —  -I- (52e) 

are quite interesting. (xN and (pm are given in Appendix D.) For 
N€ « 1, where we expect incomplete transfer to play a very minor 
role in the compounding of noise, indeed we find that H gp and HTP 
are nearly equal to pN  n, the total number of transfers experienced 
by each packet in the device. This is just what one expects: The 
cumulative, mean-square noise charge after n independent transfers is 
just n times the mean-square noise charge following a single transfer. 
[The factor of two in the TP term of (51a) arises because, as explained 
in Section VII, for each -f-q noise contribution there is a —q contribu-
tion. Thus for each transfer, two noise terms are produced.] As N 
increases (E is fixed), however, incomplete transfer plays a more 
significant role, altering the noise in two important ways. First, of 
course, the noise is incompletely transferred along with the signal. 
For Ne » 1, Hsp increases only as nè, reflecting this attenuation of 
the noise. Second, and even more important, for TP noise, incomplete 
transfer enables each -I- q, —q pair created during each transfer of each 
packet to mix and, hence, null out or suppress the total noise. Thus, 
for Ne >> 1, HTP approaches constant value, (2a)-', independent of N. 
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In other words, for NE = na » 1, the collecting saturates and further 
collecting is totally suppressed (see Fig 6).7 Of course, the signal is 
greatly distorted by the incomplete transfer if N6 » 1. Nonetheless, a 
CTD has maximum storage capacity" for 1 <NE <4, and by using 
dynamic detection or optimum linear filtering (transversal filtering), 
one can greatly suppress signal distortion from incomplete transfer." 
Thus, calculating the compounding factors, H sp and H Tp, for Ne 
other than NE « 1 is not an academic exercise. 
For analog purposes it is necessary to calculate the autocorrelation 

function (A eC e) using (49) and (50), from which the current (or 
voltage) spectral density of the noise can be obtained as in Section 
VII. We shall pursue this no further than to point out that since 
qt = — q must be transferred one more time than q, the effect of in-
complete transfer on each q, q8 pair will be slightly different, and this 
will reduce their mutual correlation at the output. Thus, total sup-
pression at zero frequency is no longer expected. 
Incomplete charge transfer will also affect fluctuations at the 

output caused by modulation noise. In Section VIII we found that 
modulation noise was so highly correlated that, in the absence of 
incomplete transfer, the largest portion of modulation noise was not 
compounded. Introducing incomplete transfer, however, will destroy 

104 

10 
10 

//n 

HT p Inl 

1  1  I  
102  103  104 

NUMBER OF TRANSFERS n 
105 

Fig. 6—Suppressed, collecting factors H8 (n) and HT? (n) plotted versus n, the 
number of transfers, for a = 

1244  THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1974 



the exact correlation which led to this cancellation. Again, if desired, 
the effect of the collecting of incomplete charge transfer on the modula-
tion noise for digital or analog applications can be calculated using 
(49) and (50). 
Noise present in the input signal can clearly be treated simply as 

part of the signal with respect to incomplete-transfer effects. A some-
what different situation arises, however, when the signal enters the 
CTD all along its extent, as is the case in imaging applications. Here 
full (photon) shot noise results in a signal-dependent contribution to 
the mean-square, input noise of each packet equal to eq4., where 
e rn is the average size of the packet injected at site m during cycle s. 
However, in this case, the input packets undergo different numbers of 
transfers, p (N — m), between the cell in which they are injected and 
the CTD output. Thus, the influence of incomplete transfer affects 
the signal and noise originating at each different cell differently. As 
with the other compounding effects, the collecting of this shot noise 
in the presence of incomplete transfer can be calculated if desired 
using (49) and (50). 

X. CALCULATIONS 

In the foregoing we have discussed a number of sources of noise in 
CTD's and their effect on the output signal in the absence and presence 
of incomplete charge transfer. In most cases, inserting the appropriate 
physical parameters for the noiseless operation of the device of interest 
suffices to calculate (q2), the mean-square fluctuation in size of a 
given charge packet acquired on a given transfer. Then, using (51), 
the influence of this fluctuation on the output signal can be determined. 
Such calculations are, in general, difficult, owing to the necessity of 
evaluating integrals such as those in (27b). However, realistic approxi-
mations can be made as indicated to obtain useful results. 
It is of interest, however, to determine the minimum amount of 

noise expected to be present in CTD's assuming one can minimize 
clock-voltage fluctuations, surface states, incomplete transfer, etc., 
and operate each device so as to avoid emission-limited currents, etc. 
In this ideal situation, one is left only with thermal noise, or with 
thermal noise plus shot noise on the input signal, and incomplete 
transfer (intrinsic and modulation in the sense of Refs. 10 and 11). 
The signal-to-noise ratio (S/N) was calculated for two characteristic 
coefficients of incomplete transfer (= 10-3, 10-4) and four characteristic 
capacitances (C = 1, 0.1, 0.01, 0.001 pF) as a function of the number 
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of transfers n from input to output: 

(i) Using eq. (14a) for the thermal noise acquired per transfer. 
(ii) Using eq. (51a) for the influence of this noise on the output. 
(iii) Taking the thermal noise to be purely TP, including shot 

noise at the input when present. 
(iv) Including incomplete transfer effects on both the signal and 

the noise. 

The results are plotted in Figs. 7 and 8. The ratio (20/C designates the 
maximum signal level (10 volts), and one-half this amount (5 volts) 
is the minimum signal level. Since the square of the signal charge is 
proportional to C2, while the mean-square of the noise charge is 
proportional to C for both thermal and input shot noise, the S/N 
decreases proportionately with smaller C (small CTD cells). As the 
number of charge transfers is increased, the contribution of device 
noise to the total noise soon dominates that of the input noise. (From 
S/N one can also calculate the maximum information storage capacity 
of the CTD as a function of n, a, and C.) In general, other noise 
sources are present which reduce S/N from the ideal results shown 
here. While valid in general for BB-mode transfers, in the case of 
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Fig. 7—Signal-to-noise ratio for CTD (a = 10-1) with storage capacitance of 
1 pF, 0.1 pF, 0.01 pF, 0.001 pF. 
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Fig. 8—Signal-to-noise ratio for CTD (a = 10-') with storage capacitance of 1 
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CCD-mode transfers, if the rms thermal noise becomes comparable 
to the free charge incompletely transferred on a single transfer, then 
the noise predicted by our linear approach will overestimate the 
true noise. 

Xl. CONCLUSIONS 

In the foregoing we have calculated the influence of several im-
portant sources of noise on the output of a CTD in a manner which 
includes all important relaxation, suppression, and correlation effects. 
In so doing, we encountered interesting effects, such as nonstationary 
noise, and we uncovered a number of unexpected results, such as the 
nearly total suppression of the spectral density of transfer-process 
noise at low frequencies and the total suppression of the collecting of 
transfer-process noise after many transfers of a charge packet. Because 
of the novelty of these and other effects, they were treated in con-
siderable detail in a manner which did not presuppose considerable 
prior experience with formal treatments of device noise. In noting the 
results, the proportionate decrease of the S/N with decreasing storage 
capacitance was illustrated. This unavoidable feature will ultimately 
limit the practical size of CTD's. 
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Several of our results, despite the relatively complicated manner in 
which they were obtained, are remarkably simple, e.g., thermal noise, 
(q2) cx kTC, surface-state noise, (q2) 0: ekTNssA, etc. One wonders 
whether there exists a general approach which circumvents the 
necessity of paying such careful attention to the detailed processes 
that accompany the transfer of charge through a CTD. We feel that 
there does not exist such an approach. Nonetheless, in Appendix E 
we outline a very rough method which ignores nearly all details of the 
charge transfer event. We find the intuitively appealing result that 
the mean-square noise acquired per transfer is to within a factor of 
the order of unity equal to full shot noise on the (total and not differ-
ential) incompletely transferred portion of the charge. Although 
providing a rough rule of thumb, since the approach is not totally 
reliable for calculating incomplete transfer, its accuracy for treating 
noise is not guaranteed. By contrast, the methods used in the bulk 
of this paper should be applicable in many types of integrated-circuit, 
dynamic devices of which CTD's are the first examples. 
There are several interesting noise problems that we did not con-

sider here. For example, in discussing modulation noise we indicated 
the possibility of nonuniformity in the physical parameters of each 
cell coupling to clock-voltage fluctuations to produce a collecting 
source of noise. Such cell nonuniformities also, of course, will result 
in a distribution of a's, the coefficients of incomplete charge transfer. 
This will, in turn, result in an additional effect on the nature of the 
compounding of the noise acquired in each transfer. The results are 
expected to be no less surprising than the effect such a distribution of 
a's has on the signal. A distribution of a's about their mean ad leads 
to less signal distortion than if all the a's were a0.".2" (This is actually 
not too significant for application purposes, since usually all deviations 
from the desired a -= ad will be to larger a, thereby increasing a0 and 
enhancing distortion.) 
A second problem worthy of attention is how to treat the noise 

in cases where the clock-voltage waveform does not turn off the flow 
of transferring charge abruptly.' In such cases, the nonlinear terms in 
the noise fluctuations are not small relative to the linear terms. The 
noise problem is then nonlinear and much more complicated. 
A third problem, straightforward but tedious, is to calculate the 

S/N's, error rates, and device storage capacities for devices including 
regenerators, optimum linear filtering, and/or dynamic detection."'" 
Considering the many new features that have arisen in the present 
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study, as well as the many types of noise that enter in such different 
ways, we feel such problems will not prove unrewarding. 
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APPENDIX A 

Noise Introduced During a Single, Two-Step, Transfer Cycle 

The purpose of this appendix is to calculate the noise fluctuations 
induced in the transferred charge during a single, two-step, transfer 
cycle. The procedure followed is the same as that in Section IV of 
the text for a single-step process. Here we shall merely outline the 
essential steps leading to the desired result. 
We begin by linearizing the dynamic equations (4a, b, c) to obtain 

311  3I  8h aI \ 
av cV̀ ± av v831)— inl' aal 

42 =  —  41, 

4d= (812  , a1,  , 312 , 01,  
a .„., Vb  avc yci- avcc2 V8s2)  in2. 

(53a) 

(53b) 

(53c) 

The constraint equations (3a—e), when linearized and when terms of 
the order of the incomplete transfer are dropped, yield the following 
relations among the fluctuating quantities: 

qa =-- C'sv, —  (54a) 

qb = Cbvb — cgvb.,  (54b) 
qd = Cod — Câvdo,  (54c) 

q8.1 = C's8o8.1 —  (54d) 

g832 =  C ae2Vas2  (54e) 

In addition, by the same reasoning that led to eqs. (7a, b) in the text, 
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we find that 
V,,, 

v3. = 
ÔTTO v8 

aVbo ' Vbo = V, avc 

19V do Vd, = V, 
ay, 

avc c„  C. 
ay, = (+ 1)  „ v 

aVb Cb  Cb 
= 43V0 Cg vc a  

aVd Cd  Cd 
av. Q ue = (-1 ) — vc cfil 

(55a) 

(55b) 

(55c) 

where a = avid avc. :For a two-step process, transfer cells whose 
second step is characterized by a CCD-type of charge transfer, a = —1 
and v'e = U. For such cells whose second step is BB-like, the value of 
a and v'c will depend on the details of the device. For example, for the 
C4D, a = 0; for the tetrode BB, a = 1 and ?/,  vbi is the voltage on 
the tetrode bias line. Thus, for purposes of generality we must use 
the form given in (55b).] Also v,,%1 and 4.,2 can be set equal to zero, 
as discussed in the text. 
The next step is to solve eqs. (54a-e) for v.s, vb, etc. and insert the 

results into (53a-c). The result of this substitution is 

92n1  , al, 
11  — — g — cç  (gini -h w e) vc 

(g.1 ov .881 )vcci — jni, (56a) 

q2 = — qd  qi,  (56b) 

A gm2  4912 
Yd g2 + gm2apc  .r)c  vc = 

(g.2 Cry082  al  2 ) 
L b  s 2 uss2  in2e (56c) 

in which we have assumed that the forward conductances 

gm' = 311/3V8 and gm2  4912/3vb 

greatly exceed the reverse conductances 

9,1  —311/8V6 and g,.2 = — al,/ av d. 

It is now straightforward to solve (56a) for qi(t), insert into (56b) to 
obtain q2(0, and then solve (56c) for qd(t). The result is 

ai2\ g qd(t) = f  exp [ — f dt"/ r2(t"  — m2)][ 
o  t,  ( m' a  

CB 2  012  
+ gm2a(vre — vc) — (g.2  ai/ ..2)v.82 + i„2]  , (57a) 
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where 

t, t, al 1 
— qi(e) = f dt" exp I — f" dt"'/[ri(tm)]} [(ami  + av )1), 

0  t s 

i 1  I 
_  ( gmi  Csal all  ) 

vssi + inl 
\  cs aysal   

1/Ti = gmi/ C. and  1/T2 = g,,a/Cb. 

If we define the two suppression factors according to 

Si(t, t') = exp ( — I'dt"/Ti(t")) 
t, 

and 

S2(t, 1') = exp  —I dt"/T2(t")), 

(57b) 

(57c) 

(58a) 

(58b) 

let 

n(t, t') dt" exp — f [1./T2(tm) — 1/ 7-1(t"')]dtm)  r2(t"), 
t, t,, 

insert (57b) into (57a), and regroup terms, we obtain 

qd(t)= 

(58c) 

{Si(t, t')n(t, t')i,„1(e) + 82(4 t')i.2(e) 

— 81(4  t')n(t,  e) (881ri  aaVi :81)1 t, v811(e)  

_ 82(1  t,) C 8,,2  al,  ) vis,(e) '  T2  av,. 

++ s[ 8:e t')n(t, t') 
)+( gaamic2 -F[t ,afic v)c(1 1:; 

+ 82(1, tUgnace(v'c — 24)71 1 • (59) 

Although it is most convenient to keep the Sin product as two terms, 
their combination is of interest: 

rt  t,, 
81(4 t')n(t,  =  dt" exp (— f  dt"' / ri e) 

t, t, 

—  dtm / T2(e"))  72(t").  (60) 
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It is clear that to calculate (e), it is necessary to know (in1(ti)ini(12)), 
(in2(ti)i.2(t2)), (ve,i(ti)vasi(t2)), (tiss2(ti)v.382(12)), (vc(t1)vc(t2)), (//c(t1)v;(t2)), 
and (2(t1)v,(i2)). These are discussed in the text. 
It is of interest to calculate the contribution to (e) that results 

from thermal noise. From (59) and (13b) (H. = ,we obtain 

(e)I kT = 2kT- fotj cltr etf, On' (t f, t)g.i(t)  f, t)g.2(t)].  (61) 

Now ordinarily a two-step device is constructed so that 

= TF1 < Tçl = gm2/Cb• 

Let us assume that the decay current is such that TF1(t)b =T nt), 
where b can be taken independent of time (b > 1). Then we can 
perform the integrals in (61), obtaining 

(ei> kT =  C  'ek T C (1 +  (62) 

for the thermal contribution to the noise acquired during a single, 
two-step transfer. The first term is expected from our result (14a) 
for an individual, single-step transfer. However, the second term 
includes a suppression factor whose presence one certainly would not 
have expected a priori using arguments assuming stationarity. 

APPENDIX B 

Outline and Modification of the impedance-Field Method 

As originally presented," the impedance-field method (IFM) con-
sists of dividing the problem of calculating device noise into two 
simpler problems. First, it was recognized that a given fluctuation 
in the velocity of a charge carrier at a given location induces a calcu-
lable fluctuation in the open-circuit voltage. Second, it was shown 
how, from a knowledge of the spectral density of the velocity fluctua-
tions of the individual charge carriers, the spectral density of the 
open-circuit voltage fluctuations could be calculated. The first problem 
requires only an understanding of the operation of the device of 
interest under noiseless conditions, while the second can be deduced 
from the microscopic behavior of charge carriers in a small region of 
the device." Thus, as long as the microscopic noise is simple, which it 
nearly always is, the device-noise problem is reduced to integrating 
the microscopic noise sources over the device, weighted by the in-
fluence of a unit fluctuation in each volume element on the output 
noise. 
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Let us now outline the IFM in more detail.23 If ut is the time-de-
pendent fluctuation of carrier velocity vt from its mean vat, 

Vt — vat, 

then the dipole current SP,. in a small volume element AV,. produced 
by the carriers in this volume is given by 

= q EU,t,  (63) 

where the j-sum is over all carriers in Va. To calculate the effect 
of â Pa on the open-circuit voltage of the device, we note that if SI« 
is injected into the device at ra (and if the device is grounded at 
r = 0), the voltage induced at the contact labeled N, SVN, is given by 

&ITN = ZNa S/a.  (64) 

If ZNa  is evaluated for all a, one maps out the "impedance field." If 
now one injects 451„ at ra Sr and removes SIa at ra, linear super-
position of small signals implies that 

SVN =- EZNa(r. ± Or) — ZNa(r.)18/,„  (65a) 

= (vZivr). Sal = v2Nr.6ila.  (65b) 

The last equality follows because the dipole current S Pa equals S/aSr 
if SI,, is chosen appropriately. Since we can relate d'a to SVN, from 
a knowledge of the statistics of the former, we can calculate those of 
the latter. In particular, from (63) and (65b) we can immediately 
write down the spectral density Sv,(f) of SVN in terms of that of ua 

SvN(f) = E  (66) 
as,) 

where i, j each run over x, y, z, and n,. is the number of carriers in 
à Va. Since in the text we work in the time domain, we work directly 
with (65). 
In calculating CTD noise, it is most convenient to work with 

short-circuit current fluctuations rather than with open-circuit voltage 
fluctuations. One may redo the above, calculating the short-circuit 
current fluctuation S/N induced by S/a. The result is that 

S/N = BNaga,  (67a) 

where 
BNa = ZNa /ZN,  (67b) 

and where ZN is the impedance of the device between contact N and 
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ground. In terms of dipole currents, one obtains 

d/N = VBNr•Srea = vBNr •,317%. 

For an IGFET, 

(68) 

BN, -= L-11,  (69) 

where L is the channel length and lis a unit vector along the channel." 
In complete analogy to (66) one finds that 

4,(f) = E (v,Biect)(viBm.)*en.S...,(f).  (70) 
ce.ij 

In arriving at (66) and (70), we have taken into account the inde-
pendence between spontaneous fluctuations which occur in separate 
regions AVa. Thus, the expression for (u1(11)n1(12)) for the IFM, 
which corresponds to (12) in the text, is that for thermal noise 

(u.(11)u1(t2)) = 2k T iLS(ti — t2)(521, 

which lacks the spatial delta function. The equivalence between the 
Langevin method used in the text and the IFM outlined there is dis-
cussed in some detail in Refs. 27 and 28. 

APPENDIX C 

(71) 

Exact Calculation of H, and HTP* 

In this appendix, we shall evaluate the following sums exactly: 
N 2 

M=1 r 
E E (1 — €)N---,, N )] 

N 

77Z = 1 r -0 
E E [ (1 — €) N —m er r N  )] 2 

xN (€) 

4PN (e) = 

.(1  Er+  1 + N —m ). 
r + 1 

(72) 

As the first step, set n = N — m, ŷ = ê, and perform the sum on r. 
This yields 

N„:4 1 (1 _ ,)2n dn 

n  d'yn  (1 — 7)n±t 
xN(E) = 

(Av(E) — 
1 — 

N -1 (1  €)2n dn 

E   n!  d-yn  (1 — 7)n+1 ) 
7 n-1  \ 

e dyn  (1 — -y)n+1) 

• Derivation due to N. S. Thornber. 
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The second step involves taking the n derivatives with respect to 7 
using the relation" 

dn  (n\ dif d"-ag 
dy" kJYi  „0 s) dyt  

and recognizing that the resulting sum on s is to within certain 
simple factors equal to a Legendre polynomia1,29 P n(x), where 
x = (1 ± -y) / (1 — 7). This yields 

N--1 
XN(E) = (1 — ,y)-' E t"P n(x)  (74a) 

n=0 

N-1  X — 1 
(pN(e) = (1 — 7)-1 [0 — e)  E in P n(x)  et"   P,;(x)] , (74b) 

n =1  fly 

where t = (1 — E)/ (1  E). In (74b), if we note that" 

Y(x)/n = ExP n(x) — P n-i(x)]/ (x2 — 1), 

then all that remains is to evaluate E ninP„(x). 
Before proceeding, we should call attention to a potential source 

of trouble. Since 0 < 7 = è < 1, it follows that x > 1 and t < 1. 
While Legendre polynomials for {z > 1 are well-defined, their 
properties are not nearly so simple as they are for x in the usual region 
of interest, j s 1  1. Thus, for fixed e (and 'y), if n becomes large, 
evaluating P n(x) for x only slightly larger than 1 is quite tricky. This 
provides motivation for the approach adopted in Appendix D. 
Returning to the remaining sum in (74), we take the generating 

function" for Legendre polynomials, valid for t < 1 and I y j < 1, 

P „(y) = (1 — 2yt  t2)-1 , 
3-0 

multiply both sides by P (y) , and integrate on y from —1 to +1. 
Using the orthogonality of these polynomials, we obtain 

t. _ 2m ± 1 f 1 dy P (y) (1 — 2yt  t2)- (75) 
2  _ 

Using the summation formula" for Legendre's polynomials, it follows 
that 

N-1  1  N 12/  
n  E t"P n(x) = f dy (1 — 2yt  0)-1  
=0  —1  —  y 

.[PN(x)PN-i(Y) — PN(Y)PN-1(x)3.  (76) 

To perform the final integral over y we make use of (75), noting that 
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2tx = 1 + t2, and hence that 

(1 — 2yt  12)4(x — y) = 2+(x — y)iti. 

Thus, since 

J-1 dy(x — y)-IP.(y) = —2  j-1 dy(x — y)-P(y)dx _1 

and since from (75) 

2t'n(2m  = f 1 dy[2t(x — y)]-1Pm(y), 
- 

it follows after some algebra that 

N-1  2N  E taPn(x) — [F N (X)IN _ pjv_i(x)tN+1]. (77 ) 
n =0  1 — 12  

Using (77) for the sums present in (55a, b) yields exact expressions 
for xN and (ply in terms of two or three Legendre polynomials, respec-
tively. The difficulties encountered in evaluating these expressions 
for N »1 and x > 1 made it clear that another form of the result 
was needed, one in which N and E enter on an equal footing, preferably 
as a product. Such a result is derived in Appendix D. 

APPENDIX D 

Approximate Calculation of Hsr and H y, 

In this appendix, we evaluate the sum 

N-1 

II/N-1(E) =  
n=,0 

(78) 

where, as in Appendix C, t = (1 — €)/(1 4- E), x =- (1 + 7)/(l — 7), 
and -y = ê. The form we obtain will be a good approximation for N » 1 
and will be very easy to evaluate numerically. 
If we define  = 0, then we can write 

—  tnP.(x)  (79) 

and evaluate the z-transform 4/„ of th, defined by 

= ,,enz—n• 

Thus, from (79) we obtain 

(80) 

1  n  2 
—  4/. =  (:) pn(x) = [1 — 2x -1-  • (81) 

Z  n  2  Z  Z 
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Solving for  we obtain, using 2x1 = 1 ± t2, 

= (1 — z-1 )-1 (1 — 125-1 )-1 .  (82) 

Thus, 
1 

ifro = 2f7-1, (83a) 

where the closed contour in the complex plane includes z = 0. Letting 
z = e, (83a) becomes (Er = 0+) 

1 f-1-;,r 

=  ds e"8(1 — e-8)-4 (1 — t2e-8)-i  (83b) 
,e7ri  

an exact expression for 4,N(E) if n = N. 
An exact integration of (83b) would recover (77). However, a very 

useful approximation for large n can be obtained at once if we note 
that under such circumstances most of the contribution to the integral 
comes in the vicinity of s = 0. Thus, expanding exp (—s)  1 — s and 
then, taking the limits of integration to be from (0- — co ) to (a- i co ), 
yields 

71:1 ri- ds es t-'[s  (t-2 _  (84a) 

This inverse Laplace transform can be found in the tables." The 
result is 

where 

t-lne-b[L(b) + I i(b)],  (84h) 

b = n(t-2 — 1)/2 = 2nE(1 — E) -2 .  (84c) 

We can match this result, valid for n» 1, to the n « 1 limit to obtain 
an approximate result good for all n. At this point, however, it must 
be stressed that the major difficulty in approximating e,,i for large n 
arises from the necessity to cancel exactly any exponential dependence 
of  on n. Clearly, physically compounding can increase with n no 
more rapidly than linearly. This delicate cancellation is in fact achieved 
in (84b) since /0(b) and /i(b) go as exp (b)/(27t-b)- for b» 1. There 
are other ways of arriving at (84), but this is one of the simplest. 
To determine the form of 1,t„ for n sufficiently small (nE «1), that 

is, such that an expansion of 11,, in powers of nE rapidly converges in 
a few terms we note from (71), (73a), and (78) that we have the relation 

N -1  = 2 

IPN-1 =  (1 — 'Y) E E (1 - 6)'=Er r (85a) 
n =0 r =0 

N[l — e(N — 1) + 0(N2e2)]. (85b) 

NOISE IN CTD'S  1257 



On the other hand, expanding (84b) to similar order yields 

(86) 

Since (84b) and consequently (86) can be expected to be valid only 
for ne » 1, we are not required to set n = N — 1 in (84b). [Nonethe-
less, it is encouraging to note that even for ne « 1, if we do 
set n = N — 1 in (86), then (85b) and (86) agree as to the coefficients 
of N and N 2E, the two largest terms.] Even further improvement can 
be obtained if we replace lb. by tp. + Si and n by N — 1 ± (52, where 
Si and (52 are of the order of unity. This alteration clearly does not 
alter significantly our result valid for large n (ne » 1), and it improves 
the result for ne «1. After a little algebra, one obtains SI = —¡ and 
&2  t, which ensure that terms of order unity and N E match. We 
conclude that xN(E) is given quite well by 

xN(E) = (N  -)t—le—Vo(b)  /i(b)] — 1 (87a) 
where 

b = 2(N + De(1 — E)2 and t = (1 — c)/(1 + E),  (87b) 

in which we have ignored the (1 — 7)-1 factor in (73a). (Recall that 
-y = E2 Pe, 10-6 .) The expression (87a) enables us to calculate the 
compounding factor for storage-process noise for arbitrary N and E 

with relative ease. 
The compounding factor for transfer-process noise is obtained from 

eN(e), which can be expressed in terms of x,N(E) in the form 

ÇoN(E) = (1 — E)  [xN(E) — 1] 
_ ey —qx ) lx[xN(E) — 1] —  (88a) 

= (1 — e) + E-1 (x  1)--21[XN..4(e) + 1 — XN(e)],  (88b) 

where we have used (73) and ignored the prefactor of (1 — 7)-2 . Since 
-y = e2, the prefactor of the last term of (88) is approximately (20-1 . 
Nonetheless, this term is well-behaved even where our approximate 
result (87) is used in (88) to obtain an approximate N(e). 
It is of interest to calculate xN and cpN in the limit of Ne>> 1. The 

former limit is just N in both cases. In the latter limit 

XN(e) --> (N / re) = p—'(n/71-cr)t N e » 1  (89a) 

and 

ipN(E)  (2E)-1 = (2pa)-1 , N e » 1.  (89b) 

The second limit is most easily obtained by noting that x(x  1)-1  
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= (1 + 7)/2, (x  = (1 — 7)/2, ey-'[(1 + 7) — t(1 — 7)]/2 = 1, 
and (xN_I + 1 — xN) = 1 ± 0(N-i), NE» 1. 

