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Preparation of Optical -Fiber Ends for
Low -Loss Tape Splices

By E. L. CHINNOCK, D. GLOGE, P. W. SMITH, and D. L. BISBEE
(Manuscript received September 18, 1974)

We describe a reliable method of preparing planar fiber tape ends by
fiber fracture. Using this technique, with suitable precautions to preserve
cleanliness during splice preparation, we have measured a splice loss of
less than 0.25 dB in 99 percent of all attempts.

The alignment of fibers in prefabricated grooves' so far remains the
simplest and most reliable method of connecting fibers, even in the
case of fiber cable subgroups (tapes).2.3 Two problems were identified as
most serious :

(i) The preparation of satisfactory fiber ends was found difficult
in the case of tapes and cables, because all ends must be in one
cross-sectional plane. Grinding and polishing has proven feasible,
but may not be entirely satisfactory, particularly in the prep-
aration of field splices.

(ii) The splice losses have been higher than expected on the basis
of single -fiber splice tests4 and have been scattered over a wide
range.

Although we are not certain that groove alignment necessarily
provides the best splicing technique, we have used an advanced form
of this technique developed by Cherin3 to take a closer look at the
problems identified above. Even if other techniques prove more
promising later on, the problems mentioned may still be present in
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some form or other and seem serious enough to require thorough
analysis now.

The preparation of fiber ends discussed here is a modification of
fracture techniques reported earlier for single -fiber splices.4 The de-
vice used for this purpose was a compact and simple hand tool that
could easily be operated in a cramped and narrow space. The essential
element of this tool was a spring -steel strip over which the fibers were
stretched. The mechanical characteristics of this strip primarily
determined the stress distribution in the fibers, and, thus, by a proper
choice of strip thickness, we were able to choose the appropriate ratio
of bending to tensile stress for the particular fibers to be fractured.

To prepare the ends of the fiber tape for splicing, one proceeds as
follows :

(i) The plastic of the tape is removed over a short distance so
that the fibers are exposed in the area where the end is to be
prepared.

(ii) The tape is placed between a spring -steel strip and two fric-
tion plates, so that the exposed area is located under a diamond
stylus.

(iii) The spring -steel strip and the tape are bent. At the same time
the friction plates slide a small distance along the spring -steel
strip. This sliding action exerts an additional amount of tension
on the tape, so that the optimal ratio between longitudinal
and bending stress is obtained in the fibers.

(iv) The diamond stylus (tip radius 50 ihm) is now drawn across
the exposed fibers to produce scores. The slight pressure of a few
grams imparted by a phosphor bronze spring suffices to pro-
duce scores of a few micrometers in depth. As each fiber is
scored, a fracture starts at the score and proceeds across the
fiber producing a flat surface perpendicular to the fiber axis.

For a more detailed explanation of this process, see Ref. 4. The order
of the steps explained above is not imperative. As an alternative, the
scoring can be done before tension is applied.

Figure 1 shows a typical array of fiber ends obtained in this way.
The fibers used were multimode fibers having a high -silica core with a
diameter of about 80 pan and an outer diameter of 120 Am. To make a
tape splice, we prepared the ends of two tapes in the way discussed
above. The tapes were then positioned slightly above a small grooved
chip made from lead, copper, or aluminum (see Fig. 2). The chip was
roughly 1 cm long and 3 to 4 mm wide. The grooves were embossed
using a stainless -steel head that had six adjacent 90 -degree grooves,
each 80 /Am deep. As shown in Fig. 2, the fibers were lowered into
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Fig. 1-Tape end prepared by simultaneous fracture of fibers. Fibers were epoxied
together after end preparation to keep them aligned for electron micrograph process.

METAL PLATE-._

FOAM RUBBER -

GUM RUBBER SHEET -

FIBER TAPE,

EMBOSSED CHIP--.

Fig. 2-Sketch of splice arrangement before assembly.
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grooves by pressing from the top with a stack made of (from top to
bottom) a lead weight, a foam rubber pad, and a sheet of gum rubber
about 150 Am thick. After the fibers were lowered into the grooves, the
tapes were gently pushed together in axial direction.

Tapes 2 m long were used to measure the splice loss. To simulate
longer lengths, we injected light with a power distribution approximat-
ing the steady-state distribution of these particular fibers. We first
made a large number of loss measurements in unbroken and unspliced
tapes, switching back and forth between the five fibers of each tape
to determine the measuring uncertainty. We found a distribution that
had an rms value of 1.7 percent. The splice loss was then determined
by measuring the transmission before and after a small part (a few
centimeters) was removed from the middle of each tape and the ends
spliced together as explained above, adding a drop of index -matching
oil or glycerin before covering the arrangement with the gum rubber
sheet. The optical loss of the length of fiber removed was insignificant.
Figure 3 shows a histogram of the splice losses measured in 60 attempts.
Evidently some loss values were negative as a result of the measuring
inaccuracy. Figure 4 shows the (smoothed) cumulative loss distribu-
tion as measured and after the 1.7 -percent rms measuring uncertainty
was discounted. Of all measurements, 99 percent show a loss of less
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Fig. 3-Histogram of measured splice loss.

474 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1975

8



100

vl 80
N
(7)
U)
co
<
z
<I
i- 60
NN
w
-J
U)
w
(/)
(/)0
- I 40
LL
0
I-z
u,0
cc
w
°- 20

0

0
SPLICE LOSS IN dB
0.1 0.2 0.3

I I I

MEASURED LOSS

DISCOUNTING 1.7% RMS
MEASURING UNCERTAINTY

i I I

-2 0 2 4
SPLICE LOSS IN PERCENT

6 8

Fig. 4-Cumulative distribution of splice loss as measured and after discounting
the 1.7 -percent rms measuring uncertainty.

than 0.25 dB. However, a large part of the scatter of these measure-
ments results from the measuring process and the actual cumulative
distribution would predict that 99 percent of all splices would have a
loss of less than 0.15 dB.

We attribute the low -loss values obtained not only to the quality of
the end faces, but also to the extreme care taken during these measure-
ments to keep the splice area clean. Earlier microscopic observations
of groove -aligned fiber array splices taught us that, generally, losses
in the 10 -percent range can be correlated with a contamination in the
splice area which reveals itself by large -angle scattering at the joint.
In most cases, we were able to identify the contaminating material
on the end face of the fiber even after the splice was taken apart; these
materials tenaciously adhere to the fiber surface often even after
ordinary cleaning procedures. We learned that an extended period of
ultrasonic cleaning with isopropyl alcohol of all parts involved in the
splice was necessary before the splice loss decreased to the levels
measured. The contaminant is usually not added during the end prep-
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aration ; it is not the result of dust accumulation from the surrounding
air caused, for example, by electrostatic forces. We believe that the
contamination results from a contact of the fiber ends with con-
taminated surfaces, such as the grooved chip or the rubber sheet. We
believe, also, that this sensitivity to contamination is a sufficient reason
to consider splicing processes in which the fiber end surfaces are
prepared and exposed after alignment has been achieved.°

Permanent splices on the basis of the techniques described here
were prepared by replacing the index -matching oil with a special
epoxy. This epoxy flows down along the grooves and the fibers and
permanently attaches the tape ends to the embossed metal chip and
the gum rubber sheet. The rubber sheet ends extending beyond the
chip (see Fig. 2) are then folded around the chip and attached to its
bottom surface. Figure 5 shows a finished five -fiber splice. Splices of
this kind were found to have sufficient intrinsic strength to be used as
splices of cable subgroups ; additional armor would of course in this
case be provided around a stack of such subgroup splices in a cable.
The loss distribution for these permanent splices showed no deviation
from that of splices made using index -matching fluid, and no aging
effect was noticed, at least not within the period of a few days. The
epoxy has a room -temperature curing time of several hours, but faster -
curing epoxies are being studied and should replace the one used with-
out significant alteration of the results.

Fig. 5-Finished five -fiber splice.
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We are grateful to R. D. Standley who prepared the electron micro-
graph of Fig. 1.
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All -Glass Optical -Fiber Tapes

By D. L. BISBEE and P. W. SMITH
(Manuscript received September 18, 1974)

We propose and demonstrate a new approach to the problem of splicing
optical fibers in a fiber cable. The optical fiber cable subgroups (tapes)
are made in such a way that the relative positions of the optical fibers are
accurately maintained. By using glass as a rigid matrix material in
which the optical fibers are held, we demonstrate that a simple scoring and
stressing technique can be used to simultaneously prepare all the fiber
ends for splicing.

The potential of optical fibers as transmission media for optical
communications systems has stimulated much work on the various
problems that need to be overcome before a practical system can be
built. One of these problems involves the development of techniques
for connecting and splicing these fibers and fiber cables. Although
several laboratory techniques for splicing fibers and groups of fibers
with low splice losses have now been developed, they are all relatively
complex techniques that require operations of high precision and are
thus difficult to carry out in the field.

In this paper, we propose a different approach to the splicing
problem. Linear arrays ("tapes") of optical fibers have been suggested
as building blocks for optical fiber cables,' and a number of techniques
for producing plastic -bonded tapes have been investigated.2 We propose
here a technique for fabricating a precision all -glass optical fiber tape
that would have considerable advantages with regard to splicing opera-
tions. The precision operations would be performed during the manu-
facturing of the tapes, and splicing operations in the field would become
relatively simple. The basic idea is to make a fiber tape in which the
optical fibers are held in a rigid matrix with their relative positions
accurately maintained. Further, by using a glass for the rigid matrix
material, we can greatly simplify the problem of preparing the optical
fiber ends for splicing : All the fibers comprising the tape can be pre-
pared for splicing in a single operation by utilizing the scoring and
stressing technique described earlier in Ref. 3.
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We made all -glass tapes by fusing conventional clad soda -lime -
silicate glass optical fibers together with lower melting point glass
fibers in a precision jig. To get a stable bond, the glasses must have
very nearly the same thermal expansion coefficient even though their
softening temperatures are different. Glasses with these characteristics
can be obtained.

As an example, let us consider glass composed of Si02, Na20, and
CaO ("soda -lime -silicate" glass). Morey4 defines the softening point
of glass as that point at which the viscosity becomes 107.6 poises. From
Ref. 4, we see that by changing the composition of our soda -lime -
silicate glass, it is possible to make one composition that has a vis-
cosity of 107.6 poises at 650°C and another with a viscosity two orders
of magnitude greater than this at the same temperature. The thermal
expansion coefficient of the first will be 9.7 X 10-6 per °C, while that
of the second will be 11.3 X 10-6 per °C. Thus, we can obtain glasses
that have viscosities different by two orders of magnitude at the
softening point, while their thermal expansion coefficients differ by
only 15 percent. By using such glasses, we could ensure that the de-
formation during the fusing operation would take place only in the
low -melting -point glass, and the optical fibers would be essentially
undistorted.

The optical fibers used for these experiments were conventional clad
multimode fibers made from soda -lime -silicate glass. The low -melting -
point fibers were made from ferrite sealing glass obtained from the
Corning Glass Works (No. 8463). The optical fibers had a softening
temperature of 650°C and a thermal expansion coefficient of
9.7 X 10-6 per °C, while the softening temperature of the low -melting -
point fibers was 375°C, and the thermal expansion coefficient was
10.4 X 10-6 per °C.

Figure 1 is a schematic view of the precision guide used to fabricate
the all -glass fiber tape. The optical fibers are held accurately in place
by the precision guide, while the low -melting -point triangular fibers are
introduced in such a way that they press against two adjacent optical
fibers. By means of a heating element, the glass is fused at the contact
points and then allowed to cool as the completed tape is pulled out of
the guide.

The heating element is a 500 -Am outer diameter nichrome wire
mounted on a manipulator. When the heating wire is brought to
within 100 Am of the cold fibers and heated by passing current through
it, the triangular fibers melt and form beads of molten glass that touch
the heater. This glass is then smoothly spread along the round fibers
as the fibers are fed into the guide, giving a uniform bond.

The precision guide is made of boron nitride-a material that
resembles soapstone. It is used because it is easily machinable to
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Fig. 1-Schematic diagram of the device used to fuse the all -glass fiber tapes.

close tolerances, has a slick surface, and is not affected by the heat
applied.

To feed the fibers through the precision guide, rollers are used as
shown in Fig. 1. One pair of rollers is used to push the triangular fibers
into contact with the round fibers, and one pair is used to pull the
fused tape out of the guide. The lower roller in each pair is a 6.25 -mm
shaft with a tight -fitting sleeve of vinyl 0.5 -mm thick giving an outer
diameter of 7.25 mm. The upper roller of each pair is a 6.25 -mm shaft
with a flexible plastic sleeve giving an outer diameter of 9.38 mm. One
of the smaller rollers is driven by a variable speed motor and is con-
nected to the other small roller through an idler gear. Before entering
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the guide, the fibers were cleaned by passing through a solvent -soaked
wick.

To make the tape, the heater current is turned on while the heating
wire is still far from the fibers (more than 250 am), the driving motor
is turned on, and then, while the fibers are passing through the guide,
the heating wire is lowered by a manipulator (while the operator
watches through a microscope) until the triangular fibers melt and
bond smoothly to the round fibers. The tape was formed at about 3 cm
per minute. Figure 2 is a photograph of the resultant fiber tape.

It has previously been shown that, by scoring an optical fiber and
subjecting it to a properly tailored stress distribution, a smooth
fracture perpendicular to the fiber axis can be obtained.' It has also
been observed that such fracture behavior can be obtained with more
complex fiber cross sections. We used a diamond stylus to score the
fiber tape and fractured it by subjecting it to bending and tension
stress. The fracturing operation was performed with the aid of a
device similar to that described in Ref. 5. Internal strains would some-
times cause the tape to fracture in such a way that the break was not
perpendicular to the tape axis. Nevertheless, good fiber ends were
usually produced. Figure 3 shows a fiber tape end produced in this way.

The solder -glass fibers that were used tended to break very easily

Fig. 2-A section of all -glass fiber tape.
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Fig. 3-A fiber tape end prepared for splicing by the scoring and stressing technique.

and had to be handled with great care , thus, the tapes we made were
fragile. When fused together, the round and triangular fibers are so
intimately bonded together that a crack originating in the glass of a
triangular fiber would propagate across the whole tape. If low -melting -
point glass with better mechanical properties were used, we would
expect the finished tape to be appreciably stronger. As can be seen in
Fig. 3, the tape is no thicker than its round fibers, so it is flexible in the
direction of its thinner dimension.

Because the optical fibers are accurately positioned during the
manufacture of the tape, the most difficult part of the splicing problem
has already been solved, and the splicing of these tapes merely in-
volves preparing the tape ends by scoring and bending and placing
the prepared ends in a suitable holder with matching fluid and a cover
to hold the tape ends in place, as shown in Fig. 4. To make a permanent
splice, a transparent index -matching epoxy may be used. Note that at
no stage during the entire splicing process does one have to deal with
single optical fibers, and that the tapes can be placed by hand in the
splicing holder without the need for any precise visual alignment.
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Fig. 4-Schematic representation of tape splicing operations.

We would like to thank A. R. Tynes for pulling the optical fibers
and the triangular solder glass fibers used for these experiments.
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Synthesis of Speech From a Dynamic Model
of the Vocal Cords and Vocal Tract

By J. L. FLANAGAN, K. ISHIZAKA, and K. L. SHIPLEY
(Manuscript received July 17, 1974)

We describe a computer model of the human vocal cords and vocal tract
that is amenable to dynamic control by parameters directly identified in
the human physiology. The control format consequently provides an
efficient, parsimonious description of speech information. The control
parameters represent subglottal lung pressure, vocal -cord tension and rest
opening, vocal -tract shape, and nasal coupling. Using these inputs, we
synthesize vowel -consonant -vowel syllables to demonstrate the dynamic
behavior of the cord/tract model. We show that inherent properties of the
model duplicate phenomena observed in human speech; in particular,
cord/tract acoustic interaction, cord vibration, and tract -wall radiation
during occlusion, and voicing onset -offset behavior. Finally, we describe
an approach to deriving the physiological controls automatically from
printed text, and we present sentence -length synthesis obtained from a
preliminary system.

I. INTRODUCTION

Speech sounds can be synthesized by a variety of means used to
construct signal waveforms. Many ingenious methods have been re-
corded. But speech synthesis generally has the practical purpose of
producing intelligible sounds from control data that are as parsimonious
as possible. In other words, the control data should represent an
efficient, concise coding of the speech information. This motivation
applies as much to analysis/synthesis techniques for speech transmis-
sion as to computer voice -response systems which strive for efficient
vocabulary storage and high versatility in message fabrication.

Because speech is a human -generated signal, it is unlikely that a
synthesis method can achieve the ultimate parsimony of input control
without considerable attention to the parameters a human overtly
manipulates in speaking. That is, one increases the information
"built into" the synthesizer when its design exploits fundamental
properties of the human speech mechanism.

We therefore have chosen an approach to synthesis with which we
can identify overtly the significant physiological parameters important
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in speech production. Major system components obviously are the
mechanism of voiced -sound generation and the mechanism for intel-
ligibly modulating sound timbre, that is, the vocal cords and the vocal
tract. Our approach, unlike that found conventionally in the speech
literature, is not to make a linear separation of the sound source and
vocal tract. More than this, we believe that source/tract interaction
actually contributes built-in natural behavior that is significant in
synthesis. This natural interaction is missing in approaches that
assume linear separation of source and tract (unless provided at addi-
tional expense and coding effort in the input data).

The initial results stemming from this approach to synthesis are
described below.

II. ACOUSTIC MODEL OF VOCAL CORDS AND VOCAL TRACT

We view the acoustic system of the human vocal cords and vocal
tract as shown at the top of Fig. 1. The lungs are an air reservoir,
maintained at subglottal air pressure Ps by contraction of the rib -cage
muscles. The subglottal pressure is applied via the bronchi and trachea
passages to the variable -area orifice controlled by the vocal cords.

We model the cords as an acoustic -mechanical oscillator, wherein a
single vocal cord is described by two masses, each having an associated
stiffness and loss, which are "internally" coupled by a third stiffness.
In previous work,'-' we established the philosophy leading to this
description and gave a quantitative analysis of the vocal cord model.

Oscillation of the vocal cord model results in the glottal volume
velocity U,,. This quantity typically has an impulsive waveform and it
is the excitatory source for voiced sounds.

The vocal tract proper is a nonuniform tube, about 17 cm long in
man, extending from the cords to the mouth. Its cross-sectional area
varies from zero to upwards of 20 cm2. The nasal tract is an ancillary
tube about 60 cm3 in total volume and coupled to the vocal tract by
the trap-door action of the velum. Sound is radiated from the system
as a result of the volume velocities at the mouth Um and nostril Un,
and from vibration of the yielding sidewalls of the vocal tract.

Cross -dimensions of the acoustic system are small compared to sound
wavelengths of interest, and hence we confine our analysis to plane -
wave propagation in the tract. We therefore represent the acoustic
system as the bilateral, time -varying transmission line shown in the
lower part of Fig. 1. Formulation of this system follows that given by
Flanagan.'

As illustrated, the lossy lung volume is "charged" to subglottal lung
pressure P which is applied via the trachea -bronchi network, to the
glottal (vocal -cord opening) impedance Zg. This nonlinear glottal
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Fig. 1-Schematic diagram of the vocal cord/vocal tract system.

impedance depends upon the glottal flow and area A g, which in turn
depend upon the self -oscillating properties of the vocal cord model
described in detail in an earlier paper.' The resulting volume flow U,
is the excitation source for the vocal and nasal tracts.

The shape of the vocal tract is defined by its cross-sectional area
as a function of distance A (x), and the coupling to the time -invariant
nasal cavity is governed by the velar impedance Z. Volume velocity
at mouth Um and nostril U. flow through their respective radiation
impedances Z, and Z., both of which are in series with batteries
representing the constant atmospheric pressure P.. (This formulation
permits simulation of respiration as well.) The mouth and nostril
radiation impedances are those for a circular piston in an infinite
baffle.'

Parameters of control for the speech synthesis system are the
physiologically -based functions shown in Fig. 1. All vary with time.
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They are subglottal lung pressure P8, vocal -cord tension Q, rest (or
neutral) area of cord opening A00, nasal coupling N, and cross-sectional
area function of the tract shape A (x). We are concerned here only with
nonnasal sounds, hence nasal coupling will not figure in the discussion.

Each T -section of the vocal -tract transmission line is represented in
Fig. 2.5 An elemental length ix of the vocal tube has cross-sectional
area A, terminal sound pressures pi and P2, and terminal volume veloci-
ties Ui and U2. The sidewall has noninfinite mechanical impedance,
and vibrates in response to the enclosed sound pressure with displace-
ment t. This displacement radiates a per -unit -length sound pressure
Pwall. Relations between terminal values of pressure and volume

u,

(a) TUBE

C

ZRw

P2

U2

- PWALL

P2

POUT [P MOUTH +P NOSE +.11- PWALL dx]
0

0

U2

(b) NETWORK

Fig. 2-Circuit representation of plane acoustic wave propagation in an elemental
length of tube with yielding sideway.
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velocity for plane -wave propagation are given in the circuit in Fig. 2b,
in which L is the per -unit -length inertance of the air mass of the tube
element, R the viscous loss at the sidewall, G the heat -conduction loss,
C the acoustic compliance of the contained air volume, Z,,, the acoustic
equivalent mechanical impedance of the yielding wall, and Zr. the
radiation impedance of the wall, assumed to be that for a pulsating
right circular cylinder.'

The total sound output from the model is, following the long -wave
assumptions, the linear superposition of the mouth and nostril radia-
tion plus the spatially summated wall radiation.

In addition, every T -section of the transmission -line network in-
cludes a means for introducing turbulent noise excitation. This
capability is provided by a series random pressure source PN with its
internal resistance RN, as shown in Fig. 3. This technique has been
given in detail previously.4 The intensity (or rather mean -square
variance) of the random pressure source is controlled by the Reynolds
number of the flow at each network section, while the internal resis-
tance is similarly modulated according to the Bernoulli loss in a
constriction.' In both instances, the specified value of cross-sectional
area A and the calculated resulting volume velocity flowing through the
serial source completely describe the control functions. That is, no
additional input data are required.

More specifically, to simulate the conditions of turbulent -source
generation in any section, the amplitude of the noise pressure is made
directly proportional to the squared Reynolds number in excess of a

O

..-T--...0

Lw

Rw

Cw

ZR w

PN 0
/ - x RNe

-4 // I- - -A,;,,v, ,,,,- - -0
lk --i /

Fig. 3-Circuit representation of the turbulent noise source for each network
section. The intensity of the random pressure source, PN, and its self -resistance, RN,
are controlled by the volume velocity and cross-sectional area at each section.
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critical (threshold) Reynolds number for turbulent flow.4 The squared
Reynolds number is proportional to U2/A, whereas the internal resist-
ance of the turbulent source is, to first order, a flow -dependent loss
proportional to U1/ A'. Therefore, as the prescribed section area
becomes small in the presence of a large flow -velocity, turbulence condi-
tions are indicated and the intensity of the noise source and the value
of its internal resistance are increased. In the simulation, values of
every dependent variable are calculated on a sample -by -sample basis
to construct the time functions for the output sound pressure and all
other pressure and velocity quantities.4

As a consequence of continually noting the magnitude of the cal-
culated volume flow in each section and having the tract cross-sectional
areas continually prescribed as input data, the synthesizer auto-
matically introduces random noise excitation in any section when the
Reynolds number is sufficiently high to indicate turbulent flow. The
synthesizer, therefore, requires no additional data to produce voiceless
sounds, but uses exactly the same control parameters to generate both
voiced and voiceless sounds (or combinations of voiced and voiceless
sounds). As Fig. 1 has shown, these control parameters are P8, Q,
Ago, N, and A (x).

As a practical matter in the computer implementation, we use a
PN source produced from gaussian noise (or, rather, gaussian numbers)
bandpass-filtered from 500 to 4,000 Hz. Further, to insure stability,
the volume flow which modulates the serial noise source is low-pass
filtered to 500 Hz. In other words, the noise source is modulated by
low -frequency components of U, including the dc flow.

The transmission line model of Fig. 1 is described by a set of linear
and nonlinear differential equations in which all coefficients also vary
with time. This set of differential equations is approximated by
difference equations, as previously described,2 and programmed in a
laboratory computer for on-line control. Twenty network sections are
used to approximate the vocal tract. This formulation has permitted
initial experiments with physiologically -based control of the synthesis
model.

III. ASSESSMENT OF WALL IMPEDANCE AND EFFECTS ON FORMANT
BANDWIDTH

All elements of the transmission line network have been well estab-
lished in previous work, with the exception of the wall -vibration shunt
branch of the circuit in Fig. 2.

Assessment of wall effects in earlier calculations' utilized the only
available mechanical impedance measurements of human tissue,
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namely, chest, stomach, and thigh tissue. These data led to correct
order -of -magnitude values for wall -vibration damping of formant
resonances, but the values were clearly on the high side.

