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A field survey to characterize echo performance of toll telephone connec-
tions was conducted in 1972. Information on echo path loss and echo path
delay for talker echoes was obtained from a sample of nearly 1700 con-
nections in the continental United States. This paper discusses the survey
data acquisition techniques, the sample design, and the statistical results.
A major result of the survey was the determination that echo path delay is
significantly less than previously estimated. For the longest connections
(2700 miles or 4345 km), the median round-trip echo delay is 45 ms, 11 ms
less than previously calculated from the sum of connection segments.

I. INTRODUCTION

Echo may be experienced by talkers on long telephone connections
when conditions exist analogous to those producing acoustic echoes,
i.e., a two-way transmission path, a point of reflection, a perceptible
time delay between transmission and reception, and received energy
of sufficient amplitude to be detected. In the presence of a loud, long -
delayed echo, whether acoustic or telephonic, conversation is likely
to be difficult. Figure 1 is a simplified representation of a long-distance
telephone connection with two -wire loops, four -wire trunk, and the
hybrids (H) and balancing networks used in joining two -wire and
four -wire circuits. The hybrids are the principal points of reflection in
the telephone network. When a hybrid is perfectly balanced, none of
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the energy from the receive pair of the four -wire path passes to the
transmit pair. Since many different two -wire circuits, presenting a
range of impedances, may be switched to a trunk while its associated
balancing network remains fixed, some energy, which varies in amount
from connection to connection, may be returned to the talker. Figure
1 also shows the direct and echo speech paths and their relative delay
times. Only talker echoes are discussed here, since listener echoes are
not significant when talker echoes are controlled to acceptable
magnitudes.

Control of echo has been a concern of telephone engineers since
long-distance telephone connections were made practicable by the
introduction of low -distortion gain devices. The factors causing tele-
phone echoes and most of the methods used since then to control echo
were discussed by A. B. Clark in 1923.1 These factors included the
tolerance of talkers to echo as a function of echo amplitude and echo
delay, the velocity of propagation of facilities, the degree of control of
reflected signals at reflection points, and the choice of trunk losses to
insure acceptable direct speech amplitudes while keeping echo ampli-
tudes low. Another method of controlling echo that is presently used
was soon added, the installation of echo suppressors on trunks having
long echo delays to open the echo return path when speech is present
in the direct path.2 These measures, as appropriate, were applied to

longer delayed reflections) and
to short toll trunks to control singing and near -singing distortion (from
shorter delayed reflections). The toll network trunking plan generally
required only one or two short trunks and one long trunk to establish
any long-distance connection. These trunk design methods for echo
and singing control were continued from the 1920s through the 1940s,
though with the passage of time knowledge of subscriber preferences
was refined, impedance balancing was improved, new echo suppressors
were developed, and carrier -type toll transmission facilities having
propagation velocities approaching that of light were placed in service.
These improvements permitted substantial reductions in the overall
losses of long-distance connections.

A major change in echo design of toll trunks occurred in the late
1940s and early 1950s in conjunction with the change from operator
to machine switching of toll calls, changes in the trunking plan allow-
ing automatic alternate routing, and an increase to 7 in the maximum
number of toll trunks in a long-distance connection. The Via Net Loss
(vNL) plan was developed and implemented to assure acceptable echo
performance on connections involving a few or many trunks, to provide
low overall connection losses, and to avoid more than one echo sup-
pressor on a long connection.8,4
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In more recent years, attention has been given to new echo problems.
The very long delayed echoes resulting from the transmission paths
provided by communication satellites require changes in echo control
measures.' The extension of speech transmission on digital facilities
to greater and greater distances also will require new echo control
measures. The T1 digital short -haul carrier system was introduced in
the early 1960s, and its use continues to grow rapidly.' Long -haul
digital trunk transmission systems are being developed.' The No. 4
ESS Toll Switching System will electronically switch digital bit streams
to effect circuit switching.' Such digital arrangements will not easily
permit adjustment of direct transmission loss on a trunk -by -trunk
basis as specified by the VNL plan, and so require development of
alternate methods of echo control.

Information was desired on the echo performance of the existing
switched telephone network to provide an improved data base for
echo control studies and planning, both for improvement of the present
network and for evaluation of echo control measures proposed for
digital networks. Information also was desired on whether there had
been changes in subscriber reactions to echoes after some years of ex-
perience with low -loss long-distance connections.

This paper reports on the testing methods and results of a field
survey to characterize the echo performance of the public switched -
telephone network by making observations on a large sample of long-
distance calls placed between many locations throughout the con-
tinental United States. The information obtained has been used to
update mathematical models of echo performance of the telephone
network. These models are being used in a variety of studies to evaluate
results of changes proposed for the network. The echo survey disclosed
that round-trip echo delays on the longer distance connections were
shorter than had been predicted by older models. As a result of this
and other information from the survey, the trunk lengths at which
echo suppressors are installed have been increased, and significant cost
savings are anticipated.

In this survey, observations were made on long-distance telephone
connections extending from the local switching offices visited during
the survey to distant called subscriber stations. The switching offices
to be visited were selected using sampling techniques, copies of billing
records were obtained, the billed calls were stratified by length into four
mileage bands, and called numbers were randomly selected for the sur-
vey in each mileage band. Thus, the echo test calls repeated telephone
calls previously made from the sampled offices. Figure 2 lists the
sampled central office locations and shows the route traveled between
locations.
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ALLENTOWN, PA.
ERSKINE LAKES, N.J.
HUGHESVILLE, MD.
BELTON, S.C.
MARATHON, FL.
DALLAS, TX.

TULSA, OK.
SANTA ANA, CA.
LOS ANGELES, CA.
HAYWARD, CA.
SAN FRANCISCO, CA.

SALT LAKE CITY, UT.
BURLINGTON, CO.
HURON, S.D.
MASON CITY, IA.
BOONVI LLE, MO.

Fig. 2-Echo survey tour route and cities visited.

COLLINSVILLE, IL.
CINCINNATTI, OH.
WAYNE, MI.
PROVIDENCE, R.I.
BROOKLYN, N.Y.
NEW YORK, N.Y.
(MANHATTAN)

Prior echo measurements' had been made only on portions of con-
nection echo paths, e.g., trunk transmission facilities, trunk terminat-
ing equipment, and the return loss between trunks and loops and be-
tween trunks and other trunks. Statistical modeling techniques were
used to derive echo path loss and echo path delay distributions for
overall connections. The availability of new measuring techniques,
minicomputers, and processing software made possible this first survey
in which actual echo path loss and delay were determined on calling -end
office to called -subscriber connections, with only the station and loop
from the calling subscriber to his serving local office being excluded.
Information is available from a loop survey" to refer echo path loss to
the originating station, if desired.

Figure 3 shows schematically the subscriber stations, loops, switch-
ing offices, and trunks comprising a possible long-distance telephone
connection. The figure also indicates locations where signals may be
reflected back into a path leading to the point of origin, causing talker
echoes. The figure shows only those talker echoes heard by subscriber
W. However, since telephone connections have the same general
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structure at both ends, similar echoes of his own speech from reflection
points throughout the connection (talker echoes) may be heard by
subscriber Y. The characteristics of echo paths extending from the
local office (B) adjacent to subscriber W to the distant end and back,
shown as the far -end echo in Fig. 3, are reported here. The specific
characteristics determined for each connection were the round-trip
echo path loss and echo path delay.

In the following sections, the survey sampling plan is presented, the
measuring technique and instrumentation are described, and the survey
results are presented and discussed.

II. SAMPLE DESIGN

The population about which information was desired was the set
of toll calls originating in Bell System end offices and spanning an air-
line distance between originating and terminating local offices of 180
miles or more. Both originating and terminating ends of toll calls were
confined to the continental United States. Toll calls shorter than 180
miles were excluded because the echo delay on these calls is short, and
such short echoes are seldom perceived by subscribers.

The sampling plan used to select specific toll connections for field
testing was a two -stage plan with primary stratification and substrati-
fication. The two -stage plan adopted has the advantage of limiting the
number of locations to be visited for survey measurements. Bell
System end -office buildings were identified as primary units of the
sampling plan. Ten primary strata were formed. Each stratum was
identified with the set of Bell System end -office buildings located in
the area served by one of the ten regional centers in the DDD (direct -
distance -dialing) network of the continental United States. The first -
stage sample of primary units contained a total of 22 end -office build-
ings. Four primary units were selected from the White Plains region,
and two were selected from each of the remaining nine regions. The
first -stage sampling was made with probabilities proportional to
estimates of size. The size of a primary unit was defined by the total
number of outgoing toll calls based on billing records from the 1966
Message Minute Mile Study" and the 1964 Wire Center Study.12

The subjective effect of an echo is related to its delay, which is cor-
related with distance. This distance dependence influenced the struc-
ture of the sampling plan and resulted in the use of substratification.
Four subclasses of toll calls were identified for data analysis purposes.
They were defined on the basis of the airline distance between originat-
ing and terminating central offices. The four mileage bands were
180-360 miles (290-580 km), 360-725 miles (580-1167 km), 725-1450
miles (1167-2333 km), and 1450-2900 miles (2333-4667 km). The
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purpose of the substratification was to give a sample of approximately
equal size in each of these mileage bands. Four substrata were defined
so that they approximately coincided with the four subclasses defined
above. For convenience in the establishment of the second -stage
sampling frames, the substrata were defined in terms of the numbering
plan area (NPA) of the terminating end of a call rather than in terms of
the exact distance between the end offices. Thus, if an NPA fell entirely
inside one of the four mileage bands (measured from the originating
end of the call), then all calls terminating in that NPA were referred to
the corresponding substratum. If an NPA straddled the boundary be-
tween two mileage bands, then calls in that NPA were referred to the
substratum that corresponds to the mileage band in which the majority
of calls into the NPA were expected to terminate. This arbitrariness in
the substratum definition does not affect the ability to analyze data
with reference to each of the four subclasses defined. It has the ad-
vantage of avoiding the computation of the exact airline distance
between originating and terminating central offices for the large
number of calls listed in the second -stage frames.

Lists of outgoing toll traffic during one or more days were acquired
from each of the 22 end office buildings comprising the first -stage
sample. The lists covered one day's traffic for large offices and two or
more days' traffic for small offices. The number of days was adjusted to
give a sufficiently large listing of long toll calls. The substratification in-
dicated above was imposed on each of the 22 lists. The second -stage
sample of calls to be tested in the survey then was selected by simple
random sampling. Independent selections were made in each substra-
tum of each primary unit in the sample. Each second -stage sample ele-
ment was identified with the telephone number of a called customer.
The sample size was determined in such a way that the sample was ap-
proximately self -weighting in each of the four substrata (all observa-
tions contribute equally in calculating the statistical estimates within a
mileage band). This self -weighting feature extended across all primary
units within a specific substratum.

The sample size was determined on the basis of precision require-
ments and variance estimates. The precision requirements took the
form of a maximum width of ±1 dB for the 90 -percent confidence
interval of the mean echo path loss in each of the four mileage bands.
Available data on variance components for the echo path loss were
then used to derive the sample size. Successful transmission tests were
completed on a sample of 1681 connections. Of these, 393 were in the
first mileage band (180-360 miles), 470 in the second, 411 in the
third, and 407 in the fourth mileage band.
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All estimates given in Section V refer to the population defined above.
The statistical estimation procedures used to derive the results were
the appropriate ones for multistage -structured -sample surveys."

III. SURVEY INSTRUMENTATION

In planning the instrumentation of this field survey, goals were : (i)
the measurement results will accurately represent the field conditions,
(ii) the test equipment will perform reliably during use and after
repeated shut -downs, moves, and start-ups at new test sites, (iii) the
equipment design will permit its operation and relocation by technical
staff personnel without requiring excessive time for training and
hands-on experience, (iv) the operation will require a minimum number
of persons, (v) the overall equipment operation will be monitored by
built-in self -checking and operator -checking features, (vi) the output
data will be in a form that will simplify subsequent processing and
use, and (vii) the field travel and expense will be minimized. These
goals were generally met. The methods used are briefly described in
the next five paragraphs ; greater detail is given in subsequent
paragraphs.

The heart of the echo test set was a minicomputer. Software pro-
grams directed the testing sequences of translating stored test signals
from digital to analog form for application to the sampled connections,
and translation of the applied and echo return signals to digital form
for recording on magnetic tape. These digital/time domain results
were processed by a fast Fourier transform (FFT) program in the com-
puter and translated to the frequency domain. Further processing
(division by the transform of the transmitted signal) gave the fre-
quency response of the entire connection echo path. The FFT was then
used to translate to the time domain, giving the impulse response of
the connection with the echoes separated in time. This permitted
identification of the echo of interest, which then was transformed back
to the frequency domain, giving the wanted output parameters -echo
path loss and echo path envelope delay versus frequency for the
selected far -end echo. The accuracy of the test set is determined by the
gain in its input path and by the A/D (analog -to -digital) converter
step size. Referred to the central office loop input, the quantizing noise
from the A/D converter digital sampling is -84.6 dBm, or 5.4 dBrn,
well below the telephone line noise. Thus, echo path loss values are
bounded by telephone line circuit noise, not by test equipment
characteristics.

The echo path test set was installed in a small van that was driven
from site to site and parked by the sampled central office buildings.
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Alternating -current power and telephone line connections were made
between the van and the central office buildings. Setup, checkout, and
calibration of the test equipment required only an hour or two. Figure
4 shows the equipment lineup within the test van.

The test set was put in operation by mounting program and data
magnetic tapes and loading four command words or conditions into
the computer via the computer console switches. Subsequent opera-
tional commands were entered via pushbuttons that lighted to indicate
test status or available choice options. The software programs were
written to provide checks of the steps involving operator actions, to
provide automatic multiple attempts when tape reading errors were
encountered, and to permit returns to the start of sequences in case
of operator error. These arrangements permitted single -operator opera-
tion after a short training period. However, two -man test teams
operated in the field on overlapping two-week assignments to provide
continuity of testing throughout the day, to take care of other than
measurement details, and to provide guided hands-on experience.

In operation, the called telephone number was dialed by a repertory
dialer, there was a short conversation with the answering party in
which the test was explained, the telephone number verified, and co-
operation obtained. The subscriber was asked to cover the telephone
transmitter with the palm of his hand to reduce room noise interference,

Fig. 4-Interior of test van.
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the test tones were transmitted, the subscriber was thanked, and the
call was terminated.

The echo path field data were recorded on magnetic tapes in standard
data format to be compatible with large computers on which final
processing was carried out after completion of the field portion of the
survey.

3.1 Programmable test set

This section describes the hardware and software of the test set and
its capabilities, which include analysis of observations and display of
echo path loss and phase versus frequency. The principal information
flow to and from the test set minicomputer is via digital -to -analog
(D/A) and A/D converters. A block diagram of the test set is shown in
Fig. 5. One magnetic tape unit is used to read stored programs and
the other to record raw and processed data. The quantized interroga-
tion signals stored in the computer memory as Pcm binary words (part
of the test program) are translated into a stair -step signal by the D/A
converter and passed to the output low-pass filter (LPF), which re-
constructs the original interrogation signals. Following the LPF is an
attenuator used for setting the signal power transmitted to the local
switching office. The talk -test switch connects the hybrid either to a
dial/talk circuit for dialing a connection and talking to the subscriber
or to the interrogation signal source. The hybrid is used to interconnect

STAIRSTEP TO

MAGNETIC MAGNETIC DIAL-SIGNAL ODD

TAPE TAPE OSCILLO- AND - NETWORK
UNIT UNIT SCOPE TALK

1 CIRCUIT

8192
WORDS

OF

MEMORY

MINI-
COMPUTER

CONSOLE

TALK
1

DIGITAL- OUTPUT TEST

TO - LPF

ANALOG AND TRANSMIT
CONVERTER ATTENUATOR

ANALOG-
TO -

DIGITAL
CONVERTER

12 -BIT
PCM SIGNAL

PUSH-
BUTTON

CONTROLS

SAMPLE-
AND -
HOLD

AMPLIFIER

LOUDSPEAKER
MONITOR

Fig. 5-Echo path test set.

HYBRID

RECEIVE

INPUT
LPF

AND
ATTENUATOR
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the four -wire test set transmit -and -receive paths to the two -wire
central office loop. In the receive path, the monitoring loudspeaker
permits test personnel to verify transmission of the test signals. The
LPF at the input to the sample -and -hold (s&H) amplifier is used to
filter out frequencies higher than half the sampling rate. The S&H
amplifier samples the incoming signal and holds the sample value
constant while its A/D conversion is taking place.

The operator controls the test set by pushing buttons on the control
panel to direct the test system to perform the various test or analysis
operations. The control panel is also used to load numerical data in
the test set and to display entered numbers and results of computations
on a light -emitting diode (LED) display. The oscilloscope displays the
transmitted signal and, following analyzation, the impulse, amplitude,
or phase responses via the D/A converter.

As directed by the operator's pushbuttons, the computer's central
processor unit executes various operational programs that are stored
on magnetic tape and in core memory. These programs are overlaid
in core memory from tape as they are needed by a monitor program"
that always resides in the core memory.

3.2 Measurement of network impulse response by deterministic source
interrogation signal

A number of methods were investigated for determining the impulse
response of networks. The one chosen for the echo survey used a
deterministic signal comprised of a finite number of evenly spaced fre-
quency components spanning the frequency band of interest, whose
phases were specified to obtain a minimum signal amplitude peak -to -
average ratio.

The impulse response, h(t), of a network can be found by first cal-
culating its frequency response, H(0)), and then computing the inverse
Fourier transform of H (w) .

h(t) = F-TH (w)].

A sample value of the frequency response can be calculated by applying
a sine wave to the input of the network, determining the resulting
output, and dividing the output by the input. Thus, if X(coi) is the
input signal at frequency wi and Y(coi) is the output signal resulting
from this input, then 1/(0.4), the network response at wi, is

H(wi) = Y(coi)/ X(coi).

For a linear time -invariant network (essentially attained by the
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testing method), the principle of superposition holds and the observa-
tions can be made simultaneously at all frequencies wi of interest.

The period of the lowest -frequency sine wave used was made to
exceed the maximum expected delay of the network to avoid the
ambiguity caused by one cycle of a sine wave being indistinguishable
from the next. Since the maximum expected round-trip delay, based
on models of the telephone network, was less than 60 ms, the test
signal was designed to have a period of about 100 ms. This allows for
a 40 -ms duration of the impulse response of an echo delayed 60 ms.
It follows, from the frequency sampling theorem," that a signal
essentially time -limited to 100 ms is completely specified by samples
every 10 Hz. These samples in the frequency spectrum should cover
the entire spectrum of interest, 200 to 3400 Hz, plus an additional
upper band in which the energy can be reduced to zero using realizable
filtering techniques. The transmitted interrogation signal, x(t), was
made up by summing 390 sine waves from about 10 Hz up to about
3800 Hz spaced approximately 10 Hz apart so that

390

x(t) = C E cos [wit +

The amplitude distribution of the resulting interrogation signal x(t)
depends on the relative phases (t.i chosen for the component sine waves.
This waveform can range from a very peaked impulse, when all the
components are in phase, to a signal that has a relatively low peak-to-
rms ratio for certain other phase relationships. Since there are many
devices in the echo path that could overload and cause nonlinear
distortion, such as amplifiers and syllabic compressors, a signal that
has the least peak-to-rms ratio is desirable. When the phases of the
component sine waves are proportional to the square of their fre-
quencies, the peak-to-rms ratio is minimized." The phases, in the
interrogation signal are given by

(1)i = i2/390.

The resulting sum of all the components is a good approximation to
frequency modulation of a carrier with a sawtooth waveform. At the
beginning of the approximately 100 -ms sweep period, the energy is
centered around 3800 Hz and linearly decreases in frequency with
time to around 10 Hz at the end of a period. Figure 6 shows the wave-
form of one period of the interrogation signal.
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Fig. 6-One 102.4 -ms period of the interrogation test signal.

IV. DATA ACQUISITION AND PROCESSING
4.1 Examples of echo path characteristics

The impulse response of an overall long-distance connection includes
the impulse response of the near -end and intermediate paths as well
as that of the desired far -end echo path. The occurrence of such echoes
is depicted in Fig. 3. To obtain the wanted far -end echo path charac-
teristics, the energy reflected from the far end must be separated from
that reflected from near -end and intermediate discontinuities. This can
be done only if the reflections are sufficiently separated in time.

Figure 7a shows the impulse response of an actual connection in
which near -end and far -end echoes were the significant contributing
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Fig. 7a-Impulse response of a telephone connection.
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Fig. 7b-Far-end echo path loss of a telephone connection versus frequency;
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elements. To obtain the echo path characteristics of the far -end echo
alone, the amplitude values of the first impulse response (from the
near -end discontinuity, 0 to 30 ms) are set equal to zero. The inverse
transform is then taken, giving the amplitude and delay characteristics
of the second or far -end impulse response that characterize the echo
path. Figure 7b shows the far -end echo path amplitude response and
Fig. 7c the envelope delay response (the derivative of the phase
response) for the connection.

Figures 8a, 8b, and 8c show the impulse response, echo path ampli-
tude, and envelope delay response of a connection with several reflec-
tions at the far end that could not be separated. The ripples versus
frequency in the amplitude response result from the relative phasing
of the components from two reflections. Large nulls occur when the
two reflected components are nearly equal and 180 degrees out of phase.
These correspond to absorption bands, and in these regions the actual
delay is not equal to the envelope delay." In such instances, delay
values for the connection were taken from smooth curves that con-
tinued the trends adjacent to the absorption bands.

4.2 Data processing during and after acquisition

Basic to processing of the echo data is the discrete Fourier trans-
form (DFT)." The fast Fourier transform algorithm for calculating
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the DFT is most efficient if the number of data points to be transformed
is an integral power of two. As previously mentioned, to measure
delays of 100 ms the fundamental frequency should be about 10 Hz.
The sampling rate for the converters was set to 10 kHz to allow some
margin against aliasing of the voice -band measurements. For a 1024 -
point transform, a maximum period of 102.4 ms is possible, which
meets our objective and gives a fundamental frequency F.
= 10000/1024 = 9.76525 Hz. The bandwidth of the echo paths is less
than 3300 Hz" and, therefore, to cover the spectrum, the interrogation
signal consisted of the sum of 390 sine waves spaced every 9.765625 Hz
up to 3808.59375 Hz. The digital amplitude samples of the interroga-
tion signal stored in the test set were preshaped to take into account
the (sin x)/x weighting caused by using finite width samples instead
of impulses to reconstruct the continuous wave." Thirty-five periods
of the interrogation signal were sent and, since each period lasts
102.4 ms, the test signal lasted 3.574 seconds. Received signals recorded
simultaneously with transmission of the last 32 periods of the test
signal were processed during data reduction. The time elapsing during
transmission of the first three periods permitted any syllabic com-
pandors present in the connection to reach equilibrium and transients
to subside. The first step in signal processing was averaging of ampli-
tude samples over the 32 signal periods, which improved the signal-to-
noise ratio by 15 dB.

Although the desired echo path response is band -limited to less
than 3300 Hz by filters in the facilities making up the trunks," the
reflected energy resulting from near -end discontinuities is not band -
limited in this manner and normally will extend beyond 3800 Hz. The
result of measuring a network whose bandwidth exceeds the band-
width of the interrogation signal is equivalent to truncating the spec-
trum describing the wider bandwidth network, or measuring with these
impulse response techniques an ideal low-pass filter in tandem with
the desired network. This substantial discontinuity in the frequency
spectrum causes Gibb's phenomenon" in the impulse response. To
avoid this distortion, the returned signal was further digitally filtered
by a 3400 -Hz low-pass filter (DLPF) to assure that the response dropped
off sufficiently at 3800 Hz. The DLPF loss characteristic is included in
the response shown in Fig. 9a, where echo path loss versus frequency
for the test set is shown. The high -frequency roll -off is determined
entirely by the DLPF. This response is a calibration check for a 100 -
percent reflection (open circuit at the loop side of the hybrid) and thus
includes all frequency weighting by the test set. Figure 9b is the
envelope delay response of the calibration test.
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Immediately following transmission of the 35 -period interrogation
signal, a 2109 -Hz tone* was sent for 409.6 ms to disable echo suppres-
sors that may have been present in the connection, and the interroga-
tion signal was transmitted a second time. If an echo suppressor were
present in the connection, it would have opened the return path and
suppressed the echo from the far end during the first interrogation
signal transmission. Sending the echo suppressor disabling tone made
the echo suppressors inoperative, which kept the return path connected
so that the echoes from all portions of the connection were recorded
the second time the interrogation signal was sent.

The last 32 periods of the interrogation signal were averaged and
then transformed by the FFT during processing of the recorded data.
These transformed data were multiplied by the transform of the
3400 -Hz DLPF mentioned above. The filtered data were then divided
by the transform of the transmitted interrogation signal to obtain
the system function of the connection modified by the filter. The
inverse FFT was then computed, and the resulting impulse response
was stored on magnetic tape. Both sets of data, with echo suppressors
enabled and disabled, were processed. When this was completed,
control was returned to the operator, and he could observe either
impulse response on the oscilloscope. After viewing the impulse re-
sponse, he could set to zero those portions of the response he desired
to omit, and the test set would compute the spectrum of the echo
path of interest. Upon completion of the transformation, either the
amplitude spectrum or the phase response could be displayed on the
oscilloscope. In addition, the minimum loss value and the average loss
for the 500- to 2500 -Hz band were displayed on the LED display. All
calibration measurements, and periodically a test measurement, were
processed in this manner to verify proper test set performance.

After the field survey was completed, processing was carried out on
large-scale batch processing computers at the Holmdel location of
Bell Laboratories. The echo path loss and phase were calculated, and
test set characteristics were subtracted. In addition, the absolute
envelope delay was calculated from the phase response, and microfilm
graphs were created of all responses. The results were screened for
errors, consistency checks were made, and the processed data were
analyzed to obtain the results presented in Section V.

* In establishing a path through the DDD network for data transmission, a tone in
the band 2010 to 2240 Hz is transmitted briefly just before application of the data
signals to disable echo suppressors and permit simultaneous two-way transmission
(Ref. 22).
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V. ECHO PATH CHARACTERISTICS-DATA ANALYSIS RESULTS

The echo path loss and echo path delay discussed in the following
sections are described in terms of means, standard deviations, and
cumulative distribution functions. Each estimate of a population mean
is accompanied by a 90 -percent confidence interval to indicate the
uncertainty because of sampling. Scatter diagrams and plots of cumula-
tive distribution and probability density functions are used to illustrate
data behavior in specific instances.

As stated in Section I, test connections originated from local switch-
ing offices and terminated at subscriber stations. All data have been
adjusted to remove the influence of the lines used to connect the test
equipment to the local switching offices and that of the testing equip-
ment itself. Thus, results given in the following sections apply to con-
nections having loops of zero length and 0 -dB loss at the originating
ends. Since test connections terminated at subscriber stations, cus-
tomer loops were encountered at the far ends.

5.1 Loss characteristics of echo paths

Loss is intentionally introduced into the transmission path of a
telephone connection to control echo performance, as previously noted.
The total loss is allocated to various segments of the transmission path
according to the Via Net Loss plan adopted by the Bell System in the
early 1950s.3'23 The goal of that design is to provide enough loss to
control echo performance and simultaneously to insure adequate
received levels for satisfactory direct transmission between subscribers.

5.1.1 Losses for far -end echoes

Three measures of echo path loss were extracted from each amplitude
response characteristic. These are (i) the unweighted average echo
path loss in the frequency band 500 to 2500 Hz, (ii) the echo path
loss at 1000 Hz, and (iii) the minimum echo path loss. The average
loss in the 500- to 2500 -Hz band was calculated on the power scale
over those test signal frequencies that fell within the indicated fre-
quency band. This measure of echo path loss is used to evaluate sub-
jective reaction to talker echoes in the telephone network. All three
measures are discussed in this section.

Results of a statistical analysis of data for these three loss charac-
teristics are tabulated in Table I. Echo suppressors were disabled when
the information to calculate these loss characteristics was recorded.

The 500- to 2500 -Hz echo path loss for far -end echoes is, on the
average, 23.8 dB. Its distribution is approximately normal with a
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Table I - Losses for far -end echo paths on toll telephone
connections (echo suppressors disabled)

Connection
Length

500- to 2500 -Hz
Echo Path Loss 1000 -Hz Loss Minimum Loss

(Airline Miles) Mean Std. Mean Std. Mean Std.
(dB) (dB) (dB) (dB) (dB) (dB)

180-2900 23.8 ± 1.9 6.3 26.2 ± 1.6 7.6 19.4 ± 1.8 5.8

180-360 23.1 ± 1.6 5.7 25.2 ± 1.5 7.0 18.7 ± 1.6 5.3
360-725 24.3 ± 2.2 6.8 26.8 ± 1.9 8.0 19.8 ± 2.0 6.3
725-1450 24.6 ± 2.2 6.3 27.2 ± 1.9 7.9 20.1 ± 2.0 5.7

1450-2900 23.3 ± 2.1 6.4 25.9 ± 1.8 7.6 18.9 ± 1.9 5.9

standard deviation of 6.3 dB. Table I shows that the estimated mean
echo path losses increase slightly with increasing connection length
in the first three mileage categories and the mean loss decreases
slightly in the last one. This dependence upon connection length,
while not statistically significant, probably results from application
of the Via Net Loss plan to trunks used to establish connections. The
trunk design loss under that plan is dependent upon the length of the
trunk and is an increasing function of trunk length for trunks less than
1565 miles long. Echo suppressors were required on trunks longer than
1565 miles at the time the survey tests were made. Trunks containing
an echo suppressor have a design loss of 0 dB. Although trunks are
placed in tandem to establish connections, and airline distances in-
stead of total trunk lengths are used to present the results in Table I,
the overall influence of the Via Net Loss plan seems apparent in
these estimates.

The estimated mean echo path loss at 1000 Hz exceeds the estimated
mean 500- to 2500 -Hz echo path loss by 2.4 dB, while the estimated
standard deviation is larger by 1.3 dB. The difference in standard
deviations is caused by ripples in the amplitude responses for some
far -end echo paths (see Fig. 8b). These were caused by two or more
reflections at the far end that could not be separated on some test
connections. The 1000 -Hz echo path loss is approximately normally
distributed.

The estimated mean minimum echo path loss is 4.4 dB less than the
estimated mean 500- to 2500 -Hz echo path loss, and the estimated
standard deviation is 0.5 dB smaller. The standard deviation is smaller
because the minimum losses are less influenced by ripples in the
amplitude responses. The distribution for minimum echo path loss is
close to normal.
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The frequency at which the minimum echo path loss occurred was
determined for each test connection. The estimated probability density
for minimum echo path loss frequency is given in Fig. 10. This density
function shows that the distribution is bimodal. The mode for low
frequencies occurs around 400 Hz and the mode for high frequencies
around 2400 Hz. When singing occurs because of excess gain on a
connection, it usually is at frequencies between 200 and 500 Hz or
2500 and 3200 Hz. The bimodal behavior illustrated in Fig. 10 is in
good agreement with that observed phenomenon.

5.1.2 Influence of echo suppressors

At the time field tests were conducted, echo suppressors were re-
quired on interregional intertoll trunks greater than 1565 miles long
and on most intertoll trunks directly connecting regional -center toll -
switching offices.'

Table II shows that 18 percent of toll connections longer than 180
airline miles contain an echo suppressor. When considered by mileage
category, the table shows that essentially no echo suppressors are
found on connections shorter than 725 airline miles. An estimated
25.4 percent of the connections belonging to the 725 to 1450 airline -
mile category contain an echo suppressor. The airline distance between
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Table II - Echo suppressor usage and operation on toll
telephone connections

Connection
Length

(Airline Miles)

Percent
Encountering

Echo Suppressors

Far -end Echoes
500- to 2500 -Hz Echo Path Loss

E. S. Disabled E. S. Enabled

Mean
(dB)

Std.
(dB)

Mean
(dB)

Std.
(dB)

180-2900 18.0 ± 2.6 23.8 ± 1.9 6.3 28.9 ± 2.4 12.1

180-360 0 23.1 ± 1.6 5.7 23.2 ± 1.6 5.6
360-725 0.4 ± 0.3 24.3 ± 2.2 6.8 24.3 ± 2.2 6.8
725-1450 25.4 ± 5.1 24.6 ± 2.2 6.3 31.4 ± 3.5 11.9

1450-2900 90.1 ± 1.7 23.3 ± 2.1 6.4 49.2 ± 2.4 10.9

originating and terminating local switching offices is substantially less
than the total trunk length for many connections. The locations of toll
switching offices, alternate routing in the network, and the physical
routes of transmission facilities between switching offices contribute
to these differences between airline and actual connection lengths.
Thus, some connections in this category may contain intertoll trunks
greater than 1565 miles in physical length; others could contain inter -
toll trunks connecting two regional center switching offices. An esti-
mated 90.1 percent of the connections in the longest mileage category
contain an echo suppressor. The switching of intertoll trunks in
tandem in a telephone connection accounts for some of these connec-
tions not having echo suppressors. Some may have had echo sup-
pressors that did not suppress properly. These reasons account for the
absence of echo suppressors on approximately 10 percent of the long
connections. It was also estimated that 5.4 percent of echo suppressors
did not respond to disabling tones.

Figure 11 is a scatter diagram of 500- to 2500 -Hz echo path loss with
echo suppressors disabled versus connection length in airline miles
between originating and terminating local switching offices. Figure 12
is the corresponding scatter diagram of echo path loss with suppressors
enabled. A comparison of these diagrams illustrates the influence of
echo suppressors. Echo path loss is substantially increased on long
connections when echo suppressors are enabled, while it remains un-
changed for short connections that generally do not contain echo sup-
pressors. Results for echo path loss with and without echo suppressors
are listed in Table II. The presence of echo suppressors on connections
in the last two mileage categories increases the mean echo path loss.
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Fig. 11-Scatter diagram of far -end echo path loss on toll telephone connections
with echo suppressors disabled versus connection length.

In many cases, the test signal was so highly attenuated by echo sup-
pressors that only line noise was observed. The mixture of connections
with and without echo suppressors accounts for the high standard
deviations in the last two mileage categories. Figure 13 shows that the
distribution of echo path loss with echo suppressors disabled is close to
normal, while operation of echo suppressors causes positive skewness in
the echo path loss distribution. Though not illustrated, the distribution
for echo path loss with echo suppressors enabled is positively skewed
in the third mileage category and negatively skewed in the fourth.
The positive skewness in the third mileage category is caused by the
25 percent of the connections that contain echo suppressors. The
negative skewness in the fourth category is caused by the 10 percent
of the connections that do not contain echo suppressors.

Figure 14 graphically displays the suppression introduced by echo
suppressors. The 500- to 2500 -Hz echo path loss with echo suppressors
disabled is plotted against the echo path loss with suppressors enabled.
In cases where telephone connections did not contain echo suppressors,
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Fig. 12-Scatter diagram of far -end echo path loss on toll telephone connections
with echo suppressors enabled versus connection length.

the two losses are close to being identical. These points in the figure lie
about a line with a slope of +1 passing through the origin. In cases
where properly functioning echo suppressors were encountered, the
points lie well to the right of that line. An analysis of the data for con-
nections that contained echo suppressors shows that the average addi-
tional loss inserted by the echo suppressors is greater than 28.4 dB
and that this detectable additional loss is normally distributed with a
standard deviation of 7.6 dB. In most cases, echo suppressors at-
tenuated the reflected test signals to such an extent that they were
below the noise present on the connections. In these cases, the actual
losses with suppressors enabled were obscured by the circuit noise.
Because of this, the estimated average additional loss inserted by echo
suppressors is a lower bound on the average amount of suppression
actually introduced.
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with and without echo suppressors enabled.

5.2 Delay characteristics of echo paths

In voice transmission for a given echo path loss, the subjective
disturbance caused by talker echo increases as receipt of the echo is
increasingly delayed in time.1-4 This delay is primarily determined by
the length of the transmission path traversed, by the physical trans-
mission media encountered, and by the number of modulation -demodu-
lation steps associated with the individual transmission facilities en-
countered. Echo path delay on toll telephone connections is discussed
in the following sections.

5.2.1 Delays experienced by tar -end echoes

In Section I it was noted that echo path delay is the round-trip
transmission delay experienced by an echo. This delay was computed
from the impulse responses at approximately 10 -Hz intervals across
the voice frequency band. 1000 -Hz and minimum echo path delays are
discussed in this section. The minimum echo path delay may occur at
different frequencies for different echo paths. The frequency at which
the minimum occurs is also discussed.

Estimates of echo path delay are listed in Table III. The estimated
average 1000 -Hz delay is 19.5 ms for connections longer than 180 air -
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Fig. 14 -Scatter diagram of far -end echo path loss on toll telephone connections
with echo suppressors disabled versus echo suppressors enabled.

line miles. The distribution of 1000 -Hz delay has an estimated standard
deviation of 9.5 ms. Figure 15 shows that the distribution is truncated
at about 5 ms in the lower tail, due to exclusion of toll connections
shorter than 180 miles, and is highly skewed toward the positive
direction.

Table III - Delays for far -end echo paths on toll
telephone connections

Connection Length
(Airline Miles)

1000 -Hz Echo
Path Delay

Minimum Echo
Path Delay

Mean
(ms)

Std.
(ms)

Mean
(ms)

Std.
(ms)

180-2900 19.5 ± 0.9 9.5 18.5 ± 0.9 9.4

180-360 11.7 ± 0.8 3.4 10.6 ± 0.7 3.2
360-725 16.4 ± 0.5 3.8 15.4 ± 0.7 3.6
725-1450 24.8 + 2.1 5.0 23.7 ±2.0 4.8

1450-2900 37.3 ± 1.3 6.1 36.2 ± 1.4 6.0
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Average 1000 -Hz delay increases monotonically with increasing con-
nection length. This reflects the increased propagation delay required
to travel greater distances and the increased likelihood of encountering
more modulation -demodulation equipment on long connections. A
previous study of intertoll trunks established that more channel bank
pairs are found on long trunks than on short ones." Alternate routing
in the telephone network also accounts for an increased number of
channel banks in long connections because more trunks are established
in tandem to set up the connections. The standard deviation for 1000-

Hz delay also increases with increasing connection length. The distribu-
tion of 1000 -Hz delay in the shortest mileage subclass exhibits a high
degree of positive skewness just as the overall distribution does. How-
ever, the distributions for the three remaining mileage subclasses are
close to normal with slight deviations from normality found in the
upper and lower tails.

Minimum delay closely follows the same trends discussed above for
1000 -Hz delay. An analysis of the differences between the two delays
calculated for each test connection estimates the average difference to
be 1.1 ± 0.1 ms. These delay differences are close to being normally
distributed with an estimated standard deviation of 0.6 ms. The
cumulative distribution for minimum delay is also plotted in Fig. 15.

TOLL TELEPHONE CONNECTIONS 237



This figure clearly shows the similarity between 1000 -Hz and minimum
delay.

In many instances, the echo path delay versus frequency curves are
rather flat in the middle of the voice frequency band. Since the mini-
mum delay generally occurs in that area of the band, the frequency of
minimum delay was arbitrarily defined to be 1700 Hz in these cases.
This occurred in approximately one-third of the observations. The
average frequency of minimum delay is estimated to be 1743 ± 33 Hz.
The standard deviation is estimated to be 229 Hz.

5.2.2 Observed changes in echo path delay

Comparison of the current echo survey results with previously
available information for echo path delay shows a noticeable decrease
in the amount of transmission delay experienced in the telephone net-
work. Figure 16 is a scatter diagram of the 1000 -Hz echo path delay

500 1000 1500 2000

CONNECTION LENGTH IN AIRLINE MILES

2500 3000

Fig. 16-Comparison of previous and present echo path delays on toll telephone
connections.
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observations for the echo survey versus the lengths of the connections
on which the observations were made. Median 1000 -Hz echo path
delays are indicated by the two curves superimposed on the scatter
diagram. The curve labeled "Previous Median" is based upon the echo
path delay information available before this survey," and the curve
labeled "Present Median" is based upon the echo path delay data ob-
tained in this survey. To generate the present median curve, the median
delay was calculated in nine nonoverlapping, all-inclusive mileage
bands. A linear, least -squares, curve -fitting routine was used to fit a
quadratic equation to these nine points to obtain the curve. The
standard error of this fit is 1.2 ms.

Examination of Fig. 16 shows a reduction in the estimated echo
path delay between previous and present median echo path delays of
about 11 ms for the longest connections. This improvement in median
delay gradually decreases as the connection length gets shorter. For
the shortest connections observed, the indicated improvement in
median delay is very slight. This trend towards shorter echo path delays
may have resulted from the following trends in the telephone plant
over recent years : (i) provision of more direct high -usage trunk groups
between cities, (ii) increasing use of carrier -type transmission facilities,
and (iii) fewer voice -to -carrier frequency conversions in the longer
trunks. These trends together produce the cumulative effects of reduc-

and signal delays attributable to modulation -demodulation equipment.

5.3 Echo path loss versus delay

Echo path loss and delay have been discussed individually. In this
section, echo path loss is described in terms of its observed relationship
with 1000 -Hz echo path delay. Connections are grouped into delay
categories to analyze echo path loss. The interval of delay is 5 ms wide
for each category. A particular delay category contains all connections
having observed 1000 -Hz echo path delays that fall within the speci-
fied time interval. Table IV lists the average 500- to 2500 -Hz echo
path losses estimated for each of the delay categories for echo suppres-
sors disabled and enabled.

Results for echo path loss with echo suppressors disabled do not
exhibit any trends related to 1000 -Hz echo path delay. This is also
evident in Fig. 17. Results listed in Table IV for echo path loss with
echo suppressors in their normal operating conditions (enabled) show
that the estimated average loss increases monotonically with increasing
delay once echo suppressors begin to be encountered (around a l n00 -Hz
echo path delay of 15 ms). The standard deviation also starts changing
at that point and continues to get larger until around 35 ms of delay,
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Table IV - Losses versus delay for far -end echo paths on toll
telephone connections

1000 -Hz Echo
Path Delay

(ms)

500- to 2500 -Hz Echo Path Loss

Echo Suppressors Disabled Echo Suppressors Enabled

Mean
(dB)

Std.
(dB)

Mean
(dB)

Std.
(dB)

5-10 24.3 ± 1.2 5.9 24.4 ± 1.2 5.9
10-15 22.6 ± 1.6 5.9 22.6 ± 1.6 5.9
15-20 24.9 ± 2.3 6.2 25.0 ± 2.3 6.2
20-25 25.2 ± 2.4 6.5 29.3 ± 4.0 10.7
25-30 23.5 ± 1.6 6.1 35.3 ± 5.6 14.3
30-35 22.4 ± 1.8 6.8 38.6 ± 5.8 15.4
35-40 22.5 ± 1.6 5.9 48.5 ± 3.3 10.8
40-45 24.7 ± 3.0 7.4 49.3 ± 2.8 11.6
45-50 22.4 ± 0.9 4.2 52.8 ± 4.2 9.0

10 20 30 40 50 60

1000 -Hz ROUND-TRIP ECHO PATH DELAY IN MILLISECONDS

70

Fig. 17 -Scatter diagram of far -end echo path loss with echo suppressors disabled
versus echo path delay on toll telephone connections.
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Fig. 18-Scatter diagram of far -end echo path loss with echo suppressors enabled
versus echo path delay on toll telephone connections.

when it begins to decrease. This behavior reflects the process of en-
countering an increasing number of echo suppressors until, at around
35 ms of delay, only a relatively few connections remain that do not
contain echo suppressors. This behavior is displayed in the scatter
diagram presented as Fig. 18.