APPENDIX E 

Another Approach to CTD Noise 

Throughout our treatment we have paid careful attention to the 
details of the transfer and storage of charge in CTD's in order to 
calculate the noise induced by the device. We have noted, however, 
that by making reasonable approximations, we can often reduce 
rather complicated, exact results to much simpler, approximate 
results adequate for most purposes. One cannot help but wonder, 
therefore, if there does not exist an approximate but adequate short 
cut for calculating CTD noise. One clue is to compare Tompsett's 
resultan for incompletely transferred charge Q, with his results for 
mean-square noise charge induced by interface states (q2). If we 
ignore factors of the order unity we find that 

(q2) = eQi, 

where 
(90) 

Q, = ekTN„..  (91) 

In other words, the noise induced by interface states is just the shot 
noise associated with the incompletely transferred portion of the 
interface charge.34 While one will never recover thermal noise from 
such arguments, one expects not to do too badly in estimating the 
influence on the output of those noise sources, such as interface states 
or emission-limited (barrier-limited) currents, which are closely tied 
to incomplete charge transfer. Anyway, the basic idea, that of shot 
noise on incompletely transferred charge, is appealing, however ap-
proximate and/or incomplete it may in fact actually be. 
We can derive such a result as follows. We make the assumption 

that we can approximate the current I which flows from one storage 
region to the next during a single transfer as 1(Q), where Q is the 
charge to be transferred at any given time during the transfer phase. 
(If this assumption had been made in calculating the coefficient of 
incomplete charge transfer, " then certain of the results obtained 
would have been erroneous. Nonetheless, without this assumption, 
details of the charge transfer enter, which we wish to avoid.) As in the 
text we also assume that we can linearize the equations governing the 
noise. Thus, writing Q = Q°  q, the equation of motion 

(;) = — 1(Q)  (92) 
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becomes 
(ào  _ (Q0) = _J0 

for the noiseless transfer, and for the noise 

dI 
(93b) 

where d0(t) is the naturally arising statistical driving term. Since / 
depends only on Q, the derivative appearing in (93b) is total and is 
evaluated using Q°(t) from (93a). Solving for q(t) is straightforward: 

(93a) 

q(e) = f cit'd,(e) exp — f (a/dQ°)t,dt")  (94a) 
E 

— I-  ded,(e)     (94b) 
/0 (e) 

in which we have used (93a) in going from (94a) to (94b). The 
[/(t)//(e)] factor suppresses the shot-like noise associated with the 
transfer. 
The statistics of q follow from those of d, using eq. (94b). The 

statistics of d, are such that 

(dg(t1)4(t2)) = eI[Q°(ti)]6(ti — t2).  (95) 

(This is not an additional assumption, but rather (95) follows from 
our initial assumption that I depends only on Q.) It follows that at 
the end of the transfer cycle 

f Q0 
(e) = e j  PdQL(Q?)//°(Q)]2,  (96) 

Q1 

where Qo is the initial charge Q°(0) to be transferred, and Qi is the 
mean charge Q°(11) left behind at the end of the transfer. [We note 
that in the absence of the expression factor, (e)  e(Qo — Q1)  eQ0, 
full shot noise.] 
To proceed, we must know I(Q°). If, toward the end of the transfer 

cycle, Q ---> Q>> Qd, where Qd is the charge packet size above which 
the primary force driving the transfer current arises from the packet 
itself, then 1(Q) will be proportional to Q2, and, using (97), 
(q2) g•-,̀' €(21/3. If, on the other hand, toward the end of the transfer 
cycle, Q —> Q « Qd, so that the primary force driving the transfer 
current is diffusion or fringing fields, the I(Q) will be proportional to 
Q, and, using (96), (q2) eQi. Taking a more specific example, let 
us set CV = Q in eq. (8) of Ref. 11, as a realistic approximation. It 
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follows that 
Q0  ( Qi  2kT ) 

e = f dQ  e   
Q'  Q2  (Q 2kT )2 

e 

(97) 

Equation (97) can be integrated exactly. For our purposes, it 
suffices to consider two limiting cases: Qi >> 2kTC/e, in which case 
(q2) Pt; eQ1/3, and Q1 « 2kTC/e, in which case (q2) eQl. Thus, we 
find in fact that (e) can be viewed roughly as the shot noise on the 
incompletely transferred charge. However, it should be noted that Q1 
is the total, and not the much smaller differential («Q0), charge in-
completely transferred. While the results of this appendix are appealing 
as a short cut, the reader is strongly advised to keep the basic assump-
tion [/ -= 1(Q)] firmly in mind and to use extreme caution in generaliz-
ing this approach to other problems. 
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The results of a statistical analysis of telephone noise are presented. 
The analysis consists of two stages: an exploratory data analysis stage, 
where the data are characterized through various non parametric statistics 
and a model-building stage, where the data are matched to models. 
The exploratory data analysis stage involved examination of noise 

waveforms, power spectra, and covariance estimates. The results show that 
telephone noise consists of a deterministic component (sinusoids at various 
frequencies) and a stochastic component. It is assumed that these com-
ponents add. The data are filtered to remove the deterministic component. 
Next, central moment estimates are presented, as well as first-order ampli-
tude statistics (histograms and empirical cumulative distributions) for 
these filtered data. The results indicate that the filtered data appear wide-
sense stationary over short periods of time (typically 1 second) and, 
although close to gaussian, are distinctly non gaussian. 
The model-building stage involved fitting the filtered data to two classes 

of models. The first class of models is based on symmetric stable distribu-
tions that arise from the central limit theorem. The second class of models 
assumes two different physical processes that contribute to the random 
component of telephone noise: The low-variance process is assumed to be 
gaussian, while the high-variance component is assumed to be a filtered 
Poisson process. Both classes of models agree intuitively with the physical 
processes generating telephone noise and are mathematically tractable. 
Based largely on graphical tests, both models appear to fit the filtered data 
reasonably well. 

I. INTRODUCTION 

Noise on telephone lines has puzzled and plagued people since the 
invention of the telephone. While it is common knowledge that tele-
phone channel noise is nongaussian, nowhere in the literature is there 
a clear account of an adequate statistical characterization of telephone 
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noise. In part, this is due to the fact that only recently have statistical 
tools been developed that are equal to the task. 
This paper attempts to adequately characterize some statistical 

properties of telephone channel noise by means of various nonparamet-
ric statistics and by mathematical models. It is encouraging to note 
that the results presented here do not contradict those found in earlier 
works. However, since only a small number of telephone line noise 
sample functions were examined, the results must be regarded as 
tentative, awaiting independent checks by other investigators. It is 
hoped the results presented here will stimulate communication theorists 
to investigate new methods for optimally processing signals corrupted 
by the nongaussian noise models presented here. Work along these 
lines might lead to optimum and practical suboptimum receiver 
structures for combating telephone noise. This in turn might permit 
greater insight into how noise limits telephone channel performance 
with regard to voice communication or data transmission. 
The authors have tried to keep the notation and nomenclature con-

sistent with that used in statistics and probability theory. The reader 
is reminded, for example, that "empirical cumulative distribution 
function" refers to an estimate of the true "cumulative distribution 
function" based on observations of "empirical" data. The words 
"sample" and "empirical" are often used interchangeably, as in 
"sample mean" and "empirical mean," as compared with the ensemble 
mean. 

1.1 Summary of past work 

Broadly speaking, previous investigators characterized telephone 
channel noise in two different ways, based on different ways of measur-
ing the data and with different problems in mind. First, direct measure-
ments of sample functions of telephone channel noise have been carried 
out'-' and mathematical models for the noise statistics have been 
constructed. Second, digital signals have been transmitted over tele-
phone lines and the difference between the transmitted and received 
signals has been analyzed, providing an indirect measurement of 
telephone channel noise.4-" It is extremely difficult to correlate these 
two types of measurements. This paper is solely concerned with direct 
measurements of telephone channel noise sample functions. 
Both types of measurements indicated the nongaussian nature of the 

noise. The analog measurements suggested that telephone noise could 
be considered a mixture of a nongaussian random process with sinusoids 
at various frequencies.'-' The first-order amplitude statistics for the 
random process appeared to be adequately modeled by a Pareto 
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distribution.' Analysis of errors in digital signals transmitted over 
telephone lines revealed that errors cluster in time, an indirect measure 
that the noise cannot be adequately modeled as white and gaussian.4.13 
Some causes of telephone noise are thermal noise in amplifiers,"" 

switches sparking on opening or closing contact,1-3 .7-" lightning,'," 
electromagnetic crosstalk," fading on microwave links and switching 
to guard bands, " echo suppressor turnaround," disturbances because 
of maintenance," power line harmonics as well as harmonics of all 
sinusoids used in the telephone switching system," and noise generated 
at switch interfaces." The main causes of telephone noise are felt to 
be due to thermal noise, switch arcing, and pickup of unwanted 
sinusoidal harmonics." The main cause of error clustering in digital 
signals is felt to be due to the impulsive component of the noise, 
generated by switch arcing." 

1.2 Problem statement 

The problem is twofold: 

(i) To provide an adequate statistical characterization of telephone 
channel noise by means of various nonparametric statistics. 

(ii) To allow the data plus knowledge of the physical processes 
generating telephone noise to lead to a mathematically tractable 
class of models. 

1.3 Outline of the paper 

The data from five telephone lines and the processing necessary to 
convert the data into a form suitable for further analysis are described 
first. The analysis is broken down into two steps, an exploratory data 
analysis stage where the data are characterized through various non-
parametric statistics and a model-building stage where the data are 
matched to models. 
The exploratory data analysis stage involved examination of noise 

waveforms, power spectra, and covariance estimates. The results show 
that the data consisted of a deterministic component (sinusoids at 
various frequencies) plus a stochastic component, which were assumed 
to be independent. The data were filtered to remove the sinusoids that 
were significantly larger than the stochastic component. Histograms 
and empirical cumulative distribution functions for the filtered data 
were examined, as well as central moment estimates. The filtered data 
appeared to be wide-sense stationary over short periods of time, typi-
cally 1 second. Based largely on quantile-quantile plots, it was con-
cluded that, although close to gaussian, the filtered data for three out 
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of the five lines were distinctly nongaussian; the filtered data for the 
remaining two lines appeared to be gaussian. 
The model-building stage involved fitting the filtered data to two 

classes of models. The first class of models is highly unstructured; it 
was based on stable distributions, infinitely divisible distributions that 
arise from the central limit theorem. Based on a series of parameter 
estimation procedures including robust estimation, maximum likeli-
hood estimation, and quantile-quantile plots and backed up by a 
likelihood ratio test on the goodness-of-fit, the three nongaussian lines 
could be adequately modeled by a stable distribution with characteris-
tic index --.1.95 (a gaussian has characteristic 2.0). 
The second class of models is much more structured than the first. 

Two different physical processes were assumed to contribute to the 
filtered data: the low-variance component was a stationary gaussian 
process, while the high-variance component was a filtered Poisson 
process. Parameters for the gaussian component were estimated using 
trimmed means and trimmed variances. The parameters specifying 
the filtered Poisson process were much more complicated to estimate. 
The instants of time at which noise bursts occurred and the intervals 
between bursts were first examined; based on power spectra as well 
as covariance estimates, the intervals appeared to come from a renewal 
process. Histograms and empirical cumulative distribution functions 
indicated that the time intervals came from a Poisson process; empirical 
survivor and hazard function plots showed that a Poisson process with 
constant rate parameter was not an adequate model, however. Because 
of the small number of bursts observed, it was quite difficult to fit the 
time intervals to a Poisson process with varying rate parameter, and 
for expediency a constant Poisson rate parameter was chosen to model 
noise burst times of occurrence. The amplitudes of the noise bursts 
were adequately modeled by a log normal and power Rayleigh, or 
generalized gamma. The durations of actual noise bursts were used to 
estimate parameters in the noise burst shaping filter. A simple indica-
tion is presented of how well the filtered data fit the gaussian-plus-
filtered-Poisson-process model. A number of other models and exten-
sions of these models are discussed. 

IL EXPLORATORY DATA ANALYSIS 

2.1 Description of the data 

The data, supplied by J. Fennick, consist of analog tape recordings 
of noise on five telephone lines. Figure 1 is a diagram of the measure-
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Fig. 1—Telephone noise measurement system. 

ANALOG 
TAPE 

RECORDER 

ment system. Table I describes the origin and destination of each line, 
as well as the date and time of the recording. 
The origin of the telephone line was terminated with the nominal 

characteristic impedance of the line, 600 ohms. The output of the line 
was low-pass filtered to remove spurious out-of-band signals, amplified, 
and recorded on an analog tape at 18.75 cm per second. The system 
was calibrated before each recording with a 15-second burst of a 
325-Hz sinusoid at a predetermined amplitude. The dynamic range of 
the recording system was approximately 100.20 No attempt was made 
to eliminate de offset and drift. Each recording was approximately 
15 minutes long. 
Figure 2 is a block diagram of the analog-to-digital tape conversion 

system. The analog tapes were played back on an analog tape recorder 
(of a different model than that on which they were recorded) at 18.75 
cm per second. The calibration signal set the gain on the playback 
amplifier so that the calibration signal amplitude was roughly equal to 
its value at the recording site. There was no attempt to remove wow 
and flutter in the tape recording." The signal was low-pass filtered (to 
lessen the chance for spectral aliasing), amplified, sampled 10,000 times 
a second, passed through an analog-to-digital converter, and subse-
quently put into digital format on a tape suitable for further processing 

Table I — Description of data 
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FILTER 

DATA IN 
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ON MAGNETIC TAPE 

1• 11111111 

SAMPLE/HOLD 
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RATE 
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DIGITAL 

CONVERTER 
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DIGITAL FORMAT 

ON MAGNETIC TAPE 

DIGITAL 
COMPUTER 

6 BITS 
PER SAMPLE 

DIGITAL 
TAPE 

TRANSPORT 

36 BITS: 
TWO SAMPLES 
WITH 4 PARITY BITS 

Fig. 2—Analog-to-digital conversion of telephone noise data. 

by a Honeywell 6070 digital computer. The levels of the analog-to-
digital converter will be the units specifying the amplitudes of the 
telephone noise data. No measures of the degradation in data on 
digital tapes resulting from jitter during the sampling process are 
available; it is assumed to be negligible compared to other sources of 
measurement error. No bounds are available on the loss of information 
entailed by examining a continuous-time random process at only 
discrete instants of time." 
Two critical remarks concerning the method of recording the data 

should be made: first, there are no quantitative measures available on 
the amount of noise introduced into the data by the measurement 
system alone. Presumably, any measurement system noise was in-
significant compared to the telephone channel noise. Second, the 
dynamic range of the recording system is probably insufficient to 
faithfully record telephone noise; a much more satisfactory dynamic 
range would be 1000 to 10,000. Both issues have been dealt with else-
where (in a different context) ; a possible solution would be to convert 
the data into digital format directly at the recording site." Considera-
tion of these problems is left to future research; the data analysis 
proceeded with these caveats in mind. 
Figure 3 shows a typical telephone channel noise waveform from 

line 1 after conversion to digital format. 
How typical are these data compared with that observed on other 

telephone lines? A search of the literature as well as private communica-
tions from engineers shows that the data discussed here appear to be 
typical of telephone channel noise. Throughout this investigation, 
nothing was uncovered that contradicted earlier work; rather, this 
work tends to clarify and place in perspective that of earlier investiga-
tors. Note too that the telephone lines examined here were typically 
several hundred miles long, presumably passing through a variety of 
equipment, and hence quite representative of telephone noise. Finally, 
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Fig. 3—Typical line 1 telephone noise waveform (unfiltered). 

500 

the analog tape recordings were played into loudspeakers, and the 
authors felt the noise sounded typical. 
A much more serious objection to the present analysis is that not 

enough of the data at hand was examined. If all five 15-minute noise 
recordings were sampled 10,000 times a second and then put on to 
tape in digital format, more than 45 million noise data must be ana-
lyzed; in particular, 9 million data must be processed and statistically 
characterized for just one telephone line sample function. In practice, 
only 10-second segments from the beginning and middle of a recording 
were examined in detail and compared with each other. No unusual 
statistical differences were observed between these segments for any 
telephone line. The main reason for examining so little data was the 
great cost of analyzing these data statistically and, in particular, of 
digitally filtering the data to remove sinusoids. It is difficult to predict 
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in advance exactly which sinusoids are present on a particular telephone 
line; it is easier to filter these out digitally after the measurement 
without distortion than to accomplish this with analog filters. 

2.2 Data modifications and estimation of power density spectra 

As mentioned above, the data went through several stages before 
they were available in digital form. Some further processing is necessary 
to remove the effects of this pre-processing, as well as to remove un-
wanted sinusoids. Since the frequency response of each line was un-
known, nothing was done to compensate for it. 
The first step is to compute estimates of the power spectrum. The 

data were segmented into blocks (typically of length 1000, correspond-
ing to h- of a second of noise). Each block was tapered and enlarged 
to 1024 values by adding zeros, then transformed into the frequency 
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domain by the fast Fourier transform (FFT) ;24 the power spectrum 
was estimated from the transformed data. The method used is com-
parable in bias and variance to other spectral estimation procedures, 
but requires considerably less computer time than other non-FFT-
based methods."-" Furthermore, it is possible to calculate cross-
spectrum estimates easily, as well as to check for nonstationarity by 
computing the spectra of successive segments of data. The discrete 
Fourier transform of N successive data at frequency w1 = 1/N At is 
Pwi), 

N 
J(w) =  E nice -i2rKtiN 

K-1 

where 

N 
¿=0,1, • • • ,[ -2 , 

nK = sample of noise waveform at time KM 

and 
àt = time interval between samples. 

The estimate of the power spectrum density at frequency wi is .S 

=  
N 

where 

E g, = 1, 

and the weights fg, are introduced to smooth the estimate. Unequal 
weights can be used to lower the bias of the estimate, but increase 
its variance. The value ..(zvi) represents the average noise power 
density in a frequency band centered at w1. All power spectrum density 
estimates shown here were computed with g, equal to (M — ji)/ M2, 
where M = 5. Figure 5 shows the power spectrum for the waveform in 
Fig. 3 with two sharp peaks probably reflecting sinusoids at 650 and 
4300 Hz. Figure 6 shows a succession of 24 power spectrum estimates 
for line 1 for ,÷6-second segments of filtered data. The first 13 are from 
successive segments recorded at the beginning, while the final 11 are 
from successive segments recorded 5 minutes later. These results 
indicate that line 1 data can be regarded as wide-sense stationary over 
at least 1-second time intervals. The variance of these spectral estimates 
is unknown; if the process were gaussian, the distribution of S i) can 
be approximated by a x2 distribution with [2/ # M g2,] degrees of 
freedom." For g1 (M — 1:71)/M2 with M = 5, this results in ap-
proximately 14 degrees of freedom. From the data shown here for line 
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Fig. 5—Typical power spectrum for unfiltered line 1 data (N = 1000). 

1, as well as data from the other four lines, telephone noise power 
density spectra appear to have the same shape, but different scales. 
Table II summarizes the estimates of frequencies of signals which 

were quite probably sinusoids, and whose estimated power spectrum 
density was at least a factor of 10 above the estimated wideband power 

Table Il — Estimated frequencies of sinusoids that were 
subsequently filtered out 

Line Estimated Frequency of Sinusoid (Hz) 

1 
2 
3 
4 
5 

650, 4300 
650, 4300 
3900 
2000, 3600 
60 
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Fig. 6—Line 1 power spectra: bottom 13 from beginning of line 1 data, top 11 from 
middle of line 1 data (N = 1000). 

spectrum density. While this criterion is arbitrary, independent experi-
mental evidence to be discussed shortly indicates it is adequate from a 
statistical point of view. 
Since many statistical tests require uncorrelated samples, it is neces-

sary to filter out these sinusoids, as well as to compensate for distor-
tions in the data from the measurement system. This implicitly assumes 
that telephone noise can be modeled as the sum of a deterministic 
process, sinusoids at various frequencies, and a purely stochastic 
process, which will be characterized in greater detail. This was ac-
complished using low-pass, band-stop, and high-pass linear-phase 
digital filters designed by computer programs developed by L. Rabiner ; 
the filtering was carried out in the discrete time domain by convolution. 
Figure 7 shows the power spectrum of a filtered segment of the data 
shown in Fig. 4. 
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Because of the difficulty in finding telephone lines completely free 
from sinusoidal interference, the question arises as to how much 
harmonic content can be tolerated in performing various statistical 
tests. Work carried out elsewhere in a different context has examined 
this issue from an experimental viewpoint ;29  the principal findings were 
that the amplitude statistics are apparently not significantly degraded 
by the linear filtering, if the sinusoid is the same size or smaller than 
the observed noise levels. This topic can be a subject for future research. 

2.3 Covariance estimation 

It is assumed in many statistical computations that the data are 
statistically independent. In practice, the data usually depend to some 
extent on each other, and it is often quite difficult to quantitatively 
estimate the effects of this lack of independence. One indication of 
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independence is the estimated autocorrelation function, 

1  1 Ar--/ 
.enn(LIt) =  (0)  • N  KEI n'(Cat)ni (K  ± le  1 = 1, • • • , N — 1, 

where 
1 e 

n' (IC At) = n (K At) — — E n( W) 
N 1=1 

and 
1 N 

n n (0) =  E n" (K At). 
K 1 

A typical autocorrelation of filtered data is plotted in Fig. 8. A sinusoid 
that was not filtered out is quite evident at approximately 1400 Hz 
(see also Fig. 7) ; ignoring this sinusoid," the autocorrelation appears 
to be approximately zero for 1 3. 
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If the data are wide-sense stationary and ergodic, then the autocor-
relation and the power density spectrum are a Fourier transform pair." 
Examination of the filtered waveform in Fig. 4 indicates that the 

samples appear uncorrelated, i.e., they are scattered in a random 
fashion about a location parameter. 
The sample normalized cross covariance for two different segments of 

data, fx(At), x(21), • • • , x(N At)} and fy(At), y(23.0, • • •,  
is defined as 

1 N -1 

E x'(KAt)y'(1C,Cit  làt) 
N  P xy (1  K =1 al) =  1 — 0, 1, • • • , N — 1, 

n(0)14(0) 
where 

i N 
x'(Keit)  x(KAt) —  ix(13,t), 

y'(Kà1) = y(KAt) — 

=  KtI l x" (Kz11), 

and 

= 17> ici±t (K41) ' 

and is shown in Fig. 9 for two typical segments of filtered data. From 
this as well as other data, the filtered telephone noise data examined 
appear to be uncorrelated over short time intervals. 
Since the data, after filtering, appear approximately uncorrelated, 

they will now be characterized in greater detail. 

2.4 First-order filtered data amplitude statistics 

A nonparametric statistical description of first-order noise amplitude 
statistics provides a great deal of useful information. For example, if 
the data are independent identically distributed random variables, 
they can be completely characterized by their empirical cumulative 
distribution function." The work in this section relies heavily on 
graphical methods for data analysis, to give more physical insight 
into the nature of the data." 
The empirical or sample cumulative distribution function is defined 

as 

Px  number —à number of observations less than or equal to X 
total number of observations 
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Fig. 9—Typical line 1 crosscorrelation function (N = 1000). 

which is a function of fx/c 1, the set of observations. The sample 
histogram is defined as 

P(X, X ± à) º- number of sample values in [X, X ± à] , 

where  is the bin width. Figure 10 is a plot of a typical empirical 
cumulative distribution function, and Fig. 11 shows a typical sample 
histogram. These two figures imply that the first-order probability 
density for the data is roughly bell-shaped and symmetric. A simple 
graphical symmetry check on the empirical cumulative distribution is 
shown in Fig. 12; xK is plotted against 1N—K+1, where K = 1, 2, • • • , 
[N/2], N = 1000 is the total number of observations, and (xx } is the 
set of ordered observations. If the empirical cumulative distribution 
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is symmetric, these points lie on a straight line with negative unit 
slope; this is apparently the case. 
The next quantities of interest are central moment estimates, which 

are defined as follows :33  

and 

1  N  
=  sample mean =  E xi, 

LV j=1 

1  N 

s2 =  sample variance =  E (xi— ±)2, 
iv 5=1 

1 N  
(1.3 =  sample skewness = — E (x• —  

Isar 5-1 

N  
11.4 =  sample kurtosis =  E (xi  _ 0/(8 2)2. 

i=1 
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These parameters were estimated for ten segments of 1000 data for 
each of the five lines. Table III shows these estimates for the segment 
of each line whose fourth central moment was the median of all ten 
fourth-central-moment estimates of this line. The 5-percent significance 
level .for 1000 independent identically distributed gaussian random 
variables with known mean and variance areas 

—0.127 <â3 <0.127 
2.76 < â4 < 3.26. 

Figure 13 shows a scatter plot of â3 vs. â4 for successive segments of 
1000 data for each of the five lines. Based on this evidence, it can be 
conjectured that lines 1, 2, and 4 are nongaussian, while the gaussian 
hypothesis cannot be rejected for lines 3 and 5. Since quite a large 
body of literature exists on gaussian random processes and these 
random processes are well understood, the gaussian hypothesis is not 
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lightly discarded: the evidence that the data are nongaussian should 
be much more convincing than that presented so far. 
A very convenient graphical method to check how well data fit a 

theoretical distribution function is the quantile-quantile, or Q-Q, plot." 
The qth quantile of a cumulative distribution function F (x) is defined 
here as the value x for which F (x)  q, O  q S 1. A Q-Q plot plots 

Table Ill — Estimated telephone noise central moments 

Line 2 82 th â• 

1 —87.9 38,600 0.05 3.4 
2 —80.1 18,200 0.08 3.5 
3 —80.1 44,200 —0.05 3.1 
4 —82.3 87,200 0.02 3.3 
5 — 1.06 1,990 —0.08 2.9 
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quantiles of the empirical cumulative distribution function against 
quantiles of the theoretical distribution. If the empirical and theoretical 
distribution functions are the same, the plot is a straight line with 
slope +1 passing through the origin. If the empirical and theoretical 
distribution functions are the same to within a linear transformation 
(i.e., to within a scale and location parameter) the plot is still a 
straight line. A typical quantik-quantile plot for line 1 filtered data 
against a gaussian distribution is shown in Fig. 14; the sample size 
was 13,000. The first 100 and last 100 quantiles, as well as every 
hundredth quantile in the middle, have been plotted, giving the 
illusion of discontinuity during the transition from the middle to the 
tail quantiles.32 Ten observations in each tail are widely scattered. 
Figure 15 shows the central portion of the quantile-quantile plot with 
these observations excluded. The tails curve toward horizontal lines, 
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another indication of the long-tailed nongaussian nature of the data. 
The 10 points on each tail were found to be highly correlated: These 
very large excursions occurred in clumps of two, three, and five at a 
time, violating the assumption that the data are independent. For 
comparison, Fig. 16 shows a quantile-quantile plot for line 5 filtered 
data against a gaussian distribution; the sample size was 11,000. The 
straight line is a good indication that these data are gaussian. 

III. MODELS 

3.1 Central limit theorem 

Since noise on telephone lines is presumably due to a large number of 
independent causes, it is worthwhile to digress and review the central 
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limit theorem. The material presented here is largely tutorial, following 
standard references.34,35  The close association between the central limit 
theorem and the gaussian distribution is remarkable because of its 
algebraic closure property: If two independent random variables are 
both gaussian, their sum is also. It is much less widely known that the 
gaussian distribution is a special case of a larger family of distribu-
tions, which arise from the central limit theorem and exhibit the same 
closure properties as the gaussian, the stable distributions. 
The reason for the importance of the gaussian rather than the 

entire stable distribution family is that only the gaussian distribution 
has a finite variance, and infinite variance is felt to be physically 
inappropriate in virtually any context. However, this is naive in that 
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the gaussian distribution is unbounded and unbounded quantities are 
also felt to be physically inappropriate. The gaussian distribution 
may describe a particular situation adequately over a certain range; an 
infinite-variance distribution may model an actual situation over a 
greater range of a parameter. Both distributions may be physically 
inappropriate, but the infinite variance may, in this sense, account for 
the observations better than the gaussian. 
Mandelbrot has pioneered in developing and popularizing this 

notion,"-" for example, in connection with economic phenomena"-" 
and in error statistics of digital signals transmitted over telephone 
lines.' Consider, for example, the distribution of changes in stock 
market prices. Mandelbrot" and Fama" have shown that, although 
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the change in stock market prices is bounded, the probability of very 
large deviations is so great that many statistical techniques that assume 
an underlying distribution with finite variance are not applicable. 
Stock market prices may be modeled as a sum of a large number of 
random variables; similarly, at any instant of time, telephone noise is 
presumably the sum of a large number of random variables. The sum 
of a large number of infinite-variance variables is often dominated by 
one or a few of the summands"—a theoretical property of infinite-
variance distributions. The key feature common to these models is 
that the limiting distribution remains the same if an arbitrary but 
finite number of terms are dropped from the sum. This intuitive notion 
can be made precise and, subject to a mild restriction on the distribu-
tion from which the summands are drawn, leads naturally to the central 
limit theorem." 
Among infinite-variance distributions, the stable distributions play 

an important role, because only stable distributions can be limiting 
distributions of suitably normalized sums of independent identically 
distributed random variables, as well as because stable distributions 
are closed under convolution. Some pioneering work on the statistical 
analysis of data from a stable distribution has been carried out already; 
the analysis described here is a straightforward application of this 
work."-" Before detailing that work, a summary is presented of some 
properties of stable distributions. 
A distribution function P (x) is called stable if, for all al > 0, b1, 

a2 > 0, b2, there exist constants a > 0, b such that 

P(aix  bi)*P(a2x  b2) = P(ax  b) 

holds." Every stable distribution has a continuous density; the stable 
distributions discussed in this work have unimodal densities that are 
analytic throughout their support.5° The random variable x is stable 
if and only if the logarithm of its characteristic function is51 

in [E(eizw)] ln [ ex(w)] 

I— cw I aEl — if3.sign (w) tan (ira/ 2)] ± i6w  a 0 1 
— cwI [1 — it12/7r sign (w) In I cw I ] i5w  a =- 1 

(3 • 1  0<a-.2. 