To better assess the wall impedance, we have done two things. First,
we have used data on human formant bandwidths to estimate contribu-
tions to losses in our model. And second, we have made direct measure-
ment of the mechanical impedance of the vocal -tract wall.'

Formant bandwidths have been measured for the human vocal
tract by van den Berg,' Bogert,' Fujimura and Lindquist," and Dunn."
Our programmed model allows us to adjust values of the wall -im-
pedance parameters to effect three consistencies. It permits us to
(i) adjust the wall -loss component to match glottis -closed formant
bandwidths, (ii) adjust the inductive reactance of the wall to produce
the observed mouth -closed, lowest value of first formant frequency of
about 200 Hz, and (iii) choose a wall compliance to produce wall
resonance substantially below 100 Hz. Small -signal -driven vibration of
the cord oscillator in the model permits calculations of model response
at any prescribed frequency. Furthermore, formant bandwidths mea-
sured on real speech allow additional cross-checks of parameters used
in the model formulation, especially for the loss components of the
cord -oscillator source. Application of this knowledge in our model
yields the formant bandwidth behavior shown in Fig. 4.

In particular, Fig. 4 illustrates how the wall viscous loss parameter
can be chosen to match glottis -closed formant bandwidth. This tech-
nique has recently been analyzed in extensive quantitative form by
Sondhi." The wall loss is selected to match measured formant band-
widths at formant frequencies around 300 to 500 Hz. In this fre-
quency range, the contributions to formant bandwidth are mainly
wall loss and glottal source loss. Viscosity, heat conduction at the
walls, and mouth radiation resistance represent relatively small
values (see Ref. 5, for example, for these calculation techniques).
Note, too, that in Fig. 4 the vertically -sloping line of calculated band-
width indicates the effect of wall impedance on the tuning of formant
frequency. In the absence of additional data, we assume a uniform
distribution of the per -unit -area wall impedance along the tract. The
value we use for the mechanical per -unit -area impedance is
(1600 + j1.5w)g/s/cm2, where w is the radian frequency. This value is
confirmed well by our direct measurements of wall impedance.'

Formant bandwidths measured in real speech" permit a cross-check
of the glottal oscillator parameters chosen in previous work.' Figure 4
shows that the contribution to formant damping of the glottal source
falls into the correct range of real speech measurements. This is a
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diagram shows the relative contributions of loss to the total formant bandwidth
produced by the cord/tract model.

gratifying confirmation of cord parameters chosen strictly on other
bases, namely, according to physiological properties and oscillatory
behavior.'

The loss contributions of the glottal source in Fig. 4 are calculated
for a nominal, midrange value of glottal rest area, namely A00 = 0.05
cm2. The glottal contribution to formant bandwidth is, of course, a
function of 2100. Figure 5 shows glottal loss contributions for other
values of A,.. Note, especially, how the articulatory configuration
of the tract influences the contribution of the glottal source to formant
damping.

IV. DYNAMIC BEHAVIOR OF THE CORD/TRACT MODEL

How does this physiologically -based model of the vocal cords and
vocal tract behave under dynamic control? Time -varying control
inputs in the present study are P,, Q, A00, and A(x). An obvious
major problem is the determination of realistic values of these param-
eters. As a first cut, fairly realistic data can be derived from direct
measurements of lung pressure during speech," laryngeal muscle
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electromyography," glottal transillumination," glottal pulses," and
cine X-rays of the vocal tract." An important element at present is that
all these data are not simultaneously available for a given subject.
Experiments now under way aim to provide some simultaneous
measurements."

The physiological literature does provide adequate bases for dynamic
tests on some simple utterances, using idealized input controls. We
have, therefore, made first tests on vowel -consonant -vowel syllables
(v -c -v) in which stress may be on either initial or final vowel, and
where the intervocalic consonant is a voiced or unvoiced labial stop.
These combinations also provide a convenient vehicle for exposing
other physiologically realistic properties of the cord/tract model.

Figure 6 shows the synthesis of the syllable /'aba/. Input controls
are indicated in the top three traces. Because of the initial stress, P.
falls during the labial closure to a lower value. Because the intervocalic
stop is voiced, A,. is maintained in a position favorable to cord oscilla-
tion throughout. Cord tension, not shown, is also maintained constant.
Any pitch changes are effected solely by P8 variation and by the inter-
action of tract load on the cord oscillator. Articulatory shape A (x)
changes from /a .- b -> a/. Because of space limitation in the illustra-
tion, only the mouth area, A ,n, is displayed.

Response behavior of the model to these input controls is shown in
the bottom five traces : the sound spectrogram of the total output
sound ; A,; U,; the pressure waveform of the total output sound P;
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Fig. 6-Control functions and sound output from the cord/tract model synthesizing
the syllable /'aba/. The effects of sound radiation from the yielding sidewalls is
evidenced in synthesized sound, and the vibration of the mouth cavity wall is illus-
trated by the AA trace.

and the incremental change in area AA of the oral cavity in response
to the contained sound pressure.

Several things are notable. In the sound spectrogram, notice the
intense initial vowel /a/ with relatively elevated pitch (about 120 Hz)
and with natural formant transition into the stop. Voicing continues
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closure.

throughout the labial closure, at slightly reduced pitch (about 95 Hz),
and with the sound output coming solely from the wall radiation. The
sound level during the lip closure is on the order of 20 dB lower than
the mouth -radiated vowels. Natural transition into the final vowel
follows, with voicing at reduced pitch (104 Hz) and intensity.

The waveforms of the A, and U, oscillations confirm the spectro-
gram display, as does the waveform of output pressure. The wall -
radiated sound is dramatized by examining the incremental area
change in the yielding -wall oral cavity. The area perturbation is seen
to follow pitch -synchronously the glottal pulses of Ua.
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It is instructive to contrast this soft -wall behavior with that which
obtains when the tract is made hard -walled; i.e., by letting Z,, 00 .

This behavior, for exactly the same input control data, is shown in
Fig. 7.

Now, because the tract walls do not yield and permit enlargement,
the transglottal pressure is rapidly diminished during the labial closure,
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and cord oscillation rapidly ceases during the /b/ consonant. Also, no
sound is radiated from the tract walls, and only silence prevails during
the lip closure. Offset and onset of cord oscillation, with lip closure and
release, appears abnormal when compared to transillumination data
taken on human vocalization. This latter factor may be more important
perceptually than the actual absence of sound during lip closure.

Dynamic behavior for a voiceless intervocalic labial stop is displayed
in Fig. 8. The syllable is /a'pa/, with stressed second vowel. Again,
control function input is indicated by the top three traces. Only mouth
area A. is again displayed, and cord tension Q is held constant. Note
now, however, the A00 control effects voiced -voiceless switching by
moving from a value that sustains cord oscillation to one that does not.

The spectrogram of the sound output shows the low -intensity, low -
pitch initial vowel with natural formant transitions into the stop. Cord
oscillation ceases during the closure because the cords are overtly
pulled apart. (The lateral and posterior crico-arytenoid muscles ac-
complish this in the human larynx.) The cords come back together
as the lip closure is released, and oscillation starts with an abrupt
bounce that is quite characteristically seen in glottal transillumination
data on humans." Natural formant transition is made into the final,
high -intensity, relatively -higher -pitched vowel.

The U, flow continues without cord oscillation through the lip
closure, as the tract wall yields and enlarges the volume forward of
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component before oscillation commences. This flow is the source of
aspiration in the consonant release.
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The automatic turbulence generation is indicated by the lower trace
in Fig. 8, which is the squared Reynolds number for the volume flow
at the lips. As discussed previously, turbulence (noise) intensity is
monotonely related to this function, in excess of a threshold value.'
The high spike in R., at about t = 0.3 s indicates a turbulent burst
of noise with approximately this amplitude envelope. The sound out-
put pressure waveform and the spectrogram show the result of this
turbulence generation. The result is consistent with aspirated releases
seen in the /p/ consonant. Furthermore, auditory assessment of the
synthesized sound indicates a natural -sounding syllable.

This synthesis also highlights the importance of the Ago control for
switching between voiced and unvoiced sounds. A more detailed indica-
tion of this behavior is shown in Fig. 9. Three distinct regions of stable
cord behavior are indicated. For given cord parameters, stable behavior
is determined by the interplay of P8 and Ago.

An additional examination of dynamic behavior dramatizes the so-
called delayed voicing onset. The syllable /apa/ is generated with the
Ago and Am controls shown at the bottom of Fig. 10. The cord tension,
Q, is maintained constant. Lung pressure, P8, however, is varied to
correspond to initially stressed vowels (conditions a and b) and a
finally -stressed vowel (condition c). Notice especially in condition b,
the initially rising, then abruptly falling P. conspires with the first
opening, and then closing Ago control to produce substantial delay in
the resumption of voicing. This is found characteristically in human
speech."

V. AUTOMATIC GENERATION OF CORD/TRACT CONTROL

Ultimately, we wish to use the cord/tract model as an end -organ
for speech synthesis. What are the prospects for obtaining the necessary
controls automatically by rule?

In recent work on synthesis -by -rule, Coker and Umeda" generated
synthetic speech from printed text using programmed algorithms for
articulatory dynamics and for speech prosody. Their speaking machine
includes a pronouncing dictionary, a syntax and prosody analyzer,

Ps

DYNAMIC CI

AGO
PRINTED

TEXT
INPUT

MODEL OF
ARTICULATION
AND PROSODY

(COKER AND

PARAMETER
TRANSFORMATION

UMEDA)
A(x)

Fig. 11-Automatic generation of control functions for the cord/tract synthesizer
from printed text input.
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Fig. 13-Example of automatic synthesis from printed text for a sentence contain-
ing voiceless consonants.

and a dynamic model of vocal -tract shape. The text synthesis program
calculates several functions that can be transformed into the param-
eters needed for the control of our cord/tract synthesizer. The sequence
of conversions is illustrated in Fig. 11. As determined from the Coker-
Umeda machine, overall sound intensity can be related to P voice
pitch to Q and P voiced -unvoiced switching to A00, and tract shape
to N and A (x).

Fi
cord

TOP VIEW

VOCAL TRACT

LUNGS

FRONT VIEW

14-Format of the computer movie illustrating dynamic behavior of the vocal-
odel.
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With the collaboration of Coker and Umeda, we have made an initial
trial at synthesis of connected speech by making a transformation of
the prosody and area -function output of their text -synthesis machine.
An illustration of this first attempt to marry the two systems is shown
in Figs. 12 and 13. Figure 12 includes plots to show how the machine -
determined values of voice pitch frequency and intensity are trans-
formed into the Q and P, parameters required by our synthesizer. The
spectrogram of Fig. 11 shows completely automatic synthesis of a
voiced sentence. Figure 12 shows automatic synthesis of a sentence
containing voiceless sounds.

VI. SLOW-MOTION COMPUTER PICTURES OF CORD AND TRACT BEHAVIOR

To aid in visually assessing the complex control and interaction of
the model components, we programmed high-speed microfilm dis-
plays of the cord and tract motion. The 16 -mm movie film, when shown
at 24 frames/s, corresponds to a 100:1 slowdown of real time. One
can, therefore, examine detailed cord motion and cord/tract
interactions.

One display shows details of the two -mass vocal -cord model under
dynamic control. The film format is given in Fig. 14 and shows simul-
taneously a top view of the glottal opening and a front (anterior -
posterior) view of the two -mass cord model. Some prints of frame
sequences are given in Fig. 15. The time between displayed frames is
20 ms.

A second display, given in Fig. 16, shows a schematized side view
of the whole vocal system. The vocal tract is simplified to four cyl-

TRACT

CORDS MOUTH

LUNGS

Fig. 16-Format of the computer movie showing dynamic articulatory relations
between lung pressure, cord motion, and tract shape.
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(b)

(d)

(e)

-1P

Fig. 17-Frame sequence from the computer movie illustrating dynamic behavior
of the cord/tract synthesizer. The sequence is taken from the synthesis of /a'pa/.

indrical sections only, but with lengths and areas that change with
time. The magnitude of subglottal pressure is represented by the
elliptical contours in the lung volume which expand or contract with
time. Figure 17 shows a sequence of motion frames, spaced by 20 ms,
for generation of the syllable /a`pa/.*

VII. CONCLUSION

Initial experiments with this formulation of cord and tract properties
suggest that the physiologically -based control functions have distinct
advantages in terms of "built-in" information. That is, much natural
behavior-such as vagaries of voicing onset and offset, fine -structure
pitch fluctuations occasioned by tract motion, and voicing behavior dur-

The data of Fig. 17 correspond to those of Fig. 8.
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ing occlusion-is produced automatically in the model. In other words,
faithful modeling of significant physiological parameters leads to in-
put control data that can be rather parsimonious. It is therefore not
necessary to describe input commands with intricate, high -information -
rate detail. The model is able to generate many of these intricacies of
natural behavior from relatively simple input control.

If continued work proves the cord/tract formulation to indeed
possess the desired physiological constraints and attributes, the
synthesis approach would also seem promising as a relatively sophisti-
cated end -organ synthesizer which could be driven by models of
prosody and articulation, such as provided by the Coker-Umeda text -
synthesis system. This is an ultimate long-range goal.

Further than this, however, the model promises some extensive
potential for studying the dynamics of real speech. Feasibility is
presently being examined for automatically adapting the model's
synthetic output to match real speech waveforms (for example, in a
least -squares sense). Gradient -climbing adaptive algorithms are being
examined for this.2' Obvious difficulties are model nonlinearities and
multiple local -minima traps which may be encountered. Continued
work will determine whether these analytical questions can be solved.

Finally, since the present cord/tract synthesis model incorporates
the technique for automatic generation of turbulence devised earlier,'
this feature permits detailed study of the remarkably delicate articu-
latory timing the human employs in transitions between voiced and
voiceless sounds. The cord/tract model therefore fills a critical need
for a framework within which to organize and assess articulatory
measurements now being accomplished.*
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RC Active Filters for the D3 Channel Bank

By R. A. FRIEDENSON, R. W. DANIELS, R. J. DOW,
and P. H. McDONALD

(Manuscript received August 1, 1974)

The development of the voice frequency active filters for the D3 channel
bank is described. These filters are the first single -substrate RC active filters
using thin-film tantalum RC and silicon integrated -circuit technology to be
produced on a large scale by Western Electric. To create complete con-
fidence in both the design and the new technology, an extensive model
building and testing program was undertaken. In addition, continuous
interaction with manufacturing engineers resulted in a design that
facilitated the introduction of this new technology in a large-scale manu-
facturing environment.

Significant advances were made in reducing the complexity of tuning
active filters. In fact, the tuning and testing procedure has been adapted
for use with a totally automated computer -controlled test set. Furthermore,
a Monte Carlo statistical simulation of the manufacturing process
of the filters was developed. This model includes tolerances of the manu-
factured components, test set errors in measuring gain and component
values, resistor adjustment accuracies, and temperature and aging be-
havior of the components. This computer program has been an invaluable
tool in determining the requirements for tuning, testing, and optimizing
the final design for minimum manufacturing cost.

I. INTRODUCTION

Resistance -capacitance active filters are a relatively new addition to
the family of frequency selective networks. Although active filters have
been in existence for 20 years, they have not been widely used because
passive filters have been less expensive. However, the concurrent de-
velopment of silicon integrated circuits, tantalum thin-film technology,
and automated computer -controlled test sets have made RC active
filters a practical alternative to passive filters at voice frequencies.

This paper deals with the design and development of the voice-
frequency Re active filters used in the D3 channel bank.'.2 These filters
are realized in thin-film tantalum technology with beam -leaded silicon
integrated -circuit operational amplifiers on one ceramic substrate.'
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New analysis4'5 and modeling techniques, more efficient optimization
algorithms,' the concept of statistical design,' and more flexible
machine aids to physical design gave the network designers powerful
tools with which to attack the design process.

II. DEVELOPMENT PROCESS

The development process involves a number of interrelated steps.
Neglecting any of the steps can result in a design that either does not
meet requirements or is unmanufacturable at a reasonable cost.
Traditionally, the first step is a careful analysis of the filter require-
ments. This will determine the order of the filter and, possibly, the
technology needed for the physical realization (e.g., Lc, RC active, or
mechanical technology). Next, the initial design is undertaken. This
step requires accurate models for the components and general-purpose
analysis and synthesis routines. Unfortunately, when initial designs
using new technologies are breadboarded, requirements are very
rarely met. In addition, the physical realization is either too large
and/or the network is too costly. Thus, we must optimize the network
to meet not only electrical requirements but also size, environmental,
and cost restrictions. Next, sensitivity studies must be undertaken to
determine both the viability of the design and whether or not manu-
facturing adjustments (tuning) are necessary. Since the designer
cannot afford to wait 10 or 20 years to see if his design meets perform-
ance objectives in the field, a statistical simulation of the manu-
facturing process and field performance is useful. This simulation can -
analyze the effects of component and adjustment tolerances, simulate
the tuning procedure and temperature and aging effects, and statis-
tically optimize the design to give both the greatest manufacturing
yield and a prediction of the end -of -life performance.

In the design of filters, early attention to the physical realization
and tuning and testing for manufacture is important. Lack of atten-
tion to these details can result in an unmanufacturable design and/or
a design that has excessive cost. In addition, when new technology is

introduced, the designer must closely follow the initial manufacture
of his design to aid the manufacturer in overcoming initial production
hurdles.

III. FILTER ENVIRONMENT AND REQUIREMENTS

The D1 and D3 channel banks' are the terminals for the T1 PCM
repeatered line."'" The T1 PCM line carries 24 telephone conversations
over two cable pairs. A simplified sketch of the voice frequency end of
the D3 channel bank is shown in Fig. 1. A voice -frequency analog
signal from the switching equipment passes through a hybrid trans -
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Fig. 1-Simplified model of PCM channel bank.

former. It is then amplified and bandlimited by the transmitting low-
pass filter. Subsequently, it is converted into a pulse -amplitude modu-
lated (PAM) signal by a JFET (junction field-effect transistor) switch
operating at an 8 -kHz rate. The PAM signals from the 24 channels are
sequentially encoded into a binary bit stream (1.544 megabits/s) and
sent out as PCM signals over a line. On the receiving end, the incoming
PCM signals are sequentially decoded and converted to PAM signals.
The analog signal for each individual channel is then recovered from
the PAM signal by passing it through an interpolating receiving low-
pass filter. The analog signal then passes through the hybrid trans-
former to the switching equipment and subsequently to the subscriber.

The transmitting band -limiting filter must present a good impedance
to the hybrid transformer and negate the effect of the switched load
impedance. In addition, it must pass frequencies between 200 and
3200 Hz with less than ±0.09 -dB ripple and suppress frequencies
above 5 kHz by at least 30 dB. At half the sampling rate of 8 kHz
(or 4 kHz), there must be at least 15 dB of suppression. An RC active
filter is ideal for this voice -frequency application, since the operational
amplifier output will be impervious to the time -varying load, and the
passband ripple performance is not degraded by inductor losses. The
above requirements can be met with a fifth -order Cauer-Chebyshev
filter. To obtain a low-cost, highly reliable filter conducive to high -
volume manufacture, thin-film tantalum technology' was chosen for
the physical realization.
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One method of realizing a multiple -order active filter is cascading
noninteracting lower -order sections. This realization consists of two
stages. The first stage is a modification of a low-pass notch section
(Fig. 2) developed by J. J. Friend." It is a differential -input single
operational -amplifier section. The second stage is a twin -T notch
section" that has been modified by the addition of an RC network
(Fig. 2) to include the pole on the negative real axis. Their respective
transfer functions are

S
0,221

T1 (S) =

and

pl
S2 + + W21

kep1

(1)

T2 (S) = S2 +
42

(2)

(s2 )2(-)°) s 42)(s ± a)
132

The nominal performance of each section and the overall design
is given in Fig. 3.12

The smoothing filter on the receiving side of the channel presents
the designer with a difficult problem. It has a time -varying, rather than
a time -invariant, generator impedance. This is caused by the JFET
switch, which operates at an 8 -kHz rate (125 As) and is "on" for 3.51.1s.
The switch working in conjunction with the input impedance of the
network contributes an additional frequency -dependent gain char-
acteristic to the filtering function of the network. A detailed descrip-
tion of the design of this filter is given in the next section.

Fig. 2-Configuration of transmitting filter.
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The design objectives of the receiving filter are as follows:*

(i) Passband ripple (200 Hz -3200 Hz) < ± 0.16 dB.
(ii) At 3300 Hz : 0.16 dB > gain _>.: - 0.60 dB.

(iii) At 3400 Hz : 0 dB > gain - 1.20 dB.
(iv) At 4000 Hz : gain < - 15 dB.
(v) Above 5000 Hz : gain < - 30 dB.

(vi) Gain at 1000 Hz : 4.75 dB ± 0.02 dB.

In addition, the filter must absorb the following manufacturing
and environmental variations:

(i) Switch "on time" : 3.1 As to 3.7 iss.
(ii) Switch "on resistance" : 50 SZ to 200 O.
(iii) Temperature : 0°C to 60°C.
(iv) Aging : 20 -year life.

IV. INITIAL DESIGN OF THE RECEIVING FILTER

The configuration and nominal performance of the receiving filter
are given in Figs. 4 and 5, respectively.13,5 If the switch were not pres-
ent, the requirements in Section III could be met by a fifth -order

All gains and losses are relative to 1000 Hz.
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Cauer-Chebyshev transfer function of the form

T (s) =Vout
Vin

8

i

9 10

(82 + 41) (s2 -F - cd2)

--K[82 + (0) pi/ Qpi)8+41][82+ (6)7,2/ Qp2)8-1-42](s±«) (3)

The first pole -zero pair can be realized with a second -order tuned
twin -T." The real pole at s = -a could be realized with a first -
order section, although an operational amplifer can be saved by com-
bining this pole with the second pole -zero pair to form a third -order
twin -T section.

To maintain the gain level and reduce the sensitivity to switch "on
time" and "on resistance" variations, the input stage must provide
some "holding" function." An ideal sample -and -hold network would
accomplish this, but it would require an additional operational
amplifier. Therefore, a holding capacitor was added to the input
stage. When the switch is on (for a nominal 3.5 As), the capacitor
Ch is charged. During the off time (121.5 As), the capacitor will slowly
discharge through the network if the input impedance is at a high
level ( >100 kg). The switch working in conjunction with the high
input impedance of the first stage acts as a lossy sample -and -hold
network with a (sin x) /x -type frequency -dependent gain character-
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istic. This gain characteristic has minima at multiples of the 8 -kHz
switch rate (E1/E in Fig. 5).

To design this filter, we could first assume that no switch or holding
capacitor is present. An initial network would then be developed, to
which the switch -and -holding capacitor would be added. Because of
the roll -off introduced by the lossy sample and hold, further optimiza-
tion would be required. Using a state -variable switched -filter analysis
program in conjunction with a general-purpose optimization pro-
gram,4,5 the desired frequency characteristic is obtained (Fig. 6).

The program output gives the element values of the first stage of the
filter (including the holding capacitor) and the transfer function co-
efficients of the second stage of the filter. To realize the second stage,
the element values must be described as a function of the transfer
function coefficients. The transfer function for a tuned, twin -T, second -
order section with a preceding RC stage can be written as

82 + 0.,2,T(s) = K
[82 + (cup/qp)s + con(s + a)

(4)

or
s2 + co2zT(8) = K 83 + A;82 + 44.;8 ± A;

If we define

(5)

13 = 1 + (RA/RB),
ci = (2CL/C1),
c2 = (CL/C), (6)

r1 = (2R1/RL),
r2 = R/RL,

and assume the twin -T is symmetrical and tuned, the coefficients of
(5) can be written as

A; =

A; =

K= RC(1 + ci + CO

2 1

Cs) z = (R1 C1)2

(7)

(8)

1

1 +
ri + ci

(1 + ci + c2) [ RC +R12+ R1C1 (2

+ R12 C (2 - # + cl + 42' )] =+a (9)
1

(1 + ci + C2) [ 1 (±Rir1C+1)2C2 + RC R21 R2 (2 # + 9'1 +2 ci )

+R12C1
C

(2 -/3 + rid = 4 + a (10)
qv
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21; = -1 (1 + ri + r2 \ 1 2

RC 1 + ci ± c2) (R1 C1)2
= cova. (11)

Since there are more parameters (elements) than constraints (co-
efficients), the designer can optimize both the absolute values of the
elements and the element value ratios, in addition to matching the
required coefficients. An interactive computer program" was used to
obtain the element values of the third -order twin -T.

V. SENSITIVITY CONSIDERATIONS

An important concern in the design of filters is the degradation of
the frequency response because of environmental and element value
changes. Some portions of this degradation can be controlled by speci-
fying components with tight tolerances, or by carefully tuning the
filter. Others can be controlled by matching the temperature co-
efficients of the components used. However, there are some uncontrol-
lable changes, e.g., aging, adjustment tolerances, and measurement
tolerances. The sensitivity of the filter design to these changes will
determine whether a particular technology can be used in the realiza-
tion, the amount of tuning required, the margin requirements of the
design, the tolerance of the components, and, subsequently, the cost
of the filter.