5.4 Intermediate echoes

Discussion of the data analysis results has been restricted to far -end
echoes in the previous sections. In addition to far -end echoes, distinctly
identifiable echoes occurring at intermediate toll switching offices were
observed on approximately 28 percent of the connections. On those
connections, the mean of the 500- to 2500 -Hz echo path loss is
10.3 ± 0.7 dB higher for intermediate echoes than for far -end echoes.
The estimated standard deviation of the loss difference is 7.2 dB, and
the distribution deviates from normality in the lower tail. Approxi-
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mately 5 percent of the intermediate echoes have lower loss than the
corresponding far -end echoes on the same connections. In these few
cases, the estimated average echo path losses are 30 dB for the far -end
echoes and 27 dB for intermediate echoes. On two-thirds of these con-
nections, the two losses are within 3 dB of each other.

The detection of intermediate echoes depended upon the relationship
between the magnitude of the intermediate impulse and the peak
amplitude of the total impulse response of the test connection. If the
peak amplitude of the impulse response was high relative to the ampli-
tude of intermediate echoes on the same connection, it is possible that
the intermediates were not detected. Because of this peculiarity in the
detection scheme, the estimates above are conservative, i.e., the echo
path losses of intermediate echoes are, on the average, at least 10.3 dB
greater than the echo path losses of far -end echoes.

VI. CONCLUSION

Acquisition of actual far -end talker echo path loss and echo path
delay data on dialed -up long-distance telephone connections is now
possible using digital computer techniques. By specifying such echo
tests and analyzing the results according to sample survey procedures,
echo performance of the continental United States switched telephone
network has been characterized.

The echo survey illustrates the power inherent in modern sample
survey methods. This is exemplified by the matching of the structure
of the sampling plan to the structure of the population under study
and by the flexibility in the sample design that allows analysis in sub-
classes that are not identical to the substrata of the sampling plan.

Results of the survey are being used to model the telephone network
and evaluate network changes proposed to improve transmission per-
formance. Significant changes in echo path delay were uncovered, and
that information will be valuable in administering the United States
DDD network from a transmission viewpoint.
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Glass fibers are in general not thick enough to withstand external forces
on their own without suffering axial distortion, mode coupling, and loss.
Thus, plastic jackets must be carefully designed to provide effective
protection. We evaluate jacket designs ranging from the mere use of soft
materials to the application of multiple plastic coatings and graphite
reinforcement. We compute the distortion loss as a function of dimensional
variations and of lateral forces considered typical for cable packaging.
The protective quality of a jacket is found to depend on a combination of
stiffness and compressibility and on the fiber characteristics.

I. INTRODUCTION

Surprisingly small external forces can cause lateral deformations,
mode coupling, and optical loss in clad fibers. For example, minute ir-
regularities in the machined surface of a metal drum suffice to cause
substantial loss in fibers wound on this drum with only a few grams of
tension.' (An interesting and valuable study of this subject is described
by W. B. Gardner.2) The pressure exerted on the individual fiber in a
cable will almost certainly be considerably stronger and less uniform.
The concern with this effect has heightened recently with the notion
that lowest loss values are measured almost invariably in connection
with extremely small mode coupling and after carefully eliminating
external forces on the fiber.3 Maintaining these loss values in a cable
may require better fiber and, more importantly, effective jackets
designed to optimally shield against external forces. This paper ad-
dresses the latter problem.

After gaining some insight into fiber deformation, we compute the
excess transmission loss' resulting from statistical surface variations
and lateral pressures affecting the fiber. The reader who is mainly
interested in the results of this theory may wish to turn to Sections V
or VI immediately, where practical examples and suggestions for an
improved jacket design are discussed. We show that some care in this
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respect substantially reduces the excess loss resulting from fiber
distortion by outside forces.

II. ELASTIC DEFORMATIONS

We begin with the simple model of a fiber pressed against an elastic
plane surface that is slightly rough (Fig. 1). The pressure from above
is uniform, but as a result of the roughness, the contact forces between
the fiber and the surface are not uniform along the fiber. Thus, the
fiber bends slightly yielding to a force f(z) per unit length.

According to the theory of the thin elastic beam, the lateral dis-
placement x(z) of the fiber axis is related to f(z) by

d4x _ f
dz4 H '

where

(1)

H = EI (2)

is the flexural rigidity or stiffness ; E is Young's modulus and I the
moment of inertia. For the circular cross section of the fibei,

I = r
-4 1, (3)

where ai is the radius of the fiber.
The force f(z) not only causes a bending action, but also a deforma-

tion u(z) of the surface. Provided that f(z) does not change too drasti-
cally along z, u(z) is a linear function of the force applied.' We introduce
a factor of proportionality D, which we call the lateral rigidity, so that

(z)u(z) = fD
(4)

For the case of the elastic surface of Fig. 1, D is simply Young's
modulus of the compressed surface material (we ignore a coefficient
close to unity). To simplify the following steps, we assume temporarily
that the surface is sufficiently compressible to conform to the fiber,
producing a continuous line of contact. This imposes the relation

x u - Uo = V, (5)

where uo = (u) is the average of u(z) along z (see Fig. 1). Equations
(1), (4), and (5) combined yield the differential equation

H ctix
.75 x = v. (6)

We now introduce the Fourier transforms X(K) and V (K) of x(z)
and v (z). They are functions of a wave number K or a wavelength A
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Fig. 1-Sketch of a fiber pressed against a rough surface by a uniform force (ver-
tical dimensions strongly magnified).

related to K by
K = 2r/A.

In the Fourier domain, eq. (6) takes the form

X= V
1 + K4H/D

According to (8), the effect each Fourier component V has on the fiber
displacement depends strongly on the wavelength of that component.
Periodic disturbances having a wavelength smaller than

(7)

R = 21-(H/D)1

(8)

(9)

hardly affect the fiber, while those with longer wavelengths than (9)
are almost fully reproduced. The length R is called the retention length
in the following, because it qualifies the usefulness of a given fiber
package to keep the fiber in its natural straight condition.

III. INCOMPLETE CONTACT

Assume v(z) to be a random variable measured from a suitable
reference plane so that its mean is zero as in Fig. 1. Characterize the
random process of which v(z) is a sample function by the (power)
spectral density P,(K). If a complete line of contact exists between
the fiber and the surface, we can apply (8) to P so that the spectral
density Px of x becomes Px = P9(1 + HK4/D)-2.

If the contact is not complete, we have the situation of Fig. 2.
Figure 2a depicts the case in which the fiber is very stiff and stays
almost straight, while only the highest elevations of the rough surface
are compressed. We assume a mean spacing t between the fiber periph-
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Fig. 2-Sketch of a fiber in incomplete contact with a rough surface. (a) The fiber
is very stiff. (b) The fiber yields to bending. Cross -hatched areas indicate surface
deformation (vertical dimensions strongly magnified).

ery and the surface. In this case the function causing the deformation is

v(z) - t for v .. t
y(z) = (10)

0 for v < t

rather than v(z) itself. To obtain an approximate characterization of
the random function y, we assume that v(z) obeys a gaussian random
process with standard deviation a. The first two moments of y are,
with this assumption,

and

co

(y) = (27)-icc1 1 (v - t)e-"12"dv (11)
t

(y2) = (27)-10.-1

The variance of y is
I (v - t)2e-v2i2g2c/v. (12)

s2 = (y2) - (y)2. (13)

If one relates the spectral density P y of y - (y) to that of v (for
example, with the help of the Price method7), one finds the functional
shape of both spectra to differ little for most cases of interest, so that
the relation

P, (K) 82

139(K) '."' 0-2
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seems to be a useful approximation for all K. As y takes the place of
v in (6) and (10), we can write

which is

PPz = (1 + HK4/D)2'

ry pvs2/,2

r'd (1 + HK4/D)2

(15)

because of (14).
It remains to find a relation between s2/Q2 and the (mean) lateral

pressure which determines the extent of the contact. In the limit in
which the fiber is stiff, as indicated in Fig. 2a, we have approximately
(f) D(y), since (u) ti (y) in (4). The mean force (f) per unit length
is, of course, the (linear) pressure we are interested in. To express (13)
as a function of (y) only, we must eliminate t from (11) and (12). The
result of this calculation is presented in approximate form :

(;72 = 1+ 4 (04
(74

S2

If the fiber cannot be assumed as stiff, the situation of Fig. 2b
applies. We find that the surface deformation is more correctly given
by the function

u(z) ={v(z)-x vx-kt
0 v < x t

(16)

(17)

and that the mean of (17), rather than (y), determines the lateral
pressure. The statistics of (17) are difficult to evaluate, since v and x
are interrelated as a result of (15). According to (15), x(z) essentially
comprises all Fourier components of v(z) having wave numbers
K < (D/H)1. As is evident from Fig. 2b, it is the remaining spectrum
with K > (D/H)i that contributes to u(z) of (17). This fact is the
basis for the following estimate for the mean of (17) :

J

oo

(21)2 = (y)2

S (1)111)1
Pc1K

(°`
,,P dK. (18)

1"--'
Cr2

j(DIH)1

If the mean lateral pressure is fo = (f), we can write with (4), (16),
and (18)

S2

0'2
[1+1-2 .924 P
L 4 f 04 \ Ho

4K) . (19)

This relation together with (15) permits us to calculate the spectral
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density Px of the fiber deformation, if the spectrum of v and the mean
pressure 10 are known.

IV. DISTORTION LOSS

A significant exchange of power between two modes in a multimode
fiber occurs when a periodic disturbance exists whose wave number K
equals the phase lag between the two modes. This phase lag is in general
a complicated function of the mode numbers involved and of the
refractive index profile across the fiber core. Only if the index decreases
as the square of the fiber radius (parabolic profile) is the phase lag
the same for all modes coupled. This phase lag is

(2,6)4K, =
'

(20)
ac

when ac is the core radius and A the relative index difference between
core axis and cladding. If the index is uniform within the core and
decreases abruptly to the cladding value (step -index profile), the
coupled mode pairs have typically a smaller phase lag than K,, al-
though the phase lag approaches K, for modes close to cutoff. For this
profile, it is the spectral density Ps (K) in the regime 0 < K :5- Kc,
which determines coupling and coupling loss.

Equation (15) relates Px to the spectral density Pt), which charac-
terizes the original source of disturbance. We know little about its
character ; thus, to cover a broad variety of possibilities, we use the
rather general functional description

P(0)P, = (21)
(1 '

with µ > 1 and 1 large compared to 1/If, and (H/D)I. This stipulates
a decrease of P, (K) in the vicinity of K, in agreement with available
experimental evidence.2 The parameter 1 has the physical significance
of a correlation distance. Integration of (21) yields a relation between
P, (0) and the standard deviation a introduced earlier :

2I' (A) cr21 ..

(0) - r (Dr (A - 1) ' P > I.

Coupling among neighboring modes dominates the power transfer
inside the fiber. In the limit of very large mode numbers, the resulting
power flow can be modeled by a diffusion process.8 More specifically,
if one defines a (continuous) mode variable r, one finds the power
cp (r) in a mode group characterized by r from diffusion equations of
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the forms,'

1r8flr4Pz(rKc)ct -y0 = 0 (23)

for the step profile and

dr

[ 4Aic.c
dodr j (24)

for the parabolic profile. The term -yd) accounts for an overall decay of
4) as a result of coupling loss. This excess loss is caused by radiation
from modes at or beyond cutoff (r > 1). The mathematical model
considers the steeply rising loss at r > 1 to first approximation by the
boundary condition 4(1) = 0. In addition, we have d4)/dr = 0 at
r = 0, since no power can be lost at r = 0.

Equation (24) has an infinite set of eigensolutions8 for arbitrary
Px; such solutions also exist for (23) at least if AL > 1 and 1> 1/Kc. In
any of these cases, the lowest eigenvalue 70 is also the smallest and
denotes the loss value approached asymptotically by long fibers once
a "steady state" is reached. In the case of (24), yo can be computed
rigorously for arbitrary Px; a way of finding a good upper limit for
To of (23) is outlined in the appendix. The result is

- 3 Kt Py(Kc)
7° 16 0 4/1 -

+ 13
3

1 + (HK4c/D)2
411

for the step profile and
K4 Py(Kc)

7o = 0.36 A' (1 HKVD)2

for the parabolic profile, with

2r 0.0,2/
Pu(Kc) = Nuro, - D(licc)2"

,r20.0 OH P-1
X ( 1 +

(2/1 - 1) 21,2 (t1 /310-2DA-9 2

(25)

(26)

(27)

from (19) and (22). Note that (25) is an upper limit and that these
derivations are subject to the limitation µ > 1 and that 1 must be large
compared to 1/K, and (H/D)1.

In general, it will be necessary to determine the parameters in (21)
from experimental evidence. For the numerical results following in the
next sections, we have used ,u = 3 as a typical and realistic example.2
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In this case, the use of (20) and (27) converts (25) and (26) into

3 cr2a2, 1

7° 27 /5A2 (1 144A4H2 X1
+

640.4H1D1

25a8,D2 225 f olio )
for the step profile and

96 a2a2, 1

70 257 /5A2 (1 + 4A2H )2 (1 ± 6401-11D1 v
at.D 225f3/w )

for the parabolic profile.

V. FIBER STORAGE DRUM

(28)

(29)

The main objective of this theory is, of course, the design of jackets
that protect the fiber from distortion and the loss associated with it;
but, to begin with a simple problem, let us first ask how the loss in-
creases in a fiber when it is wound on a drum. Clearly, the drum
surface properties and the winding force are important factors. We
assume the radius p of the drum to be so large that the constant
curvature of the fiber has no noticeable influence on the loss. If we
apply a tensile force F, the fiber presses against the drum surface with
a (linear) pressure

fo = F/p. (30)

With these definitions, the distortion loss as a result of the winding
pressure can be directly computed from (25) and (26). The results are
illustrated by the following representative example :

(i) Fiber characteristics :
Core radius ac = 40µm.
Outside radius ai = 60 Am.
Relative index difference A = 0.005.
Young's modulus (silica) E1 = 7000 kg/mm2 (107 psi).

(ii) Drum surface statistics :
Standard deviation a = 1µm.
Correlation length / = 1 mm.
Spectral coefficient µ = 3.

The evaluation of (25) and (26) for µ = 3 is given in (28) and (29).
We discuss only the step -index profile in the following. The results for
the parabolic profile can be obtained from (29) ; they differ little from
those of the step profile.

Figure 3 is an evaluation of (28) as a function of Young's modulus
of the drum surface material with the pressure 10 as a parameter. The
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Fig. 3-Distortion loss versus drum surface modulus according to eq. (30) ; fiber
diameter is 120 Am, core diameter is 80 Am, relative index difference is 0.5 percent,
rms drum surface roughness is 1 µm, correlation distance is 1 mm. Mean lateral force
per unit length is the parameter.

plot represents the loss for drums of different elasticity provided that
the surface statistics are the same for all. If F = 100 g and p = 10 cm
(fo = 1 g/mm), the distortion loss can be as high as 130 dB/km. For
low pressures, the loss decreases with increasing rigidity of the drum
surface, as the fiber ceases to conform to the irregularities of the surface.
If the drum is soft, the loss is reduced independently of the pressure,
since the fiber sinks into the surface and smoothes the irregularities.
Thus, both hard and soft surfaces have a tendency to decrease the
excess loss for a given pressure. The effect of a hard surface, however,
strongly depends on the pressure applied. A reduction of the loss to
0.5 dB/km independently of pressure requires an extremely soft sur-
face (0.11 kg/mm2 = 157 psi) for the kind of fibers characterized by
this example. Typical winding forces which are caused by the pulling
operation itself or applied in rewinding operations are in the range
between 10 to 100 g. Thus, a loss increase of 100 dB/km or more as a
result of drum storage is not surprising.

Equation (28) shows that y0 is proportional to A-6 in the case of
"soft" surface conditions, i.e., when the first parenthesis in the de-
nominator of (28) is much larger than unity. Hence, an increase in the
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index difference by a factor of 1.5 would reduce the loss coefficient in
this range by one order of magnitude. Of course, these results depend
on the surface statistics assumed here. For arbitrary A, the excess loss
coefficient is proportional to Al-A if the surface is hard and to A -3-A
if the surface is soft.

Next, let us consider a jacketed fiber wound onto a slightly rough
drum. The lateral rigidity D2 of the jacket is, in general, different from
the rigidity D1 of the drum surface. To account for the compressibility
of both, one must use an effective rigidity

De - 1

1/Di + 1/D2

in (25) to (29). There will be statistical variations of the jacket thick-
ness and these are likely to differ from those of the drum surface. If
one or the other dominates and follows the characteristics (21) with
A = 3, one can still use (28) or (29) or Fig. 4 to determine the distortion
loss if one incorporates (31).

VI. PLASTIC JACKET DESIGN

(31)

In a cable, the fibers will be organized in bundles and pressed to-
gether by binding or sheathing forces, by cable deformations, and by
pressure on the cable, once it has been placed.

Considering only one cross-sectional dimension, we assume a typical
fiber of the bundle to be contacted by two others, one on either side.
All fibers have plastic jackets, so that elastic surfaces of equal modulus
press against each other. The situation is similar to that described by
(31) except that now D1 and D2 of that equation are identical and equal
to the modulus (or the rigidity D) of the jacket material. Hence,
D. = D/2. Other differences with respect to the previous model are
the two lines of variable pressure and a total of four random variables
involved in the deformation of the fiber. These variables are the jacket
thickness variations v1 and v2 of the fiber in the middle and the varia-
tions v3 and v4 referring to the jackets on the outside. If we assume again
complete and continuous contact, the resulting differential equation
becomes

2Dd
dz4 -I-

ix 2x = vi - v2 - v3 + v4, (32)

where the relation D. = D/2 has been used. The variables vi to v4 are
statistically independent, but they are samples of the same ensemble.
Therefore, they all have the same spectral density PV(K) and the
spectral density of the sum on the right of (32) is 4 13,(K). After
Fourier transformation and the insertion of spectral densities into (32),
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Fig. 4-Distortion loss versus outside jacket radius according to eq. (30) ; fiber
characteristics as in Fig. 3, rms jacket thickness variation 1 Aim, correlation distance
1 mm, mean lateral pressure 1 g/mm. Curves refer to four jacket configurations listed
in Table I.

all numerical factors cancel, leaving us with the mathematical relation-
ships derived earlier. As a result, (28) and (29) are also applicable to
the problem of the jacketed fiber in a bundle, provided that the statis-
tics of the jacket thickness variations can be described by (21) with

= 3. Now D stands for the modulus of the jacket and H for the
combined stiffness of fiber and jacket. The stiffness of the latter is

H2 = 2E2 (a4 - al) (33)

with E2 being Young's modulus of the jacket material and a2 and al
its outer and inner radius, respectively. In the case of several jackets, H
is generally the sum over all stiffnesses. If the outer jacket is the softer
one and sufficiently thick that a deformation beyond its elastic limit
is unlikely, D is simply the modulus of the outer jacket. If the outer
jacket is harder than the inner one and has a thickness b small com-
pared to its outer radius a2, we have"

3

D E2 E3
a2

(34)

where E2 and E3 are the moduli of the inner and the outer jacket, re -
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spectively. If the inner jacket is very soft and thick, we must consider
the hard outer shell and the fiber as two independent systems, each
undergoing deformations governed by differential equations similar
to (32). The result are four instead of two expressions in the denomina-
tor of (28) and (29), one pair comprising the H and D parameters of
a hard shell surrounding a soft material, and the other pair comprising
the H and D parameters of a fiber imbedded in a soft material.

The following is a discussion of four alternative jacket configura-
tions. As a realistic example, we consider the same fiber characteristics
and the same statistical parameters listed in the previous section for
the drum surface. Table I gives a description of the jackets. The first
is made entirely from a soft plastic, the second from a hard plastic, and
the third and fourth are hybrid structures. We assume a modulus of
1 kg/mm2 (1400 psi) for a typical soft material and 100 kg/mm2 for
a typical hard material. In Figs. 4 and 5, the outer jacket radius a2
is plotted versus the excess loss computed for each structure if the
mean lateral pressure is either 1 g/mm (Fig. 4) or 0.1 g/mm (Fig. 5).
The pressure obviously determines the choice between a soft or a hard
material, if the jacket is to be made from one material alone. The
decrease of the loss contribution with increasing jacket radius in case
of the hard jacket comes about as a result of the increase in stiffness.
The corresponding increase afforded by the soft jacket is negligible.
The last two columns of Table I list the D and H parameters used in
each case.

40
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Fig. 5-Distortion loss versus outside -jacket radius according to eq. (30) ; fiber
characteristics as in Figs. 3 and 4, jacket statistics as in Fig. 4, and mean lateral
pressure 0.1 g/mm. Curves refer to four jacket configurations listed in Table I.
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The third structure has a hard jacket padded with a soft outer
layer. The layer thickness of 20 gm was chosen to avoid any deforma-
tion beyond its elastic limit. The fourth structure has a hard shell
surrounding a soft material. The thickness of this shell should be ap-
proximately 0.02 a2. This optimum is a result of an increase both in
stiffness and lateral rigidity as the shell thickness is increased, so that
the retention length R, which is the ratio of the two, passes through a
maximum. To simplify matters, we have chosen a thickness of 40 gm
independent of the shell radius. The two pairs of D -H values listed
in the case of the fourth configuration refer to the two independently
deforming structures (shell and fiber) which must be considered in this
case, as was mentioned earlier. The slight advantage of the soft over
the hard shell, evident in Figs. 4 and 5, is too small to be decisive. It
may well be offset by weight and cost considerations. The substantially
improved fiber protection afforded by the hybrid structures as com-
pared to simple jackets, however, is well worth considering. A jacket
diameter of 0.5 to 0.6 mm permits a virtual elimination of the distortion
loss in case of the example considered here. A similar reduction by a
single hard jacket requires at least twice this jacket diameter.

The excess loss computed for the structure with a hard shell vanishes
when the modulus of the inner jacket is reduced to zero. This implies
that the protection provided by a stiff shell that surrounds the fiber
in a loose way without any material in between is perfect. Of course,
this would indeed be true if the only forces present were lateral outside
forces borne by the shell. In practice, there are other forces not con-
sidered here ; forces that press the fiber against the inside jacket wall
in a cable bend, for example. Such forces determine the distortion loss
of the loosely jacketed fiber. Although this is an important problem
to consider, it is beyond the scope of this work.

Properties similar to those of hybrid jackets can also be obtained
with reinforced jackets. The reinforcement could, for example, consist
of strong fine fibers running parallel or slightly stranded to the optical
fiber imbedded in a relatively soft jacket material. The fiber material
could be plastic, glass, or graphite, the latter being particularly suited
because of its low weight, high tensile modulus, and high strength. Also,
as graphite fiber is available with diameters down to 5µm, its incorpora-
tion into the jacket should be manageable without causing permanent
internal stresses resulting in distortion loss by itself. The advantage of
the reinforced jacket is its anisotropy which combines stiffness with
lateral compressibility. Although these properties are difficult to com-
pute, an estimated loss reduction of two orders of magnitude for a
jacket 0.4 mm in diameter seems achievable with the fiber characteris-
tics listed in the previous section.
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The effect of the reinforced jacket and of the configurations 1, 3, and
4 in Table I is a combination of stiffness and compressibility, while that
of configuration 2 is based on stiffness alone, preventing its conformance
to surface irregularities. Mathematically, these two effects are dis-
tinguished by the two parentheses in the denominator of (25) or (26).
It is important to note that the first parenthesis depends strongly on
the fiber characteristics. An effective jacket implies HKVD>> 1 in
(25), so that the loss reduction afforded by the first group of jackets
is proportional to K8, or, with (20), to Q4/a8. As a result, a small in-
crease in index difference substantially increases the effectiveness of
these jackets. If, for example, A = 2 percent instead of 0.5 percent
as previously assumed, the soft jacket, the reinforced jacket, and the
two hybrid structures reduce the excess loss coefficient by an additional
factor of 256, while the effect of the hard jacket remains the same.
This strongly emphasizes the importance of this first group of jackets
and the need for fibers with large index difference.

Of course, the above dependence on A holds only as long as the pre-
dominant sources of loss are indeed those assumed here. If other sources
of loss dominate, as, for example, the influence of a very lossy cladding
material, typically only a fraction of all trapped modes propagates in
the steady state. In this case, A in (20) and in the above arguments
must be replaced by N2/2n, where N is the effective numerical aperture
characterizing the mode distribution of the steady state and n the
refractive index of the core.

VII. CONCLUSIONS

Optical fibers need protection from lateral forces and this requires a
careful design of the fiber jacket. The jacket should have a high flexural
rigidity or stiffness in combination with a good lateral compressibility.
These properties define a retention length within which the jacket
essentially absorbs irregularities impressed from the outside. Longer
irregularities deform the fiber and can lead to distortion loss if they
comprise spectral components in the vicinity of the critical wave
number of the fiber.

Although the forces to which a fiber is subjected in a cable are diffi-
cult to estimate, one gains a fair notion of the sensitivity of the fiber
to such forces by winding it on a drum with minute surface irregulari-
ties. This can best be illustrated by way of a representative example.
Consider a silica fiber, 120 Am in diameter, that has a relative index
difference of A = 0.5 percent and a core diameter of 80 Am. Assume a
tensile force of between 10 and 100 g applied when winding the fiber
on a drum, which has a diameter of 10 cm and an rms surface roughness
of 1µm. The estimated loss increase is between 50 and 130 dB/km
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depending on the winding force applied. A winding force of 10 g cor-
responds to a mean pressure of 0.1 g/mm on the fiber.

Now consider five types of jackets :

(1) A soft plastic jacket having a modulus of 1 kg/mm2.
(ii) A jacket of hard plastic with 100 kg/mm2.

(iii) The same as (ii) padded with a thin layer of the material used
in (i).

(iv) A shell of the material of (ii) on top of soft material as used
in (i).

(v) A soft jacket reinforced by a filler of strong plastic, glass, or
graphite fiber.

We find that, for equal jacket diameters, (i) is almost always better
than (ii) except when 0 and the lateral forces are small. For the fiber
of the previous example, the jacket (i) reduces the excess loss cofficient
by a factor of 3. If optimized in thickness, the shell (iv) is about as
useful as (iii). An overall thickness of 0.6 mm permits in both cases a
reduction of the loss coefficient by two orders of magnitude. A graphite
reinforced jacket of equal size should have at least the same effect.

The effectiveness of a jacket is a strong function of the fiber to be
protected. For example, the factor by which the jacket reduces the
loss coefficient is proportional to M. In addition, the distortion loss of
the unprotected fiber is a function of A. Hence, the loss coefficient
may typically scale as A-2 for a fiber without jacket, but as A-6 for the
jacketed fiber. In other words, if the index difference in the previous
example had been 1 percent instead of 0.5 percent, the excess loss would
have been initially less than 35 dB/km on the drum and 0.5 dB/km
after protection with a simple soft jacket. Cable forces are likely to be
stronger and less uniform than those encountered on a storage drum
and may necessitate a fiber protection by the more expensive hybrid
jackets or even by reinforcement.
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APPENDIX

Rayleigh -Ritz Limit for Steady -State Loss

The Rayleigh -Ritz method'2 provides a surprisingly close upper
limit for the lowest eigenvalue of differential equations of the type in
(25) or (26) if a reasonable trial solution for the lowest eigenvalue can
be constructed. We demonstrate this for an important subclass of (25).
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Consider the case that / in (23) is very large and (H/D)i in (17)
is very small compared to 1/Kr, so that Pz 2r (1.)01/
ramp, - 2)(uo2µ. After suitable normalization, (25) is then of the
form

dr c(r) der qct. = 0 with c = r -a (35)

and a > -2. Multiply (36) by 4), integrate over r from 0 to 1, and solve
for g. With the boundary condition OM = 0, one arrives at

\2

g
dr

=
/]

j 4,2 dr

We choose the trial solution

dr

= 1 - ry with v > 1,

(36)

(37)

so that the boundary condition c/4/dr = 0 at r = 0 is also satisfied.
We insert (37) into (36) to obtain

1 (2v + 1)(v + 1)
a = 2 2v - cr - 1 (38)

Since (38) is larger than the true eigenvalue yo for all v, we find the
best approximation from dg/dv = 0. The result is

and

1v = -
2 [(a ± 1) + (02 ± 5a ± 6)1] - (39)

10
g cr ± -4 (40)

The quality of this result can be checked against the rigorous solution
yo = r2/4 = 2.467 as compared to g = 2.5 for a = 0. One can show
that (40) converges on -yo for increasing a. For a < 0, (40) proves use-
ful even beyond the regime of validity of the trial solution. For a = -1,
for example, the rigorous solution is8 yo = 1.446, while (40) yields
g = 1.5. This case, by the way, is the solution of (26).

The trial solution (37) is useful also in the case that P of (24) has
the more general form given by (17) and (22), but it becomes sub-
stantially more difficult to optimize 11. One can convince oneself that
the final result (27) converges on the form derived in (40) in the limits
(D/H)I>> K,, and (D/H)1<<Kc.
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Resonant -Grid Quasi -Optical Diplexers
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Experimental results are reported concerning the transmission, reflec-
tion, and depolarization of metal grids that reflect an upper band, centered
at 30 GHz, and transmit a lower band, centered at 20 GHz. With a single
grid, the transmission loss is less than 0.1 dB, and the rejection exceeds
44 dB. Depolarization is measured under realistic conditions with direct
dual -mode feed excitation. In a 10 -percent band, depolarization is below
34 dB at all scanning angles for both the transmitted and reflected waves.
Experiments with two parallel resonant grids are also reported.

I. INTRODUCTION

In many millimeter -wave systems associated with communication -
satellite antennas or Hertzian cables,' quasi -optical filters and diplexers
are attractive. Because of their large areas, quasi -optical devices have
large power -handling capability and the multimoding problem is, in
a sense, avoided. The ohmic losses can be small, and the grids are easy
to manufacture by photographic techniques.

A simple type of diplexer is the plane -parallel Fabry-Perot resonator,
incorporating parallel inductive grids and operating under oblique
incidence.2 The transmission of a plane -parallel Fabry-Perot resonator
is essentially the same as that of a single -pole filter. This type of di-
plexer, however, suffers from the walk -off effects associated with the
diffraction and lateral displacement of the incident beam." This effect
is aggravated if more than two grids are used to obtain a maximally
flat response. The number of grids required, and therefore the walk -off
effects, are minimized if the grids have resonant properties of their
own. Narrow -band resonant crosses have been used in the far -infrared
region.' No diplexing operation, however, was considered. The special
features of the grid patterns considered here are their broadband
characteristics and their capability of operating under oblique inci-
dences. Preliminary results were reported in Ref. 6. In the present
paper, new experimental results concerning the transmission, reflection,
and depolarization of resonant -grid diplexers are reported. We give
special attention to the depolarization of incident waves because, in
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some applications, it is required that two orthogonally polarized
channels be transmitted, and depolarization introduces crosstalk. An
ideal grid does not cause depolarization of incident plane waves under
normal incidence when the pattern is invariant under a 90 -degree
rotation. This useful property of square array grids does not hold, in
general, for waves under oblique incidence. However, we have observed
that the depolarization remains small for a particular orientation of
the grid in its own plane.

Although the main features of the diplexer response are easy to
understand, some details are not yet fully understood. This is the case
for the sharp spurious dips in transmission observed at certain angles
of incidence and for the coupling through evanescent fields. In most of
our experiments we tried to avoid the evanescent coupling by mis-
orienting the grids. This coupling mechanism would perhaps be useful
if it were precisely understood.

II. TRANSMISSION AND REFLECTION

The transmission characteristics of resonant grids are described here
in an essentially qualitative manner. We assume that the grid periods,
pi, P2) have equal magnitude and are perpendicular to one another.
If the wavefronts are plane, unlimited, and parallel to the plane of
the grid, the electric field can be decomposed into two components,
one parallel to pi and one parallel to p2. If the grid pattern is invariant
under a 90 -degree rotation, the transmission is the same in amplitude
and phase for these two components, and therefore no depolarization
is suffered. The transmission curves in Fig. 1 are applicable to such
grids. Because the periods are much smaller than the wavelength, the
grids can be represented by lumped circuit elements. If the filter in-
corporates more than one grid, the fine field structure of one grid
(space harmonics) is assumed to be negligible at the other grid loca-
tion. When the grid spacing is small, it is advisable, as indicated before,
to set the grids at a small angle to one another, of the order of 2 degrees,
to prevent a spurious coupling from taking place.

Figure la shows a simple mesh. This grid can be represented by an
inductance in parallel on a transmission line representing free space.
The smaller the opening areas, the smaller the grid reactance. When
two such grids are parallel to each other, with a spacing slightly less
than 1x0/2, where / denotes an integer, a resonance takes place that
can be pictured as resulting from the wave being reflected back and
forth between the two grids. At each reflection, a wave of small ampli-
tude is transmitted. Because the round-trip path length is of the order
of 1X0, the waves transmitted at the successive passes are in phase and
add up. If the system has a plane of symmetry and the losses can be
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Fig. 1-Schematic representation of single -grid and double -grid diplexers. (a)
Inductive grid. (b) Double -inductive grid. (c) Capacitive grid. (d) Double -capacitive
grid. (e) Jerusalem cross (with rejection frequency). (f) Double Jerusalem cross. (g)
Gridded Jerusalem cross. (h) Self -supported diplexer. (i) Double-gridded Jerusalem
cross.

QUASI -OPTICAL DIPLEXERS 265



neglected, the transmission reaches 100 percent at one frequency at
least. When the bandwidth is large, the response curve exhibits
some dissymmetry, with a slower decay above resonance than below.
If the metal and opened parts are exchanged, as shown in Figs. lc
and ld, a capacitive grid is obtained, whose reflectivity is precisely
equal to the inductive grid transmissivity. The square capacitive ele-
ments need, of course, to be supported by a dielectric sheet, perhaps in
mylar. When the array period is small compared with the wavelength,
it is very difficult to obtain even a moderately large reflectivity, such
as R = 0.9. This is because the gap between squares required to provide
such a reflectivity with a small period -to -wavelength ratio is of the
order of a few micrometers. The power transmissivity is, in general,

T = [1 + (B/2)2]-1 (1)

for a susceptance, B, normalized to free space. For infinitely thin strips
with a gap g and period p, we have (p << X, thickness <<g)

B = (2p/X) log. [1/sin (1-g/2p)]. (2)

It follows from eqs. (1) and (2) that if, for example, X = 10 mm,
p = 3 mm, a 10 -percent transmissivity (R = 0.9, B = 6) requires a
gap as small as 0.1 Alm. This was one of our motivations for proposing
a modified capacitive grid with an inductance in series with the capaci-
tance, shown in Fig. le. These capacitive elements
salem" crosses. At the resonance frequency, the Jerusalem -cross grid
is perfectly reflecting and behaves as a plain sheet of copper. In a
typical case, the measured transmission at the rejection frequency,
30 GHz, is at least 44 dB below the incident power.

Perfect transparency is obtained only at very low frequencies. To
obtain a transmission band, two arrangements are considered. One
consists in assembling two Jerusalem -cross grids parallel to each other.
The response curve in Fig. if is obtained. A second possibility consists
in introducing inductive elements in parallel with the crosses, as shown
in Fig. lg. The resulting grid is called a "gridded Jerusalem cross."
An alternative configuration that does not require a mylar support but
has essentially the same characteristics as the gridded Jerusalem cross
is shown in Fig. lh. These grids (type g or h) are very simple and
attractive. Most of the experiments that we report were made on these
types of grids. Finally, two Jerusalem -cross grids can be used, parallel
to each other. Broad, uniform, transmission bands and broad, uniform,
rejection bands are then obtained.

A grid, whatever its design, can be represented by circuit elements
that are found empirically by fitting the measured response curve to
the one calculated from the equivalent circuit. Sometimes, circuit ele-
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ments that cannot be localized on the pattern need to be added to
match the experimental curve. For instance, in the grid in Fig. 1g, a
parallel capacitance needs to be added to account for a second, un-
expected, transmission band above the rejection band. Even for a
simple grid such as the one shown in Fig. la, a parallel capacitance
needs to be added that tunes the inductance at the frequency c/p, p
being the array period and c the speed of light in free space. Just below
that frequency, the decay of the energy density of the space harmonics
is very slow. This additional stored energy is represented by a capaci-
tance. Above the frequency c/p, the transmission becomes a com-
plicated function of frequency because of the excitation of grating
lobes, and a circuit representation is of limited usefulness.

The transmission at resonance does not reach exactly 100 percent
because of dissipation losses (ohmic losses in the metal and dielectric
losses if mylar backings are used) and of scattering losses caused by
the array not being perfectly periodic. The walk -off losses discussed in
the introduction result from the incident beam being finite in cross
section. For a single grid, the term "walk -off loss" is not applicable,
but a similar physical effect exists. A beam with finite cross section
has a finite angular spread, and a loss is suffered if the grid response
depends significantly on the angle of incidence.

In a Fabry-Perot resonator incorporating conventional grids, the
ohmic losses are small, particularly if the spacing between the grids is
large (that is, if the axial mode number / is large). In contrast, high
Q -factor resonant grids (e.g., narrow slits in a metal sheet) have rather
high ohmic losses. Thus, resonant grids should be used only for broad-
band applications. Such grids are ideal, for example, for separating
two channels widely separated in frequency, such as 20 and 30 GHz, or
4 and 6 GHz. Low -Q resonant grids are also useful in conjunction with
conventional grids to eliminate side resonances in narrow -band filters.
In any case, they provide greater flexibility in the filter design.

For convenient reference, let us give the expression for the suscep-
tance, B, of the circuit shown in Fig. lh (series L, C and parallel L', C')

B = (-Lco + 1/04-1 + C'w - 1/L'w. (3)

In terms of the reactances at the resonance angular frequency of the
LC circuit, coo = (LC)-i; that is, with X = Lwo = ilea)°, X' = L'w,
X" = 1/C'coo, and with f = co/coo, B is

B(f) = X-'(- f f/X" - 1/X' f. (4)

This expression was used to generate the theoretical response curve in
Fig. 7. For a single grid, this expression is to be substituted in eq. (1)
to obtain the transmission T.
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III. DEPOLARIZATION

The characterization of the depolarization introduced by a grid is
discussed in this section. Let us first assume that the grid is an infinite
plane and that the incident wave is plane. The normal to the wave -
front of the incident wave and the normal to the grid plane define the
angle of incidence i ( = reflection angle). The orientation of the grid
wires can be defined by the angle v that they make with the normal to
the incident plane in the clockwise direction for the direction of
propagation. For a linear incident polarization, the polarization is
defined by the angle St that the electric field makes with the normal to
the incident plane, again in the clockwise direction. Arbitrary incident
polarizations can be defined by their two components, along the normal
to the incident plane and along the perpendicular direction. A wave is
said to be E -polarized (or TM) if the magnetic field is linearly polarized
and perpendicular to the incident plane (2 = 90°), and H -polarized
(or TE) if the electric field is perpendicular to the plane of incidence
(S2 = 0). For given i, v, the grid response is characterized by the
complex transmission coefficients tEE, tEH, tHE, and tHH. These four
parameters are, in general, functions of frequency. Because of linearity
we have

4 = tEEeE tEHeH,

dir = tHEeB tHigH.
(5)

The parameters can be considered the elements of a complex 2 -by -2
matrix t defined as

[tEE tEE.
t =-=-

GEE tHH
(6)

In terms of this matrix, (5) is written

e' = te. (7)

Ideally, we would like to have tEE = tHH = t(w) and tEll = tEE = 0,
in which case e' = te, t being a scalar. We may require the less stringent
condition that the state of polarization of the incident field be pre-
served to within an arbitrary, but fixed, rotation angle : e' = tRe,
where R denotes a fixed rotation matrix and t a scalar function of w.
For this to happen, t must have the form t = tR. Reflection by an
even number of plane mirrors, for example, preserves polarization in
that sense. An even less stringent requirement is that orthogonal
incident polarizations remain orthogonal. It can be shown' that this is
the case if and only if t has the form air, with t a complex or real number
and IT a unitary matrix (that is, 17713 = 1, where t denotes transposition
and complex conjugation).
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Symmetry considerations sometimes show that depolarization should
not be present. Let us, for example, assume that the grid is a rectangu-
lar mesh, with a period vector perpendicular to the incident plane
(that is, 11 = 0', modulo 90°). By reason of symmetry, we must have
tEH = tHE = 0. In general, however, tEE tHH. Thus, for that case, E
waves and H waves are not depolarized, but waves with any other
polarization, for instance, a wave with linear polarization at 45 degrees,
will be depolarized and acquire an elliptical polarization. To avoid
depolarization, it is not sufficient that I tEE I = I tHH I . The phases of
tEE and tHH must be equal, too. However, if the magnitudes of tEE and
tHH are found equal over a large band of frequency, the phases of

B.W.O.

POLARIZER,

INCOMING BEAM

30 GHz

(a)

POLARIZER DIPLEXER

20 GHz

(b)

Fig. 2-Measurement system. (a) For near -plane wave excitation. The source is a
backward wave oscillator feeding a dielectric lens (300 -mm focal length and diameter).
The system exhibits low depolarization ( < -50 dB) when properly aligned. The
incident electric field is vertical or horizontal. The grid under test can be rotated in its
own plane. The angle v refers to the angle between the grid wires and the normal to
the incident plane. The angle of incidence (i) can be varied, and the grid assemblycan
be rotated by steps of 45 degrees about the z-axis (angle 0) with the help of a 45 -degree
wedge. (b) Diplexer mounted with the feed.
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till/ and tHH are most likely equal because of the integral relations
existing between phase and amplitude for minimum phase circuits.
Furthermore, if the grid can be considered very thin and lossless, there
exists a simple relation between the phases and the moduli of the
transmitted (t) and reflected (r) fields. The relation is

r = -cos qt. exp (4),
t = -i sin 4) exp (4).

Thus, for thin grids, the phase of t can be obtained from the modulus
of t at any frequency.

Another important result applicable to thin grids is that two-
dimensional scaling applies. That is, nothing is changed if the wave-
length and the grid dimensions in the plane are multiplied by the same
factor. For thin grids, the Babinet principle also applies, which says
that the reflectivity of a grid is equal to the transmissivity of its
complement.

Let us now describe the experimental setup for plane wave measure-
ment. The source (a backward wave oscillator) radiates through a
dual -mode feed. The beam is collimated by a dielectric lens and sub-
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Fig. 3-Dimensions and response curve of a Jerusalem -cross grid. i denotes the
angle of incidence (v = 0°, 12 = 90°: horizontal electric field).
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sequently focused by a second lens back on a collecting dual -mode
feed. The size of the beam between the two lenses is sufficiently large
that the field can be well approximated by that of a plane wave. To
check the depolarization of the system, the collecting feed is rotated
about its axis until a null is obtained. Because the system has a plane
of symmetry, the cross -polarized components should be equal to zero.
These components are found to be less than -50 dB. To damp the
reflections that take place from the lenses and the feeds and between
lenses, attenuating glass plates are introduced. These glass plates are
tilted, but symmetry in the vertical plane is preserved. In this arrange-
ment, the transmitted electric field must remain either vertical or
horizontal. Otherwise, the tilted glass plates would depolarize the beam
because of differential loss. Thus, the filter under test, rather than the
source, needs to be rotated about the system axis (z) to measure its
response for various polarization angles. In practice, it is sufficient to
measure the depolarization for three angles, S2 = 0, 45°, and 90°, and
pick up the worst number. This maximum depolarization (X) is a
function of the angle of incidence (i), of the angle that the grid wires
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Fig. 4-Same as Fig. 3 with 0 = 0°. For 1.1 = 45°, the response (not shown) is
found to be almost independent of i, for i = 25° to 45°.
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make with the normal to the incident plane (v), and, of course, of
frequency. Thus, the plane -wave depolarization of a diplexer in trans-
mission is characterized by a function

Xt = Xt(i, ii, co) (dB).

The depolarization in reflection is similarly defined, but the mechanical
arrangement is more complicated.