Thus, every stable law is described by four parameters a, e, e (or 
-y = c"), 6, where a is the characteristic index, 13 is associated with the 
skewness of the distribution, c is a scale parameter, and 6 is a location 
parameter. If 13 = 0, the distribution is symmetric about x  6. If 
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¡3> 0 and 0 <a < 2, the distribution is skewed to the right, and the 
degree of skewness increases as (3 increases; conversely, if /3 < 0, the 
distribution is skewed to the left and the degree of skewness increases 
as (3 decreases. For a = 2, fl is irrelevant." 
If s,, is the suitably normalized sum of n independent identically 

distributed random variables xi, x2, - - •, x., 

1 
s. =  (x2 + x2 + • • • + x.) - A. 

where B. and A. are normalizing constants, then the distribution of x 
is said to belong to the domain of attraction of a stable distribution 
with characteristic index a if the distribution of 3„ converges to this 
stable law as n goes to infinity ;" this distribution belongs to the domain 
of partial attraction of a stable distribution if the distribution of s,, 
converges only for some subsequence." A stable distribution with index 
« has absolute moments of all orders strictly less than «, i.e., 
ED x P] < co for 0  p <a.55 
Stable distributions and densities can be expressed as a power series." 

In several eases, this series can be considerably simplified to yield 
analytic closed-form expressions; these cases are a = 2 (gaussian), 
a = 1 and 13 = 0 (Cauchy), anda = -1 with 13 = ±1. Figure 17 depicts 
several stable density functions. 
If xi, x2, • • • , x 7l>  • • • , are independent random variables drawn from 

r distributions, each within the domain of attraction of stable laws with 
indices drawn from the finite set (ai, • • •, ar), then under certain con-
ditions on the number of representatives of each distribution, the 
suitably normalized sum of these variables converges to a distribution 
that is the convolution of r stable distributions."'" 
The question of rate of approach to the limiting distribution of a 

sum of suitably normalized, independent, identically distributed 
random variables is well understood if the limiting distribution is 
gaussian  = 2).59-61  If the limiting distribution is in the domain of 
attraction of a stable distribution, a variety of results are avail-
able.30•35•43.42 The most useful result62 available at present, from a data 
analysis point of view (see Ref. 63), loosely states that the difference 
between the actual distribution of the sum of N suitably normalized 
random variables and the limiting stable distribution (0 <a <2) is 
bounded by a linear combination of terms of the order of N—ea and 
N—(2— aea. As an example, consider the case a = 1.9: one term is 
N -11«  = N-2 ." while the other term is N--e—a)la = N—'2•958 ; N must be 
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5 

astronomically big to reduce this second term to a value smaller than 
0.1, which indicates how slow this rate of convergence to a limiting 
stable distribution may be." Thus, in many practical situations, cau-
tion must be shown in going to the limiting distribution."—" Noise 
on telephone lines is possibly a case in point. 
Section 3.2 discusses how filtered data from the three nongaussian 

telephone lines are fit to stable distributions. Since these distributions 
have no second moments, the modifications necessary to properly 
interpret power spectra and covariance estimates, as well as auto- and 
crosscorrelation estimates, for these three lines are not clear. This 
whole area must be subject to further research." 
As a final aside, the question of ergodicity, of relating time average 

statistics to ensemble average statistics, will not be addressed here: 
The filtered data are assumed to be an ergodic random process. 
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3.2 Symmetric stable distribution model 

In this section, various statistical tests are described for determining 
if telephone noise on the three lines that appear nongaussian can be 
adequately modeled by a symmetric stable distribution (0 <a 5 2, 

= 0). 
A series of estimators for symmetric stable distribution (1 < a < 2) 

parameters have recently been developed."'" These estimators are 
based on statistics easily derived from the empirical distribution func-
tion; they have been compared with maximum likelihood estimates 
and found to offer reasonable agreement when suitable precautions, 
such as a large sample size for a near 2, are taken." These parameter 
estimates are 

1  (15 +P) 

g  E  5e1C 
P K = (0.5 —p) 

1   

e = 1.654 (-eo'72 —  5e0.28), 

p = 0.125, 0.250, 0.375 

where jer is the value of the rth empirical quantile, g is a trimmed mean, 
and e measures the spread of the distribution. To estimate the charac-
teristic index a, an auxiliary variable zg is first computed 

 --e5e1-6 — 0.827  "gq £1.—q  

2 
Zq 

¡0.72 

q = 0.9995, 0.995, 0.99, 0.985, 0.98, 0.975, 0.97, 0.96, 0.95, 0.94, 0.92, 

and then â is obtained as a function of z, from tables in Ref. 48. â is a 
measure of how rapidly the distribution approaches its asymptotic 
values. For line 1, with a sample size of 13,000, it was found that 

= —87.4, 
e .= 132.0, 

ci (4.99)  â (4.995) = 1.95. 

In addition, this was carried out for a sample size of 1000 thirteen 
times, a sample size of 2000 six times, a sample size of 3000 four times, 
a sample size of 4000 three times, and a sample size of 5000 two times. 
The results are tabulated in Table IV for the q = 0.98 fractile. Different 
choices of q resulted in practically the same estimates. 
Larger and larger samples were used because, if the data really 

come from a stable distribution, then the parameter estimates would 
presumably converge to their true values with increasing N. 
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Table IV-Line 1 symmetric stable distribution 
parameter estimates 

N = 1000 N = 2000 N = 3000 N = 4000 N = 5000 

-88.6, -88.8, -86.9, -87.2 -87.0, -88.1 -88.1, -87.8 -87.9, -87.8 -87.9, -88.0 
¡ -88.2, -88.0, -87.6, -87.8 -87.6, -88.5 -87.8, -88.0 -88.1 
" -88.3, -88.7, -86.6, -87.5 -87.7, -88.7 

-87.2 

132.1, 127.4, 122.9, 124.7 123.7, 141.1 125.8, 135.7 125.5, 132.3 130.6, 132.1 
145.2, 134.5, 128.6, 119.8 124.0, 137.6 129.1, 135.1 135.9 ... 

' 143.4, 134.5, 130.5, 124.2 135.1, 128.7 
137.6 

1.92, 1.94, 1.96, 1.90 1.93, 1.94, 1.92 1.94, 1.92, 1.93 1.93, 1.91 1.94, 1.96 
1.90, 1.89, 2.00 1.92, 2.00, 1.93 1.97 1.97 

m 1.90, 1.99, 2.00, 2.00 
1.91, 1.98 

Figure 18 shows a Q-Q plot of 13,000 line 1 data against a symmetric 
stable distribution with a = 1.94, while Fig. 21 shows the same plot 
with 10 points on either end excluded. These points were excluded 
because they were possibly atypical observations, and because they 
were highly correlated to one another. Again, as in the gaussian Q-Q 
plots, only the first and last 100 empirical quantiles, as well as every 
one hundredth between have been plotted, giving the false illusion of 
discontinuity in the observations. The eye is quite sensitive to devia-
tions from a straight line for quantile-quantile plots; in particular, 
a = 1.94, 1.95, 1.96 could easily be distinguished from one another 
(Figs. 18 to 23). The data appear to be slightly skewed, so a non-
symmetric (I  «1,   0) stable distribution might indeed provide 
a better fit to the data. As a increases from 1.94 to 1.96, the stable 
distribution has shorter and shorter tails, and the points in the tails 
bending towards the vertical for a = 1.94 align with the rest of the 
data for increasing a. 
As a check on these estimates, W. DuMouchel has supplied the 

authors with a computer program that numerically calculates maxi-
mum likelihood estimates of parameters of stable distributions, as well 
as of their covariances." DuMouchel has shown the maximum likeli-
hood parameter estimates are asymptotically normal, so that some 
statistical techniques developed for data analysis of gaussian samples 
can be brought to bear." The method used is numerical, nonetheless, 
so two possible pitfalls must be kept in mind. 

(i) For ease in numerical calculations, the data were aggregated 
into bins, thereby losing information. 

(ii) A Newton-Raphson-type of algorithm was used that approxi-
mates the first and second derivatives of the likelihood function 
with differences. 
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Fig. 18—Line 1 Q-Q plot against a stable distribution, a = 1.94 (N = 13,000). 

DuMoucheln has observed that the first approximation is the more 
critical of the two. The second approximation was investigated using 
a simplex algorithm rather than Newton-Raphson which did not 
compute discrete approximations to derivatives, with results consistent 
to those now described. 
For line 1 data, with a sample size of 13,000, the numerical maximum 

likelihood stable distribution parameter estimates were 

= 1.95 

_0.006 
132.7 

= —88.8. 
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Fig. 19—Line 1 Q-Q plot against a stable distribution, a = 1.95 (N = 13,000). 

The numerical approximation to the estimated parameter covariances 
are shown in Table V. 
The large variance of ¡3' compared to the other estimates has been 

observed by DuAlouchel ;46 the cause is unknown. Although Q-Q plots 

Table V — Parameter estimate covariances (x106) 

410  11  —57  —1 
11  63  —41  —2 

—57  —41 13,551  430 
—1  —2  430 248 
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Fig. 20—Line 1 Q-Q plot against a stable distribution, a =- 1.96 (N = 13,000). 

indicated a slight skewness, i.e., 13 < 0 and 31 « 1, the interpretation 
of the maximum likelihood estimate for a was obscured by this large 
variance. 
As a check on these results, maximum likelihood parameters of stable 

distributions were estimated for 78,750 filtered data from lines 1 and 2, 
corresponding to approximately 10 seconds of telephone noise. A 
Newton-Raphson-type algorithm was used; the parameter estimate 
covariances were comparable to those just discussed. The results were: 

ei  

Line 1 1.96 —0.0084 218.0 —81.35 
Line 2 1.94 —0.0014 93.5 —80.30 
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Fig. 21—Center portion of line 1 Q-Q plot against a stable distribution, a -= 1.94 
(N = 12,980). 

Two other pieces of evidence that telephone noise can be fitted by 
a stable distribution are now presented: the studentized range test and 
the likelihood ratio test. These have been discussed elsewhere ;47 •71  

for large amounts of data, caution is necessary to interpret the results 
of these tests properly. On the other hand, since the data here are 
apparently close to gaussian, large amounts of data must be examined 
to make clear the nongaussian nature of the noise. Thus, the results 
of these tests must be very carefully interpreted, and are included for 
the sake of completeness. 
For line 1 data, testing the gaussian hypothesis at a 0.5-percent 

significance level via the studentized range test for sample sizes of 
1000 led to mixed results: some segments of data fell within these 
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Fig. 22—Center portion of line 1 Q-Q plot against a stable distribution, a = 1.95 
(N = 12,980). 

limits, others fell outside. However, for a sample size of 10,000 the 
result of the studentized range test clearly fell outside the confidence 
intervals. 
A likelihood ratio test was used to test 10,000 line 1 data at 1-percent 

significance levels against five hypotheses. The stable distribution 
hypothesis was rejected fora = 2.00,a = 1.98, a = 1.90, anda = 1.85, 
but could not be rejected for a = 1.95. 

3.3 Other central-limit-theorem-based models 

What other models arise that might adequately account for the 
data, while having the same central-limit-theorem-based appeal as the 
stable distributions? First, it is possible the data examined lie in a 
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Fig. 23—Center portion of line 1 Q-Q plot against a stable distribution, a = 1.98 
=- 12,980). 

domain of partial attraction of a stable distribution (which is wider 
than the domain of attraction"). If enough data were examined, it 
might be possible that a would approach 2. A second possibility is to 
model the data as a convolution of r stable distributions, each with 
its own domain of attraction ;73  presumably, each distribution could be 
attributed to a separate physical process. A third possibility is that the 
data are drawn randomly from m gaussian distributions, each with 
different mean and variance; for example, the data could be drawn 
from a low-variance gaussian a fraction P of the time, and from a 
high-variance gaussian a fraction (1 — P) of the time. A fourth pos-
sibility is to model the data as a nonstationary gaussian random 
process, which is a special case of a nonstationary stable random 
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process, or by a doubly stochastic gaussian random process (where 
the mean and the variance are themselves random processes), which is 
a special case of a doubly stochastic stable random process (where all 
four parameters are themselves random processes). While these non-
stationary and doubly stochastic models do not appear to be necessary 
to adequately model the data discussed here, over longer time intervals, 
such as days, weeks, months, or years, the simple models might be 
inadequate while these more complicated models might be more ap-
propriate. Presumably, other classes of models exist. 
It is difficult to refute these alternative models offhand. Recall that 

the original goal was to find a mathematically tractable model for 
telephone noise; the model discussed here is simple and agrees intui-
tively with the physics of the noise. The other models are more com-
plicated. To be of practical use, however, they must be so oversimplified 
that the intuitive agreement with the physics of the noise is lost. It is 
hoped that the class of models based on stable distributions will lead 
to more insight into how telephone noise limits voice communication 
and data transmission and, more important, into new ways for combat-
ing this noise. 

3.4 Gausslan-plus-filtered-Poisson-process model 

A model involving more parameters than the previous one is now 
investigated. This model assumes that telephone noise is due to a sum 
of two independent random processes. The low-variance part is assumed 
to be white and gaussian, while the high-variance process is assumed 
to be a filtered Poisson process. This type of model was popularized 
by Snyder," and has been used in optical communication"," and ELF 
communication" to assess theoretically optimum and suboptimum 
receiver structures. It has intuitive physical appeal: for instance, 
the low-variance component can be attributed to thermal noise and 
electromagnetic crosstalk, while the high-variance component can be 
attributed to switch arcing and thunderstorms. It is convenient to 
view the filtered Poisson process as the output of a linear dynamical 
system, whose input is an impulse train; the area of the impulse is 

N(t) 
ak 5(1 - tk) 

K=O 

POISSON DISTRIBUTED  LINEAR DYNAMICAL 
IMPULSE TRAIN  SYSTEM 

NIO 
ak - tk) 

K:0 
n(t) 

GAUSSIAN 
RANDOM PROCESS 

Fig. 24—Block diagram for generating a gaussian-plus-filtered-Poisson process. 
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assumed to be a random variable, while the instants of time at which 
the impulses occur follow a Poisson distribution with rate or intensity 
parameter X. Figure 24 and the following equation summarize this 
discussion. 

{ n(t) = g (I) + N2 a Kh (t — tK) K * 1 

g (t) 

where 

N (t) > O 

N (t) -= 0, 

n (I) = gaussian-plus-filtered-Poisson process, 

g (t) = stationary gaussian random process, 

a K = area of Kth impulse, 

h(t) = impulse response of linear dynamical system, 

tic = time at which the Kth impulse occurs, 
N (t) = number of impulses that occur in [0, 0. 

To completely describe this model, the following parameters must 
be estimated 

(i) The mean and variance of the gaussian random process. 
(ii) The probability density function for the impulse areas. 
(iii) The Poisson process rate parameter X. 
(iv) The linear system structure. 

We recall that the original motivation for this work was to stimulate 
interest of communication theorists in receiver structures that detect 
or estimate signals corrupted by nongaussian noise. One advantage of 
this type model is that parameters can be related to receiver perform-
ance limitations as well as to physical causes of noise. This helps in 
determining how much effort should go into improving the receiver as 
opposed to reducing the noise (e.g., by designing switches to operate at 
lower voltages). One disadvantage of this type of model is its great 
analytical complexity; it may be quite difficult to find analytic per-
formance limitations, and to determine how sensitive these limitations 
are to model parameters." 
If the impulse areas laid are assumed to be independent identically 

distributed random variables that are independent of the times the 
impulses occur, the characteristic function for the first-order probability 
density function can be shown to be 

EEei..(i)] = exp  _  i22 ± X r  [E. (eiwah(r))  1.]cir} , 
E 
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where 

0.) = frequency, 

m = mean of gaussian random process, 

02 = variance of gaussian random process, 

E( ) = expectation of ( ) with respect to the random variable a, 
the impulse area. 

It is quite difficult to analytically invert E (eü'n(e)) to find the probability 
density for n(t). This in turn means maximum likelihood parameter 
estimates, and Cramér-Rao lower bounds on parameter estimate co-
variances are difficult to calculate analytically. For this reason, 
numerical approximations must often be used. To avoid these problems, 
a suboptimum parameter estimation method was developed: Each 
parameter of the model was estimated by itself. There is no guarantee 
that these estimates, when put together, will be close to the true 
parameter values. The sole reason for doing this was to make the 
problem tractable. Evidence presented later indicates this method 
provides an excellent (but perhaps suboptimum) fit to the data. 
Although the dynamics of the linear system can be quite complicated, 

only three simple cases are considered here. 

(i) h(t) = Ae—A'u_1(t) 

(ii)  h (I) -  ( A 2 ±  ,2 A  ) e— At  cos cot u_1(t) u_1(t) = 1(1) tt >.< °0 

(iii) h(t) = (A'  + w2  ) e—At sin cut u_1(t), 
co 

which are perhaps the cases of greatest practical interest." 
Assuming the amplitude burst statistics to be independent of the 

instants of time at which bursts occur, and assuming the gaussian 
process to be independent of the filtered Poisson process, the mean and 
variance can be calculated (Table VI) for the steady state noise. E (a) 
is assumed to be zero in all models presented here. This completes a 
general discussion of the gaussian-plus-filtered-Poisson-process model; 
the methods used to estimate the model parameters are now described 
in detail. 

3.5 Gaussian random process parameter estimation 

If E (a) = 0, then E[n(t)] =- m, and the sample mean is an unbiased 
estimate of the true mean of the gaussian process. If the data are 
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Table VI — Mean and variance for n(t) 

h (t) E[n (t)] Variance [n (t)] 

Ae- A lu_i (t) 

A2 + w2 
e— A t COS cot 11_1 (t) 

A 

A2  ±  e—Ai  sin cdt u_1(t) 

m  XE(a) 

m  XE (a) 

nt + X E (a) 

e  E  (a2) 
2 

+ X  co2 ri 

cr2 I    E (a 
4 (A2  [A  A21 -  2) 

trimmed to exclude a fraction (e.g., 25 percent) of the data with largest 
absolute deviation from the sample mean, then presumably most 
values of n(t) that contain large contributions from the filtered Poisson 
process will be excluded. 
The estimates for the mean and variance of the gaussian process 

were consistent with estimates to be presented later for X, A, co, and 
E(ct2). No bounds are available on the bias or variance of these parame-
ter estimates. The results are summarized in Table VII. The sample 
variance has been resealed, based on the assumption that the data 
were drawn from a truncated gaussian distribution. 

3.6 Poisson process parameter estimation 

The Poisson process intensity is closely related to the times at 
which bursts of high-amplitude telephone noise occur. Many definitions 
of a noise burst are possible. The definition chosen here, although 
arbitrary, was found to be qualitatively insensitive to the parameters 
defining a burst. The absolute value of a zero mean waveform is shown 

Table VII — Gaussian random process trimmed mean and 
variance (Total data = 10,000, with a fraction p 

trimmed from either side) 

Line 

Truncated Sample Mean 
Resealed Truncated 
Sample Variance 

p = 0,125  0.250  0.375  p = 0.125  0.250  0.375 

1  —88.0  —87.6  —87.3  35,414  35,813  35,208 
2  —79.5  —78.8  —78.7  17,151  17,058  16,815 
3  —77.6  —75.2  —73.6  49,306  48,840  46,554 
4  —81.1  —80.9  —81.0  83,076  88,430  90,864 
5  — 1.0  — 1.0  — 1.1  1,664  1,672  1,683 
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in Fig. 25. The duration of the burst is the time difference between the 
moment that the absolute value of the waveform climbs above an 
upper threshold, Tuppe„ and the time that the absolute value of the 
waveform drops below a lower threshold, T1ewer, provided the waveform 
stays below the lower threshold for at least a predetermined period of 
time, called the guard band GB, which separates one burst from the 
next. The instant of time a burst occurs, t., is the first instant at 
which the absolute value of the burst attains its maximum value, P... 
A large number of statistics can characterize a point process. A 

number of nonparametric statistics were used to characterize the points 
in time at which bursts occur, and then, based on this evidence, the 
burst data were examined in greater detail to see if they could be 
adequately modeled by a renewal process in general, or a Poisson 
process in particular (e.g., see Ref. 78). 
The two statistics that were first examined were 

(i) The sample mean time between bursts as a function of Tupper) 
Tlower, and GB. 

(ii) The empirical cumulative distribution function and the histo-
gram for time intervals between events as a function of Tupper, 
newer, and GB. 

The effect on these statistics of variations of Tupper, newe r, and GB is 
now discussed. For line 1 data, for example, newer was fixed at 600 
(roughly three standard deviations from the sample mean), Tupper was 
set at 600, and GB was varied from 0.1 to 0.9 millisecond, in steps of 
0.2 millisecond. Tupper was then set at 800, and GB was varied in an 
identical manner. Finally, Tupper was set at 1000, and GB was again 
varied in the same fashion. The number of events observed was found 
to be insensitive to the choice of guard band as well as to Tu„er. The 
guard band was therefore set at 0.5 millisecond, and Tupper was set 
equal to newer (which also avoids ambiguity in the meaning of 
threshold). 
A typical empirical cumulative distribution function and a histo-

gram for the time intervals between bursts are shown in Figs. 26 and 
27, for Tupper = Tiewer = 800. Typical histograms and empirical cumu-
lative distribution functions for time intervals between bursts for 
Tupper =  Tlower =  600 and Tupper = newer = 1000 had the same 
shapes as those in Figs. 26 and 27. If the bursts were Poisson-dis-
tributed, the distribution function would be completely specified by 
this information. 
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Fig. 25—Definition of burst parameters. 
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Fig. 26—Empirical cumulative distribution function for line 1 time intervals 
between bursts (N = 768). 
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Fig. 27—Histogram for line 1 time intervals between bursts (N = 768). 

Investigation of the burst statistics of the other two nongaussian 
lines yielded findings similar to those for line 1. 
Next, the second-order statistics of the time intervals were inves-

tigated. Figure 28 shows a scatter plot of the (K ± 1)th interval 
against the Kth interval. This plot shows that long intervals followed 
by long intervals are unlikely compared with long intervals followed 
by short intervals, or short intervals followed by long or short intervals. 
Note that it is still possible that the intervals are generated by a 
renewal process with a nonexponential distribution. Note also that 
approximately half the points plotted fall in the lower left corner 
square, 0 < timeK  100 and 0 < timeK+ 1 100. 
Another set of second-order statistics of interest is 

(i) The estimated autocorrelation of the time intervals between 
bursts 
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Fig. 28—Scatter plot of time intervals between bursts for line 1 data (N = 768). 

1 N -K 

y E (ti - 1)(t +K  - 
—  1='   1 e 

where 
1 N  Ru(0) = (tic —1)2 

and 
t, = length of jth time interval. 

(ii) The estimated power spectrum of the time intervals between 
bursts, which is the Fourier transform of R(K) if the process 
is wide-sense stationary and ergodic." The same issues that 
were discussed earlier when the noise amplitude power spectrum 
was estimated are relevant here. 
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(iii) Contingency tables,u which correspond to estimates of the 
second-order joint density of intervals that are a specified 
number of intervals apart from each other. 

(iv) The estimate of the conditional expectation of the length of an 
interval given the length of the interval j intervals earlier 

E N.fi l tic] = f tic+icip (tic+i I tic). 

The data analysis presented here focuses on the first two of these 
second-order statistics. Since only a small number of events was 
observed typically (e.g., 147 for Tupper = Tiower = 1000, 768 for 
Tupper =  Tlower -=" 800, for line 1 bursts), statistical fluctuations would 
have obscured the interpretation of the last two statistics. Figure 29 
shows a typical sample autocorrelation function for 1000 intervals, 

1.2 
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Fig. 29—Autocorrelation function for line 1 time intervals between bursts 
(N = 1000). 
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Fig. 30—Periodogram of line 1 time intervals between bursts (N = 1000). 

while Fig. 30 shows the corresponding periodogram. Based on this 
evidence, it seems possible the bursts arise from a renewal process. 
To test this model, the so-called summed empirical periodogram 
:S1(/f0), defined as 

0.4 05 

(ifo) =  1.,(Kfo)1 2, 

where If (Kfo)1 2 = periodogram at frequency Kfo is plotted in Fig. 31, 
along with 5 percent significance limits to test the renewal hypothesis, 
according to which 3 should be straight. From this and other evidence 
not presented here, it appears that the bursts analyzed can be reason-
ably modeled as a renewal process. 
Next, it is useful to characterize the renewal process model in greater 

detail. Such a process can be statistically described by a variety of 
measures." The two considered here are 

(i) The survivor function SW -º fraction of intervals greater than 
or equal to t. 
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Fig. 31—Normalized cumulative periodogram for line 1 time intervals between 
bursts, Tupper = T10.8, = 800 ( N -= 768). 

(ii) The hazard function H (t)  P (t)/ S (t), where P (t) is the prob-
ability density function of the renewal process and S (1) is the 
survivor function. 

Note that H (t) • At is the probability of an event in an interval of 
length ,dit seconds centered at t, which can be interpreted as the fraction 
of intervals in the range (t — à/2, t à/2), given that the last event 
was t time units ago. 
The survivor and hazard functions are related by82 

5(t)  exp [ —  H(x)dx rL  ] =  P (x)dx. 

In a Poisson process with constant intensity X, these simplify to 

P (t) = Xe—It 
(1) =  1 t > 0. 

H (t) = X 
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Fig. 32—Natural logarithm of empirical survivor function for line I. time intervals 
between bursts (N = 768). 

In practice, only estimates of the survivor and hazard function are 
obtained. The empirical survivor function :S(t) is the fraction of 
observed intervals greater than or equal to t. The empirical hazard 
function /i(t) equals P (t)/ .(t), where P (t) is the fraction of observed 
intervals in the range [t — a/2, t  A/2]. Figures 32 and 33 show 
representative empirical survivor and hazard functions for bursts 
observed on line 1. Statistical fluctuations are quite apparent. For long 
time intervals, only one or two events fall in any particular bin, giving 
the appearance of a trend in  ¡1(t); the survivor function is more stable 
for long intervals. The log survivor function roughly follows a series 
of straight-line segments with different slopes, indicating the process 
can be modeled as a Poisson process whose rate parameter is equal to 
the absolute value of the slope of the straight line approximations. 
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Fig. 33—Empirical hazard function for line 1 time intervals between bursts 
(N = 768). 

In order to adequately model the time intervals between bursts, 
two models more complicated than a simple Poisson process were 
investigated. The first model was a pth order autoregressive process, 
while the second was a doubly stochastic Poisson process, where the 
Poisson intensity A was a random variable specified by a two-state 
Markov process (see Ref. 8). The autoregressive model (for p = 5 and 
15) did not adequately account for long time intervals between events. 
The doubly stochastic Poisson process model did not adequately 
account for short time intervals followed by long time intervals. 
Therefore, both these models were dropped in favor of a Poisson process 
model with constant intensity, even though the log survivor function 
could not be approximated by a single straight line. Since this is only 
one of at least six model parameters, it was hoped the overall goodness 
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of fit of the model would not be seriously degraded; the evidence pre-
sented later indicates this might be true. 

3.7 Puise amplitude statistics 

It was assumed the burst amplitude and the instant of time at which 
the burst occurred were independent random variables. Figures 34 and 
35 show representative empirical cumulative distribution functions and 
histograms for line 1 burst amplitude data. Based on these curves, a 
number of distributions can be fitted to the data; only two will be 
discussed here, a two-sided log normal and a two-sided power Rayleigh" 
(also known as generalized gamma"). A two-sided log normal random 
variable 1 equals Rq, where R and q are independent random variables, 
with q equally likely to be +1 or —1 and R defined by a log normal 

LOD 

0.60 

0.60 

o 
o 

cc 
o-
0.40 

0.20 

0 
0 60  0.80  1.00  1.20  1.40  1.60  1.80  2.03 

ORDERED OBSERVATIONS (MULTIPLIED BY 10-3 1 

Fig. 34—Empirical cumulative distribution function of maximum burst amplitude 
(N = 1000) . 
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Fig. 35—Histogram of maximum burst amplitudes (N = 1000). 