Many approaches can be taken for analyzing the sensitivity of the
filter to element changes. One is the degradation of the frequency
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response caused by all elements taken one at a time. This method is
very useful in determining which elements require tight tolerances and
whether tuning or tracking is required. Another is the variation of the
frequency response under true manufacturing and environmental
variations. This would involve all components varying according to
some statistical description.

As an illustration of the first type of sensitivity, Fig. 7 shows the
degradation of the frequency response of the receiving filter when each
capacitor is increased in value by 1 percent. Although the response
degrades significantly with these capacitor variations, the degrada-
tions tend to cancel if the capacitors vary in the same direction (track).
In fact, as can be seen from eqs. (5) through (11), if the second -stage
capacitors track perfectly, i.e., all capacitors increase by 1 percent,
the only effect on the frequency response of that stage will be a shift
in frequency.

Also, from eqs. (5) through (11), it can be shown that if, in addition,
the resistors vary in the opposite direction from the capacitors, then
even this degradation is cancelled. Another point evident from Fig. 7
is that even ±1 -percent capacitor variations would cause the response
to miss the frequency requirements. Since thin-film capacitors can
only be manufactured to ±5 -percent tolerances, it is evident that
initial tuning of the network is necessary.

Fortunately, thin-film resistors and capacitors have opposite tem-
perature and aging characteristics. Thus, once tuned, the frequency
response is quite stable. However, since the tracking is not perfect,
further analysis must be undertaken." This is explained in Section
VII.

VI. TUNING

Many elegant tuning procedures have been developed for hybrid
integrated circuits."-" Most rely on gain and/or phase measurements
at a number of frequencies (one for each transfer function coefficient)
and adjustment of element values in some algorithmic fashion. Usually,
some form of descent algorithm, depending upon component sensitivity,
with a number of iterations is used to solve this multiparameter opti-
mization problem. Thin-film networks contain critical constraints. The
capacitors cannot be adjusted and the resistor values can only be in-
creased either by anodization2° or laser trimming.2'

For the above network, nine constraints must be satisfied. They are
the zero frequencies of each stage, the frequency of the real pole of the
second stage, the frequencies and q's of the two complex poles, and the
1 -kHz flat gain. In addition, the manufacturing deviations of the
switch "on resistance" and the holding capacitor must be compen-
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36

sated for. Consultations with manufacturing engineers indicated that
most iterative approaches that involved measurements of the per-
formance at a number of frequencies were impractical from a through-
put viewpoint, i.e., they took too much time.

From the manufacturing viewpoint, two points are critical: (i) the
adjustment sequence must be fast and (ii) the adjusted network must
meet the given frequency requirements. To accomplish both these
aims, the tuning procedure shown in Fig. 8 was developed. It con-
sists of two parts. The first is parametric ; that is, it depends only upon
component measurements and component adjustments. The second
is functional; the gain is measured at one frequency for each stage, and
an adjustment is made to bring the gain at that frequency to its
nominal value. Finally, the voltage divider network at the output
is used to trim the absolute through gain at 1 kHz to a predetermined
level.
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To tune the first stage of the filter, the switch -and -holding capacitor
are initially neglected. The remaining part is a second -order twin -T
notch filter whose transfer function is given in the appendix. Since the
capacitors Cl, C2, C3, and CL cannot be adjusted, their values are
measured. To obtain a null at the prescribed frequency, eqs. (22),
(25), and (27) dictate that

1 _ R1 ± R2
(Cl + C2)R3 - R1 R2 C3 '

_ 1
2

Ctlz - RI R2 C3 CS

(12)

(13)

Since the capacitor values are known, the constraints given by (12)
and (13) can be satisfied if we pick

and

R1 = R2 =
1

co, (CS C3)1

R3 =
R1 C3
2 Cl + C2
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To set the pole frequency, eqs. (22) and (32) can be used. Thus,

2 1 (2R1/RL) 2
cop

1 (CL/CS) (16)

Since all the variables but RL of (16) are known, RL can be used to
set co. Rearranging (16),

2R1
(17)RL = [1 + (CL/CS)](wi,/co.)2 - 1

At this point, we have calculated the resistor values necessary to set
the null, null frequency, and pole frequency of (28). To set the pole q,
eq. (30) can be used. It is repeated here for convenience.

al co,-= 1 # 1 2CL[
R3 Cl R2 CS R1 C3 CSq

+ RL1CS
CL

(1 + C'S). (18)

At this point, all the capacitors have been measured and R1, R2, R3,
and RL have been adjusted. Thus, the only additional adjustment that
can be made is on #, which is controlled by negative feedback resistors
RA and RB. In fact,

RA
13 = 1 - 

RB
(19)

Solving (18) for 0, we have

r 2CL 1 1 co13 = 1 + R3 Cl - (1 + CA ) (20)
CS R2 R1 C3 RL j -

To adjust 3 to coincide with that calculated by (20), RA and RB
are adjusted.

Because we have neglected the holding capacitor and switch "on
resistance," it is necessary to functionally adjust this stage. This
adjustment is done at 2100 Hz, where the desired nominal gain with
respect to 1000 Hz is known. Through sensitivity studies, it was found
that the gain deviation from nominal at 2100 Hz was linearly depen-
dent upon the ratio of the 13 resistors, RA and RB. Hence, either RA
or RB is adjusted to complete the tuning of the first stage.

Since there is interaction between the real pole, the complex pole,
and the transmission zero, the tuning of the second section is more
complicated. With Cl, C2, and C3 (Fig. 5) measured and the zero
frequency co2 given, the twin -T resistors R1, R2, and R3 can be deter-
mined. With C and CL measured and a, w,,, and q given, eqs. (9)
through (11) are a nonlinear set of equations in terms of 13, R, and RL.
Using the nominal values of these parameters as starting guesses, the
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new values which set a, w, and q, to their design values are easily
found.

After anodizing the resistors R, R1, R2, R3, RL, RA, and RB to
their calculated values, a functional adjustment is performed at 3300
Hz where the nominal gain value is known. This adjustment mops up
the previous capacitor measurement and resistor adjustment errors
and operational -amplifier variations. As in the first stage, the resistor
ratio of the negative feedback network is touched up in a functional
adjustment.

Finally, the gain at 1000 Hz must be adjusted to within ±0.02 dB.
To increase the output level, RG2 is increased. To decrease the level,
RG1 is increased.

VII. TOLERANCE ANALYSIS

The network designer's work would be cut significantly if inexpen-
sive components could be manufactured to their nominal values and
have no variations with time and temperature. However, manu-
facturing processes are such that the designer must consider variations
in the component values and characteristics from sample to sample.
He could do a worst -case analysis in which he would specify tolerances
that would ensure that, under all component combinations, the final
manufactured network would meet specifications. In general, this
would result in specifying tighter tolerances than needed and neces-
sarily increase the cost of the network.

To get a realistic estimate of the performance of the filter as it left
the manufacturing facility and a good prediction of its field perform-
ance, a statistical simulation of the manufacturing process and en-
vironmental behavior was developed. Included in this model were
manufactured element variations, measurement errors, adjustment
errors, temperature and aging characteristics of the components, and
switch timing variations. The variables were the tolerances and dis-
tributions associated with the above errors, the adjustment procedure,
and the adjustment frequencies. The figure of merit was the highest
possible end -of -life yield at the lowest possible cost. Figure 9 is a flow-
chart for this simulation.

The simulation proceeds in the following manner. First, a set of
random numbers is generated for a network. Next, the manufactured
capacitor and JFET "on resistance" values are calculated. For the
thin-film capacitors, the absolute tolerance and the tracking tolerances
are included. The switch "on resistance" has a nominal value of 125
ohms and can vary between 50 and 200 ohms. The next step is a
simulation of the tuning procedure, where the capacitors are first
measured, the resistor values calculated, and the resistors adjusted.
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Fig. 9-Flow chart of tolerance analysis program.

For this parametric adjustment, the errors in capacitor measurement
and the anodization errors for the resistors are included. During the
functional touch-up adjustment, gain measurement errors are simu-
lated. To evaluate the field performance, we use the temperature and
aging characteristics of the components.

Finally the network is analyzed for the final element values that
are determined by adding the temperature and aging deviations to
the manufactured element values. Then the network performance is
compared with the specifications at a number of frequencies, and
statistics are compiled. If the requirements are not met at any one
frequency, the network has failed. Next, a new network is picked, and
we repeat the process.

The statistical performance of this filter is shown in Figs. 10 and 11.
Only the minimum and maximum deviations at each frequency for
1000 sample networks are shown. At each frequency, there is a normal
distribution of the networks' performance between the minimum and
maximum deviations. At room temperature, 25°C, 94.5 percent of the
samples fell within the design objectives, while at 60°C, 89.3 percent
fell within. To ensure that the mathematical modeling was correct,
these results were compared with the measured performance of the
first 1000 filters manufactured. All those filters fell within the given
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statistical bands. This type of extensive simulation is justified when we
have a well -characterized technology, automated adjustment and
testing, and high -volume manufacturing.

VIII. PRODUCTION EXPERIENCE

As previously mentioned, the tolerance analysis program has aided
in obtaining a practical tuning procedure. If temperature and aging
variations are ignored, the program predicts the filter yield at the end
of the manufacturing process. The assigned component tolerances have
a significant effect on manufacturing costs; thus, a trade-off takes
place between manufacturing cost and filter yield. Ideally, we would
like to find the set of component tolerances that minimizes manu-
facturing cost. This problem has been attacked by Karafin22 and Pinel
and Roberts." However, their work has been restricted to networks
where : (i) the performance criteria (i.e., gain or loss constraints at
given frequencies) is met 100 percent of the time; (ii) tunable elements
are banned, and (iii) there is no correlation between the elements.

In the case of the D3 filters, it is known that the 100 -percent per-
formance criteria restriction will not produce a minimum cost network.
In other words, if the yield at final test drops from 100 to 96.7 percent
by increasing the tolerance on the resistors during parametric adjust-
ment, the cost drops by more than 3.3 percent. Thus far, cost minimi-
zation has been attacked in a heuristic manner. Figure 12 shows the
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theoretical manufacturing yields for the transmit filter at 0.1, 0.2, and
0.5 -percent resistor tolerances. Current production experience indi-
cates that widening the tolerance on certain resistors to 0.3 percent
results in a lower cost, even though the.overall yield decreases.

One might ask, Why not remove all tolerance restrictions on the
parametric adjustments and accept any filters as long as they are
functionally adjusted to meet the frequency requirements at a finite
set of test points? The answer is quite simple. If all resistors were ad-
justed at the parametric step to, say, 0.5 percent tolerance, then only
50 percent of the filters could meet requirements after functional
adjustment. Since the silicon is bonded after parametric adjustment,
a much higher final yield is needed to justify the additional investment.
In addition, as the tolerance is relaxed at the parametric adjustment
step, more frequency tests are required at final test.

The tolerance analysis program also helped to provide a temporary
solution to a capacitor tracking problem. If the ratio of certain capaci-
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Fig. 12-Statistical performance of transmitting filter with different resistor tolerances.

tors is not within specified limits, then some resistors may have to
be anodized excessive amounts-excessive because the resistors will
then age poorly. However, the tracking requirement on all sets of
capacitors need not be the same; thus, in a particular case, with the
tolerance program, it was possible to demonstrate that the tracking
requirement on a pair of capacitors could be relaxed and therefore
solve a temporary production problem.

A tolerance analysis program can be used only if we have good
estimates for the various tolerances that affect the manufacturing
process. This was possible for the parameters that influence the fre-
quency performance, but not possible for the dc gain requirement.
The 1 -kHz frequency gain is required to be adjusted to an accuracy
of ±0.02 dB. This stringent requirement was chosen so that no ad-
justments would be necessary when D3 channel banks were installed
in the field. The no -adjustment philosophy saves on installation and
maintenance cost, but it does require critical tuning for the D3 filters."
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IX. PHYSICAL REALIZATION

In this case, the physical realization uses single -substrate hybrid -
integrated circuit (Hie) technology.' The resistors are tantalum nitride
thin film, and the capacitors have a base electrode of 13 -tantalum, a
dielectric of tantalum pentoxide, and a counter electrode of nichrome
paladium gold. The conductor paths are also nichrome paladium gold,
while the operational amplifiers and JFET switch are beam -leaded silicon
integrated circuits. They are all placed on a 33 -by -20 mm glazed
ceramic substrate with a 34 -terminal lead frame (Fig. 13).

Fig. 13-Hybrid integrated circuit realization of filter.
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To minimize both the tuning time and the complexity of the test
fixtures, the substrate layout was constrained. Thus, all measurements
are made from the sides and all adjustments from the top of the sub-
strates. To incorporate the tuning procedure of Section VI, the layout
must provide the capability of measuring all element values. Thus,
all network nodes must be brought to the edge of the substrate.

Traditionally, layouts follow the flow of a network. Thus, for a
network of this complexity, crossovers are generally required, as well
as break points, to measure the component values. Crossover and
break closures are normally processed following filter tuning. To
eliminate breaks and crossovers and separate the measurement and
adjustment functions, a unique circuit layout was developed. These
aims were accomplished by judiciously separating common grounds
and incorporating break points. These redundant points are brought
to the substrate edge (Fig. 14) and are subsequently connected when
the substrate is inserted into a printed wiring board. Three terminal
capacitor measurements and capacitor electrode sharing were neces-
sary to make these measurements. To realize this layout with its
subsequent 11 mask levels required considerable reliance on computer -
aided graphics."'"
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APPENDIX

Transfer Function of Second -Order Twin -T Section

A.1 Untuned case

The transfer function of the untuned, unsymmetrical second -order
twin -T is

T (s) = K (s + 72)s2 + (s + 7-1)(02.
(s + TOD(s) + OrE(s) '

with the following definitions :

CP = Cl -1-- C2,
RS = R1 + R2,
ri = 1/(R3 CP),
8, - T2 - Tly
CI = CL/CS,

CS = (C1 C2)/CP,
RP = (R1 R2)/RS,

T2 = 1/(RP C3),
# = 1 + (RA/RB),
ri = RS/RL.

(21)

(22)
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The polynomials D(s) and E(s) of (21) are

D(s) =

E(s) -
and

82 1-

r 1

1 _ #

(23)

(24)

r2R3 Cl R2 CS c1

(1 13)

RL CS _I (1 ± ci)
1( \
1 + ci ;

L + 8 -1- R3 C1(1 ± ci)

2 1
(25)wt R1 R2 C3 CS'

0K (26)= 1 + ci

A.2 Tuned case

When the twin -T is tuned,

tl = 45, = 0. (27)

Thus, (21) reduces to

82 ±
T(s) -K 82 + ais a2

82 + w2z
K (28)= + (cop/qp)8

If, in addition, a symmetric twin -T is picked, i.e.,

R1 = R2 = 2R3
C1 = C2 = C3/2

(29)
CL = (Cl ci)/2
RL = (2R1)/ri,

then
ez 1al (30)

R12C1 (2 fl 2
)

1 ±

and

1 + rl
= (31)az

cl `"Zy

1 + )4 (32)p ci wg'

Ea ± 1'0(1 ± (33)" 2[2 - 13 + (ri ci)/2]
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In using filter banks for processing speech signals, it is often important
that the sum of the individual frequency responses of the bandpass filters
(composite response) be flat with linear phase. This paper presents a
technique for achieving flat composite response using linear -phase FIR
digital filters. The design method is based on some special properties of
FIR filters designed by the windowing method. Excellent response char-
acteristics can be achieved with complete flexibility in choosing the center
frequencies and bandwidths of the individual filters.

I. INTRODUCTION

Filter banks are used to perform short -time spectrum analysis in a
variety of speech processing systems.'-' Typically, a set of bandpass
filters is designed so that a desired portion of the speech band is
entirely covered by the combined passbands of the filters composing
the filter bank. The outputs of the bandpass filters therefore are con-
sidered to be a time -varying spectrum representation of the speech
signal. If special care is taken in the design of the bandpass filters, it is
possible to reconstruct a very good approximation to the input speech
by simply adding together the outputs of the bandpass filters.' This
is the basic principle of a variety of vocoder systems.

Since the bandpass filters are linear systems, we can characterize the
behavior of such filter banks by considering the composite frequency
response when all the outputs are added together. Since, ideally, the
output should be equal to the input, then we desire that the composite
frequency response have constant magnitude and linear phase in the
desired band of frequencies. This criterion, together with specifications
on the desired bandwidths of the individual frequency channels, forms
a meaningful basis for the design of filter banks for speech analysis.

An earlier paper' showed that careful attention to the relative phases
between channels is important in achieving a flat composite frequency
response. That paper, which was concerned primarily with filter banks
composed of infinite impulse response (ut) digital filters, described a
method of obtaining flat composite frequency response by a relatively
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simple adjustment of the relative phases of the channels. This method
was later applied to the design of a speech analysis/synthesis scheme
in which finite impulse response (FIR) digital filters were used.' Using
this method, excellent overall response can be obtained for both HR
and FIR digital filters in filter banks in which the center frequencies are
uniformly spaced. However, the method is not easily extended to
nonuniformly spaced filter banks.

In the present paper, we describe a different approach that is not
limited to the design of uniformly spaced filter banks. The method
exploits some special properties of linear -phase FIR filters and thus
cannot be applied very successfully to the design of IIR filter banks.
We first discuss the basic design principles, and then show some design
examples. We conclude with a discussion of some computational
considerations of FIR digital filter banks.

II. DESIGN METHOD

FIR digital filters are attractive for design of speech filter banks for
several reasons. First, such filters can be designed to have precisely
linear phase simply by imposing the constraint

h(n) = h(N - 1 - n) 0 n N - 1 (1)

(on each individual filter band'), where h (n) is the impulse re-
sponse of the filter and N is its length in samples. This means that the
criterion of linear phase for the composite filter bank response is
trivially met if the individual filters have identical linear -phase
characteristics. Therefore, it is possible to focus attention on achieving
arbitrary frequency selective properties for the individual filters and on
obtaining the desired flat response for the composite filter bank. The
second great advantage of FIR filters is that a variety of design methods
exist ranging from the straightforward windowing methods' to itera-
tive approximation methods that allow great flexibility in realizing
complicated design specifications.'

2.1 FIR bandpass filters

The bandpass filters that we shall consider have impulse responses
of the form

hk(n) = hik(n) cos (cocknT) 0 <= n < N - 1
= 0, otherwise, (2)

where hik (n) is the impulse response of the kth linear -phase low-pass

It is assumed, for simplicity, that the impulse response of each bandpass filter
is of duration N samples, although it is trivial to remove this restriction by adding
appropriate delays for each channel.
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x (n)

COS cock flT COS cock flT

ak (n)

SINcock nT SIN cock flT

x (n)
hk (n)

Fig. 1-Implementation of a typical bandpass channel.

Yk (n)

filter. This particular form for the impulse response is motivated by the
fact that, in some vocoder applications,2,4 each bandpass channel is
implemented as shown in Fig. 1. The overall impulse response of the
system of Fig. 1 from input x(n) to output y(n) is easily shown to be
given by eq. (2).

The spacing of the individual channels of the filter bank is deter-
mined by the choice of the set of center frequencies, cock, which is in
turn determined by the desired frequency resolution of the filter
bank. The frequency selectivity of each channel is determined by the
frequency response characteristics of the prototype low-pass filters
hlk(n). Since phase considerations can be simply avoided by designing
all the bandpass filters to have the same linear phase, we can focus
our attention entirely on designing a set of prototype low-pass filters
that have the desired individual frequency selective properties and
that give the flattest amplitude response for the composite set of
bandpass filters.

2.2 Low-pass filter design

The window design method appears to have a number of advantages
for design of the prototype low-pass FIR filters. This method is de-
picted in Fig. 2. First, a desired ideal low-pass filter of the form

Ild k ( e jw 9 = e-i-or
= 0,

1 co 1 5-. copk
otherwise, (3)

is defined by choosing the cutoff frequency copk. Note that, for sim-
plicity, we have omitted in the figure the linear phase term
exp ( - jwnoT) corresponding to a delay of no samples. The value of
no required is no = (N - 1)/2. This means that, if N is even, the
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Fig. 2-Windowing technique for a low-pass design.
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delay corresponds to a noninteger number of samples. The ideal im-
pulse response for the kth channel is, therefore,

hak(n) = -1 1 " k e-iconoT ejwnTd, = sin [cok(nT - noT)]
(4)

2w ,l 7(n - no)
Of course, this impulse response is infinite in extent and must be
truncated to obtain an FIR filter. This is done by defining

lick(n) = w(n - no)hdk(n), (5)

where w(n) is a window function and hik(n) is the impulse response of
the kth prototype low-pass filter. The length of the window, denoted
by N, can be either an even integer (N = 2M) or an odd integer
(N = 2M + 1). Figure 2 shows the case when N is odd.

The result of multiplying the ideal low-pass impulse response by the
window corresponds to a convolution in the frequency domain of the
ideal frequency response and the Fourier transform, W (elwT), of the
window; i.e.,

T TIT
H k(ei.T) = ,_

f
H dk(e0T)W (el(6)-8)T)d0. (6)

hIr -T/T

The result of this convolution is depicted in Fig. 2. It can be seen that
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the main effects are the introduction of a smooth transition between
the passband and the stopband and the introduction of ripples in the
passband and stopband regions. The properties of this approximation
are depicted in Fig. 3. If w, is larger than the width of the "main lobe"
of W(eiw T), then the following set of properties are generally true :

(i) The transition region, Lico, is inversely proportional to N.
(ii) The function H(elwT) is very nearly antisymmetric about the

point (cop, 0.5).
(iii) The peak approximation errors in the passband and stopband

are very nearly equal.
(iv) The approximation error is greatest in the vicinity of cop, and

it decreases for values of 0.) away from co,.

The above properties of the windowing design method are true of
all the commonly used windows. However, Kaiser has proposed a
family of window functions that are very flexible and nearly optimum
for filter design purposes.6 Specifically, the Kaiser window is

w (n) = I o[a- (n/no)2]
/0(a)

= 0,

Inl s no
otherwise, (7)

where no = (N - 1)/2 and /0[  ] is the modified zeroth -order Bessel
function of the first kind. By adjusting the parameter a, one can trade
off between transition width and peak approximation error. Further-
more, Kaiser' has formalized the window design procedure by giving

1+

0.5

H (eiWT)

p

Fig. 3-Resulting low-pass design from windowing.
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the empirical design formula

-20 logio - 7.95N = + 1 (8a)14.366,f ,

where N is the filter order, 5 is the peak approximation error, and Af
is the normalized transition width

ACJT

= 2w (8b)

To use this formula, we fix 5 and Af at values that provide the desired
frequency selectivity. Then eq. (8a) can be used to compute N, and
the parameter a can be computed from the equation'

a = 0.1102( - 20 logio S - 8.7), -20 logio b > 50
= 0.5842( - 20 logio S - 21)"

-I- 0.07886( -20 logio 5 - 21), 21 < - 20 logio S < 50. (9)

In the present application of this design method, the choice of 6 and
Af depends upon the specifications of the bandpass filters that con-
stitute the filter bank.

2.3 Filter bank design

To design a filter bank using FIR filters, we must first determine the
range of frequencies to be covered by the composite response. Let us
assume that these are denoted cumin and coma., where coma. < it/T.
Now, if there are a total of Nf filters, we must choose the bandwidths
and center frequencies so that the entire range of frequencies
comin < W <= Wmax is covered. This is depicted in Fig. 4 for the case
Nf = 3. This figure glows the ideal responses for each bandpass filter ;

IHdk e )1

-2 Wp 2 (1.)p 3

t WC 1

WM IN

WC2 WC3

Fig. 4-A typical nonuniform filter bank.
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i.e., as would be obtained if windowing were not required. In general,
it is clear that

and

N1

Wmax - Wmin = E
k=1

(10)

k-1
Wck = Wmin E 2Wpm Wpk k 2

m=1

Wmin Wpl k = 1. (11)

If all the filters have the same bandwidth, i.e., copk = WO, then it is
easily seen that

Wmax Wmin
WO = (12)

2N1

Alternatively, if the bandwidths are to increase exponentially ; e.g.,
= 2k-1co0, then

Wmax Wmin

2(2N1 - 1) (13)

The center frequencies can be found in either case by using eq. (11).
The choice of peak approximation error depends upon how much

stopband attenuation is deemed necessary in a given application.
Typical values of - 20 logio (5 would most likely be between 40 and
60 dB. Using eq. (9), the appropriate value of a can be computed.
Finally, the normalized transition width f must be fixed to compute
N from eq. (8a). Again, the choice of Aco (or Of) is governed by con-
sideration of the desired frequency selectivity for the individual filters.
Clearly, the transition width Acok should not be more than 2Wpk.