In some applications, the incident wave is diverging rather than
plane. This is the case when the diplexer is used to separate beams just
before the feed of a primary feed antenna, as shown in Fig. 2b. The
definition of what constitutes a perfect feed from the point of view of
polarization is not obvious. It has been observed that, if the feed is
intended to be used at the focal point of a parabolic dish, its polariza-
tion pattern should be the same as that of an Huygens source, a com-
bination of electric and magnetic dipoles.8 The feeds used in this paper
have relatively narrow beam patterns (about ±4 degrees at the 3 -dB
points), and it seems that the ambiguities associated with the definition

0

-5

-10

-15

1-
- 20

-25

-30

-35
50 55 60 65
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Fig. 5-Response curve of a filter incorporating two Jerusalem -cross grids as in
Fig. 3, with a 0.8 -mm spacing. The grids are at a small angle (--,3°) to one another to
avoid evanescent wave coupling. When the two grids are aligned, the response shown
by a dashed line is obtained. For all curves, a = 90° (horizontal electric field).
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of what constitutes a "good" feed can be ignored. The test thus simply
consists of scanning the diplexer assembly in azimuth for various
incident polarizations (0, 45, and 90 degrees) and measuring the cross -
polarized component.

IV. GRID FABRICATION

The grids were made either in beryllium copper (75 -Am thick) or
from a sheet of copper bound on a mylar film. The fabrication consists
of generating a mask from a computer program and using conventional
photoetching techniques.

To generate the mask, three plotting techniques were used, all com-
puter -driven. For simple grid patterns, the most convenient system
seems to be the "Litehead" plot, which is a scanned focused beam of
light. It was used for fabricating polarizers. For the complicated pat-
terns considered in this paper, we used the "Rubylith" plot, which uses
mechanical cuts. Because of computer limitations, only moderate
array sizes can be obtained. To obtain large array sizes, it is necessary
to use a "step -and -repeat" camera technique. This photographic
technique has size limitations, and further mask joining is required.
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Fig. 6-Continuation of Fig. 5 with St = 0° (vertical electric field). The dashed line
is for a 1.4 -mm spacing.
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An alternative technique is the PPG (primary pattern generator) sys-
tem. This system is a raster -scan -type device that generates 190 -mm
by 240 -mm arrays with a 7 -Am by 7 -Am resolution. This is the technique
used to generate the grids whose depolarization is shown in Figs. 9 to
12, 15, and 16, except for the dashed line in Fig. 9.

V. THE JERUSALEM -CROSS GRID

The dimensions of the crosses of a typical Jerusalem -cross grid and
the response curve are shown in Figs. 3 and 4 (E and H polarizations)
for various angles of incidence. The resonance frequency of the series

't ,COPPER

A

-- -4.11mm

(a)

0.343 mm

-0.206 mm

(b)

-40 I 1 I I 1 I I 1 1

0 5 10 15 20 25 30 35 40

FREQUENCY IN GHz

Fig. 7-Gridded Jerusalem -cross diplexer. The critical dimensions are shown in (a)
and the equivalent circuit obtained by fitting the measured transmission and reflection
curves in (c) is shown in (b). The peak transmission (loss < 0.1 dB) is at 16 Gliz,
and the peak rejection ( > 44 dB) is at 30 GHz. The plain curve in (c) is theoretical.
from the equivalent circuit.
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LC circuit is at 65 GHz. We note that the resonance frequency is almost
independent of the angle of incidence.

The transmission characteristic of a pair of such grids, with a 0.8-mm
spacing, at various angles of incidence, is shown in Figs. 5 and 6. At
an angle of incidence of 35 degrees, for example, the transmission
reaches its maximum at a frequency of 51 GHz. The rejection exceeds
30 dB from 61 to 69 GHz. In this experiment, the two grids are slightly
rotated with respect to one another (about 3 degrees). The dashed
curve in Fig. 5 shows that, when the grids have exactly the same
orientation, the rejection is smaller. This probably results from a
coupling through evanescent fields.

VI. THE GRIDDED JERUSALEM CROSS

A single grid exhibits a transmission band if parallel inductances are
added to the series circuit. The grid dimensions and the measured
response, both in transmission and in reflection, are shown in Fig. 7
(see also Ref. 6). The equivalent circuit has been selected to match the
experimental response curve. The curve in Fig. 8 shows the effect of

- 10

co

z - 15

- 20

- 25

- 30

i=45°, v=45°

-4.45 mm -
mm

10 20 30 40 50

FREQUENCY IN GHz

n=0°

60

Fig. 8-Gridded Jerusalem -cross diplexer. This curve shows that the transmitted
frequency can be raised from 16 to 18 GHz by increasing the width of the parallel
wires. The transmitted curves are for angles of incidence i of 5 and 45 degrees, v = 0°.
The small -dash curve is for the grid located between the feed (two wavelengths
across) and the lens, that is, under strongly diverging wave excitation. The trans-
mission curve is essentially unaffected. The curve for an angle of incidence of 45
degrees and the grid rotated in its own plane at P = 45° exhibits a spurious dip.
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increasing the width of the parallel strips from 0.343 to 0.686 mm. This
brings the passband closer to the rejection band. By increasing the
width of the parallel grids further to 0.840 mm and reducing the
capacitive gap to 0.126 mm and the series inductance strip width to
0.336 mm, we found it possible to obtain a ratio of rejection frequency
to transmission frequency as low as 1.5:1. An approximate theoretical
analysis of the operation of the gridded Jerusalem cross under normal
incidence will be reported shortly.' At a large angle of incidence and
for some orientation of the grid, a sharp dip is observed. This dip is
observed when the electric field is at 45 degrees to the series inductance
wires. (The same rule applies to the "self -supported grid" discussed
in Section VII.) A possible mechanism is the following. Consider as a
simpler model an array of parallel strips with series capacitances. Be-
cause the phase velocity along the strips exceeds the velocity of light
in free space, this system can, in principle, radiate. However, if the
symmetry is perfect, the relevant space harmonic has zero amplitude.
Thus, a very small lack of symmetry is needed to have radiation. The
Q -factor of this resonance can be very high because the coupling to

- 15

-20

i=40°

15 30 45 60 75 90 105 120 135

ARRAY ROTATION ANGLE, v, IN DEGREES

Fig. 9-Depolarization introduced by the gridded Jerusalem -cross diplexer (di-
plexer obtained from a PPG mask) in Fig. 8 under near -plane wave excitation for differ-
ent angles of incidence (i), as a function of the rotation of the grid in its own plane
(angle v). The incident polarization is at 45 degrees to the incidence plane (0 = 45°).
The dashed line is for joint masks (Rubylith plot).
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incident plane waves is very small. Whether this model is applicable
to the grids investigated remains to be seen.

The depolarization introduced by a grid of this type has been
measured, both under plane wave excitation and under diverging wave
excitation. The depolarization under plane wave excitation is shown
in Fig. 9 as a function of the orientation of the grid in its own plane. It
should be noted that, even under normal incidence, the depolarization
is not zero and, under oblique incidence, the curve does not have a
90 -degree period, contrary to our expectations based on the nominal
symmetry of the grid. The first grid that we tested (whose response
curve is shown as a dashed line in Fig. 9) was obtained from a com-
posite mask made of two smaller masks. A slight discontinuity between
the two masks was noted, which was thought to be responsible for the
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Fig. 10-Typical azimuth scan showing the transmission and depolarization of the
diplexer in Fig. 8, at 19 GHz.
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depolarization under normal incidence (34 dB maximum). However, the
depolarization for a grid obtained from a single mask (PPG generator)
is almost the same. The effect of diffraction at the edges of the filter
has been eliminated as a possible cause for depolarization. No sys-
tematic lack of symmetry of the grid under a 90 -degree rotation is
noticeable under microscopic observation. The residual depolarization
that we observe under normal incidence for the PGG grid, therefore,
remains unexplained. A second observation is that excellent cross -
polarization properties are obtained for angles of incidence less than
20 degrees for some orientations of the grid in its own plane (e.g.,
cross -polarization < -50 dB for v = 110°, i = 20°).

More complete tests were made in an anechoic chamber with dual -
mode feed horns at 20 GHz (transmitted beam) and 30 GHz (reflected

-20

-25

-30

-35

-40

-45 -

-50
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FEED + POLARIZER

18.5 19
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19.5 20

Fig. 11-Depolarization introduced by the gridded Jerusalem -cross diplexer in
Fig. 8 under diverging wave excitation as a function of frequency. The feed diameter
is 130 mm (3 dB points of the far -field pattern at +5° at 19 GHz). The angle of
incidence is 20 degrees. At each frequency, the diplexer (grid and feed together) is
scanned in azimuth. The points shown correspond to the worst depolarization within
a ±12° angle, corresponding to the -18 -dB points of the far -field radiation pattern
of the feed. The incident polarization is at 45 degrees to the incident plane. The
orientation of the grid in its own plane (w = 30°) is shown in the figure. The upper
curve is for the dual -mode feed alone. The lower curve is for the feed mounted with a
grid polarizer. The central curve gives the depolarization introduced by the diplexer
and feed combination.
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Fig. 12-Depolarization introduced on reflection in the 30-GHz band by the gridded
Jerusalem -cross diplexer in Fig. 8. Measurements were made for the same grid orienta-
tion as in Fig. 11 for incident polarizations corresponding to angles 0 = 0, 45°, and
90°. The worst depolarization within a th12° scanning angle, corresponding to the
-22 -dB point in the feed response at 30 GHz, is selected. The curve labeled "system"
is for the dual -mode feed -mounted with a polarizer.
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Fig.13-Photograph of a self -supported diplexer in beryllium copper.
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Fig. 14-Transmission of a self -supported grid in beryllium copper whose dimen-
sions are shown on the figure. At large angles of incidence (i = 45°) and for some
orientations of the grid, a large dip appears in the response.
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Fig. 15-Depolarization introduced by the self -supported grid in Fig. 13 as a
function of the orientation of the grid in its own plane (angle v) for various angles of
incidence. The frequency is 19.5 GHz, the beam diameter is 130 mm, and the incident
polarization is perpendicular to the incidence plane (C2 = 0°).
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Fig. 16-Continuation of Fig. 14 with the incident polarization at 45 degrees to the
normal to the incident plane (SZ = 45°).

beam). The orientation of the grid is selected for minimum depolariza-
tion in transmission at 19 GHz. It was noted that operation of a single -
grid diplexer under diverging wave conditions does not significantly
degrade the system response. The diplexer assembly was scanned within
a 12 -degree angle (d degrees correspond to the - 18 -dB points
of the feed response at 19 GHz). A typical scan is shown in Fig. 10.
The worst depolarization is plotted in Fig. 11 as a function of frequency.
The incident polarization was at 45 degrees to the incident plane. The
depolarization is less than - 35 dB from 18 to 20 GHz. The depolariza-
tion on reflection, shown in Fig. 12, turns out not to be sensitive to
the orientation of the grid in its own plane. This is fortunate, since
there is no particular reason to expect the optimum orientation of the
grid to be the same on reflection and on transmission. The depolariza-
tion on reflection was measured for three incident polarizations,
12 = 0°, +45°, and 90°. Considering only the upper envelope of these
curves, we find that the depolarization on reflection is less than -34
dB from 28 to 31 GHz.

In conclusion, we find that the Jerusalem -grid diplexer, operating
with a 40 -degree angle between reflected and incident beams, gives
transmission and reflection losses less than 0.1 dB. The depolarization
is less than - 34 dB within 10 -percent bands centered at 18 and 30
GHz.
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VII. THE SELF -SUPPORTED DIPLEXER (Fig. 13)

The most critical dimensions of the self -supported grid are shown in
Fig. 14. The equivalent circuit is almost the same as that of the gridded
Jerusalem -cross grid previously discussed, but this new grid does not
require a mylar backing. The grid was made of beryllium copper,
75 -Am thick. The transmission characteristic is shown in Fig. 14 as a
function of frequency. Here again, a sharp dip in transmission shows
up for some orientations of the grid. The depolarization introduced by
the self -supported diplexer is shown in Figs. 15 and 16 for quasi -plane
wave excitation. We observe that a very small depolarization can be
obtained for a proper orientation of the grid in its own plane, if the
angle of incidence does not exceed 20 degrees.

VIII. DOUBLE -SELF -SUPPORTED DIPLEXER

An almost flat response can be obtained from 17 to 19.5 GHz by
combining two self -supported grids (shown in Fig. 13) with a 6.3 -mm
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Fig. 17-Transmission of a double -self -supported diplexer with a 6.3 -mm spacing at
45 -degree angle of incidence, for two polarizations. The grid mask is as shown in Fig.
14. The grids were etched on 76 -Am -thick pure copper. Grid size = 300 X 460 mm.
Depolarization at 19 GHz is below -30 dB and the peak rejection at 30 GHz
exceeds 60 dB.
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spacing (Fig. 17). A broad rejection band is also obtained, with a peak
rejection of -68 dB.

IX. CONCLUSION

We have shown that a single metallic grid may constitute an efficient
diplexer to separate or combine frequency bands in the ratio 1.5:1 or
more. The depolarization is low and could be reduced further by
selecting unequal periods and dimensions. Because a very accurate
theory is not presently available for the complicated patterns that we
have investigated, an optimum design would require further testing.
For a two -resonant grid diplexer, flat responses are obtained, and the
depolarization remains acceptable for most applications. Some of the
effects observed : depolarization under normal incidence, sharp dips in
transmission at some orientations of the grids, and evanescent coupling,
though understandable in principle, remain to be investigated.

X. ACKNOWLEDGMENTS

The authors acknowledge stimulating discussions with A. A. M.
Saleh and the assistance of J. T. Ruscio and W. E. Legg. The high -gain
dual -mode feeds were provided to us by T. S. Chu and M. J. Gans.
Assistance from J. H. Corbin and L. West for the graphic programming
of masks is gratefully acknowledged.

REFERENCES

1. J. A. Arnaud and J. T. Ruscio, "Guidance of 100 GHz Beams by Cylindrical
Mirrors," to be published in IEEE Trans. on Microwave Theory and Tech-
niques, April 1975.

2. J. A. Arnaud, "Quasi -Optical Channel Dropping Filters at Millimeter Wave-
lengths," June 1970, unpublished work.

3. J. A. Arnaud, A. A. M. Saleh, and J. T. Ruscio, "Walk -Off Effects in Fabry-Perot
Diplexers," IEEE J. of Microwave Theory and Techniques, MTT22, No. 5
(May 1974), p. 486. A different type of Fabry-Perot diplexer was reported by
A. A. M. Saleh, op. cit., MTT22, No. 7 (July 1974), p. 728.

4. J. A. Arnaud, "Hamiltonian Theory of Beam Mode Propagation," Progress in
Optics, Vol. 11, E. Wolf ed., Amsterdam, The Netherlands: North -Holland,
1973.

5. R. Ulrich, Infrared Physics, 7, 1967, pp. 37 and 65.
6. J. A. Arnaud and J. T. Ruscio, "A Resonant Grid Quasi -Optical Diplexer,"

Electronics Letters, 9, No. 25 (Dec. 13, 1973), p. 589.
7. A. A. M. Saleh, private communication.
8. A. C. Ludwig, "The Definition of Cross -Polarization," IEEE Trans. on Ant. and

Propag., .4P21, No. 1 (January 1973), p. 116.
9. I. Anderson, unpublished work.

QUASI -OPTICAL DIPLEXERS 283





Copyright © 1975 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 54, No. 2, February 1975
Printed in U.S.A.

An Optical -Frequency Pulse -Position -

Modulation Experiment

By W. S. HOLDEN

(Manuscript received April 3, 1974)

This paper describes an optical -frequency pulse -position -modulation
experiment using a GaAs luminescent diode as the source and either a
PIN or an avalanche photodiode as the detector. The experimental system
transmits an audio band from 800 Hz to 3.4 kHz at an 8 -kb/ s repetition
rate. Timing synchronization between the transmitter and receiver has been
accomplished by two methods: by transmitting a separate clock signal and
by recovering the timing from the PPM signal itself. Data show, with each
scheme, peak-signal-to-Rms-noise ratios of 70 dB can be achieved with the
required average optical power at the receiver being -78 dBm with a PIN
detector and -88 dBm with an avalanche detector.

I. INTRODUCTION

Recent advances in low -loss optical fibers,' in solid-state photode-
tectors,2 and in optical -frequency (o.F.) power sources3,4 have stimu-
lated interest in O.F. communication systems for numerous applications.
Pulse -position modulation (FFNI) is particularly attractive for o.F. com-
munications because the optical energy source can be operated at a
low, message -independent, duty cycle to extend the lifetime of the
device, and the technique affords a high noise immunity to the types
of noise that dominate in a well -designed optical receiver. By employ-
ing a short pulse width and thereby expanding the bandwidth of the
transmitted signal, the effect of detector leakage noise (dark current)
and some forms of amplifier noise are reduced.

This paper describes an experiment performed to evaluate the per-
formance that can be achieved in transmitting a single message channel
by means of optical PPM.* Included are descriptions of the following :

 In an independent work (Ref. 5), a transmitter and receiver are described for
an optical PPM system in which timing information was provided by a reference
pulse in each time slot. The signal-to-noise ratio performance of the receiver was not
given.
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(i) The modulator that encodes the audio signal into a PPM signal.
(ii) The optical link using a GaAs LED as the source and either a

PIN or an avalanche photodetector at the receiver.
(iii) The detection circuitry employing high -impedance front-end

amplification techniques.6'7
(iv) The demodulator that transforms the PPM back to the original

audio signal.
(v) The timing recovery scheme implemented using a phase -

locked loop with the phase discriminator being the demodulator
itself.

(vi) The results of experiments performed to measure the system
performance.

II. THE OVERALL SYSTEM

Figures la and lb are block diagrams of the overall transmitter and
receiver, respectively. Included are diagrams of the associated
waveforms.

An audio signal, filtered to limit the transmitted bandwidth from
300 Hz to 3.4 kHz (3 -dB points), is applied to a "sample -and -hold"
circuit that transforms it into a staircase waveform having a step
width of 125 As. This staircase and an inverted 8 -kHz sawtooth are
applied to a comparator. The comparator output is high during the
interval in which the sawtooth amplitude is greater than the staircase
and low when the staircase amplitude exceeds that of the sawtooth.
This results in pulse -width modulation (PwM) at an 8-kb/s repetition
rate with the falling edge of each pulse varying in position within a
time slot ; this position relates directly to the audio signal amplitude.
By adjusting the DC offset on the sawtooth, the trailing edge of the
pulse is set to occur at the midpoint of the time slot when there is no
audio input. This position corresponds to the zero reference.

Pulse -position modulation is obtained from PWM by producing a
narrow pulse each time the comparator goes from a high to a low state.
The timing components for the device were chosen to produce an out-
put pulse width of the order of 0.5 As. This results in a duty cycle of
0.4 percent, which is compatible with present state-of-the-art, large -
optical -cavity, solid-state lasers.8 (These lasers are capable of being
operated with up to a 1 -percent duty cycle.)

The PPM signal is amplified and applied to a GaAs light -emitting
diode (LED) by means of a driver stage. The driver is capable of apply-
ing 500-mA pulses to an LED. During this experiment, however, the
LED was driven by pulses having peak amplitudes between 200 and
300 mA.
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In this experiment, the optical signal traverses an air path. Fiber loss
is simulated by neutral density filters (providing large amounts of
attenuation) and a pair of crossed polarizers (providing small but
precise changes in attenuation). At the receiver, the signal is focused
onto a photodetector, either a PIN or an avalanche device. The external
quantum efficiency (amperes/watt) for each device has been measured.
From this, by monitoring the average current through the device,
the received average optical power may be obtained.

The detected signal, before demodulation, is processed by the
following three stages :

(i) High -impedance front-end amplification-This approach is
similar to that taken by J. E. Goell in his 6.3-Mb/s repeater
research.' Figure 2 is a block diagram of the three -stage ampli-
fier used. The first stage provides a high impedance for the
photodetector, the second provides variable gain, and the third,
a source follower, is provided to decouple the input amplifier
from subsequent circuits.

(ii) Equalization-To compensate for the distortion introduced by
the long input time constant, the circuit of Fig. 3 is used. The
equalizer, a series capacitor and a resistance shunted to ground,
is wired between two video amplifiers.

(iii) Filter-This stage, a two -section, low-pass Butterworth filter,
limits the bandwidth of the signal pulse and noise. Two emitter -
follower stages supply the proper impedances at the input and
output (Fig. 4).

The PPM signal from the detection circuitry described above is ap-
plied to one input of a comparator. The other comparator input, which
determines the threshold of the device, is connected to a variable DC
source. This threshold was set with the received optical signal at the
minimum value for which the demodulated audio output, when viewed
on an oscilloscope, showed no distortion or noise. This method is
justified because, for signal levels slightly higher than this value, the
signal -independent noise is dominant.

The demodulator consists, basically, of two sample -and -hold circuits
and a low-pass filter. The first sample -and -hold circuit is triggered by
the PPM signal and samples a sawtooth wave. The output is a staircase
with the following properties :

(i) The amplitude of each step varies as a function of the position
of the received pulse in the time slot.

(ii) The step width varies according to the PPM signal.
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Constant step width is achieved by using a second sample -and -hold
circuit triggered by a repetitive 8-kb/s pulse train.

Filtering this staircase waveform removes the high -frequency com-
ponents introduced by the sampling circuits and yields the original
audio signal.

The timing recovery scheme incorporated in the receiver is described
in the appendix.

III. EXPERIMENTAL PROCEDURE AND RESULTS

This section describes the experiments performed to measure the
channel's performance.

For the noise measurements, additional filtering was provided to sup-
press the third harmonic of the 60 -Hz supply voltage, the high fre-
quencies introduced in sampling (in the modulator and demodulator),
and out -of -band thermal noise. The filter employed, a Rockland Model
1100, was set for a Butterworth high-pass response and a Bessel low-
pass response. The passband (300 Hz to 3.4 kHz) has a ripple of
±0.5 dB and a 24-dB/octave rolloff.

A RMS voltmeter was used to measure peak-signal-to-RMs noise
ratios* at the receiver output. The baseband signal level was measured

This ratio will be referred to as SNR.
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and converted to its corresponding peak value for the largest possible
signal pulse excursion transmitted through the channel. The RMS noise
was recorded directly, being measured with no audio signal applied.
The optical pulse in all cases has a 20-ns rise time and a 3 -dB width
of 500 ns.

3.1 PIN detector

Figure 5 shows the SNR1S in dB plotted as a function of received
average optical power. Four bandwidths were implemented by the
low-pass filter in the detection circuitry which sets the bandwidth for
the detected signal pulse and noise; the 3 -dB widths are 5.5 MHz,
1 MHz, 600 kHz, and 200 kHz. These curves exhibit three regions :
rapid increase, gradual increase, and no increase in SNR with increasing
optical power.

For optical signal levels of the rapidly increasing region, the output
noise is primarily due to spurious threshold crossings caused by front-
end amplifier thermal noise. This noise may also add to the signal pulse
such that it will not exceed the predetermined level.

In the gradually increasing region, the predominant degradation is
due to time jitter on the transmitted pulse, originating in the trans-
mitter. The front-end noise also leads to an uncertainty in determina-
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Fig. 5-Peak signal to RMS noise ratio in dB plotted as a function of average
received optical power in dBm using a PIN detector.
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tion of the time of a threshold crossing. With increasing power, the
effect of this front-end jitter is reduced.

For optical signal levels greater than - 66 dBm and for filter band-
widths of 5.5 MHz, 1 MHz, and 600 kHz, the noise resulting from the
amplifiers and sampling circuits in the transmitter and receiver limits
the performance. This effect occurs at -59 dBm for the 200 -kHz
filter. Increasing the received optical power does not improve the SNR
in this region.

As the filter bandwidth decreases from 5.5 MHz to 600 kHz, both
the noise and signal decrease. It can be shown that, with the high -
impedance front-end, the noise (which is dominated by the FET-series
noise source) decreases faster.' Thus, the power required to prevent
threshold violations decreases with decreasing bandwidth. This effect
is evident in Fig. 5. However, if the filter is too narrow, leakage noise
will begin to dominate the FET-series noise source, and the required
power will increase with decreasing filter width. This occurs in going
from the 600 -kHz to the 200 -kHz filter. In the gradual increase
region, increasing the filter width increases the noise voltage more
slowly than the pulse slope for all cases. Therefore, increasing the
bandwidth increases the SNR at a specified power level until threshold
violations become significant.

3.2 Avalanche gain

For this stage of the experiment, the PIN detector was replaced with
a Texas Instrument TIXL 56 avalanche detector. The filter bandwidth
in all cases was set to 1 MHz.

Figure 6 shows SNR plotted as a function of average received optical
power for avalanche gains at 1, 10, 50, 65, and 80. (The accuracy of the
measured SNR'S is of the order of ±1.5 dB.) We see from this that, by
increasing the avalanche gain from 1 to rA:', 60, less optical signal power
is required to achieve a given SNR. The optimum gain for this device is
R -J, 60. For avalanche gains larger than RJ, 60, the excess avalanche
noise, rather than thermal noise, becomes dominant and, since this
noise increases faster than the signal as avalanche gain is increased,
more signal power is required to achieve a given SNR. Data for an
avalanche gain of 80 illustrate this point, as it requires a received power
of -83.5 dBm to achieve a 75 -dB SNR. However, a 75 -dB SNR may be
achieved at a level of -85.5 dBm with a gain of 65.

With the avalanche detector biased for optimum gain, ,<:-.115-dB
more loss may be tolerated between transmitter and receiver than in
the case with unity gain.

The data for Figs. 5 and 6 were recorded for the following two
methods employed to synchronize the receiver : by transmitting a
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separate clock signal and by recovering the timing from the PPM
signal itself. (This is discussed in detail in the appendix.) Differences in
performance of the order of ±0.5 dB were observed ; for this reason, it
is concluded that the timing recovery circuit functioned properly over
the range of power levels used in the experiments.

3.3 Distortion

Distortion present on the output signal is shown in Figs. 7a, 7b, and
7c. The photographs show the output for sax's at 75 dB, 77 dB, and
79 dB, respectively. Because the RMS noise is constant, the SNR here is
determined by the signal amplitude. This distortion is introduced by
the sampling circuits and amplifiers. It is not a basic limitation of the
system. The degree of distortion was investigated using a spectrum
analyzer to measure the relative amplitudes of the fundamental,
second -harmonic, and third -harmonic components for different audio
signal levels. Figure 7d shows the relative difference between the
fundamental and second harmonic and between the fundamental and
third harmonic plotted as a function of signal power. With full modula-
tion (Fig. 7c), the second -harmonic distortion is 10 dB below the
fundamental.
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IV. CONCLUSIONS

An optical PPM communication experiment has been described. The
receiver is capable of recovering timing synchronization from the
transmitted PPM signal itself. Peak-signal-to-RMs noise ratios greater
than 70 dB (the objective of the experiment) have been achieved. By
using a PIN detector and a 1 -MHz filter, this objective can be achieved
at an average received optical power level of - 73 dBm. With full
modulation, the second -harmonic distortion is 10 dB below the funda-
mental. Since existing LED'S can couple -10 dBm of average optical
signal power into an optical fiber, the allowable attenuation would be

60 dB, which allows a range of 15 km for fibers having 4-dB/km
loss. However, with a large -optical -cavity laser as the source, we can
contemplate that as much as +20 dBm might be injected into a fiber
this would increase the tolerable attenuation to ti 90 dB (correspond-
ing to a range of prz-1., 22 km). Data show that an additional improvement
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of 15 dB may be obtained by using avalanche gain in the receiver. A
PPM system of this nature would be able to tolerate 105 dB of fiber
loss between transmitter and receiver. This corresponds to ic:3 26 km
of fiber, which makes this system very attractive.
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APPENDIX

A PPM system requires timing synchronization between transmitter
and receiver clocks.m Two methods have been employed to accomplish
synchronization. The first is to simply carry a timing signal from the
transmitter to the receiver by a coaxial cable. The second method,
which is described in this section, is a scheme that recovers the timing
from the transmitted PPM signal itself.

The sawtooth oscillators in the transmitter and receiver have been
designed to free run at approximately the same frequency; however,
bias -voltage fluctuations and temperature changes may cause one to
drift with respect to the other.

A change in relative phase results in a DC level shift at the output of
the first sample -and -hold circuit in the demodulator. This DC level is
defined as the error signal. To compensate for this frequency drift, the
error signal is applied to a voltage -controlled oscillator (vco) in such a
manner as to change the oscillator frequency in opposition to the
initial frequency drift. In essence, the demodulator acts as a phase
discriminator in a phase -locked loop.

The vco and associated circuitry, shown in Fig. 8, are used to com-
plete the loop when connected between the first sample -and -hold out-
put and the sawtooth-trigger input. The sampled output contains two
components, an audio staircase and the error signal. The error signal
is amplified by the operational amplifier, while the audio is suppressed

AMPLIFIER
AND

LOW-PASS
FILTER

FROM
SAMPLE

AND HOLD
NO. 1

LIMITER

7.7

VOLTAGE
CONTROLLED
OSCILLATOR

AMPLIFIER

Fig. 8-Voltage-controlled oscillator and associated circuitry.
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SAWTOOTH

OSCILLATOR
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by the feedback capacitor. The differential input sets the loop reference.
Two diodes connected back to back at the operational amplifier output
serve to limit the frequency range over which the vco can be varied.
The error signal is further amplified and applied across the vco. The
final stage amplifies the vco output to a sufficient level to trigger the
sawtooth generator.
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An important problem in speech processing is to detect the presence of
speech in a background of noise. This problem is often referred to as the
endpoint location problem. By accurately detecting the beginning and end
of an utterance, the amount of processing of speech data can be kept to a
minimum. The algorithm proposed for locating the endpoints of an ut-
terance is based on two measures of the signal, zero crossing rate and energy.
The algorithm is inherently capable of performing correctly in any rea-
sonable acoustic environment in which the signal-to-noise ratio is on the
order of 30 dB or better. The algorithm has been tested over a variety of
recording conditions and for a large number of speakers and has been
found to perform well across all tested conditions.

I. INTRODUCTION

The problem of locating the beginning and end of a speech utterance
in an acoustic background of silence is important in many areas of
speech processing. In particular, the problem of word recognition is
inherently based on the assumption that one can locate the region of
the speech utterance to be recognized. A further advantage of a good
endpoint -locating algorithm is that proper location of regions of
speech can substantially reduce the amount of processing required
for the intended application.

The task of separating speech from background silence is not a
trivial one except in the case of acoustic environments with extremely
high signal-to-noise ratio, e.g., an anechoic chamber or a soundproof
room in which high -quality recordings are made. For such high signal-
to-noise ratio environments, the energy of the lowest -level speech
sounds (e.g., weak fricatives, low-level voiced portions, etc.) exceeds
the background noise energy and a simple energy measure suffices.'
However, such ideal recording conditions are not practical for real -
world applications of speech -processing systems. Thus, simple energy
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measures are not sufficient for separating weak fricatives (such as the
/f/ in "four") from background silence. In this paper, we propose
a fairly simple algorithm for locating the beginning and end of an
utterance, which can be used in almost any background environment
with a signal-to-noise ratio of at least 30 dB. The algorithm is based
on two measures of speech : short -time energy and the zero crossing
rate. The algorithm possesses the feature that is somewhat self -adapting
to the background acoustic environment in that it obtains all the
relevant thresholds on its decision criteria from measurements made
directly on the recorded interval.

The organization of this paper is as follows. In Section II we discuss
the major difficulties in locating the beginning and end of an utterance
and propose various measurements for distinguishing between speech
and no speech in these cases. In Section III we describe the algorithm
to locate the endpoints of the utterance. In Section IV we give examples
of the use of the algorithm, and give the results of both formal and
informal tests on its ability to find endpoints of a corpus of words
from several speakers. Finally, in Section V we discuss the general
characteristics of the endpoint -location problem and propose alterna-
tive methods of solving the problem.

II. EXAMPLES OF SPEECH ENDPOINT -LOCATION PROBLEMS

To arrive at a reasonable algorithm for separating speech from non -
speech, it is necessary first to define the acoustic environment in which
the recordings are made. In this paper, we consider two specific modes
of recording. In the first mode, the speaker makes recordings on analog
tape using a high -quality microphone in a soundproof room. This mode
of recording is useful for obtaining reasonably high -quality speech. In
the second mode of recording, the speaker records directly into com-
puter memory in a noisy environment (e.g., a computer room) using
a noise -reducing, close -talking microphone. This mode of recording is
a reasonable approximation to a real -world environment for most
man -machine interaction problems. To eliminate 60 -Hz hum, as well
as any de level in the speech, it is assumed that the speech is high-
pass filtered above 100 Hz ; similarly, to keep the processing simple, the
speech is low-pass filtered at 4 kHz, thereby allowing a 10 -kHz sampling
frequency.

Figure 1 shows a comparison of the waveform* of the background
silence (on a greatly amplified scale) for these two modes of recording.
The top two lines of this figure show the waveform for tape-recorded

* In this and subsequent illustrations, each line shows 25.6 ms of the waveform.
Successive lines show successive 25.6 -ms segments of the waveform.
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Fig. 1-Acoustic waveforms for the silences from tape and microphone.

silence from a soundproof booth, whereas the lower two lines show the
waveform for the silence from the close -talking microphone. It is seen
from this figure that the tape-recorded silence has a strong low -
frequency component (period 8 ms) due to the recording process.
The waveforms from both the close -talking microphone and the re-
cording process appear to be quite broadband, as one would expect.
Figure 2 shows typical frequency spectra of these background silences.
The spectra are plotted on a log magnitude scale and are for 512 -point
Hamming window weighted sections. Except for the strong low -
frequency -hum components for the recorded silence, the spectra of
these silences are quite similar.

The problem of locating the endpoints of an utterance in these back-
grounds of silence essentially is one of pattern recognition. The way
one would attack the problem by eye would be to acclimate the eye
(and brain) to the "typical" silence waveform and then try to spot
some radical change in the pattern. In many cases this is easy to do.
Figure 3 shows an example (a waveform of the word "eight") in which
the silence pattern (on a reduced amplitude scale) is easily distinguished
from the speech which begins just past the beginning of the third line
on this figure. What one is observing in this case is a radical change in
the waveform energy between the silence and the beginning of the
speech.

Figure 4 shows another example (a waveform of the word "six")
in which the eye can do an excellent job in locating the beginning of
the speech. In this case, the frequency content of the speech is radically
different from the frequency content of the background noise as mani-
fested by the sharp increase in the zero crossing (or level crossing)
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Fig. 2-Log magnitude spectra for the silences from tape and microphone.

rate of the waveform. For this example, the speech energy at the
beginning of the utterance is not radically higher than the silence
energy ; however, other characteristics of the waveform signal the
beginning of the speech.

The next set of figures illustrates some of the cases in which the eye
can be greatly deceived, even with the use of expanded amplitude
scales to aid in the examination of the frequency content of the speech.
Figure 5 shows the waveform for the beginning of the utterance "four."
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Fig. 3-Waveform for the beginning of the word "eight."
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Fig. 4-Waveform for the beginning of the word "six."
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MIKE -FOUR...-..........,..,# A.w...~....4.

Fig. 5-Waveform for the beginning of the word "four."

This utterance begins with the weak fricative /f/. Without any a priori
information about the utterance, the eye would select point B as the
beginning of the utterance. This is incorrect, however, in that it com-
pletely misses the weak fricative /f/ at the beginning. For this example,
point A is a better indication of the beginning of the speech.* Thus, one
problem to be concerned with is weak fricatives at the beginning (or
end) of the utterance.

Figure 6 shows another example of the difficulty in locating the end-
point of an utterance. This figure shows the waveform for the end of
the word "five." Without any a priori information, point A might be
chosen by eye as the endpoint of the utterance. However, the actual
endpoint occurs approximately at point B. In this example, the final
/v/ in "five" becomes devoiced and turns into an /f/, a weak fricative.
Such weak fricatives are difficult to locate by eye (and sometimes
even by ear).

' The criterion for deciding the actual beginning and ending points of the utterances
was to use a combination of careful listening combined with precise visual examina-
tion of the waveform.
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Fig. 6-Waveform for the end of the word "five."

As a final example, Fig. 7 shows the waveform for the end of the
word "nine." It is quite difficult to say where the final nasal ends and
where the silence begins. A reasonable location for the endpoint is the
point marked END in this figure, although it is not clear how accurate
this choice actually is.

Rather than give several more examples of situations in which it
is difficult to locate either the beginning or the end of an utterance, we
list below the broad categories of problems encountered. These
include :

(i) Weak fricatives (/f, th, h/) at the beginning or end of an
utterance.

(ii) Weak plosive bursts (/p, t, k/).
(iii) Final nasals.
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Fig. 7-Waveform for the end of the word "nine."

(iv) Voiced fricatives at the ends of words which become devoiced.
(v) Trailing off of certain voiced sounds-e.g., the final /i/ be-

comes unvoiced sometimes in the words "three" (/th-r-i/) or
"binary" (/b-aI-n-e-r-i/).

The approach we have taken to solve these problems in an automatic
endpoint -location algorithm is a pragmatic one. Our goal is to isolate
enough of the word (utterance) so that a reasonable acoustic analysis
of what is obtained is sufficient for accurate recognition of the word.
Thus, it is not necessary to locate exactly the point where the word
begins or ends, but instead it is important to include all significant
acoustic events within the utterance. For a word like "binary," it is
of little consequence if the trailing off unvoiced energy is omitted
(in fact, it is probably quite helpful for a "phonetic" word -recognition
strategy) ; however, for a word like "four" it is important to be able
to reliably locate and include the initial weak fricative /f/. For this
last example, the word "four," it is not necessary to include the entire
initial unvoiced interval; in fact, experience has shown that 30 to
50 ms of unvoiced energy is sufficient for most word -recognition pur-
poses. This type of knowledge is of great importance in an endpoint -
finding algorithm because it enables you to set conservative values on
all decision thresholds (thereby guaranteeing a very low false -alarm
rate) and, for the word -recognition application, the concomitant
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high miss rate will be of little practical significance. In Section III, we
give the details of one practical implementation of an endpoint -
location algorithm.

III. THE ENDPOINT -LOCATION ALGORITHM

Based on the preceding discussion, the goals of the endpoint algo-
rithm are :

(i) Simple, efficient processing.
(ii) Reliable location of significant acoustic events.

(iii) Capability of being applied to varying background silences.

The first goal implies that only simple measurements can be made on
the speech waveform as a basis for the decision. If speed and simplicity
were not major issues, far more sophisticated processing could be used
to give a better, more accurate result.

With the above considerations in mind, the endpoint location algo-
rithm that was implemented is based on two simple measurements,
energy and zero crossing rate, and uses simple logic in the final decision
algorithm. Both energy and zero crossing rate are simple and fast to
compute, and, as seen in Section II, can give fairly accurate (although
conservative) indications as to the presence or absence of speech.
Before proceeding to a description of the algorithm, we first define
how the energy and zero crossing rate are measured. The speech
"energy," E (n) , is defined as the sum of the magnitudes of 10 ms of
speech centered on the measurement interval,' i.e.,

50

E (n) = E s
i)i=-50 (1)

where s (n) arc the speech samples and it is assumed that the sampling
frequency is 10 kHz. The choice of a 10 -ms window for computing the
energy and the use of a magnitude function rather than a squared -
magnitude function were dictated by the desire to perform the com-
putations in integer arithmetic and, thus, to increase speed of compu-
tation. Further, the use of a magnitude de-emphasizes large -amplitude
speech variations and produces a smoother energy function. By way
of example, Fig. 8 shows typical energy functions for the words "direc-
tive" and "multiply." (The beginning and end of these words is noted
on these energy plots.) For this example, the energy function is com-
puted once every 10 ms, or 100 times per second.

The zero (level) crossing rate of the speech, z (n) , is defined as the
number of zero (level) crossings per 10 -ms interval. Although the zero
crossing rate is highly susceptible to 60 -Hz hum, de offset, etc., in
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Fig. 8-Typical energy plots for the words "directive" and "multiply" with markers
indicating the beginning and end of the utterance.

most cases it is a reasonably good measure of the presence or absence
of unvoiced speech.

Figure 9 shows a flowchart of the endpoint -location algorithm. The
speech waveform is filtered prior to sampling at 10 kHz by a bandpass
filter with a 100 -Hz low -frequency cutoff and a 4000 -Hz high -fre-
quency cutoff and having 48 dB per octave skirts. It is assumed that
during the first 100 ms of the recording interval there is no speech
present. Thus, during this interval, the statistics of the background
silence are measured. These measurements include the average and
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Fig. 9-Flowchart for the endpoint algorithm.

N2 REMAINS
UNCHANGED

standard deviation of the zero crossing rate and the average energy. If
any of these measurements are excessive, the algorithm halts and warns
the user. Otherwise, a zero crossing threshold, IZCT, for unvoiced
speech is chosen as the minimum of a fixed threshold, IF (25 crossings
per 10 ms), and the sum of the mean zero crossing rate during silence,
IZC, plus twice the standard deviation of the zero crossing rate during
silence, i.e.,

IZCT = MIN(IF, IZC 2crac) (2)
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The energy function for the entire interval, E(n), is then computed.
The peak energy, IMX, and the silence energy, IMN, are used to set
two thresholds, ITL and ITU, according to the rule

/1 = 0.03*(/MX - IMN) IMN (3)

/2 = 4*IMN (4)

ITL = MIN(Il, /2) (5)

ITU = 5*ITL. (6)

Equation (3) shows /1 to be a level which is 3 percent of the peak
energy (adjusted for the silence energy), whereas (4) shows /2 to be
a level set at four times the silence energy. The lower threshold, ITL,
is the minimum of these two conservative energy thresholds, and the
upper threshold, ITU, is five times the lower threshold.

The algorithm for a first guess at the endpoint locations is shown
in Fig. 10. The algorithm begins by searching from the beginning of

m = 1

m = m + 1

YES i = m

i = i + 1

YES

YES

m = i + 1

=

N1 =N1 -

DONE

Fig. 10-Flowchart for the beginning point initial estimate based on energy
considerations.
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the interval until the lower threshold is exceeded. This point is pre-
liminarily labeled the beginning of the utterance unless the energy
falls below ITL before it rises above ITU. Should this occur, a new
beginning point is obtained by finding the first point at which the
energy exceeds ITL, and then exceeds ITU before falling below ITL;
eventually such a beginning point must exist. A similar algorithm
(shown in Fig. 11) is used to define a preliminary estimate of the end-
point of the utterance. We call these beginning and ending points N1
and N2, respectively.

Until now, we have only used energy measurements to find the end-
point locations; and these endpoint locations are conservative in that
fairly tight thresholds are used to obtain these estimates. Thus, at
this point, it is fairly safe to assume that, although part of the utterance
may be outside the (N1, N2) interval, the actual endpoints are not
within this interval. In relation to this, the algorithm proceeds to

m = NU

m = m - 1

YES i = m

i = i - 1

YES

YES

m = i - 1

N2 =i

DONE

Fig. 11-Flowchart for the ending point initial estimate based on energy
considerations.
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examine the interval from N1 to N1 - 25, i.e., a 250 -ms interval pre-
ceding the initial beginning point, and counts the number of intervals
where the zero crossing rate exceeds the threshold IZCT. If the number
of times the threshold was exceeded was three or more, the starting
point is set back to the first point (in time) at which the threshold was
exceeded. Otherwise, the beginning point is kept at N1. The rationale
behind this strategy is that for all cases of interest, exceeding a tight
threshold on zero crossing rate is a strong reliable indication of un-
voiced energy. Of course, it is still possible that a weak fricative will
not pass this test, and will be missed. However, in these cases there is
no simple, reliable method of distinguishing such a weak fricative from
background silence.

A similar search procedure is used on the endpoint of the utterance
to determine if there is unvoiced energy in the interval from N2 to
N2 + 25. The endpoint is readjusted based on the zero crossing test
results in this interval.

To illustrate the use of the endpoint algorithm, Fig. 12 shows repre-
sentative contours of the energy and zero crossings for an utterance.
Using the energy criterion alone, the algorithm chooses the point N1
as the beginning of the utterance and N2 as the end of the utterance.
By searching the interval from N1 to N1 - 25, the algorithm finds a
large number of intervals with zero crossing rates exceeding the thresh-

point is moved to N1, first point (in
time) that exceeded the zero crossing threshold. Similar examination
of the interval from N2 to N2 + 25 shows no significant number of

ENERGY

ITU

ITL

4- 4

1
N10

ZERO
CROSSINGS

IZCT

Ni N2

N2

Fig. 12-Typical example of energy and zero crossings data for a word beginning
with a strong fricative.
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intervals with high zero crossings; thus, the point N2 is retained as
the endpoint of the utterance.