(u) =  exp [  (in m)2 'JcTU 

1800  

o < u < co . 

Similarly, a two-sided power Rayleigh random variable p equals Rq, 
where R and q are independent random variables, with q equally 
likely to be +1 or —1, while R is defined by a power Rayleigh density 

\ / Iu l \K-1 

R (le)  =  ( I RP  11701- )  e-(Iul Ito) K-1  K  2, 0  fu j < co. 

Each density has zero mean; the log normal variance is eial+m, while 
the power Rayleigh variance is Re (1  2/K). 
The parameters of each distribution could be fit to empirical cumu-

lative distribution functions such as that shown in Fig. 34. The range 
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of parameters for line 1 data, for example, was: 

log normal:  mean 5  m  6 
variance 0.01  cr2 S 0.10 

power Rayleigh: scale factor 500 Ro 2000 
exponent 0.50  K  0.70. 

The investigation of a much larger amount of data probably would 
have narrowed the range of these estimates substantially. 

3.8 Linear dynamical system parameters 

The approach chosen here for estimating linear dynamical system 
parameters was trial and error. The sample mean burst duration was 
set equal to the damping constant A-4 in both the first- and second-
order systems. The second-order system oscillates at frequency w, 
which was arbitrarily chosen as () (damping constant)-1, to obtain 
qualitative agreement with actually observed noise bursts (e.g., Fig. 3). 
For line 1 bursts, for example,  = 0.1 millisecond for Tupper = Tlower 
= 600, GB = 0.5 millisecond. 

3.9 Goodness-of-fit to data of gaussian-plus-filtered-Poisson-process model 

Only one test was carried out to provide some heuristic measure of 
goodness-of-fit of this model to the data. The test was analogous to a 
quantile-quantile plot. Using typical parameter estimates such as those 
just described, a computer generated a sample function of a gaussian-
plus-filtered-Poisson process. These artificial data were sorted and 
plotted against actual (sorted) telephone noise from line 1 as shown in 
Figs. 36 and 37. 
The reason for performing just one test is the great difficulty in 

expressing analytically the distribution function for the gaussian-plus-
filtered-Poisson-process model. Hence, it is very difficult to perform 
quantile-quantile plots of the actual data versus model quantiles, as 
well as to find maximum likelihood parameter estimates and Cramér-
Rao lower bounds on parameter estimate covariances. 

3.10 Criticism of the gaussian-plus-filtered-Poisson-Process model 

Many criticisms of this statistical analysis are possible. First, the 
question of optimally choosing parameters was never addressed and is 
still open. Since a large number of parameters must be estimated, a 
series of presumably suboptimum but easy-to-calculate estimates 
appeared to be the only feasible course. 
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Fig. 36—Line 1 data vs gaussian-plus-filtered-Poisson-process data (N = 13,000) 
(X. = sample mean, S' -= sample variance). 

Second, it is not clear how to relate the linear dynamical system 
parameters in the model to actual telephone system parameters. Where 
does the filtering occur in reality? Why should it be linear and station-
ary? Other evidence" suggests that the linear dynamical system pa-
rameters are not as well defined for other telephone lines as for the 
data examined in the present work. 
Third, the time intervals between bursts are not adequately modeled 

over the entire observation by a Poisson process. Two other more 
complicated models were investigated in order to account for this. 
Many other models can still be investigated. 
Fourth, a more general class of models was never investigated that 

includes the gaussian-plus-filtered-Poisson process as a special case. 
This model, mentioned briefly earlier, is a mixture of a low-variance 
gaussian distribution and a high-variance gaussian distribution; during 

10 15 
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Fig. 37—Center portion of line 1 data vs gaussian-plus-filtered-Poisson-process 
data (N = 12,980) (X = sample mean, S2 = sample variance). 

a fraction P of the time, the low-variance gaussian distribution is 
chosen to model the data, while during the other (1 — P) fraction of 
time the high-variance gaussian distribution is chosen. The reasons 
for not investigating this class of models were that the gaussian-plus-
filtered-Poisson-process model comes closer to describing intuitively 
the physical process of telephone noise generation, and that it has been 
used by communication theorists in other applications"—" more than 
a mixture of gaussians. 

IV. CONCLUSIONS 

This study has presented evidence that noise on some lines consists 
of a deterministic component (e.g., sinusoids at various frequencies) 
and a purely stochastic component. It was assumed that these corn-
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ponents add. The data analyzed here suggest that the stochastic 
component is stationary over short periods of time (typically 1 second) 
and distinctly nongaussian. Two simple models have been proposed 
for the nongaussian noise, one based on stable distributions, the other 
on a mixture of a gaussian process and a nongaussian-filtered Poisson 
process. Based on the data analyzed here, both models agree intuitively 
with the physical processes generating telephone noise and appear to 
fit the data reasonably well. 
It is hoped this work will stimulate further research in this area; 

since only a small number of telephone lines were examined, the models 
presented here await confirmation by independent investigators. Other 
models than those discussed here may indeed more adequately account 
for noise on telephone lines. It is hoped this work will lead to greater 
insight into how telephone noise limits voice communication and data 
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-400 
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Fig. 38—Computer-generated qaussian-plus-filtered-Poisson-process sample func-
tion (same process parameters as In Figs. 36 and 37; X = sample mean, 82 = sample 
variance). 
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Fig. 39—Computer-generated symmetric stable random process sample function 
a = 1.9 (c = 100, 8 = 

transmission and, more importantly, will lead to new methods for 
combating this noise. 
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APPENDIX A 

This appendix is included to give the reader some feeling for the 
two models discussed here. Using typical parameter estimates and a 
first-order system, a computer generated and plotted a discrete time 
sample function of a gaussian-plus-filtered-Poisson process (Fig. 38). 
For comparison, Fig. 39 shows a computer-generated discrete time 
series, where each point was drawn independently from a symmetric 
stable distribution (characteristic index a = 1.9). 

APPENDIX B 

A graphic indication that the data can be better modeled by a 
nongaussian rather than gaussian distribution is now presented. The 
motivation for this work is found in Mandelbrot." 
Estimates for the sample mean, as well as second, third, and fourth 

central moments can be calculated recursively for larger and larger 
amounts of data. Figure 40 plots these estimates for 13,000 filtered data 
(only every tenth estimate is plotted). Note the tendency for the 
second, third, and fourth central moment estimates to wander rather 
than stabilize as more and more data are included, as evidenced by 
the jumps in the estimates. The sample mean, however, does stabilize; 
note the small ripple in this estimate, which presumably is due to a 
sinusoid at approximately 600 Hz that was not filtered from the 
data (see Table II). 
These results are qualitatively consistent with results for central 

moment estimates of computer-generated stable random variables 
(10,000 independent identically distributed samples, a = 1.96, )3 = 0). 
Central moment estimates of computer-generated gaussian random 
variables (10,000 independent identically distributed samples) did 
stabilize at the correct values, while exhibiting no apparent jumps 
such as in Fig. 40. These results are also consistent with the gaussian-
plus-filtered-Poisson-process model, with the large jumps in the esti-
mates presumably a result of the filtered Poisson process. 

Fig. 40—Sample mean as well as second, third, and fourth central moment esti-
mates for line 1 (N = 13,000). 
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A low-noise, hybrid-integrated, millimeter-wave receiver that consists 
of a local oscillator and a downconverter on a silica substrate is described 
in this paper. The source for the local oscillator is a Gunn diode, and the 
mixer element is a beam-leaded Schottky barrier diode. A novel filter circuit 
is used to combine the local oscillator and the signal with low insertion 
loss in the signal path. The single-sideband noise figure of the receiver at 
80 GHz is 5.5 dB, including 0.8-dB contribution of the if amplifier, and 
the rms FM frequency variation resulting from the local oscillator is 
168 H2/ “17.11.z. 

I. INTRODUCTION 

Large numbers of solid-state, low-noise receivers that can be built 
into compact low-cost radio transmission systems are needed for 
future terrestrial and satellite communication systems. This paper 
describes a low-noise microstrip receiver with a single-sideband noise 
figure of 5.5 dB at 30 GHz, including 0.8 dB resulting from the if 
amplifier. The receiver consists of a Gunn diode, a Schottky barrier 
device, and a microstrip conductor pattern on a fused-quartz substrate. 
The circuit is fabricated using thin-film photolithographic processing 
techniques. It can be readily scaled to frequencies up to 100 GHz. 

II. RECEIVER DESCRIPTION 

The microstrip circuit pattern consists of a 2-gm-thick evaporated 
chromium-gold film on a silica substrate, as shown in Fig. 1. It in-
cludes an input rf filter, a pump filter, a low-pass if filter, and a 
Gunn oscillator with a biasing circuit. The pump and rf signal filters 
are made from a single rectangular resonator that supports two or-
thogonally polarized microstrip modes.' The resonance for the pump 
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Fig. 1—Schematic drawing of the microstrip receiver circuit in a rectangular 
channel with a length of 25.4 mm, a width of 4.0 mm, and a depth of 2.5 mm. The 
silica substrate thickness is 0.34 mm. 

signal is directed along the channel, with the resonance for the input 
signal in the perpendicular direction. Each orthogonal resonance has 
the response of a single-pole filter. Isolation between the signal and 
pump ports is >20 dB, which is equal to or better than the isolation 
normally achieved in a balanced downconverter design. A single beam-
leaded Schottky barrier diode (see Table I) is used for downeonverting 
the rf signal to the if frequency. The diode is shunt-mounted to a 

Table I — Gunn diode and mixer diode parameters 

Diodes Parameters 

Gunn diode 
Microwave Associates 
Model No. MA49173 

Mixer diode 
Hewlett-Packard 
Model S082-2716 

Frequency  28-30 GHz 
Maximum output power 50 mW 
dc bias voltage  5 volts 
de bias current  800 mA 

Junction resistance 
Serias resistance 
Junction capacitance 
Package inductance 
Package capacitance 

120 ohms 
10 ohms 
0.07 pF 
0.1 nH 
0.07 pF 
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high-impedance microstrip line. The length of this line was chosen so 
that the reactance seen by the diode at the image frequency is optimized 
to obtain a low noise figure. 
A Gunn diode connected to a microstrip resonator provides the pump 

power at 28.4 GHz. The diode is inserted into the side wall of the 
rectangular channel that supports the substrate (Fig. 1). The micro-
strip resonator is coupled capacitively to a 50-ohm line that feeds the 
pump signal into the orthogonally resonant filter. Direct-current bias 
to the Gunn diode is provided through a high-impedance line connected 
to the microstrip resonator at an rf minimum. Radio-frequency leakage 
is further minimized in the bias line by means of a X/4-long microstrip 
stub. The metallized substrate is mounted in a closed rectangular 
channel to eliminate radiation losses and parasitic coupling to external 
circuits. Waveguide modes inside the channel are below cut-off for 
the frequency range of the receiver. The Gunn diode (see Table I), 
encapsulated in a ceramic pill package, gives up to 50 mW at 30 GHz. 
The oscillator frequency can be tuned from 27 to 29 GHz. The tuning 
mechanism consists of a small piece of dielectric material attached to a 
nylon screw that is inserted in the channel above the microstrip 
resonator. The adjustable dielectric loads the fringe field of the res-
onator and provides a means for tuning the local oscillator frequency. 
Figure 2 shows the 30-GHz microstrip receiver and Table I lists the 
Gunn diode and the mixer diode parameters. 

III. NOISE FIGURE MEASUREMENT 

The overall mixer noise figure of a receiver is' 

= Lo (N„ — 1 ± Fi_f), (1) 

where Lc is the downconverter conversion loss, N,. is the mixer diode 
noise ratio,' and F i-1 is the noise figure of the if preamplifier. 
The parameter N,. can be obtained by measuring the system noise 

figure at constant diode current, with two if preamplifiers with differ-
ent noise figures (F2_1)1 and (F.,_1)2. If (F0)1 and (F0)2 are the two 
measured system noise figures, the parameter N,. is given by 

(F0)2(Fi_f)1 — (F.)1(Fi-1)2 ± 1.  (2) 
(F0)1 — (F0)2 

The system noise figure was measured by using a wideband preamplifier 
with a noise figure of 4.5 dB yielding a total noise figure of 9.2 dB. 
Measurements were also made with a low-noise parametric amplifier 
with a noise figure of 0.8 dB, giving in this case a system noise figure of 
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Fig. 2—The receiver. A probe that extends into an adjacent RG-96/11 waveguide 
is used to couple to the signal. 

5.5 dB. Substituting these values into eq. (2) gives a figure of merit 
equal to 1, as expected from a good mixer diode.' Equation (1) then 
becomes 

L, X F  (3) 

yielding a downconverter noise figure equal to the mixer conversion 
loss. Thus, 

L, = 4.7 dB.  (4) 
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Fig. 3—Noise figure measurement setup. 
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Fig. 4—Measured noise figure vs frequency of the rf receiver, not including the if 
amplifier contribution. 

Figure 3 is a schematic diagram of the noise measuring setup. The 
signal frequency is 30 GHz, the pump frequency is 28.4 GHz, the if 
frequency is 1.6 GHz, and the bandwidth is 460 MHz wide at the —1 
dB points. Figure 4 shows the single-sideband noise figure of the 
downconverter, not including the if contribution. 

IV. FM NOISE MEASUREMENT 

FM noise resulting from the local oscillator is an important parame-
ter in downconverters designed for receiving angle modulated signals, 
since the FM noise of the local oscillator is directly added to the phase 
information contained in the downconverted if signal. 
Measurement of the FM noise was made by beating the pump 

frequency with a 30-GHz low-noise signal. Figure 5 shows the power 
spectral density measured at 1.64 GHz with a 100-Hz wide filter and 
a scanning time of 2 seconds per division. The Lorentzian shape of the 
observed power spectrum is characteristic of an oscillator with white 
gaussian noise. Theoretical analysis for this type of oscillator shows 
that the spectral density around the carrier is mainly due to FM noise 
and varies as 

where 

and 

21cT   1   
Srm(f)  w° X 2Q2 (wîlcT / 4Q2P„)2 (w — w )2' 

wo = oscillator frequency 
Po = output power 

Q = oscillator external loaded Q. 

(5) 
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Fig. 5—Measured power spectral density of the local oscillator signal downc,on-
verted at the if frequency. 

Equation (5) normalized to unity varies as 

Y  a2 + x2' (6) 

where a is the noise parameter given by 

cook T  
a=  (7) 4Q2P,, 

w — wo 
x —  (8) co,„ 

and 
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Fig. 6—Calculated values of the noise parameter a = wokTI4Q1P0 vs frequency 
deviation. 

are distributed, within the error margin of our measurements, around 
a constant value of 

(a) --- 2.7 X 10-8 .  (10) 

This is a good experimental verification that the noise in the signal is 
in fact mainly FM in character as predicted by eq. 5. 
The rms FM frequency deviation per 111- is given by4 

W o \ I TC Y 

A WrIIIII  =  T 2 p o y (11) 

which can be written from eq. (7) as 

&J. = 2w0.".  (12) 
wo 

Substituting eq. (10) into eq. (12), the rms FM frequency deviation 
becomes 

.àfr,„. = 168  Hz (13) 

The receiver described in this paper was designed for use in a PCM 
system in which the phase of the carrier will be modulated between 
four levels with a sampling period T =-- 7.3 ns, which will occupy a 
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bandwidth B = 200 MHz. The rras phase deviation resulting from the 

local oscillator, which occurs in the time interval T, is 

Ackrin. = 27rafrm. nrÈ.  (14) 

The rms phase fluctuation calculated from eq. (13) equals 

= 0.2°.  (15) 

Equation (15) shows that the noise due to the local oscillator is an 
insignificant contribution to the modulated signal. 

V. CONCLUSION 

A low-noise hybrid integrated receiver that is comparable to the 
best conventional waveguide circuits' has been built and tested at 
30 GHz. A unique orthogonal resonator input circuit allows the use of 
a single mixer diode resulting in a performance comparable to con-
ventional balanced downconverter receivers. The receiver circuit, 
made on a single silica substrate, can be mass-produced with high 
reliability. It can be readily scaled to higher frequencies and is espe-
cially suited for incorporation into millimeter-wave communication 
systems. 
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The outage time on short radio paths at frequencies above 10 GHz can 
be estimated from distributions of point rain rates derived from U. S. 
Weather Service rain gauge charts. In this paper, a previous theory is 
extended to include the effects of path length and frequency. Experimental 
corroboration is presented for three locations on the east coast of the United 
States, and the design of short radio paths is illustrated by examples. 
One-minute rain rate distributions for 20 locations are also included. 

I. INTRODUCTION 

Many characteristics of radio systems above 10 GHz are due to the 
existence of large attenuation by rain. These characteristics have been 
discussed at length in a previous publication.' The economical design 
of a system operating at these frequencies requires a knowledge of the 
incidence of rain attenuation at the location of the system; to be more 
specific, it requires a procedure for predicting the number of minutes 
per year that a radio path will be out of service because of excessive 
rain attenuation. This paper describes such a design procedure and 
includes data required to design systems in several sections of the 
country; design examples are also given. 
The starting point for this design procedure is the theory of attenua-

tion by uniform rainfall' and a relationship, derived in Ref. 3, between 
the attenuation distribution measured on a path and a point rain rate 
distribution measured near the path. The key result of Ref. 3 is a 
connection between the theory of attenuation of uniform rain and that 
of the variable rainfall experienced in practical situations. This con-
nection is, of course, vital to any practical measurement because uni-
form rain does not usually occur. A conclusion of this work was that 
the measuring interval used in rain rate measurements has a large 
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effect on the accuracy of the predicted attenuation distribution. A 
definition of rain rate suited to the prediction of attenuation distribu-
tions was provided, and it was shown that, if the rain rate distribution 
were measured in the proper way, the attenuation distribution could 
indeed be estimated from it. 
The importance and usefulness of the theoretical result lies in the 

existence of point rain rate data from a large number of rain gauges 
all over the country.' Copies of charts from many of these recording 
gauges can be obtained from the U. S. Weather Service. • However, 
these charts do not record rain rates directly, and initially it was far 
from obvious that appropriate rain rate data could be obtained from 
them at all. Thus, the transformation from an interesting theory to 
practical engineering application came when a method was devised 
for measuring accurate 1-minute rain rate distributions from these 
rain gauge charts. 
This paper begins with a brief review of the salient results in Ref. 3, 

and extends that theory to include the effects of frequency and path 
length. Since a theory of design is only as good as its results, predictions 
of attenuation distributions computed from rain rate distributions are 
compared with attenuation distributions measured on several paths, 
and in all cases the agreement is excellent. The paper concludes with 
examples of the design of short radio paths in several sections of the 
country. 

II. REVIEW OF THEORY3 

A theory of attenuation of uniform rainfall has been formulated by 
Ryde and Ryde and others, and a good account is given by Medhurst.5 
The attenuation resulting from uniform rain has been computed by 
Ryde and Ryde,2 Medhurst,5 and Setzer ;8 Setzer's results, for several 
frequencies of interest, are shown in Fig. 1. 
Any relationship between attenuation and rain rate must take into 

account the fact that attenuation depends upon the density of rain in 
the path and is therefore a volume function, whereas rain rate is a 
surface vector, the magnitude of which is the rate of water flowing 
through a surface area. 
For uniform rainfall, the relationship between rain rate and rain 

density on the path is simple and not at all dependent upon the time 
interval used in the rain rate measurement. However, uniform rainfall 

• U. S. Department of Commerce, National Oceanic and Atmospheric Administra-
tion, Environmental Data Service, National Climatic Center, Federal Building, 
Asheville, N. C. 28801. 
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is not encountered in nature; both the density of rain on the path and 
the rain rate are functions of position and time. The divergence 
theorem can be used to relate the rain density, which is a volume 
function, to the rain rate, which is a surface vector. The volume 
chosen for the application of the divergence theorem to a radio path 
is shown in Fig. 2. It is the first Fresnel ellipsoid, a prolate ellipsoid 
with major axis L and minor axis -6E. The path length is L and the 
wavelength of the transmission is A. Typically, the ratio of these axes 
on short paths is on the order of 500. This volume is chosen because 
substantially all the power that reaches the receiver passes through it. 
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Fig. 2—An ellipsoidal surface enclosing the radio path. 
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If the rain rate is known at every point on the surface at all times, the 
volume of rain in the path can be computed.3 However, rain rate must 
be measured in a specified time interval—called integration time—and 
if the interval is too long, important fine structure in the rain rate— 
and the resulting fades—could be missed. 
The path geometry can be used to determine an interval short 

enough so that no deep fades will be missed. The time required for a 
deep fade to develop is related to the time required for the rain to fill 
a large fraction of the volume of the ellipsoid in Fig. 2. For a step 
function of rain with velocity V, the minimum time for the volume to 
fill is -el,/ V. It follows that a deep fade will not occur in a time 
T, « L/ V. Thus, a rain gauge with an integration time To should 
be sufficiently fast for our purpose. Actually, of course, step functions 
of rain do not occur, and an integration time T larger than To will 
suffice. For a practical rain gauge design, To serves only as a guide and 
as assurance that a suitable rain gauge is at least possible. 
Since rain rate cannot be measured at all points on the surface of 

the path, it is necessary to consider what can be done with a single rain 
gauge in the vicinity of the path. 
Fortunately, the attenuation as a function of time is not required; 

for radio path design, knowledge of the fraction of time that the path 
attenuation exceeds the fading margin is sufficient. To determine this 
information, we need to relate the point rain rate distribution to the 
path attenuation distribution. The method of relating these distribu-
tions is described in Ref. 3, and only pertinent results will be given here. 
If we measure the point rain rate distribution for a small enough 
integration time and are then able to obtain distributions for multiples 
of this interval, an estimate of the path attenuation distribution can 
be computed from the point rain rate distribution obtained for a 
suitable integration time T. The appropriate integration time T is a 
function of path length and frequency and is discussed in Section III. 
A rain gauge that measures rain rate as prescribed by the theory is 
described in Section IV.' 

III. RAIN RATE INTEGRATION TIME AS A FUNCTION OF PATH LENGTH 
AND FREQUENCY 

The theory has so far produced a rain rate integration time To 
sufficiently short that no significant rates will be missed. It is, of course, 
expected to be unnecessarily short because it was derived for severe 
and unrealistic conditions. For a given path and wavelength, there is 
an integration time T for the point rain rate measurement for which 
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the point rain rate distribution best approximates the path average 
rain rate distribution. Thus, the attenuation distribution is related to 
frequency and path length through the rain rate integration time T. 
The rate at which the path average rain rate changes depends upon the 
dimensions of the path. We assume, therefore, that the integration 
time in seconds is proportional to the distance through the path of 
Fig. 2, averaged over all trajectories through the center. 

1 liKL  T  In 32 —L =    
V, ir X' 

where 

(1) 

L is the path length in meters, 

X is the wavelength in meters, and 

V, is a constant with the dimension of velocity. 

The constant V, is determined experimentally from measured attenua-
tion and point rain rate distributions. From data to be discussed later, 
V. 7:;.-; 0.95 meter per second. 

IV. THE FAST INTEGRATING RAIN GAUGE: RAIN RATE DISTRIBUTIONS AS 

A FUNCTION OF INTEGRATION TIME 

A rain gauge designed to measure rain rates in accordance with the 
requirements of the theory is shown schematically in Fig. 3.1 Rain is 
collected in a funnel with a 16-inch diameter. The water is directed by 
the small rotating funnel to one of four glass tubes. The tube receives 
the rain collected in a 1.5-second interval, and then the small funnel 
rotates to the next tube. After the water has settled in the first tube, its 
volume is measured by measuring the capacitance between two metallic 
plates attached to the outer surface of the tube. After the measurement, 
the tube is emptied and is ready to be used again. In this manner, the 
rain rate is measured in successive intervals of 1.5 seconds. Since all 
intervals are measured, it is simple to obtain rain rates for intervals 
that are multiples of 1.5 seconds. 
The effect of rain rate integration time is shown in Fig. 4, in which 

the data were taken from the fast rain gauge. As expected, the highest 
rain rates are recorded for the shortest integrating time. From Fig. 4, 
it is clear that the rain rate distributions depend upon the integration 
time. 
Figure 5 shows rain rate distributions for two years at Holmdel, 

N. J., measured on this rain gauge with integration time as a parameter. 
As expected, the distributions are functions of the integration time T. 
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Fig. 3—The fast integrating rain gauge. 

At present, only two of these fast rain gauges exist, so it has not 
been possible to obtain such distributions in many locations. 
What is possible and practical is to measure distributions for an 

integration time of 1 minute from U. S. Weather Service rain gauge 
charts. We are therefore interested in converting 1-minute rain rate 
distributions to distributions at other measuring intervals. To facilitate 
this conversion, Fig. 6 has been prepared from Fig. 5. For many paths 
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Fig. 5—Distribution of rain rates measured with fast-integrating rain gauge at 
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of interest, the proper integration times fall between 12 and 120 
seconds with the majority in the vicinity of 60 seconds. Thus, Fig. 6 
shows that the distributions are not very sensitive to measuring 
interval out to rates of 120 millimeters per hour, which may correspond 
to a deep fade. Therefore, for many paths, 1-minute distributions will 
be adequate for design. For other paths, adjustments can be made 
from Fig. 6. 
Note that the data shown in Fig. 6 are for a single location and 

cover a two-year period. It is not known to what extent these conver-
sions apply to other locations, longer paths, and other periods of time. 

V. THE EFFECTS OF NONSPHERICAL RAINDROPS 

The theory was derived for spherical raindrops but, because rain-
drops are not quite spherical, the attenuation for vertical and horizontal 
polarizations are different. Morrison and Chu have computed the 
differential attenuation, the difference in attenuation between hori-
zontally and vertically polarized waves, as a function of frequency for 
a specific raindrop model, and some of their results are shown in 
Fig. 7.8 The attenuation of a vertically polarized signal is less than that 
of a horizontally polarized signal, and we take the average of these to 
correspond to the attenuation caused by spherical raindrops. 
The dashed lines in Fig. 7 are linear approximations to the data and 

may be used in the design of radio paths described in Section IX. As 
measured distributions of differential attenuation become available, it 
may be necessary to modify the results of Fig. 7. 
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Fig. 7—Differential attenuation as a function of rain rate and frequency. 

VI. COMPARISON OF THEORY AND EXPERIMENT USING DATA FROM THE 
FAST-INTEGRATING RAIN GAUGE 

In this section and in Section VIII, comparisons are made between 
measured attenuation distributions and distributions predicted by the 
theory from measured rain rate distributions. Since the object of these 
comparisons is to test the efficiency of the procedure, it is important 
to use attenuation and rain rate distributions that are coincident in 
time and as near the same location as possible. In addition, distribu-
tions for time periods of less than one year were deemed inadequate. 
The problem of estimating future attenuation distributions from 

existing rain rate distributions is different in that the time periods 
cannot be coincident. For this purpose, rain rate distributions covering 
a five-year interval are used in Section IX to illustrate the design of 
radio paths. 
Two of the fast-integrating rain gauges are in service, one at Holmdel, 

N. J., and one at North Andover, Mass. At Holmdel, A. F. Dietrich 
and O. E. DeLange measured the attenuation on a 1.03-kilometer path 
at 60 GHz for the year 1971, and an attenuation distribution was 
obtained from these data. For the same year, estimated attenuation 
distributions for several rain gauge integration times were computed 
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from the fast-rain-gauge data. The distribution computed for an 
integration time of 12 seconds was the best fit to the measured attenua-
tion distribution; the two distributions are shown in Fig. 8. Using a 
value of T = 12 seconds, the constant V , in (1) was computed. Thus, 
based on this fit, we have an expression for rain rate integration time 
in seconds as a function of frequency and path length: 

.NiFL L 
T  1.05 ln 32 • 

ir 
(2) 

At the Bell Laboratories facility in North Andover, Mass., G. H. 
Lentz measured attenuation on a 4.3-kilometer path at 18.5 GHz and 
rain rates with a fast-integrating rain gauge for three years.9 The 

appropriate rain rate integration time for this path is, from (2), about 
45 seconds. By interpolation of Fig. 6, the 45-second and 60-second 
rain rate distributions are nearly identical, so the attenuation com-
puted from a 1-minute distribution is accurate enough and is shown 
with the measured distribution of attenuation in Fig. 9. 