In the filter bank context, we shall require that Au) be the same for
all filters so that we can take advantage of property (ii) of Section 2.2.
That is, if all the filters have identical transition regions and, further-
more, if these transitions are antisymmetric about the crossover
points, then we can expect that the sum of the frequency responses
will be very close to unity. This is illustrated in Section III.

III. DESIGN EXAMPLES

In this section, we illustrate the use of the principles established in
Section II with examples of both uniform and nonuniform filter
banks. For all the examples, the sampling rate is assumed to be 9.6 kHz.

Example 1

Suppose that we wish to design a bank of 15 equally spaced filters
that covers the range 200 to 3200 Hz. Then, using eq. (12), we find
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that the cutoff frequency for all the low-pass filters* is

fo = (.;i = 100 Hz.

Using eq. (11), the center frequencies are

fa, = `---.:--: = 100(2k + 1) Hz k= 1, 2, , 15.

If we assume that 60 -dB attenuation is required outside the transi-
tion regions of each channel, we find from eq. (9) that a = 5.65326.
Since the cutoff frequency is 100 Hz for all the prototype low-pass
filters, the widest transition band that is reasonable is 200 Hz. Using
this value and -20 logio 8 = 60 in eq. (8a), we obtain N = 175 as
the lowest reasonable value for N. Note that, if lower attenuation is
acceptable, then N can be smaller for the same Of.

The filter bank designed with the above parameters is shown in
Fig. 5. Figure 5a shows the individual bandpass filters. Note how the
fall -off in the upper transition band of a given filter complements the
ascent of the next filter. Also note that adjacent channels cross at an
amplitude value of 0.5. Figure 5b shows the composite response of the
filter bank. It is clear that the filters merge together very well at the
edges of the frequency bands. Indeed, the deviation from unity is less
than or equal to the peak approximation error, (5 = 0.001, that was
used in designing the prototype low-pass filters.

Example 2

A nonuniform spacing of the filters is often used to exploit the ear's
decreasing frequency resolution with increasing frequency. Suppose
that we wish to cover the same range 200 to 3200 Hz as in Example 1,
but we wish to use only four octave band filters. That is, each succes-
sive filter will have a bandwidth twice the bandwidth of the previous
filter. Using eq. (13), we find that the lowest frequency channel has
cutoff frequency

coo 3200 - 200
f o = = = 100 Hz.2r 2(24 - 1)

In general, the cutoff frequencies of the prototype low-pass filters are

f pk = = 2' fo k = 1, 2, 3, 4,

' For the actual low-pass filter, the response will be approximately 0.5 at w = wp,
the cutoff frequency of the ideal low-pass filter.

538 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1975
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0
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I

INDIVIDUAL FILTER RESPONSES

1111111111111
1000 2000

FREQUENCY IN Hz

(N = 175)

3000

(b) COMPOSITE RESPONSE

1000 2000 3000
FREQUENCY IN Hz

Fig. 5-Individual and composite frequency responses of a bank of 15 uniform
bandpass filters for N = 175.

or the bandwidths of the bandpass filters are 200, 400, 800, and 1600
Hz, respectively. The center frequencies are found, from eq. (11), to
be 300, 600, 1200, and 2400 Hz, respectively. Again requiring 60 -dB
attenuation, we note that the narrowest bandwidth is 100 Hz, so that
the smallest reasonable transition width is 200 Hz. This leads again to
a minimum value of N = 175. The filter bank corresponding to these
design parameters is shown in Fig. 6. In Fig. 6a, again note the rela-
tionship between the ascending and descending transitions between
adjacent filters. Particularly note that, since N and a are the same for
each of the prototype low-pass designs, the shape of the curves in the
transition region is independent of the bandwidth. Figure 6b shows
the composite response where the deviation from unity is again less
than 0.001.
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(a) INDIVIDUAL FILTER RESPONSES (N =175)
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1000 2000 3000
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Fig. 6-Individual and composite frequency responses of a bank of 4 nonuniform
bandpass filters for N = 175.

It is interesting to note that the composite frequency response of the
filter bank is independent of the number and distribution of the in-
dividual filters, so long as the same window is used to design all the
individual filters in the bank. This result can be verified by writing the
overall frequency response of the filter bank, II (0°9, as

NJ'

.H(ei'7) = Hk(eiwT), (14)
k=1

which, from eq. (6), can be written as

Ar, T rIT
ii(ejw9 = E -, Hak(el")W(el(")9d0. (15)

k =1 zir -1r IT

Interchanging the order of summation and integration, eq. (15)
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can be written as :

where

T N,
H(eawT) = ) w(eic-e)T)do (16)

Zir

[
k =1E

Hdk(eiff

= W(eiwT)®HT(eiwT), (17)

N1

HT(eiwT) = E Hdk(eiwT).
k=1

(18)

Equations (17) and (18) show that the overall frequency response of
the filter bank is the circular convolution of the frequency response of
the window with the frequency response of the combined ideal band-
pass filters. As seen in Fig. 4, the combined ideal frequency response
of the bandpass filters is an ideal bandpass filter from w = win; n to

= i,X, independent of the number and distribution of the in-
dividual filters. Thus, the composite filter bank frequency responses
for the examples in Figs. 5 and 6 are identical because the same
window was used in both cases and the filters spanned the identical
frequency ranges.

Example 3

Suppose that all the parameters remain the same as in Example 2
except that we require narrower transition regions. This means that
a larger value of N is required. In fact, Eq. (8a) shows that N and Af
are roughly inversely proportional. Figure 7 shows the filter bands cor-
responding to the parameters of Example 2 except that N = 301 and
Af = 0.012082 (transition width is 116 Hz). The sharper transitions
are apparent in Fig. 7a, and Fig. 7b shows that the composite response
remains very flat.

Example 4
We have assumed throughout that the transition width was less than

twice the smallest low-pass cutoff frequency. In our examples, this
constraint required that N be at least 175. The result of reducing N
below this value is illustrated in Fig. 8. In this case, all the parameters
were the same as in Examples 2 and 3, except in the case of N = 101
and Af = 0.0362465. The transition width is 348 Hz, which is much
greater than twice the cutoff frequency of the first low-pass filter.
This is clearly in evidence in Fig. 8a. It is clear that reasonable filters
are obtained for the wider bandwidth filters; however, the lowest
filter does not attain unity response anywhere in its passband.

The preceding examples make it abundantly clear that, for suffici-
ently long impulse responses, the composite filter -bank response can
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Fig. 7-Individual and composite frequency responses of a bank of 4 nonuniform
bandpass filters for N = 301.

be very flat. In Ref. 5, where design techniques for IIR filter banks were
discussed, the best results achieved for the composite response were
approximately 1 -dB peak -to -peak ripple for uniform bandwidths and
about 2.5 -dB peak -to -peak ripple for nonuniform bandwidths. This is
in contrast to the results of the examples of this section, where the
peak -to -peak ripple in the composite response was about 0.0274 dB
for all the filter banks independent of how the bandwidths were chosen.
This, together with the precise linear phase that is easily achieved,
makes the FIR filter banks superior to what can be achieved for IIR
filter banks. The price that is paid for this is that rather large values of
N are required to achieve sharp transitions. However, the values of N
used in the previous examples are certainly not unreasonable if the
filters are implemented by FFT convolution methods or in special-
purpose hardware.
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Fig. 8-Individual and composite frequency responses of a bank of 4 nonuniform
bandpass filters for N = 101.

IV. SUMMARY

We have discussed a design method for filter banks composed of
FIR digital filters. The method exploits the linear -phase properties
obtainable for such filters, as well as the symmetry of the transition
region that results from the windowing method of design. We sum-
marized this method of design for the Kaiser window and illustrated
the filter -bank design method with several examples. These examples
show that the proposed design method has a great deal of flexibility
and that excellent response characteristics can be achieved.

REFERENCES

1. J. L. Flanagan, Speech Analysis, Synthesis and Perception, Second Ed., New York:
Springer-Verlag, 1972.

2. J. L. Flanagan and R. M. Golden, "Phase Vocoder," B.S.T.J., 45, No. 9 (Novem-
ber 1966), pp. 1493-1509.

FIR DIGITAL FILTERS 543



3. R. W. Schafer and L. R. Rabiner, "Design and Simulation of a Speech Analysis -
Synthesis System Based on Short -Time Fourier Analysis," IEEE Trans.
Audio and Electroacoustics, AU -21 , No. 3 (June 1973), pp. 165-174.

4. J. L. Flanagan and R. C. Lummis, "Signal Processing to Reduce Multipath
Distortion in Small Rooms," J. Acoust. Soc. Am., 47, part 1, June 1970, pp.
1475-1481.

5. R. W. Schafer and L. R. Rabiner, "Design of Digital Filter Banks for Speech
Analysis," B.S.T.J., 60, No. 10 (December 1971), pp. 3097-3115.

6. J. F. Kaiser, "Digital Filters," System Analysis by Digital Computer, Ch. 7, F. F.
Kuo and J. F. Kaiser, eds., New York : John Wiley, 1966, pp. 228-243.

7. J. F. Kaiser, "Nonrecursive Digital Filter Design using the Io-Sinh Window
Function," Proc. 1974 IEEE Int. Symp. on Cir. and Syst., San Francisco,
1974, pp. 20-23.

8. L. R. Rabiner, J. H. McClellan, and T. W. Parks, "FIR Digital Filter Design
Techniques using Weighted Chebyshev Approximation,' to appear in Proc.
IEEE, April 1975.

544 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1975



Copyright 1975 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 54, No. 3, March 1975
Printed in U.S.A.

Design and Evaluation of Shifted -Companion -

Form Active Filters

By J. TOW

(Manuscript received August 12, 1974)

Two techniques for designing a class of low -sensitivity, follow -the-
leader, feedback -type active filters have been introduced by Hurtig and
Laker-Ghausi. The FLF configuration consists of a cascade of second -

and/or first -order sections, with feedback from each section back to the
first. This paper presents an approach for designing FLF-type realization
for all classes of filter functions. The technique is based on a shifted -com-
panion form of the associated -state equations. Some salient features of
Hurtig's primary resonator block, Laker-Ghausi's follow -the -leader feed-
back, and the shifted -companion -form techniques are presented below.

(i) Hurtig's PRB realizes any all -pole (no finite transmission zeros)
filter function. This includes the low-pass, high-pass, and sym-
metrical bandpass filters without finite zeros. Explicit design
equations are available, and the individual sections in the array
are identical.
Laker-Ghausi's FLF realizes any symmetrical (including finite
transmission zeros) bandpass filter function. The sections are
not constrained to be identical, which allows optimization using
this degree of freedom. Finite zeros are realized by a summation
technique.

(iii) The SCF realizes all types of filter functions, i.e., low-pass,
high-pass, bandpass, all -pass, or band -reject filters. Explicit
design equations are available. The first section can differ from the
rest, thus allowing some optimization with standardization. Feed -
forward as well as summation techniques can be used to realize
the finite zeros.

Two bandpass design examples using SCF, PRB, and/or Laker-Ghausi
FLF techniques are given and compared with the low -sensitivity coupled
(leapfrog) biquad, the conventional cascade biquad, and the passive
ladder filter designs. The comparison shows that the passive filter gives
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the best performance with respect to sensitivity to element deviations. All
the coupled designs are significantly better than the cascade design in the

passband, with the coupled biquad (leapfrog) design the most signif-
icantly better. In the stopband, cascade and coupled designs perform
roughly the same.

I. INTRODUCTION

Recently, Hurtig'.2 introduced a low -sensitivity, multiple -loop -feed-
back active RC filter configuration for the realization of greater -than -
second -order voltage transfer functions. The configuration has been
found to exhibit greatly improved stability over cascaded designs.
For symmetrical bandpass filters, Hurtig's structure [called the pri-
mary resonator block (PRB) configuration] consists of a cascade of
identical biquadratic bandpass sections (i.e., same pole -frequency and
pole -Q) with feedback from each section (except the first) back to the
first section. More recently, Laker and Ghausi3,4 extended Hurtig's
configuration to include symmetrical bandpass filters with finite
transmission zeros, e.g., elliptic -type filters. In Laker and Ghausi's
approach [called the follow -the -leader feedback (FLF) technique],
different pole -Q values can be allowed for the biquadratic bandpass
sections.

For the PRB technique, Hurtig has given a set of explicit equations
expressing the biquadratic bandpass transfer function and the feed-
back factors in terms of the coefficients of the all -pole prototype low-
pass transfer function.2 In the FLF approach, Laker and Ghausi used
a coefficient -matching technique. Because of the nonuniqueness of
solutions in the FLF approach, Laker and Ghausi further proposed a
method of choosing the pole -Q values for an optimum design.

In this paper, we present yet another approach based on a shifted -

companion form of state variable representation of the voltage transfer
function for the design of symmetrical bandpass and band -reject
filters with this structure. In the bandpass case, using the proposed
method, each biquadratic bandpass section in the cascaded array must
be identical, with the possible exception of the first. Hence, it in-
cludes the Hurtig PRB configuration as a special case, but does not
encompass the Laker-Ghausi cases having three or more different
values of pole -Q. As in Laker-Ghausi's approach, the design of sym-
metrical bandpass filters with finite transmission zeros is included in
the discussion of the shifted -companion form. Similarly to Hurtig's
approach, the shifted -companion form also gives explicit design
formulas as opposed to the coefficient -matching technique used by
Laker and Ghausi. Furthermore, in the shifted -companion -form
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design, different realizations (with the same configuration) can be
obtained by varying the value of a shift parameter. The standard
companion -form representations corresponds to the case in which the
value of this shift parameter is equal to zero.

In the next section, the shifted -companion -form representation of a
voltage transfer function is presented. A brief discussion on the optimal
choice of the shift parameter based on our design experience is given
in Section III. Two design examples, a three -section Butterworth
bandpass filter and a three -section elliptic bandpass filter, are given in
Section IV. The section also compares the sensitivity performance, in
a Monte -Carlo sense, of the shifted -companion -form designs to the
cascade biquad and the coupled biquad6,7 as well as to the passive
designs.

II. SHIFTED -COMPANION -FORM REPRESENTATION OF VOLTAGE
TRANSFER FUNCTION

The design technique for the proposed shifted -companion -form
representation of a voltage transfer function is obtained as follows.
First, a shift is introduced to the complex frequency variable by adding
a variable constant a (shift parameter) to the complex frequency
variable. Second, the resulting shifted -transfer function is represented
by the standard companion forms and its corresponding block diagram,
which has the desired structure. Third, an inverse shift operation is
made on the standard companion form to determine the proper values
for the parameters of the structure.

2.1 Representation of voltage transfer function by a shifted -companion form

Let the voltage transfer function be given by

Vo t nipm nm-ip -I-  ± nip ± no + dVin pn dn_ipn-1 + dip + do ,

for m < n. (1)

Let the following shifting be made in the complex frequency variable
of (1) :

p = s - a, (2)

where a, the shift parameter, is a real number. Substitution of (2) into
(1) results in the following shifted -transfer function (see Appendix A) :

m

E bm_ism-iV+0..Vri
Sn E

J=1

+ d, (3)
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where

as_i = (-1\ (n k) j -k
k =0 1 (3 - k) !(n - adn-k,

j= 1,2,
bm_i = (-1)" (m k)

k =0 (i - k) !(m - i) !ai-knm-k'
i = 0, 1,  ,

Note that do = 1. Alternatively, the a's and b's can also be obtained
by the following implicitly recursive formula :

an = 1
(n - k) != E .1- 2 a kan-ky j = 1, ,

k 0 ( jk) !(n - ) (3b)

(m - k) !
nm_i = = 0, 1, ,

k =0 (i k) !(m - i)! ai-kbm-k'

It is well known that a voltage transfer function (with degree n) can
be represented by a set of state equations in the (standard) com-
panion form,5 i.e.,

= Ax bvin
(4)

vont = cx dv in,

where the state matrix A is of dimension n X n. In the case of eq. (3),
we have

(3a)

X = (X1, X2,

-an_i -an_2 -an -3

 , Xn) 1

-al -a0

A=
1 0 0 0

0

0

0
b

132

(5)
Nn

0 0 0 1 0

C = [71, 72) 7n],

There are two special cases for eq. (5), A and B.

Case A : Transmission -zero forming by an input feed -forward tech-
nique :

and

=-- [0 0 1]

b = 132 Snit

i-1
= bn-i E an_i+fin+i_h = 1, 2, , n. (5a)
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Case B : Transmission -zero forming by summation -of -state -variables
technique

b = [1 0 O]t

c = [b._1 bn_2 bo].

To obtain the shifted -companion -form representation of the voltage
transfer function of eq. (1), the inverse shift operation, i.e., s = p + a
is applied to eq. (4). This is equivalent to the following operation :

time domain frequency domain time domain
inverse shift

( a)X <=> aIx,=p+«' (p (6)

where I is the n X n identity matrix. Hence, a shifted -companion -form
representation of eq. (1) is*

= A'y bvi.
vout = cy dvi.,

where

(7)

-a_1 -a -a._2 -an_3 -al -ao
1 -a 0 0 0

A' = A - aI = 0 1 -a 0 0 , (7a)

0 0 0 1 -a
and the vectors b and c are as given in eqs. (5a) or (5b).

At this point, it is desirable to change the relative level of the state
vector y to obtain more convenient values for the gain (i.e., close to
unity) of the individual biquadratic sections. !Mathematically, we let

y = Kx, (8)

where K is a nonsingular diagonal matrix. It has been found convenient
to choose K to have the following form :

K = diag [an_' an -2 a 1]. (9)

Substituting (8) and (9) into (7) and (7a), the following shifted -
companion -form representation of eq. (1) is obtained :

= bvir,

vout = ex dvi.,

* The state vector is changed from x to y.

(10)
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where
an -2 an_3- an_i -a a a2

A = K-IA'IC =

b = K-'1)

e = cK = [0 0 0 1] (11a)

ai ao
an -2 an -1

0
0

-a
(11)

Or

a -a 0 0

0 a -a 0

0 0 0 a

= On -1 on]
an -1 an -2 a

i) = K-'1) =[an --1
1

0 0
Ole

e = cK = [an-ibn_i an-2bn_2 (AI bo]. (11b)

Equations (11a) and (11b) correspond to the cases where the trans-
mission zeros are formed by the input feed -forward and the summation
techniques, respectively.

2.2 Block diagram representation of the shifted -companion form

Transforming eqs. (10), (11), and (11a) into the frequency domain,
the following set of transfer functions representing the shifted -com-
panion form is obtained.

X1(P) =
1

r n a,. 01E : x,(p) + Vin(p)]
P + (an -1 + a) L j =2 a-

Xi(P) =
p 1+ a [aXi i(P) +

as13i- Vin (P) ]
for i = 2, 3,

Vout(P) = Xn(P) + dVin(P)

Similarly, by transforming eqs. (10), (11), and (11b), we have

Xi (p) =
1

3.t2 C:iri:ii Xs(p) ± al_-_i Vin(P)]p + (an_i + a) [

1
Xi(P) = [c/Xi-1(p)] for i = 2, 3, , n

n

Vout(p) = i an-ibn_iX i(p) + dV in(p)

(12)

(13)

Equations (12) and (13) are shown in block diagram form in Figs. la
and ib, respectively.

550 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1975



1

13
+

( 
an

- 
i+

")
xi

a

an
 _

 2
an

 -
3

a2
a3

P
2

an
 -

2

1

p+
 a

(a
)

03
co

 -
3

1

p+
a

em
,

x3

ao an

n

1

p+
 a
-
4

xn

V
 O

U
T

(P
)

P
+

(a
n-

 1
+

a)

an
 -

2
a2

xi n-
1 

bo
-

1

1 p+
a

an
 _

3
a3

(b
)

x2 an
 -

2 
bn

_2

1

p+
a

x3

a0

a"
 -

3 
b.

3

1

p+
a

Fi
g.

 1
-S

hi
ft

ed
-c

om
pa

ni
on

 f
or

m
. (

a)
 F

ee
d 

-f
or

w
ar

d 
ze

ro
 -

fo
rm

in
g 

te
ch

ni
qu

e.
 (

b)
 S

um
m

at
io

n
ze

ro
 -

fo
rm

in
g 

te
ch

ni
qu

e.

b0

V
O

U
T

(P
)



2.3 Block diagram representation of symmetrical bandpass filters via the
shifted -companion form

For geometrically symmetrical bandpass filters, eq. (1), eq. (12) or
(13), and Fig. la or lb can be taken as the transfer function, the shifted -
companion -form representation, and the block -diagram representation
of the corresponding low-pass prototype, respectively. To obtain the
block diagram representation of the symmetrical bandpass filter
transfer function, we can apply the well-known low-pass to bandpass
transformation :

82 + wg

P = Bs '

where

(14)

p = complex frequency for the normalized low-pass function
s = complex frequency for the actual bandpass function

co 0 = center frequency of the bandpass filter (in radians/s)
B = passband bandwidth of the bandpass filter (in radians/s)

to Figs. la and lb. The resulting block diagram representations are
shown in Figs. 2a and 2b.

2.4 Block diagram representation of symmetrical band -reject filters via the
shifted -companion form

To obtain the block diagram representation of the symmetrical
band -reject filter transfer function, similarly to the development of
Section 2.3, we can first apply a low-pass to high-pass transformation,
then follow with the usual low-pass to bandpass transformation, eq.
(14). Specifically, this results in the following transformation to Figs.
la and lb :

1 1 s2 ± ws
=

p + a a s2+ (B /a)S + cog '

where

(15)

p = complex frequency for the normalized low-pass function
s = complex frequency for the actual band -reject function

w0 = c. 4%(72Z (in radians/s)
B = co2 - col (in radians/s)

wi/w2 = the lower/upper passband edge frequencies of the band -reject
filter.

The resulting block diagram representation can also be shown as in
Fig. 2, except that

Ti(s) = 1 s2 + wg

an -1 + a S2 + [BS/ (an -1 + a)] + cog

552 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1975



a
T

1(
s)

an
 -

2
0,

2

X
1

F
yn

 -
2

T
2 

(s
)

X
2 (a

)

an
 _

3
a3

/3
3

an
 -

3

T
3(

s)
X

3

a an

R
n

T
n 

(s
)

X
n

V
0 

U
T

 (
s)

a

d

T
1(

s)

an
 -

2
a2

"-
 1

 b
n_

i

B
s

B
s

W
H

E
R

E
 T

1 
(s

) 
-

T
i(s

)
i-2

,3
n

s2
+

B
(a

n_
 +

a)
s+

 0
,0

2
s2

+
B

as
+

0)
02

T
2 

(s
)

a_
3

a3

n-
2b

n_
2

(b
)

T
3(

s)

an
-3

bn
_3

an an

a
T

n 
(s

)

1)
0

Fi
g.

 2
-S

ym
m

et
ri

ca
l b

an
dp

as
s 

fi
lte

rs
 v

ia
 th

e 
sh

if
te

d 
-c

om
pa

ni
on

 f
or

m
. (

a)
 F

ee
d 

-f
or

w
ar

d 
ze

ro
 -

fo
rm

in
g 

te
ch

ni
qu

e.
 (

b)
 S

um
m

at
io

n 
ze

ro
 -

fo
rm

in
g 

te
ch

ni
qu

e.



and
1 s2

a (B/a)s co8
= 2, 3, , n.

In passing, we note that Fig. 2 can also represent the symmetrical
band -reject filter provided the parameters in Fig. 2 are determined
by making eq. (1) the transfer function of the band -reject's correspond-
ing high-pass prototype.

III. OPTIMAL CHOICE OF THE SHIFT PARAMETER, a

For symmetrical bandpass filters (Fig. 2), it is seen that all the
biquadratic sections, with the possible exception of the first section,
have a pole -Q value equal to wo/Ba. The pole -Q value for the first
section is

COO COO

B ((Ln-1 ± a)
or B[Cin-1 - (n - 1)a]

The value of these Q's versus a is illustrated in Fig. 3.
Before we proceed with a discussion on the optimal choice of a,

two special cases are pointed out. The first is the standard companion
form which corresponds to the case where a = 0. From Eq. (3a),

an_i = 4_1 - na. (16)

Letting a = dn_i/n, an_i = 0. With this value, (4-1/n) for a, a
second special case is obtained where all the biquadratic sections (in-
cluding the first) will have a pole -Q value equal to coo/B  n/ (dn_i). For
simple symmetrical bandpass filters, this special case reduces to
Hurtig's PRB configuration, and Hurtig's design formulae is identical
to that given by eq. (3b).

Since an infinite number of realizations, depending upon the choice
of a, can be obtained for the shifted -companion -form representation,
is there an optimal choice of a? This optimal choice would, perhaps,
depend also upon the performance criterion chosen. Laker and Ghausi
have proposed an optimization scheme for their configuration based
on a minimization of a certain statistical multiparameter sensitivity
measure.2.4 Their scheme can also be used here for the determination
of an optimal a with respect to their performance criterion. In the
following, we present two observations based on our limited design
experience with bandpass filters using the proposed shifted -companion
form where minimizing the filter's passband sensitivity is of primary
concern. In our discussion here, the filter designs are subjected to a
computer -simulated Monte -Carlo analysis and sensitivity is examined
from the standpoint of standard deviation (dB) vs frequency.
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Fig. 3-Biquadratic sections Q vs shift parameter a.