In Section IV, we give examples of the use of the endpoint algorithm
for a large number of words with different speakers and different
acoustic environments.

IV. EXAMPLES OF THE USE OF THE ENDPOINT ALGORITHM

The endpoint algorithm described in Section III was implemented
on the DDP-516 computer facility of the Bell Laboratories Acoustics
Research Department. The algorithm was tested using the two modes
of recording described in Section II : high -quality tape recordings from
a soundproof booth and on-line recordings using a close -talking
microphone.

Figures 13 and 14 show examples of how the algorithm worked on
typical isolated words. In Fig. 13 there are eight plots of the energy
function for eight different words (of two different speakers). Some of
the words were recorded on-line (marked MIKE) and others were
recorded on tape (marked TAPE) from the soundproof booth. The
markers on each plot show the beginning point and ending point of
each word, as determined by the automatic algorithm. For the ex-
ample in Fig. 13a (the word "nine"), the energy thresholds were
sufficient to locate the endpoints. For the example in Fig. 13b (the
word "replace"), the zero crossing algorithm was used to determine
the ending point due to the final fricative /s/. It should be noted that
even though the final /s/ has fairly large energy, since the energy
thresholds were set conservatively, the energy criterion was not able
to find the actual endpoint of the word. Instead, the zero crossing
algorithm was relied upon in this case. In Fig. 13c, the final /t/ in the
word "delete" was correctly located because of the significant zero
crossing rate over the 70 -ms burst when the /t/ was released. Thus,
even though there was little energy or zero crossing activity for about
50 ms in the stop gap, the algorithm was able to correctly identify the
endpoint because of the strength of the burst. On the other hand, if
the burst had been weak, the ending point would have been located at
the beginning of the stop gap.

Figure 13d is an example in which the energy during the silence was
significant in a couple of places prior to the beginning of the word
"subtract," yet the algorithm successfully eliminated these places
from consideration because of the low zero crossing rates. In this
example, a relatively weak burst in the final /t/ was correctly labeled
as the endpoint.

Figures 13e through 13h show examples of words with fricatives at
either the beginning or end of the word. In all cases, the algorithm was
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MIKE-NINE

BEGIN END

MIKE-REPLACE

BEGIN END

MIKE-DELETE

BEGIN END

(C)

0

BEGIN

43

62 119

TAPE-SUBTRACT
END

(d)

0 15

MIKE-SIX

BEGIN

MIKE-FIVE

BEGIN

END

94

MIKE-THREE

END

n

(g)

n 0 78

MIKE-HALF
BEGIN END

135 n

(h)

125 n 0 39 81 n

Fig. 13-Sequence of energy plots showing how the endpoint algorithm performed
over a variety of words.

able to correctly place the appropriate endpoint so that a reasonable
amount of unvoiced duration was included within the boundaries of
the word.

Figure 14 shows three examples of how the algorithm performed for
the word "four." It can be seen from the location of the beginning
point that, although the level of the initial /f/ varied from strong to
weak, the zero crossing indicator was able to find positive indications
of the frication noise in all three cases. As discussed earlier, there are
many examples where initial or final fricatives (mainly /f/ and /th/)
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MIKE-FOUR

0

BEGIN

BEGIN

END

TAPE-FOUR

END

(b)

58

TAPE-FOUR
BEGIN END

47 90

111

(c)

,,....1......
n

n

Fig. 14-Energy plots and endpoint assignments for three variations of the word
"four."

were so weak they were indistinguishable from the background silence.
In Section V, we discuss more sophisticated techniques for distinguish-
ing such weak fricatives from background silence.

Two sets of formal tests were made on the algorithm. In one test,
the 54 -word vocabulary used by B. Gold in his word -recognition ex-
periments' was read by two males and two females. For this vocabulary,
the algorithm made no gross errors in locating the beginning and
ending points. The algorithm did make a number of small errors of
the type discussed earlier, such as losing weak fricatives or releases of
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stops ; however, none of these errors seriously affected the human
recognition (based solely on listening) of the utterance from the portion
that the algorithm did locate correctly. Thus, in some pragmatic
sense, such errors can be tolerated for word recognition purposes;
although for such applications as computer voice response, these small
errors would probably be significant.

The second test involved 10 speakers each repeating the 10 digits
from zero to nine in 10 separate sessions. (These data were actually
measured for a digit -recognition experiment that used this endpoint
location algorithm.) For this test, there were essentially no gross
errors in locating the endpoints; in fact, it was determined that for
purposes of word recognition, the algorithm was essentially error free.

V. DISCUSSION OF THE ENDPOINT -LOCATION PROBLEM

The problem of accurately locating the endpoints of an utterance is
actually a specific case of the more general problem of labeling an
interval of a signal as silence, unvoiced, or voiced. If one had a perfect
technique for this three -level decision, the endpoint -location problem
would be trivially solved. However, such an ideal algorithm does not
exist as yet. Therefore, we have looked for partial solutions to this more
specific problem of isolating speech from a noisy background.

The solution to this problem was based on the premise that some-
where within the given interval there was an utterance and that it
would be easy to isolate the broad region in which the speech was
located using energy measures alone. From this interval, we set very
conservative thresholds on the speech energy (normalized to the
maximum speech energy) to get a good first guess at the endpoints
of the utterance. The zero crossing rate of the waveform outside these
initial estimates of the endpoint was used to provide better estimates
as to the existence of unvoiced speech energy in a broad region on
either side of the initial endpoints.

The question now arises as to how to make the algorithm work better.
One of our key goals in the original formulation was to make the algo-
rithm fast and efficient. To this end, the readily available parameters
of short -time energy and zero crossing rate were the only ones used
in the decision -making process. To increase the sophistication and
thereby the accuracy of the algorithm would require the inclusion of
other speech parameters, such as predictor coefficients, autocorrelation
coefficients, etc. The use of such additional measurements is predicated
upon knowledge of how they differ for silence and for speech. Atal4
has suggested a reasonable pattern -recognition approach for making
the distinction between the three classes of silence, unvoiced speech, or
voiced speech. This method, although promising, is much slower in
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running and, thus, cannot be relied upon in an on-line environment. It
does, however, give good indications that the problems associated with
this decision are not totally untractable.

VI. SUMMARY

We have presented a fast, efficient algorithm for locating the end-
points of an utterance in a background of noise. The algorithm is
based on two measurements made on the speech : short -time energy
and zero crossing rate. Although the algorithm does make small errors
in finding the exact endpoints of the utterance, it was designed to
minimize the number of gross errors (off by more than 50 ms) in the
analysis. The algorithm has been found to be sufficiently reliable and
accurate that it is currently being used in on-line experiments on word
recognition.
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Specially doped (N = N 0/Afi) varactors offer a cubic relation between
voltage and charge. Frequency tripling is thus possible without an idler
frequency excitation at twice the input frequency. Here we have investigated
a frequency tripler from 2.115 to 6.345 GHz without an idler frequency at
4.23 GHz, thus hopefully reducing the cost and complexity of the tripler.

The results from such varactors indicate that, although frequency
tripling is possible over a wide band, the efficiency and power -handling
capacity are considerably lower than conventional frequency tripling with
abrupt junction varactors excited at 4.23 GHz. The impedance matching
is harder for these specially doped varactors, even though the mechanical
construction is greatly simplified.

I. INTRODUCTION

The varactor fabrication technique recently evolved is a notable
beneficiary of the IMPATT developments. Such a transfer of technology
from IMPATT to varactors' has resulted in diodes with a zero bias capaci-
tance of 7.7 pF, a breakdown voltage of 160 V, and a series resistance
of 0.66 ohm. These diodes have been utilized in the construction of a
coaxial frequency doubler yielding 8.2 WI at 3990 mHz and 80 -percent
efficiency. Further, if these diodes are used for frequency tripling, they
yield about 10 W' at 6.345 GHz and 72- to 76 -percent efficiency. When
the doping density is also controlled (as is done in high -low -high
profile IMPATT'S), it is possible to generate varactor diodes with any
predefined relation between the charge and the voltage across the
varactor.

Conventional frequency tripling studied by Penfield and Rafuse2
asserts the presence of an idler frequency excitation at twice the input
frequency to mix with the input frequency, thus creating a third
harmonic voltage. In the proposed tripler, the doping density is ad-
justed to directly convert the power at incident frequency to power at
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the third harmonic. This particular doping requirement (derived in
the appendix) can be relatively easily achieved by the technique used
in controlling3,4 the doping densities of high -low and high -low -high
profiles for IMPATT'S and for voltage variable capacitors. The concept
of varying' the doping density for tuning diodes has been reviewed
by Norwood and Shatz.' The capacitance of P -n junctions has been
studied by Chang.7'9 This paper reports on the study of the efficiency,
power capacity, bandwidth, and impedance characteristics of triplers
built from varactors formed by the special doping distribution. Com-
puted and experimental data from conventional triplers using an abrupt
junction varactor and an idler frequency excitation are also presented
to provide a bench mark for comparison.

II. FREQUENCY -TRIPLING MECHANISM

In the abrupt junction varactor, the instantaneous voltage V and
charge q are related as

(V - Vo) = a(q)2, (1)

giving rise to second harmonic voltages from the exciting frequency
charges and currents. Third and fourth harmonic voltages are also
generated, and if the currents at these frequencies are suppressed,
then stable frequency doubling results. To achieve a third harmonic
voltage, a second harmonic (idler) current is essential, and that is the
well -established basis of conventional frequency tripling.2

Now consider a varactor in which the instantaneous voltage and
charge are related as

(V - vo) = .2(03, (2)

thereby giving rise to third harmonic voltages resulting from charges
and currents at the exciting frequency. Stable frequency tripling is
possible even if second harmonic currents are not present.

The doping density that leads to such a voltage -charge relation and
the corresponding capacitance -voltage relationship is derived in the
appendix, Section A.1.

III. DIODE CHARACTERIZATION

The breakdown voltage, the zero bias capacitance per unit area, the
depletion layer width, and the series resistance are all influenced by
the doping density. These parameters may be calculated if the doping
densities at finite distance from the junction are known from the basic
requirements that yield the voltage -charge relationship (2) (see ap-
pendix). Further, these parameters in turn critically affect the input
and output powers, impedances, and the efficiency of the tripler. Only
if the diode can be fabricated with existing technology, and if the
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input and output characteristics of the overall tripler are compatible
with the existing technique of impedance matching, do we have a
successful tripler design. Three important characteristics influencing
the circuit performance of the diode are : (i) the breakdown voltage
V b, (ii) the zero bias capacitance Co, and (iii) its series resistance R1.
The breakdown voltage is limited by the maximum electric intensity
that the first layers can withstand. Equation (12) yields the breakdown
voltage at different doping densities for various first -layer thicknesses
(see Fig. 1). The zero bias capacitance Co and the series resistance R.
are inversely related to each other to the first degree of approximation.t
Hence, if a typical zero bias capacitance of 7.5 pF is assumed, then the
series resistance at different doping densities may be computed. These
curves are also shown in Fig. 1.

IV. RESULTS OF THE SIMULATION

4.1 Diode simulation study

Simulation of the results presented in the appendix yields the data
necessary to study the performance of the diode from circuit and
systems considerations. While the diode is tripling the frequency
directly, the circuit parameters may be determined as follows : An
impedance across the output is assumed to dissipate a known power;
the current and charge at the triple frequency in the diode are derived ;
and the fundamental frequency current and charge required to sustain
the output charge and current are evaluated at different values of
static biasing charges across the junction from the fundamental
voltage -charge relationship, eq. (2). The limits of the charge excursion
across the junction during one cycle at fundamental frequency excita-
tion are compared against the minimum and maximum charge& which
the diode is capable of withstanding. Only if these minimum and maxi-
mum limits are not violated can the diode generate the known power.
The input impedance is computed by the voltage -charge relationship
at the fundamental frequency. The efficiency and bandwidth are
determined by evaluating the losses in the diode at the first and third
harmonic frequencies, and by incrementing the input frequency from
its nominal value at 2.115 GHz. The various equations governing the
distribution of charge, impedances, and efficiency are discussed in
the appendix, Section A.3.

' For analysis, the doping profile may be approximated by a series of layers in
which the doping density is held constant.

* The exact computation of these parameters has been programmed in the simu-
lation developed for the analysis on the HIS 600 computer.

* This is known from the value of the breakdown voltage Vb and a in eq. (2).
The minimum charge is zero.
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2.0

4.2 Single -chip diode performance curves

A single -chip diode can be designed from the basic relationships
presented in appendix Sections A.1 and A.2. The diode characteristics,
a, Vb, and R. (discussed in the appendix), lead to the performance
curves of the tripler. Figures 2 and 3 depict the performance of two
typical diodes with zero bias capacitances of 7.5 pF (a = 0.61 X 1082,
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0

Z1= 1.83 - j 37.8 OHMS AT 125 MW

Z3= 5 + j 12.0 OHMS (CONSTANT)

25 50 75

OUTPUT AT 6.345 GHz

a = 0.61x1032, Vg= 58 V, Rs= 1.04 OHMS

DEPLETION LAYER WIDTH = 4.05,U, DIAMETER = 6.39 MILS

100

LAYER THICKNESS DOPING DENSITY

1 2,U 0.74 x 1016/cm3

2 0.5 0.446 x 1016/cm3

3 0.5 0.410 x 1016/cm3

4 0.5 0.382 x 1016/cm3

5 0.5 0.359 x 1016/cm3

6 0.5 0.339 x 1016/cm3

125 MW

Fig. 2-Efficiency characteristic of single -chip 7.5-Pf varactor diode.

Vb = 58 V, R. = 1.04 ohms) and 15 pF (a = 0.762 X 1031, Vb = 58 V,
and R8 = 0.54 ohm).

4.3 Double -stacked diode performance curves

When two single chips are stacked in series across the 2.115-GHz
supply, the breakdown voltage and the resistance double, while the
capacitance halves. The resistance of each chip is, however, inversely
proportional to its capacitance. Hence, a 7.5-pF-stacked diode made
from two 15-pF diodes would have a breakdown voltage of 116 V
and R. = 1.08 ohms.

The performance curves of two diodes with a zero bias capacitance
of 7.5 pF (a = 0.152 X 1032, Vb = 116 V, and R. = 1.08 ohms) and
10 pF (a = 0.643 X 1031, V b = 116 V, and R. = 0.84 ohm) are shown
in Figs. 4 and 5.
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3 0.5 0.410 x 1016/cm3

4 0.5 0.382 x 1016/cm3

5 0.5 0.359 x 1016/cm3

6 0.5 0.339 x 1016/cm3

300 MW

Fig. 3-Efficiency characteristic of single -chip 15.0-Pf varactor diode.

4.4 Triple -stacked diode performance curves

Two typical diodes having zero bias capacitances of 5 and 7.5 pF
yield the efficiency -output characteristics shown in Figs. 6 and 7.
Three single -chip diodes with zero bias capacitance, Co = 15 pF, are
stacked to obtain the first 5-pF, 174-V, 1.62 -ohm diode, and three
chips each with 22.5 pF, 58 V, and 0.38 ohm constitute the second
diode.

4.5 Effect of changing the doping density

The diode may also be fabricated by altering the concentration
densities in the various layers of the diode. The value of No is computed
from N1, the first layer doping density. In most of the simulation
presented thus far, the value of N1 was held at 0.74 X 1016/cm3. It
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Fig. 4-Efficiency characteristics of 7.5-Pf stacked diode.
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WITH DEPLETION LAYER WIDTH = 4.05A,DIAMETER = 10.4 MILS WITH DOPING
DENSITIES SHOWN IN FIG.2

667 800 MW

Fig. 5-Efficiency characteristics of 10-Pf stacked diode with N1 = 0.74 X 1016/cm3.
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Fig. 6-Efficiency characteristics of 5-Pf triple -stacked diode.
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Fig. 7-Efficiency characteristics of 7.5 -Pt triple -stacked diode.
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0.833

Fig. 8-Efficiency characteristic of 10-Pf stacked diode.

1.00W

was found by trial that a certain compromise between power and
efficiency could be reached at this doping level. However, for the sake
of completeness, results with doping densities of N1 = 0.64 X 1016/cma
and N1 = 0.84 X 1016/cm3 are also presented in Figs. 8 and 9 for a
10-pF diode obtained by stacking two 20-pF diodes.

V. DISCUSSION OF SIMULATED RESULTS

5.1 Power -handling capacity

When the doping density at contact is in the region of 0.7 to
0.8 X 10'6/cm3, the breakdown voltage for specially doped varactors
is about 50 percent* lower than that of the abrupt junction varactor.

' For NI = 0.75 X 1018/cm3, No = 0.75 X 101s with xi = 2 and Vb = 60.57 V for
specially doped varactor, whereas Vb = 89.3 V for abrupt junction varactor. E.
is 44 X 104 V/cm.
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Fig. 9-Efficiency characteristics of 10-Pf stacked diode with N1 = 0.84 X 1016/cm8.

Thus, the total power -handling capacity is severely impaired. Further,
the solution of cubic equations relating the charge q1 at the fundamental
frequency and the third harmonic charge q3 leads to the lowest value
of qi being approximately six times q3, whereas the corresponding
solutions in the conventional tripler with an idler yield the charges
q3:q2:q1 at the fundamental, the idler, and the third harmonic fre-
quencies to be approximately in the proportion of 1:1.37:2.27. This
further reduces the power that can be obtained from the tripler. For a
triple -stacked, specially doped varactor, the breakdown voltage is
174 V and the power output is 1.5 W. For a triple -stacked, abrupt
junction varactor with an idler circuit, the breakdown voltage is
262 V, and power output is 12.0 W, as shown in Fig. 10.

5.2 Efficiency

The specially doped varactor resistance, being a sum of the resist-
ances of the various layers approximating the (N = Nox-i) profile, is
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higher than that of the abrupt junction diode. This is especially the
case if the depletion layer is wide and if the doping density farther
away from the junction is much less than the doping density of the
first layer. The efficiency is thus adversely affected. Further, the
proportion of charges qi and q3 entail a relatively higher magnitude of
qi than its corresponding value for a conventional tripler. The funda-
mental frequency current is much higher, thereby increasing the dis-
sipation in the series resistance of the diode.

While the efficiency of the tripler is limited to a range of 30 to 40
percent with an output of 1 to 1.5 W (see Figs. 2 to 9) at 6.345 GHz,
the efficiency (see Fig. 10) of a triple -stacked, abrupt junction tripler
is well into the 70- to 76 -percent range with an output of 8 to 10 W. For
this particular diode, the zero bias capacitance Co is 5.0 pF, the break-
down voltage V b is 262 V, and the series resistance is 0.97 ohm.

5.3 Impedances

The higher value of qi required to sustain q3 reduces the real com-
ponent of impedance to low values. Most of the power exchange takes
place when the inductive component of the output is matched to tune
out the average elastance of the diode, and the capacitive component
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of the input impedance becomes approximately three times the induc-
tive component of the output impedance. Typically, the output and
input impedances of a triple -stacked diode with a zero bias capacitance
of 7.5 pF, breakdown voltage of 174 V, and a series resistance of
1.14 ohms while delivering 1.5 W at 6.345 GHz are (4 j14) and
(2.21 - j41.5) ohms. These impedances are typical of the diode with
special doping.

5.4 Bandwidth

The lack of an idler circuit makes this tripler reasonably broad -
banded. When the output frequency is varied by approximately 700
mHz, the real component of the input impedance remains at 2.21
ohms, and the imaginary component varies from 43.6 to 38.9 ohms.
A 70-mHz variation causes a change from 41.3 to 40.7 ohms. In com-
parison, the conventional tripler' undergoes a change from 7.28 to 5.71
ohms (real component) and 39.53 to 43.18 ohms (imaginary compo-
nent) when the output frequency is changed by 35 mHz on either side
of this nominal value at 6.345 GHz. Figures 11a and 11b depict the
experimentally determined bandwidth characteristics of a conven-
tional tripler at 8- and 5-W output.

5.5 Effect of diode design variations

The reduction for N1 from (0.74 to 0.64) X 1016/cm' increases the
breakdown voltage from 116 to 148.6 V, thus increasing the power
from 800 mW to 1 W. Also, the accompanying increase in resistance
from 0.84 to 1.09 ohms reduces the efficiency from 35 to 32 percent.
Converse results occur when the doping density of the first layer is
increased from (0.74 to 0.84) X 1016/cm3. The power -handling capacity
is reduced to 600 mW, and efficiency increases to about 40 percent
owing to reduced resistance of 0.648 ohm.

VI. EXPERIMENTAL VERIFICATION

In view of the results obtained from the computer simulation, the
experimental investigation has been limited. Instead of actually con-
structing diodes with the prespecified doping densities, the high -low -
high profile IMPATT junction has been used with the high doping
density region almost etched out to leave a steeply descending con-
centration level. This concentration approximates the ideal
(N = No/-&) relation, thus making the voltage -charge relation
dominated by a cubic term.

e These results are obtained by the analysis of a triple -stacked, abrupt junction
varactor into a zero bias capacitance of 5 pF, breakdown voltage of 262 V, and a
series resistance of 1.03 ohms while delivering 6 NV into an impedance of 10 + j21.6
ohms. The variation accounts for the variation in idler circuit impedance because of
a change in frequency.
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Fig. 11 -0.5 -dB bandwidth data of the conventional tripler built with an abrupt
junction diode having Co = 5 Pf, Vb = 262 V, and R5 = 0.97 ohm.

Experiments with such varactors for direct frequency tripling have
confirmed that the power output is in the region of 100 to 400 mW,
depending on the size and breakdown voltage. The efficiency has been
in the region of 15 to 27 percent, indicating the lossy components.
These diodes prefer to slip into the conventional frequency -tripling
mode by utilizing any adjoining tuner circuits for circulating the idler
frequency currents. Impedance matching is a sizable problem, causing
frequent burnouts of the diodes.

VII. CONCLUSIONS

From power, efficiency, and impedance design considerations, the
specially doped varactor without an idler frequency excitation cannot
compete with the conventional abrupt junction varactor excited at
idler frequency. The decrease in complexity of construction (owing to
lack of idler) does not offset the reduction in power -handling capacity,
the low efficiency, or the poor impedance. However, for a wideband,
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low -power -signal frequency tripling, the specially doped varactor out-
performs the abrupt junction varactor. The analytical study presented
here, though not completely complemented by experimental results,
indicates the power levels, impedances, and efficiencies one may expect
from such specially doped GaAs varactors.
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APPENDIX

A.1 Basic space -charge equations governing the distribution of the potential

The electric potential Iii and space -charge density [p = eN (x)] are
related* by Poisson equation in the region

AI, eN (x)
dx2 e

(3)

where e is the electronic charge ( = 1.602 X 10-" coulombs), e = per-
mittivity of the region [presently, e = 110.75 X 10-12 F/m, which is
the product of eo( = 8.854 X 10-12 F/m) and the relative permittivity
er( = 12.5 for GaAs)], and finally N (x) is the doping density in con-
centration per cubic meter, with x being measured in meters.

If the doping density is adjusted to vary by a specific relation such as

N (x) = Noxn, (4)

then it is possible to evaluate the exponent n to obtain the desired
eq. (2) in Section II. Integrating (3) twice, we have

1G=

Or

NoeXn+2 + ClX ± C2;e(n ± 1) (n + 2)

Noexn+2
V = 11, - c2 - -I- Cix, (5)e(n ± 1) (n ± 2)

when x = zd = the depletion layer width, then V = V., the applied
voltage, and

dV- =0 at x = xd,
dx

* This basic relationship is discussed in most standard books such as Microwave
Semiconductor Devices and their Circuit Application, edited by H. A. Walton, New
York: McGraw-Hill, 1969.
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and

Cl -

V. =

Xd =

N oexr"
e(n + 1)

N oexrF2
e(n + 2)

E V. (n + 2) (1/11-1-2)

Noe

Now Q, charge per unit area, may be evaluated as

r dv 1 Noe r e(n + 2) I_V. (n -1-1/n+2)

L dx j.0 n+ 1 L Noe

If n = -1, (n + 1/n + 2) = 1, and we have

Q = 2"./ (I)  e (N oe)2 VA coulomb /m2

= ao(V -V o)i, (9)

where V 0 is the normal contact potential, being about 1.2 V for GaAs
contacts. Hence, if the doping density is adjusted to approximate
N = N ox-i, we would have the necessary charge -voltage relationship
[eq. (2)] for direct tripling of frequency. Here, a = (a0A)-3, where A
is the cross-sectional area of the diode in square meters. Thus,

a = 0.02941 X 1036/(NgA.3). (9a)

A.2 Diode characterization

A.2.1 Breakdown voltage

The maximum voltage gradient permitted for GaAs contacts at
various doping densities is known. Therefore, the breakdown voltage
for an N = N ox-i doping distribution at various doping densities may
be plotted from the equation

V b = 4 X 1016[E(No)]3NO V. (10)

If the doping density is to be exactly N = No/fix, then N reaches an
infinite value at x = 0. To eliminate this situation, the first layer
doping density is held as N1 (per cubic meter) and the value of No
is calculated as No = 0.707 Nixt, where x1 indicates the width of the
first layer in meters. The doping densities for the mth adjoining layer
is calculated as

m-i
N. = No ( E xi + Xm/2)-4. (11)

i=i

In essence, the doping density distribution is approximated by a series
of layers with different doping densities, and the value of the doping
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density at the center of each layer corresponds to the necessary dis-
tribution of N = Nox-i.

The values of Vb may be plotted against the first layer doping
density N1 for different values of the first layer thicknesses (x1).
Equation (10) now assumes the form

Vb = 8 X 1016[E(Ni)]3N1 2x11 V, (12)

where E(N1) is in volts per meter, N1 is in impurity concentration per
cubic meter, and x1 is in meters (see Fig. 1).

A.2.2 Diode resistance

This may be calculated by adding the resistances of the various
layers. The resistivities at different values of doping densities are well
known,9 and the total resistance* may be calculated as

i=m p(Ai)l,)i)liR. = lic + E A ) (13)
i=i -

where R. is the contact resistance inversely proportional to the area
of cross-section A, p (N,) is the resistivity of the ith layer with a doping
density of Ni, and li is the width of the ith layer.

A.2.3 Summary of equations

Depletion layer width is

xd = 102.53 X 10 -4N6 -I (V ± Vo)1 m. (14)

Maximum voltage gradient is

Erna. = 0.02924 X 10-4NA(V + V0)1V/m. (15)

Capacitance per unit area is

C = 1.079 X 10-16NA(V + Vo)-1 F/m2. (16)

Charge per unit area is

Q = 3.2394 X 10-16NA (V ± V0)1 cb/m2. (17)

A.3 Circuit performance of the diode as a tripler

A.3.1 Loss-less-varactor formulations

The voltages and charges in the basic relationship

(V - Vo) = aq3 (2)

' This formulation is correct at a negligible depletion layer width. In practice,
the depletion layer is swept during each cycle at the input frequency. In the con-
ventional tripler analysis, the reduction of loss because of sweeping of the epitaxial
layer enhanced the efficiency by 2 to 4 percent, while the triple -stacked abrupt
junction diode (see Fig. 10) was delivering 6 to 10 W at 6.345 GHz into an impedance
of (8 + j21.4) ohms.
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may be written in terms of the Fourier components at the first and
third harmonics as

(v - VP) = (v0 - V0) + v1 + VI + v3 + 41.
q = qo + qi + qi + q3 + q*3` , (18)

where the subscript and the star indicate the harmonic and the con-
jugate. Separating out the two harmonics and ignoringt the currents
and voltage at other harmonic frequencies from the equations, we have

a3 = (q1 + 6g10q3 + 3ggg3 + 300) (19)

i

av
-= (6gig3g; + 3gggi + 3qiq: + 3q:2q3) (20)

vo - Vo
= (qg + 6qoqiqi + 6q0q3q3) . (21)a

Further, we have the relation between the instantaneous charge q
and its Fourier components

qb < q = qo + qi + q: -I- q3 + 0 < O. (22)

If the power and impedance at the third harmonic are known, then
v3 and q3 are known, and for various values of go, the values of gi may
be computed from (19). If the varactor diode is capable of sustaining
the assumed output, then the net charge q during any one cycle of
oscillation at the exciting frequency should be less than the breakdown
charge qb computed from the relation

qb = I (V b - Vo)/«. (23)

The value of V b is known from the diode design presented in (3).

A.3.2 Lossy varactor formulations

If R8 is the series resistance of the diode, then eqs. (19) and (20)
become

V3 ± 1388 -a q? + 43 1 q1 1 2 + 3063 + 3q31q312

vi - 11R8

(24)

a - 6q11q312 + 3aqi + 3qil qiI2 + 3q302. (25)

Equation (24) may be solved by rewriting it in terms of qi and multi-
plying it by 03, which leads to an equation in terms of I g116, I q1 14,

t The physical basis for ignoring the other harmonics is that the circuit presents
very large impedances at these frequencies, and there is effectively no flow of current
or oscillation of charge at these extraneous frequencies.
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qi12, and a constant. This resulting equation is a cubic equation in
terms of I qi 2, and only its real and positive root is a valid solution for
(24).

If the computed value of qi which corresponds to a prechosen value
of qo and q3 also satisfies (22), we have the necessary condition for
generation of the power P which originally resulted in q3.

The current /1, voltage v1, and bias voltage vo are calculated from
qi, eq. (25), and eq. (21), respectively. The efficiency is known by the
computation of the power dissipated because of the first and third
harmonic currents and their conjugates in R8.
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We consider a general class of multibit adaptive quantizers in which
the quantizer function is modified at every sampling instant according to
a recursive law with the transitions depending on the value of the quantizer
output. We obtain a rather comprehensive set of basic properties of the
device which explain the interrelationship of different aspects of the device
behavior and their dependence on the parameters of the adaptation algo-
rithm. For the quantitative analysis of the device, we give formulas and
bounds for the mean time required for the quantizer function to adapt from
an arbitrary initial state to the optimal. A feature new with this work is a
unified treatment and a common body of results for quantizers with both
bounded and unbounded range. This paper extends all the analytical
results reported in an earlier paper, which dealt with a restricted class of
quantizers having only four levels.

We also present new results from a computational investigation on
quantizers up to four bits (sixteen levels). These results indicate, for well -
designed examples of the respective classes, the kinds of improvement in
performance that can be expected in going from three -bit (eight -level) to
four -bit quantizers and from uniform to nonuniform. quantizers.

I. INTRODUCTION

In a recent paper' we obtained a number of fundamental properties
of a class of two-bit (four -level) adaptive quantizers useful for coding
speech and other continuous signals with a large dynamic range. We
also developed formulas for the quantitative analysis of the device.
In the present paper, we consider a general, multibit adaptive quantizer
and obtain extensions to all the results previously reported. A feature
new with this work is a unified treatment and a common body of
results for quantizers with both bounded and unbounded range, the
former being the case of practical interest.

In the final section of the paper, Section IV, we present results from
a computational investigation on adaptive quantizers up to four bits.
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Readers familiar with quantizers and whose primary interest is in the
performance of the device may skip the earlier sections that contain
the development of the mathematical results. Section IV includes a
comparison of the performances of uniform and nonuniform quantizers
for normally distributed input sequences.

A quantizer with 2N levels is shown in Fig. 1. In the figure, input
refers to the nth sample of the continuous signal, x (n) , where n = 0,
1, - ; output refers to the level that is coded before transmission at
that time. We let Ei = 1 and call A the step size.* In uniform quan-
tizers, Si = i and the vertical axis is also subdivided into equal intervals
in the range (7710, nNA). In adaptive quantizers which are of interest
here, the step size, and hence the entire quantizer function, is time -
variable, and the step size at the nth sampling instant is denoted by
O (n). The parameters Ei} and Inil are predetermined and do not
change with time.

In this paper, the main algorithm for step -size adaptation is

(n 1) = MiA (n) if Ei_16, (n) < I x (n) I < EiA (n), (1)

where M1, M2, , MN, called multipliers, are fixed constants. The
following natural restrictions are imposed on the multipliers :

M1 < 1 < MN and M1 M2 < MN. (2)

Even so, a great deal of the flexibility of the quantizer is incorporated
in the multipliers and, to some extent, in the parameters { and
{ni} . Observe that the algorithm in (1) utilizes only unit memory and
that it is not necessary to transmit to the receiver separate information
on the step size.

We shall also be considering the following important variation of
(1) in which the step sizes { (n) } are constrained to be within a
specific bounded interval [K, L] ; suppose Ei_10 (n) I x (n) I < tiA (n),
then

A (n 1) = MiA (n) if K MiA (n) < L
= K if MiA (n) K
= L if L < MiA (n). (3)

We call the associated device the saturating adaptive quantizer. There
are situations where it is attractive to have the interval [K, L] rela-
tively small.

The most restrictive assumption that is made about the input
sequence Ix (n) is that it is a sequence of independent random vari-
ables (see Sections 1.1 and 1.2 for a discussion). However, in differ-
ential PCM schemes in which the quantizer is used together with a

For notational convenience, we also let to = 0 and tN =
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predicting filter in the feedback loop, the effect of the restriction is
diminished.

With ti = i, the adaptation algorithm in (1) is due to Cummiskey,
Flanagan, and Jayant,2'3 who have also implemented speech coding by
a four -bit quantizer. References 1, 2, and 4 may be consulted for a
fuller account of the antecedents of the quantizer and related work
that has been done in this area. Goodman and Gersho4 have also
examined the general multibit quantizer from a theoretical point of
view, and their work complements rather well the work described here.

We briefly summarize here the main features of this paper.

(i) The theory that we give here applies to quantizers having
bounded range and finite alphabet, with the important properties and
relations holding also for quantizers with unbounded range. However,
as may be expected, differences do exist between the two types of
quantizers. For instance, a key relation in the work of Goodman and
Gersho,4 who do not consider finite range quantizers, called the design
equation, holds exclusively for the class they consider.

(ii) The single most important property of either type of quantizer-
ordinary or saturating-that we find is a localization property which
states that, for independent identically distributed inputs, there exists
a strong localization of the mass of the stationary step -size distribution
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about an easily identifiable central value. See Theorem 1, Section 2.2,
for a statement of this property. The localization property, together
with certain scaling properties of the central state, provides the key
to the synthesis of the adaptive quantizers.

(iii) A property of the quantizers having important implications
is that, under certain conditions, as the range of the multipliers is
decreased to approach unity, then the stationary step -size distribution
becomes increasingly concentrated about the central step size. A
result of this type is given in Ref. 4, where it is shown that a "spread
function" has the appropriate behavior. However, the definition of the
spread function is novel, and connections, if any, with the dispersion
of mass in the distribution are not established. In Section 2.4 we
establish the property directly in terms of the mass of the distribution.

(iv) In Section III we develop, as design aids, formulas and bounds
on the mean adaptation time, i.e., mean time required for the step
size to adapt from arbitrary initial values to the central step size.

The mathematical analysis is of a random walk on the integers, in
which the state transition probabilities depend on the states. Random
walks of the type considered here are encountered in other areas; for
instance, in various schemes (up-and-down method, transformed up-
and-down method6-7) for estimating a quantile of an unknown dis-
tribution by using only response, nonresponse data, as is required in
bioassay, sensitivity data analysis, and psychological testing. The
central properties of the random walk that we obtain here are new
and of general interest.

1.1 Assumptions and background

Let Cf > 0 denote a scale parameter and let 9 denote an equivalence
class of distributions F (z) , z 0, in which the distributions are
identical to within a scaling operation, i.e.,

F (az) = F i(z) (4)

For instance, $ may be the class of half normal distributions, in which
case a' is the variance and F1(z) = Pr [ I x < z], where x is normal
with zero mean and unit variance. In what follows we let x, (n)I
denote a sequence of independent random variables, each with the
distribution function Pr x (n) < z] = F (z)

We recall certain known facts about optimal nonadaptive quantiza-
tion where { x, (n) } forms the input sequence, F (z) is known, and, for
some suitable choice of a fidelity criterion such as E[fy (n) - x (n) 121
where {y (n) is the output of the quantizer, the optimal step size A,
is computed. With the rms criterion and the inputs normally distrib-
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uted, Max8 has computed A, and, for the nonuniform case, the
corresponding optimal parameters { , {14 for quantizers with
various levels, N. A convenient way of presenting such results for
any g is as

F i(Ai) = (5)

where a is some constant, since optimal (nonadaptive) step sizes A,
corresponding to the scale parameter o are obtained from

Aer = 011. (6)

In this paper we show that, when a is fixed and {x,(n)} forms the
input to the quantizer, then the step size, a random variable evolving
according to either (1) or (3), has a natural center C,. We show, for
instance, that the stationary step -size distribution is localized about
C, and that the degree of localization may be arbitrarily increased,
although at the cost of other aspects of performance. There are two
important facts to note about C. First, by virtue of its explicit defini-
tion, C1 can be made to take almost any desired value by suitable
choice of the multipliers. Second, as we show in the following section,
the central step size has a scaling property similar to (6). We are
therefore in a position to incorporate the results of optimal nonadaptive
quantization by identifying Al with C1.

1.2 Central state

We consider only quantizers with multipliers having the following
form:

Mi = ini = 1, 2, , N, (7)

where 7 is some real number greater than 1 and the mi's take integral
values. With (2), this implies

mi < 0 < mN and mi m2 mN. (2')

We shall further take the set of m i's to be relatively prime, i.e., their
greatest common divisor is 1. If, as we shall assume, the initial step
size is of the form i integral, then the step size is always of that
form and the space of possible step sizes forms a lattice.

Consider an independent identically distributed input sequence
{ xi(n)} , where Pr { I xi (n) I < z} = F1(z) and F1(  ) is an element of
9. We drop the subscript that identifies the scaling. For z 0, let*

B(z) i ,.m{F(Gz) - F(Er_lz)}. (8)

F(0) = 0, F(z) ---0 1 as z co and F(z) is monotonic, strictly increasing with z.
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Since it is also true that
N-1

B(z) = mN - E (mr+1 - mr)F(Erz),
r..1

(8')

it is clear that B(z) is a monotonic, strictly decreasing function of z;
also, B(0) = mN > 0 and B(z) -+ m1 < 0 as z --:0 . Hence, there
exists a unique integer i with the property that

B(7i-1) > 0 a B (7i). (9)

We denote y$ by C and refer to it as the central step size. All step sizes
are considered to be of the form Cy', i = 0, ±1, ±2, .

Remarks:

(i) The parameters {mi} and y may be selected to make the resulting
central step size C approximate as closely as desired any given real
positive number, A. First, by making y close to unity the grid of
possible step sizes can be made sufficiently fine. Second, the integral
parameters {mi) can be chosen to make E mr{F(GA) - F(6-1:6)1
sufficiently small.

(ii) So far, we have been concerned with the central step size for
the probability distribution F (z), corresponding to the particular scale
parameter 0- = 1. To demonstrate the behavior of the central step
size with various scale parameters, let C. denote the central step size
corresponding to the input probability distribution, F, (z), and let
B, (z)be defined like B(z) in (8) with F() replaced by F.(). Let C.
be the unique solution of

B, (C,) = 0, (10)

where, of course, C. may not be of the form yi, i integral. However,

C.17 < C. C.. (11)

We observe that C. scales, i.e.,

C. = o-Ci. (12)

The above follows from the following property of the functions
{.13.()}:

From (11) and (12),

B.(crz) = Bi(z).

C.17 < aCi 5 C. (13)

and it is in this sense that we say that the central step size scales.
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1.3 Basic equations

We define a Markov chain and obtain the transition equations for
the ordinary quantizer with the inputs being { x (n)} , which are inde-
pendent identically distributed, and Pr { I x (n) I < z} = F (z). Let

w(n) 'log, A (n) - log, C,
so that

w(n + 1) = w(n) my if Er_IC7w(n) _5 I x(n) I < ErCyw(n), (14)

where 1 S r < N. We have in (14) a Markov chain on 0, +1, +2, ,

with the central step size C corresponding to the 0 state. Let

P(i; n) Pr [co (n) =

The state transition equations are

N
p(i; n ± 1) = E b(r) (i - mr)p(i - mr; n), (15)

where the transition probabilities are

b (i) F (trCY) -F Ur-IC.)1, 1 < r < N. (16)

The qualitative results that we obtain are based on the following
two relations that do not depend on the particular distribution F (z).

(i) 0 6 F(tr79 < F(ET7i+1) < 1
for all i and 1 5 r < (N - 1). (17)

N N
E nirb(0(-1) > 0 > E mrb(r) (0).
r-1

(18)

The latter condition follows from the definition of the central step size.
The 0 state of the random walk has the following important prop-

erty : There is a net drift to the left (right) from states to the right
(left) of the 0 state.

N
ET(.0(n + 1) I w (n) = i] - i = m Tb(r) (i) < 0 if i > 0

r =1

>0 if i < 0 . (19)

The above super- and submartingale properties are the basis for the
existence of a stochastic Liapunov function (Appendix A) and the
bound given in Section 3.2.
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1.4 Saturating adaptive quantizer

Any hardware implementation of the quantizers will incorporate
some scheme for restricting the range of step sizes. In addition, there
are reasons for desiring the step size to be bounded. For instance, by
limiting the step sizes at both ends, it is possible to devise automatic
schemes for "forgetting" the effects of past channel errors.9 In such
algorithms, the step size may be bounded to fairly small intervals.

For the saturating adaptive quantizer, eq. (3), suppose that

,..-1.C'Y''' (n) I x (n) I < i-C7w (n)

for some r, 1 < r < N. We obtain the following equation analogous
to (14) :

co (n + 1) = co(n) + mi. if -K 5_ w(n) + mi. .-_. L
= -K if co(n) + mi. __ -K
= L if L . to (n) + m (20)

where K and L are fixed positive integers. The ordinary quantizer is
obtained if K, L ->00.

We observe the following : The central state for the saturating
adaptive quantizer may be defined exactly as in the ordinary type of
quantizer; the important martingale properties, expressed in eq. (19)
for the ordinary quantizer, carry over to the saturating type. The

equations of the saturating quantizer are
characterized by numerous involved boundary equations. However,
the bulk of the equations are of the form given in (15) :

N
p(i; n + 1) = E b(r) (i - mr)p(i - mr; n)

,==.1.

-K + mN S i L + ml. (15')

We do not give the remaining equations since we have no direct need
for the time -dependent equations. In Appendix B we give, following
the method and notation of Section 2.1, a complete set of reduced
equations satisfied by the stationary probabilities.

II. STATIONARY DISTRIBUTIONS

Appendix A establishes the existence and uniqueness of a finite
stationary distribution for the step size in the quantizers. The following
sections establish the main qualitative properties of the stationary
distributions for both the ordinary and saturating adaptive quantizers.

If we set p (i; n + 1) = p(i; n) = p (i) in the time -dependent
equations, then the stationary probabilities are given by 1p (i)1. Thus,
the stationary probabilities of the ordinary adaptive quantizer are
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obtained from

N
p(i) = E b(r)(i - mr)p(i - mr), i = 0, ±1, ±`). (21)

and the normalization equation,

p(i) = 1.

2.1 A useful reduction of the equations for stationary probabilities

In each equation in (21), the maximum difference in the indices of
the state probabilities is (mN -m 1). By exploiting a property of the
stationary distribution, we now obtain a set of new equations where
the maximum difference in the indices is (mN -m - 1). The reduced
set of equations together with the normalization equation is complete.
A simple interpretation and the motivation of the reduced equation
is given in Ref. 1; remark (ii) below gives an additional probabilistic
interpretation. The reduced equations are important to us, as they
allow us to consider only a smaller set of solutions.