2000 

r.2 1000 
g, BOO 
e 600 

• 400 

<-7 
X 
• 200 

o 
100 

•  80 
<  60 
o. 
cc  40 

cc  20 
a-
to 
w  10 
F-
z  8 
z 

6 

u_o 4 

cc 
•  2 
2 

o 

\  --- COMPUTED FOR 12 SEC 
INTEGRATION TIME 

10  20  30 

ATTENUATION IN DECIBELS 

40 50 

Fig. 8—Computed and measured attenuation distributions at 60 GHz for 1971. 

1338  THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1974 



100 
80 

<  60 

UJ  40 
>-
< 

20 
u) 0 w w 
r- w 
u 

z x  10 
_ w  8 

u_ o  8 
p 

4 < 
w 

Z 

2 
z < 

o 

•  COMPUTED FROM RAIN RATE 
\ \ DISTRIBUTIONS FROM INTEGRATING GAUGE 

• 
• 

// 
• 

MEASURED ATTENUATION 

10  20  30  ao 
ATTENUATION IN DECIBELS 

60 80 
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Mass., for three years (1971 to 1973), vertical polarization. 

This is certainly satisfactory agreement between theory and experi-
ment. The problem remains, however, of how to obtain suitable rain 
rate distributions for other locations. 

VII. MEASUREMENT OF RAIN RATE DISTRIBUTIONS FROM U. S. WEATHER 

SERVICE DATA 

The U. S. Weather Service operates rain gauges at many locations; 
for example, there are nearly 300 first-class weather stations, all of 
which operate rain gauges.' There is, then, an immense amount of rain 
gauge data available which, if rain rates can be derived from it, 
can be used to produce accurate estimates of attenuation distributions 
anywhere in the country. 
A weighing gauge measures the depth of water accumulated as a 

function of time, and a reproduction of part of such a record is shown 
in Fig. 10a. This chart does not show the rain rate, which is the deriva-
tive of the curve on the chart. However, a method has been devised 
for taking data at 1-minute intervals and using the data to compute 
the rain rate and its distribution. 
Computing derivatives in this manner is notoriously inaccurate, and 

considerable processing is necessary to get accurate results, especially 
at high rain rates. The processing used in this work is described else-
where.° The rain rate computed from the chart in Fig. 10a is shown in 
Fig. 10b. 
One-minute rain rate distributions for a 5-year period are shown in 

Fig. 12 for the locations indicated on the map of Fig. 11. The use of 
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Fig. 10a—National Weather Service chart, Dallas, Texas. 
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Fig. 10b—Rain rates vs time computed from weighing gauge data. 

80 

these distributions for the design of radio paths is demonstrated in 
Section IX. 

VIII. COMPARISON OF THEORY AND EXPERIMENT USING U. S. WEATHER 
SERVICE DATA 

Hudson, N. H., is about ten miles from the radio path at North 
Andover, Mass. The estimated attenuation distribution for the 4.3-
kilometer path at 18.5 GHz was computed from the rain rate distribu-
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Fig. 11—Locations for which 1-minute rain rate distributions are shown in Fig. 12 
(Key: d3 refers to Fig. 12d, curve 3). 
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tion m easured at H udson, N. H., as previously described. T his result 

is sho wn with the m easured distribution in Fig. 13. 

Figure 14 co mpares a 3-year attenuation distribution, m easured by 

R. A. Se mplak on a 6.4-kilo meter path at 18.5 G Hz, to the esti mated 

distribution co mputed fro m the N e wark, N. J. rain rate distribution. 0  

T he distance fro m N e wark to Cra wford Hill, N. J., is about 30 miles. 

Similarly, Fig. 15 compares the estimated attenuation distribution 
co mputed fro m the Atlanta, G a., rain rate distribution with an at-

tenuation distribution reported by S. H. Lin on a 5.15-kilo meter path 

at 17.75 G Hz near Pal metto, G a., a distance of about 25 miles. 12  

It is evident fro m these co mparisons that attenuation distributions 

can be esti mated fro m rain rate distributions obtained by processing 

rain gauge charts. D esign of radio paths using these distributions are 

no w discussed. 

IX. THE DESIGN OF SHORT RADIO PATHS 

D eter mination of the path length for a specified outage ti me requires 

a kno wledge of the w avelength and fading m argin. R ain attenuation 

depends upon the w avelength, as already discussed in Section II. T he 

fading m argin requires a little m ore discussion.  D uring periods of 

nor mal free-space propagation, the po wer received at the output port 

of the receiving antenna is given by 

A T AR 
PR = PT X'L' (3) 
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Fig. 12—Rain rate distributions average of five years (1966 to 1970). 

220 

where 

Pr is the power at the input port of the transmitting antenna, 

PR is the power received at the output port of the receiving 
antenna, 
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Fig. 13—Measured and computed attenuation distributions at North Andover, 
Mass., for year 1971, vertical polarization. 

AT, AR are the effective areas of the transmitting and receiving 
antennas, 

X is the wavelength of the transmitted signal, 

and 

L is the distance between the transmitter and receiver. 

The relationship between the effective antenna area and the gain, G, 
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Fig. 14—Comparison of measured attenuation distributions at Crawford Hill, N. J., 
with computed attenuation distributions from rain rate data from Newark, N. J. 
for three years (1967 to 1969), vertical polarization. 
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Fig. 15—Measured and computed attenuation distributions at Palmetto, Ga., 
for year 1971. 

of the antenna is 
47i-A 

G = x2 

In any system there is a minimum power, Prnin, that is required to 
meet the transmission objectives. If the received power falls below 
this value, the system is said to suffer an outage. The duration of the 
outage is the time interval during which the received power is less than 
Prnin, which depends upon the noise factor and bandwidth of the 
receiver and on the type of modulation and detection. With this con-
vention, the fading margin in decibels is defined as 

a  10 log PR/Pink .  (4) 

Substituting for P R from (3) reveals that the fading margin is a func-
tion of path length. 

a (L)  10 log (  A x T2 1 2R m in  )  (5) 

It is convenient to write the fading margin for path length L in terms 
of the fading margin for a 1-kilometer spacing between antennas in 
decibels. Thus, if a(1) is the fading margin for a 1-kilometer path, the 
fading margin for an L-kilometer path in decibels is 

a(L) = a(1) — 20 log L.  (6) 

From Fig. 1 we recall that the attenuation resulting from uniform 
rain as a function of rain rate can be described by linear functions over 
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the range of rain rates of interest. Thus, we have, from Fig. 1, 

y(L) = [aR + b]L,  (7a) 

where 
R is rain rate in millimeters per hour, 
L is path length in kilometers, 

and 
a, 1) depend on wavelength. 

The differential attenuation of Fig. 7 can be written 

(57(L) = Oa X R  Sb)L. 

Using this expression, the attenuation of vertically and horizontally 
polarized signals can be written in the same form as (7a). 

7v(L) = [(a — Sa)R  (b — 5b)]L,  (7b) 

7H(L) = [(a + Sa)R  (b  Sb)]L.  (7c) 

The parameters for several frequencies of interest are given in Table I. 
When the rain attenuation exceeds the fading margin, the path is out 

of service. The rain rate for which the attenuation equals the fading 
margin can be found by setting a(L) = -y(L) in (6) and (7) to obtain 

a(1) = EaR  bald + 20 log L  (8a) 

av(1) = [(a — (5a)R  (b — Sb)]L + 20 log L  (8b) 

aH (1) = [(a + Sa)R  (b  Sb)]L + 20 log L.  (8c) 

These are nonlinear equations, and it is useful to present solutions in 
graph form, as in Fig. 16, for a frequency of 18.5 GHz. 

Table I — Coefficients for attenuation as a function of rain rate 

Frequency 
in GHz 

a b âct bb 

11 0.045 —0.3 0.0046 —0.06 
16 0.077 —0.08 
18.5 0.098 0 0.014 —0.2 
30 0,178 1.5 0.0216 0 
60 0.250 4.7 0.0129 0.25 
100 0.287 5.1 0.0069 0.15 
150 0.292 4.9 
300 0.275 4.45 
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Fig. 16—Path length as a function of rain rate at 18.5 GHz. 
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We are now in a position to illustrate the design of short radio paths. 

Example 1. Determine the outage time for a path of length L 
kilometers for a system characterized by a 1-kilometer fading margin, 
a(1) = 50 dB, and an operating frequency of 18.5 GHz with vertical 
polarization. From (2), T  54 seconds, so 1-minute rain rate dis-
tributions will suffice. 

Enter Fig. 16b at L = 6 kilometers and a(1) = 50 dB. The resulting 
rain rate is about 66 millimeters per hour. If the system is to be located 
in New Jersey, enter the rain rate distribution of Fig. 12b(3) at 66 
millimeters per hour and note that the average outage time is about 28 
minutes per year. 

Example 2. A hypothetical 18.5-GHz system is to be built in New 
Hampshire between terminals separated by 40 kilometers. The service 
for which the system is intended requires that the average outage time 
not exceed 0.02 percent per year, which is 105 minutes. The system is 
characterized by a 1-kilometer fading margin of a (1) = 50 dB. 

We use the rain rate distribution for Hudson, N. H. Since there must 
be an integral number of hops in the system, we compute the total 
outage time for various numbers of hops, and the smallest number of 
hops resulting in an outage time of 105 minutes or less is the proper 
answer. We proceed as follows. For five hops, the path length would 
be 8 kilometers per hop. The polarization has not been specified, so 
Fig. 16a is used. From Fig. 16a, a rain rate of 41 millimeters per hour 
is obtained. Using this rain rate and the rain rate distribution for 
Hudson, N. H., an outage time of 35 minutes for an 8-kilometer path 
is found. There are five hops, so the total outage time is 175 minutes. 
It is clear that 8-kilometer paths are too long. Repeating the process for 
larger numbers of hops, it is instructive to plot the results, as in Fig. 17. 
From the figure we see that seven hops with average path length of 
5.7 kilometers will be required. For paths of this length, T F.?, 52 
seconds, so again the 1-minute distribution will suffice. 
It would be rare if the system could be laid out with equal path 

lengths. When the repeater sites are selected and the path lengths 
known, the expected system outage can be computed by summing 
the estimated outages for the individual paths as illustrated in the 
first example. The system outages computed in this manner will be 
conservative, since any joint path outages cannot be distinguished 
and, in effect, are counted as separate outages. To the extent that over-
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Fig. 17—System outage time, average path length, and number of hops for a total 
system length = 40 km and a(1) = 50 dB. 

lapping outages occur, the actual system outage time will be some-
what less than predicted. 

X. CONCLUSION 

A procedure has been described for designing short radio paths to 
meet transmission outage objectives when fading is caused by rain 
attenuation. The method is simple and examples are given. Data 
required include the operating frequency, the fading margin, the 
polarization to be used, and a suitable rain rate distribution. For many 
paths and frequencies of interest, accurate attenuation distributions 
can be estimated from 1-minute rain rate distributions. Examples of 
such distributions for a 5-year period, which were obtained by pro-
cessing rain gauge data supplied by the U. S. Weather Service, have 
been presented. The design procedure is applicable to any section 
of the country for which suitable rain gauge data are available. This 
includes many of the several hundred stations operated by the U. S. 
Weather Service. Application of this method to longer paths is possible; 
work to accomplish this is presently under way. 
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A broadband antenna is described with an elliptical beam suitable for 
efficient illumination of the United States from a satellite in synchronous 
orbit. The antenna is also suitable for use in terrestrial radio systems 
above 10 GHz. It consists of a corrugated feed and two parabolic cylinders 
that efficiently transform the circularly symmetric beam radiated by the 
feed into an elliptical beam Depolarization of the incident beam by the 
two cylinders is very small and essentially independent of the angle of 
incidence, which can therefore be chosen as large as required to avoid 
aperture blockage. 
The performance is described of an antenna with a 5.8° X 2.9° elliptical 

beam at 18.5 GHz. For any input polarization, the cross-polarized 
component of the far field remains over the entire beam at least 33.5 dB 
below the main component on axis. This cross-polarized component is 
due in part to imperfections in the corrugated feed and in part to some 
aperture blockage by the feed and depolarization by the cylinders. 
A first-order analysis of the frequency dependence shows that the 

beam widths vary little with frequency for an antenna using a properly 
designed feed and cylinders of sufficiently large apertures. As the frequency 
is increased from 18.5 to 29 GHz, the measured horizontal and vertical 
beamwidth variations are +2.7 and —14 percent, respectively. 

I. INTRODUCTION 

The suitability of corrugated feeds for use in reflector antennas of 
revolution is well known.',2 When this feed is properly designed, the 
resulting far field of the antenna is a circularly symmetric beam 
reproducing, in all directions, the input polarization of the feed. It is 
shown here that this feed is also suitable for use with orthogonal 
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cylinders, with excellent performance. Although the far field in this 
case has a cross-polarized component resulting from depolarization by 
the cylinders, this component is very small, negligible for most appli-
cations. An important advantage of cylindrical reflectors over re-
flectors of revolution is that this cross-polarized component is essen-
tially independent of the angle of incidence, for incidence in a plane 
orthogonal to the axis of the first cylinder. Because of this property, 
aperture blockage can be eliminated by properly orienting the feed 
without sacrificing the polarization properties of the antenna. 
We describe the performance of an antenna consisting of two 

orthogonal parabolic cylinders4 and a corrugated feed (Fig. 1). The 
two cylinders transform the circularly symmetric beam radiated by 
the feed into an elliptical beam. Thus, this antenna is particularly 
suitable for applications requiring different beamwidths in the two 
principal planes. One such application arises when a satellite in 
synchronous orbit is required to efficiently illuminate a region of 
approximately elliptical shape, such as the United States. Another 
application' arises in connection with terrestrial microwave radio 
systems above 10 GHz, where an important limitation arises in the 
use of antennas with very narrow beams, because of the finite stability 
of the towers on which the antennas are to be mounted. In that case, 
the choice of beamwidth in a vertical plane may be governed by the 
maximum movement of the tower in heavy wind, and it may therefore 
be desirable' to choose different values for the beamwidths in the two 
principal planes. 
In Fig. la the two parabolic cylinders are so arrangedt that, if a 

point source is placed at F in front of the first cylinder, a spherical 
wave is transformed by the two cylinders into a plane wave. This 
implies that the focal point F lies on the focal line of the first cylinder. 
The spherical wave is therefore transformed by this reflector into a 
cylindrical wave originating from a virtual line source behind the 
reflector (see Fig. la). The second reflector, which is disposed so that 
its focal line coincides with the line source, then transforms the 
cylindrical wave into a plane wave. All this means that the rays from 
F that are intercepted by the first cylinder become, after the two 
reflections, parallel rays, i.e., rays focused at infinity. Because of this 
property, it can be shown that if the two cylinders are of sufficiently 

• The polarization properties of reflectors of revolution for oblique incidence are 
discussed in Ref. 3. 
t Details of the geometry of the two cylinders and their transformations are given 

in Ref. 4. 
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Orl  d1 

OP1  PIP2 = d2 
(b) 

LINE SOURCE 

PARABOLAS WITH 
FOCAL LENGTHS 

Fig. 1—Double cylinder antenna (a) with feed removed and (b) with feed shown. 
FP' =  FP,  P1P2 = fz, FQ1 = J; OP' = d1, OPi + PiP2 = d2. 

large aperture there is a simple relation' between the far field and the 
field over the focal plane /0, which is the plane orthogonal to the feed 
axis at F. More precisely, consider a plane /1 orthogonal to the beam 
at a great distance from the antenna. To a first order, /0 and Zi are 
conjugate planes and therefore their field intensities can be determined 
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accurately using the imaging laws of geometrical optics.* Since the 
magnifications of Z1 in the horizontal and vertical directions are 
proportional to the focal lengths fi and f2, respectively, it follows that 
the circularly symmetric field radiated on Zo by the feed is imaged 
into an elliptical beam whose beamwidths in the two principal planes 
have the ratio 

f (1) 

An important consequence of the relation of far field to focal plane 
field is that, since the field distribution over the aperture of a properly 
designed feed varies little with frequency and since the feed aperture 
is normally placed close to the focal plane, the beam of the antenna is 
essentially frequency independent. This can be an important property 
in many applications. We now derive the antenna characteristics under 
the assumption that the wave transformation by the two cylinders is 
efficient, i.e., that each cylinder intercepts essentially all the energy 
incident on it. 

II. ANALYSIS 

Throughout this section we assume that the feed radiates a narrow 
beam. This implies that the radius a of the circular feed aperture is 
much larger than the wavelength X, 

ka »1, 

where k = 
Suppose the wave incident on the first cylinder is a spherical wave 

originating from the focal point F. According to geometrical optics, 
this wave is transformed by the two cylinders into a plane wave having 
the following characteristics.' If, for the incident wave, 

(2) 

then the resulting plane wave is vertically polarized; if, instead, 

Hz= 0, (3) 

then the plane wave is horizontally polarized. In the first part of this 
section, we assume the former condition. 
Since the feed radiates a narrow beam, consideration can be re-

stricted to the field in the paraxial region of the principal ray, which 

• This result is derived in Ref. 6 for systems having rotational symmetry and is 
extended in Appendix A to the asymmetric system of Fig. 2. 
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Fig. 2—System consisting of a feed and two ideal cylindrical lenses. 

Z = d1 

z 

is the ray that corresponds to the feed axis. The system of Fig. lb 
can then be replaced by the fictitious system of Fig. 2, consisting of 
two cylindrical lenses of focal lengths, fi, f2. The lenses in Fig. 2 are 
assumed ideal; they simply multiply the incident field by the phase 
factors 

. k 2 exp ( — 3 -el X )  and exp ( — j 1- 2 y2 ) •  (4) 

The distances, di, d2, of the two lenses from the feed aperture are the 
distance in Fig. lb between the two reflectors and the feed aperture, 
measured along the principal ray. We assume that the separation 
d2 — di between the two lenses is equal to 12 — f', 

d2 — di = 12 — fi, (5) 

so that the focal lines of the two lenses coincide. Then a spherical wave 
originating from the point z = zo, where 

zo = di — fi = d2 — f•i,  (6) 

is transformed by the two lenses into a plane wave. The rectangular 
system of x, y, z coordinates in Fig. 2 has been chosen so that the feed 
aperture lies in the z = 0 plane centered at x = y = z = O. 
The following correspondence exists between the two systems of 

Figs. lb and 2. Let s be a parameter measuring distance from the 
center of the feed aperture along the principal ray of Fig. lb. Then 
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the field distribution over a plane normal to the principal ray at some 
point s = s' is given by the field in Fig. 2 over the corresponding 
plane z = s'. This correspondence is, of course, valid only in the 
neighborhood of the principal ray. 

2.1 Field for z •—> 00 

Using the Fresnel diffraction formula,* a simple expression for the 
far field is derived in Appendix A, relating the far field to the focal 
plane field. Consider a plane z -= zi at a great distance from the 
antenna. Because of condition (5), the planes z = zo and z = si are 
conjugate planes. If xo, yo, zo and xi, yi, 51 are corresponding points 
over these two planes, it follows from eq. (32) of Appendix A that 

I Ev(xi, yi, zi) i --) 11111 1E,, ( —  — , 50) 
zi  M. ' Mv 

xi  yl 

where M. and M„ are the magnifications in the xy-directions, 

M = Xi = _  Zi  m y  

e Xo fi ' Yo  T2 

Thus, the far field is given by the field over the focal plane z = zo. 
Since in practice this plane is not too far from the aperture plane of the 
feed, its field distribution can be determined accurately with little 
difficulty, using the Fresnel diffraction formula or the procedure of 
Appendix B. 

, (7) 

(8) 

2.2 Feed characteristics 

The corrugated feed is a conical horn with circular symmetry. Its 
aperture is illuminated by the fundamental mode of the horn, which is 
a spherical hybrid mode' generated from a TEirmode of a smooth 
waveguide by a transducert connected to the input of the horn. Let 
(p, cP) be polar coordinates defined by x = p cos 0, y = p sin 0 (see 
Fig. 2) and assume the input TE,,-mode is vertically polarized. Then 
we can show that the vertical component of the field over the aperture 

• Fresnel's formula is applicable provided the wave equation (k2 + 82/8x2 -I- 82/80 
-F 82/8z2)E2 = 0 can be approximated by the parabolic wave equation (Ref. 7) 

[V -F (â'/8x' + a2/aonE, = —jkaEsaz. 
This approximation is justified in our case (we assume ka » 1; fi, b » a), since 
the field radiated by the feed is made up of plane waves whose directions of propaga-
tion are mostly confined to a small angular region about the z-axis (Ref. 8). 
t Details of the feed and the transducer, which are of standard design, are not given 

here. 
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is given accurately by the function 

2 

= 1,e(p) = Jo(u) exp  ),  (9) 

where Jo is the Bessel function of order zero and 

U = —a uao, 

uao being the first zero of Jo(u), 

Jo(uao) = «,  uao = 2.4048. 

The factor exp [jk(p2/2R)] in eq. (9) arises because the hybrid 
mode illuminating the feed aperture has a spherical phase front with 
radius of curvature R approximately equal to the length of the horn 
from vertex to aperture. Equation (9) is true provided R >> a, a 
condition approximately satisfied in the experiment (R  4.17 a). 
Note that 1,1, = 0 for p = a. This is due to the corrugated wall that 
imposes to a good approximation the boundary condition 

Eçb = H 4, = 0, (10) 

where Ed>, Ho are the components of E, H in the 0-direction. Appendix 
C shows that a consequence of this condition is that the field over the 
aperture contains, in addition to the component E = (p), a small 
component given accurately by 

E.  1 a2E, 
== 210 axay 

As a consequence, the far field contains a small (undesirable) horizontal 
component that can be determined accurately by replacing the 
system of Fig. 1 by that of Fig. 2. The amplitude of this component is 
therefore given by a formula analogous to eq. (7) [simply replace 
Et, with E. in eq. (7)]. 

2.3 First-order polarization properties of the far field 

The location of the feed is normally chosen so that its phase center, 
the center of curvature P. of the phase fronts of the far field, coincides 
with the focal point z = zo of the two reflectors. We assume this con-
dition. Consider first the ideal case R = GO , in which P. is at the center 

• Actually, Er also causes a small vertical component. This component is, however, 
much smaller (for large ka) than the vertical component resulting from Ey and can 
therefore be neglected. 
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of the feed aperture and therefore the aperture is placed in the focal 
plane. Then, over this plane, E, is given by 4/(p) and eq. (7) gives for 
the far field 

where 

1[11 72 IEI  I#(v)I, 

= -ve2 + n', xfi y.f2 
= - - ,  n = 

(12) 

(13) 

A relation identical to eq. (7) can be written for Ez. Therefore, 
since, for z = 0, Ez is given by eq. (11), 

..e1.7;  1  11.717;  1 len "  e(u)  )1. 
(u)  (14) 

1E21  z 2k2 nao —  2 2k2 

We note from this relation that IEx! attains its maximum value for 
= n = vo/v2, where yo is the value of y for which I "(v) —  

is maximum. In the particular case of eq. (9), with 1/R = 0, 

14,1 =  v) 

\ 2 

I 41"  (V) -  e (V)/V1  =  ) 

(15) 

(16) 

for y < a. We can verify that the maximum value of J2 in the interval 
a occurs for y = a and is J2(u.0) = 0.431. Therefore, if C denotes 

the ratio between the peak of 1E21 and the peak of IE,I (the peak of 
I EyI occurs on axis), using eqs. (12), (14), (15), and (16), we find 

  1 ( u60 \2) 2  J (u.0 ) '2'2. 0'6231 (17) 
(Et, I max  4 ka (ka)2 

Next, consider the case 1/R  0 but, instead of considering the 
distribution of eq. (9), assume that Er, over the aperture plane z = 
varies as 

exp (A2  P2 —  exp (jk  ) • 

Appendix B points out that, for 

w  0.6437a, 

this distribution represents fairly accurately that of eq. (9). 
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The phase center Pc (and, therefore, the focal plane) is now behind 
the aperture of the feed, located at'." 

zo —    
1 + (XR171-w2)' 

and we can verify that, over the plane z = zo, Ey varies as 

where' ," 

2   wo =  (21) 1 ± (w27,7fxR)2 

Since the maximum value of 14/0" — 7,1.07p1 occurs for p = wo and is 

- 4/, = —4 2 '  (22) ewo  

the ratio C between 1 Ea J maz and 1E„I inaz is now given by 

1  
C =  (23) 

e (k w 0)2 

To allow a direct comparison of eqs. (23) and (17), let us assume 
1/R = 0 and w given by eq. (19). From eqs. (19) and (23) we get 

2 

= exP — 

(20) 

w 2 

0.889 
C = (24) 

which gives values somewhat larger than eq. (17). 
In the case of the experiment a  2.35 X, R = 9.78 X. For these 

values of a, R, from eqs. (19), (21), and (23), we obtain, for C2, —44 dB. 
This, of course, is only a rather crude estimate of the actual depolariza-
tion by the two cylinders (the mean square error in representing the 
actual distribution (9) by means of (18) is almost 2 percent; see 
Appendix B). For the present purpose, however, this estimate is quite 
adequate, since in the experiment other effects such as imperfections in 
the feed and some aperture blockage by the feed are found to be 
predominant. 

III. EXPERIMENT 

Two mirrors and a feed were constructed and assembled as shown 
in Fig. 3. Their radiation characteristics were measured at 18.5 GHz. 
The cylindrical surfaces of the two mirrors were milled to a tolerance 

MICROWAVE RADIO ANTENNA  1359 



Fig. 3—Double cylinder antenna with corrugated feed. 

of about 1 mil. The parabolas generating the two cylinders have the 
same focal length :" = 12.919 X. 
The feed, a corrugated horn with 

ka = 14.76,  R = 4.17 a,  (25) 

satisfies the boundary condition (10) at 18.5 GHz, and therefore its 
radiation pattern is essentially circularly symmetric.1,2 A measured 
pattern is shown in Fig. 4. Figure 4 also shows the pattern calculated 
for the gaussian distribution (18), with w given by eq. (19). The two 
patterns are somewhat different, as expected, since the distribution (18) 
represents only the fundamental term (m = 0) of eq. (35). A much 
closer agreement with the measured pattern could be obtained from 
eq. (35) by considering also the term relative to m = 2 (it turns out 
that the term m = 1 is negligible), but for the present purpose the 
accuracy of Fig. 4 is satisfactory. 
If we consider only the fundamental term (18), the location of the 

phase center Pc and the beamwidth of the feed can be calculated 
straightforwardly by using eqs. (20) and (47); the 3-dB beamwidths 
of the antenna in the principal planes are given by eqs. (45) and 
(46) of Appendix B. 
The distance zo of the feed aperture from the focal point F was 

chosen using eq. (20), in which case the phase center Pc of (18) coin-
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Fig. 4—Radiation patterns of vertically polarized corrugated feed measured at 
18.5 GHz in the  = 450 plane for the main component (  ) and the cross-polarized 
component (—•—•—) of the far field. The curve (— — — —) is the pattern calculated for 
the gaussian distribution of eqs. (31) and (32). 

cides with F. We can show, using eqs. (46) and (47), that under this 
condition the beamwidths of the antenna are stationary with respect 
to small displacements of the feed. The orientation of the feed with 
respect to the first cylinder was chosen as follows. 
When the angle of incidence g in Fig. 1 is 0, which is the condition 

assumed in Ref. 4, the axis of the beam reflected by the first cylinder 
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coincides with the axis of the feed. Because of the relatively large size 
of the feed aperture, this condition (ià = 0) is undesirable, since a 
relatively large fraction of the energy reflected by the first cylinder is 
then intercepted by the feed aperture. Thus, in the experiment, a 
relatively large value (36°) was chosen for /.L. For this value, the energy 
blocked by the feed is small. Using the distribution of eq. (18), we 

-10 

20 

30 

40 

/ 
I 

---I  
\ 

1 
I 

0= 0 

I 
1 
I 
I 
1 1 
I 
I 
I 

1 
I 

, 
I' 
l l i II 60  i I 1 i i ii ,-J  I 

120 10°  8°  6°  4° 2°  0  2°  4°  6°  8°  100 120 

e 

Fig. 5—Radiation patterns of vertically polarized double-cylinder antenna mea-
sured at 18.5 GHz in the horizontal plane ce. = 0 for the main component ( —) and 
the cross-polarized component (—•—•—) of the far field. Curve (— — — —) is the pattern 
calculated from eq. (18) for the gaussian distribution of eqs. (31) and (32). 
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can show that the field incident on the upper edge of the feed is about 
—10 dB with respect to the field on the axis of the incident beam. 
The first cylinder in Fig. 3 (14.91 X by 14.32 X) intercepts most 

radiation from the feed; the illumination of its four edges with respect 
to the illumination at the center is less than —16.5 dB on the upper 
edge and less than —24.5 dB on the other three edges. 
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Fig. 6—Radiation patterns of vertically polarized double-cylinder antenna mea-
sured at 18.5 Gaz in the vertical plane 4, = 900 for the main component (  ) and 
the cross-polarized component (-•-•-) of the far field. Curve (- - - -) is the pattern 
calculated from eq. (18) for the gaussian distribution of eqs. (31) and (32). 
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Fig. 7—Radiation patterns of vertically polarized double-cylinder antenna mea-
sured at 18.5 GHz in the 0= 45° plane for the main component ( —) and the 
crogs-polarized component (- .-  of the far field. 