(i) It appears that a broad range of values exists for a where the
improvements* over the cascade biquad design are relatively
constant. This range includes Hurtig's design, i.e., a = dn_i/n.

(ii) Performance of the standard companion -form (i.e., a = 0) de-
sign is about the same as that of the cascade biquad design.

The above empirical rule (i) is observed in the design examples to
follow.

IV. DESIGN EXAMPLES

Two examples given here illustrate the shifted -companion -form de-
sign technique as well as demonstrate its performance relative to that
of the cascade biquad, coupled (leapfrog) biquad as well as to passive
ladder designs. Comparisons among these designs are based on a
Monte -Carlo analysis of the filters with passive components selected
randomly from a uniform distribution within a given tolerance interval.

' Improvement is to be broadly interpreted as less sensitive or having a smaller
standard deviation.
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4.1 Example 1-A three -section Butterworth bandpass niter*

The normalized transfer function of a third -order low-pass Butter-
worth filter is given by

Vout (,) 1

Vint (p) + 2p2 + 2p + 1

Let the desired bandpass filter have center frequency (f o) of 1 Hz
and 3 -dB bandwidth (B/21r) of 0.04 Hz. The PRB version of the shifted -
companion form is designed here. Hence,

(1,1 2a = = - .

From eq. (3a), we obtain

az = 0, al = 0.66666667, ao = 0.25925926
bz = b1 = 0, 190 = 1.

And from eq. (5a),

(17)

01 = 1, 02 = 0, /33 = 0.

For this simple bandpass filter, the output summing amplifier (Fig. 2)
is not needed. Furthermore,

2 + o.o8,-(E
0.08r (1)s

Note that

i = 1, 2, 3.

=
2ir 3

Qi 0.08r 2 = 37.5 for i= 1, 2, 3.

For this example, each of the Ti(s) is chosen to be realized by the single -
amplifier biquad (sAB) configuration of Ref. 8. The complete con-
figurations is shown in Fig. 4, with the element values tabulated in
Appendix B. The element values as well as circuit topologies for the
cascade SAB, coupled SAB (or leapfrog sAB),t and the optimized Laker-
Ghausi design' are also given in Appendix B. Each of the three bi-
quadratic bandpass sections in the shifted -companion -form, Laker-
Ghausi, and coupled-biquad designs has a pole frequency of 1 Hz;
whereas for the cascade design, the pole frequencies are 1, 1.01747,
and 0.982828 Hz. The pole -Q values for these four designs are tabu -

This example can also be found in Ref. 3.
I The inverting amplifier A2 can be eliminated by feeding the output of section 3 to

the positive input terminal of the summing amplifier A 1. This has not been done in
the example.

$ For symmetrical bandpass filters derived from an all -pole low-pass prototype, the
coupled biquad and the leapfrog designs can be made identical.
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SAB
SECTION i
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Rf2

MA/
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SAB SAB SAB
SECTION 1 SECTION 2 SECTION 30 0 00
0 0 0

o

0 ® .0

VouT(s)

Fig. 4-Configuration for the three -section Butterworth bandpass filter.

lated in Table I. These four realizations of the Butterworth filter as
well as the passive ladder realization were compared by a IVIonte-Carlo
study (with 200 trials) using the computer program BELTAP.9 The
following assumptions are made :

(i) The operational amplifiers are ideal.
(ii) All passive components have the same tolerance with a uniform

distribution.

Table I - Pole -Q values for the three -section Butterworth filter

-le-Q
Filter Type

Section

1 2 3

Shifted -companion form (PRB) 37.5 37.5 37.5
Laker-Ghausi (FLF) 44.2 44.2 28.8
Cascade biquad 25.0 50.0075 50.0075
Coupled biquad/leapfrog 25.0 co 25.0
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Fig. 5-Simulated variations of the three -section Butterworth bandpass filter
(0.1732 -percent passive components tolerance).

Two different tolerances were simulated, the first having a realistic
tolerance of ±0.1732 percent and the second a large tolerance of
±1.732 percent.* The resulting comparisons based on the standard

Realistic in the sense that the statistical variation of the filter response is within
a reasonable bound from the nominal. The large tolerance corresponds to a component
standard deviation of 1 percent, which was used in the example of Ref. 3.
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deviations of the transfer function (dB) of the various designs plotted
vs frequency (Hz) are shown in Figs. 5 and 6.

It is observed that, over most of the passband (between the 3 -dB
points), the coupled biquad/leapfrog, Hurtig's PRB/shifted-companion
form, and Laker-Ghausi FLF designs show roughly the same improve-
ment (3 -to -1 reduction in standard deviations) over the cascade
biquad design. The passive filter is, however, seen to be the least
sensitive.
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Fig. 6-Simulated variations of the three -section Butterworth bandpass filter
(1.732 -percent passive components tolerance).
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4.2 Example 2-A three -section elliptic bandpass filter*

A sixth -order elliptic bandpass filter with center frequency (fo) at
2805 Hz, 0.1 -dB passband ripple with bandwidth (B / 2r) of 90 Hz,
and a minimum 30 -dB loss below 2694.8 Hz and above 2919.8 Hz is
desired. The corresponding third -order normalized low-pass prototype
transfer function is given by

V 'ut
N (P)

V in
(P) - D (P)

where
N (p) = 0.214115(p' + 8.158500)
D (p) = p3 + 1.897376p' + 2.543168p + 1.746858.

Once again, the Hurtig criterion is used for the shifted -companion -form
design. Hence,

a - d2 = 0.6324587.

From eq. (3a)

a2 = 0, ai = 1.3431556, ao = 0.64438116
b2 = 0.214115, b1 = - 0.2708378, bo = 1.8325041.

And from eq. (5a),

#1 = 1.5449143, )32 = - 0.2708378, #3 = 0.214115.

The feed -forward zero -forming configuration (Fig. 2a) is used for the
realizations where

1807s
Ti(s) = 82 + 1807(0.6324587)s + (27.2805)2

For this example, each of the T i(s) is chosen to be realized by the
three -amplifier biquad configuration.m The complete configurations is
shown in Fig. 7 with the element values tabulated in Appendix C.
The element values for the cascade biquad and coupled biquad designs
are also given in Appendix C.§ A leapfrog design is also available," the
performance of which is similar to but slightly inferior to the coupled
biquad design. Once again, a Monte -Carlo study was made on these

' This example can also be found in Ref. 6.
t It was found, for this example, that the design with the feed -forward zero -

forming technique outperforms the summation zero -forming technique design.
t With the three -amplifier biquad sections, it is possible to eliminate the input

summing amplifier Al by using node 1 of section 1 as the summing point. This has
not been done in the example.

§ Without the availability of a computer program to choose an optimized Laker-
Ghausi circuit, no FLF design is included in this example.
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3 -AMPLIFIER 3 -AMPLIFIER
BIQUAD BIQUAD

SECTION 1 SECTION 2

Fig. 7-Configuration for the three -section elliptic bandpass filter.

designs as well as a passive ladder design. The resulting comparisons
are shown in Figs. 8 and 9, where a 0.25 -percent tolerance (with
uniform distribution) is assumed for all passive components.

It is observed that, in terms of standard deviation, the passband
improvements over the cascade design are noticeably less for the
shifted -companion -form (a chosen by Hurtig's PBR criterion) design
than the roughly 4 -to -1 improvement of the coupled biquad design.
Once again, the passive filter outperforms its active counterparts.

V. CONCLUSIONS

The FLF/PRB multiple -loop feedback active filter structure is known
to have better sensitivity performance than the popular cascade ap-
proach. This sensitivity improvement is particularly acute in high -Q
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Fig. 8-Simulated variations of the elliptic bandpass filter.

bandpass filter designs, as exemplified in the two examples given. With
the described shifted -companion -form representation of the filter
transfer function, it is straightforward to obtain explicit design formulas
for this feedback structure as contrasted to the coefficient matching
technique used by Laker and Ghausi. In practice, the shift parameter
can be chosen such that identical biquadratic blocks (i.e., the extended
PRB version)* are used. The proposed shifted -companion -form design
has the following advantages over the optimized FLF design. First,
no matrix inversion and involved sensitivity minimization routine
are needed. Second, all sections are identical, and the sections' pole -Q
can be much lower than the highest pole -Q required for the FLF design.
Furthermore, little difference is usually observed for this shifted-

Hurtig's PRB does not treat the cases with finite transmission zeros.
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companion -form design and the optimized FLF design. On the other
hand, the two examples also show that the coupled biquad and leap-
frog designs may have better sensitivity performance than the cor-
responding shifted -companion -form designs. However, for those types
of filter functions having finite transmission zeros, the designs of
coupled biquad and/or leapfrog require extensive computer aids
that are not yet generally available. Hence, the proposed shifted -
companion -form technique may provide an alternative to the coupled
biquad/leapfrog active filter design techniques.
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APPENDIX A

Derivation of the Shifted Transfer Function

Let the polynomial P (p) be

P (p) = E (18)

and let
p = s - a. (19)

Then

P (s) = E (17,_i(s - a)n-i
i=o

= E dn_i nii ( n ; i )
i =0 r =0

sn-i-r( r, (20)
n

where
( n - i

=
(n - i) !

(21))
r r !(n - i - r) !

Equation (20) can be rearranged in decreasing power of s as follows :

dnsn + sn_1 r i ( n - r ) a)i-rdn_r]
L r =0 \ 1 - r 1

+ 5.-2 E2 - r
(r =0 2 - r `

??, ) ( _ 2-r(0t. in ]
P (s) =

Or

where

or

i n - r
r =0 \ - r (-a)i-rdn-rsn-i E

±  ± n - r
r =0 n - r

P(S) = E sn-i [ (n -
i=0 r =0

= E
i=0

an_i = E n r
r =0 r

rr

(22)

(n - r) !

= E - r) !(n - i) !

cei-rdn-r. (23)
r =0
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Equation (23) can be used to obtain the coefficients of the shifted
polynomial P(s) from the coefficients of the polynomial P(p).

Similarly, if we start with the polynomial

n

P(s) = E an_isn-i
i-o

(24)

and let

then we obtain

where

APPENDIX B

Element Values for Example 1 (Fig. 4)

For the various realizations, resistors are in kilohms and all ca-
pacitor values are 10 /IF.

s = p ± cr, (25)

n

P(p) = E dn_ipn-i,
i=o

i (n - r) !
cln_i = E a wn-ri-rn

r =CI (1 - r) !(n - i) !

B.1 Shifted -companion -form (Hurtig's) realization

(26)

\Section
Element\ 1 2 3

R2 128.5 128.5 128.5
R4 613.2 613.2 613.2
R5 1.977 1.977 1.977
R s 73.07 73.07 73.07
Rd 2.0 2.0 2.0
R c co .0 co

and Rin = 2.963, Rf2 = 6.667, Rf3 = 11.43.

B.2 Laker-Ghausi realization

\Section
Element\ 1 2 3

R2 128.5 128.5 127.7
R4 722.3 722.3 470.9
Rs 1.976 1.976 1.993
R b 71.77 71.78 74.73
Rd 2.0 2.0 2.0
R, .3 .3 03

and Rin = 2.781, R12 = 4.600, Rf3 = 23.73.
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B.3 Cascade realization

The summing amplifier A1 and inverter A2 are not needed, and the
input goes directly to node 1 of section 1.

\Section
Element\ 1 2 3

Rs 128.5 126.3 130.8
R4 408.1 409.1 409.1
R5 1.981 1.946 2.015
Rb 77.76 70.93 70.93
Rd 2.0 2.0 2.0
R0 00 00 00

B.4 Coupled biquad realization

The summing amplifier A1 and inverter A2 are not needed, and the
input goes directly to node 1 of section 1.

\Section
Element\ 1 2 3

R2 128.5 128.4 128.5
R4 204.1 820.2 408.1
R6 1.990 1.977 1.981
Rb 77.39 64.98 77.76
Rd 2.0 2.0 2.0
R, 414.1 829.8 00

In addition, node 1' of section 1 is connected to node 2 of section 2 and
node 1' of section 2 is connected to node 2 of section 3.

APPENDIX C

Element Values for Example 2 (Fig. 7)

For the various realizations, resistors are in kilohms and all ca-
pacitor values are 0.01 AF.

C.1 Shifted -companion -form (Hurtig's criterion) realization

\Section
Element\ 1 2 3

R1 279.6 279.6 279.6
R2 5.674 5.674 5.674
R3 5.674 5.674 5.674
R4 279.6 279.6 279.6
R5 00 00 00

R6 00 00 00

R7 10.0 10.0 10.0
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and
Rf2 = 2.978, R,.3 = 3.926

Rini = 1.638, Rine = 413.0, Rini = 825.9.*

C.2 Cascade realization

The summing amplifier A1 and all input feed -forward paths (Rip's)
are not needed. The input goes directly to node 1' of section 1.

\Section
Element\ 1 2 3

R1 167.5 428.6 412.2
R2 5.674 5.786 5.564
R3 5.674 5.786 5.564
R4 167.5 1190.0 732.2
Rfi 00 16.93 9.378
R6 00 27.75 17.76
R7 10.0 10.0 10.0

C.3 Coupled biquad realization

The summing amplifier A1 is not needed. The input, Vin, goes
directly into node 1' of section 1 and nodes 1 of sections 2 and 3
through the feed -forward resistors Rine and Ri03, respectively.

\Section
Element\ 2 3

Ri
R2
R3
R4
R6
R6
R7

311.5
5.674
5.674

97.92
00

00

10.0

00

5.674
5.674

on

00

00

10.0

133.0
5.674
5.674

co

00

00

10.0

and R102 = 1324.0, Rin3 = 825.9. In addition, the following resistors
are needed with value and connections noted.

(i) 180.5 kg, node 2 of section 1 and node 1 of section 2.
(ii) 180.5 kg, node 1 of section 1 and node 4 of section 2.

(iii) 194.3 kg, node 2 of section 2 and node 1 of section 3.
(iv) 194.3 k1, node 1 of section 2 and node 4 of section 3.

In practice, with the following modifications of Fig. 7, R;3 = 825.9 is used.
Change the connection of sections 2 and 3 to between node 2 (section 2) and node 1'
(section 3); the connection of Rf2 remains unchanged. Change the connection of
R13 to between node 2 (section 3) and the summing amplifier AI.
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Timing Recovery and Scramblers
in Data Transmission
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This paper considers several problems associated with envelope -derived
timing recovery, equalization, and scrambling in synchronous data trans-
mission. Particular attention is focused on the time intervals in which
periodic data sequences are transmitted, such as during start-up or when
an idle code is being transmitted. It is shown that the standard envelope -
derived timing -recovery system may be significantly improved by zonal
filtering of the received passband signal prior to forming the envelope. For
phase -modulated systems, we discuss the limitations of the "precession"
technique employed for the purpose of providing a periodic timing wave
when there is an input of short period. The advantages of using a phase -
locked loop to filter the envelope instead of a narrow -band filter are also
described. A study of scrambler operation has provided an extension of
previous results concerning the relationship between the input and output
period. It is shown that the output period of several scramblers connected
in tandem does not necessarily double with the addition of a stage, and
that if a particular stage does not lock up then no succeeding stage can
lock up.

L INTRODUCTION

Recovery and tracking of the symbol rate, or timing frequency, is
one of the most critical functions performed by a synchronous modem.
Most modems are "self -timed" in that they derive their timing fre-
quency and phase directly from the information -bearing signal, instead
of using a separate subchannel to send synchronization information. A
technique that is commonly used to acquire the symbol rate* (which
is the receiver's basic sampling rate) is to filter the envelope of the
modulated data signal. Our investigation will consider several problems
related to this method of timing recovery which arise in high-speed
modems incorporating both an adaptive equalizer and a scrambler.

This technique is also used to provide the sampling epoch, or phase, within a
symbol interval.
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The envelope -derived timing recovery system is a well -studied
topic.',2 However, as the degree of excess bandwidth decreases, the ease
with which timing can be recovered using this approach rapidly di-
minishes. We focus our attention on periodic input sequences. These
sequences are used to train (or adapt) the data receiver during start-up
and during the idle period between blocks of random data. To provide
a densely spaced line spectrum of uniform amplitude (which is neces-
sary if the equalizer coefficients are to remain properly adjusted for
random input data), high-speed modems use a scrambler to "random-
ize" the short periodic inputs commonly used during the idle period.
We investigate the effect of the scrambler on both the line spectrum
and the strength of the timing tone. It is observed that zonal filtering
of the received data signal prior to taking the envelope can signifi-
cantly improve the relative strength of the timing tone by suppressing
the jitter component.

Using transform theory, a discussion is presented on the relation-
ship between the scrambler input and output periods. We refine
Savage's' well-known results for periodic inputs; these refinements
are applied to the study of the tandem and parallel scrambler
configurations.

Sections II to IV review the basic envelope -derived timing system
and give expressions for the power in the timing and interfering tones.
The role of the phase -locked loop in the timing recovery system is
described in Section V. Section VI considers the effect of processing*
the data symbols on timing recovery. The necessary background
material on self -synchronizing scramblers is presented in Section VII.
The transform approach is used in Section VIII to determine the
scrambler output period. In Section IX the performance of a cascaded
scrambler configuration is contrasted with the conventional serial
arrangement. The parallel scrambler configuration is discussed in
Section X.

II. BASIC TIMING RECOVERY SYSTEM

In this section we describe the commonly used technique of acquiring
the timing frequency and phase by processing the envelope of the re-
ceived signal. The object is to extract a tone, located at the symbol
rate, which is then used in the sampled -data receiver. Figure 1 shows
a simplified receiver structure of an in -phase and quadrature (e.g.,
QAM) data -transmission system, where we have focused attention on
the timing recovery and equalization functions of the receiver. For

* The advancing of the transmitted angle by a fixed phase (in a differential phase -
modulated modem), independently of the input, is known as precession.
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our purposes it will be convenient to ignore both the additive noise
and the quadrature component of channel distortion. Using the nota-
tion of Figs. 1 and 2, the received signal s(t) is given by

s(t) = E ang(t - nT) cos cost - E b.g(t - nT) sin wet, (1)
n=-00 n=-eo

where an and bn are respectively the discrete -valued in -phase and
quadrature data sequences obtained from the binary sequences an
and f3n, g(t) is the spectral -shaping pulse, we is the carrier frequency, and
1/T is the symbol rate or timing frequency. The envelope of a filtered
version of the received signal is tracked by a phase -locked loop tuned
to the receiver's best a priori knowledge of the timing frequency. The
output of a properly designed phase -locked loop will be a tone with
frequency equal to the symbol rate and whose zero crossings may be
used to derive a sampling wave. Once the timing frequency is acquired,
the estimated and unscrambled data sequences fd and 63 are
available to the user. The decoder maps the sequence of multilevel
two-tuples (a,,, 1,,) into a binary sequence which serves as the input to
the inverse scrambler.

The data sequences { an } and { b } may be thought of as random
(when user data are being sent) or as periodic (during start-up when
the equalizer and timing parameters are being acquired, and during an
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FILTER

FILTER

COS w t

SIN wct

Fig. 2-Simplified QAM transmitter employing a scrambler.
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idle period between random data transmissions). As we shall shortly
see, the presence of a short periodic input can play havoc with the
equalizer tap settings ; hence, a scrambler is generally used at the
transmitter to "randomize" these periodic sequences. As depicted in
Fig. 2, the coder maps the binary stream of scrambled Os and is into
the channel pulse levels (e.g., .0 and 1 may be mapped into -1 and 1
respectively).* The effects of choosing a particular scrambler structure
(e.g., serial vs parallel or serial vs cascade) on the timing recovery
system will be treated in Sections VII and VIII.

III. SPECTRUM OF THE RECEIVED SIGNAL

We confine our attention to periodic inputs, beginning with a cal-
culation of the Fourier transform of the received signal. Rewriting (1)
in complex notation, we have

s(t) = Re E c.g(t - nT)ejwcg} , (2)
00

n = -

where c. = an jbn and Re denotes the real part of a complex number.
With a periodic data sequence, c., the signal s(t) is periodic. This latter
periodicity is best exhibited via the discrete Fourier transform' (DFT)
of the periodic sequence. With the period of cn denoted by N, the DFT
of cn is defined by

n=0

N-1
C(Ic ft) = E cne-AngT

and the inverse relation is
1 N -1

= E c(kwep,..fiT
N k, =0

k = 0, 1, , N - 1 (3a)

n = 0, 1, , N - 1, (3b)

where C2 = (1/N) (271-/T) = (1/N)  (symbol frequency). Hence, the
DFT has N components uniformly spaced 1/NT Hz apart and the spec-
trum repeats every 27/71 Hz. Denoting the Fourier transform of s(t)
by S(co) and convolution by  we have

S(w) = 10E cne-l-TG(c0)1®6(0) - wc),
71

co > 0, (4)

and using (3b) in (4) givest

N 27; )]
S(co) =

1 E C(kS2)[n G (kS2 27n ) (co - we - kS1

co > O. (5)

Letting the timing frequency be denoted by cos = 27/T = Ng, it is

In practice, the data would also be differentially and Gray encoded.
t We use the identity En CinwT = (27r/T) En 8[6.,- (27rn/T)].
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CO

clear that S(w) has discrete tones at we + nw8. In practical data -
transmission systems with pulses of less than 100 -percent excess band-
width, G(IcS2 + 27n/ T) will be zero if n 0 or -1, hence,

N -1
S(w) =NT E0 C (102)[G(162)3(w - - kg)

G(1c2 - (.08)6(co - co, - - co.)] w>0. (6)

This spectrum is illustrated in Fig. 3, where it is seen that the envelope
C (kg) modulates the baseband pulse shape, G(w - co,), in the range
we- w8 to c ±

Since the signal s(t) is used by the equalizer to adjust the tap weights,
ideally the spectrum C(1c2) should approximate that of random data,
i.e., be constant. Of course, it is more critical that the equalizer be
presented with a closely spaced line spectrum; for example, if the
input period were two symbol intervals, it is clear that the equalizer
can only compensate for distortion at two frequencies in the Nyquist
band. Consequently, at the instant when the data return from the
periodic to the random mode, the equalizer tap settings will be far from
their optimum (for random data) values, and the distortion at the
equalizer output could be much larger than the channel distortion. This
situation generally causes the receiver to make so many errors that it
is necessary to retrain the equalizer. As we shall see, the role of the
scrambler is to lengthen the period of the transmitted sequence,
thereby keeping the equalizer trained. Hence, for the rest of our dis-
cussion, we will assume that the scrambler is such that the periodic
spectrum is (essentially) flat and densely spaced. Section VIII deals
specifically with the factors that determine the period of the scrambler
output.