For any integral j,
N

E p(i) = E E b(r)1(i - MOO - Mr)i = - r=1
j-mN N j _, _ "E b (r) P (i) E (a) P (a)i= - b

+...+ E b (1) (i)P
1 =f -m:+1

Since EPr- 19(r) (i) = 1, the above reduces to
N -1 j-m,

E p(i) =E E b(*)(i)} 71(0.
=j-mN-F1 r =1 i =j-no+1+1 s =1

Define for 1 < r < N and all integral i,

r

111(r) (i) = E b(8) (i).
s=i

(22)

(23)

The quantities {#k(r) (i) ) may be directly obtained from the input
distribution, since (r) (i) = F (ErC7i). From (22) we obtain the reduced
equations

N -1
E p(i) = E E IV° WO) j = 0, f1, ±2, i=i-mN+1 r =1 i=j-mr.1-1-1

(24)
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In these equations, the set [j - m.,+1 + 1, j - mr] is to be treated as
empty if mr =

Remarks :

(i) The manipulations leading to (24) are justified since they involve
bounded quantities, as is implied by the existence of a unique finite
stationary distribution.

(ii) Equation (24) is equivalent to the following identity, which is
intuitively plausible and may be proven independently :

Pr, [co (n) 6 j and (...) (n 1) > j 1]
= Pr, [co (n 1) 6 j and co (n) > j + 1],

where the subscript s is being used to identify stationary probabilities.
(iii) Equation (24) may be used to give a simple proof of an identity

(called simply an identity in Ref. 1 and "the design equation" in
Ref. 4) involving the stationary state probabilities of the ordinary
quantizer. Sum both sides of (24) for all integral j:

E p(i) = 'Er (r) (i)P (i)*
i-nt N+1

The left-hand side is simply mN and the right-hand side is

N
MN - E m rqr,

r-1

where

e°

q*
A= E kw) (i) - TP(')(i))73(i).

Hence,
N
E nitqr = 0. (25)

r =1

Equation (25) has a natural interpretation if we recognize that q r is
the stationary rth step occupancy probability, i.e.,

qr = Pr, Dr_iA(n) 6 j x(n) I < Er0 (n)]. (26)

The steps leading to eq. (24) may be repeated for the saturating
adaptive quantizer, and a similar reduction may be achieved. These
equations are given in Appendix B. The main recursion is identical
to that of the ordinary quantizer, namely, eq. (24), and holds for all
integral j, -K mN j < L m1 + 1. Observe that the range
over which (24) is valid, for the saturating quantizer, is such that
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every state probability is included in at least one component of the
recursion.

It may be verified by the reader that the identity in (25), the design
equation of Ref. 4, does not hold for the saturating quantizer.

2.2 Localization property of the stationary distribution

We prove a fundamental distribution -free property of the stationary
distribution of the step size. For both the ordinary and the saturating
adaptive quantizers, we obtain sharp geometric bounds on almost all
the stationary state probabilities as a function of the distance of the
state from the 0 state. The actual bounds obtained are somewhat
stronger than the above statement implies, since the rate parameter in
the geometric bound itself decreases monotonically with increasing
distance from the 0 state. These bounds show that a strong localization
of the mass of the stationary distribution about the 0 state (central
step size) is inherent in the random walk. Also, we found that it was
necessary to prove a result like Theorem 1 before the effects of the
multipliers on the dispersion of the stationary distribution could be
quantified.

It is necessary to define certain vectors and matrices of dimensions
(mN - m1 - 1) and (mN -m - 1) X (mN - m1 - 1), respectively.
Let Pi denote the column vector with the following components :*

Pi EP (i), P (i + 1), P (i mN - m1 - 2)T. (27)

Equation (24) may be used to construct matrices {Ai}, which govern
the transitions of the above vectors in the following manner :

Pi+1 = AiP,:. (28)

By examining (24) we observe that the elements of Ai depend on the
quantities ,/,(r) (i), , 11/(r) (i + MN - M1 - 1), 1 <= r < N, and the
subscript i indicates this dependence.

Theorem 1 (Localization Property): Let i > 0. For both the ordinary and
saturating adaptive quantizers, there exists a constant weight vector with
positive elements, X, and a constant, r > 1, depending only on Ai such
that, for all j

(VP 5) -5 (1)j-1 (VP (29)

There exists the L1 -norm, Ix' E xkl x11 , of the vectors { Pi} which
decreases geometrically as I j - i increases.

* The superscript t denotes the transpose.
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An identical statement with 1 j - i J replacing the index j - i in
(29) is also true for i < 0 and all j

Remarks*:

(i) When r and in (29) are as constructed by us in the proof of
the theorem, then the inequality in (29) becomes an equality if Ak = Ai
for k = i, i 1, , j. This indicates that it is not possible to obtain
tighter geometric bounds without making further assumptions on the
distribution F (z).

Using Theorem 1, we can give the following point -wise bound on
the stationary state probabilities for both the ordinary and saturating
adaptive quantizers :t let i > 0; then, for j i

p (j niN - mi - 2) 5_ (-1y-i(lTi)<(1 ri . (30)

Similarly, for i < 0 and all j

- misr ml -I- 2) < ( j(1eP2)< (
)i-i

(30')

The proof of (30) is as follows. Let X, denote the largest element of the
vector X occuring in Theorem 1 so that 1 < m < mN - m1 - 1. From
Theorem 1,

i-i
Xmp(j m - 1) VP; (r

)j-'
(XePi) (-; X,(1tPi),

and the inequalities in (30) follow.

Remarks:

(ii) Observe that for the bounds in (29) and (30) we may use any
i, 0 < i < j, as the reference state. The choice of the best reference
state depends on the behavior of r with i which, in turn, depends on
the distribution F (z). The main distribution -free property of r (i),
namely, statement (iii) of Lemma 1, indicates an advantage of choos-
ing a large i for the reference state. In Section 2.4, we prove an assertion
by implicitly using more than one reference state i.

The proof of Theorem 1 relies on two lemmas that we state here

and prove in Appendix C.:

This remark implies the tightness of the bound in (29), which is lacking for the
bound obtained in Ref. 1 for the two-bit quantizer.

1. The vector 1 has every element equal to unity.
Observe that neither Ai nor A71 is a nonnegative matrix so that the usual

Frobenius theory does not apply.
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Lemma I : For every i > 0,

(i) Ai is nonsingular and Arl has a unique positive real eigenvalue,
say, r. Furthermore, r > I.

(ii) Every element of the corresponding left eigenvector of A-', 1, is
of the same sign and nonzero, hence we may take 1 to be a positive
vector.

r which depends on i is monotonic, strictly increasing with i.

Lemma 2: For j > i > 0,
0.

Remarks:
(31)

(iii) It is not the case that It[AT' - Ar'] 0, so that (31) is
not true if Pi+1 is taken to be an arbitrary nonnegative vector.* In
proving Lemma 2 it is necessary to take into account the fact that the
vector Pi, from which P.i.f.1 evolves according to eq. (28), is itself
nonnegative, and this implies that 13;4.1 is restricted to a cone that is
a proper subset of the nonnegative quadrant.

Proof of Theorem 1: For j > i > 0,
= vAripi+i = 1/EAr1 -
= l'EAT1 - rIel) 1 from Lemma 1

rItPJ+1

Hence, (XtPi) < (1/r)i-i(XtP1) for all j i, as was to be proved.
As every element of P1 is nonnegative, the Li -norm I Pi I is equal

to Xt1:11. Finally, we may transfer the result that holds for i > 0 to
the case of i < 0 by a simple renumbering of states in the manner that
has been indicated in Ref. 1.

The notation common with Ref. 1 conceals some rather significant
differences in both the main result (29) and its proof. In Ref. 1, the
corresponding result involved X and r, which were elements of the
eigensystem of an additional matrix Ai obtained in an involved way
from Ai. The result in Lemma 2 has no counterpart in Ref. 1. The
geometric bound obtained in Ref. 1 is peculiar to two-bit (N = 2)
quantizers, and does not directly generalize. Also, the bound obtained
here is stronger even for the case N = 2.

2.3 Lower bounds on the steepness factors, r(i)

Theorem 1 and the subsequent bound in (30) indicates that r (i)
is a local measure of the rate with which the stationary probabilities

A vector is nonnegative if every element is nonnegative. The nonnegative
quadrant in R" is the set of all nonnegative vectors of dimension n.
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change, and for this reason we find it natural to call r(i) the local
steepness factor. Here we go back to the definition of r(i) as being the
unique positive real root of the polynomial C(A), eq. (60), to obtain
the following bound on r(i), which has the advantages of being ex-
plicit and being dependent only on the transition probabilities at state
i. We make free use of this bound in the following section.

r(i) > P(i) r =1
N
E in,{0(r)(i) -

`r=µ+1

t (-7n0{0(r)(i) -
, (33)

where, of the N multipliers, only p. multipliers have values not exceed-
ing unity, i.e.,

m1, M2,  , MA  0
and

mp+i, mp+2, , mN > 0.

The bound p (i) has certain interesting properties. First, observe that,
by virtue of the definition of the central state [eqs. (8) and (9)],
p (i) > 1 for all i > 0. Also, the sequence p (i) , is, like { r (i) } , monotonic,

increasing with i. The numerator and denominator of the bracketed
expression have interesting probabilistic interpretations : The numer-
ator (denominator) is the expected change in state conditional on the
transition being from state i to all states i' S i(i' > i).

The proof of eq. (33) is involved, and for the sake of brevity we
omit giving it.

2.4 Effect of 7 on the stationary distribution

We show in this section that the mass of the stationary distribution
of the step size can be concentrated about the central step size to an
arbitrary extent by making y sufficiently close to unity. To show this,
we first put together, from the results of the preceding two sections, a
rather explicit bound on the stationary probability of the step size
exceeding a particular value for a given y, i.e., Pr, [A > C7']. This
bound is in a form that allows direct comparison with the corresponding
probability arising from the choice of y' = -Nri. By successively taking

to be the square root of the preceding value, the bound on the
probability can be made as small as desired. This procedure for proving
the assertion is similar to the one we developed in Ref. 1. We restrict
our attention to step sizes that exceed the central step size, i.e., i > 0,
since a parallel argument holds for i < 0.

In the following discussion the quantity (in N - mi - 2) arises
frequently, and it is convenient to denote this quantity by the symbol
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P. Clearly, p is a measure of the spread in the log of the multipliers.
For i > 0 and r = r(i), we have from eq. (29) that

(n) E p(i) 6 E VPi 5- ItPi E (--1 )i = X r
`Pi r - 1 (34)

a =i+. ,_i J=0 r

Now
r > p (i) , (35)

where p (i) is defined in eq. (33), and

Since

VPi max CP (i), , P (i + v) 1Zxi =

Pr8 [A > C7i±v]

we have, from eq. (34),

= i P(i),
3.= i+ v

Pr. [i> ayi+.] < P(i)
= p (i) - 1 max [p (i), ' p (i + v)]

Finally, from Eq. (30), for i .. v + 1,

max D(i), , Pei + P)] 6
r 1 i i---
L Pm j

. (36)

(37)

Equations (36) and (37) together give us the desired bound on the
stationary probability of the step size exceeding a given value, which
we now compare with a similar bound that holds for y' = . The
prime superscript is used on symbols to denote the functional depend-
ence of the associated quantities on -y'. In establishing the reference,
i.e., central, step size corresponding to y', minor differences exist
depending on whether [see eqs. (8) and (9)]

or

(i) B (7P-1) > 0 .1. B( -y -i-1)

(ii) B (71-4) > 0 -?.= B (7-9. (38)

We consider only (ii), in which case : w' (n) = 2i <=> co (n) = i, and all
the transition probabilities are simply related : lk(r) (2i)' = 11/(r) (i). As
a consequence of the latter property, we have

Pi (2i) = P (i) (39)
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Repeating the arguments leading to eqs. (36) and (37), we have

Pr; C -9"-v] 5 [p' (2i), , p' (2i v) ] (40)
)i) max[A (2

and
2i-v-2

max [p' (2i), , p' (2i + v)] [ (41)

By the fact that p'(2i) = p(i), we have

Pr; CAF-;;2'-i-v]< [ 1. (42)[A p()(il [ p(i) p(11)

Comparison with eqs. (36) and (37) completes the demonstration.

III. TRANSIENT RESPONSE

In this section, we are interested in the random time, called the
adaptation time, taken for the step size of the quantizer to adapt from
some arbitrary initial value to the central step size. It is necessary to
have the adaptation time relatively small if the quantizer is to ade-
quately track the scale variations of the input process. Also, it is
reasonable to expect that, as 7 is made large, the increased range of
the multipliers [eq. (7)] will give the desired tracking. However, as a
counterbalance, we already know from the preceding section that, with
the correct choice of the log of the multipliers, Imi), the quality of
steady-state performance is increasingly impaired as the value of y is
raised. From this brief discussion (see Ref. 1 for a more detailed
discussion), it is clear that it is useful to have formulas for the efficient
computation of the mean adaptation time and bounds that provide
insight on the dependence of the time on the multipliers.

3.1 Mean time for first passage to the central state

We consider only the saturating adaptive quantizer since, as K
and L are made large, the quantities obtained for this model approxi-
mate corresponding quantities for the ordinary adaptive quantizer.
Also, for the usual reason only the case of positive initial states,
(.0(0) > 0, is considered.

Let the initial step (.0(0) = i > 0 and let T (i) denote the mean
value of the random time T where w (r) 0 and c0(n) > 0 for all
n < T. It can be shown that, as a consequence of the recurrence and
irreducibility of the Markov chain (see Appendix A), the mean first
passage time, T (i), is finite with probability 1. If the first transition
results in a transition to the state i mr, the process continues as
if the initial state had been i r. The conditional expectation of the
first passage time is therefore T (i m r) + 1. From this argument, we
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deduce that the following recursion is satisfied by the mean first
passage time,

N
T(i) = b(r) (i) { T(i+ m r) + 1} - m1 + 1 m N

r =1
, (43)

where, as in eq. (16), b(r)(i) = F (GC -6 - F(Er-1C79. Of course,
b(r)v) = 1. The recursive relation in (43) may be used to

generate the entire sequence { T , provided (m N -m 1) initial con-
ditions can be found. Now, by the same argument that led to eq.
(43), we have

T(1 m1) = T(2 + mi) =  = T(0) = 0. (44)

The remaining M N initial conditions, namely,

T(1), T(2), , T(mN),

are harder to obtain, and it is necessary to look more deeply into the
dynamics of the process to obtain these quantities.

For every time instant, we define the L -dimensional vector z(n) with
components z(j; n), 1 < j L, where

z(j; n) a' Pr [w (n) = j and w (s) > 1 for all s 5_ n]. (45)

We show in Appendix D that the vectors z(n) evolve in time according
to the homogeneous equation

z(n 1) = Dz(n), n 0, (46)

where D is an L X L matrix. Also, in Appendix D we prove the
following: For i > 1,

T(i) = E xr,
where

- D]x") = e(1)
(47)

and the elements of the L -vector e(i) are zero everywhere except at
the ith location where the element is unity. It is shown in Appendix D
that [I - D] is nonsingular.

The simple recursion in (43) may be used to generate the sequence
T (i)} after obtaining the nonzero initial conditions via m N inversions,

as in (47). Alternatively, if T (i) is required for only a few particular
values of i, it may be easier to obtain them via the inversions in (47).

The bulk of the equations in (47) [see eq. (72)] are in the form
encountered in the analysis of the stationary distribution, eq. (21).
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Also, the elements of the vectors xj° are all nonnegative. Hence, by
applying the techniques and results of the preceding section, we may
draw certain conclusions about eq. (47).

First, the bandwidth of the matrix [I - D] may be reduced by 1
by carrying out the reduction of the equations described in Section
2.1. For m1 = -1 and arbitrary values of m2, , mN, this step is
enough to triangularize the matrix [I - D] for any countable L and
thus substantially simplify the computations. Second, we may con-
clude from Section 2.2 that, with increasing j, the solution elements
xj° decrease at least geometrically. This is a very useful property from
the point of view of numerical inversion of [I - D] for L large and
the approximation of the solution for L = 00 by finite L.

3.2 A bound on the mean first passage time

Let T (i, j) , 0 .._ i < j, denote the following mean first passage
time : the initial state co (0) = j, first crossing occurs after T transitions
if co (T) 5 i, and co (n) > i for all n < 7, and T (i, j) = E (T) . The
quantity T ( j) of the preceding section is equivalent in our present
notation to T(0, j). We now give an explicit bound on T (i, j) that
provides some insight into the dependence of T (i, j) on the multipliers.

For both the ordinary and saturating adaptive quantizer,

1
7' (i, i) C (i + 1) CU - i) - (mi + 1)1 0 i < i,
where

N -1
C(i) = E (mr+, - mr)%00(i) - mN

r =1

(48)

From the definition of the central state, eq. (18), and the monotonicity
of Or) (i) with respect to i, we observe that for i > 0, C(i) is positive,
monotonic, increasing with i. We only sketch the proof of (48) because
the method of the proof is contained in the proof of the bound that
we gave in Ref. 1 for the two-bit quantizer. First, recall [eq. (19)]
that a supermartingale property exists that holds for both types
of quantizers, according to which there is a net drift to the left
from all states j > 0. Second, we define a new process in which
(01(n) = co (n) + nC (i + 1) and show that the supermartingale prop-
erty, i.e., E[co' (n + 1) I co' (n)] 5 co' (n) , is preserved for the range of n
of interest. Finally, an application of Doob's theorem on optional
stopping of supermartingalesi° on the new process yields the bound
in eq. (48).

The bound provides some insight into the dependence of the mean
adaptation times on the multipliers, and 7 in particular, when the
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initial and final step sizes are Cy1 and C, respectively. Briefly, consider
the effect of making 7' = 1F -y, i.e., M; = AITIT and the spread of the
multipliers is reduced. The number of states between the states cor-
responding to Cy' and C is doubled. Now C(1) is hardly affected by
the transformation and, as a consequence of the linear dependence of
the bound on T (i, j) on the distance ( j - i), we have the bound on
the mean adaptation time approximately doubled. For i = 0 and
j >> (-mi), computations amply corroborate this conclusion.

IV. COMPUTATIONAL RESULTS

We present here a sampling of rather extensive computations done
on three- and four -bit adaptive quantizers (N = 4 and 8, respectively)
for independent identically distributed input sequences with gaussian
distributions. Both uniform, i.e., = i, and nonuniform quantizers
were considered. Max' has shown in the nonadaptive framework that
optimal nonuniform quantizers can yield an improvement in the
signal-to-noise ratio of about 20 percent over optimal uniform quan-
tizers with the number of bits in the range of interest here. We note
that four -bit adaptive quantizers have been breadboarded in Bell
Laboratories,' and that Jayant's2 systematic numerical study is re-
stricted to uniform quantizers up to three bits. We also observe that a
simple search procedure of the "optimal" set of multipliers grows to
be almost unmanageable and expensive when the dimension of the
parameter spaces is 8.

Table I lists five quantizers with their respective parameters { m i 1 .

The parameter 7 is not considered part of the characterization of the
quantizer type. Among the quantizers investigated, the following five
proved to be the most interesting in their respective classes, specified
by number of bits and uniform or nonuniform. The first of the five,
with y ti 1.12, is close to what Jayant calls the optimal, three -bit
quantizer. The parameters {mi} were arrived at by the procedure
described in remark (1), Section 1.2.

Table I - Five quantizers

Specifications

Designation
Uniform or
Nonuniform

Number of
Bits {log, (Mi) : mi,  , mN

Uniform 3 -1, -1, 2, 5 UQ, 3 bits, No. 1
Uniform 3 -1, 0, 1, 4 UQ, 3 bits, No. 2
Nonuniform 3 -2, -1, 2, 8 NUQ, 3 bits
Uniform 4 -2, -2, 0, 0, 2, 5, 10, 17 UQ, 4 bits
Nonuniform 4 -2, -2, 0, 0, 1, 2, 5, 16 NUQ, 4 bits
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The optimum division of the horizontal axis in Fig. 1, given by
Ei, i = 1, 2, , (N - 1), was obtained from Max,8 and we reproduce
these parameters for the reader's benefit.

NUQ, 3 bits. { = 1.0, 2.097, 3.492).
NUQ, 4 bits. { Ei} = 1.0, 2.023, 3.097, 4.256, 5.565, 7.142, 9.299).

Table II lists some statistics of the stationary step -size distribution
for unit variance of the input distribution. The stationary distri-
bution was obtained by solving the stationary equations of the satu-
rating adaptive quantizers with suitably large saturating levels
(K L 100). We also give the stationary step -occupancy prob-
abilities qi, where qi = Pr. (n) S I x(n)I < tognn, as in eq.
(26). Table II also gives, for purposes of comparison, corresponding
quantities of the optimal nonadaptive quantizer obtained from Max.8
In particular, A is the optimal, nonadaptive step size.

Figures 2 to 5 show the mean adaptation times for inputs with
unit variance. Figures 2 and 3 are concerned with the three types of
three -bit quantizers for various values of y. These figures plot the
mean time taken by the quantizers to adapt to the central, and
optimal, step size for various values of the initial step size. In Fig. 2,
the initial step size exceeds the central step size, while the reverse case
is considered in Fig. 3. Similarly, Figs. 4 and 5 plot data on the mean
adaptation times for the uniform and nonuniform four -bit quantizers.

The purpose of the remaining tables (III to V) is to give the reader a
feel for the relative performance of the five quantizers. We measure per-
formance by the ratio of the input signal energy to the quantization

Table II - Statistics of the stationary step -size distributions

Type 7 (Max) E(A) cr (A)
Step Occupancy Probabilities
(adaptive quantizer)
(optimal nonadaptive quantizer)

UQ, 3 bits 1.04 0.586 0.594 0.105 (0.445, 0.310, 0.156, 0.089
No. 1 (0.442, 0.317, 0.162, 0.078

UQ, 3 bits 1.04 0.586 0.613 0.089 (0.458, 0.314, 0.152, 0.075)
No. 2 0.442, 0.317, 0.162, 0.0781

NUQ, 3 bits 1.04 0.501 0.522 0.114 10.396, 0.317, 0.198, 0.0881
10.383, 0.323, 0.213, 0.0811

UQ, 4 bits 1.04 0.335 0.366 0.095 (0.285, 0.244, 0.182, 0.121, 0.075,
0.043, 0.024, 0.0271

10.263, 0.235, 0.188, 0.135, 0.086,
0.049, 0.025, 0.019)

NUQ, 4 bits 1.04 0.258 0.279 0.066 (0.219, 0.205, 0.178, 0.145, 0.110,
0.076, 0.045, 0.022)

10.204, 0.195, 0.177, 0.152, 0.121,
0.086, 0.049, 0.016)
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Fig. 2 -Transient response of three three -bit quantizers.

error energy. Unlike all previous data, the data for these tables were
obtained by Monte Carlo simulation. The interval of time over which
performance was monitored is denoted by NA. Thus, signal energy is
E,V..11 x2 (n) . The remaining parameter in the tables is the initial step
size, A (initial). However, we do not list the raw initial step size, but

Table Ill' - S/N performance of two uniform three -bit quantizers
(Main numbers are for UQ, three bits, No. 1; numbers in ( )

for UQ, three bits, No. 2)

Log to (initial)/a 1 NA = 10 NA = 100 NA = 1000 NA = 10,000

-1 6.92 (5.84) 14.4 (14.8) 17.4 (19.3) 17.7 (20.1)
0 25.7 (27.6) 19.1 (21.4) 17.9 (20.4) 17.8 (20.2)
1 0.549 (0.549) 3.94 (3.99) 13.1 (14.3) 17.1 (19.2)

All logarithms in Tables III, IV, and V have base 10.
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Fig. 4-Transient response of two four -bit quantizers.

the more relevant quantity A(initial)/A where 0 is, as usual, the
optimal nonadaptive step size. After experimenting, we arrived at the
following values of 7 for the five quantizers, since they gave a suitable
mix of performances over short (NA small) and long (NA large) runs.

Table IV - S/N performance of nonuniform three -bit quantizer
(NUQ, three bits)

Log (ginitial)/211 NA = 10 NA = 100 NA = 1000 NA = 10,000

-1 5.81 16.0 21.2 22.0
0 29.8 23.8 22.4 22.1
1 1.12 7.00 18.2 21.6
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Fig. 5-Transient response of two four -bit quantizers.

0.4

For a particular input process, the relative weightings may be quite
different, and 7 may then be tuned accordingly.

Quantizer ti

UQ, 3 bits, No. 1 1.12
UQ, 3 bits, No. 2 1.12

NUQ, 3 bits 1.06
UQ, 4 bits 1.06

NUQ, 4 bits 1.06

The following observations may be made on the above results.
There is a pronounced asymmetry in performance with respect to
log { (initial) /0 over short runs (NA = 10 or 100). This is, of
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Table V - S/N performance of uniform and nonuniform
four -bit quantizers

(Main numbers are for UQ, four bits; numbers in ( )
for NUQ, four bits)

Log liginitial)/a} NA = 10 NA = 100 NA = 1000 NA = 10,000

-1 19.62 (21.65) 36.98 (47.30) 48.22 (67.35) 48.97 (71.50)
0 86.2 (111.0) 56.0 (80.1) 50.60 (72.50) 49.20 (71.90)
1 2.97 (4.86) 17.7 (27.6) 42.00 (62.00) 48.10 (70.30)

course, related to the contraction multipliers being grossly smaller
than the expansion multipliers in all the quantizers considered (Table
I). The s/n when (initial)/A = 1 and NA = 10 is close to the s/n
obtained with the step size optimally tuned to the known level of
scaling of the input sequence. The steady but not excessive deteriora-
tion in performance with increasing NA is the price paid for adapt-
ability : it is due to the fluctuations in step size arising from the random
walk. Finally, we observe from Table V that there is a striking gain
from nonuniform quantization, the extent of the gain being somewhat
greater than what may be expected from previous results on non -
adaptive quantizers.

APPENDIX A

Existence and Uniqueness of the Stationary Distribution

We establish in this appendix that, for independent identically
distributed inputs, there exists a unique, finite stationary step -size
distribution (invariant measure). The proof given here is via the
construction of a stochastic Liapunov function, and it relies on a
standard, unified theory of stochastic stability" '2 that is well-known.
The stochastic stability of the adaptive quantizer has been proved by
Goodman and Gersho,4 and the prime reason for including an alterna-
tive proof is our belief that familiarity with the method followed here
may be beneficial to future workers in adaptive processes. The positive
function that is proved to be a stochastic Liapunov function here is
identical to the function that worked in Ref. 1 for the two-bit quan-
tizer, and the proof is a straightforward generalization.

We consider in turn two properties of well-behaved Markov chains,
namely, irreducibility and recurrence.

A.1 Irreducibility

The Markov chain is irreducible if and only if every state com-
municates with both neighboring states. This occurs if and only if

ADAPTIVE QUANTIZER 359



there exist nonnegative integers ni and nt, 1 S i < N, such that

Zmini = 1 (49)

and
Emin; = -1. (50)

It is an elementary fact from Euclid's theory that this occurs if and
only if the integers I are relatively prime, i.e., their greatest
common divisor is unity.

A.2 Recurrence

Consider the following nonnegative function of the states

V(i) i = 0, ±1, ±2, . (51)

Let D (i) be defined as

D (i) _BEV { w (n 1)1 I w (n) = i] -V (i). (52)

Now D (i) is uniformly bounded from above. By the monotonicity
of 1,b(r) (i) with respect to i and the definition of the central state, (18),
we obtain; for all i > ( -mi),

N-1
D (i) = mN - E (mr+1 - mr)0(r)(i)

r=1

and, for all i

N-1
mN - E (m,.+1 - mr),fr(r)(-mi) < 0 (53)

r=1

N-1
D(i) = -mN E (mr+1 - Mr)0(r)(i)

r-1

N-1
6- -MN + E (mr+1 - mr)0(r).(-mN) < 0, (54)

r=1

where, as in eq. (23), Ik(*)(i) denotes F (ErCyi). Hence, by virtue of
eqs. (53) and (54), D (i) < - e < 0 for all but a finite set of states i,
and V (i) is a stochastic Liapunov function for the process.

From Kushner's Theorem 7,11 we have recurrence and we can infer
further, from Theorem 4, that there exists at least one finite invariant
measure, i.e., stationary distribution. Also, since we have shown
earlier that two or more disjoint self-contained subsets of the state
space do not exist, we have, from Theorem 5, at most one invariant
probability measure. The existence and uniqueness of a finite stationary
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distribution for the step size of the ordinary adaptive quantizer is
therefore established.

A.3 The saturating adaptive quantizer

The argument leading to irreducibility is intact. In addition, we
have here that the end states ( - K) and L have period 1 and, since
periodicity is a class concept (i.e., every state in a particular com-
municating class has the same periodicity), the entire Markov chain
is aperiodic and, consequently, there is a single ergodic class that
includes every state in the chain. Hence, the distribution at time
n, p (n) approaches p, the stationary distribution for all initial dis-
tributions, and furthermore every component probability of p is
strictly positive.

APPENDIX B

The Saturating Adaptive Quantizer

We give in this appendix a set of equations satisfied by the stationary
probabilities of the states in the saturating adaptive quantizer. These
equations are complete and reduced by the method described in
Section 2.1.

Let p. denote the number of contraction multipliers, i.e., multipliers
having values less than 1, so that

MI, , ?no < < MA -1-1) ' MN. (55)

The tacit assumption that there are no multipliers exactly equal to
unity is by no means necessary, but does lead to a simpler presentation.

The main set of equations is

N-1 j-mr
E P(i) = E E IP(r) (i)P (i))

i-j-ntN+1 r=1 i=7-mr+1-1-1

-K rnN - 1 < j < L mi. (56)

The lower boundary equations are*

3-1
E p(2) = E E #(r) (i)P (i)) (57)

i=-K r=1 1=-KA(j-mr+i)

where + 1 N and -K ms_1+ 1 -K m 8. Finally,

*x n y = Max [x, y] and x v y = Min [x, y].
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the upper boundary equations are

i N-1 LV (i-mr)
E p(i) = E E ti&(r) (OP (0, (58)

i=i- mN-I-1 r=8 i=j-nar+1.-1-1

where 1< s S /.1 and L m a < j< L + ms+i- 1.

APPENDIX C

Proofs of Lemmas 1 and 2

C.1 Proof of Lemma 1

(i) It can be shown that the determinant of the matrix Ai,

det [A1] = (--1)' N-ml[1 - 0"1-1).(i)i/IP" (i mN - ml - 1).

As det [Ai] > 0, A21 exists.
Since Pi = AriPi+i, we observe from the structures of Pi and Pi+i

that the matrix AT' is in companion form in that all rows except the
first reflect shift operations, i.e., for k >= 2,

EArlik,z = 0 if 1 (k - 1)
= 1 if 1 = (k - 1). (59)

The elements of the first row of kr' are obtained from the equation

77W-1 N-1 mN-mr-1
E p(i + 1) - E E 4/(r) (i 1)p (i + 1) = 0. (24)
1=0 r=1 l=mN-irtr+1

As the matrix Ar' is in companion form, we know that its charac-
teristic polynomial is equal to within a constant of proportionality to
the polynomial obtained by replacing, in eq. (24), p(i + 1) by
AlinN- m1-1-1. That is, where

C(A) det DV' -
we have

173N-1

[1 - ,p(N-1)(inc(A) = E
l=0

mN- m1-1-1

N-1 mN-m,-1
- E In E 0(r)(i (60)

r=1 i=mN-mr+1

The quantity [1 - ,k(N-1) (i)] is merely the coefficient of p(i) in
eq. (24).

Scanning the coefficients of the polynomial C(1), we observe that
there is a single -sign alternation and, hence, by Descartes' rule, C(I)
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has at most one real positive root. Since

C(0) = -4/(1)4 mN - ml - 1)/C1 - ik(N-1)(i)] < 0

and C(A) ---> co as µ - oo , there exists exactly one real positive root.
Let r denote this root.

Now
N-1 inN-n17-1

[1 - 4/(N-1) WY (1) = N E E 4,09(i +
r=1 l=mN-ntr+1

N-1 mN-mr-1
< MN - E E lk(r). (i)

1=mN-mr1-1.

N

= E ni,{11,(r)(i) - (i) I)
r=1

(61)

where we have followed the usual convention in setting ,,(N) (i) = 1
and ,y(0) (i) = 0. So C(1) < 0 if Dv=, nirlivo(i) - (i) 0. The
latter condition holds for all i > 0 [see eqs. (17) and (18)]. Hence,
r > 1.

(ii) Let us denote the elements of the first row of Ari by fad and
10/1 so that the row appears as

a2*  - amN---11302' (62)

One reason for expressing the row in this manner is that every at and
01 is strictly positive by eq. (24).

The left eigenvector of At 1 corresponding to the eigenvalue r
satisfies, by definition, ItAz-' = r1,'. Examining the component equa-
tions, we find that

= 0.1 ± a0.1-1 + + OXI

Also, for 1 < / < ( -m 1),

Finally,

1 :5 / < (mN - 1). (63)

Z

XrnN-rni-1
Ca-m,-1+17.1-1 +  +13-.J. (64)

X = 1 Al. (65)

Since the a's and 0's are positive quantities, statement (ii) of the
lemma is true.

(iii) The statement may be verified by examining the characteristic
polynomial C(p) in eq. (60) and observing that the quantities tk(r)(i)
are monotonic, increasing with i.
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C.2 Proof of Lemma 2

It is required to prove that, for j > i > 0,

ItEATI - 0. (66)

The matrices AT" and AZ 1 are identical in all except the first row and
also Al > 0. Equation (66) is therefore equivalent to*

etiAT'Pj4.1 eiAriPi+1. (67)

We prefer to show that

o(N-1) (i)p(j) 6(N-1) (i)elAilp (68)

where e(N-1)(i) {1 - ON -1) > 0. As etIA,7113.41 = p(j), the
lemma will then have been proved.

From eq. (24),

e(N-1)(DP(i) = p(j) - 0(N-1)(i)P(i)
N-1 ii-mN-mr-1

= E P(1) E E 0(r) (073
1=j-1-1 r=1 /=j-l-mN--mr+1

- 4(N-1)(i)P(9) (69)

and
j+mN-1

0(N-1) (i)elAr'Pa+1 = - E p(1)
1=q+1

N-1 .1-1-mN-mr-1E E - j op(1) - 4,(N-1)(0p(j). (70)
r=1 1=j-FmN-rnr+1

Now

0(N-1) (Op (i) 0(N-1) (i)etiAripi+i

 e(N-1)(i)p(i) _ o(N-1)(0e,,Aripi+1

N-1 j+mN-mr-1 E E li,(r)(0 - (r) - j i)113(1)r=1 /=j-FmN-mr+1

- ION -1)(i) - ik(N-1)(i))P(i) 0, (71)

because of the monotonicity of Or) (1), and the final term in the expres-
sion on the right-hand side of (71) is cancelled by an identical com-
ponent (r = N - 1, 1 = j mN - mr+1) of the leading part. The
lemma is proved.

* The column vector with the leading element equal to unity and all other elements
equal to zero is denoted by e1.

364 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1975



APPENDIX D

Two Equations Concerning Mean First -Passage Times

We prove two assertions made in Section 3.1, eqs. (46) and (47),
concerning (i) the homogeneous evolution of the vectors { z (n) } via
the matrix D and (ii) the explicit formula for the mean first -passage
time, T (i).

DJ Derivation of eq. (46)

Let X (n) denote the event 1 < w(r) < L for all T, 0 <= r <= n.
Then, by definition,

z(j; n) = Pr [(.4(n) = j and Xn] 1 < j < L.

Since it is also true that

z(j; n) = Pr [.o(n) = j and Xn-1],
we have

L

z(j; n) = E Pr [co (n) = :710)(n - 1) = i, X ; n - 1) .

We have obtained the quantities Pr P.o(n) = jI (.4(n - 1) = i, Xn-1]
for 1 j < L and, thereby, the following equations. In the follow-
ing, 1.4 denotes the number of contraction multipliers, that is,

m2, , inm < 0 < /744.1,  , mAr.

The basic recursion is, for mN + 1 < j L±m1,

N
z(j;n) = E b(r)(j Mr)Z(j mr; n - 1).

r=1

The initial boundary equations are

(72)

z(j; n) = b(r)(j - mr)z(i - ?Th.; n - 1) 1 < j (73)
r-1

8

= E b(r)(j - Mr)Z(j - Mr; n - 1) m, + 1 .5 j 6 m.+1
r=1

S = A + 1, A + 2, , (N - 1). (74)

The final boundary equations are

N
z(j;n) = E b(r)(i - Mr)Z(j - Mr; n - 1)

1.= a

L-1-m8_1-1-1-L-Fm8,s= 2, 3, , (75)
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N
= E b(r)(j - mr)z(j - mr; n - 1)

r=µ±1

L + nz, + 1 < j L - 1, (76)

N L= E E b(r)(i)z(i; n - 1) j = L.
i=L- mr

(77)

Equations (72) to (77) define the matrix D stated in the main text.

D.2 Derivation of eq. (47)

For i = 1,- 2, , L, let
f(i; n + 1) ._62. Pr [first passage occurs at (n 1) 1 w (0) = i]

= Pr [co (n 1) < 0, Xn I co (0) = i]

= f Pr [w (n + 1) 5 0 I w (n) = j]z ( j; n),

with z (0) = e"), the vector with every element equal to zero except
for the ith element, which is unity. The event 6.)(n + 1) = k < 0
conditioned on co(n) = j is associated with a jump = k - j. The
following diagram illustrates the magnitudes of the jumps required for
passage.

jumps

(78)

1 1

1 1

.0 1 2.  -m,
I

(-97 i p+1)  -mi_ii1

I (-m2+1)  -mi .

I

1 I ,.____J
jump .... nip jump -_. mp_i jump < mi

Equation (78) can be explicitly stated, thus,

-rn,u_i

f(i; n + 1) = E 4(A)(i)z(i; n) E iii(A-1)(i)z(i; ii)
j=1 j=-mµ+1

-m1
+  + E 4,")(i)z(i;n). (79)

j= -7n2+1

In the more convenient vector form,

f(i; n + 1) = ctz(n), (80)

where the coefficients of the L -dimensional column vector c is ob-
tained from (79), and we observe that only the leading (-mi) ele-
ments of c are nonzero.
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The important fact about the vector c is that

ct = 1TI - D], (81)

where 1 is the vector with every element equal to unity. Equation
(81) may be established by either direct verification or by probabilistic
reasoning. Now

T(i) = E (n, +1) f(i; n 1),
n ZO

= c, E nz(n) + E f(i; n + 1),
nz0 n

= c, E nz (n) 1, (82)
n

= 1'[I - D] E nz(n) 1 from (81),
n

= 1, E z(n),
n >0

(83)

= 1, [ E Dni Z(0), (84)
n

= 1g[I - D] -1z(0). (85)

Equation (82) is obtained by noting that the probability that passage
occurs at finite time is unity. In obtaining Eq. (83), we have used
z(n -I- 1) = Dz(n) and that 1 tz (0) = 1. The convergence of the series
2Dn is a consequence of the fact that every eigenvalue of the matrix
D is strictly inside the unit circle. We omit the proof of this assertion,
as it is similar to the proof given in Ref. 1 in connection with the
matrix D for two-bit quantizers.

Equation (85) with z(0) = e(i) is the same as eq. (47) in the main
text.
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Cyclic Equalization-A New Rapidly
Converging Equalization Technique

for Synchronous Data
Communication
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A new technique for very fast start-up of adaptive transversal -filter
equalizers used in high-speed synchronous data communications is pre-
sented. A special training sequence whose period in symbols is equal to
the number of equalizer taps is used initially to achieve an open eye
pattern. Rapid convergence, even over highly distorted channels, is obtained
because an ideal reference sequence is available at the receiver, but it is
not necessary to synchronize the ideal reference with the received sequence.
The special choice of the training sequence automatically provides the
synchronized ideal reference needed for fast convergence, but the resulting
equalizer coefficients 'may be cyclically displaced from their proper posi-
tions. After the eye is opened by this process, the equalizer coefficients are
rotated to their proper positions, and decision -directed equalization is used
with either a longer training sequence or random data to achieve final tap
settings. Adjustments during the training period can be made with a
gradient -type algorithm or with stochastic adjustment techniques; an
exact analysis is possible for both of these schemes. Cyclic equalization is
shown to provide perfect equalization at evenly spaced points in the fre-
quency domain.

I. INTRODUCTION

The effective data throughput in polling systems is, to a large degree,
dependent on the start-up time of the data modems that are used in
the network. Many of these systems operate at high speed and trans-
mit data blocks of comparatively short duration. At 4800 b/s, a 1000 -bit
block is transmitted in about 200 ms, and to achieve a reasonable
overall efficiency, the time needed to condition the modem for trans-
mission (start-up) should be short in comparison to the time required
to transmit an average block. This becomes increasingly difficult with
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higher modem speeds. Prior to the transmission of the actual data,
timing and carrier information must be recovered very accurately, and
the adaptive equalizer that is necessary to cope with the linear channel
distortion at such high speeds must be trained.

The time required to adjust the equalizer represents the bulk of the
modem start-up time ; it is thus important to study in detail the prob-
lems associated with fast equalizer start-up. The most common struc-
ture of such an equalizer consists of a transversal filter with a set of
controlled gain coefficients that are spaced at the symbol interval T.
and the start-up problem is to find an initial set of "reasonably good"
values for these coefficients in a very short time. The purpose of this
paper is to present a practical method for doing this.

We first provide some background and discuss some factors that
affect equalizer start-up. This leads to the principle of cyclic equaliza-
tion that is discussed in Section III. Sections IV through VIII discuss
the operation of the cyclic equalizer using the mean -square tap -adjust-
ment algorithm where averaging is used to compute the adjustment
signals. The optimum tap coefficients are discussed and shown to
provide perfect equalization of the channel at equally spaced points
in the frequency domain. The relationship is explained between the
eigenvalues of the channel correlation matrix, which control the con-
vergence of the adaptive algorithm, and the discrete Fourier transform
of the received training signal. Selection of the training sequence and
the starting values of the tap coefficients and the effects of noise are
also discussed. Finally, in the remaining sections, a more practical
implementation is analyzed of the cyclic equalizer that does not use
averaging in the tap adjustment algorithm (stochastic adjustment).
The analysis of this algorithm is, in general, very difficult but, in the
case of the cyclic equalizer, the time -varying difference equation that
describes the noiseless equalization process can be solved exactly, and
the conditions for this algorithm to be stable can be developed. Again,
here the stability of the algorithm is related to the discrete Fourier
transform (DFT) of the received signal. It is shown that the algorithm
converges if the DFT of the received signal has no zero elements-that
is, if the received signal spectrum has no nulls. This material along
with a brief discussion of the asymptotic behavior of the algorithm is
given in Sections IX through XII.

Within the paper, we also discuss various implementations, includ-
ing a method to further speed up the tap calculation using an acceler-
ated signal -processing technique. It will be seen that cyclic equalization
is very attractive and economical to implement. Actual convergence
is presented with some computer simulations that demonstrate the
fast start-up capabilities of the new method.
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Fig. 1-Block diagram of data transmission system.

IL BACKGROUND

We will consider the pulse -amplitude modulated data system shown
in Fig. 1. Data symbols, dk, are transmitted every T seconds through
a transmitter low-pass filter. This signal then passes through a dis-
torting channel that has been made baseband by the modulation -
demodulation process inherent in the modem, noise is added, and the
composite signal is sampled every T seconds after the receiver filter.
The sampled signal vector xk is then equalized by a transversal filter
with coefficient vector c (see Fig. 2) to produce an output yk = xrc
upon which the decision device operates to produce estimates, dk, of
the transmitted symbols. The receiver structure has the form of the
optimum linear receivers but, because the channel is never precisely
known and changes with time, the transversal equalizer is made
adaptive to optimize performance.