The second reflector (44.77 X by 14.32 X) is sufficiently large that it 
intercepts essentially all the energy reflected by the first cylinder, 
except for the energy blocked by the feed. The distances f 1, f2 measured 
along the principal ray between F and the two reflectors are 14.282 X 

50 
12°  100 8° 

• We can show (see Ref. 4) that 
gi   

fi = 1 ± cos µ 
f2 = 2f. 
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Fig. 8—Radiation patterns of vertically polarized double-cylinder antenna mea-
sured at 18.5 GHz in the 0 = —450 plane for the main component ( —) and the 
cross-polarized component (--•-) of the far field. 

100 12° 

and 25.837 X. Since d1 = fi ± zo and d2 = f2 + zo, using eqs. (46) 
and (47), we obtain for the beamwidths in the two principal planes 

201 = 5.75°,  202 = 3.18°. 

The measured values (Figs. 5 and 6) are 201 = 5.84° and 202 = 2.87°. 
Figures 5 to 8 show the measured patterns in the principal planes 

4, = 0, q5 = 90° and in the planes 4 = 45°, Q5 = -45°. In these 
figures, 0 is the angle from the beam axis. Also shown in Figs. 5 and 6 
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are patterns calculated for the distribution (18). In all these cases, 
the feed is vertically polarized; the main patterns of Figs. 5 to 8 (the 
solid curves) give, therefore, the magnitude of the vertical component 
E„, in dB with respect to the field on axis. 
The patterns for the horizontal component E. are given in Figs. 

5 to 8 by the dashed curves. In the worst case, the plane 40 = 45°, the 
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Fig. 9—Radiation patterns of horizontally polarized double-cylinder antenna 
measured at 18.5 GHz in the horizontal plane 0 = 0 for the main component (  ) 
and the cross-polarized component (-•-•-) of the far field. 
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ratio C between the largest value of I Ez I and the peak of 141 is 
—33.5 dB, which is approximately 10.5 dB larger than the value given 
by eq. (23). This larger value of C is due in part to blockage by the 
feed and in part to imperfections in the feed that were found to cause 
a cross-polarized component in the feed radiation patterns with a peak 
of approximately —41 dB (see Fig. 4). The effect of blockage by the 
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Fig. 10--Radiation patterns of horizontally polarized double-cylinder antenna 
measured at 18.5 Gaz in the vertical plane 95 = 90° for the main component ( —) 
and the cross-polarized component (-•-•-) of the far field. 
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feed was evaluated by measuring the variation of C with z. Decreasing 
g from 36° to 31° caused an increase in C of approximately 3 dB. 
The radiation patterns for a horizontally polarized feed are shown 

in Figs. 9 to 12. The cross-polarized component now has a peak of 
—35 dB in the worst case, the 4, = 45° plane, which is about 1.5 dB 
lower than the value measured for vertical polarization. 
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Fig. 11—Radiation patterns of horizontally polarized double-cylinder antenna 
measured at 18.5 GHz in the cp = 450 plane for the main component ( —) and the 
cross-polarized component (-- —) of the far field. 
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Fig. 12—Radiation patterns of horizontally polarized double-cylinder antenna 
measured at 18.5 GHz in the 95 = -45° plane for the main component (  ) and the 
cross-polarized component (-•-•-) of the far field. 

In all the above measurements, the frequency was 18.5 GHz. 
Measurements at 29 GHz were also made to determine the frequency 
dependence of the two beamwidths 201, 202. At 29 GHz the measured 
values of 201 and 202 with the feed vertically polarized were 201 = 6° 
and 202 = 2.47°. Thus, 201 increased by only 2.7 percent, with respect 
to the value measured at 18.5 GHz, while 202 decreased by 14 percent. 
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This difference in the variation of 201 and 202 is due to the lack of 
feed pattern symmetry as the frequency was increased. At 29 GHz in 
the H- and E-planes, 20.1.1 was greater than 2012 by approximately 
10 percent. 

IV. CONCLUSIONS 

Cylindrical reflectors are well adapted to efficiently generate an 
elliptical beam from the circularly symmetric beam radiated by a 
corrugated feed. Depolarization by the cylinders is negligible (10 
logis C2 <-40 dB, for a> 1.25 X) for typical feed diameters, and it 
is essentially independent of the angle of incidence a which can there-
fore be chosen as large as needed to minimize aperture blockage. 
In the experiment, blockage by the feed, • although small, was large 

enough to cause some deterioration in C2. The measured value of C2 
in the worst case was —33.5 dB, approximately 10.5 dB higher than 
the value given by eq. (23). This higher value was due in part to 
certain imperfections in the feed. 
A first-order analysis of the antenna was given in Section II. It 

was pointed out that, if the feed aperture is located close to the focal 
point F, then the beamwidths 01 and 02 vary little with frequency, 
assuming that each reflector intercepts all the energy incident on it. 
Simple approximate expressions [eqs. (45) and (46)1 were given for 
01 and 02. The measured values, 201 = 5.8° and 202 = 2.9° agree well 
with the values given by those equations. 
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APPENDIX A 

This appendix derives the field transformation through the two 
lenses of Fig. 2. Consider first the one-dimensional case of Fig. 13, 
where it is assumed that E, is a function of only x, z, 

E, = Ei(x, 

Let the problem be to find E, over the image plane z = zi, with E„ 

• The antenna considered here has an unusually large (".---2.75) ratio of focal 
distance to feed diameter (this is mainly due to the relatively large value required of 
Si). If a much narrower beam is desired, aperture blockage can be entirely eliminated 
without difficulty. 
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Fig. 13--Imaging (a) of one-dimensional field distribution by a cylindrical lens and 
(b) of two-dimensional field distribution by two orthogonal cylindrical lenses. 

given [by some function 1,1,1(x)] over the object plane z = zo, 

Ei(x, z) = ih(x)  for z = zo. 

The distances dx1 and dx2 between the cylindrical lens and object and 
image planes are related by 

1  1  1 
—  — = —  (26) 

dx2 fi' 

where fi is the focal length of the lens. The field immediately to the 
left of the lens can be expressed in terms of the field on the object 
plane z = zo using the one-dimensional form of Fresnel% formula 
which, for z < zo dxi, gives 

Ei(x, z) =    r. +ix(z — zo) J- (x x°)2  dx  (27) Ei(xo, zo) exP [  2(z — zo)] 
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By multiplying the field immediately to the left of the lens by the 
factor 

x2 
exp (— jk  

we obtain the field immediately to the right, which can then be used 
(with the help of Fresnel's formula) to determine the field over the 
image plane z = zi. The resulting expression gives the result 

., vd 
Ei (xi, zi) =  j—., dri n1 —  xi, zo) exp (jk  e d73— , 

-rj  Lb.2  (.6.2  (4.2 

as we may verify by using the procedure of Ref. 6. 
Next, consider the two-dimensional case of Fig. 13b where 

now satisfy eq. (26) and 

1  _L 1  1 
dyi dy2 

and assume that over the plane z = zy, Ey is of the type 

E„(x, y, z) = C(x)1112(Y)e2kgo,  for z = 

(28) 

f2 

(29) 

(30) 

Then, using the two-dimensional form of Fresnel's formula we find 
that for any z > zo the distributions of E„ in the x- and y-directions 
can be treated separately, and each distribution can be determined 
using the one-dimensional form of Fresnel's formula. More precisely, 
Ey can be written in the form 

Ey(x, y, z) = Ei(s, z)E2(y, z)eihz,  (31) 

and the relation between Ei(x, z) and Ei(x, 0) [or between E2(y, z) 
and E2 (y, 0)] can be found considering the one-dimensional problem 
of Fig. 13a (replacing, in the case of E2, di,, dm2, fi in Fig. 13a with 

d„2, 12). Thus, using eq. (28), we find 

yi, zi)e-Ikt =  dzidyi E _  _  zo) 
dx2dy2  d.2 

xi d.i  ,2 d 
• exp (jk — —)exp jk 2'42 51-L. ) • (32) 

2f, di,  J (4 112 

Note that, because of eqs. (26) and (29), the object and image 
planes (z = zo and z = zi, respectively) are conjugate planes. All rays 
emanating from a point (xo, yo) in the object plane intersect each other 
at the conjugate point (xi, yi) in the image plane where xi and yi are 

1372  THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1974 



related to xo and yo by the magnifications 

M. =  = — d2  and Mi, =  = 
x0 d.1 Yo  di 

Equation (32), derived for the particular case of eq. (30), is valid also 
for arbitrary E(x, y, zo), as may be seen by writing Ey(x, y, zo) in 
the form 

E„(x, y, Zø) = E A.41.(x)1,1,2.(Y)e'k", (33) 

and then applying eq. (32) to each term of this expression. Equation 
(32) can also be derived using eq. (15a) of Ref. 7. If one conjugate 
plane, z = xi, is in the far field, eq. (32) gives eq. (7). 

APPENDIX B 

In this appendix the field radiated by the corrugated horn is repre-
sented in terms of Laguerre-gaussian modes of propagation.° Let the 
truncated Bessel function 

= 1.1.0(u), lui u.0 
1,G  

0, lui > /Lao 

be developed into Laguerre-gaussian functions 

u2 E B„,L,,, ( ) exp (— u2 
) ' 

where L. are Laguerre polynomials, 

ex dn 
Ln(x)   

(34) 

(35) 

(36) 

and xi is a parameter whose optimum choice is, for the present purpose, 
that which maximizes the ratio 

We can show that n is maximum for 

= 1.09549, 

and that 
(37) 

77. = 0.9811.  (38) 

We therefore assume this particular value of u. 
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We now derive the field Ey for z > 0 subject to the boundary 
condition 

. k 
Ey(x, y, 0) = & exp [3  lx' + (39) 

for z = 0. We assume that Fresnel's formula is applicable, which 
implies that the wave equation (a2/8x2  32/ay 2 ao/az o ko)Ey = 
can be approximated by the parabolic wave equation 

[le + 4,(32/3x2 02/ay2)].E1, = — jka.E„/ az. 

We can verify that the solution of the parabolic wave equation that 
satisfies the above boundary condition is given byn 

ET,(x, y, z) 

= ekg  BmCmLm( k(x2  A+ Y2) ) exp [j Fqk (x2 -  -r y2)],  (40) 

where Cm, A, and q are functions of z, 

= q(z) = q(0)  z  (41) 

Al = Im  q 

Cm = \i/To A 
+ 1 

q(0)* 

+ 1 
q(0) 

m+ 

(42) 

(43) 

and A0 = A for z = O. The complex beam parameter q(0) appearing in 
these formulas is determined by the feed characteristics, 

1  _ .  1  kuL _L 1 
q(0)  (ka)2 u2 R 

We can verify by means of eqs. (35) and (40) to (44) that Ey satisfies 
condition (39) for z = 0. 
In the experiment, the focal plane is behind the aperture of the 

feed. In this case, to derive the far field using eq. (7) we have to 
consider not the field radiated by the feed in the half space z > 0, but 
its virtual extension into the half space z < 0. We can show, however, 
that eq. (40) is valid also in this case (i.e., for z = zo < 0). 
According to eq. (38), 98.11 percent of the total energy radiated by 

the feed is caused by the fundamental gaussian mode (18), which is 
the term m = 0 of eq. (35). Therefore, the horn is an efficient gaussian 
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beam launcher, and a rough estimate of the radiation characteristics of 
the feed and the antenna can be obtained considering only this m = 
term. In this ease using eqs. (7) and (8) we obtain, for the 3-dB beam-
widths 201 and 202 of the antenna in the two principal planes,"" 

20, =  2 n'  (45) 

202 = 21n2 ,  (46) 
h 

with wo given by eq. (21). The beamwidth 20, of the feed pattern le 

201 = —X 1,12-1—n2.  (47) 
Two 

The distance zo of the phase center from the feed aperture is10 given 
by eq. (20). 
The spot size' of the gaussian beam at the horn aperture is'° 

=  --11«  0.6437 a.  (48) 
/Sao 

APPENDIX C 

Derivation of Eq. (11)t 

It can be shown'.2 that the far field of the feed of Section 2.2 has, 
because of boundary condition (10), the following property: If the 
far field is transformed into a plane wave using an optical system of 
revolution centered around the feed axis, then the resulting plane 
wave is vertically polarized if the input of the feed is vertically polar-
ized. We now show that this property implies condition (11). 
Consider an optical system of revolution centered around the 

z-axis, and let (p, 4)) be polar coordinates defined by x = p cos 0, 
y = p sin ii. Consider an input ray entering the optical system with 
direction parallel to the axis of symmetry and with polarization 
characterized by unit vector ea. Let the meridional plane defined by 
this ray be the plane 4, = cbo (see Fig. 14). Because of the symmetry 
of the system, this ray will be transformed into an output ray leaving 
the system in the same meridional plane ep = oo. Therefore, if 
(k., ky, kz) is the wave vector characterizing the direction of the output 
ray and 01 is the angle between (k., ky, kz) and the z-axis (see Fig. 14), 

• Spot size is defined (Ref. 10) as the radius at which the field amplitude drops to 
1/e of its value on axis. 
t See Chapter VI of Ref. 12 for a justification of the approach used in this derivation. 
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Fig. 14—Transformation by an optical system of revolution of an input ray incident 
parallel to the axis of symmetry. 

then 
1c2 -- — k sin ei cos deo 

ku = —k sin Oi sin cko  (49) 
kz = k cos 81. 

Now if el is a unit vector characterizing the polarization of the output 
ray, there is a simple relation between el and eo that can be obtained 
as follows. The ray in question, as it passes through the system, 
describes a plane curve since it remains in the plane 0 = 44. It im-
mediately follows that if eo lies in the plane (1) = çbo then ei must lie in 
this plane also, while if eo is orthogonal to it, then el is also. In other 
words, 

ei = io  if eo = igs 

el = cos Oii, ± sin Oliz  if ea = 4, 

where ie, and ip are unit vectors in the cp, p-directions. From these two 
relations it follows that, if the input ray is polarized in the y-direction, 

eo = sin 004 ± cos cboio, 

then 
el --- sin 4)0 (cos Ofip + sin Ou,) ± cos 144.  (50) 

Now the field along the output ray can be written in the form 

E = eiAeH', 
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where A is approximately constant and 

4, =  kis  k.z.  (51) 

We now determine the x, y-components of E using eq. (51) and the 
relations ip • ix = cos (Po, io • = —sin cko, ip i1, = sin 00, igs•i„ = cos (ko. 

The result is 

E. = sin cPo cos 4'0 (cos 01 — 1)Aele 

Ey = [1 ± sin' 4'0 (cos 01 — 1)]Ae 

From these relations and eqs. (50) and (52), we can verify with little 

difficulty that for small 01 

E.  sin 4'o  cos  'l'o sin2  01  2  Aeo (52) 
— 210 ax8y 

Now we assume that the angle 01, which is a function of the distance 

po of the input ray from the z-axis, remains small for all po. Then, 
according to eq. (53), a plane wave polarized in the y-direction is 

transformed by the optical system into a wave satisfying eq. (11). 

Equation (53) was derived by ray optics that apply in the far 

field of the feed. However, if a differential relation such as (52) holds 

in the far field, it must hold everywhere (e.g., in the aperture plane 

of the feed horn). 
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A general method is proposed to evaluate the radiation loss of bent open 
waveguides. This method consists in evaluating the coupling between the 
waveguide mode and the whispering-gallery modes that can be associated 
with the surrounding medium. The expression obtained for a reactive 
surface coincides with a previous result by Miller and Talanov.1 We 
investigate in detail the radiation loss of the fundamental (HEii) mode 
of a dielectric rod coupled to a slab. This arrangement, described in Part II 
of this article series,' provides a useful mode-selection technique. The 
radiation loss is given by a simple closed-form expression. We find that 
for a wavelength of 1 um and a rod radius of 5 um in physical contact 
with the slab, the bending loss is less than 1 dB/km if the radius of curva-
ture, in the plane of the slab, exceeds 22 mm. 

I. INTRODUCTION 

Open waveguides support modes whose phase velocity is smaller 
than the velocity of plane waves in the surrounding medium. Thus, 
no radiation takes place under normal conditions. If the fiber is bent, 
however, the phase velocity increases in proportion to the distance 
from the curvature center. At some radius, it exceeds the velocity of 
plane waves in the medium and a radiation loss is suffered. This effect 
is of great practical importance in fiber communication because it sets 
a limit on how sharp bends can be made without resulting in un-
tolerable loss. For most single-mode optical-glass fibers, a radius of 
curvature of the order of 1 cm can be tolerated. For gas lenses and 
weakly guiding millimeter-wave systems, the minimum radius is 
sometimes as large as 100 m. The relative insensitivity of glass fibers 
to bends results from the rather large change in refractive index in 
the cross section that they provide. It constitutes their main advantage 
compared to other guiding systems. 
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Different methods have been used to evaluate the radiation losses 
of curved waveguides. For simple geometries, it is possible to solve the 
boundary value problem using a cylindrical coordinate system, the loss 
being given by the imaginary part of the propagation constant. This 
method was used by Miller and Talanovi for a reactive surface, and 
by Marcatili3 for dielectric slabs with various imbedding materials and 
for waveguides with rectangular cross section. Another method con-
sists in evaluating the power radiated at the radius where the phase 
velocity of the guided mode becomes equal to the velocity in the 
surrounding medium. This approach was followed by Shevchenko4 and 
Marcuse.' Ray pictures have also been used to describe the propagation 
in curved dielectric fibers.' 
In most practical situations, the fiber curvature is not a constant 

but varies along the fiber axis (z). This results in an additional radiation 
loss suffered at the transition between straight and curved sections of 
the fiber. This transition effect has been discussed in detail by 
Shevchenko7 for the case of a reactive surface. Because the radia-
tion from the bend itself has the form exp (—p/po), where p denotes 
the radius of curvature and po a constant, and the radiations at the 
junctions have the form 1/p2, the latter becomes significant for large 
p, that is, for very low radiation losses. It should be noted, however, 
that the mechanical strength of a fiber usually prevents an abrupt 
curve. The transition radiation, therefore, is usually unimportant for 
single-mode communication fibers (we assume that the fiber is other-
wise perfect). It is more important that, when a highly multimoded 
fiber is bent in some random manner, the ray slopes associated with 
the guided waves tend to increase in proportion to the square root 
of the length of the fiber. Eventually, the rays cease to be totally 
reflected. This is easily understood if we observe that randomly bent 
fibers are analogous to mechanical oscillators (e.g., harmonic oscil-
lators for the case of square-law fibers) driven by random forces f(t) 
proportional to the curvature of the fiber C(z).8-1 ° The equivalent 
mechanical oscillator gains energy as time goes on; that is, the ampli-
tude and momentum increase until the limit is reached. Note that, 
even in nominally single-mode fibers, higher-order modes can be 
excited and can propagate over a certain length (see Part II of this 
article for numerical values') and cause significant pulse spreading. 
This problem will not be discussed further here. In what follows, we 
assume that the fiber curvature is a constant. This is the case if the 
fiber is wound on a cylindrical drum. Our calculation, therefore, 
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constitutes a first step in the evaluation of the losses of randomly 
bent fibers. 
To evaluate the radiation loss of curved fibers, we shall use an 

approach akin to the one used in Part II of this article series.2 For 
curved geometries, the guided mode is coupled to the whispering-
gallery type of radiation modes rather than to sinusoidal standing 
waves. We first assume that the surrounding medium, which we will 
call a substrate, is bounded at some radius Pb and has finite dissipation 
losses. The loss suffered by the waveguide mode as a result of its 
coupling to the substrate is evaluated. Radius pb is subsequently 
allowed to reach infinity and the dissipation loss to vanish. 
These whispering-gallery modes are characterized by a circular 

caustic with radius p.. The behavior of the field is oscillatory outside 
the caustic and exponential inside the caustic. At the caustic, the 
phase velocity is just equal to the phase velocity of plane waves. 
It is not difficult, therefore, to find for what values of p1 synchronism 
with the waveguide mode is achieved. Although p. exceeds only 
slightly the rod curvature radius p, the distance yo po — p is the 
most critical parameter that influences the loss. Once the synchronism 
conditions have been obtained, we evaluate the coupling coefficients 
and the mode-number densities using the method described in Part II. 
We shall use for the waveguide field an expression applicable to 
scalar fields (described in Part I of this series2), which is slightly simpler 
than the expression applicable to the Maxwell field. 
Formulas applicable to arbitrary open waveguides are obtained in 

Section II. We investigate in Sections III and IV the case of round 
fibers whose dimensions are large compared with the wavelength, both 
in free space and coupled to slabs providing mode selection. The latter 
configuration is closely related to the single-material fiber proposed by 
Kaiser, Marcatili, and Miller," and to slab-coupled guides." Simple 
closed-form formulas are obtained for the bending losses in all cases. 

IL GENERAL FORMULA 

Let us consider an opened waveguide with propagation constant h 
and radius of curvature p as shown in Fig. 1. The general expression 
for the radiation loss given in Part II is 

= 7rNC2,  (1) 

where N denotes the mode number density in the substrate (or sur-
rounding medium), that is, the number of substrate modes whose 
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AXIS 

Y y' 

Fig. 1—Curved fiber. The radiation loss is obtained by evaluating the coupling 
between the straight fiber mode and the whispering-gallery mode shown with the 
caustic (or turning point) at p.. 

propagation constant lies between h and h ± dh at the waveguide 
radius p, divided by dh. The term C2 is the coupling coefficient between 
the waveguide mode (fields E, H) and a synchronous substrate mode 
(fields E., H.). For the Maxwell field (see Part I) we have 

1 f'+' 
e  ,  (E.H..  E.H.x — Es.H. — E..H.)dx,  (2a) 

if the powers are normalized to unity; that is, if 

E X H•dS = f Es X H,•dS = 1.  (2b) 

The integral in eq. (2a) can be evaluated, for instance, along the x' 
axis shown in Fig. 1. 
When the transverse variations of permittivity are small, the 

scalar parabolic (Fock) approximation is usually applicable. In that 
case (see Part I), 

C =  f 4.°D  (.E8E8/ay — E„aE/ay)dx,  (3a) 2 _0 
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with 

fkedS  f ksEUS = 1.  (3b) 

The terms k and lc, denote propagation constants in the media.' In 
eq. (1) the product NC2 is to be evaluated in the limit where the 
boundaries imposed on the substrate extend to infinity. In that limit 
N —>00, and C2 --> 0, but NC' remains finite. 
The waveguide mode, with propagation constant h, is synchronous 

to a whispering-gallery mode with propagation constant h, in the 
y,z plane, whose caustic radius p, is given by 

hp = hips.  (4a) 

When the waveguide field is uniform along the x axis, h, is simply 
equal to k, the bulk propagation constant, and, in free space, 
h, = k =- cd/c. 
More generally, if k. denotes the x component of the wave vector, 

then 
h, =  —  (5) 

The distance yo between the waveguide and the caustic is from eq. (4a) : 

Yo  p(1 — h,/h).  (4b) 

The field of whispering-gallery modes is easily obtained from 
ray-optics considerations, as illustrated in Fig. 2, in the paraxial 
JWKB approximation. For a detailed discussion the reader should see 
Ref. 13. We obtain 

Ea(y)  sin [(21/3)h.P»iy1 ir/4], > 0  (6 ) 
—y)-1 exp [— (21/3)/i,p;-1 ( —y)I], y <0. a 

These expressions are asymptotic forms of 

E ,(y) =  (2hV p,)1,2Ai[(2hVp.),y], (6b) 

where (Ai) denotes an Airy function of the first kind, for large I y I. 
Alternatively, these expressions can be obtained from asymptotic 
forms of Bessel's functions with large arguments and orders [see, for 
example, the first eq. (42) in Ref. 3]. With sufficient accuracy we have 

1  r eb— P• 

f E.2,(Y)clY R-2 j0  rdy = (Pb — PP, (7) 

• Within the Fock approximation, the difference between k and k, can be ignored 
in evaluating the powers in eq. (3b). However, for improved accuracy, we retain the 
distinction when n is not close to unity (e.g., n = 1.41). 
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(a) PHASE (b) AMPLITUDE 

Fig. 2—I1lustration of how the field of whispering-gallery modes given in eq. (6) 
is obtained in the JWKB approximation. (a) The argument of the sine function is h. 
times the difference in length between the ray AO and the caustic arc AC. (b) The 
amplitude term is obtained from a power conservation argument applied to the ray 
pencil. 

because only the oscillatory part of E, (y) contributes significantly to 
the total power, (cos2 x)  1, and pb — p»  pa — p in the limit 
Pb e'° • 

The reciprocal of the mode-number density N is the change in 
propagation constant at the waveguide radius p corresponding to a 
change in the argument of the cosine function in eq. (6) equal to 7. 

We find by differentiation of this argument 

N = (21Ir)PqP — PP-  (8) 

Thus, if we characterize the y dependence of the radiation field by a 
function 

S(y)  7rNe(Y) /[ f kre,(Y)dY] 

we obtain, with the help of eqs. (6), (7), and (8), 

S(y) = (21/ 4)p1( — y)--11c-i exp [ — (21/3)hp-i(—y)1], 

(9a) 

Y < O. (9b) 

In eq. (9b) we have replaced pi, by p and h, by h. Therefore, the value 
of S(y) at y -= —yo, where yo is given in eq. (4b), is 

S(yo) = (21/4)(1 — h./h)--ilc-' exp E— (21/3)hp(1 — h./h)1]. (10a) 

This expression is the asymptotic form of 

S(yo) = 2iirir'(2h2p2)"6Ai2[(2h2p2)*(1 — h,/h)].  (10b) 

Because we are limiting ourselves to small delays, 1 — h./ h « 1, 
we have 

p  (h2 —  2h(1 — h,/ h)4 (11) 
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Note, for later use, that at the waveguide radius p, E71 (OE ./ ay) is 
equal to p. Using eq. (11), eq. (10) can be written in the simpler form 

S(ye) = (iP) exp C-p/(4P-3h2)].  (12) 

Let us now consider a waveguide structure, such as a reactive 
surface or a slab, uniform along the x axis, and fields that are inde-
pendent of x. Because the field of the waveguide has an exp (—py) 
dependence on y, the general expression for the radiation loss, eqs. 
(1) and (3), is 

= p2 [E2/ i+e  kE2cly]  8(y0),  (13) 

(y 0) being given in eq. (12). 
For a reactive surface with normalized susceptance p (see Fig. 3), 

we have 
+00 
kedy = 2p/k.  (14) 

Therefore, the radiation loss (in nepers/unit length) is, substituting 
eqs. (12) and (14) in eq. (13), 

= (1)2/ k) exp  (— P/P.), 

where 
Po  k2/1)'• 

AXIS 

(15a) 

(15b) 

Fig. 3—Radiation loss of a curved reactive surface with normalized susceptance p. 
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This expression coincides with a previous result by Miller and 
Talanov." 
For arbitrary waveguides with field E(x), we need consider radiation 

modes for all values of lc and not just k. = 0 as before. A simplification 
comes from the fact that, as k1 increases, the caustic moves away from 
the waveguide and the coupling becomes negligible for some small 
value of kz. 
Let us introduce boundaries at x ±L/2 and assume symmetry 

for simplicity. The bending loss associated with some kz is 

8(y 0, kz)R(k.),  (16) 

where R(k.) is essentially the spatial spectrum of the waveguide field 

R(k1) =  (p 0E — aE / ay) 

• cos (k.x)dxr  f knE2d,xdy) , (17) 

where 
Po  (h2 — k2)4 211(l — k / h)4 (18) 

The quantity S(yo, k.) given in eq. (10) is a function of k1 through the 
dependence of he on k., and is given, according to eq. (5), by 

= (k2 — k  k — 414/k.  (19) 

To first order in k1 we have 

(21/3)hp(1 — h0/h)1 p/ pe ± (pp 0/k2) k12.  (20) 

This approximation supposes k. « p, or P» Po, where 'De is the 
critical radius given in eq. (15b). These assumptions are acceptable 
for long fibers, where only very small bending losses can be tolerated. 
The dependence of h, on k1 is important only in the exponential term. 
Summing £(k.) in eq. (16), with 2(y,, k.) given by eqs. (10) and (20), 
over le, we obtain 

-= (L/27r) f .2(k.)dk. 
o 

= (1/47rpo) exp (—p/pg) X f LR(kz)exp (—ppok-21d)dkz (21) 

Po as Île/ e• 

The results in Ref. 1 are applicable to anisotropie bent surfaces and arbitrary 
k1. For our case, the expression for the loss 02 reads [as in Ref. 1, eq. (13.18)] 

P2 = 7a2(1 a2)- Eci  (1  a2)ii1[ — 2 (1 + o8)37] exP (21n), 
where t means "to the power," y kp and a  p/k. This expression goes to eq. (15) 
when a —> 0, as one can (but not too easily) verify. 