IV. SPECTRUM OF THE ENVELOPE

The timing frequency is to be acquired from the envelope of the
filtered line signal. Let the filtered line signal m(t) be

m(t) = E anf (t - nT) cos wct - E b,,f(t - nT) sin wet, (7)
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where f (t) is the (equivalent baseband) pulse shape after filtering at the
receiver. The (squared) envelope of m (t) is defined as

r(t) = EE anf(t - nT)]2 EE bf(t - nT)]2. (8)

As before, we introduce complex -signal notation by letting

d(t) = E cnf (t - nT)

d* (t) = E (t - nT), (9)

r(t) = d(t)  d* (t), (10)

where * stands for the complex conjugate. Thus, the Fourier transform
of r(t) is given by

R(co) = D(w)®D*(w) = EE cne-j-TF(.)]®[E c:,e-j--TF(w)], (11)

so that we can write

n

where D* (w) is the Fourier transform of d* (t), and F (w) is the transform
of f (t). Using (3b), we have that

N-1
D (co) = E [ E c(u)e-j(2-/N)kni e-i-TF(w)

kn =0

N-1
= E C (k0)F (0.7) E 5(co - 162 - nco.). (12)

Substituting (12) into (11) and performing the convolution gives

N-1 N-1
R(w) = E E C (kS2)C* (10) E E F (k0 + 710.0F (mco. - 10)

k=o i=0 n m

X SEco - (k - 1)0 - (n m)ws]. (13)

Evidently there are tones at pC2+ qw. (where p = k- 1 and q= n+ m) ;
the desired tone is at cos (i.e., p = 0, q = 1) and all other tones may
be regarded as interferers. Again, practical bandlimiting of F (w) and
filtering of R (e.o) will eliminate all terms where q 0 or 1. The power in
the desired tone is

N-1
R(w,) = E IC (k0) 12F (kW F (c,h, - kg), (14)

while the power in an interfering tone (or sidelobe) is

N-1
R(w, p52) = E C (k0)C*[(k - p)0]F (k0)F[(k - p)S2 -

k=0

p = 1, 2, 3, . (15)
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Fig. 4b-Strength of sidelobe interference at co, pa is
C(ka)C*[(k - p)sz]G(ka)G[(k - p)S2 - 0),].

k fl

 k 11

Conventionally, the signal r (t) is fed to a phase -locked loop (PLL),
which acts like a narrow -band filter in accepting tones in some region
about co. (e.g., from co. - B12 to w. + BO, where 2BO is the effective
bandwidth of the loop) and produces an output that is dominated by
a tone at w,. We first consider the above spectra in the absence of any
timing loop filtering [i.e., F(co) = G(w)] as shown in Fig. 4. It is clear
from (14) that the problem of timing -frequency recovery becomes more
difficult as the amount of excess bandwidth (as measured by the
parameter a) decreases-for zero excess bandwidth, this timing re-
covery technique clearly fails since the pulses G(IcS2) and G(co, - ki2)
are disjoint. Figures 4a and 4b show how to compute the power of the
tones at w4 and at co. + pI2 respectively. We note that, in general,
R(w. + /AZ) R(co. - pg), and moreover, for the particular spectral
shaping shown in the figure, it is clear that R(co. + pig) > R(co. p2S))
for -B < 7)2 < pi < B; thus, half of the sidelobe tones are greater in
magnitude than the desired tone. Thus, without any prefiltering in the
timing loop, the desired tone is rather weak in comparison to the
interfering tones. As we have already mentioned, this problem has a
direct solution*: choose the loop filter F(w - we) to be a narrow zonal
filter around co, + (co./2) and co, = (co./2) as shown in Fig. 5. The
resulting signal m(t) has its energy concentrated at co, - (co./2) and
coc (w./2), and the relative strength of the timing tone is illustrated

A filter in the timing loop has also been proposed by Franks and Bubrowski.5
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F(w-wc)
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Fig. 5-Timing-loop filter shape which improves the tone -to -interference ratio.

in Figs. 6a, 6b, and 6c. The attenuation of the interferers is aided
further by the fact that the magnitude of Eivo ckct, is a maximum
for p = 0 (this follows from the Schwarz inequality). Clearly, by
making F (MI) = 8(1c12 - co.), we can make R(w. p12) = 0 for all
p 0; however, any narrow -zonal prefilter of the type shown in Fig. 5
should significantly improve the relative strength of the timing tone.
Since we merely require the filter to be narrow -band, any reasonable

F(k (1)

Ws
2

kfl

Fig. 6a-Strength of tone at co. ti Er.:01 I C (kg) 12F (kg)F(cos - kg).

F (1)F (k- p)fl-WO)i F (kfl )

kfl
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2

Fig. 6b-Strength of tone at co. p C (Icil)F[(k - p)S1 - C4.].

WS

Fig. 6c Spectrum of envelope.

kfl
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Fig. 7-First-order phase -locked loop.

choice wide enough to accommodate the uncertainty in co, would be
adequate over a wide range of channel characteristics.

e(t)

V. THE ROLE OF THE PHASE -LOCKED LOOP

As we have discussed, the signal r(t) contains a desired tone as well
as interfering tones. In this section, we wish to demonstrate that a
phase -locked loop (PLL) can provide extremely narrow -band filtering
even to the extent of extracting a single tone from a spectrum of
adjacent interferers. Consider the standard first -order PLL6 shown in
Fig. 7. Let us assume that the input is the desired tone plus two
interfering sidelobes, i.e.,

r(t) = A sin cost B sin [(we A)t -y]

B sin [(we - A)t - 7], (16)

where A is the frequency displacement of the sidelobe from the desired
tone and y is the corresponding phase shift. Note that we have special-
ized the situation to the case where both interferers have the same
amplitude and opposite phase angles (i.e., the distortion in the timing
recovery system is symmetric about w8 radians). We also assume that
a perfectly tuned loop (i.e., the free -running frequency of the voltage -

controlled oscillator (vco) is co.) is employed.' From Fig. 7 the loop
error signal is given by

e(t) = A sin ( f e(t)dt a) B sin ( f e(t)dt a - At - 7)

B sin ( f e(t)dt + a + At + -y) (17)

If we define (t) as the phase difference between vco output phase and
the PLL input phase corresponding to the desired tone, i.e.,

° cost - (coat + f e(t)dt + a) , (18)

A perfectly tuned loop could arise by varying the free -running,vco frequency.
As we show, via (22), when this condition is achieved the output will be a single tone.
This observation suggests a feedback or error -sensing procedure for varying the
nominal vco frequency.
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it is necessary that 0 (t) -> 0, as t -> co , since this implies successful
tracking of the tone. Using (18) in (17) gives

e(t) = - [A + 2B cos (At + 7)] sin OM, (19)

and since from (18) 4(t) = - e(t), the PLL is governed by the first -
order differential equation

c/q5(t) = - [A + 2B cos (At + y)] sin 0(t). (20)
dt

To solve (20), we first separate the variables and write

dck = A + B cos (At + 7)dt, (21)
sin 0

and, by direct integration, we obtain the solution

4,(t) = 2 tan-' le-At exp (2B/A)Esin (At + 7) - sin 71. (22)

We then have OM -> 0 as t ->00, i.e., the loop locks on the desired
tone for any strength of the interference tone. Clearly, the same would
be true for a collection of interferers provided they met the assumed
symmetry conditions on their amplitude and phase. This example
illustrates the power of a PLL to capture a desired tone in the presence
of considerable interference.

VI. EFFECT OF PRECESSION ON THE RECOVERY OF A TIMING TONE

In modems not employing adaptive equalization, the question arises
as to whether or not a scrambler is needed to generate a timing tone
during the idle period. Since there is no equalizer in the system, we
are not concerned with having a densely spaced line spectrum but only
that there be at least two spectral lines, spaced we apart, in the pass -
band signal. Using the framework we have developed in the preceding
sections, we investigate the effect of "preceding" the data symbols.
Let us consider the phase -modulated signal

s(t) = i g(t - nT) cos (wet + On), (23)

whose idle code is On = 0 for all n. The spectrum of s(t) is, by using
(5) with C (1g2) = ak0 and N = 1,

8(w) = t G(no.),)5(0.) - we - nw,), (24)
n....-00

and for an excess bandwidth of less than 100 percent,

8(w) = G(0)6(w - we); (25)
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Fig. 8a-Spectrum without precession.

Fig. 8b-Spectrum with precession.
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i.e., the spectrum consists of a single tone, which is obviously not
sufficient to provide a timing tone. This situation is illustrated in Fig.
8a for a pulse g (t) with 100 -percent excess bandwidth and with fc = 1800
Hz and 1/T = 1200. To avoid the above situation, let O. = 2nir/M,
where M/2 is the number of points in the signal constellation and, thus,
0 has period M. The advancing of the degrees,
independently of any change in the input data, is known as precession.'
Using the notation in Section I, we have

Cn = ejen = ei(2nir/M),

M1M-1 -cne-jnk(2./M) =C(IcS2) = E e_;(2,/m)nck-I, =
n-(21

(26)

which from (5) gives

AS (CO = E G (nco. wR)- o (co - co, - -coc - mos) (27)

Thus, the effect of precession is to offset the tones by co8/111, producing
the spectrum shown in Fig. 8b. Clearly, when squared, this signal
provides a tone at w, = 1200.

The situation is different, however, for the spectrum shown in Fig. 9a
with 0 = 0. The spectrum with precession shifts the tone by 100 Hz,
and clearly no pair of in -band tones is present. Thus, for spectra that

Differential phase modulation with precession would generate a data sequence
0 = 0_i + ¢n + 2nr/M, where a is one of M/2 equally spaced angles.
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Fig. 9a-Signal spectrum without precession.
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Fig. 9b-Signal spectrum with precession.
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use small amounts of excess bandwidth, the tones necessary to provide
timing would not be present with or without precession. Also, preces-
sion has little or no bearing on equalizer training since it simply shifts
the spectrum and does not enrich it. For high-speed transmission in
which the amount of excess bandwidth is small, spectral enrichment is
provided by the scrambler and insures the proper operation of the
equalizer and timing recovery system.

VII. SCRAMBLERS: BACKGROUND MATERIAL

We have shown in the preceding sections how the transmission of
short repetitive patterns can play havoc with both the equalizer and
timing recovery systems. As the name suggests, scramblers serve to
"randomize" deterministic data sequences. The effect of this random-
ization on periodic sequences is to lengthen the period of the input
sequence to the scrambler. Strictly speaking, the periodic output of
the scrambler is not random. However, the scrambled data stream
results in a line signal that has many more spectral components than
the input data stream, and, thus, it looks more like the continuous
spectrum that results when purely random data are encoded.

We confine our attention to the so-called self -synchronizing scram-
bler.' The generic forms for the self -synchronizing scrambler and the
descrambler are shown in Figs. 10 and 11 and consist of, respectively,
feedback and feedforward shift registers. Data symbols are fed into
the scrambler every T seconds. These symbols are added (modulo p) *

*In practice, p = 2.
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Fig. 10-Self-synchronizing scrambler.
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Fig. 11-Inverse scrambler.

F- = YnO yn
1.1

to past outputs to produce the current output. The inputs to the delay
elements shown in Fig. 10 are delayed by T seconds. The output of the
scrambler is then encoded for transmission over the channel. After
decoding at the receiver, the resulting sequence is put through a de -
scrambler, shown in Fig. 11, where the original sequence is recovered.
The inverse scrambler is self -synchronizing, and it will eventually
cleanse itself of a transmission error once the error has propagated
through the shift register. The number of errors in the descrambler
output sequence is the number of channel errors multiplied by the
number of nonzero tap weights in the shift register.

We shall study the input-output relationships of scramblers using
d -transforms. Using this tool we are able, quite simply, to extend and
clarify Savage's theorem' on scramblers with periodic inputs. Before
getting into details on scrambler input-output relationships, a sum-
mary of some necessary background material on polynomials over
Galois fields is in order.*

With p a prime number, we speak of a polynomial Q(d) over GF (p),
where the coefficients of Q(d) are modulo -p numbers. Multiplication,
addition, and division of such polynomials are carried out in the usual
fashion using modulo -p arithmetic on the coefficients. The degree of a
polynomial Q(d) is the highest power of d appearing in Q(d). A poly-
nomial of degree in is irreducible if it cannot be factored into poly-

* Much of the background material is taken from Ref. 7.
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nomials of lower order. Two polynomials are relatively prime if they
have no common factors. A crucial concept in our study of the scram-
bler is the exponent of a polynomial. The exponent of the polynomial
Q(d) is the minimum value of 1 such that Q(d) divides 1 - di, i.e.,
(1 - d')/Q(d) is a polynomial of finite degree. For example, the
exponent of the polynomial 1 + d2 d3 in GF (2) is 7 since it divides
1 + d7, yielding 1 + d2 d3 d4, but it does not divide 1 + dt,
i < 7. If the polynomials P (d) and Q(d) are relatively prime with
exponents /1 and /2 respectively, it can be shown that the exponent of
P (d)Q(d) is the least common multiple (lcm) of li and /2. The ex-
ponent of [Q(d)]', where Q(d) is over GF(p), is pr/, where 1 is the ex-
ponent of Q(d) and r is such that <j r.p An irreducible
polynomial of degree m is primative or of maximum exponent if its
exponent is pm - 1. Given a polynomial Q(d) of order m, its reciprocal
polynomial is dmQ(1/d), and it is known that reciprocal polynomials of
irreducible polynomials are themselves irreducible, and that reciprocal
polynomials of primative polynomials are themselves primative.

This theory of polynomials over a Galois field is applicable to the
d-transforms7 of the input and output sequences of a scrambler. Con-
sider a time series xo, xi, x2, , such that the xi, i = 0, 1, are
elements from a Galois field, e.g., 01101 . The d -transform of this
series is defined as

X (d) = xidi, (28)

and inversion is accomplished by "reading" the coefficients of X (d).
The d -transform of a periodic sequence is of the form R(d)/ (1 - dx),
where X is the period of the sequence and R(d) is a polynomial, of
degree less than X, in d over GF (P). To illustrate, suppose we have a
series of elements in GF (3), 1021, 1021, . Using the relationship for
a geometric progression we find that the d -transform of this series
is (1 + 2d2 d3)/ (1 - d4). In general, it can be shown that the
d -transform of a periodic time series is of the form P(d)/Q(d), where
P (d) and Q(d) are polynomials over a Galois field. If P (d) and Q(d)
are relatively prime, the period of the time series represented by
P (d)/Q(d) is the exponent of Q(d).

Linear sequential machines over GF(p) are composed of modulo -p
adders, multipliers, and delay elements connected according to a few
elementary rules. As the name implies, such circuits are linear over
modulo -p arithmetic. The laws of commutativity, associativity, and
superposition apply. For example, the response of a circuit to the sum
of two inputs is the sum of the responses to each input separately. The
summations are carried out term -by -term modulo p on the input and
output sequences.
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The response of such circuits to inputs can be found using the
classical techniques of linear system theory. The output consists of the
sum of the free response and the forced response. The free response is
due solely to initial conditions within the circuit with no input. If the
circuit is in the quiescent state, i.e., it has zero initial conditions, there
is no output without an input. The forced response is the output when
an input is applied to a circuit in the quiescent state. As in the case of
conventional linear circuits, the forced response can be found by con-
volving the impulse* response with the input sequence. Thus, if hn,
n = 0, 1, is the impulse response of a circuit and un is its input at
time nT, n = 0, 1, , then the output at time nT is

yn = E hkun-k,
kso

(29)

where E indicates summation modulo p. If we take the d -transform of
both sides of (29), we find

Y(d) = U(d)H(d), (30)

where U (d) and H (d) are the d -transforms of un and hn respectively,
and where n = 0, 1, .

VIII. SCRAMBLER INPUT-OUTPUT RELATIONSHIPS

Scramblers are linear sequential circuits and their input-output
relationships can be found using linear system theory. In this section,
we wish to demonstrate the utility of the d -transform approach in
characterizing the nature of the output sequence for a given input
sequence. Consider the m -stage scrambler shown in Fig. 10 with feed-
back coefficients Cl, , cm. The output at time nT, yn, is given by

yn = coin 0 c2s2n 0 -  0 cmsmn 0 Un
51n = yn-1
Sin = Si -1,n-1 2,

(31)

where un is the input at time nT and ski is the output of the kth delay
element at time Lt Now we find the impulse response. Let

1 n = 0
un =

0 n > 0

and
8,0= 0, Vi.

By an impulse we, of course, mean a time series which is unity at the time origin
and is zero elsewhere.

t The output may be rewritten as yn = ciyn_i u,,. At the descrambler we
form 2n = yn (1) Er_i ciyn_i, which recovers the input when there are no channel
errors.
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The output sequence can be written

1 n = 0
n

E CiYn-1
yn = i.--1

E ciyn_i

n < m.

n > m.

(32)

If we take d -transforms of both sides of (32) we find after some manipu-
lation that the transform of the impulse response, i.e., the transfer
function, is given by

H(d) E ykdk = 1 / - mt cidi)
k =0 / i =1

(33)

The d -transform of the forced response of the scrambler can be found
from eqs. (30) and (33).

The free response of the scrambler can also be found from (31)
when un = 0, for all n. We begin by assuming a particular initial
state vector. Assume that the output of all of the delay elements but
one are zero. Let the nonzero output be that of the ith delay element
and denote this output by sio. It can be shown that yfz, the output of
the scrambler due solely to state so, is

cisio n = 0
n

E ci-Ensio

Yin
--

E C
j=1

0 <nm-i
(34)

If we take the d -transform of both sides of eq. (34), we find that
the d -transform of the response to initial condition sit) is

m

Yi(d) = (so E ci±kdk)/(1 - cjci) (35)E
=0 j =1

Now, to find the response to any initial condition s.10, s2o, , smo,

we sum over i. Thus, the d -transform of the free response is

Yfree(d) = S(d)/(1 - cid]) = S(d)H(d), (36)
J=1.

where (d) Erin=1 sio fT:gci±kdk.
A fact that is crucial to our analysis in the sequel is that the poly-

nomial S(d) spans the space of polynomials of degree m - 1 in GF (p).
By choosing the initial conditions sio, i = 1, 2, , m, S(d) can be any
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polynomial of degree in - 1. To show this, suppose we have the
polynomial T (d) = to + tid +  + tm_idm-'. Equating T (d) and
S(d) term by term, we have m equations in m unknowns, sio, s20, ,

smo. The equations can be represented in the form
.- ,

cm 0 0 sio tm_i

c,n_i cm 0 S20 tm-2
= (37)

ci c2 cm smo to

The m X in lower triangular matrix in (37) is nonsingular (since
cm 0) ; therefore the in simultaneous equations have a unique
solution.

From the foregoing, we see that the total response of a scrambler to
an input, with transform U(d), is

Y (d) = EU (d) S (d)J/Cd), (38)

where 4)(d) A 1 - cid"' is the transform of the feedback co-
efficients. The above equation completely describes the behavior of
the scrambler to any input for any given initial state.

Now we consider the input-output relationships for the scrambler
based on eq. (38). Throughout our discussion we shall assume that
40(d) is a primitive polynomial implying that it has exponent 4.= p'n- 1,
and thus can be written as (1 - do)/c13' (d), where erl.'(d) is a finite
degree (remainder) polynomial of degree - m. Note that 4' (d) is
one "cycle" of the periodic polynomial 1/4)(d). Suppose that the input
is zero, the transform of the output is simply S(d)/43(d). Since the
degree of S (d) is one less than that of 4) (d) , S (d) and 4)(d) are relatively
prime,* and the output transform is S(d)4)/ (d)/ (1 - di) ; hence, the
output is periodic with period = pm - 1. If the input is a sequence of
finite duration j, then U(d) is a polynomial of degree j - 1. If j < m,
then the above output transform is U(d)43'(d)/ (1 - do), and since
the degree of the numerator is less than 4), it is clear that the output
is purely periodic with period 4. Note that there is no output transient.
If j in, and if U (d) S(d) and c13(d) are relatively prime, then it is
easy to show that the output consists of a transient component
( j 1 - m) longs and a periodic component with period 4). For any
input U(d) of finite duration, there are a unique set of initial conditions

*Since (1)(d) is a primative polynomial, S (d) cannot be a factor of 4,(d) ; and since
the degree of S (d) is less than a 4 (d), 4 (d) cannot be a factor of S (d). Thus, S (d)
and cia.(d) are relatively prime.

t This should be intuitively clear, since once j - (in - 1) bits are accepted in the
scrambler, the situation is one where the (remaining) input sequence is of a length
less than m.
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S (d) such that
U(d) S (d) = T (d)(1, (d) ,

where T (d) is some polynomial. In this situation the output has
finite duration given by T (d), i.e., the periodic component of the solu-
tion has been annihilated. To show this, we cite the following theorem.8
Let U(d) and (I) (d) be polynomials in GF (p) . Then there are unique
polynomials T (d) and S (d) in GF (p) such that U (d) S (d) = T (d)(1)(d),
where S (d) = 0 or S (d) is of lower degree then U (d) . Recall that by
suitably choosing initial conditions, S (d) can be any polynomial of
degree m - 1 over GF (P) .

We turn to the important case of periodic inputs. The input se-
quence U (d) can always be written in the form U (d) = P (d) /Q (d),
where P (d) and Q (d) are relatively prime. Let the exponent of Q (d)
be t, i.e., the period of the input is e. The d -transform of the output
becomes

Y(d) = [S (d)Q(d) P (d)]/ (d)Q(d) (39)

We consider first the case where 43(d) and Q (d) are relatively prime.
If the numerator and denominator of eq. (39) are relatively prime,
then, using the background material presented in Section VII, it is clear
that the output is periodic with period N, where N = lcm (1, pin - 1).
However, we will show that given P (d) and Q (d) , there is a set of
initial conditions for which

S (d)Q (d) P (d) = T (d)c (d) , (40a)

where T (d) has degree 1 - 1. When (40) holds, the output period is 1.
Thus, assuming that all initial states are equiprobable, with probability
pm the initial state will be such that the scrambler "locks up" and the
output period equals the input period. (As we have previously men-
tioned, this is a very undesirable situation.) To support (40) we cite
the following theorem.8 There exist (unique) polynomials T' (d) and
S' (d) such that

S' (d)Q(d) 77' (d)013 (d) = 1 (40b)

only if Q(d) and 40(d) are nonzero relatively prime polynomials over
GF (p) . Now multiply both sides of the above equation by -P(d) and
let S (d) = -P (d)S' (d) and T (d) = P (d)T ' (d) . Again we make use of
the fact that S (d) spans the space of polynomials of degree m - 1 to
guarantee that for every S' (d) there corresponds a S (d) . We now
summarize the above.

Let the scrambler be defined by the primative polynomial
1 - 1 cidi, and also suppose that the transform of the input to the
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scrambler is P(d)/Q (d), where P(d) and Q(d) are relatively prime. It
is also assumed that 43(d) and Q(d) are relatively prime. For a particular
set of initial conditions, the output period of the scrambler is the input
period, 1, where 1 is the exponent of Q(d). For all other initial conditions
the output period is the least common multiple of 1 and pm - 1.

Our description is the same as Savage's Theorem 1 with two dif-
ferences-one superficial, the other crucial. Savage requires the poly-
nomial h(d) = dm - cidm-i to be primative. However,
1 - r= 1 cidi and h(d) are reciprocal polynomials and, as we have seen,
the reciprocals of primative polynomials are themselves primative with
the same exponent. The second requirement is that 43(d) and Q(d)
be relatively prime. This requirement, which is not part of Savage's
theorem, is essential for a complete description of scrambler behavior.*

We will now show that the requirement that cI3(d) and Q(d) be rela-
tively prime is satisfied whenever the exponent of Q(d) is not a multiple
of pm - 1. The proof is by contradiction. Suppose 43(d) and Q(d) are
not relatively prime, then it is possible to writer

Q(d) = R(d)43'(d) j = 1, 2,  , (41)

where R(d) is a polynomial, with exponent r, which is relatively prime
to 43(d). The exponent of Q(d) is lcm [r, pk (pm -9], where k is such that
pk-1 <j p - lc. Clearly, the exponent of Q(d) is a multiple of pm - 1,
thus proving the desired result. Thus, when the input period is less
than pin -1 (the practical case), then it (d) and Q(d) are relatively prime.
It is interesting to note that even if the input to the scrambler has an
exponent which is a multiple of pm - 1, it may be that Q(d) and 43(d)
are still relatively prime. For example, Q(d) can be the reciprocal
polynomial to 43(d).

Consider now the situation when Q(d) and 43(d) are not relatively
prime. As above, we can then factor Q(d) in the form Q(d)=V(d)R(d),
j > 1, where R(d) is either 1 or a polynomial relatively prime to
Cd). From (39) and (41) the d -transform of the output is

Y(d) = ES (d)(13- i(d)R(d) P (d)]/41-1-1(d)R(d). (42)

Since by assumption P(d) is relatively prime with Q(d) = cl)i(d)R(d),
the numerator and denominator of (42) are relatively prime. Since

(d) and R(d) are relatively prime, the output period is then the
least common multiple of pk (pm - 1) and r, with k given by pk-1 <

In other words, Savage states that, apart from the special case when the output
period equals the input period, the output period is the lcm(l, pm -1). This is not strictly
true since, as we shall show, if 4,(d) and Q(d) are not relatively prime, the output
period is not necessarily the lcm(l,

/ Since 4 (d) is irreducible, we could not write Q (d) as a factor of 43(d).
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Fig. 12-Cascade of N Ili -bit scramblers.

+ 1 < pk. Note that this result holds independently of initial
conditions. *

The above discussion provides a refinement of Savage's basic resultt
by indicating that the output period is contingent on whether or not
4)(d) and Q (d) are relatively prime. It was shown that if the exponent
of Q(d) is not a multiple of pm - 1, then c13(d) and Q(d) are relatively
prime. However, when Q (d) and c10(d) are not relatively prime the
output period must be determined from (42).

IX. CASCADED SCRAMBLERS

The cascade of identical scramblers provides an interesting example
of when Q (d) and 4) (d) are not relatively prime. Suppose, as in Fig. 12,
we have n identical in -stage scramblers in tandem so that the output
of the first is the input to the second and so on. Thus, assuming no
lockup, the input to the second stage will have the same period as the
free -running period of the second stage. With 8(d) = 0 for all the
scramblers, the output transform of the nth scrambler is

Y(d) = U(d)/40n(d),

where U(d) is the transform of the input. Consider an example where
U(d) = 1/ (1 d) = 1/Q(d) with p = 2. Note that the exponent of
Q(d) is unity. The transform of the second output is 1/Q(d)4)2(d),
and we apply the results of the previous section to show that the output
period is 2(2m - 1), i.e., k = 1. Applying the above result to succes-
sive stages produces the data in Table I, which shows the period of
the output as a function of n for a binary scrambler (p = 2). Table I
points out that adding a stage in cascade does not always double the
output period.