Our concern in this paper is with the equalizer and ways to make it
adapt rapidly from some initial setting to its final setting. A large
number of papers, a partial list of which has been included in Refs.
1 to 51, have been written about equalizers, algorithms for adjusting

T
_K CK X C

K = 1

Fig. 2-Nonrecursive transversal filter.
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them, and the speed with which these algorithms converge. In de-
veloping procedures for adapting the equalizer coefficients, some ap-
propriate performance measure must be defined that will discriminate
between good and bad coefficient vectors. Although our goal is to
minimize the probability of error, this criterion is too difficult to work
with directly. As a result, secondary performance measures such as the
peak distortion,'

D = hj,' E Ihki y

k00
(1)

or the mean -square error,

e = El lyk - dkimi, M = 2, (2)

are used. In (1), hk is the sampled system impulse response. The peak
distortion is related to the "eye opening,"s and for binary symbols
and noiseless transmission, D < 1 implies no decision errors. In (2),
E { } is the expectation operation and yk - dk is the remaining error
at the equalizer output. These performance measures (M could be
greater than 2, if desired) can be shown to be convex functions of the
equalizer coefficients, thereby proving the existence of a global
minimum.

We will work primarily with the mean -square error (MsE) criterion.
This criterion includes the effects of noise, whereas the peak distortion
criterion does not, it is convenient to work with mathematically, it
can be used to bound the probability of error," and it leads to adaptive
algorithms that are easy to implement. Using the MSE, the optimum
coefficient vector for the equalizer can be determined easily. Assuming
E {di} = 1, we have from (2)

f = CT AC - 2CTV + 1, (3)

where
A = EfxkxrI (4)

is the signal autocorrelation matrix,

v = Eldkxkl (5)

defines the signal correlation vector, and xk is the vector of tap signals
at the kth time instant. Finding the gradient of (3) with respect to the
tap gains gives

g = 2.E'l (yk - dk)xk I = 2(Ac - v). (6)

Our optimization problem has a unique solution if A-4 exists. Setting
(6) equal to zero yields

c.t = A --iv (7)

eopt = 1 - VTCopt = 1 - VTA-1V. (8)
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The problem of equalizer start-up is simply to find the solution to
(7) in a rapid and economical manner. The economical part of the
question is very important. One can imagine a start-up procedure that
operates by sending a special training signal for a short period of time.
The received signal, x(t), is stored at the receiver. The training se-
quence is known at the receiver, but its absolute time reference is not
known. The receiver contains a very fast high -power computer which
now, in essentially no time, computes (8) for a large number of different
time references and finds the time reference for the locally stored
training sequence that minimizes copt. The computer has thus ac-
complished both synchronization and equalization. This hypothetical
system achieves a start-up time limited only by the time required to
transmit the training signal but, with today's technology, its speed -cost
product, if you will, is very poor. It does not represent an economical
solution to the problem. Many currently proposed fast start-up
equalizers, although not as extreme as this example, still do not present
cost-effective solutions.

In addition to the economic aspect, this example illustrates two other
important points. The first is the solution of (7). Much of the work on
equalization is concerned with efficient algorithms that avoid the direct
matrix inversion and obtain an iterative solution. Often, however, the
time required to perform the calculations in (4) and (5) is not explicitly
considered in evaluating start-up time. Second, synchronizing the
stored reference signal in the receiver can take significant time, and
that aspect of start-up time seems to be universally ignored.

Now we consider the solution of (7) in more practical terms. A well-
known approach for solving (7) is

c,,,+1 - (Ac, - v), (9)

i.e., a first -order steepest -descent gradient algorithm. For appropriate
conditions on 13 c, converges to c.pt.

According to (6), the gradient is obtained by correlating the tap -
signal vector and the error voltage

g = 2E1 ekxkI (10)

From an implementation point of view, this is a convenient quantity
because the signal vector, xk, is readily available, and the error,
ek = yk - dk, can be estimated. A difficulty still remains in that the
expected value is not available in real time and must be estimated by
averaging over a finite number of symbols. The difference equation
(9) then takes the form

1 mL -FL -1
Cm+l = Cm - 13,,,  -, E xk(xrc. - dk)}.

= Cm - - v,)
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Averaging is done over L symbols between succeeding adjustments.
If random data are transmitted, Am and v, will depend on the par-
ticular signal pattern of each iteration interval and are random vari-
ables with mean A and v and variances decreasing with longer averaging
interval L. The analysis of the behavior of (11) is difficult, particularly
when we try to determine ways of improving the convergence rate.
By reducing L, we can make many more iterations in a given time, but
we must use a smaller 13 -value to take into account the larger variance
of the calculated gradient. Longer averaging between each step would
take more time but give a better estimate for the gradient, and there-
fore allow a somewhat higher value of 0. Monsen13 has studied the
optimization of the averaging interval, assuming an ideal reference and
Gaussian signals. In this special case, the optimum value is L = 1; i.e.,
corrections are made after each symbol and no averaging at all is
done. This method is often called "stochastic approximation," because
the corrections are stochastic quantities whose means equal the desired
gradient.

At this point, it appears that the mean -square algorithm with no
averaging, i.e.,

Cm+1 = Cm - fimemXm
= (I - (3,x.xDc. #,dmx,} '

(12)

is an attractive scheme to investigate further to obtain fast real-time
convergence. There remain, for the moment, two main difficulties that
need further discussion. The first one is the problem of obtaining the
data values dk. They can be estimated in the usual way from a threshold
decision, but on channels with large distortion the initial error rate
may be close to 50 percent and estimates dk are very unreliable in such
a situation. An algorithm with a decision -directed reference may thus
behave erratically, and convergence cannot be guaranteed. The results
of a few simulations will give some further insight.

The channel assumed for the simulation consisted of a 10 -percent
cosine roll -off baseband filter with parabolic delay distortion [5.4T
at the Nyquist frequency (1/2T)] and a sampling offset of 0.3T from
the peak of the response. The resulting channel response from a single
pulse is shown in Fig. 3. This same pulse was also used by Hirsch and
Wolf.11 The initial peak distortion is 2.62, resulting in a completely
closed eye pattern.

The first simulation is for the algorithm (12), but an estimated
reference (obtained from a threshold decision) was used. Figure 4
shows the resulting peak distortion versus the number of symbols for
four different step sizes. Decision errors are responsible for random
distortion increases rather than reductions. This is avoided in Fig. 5
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I

PULSE RESPONSE
10% COSINE ROLL -OFF BASEBAND FILTER WITH PARABOLIC DELAY DISTORTION
TIMING OFFSET FROM PEAK RESPONSE : 30%

Fig. 3-Impulse response with peak distortion of 2.62.

where we have repeated the same runs with an ideal reference signal.
The improvement is significant. Note that the ideal reference signal
is really needed only until the peak distortion has decreased sufficiently
to yield an open eye pattern; from this time on, the error probability
is essentially zero, and a decision -directed reference can be used.

The difficulty in providing an ideal reference signal lies in the syn-
chronization problem. Remember that we require such a signal only
in channels with very large amounts of distortion, but achieving reliable
synchronization in the presence of severe distortion is a problem in
itself that usually calls for time-consuming correlation methods.'

A second problem is associated with the choice of the training
sequence. Obviously, a strictly random data pattern would be a bad
choice, since transitions would only occur on a probabilistic basis and
not be guaranteed. The variability of repeated convergence runs would
be large. This can be avoided by transmitting a short -period training
sequence. Even if the starting point occurred at random, convergence
would be more predictable. We know that we cannot make the period
of the training sequence shorter than the duration of the impulse
response of the equalizer; otherwise, the tap signals would not be
linearly independent, the correlation matrix A would be singular, and
a unique solution for the optimum tap vector c would not exist. We
will, however, study the limiting case where the period, in symbols, of
the training sequence is equal to the number of taps on the equalizer.
This will lead directly to the idea of the cyclic equalization. Before we
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200 250 300

Fig. 4-Convergence behavior of stochastic adjustment algorithm (12) with a
decision -directed reference.

do this, we will provide some additional insight by a short discussion of
the frequency domain aspects of the equalization problem.

III. PRINCIPLE AND IMPLEMENTATION OF CYCUC EQUALIZATION

Let the spectrum of the received data signal be G(w) and assume
that this signal is applied to an N tap equalizer with coefficients c,,,
n = 0, , N - 1. The resulting output spectrum is

N -1
X (CO) = G (CO E c, exp ( -jconT),

n=-0
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Fig. 5-Convergence behavior of stochastic adjustment algorithm (12) with an
ideal reference.

and the overall system would be distortion -free (Nyquist criterion) if

E x (0., + 2rk1 = exp (-- iC07),
k

1o1 < 7ic (14)

Combination of (13) and (14) yields the condition

N -1 2rk r
E0

cn exp (-jconT) E G (co 4- - ) = exp ( -.iwr), icoi < - (15)
n = k T T

Obviously, (15) cannot be satisfied for a finite N and an arbitrary
G(co). Usually, the coefficients c are chosen according to a minimum
mean -square -error (MMSE) criterion in the time domain, which is
equivalent to an MMSE criterion of (15) in the frequency domain. The
problems of such an approach have been discussed in Section II, and
we have seen that the commonly used iterative search schemes can be
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very efficient during the tracking mode, but initial training may not be
without problems.

A closer look at (15) shows that the left-hand side is a linear com-
bination of the coefficients c. Although perfect equalization cannot
be achieved at all frequencies, it is possible to obtain zero error at a
number of specified frequencies 0), within the range I0), I < it I T. This
is, of course, also true with an MMSE approach, since the resulting
transfer function will oscillate around the desired one; i.e., the error
will ripple between positive and negative values. The crossing fre-
quencies are, however, not known and usually not of interest. In the
new scheme we propose here, we will do exactly the contrary : We will
precisely specify the crossing frequencies, although we realize that such
an approach will, in general, not yield MMSE. Specifying the frequencies
0), where perfect equalization is obtained will transform the condition
(15) in a set of linear equations for the coefficients c,,. Obviously, we
have to consider two cases :

(i) N = even : N/2 different frequencies a). 0 must be specified.
(ii) N = odd : (N - 1)/2 different frequencies co. 0 and w = 0

must be specified to obtain a unique solution for the cn's.

Theoretically, a set of reference tones 0)m could be transmitted, G(0).)
measured at the receiver, and the coefficients computed from (15).
Fortunately, it is possible to propose a much more attractive solution.

The generation of the reference tones can be accomplished in a
straightforward way if we select the frequencies 0)m equally spaced
across the Nyquist band; a suitable periodic data sequence of length
NT will produce such spectral lines at 0), = 2rm/NT. Note that the
number of symbols in such a training sequence is equal to the number
of taps of the equalizer. This choice is extremely important and provides
a number of unique advantages to achieve fast equalizer start-up.

We now discuss in detail such a training procedure. Assume an
equalizer where an ideal reference signal is used and the period of the
training sequence is equal to the number of taps on the equalizer.
Assume for the moment that the channel is distortionless and the ideal
reference is synchronized with the incoming signal. If we let the adap-
tive algorithm adjust the equalizer taps, the center tap on the equalizer
will become unity, and all the others will be zero. This is really what
we mean when we say the reference is synchronized; that is, the opti-
mum equalizer coefficients are centered on the equalizer rather than
shifted off to one end or the other. Now again, for this "ideal" example,
if the reference signal is delayed by one symbol from perfect syn-
chronization, the adaptive algorithm will cause the equalizer coefficient
one position removed from the center to become unity, and all the
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others will be zero. The movement of the unity gain tap by one position
indicates a one -symbol delay in synchronization of the ideal reference.
In an actual situation, the other taps on the equalizer will be nonzero
and, with an unsynchronized reference, the adaptive algorithm will
cause tap coefficients to occur that are cyclically rotated from those
that would occur if the reference were synchronized.

To say this another way, if the training sequence is periodic with a
period equal in symbols to the number of taps of the equalizer, the
received signal is then also periodic (neglecting noise effects), and one
full period of the sequence is always stored in the equalizer. Each
symbol that is shifted out at the end of the delay line is replaced by
an identical new symbol at the input. This is more clearly shown in
Fig. 6 for a seven -tap equalizer with taps c1 through c7 and a seven -bit
sequence x1 through x7. At time to + 2T, it is seen that the stored
sequence has been cyclically shifted by two units as compared to the
time to. But it is also seen that the same output signal y(to ± 2T)
could have been obtained at time t = to if the taps were cyclically
shifted back by two positions. Thus, at any given time t = to, all out-
puts y(t = to kT) can be obtained with a suitable cyclic shift of the
components of the tap vector.

xt x2 x3 x4 x5 x6 x7

x(tc°ct

c2 c3 c4

1)1 11 fr-y(to)

x(to-c

x6 x7 xt x2 x3 x4 x5

(11)1 (11)1 (1:)1 (11) ICII? CI) y(t.+2T)

xt x2 x3 x4 x5 x6 x7

C5 C6 C7 Ct C2

Fig. 6-Basic idea of cyclic equalization.

y(t.+2T)
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This feature provides an elegant solution to the synchronization
problem. Any cyclic shift between the received sequence and the refer-
ence sequence will yield a compensating cyclic shift of the (same) tap
coefficients. It is, therefore, not necessary to achieve synchronization
prior to equalization, but it is of course necessary to properly shift the
tap coefficients after initial training to prepare the equalizer for random
data. This can easily be done by cycling them in such a way that the
largest coefficient is aligned with a reference position, e.g., the center
tap. Because of its particular features just described, we will call this
novel start-up scheme "cyclic equalization."42."

The possible structure of such an equalizer is outlined in Fig. 7.
An internal word generator produces an ideal reference sequence that
need not be synchronized with the received sequence. All taps are
initially preset to identical values (since the location of the "center
tap" is not known). The equalizer will then produce a set of taps with
the particular cyclic shift corresponding to the "synchronization
delay." After this initial training, the tap coefficients are cyclically
shifted for "alignment," as outlined above. At this point, the equalizer
has reasonably good tap coefficient settings and the peak distortion at
the output is less than unity; i.e., the eye is open and, in the absence

IN

0-110. T

+

O CLOCK WORD GEN.

SL

L. s

Fig. 7-Block diagram of an equalizer with cyclic start-up.
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of noise, errorless decisions can be made. Fast coarse adjustment of
the tap coefficients has been achieved without wasting time synchro-
nizing the ideal reference. Once the eye is open, decision -directed
equalization can be used with a somewhat longer training sequence
or random data to achieve the final fine adjustment of the tap
coefficients.

The fact that mean -square equalization with a training sequence
period equal to the length of the equalizer can give very fast and very
consistent, relative to the starting point of the adaptation, equalization
has been demonstrated in numerous simulations. One of these is il-
lustrated in Fig. 8. The same channel is used for this example as was
used previously ; the peak distortion is 2.62, the signal-to-noise ratio
is 30 dB, and the step size is 0.04. In this case, the equalizer has 15
taps and a 15 -bit maximum length training sequence is used because
of its nice spectral properties. Adjustments are made at the symbol

CYCLIC EQUALIZATION, 15 TAPS -15 BITS

INITIAL PEAK DISTORTION = 2.62
S/N = 30 dB, /3 = 0.04, S = 0.05

5 10 15

SYMBOLS

20 25 30

Fig. 8-Start-up behavior with cyclic equalization.
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rate. The shaded region in the figure contains all 15 possible con-
vergence curves that correspond to the different starting points for
adaptation. Not only are all the convergence curves very similar, but
they all achieve a peak distortion of about 0.4 or less in 15 symbols.

A few words are in order about the presetting of the tap coefficients.
Because an unsynchronized reference is used, the location of the
largest coefficient is a priori unknown. It is therefore reasonable to
preset all coefficients to identical initial values s, as we have already
mentioned above. With most channels, tap coefficients of both polari-
ties will evolve so that one might consider setting s = 0 for an unknown
channel. The large final value of the center tap would, however, suggest
that slightly biased initial conditions might give faster convergence;
we will make more precise statements about that in Section VII.

The discussed method of presetting has, of course, some consequences
if a channel with low distortion or even an ideal channel were used. In
such a situation, a conventional equalizer could do a better job because
it would be started with the optimum tap settings (Ck = Bak) right
away and need not make any corrections at all. The cyclic equalizer
would have to "converge" even with an ideal input signal ; simulations
of this case have shown a convergence plot similar to that of Fig. 8.

As a final example, we present the results of a Irsti system that is
operated over a channel with "parabolic -like" delay (exponent = 2.73)
and an s/n of 30 dB. The received and demodulated signal is sampled
with different timing phases spaced T/4 apart and equalized in a cyclic
equalizer with N = 15 taps. The distortion values resulting after
equalization during only one sequence (i.e., 15 symbols) are sum-
marized in Table I. For comparison, the initial channel distortion
Dc hannel and the minimum distortion Dmin that can be achieved with
an equalizer of this length are also included. It can be seen that initial
training using cyclic equalization achieves a performance that is
already close to optimum.

Some comments should be made about the simulation results we
have presented. They indicate that initial training with cyclic equaliza-
tion may only be necessary for a very short time ; in some cases, for
only one sequence period. This means that the received signal is not

Table I - Distortion for VSB channel and 15 -tap equalizer

Timing DChannel Dcya. Dmin

0 2.04 0.15 0.06
25% 1.87 0.52 0.21
50% 2.25 0.99 0.98
75% 2.88 0.25 0.12
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really periodic and that no spectral lines in the strict sense will occur at
equally spaced frequencies co as we specified earlier in this section.
The spectrum will be continuous, showing increasingly concentrated
peaks at those frequencies with larger numbers of sequence repetitions.
We have not found this to be a disadvantage ; in fact, under some cir-
cumstances, the tap settings achieved with only a small number of
iterations were, for the transmission of random data, preferable to the
steady-state solution.

We have shown by example that fast reliable initial convergences
can be achieved using an ideal reference signal without spending any
time to synchronize the reference. Final fine adjustment of the taps is
accomplished in a decision -directed mode using a longer sequence or
random data. In the next sections, we will analyze the behavior of the
cyclic equalizer during its initial training period. The convergence be-
havior with the mean -square algorithm with averaging, the choice of
the training sequence, and the effect of the initial value of the taps will
be considered. Then the exact behavior of the mean -square algorithm
without averaging will be analyzed and conditions for convergence
will be given.

IV. STEADY-STATE SOLUTION FOR THE TAPS

As was discussed in the previous section, the operation of the cyclic
equalizer does not depend upon the synchronization of the reference,
and we will not stress the rotation property of the taps unless necessary.

We assume a system with N equalizer taps and let the samples of the
received signal be the components of the vector

lET = (7N, 7N-1, , 71) (16)

If we neglect the noise components, the tap -signal vector is periodic
and successive vectors are cyclic shifts of each other (-yN+. = 7m). We
define a signal matrix

7N 7N-1 7N-2 . 71

71 7N 7N-1 . . 72
8 = 72 71 7N 73

. .

(17)

,7N-1 7N-2 7N-3 ' 7N

whose rows consist of all N succeeding sample vectors. The elements of
S are given by

Sik = 7 (i-k)Mod N (18)

At the equalizer output, a sequence of values xTc (c is the tap -weight
vector) appears as the input vector x is cyclically shifted through its

CYCLIC EQUALIZATION 383



N states. The resulting output sequence is

y = Sc. (19)

Obviously, it is possible to obtain from a given input sequence any
arbitrary desired output sequence by a suitable choice of c, provided
only that 8-' exists. If we define a data vector t which contains the
reference values associated with y, it is possible to select c so that

y = = Sc, (20)

i.e., the recovered sequence can be perfectly equalized (at least, at the
sample points) and there is no residual error. This is even true with
nonlinear distortion. Since the error can be reduced to zero, we con-
clude that the same tap vector

co = S-'t (21)

is obtained with any equalizer in the steady state, regardless of the
particular tap -updating algorithm (as long as it is unbiased).

We now proceed to determine the eigenvalues of the circulant matrix
S. Let us first define a set of values r so that

27k
rN = 1 rk = exp -N )

In the next step we form

X = 7N + r7N-1 r27N-2 + + rN-171

rX = yl + r7N r27N-1 +  + r'172

7.N -1A = 'YN-1 7.7N-2 r2YN-3 +  + rev -17N.

This may be written in matrix form as

rkXk = Srk,

where we have defined the vector
1 . 2T

rk = { rk} ; with rk = exp (.7 nk)

The rk's are obviously eigenvectors of S. The eigenvalues Ak are

Ak = xTrk, 0 k N - 1,

(22)

(23)

(24)

(25)

and are given by the discrete Fourier transform (DFT) of the input
vector x. The signal matrix S can be diagonalized if we introduce a
matrix W with

1 / 27 .

{W =
exp

.

KT
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whose columns are made up from the vectors rk. W is also symmetric
and unitary ; the properties

W = WT, = Wt, WtW = I (27)

are easily established. We may now alternatively either express the
eigenvalues as components of the diagonal matrix D

D = WtSW (28)

or as components of a vector

= Wx, (29)

since multiplication with W transforms a vector into its DFT.
We now give an interpretation in the frequency domain. The received

(periodic) sequence can be expanded into a Fourier series

1
x(t) = x. exp (,7

Tv-2 -77 m t
(30)

where the coefficients x,,, correspond to the spectral lines and the range
of m is determined by the bandwidth. The components yi in x are
given by x(t = r iT); this may be combined with (25), and we
obtain for the eigenvalues the frequency domain representation

. irr k
Xk = Xk4-1N eXP [3

a
r (31)

In the case where all spectral lines are contained within twice the
Nyquist frequency and T = 0, we have

Xo = X -N XO XN

X1 = X1 + X1 -N
X2 = X2 ± X2 -N

XN-2 = XN-2 + X-2
XN-1 = XN-1 + X-1

(32)

As this represents 100 -percent excess bandwidth, we may assume that
most practical systems are within this range. If spectral lines are only
within the Nyquist limit, (32) is simplified to

Xk = Xk if
I

I 2

Xk = XN-k if I k I

(33)
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We can now give some comments as to the nature of the resulting
tap vector co. By combining (21) and (28), co may be expressed as

co = (34)

Here the term Wt is the LIFT of the ideal samples and establishes a set
of reference values at equally spaced points in the frequency domain
(discrete Nyquist equivalence). The multiplication with D-' determines
the gain of an ideal correction function at these points. The resulting
tap -vector co is the inverse LIFT of this correction function. The overall
transfer characteristic (channel and equalizer) is discrete Nyquist
equivalent when co = S -'t, i.e., frequency -domain equalization is
precise at a set of equidistant points [spacing (27/NT)]. This tap
vector is, in the general case, not optimum for random data trans-
mission after the training period. Basically, equalization is a mathe-
matical approximation problem. The equalizer approximates the com-
pensation function with a trigonometric polynomial. With a cyclic
equalizer, the coefficients are selected to match the desired function
at equidistant points. This will generally not give minimum mean -
square error at the output, since only discrete frequency information is
used and the channel behavior between the sample points is not taken
into account. In a recent paper, Chang and He briefly discussed this
problem from a somewhat different point of view and concluded that
the initial approximation co is generally close to the optimum settings
for random data. We will not further discuss the approximation prob-
lem in this paper.

V. MEAN -SQUARE ALGORITHM WITH AVERAGING

In this section, we are looking at a tap -control system that minimizes
the mean -square error between the equalizer output y (nT) and refer-
ence symbols En. We use a steepest descent gradient algorithm of the
form

c.+1 = Cm - "3 (Ac, - v), (35)

where A is the signal -correlation matrix and v is the signal -correlation
vector. The gradient

gm = E{xi(yi - ti)} I c..c, (36)

is evaluated in the usual way by time averaging.

First we note that, in the noiseless case, because of the cyclic nature
of x, both A and v can be determined by time -averaging over one full
sequence length of N symbols. Further, A and v are constant and well-
defined throughout the process. It is easily verified that A can be
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expressed in terms of the normal signal matrix S,

1 1
-NA = -N SSt = StS,

and that v is equivalent to

v=-1 Stk.

(37)

(38)

The gradient is zero, and updating stops when

c = co = = S-It. (39)

If we introduce the tap error vector B, = Cm - co, (35) takes the form

5oi+1 = (I - 13A)mal. (40)

The choice of i3 and the convergence depend on the eigenvalues of A.
To guarantee that 6,+1 -3 0 for large ni, we require 0 < 13 < 2/mmax,
where are the eigenvalues of A. Since

and therefore

S = WDWt (41)

A=-SSt=-1 WD DtWt, (42)

the eigenvectors of A and S are common (and independent of x). The
eigenvalues 12k of A are related to the eigenvalues Xk of S by

1
= N AkAk (43)

Another interpretation is obtained by realizing that the matrix A is
circulant (like S) and symmetric with elements

1 1+N -1
{A } 1k = a i-k = = an = - E n

By analogy to (25), the eigenvalues are

= a Trk ; 0 k N - 1,

(44)

(45)

where a contains the components a. We see that the eigenvalues are
given by the DFT of the cyclic autocorrelation values, an.

We now express these eigenvalues by the spectral lines in the fre-
quency domain. If we combine (31) and (43), we obtain

1 9
= L Xki-mNek-HiN exp [ j -T(in -

m n
(46)
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or, in an equivalent form,

T

ilk = ro- L, 1_, Ak-mNX(n+m)N-k exp (j2irn -T )
iii m n

(47)

If the bandwidth is Nyquist-limited, only one single term in (47) con-
tributes to the eigenvalues, namely,

..e.. N
Ilk = AN-. = Kr Z.lxkl2, k - ' (48)- 2

The eigenvalues are then independent of timing and carrier parameters
and phase distortion of the channel. Only the signaling format, the
channel attenuation, and the choice of the sequence t determine the
eigenvalues. (Note that we have so far not restricted the choice of t
to a particular class of sequences, such as maximum length sequences.)

In the case of excess bandwidth which is, however, limited to twice
the Nyquist frequency (all reasonable pulse -amplitude modulation
systems fall in this category), a few more terms in (47) need be con-
sidered, and

ilk = ixki2 ± ixN-ki2
. 2rr

+ XkXN-k exp (j 2T)
+ xteN_k exp (-j --7-, ) , (49)

which shows the influence of the timing phase T. Note that only the
third and fourth terms depend on phase and timing parameters. This
term represents the fold -over around the Nyquist frequency.* The
smaller the roll -off, the less the eigenvalues will be affected by this
fold -over. In fact, it is even possible to have a small amount of excess
bandwidth without any contribution of these terms. This is shown in
Fig. 9. We distinguish two cases.

(i) N = odd. The Nyquist frequency is located midway between
two spectral lines of the training sequence. Fold -over is avoided
if we have a normalized roll -off a :5- 1/N.

(ii) N = even. The Nyquist frequency coincides with a spectral
line of the training sequence. If we choose a S 1/N, the
eigenvalues will still be phase -invariant, but one of them (for
k = N /2) will now be dependent on the timing phase t..

Most voice -grade telephone channels have very large phase distor-
tion, but only moderate amplitude distortion. Usually, the worst -case
gain deviations over a given frequency range are known (e.g., on

' Some crossterms in (49) are zero if the bandwidth is less than twice the Nyquist
frequency.

388 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1975



N=ODD:

N = EVEN:

27r

1

- NT 2
amax.=-N--

Fig. 9-Spectrum of training sequence.
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private channels). If we deal with small excess bandwidth and we
know our sequence t, it is obviously possible to calculate the spread of
the eigenvalues from (46) or (49). We may then choose the value of 13
in (35) so that

0< <
2

Amax
(50)

to insure convergence. In addition, it may, of course, be necessary to
normalize the signal power X Tx with an automatic gain control to make
the eigenvalues dependent only on the relative gain difference between
the various frequencies, but independent of the average absolute gain.

VI. CHOICE OF THE TRAINING SEQUENCE

So far, we have not discussed the choice of the training sequence t.
From the previous study we know that the eigenvalues of S and A
are well-behaved as long as the DFT of x, or of the sampled autocorrela-
tion function, respectively, has no zero elements. This is obviously
sufficient to guarantee the existence of inverses of S and A and there-
fore also the existence of a solution co. Zero elements can be avoided
by selecting a signaling format and a sequence t to insure nonzero line
amplitudes at all frequencies f = n./NT within the transmission band-
width. If the channel does not have serious attenuation gaps, we have
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also nonzero amplitudes at the receiver input. To obtain fast con-
vergence, the eigenvalues should be as equal as possible (minimum
spread). This can obviously best be achieved by selecting a sequence
t which produces lines of equal amplitudes; predistortion for expected
attenuation at the band edges is possible. The transmitter is then
effectively sending a comb of equally spaced frequencies of approxi-
mately equal amplitudes that could obviously also be provided by a
number of frequency generators, but are, of course, much more effi-
ciently synthesized as spectral lines of a suitable sequence. Note that
the samples of the training sequence t need not necessarily be binary;
arbitrary numbers (and sequence lengths) can be stored in ROM's in
both transmitter and receiver. We will discuss a few special cases for
t, assuming small excess bandwidth ( <1/N) and an odd number of
taps and flat gain:

(i) Single pulse, tr = (0, , 0, 1, 0, , 0): This produces a fre-
quency comb of equal amplitudes. We have further

A = -1 I, Ak = const = 1/N, (3.0, = N. (51)

Convergence is obtained in a single iteration, independent of
the initial settings. See eq. (40).

(ii) Single pulse, t7' = (1, , 1, -1, 1, , 1) : This produces a
similar frequency comb, but with a much larger amplitude at
dc. The eigenvalues are shown to be

= (N - 2)2/N; Al = = AN -1 = 4/N. (52)

(iii) Maximum -length pseudorandom sequence : Such sequences
have lengths N = 2m - 1 (among others), and were used for
the simulations given earlier in Section II. The eigenvalues are

1 1
A°

N '
= - Al =  = AN -1 = 1 1- xf (53)

For a given symbol magnitude of the Cs and a given peak power, the
maximum -length sequence gives the largest spectral line energy and
seems thus to be a good choice, especially for noisy channels. Both in
(ii) and in (iii), A. is different from the other N - 1 identical eigen-
values; we will, however, show that 0 can be selected according to these
(N - 1) values and that At, does not affect the convergence if the
equalizer is properly preset.

VII. PRESETTING THE TAPS

Since the reference sequence is not synchronized with the received
signal, the resulting tap vector may have its main tap in any position,
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and it would obviously not make sense to preset in the traditional way
of having ei = Si.. Instead, we choose an initial tap vector su whose
coefficients have equal values s. If we assume N = 2M + 1 taps, the
initial equalizer transfer function is given by

sin (NwT/2)H(w) = s E e-jconT s
n = -M sin (072) '

which is a comb filter with period 1/T and attenuation poles at
f = k/NT, i.e., precisely at the frequencies where the spectral lines
of the training sequence are located. Only de information is thus
transmitted to the output prior to the first iteration. This is also obvious
from the fact that the output y = sxTu does not depend on the cyclic
shift of x, since it is the sum of all N sequence samples. If an ideal
Nyquist pulse is applied to such a system, the initial distortion of the
output signal is very large, i.e.,

Dpeak = DMSE = N - 1. (55)

This is independent of s. If, however, we look at the average mean -
square error of the training sequence, we have with the initial setting

ei2

1N

= E (sxtu -

= s2 ocT - 2 kr (xTu)(tTu) (tT).

(54)

(56)

This can be differentiated with respect to s, and we find that the initial
mean -square error is minimized if we choose

1 kru
sopt = 17\--T -T (57)

The quotient associated with 1/N represents the dc gain of the channel
and is usually close to unity. Since the de gain of the equalizer is equal
to the sum of the tap coefficients, (57) means that the initial settings
should be chosen to have the same sum as the final settings in co
(remember that co is the inverse DFT of the correction function).

Some further physical insight is obtained if the mean -square error
after m iterations is studied. This mean -square error may be expressed
as36

N-1
Em2 +1 -L qi,m+ly

i-=0
(58)

where the ith error component, qi,m÷i, is given by

qi,.+1 = - oxi)m. (59)
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The initial value of each component is proportional to its corresponding
eigenvalue and to the square of

Sir; = surri - cIri, (60)

where
0 if i 0

uTri - 1-0 if i = 0. (61)

The values of Sir; are then obtained as

Sfri = -cl:ri = { -DFT(co)} i 0 (62)

&fro = N-i(Ns - co u) if i = 0. (63)

Because of what we have said earlier, we see that these coefficients are
proportional to the values of the correction function at the line fre-
quencies, except in the case of i = 0, where 8Tro is only proportional to
the misadjustment at dc. If we select s according to (57), the error
component associated with X0 becomes zero. The constant # is then
selected in accordance with the remaining eigenvalues to provide fast
convergence.

A few comments are in order for the case of 14 = 0. This will occur
whenever the sequence is dc -free. An example of this property is a
maximum -length sequence that is complemented by one additional
bit to provide an equal number of ones and zeros (N would then be
even). From (59) we see that the error term associated with A. is zero;
since there is no spectral line at dc, the gain at w = 0 is obviously im-
material as long as we transmit the training sequence, and convergence
and mean -square error are independent of the choice of s. To see how
this affects the solution co, we write the relation Aco = v in the form

DDtWtco = NWtv. (64)

Assume k eigenvalues in the diagonal matrix DDt are zero.* Therefore,
we have only N - k linear independent equations for the N com-
ponents of co. The set of solutions for co can be expressed with k inde-
pendent linear parameters. In the most important case where only
110 = 0, this ambiguity can be avoided easily by constraining the sum
of the tap values. This sum remains constant throughout the equaliza-
tion process. We can best show that if we look at the sum of the
gradient components,

E ex(xrc - to,
i

' This can happen if the test sequence has zero power at some frequencies
fk = k/NT within the transmission band.
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which is obviously zero since uTx i is zero by definition. We would thus
choose s in such a way as to match the desired dc gain (which is no
longer immaterial if we transmit random data after the initial training
period). This is still in accordance with (57) if the quotient of the
right-hand side is replaced by the quotient of the spectral densities
at dc when data are random.

VIII. INFLUENCE OF NOISE

So far, we have made the assumption that the received samples are
noiseless. We give here a coarse analysis of the effects of noise which
will show that its influence is, in fact, quite small and may often be
neglected. We assume that the taps are calculated from a single -input
signal vector which includes noise ; that is, the vector x in (16) now
consists of the received signal values plus noise samples. As the equalizer
cannot make any distinction between signal and noise components, a
tap vector,

cor = (S R) -1t, (65)

will evolve instead of co = S -1k, where R is a noise matrix defined in
accordance with (17). We then write the tap difference vector as

co - co, = S-iRcor (66)

if we combine (21) and (65). If a noiseless test sequence were trans-
mitted over the system, there would be some output error because the
vector cor is different from the optimum co. The resulting mean -square
error, averaged over the ensemble of cur's, would be

2 = E { (co - cor)tA (co - cor)}, (67)

and can be written as

2 = E IctRt (S-9 tA S'Rcorl (68)

If we make use of the relation (37), this can be simplified to

E - N OT Or

12 - ct RtRc 1 (69)

Assuming that succeeding noise samples are uncorrelated and that
jcor12 R.-1 1, we finally obtain for the mean -square error

E2

where o2 is the noise power. We conclude that for reasonable s/n's
there will be only a small bias introduced because of the superimposed
noise.
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IX. CYCLIC EQUALIZATION USING A MEAN -SQUARE ALGORITHM
WITHOUT AVERAGING

The previous discussion has given an analysis of the process of cyclic
equalization using the mean -square algorithm with averaging. Much
of the insight developed there regarding the final tap values, the type
of training sequence to use, etc., carries over to the equalization
process which uses the mean -square algorithm without averaging.
However, to be more precise we now will carry out an exact analysis
of this algorithm. Because it permits a more simple implementation,
it is the algorithm without averaging that will most likely be used in
practical situations.

Let the N -component tap -signal vector at time to + kT be denoted
by xk. In the absence of noise, succeeding signal vectors will then be
related by

Xk+m = UmXk,

where U is an N X N cyclic shifting matrix of the form

'0 0
1 0

U= 0 1

0 0 i O

Note also that U is orthogonal and

Um = Um±ZN.

The equalizer output at time to + mT will be

O. + mT) = gx. = gUmx.,

0 1

0 0
0 0

(70)

(71)

(72)

(73)

where we have expressed the signal vector as a cyclic shift of one fixed
state at start-up. We will drop the index on x from now on.

Let dk be the reference value of the data signal at t = to + kT. The
mean -square error at to + mT is

en, = El(gUnix - dm)21, (74)

where m indicates any of the equally probable cyclic shifts of x and d.
The expected value in (74) can be obtained by time averaging over
i + 1 .. k -. i + N because of the cyclic nature of the signals under
consideration. The gradient with respect to the tap weights is given by

ae
= 2E { en, Umx}.

ac
(75)

In this section we make adjustments of c at each symbol interval and
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use a non averaged approximation of (75) (the product of error and
tap signals of the previous baud interval) for updating. Thus, our
strategy becomes*

cm4.1 = Cm - flU'nx(c7,',Unix - dm)
= Um (/ - fixx T) Unzxd,n. (76)

For convenience, we define a data vector t which contains the reference
values dm. We further define an N -dimensional vector,

r = {ri}, r2 = Sik, (77)

containing zeros in all positions except in one reference (kth) position
("center tap"). We observe that

dm = rTUmk, (78)

and we can write (76) in the form

c,÷1 = UmZU-7nc. + Un'EU-mr, (79)

where we have introduced for convenience

Z = I - OxxT
E = xtT.

(80)

(81)

By solving the time -varying difference equation (79), the tap vector
after in adjustments can be expressed as

m

cm+1 = {Qmci + 0 : QkEUk-mr}
k =0

The new matrix Q in (82) is defined as

Q = ZU-1 = (I oxxr)

(82)

(83)

and will play an important role in further analysis. We can also easily
verify the synchronization -invariant properties of (82). In fact, if we
replace x by Utx (introducing some arbitrary delay), we obtain

m-i
c,+i = Um-Fi {(27nU-ici + # E QkEUk-inr}

k =0
(84)

but since we choose the initial c1 with equal bias values for all coeffi-
cients, U-ic1 = c1, and (84) and (82) are identical except for an
i-position cyclic shift of the resulting tap vector.

We are assuming )3 is constant ; in practice, it might be desirable to make 13
dependent on in.
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X. SOLVING THE DIFFERENCE EQUATION

Before we discuss (82) in more detail, we define

Hm = r3 E QkEuk (85)
k=0

because sums of this type will be frequently needed in the subsequent
analysis. Examples are

Ho = 0
HI = #E7

N-1
HN = 13 E QkEUk.

k=0

Further, it is rather straightforward to show that

Hi4.; = Hi + Qi1IjUi = Hi QiHiUi,

and, as a special case,

111N+. = HOT QiNI n =Hn+ QnHolUn.

(86)

(87)

Hof may be expressed in a more convenient form if we introduce a new
summation index, iN j,

1-1 N-1
H = E QiN E QiEUi.

1=0

The first series can be summed, and we obtain

= (I Qin (I QN)-1HN,

(88)

(89)

where we have made the implicit assumption that I - QN is non-
singular (we will say more about that in a moment).

We are now ready to study (82), which may be written as

c.4.1 = Um{Qinci H.U.--mrj. (90)

By setting in = 1N n and combining the first expression in (87) with
(89), we obtain

c/N+n±i = Un{(21N+nci QiNHU-"r
+ (I - Qz9(1 QN)-iHNu-nr}. (91)

For any nonzero value of #, cm will not converge in the usual sense;
however, it will reach a steady-state condition that does not depend
upon the initial value of ci. In order that this can occur, we require

lim = 0,
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which means that we require the spectral radius p(Q) to be less than
unity (all eigenvalues inside the unit circle). This will also guarantee
the nonsingularity of I - QN and thus the existence of (89). The first
(transient) term in (91) will then converge to zero, which means that
the steady-state solution is independent of the initial tap settings.*
The second term will also converge to zero and the steady-state value
of c is

Coo,. = Un(/ - QN)-1HNU-nr. (93)

This solution is periodic in n; it is trivial to verify that, owing to the
cyclic nature of U,

cco,n+N = (94)

As an important special case we have, if n = 0,

= (I - (r)-11-1Nr (95)

After m = 1N iterations, the tap vector is

cor+i = QZNC1 (I - QZN) (I - QN)-1.1-1Nr. (96)

By combining (95) and (96), we can express the convergence with the
error vector ciN+1 - c.,

C1N+1 Coo = QiN(C1 Coo), (97)

as a function of the initial error vector. This is a particularly simple
form, which shows how the convergence is directly dependent on the
eigenvalues of Q. The error vector is reduced by a factor QN with each
cycle of iterations. The eigenvalues of Q are functions of Q and of the
signal format and channel characteristics. We will study this problem
in the next section.

XI. CONDITIONS FOR CONVERGENCE

The eigenvalues X and eigenvectors z of Q are determined by

Qz = U -1(I - OxxT)z = Xz. (98)

We can calculate (Xz)t(Xz) and obtain

I X I 2ztz = ztz - 2r. ztxx.z. Tzt (xxt)2z. (99)

Assuming normalization of the eigen, . tors, we then require for
stability that

I Xi' = 1 - 2,31ex ;- (xtx) ztxI2 < 1. (100)

* If only a small number of iterations are used for training, c, should be chosen
carefully, since c will then he a function of the trap -'Lit term as well.
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If we now assume that ztx X 0, we get the simple condition

0 < f3 x2Tx
(101)

to ensure convergence of the tap coefficients. Note that the bound
(101) depends only on the received signal power, which can be nor-
malized with an automatic gain control.

A completely different situation occurs if x is orthogonal to an
eigenvector z; ztx = 0. It is easy to see from (100) that this would
imply I A I = 1, regardless of This case must be avoided and needs
some special attention.

We first conclude that ztx = 0 implies that z is an eigenvector of
both Q and U; this is evident from (98). The next step is then to de-
termine the eigenvectors y and eigenvalues µ of the cyclic shifting
matrix U. They are defined by the equation

Uy = (102)

We introduce a unitary matrix W with elements

2,
wik = -exp( -3 -sr- ik) , 0 k<N- 1 (103)

and observe that

Wt UW) ik = Oik exp (-j2fvi) (104)

is diagonal. The eigenvalues of U are thus given by

/hi == exp j 2Nri = 0, 1, , N - 1 (105)

and the corresponding eigenvectors are

yr = (w10, Wil7 tVi27 7 Wi,N-1)

We now define a vector h with values yrx,

y1,1 '
h=

YTN -12C,

(106)

= Wx. (107)

The components of h are thus simply the components of the discrete
Fourier transform of x, and we can finally write our requirement
ztx X 0 in the form

phi = Nkt- 01 Xk exp -j ik)\ X 0 for i = 0, , N - 1. (108)
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This is not a serious restriction, since most channels will produce an
x whose DFT will have only nonzero components. Difficulties can arise,
however, with frequency gaps of severe attenuation within the pass -
band range, but this is a condition that needs special attention with
any equalizer. Partial -response signaling does not satisfy (108), and
we conclude that it cannot be used for cyclic equalization without
changes in the equalizer structure or tap -updating algorithm.

Before we leave the stability discussion, we would like to point out
another aspect of our problem. By setting n = 1 and 1N --> oo in (89),
we obtain

11,0 - Q1 -1,U = 13E,

or, after postmultiplying with U-1,

- H U-1 = -EU-i. (109)

Matrix equations of the above type play an important role in stability
and control theory (Lyapunov), and it is known that a unique solution
of (109) exists only if Q and U-' have no common eigenvalues. This
would obviously also lead to our conditions (101) and (108).