1386  THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1974 



This is a general expression for the bending loss of open waveguides. 
Note that some of the assumptions could be relaxed with little addi-
tional complication. The integration over k1, for instance, could be 
performed without using the approximation in eq. (20), and we could 
use the Maxwell field instead of the scalar field. 

III. BENDING LOSS OF A DIELECTRIC ROD 

We consider in this section the fundamental HEn mode of a dielec-
tric rod with refractive index n and radius a, with a» X (see Fig. 4). 
The asymptotic form of the field, given in Part II, is 

E(r) = Jo(gr), r < a,  (21a) 

with 

Therefore, 

Jo(ga) = 0, 
ga  (k2n2 — h2)3/4a = 2.4. • • 
h F km — 2.87/kna2. 

fE22irrdr  27r ja J(gr)rdr = 0.83a2. 

By specifying the continuity of the first derivative of the field, we 
obtain the field near the boundary (which is small but not strictly zero) : 

E (x, y) (1.25/p0a) exp (—p0x"/2a) exp (—poy').  (23) 

— 1 x.2 /a 
2 

(21b) 

(22) 

Fig. 4—Field of the fundamental HEIL mode of a dielectric rod. The important 
quantity is the field averaged over the z' axis. Only the close neighborhood of point 0 
contributes significantly to the radiation loss. 
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The parameter R(k) defined in eq. (17) is, in the present case, 

+.0  2 

LR(kx) = (3.75/kna4)[  exp (—p0x2/2a) cos (k.x)dx] • (24) 

Using the equality 

2 

[ j -k°  exp (—ax2) cos (Ic.x)dx] = (7r/ce) exp (—k/2a), 

we obtain 
LR (kx) = (7 .5r / p okna3) exp (—  (25) 

The total loss is obtained by substituting this result in eq. (21) and 
integrating 

= (1.6/Pókna3)(pp0k-2 a/p0)-1 exp (—plp.).  (26a) 

The term po is the same as in eq. (15b). The exponential term coincides 
with the exponential term in Ref. 3 and is applicable to fibers with 
rectangular cross section. For n = 1.01, X = 1 pm, and a = 10 pm, 
we obtain 

2 R 18 X 108(p ± 480)--i exp (—p/80) dB/km,  (26b) 

where p is expressed in micrometers. 
The loss in dB/km is plotted in Fig. 5 as a function of p for X ---- 1 

pm, n = 1.01, and a = 10 pm. The bending loss is considerably 

1000 

1 
0.4  0.6  0.8  1.0  1.2  1.4 

RADIUS OF CURVATURE p IN MILLIMETERS 

Fig. 5—Bending loss in dB/km for a round fiber with radius a = 10 gm and n = 1.01 
in free space, as a function of the radius of curvature p. 
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— 
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•••• 2a >c»is 

—A-

2d = a 

Fig. 6—Slab-loaded rod. For selection of a single mode, the slab thickness must be 
about half the rod diameter if the refractive indices are equal. 

smaller for an oversized dielectric rod than for a reactive surface 
having the same curvature and the same propagation constant. 

IV. RADIATION OF A BENT ROD LOADED BY A SLAB 

We now investigate the radiation loss of a dielectric rod coupled to 
a slab having the same refractive index n shown in Figs. 6 and 7. 

10,000 

10 
a 

5 m 

n = 1 

= 1 gm 

10  12  14  16  18 

RADIUS OF CURVATURE p IN MILLIMETERS 

Fig. 7—Bending loss in dB/km as a function of the radius of curvature p for a 
slab-loaded rod with n = 1.41, X = 1 am, and a = 5 am. 

20 
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The mode selection mechanism provided by this arrangement was 
discussed in Part II. The thickness 2d of the slab is chosen equal to 
half the rod diameter 2a so that, in the absence of curvature, only the 
fundamental (HEn) mode of the rod propagates without radiation 
loss. 
The propagation constant h of the rod is given in eq. (21b). For the 

fundamental mode (H1) of the slab, we have k.  ir/2d = r /a. Thus, 
from eq. (5), with k changed to Am, we obtain 

h. = kn — 4.9/kna2.  (27) 

Substituting these results in eq. (4b), we obtain the rod-caustic 
spacing y 

Y o 
2 p / k2 n2 a2 . (28) 

It can be shown that the higher-order modes of the slab H 2,  H a,  • " • , 

corresponding to kx = 2r/a, 3r/a, • • • , respectively, do not couple 
significantly to the rod and can be ignored. 
The normalized field at the surface of the slab (as we have seen in 

Part II) is, with d = a/2, 

f: (x)dx  2•71-2/p2a3.  (29) 

Substituting the value of Yo  given in eq. (28) in eq. (9b) and multiply-
ing by the expression in eq. (29) to take into account the distribution 
of the radiation field in the x direction, we obtain 

8(Y.) = (7r2/2)/P2a2•  (30) 

Here it is legitimate to assume that only the average waveguide field 
is important. Thus, we can set k. = 0 in eq. (25). Dividing by 2, 
because the field E. is a constant along x instead of a cosine function, 
setting L = 1, and taking into account the spacing D between the rod 
and the slab, we obtain 

R -= (3.757r/pkna3) exp (-2pD).  (31) 

Finally, we obtain the bending loss 

-= SR = 58(p8lend)---' exp (-5.3p/k2n2a3) exp (-2pD).  (32) 

The term exp (-2pD) in eq. (32) is the same as in eq. (76) in 
Part II, and is applicable to the spurious H01 mode of the straight 
fiber. Thus, moving the fiber away from the slab reduces the mode 
discrimination and the bending loss of the fundamental mode in the 
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same proportion. A trade-off is necessary, therefore, that depends on 
the application, e.g., integrated optics or long-distance communication. 
The prefactor in eq. (32) also has the same form as for the discrimi-
nation loss of the straight fiber, with a very fast a-5 dependence on the 
fiber radius a. The numerical factor, however, is almost 20 times 
smaller. This, of course, is a welcome result. The first exponential 
term in eq. (32) has the form 

exp (— P/Po), 

where the critical radius is now 

P o  =  k 2 7 12 a 3 /  5  . 3  =  15aa/X2, n = 1.41. 

(33) 

(34) 

For example, if X = 1 gm and a = 5 p.m, the critical radius is po = 1.9 
mm. If n = 1.01 and a = 5 gm, the critical radius is po = 0.95 mm. 
The complete expression in eq. (32) is explicitly, for n = 1.41, 

= 2.3 X 108X(a/X)-5  exp (-12.5D/X) 
• exp [—p/(15a3/X2)] dB/km.  (35) 

This expression shows that the radiation loss does not exceed 1 dB/km 
if p > 24 mm, when X = 1 gm and a = 5 gm. If n = 1.01 or, almost 
equivalently, if the space between the fiber and the slab is filled up 
with a material whose refractive index is 99 percent of the rod and 
slab index, we have 

= 12 X 101°X (a/X)-5  exp ( — 1.75D/ X) 
• exp [—p/(7.5a3/X2)] dB/km.  (36) 

For instance, for X = 1 gm, a = 512m, and D = 0, a 1-dB/km bending 
loss is obtained for p = 9 mm. 
The radiation losses of the higher-order modes (e.g., Hsi) of the 

rod can be obtained along the same lines. Because h  smaller spurious is sma 
than h„ the caustic radius p, is, for spurious modes, smaller than p. 
Thus, the spurious modes see the oscillatory part of the whispering-
gallery modes. The radiation losses of these spurious modes, already 
quite high, are not significantly affected by bending, except near the 
"sound barrier" h  h.. Near this point, the JWKB approximation 
that we used to describe the radiation field is not applicable, and one 
needs the description in terms of Airy's functions. For the fundamental 
mode (HEII) and first spurious mode (H01), only the H1 mode of 
the slab need be considered. For high-order modes, however, a sum 
needs to be performed over the various slab modes. We obtain from 
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eq. (10b) 

hS = 2ir cf m2(2h2p2)1/4 
m•=.1 

(2h2p2)1E1 — kn/h  4m2(7r/2hejl. (37) 

The first factor m2 in the sum expresses the fact that the slab field 
at the boundary increases in proportion to the slab mode number m. 
The term 4m2(7/2hd)2 results from the change in the synchronism 
condition with the slab mode number m. This function is plotted in 
Fig. 8 as a function of: 1 — (kn/h) for X = 1 zm, n = 1.41, a slab 
thickness 2d of 10 Am, and for a radius of curvature p = 16 mm. The 
propagation constants of HEii and H01 modes for a rod with a radius of 
10 gm are shown on the same figure. We observe that the radiation loss 
of spurious modes fluctuates by a factor as large as 100 (in dB/km) for 
small changes of parameters. Of course, if the radius of curvature is 
not a constant, these fluctuations tend to smooth out. Fig. 9 gives in 
more detail the region h  kn for the same wavelength, slab thickness, 
and refractive index as in Fig. 8, and for p = 16 mm and 48 mm. The 
propagation constant of the rod modes are shown by arrows for a rod 
radius of 11.5 pm. This radius is to be preferred to the radius of 10 gm 
originally chosen because it provides a better discrimination ratio, 
almost 104 in dB/km, for p = 48 mm. The next 16 higher-order modes 
(each arrow, except the first, corresponds to a group of four modes) 
have somewhat less radiation loss than the I/01 because they are 

o 
cc 
8 10- 4 — 
co 

10-6   
—004 

= 1 m 

ROD  SLAB 

a = 10p.m  2d .= 10 m 
n = 1.41  n  1.41 
p = 16 mm 

HEI 1 

H01  

-0.03 -0.02 

1 — knth 

-0.01 

Fig. 8—Radiation loss (proportional to hS) resulting from the coupling of the wave-
guide to the various slab modes (HI, Hy • • • ), as a function of h (the waveguide 
propagation constant), for 2d = 10 gm, X = 1 gm, n = 1.41, and p = 16 mm. 
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Fig. 9—Detail of Fig. 8 for h  kn, for p = 16 mm and 48 mm. The arrows denote 
the rod modes (HE,,, H01, • • •) for a rod radius of 11.5 p.m. 

beyond the "sound barrier" (we are ignoring the dips that would be 
smoothed out anyway in a real system). It is desirable, therefore, 
that a second slab, with smaller thickness, be coupled to the rod to 
damp strongly the modes just following the H01 group, and to improve 
further the discrimination against the other modes. 
The bending loss that we have calculated is applicable to the fiber 

bent in the plane of the slab. When the fiber is bent in the perpen-
dicular plane and with the same radius, the radiation loss is practically 
negligible. Slab-loaded fibers should be manufactured, therefore, in the 
shape of ribbons so that the mechanical rigidity of the fiber favors 
bending in the plane perpendicular rather than parallel to the slab. 
Physical considerations also suggest that a slight curvature of the 
slab, which is unimportant when the fiber is straight, may help to 
reduce the radiation loss. 
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Since the use of graded-index optical-fiber wave guides can greatly 
reduce pulse dispersion, fibers with greater acceptance angles can be 
used to increase the power coupled from an incoherent source. The increase 

in acceptance angle is obtained by increasing the total index variation 
between the core and cladding, which is achieved by increasing the doping 
of the fiber. This paper shows that the increased loss of the fiber resulting 

from concentration-fluctuation scattering by the dopant eventually de-
creases the light at the output end of the fiber. Therefore, there is an optimum 

magnitude for the total index variation based on loss considerations alone. 
Analytic expressions are developed using a simplified theory of concentra-
tion-fluctuation scattering that assumes the dopant molecules are randomly 
distributed. These expressions are applied to doped-silica-based fibers, 

assuming typical values for the source intensity, fiber loss, and receiver 
sensitivity. 

I. INTRODUCTION 

As is well known, multimode optical-fiber waveguides with graded 

refractive-index profiles can have appreciably lower mode dispersion 
than fibers with a step index profile for the same modal content.'—' 

One consequence of this fact is that, for a given bit rate and fiber 
diameter, a graded-index fiber can be used that propagates many 
more modes. This is important when the source is incoherent, such 
as a light-emitting diode, since the amount of power that can be 

coupled into the fiber from such a source is proportional to the number 
of modes it can propagate. 
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At what distance a signal of a given bit rate must be regenerated 
depends on how much dispersion has taken place and on the strength 
of the signal. At first, it seems that the distance would be maximized 
by increasing the number of modes until the maximum distance result-
ing from dispersion is equal to that resulting from signal strength. 
In this paper, we show that this may not be the case, and that a 
maximum distance can arise from signal strength considerations alone. 
Briefly, the argument is as follows. The refractive index of the fiber 

is graded by a graded concentration of a dopant in a base glass. To 
increase the number of modes propagating in a fiber of a given diame-
ter, the magnitude of the index variation must be increased and, there-
fore, so must the dopant concentration. Associated with the dopant is 
an additional loss resulting from scattering by fluctuations in the 
composition of the glass.4 Therefore, we have a situation in which, as 
the number of modes is increased, the loss coefficient is also unavoidably 
increased. The competition between the two effects produces an 
optimum number of modes and, hence, a maximum distance between 
repeaters. 
In this paper we derive the details of this effect and we calculate 

its magnitude for typical source, fiber, and receiver characteristics, 
using a simplified theory of concentration-fluctuation scattering' that 
assumes a random distribution of dopant molecules and neglecting 
any effect of changes in the physical properties and fictive temperature 
of the glass on density fluctuations. 

IL THEORY 

We consider a fiber with a cylindrically symmetric refractive-index 
profile 

n [n (r) r < a 
[no r a , 

where no is a constant. For light guidance, n(r) > no. 
For definiteness, we assume that the dopant increases the refractive 

index of the base glass, since this is generally the case for fibers based 
on fused silica. • It has been shown4 that, assuming the dopant molecules 
are randomly distributed, a glass doped to produce an index n from 
a host glass of index no will have an additional loss resulting from 
scattering by concentration fluctuations given by 

ac --- A. 
n — no 
no 

(1) 

" Although it has been shown (Ref. 5) that boron oxide can be used to lower the 
refractive index of fused silica, this is the only dopant that does so. 
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where ac is the excess loss coefficient and A is dependent on the refrac-
tive properties of the dopant and the host glass and on the inverse 
fourth power of the wavelength. Strictly speaking, the assumption of 
a random distribution of dopant molecules limits the validity of eq. (1) 
to dilute dopant concentrations. There is, however, experimental 
evidence that, in the Na2O—CaO—SiO2 and TiO2—SiO2 glass systems, 
it is valid up to the concentrations of interest' and, although its validity 
for other glass systems of interest has not been established, it does 
represent a reasonable starting point for estimating the effect of con-
centration fluctuation scattering. If we neglect any changes in the 
density fluctuation scattering because of changes in the physical 
properties and fictive temperature with doping, a e is the total increase 
in scattering loss. 
If ¡(r) is the power flow per unit area in the fiber, then from eq. (1) 

the excess loss coefficient of the fiber will be6 

—A r [n(r) — no]I (r)27rrdr 
= no o 

f: I (r)2m-rdr 
(2) 

Although the power flow in a particular mode of a cylindrically sym-
metric fiber generally has an azimuthal dependence, there is always 
another degenerate mode that can be expected to carry the same power 
and produce a total power independent of azimuth. 1(r) will be a func-
tion of the relative excitation of the different modes as well as of the 
index profile n(r). For example, Gloge and Marcatili3 have calculated 
1(r) for the one-parameter class of index profiles,  

I 
no r a, 

[ 1 ._ 2A (r / a)? ] 
n(r) l-2  j 

where the parameter y 1. This class includes the parabolic profile 
y = 2 and the step profile y = cc . Assuming that: (i) the fiber can 
propagate many modes, (ii) à << 1; (iii) n(r) is relatively constant 
over distances of a wavelength; and (iv) all modes carry the same 
power, Gloge and Marcatili3 have shown that 1(r) for the above class 
of index profiles is 

r < a 

(r) = 1/0[1 — (r a)7] r < a 
0 

r a. 

(3) 

(4) 

Multimode fibers of interest will undoubtedly satisfy assumptions (i) 
to (iii). Assumption (iv) is less realistic but, as the actual distribution 
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of power among the modes of a given fiber will depend on the relative 
loss of the modes and the coupling between them, it provides a con-
venient first approximation. 
Since we are restricted to à << 1 by assumption (ii), it is reasonable 

to make the approximation to the profiles of eq. (3) 

1 —   
n(r)  no [ 1—Ls  r < a.  (5) 

Using eqs. (4) and (5) in eq. (2), we obtain 

Ay  à Ay  
rc à . 

y+11 —à 'y +1 

We are interested in considering only those index profiles that have low 
pulse dispersion. From among the class of profiles of eq. (3), Gloge 
and Marcatilia found that the lowest dispersion occurs for a value of 7 
very close to 2. Therefore, we will consider specifically the parabolic 
profile for which 

from eq. (6). 

(6) 

III. APPLICATION TO REPEATER SPACING 

We now consider the consequences of the ¿-dependent loss of eq. (7) 
on the distance one can transmit before the signal becomes so weak 
that it must be regenerated. The loss of the fiber is 

Pi 
1  (0 logio = ao ac)L,  (8) 

Po 

where Pi is the power at the input, Po is the power at a distance L 
kilometers from the input, de is the fiber loss coefficient in dB per 
kilometer because of concentration-fluctuation scattering, and ao is 
the fiber loss coefficient in dB per kilometer resulting from all other 
scattering and absorption processes. 
For incoherent excitation of the fiber, Pi will be a function of A. 

An incoherent source is characterized by a brightness B that is the 
power per unit solid angle per unit area. In general, B is a function of 
both position and direction. Since the area of the fiber and the range 
of directions over which the fiber accepts light are small, we assume B 
constant. The solid acceptance angle at the fiber end face is 

2(r)  r[n2(r)  = 1.27rn82A3i [1 r\ 
a 
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and, therefore, the power coupled to the fiber neglecting any reflection 
loss will be 

= fa B2(r)27rdr  272a2ne     RD' 
o y ± 2) 1 —2à  CA.  (9) 

The maximum distance of transmission will be that value of L for 
which Po is equal to the minimum detectable signal as determined by 
the receiver sensitivity. Combining eqs. (7), (8), and (9), we obtain 
for the maximum transmission distance 

10 log10 (C/Po mi.) +  gio lo  A 
L =  (10) 

ao  A 

This function has a maximum value as a function of à for any given 
choice of C, Po mi., ao, and A, and, therefore, from loss considerations 
alone there is an optimum à. 
In Fig. 1, L is plotted as a function of A for a possible dopant of 

fused silica, Ti02,7 and for three values of C/Po min (a ratio that is the 
total allowable loss normalized by the fractional index variation à) 
that cover the range expected for a practical system. They correspond 
to Po mi. between 10-' and 10-6  milliwattsg and C between 1 and 10 
milliwatts (P, between 10 and 100 microwatts for a fiber with 
A = 0.01). • The values used for the other parameters in eq. (10) are 
coo -= 4 dB per kilometer, corresponding to the loss of the best Corning 
fibers in the vicinity of 0.85 micrometer,1° and from the calculations of 
Ref. 4 a value of A of 170 dB per kilometer, corresponding to TiO2 at 
a wavelength of 0.90 micrometer. The maxima are quite broad; this 

(together with the result from Fig. 2 that the optimum à is not a 
strong function of receiver sensitivity) means that a particular choice 
of à near the optimum will give repeater spacings near the maximum 
over a considerable range of receiver sensitivities. 
Another interesting point from Figs. 1 and 2 is the relatively low 

value of the optimum à, which lies in the range of 0.0037 to 0.0064 for 
the expected source, receiver, and fiber parameters. 

IV. CONCLUSIONS 

The purpose of this paper has been to show that, when concentra-
tion-fluctuation scattering is taken into account, pulse dispersion does 
not necessarily determine the total index variation that will maximize 

Burrus and Dawson (Ref. 9) have shown that it is possible to make diodes with 
C = 10 milliwatts and long life. To cover the full range of possibilities, however, we 
also include the conservative value C = 1 milliwatt. 
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DISTANCE BETW
EEN REPEATERS
 IN km 

à 

Fig. 1—Plot of the maximum distance between repeaters resulting from signal 
strength as a function of the total relative index variation à of a TiO2-doped fused-
SiO2 parabolic profile graded-index optical waveguide. The numbers labeling the 
curves are the values of C/P0 miu, the ratio of the power available from the source 
normalized by à [which, from eq. (9), is a function of the brightness of the source 
and the diameter and index profile of the fiber] to the minimum power the receiver 
can detect. 

the distance a signal can be transmitted over a graded-index optical-
fiber waveguide. We have specifically considered the parabolic index 
profile, since it is close to the optimum for minimizing pulse dispersion. 
A theory of concentration-fluctuation scattering has been used that 
assumes a random distribution of dopant molecules, and changes in 
density fluctuation scattering have been neglected. With these assump-
tions, we find for TiO2 doping and typical source, receiver, and fiber 
parameters that the value of à maximizing the distance between 
repeaters from loss considerations is in the range of 0.0037 to 0.0064. 
The corresponding maximum distance is in the range of 10.3 to 5.9 
kilometers. 
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Fig. 2—Flot of Aopt, the value of the total relative index variation of a parabolic 
profile graded-index optical waveguide that maximizes the distance between repeaters 
because of signal strength, as a function of C/Po roio for TiO2-doped fused SiO2. 

Since the pulse dispersion T for a parabolic index profile is approxi-
mately (Lno/c)(à2/2),3 we find, for à = 0.0047 and L = 8.1 kilometers 
(the optimum values for C /P0 .ii. --r-- 106), that r = 0.44 X 10-9 
seconds corresponding to a bit rate of 2.3 gigabits per second. Hence, 
for a system having C/Po min = 106 and a lower bit rate, the upper 
limit on A and the maximum repeater spacing would be determined by 
loss considerations alone. 
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Telephone structures must remain in operation during the shock and 
vibration caused by blasts, earthquakes, or other dynamic forces. Tradi-
tionally, various numerical methods, including the finite element approach, 
have been used to analyze such problems. These methods, although effective, 
generally require excessive and costly computations. In contrast, the Fourier 
transform method used in conjunction with a fast Fourier transform 
algorithm is much more economical. In addition, shock and vibration 
problems involving frequency-dependent parameters can be effectively 
treated by the Fourier method. However, to make the Fourier method more 
effective and widely applicable, various tractable input-transfer-output 
relations are needed. This paper derives a set of simple equality and in-
equality relations that allow various response parameters to be con-
veniently estimated based on partial knowledge of the input and the 
structures. In particular, two lower bounds and eight upper bounds of the 
maximum response of linear structures are presented. Simple structures 
subjected to impulse loads resembling blasts and a random transient load 
resembling earthquakes are studied. Practical applications of the method 
to telephone structures are demonstrated by the analysis of a battery stand 
and a community dial office system in an earthquake area. 

I. INTRODUCTION 

The Fourier transform method has long been used to characterize 
linear systems and to identify the frequency content of waveforms. 
Sneddoni demonstrates classical applications of the Fourier transform 
method to engineering and physics problems. Amba-Rao' gives recent 
applications of this method to elasticity, White' illustrates system 
response calculations, Le Bail!' demonstrates boundary-value problems 
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in physics, and Liu and Fage15, analyze earthquake soil-structure inter-
actions. In the last three applications cited, the fast Fourier transform 
(FFT) algorithms were used in conjunction with the Fourier method 
to obtain numerical solutions. The development of FFT algorithms in 
the past few years has rapidly expanded the application of the Fourier 
method to include digital analysis of linear-system dynamics. 
This work was motivated by the idea that some simple and effective 

techniques based on the Fourier transform method and response-
bound relations of linear systems can be developed for the shock and 
vibration analysis of telephone structures. 
This paper discusses the Fourier transform method applied to the 

vibration problems of linear structures and presents some simple 
relationships that make it possible to quickly evaluate and estimate 
various response parameters. In a typical engineering vibration prob-
lem, the primary concerns are the time and frequency aspects of the 
input and output (response) and the transfer characteristics of the 
system or structure involved. The parameters or functions of interest 
are generally the waveforms of input and output, their Fourier trans-
forms, the peak values, the frequency characteristics of these wave-
forms, and the effects of linear filtering by structures. Of further con-
cern are the time and frequency distributions of energy or power of 
these waveforms and, particularly, the analytical and empirical rela-
tions among all the parameters and functions mentioned above. In 
view of the advance of computational techniques, some well-known 
and lesser-known input-transfer-output relations useful to shock and 
vibration analysis should be systematically presented. The purpose of 
this paper is to make these relations available, to discuss their implica-
tions, and to demonstrate their applications. 

II. BACKGROUND AND THEORETICAL BASIS 

Applied to the engineering vibration problem, the basic concept of 
the Fourier method of analysis is very simple. We assume that the 
structure under consideration is linear, causal, and stable, and its 
property is completely defined by the associated transfer function 
pairs h(t) <-> H (ico), where H (ico) is the frequency response function, 
h(t) is the impulse response function, t is the time variable, w is the 
frequency variable, i is the complex unit, and the symbol 4-> indicates 
a Fourier transform (FT) pair. When the structure is excited by an 
arbitrary (deterministic or random) input function, x(t) 4-> X(ia), the 
response is given as y(t) 4-> Y (ico). If X(ico) and H (iw) are known, the 
response can be obtained by using the simple relationship, y(t) 
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= x(t)*h(t), where * indicates convolution, or by using Y(iú) 
= X (iw)H (iw) and taking the inverse FT of Y(i4.0). Other response 
quantities of interest can also be obtained from the basic FT pairs 
x (t) 4-> X (i.w), h(t) 4-3 H (iw), and y(t) 4-> Y(iw) once their relations and 
the pertinent response parameter are found. This approach is efficient 
because no numerical integrations are required (as in many traditional 
methods of analysis), and it yields all needed solutions in both the 
time and frequency domains with simple discrete FT or FFT computer 
routines now generally available. However, the Fourier method of 
analysis is particularly attractive and powerful because of the availa-
bility of some analytical input-transfer-output relations as described 
in this paper. These relations, in the form of simple equality or in-
equality, can solve many practical problems. Some important pre-
liminary background material, particularly the definition and proper-
ties of an arbitrary shock function, f(t), will be briefly given before 
the main results. 

2.1 Shock function and related quantities 

A time function f (t), t E [a, b] for finite a > b 0 is referred to as 
a shock function. Without losing generality, it is assumed that f (t) 
begins at t = 0 and has finite duration T, i.e., a = 0 and b = T. The 
shock function f(t) could be the input x(t), the output y (t), or the 
impulse response function of the system h(t), and it could be either 
deterministic or random. Associated with a shock function 1(t), the 
following quantities of interest are defined: 

Fourier Transform: 

F (iw) = o f (t) exp (—iwt)dt. 

Running FT or Spectrum: 

F (t, ici,) f f (r) exp (—iwr)dr. 

Energy: 

E f(t)  f f2 (r)dr = I le IF (t, ico) 12do.). 
Jo  27r 

Total Energy: 

1  . 
E, =  f  P  , (t)dt = —  (zw)1 2d.w. 

Jo 27r   
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Instantaneous Power Spectrum: 

a 
Fp f(t, ice) = — I (t, ice)1 2. at 

Power: 
dEf(t) 1 r-  

Pf(t) dt  27r.  PAzw) ".  