By considering each scrambler successively, we can comment on the
output period of the cascade scrambler for arbitrary initial conditions
and input, assuming Q (d) and (1)(d) are relatively prime. Let the input
to the first scrambler have exponent 1 < pin - 1. From Section VIII

If cancellation between the numerator and denominator in (42) were to occur,
(40) would imply that P = 4)(1 + SRS'-'). Now since (41) states that Q = RED', it
is clear that P and Q have the common factor (1). This contradicts the assumption
that P and Q are relatively prime. Thus, under the above conditions (i.e., Q and .13
are not relatively prime), the initial condition cannot force the output period to equal
the input period.

t Results similar to ours were stated without proof in Ref. 9.
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Table I

n Output Period

1 (2m - 1)
2 2 (2m - 1)
3 4 (2m - 1)
4 4 (2m - 1)
5 8 (2m - 1)
6 8 (2'n - 1)
7 8 (2m - 1)
8 8 (2'n - 1)
9 16 (2'n - 1)

we know that the probability of the output having period 1 is p -m.
Otherwise, the output has period lcm(l, pm- 1). If the input to the
second scrambler has period 1 we have the same situation as the first
scrambler. However, if the output of the first scrambler has period
lcm (1, pm - 1), the input polynomial to the second scrambler has de-
nominator Q(d)(13(d). By an argument analogous to that surrounding
(42), it is clear, that (40) cannot be satisfied, since Q(d)(13(d) and 4)(d)
are not relatively prime ; thus, the scrambler cannot "lock up," and
applying the results in Table I indicates that the output of the second
scrambler has period lcm[/, p (pm - 1)]. Thus, if a particular scrambler
does not lock up, then no succeeding scrambler can lock up. The situa-
tion is summarized in Table II for four binary scramblers in tandem.
We assume in Table II that all initial states are equiprobable.

We compare Table II to the serial scrambler in which all delay
elements are combined into a scrambler that has 4m elements.
With input period 1, the output period is 1 with probability 2-4m and
lcm(l, 24m - 1) with probability 1 - 2-4m. Both the cascade and serial
scramblers lock up and have period 1 with the same probability
(2-4m) ; however, since

(i) the longest period of the cascade scrambler, lcm[l, 4(2" - 1)],
is less than the largest period of the serial scrambler,
[lcm(l, 24m - 1)], and

Table II

Output Period Probability

lcm(l, 2m - 1)
lcm[l, 2(2m - 1)]
lcm[l, 4(2'n - 1)]

2-4"1

2-3m(1 - 2-'n)
2-2"' (1 - 2-m)
1 - 2-2m
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(ii) the probability of the cascade scrambler attaining its largest
period (1 - 2-2m) is less than the probability of the serial
scrambler attaining its largest period (1 -

the superiority of the serial over the cascaded scrambler in terms of
spectral density is clear.

X. PARALLEL SCRAMBLERS

Serial scramblers have the property that if a single bit error is made
in demodulation, then M errors will appear in the unscrambled output
sequence, where M is the number of nonzero coefficients in the scram-
bler primitive polynomial. A parallel scrambler configuration has been
proposed to ameliorate this error multiplication. In this section, we shall
illustrate a spectral cancellation effect that can take place with parallel
scrambling. For simplicity, we shall consider two parallel data streams.
Suppose that the binary data, as in Fig. 13, are split into two data
streams a,: and bn, where an is the scrambled* version of ay:, while
bn = an_,,C)b,:. The an and the bn streams are then encoded for
transmission over the channel. At the receiver, inverse operations re-
cover the a,: and the bn streams. A channel error in the an stream will
cause M errors in the a,: stream and one errors in the stream. A
channel error in the bn stream will cause a single error in the bn stream.
Now suppose that an and bn are Gray encoded so that an is the least
significant bit. The result is that the probability of error in the an
stream is much less than the probability of error in the bn stream;
thus, the average number of errors in the a,: and the bn streams will be
decreased compared with serial scrambling.

Now we wish to examine the effect of "slaving" the bn stream to the
an stream. For our purposes it will be sufficient to code the scrambled
output sequences into 1 and -1, i.e., the transmitted data sequence
is given b34 (recall the notation of Section III)

cn = (2an - 1) + j(2bn - 1)
= 2an - 1 + j[2(an_in - 1]. (44)

As we have shown in Sections III and IV, both the line and envelope
spectra critically depend on the discrete Fourier transform (DFT) of
the cn sequence, C (1a2). Unfortunately, it is not possible to express

* At the inverse scrambler, a'. is recovered as in the standard configuration, while
b', is estimated as b. + an_,.

t Since the estimated bn is formed as the "mod 2" sum of b. and a_ a single
channel error will only affect the bin output once; however, the an output will see
the propagation of this error through the shift register.

t The function (2a - 1) maps "0" into " -1" and "1" into "1" and thus serves
as a mapping from the scrambler output sequence to the transmitted (line) sequence.
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Fig. 13-Parallel scrambler configuration.

bi,

C (kg) directly in terms of the scrambler primative polynomial, which
is a most difficult problem since, in the space of real -valued sequences,
the DFT is a linear operation and the scrambler output is a nonlinear
function of the input [of course, the scrambler input and output are
linearly related in GF (p)]. However, in the present situation we are
able to proceed since we are only interested in illustrating the possi-
bility of spectral cancelling due to the parallel structure. We first
indicate two simple relations between mod 2 operations and the cor-
responding real variable operations: with a, b E GF (2),

a C) b = (a - b)2 (45a)
a2 = a. (45b)

Using (45) we write (44) as

e. = (2a. - 1) + j[2(a.. - 2b,:a.. + b) - 1]
= 2(a. + jan_,) + 2jb,: - 4jb,:a, - (1 + j). (46a)

Let us consider the effect of the first term on the spectrum of cn. Now
with L and C(Icii) denoting respectively the period of a. (and bn) and
the DFT of a. + ja.,, we have*

C (kW = [1 ± je-j(2r 1 L)rnk]A (k0)
= 1 + ei t(7/2)-(2r(L) mk) A (k10 (46b)

Suppose that the scrambler produces a flat output spectrum (i.e., it
would be a satisfactory scrambler if used solely in the serial mode),
it is clear that C(IcS2) will have periodically spaced nulls. Since the
energy in the timing tone is given by

N-1
R(0.),,) = k.; IC (IcS1) I2F (E2)F (cos - kg), (14)

' For the purposes of our discussion, we, in effect, assume that b. = 0,i.e., c = a. + ja_,.
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any amplitude tapering provided by IC(kg)I2 could impair the timing
recovery system. From (46) we have

C (kg) 1 2 = + sin(27r/L)mk]2 [cos (2ir/L)mk]2
= 2[1 + sin (2ir/L)mk], (47)

where k = 1, 2, , L, and m = 1, 2, , M with M being the number
of stages in the scrambler. The strength of the tone, described by (14),
will be particularly attenuated when I c(ka) I has a null at k = L/2,
which corresponds to a frequency of co./2. It is easy to see that for
some values of "m," the attenuation of the tone can be quite severe
near co./2 (i.e., k = L/2).

In practice, the remedy is to change the value of m so that the null
occurs as far away from (48/2 as is possible. Of course, this cannot be
done prior to transmission since the exact value of cos is unknown.

In this section, we have described a possible pitfall associated with
the use of a parallel scrambler configuration. In practice, whether or
not there is severe attenuation of the timing tone depends on the
details of the pulse shaping and the operation of the phase -locked loop.

XI. CONCLUSIONS

We have examined several problems occurring in data -transmission
systems that employ envelope -derived timing recovery, adaptive
equalization, and self -synchronizing scramblers. Several conclusions
have been reached regarding both the individual and joint action of
these subsystems.

(1) The performance of the envelope -derived timing recovery
system can be significantly improved by narrow -zonal pre -
filtering of the received signal prior to extracting the envelope.

(ii) The technique of "precessing" the data symbols in a phase -
modulated modem is sufficient to provide a timing tone in a
large excess -bandwidth system, but does not provide a tone in
a small excess -bandwidth system.

(iii) A complete description was given of the output period of a
cascaded scrambler as a function of the number of stages. Of
interest are the facts that the output period does not neces-
sarily double with the addition of a stage, and that if a partic-
ular scrambler stage does not lock up, then no succeeding stage
can lock up.

(iv) It was demonstrated that the parallel scrambler configuration
can, via spectral cancellation, cause the strength of the timing
tone to be attenuated.
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Multiqueue System With Finite Waiting

Space in Each Queue
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An analysis of a particular type of multiserver, multiqueue system is
presented in which each queue has a finite number of waiting positions
and the waiting positions are not vacated until service is completed. Thus,
several customers in one queue can be served simultaneously. The steady-
state distribution of states is derived and is used to obtain the probability
of loss for each queue and the average delay of the system. This analysis is
then used in the development of a design procedure to determine the
minimum -cost configuration of waiting positions and servers to meet
specified single -hour grade -of -service constraints. The results are applicable
to the design of systems that utilize automatic call distributors. While this
model does not include such effects as day-to-day variation and noncoinci-
dence of peak loads among trunk groups, nevertheless the results properly
reflect for the first time the interactions among the trunk groups terminated
on the automatic call distributor and the attendants at the automatic call
distributor.

I. INTRODUCTION

The purpose of this paper is to present an analysis of a particular
type of multiserver, multiqueue system in which each queue has a
finite number of waiting positions and the waiting positions are not
vacated until service is completed. In particular, the steady-state dis-
tribution of states are derived, and expressions for the probability of
loss for each queue and the average delay are given. It is shown that
the queuing model described is representative of systems characterized
by a finite number of trunk groups that carry calls to a group of
attendants who then perform some service for the caller. (One such
system is used in the directory assistance service provided by the
telephone company.) Results are given to illustrate the effects of vary-
ing the number of servers and number of positions in each queue.
Finally, a design procedure to determine the minimum -cost configura-

595



tions for such systems under various grade -of -service constraints is
developed. This procedure ignores such effects as day-to-day varia-
tion, noncoincidence of peak loads among incoming trunk groups, and
retrials of blocked calls, which should be investigated in the develop-
ment of procedures for traffic engineering and administration. However,
as in most cases, it is difficult, if not impossible, to obtain analytical
results with these effects included. This paper should provide useful
insight that can later be incorporated in a complete traffic engineering
procedure.

The system analyzed consists of 1 input queues each with a finite
number of waiting positions, Ni (i = 1,  , 1), which have full access
to M servers. When an arrival seizes one of the M servers, it does not
vacate a waiting position, but remains in the position until its service
has been completed. This characteristic, which allows calls that are
not at the head of a queue to be in service, distinguishes this system
from the usual queuing system. In particular, the system is no longer
completely described by the number of calls in each queue since a
record of the number of calls from each queue that are in service must
be kept. An arrival that finds all the waiting positions for its queue
occupied is cleared or lost from the system. An arrival finding no idle
servers but at least one vacant waiting position in its queue enters the
queue and is delayed until its service begins. In the context of directory
assistance systems, the input queues are the trunk groups and the
waiting positions are represented by the trunks. The information
operators are the servers.

In telephone traffic theory, the described system has been referred
to as a combined loss -and -delay system. Previous work in this subject
can be segmented into three parts :

(i) One input flow-one queue.' -8
(ii) Several input flows-one queue.9-u

(iii) Several input flows-several queues.'2-'4

The last segment, of which this analysis is a part, has been investigated
by Kuhn. He analyzed systems with g > 1 queues, each with a finite
number of waiting positions si (i = 1, 2,  , g). Associated with each
queue is a Poisson arrival process with mean rate Xi, which is assumed
to be independent of the others. An arrival that finds all waiting
positions in its queue occupied is lost. Arrivals that are not cleared from
the system are served by one of n servers. The service time distribution
for the ith server is exponential with a mean rate ei. When a server
becomes idle, queue i is chosen to receive service with probability pi.
Within a queue, calls can be selected randomly, first -come, first -served,
or according to a priority scheme.
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As Kuhn indicates, analytical solutions to these systems exist only
for special cases. In general, the linear equations representing the
equilibrium conditions must be solved numerically for the particular
values of the parameters. However, Kuhn gives a solution to one
particular system, which will now be discussed. In this system, it is
assumed that the service rate for all servers is identical (Ei = E) and
the interqueue discipline is defined by the pls that are

= g

E Zk
k =1

( j = 1, , g),

where Z is the number of waiting positions occupied in the jth queue.
The system analyzed in this paper is an extension of the one ex-

amined by Kuhn, since an arrival does not release a waiting position
until his service has been completed. This complicates the state
analysis, since it is now not sufficient to know the number of servers
that are busy to determine the equilibrium equations; information as
to the number of calls from each queue that are in service must be
included.

Kuhn indicates also that, for the above interqueue discipline, the
waiting time distribution can be found numerically only for small
systems. The calculation of the waiting time is complicated by the
fact that an arrival's waiting time is influenced by the number of
arrivals that occur after it has entered the system. More is said about
this difficulty later.

II. MATHEMATICAL FORMULATION

In this section, a mathematical model of the queuing system is
formulated. Equilibrium equations are given and their solutions
derived.

2.1 Queuing model

The queuing system consists of 1 input queues, each with a finite
length denoted by N1, i = 1, 2, , 1. Requests for service arrive at
queue i according to a Poisson distribution with mean rate, X. If we
let Ai(t) denote the number of arrivals at queue i in (0, t), then

X i t)kP[A i(t) = k] = (k
e (k = 0, 1, 2,  ). (1)

The arrival process at queue i is assumed to be independent of the
arrival process at each of the other queues. Arrivals from each queue
have full access to a group of M servers. The service time distributions
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of the servers, denoted by H(t), are independent and identical ex-
ponential distributions with mean service rate A, i.e.,

H(t) = 1 - (t > 0)
(2)

1 0 (t < 0).

Since the arrival process is Poisson and the service process is ex-
ponential, the queuing model is a multidimensional birth -death process.

Arrivals to queue i that find Ni waiting positions in queue i occupied
are not allowed to enter the system. If an arrival to queue i finds at
least one unoccupied position in queue i but all M servers busy, it
enters the queue and waits as long as necessary for service. Within
queue i, arrivals enter service on a first -in, first -out (FIFO) basis. An
arrival that finds at least one unoccupied position in its queue and at
least one free server immediately enters service. When an arrival
enters service, it does not release a waiting position but remains in
the queue until its service has been completed. Hence, the word
"queue" is being used in a nonstandard manner and refers to the
number of calls waiting for service and in service. As discussed earlier,
an example of such a queue is a group of trunks that carry calls into
a switchboard.

The interqueue service discipline-the order in which the queues
receive service-is characterized by the number of calls waiting for
service. When a server becomes free, queue i receives service with a
probability, pi, which is the proportion of queue-i calls waiting for
service. If we denote the number of calls in queue i by ni and the
number of calls in queue i that are in service by mi, then this prob-
ability, which is dependent on (ni, n2, , ni, ml, , ml) = (n, m),
can be expressed as

ni - mi ni - mi
pi(n, m) =

E (n1 - mi) E ni -M
J=1 j=i

ni M + 1)
1

(i = 1, 2, , l). (3)

The effects of other interqueue service disciplines have been in-
vestigated, but will not be discussed here.

The fact that arrivals remain in the queue during service dis-
tinguishes this queuing system from the standard system, since the
amount of information required to fully describe a state of the system
is increased. The system is also complicated by the fact that the inter -
queue service discipline is state -dependent. However, as is shown in
later sections, this "complication" leads to a closed -form solution of the
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equilibrium equations, which is generally not the case for such systems.
The equations of equilibrium are given in the following section.

2.2 Equilibrium equations

The system described in the previous section is characterized by a
finite number of states that indicate the number of calls in each queue
and, of these calls, the number receiving service. We denote by (ni, nz,

, ni, ml, , mi) the state in which there are ni calls in queue i
with mi of these calls in service. For notational simplification, we also
refer to the state in vector notation as (n, m). In this notation, (ni+, m)
represents the state (nl, n2, , n/ + 1, , nt, ml,  , mi) and
similarly (ni_, m) = (ni, , ni - 1, , int). It should be clear that,
if the total number of calls in the system is less than or equal to M,
then ni = mi for all i.

Assuming stationarity, let P (n, m) be the probability that at an
arbitrary instant of time the system is in state (n, m) . Moreover, if the
arrival processes to the system are Poisson, the equilibrium -state
distribution {P(n,m)} at an arbitrary instant is equal to the equilib-
rium -state distribution at the instant of an arrival. By equating the
rate into a state to the rate out of a state, we can write the equilibrium -
state equations where we have introduced the function

u(x) = 10 x > 0
0

to include the boundary conditions and ai = Xi/u :

i=1
[aiu(Ni - ni) ni]} P(n, m)

1 1

= E aiu(ni)P(ni_, E (ni 1)u(Ni - ni)P(ni+, mi+)
/-1

ni < M) (0 ni -5 Ni) i = 1, 2, , (4)

[aiu(Ni - ni) mi]} P(n, m)

1 1

= E aiu(ni)P(ni_, E miu(Ni - ni)P(ni+, m)

+ E E (mi + 1)u(Ni - ni)u(mi)P(ni+, mi+,;_)
i=1 J=1

Jo/

E ni = M) (0 n/ Ni) -= 1, 2, , / (5)
=1.
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1

E Eaiu(Ni - ni) + mid P (n, m) = E aiu(ni)P(ni_, m)
i i =1

1 mi(ni 1 - mi)

E nk + 1 - M)
k=1

+ E

+
(m, + 1) (n5 + 1 - mi)E E

i =I; E nk + 1 - M)iii
k =1

-1
1, 2, , /. (6)

u(Ni - ni)u(mi)P(ni+, mi+,54

Equations (4) to (6), together with the normalization condition
Ni Nt min (M,N1) min (M,N,)

E  E - EP (n, m) = 1, (7)
ni =0 nz =0 mi =0 nzt =0

where all nonexistent states, such as states in which both ni = 0 and
mi > 0, in the sum are assumed to have probability zero, determine the
equilibrium -state distribution.

2.3 Steady-state solution

Since the process described by the equilibrium equations is a
finite -state birth -death process in which the arrival rate into the
system is always less than the service rate of the system as a result of
overflow from the finite queue, a unique solution to eqs. (4) to (7)
exists, and the solution is a genuine probability distribution." This
solution is given in terms of P(0, 0) by

P (n, m) =

III
an'-L P(0, 0)

i=1 ni!

[nl - ml,
i-1

, mi
P(0, 0):

E ni -M M 11
,-,

ar
1

( itini > M) , (9)

where P(0, 0) is determined from (7). The general solution was de-
termined from examination of various small systems. By substitution,
it can be shown that this solution in fact satisfies the equilibrium -
state equations (4) to (6).

When the number of calls in the system is less than or equal to the
number of servers, no one is waiting for service and the queues have no
interaction. This fact is shown in (8) by the product form of the solu-

i =1
E ni M) (8)

[ , ni - MI ml, m2,
M ! Mlni-M
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tion. However, as the number of calls increases to the point where calls
are waiting in more than one queue, the queues no longer are acting
independently.

Since the queues behave independently as long as there are free
servers, we would expect that, as the number of servers was increased,
the system would approach / independent loss systems. By examining
the marginal probabilities, it can be shown that this is, in fact, true
when M > El, Ni. That is, the marginal state probability of n1
calls in queue 1 is

P(ni) = E  E P(n, m) =
n ni

'in 1'
I

n2 nt E al/k !
k =1

(10)

which is identical to the state probability for a pure loss system.
If no calls were blocked from the system, then the system would act

as a pure delay system with the offered load a = El, ai. This is
easily shown by taking the limit of (8) and (9) as Ni 00 for all
i= 1, 2, , /.

We first consider the case in which El, ni < M. Since the number
of calls in each queue is unrestricted, it is easily seen that the multi-
nominal expansion of (al +  + az)2ni divided by (El, ni) ! can be
obtained from (8). That is,

Nim End
(a1  + az)k P(0,(i- k P(n, m) = ± E ni < M) 

i =1,2, ,z k! i =1

Hence,

Pini = k) = k P(0, 0) (k < M). (11)
=1

For the case in which El, ni M, first note that, by the Vander-
monde convolution of multinomial coefficients,

E  E
ml mt

Therefore,

E ni -M M
`nl- , ni - mi. .nll,,7121

E ni

,n1, n2,  , ni
(12)

ni) /P(n) = E P(n, m)!
111Ini- P(0, 0)111 Af ni !

(E ni M) , (13)
i-1
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and thus we can denote this state probability by

k! a7PMni = =E
Mk-m

11 - P(0, 0)Hitt

n; =k

Consequently,

Nim P (E ni = k) = P(0, 0)
M

ak

i=1,  ,1

The normalization constant is then expressed as
M-1 ak co k

P(0) = [ E -
k=olc! k=mm!mk-Af 1-1

(0

(k > M). (14)

(k M). (15)

a < M). (16)

Hence, comparison of (11), (15), and (16) with the pure delay system
completes the proof.

2.4 Blocking and delay probabilities

In the analysis and design of queuing systems, performance mea-
sures for each configuration must be calculated. In telephone traffic
theory, these performance measures are generally referred to as
"grades of service." Two such measures of the grade of service are :

(i) For loss systems, the blocking probability or probability of loss.
(ii) For delay systems, the average delay experienced by calls that

enter the system. The average delay W(s, a) for a pure delay
system is expressed in terms of the Erlang delay formula as

a
(s, a) = (Cs

(s
CO)µ

(17)

In the system described in Section 2.1, the blocking probabilities
for each input queue, the average delay experienced by calls that enter
the system, and the average delay of only those customers who experi-
ence a positive delay are important characteristics to be examined. The
latter is not used in the remaining analysis.

The blocking probability for queue i is defined as the probability
that an arrival to queue i finds Ni calls in the queue. This probability,
which is denoted by Bi(N, M, a), is a function not only of the number
of positions in queue i and the offered load to the queue, but also of
the traffic load offered to each of the other queues, the number of
positions in each of these queues, and the number of servers. Recalling
that, for systems with Poisson input, the state probabilities at an
arbitrary instant are equal to the state probabilities at arrival times,

602 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1975



Bi(N, M, a) is calculated from the marginal distribution for queue
i as

Bi(N, M, a)=E... E E E  E P(ni, , Ni, , m). (18)
nu ni-1 ni+i mt ml

The average delay experienced by calls that enter the system (suc-
cessfully occupy a waiting position in their queue) is denoted by
D(N, M, a). The delay calculated for this system is the overall mean
waiting time measured from an arrival's entry into its queue until its
service begins. Hence, it does not include service time of the call. It
should also be noted that arrivals into the system that find at least one
free server experience no delay.

Since the average number of calls waiting for service must be finite
and the mean waiting time is finite as a result of the loss structure of
the system, the well-known equation of Little," L = XW, can be used
to calculate D(N, M, a). In particular, we must define our "queue
length" as the total number of calls waiting for service and "X" is
defined as the effective arrival rate into the system. Hence,

EEE,,R,,)
ni>M

D(N, M, a) -
E X,[1 - M, a)]

i =1

(19)

Calls that are blocked from the system do not enter the queue and
hence do not affect the average queue length. Consequently, they are
not included in the arrival rate into the system. The numerator of (19)
is the average number of waiting calls. It should be apparent that the
average delay for any particular queue can easily be obtained by using
the appropriate marginal probabilities. Also, the conditional average
delay, the average delay experienced by only those that must wait,
is found by dividing (19) by the probability of being delayed.

For some design purposes, it might be deemed necessary to constrain
the probability of waiting longer than some time, to, to be less than a
specified value. In this case, the waiting time distribution for each
queue must be obtained. For the interqueue discipline examined for
this system, the calculation of the waiting -time distribution is ex-
tremely difficult. (Kuhn" mentions that, for his problem, numerical
techniques can be used for very small systems, after which approxi-
mate methods must be formulated.) The difficulty in determining the
waiting -time distribution lies in the fact that the time a particular call
must wait for service is not just a function of the number of calls in
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the system when it arrives, as is usually the case. In particular, the
waiting time of a call is related to the number of calls that arrive after
the particular call enters the system, since queues are chosen for
service according to their queue lengths at a service completion, so
that later calls can "pass" earlier ones. For this reason, the waiting
time distributions are not calculated in this study.

2.5 Macrostate analysis

As discussed in the previous section, blocking probabilities and
average delay values are of interest to system designers. Using the
state probabilities given in (8) and (9), it is possible to obtain not only
the overall average delay, D, as shown in (19), but also the average
delay, Di, for queue i. In certain types of design, we might want to
engineer the system so that the average delay in every queue is less
than a specified level. In such cases, Di would be needed. However, for
this study, we consider only the overall average delay.

Therefore, it is apparent from (19) that, for computational purposes,
we only need to know the number of calls in each queue without dis-
tinguishing between those in service and those waiting. If we denote
by n the state (ni, n2, , ni), we can find the steady-state prob-
abilities P(n) from (8) and (9). Of course, we could have written the
state equations directly and solved this easier set of equations."
However, for further studies, it is essential to know the probabilities
P(n, m).