XII. ASYMPTOTIC BEHAVIOR

The coefficient vector that minimizes the mean -square error of the
received sequence is given by

c. = A -'v, (110)

where A and v are the signal -correlation matrix and the cross -correla-
tion vector between this sequence and the reference. Our current
strategy does not use the gradient (75) in a steepest descent algorithm;
nor do we assume that # decreases as the iterations proceed. Thus, it
is to be expected that we obtain settings that are biased with respect
to (110). We first write (95) in the form

(I - (2N)c. = I Nr (111)

From (70) and (83) we can express QN as

QN = (I - 13xNxD (I - Ox24') (I - OxixT)
= I - E xixT + 132 E xixrxkxr -  (-1)Nexiv  xr. (112)

i>k

If the signal matrix,

A = E{xixt}

is introduced, we have

=
1-

XaCT,
1YAr i =1

(113)

I - QN = 13NA I - A-1 xixtxkxr + . (114)

CYCLIC EQUALIZATION 399



We can expand the right-hand side of (111) in a similar way,

N N
H Nr = E fJ (I - MEAT)} xidi

i=1
N-1 N

= 13Nv - )32 E E xixrxidi ± , (115)
i=1

where the signal correlation vector v is defined as

Nv = E {xidd = tEI xidi. (116)

(113) to (116) and writing out only the first -order terms
in /3/N yield

= {I
N

A-1 E xixixkxr - co
i>k

--13kr A-1 E xixrxkdk - - . (117)
i>k

The neglected terms in (117) are multiplied with higher powers of #.
It is, therefore, always possible to choose # small enough to make the
linear term dominant. We can conclude that the resulting asymptotic
tap vector differs from the MMSE solution Copt by a bias which, for
sufficiently small /3, is directly proportional to /3 and may be made
arbitrarily small. Very fast initial convergence can be obtained by
choosing /3 large ; then may be made smaller for the remaining itera-
tions to reduce the bias error (gear shifting).* This will also reduce the
periodic fluctuation of the tap coefficients in the final steady state.

On the other hand, one should always keep in mind that the cyclic
process is used only during the training time and that random data
are used later on for adaptation. The tap vector that yields MMSE for
the training sequence generally does not minimize the mean -square
distortion for random data. However, the work of Chang and Ho°
indicates that (for small /3) the results may not be significantly in
error. It would be expected that, in the normal data set application,
cyclic equalization would be used for enough cycles to achieve a good
open eye ; then a longer training sequence would be used, decision -
directed, to determine the steady-state tap coefficients.

XIII. ACCELERATED PROCESSING

After these theoretical studies, we conclude our paper by discussing
some more practical aspects of the signal -processing organization.

" It seems possible that a continuous decrease of # during the iterations would
yield superior results; we have, however, not analyzed this case.
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More precisely, we present a somewhat modified implementation
technique of cyclic equalization that will allow a further reduction in
the initial training time. For this, we assume that the received sequence
is not substantially corrupted by noise. In a highly dispersive channel
with a relatively high s/n, this is a realistic assumption since inter -

symbol interference is completely dominant and noise is of minor in-
fluence at the beginning of equalization. Once the initial transients
have settled, the receiver will thus see a train of continuously repeated
identical sequences. No information is lost if one sequence length is
stored in the receiver for further processing and the input is switched
off. Such a system is depicted in Fig. 10.
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Fig. 10-Block diagram of cyclic equalizer equipped for accelerated processing.
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For clarity, only three taps are shown. The samples of the data se-
quence are entered into the delay line (shift register in the case of a
digital equalizer) of the transversal filter while switches S are in posi-
tion A. As soon as one full sequence is stored, i.e., when samples have
reached the end of the delay line, switches S are moved to position B.
Thus, a shift -register ring circuit is formed and the stored samples can
be shifted cyclically by applying appropriate clock pulses. The stored
reference sequence is shifted at the same speed. It is important to
realize that this speed need not be related to the actual data rate. The
stored signal vector and the reference sequence can be shifted at a
much higher rate, thus simulating a "speeded -up" data flow. Initial
training can be achieved in a time interval limited only by the speed
capabilities of the signal -processing hardware. After going through a
specified number of sequences, training is considered sufficient and the
computed tap coefficients are cyclically shifted for alignment. All
switches are then set to position A, received data are shifted down the
transversal filter at the actual data rate, and further adaptive equaliza-
tion is performed on a decision -directed basis. The described training
method combines cyclic rotation of the signal vector, the reference
vector, and the coefficient vector to simultaneously achieve equaliza-
tion and synchronization in "speeded -up" time, i.e., virtually instantly.

The above method is particularly simple when used with a stochastic
adjustment algorithm. However, accelerated processing is also at-
tractive with the mean -square gradient -type algorithm. Since the
gradient is determined by averaging over N symbols, an additional
array is necessary to store the accumulated correlation products of
error and tap signals. The speeded -up data flow is again achieved by
cyclically shifting either the signal vector or the coefficient vector at
the highest possible rate consistent with the required signal -processing
operations, only now the coefficient vector remains unchanged until,
after one full cycle, the correlator array contains the (suitably scaled)
tap corrections. The coefficients are now updated and the process is
repeated, if necessary. After a couple of iterations the coefficients are
rotated to align the largest of them with the reference position and the
equalizer is switched to real-time processing and decision -directed
operation.

Even without accelerated processing, the initial training time using
cyclic equalization is so short that the delay needed for the signal to
initially "fill up" the transversal filter becomes significant. With the
described method of accelerated processing, the training time can be
reduced to an arbitrary short interval limited only by the speed capa-
lailities of the circuit elements. The "fill -up" time becomes completely
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dominant. In the extreme, cyclic training can be achieved within a
single symbol interval (after the equalizer is filled up).

XIV. CONCLUSION AND SUMMARY

Cyclic equalization, as presented in this paper, is a new method for
initial equalizer training. Its main features are :

(i) A special training sequence where the number of symbols
equals the number of equalizer taps.

(ii) Very fast start-up with provision for futher speeded -up opera-
tion, reducing training time theoretically to less than one
symbol interval.

(iii) Ideal reference operation with no synchronization required.
The processes of equalization and synchronization are com-
bined in a unique way.

(iv) Perfect equalization at a set of equally spaced points in the
frequency domain.

(v) Simple and economical implementation.

Cyclic equalization provides a set of tap coefficients that need to be
cyclically rotated after initial training. At this time, a coarse equaliza-
tion is achieved, the eye pattern is open, and the equalizer can switch
to a decision -directed mode to achieve final tap settings using random
data.

We have shown that the periodic training sequence can always be
exactly equalized, so that all unbiased tap -updating algorithms will
converge to the same tap settings, namely the inverse DFT of the
sampled channel correction function. The mean -square gradient algo-
rithm was analyzed in detail. The channel correlation matrix eigen-
values that influence the convergence are directly related to the lines
of the power spectrum of the received sequence. The problem of initial
coefficient presetting was discussed, and we made some comments con-
cerning the choice of the training sequence and the influence of noise.

The cyclic equalization process using the mean -square algorithm
without averaging was considered, and the difference equation that
describes the coefficient convergence was solved. It was proved that
the algorithm converges provided that the discrete Fourier transform
of the received signal vector has no zero elements, and that the step
size is within certain limits related to the number of taps and the
received signal power. Finally, it was shown that the tap coefficients
for the algorithm without averaging equal those for the algorithm with
averaging except for an error term which goes to zero as the step size
approaches zero.
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The paper has been concluded by presenting a signal processing
technique that achieves "accelerated convergence." This allows co-
efficient calculation in a time interval limited only by the speed
capabilities of the equalizer circuitry.
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Group theory impinges on the combinatorial study of connecting net-
works in a natural way: the stages, frames, and cross -connect fields from
which many existing networks are built provide simple permutations out
of which desired, complex assignments are built by composition. Some
of the consequences of this interpretation are explored in this paper. In
the group -theoretic setting, the action and role of the stages and fields be-
come transparent, and many questions and results regarding networks
can be regarded as problems about cosets, subgroups, factorizations, etc.
This approach is particularly useful for the study of rearrangeable net-
works made of stages of square switches; such a network is rearrangeable
if and only if the symmetric group of appropriate degree can be factored
into products of certain subgroups associated with the network. Or again,
the original Slepian-Duguid rearrangeability theorem corresponds to
factoring a symmetric group into a product of double cosets of subgroups
generated by stages.

I. INTRODUCTION AND SUMMARY

Many connecting networks for telephone switching are constructed
of several stages of independently acting rectangular or square switches
with suitable cross -connect fields between the stages to allow for
"grosser" transitions. The permutations or maps of inlets into outlets
that can be realized by the network are obtained in a sequence of
steps each corresponding to passage through a stage or a cross -connect
field. To put it in mathematical terms, the stages and cross -connect
fields provide simple maps out of which desired ones can be built by
successive compositions. This fact allows one to use the concepts of
group theory to study questions about connecting networks. Such a
study was initiated in a previous paper,' in which we remarked that
it always seemed to be easier to obtain results about groups by the
few available methods known for networks than vice versa. We are
happy to report that this tendency has been in part reversed.2
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In Sections II and III we describe how the actions of a stage of
switching and that of a cross -connect field are to be interpreted in
terms of permutations. Section IV contains a definition of a general
notion of a "stage," and it is explained there how the cascading of
successive stages of switching separated by cross -connect fields corre-
sponds to composition or multiplication of permutations. In Section V,
we indicate how some concepts from group theory can be used to
describe the permutations achievable by successive stages of square
switches with fields between them. As a result, we can in Section VI
pose some questions about (permutation) groups that are relevant to
the practical matter of what calls can be carried in a network made of
stages of square switches.

Next, Section VII contains a study of how stages can give rise to
subgroups, culminating in the result that a stage S is made of square
switches iff S generates a group and S is complete in this sense : every
crosspoint of S is used in some permutation that S can generate. The
factoring of groups into products of complexes or subgroups is taken
up in Section VIII. This important phenomenon first arose in a
group -theoretic interpretation' of the rearrangeability theorem of
Slepian and Duguid, and has since appeared in other studies2 of this
basic network property. Some half -dozen theorems on factoring a
group into a product of complexes or subgroups are given. The special
case of factoring by double cosets, exemplified by the Slepian-Duguid
results, is considered in Section IX, and it is shown that only the
standard "frame" cross -connect field used in that result will give a
rearrangeable network when identical square switches are used in a
stage.

II. STAGES AND CROSS -CONNECT FIELDS

Two examples of connecting networks are shown in Figs. 1 and 2.
They illustrate how networks can be built of stages of (usually square)
switches joined by a link pattern or cross -connect field.* These fields are
responsible for the distributive characteristics of the network. They
afford an inlet many ways of reaching other switches and so many
outlets. The examples have the property that the number of inlets,
the number of links in a cross -connect field, and the number of outlets
are all the same number. We shall restrict our attention to networks
with this property, built by alternating stages with link patterns.

* The word "field" in this usage is borrowed from the domain of switching engineer-
ing, and has no algebraic significance. Such a field is, of course, usually tantamount to
a permutation.
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Fig. 1-Network showing stages, frames, and fields.

III. INTERPRETATION IN TERMS OF PERMUTATIONS

Suppose that the inlets and the outlets are both numbered in some
arbitrary way from 1 to N. Then it is clear that each link -pattern,
and each permitted way of closing N crosspoints in a stage, can be
viewed abstractly as a permutation on {1, , NI . Here, "permitted,"
of course, means that no inlet to a stage is connected to more than one
outlet, nor is any outlet connected to more than one inlet. Both the
examples have the property that any maximal state, i.e., one in which
no additional calls can be completed, has exactly N calls in progress;
such a state realizes a permutation that is a product of the permuta-
tions represented by the link -patterns and the switch settings in the
stages.

INLETS

CROSS- CONNECT'

- STAGE

Fig. 2-Three-stage network.
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IV. STAGES AND PRODUCTS

It will be convenient to adopt a generalized notion of a "stage" of
a switching network. This generalization is based on the view that a
stage is essentially a two-sided connecting network in which every
call passes through one crosspoint. By a stage of switching we shall
mean a connecting network constructed thus : with I the set of inlets
and SZ the set of outlets, we choose an arbitrary subset $ of I X I,
and we place a crosspoint between all and only those inlets u E I and
outlets v E SZ such that (u, v) E 8, and we speak of $ itself as the
stage. Logically, $ is a relation indicating between what inlets and
outlets there are crosspoints ; it thus specifies the structure of the
stage in the sense of Ref. 2. Thus,

Definition 1: A stage is a subset of I X a

This terminology is an extension of the usual one, according to which,
for example, a column of switches in Fig. 1 or 2 forms a stage, and the
network consists of four or three stages joined by three or two cross -
connect fields.

Definition 2: A substage 8' of a stage $ is a subset of 8.

In view of the discussion in Section III, we henceforth identify
/ = = 11, , N 1.

Definition 3: A stage $ is made of square switches if there is a partition
II of {1, , NI such that

8_ U (A X A).
A en

Evidently, 8 is made of square switches if it is an equivalence rela-
tion. It is easily seen why all the stages illustrated in Figs. 1 and 2 are
made of square switches as stated in Definition 1. Consider a stage
$ that has N inlets and N outlets. Evidently, such a stage provides
ways of connecting some of the inlets simultaneously to some of the
outlets. If the stage contains enough cross -points, it can be used to
connect every inlet to an outlet, with no inlet connected to more than
one outlet and vice versa; such a switch setting corresponds to a
permutation on 11, , N . This circumstance motivates the following
definition.

Definition 4: A stage 8 generates the permutation r on 11, , NI if
there is a setting of N crosspoints of S which connects i to it (i), i = 1,
N, that is, if [i, r(i)] E $ for i = 1, , N, or most simply if it C 8.

Definition 5 : P (8) is the set of permutations generated by 8.
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Notice that P (S) may be empty, and that for many r, 8 may
generate* various submaps of r without generating 7 itself.

Definition 6: A network with N inlets and N outlets generates a permuta-
tion r if there is a setting of the crosspoints of the network which connects,
by mutually disjoint paths, each inlet to a unique outlet such that i is
connected to 7r (i), i = 1, , N.

Multiplication of permutations is defined in the usual way by
composition. Thus, if ri and 7r2 are permutations, then 'Irori is the
permutation defined by

7271(i) = 72[71(i)] i = 1, , N.

If two stages Si and 82 are connected by a link pattern corresponding
to a permutation 7r, then together they generate the permutations
of the form

co2r E P (Si), i = 1 and 2.

V. CONNECTION WITH GROUP THEORY

We adopt some concepts and notations from group theory to simplify
the presentation. If G is a group, it is customary (although now a
little old-fashioned) to speak of a subset K c G as a complex. If
x E G, then xK denotes the set of products xy with y E K, and
Kx = {yx: y E K). Similarly, for complexes K1 and K2, the product
KiK2 is the set of products yz with y E K, and z E K2.

If a network consists of two stages Si and 82 joined by a cross -

connect field corresponding to a permutation 7r, then it generates
exactly the permutations in the complex

P(82)7/3(81).

Similarly, a network P of s stages Si, i = 1, , s, with a cross -connect
field 7i between Si and Si+1, i = 1, , s - 1, generates the complex

P(v) = P(88)78-i  P(S2)71P(81). (1)

This complex completely describes the maximal assignments realiz-
able by a network built of stages joined by link -patterns, all of N
inlets and N outlets. To ask what simultaneous calls the network can
carry is to ask what permutations of the full symmetric group SN on
{ 1, , N1 belong to the complex. This is a question of group theory
that can in some cases be answered by its methods.',2 It is now possible
to formulate a group -theory approach to the analysis and synthesis of

To use an obvious extension of the terminology of Definition 4.
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connecting networks made of stages, for the factors P i = 1, ,

b - 1 and P (S,) occurring in (1) are themselves complexes.

VI. QUESTIONS

With this interpretation of the combinatorial power of a network
in mind, we can immediately pose several problems of (permutation)
group theory that shed light on the practical question, What calls can
be carried in a network?

(i) What products of complexes are groups?
(ii) What groups can be generated by stages?

(iii) When can the whole symmetric group SN be factored into a
product of complexes corresponding to stages joined by cross -
connect fields? In other words, When does such a product
correspond to a rearrangeablel network?

(iv) What relationships and trade-offs exist between the stages and
cross -connect fields chosen to build a network and the assign-
ments it can realize?

Aspects of the first three questions will be taken up in the following
sections; the fourth is discussed in Ref. 2.

VII. GENERATION OF GROUPS BY STAGES

In studies of rearrangeability of networks, questions have arisen as
to (i) when the set P (8) of permutations generated by a stage forms
a group and (ii) what groups can be got in this way. Only a partial
answer has been given.' In cases of practical importance, such as those
in Figs. 1 and 2, the stages are made of square switches. Clearly, such
a stage is capable of effecting or generating only a special class of
permutations : for each switch there are numbers m and n with m < n
such that the switch can perform all (n -m ! permutations of
the numbers k in the range m k < n among themselves. Since no
inlet or outlet is on more than one switch, the permutations generated
by a stage form a subgroup of the symmetric group SN of all permuta-
tions on {1,  , N). This subgroup is isomorphic to the direct product
IIt Sni, where n, are the switch sizes; i.e., the subgroup has a property
which might be described intuitively by saying that there exist sets on
which the subgroup elements can "mix strongly," but which they keep
separate. Group theory has some terminology for this situation, and
we specialize it as follows.

A group G of permutations is called imprimitive3 iff the objects
acted on by the permutations of G can be partitioned into mutually
disjoint sets, called the sets of imprimitivity, such that every r E G
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either permutes the elements of a set among themselves, or else
carries that set onto another. That is, there is a partition II of the
set X acted upon such that r E G and A E II imply r (A) E II. We
shall specialize this terminology as follows :

Definition 7: G is called strictly imprimitive if it is imprimitive and the
sets of imprimitivity are carried onto themselves by elements of G, i.e., if
there is a partition H of X such that A E II implies 7(A) = A for all
r E G, so that r E G are nonmixing on II.

Remark 1: Let M be a complex, i.e., a set of permutations. Define a
stage 8 by

S= 1(i, j): r(i) = j for some 7 E Mj.

Then P(S) D M, and no smaller stage has this property.

Remark 2: If S is made of square switches, then P(8) is a strictly
imprimitive group. For (i, i) E 8 for all 1 < i < N, so that the
identity is in P (8). P (8) is closed under multiplication, so it is a group.
Its sets of imprimitivity are exactly the sets A of the partition II
such that 8= A En A X A.

Remark 3: If H is a strictly imprimitive group of permutations on
{1, , NJ with sets of imprimitivity forming the partition II, and
if 8 is the smallest stage with P(8) D H (Remark 1), then

8= U A X A,
A EII

so that $ is made of square switches.
Thus, stages of square switches generate strictly imprimitive groups,

and any such group can be generated by a stage made of square
switches; there is a correspondence between strictly imprimitive
groups and stages made of square switches. It has been shown pre-
viously' that the permutations generated by a stage include a sub-
group only if the stage contains a substage made of square switches.
This suggests that stages made of square switches arise naturally in
switching, not just because designers thought of them, but because the
mathematics demands it : to factor the symmetric group efficiently into
a product of complexes some of which are subgroups, you must use
subgroups that are generated by stages of square switches. We have
seen that if $ is made of square switches, then P (8) is a strictly im-
primitive group ; we now show that (i) among the stages we would
want to consider, those made of square switches are the only ones
that generate groups, and (ii) only strictly imprimitive groups can
be generated by stages.
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Theorem 1: If P(8) contains a group H, then H is strictly imprimitive,
and there is a substage acsDH=P((R) and is made of square
switches: di = U A En A X A, and the sets of imprimitivity of H are
just the A E

Proof: Define a relation di on {1, , NI by the condition that i(Rj
iff j = r(i) for some 7 E H. H must contain the identity, so iCRi
holds for all i E 11, , NJ. Let i, j, k be numbers in {1, , AT },

and cc, 1p permutations in H, such that j = cc (i) and k = ( j). Then
tho E H and k = (p(i), so that ieitj; thus a is transitive. Finally, if
j = (p (i) with (p C H, we have i = co -' (j) with co-' E H, since H is
a group, so (R is symmetric. Thus CR is an equivalence relation, and
it is made of square switches. Obviously, CR C S and H = POO, and
the result is proved.

To clarify the situation further, we introduce this property of stages :

Definition 7: S is complete if every crosspoint of S is used in generating
some 7 E P(8), i.e., if (i, j) C S imply gr E P(8) j =
The point of introducing this idea of completeness is two -fold : (i) it
gives rise to clean theorems, and (ii) it is a reasonable requirement to
impose on stages; for it means that every crosspoint can be used to
realize some maximal assignment in the stage.

Theorem 2: S is made of square switches if S is complete and P(8) is
a group.

Proof: If S is made of square switches, there is a partition II of
{1, , NJ such that S = UAEn A X A, and P(S) is clearly the
largest strictly imprimitive subgroup of permutations whose sets of
imprimitivity are just the A E II. From the form of S it follows that
(i, i) E S for 1 < i < N, so that the identity permutation I belongs
to P(S) and /(i) = i. Thus, S is complete. Conversely, let S be complete
and P(S) be a group. We show that S is an equivalence relation. P (8)
must contain the identity, so (i, i) E S for each 1 < i < N, and
is reflexive. Also, if (i, j) C S and (j, k) E 8, then by the com-
pleteness there are permutations cc, E P (8) such that j = (p (i)
and k = OM. Since P(8) is a group, 1,1,, C P(S) with #co(i) = k.
Hence, (i, k) E 8, and we have shown that S is transitive. Similarly,
if (i, j) c S there is a co E P (8) with j= yr, (i) whence i= E P (S),
so that (j, i) E 5, and S is symmetric. It is therefore an equivalence
relation, and so is made of square switches.

Remark 4: If S is reflexive and symmetric, then S is complete. For
given i and j, with (i, j) E 5, we consider the permutation 7 which
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interchanges i and j, leaving all else unchanged. Clearly, r E P(8)
because (j, C 8, and (k, k) E S for all 1 < k < N so that it C S.

Remark 5: The condition in Theorem 2 that S be complete can be
replaced by symmetry of S. For if P(8) is a group then I G P(8), so
S is reflexive. By Remark 4, S will then be complete.

Let G be a subgroup of SN.

Theorem 3: G = P(S) for some stage S if G is strictly imprimitive.

Proof: = is obvious by Remark 3. Let then G = P(S) for a stage S,
and define (R by

at = { (i, j): j = r(i) for some it C G}.

at is the smallest stage that will generate G. We note that 6i. is complete,
since (i, j)GiStj= 7(i) for some TEGCP ((R). Also a c 8,
because (i, j) 3-7 E P(8) j = r (i) , so that (i, j) C S.
Thus, P(CR) c P(8) = G, so P (at) is a group. By Theorem 2, ca is
made of square switches. Hence, by Remark 2, G[= P(at)] is strictly
imprimitive.

VIII. FACTORING OF GROUPS

It is known' that the Clos three -stage rearrangeable network (Fig. 3)
corresponds to a factorization

Snr = G co -114G , (2)

where G ti (Si)r and H (S r)n . (For read "is isomorphic to.")
There are similar factorizations of SN, where N has p > 2 prime
factors, into a product of 2p - 1 subgroups associated with a re-

C)

Sn r =(Sn)r IS d" sc (SO'

G SUBGROUP IMPRIMITIVE
CONJUGATE SUBGROUP G

TO H

=G99-, HTG

=Mr (HqG)

Fig. 3-How the three -stage network factors the group Snr.
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arrangeable two-sided network of 2p - 1 stages symmetrically placed
around a center stage. For this reason we shall look at conditions under
which a group can be factored into a product of the form

H1H2  111c,

where some or all H, may be subgroups.
For k = 2 and 111, H2 arbitrary complexes, this problem has been

studied by S. Stein' under the additional condition that each element
of H,H2 has a unique representation as a product in 1/11-12. Since, for
the study of rearrangeability, this kind of uniqueness is of no interest,
we shall not impose Stein's condition while we follow, initially, his
original lines of reasoning. For A, B subsets of a group G, we let as usual

AB = fxy: x E A, y E B1.

Theorem 4: Let G be a group, and A and B subsets of G. Then G = AB
iff for every x E G

A n xB-4 # 4).

Proof: If G = AB, then, given x E G, there exist a E A and b E B
with x = ab, so that a E xB-1. Conversely, if A n xB-1 is not empty,
there exist a E A and b E B such that a = xb-1, whence x = ab E AB.

If B is a subgroup, the necessary and sufficient condition that
AB = G is that A r) xB 0 ct. for each x E G; for then B = B-1. This
amounts to saying that A intersects every right coset of B, so by
Lagrange's theorem

IA1 > IGI- IBI

In fact, A can be got by choosing an element from each right coset of
B. This is the "best" you can do, given B and no further structure.
Of course, analogous results hold for left cosets if A is a group.

The factorization S,,,. = Gio-'1-1c0G corresponding to the three -stage
network prompts the question : If G and H are (sub) groups, when
is GHG a group? The answer is given in the following :

Theorem 5: Let G, H be groups. Then GHG and HGH are both groups if
they are identical: GHG = HGH.

Proof: If GHG is a group, then (GHG)2 = GHG, so that GHGHG
= GHG. But HGH c GHGHG, so HGH C GHG. Now interchange G
and H. Conversely, if GHG = HGH, then (GHG)2 = GHGHG
= GGHGG = GHG, so GHG is closed and is a group.
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The same form
result :

Theorem 6: Let G
HGH C GHG.

These results are
if H, G are (sub)

Theorem 7: Let
GHFG C FGH.

of argument actually proves this apparently stronger

be a group and H a complex. Then GHG is a group if

extensions to three factors of the familiar fact that
groups, then HG is a group iff GH C HG.

F, G, H be groups. Then FGH is a group ifs

Proof: If FGH is a group it is closed, so FGHFGH C FGH. But if
IEFr) H, then GHFG C (FGH)2, so that GHFG C FGH. Con-
versely, should GHFG be contained in FGH, it would follow that
FGHFGH was also a subset of FGH. Thus, FGH would be closed and
so a group.

A sufficient condition for Theorem 7 to hold is given in the next
result, which then allows extension of the sufficiency part of Theorem
6 to three factors.

Lemma 1: If G is a group, and F and H are complexes such that HFG
C GHF C FGH, then GHFG C FGH.

Proof: Left -multiplying the first inclusion by G gives at once that
GHFG C GGHF = GHF C FGH.

Theorem 8: Let F, G, and H be groups. If either GHF C FGH C HFG
or HFG C FGH C GHF, then FGH is a group.

Proof: Assume the first horn of the dilemma. Then by Lemma 1,

(FGH)2 = FGHFGH C HFG2H C FGH,

so FGH is closed. Similarly, for the other horn, interchange the roles
of GHF and HFG.

Along the same lines, one can give a sufficient condition for the
product GIG2.  G. of n groups to be a group :

Theorem 9: If G1, G2, , G are all subgroups of a given group, and if

II G,(=) = G

is the same set for every cyclic permutation 7 E Sn, then G1G2  Gn is
a group.
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Proof: Gl  G.01.  G. = (11(G2.  Gn_1anGI)G2  G.
= (G1G2-  G.)G2.  G.
= (G3G4-  G.G1G2)G2.  G.
= (G1G2.  G.)G3.  G.

= G1G2.  Gn.

Thus, 1-17=1 Gi is closed and so is a group.

It is apparent that the hypothesis of equality of all the sets obtained
by cyclically permuting the order of the multiplication could be
replaced by a continued inclusion as in Theorem 8.

IX. FACTORING BY DOUBLE COSETS: UNIQUENESS

If G and H are (respectively) the groups generated by a stage of
r n X n switches and a stage of n r X r switches, and (pi is the "can-
onical" frame cross -connect defined by

j + [i :11+ r((,7- 1) mod n), j = 1, , nr, (3)

then the Slepian-Duguid theorem affords factorizations

Snr = Gio-111(pG = HsoGv-iH

corresponding to Clos rearrangeable networks. It is a natural pertinent
question whether there are other cross -connect fields & that can be
used instead of co so as to have

Snr = GO -'HOG.

We shall show that any such can differ from (p only in having its
links mounted in different places on the switches. In particular, and
this is the important property, it must give rise (as cp does) to the
complete bipartite graph from n nodes to r nodes, when one lets
switches be vertices and links be edges in a "frame" corresponding to
GO -'H (Fig. 4).

First of all, we notice that the Slepian-Duguid theorem can be
viewed as a factorization into a product of double cosets:

S, = (G(p-IH)(H (pG) = (G(p-'11)(Gco-1H)-1.

So we are really asking this question: For what double cosets HOG is
it true that HOG times its inverse is the whole group Snr? Note that
such double cosets are of the form P(v) for a conventional frame v.
We make the following convenient definition.
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STAGE n x n

G

v)=G 0-1 H

1,
CROSS-CONNECT FIELD V'

-1

-1

r X r

H

Fig. 4-How a frame generates a double coset.

Definition 8: A permutation II, works for G and H if

(.111'G)-1(HOG) =

Remark 6: The order of occurrence of groups G and H in Definition 8
is of consequence. For it is readily seen from examples that if 1,1/ works
for G and H, it may not work for H and G. However, does work for
G and H iff works for H and G; for by Theorem 4, (1-10G)--1(H1&G)
= S, iff x E Snr implies

(HOG) -1 r) x(1 -111/G) -I 0,

i.e., iff x E S, implies G0-'11 (") xG;tr-1H cp. Thus, also, if G = H
(n = r), then works for H and H iff 1,1/-' does too.

The next concept formalizes what is meant by saying that two
cross -connect fields differ only in having their links mounted on
different terminals of the same switches.

Definition 9: Two permutations (cross -connects) Ili and t are equivalent
with respect to G and H if

= G.

This amounts to saying that the left t-coset of G is exactly the right
0-coset of H. Intuitively, two cross -connects are equivalent if, when
used between columns of switches corresponding to G and H, their
links differ only in respect to the terminals on the switches where they
attach but not in the switches themselves; thus, exactly the same
pairs of switches have links between them, and the cross -connects are
in a sense the same except for a renaming of terminals within switches.

What we shall show is that the special, canonical "frame" cross -
connect eq. (3) is essentially the only one that works for G and H, in
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the sense that any other that does is equivalent to it. Then it follows
that there is exactly one double coset HAG such that (1 -10G) -1(110G)
= Snr, namely H coG. Thus, there is a unique factorization by double
cosets of G and H associated with co and the complete bipartite graph.

In the next result, G and H are as before the strictly imprimitive
subgroups generated respectively by r n X n switches and n r X r
switches.

Theorem 11: ti works for G and H is equivalent to (p with respect to
G and H, where co is given by

j - 1 ± [(j - 1)In]-1- r((j -1) mod n), j = 1,  , nr.

Proof: If is equivalent to co with respect to G and H, then the cosets
HOG and 1-1coG are identical, and so are (1-11PG)-' and (11(pG)-'. Thus,

(HAG) -1(1/1,&G) = (1-1s0G)-1(1/coG),

and, thus, works for G and H. That much is fairly obvious. What is
interesting is the converse : to prove that we use network arguments.
Consider the network v obtained by placing 4. between a stage of
r n X n switches (giving G) and a stage of n r X r switches (giving H),
followed by tk-1 to another stage of r n X n switches. If IP is not equiva-
lent to co with respect to G and H, then there are switches (in adjacent
stages, left and middle, in fact) between which places no links, and
some between which & places two or more links. Let L be a left (or
inlet or first stage) switch and M a middle switch with no link between
them. There is, then, a right (or outlet or third stage) switch R with
one or more links to M. Since all outer switches are square and identical,
no assignment taking the inlets of L onto the outlets of R is realizable,
because, at most, n - 1 middle switches have links to both L and R.
Thus, the network v is not rearrangeable, and so some permutation in
S, is missing from (HOG)-i (HOG). Hence, II, does not work for G
and H.

Remark 7: The argument above shows that if there are permutations
1,1, and t such that (HOG)-'(HEG) = S,., then 4/ and t are both equiva-
lent tow with respect to G and H. Thus, there is a unique factorization
of S IIT into a product of double cosets of G and H.
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Concepts and calculations from group theory have led to a new way of
demonstrating rearrangeability of networks made of stages of square
switches and to new factorizations of symmetric groups of composite degree.

I. INTRODUCTION AND BACKGROUND

Telephone connecting networks usually consist of stages of switching
that alternate with fixed cross -connect fields ; in effect, these two kinds
of units are used to build up desired connection patterns out of sim-
pler permutations by composition (see Fig. 1). Since permutations
form a group under composition, the notions of group theory have
become relevant to the study of connecting networks. They are
particularly useful for looking at desired combinatorial properties
such as rearrangeability, which is the capacity to realize any permuta-
tion. This is true because, in the group -theoretic setting, the original
Slepian-Duguid rearrangeability theorem' provides the possibility of
factoring a symmetric group into a product of subgroups, or of double
cosets of subgroups generated by stages.

Here we extend a natural notion of "switch permutation" implicit
in Duguid's proof to general networks with nr inlets and as many
outlets. For such networks A and v, we establish a group -theoretic
condition on the sets D (A) and D(v) of switch permutations realized
by A and v, respectively, under which the larger network obtained by
cascading A and v alternately between three stages of r n X 72 switches
is rearrangeable. This result corresponds to factorization of the sym-
metric group of degree nr into a product of subgroups with the sets
P (12) and P( v) of permutations realized by 1.1 and v, respectively. The
condition given is verified in the examples in Section V by carrying
out group multiplications.

It is conceptually useful to regard a connecting network as a quad-
ruple v = (G, I, Sl, S), where G is a graph depicting structure and, in
particular, indicates between which terminals (nodes) there is a switch
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CROSS -CONNECT (13)(25)(46) -
2 x 2

Fig. 1-Switching network with incomplete access between stages.

(edge) ; I and 52 are respectively the set of inlets (terminals) and the
set of outlets, and S is the set of states deemed physically meaningful,
that is, the set of allowed ways of closing switches so as to connect I
to 52 by paths through G. We shall assume v to be two-sided : I fl S2 =
and I I I = 121 = nr, where n and r are integers 2. The set A of
assignments is the set of correspondences of subsets of I into 2, each
correspondence being interpreted as a particular way that terminals
could ask to be connected together in pairs. Of course, there may or
may not be a state in S realizing such a desired assignment. In any
case, there is a natural map y : S -+ A such that y (x) is the assignment
realized by state x; in effect, y (x) tells us who is talking to whom
when the network is in state x.

To put our questions into their natural group -theoretic setting, we
shall identify both I and SZ with the integers {1, 2, , nr } , and the
set of maximal assignments (everybody wanting to talk to somebody)
with S,, r, where

Sk = {k - permutations} = symmetric group of degree k.

The set P(v) of maximal assignments or permutations realized by v is
then expressible as

P(v) = y(S) fl S.
A connecting network is called rearrangeable iff for every assignment

a E A there is a state x e S such that x realizes a, i.e., y (x) = a. Thus,
the basic problem of the rearrangeability of v can be cast in the follow-
ing equivalent questions : When can every assignment be realized?
When is y (5) = A? Under our assumptions, these questions take the
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form : When can the symmetric group on {1, , nr be realized?
When is P (v) = S,?

The latter, group -theoretic form of the question begins to assume
interest and importance when we note that many of the usual ways
of constructing networks from stages of square switches correspond to
factoring 8,4 into factors that are subgroups. How this happens is
explained next.

II. FACTORING S.
If X and Y are sets of group elements (complexes, in the old

terminology) then X Y is the set of products xy with x E X and y E Y.
We drop the notation I for the set of inlets, and use it henceforth for
the identity permutation. Also, it is convenient to use exponent
notation both for products of complexes with themselves, as X2 for
XX, and for the direct product of a group with itself some number of
times. Thus, we establish the convention that if X is a complex, X2
is XX as defined above; but if X is a group, then Xk means the k -fold
direct product of X with itself.

It is readily seen, and has been pointed out before,2 that a stage
of square switches realizes an imprimitive subgroup of permutations.
For example, the column of r n X n switches shown in the top half
of Fig. 2 realizes the (imprimitive) subgroup that permutes the first

among themselves, the second n among themselves, etc., up
to the last n among each other. This subgroup is isomorphic to the
direct product of 844 with itself r times, that is to (Sn)r, and will be
denoted by the same notation. In short, if v is a stage of r n X n
switches, then P(v) = (8n)r.

n x n

:

EXAMPLE: n = 3, r=2

1

2

3

1

2

3

2

1

2 r, (123)
3

1

2 (12)

3

(123)
c (S312

(12)

Fig. 2-Direct product group interpretation of a stage of square switches.
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111mAmill

__,___/ \-r-j.../

CI CI ()
Snr=(Snr (S r)n 9 or(s

\-1--/ \ T
/ \ -1____J

G SUBGROUP IMPRIMITIVE
CONJUGATE SUBGROUP G

TO H

=G 9,-1 HT G

=0-19G1-1 (1-19,G)

Fig. 3-Manner in which the three -stage network factors group S." with H= (8).

Passing now to the three -stage network depicted in Fig. 3, we recall
that by the classical result' of Slepian and Duguid, it is a rearrangeable
network. We denote by go the permutation corresponding to the
standard cross -connect field between stages that defines a frame,
namely,

go: j -4 1 + [U - 1)/n] + r((j - 1) mod n) j = 1,  ,nr,
and we see that in Fig. 3 the middle and right stages have co between
them. (An alternative description of go is that it takes the jth outlet
on switch i into the ith outlet of switch j, for j = 1, , n and
i = 1, , r.) The original rearrangeability theorem can now be
stated as a factorization, as follows (Fig. 3) :

Classical Theorem (Slepian and Duguid): The symmetric three -stage
network of square switches, in which switches on adjacent stages are
connected by exactly one link, is rearrangeable and corresponds to a
factorization

S, = (Sn)rio-i(Sr)Np(Sn)r. (1)

The three middle factors above define a conjugate subgroup, so we
have factored Sr into a product of three subgroups. The remaining
sections of this paper are devoted to finding alternative factorizations
of S that are associated with rearrangeable networks. We prove a
factorization like (1) but with 9 replaced by P (v) for suitable v, and
then describe some applications.

III. SWITCH PERMUTATIONS

Now the essence of Duguid's proof of Slepian's result from Hall's
theorem is contained in what we shall call a switch -permutation: he

424 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1975



decomposes any nr-permutation into a union of n submaps, each of
which, because it corresponds basically to permuting outer switches,
can be realized on a single middle switch. This idea is made precise as
follows : define the function

sw: {1, nr} {1, , r}

by

swi = the switch (inlet or outlet) i is on in a stage of r n X n switches
= the k (1 < k < r) such that nk -n + 1 i < nk.

Let r be a permutation of Sn,.. A Hall decomposition of r is a partition

7 = Ur=1 pi of r into n submaps p / such that for l = 1, , n, the set

qi = (swi, swi) : (i, j) E Pt}

is an r -permutation, i.e., qi E Sr. The intuitive meaning of this
property of the pi is that each one maps exactly one inlet from each
consecutive set of n onto outlets that are on distinct consecutive sets
of n outlets. Hall's theorem on distinct representatives of subsets
implies :

Fact: Every r E Snr has a Hall decomposition.

We can now define the switch -permutations generated by a network
P as follows : an element

*:)E (Sr)'
qn

is a switch permutation generated by v if there exists r E P (0 with
a Hall decomposition IT = 1..P=1 p i such that

qi = (swi, swi) : (i, j) E pi) . (2)

(qi)Remark 1: If : is a switch permutation generated by
qn

1,, then so is
q(1)

for any E S..
q.,(n)

Intuitively, the qi associated by (2) with the pi of a Hall decomposition
are just the settings of the successive middle switches that come out
of Duguid's rearrangeability argument. The remark above is a reflec-
tion of the fact that submaps pi of the decomposition can be assigned
to the middle switches in an arbitrary way.
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IV. FACTORIZATION

We let D (v) be the set of switch permutations generated by v. The
new factorization-rearrangeability result we prove is as follows:

Theorem 1: Ifµ and v are networks with nr inlets and nr outlets, such that

(Sr) n C D (v)D (A),

then the network (Fig. 4) obtained by cascading v and p, alternately
between three stages of r n X n switches is rearrangeable, and corresponds
to a factorization

Snr = (Sn)rP(v) (Sn)rP (l2) (Sn)r-

Proof : Take it E 8, to be realized. It has a Hall decomposition
r = Ur =i pi inducing a switch permutation

qi

) E (Sr) D(0D(1.0

via qi = { (sw sw ;) : j) E pi} as before. Thus, for each
1 = 1, , n there exist al and b1 each in Sr such that qi = blab with

al b1

a= E D(µ) and (3 = : D(v).
an bn

The desired permutation can now be obtained by settingµ and v to
generate switch permutations a and 13, respectively. For (i, E p1
we look at how swi and sw; are connected to the middle stage and claim
that they are connected to the same middle -stage switch! This is .

becauseµ connects swi to ai(sw i), and v connects swi to bi-' (swa).

REARRANGEABLE NETWORK WHEN (SO" GO( v) D(µ) YIELDING FACTORIZATION

Snr = (Sr) r P(v) (Sn) r NIL) (SIX

Fig. 4-Rearrangeable network when (Si)'C D(v) D(A), yielding factorization
Say = (SiOrP(P)(S.)rP(L)(Sn)r.
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Since, by construction,

sw; = qz(swi)
= bi[ai(swi)],

we have co(swi) = bz-i(swi). It remains to route i to a(swi), to route
j to bi-' (swi) and to complete the connection in the middle switch.
This recipe works for all pairs (i, j) E r, and the theorem is proved.

We next note that the hypothesis (SO. c D(v) D(A) of the
theorem can be replaced by a stronger, more complicated condition
that is less work to verify by calculation.

Remark 2: If M, N are subsets of D(,I), D(v), respectively, such that for
any qi, , q. E Sr there is some (p E S. such that

E NM,
qg.)

(3)

then (Sr)n c D(v)D(A). For if (3) holds, then there are at, b1 in
M, N, respectively, and, hence, in D(v) such that q,(z) = bicti, i.e.,
qi = b,-.(na,,,(1). But

a,
E D (A), G D(v)

ae-1(.) 14,-1(n)

by the remark following the definition of switch permutation. Hence,

qi

E D(v)D(A).
q.

V. EXAMPLES

Figure 5 and Tables I through III illustrate an application to the
network of Fig. 1 to prove it rearrangeable. Here i = v, the network
v being just a stage of three 2 X 2 switches preceded and followed by
the permutation (13) (25) (46) induced by the cross -connect field that
links successive stages. Figure 5 illustrates two of the switch permuta-
tions generated by a copy of v ; the three stages shown in Fig. 5 are
either the first three or the last three stages of the network of Fig. 1.
Table I gives all eight possibilities; these form sets M, N (with M = N)
of the form described in Remark 2, as can be verified from the product
table, Table III, using the multiplication table for 83 given in Table
II. The entries of the product table that are shown form a subset C
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22
33

13 I (13)
31 (13)

OR

11

22

,ti(23) OR (12)
(12) (23)

Fig. 5-Switch permutations generated by states of the middle stage.

of M such that either

or

belongs to C for any choice of a and b in 83; thus, property (3) of
Remark 2 holds, and Theorem 1 is applicable.

Tables IV and V show the same kind of calculation for the network
with a cyclic cross -connect field (Fig. 6) that induces the permutation
(5432). Tables VI and VII show the same results for the network
(Fig. 7) based on (23) (45). Asterisks in Table VII define a subset

Table I - Direct product elements corresponding to switch
settings for cross -connect (13) (25) (46) used in Fig. 1

sw #

1st

2nd

3rd

22 23 22 22

33 32 33 33

11 11 13 11

33 33 31 33
11 11 11 12
22 22 22 21

Elements of K I (23) I (12)
I I (13) I
1 2 3 4

23 23 22 23
32 32 33 32
13 11 13 13

31 33 31 31

11 12 12 12

22 21 21 21

(13) (23) (13) (123)
(23) (12) (12) (132)

5 6 7 8
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Table II - Multiplication table for S3

1st Operator
I (12) (13) (23) (123) (132)

I
(12)
(13)
(23)

2nd
Operator (123)

(132)

I (12) (13) (23) (123) (132)
(12) I (132) (123) (23) (13)
(13) (123) I (132) (12) (23)
(23) (132) (123) I (13) (12)

(123) (13) (23) (12) (132) I
(132) (23) (12) (13) I (123)

with the property (3) of Remark 2, except that neither

(13) (132)
(132)

nor(13)

is in the subset; nevertheless (S3)2 C D(v)2.