Frequency Moment: 

1 j"°° 
Fr  , co I n IF(ico)  n = 0, 1, 2, • • • . 

Time Moment: 

foT Itinif(t)Idt n = 0, 1, 2, • • • . 
Frequency Variation: 

8i.n =  F(')(ito)Icico,  n = 0, 1, 2, • • • . 

Time Variation: 

8.f.n =  f  I f (n) (t) dt,  n = 0, 1, 2, • • • . 
o 

Correlation Function: 

Ri(r) = f (t)*f (t) = f o f (t) f (t — r)dt. 

Note that some of these quantities, e.g., M f,„ and mf,n, may not exist. 
Some simple bounds on f(t), F(w), and their derivatives, which will be 
used to derive response relations, can be readily obtained from the 
above equations. 

2.2 Some bounds of shock function and related quantities 

2.2.1 Derivative bounds 

The following inequalities relating the derivatives of a shock function 
or of its FT with various signal parameters can be established. 

f (n) (t)I  M. 

E St   14 
f(") (I) I nn [ (2n +f 1)j .  
I F (n) (i(0) I m. 

Tn (2nEf-1-77 1) 

n = 0, 1, 2, • • • .  (2a) 

n = 0, 1, 2, • • • .  (2b) 

n = 0, 1, 2, • • • .  (2c) 

n = 0, 1, 2, • • • .  (2d) 
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These relations can be proved as follows. The nth derivatives f (n)  (t) 
= (In f (I)/ dtn and Fn(iw) = dnF (ico)/ &en (n = 0, 1, 2, • • • ), can be 
written as 

f (n) (t) =  (ico)fiF (ico) exp (icoOde  (3a) 

and 

F (n)  (i(t)) =  f 0 — it) n f (t) exp (—ico)& (3b) 

Equations (2a) follows from (3a) and (1g), and (2c) follows from (3b) 
and (1h). Note that (2a) and (2c) are analogous bounds in terms of 
frequency and time moments, respectively. Equations (2b) and (2d) 
follow from (3a) and (3b), respectively, and Schwartz inequality. In 
(2b),  is a constant and is defined as F(ice)  0 for co I SI; i.e., in 
the practical sense, the shock function f (t) is assumed to be essentially 
band-limited. Although a shock function cannot be strictly band-
limited, in practice most functions (except ideal impulses) possess a 
frequency value beyond which the Fourier spectra are negligibly small. 
Furthermore, because the sample rate can never be infinitely large, 
digitization of the time function always imposes a practical band-limit. 
Although the details are beyond the scope of this paper, various 
methods and criteria are available for the construction of equivalent 
band-limited signals. Equations (2b) and (2d) are also analogous 
bounds in terms of energy. 

2.2.2 Amplitude bounds 

1 1 (0 1 <( E 7fri2 for all t,  (4a) 

F (ico)1  (E fT) 4 ,  for all co,  (4b) 

11(01  for all t, n = 0, 1, 2, • • • ,  (4c) 

jF(i(4)1  81 'n IÙ)1 n for all w, n = 0, 1,2, • • • .  (4d) 

When n = 0, (4a) and (4b) are special cases of (2b) and (2d), respec-
tively. From the relation (—it)"f (i) 4-> F (n)  (iW), the following relation 
holds: 

1 1(01  -5 I (it)-n 2.-.7-r f:I Foi) (i.) I clw.  (5) 

Relation (4c) is obtained from (1i) and (5). Note that in (4c) no 
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band-limitedness requirement is needed. Similarly, the relation 
f (a) (t) 4-) (ico)nF (ico), eq. (1j), and 

I (1w)'i r  f (n) (t) I dt (6) 

lead to (4d). When (4c) [or (4d)] is used, better bounds are provided 
for small t (or w) when n is small, and for large t (or co) when n is large. 

2.2.3 Increment bounds 

Let (5., =  f (t + At) — ¡(t) and SF F[i(co  ¿kw)] — F(ico), then 

ô, I Mit, (7a) 

6„. r 2Efn  )i  (7b)i 
L 7r \ 

SF I miàco,  (7c) 

and 

\  < TAco é 
sin TAco EIT y 

I (5F 5_ [2EfT (1  ned  •  (7d) 
i  3 

Relations (7a) and (7c) are special cases (when n = 1) of (2a) and 
(2c), respectively. Equations (7b) and (7d) follow from (la) and the 
corresponding inverse FT relation, respectively, and from Schwartz 
inequality. Note that the band-limitedness requirement is imposed to 
derive (7b). Equations (7a) and (7c) are analogous increment bounds 
in terms of moments; (7b) and (7d) are analogous bounds in terms of 
energy. Kak7 proves (2d), (4b), and (7d), while Papoulis8,9 proves (2b), 
(4a), and (7b). 
The equality conditions for the above relations can be easily identi-

fied. For example, the equality holds for (2d) when 1(t) = C(it) 
for even n and a constant C, for (4b) when 1(t) = C exp (icoot), 
when coo = nir/T, and n = 0, 1, 2, • • • , and for (7d) when f (t) 
= 2(1 — sin Ato)i. Analogous conditions apply to their analogous 
counterrelations and can be established straightforwardly. 

2.2.4 Energy bounds 

Let f. = max I At) J, occurring at t = th and Fm = max I F (ico) I, 
occurring at co = cop. Then 

P1,71-1 . E  f e for all co.  (8) 

The upper bound is obvious from the definition of E, given in (id); 
the lower bound follows from applying Schwartz inequality to the 
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relation 

F (ico) = fT f (t) exp ( — iwi)di, 
which results in 

IF (iw)1 2 f  ' At) 

0 

2dt f  exp (—iwt)! 'di < EfT for all w. (9) 

III. RELATIONS FOR VARIOUS RESPONSE PARAMETERS 

The basic properties of a general shock function and its FT provide 
the basis for establishing important equality and inequality relations 
for various response parameters of linear systems. Let x(t) 4-> X(iw), 
h(t) 4-4 H(iw), and y(t) 4-> Y() represent, respectively, the FT pair 
of the input, the transfer function, and the response; x(t), h(t), and 
y(t) are shock functions; therefore, the basic definitions and prop-
erties are applicable. The functions x(t), h(t), and y(t) are assumed 
to possess time duration Tz, Th, and Ty and are band-limited 
within wx, wH, and coy. It is obvious that T, =  T,, and 
= min (ex, UN). Let x„, = max I x(t) I, hm = max I h(t) I, y„. 

= max I y (t) I,  = max IX (i.w)  = max 1H (ix») , and Y.. 
= max I Y(i40) I, and ex, th, ti„ cox, wH, and coy be the corresponding 
times and frequencies these maxima occur. Note that tx, th, and ty or 
wx, wH, and wy need not be equal. In addition to the well-known basic 
input-transfer-output  relationships y (t) = x(t)*h(t)  and Y (ice) 
= X (ie)H (iw), the important relations that follow can be established. 

3.1 Total energy bounds 

The total energy of x(t), h(t), or y(t) is bounded by the peak ampli-
tude of the associated time function from above and by the peak 
amplitude of the corresponding FT from below. 

X2mTx-1 5E,,  e,T„  (10a) 

Eh le„Th (10b) 

Y171,71 5 Ey  yew.  (10c) 

These results follow directly from the use of (8). 

3.2 Kinetic, potential, and dissipated energies 

For a simple oscillator with unit mass, a natural frequency w., 
and a viscous damping X, the following relationships exist for the 
kinetic energy [T (t) = p2/2. TM], the potential energy [V(t) 
= 4y2/2 4- > V (w)j, and the dissipated energy [D (e) = Xce,yY  
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of the system 
1 VT(<4  —  (tico)*É(tico)] 
4ir 

V(w) = °471  [Y (ie)*Y (ico)] 

xe0 2 
D (ce) =  [1.7 (ico)*Y (tice)], 

271 

(11a) 

(11b) 

(11c) 

where e(t).f(i.) = (io.,)Y(ico). The proof of these equations is 
obvious. Using the relationship Y (iw) = H (ico)X (ico) with a simple 
FT routine, (11a) through (11c) allow various energy functions of 
time to derive directly from X(iw) and H(ire). 

3.3 Maximum response bounds 

Various upper and lower bounds of the maximum temporal response 
y„, =- max I y (t) I can also be established. Let /, denote lower bounds 
and ui denote upper bounds of y„,(i = 1, 2, • • • ), then the following 
relation holds: 

where 

12 s 11 <y. 

Us  U8 

U4  U6 

U2  U7 

U3 

U4 

ii =- max [E5(t)/t],  /2 = 17,,,/T„  ui = (E512y/7r)4, 

U2 = (LEAP, 

and 

(12) 

/43 = S /  144 =  V  7. (iCO)  1271-41 

— fly 

Us = 12yYm/71,  U6 = (I2yEz/71) 41/,  = (52yEh/71) 1X., 

U8 = &1yX,,J-1,,,/r. 

The symbol V in the expression of u4 indicates the total variation. 
The lower bounds shall be proved first. Considering the running FT 

of y(t) according to (lb) and applying Schwartz inequality, the follow-
ing can be written 

Y (t, iw) 12  f Jy(r)I 2dr E exp ( — icor) 

E (t)t 

[ max y(r) 1 ]2t2 (13) 
0 sr St 
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Therefore, for all w and t, 
max  y(r)  LE (t) y a; I (tt, ¡co) I  
O r 

and 
Y 

y„, max    
t j  T, ' 

which gives the lower bounds /1 and /2. Note that (E,/ Tv) and 
[E„(ti,)/tiji are two special cases of /1, and that /1 occurs at large (or 
small) t if the energy function E y(t) increases faster (or slower) than t. 
For a given structure, Y. is fixed; therefore, the bound /2 decreases 
with T,. Note also that, in (14a), the quantity maxt,. EI Y(t, iw) 
should be the exact expression for /2. However, the current expression 
17,i/T, is more convenient to use than the exact expression that requires 
the computation of the running spectrum over the entire t — w plane. 
Clearly, better lower bounds for the maximum response can be estab-
lished on the knowledge of the total energy of the response than on the 
knowledge of the peak Fourier spectrum of the response. 
It is interesting to compare the lower bounds in (12) with the bound 

Liu" establishes for a specific case. For a simple linear oscillator with 
natural frequency wo and viscous damping X, it has been shown that 
the maximum displacement response 

y„, -1 I X (iw) I  = is,  (15) 

where p = (1 — X2)iwo. In this situation, the corresponding H (ito) 
=  2icoca,,  caD-' and 1-1„, = (2Xcoop)-' occurring at co = cox 
=- (1 — 2X2) icoo. Therefore, the bound /2 gives y. I X 
(2pwoT), and in (15) /3 gives y. I X (iw) I „,-„/ (p). Clearly, if damping 
is small, i.e., if wH Pr: p, then /2 < /3 when 2XwoT > 1, /2 > /3 when 
2Xw0T < 1, and /2 = /3 when 2XwoT = 1. 
The upper bounds, u1 through us, will now be derived. The bound 

u1 follows from the use of (4a) and the assumption t„ T5; u2 is obtained 
from applying Schwartz inequality to the relation y(t) = x(t)*h(t) ; 
u3 is obtained directly from (4c) ; '14 is a special case of u3 when n = 1 
(Giardina" proves this differently) ; u6 and us follow from u1 and the 
relation 

Ey =  InY jY (ice) 'Mc° 91 , X%Hl;  (16) 27r  IT  IT 

and u6 and u7 follow from u1 and the relation 

1 .°Y 
Ey =  .1_ny I X (ico)H (iw)1Mo"  H U. or XlE h.  (17) 

ir 
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Generally, better bounds can be obtained when more is known about 
the input, the transfer characteristics, and the output. For example, 
the poorest bound in (12) is obviously us because the band-limit Sly and 
the peak values of spectra f X (ico) I and H (ico) I are all that are known. 
Closer bounds can be established if 51y and Y. are known, or, equiva-
lently, E. and H., or Eh and X„,. Still closer bounds can be obtained if 
the energy functions 4, or E. and Eh are known. Knowledge of E„, in 
most cases, depends on the knowledge of y (t) or Y(ico) ; the exact 
value of y,, can be readily obtained from this knowledge. Therefore, 
bounds depending on 4, explicitly, such as is and us, may not help in 
practical applications. Note that bounds us, u2, and us grow with Ty ; 

therefore, they do not provide good results for large Tin i.e., when long 
excitations or small damping sustain the response for some time. The 
bound us depends only on the knowledge of the input and the transfer 
function; therefore, it is convenient to use. Furthermore, it is inde-
pendent of the output information, thus, it cannot be considered one 
of the better bounds, especially for very small or very large time t. 
Bounds us, u2, and us also depend mainly on the input and the transfer 
function, and the only output knowledge required is the band-limit 
frequency fty. Bounds us and us are generally better, yet they require 
the prior knowledge of tu, the time when the maximum response occurs. 
This is usually difficult to know without the waveform or FT of the 
response. Additional calculations are also needed for the following two 
bounds: for us, the calculation of Si,„ and the areas under the spectra 
of Y (ic.u) and its derivatives, and for us, the absolute value of the total 
variation of the complex quantity Y (ico) for the entire frequency axis. 
For us, small n provides better bounds for small t, and large n for 
large t. For us, it provides better bounds for large t than for small t. 
In general, us, u3, and us are better upper bounds, yet they are less 
convenient to use than others. 
Some interesting features about these response bounds are note-

worthy. Drenick" derives the least favorable excitation for structures 
based on u2. An uncertainty condition T„(11 ir, familiar in band-
limited and time-limited signal analysis can be arrived at from bounds 
/2 and us. The bound us can be used to estimate the settling time ts for 
the response y(t) to remain with a specified value €1°. For example, if 
Ys(iso) is smoother, and thus has less variation than Y 2(ticd), then 
yi(t) takes longer than y2 (t) to settle to the level e. This implies that, 
for two comparable response Fourier spectra, the smoother one corre-
sponds to the response of a system with higher damping and the rugged 
one corresponds to the response with less damping. 
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3.4 Mean square response 

If x(t) and hence y(t) are random, the mean square response 
aï =  y(t)1 2] (where E denotes expectation) is of interest. Let 
ciï =  x(t)1 2], and S(tic) and 8„(ico) be the power spectral density 
functions, and R(r) and R(r) be the autocorrelation functions of 
x(t) and y(t), respectively, then the following relations regarding Oi 

can be found: 

= Ro(0) = j" Rh(r)Rx(r)dr 
o 

2 =  ELE„] _ E[IX(tico)1 2] E 
I7y  T y 271-Tu h 

u 2 <  n_ H ,. 
271-

In (18a), R(r) = Rh(t)*Rx(t), Rh(r) = eh(t)h(t — r)dt = the sys-
tem autocorrelation function, as defined in (1k). Because the proofs of 
these equations are straightforward, they are omitted. The mean 
square response can be provided either by (18a) upon a simple time 
integration of the product of the autocorrelation functions of input 
and impulse response, or by (18b) upon the direct knowledge of the 
mean output energy or the expected square input Fourier spectrum. 
Equation (18c) provides a simple upper bound based on mean square 
value of input and the peak amplitude of the frequency response of 
the system. 

3.5 Relations regarding input and output time histories 

The following useful equations relate the time histories of input and 
output: 

x (t)  _ 
y (i) — exp  1 8X(t '  at 1 1 aY (t, iw)/at 

(19) aXc(t, ico)/at 
= exp (—iwt) { a yqt,  

x(t) y(t) =  1 f '  Re [H(ico)]t).(t, ico)dw  (20) 

a mix(i) (t)  
Y (I) =  (21) 

1 n niy(i) (t) 
x(t) =  (22) 

mo 
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where 
e 

m5 =  1  iih (t)Cli,  no = (mi/mo), 
-. 

ni = (m?/m0 — m2/2), 

n2 = [lento — (1 + mo)m1n2/2m0 — m3/6m0], • • • , etc., 

and the superscript c in (19) indicates the complex conjugate. 
Equation (19) expresses the waveform of input or output in terms 

of the corresponding running spectrum and can be used to recover it; 
(20) gives the instantaneous value of the multiple of x(t) and y(t) as 
a simple frequency integral in terms of the transfer function and 
instantaneous power spectrum density of the input; (21) [or (22)] 
expresses the output (or the input) waveform in terms of the moments 
of the impulse response function of the system and the derivatives of 
the input (or the output). Liu" derives (19) and (20). Papoulie uses 
Taylor's expansion to derive (21) and (22). Note that (21) and (22) 
are useful only if the two series converge rapidly; i.e., if the transfer 
function H(ii) only takes significant values and can be approximated 
by a polynomial of low order within the region of l co l 5 Sly. 

IV. SHOCK AND VIBRATION ANALYSIS OF SIMPLE STRUCTURAL SYSTEMS 

The relations presented above can be applied in the shock and vibra-
tion analysis of structures. Since many structures can be treated as 
systems with a single mode of oscillation and many others can be 
solved by superposition of various modal responses in the generalized 
coordinates, the application can be well illustrated by the analysis of 
simple structures. We therefore consider a set of single-degree-of-
freedom systems with natural frequency in the range of 0.05 to 10 Hz 
(most commercial and industrial structures have natural frequency in 
this range), and having a damping ratio of X = 2 percent and 10 
percent, respectively. These structures are subjected to a random 
transient load resembling a strong-motion earthquake accelerogram 
(Fig. 1) and four different types of idealized impulses resembling air or 
ground shocks (Fig. 2). The various bounds of the relative displacement 
and acceleration responses of the structures are calculated according 
to (12) and compared with the actual maximum response ym. The 
results in Fig. 3 indicate that, for earthquake type of excitations, the 
lower bound /1 and the upper bound u3 (with n = 0) are the better 
bounds; u4 and ui also appear as reasonably good upper bounds 
although, for the acceleration response, they show wider fluctuations 
than u3. Bounds /2 and u3 fluctuate with I'm and vary with the natural 
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Fig. 1—A random transient waveform. 
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frequency of the structure, co.; therefore, both have the same degree of 
closeness to the real response. Bounds us, us, and /2 provide rough 
estimates of the response; this is expected because little information is 
needed about the input, the output, or the structure. Bounds us and 
us are constant for the acceleration response (see Figs. 3a and 3b) 
because, for a fixed input, E. and X. are both constant, and the 
simple structures considered, H. = (2X)--1(1 _ i.e., the maxi-
mum spectrum of the transfer function associated with the relative 
acceleration response is a constant for a given damping, and is inde-
pendent of co.. Bounds us and us, for the displacement response, 
decrease with co. (see Figs. 3c and 3d) because the associated 
H. = (2Xp)--1. Bounds us and 24, for the acceleration response, grow 
with Et, which increases with co.. For the displacement response, us 
appears also to be a reasonably good bound. 
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Fig. 2—Impulse loads. 

The results for various types of impulse loads are generally similar 
and can be represented by Fig. 4. For impulsive types of excitations, 
we can make the following general observations: (i) /1 seems to be a 
very good bound for most cases (li y,,, when w —> 0 or when w is 
small), (ii) the best upper bound is u3 (n = 0), which is very close to 
y., particularly for the displacement response, (iii) u6 and u8, because 
they are constant for the acceleration response and decrease with wo 
for displacement response, do not appear to be good upper bounds, 
(iv) for the acceleration response, u2 and u7 increase with coo; the rate of 
increase is reduced in high-damping cases, (v) for the displacement 
response, uà —> us and u7 —> ui, when w —> 0, and (vi) next to u33 /12 
and u4 seem adequate as upper bounds. 

V. APPLICATIONS TO TELEPHONE STRUCTURES IN AN 
EARTHQUAKE AREA 

The above analysis can be applied to shock and vibration problems 
of telephone structures. Examples are the dynamic response analysis 
and aseismic design of various telephone building and equipment 
systems located in an earthquake area. Some of such applications will 
be described below. 

5.1 Aseismic design of battery stands 

It has been recognized" that, in large areas of the country susceptible 
to earthquakes, battery stands on floors of multistory telephone build-
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ings require special physical design consideration to protect the 
safety of operating personnel and the reliability of telephone plant. 
Figure 5 shows a typical soft-site stand modified for service in earth-
quake areas. It consists of bracing to support the stand laterally from 
an overhead ironwork structure and to support the cells on the shelves. 
Clearance is provided around the entire cell to allow it to rattle around 
freely in response to ground motion. The failure of the battery stand 
generally occurs from excessive acceleration, which could lead to 
sliding and rattling of cells and their banging against one another and 
against the side racks, and from excessive displacement of the stand 
that could result in overstress of the column members of the stand. 
Therefore, the displacement and acceleration responses of the stand 
are of crucial concern to its aseismic adequacy. These response parame-
ters can be estimated very conveniently by the response-bound rela-
tions derived in Section III. We assume that all that is known about 
the physical property of the battery stand is that it has a damping 
ratio about 2 percent and a natural frequency in the range of 3 to 5 
Hz." It is reasonable to assume that the floor motion corresponding to 
a large earthquake resembles the waveform shown in Fig. 1. The peak 
acceleration amplitude would be in the range of 0.75 g because of the 
soil and building amplification of the ground motion. From the analysis 
in Section IV, the response bounds of the battery stands shown in 
Fig. 6 can be readily established. From the acceleration lower bound 
/1 in Fig. 6 that provides an underestimate of the actual responses, it is 
immediately clear that the natural frequency of the battery stand in 
the range of 1.5 to 3 would not be desirable. Because the high accelera-
tion level in this range would cause lateral forces exceeding the friction 
force between the base of the cells and the supporting shelves, the 
battery would then slide and rattle violently in response to ground 
motion. The displacement bounds xi, and l indicate a continuously 
decreasing trend with the natural frequency of the stand. The upper 
bound u3, which provides a conservative estimate, indicates that, if 
the battery stand is designed to have a natural frequency higher than 
5 Hz, the actual maximum displacement response would be less than 
the acceptable limit, e.g., about 3 inches. We can therefore conclude 
from such a simple analysis that, from consideration of both the 
acceleration and displacement responses, it is desirable to increase the 
frequency of the battery stand up to about 5 Hz or above. The increase 
of the frequency or, equivalently, the stiffness of the stand can be 
generally achieved by adding bracings to the wall, columns, or to 
superstructures such as the auxiliary frames. 
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Fig. 3—Response bounds of single-degree-of-freedom structures subjected to 
random load. 

1418  THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1974 



MAXIMUM DISPL
ACEMENT RESPO
NSE g - sec2 

10 

0.1 

0.01 

0.001 

0.0001 0.01  0.1 1 
FREQUENCY IN Hz 

Fig. 3 (continued). 

10 

(d) 
X = 20% 

100 

RESPONSE-BOUND METHOD  1419 



10.000 

= 2% 
MAXIMUM ACCEL
ERATION RESPO
NSE g 

1000 -

100 - 

- 

10 -

0.1 

001 
001  0.1  1 

• 
• 
\ U5 

u6 ..--.-.-  -  - 4, -  -  - ......--. -'' 

Î ....•' ..-

__../.. < 
.. . .....  I,  \ 

II  \ 
LI, ------- ---„, \  ii ,,, 

•  ..-.., 

.....""  • 

u, _ _2 „../r.- - • -- ."-  • 
• 

U4 ".....  1 r \ 
u3 --------- ---.. \ ' th \  • • 

Y"' "''- _-.:.  .-- --  \ i  • 'l \  \ \  • 

V N  ‘ • 
Œl -   • 

02 ...  \... -.,.... \  \  \ 

\ •..,\ .. \\\ 

.1 M 11 

FREQUENCY IN 

10 

I 1 

100 

Fig. 4—Response bounds of single-degree-of-freedom structures subjected to sine 
impulse. 

1420  THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1974 



100,000 

 ̂

'0,030 

 ̂

1000 

100 

10 

o 
a 

•  1 

• 10,000 

<e) 

1000 

2 

100 

10 

0.1 
0.01  0.1  1 

FREQUENCY IN Hz 

Fig. 4 (continued). 

1 

_ 

_ 

_ 
— 

_  yr,;\  :•‘.. \•,.. \\ 

\  \ \  •S \   
\ \ \ \ 

\ \ 

.  \  \ • • 
_  ‘ \ 

0\  \  \ \-"  •\‘‘‘ \ 
1  1 1 i I.  i \\11, Nx.‘d  ),%  \ 1 ‘.1,  \ 1 X  x.1. 

X = 2% 

I  t  I I  

I I 
10 

X = 20% 

I  I 11 

100 

RESPONSE-BOUND METHOD  1421 



Fig. 5—Soft-site battery stand modified for service in earthquake area. 
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5.2 Earthquake adequacy of community dial offices 

A community dial office (CDO) is a small telephone office housing 
mostly step-by-step equipment servicing a local community. The CDO 
buildings are generally one-story concrete block constructions, with a 
few steel-frame constructions as exceptions. 
Tests and analyses relating to typical CDO facilitiesums have in-

dicated seismic weaknesses in the equipment connective system, par-
ticularly at the junction of the superstructure bracing system to the 
building. Figure 7 shows a schematic cross-sectional representation of 
a typical CDO equipment support structure. Equipment frame lineups 
are generally tied together at the 9-foot level by cross-aisle cable racks 
and angle braces (indicated as lineup braces). On the common distribu-
tion frame (CDF) side, the frames are attached to a wood batten on 
the building wall by horizontally oriented cable racks and angle braces 
(indicated as wall braces). 
While there are several possible failure modes of CDO equipment, 

the most likely and the most critical one is the failure of the lateral 

WALL BRACE S\  

9 FT 

WOOD BATTEN 
._-BRACE-. _. 

8 
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Fig. 7—Typical CDO support system. 
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support system during severe ground shaking. The wood batten shown 
in Fig. 7 is attached to the building wall by either lag screws into wood 
studs, lag into lead expansion shields inserted into concrete blocks, 
or toggle bolts into concrete blocks, depending on the building con-
struction. This batten could pull away from the wall and result in the 
collapse of the equipment. To determine whether such a failure might 
occur, it is necessary to compare the axial force of the wall bracing 
development during the earthquake with the allowable force. The wall 
force is given as F = EA 5/i, where E is the modulus of elasticity, A 
and L are the cross-sectional area and length of the wall brace, respec-
tively, and (3 is the relative displacement between the two ends of the 
wall brace. From testing or analysis we assume the transfer function 
Hé (co) for the relative displacement response â of a hypothetical CDO 
system as given in Fig. 8. We wish to find the earthquake-resistant 
capacity of this system, e.g., the highest ground acceleration this 
system can safely withstand. 
A typical wall brace is made of steel with E = 30 X 108 pounds per 

square inch, A = 0.53 square inch, and L = 5.7 inches. By testing 
we found that the maximum axial force the wall brace can take without 
pulling out of lag screws or toggle bolts is 900 pounds, which corre-
sponds to a maximum lateral relative displacement of (5 = 0.003 inch 
between the two ends of wall brace. Based on the transfer function, 
I13(w), and the results described in Section IV, we found that a con-
servative estimate (u3) of the maximum displacement corresponding 
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Fig. 8—Transfer function of CDO system. 
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to a 0.2 g earthquake loading is approximately 0.002 inch. Assuming 
the system remains linearly independent of the input amplitude, we 
can conclude that the hypothetical CDO system under consideration 
is capable of resisting earthquake ground acceleration up to about 
0.3 g, a motion equivalent in magnitude to the El Centro 1940 earth-
quake. Additional braces would be needed if higher acceleration level 
is expected at the site. 

VI. CONCLUSION 

Various equality and inequality input-transfer-output relations are 
derived to facilitate the application of the Fourier transform method 
in the shock and vibration analysis of linear structural systems. In 
particular, a set of lower and upper bounds of the maximum re-
sponse is obtained. Such bounds allow various maximum response pa-
rameters to be easily estimated with little computation effort. The 
accuracy of the estimate depends on the degree of availability of in-
formation about the input, the transfer function, and the response of 
the system. In general, ii and u3 appear to be reasonably good lower 
and upper estimates of the maximum response, respectively. Estimates 
of response bounds of simple systems are examined when subjected to a 
random transient excitation and impulse loadings. For systems whose 
transform functions roll off quickly at high frequencies, or for inputs 
that have fast-decaying Fourier spectra, the relations presented apply 
reasonably well. Care should be taken with short-duration impulses 
that have wide spectra. Telephone structures subjected to earthquake 
excitations, e.g., a conventional battery stand and a CDO system, are 
considered to demonstrate the practical applications. 
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