Table III - Partial table of M2 for cross -connect corresponding
to the permutation (13) (25) (46) and showing that

condition of Remark 2 is satisfied

1

2

3

4

M

5

6

7

8

1 2 3 4

M
5 6 7 8

I
I

(23) (123) (13)
I (12) (132)

I (23) (13)
(13) (123) (123)

(12) (132) (132)
I (23) (12)

(13) (132) I (12)
(23) (132) (132) (12)

(23) (123) (13)
(12) (123) (13)

(13) I
(12) (123)

(123) (23)
(132) (23)
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Table IV - Direct product elements corresponding to switch
settings for cyclic cross -connect (5432)

sw #

1st

2nd

3rd

11 21 11 21 11 21 21 11

23 13 23 13 23 13 13 23

21 31 31 21 21 31 21 31

32 22 22 32 32 22 32 22

12 32 12 32 32 12 12 32

33 13 33 13 13 33 33 13

Elements of M (12) (132) I (132) (23) (13) (12) (13)

(23) (13) (123) (132) (132) (12) (132) (23)

1 2 3 4 5 6 7 8

VI. CONJECTURE ABOUT NUMBER OF STAGES NEEDED TO GIVE
REARRANGEABILITY WHEN A GIVEN CROSS -CONNECT
FIELD IS USED

From Fig. 1 it is evident that an input switch on the left does not
reach all the switches of the second stage, but can reach all the switches
of the third stage by passing through the second stage. Thus, regarding
switches as vertices and links as edges, we can say that no input
switch is farther away from a third -stage switch than d = 2 units, in
the usual metric of the graph defined by the vertices and edges.
Furthermore, the number R of stages necessary and sufficient for
rearrangeability is 5 = 2d + 1. Similarly, in the three -stage network
of Fig. 3, the distance from any input switch on the left to a middle

2 x 2

1

CROSS -CONNECT (5432)._

Fig. 6-Network based on cyclic cross -connect field corresponding to the permuta-
tion (5432).
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Table V - Partial table of M2 for cyclic cross -connect,
showing that condition of Remark 2 is satisfied

M

1

2

3

4

5

6

7

8

1

M
2 3 4 5 6 7 8

I
I

(13)
(123)

(132)
(132)

(23) (23)
(132) (23)

(12) I
(12) (132)

(23) (123) (132)
(13) (12) (123)

(132) (23)
(13) I

(123)
(123)

I (13) (12)
(13) (12) I

(123) (23) (13) (23) (132)
I (123) (13) (12) (12)

switch is, of course, d = 1, and the number of stages R (necessary and
sufficient for rearrangeability) is 3 = 2d + 1. This leads us to suspect
that there is a connection between the number of links one must go
through to reach all switches of a stage and the number of stages
needed to get a rearrangeable network.

To pose the question another way, let 8 be a stage of square switches,
and cp a cross -connect field (permutation), and consider the natural
sequence of networks such that

P(v2) = 8,,08
P (v3) = 8 cob (p8
P(v4) = ScpScp8cp8

We ask for what value s = R will v8 first be rearrangeable, and how
does this number R depend on co?

Going back now to the graph defined by the switches as vertices and
the links as edges, we shall say that an inlet switch or vertex has
access to a switch in a given stage if there is a path on the graph from
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Table VI - Direct product elements corresponding to switch
settings for cross -connect represented by (23) (45)

(see Fig. 7)

sw #

1st

2nd

3rd

11

22
11

33
22
33

12

21

11

33
22
33

11

22
13
31
22
33

11

22
11

33
23
32

12

21

13
31
23
32

11

22
13

31
23
32

12

21

11

33
23
32

12

21

13

31
22
33

Elements of M I
I
1

I
(12)

2

I
(13)

3

I
(23)

4

(123)
(132)

5

(23)
(13)

6

(12)
(23)

7

(12)
(13)

8

Table VII - Complete table of M2 for cross -connect
corresponding to the permutation (23) (45)

M

1

2

3

4

5

6

7

8

1 2 3 4

M
5 6 7 8

I'
I

1.
(12)

I.
(13)

1.
(23)

(123)*
(132)

(23)*
(13)

(12)*
(23)

(12)*
(13)

I I I' r (123)* (23)* (12)* (12)*
(12) I (132) (123) (13) (132) (123) (132)

I I I I (123)* (23) (12)* (12)
(13) (123) I (132) (23) I (132) I

I I I I (123) (23) (12) (12)
(23) (132) (123) I (12) (123) I (123)

(123) (123) (123) (123) (132) (12)* (13)* (13)
(132) (23) (12) (13) (123) (12) (13) (12)

(23) (23) (23) (23) (13) I (132)* (132)
(13) (123) I (132) (23) I (132) I

(12) (12) (12) (12) (23) (123)* I I
(23) (132) (123) I (12) (123) I (123)

(12) (12) (12) (12) (23)* (123) I I
(13) (123) I (132) (23) I (132) I

Note: Neither
(13)

(132)
nor

(13
(132)) occurs, so that condition of Remark 2 fails, although

condition of Theorem 1 holds because

I (13) (13)
(13) . (23) - (132)
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2 x 2
CROSS -CONNECT (23)(45)

Fig. 7-Network based on cross -connect field corresponding to the permutation
(23) (45).

the first switch to the second containing exactly one switch from every
intermediate stage. Typically, the set of outlet switches to which an
inlet switch has access will grow with the number of stages, and, for
rearrangeability, it is, of course, necessary that every inlet switch have
access to every outlet switch. Roughly speaking, the more access the
field cp provides for switches from one stage to those of the next, the
smaller will be the number of stages required for rearrangeability. It
would therefore be of interest to relate this "amount of access" avail-
able with a given number of stages to the number of stages required
for rearrangeability.

To this end, let us say that v8 has "full access" if every inlet switch
has access to every outlet switch, and define

d = min I s : ps+i has full access)

R = min s : v8 is rearrangeablel.

To return to the examples, if ca is the permutation (13) (25) (46)
corresponding to the cross -connect field of Fig. 1, and 8 is a stage of
three 2 X 2 switches, then d = 2 and R = 5 = 2d -I- 1. In Fig. 3, (p

consists of a link between every pair of switches in successive stages,
and so d = 1 and clearly R = 3 = 2d + 1. Again, in Fig. 6, using the
cyclic cross -connect corresponding to (2345), it can be seen that d = 2
and R = 5 = 2d 1.

All of these cases induce the following conjectures:

(i) P2d-F1 is rearrangeable.
(ii) R = 2d + 1.
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It is easy to find additional confirming examples, especially necessity
arguments for R >_ 2d ± 1, but to give a general proof seems to be
very difficult.
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Some Effects of Measurement Errors on Rain
Depolarization Experiments
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Measurements of rain -produced depolarization for linearly polarized
20- and 30-GHz satellite signals oriented vertically (V) and horizontally
(H) and a few degrees either side of V and H are required to determine
both the proper polarization orientation for future systems and the de-
polarization at that orientation. The polarization received from area -
coverage satellite beacons will vary considerably for different measuring
sites within the coverage area. Calculation of rain -produced depolarization
of one pair of orthogonally polarized signals from measurements of de-
polarization, differential attenuation, and differential phase of a different
pair of orthogonally polarized signals will be required. Some effects of
measurement errors on these calculations are shown. Accuracies on the
order of ±0.5 dB in differential attenuation and ±2 degrees in differ-
ential phase are required in the measurements. Cross -polarization isolation
of 25 dB in the measuring system is inadequate.

I. INTRODUCTION

It is desirable to use two orthogonal polarizations to double the
number of radio channels available in future 20- and 30-GHz satellite
repeaters. Since rain -produced depolarization (cross -polarization
coupling) is more severe for circular polarizations than for linear
polarizations' oriented parallel to the raindrop axes (see Fig. 1), two
properly oriented orthogonal (near vertical and horizontal) linear
polarizations are the logical choice for such systems. The only mea-
surements of rain -produced depolarization1-4 above 10 GHz have been
made on terrestrial propagation paths. Therefore, measurements of
rain -produced depolarization for linearly polarized 20- and 30-GHz
satellite signals oriented vertically (V) and horizontally (H) and a
few degrees either side of V and H are required to determine both the
proper polarization orientation for future systems and the rain -
produced depolarization at that orientation.
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There will be considerable variation, however, in the polarization
orientation of linearly polarized signals received at different measuring
sites within the coverage area of 20- and 30-GHz area -coverage
satellite beacons.' For example, the polarization orientation will vary
on the order of 40 degrees over the continental United States for a
satellite in synchronous orbit. Thus, the orientation cannot be optimum
at all receiving sites from the standpoint of collecting data for system
design. Also, since the angular orientation of the raindrop axes with
respect to V and H at a given site varies from storm to storm,' sta-
tistics of the polarization orientation that produces the minimum
depolarization and of the minimum value of that depolarization are
needed, as well as statistics of the depolarization for several fixed
polarization orientations. These requirements imply the need for
calculating depolarization at orientations other than the polarization
transmitted by a satellite beacon to a given receiving site. In principle,
this is readily done if signal attenuation, phase shift, and depolarization
parameters are measured with sufficient accuracy. This paper shows
some effects of measurement errors on the calculation of rain -produced
depolarization for one pair of orthogonally polarized signals from
measurements made on a different pair of orthogonally polarized
signals that have a different angular orientation. This information is
needed in determining the accuracy required for earth -based instru-
mentation used in depolarization -determining satellite -beacon propaga-
tion experiments.

II. PROBLEM DEFINITION

A propagation experiment for determining rain -produced depolariza-
tion can be defined as follows.

Transmit a linearly polarized signal, E1 t, through the rain. Measure
the attenuation and phase of (i) En, the signal received with the same
polarization as E11, and (ii) E12, the depolarized signal received with
polarization orthogonal to E1 i. Then transmit E2 t, the signal orthogonal
to E1 e, and measure the attenuation and phase of (iii) E22, the received
signal with E2t polarization, and (iv) E21, the depolarized signal
orthogonal to E2 t.

From these measurements, calculate (v) ETA, the orthogonal de-
polarized signal that would be received through the same rain from
E. t, a linearly polarized signal transmitted at some orientation other
than that of El, or E2 t and (vi) Ex2, the corresponding depolarized
signal received from E,,,, a signal transmitted orthogonal to Ex t
Figure 1 illustrates the spatial orientation of the polarization vectors,
E1, E2 and Ex, Ey, on a coordinate system referred to the axes of an
elliptical raindrop.'
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Fig. 1-Signal polarization vectors referred to elliptical raindrop axes.

A coefficient matrix for relating signals transmitted with polariza-
tions 1 and 2, i.e., Eit and E21, to signals received with the same
polarization, Eir and E2 can be defined as

[ EE2i, i 1 b. ii ED i
(1)

L C12 d12 i L E2t i 1

where all coefficients and signals are complex and the phase reference
for the transmission coefficients, biz, c12, and d12, is the Eft to El,
coefficient.

The coefficients are obtained from the measurements described
above as follows.

Ell
A 12 = L--, is the absolute transmission coefficient (attenua-

tion and phase) for the 1 -oriented signal.

E21 1 E21 E1 tb12 = =
E2t Ai2 Eii E2t

is the depolarization coefficient for

transmit 2 receive 1 normalized to Al2.
El2 1 E 12

C12 = ' = - is the depolarization coefficient for
Eit 1112 Eli

transmit 1 receive 2 normalized to Al2.

E22 1 E22 E1 td12 = - -= -  - is the transmission coefficient for
E2t Al2 Eii E2t

the 2 -oriented signal normalized to Al2.

The coefficient E1t/E2t can be measured in clear air (or before
launch) so, in principle, all coefficients can be determined. Note that
the absolute transmission attenuation and phase appear only in A 12 so
the absolute phase, which is not measurable in the beacon experiment,
is not involved in the other coefficients. (It is not necessary for com-
puting the rotated polarization coefficients either, as will be shown.)
The coefficient d12 contains the differential attenuation and phase
between the two polarizations, 1 and 2.
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Table I - Representative differential attenuation and phase
for vertical -horizontal polarization

Total Attn.
(dB) IA121

Differential
Amplitude Ratio

Differential
Phase (degrees)

10 0.32 1.25 17
20 0.10 1.6 33.5

The corresponding matrix relation for signals transmitted and
received with orthogonal polarizations x and y (see Fig. 1) is

[Exf bxy][Ext
[

(2)
Eyr] C1xy dx t

The problem stated at the beginning of this section then reduces to

Given : Al2, b12, c12, d12, and 0, the angle between polarizations
1, 2 and x, y,
Find : Asyy bzy, czY) d.Y.

This is easily done since, from Fig. 1,

r cos 0 sin 0 El
[E:] L -sn9 cos 0

F

E21
and

= [1312][ EEl z1

(3)

-sinOEzi F ExlF cos o
= CoxyJL Ey '[ EE12] L sin cos 0 j

li
L Ey

where, of course, [012]-1 = [Oxy].

Table II - Rain -produced matrix coefficients determined
from Table I and eqs. (6)

a = 0° = Vertical and Horizontal

Attn.
(dB)

, A

'iln I adeg.

d12 b12 C12

Mag. Ang. Mag. Ang. Mag. Ang.

10 0.32 0 1.25 17 0 0 0 0
10 0.32 45 1.0 0 0.1862 52.42 0.1862 52.42
10 0.32 20 1.188 13 0.1301 59.48 0.1301 59.48

20 0.1 0 1.6 33.5 0 0 0 0
20 0.1 45 1.0 0 0.3783 48.55 0.3783 48.55
20 0.1 20 1.448 25.38 0.2906 63.59 0.2906 63.59
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Fig. 2-Depolarization vs angle for 10 -dB attenuation. No measurement errors
for measurements at a = 0, 20, and 45 degrees.

After combining (1) and (3), comparing with (2), completing the
simple matrix multiplication, and defining

then

v = cos2 0 + d12 sine 0 + (b12 c12) sin 0 cos 0, (4)

Ax = vAi2
bzy = [(d12 - 1) cos 0 sin 0 b12 cos2 0 - c12 sine 0]/v

ex = Ud12 - 1) cos 0 sin 0 - b12 sine 0 + cl2 cost 01v
d = [sine 0 + d12 cos2 0 - (b12 c12) sin 0 cos 0]/v.

The absolute transmission attenuation and phase contained in A 12
affects only the absolute attenuation and phase in Azy and not the
relative coefficients, bzy, c,, and dz. The question of interest in the
depolarization -determining propagation experiment is : What effect do
errors in b12, c12, and d12 for specified a (orientation with respect to
raindrop axes) have in determining the magnitudes of the depolariza-
tion coefficients, b, and czy, for 0 0 5 45 °? To proceed further,
estimates of b12, c12, and d12 and of errors in measuring these quantities
are needed.

(5)
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III. ESTIMATES OF COEFFICIENTS AND MEASUREMENT ERRORS

Since direct measurements of most of the coefficients are not avail-
able, estimates must be obtained analytically using known properties
of rain,? -9 electromagnetic theory,",w and the measurement data that
are available.'-" The theoretical calculations are for paths through
uniform rain. Setzerw calculates attenuation (db/km) and phase
(degrees/km) constants for different rain rates assuming a Laws -and -
Parsons drop -size distribution. Morrison et al.' calculate differential
attenuation (db/km) and differential phase (degrees/km) for oblate
spheroidal raindrops7.8 with a Laws -and -Parsons drop -size distribution
for two orthogonal linear polarizations oriented parallel to the axes of
the elliptical cross section of the raindrops (see Fig. 1) at 18 GHz. The
obvious difficulties in using this work are that actual rain is not uniform
over the satellite path, the length of the rain -filled path is not known,
the radio wave fronts will not be incident on the raindrops perpen-
dicular to the raindrop cross-section axes with maximum ellipticity (as
is more often the case for line -of -sight paths and is assumed in Ref. 6),
and, of course, the drop -size distribution and raindrop ellipticity also
vary from storm to storm.

8

-12

-16

-20

- 24

- 28

-32

- 36

-40
-10 0 10 20 30 40 50 60

a+0 IN DEGREES

70 80 90 100

Fig. 3-Depolarization vs angle for 10 -dB attenuation. Measurement error in d12
of +0.06 or +0.5 dB for measurements at a = 0, 20, and 45 degrees.
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Fig. 4-Depolarization vs angle for 10 -dB attenuation. Measurement error in d,2
of +0.26 or +2 dB for measurements at a = 0, 20, and 45 degrees.

The experimental data yield path attenuation only for satellite
paths" or differential attenuation for terrestrial paths.2,3 The pro-
cedure that was followed in estimating satellite -path differential
attenuation and differential phase was

(i) Choose total path attenuations," 10 and 20 dB at 20 GHz,
that represent rather severe conditions but that are exceeded
for a significant time, R.; 10 hours and ti 3 hours during a year.

(ii) Assume a uniform rain rate R falling over a path of length L
and calculate a few R, L pairs that yield total attenuations
of 10 and 20 dB using Setzer'sw attenuation constants.

(iii) Calculate differential attenuation and phase between two
linearly polarized signals oriented parallel to raindrop axes6
(V and H in Fig. 1) using the calculated R and L.

(iv) Assume all raindrops oriented with their elliptical cross-
section axes parallel and perpendicular to the signal polariza-
tions, i.e., vertical V and horizontal H, so that, because of
symmetry, the depolarization is 0.

The representative sets of estimated differential attenuation and phase
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(i.e., Section II matrix coefficients) obtained by this procedure are
summarized in Table I.

These representative sets were selected from the different R and L
combinations for total attenuations of 10 and 20 dB. The V and H
matrix coefficients were then used in the polarization -rotation equa-
tions (5) to calculate coefficients for the two signal polarizations
rotated 20 and 45 degrees with respect to the elliptical raindrop axes
(i.e., a = 20° and 45° in Fig. 1). These coefficients used in later
calculations are tabulated in Table II.

Methods available for estimating potential measurement errors are
even less rigorous than those used in estimating the matrix coefficients,
since measurement errors will depend both on carrier -to -noise ratios
and on equipment -measuring accuracy. The three general types of
measurement errors that are distinguishable are errors in (i) differen-
tial attenuation or phase between the two signals transmitted with
different polarizations, d12, (ii) relative attenuation and phase between
depolarized signals and direct signals, b12 and c12, and (iii) absolute
amplitude and phase Al2. Since errors in absolute measurement do

-12

-16 .........--:-

//
-20 1(7-ct=o°co

z

o // - ---45°
Et: -24 .
CC

-J ' fi
w

-32
I

-36

-40 IN I I I I I I I I

-10 0 10 20 30 40 50 60 70 80

a+9 IN DEGREES

90

err

Ir
Ir

100

Fig. 5-Depolarization vs angle for 10 -dB attenuation. Measurement error in d12
of +2 degrees for measurements at a = 0, 20, and 45 degrees.
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Fig. 6-Depolarization vs angle for 10 -dB attenuation. Measurement error in d12
of +5 degrees for measurements at a = 0, 20, and 45 degrees.

not affect the accuracy in calculating rotated coefficients, they will
not be considered here.

Additive errors to d12 of ±0.06 and ±0.26 in magnitude and ±2
and ±5 degrees in angle were selected for assessing the effects of
direct -signal differential attenuation and phase errors on rotated
polarization coefficients. These values correspond to differential
amplitude measuring errors of 0.5 and 2 dB. Such error values are
likely to be contributed to by the measuring equipment or by noise,
if the receiver carrier -to -noise ratio degrades sufficiently with attenua-
tion of the signal by rain. Computing the rotated depolarization
coefficients, bx, and czy, in eq. (5) uses only the difference, d12 - 1,
between the transmission coefficient so the magnitude error was added
to d12 only.

Estimating errors for depolarization coefficients, b12 and c12, is
somewhat different for the V and H case than for the case of a = 45
and 20 degrees because, for the assumed symmetric raindrop orienta-
tion, the theoretical V and H depolarization coefficients, b12 and c12,
are 0. Antenna cross -polarization isolation may be as low as 25 dB,
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resulting in a contribution of 0.06 to b12 or c12. Since this overshadows
noise contributions at reasonable signal levels, a spurious magnitude
of 0.06 was assumed for b12. In the VH case, this is the only contribution
to b12, and its phase angle is unknown. Error phase angles of 45, 90,
180, and 270 degrees were selected for b12.

In the 45 -degree case with rain attenuation of 10 dB, the rain
contribution to b12 is 0.1862 /52.42 degrees (see Table II). Since the
phase angle of the assumed error, 0.06, is unknown, several cases were
considered for b12: (i) no phase error, magnitude errors of ±0.06,
(ii) no magnitude error, phase error of ±18 degrees, and (iii) phase
error of ±5 degrees, magnitude error of 0.06.

Similar considerations for the case of a = 20 degrees resulted in the
choice of errors in b12 of (i) magnitudes of ±0.06, phase of ±5 and
±10 degrees, and (ii) magnitude of 0, phase of ±30 degrees.

IV. RESULTS

It is obvious from Fig. 1 and eq. (2) that letting 0 range over
0 < 0 < 90 degrees and looking at I bzy I is equivalent to letting 0
range over 0 < 9 < 45 degrees and looking at both I b, I and czy/d,I .

0 10 20 30 40 50 60

a+0 IN DEGREES

70 80 90 100

Fig. 7-Depolarization vs angle for 10 -dB attenuation. Measurement error in b1,
of +0.06 at phase angles of 45, 90, 180, and 270 degrees corresponding to cross -
polarization contamination of -25 dB for a = 0 degrees, i.e., V and H.
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Fig. 8-Depolarization vs angle for 10 -dB attenuation. Measurement error in b12
of ±0.06 for measurements at a = 45 degrees. Corresponds to cross -polarization con-
tamination of -25 dB.

Also, any continuous 90 -degree range of 0 contains all values of I b.!, I .

For the graphs in this section, then, I bx,,I is plotted for the range of
0 < a + 0 < 90 degrees for all three initial polarization angles, a = 0,
20, and 45 degrees. (Note that a is the orientation angle of the
"measured" coefficients, 12, with respect to the axis of the elliptical
raindrops and a + 0 is the angle of the calculated coefficients, xy,
referred to the same elliptical axes and rotated an angle 0 with respect
to the measured coefficients, as in Fig. 1.)

Figure 2 is a plot of cross -polarization coupling (depolarization),
bsyl, for 0 a 0 < 90 degrees computed using as starting points

each of the three sets of coefficients in Table II for 10 -dB attenuation
with no measurement errors included. Without measurement errors,
the rotated coefficients can be calculated without significant computa-
tion error. The 0 depolarization at 0 and 90 degrees is a result of the
assumed perfect raindrop symmetry and orientation. In actual rain,
random orientations and asymmetries will cause these nulls to fill in
to some as -of -now unknown level.
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Figures 3 to 10 are plots of depolarization, I bs,,I, for 0 < a + B 5 90
degrees computed from the coefficients in Table II for 10 -dB attenua-
tion. The solid curve on each figure is the "no errors" curve from Fig. 2.
Figures 3 to 6 each include measurement angles of a = 0, 20, and
45 degrees and different errors in differential attenuation, I di2 I , and
differential phase, /d12, indicated in the captions. In general, errors
with the opposite sign of those in the figures produce error curves with
approximately the same magnitudes but shifted in the opposite
angular direction from a + 0 = 0 degrees. Figures 7 to 10 include
different measurement errors in depolarization, b12, indicated in the
captions. Each of these figures is for a specific a as indicated. Asym-
metries in the error curves are a result of alloting all the measurement
error to the one coefficient, b12.

Figures 11 and 12 are similar plots of I bz, I computed from co-
efficients in Table II for 20 -dB attenuation. They are for the different
errors in d12, as indicated.

Three overall effects of measurement errors on the calculated I b,L,

near the regions of minimum depolarization that are indicated in

-12

-16

co

-20
z

z
0

< -24
N
Q

0
ai -28
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Fig. 9-Depolarization vs angle for 10 -dB attenuation. Measurement error in b12
cf f 18 degrees and of +0.06 with ±5 degrees. Corresponds to cross -polarization con-
tamination of = -25 dB.
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Fig. 10-Depolarization vs angle for 10 -dB attenuation. Measurement error in b,,
of +0.06 with ±5 degrees and of +0.06 with ±10 degrees for measurements at« = 20
degrees. Corresponds to cross -polarization contamination of -25 dB.

Figs. 3 to 12 are (i) the I bry I at a + 8 = 0 and 90 degrees become
nonzero in all cases, (ii) the minima of the I bzyj vs a + 0 curves shift
in angle from the no -error 0 and 90 -degree positions, and (iii) at the
minima the 1 bxy I also become nonzero. These effects are tabulated
for each separate error for initial angles, a, of 0 and 45 degrees and
total attenuation of 10 dB in Table III.

From the figures and Table III, it appears that errors in measuring
d121 at a = 45 degrees on the order of ±2 dB or ±5 degrees produce

unacceptable errors (min > -30 dB and offset of min >= 5°) in I bzyi

at the vertical and horizontal orientation, a + 0 = 0 and 90 degrees,
from the standpoint of use in evaluating future systems performance.
An error of ±2 degrees in I d121 at a = 45 degrees produces acceptable
errors in I bxy I at a + 0 = 0 and 90 degrees. An error of ±0.5 dB in
d121 at 10 -dB attenuation produces errors in 1bry I at 0 degrees that

are marginally acceptable.

V. SUMMARY

The deficiencies in the methods used to estimate the rain -produced
differential attenuation and phase and the measurement errors are
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Fig. 11-Depolarization vs angle for 20 -dB attenuation. Measurement error in d12
of -0.26 or -2 dB for measurements at a = 0, 20, and 45 degrees.

obvious. However, a range of 20-GHz attenuation and rain rate and
of measurement errors were considered, so the estimates of the effects
of the errors illustrated in the figures and in Table III should be
representative of those to be encountered in an actual experiment.

Calculation of rain -produced depolarization of one pair of orthog-
onally polarized signals from measurements of depolarization and
differential attenuation and phase of a different pair of orthogonally
polarized signals is quite sensitive to measurement errors. Therefore,
it is better to measure the propagation parameters for the polarization
orientation for which the parameters are desired. Considering future
system applications, the optimum polarizations are linear, oriented
horizontally and vertically (i.e., perpendicular to horizontal and the
propagation path) at the receiving site, since this combination is
expected to produce the minimum depolarization on the average.
Measurement at the desired orientation produces the best results at
the desired orientation and can produce at least partial results during
partial equipment failure. Useful depolarization information can be
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Fig. 12-Depolarization vs angle for 20 -dB attenuation. Measurement error in d12
of -5 degrees for measurements at a = 0, 20, and 45 degrees.

Table III -Summary of effects of measurement errors on lbI
for 10 -dB rain attenuation and a = 0° and 45°

Error

Max lbz,,, I at
a + 0 = 0° or 90°

Max Angular Shift
of Min of I bxvi

Largest Min
of I bzi, I

a = 0° a = 45° a = 0° a = 45° a = 0° a = 45°

dB dB deg. deg. dB dB

1d12 I
+0.5 dB 0 -30 0 4 0 -32
±2.0 dB 0 -18 0 15 0 -20

/d12

+2 degrees 0 -34 0 2 0 38
+5 degrees 0 -26 0 5 0 30

Cross -polarization of
-25 dB -25 -29

at max shift of min 70 4° -31 -40
at largest min 4° 0° -26 -29
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obtained by calculation if the satellite configuration requires measure-
ment of propagation parameters at a polarization orientation other
than the optimum discussed above.

The accuracies required in the measuring system to ensure adequate
accuracy in the calculated propagation parameters (particularly
depolarization) are (i) error in differential attenuation between the
transmitted polarizations < ±0.5 dB, and (ii) error in differential
phase for the same two signals < ±2 degrees. Cross -polarization
isolation of 25 dB in the measuring system is inadequate.
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Permanent Multiple Splices of
Fused -Silica Fibers

By F. W. DABBY
(Manuscript received April 15, 1974)

A method for obtaining low -loss splices of multimode optical fibers has
been devised that uses no adhesives, mechanical clamps, or adjustable
alignment tools. Simultaneous splices were made of three -fiber as well as
single -fiber pairs. The coupling efficiency was over 95 percent for single -
fiber pairs and 93 percent for three -fiber pairs. The strength of the joint
was two-thirds the breaking strength of the fibers.

I. INTRODUCTION

Recently, several techniques for connecting both multimode and
single -mode fibers have been developed.1-5 The problems associated
with obtaining good optical ends of the fibers to be spliced have also
been the subject of a recent work.' These efforts have been motivated
by the fact that, for optical communications to become a reality,
permanent low -loss splices of fibers must be achieved.

In this paper, a method of permanently joining single and multiple
pairs of fibers is described. The method used is summarized here, and
a complete description of the technique and results is given in the
following sections. It should be noted that the results reported for
single bonds were obtained with eight splices and for the multiple
bonds with 30 -fiber pairs. In brief, coupling efficiency is over 95
percent, and the strength of a joint does not fail until a force of over
300 grams is applied to the end of the fiber. The fiber breaks at a force
of approximately 450 grams. Alignment of the fibers is achieved by
feeding the fiber into flared tunnels over a fused -silica substrate and is
easily done by hand.' After the fibers are aligned, an aluminum washer
116 -inch in diameter is placed against the aligned fibers. The washer is
centered so that the splice is in the open center of the washer. The
washer is then compressed against the aligned fibers so that the alumi-
num yields around a portion of each fiber. The pressure required is
below the breaking strength range of the fiber, and the aluminum is

451



permanently bonded to the fibers without bonding to the silica sub-
strate. The yielding of the aluminum protects the fiber from the ram
pressure and acts as a control, making the process independent of the
heated (r:"., 300°C) ram pressure. The process is schematically illus-
trated for a single fiber in Fig. 1, and photographs of the spliced single
and multiple fibers and washer are shown in Fig. 2. The bonding
process occurs in less than five seconds. After splicing, the washer
weight is easily supported by a single fiber. This splicing technique
differs from results reported previously in that the splice is a conse-
quence of a metal oxide -glass bond and is not a result of end fusing,1.2
mechanical clamping,3 glass -to -glass bonds,4 or crimping.'

The coupling efficiency is measured at a light wavelength of 6328 A.
The index -matching fluid used between the fibers is glycerol having
a refraction index of approximately 1.48, and the fiber cores have an
index of 1.45. The core diameters are approximately 100 Am and the
fiber diameter 142 Am. The ends of the fibers are cut using the diamond
cutter. 6

The washer provides a convenient container for the index -matching
fluid.

LHEATED

300 °C

ALUMINUM WASHER

( ')
ALIGNING FIXTURE

) ()

FIBER

HEATED BASE T '-',1 300°C

Fig. 1-Schematic of fiber splicing apparatus.
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(a)

(b)

Fig. 2-Spliced optical fibers embedded in an aluminum washer. The fiber diameter
in both photographs is 142 Aim. (a) Single -fiber pairs. (b) Multiple fiber -pairs.
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II. JOINING TECHNIQUE

To obtain a joint as shown in Fig. 2, the alignment tool shown
schematically in Fig. 1 is used. Variations of this tool, using no adjust-
able alignment tools, have been used to splice fibers having outer
diameters as low as 18 Am, and even at this small diameter the fibers
were hand -fed.' A hole in the center of the alignment tool allows access
for the bonding ram. The fibers are fed by hand from both tunnels
and meet in the access hole of the ram. The ends of the fibers are cut
flat by means of a diamond -cutting technique,' giving a measurable
improvement in the coupling efficiency over fibers whose ends are not
cut flat.

An aluminum washer is placed over the aligned fibers. The entire
apparatus is then placed over a heated (,:300°C) base, and a heated
(z -1300°C) ram applies pressure to the washer, which yields around the
fibers. The pressure applied by the ram is generated by hand, and the
total force is quite low. The spliced fibers are then removed from the
alignment tool by unclamping the fused -silica substrate. The final
spliced fibers are shown in Fig. 2.

III. OPTICAL MEASUREMENTS

The optical measurements used apparatus and techniques that are
similar to those described previously' and are made at a wavelength of
6328 A. The results of the various measurements are given in Table I,
which gives the average and worst results. The single -fiber -pair trans-
missions data exclude only one instance in which a clearly identified
"mistake" occurred that was a burr of aluminum remaining in the
washer and blocking the passage between the splices. The results of
the multiple splices are also given in Table I, and are based on ten
consecutive three -fiber splices.

The index -matching fluid used between the fibers is glycerol. It
should be noted that if the ends are properly cut and the alignment
maintained, coupling efficiency depends on when the glycerol is added.

Table I - Experimental results

No. of
Fiber

Transmission Breaking Strength

Worst Ave. No. of Worst Ave. No. ofPairs
(%) (%) Meas. (grams) (grams) Meas.

1 90.5 94.5 8 235 284 7
3 89.5* 92.7 301. 290 331 lit

* Lowest average of three -fiber pair.
t Number of fiber pair measured.
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If the splices remain outside the index -matching fluid for a day,
splicing efficiencies in the low -90 -percent range were recorded. If the
glycerol is added approximately 4 hours after splicing, the efficiency is
approximately in the mid -90 -percent range. Measurements made
immediately after splicing showed no measurable loss (less than
2 percent).

IV. BONDS

The strength of the bonds is measured by vertically suspending a
fiber splice pair and pulling the fibers apart. The results are given in
Table I and exclude a single instance where a fiber failed at a point
considerably removed from the bond area. The fiber failed when a force
of approximately 450 grams was applied to the end of a single fiber.

The bonds are probably oxide bonds and arise when the fibers break
through the alumina (A1203) coating on the washer leaving the fused -
silica fiber embedded in the aluminum. The bonds could not be made
at room temperature, but no research has been conducted to determine
the optimum bonding temperature.

It is interesting to note that bonds of up to three -fiber pairs using a
single washer have been completed. No degradation of the strength
of the splice has been observed in these multiple -fiber bonds.

V. CONCLUSION

Single and multiple permanent optical connections between fibers
using aluminum as a joining medium have been made. The results are
strong bonds with high efficiency.
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Microbending Loss in Optical Fibers

By W. B. GARDNER

(Manuscript received June 11, 1974)

The loss induced in optical fibers by random bends in the fiber axis
is studied by winding fibers under constant tension onto a drum surface
that is not perfectly smooth. The tension forces the fibers to conform to
slight surface irregularities, which can result in an increase in the optical
loss on the order of 100 dB/km. This microbending loss may be a signif-
icant design consideration in system applications of low -loss optical
fibers. Data are presented on the reduction of the dfect by means of coatings
and increased numerical aperture.

I. INTRODUCTION

For the full potential of presently available optical fibers to be
realized, care will have to be taken to minimize any perturbations that
affect the fiber's transmission. One such perturbation is random bends
in the axis of the fiber. Glogel and Marcuse2 have shown that such bends
need not be of large amplitude to cause losses of a few decibels per
kilometer. We have found this "microbending loss" to be common in
multifiber structures. The worst of these structures add as much as
500 dB/km to the loss of the fibers. Although several decibel -per -
kilometer added loss is more typical, the effect clearly poses a danger
to system performance unless proper steps are taken to minimize it.
The following experimental study of microbending loss shows how it
can be reduced by means of coatings and increased fiber numerical
aperture.

II. EXPERIMENTAL TECHNIQUE

To obtain quantitative data on microbending loss, fibers were wound
under controlled tension onto a drum whose surface was not perfectly
smooth. The tension forced the fiber to partially conform to the surface
roughness. The resulting random bending of the fiber axis caused a
measurable increase in the optical loss. The drums were 10 -in. diam-
eter cast acrylic, and no roughening of the polished surface was
necessary to obtain measurable microbending loss.
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The technique is illustrated in Fig. 1, where a continuous 455-m
length of fiber is excited with a He-Ne laser. The left half was wound
under 0.7 kg/mm2 tensile stress and the right half under 7 kg/mm2.
It is seen from the scattering that the light is decaying much more
rapidly in the right half. In fact, the microbending loss is 15 dB/km in
the left half and 145 dB/km in the right half.

The method for winding the fibers is shown in Fig. 2. The pay -out
shaft rides on low friction bearings and is splined to a hysteresis brake
which generates a torque that is approximately independent of revolu-
tions per minute. The torque is set by the current to the brake, and
the resulting tension in the fiber is monitored with the polariscope to
assure its constancy during winding. The polariscope is calibrated
before each run by hanging weights on the pay -out drum while the
brake is disconnected.

III. RESULTS

To determine the length dependence of the microbending loss, a
Corning Glass Works (CGW) fiber with an inherent loss of 15 dB/km
at 632.8 nm was wound with uniform pitch (20 turns/cm) at 2-
kg/mm2 tensile stress. A He-Ne laser beam was launched into the fiber,
and the forward scattering was detected with a 1 -cm -wide solar cell
(appropriately baffled), whose edge was about 3 mm from the windings.
Thus, the detector integrated the scattering from about 20 turns of

Fig. 1-632.8-nm scattering from a CGW step -profile fiber wound under 0.7 kg/mm2
(1 kpsi) tensile stress (left half) and 7 kg/mm2 (10 kpsi) (right half).
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Fig. 2-Apparatus for winding fibers onto a drum under controlled tension.

the fiber. The detector was then translated parallel to the drum axis to
generate the solid dots in Fig. 3. The fiber was then rewound under
0 kg/mm2 and 4 kg/mm2, and the scan repeated for each of these cases.
Following the transient condition at the launching end, the curves
become linear to within experimental error, and the slopes yield the
attenuation coefficients shown. These numbers agree within experi-
mental error with the total loss measured in the conventional way (by
breaking a 1 -ft length at the input end). Launching into the opposite
end of the fiber did not alter the results. The linearity of the data in
Fig. 3 shows the microbending attenuation coefficient 7 to be indepen-
dent of position along the fiber. This is to be expected when the sta-
tistics of the bending are not a function of position, and the energy
distribution among the modes has reached equilibrium.

It has been shown that the microbending loss should decrease with
increasing fiber numerical aperture for both parabolic' and step3 index
profiles. Experimental data for step -profile CGW fibers are shown in
Fig. 4. The two fibers were similar except for their numerical apertures,
and the microbending loss is plotted against the tensile winding stress.
In a recent paper,4 Gloge derived expressions for the microbending loss
y in both step and parabolic index fibers, assuming the spectral density
of the drum roughness to be of the form

P (K) = P(0)/(1 -I- /21(2)A. (1)

Here, K is the mechanical wave number 2r/A, and 1 has the physical
significance of a correlation distance. Gloge has derived4 a general
expression for y in terms of the parameters 1 and it. This expression is
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Fig. 3-632.8-nm scattering from a CGW step -profile fiber with a, = 44 Am,
ao = 66 Am, N.A. = 0.120.

consistent with the 7 o (N.A.)-4.3 dependence manifested in Fig. 4,
when A = 3.1. Setting A = 3 in the expression gives the following upper
limit for the microbending loss in a step profile fiber :

3024/27/56,2 (2)
(1 + 144A4H2/25a8j)2) (1 + 640-W4Di/225AI/9i '

where
a = rms drum roughness

ac = core radius
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A = (core index - cladding index)/(core index)
= (N.A.)2/2n2

H = flexural rigidity
D = lateral rigidity
fo = normal force per unit length of fiber

= (tensile winding force)/(drum radius).

For an uncoated fiber of Young's modulus Elf and outer radius ao
wound onto a drum of Young's modulus Ed, we have

H = rEfa3/ 4 and D --1-' Ed. (3)

0 2 4 6 8

STRESS IN KG/MM2

Fig. 4--y vs winding stress at 632.8 nm for two CGW step -profile fibers which are
similar except for their N.A.'S. a, = 44 /Am, ao = 66 1.4m, and the lengths were about
200 m.
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Fig. 5-Spectral loss curves showing that the added loss under stress is almost
wavelength -independent.

Equation (2) assumes that 1 is large compared to both KT' = ac/(2A)4
and (H/D)I, which are typically a few tenths of a millimeter.

Although the spectrum (1) with /.4 = 3.1 leads to -y cc (N.A.)-43, any
other roughness (whether from coatings, drums, packaging, or what-
ever) will likely have a different spectral density and hence cause a
different dependence of -y on numerical aperture.
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There is no explicit dependence on optical wavelength in eq. (2).
As a test of this, a spectral loss curve was obtained for a 160-m length
CGW fiber wound first under 4-kg/mm2 stress and then 0 kg/mm2.
Subtracting the lower curve from the upper curve in Fig. 5 gives the
microbending contribution, which is indeed almost wavelength-
independent. The very slight dependence on X may be a result of
dispersion in the fiber's relative index difference A. Similarly, measure-
ments of they induced in 14 different fibers by multifiber structures
were the same (within experimental error) at 0.64 Am as at 0.84 Am.

According to eq. (2), y should be proportional to fo for small h.
As Jo moo, however, the fiber fully conforms to the roughness, and 7
becomes independent of fo. Since fo is proportional to the winding
stress, the shape of the Fig. 4 curves is consistent with this prediction.
The value of fo corresponding to the transition between these two
regimes can be predicted from eq. (2). The predicted value is several
times larger than the measured value (which corresponds to about
3 kg/mm2 stress) from Fig. 4. This may be because adjacent turns of
the fiber are not isolated, a fact which is evident from a measured de-
crease in y with increasing winding pitch. For this reason, the same
pitch (20 turns/cm) was used for all measurements.

Letting fo -*00 in (2) and setting y equal to the asymptotic value of
the N.A. = 0.158 curve in Fig. 4 yields 0-2//5 = 0.4 X 10-6 mm -3. A
correlation distance of 1 = 1 mm, for example, would then imply
Cr = 0.6 Am. The existence of roughness of this magnitude is not sur-
prising, despite the polished appearance of the surface. A 0.6 -Am
variation over a distance of 1 mm would be difficult to measure.

For the acrylic drum used, D = 280 kg/mm2 (400 kpsi), and with the
fibers used, 144A4H2/25a8D2 << 1, so that, in the limit of small fo, (2)

becomes

70 - s

/A2a1ElfD3/8

0.760.a2efo
(4)

From this expression, it is evident that a small core radius and large
outer radius is desirable for minimizing microbending loss. The mini-
mum usable core radius may be determined by splicing considerations,
and the maximum outer radius by the bending which the fiber is re-
quired to withstand without breaking. The microbending also increases
the penetration of the evanescent wave into the cladding,' thus possibly
making thicker cladding necessary for adequate optical isolation.

In addition to maximizing A and ao and minimizing a, and a, a
further option is available for minimizing y. This is to encapsulate the
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fiber in a compliant medium. The requirements for the encapsulant
are that it be thick and uniform. The case of a homogeneous coating is
illustrated in Fig. 6. The linearity of these curves is probably due to a
larger a for the acrylic drum surface used here than for the one used in
Fig. 4. The coating applied to the fiber was DuPont Elvax® 265, a
co -polymer of ethylene and vinyl acetate. The coating was 50 Ian
thick, with a modulus of E = 1.4 kg/mm2 (2000 psi), and was applied
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Fig. 6-7 vs winding stress at 632.8 nm before and after coating a CGW step
profile fiber with a 50 -pm thickness of DuPont Elvax® 265. The fiber was 180 meters
long with a, = 43 pm, a, = 66 pm, and N.A. = 0.160.
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with a die technique. After the fiber is coated, D in (2) becomes
E,, while H is only slightly changed. In order for

Gloge's general expression4 for y to predict the observed reduction in
y of a factor of 4.3 in the small fo regime owing to a uniform coating, IA
must equal 4.4. The discrepancy between this and the value 12 = 3.1
(deduced from the N.A. dependence) may be an indication that the
assumption of perfect coating uniformity is invalid. In that case, the
coating thickness variation spectrum would add to the drum roughness
spectrum, creating a new composite spectrum. Also, despite careful
cleaning of the drum, it is possible that foreign material with a modulus
different from Ed may make some contribution to the microbending.

IV. SUMMARY AND CONCLUSIONS

The microbending caused when an optical fiber is forced to conform
to small irregularities is shown to be capable of causing sufficient
optical loss to affect the performance of a communication system.
Studies involving the winding of fibers under tension onto drums show
significant reduction in the effect by means of coatings and increased
fiber numerical aperture. Studies of multifiber structures are currently
in progress and suggest that, with proper care and knowledge in design,
the effect can be reduced to an acceptable level.
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