Since the state probabilities for (n, m) in which EL n1 < M are
independent of m, P(n) = P(n, m). To obtain P(n) for EL, nt > M,
we sum P(n, m) given by (9) over all possible values of m. Using the
Vandermonde multinomial convolution, we find that

!

P(n) = E  E P(n, m) = -1 11 P(0), (20)
nit mi M!Mlni !

where P(0) is the normalization constant. We can calculate the block-
ing probabilities and the average delay as before. The number of
states is 111=, (N1 + 1).

It should be repeated that the macrostate probabilities are of use
only if one is interested in the overall mean delay. To calculate the
individual average delays, one must use the microstate probabilities.

III. RESULTS

In this section, we investigate the effects of varying N1 and M on
the blocking probabilities for each queue and the overall average delay
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of a call. In particular, these effects are illustrated by comparing the
results obtained from the analysis presented in this paper, for a partic-
ular example, with the results obtained if independence is assumed.
This "independence assumption" is often used in practice to deter-
mine the number of positions for each queue and the number of
servers needed. In essence, this assumption permits a designer to
design each queue (trunk group) independently of the other queues
and the number of servers, and the number of servers is determined
assuming that no calls are blocked in the queues. It is shown that this
assumption is generally not even a good approximation. Finally, four
properties that are used in a design procedure established in the next
section are postulated.

3.1 Comparison of results with independence assumption

In the engineering of automatic call distributor systems, a traffic
engineer generally dimensions each trunk group using the Erlang loss
formula (assuming that it is independent of the other groups and the
number of attendants) and often determines the number of attendants
required from the Erlang delay formulas using the total offered load
to the queues (assuming no blocking in the queues). This procedure is
clearly invalid, but up to now an exact procedure has not been avail-
able. As a means of illustrating the significance of the results presented
in this paper, we now compare, for a particular system configuration,
the system characteristics that a traffic engineer would expect to
obtain using the independence assumption and what he really will
find. Of course, the interqueue service discipline will affect these
results in a way that will be described in later work. The actual opera-
tion of such systems is quite complicated, and is not readily character-
ized by any of the disciplines usually used such as first -in, first -out,
random, and last -in, first -out. However, the results of simulations
indicate that the discipline presented here is a good approximation of
the actual method of operation.

For purposes of this comparison, we assume a simple system with only
two queues : the first with an offered busy -hour load of 10 erlangs ; the
second, 5 erlangs. It is further assumed that the queues have coincident
busy hours and that the average holding time per call is 30 seconds.
Assuming that a P.01 grade -of -service constraint has been placed on
each group, the number of trunks required, if independence is assumed,
would be N1 = 18 and N2 = 11. (These numbers can be found from
tables of the Erlang B formula.) If it is then required that, on the
average, no call must wait longer than 3 seconds for an answer, we
find, from the Erlang delay formula, that M = 19 (assuming no
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blocking in the groups). The traffic engineer would expect this system
to have the following characteristics :

Blocking probability for group 1 = 0.0071.
Blocking probability for group 2 = 0.0083.

Overall average delay = 1.83 seconds.

However, analyzing this system configuration with the results of this
paper, we find that the service levels (which stated above are approxi-
mations to the actual levels) would be

Blocking probability for group 1 = 0.014.
Blocking probability for group 2 = 0.013.

Overall average delay = 0.949 second.

The directions of the changes are intuitively obvious, since longer
holding times in the queues result in more blocked calls and the higher
blocking levels decrease the load to the servers, which in turn results
in a lower average delay. It should be noted that the trunk groups
are performing at unsatisfactory levels, but the overall average delay
has been decreased and is considerably under the required level. Often,
customers who have such systems measure only the delay or speed
of answer and periodically remove attendants if they feel that the speed
of answer is not above the required level. Unfortunately, such a
customer generally does not realize the effect of removing attendants
on the blocking probabilities on his incoming trunks and consequently
on other network customers.

As an example of customer behavior, consider the system discussed
above. The customer, having measured the average delay and finding
it to be considerably under his required level, would most likely re-
move two attendants. The average delay would then become 3.01
seconds, but the blocking probabilities increase to 0.028 for group 1
and 0.023 for group 2. Hence, even though the delay constraint is
essentially satisfied, the probabilities of loss are more than double their
desired levels.

If, instead of the P.01 service level, P.05 or P.10 had been chosen
for the above delay constraint, the independence assumption would
generally give a configuration that would satisfy all service con-
straints. The reason for this is that the higher blocking levels decrease
the offered load to the attendants, and consequently a very small delay
results. This delay is small enough that it has little effect on the hold-
ing time of the calls and, hence, the offered load to queue i is ap-
proximately ai. Therefore, the resulting blocking probability, although
larger than the Erlang loss probability, is generally in the acceptable
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range. However, the configuration would not be optimal because too
many attendants are provided. In summary, as the blocking prob-
abilities increase, the discrepancies between the Erlang loss formula and
the formula given by (18) decrease, but the discrepancies between
average delays increase.

Several variations in the procedures to engineer these systems exist
in practice. Generally, in determining the number of attendants, the
measured offered load into the attendants is used. This load accounts
for the blocking in each trunk group. For the above example, the
measured offered load would be 14.79 erlangs (if we assume that the
assumptions made in this analysis are valid) and, from the Erlang
delay formula, an average delay of 1.58 seconds results, which is still
higher than the actual delay. The reason for the discrepancies is that
the offered load to the attendants is no longer Poisson as a result of
the blocking in the groups. In fact, the variance of this offered load will
be lower than that of the Poisson load, since the peakedness of the
traffic has been decreased by clipping. Hence, since the actual average
offered load and variance of the load are lower, this leads us to postulate
the following property :

Property 1:

(M, a) D(N, M, a) where a = E at.

This property is illustrated in Fig. 1. The equality holds in the limit
as Nico for all i = 1, , 1, as shown previously. The significance
of this property is that we now have a method of obtaining an upper
bound on the average delay for the combined system.

Another variation that is sometimes used is to add the speed of
answer into the offered load to each group. If we add the average
delay of 0.949 second to each call and use this new offered load in the
Erlang loss formula, the blocking probabilities that result are 0.0091
and 0.01, for groups 1 and 2, which are still lower than the actual
blocking.

The discrepancies result because the Erlang loss formula assumes
exponential holding times on the trunks but, in fact, the holding time
for the combined system is the sum of an exponential distribution and
the delay distribution. Also, the holding times of calls in the system
are no longer independent (unless El, ni < M). The variance of this
new service time distribution is higher than that of the exponential
service time distribution and, of course, the mean is larger. Therefore,
one would expect the average queue length to be larger which, in
turn, implies an increase in blocking.
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With these facts in mind and as a result of empirical evidence, we
postulate a second useful property :

Property 2:

B(Ni, ai) - Bi(N, M, a) (i = 1,  , 1),

where B (Ni, ai) is the Erlang loss formula for Ni servers and an offered
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N,

Fig. 2-Blocking probability as a function of number of positions in the queue.

load, at. The equality holds when M > ZAri, since the queues then
behave independently (there is no delay, so in fact the holding time
per call is exponential). This property is illustrated in Fig. 2. In-
tuitively, one would expect Bi(N, M, a) to be larger since, as a result
of a positive delay added to each call, calls hold the trunks longer,
therefore increasing the probability of an arriving call finding all
trunks busy. The significance of Property 2 is that a lower bound on
the number of trunks required for a given service level can be found
using the Erlang loss formula.
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3.2 Effects of varying N, and M

For a given input process and service time distribution, the designer
can affect the blocking probabilities for a queue or the average delay
by changing the number of positions, Ni, in a queue and/or changing
the number of servers, M. We first investigate the effects of varying
the number of servers, M. As noted earlier, when M has been increased
to the point where D=1 Ni = M, the average delay becomes zero
and the queues behave independently. The blocking probability for
each queue is then given by B (Ni, ai) which, by Property 2, is a lower
bound on the blocking for any value of M. What is of importance,
however, is : Do the blocking probabilities and the average delay
monotonically decrease to their lower bounds as we increase M to the
value D-1 Ni? Empirical evidence, such as shown in Figs. 3 and 4,
indicates that the answer to this question is yes. We postulate this
property as:

Property 3:

Bi(N, M + 1, a) .5, Bi(N, M, a) (i = 1, , 1)

D(N, M 1, a) 5 D(N, M, a).

Intuitively, one would not expect that increasing the number of
servers in a system would increase the average delay. Moreover, a
decrease in the holding time of calls would imply that the average queue
lengths would decrease, which would result in a decrease in the blocking
probability for that queue. However, this decrease in blocking results
in an increase in offered load to the servers but, as we postulate, this
increase is less than the marginal carrying capacity of the added server.
The significance of this property is that, with added servers, not only
is the average delay decreased but also the blocking probabilities are
decreased; that is, adding servers improves the service performance of
the servers and of the queues (trunk groups).

The other system parameters that may be varied to improve system
performance are the numbers of positions in each queue. Supported by
quantitative evidence, such as given in Figs. 1 and 5, and by intuition
we postulate the following :

Property 4:
M, a) 5 Bi(N, M, a)
M, a) >= Bi(N, M, a)

D(Ni+, M, a) D(N, M, a)

The first part of this property states that, if we increase the number of
positions for calls to occupy in a given queue, then the probability of
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loss for that queue is decreased. (This, of course, is true in pure loss
systems.) The intuitive argument is that calls that previously found
Ni calls in queue i were blocked, but now are not. Therefore, the
number of calls blocked is decreased. However, as the third part of
this property implies, the average delay of calls is increased as a
result of this increase in calls from queue i. The intuitive counter-
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argument is that this increase in holding time per call might result in
an increase in blocking for queue i. But we postulate that the increase
in delay is not substantial enough to eliminate the increased efficiency
obtained in queue i by the addition of a position.

However, for the other queues, the number of positions remains
fixed, and this increase in average delay results in a larger traffic level
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per position being placed on the queues. Hence, this increase in load
causes the average queue length to increase and, consequently, causes
the blocking probabilities to increase. This fact is stated in the second
part of Property 4 and is illustrated by the example given in Fig. 5.
Equality in the three statements holds only in the limit as Ni goes to
00 for all i = 1, 2, , 1.

The significance of Property 4 is that the loss probability for a
given queue cannot be reduced by adding positions to any other queue.
Therefore, by Properties 3 and 4, we see that the loss probability for a
given queue can be reduced only by increasing the number of servers
or by increasing the number of positions in that queue.

The four properties postulated indicate relationships between the
system parameters and the system characteristics. Proofs for the
simplest cases (i.e., 1 = 1 for all the properties except for the second
part of Property 4 for which 1 = 2) are given in Ref. 18. The proofs
for the general cases have not been constructed because of the dif-
ficulties involved (e.g., the proof of the second part of Property 4
required 17 pages for 1 = 2). However, based on the intuitive explana-
tions given, empirical evidence, and these proofs, I feel that the
properties are valid in the general case of 1 queues. To obtain an optimal
configuration (minimum cost), one must balance the cost of servers
against the cost of positions for the queues in such a way that all
required service levels are met. These properties are used in the next
section in the development of a procedure to determine this optimal
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configuration. The algorithm and proof of convergence given below
assume the validity of these properties.

IV. SYSTEM DESIGN WITH GRADE -OF -SERVICE CONSTRAINTS

4.1 The design problem

In determining the optimal design of a queuing system, one is
generally interested in minimizing the operating costs in such a way
that specified grade -of -service constraints are met. These constraints
are a function of the particular queuing system under study. In the
pure loss system, the grade of service is measured by the probability that
a call is lost or blocked. Hence, the optimal system configuration is the
minimum number of servers that satisfies the constraint, B (s, a) b.

In delay systems, at least three measures of service are useful. The
first is the average delay experienced by a call in obtaining service.
The second measure is the "extremal" delay-the probability that the
delay for any call exceeds a specified limit. Finally, the average delay
of only those customers who experience some delay is a useful measure.

However, in the combined loss and delay systems described in Sec-
tion II, the determination of an optimal configuration is not as straight-
forward. We will measure the grade of service of the system by

(i) The blocking probability for each queue.
(ii) The average delay of all calls that enter the system.

The blocking probability for a particular queue is dependent on the
number of positions in each queue and the number of servers, and the
average delay depends on these same variables. A procedure must be
developed to balance these measures of congestion in such a manner
that the costs of the system are minimized.

More formally, the problem can be expressed as the following
nonlinear problem in integer programming. We denote the monthly
cost of a waiting position in queue i by Ci and the monthly cost of
each server by C. It is assumed that Ci and C are positive, finite
numbers. The blocking objective for queue i will be denoted by bi and
the average delay objective by d. The following assumptions have been
made : The system is engineered for the system busy -hour traffic load
and the busy hours for the queues are coincident. The optimization
problem is then expressed as :

Minimize the cost

Z= iCiNi+ CM
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subject to

(I) Bi(N, M, a) < bi (i = 1, 2,  , 1) (21)

D(N, M, a) 5 d (22)

Ni(i = 1, 2, 1), M > 0 integers.

Since no efficient algorithm to solve a general nonlinear integer -
programming problem exists, a procedure was developed that utilizes
the four properties stated in Section III.

4.2 Optimization procedure

In this section, a procedure is developed that determines an optimal
solution to the nonlinear integer -programming problem expressed by
(I). The procedure is a direct -search routine based primarily on the
properties presented in the previous section. A description of the
procedure is now given and is followed by a concise summary of the
algorithm. Figure 6 is a flowchart of the algorithm.

The first step in the algorithm, as in most mathematical program-
ming algorithms, is the determination of a feasible solution to the
problem. To obtain an initial feasible solution to (I), we utilize Proper-
ties 2 and 3 of the previous section. In particular, by Property 2, we
know that the minimum number of waiting positions for queue i can
be determined from the Erlang loss formula, which is easily computed
from a recurrence relationship." We begin the search for an initial
feasible solution with

NP) = min in IB(n, ai) < bi},

since it has been shown that, in fact, a feasible solution to (I) exists.
That is, (No), 2), where .A? = El=1Nr), is a feasible solution since
D(N(0), .11?, a) = 0 and Bi(N(0), 11,a) = B(NP), ai) for i = 1, 2,  , 1.

However, since this solution will generally not be near the optimal
solution, the search will not begin at M but instead with M(o), which
is the minimum value of M that satisfies the constraint :

cV(M, a) < d. (23)

M(o) is the number of servers that would be selected if the Erlang
delay formula with an offered load a = ai were used. By Property
1, it is seen that if (23) is satisfied, then (22) will also be satisfied.

Using the set of parameters (No), Mho)), the system characteristics,
{Bi(N (0, M(0), a)1 and D (11 0), M(0), a) are determined. One of two
results occurs :
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(i) The parameters (N00), M(o)) satisfy the constraints of (I), in
which case an initial feasible solution has been determined. We then
proceed to find the feasible solution of minimum cost.

(ii) At least one of the blocking constraints (21) is violated. (As
noted above, the delay constraint will be satisfied.) By Property 3,
we know that the addition of a server will reduce the blocking prob-
ability for each queue and that, by the addition of enough servers, a
feasible solution can be obtained. We denote this initial feasible solu-
tion by (N 0), M(0) and note two interesting properties of this solution.

(a) By Property 2, Nr) is the minimum number of positions that
must be considered for queue i.

(b) MAO) is the maximum number of servers that must be con-
sidered. This is true since a further increase in the number of
servers can be justified only if some waiting positions can be
eliminated, and the positions are already at their minimum
levels, N 0).

The next step in the algorithm is to attempt to improve the initial
feasible solution. Since by construction we are initially at the maxi-
mum number of servers, we attempt to decrease the costs by decreas-
ing the number of servers while maintaining feasiblity. To maintain
feasibility, it may be necessary to add waiting positions to certain
queues. If a feasible solution is found, then it will be an improvement
only if the accumulated cost of those servers removed (since the last
feasible solution) is greater than the accumulated cost of all waiting
positions that have been added to maintain feasibility. Hence, as we
remove servers, one of three things results.

(i) All the constraints of (I) are satisfied. If the accumulated cost
of removed servers is greater than the cost of all waiting positions that
have been added, this new feasible solution represents a cost improve-
ment and should be stored as the tentative "optimal" solution. The
accumulated costs are set to zero, a server is removed, and the search
continues. If the cost of servers is less than the cost of positions, then
we reduce the number of servers by one and continue the search for a
solution with lower cost.

(ii) The delay constraint (22) is violated. In this case, we stop the
search and the tentative optimal solution is the global* optimum. (A
justification for stopping the procedure is given later.)

(iii) At least one of the blocking constraints is violated. In this case,
we add one position to each queue in which the corresponding block -

I have taken the liberty of using "global" since, in fact, the procedure does
produce the global optimum if the four properties are true in the general case.
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ing constraint is violated and increase the accumulated cost of added
positions appropriately. If the cost of the additional positions is less
than the accumulated cost of the servers that have been removed, we
determine if this solution is feasible. If it is feasible, we proceed as in
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(i). If it is not feasible, either (ii) or (iii) must be true. If the cost of
the positions is more than the cost of servers, then no feasible solution
with lower cost can be obtained with this number of servers and, hence,
we reduce the number of servers by one and calculate the system char-
acteristics with the new set of system parameters. Then either (i),
(ii), or (iii) must be true, and the appropriate action is then taken.

In summary, the procedure removes servers until either the delay
constraint is violated, in which case it terminates, or a blocking con-
straint is violated. If a blocking constraint is violated, waiting posi-
tions are added, and an additional server may be removed, depending
on the incremental costs and on the feasibility of the tentative solution.

A justification of the procedure is in order. We first discuss the case
in which at least one blocking constraint has been violated. To reduce
the blocking probability for each queue whose constraint has been
violated, a position must be added to this queue (by Property 4). The
only other way to reduce the blocking probability is to add a server,
but this branch has already been terminated. Assume that NS servers
have been removed since the last "optimal" feasible solution and that
the cost of all the positions added since the last "optimal" feasible
solution is G. If G > NS X C, then the new parameters cannot give
a lower cost solution and, by Property 4, no lower cost solution for
this M exists. Therefore, we terminate the branch with M servers and
begin with M - 1 servers (increment
1) with the present number of positions. At least this number of posi-
tions must be considered, since, by Property 3, the reduction of M
results in an increase in the blocking probabilities. If G :5_ NS X C,
this set of parameters may be a lower -cost solution. Therefore, we
determine the system characteristics and see if the solution is feasible.

We now prove that the procedure converges in a finite number of
steps to a global optimum.

Lemma 1: If a feasible solution for a given M has been found, the branch
corresponding to that M can be terminated.

Proof: Trivially, any further feasible solutions with that M must be
more expensive, since these solutions must have more waiting positions.

Q.E.D.

Theorem 1: The algorithm terminates in a finite number of steps.

Proof: First, we know that an initial feasible solution can be obtained
in at most

[± NP - 211(o)
i=1 i+
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steps, as discussed earlier, where [x]+ = max (0, x). Second, for any
given M, the corresponding branch of the solution tree will be ter-
minated in a finite number of steps. That is, since C is finite and Ci is
nonzero for all i, then in a finite number of steps we will either find a
feasible solution for this M, reach the point where the cost of the posi-
tions added for this M exceeds C, or violate the delay constraint. In
the first case, by Lemma 1, we know that we can terminate this
branch. In the second case, since none of the positions can be removed
and feasibility be maintained, no feasible solution of lower cost exists
for this M. In the latter case, the procedure terminates. The number of
iterations performed for a given M is bounded by the number of times
positions are added before the cost of these additions exceeds C.

Finally, since the maximum number of servers that need be con-
sidered is finite, we reach the case in which the delay constraint is
violated in a finite number of steps (at most, M0> values of M).

Since there are only a finite number of values of M to be considered
and since, for each M, only a finite number of steps are performed, the
algorithm terminates in a finite number of iterations. Q.E.D.

Theorem 2: The solution (N*, M*, Z*) obtained upon termination of the
algorithm is a global optimum.

Proof: Assume that another configuration (14, iff, 2) exists, such that
all constraints of (I) are satisfied and 2 < Z*. First, consider the case
in which S/ > M*. By construction, the branch corresponding to
must have been searched and, as indicated in Theorem 1, the branch
would have been terminated in a finite number of steps. If this branch
had produced a feasible solution with a lower cost, it would have been
retained. Hence, this case is not possible.

Second, consider the case in which 1Vl < M*. From the algorithm,
we know that the termination of the procedure implies that the delay
constraint has been violated. We therefore know that either the branch
with SI produced a feasible solution with a cost larger than Z* (or else
it would have been retained), or SI is smaller than the value of M
when the procedure terminates. If the latter is true, then If cannot
produce a feasible solution since the delay and blocking probability
for (N*, 1121) must be greater than those for (N*, M*) by Property 3;
and, to reduce this delay, positions would have to be removed that
would result in at least one blocking constraint being violated. Con-
sequently, this case is a contradiction and, hence, (N*, M*, Z*) is the
optimum. Q.E.D.

One point should be noted : For the higher levels of blocking (>0.05),
the solution (No) , 111(0)) is generally a feasible solution. However, as
a result of the reduction in offered load to the servers because of the
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blocking, M(0) can be reduced before any constraints are violated. This
is of importance since, in practice, such systems have been engineered
in such a manner that the configuration is (No), M(0)), which is ob-
tained from use of the Erlang B and Erlang C formulas, as described
earlier.

A more concise mathematical summary of the algorithm follows.

Optimization Algorithm.:

Step 1: Initial Feasible Solution

(i) Determine Nr) (i = 1, 2, , 1) from the Erlang loss formula
where NP = min In IB(n, ai) < bi}.

(ii) Determine M(0) from the Erlang delay formula where
M(0) = min lin I tr(m, a) d 1. Let k = 1.

kth iteration:

(iii) Calculate Bi(D(0), M(k_1), a) and n (N (CI) M (k-1), a). If the
set of constraints (21) are satisfied, let M0) = M(k_1). The
initial "optimal" feasible solution is N* = No), M* = Mo),
and Z* = Elk=i CiNI + CM*. Set j = 1, 1N0) = N*, and go
to Step 2.

If at least one constraint of (21) is not satisfied, set M(k,
= M(k-1) + 1, increment k, and return to

Step L: Solution Improvement

In this step, the superscript j refers to the jth "optimal" value of
M; for a given value of j, the subscript r refers to the rth value of Ni.

jth iteration:

(i) NS = 1, G(1) = 0, r = 1.
(ii) Reduce number of servers by one, M(j) = Mci-1) - 1. If

M(1) = 0, go to Step 3.
(iii) Calculate Bi(rNu-'), Mu), a) and D(rIqu-'), Mu), a).

(a) If D(TN(3.-1), Mu), a) > d, go to Step 3.
(b) If (21) and (22) are satisfied and if Gu) <= NS X C, then

store (TN (j-1), M(i)) as the new "optimal" solution. That
is, set N* = M* = M(D and

Z* = E ci CM(i).

Set 1N(i) = rlq(1-1), increment j, and go to (i).
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(c) If (21) and (22) are satisfied but G(j) > NS X C, then
reduce the number of servers by subtracting 1 from M(i),
increment NS, and return to (iii).

(d) If at least one blocking constraint of (21) is violated, i.e.,
S(i) = fi, I Bi(tN(i-i), M(1), a) > bi} is not empty, then add
EiEs(i, Ci to G(i). Let

and
= i S

= rArli-1) + 1 i E S.
If G(i) > NS X C, then decrement M(i) by 1, increment
r, and go to (iii). If G(i) < NS X C, increment r, and go
to (iii).

Step 3: Termination

If DGIT(i--1), M(i), a) > d, then stop the procedure. The global
optimum is (N*, M*, Z*).

4.3 Numerical example

To illustrate the algorithm, we examine a simple two -queue system
that represents an automatic call distributor system used for credit
checking. The company has subscribed to two Inward WATS bands
with a cost per trunk of $800 and $500. The two trunk groups each
receive 15 erlangs of traffic in the busy hour. Calls, on the average,
are 45 seconds in duration. The subscriber has requested a 5 -second
speed of answer and blocking objectives of P.10 and P.05, respectively.
The monthly cost of an attendant is $750. With these parameters,
we begin the algorithm by using the Erlang loss formula with 15
erlangs and the delay formula with 30 erlangs to obtain (N(°), M(0),
which are (18, 20 ; 34). As shown in Table I, this initial solution is feas-
ible and hence will be stored as our tentative optimal solution,
(N(0), M(°)).

We proceed to Step 2 of the algorithm in an attempt to improve the
initial feasible solution. By decreasing M(0) by one, m(1) = /vim - 1,
we obtain the system parameters (18, 20 ; 33) and the system char-
acteristics (0.0912, 0.0504 ; 0.404), which indicate that this is not a
feasible solution. Since the blocking constraint for trunk group 2 is
violated, a trunk must be added to this group at a cost of $500. The
accumulated cost of the additional trunks, $500, is less than the ac-
cumulated cost of the removed attendants, $750. Therefore, we
proceed by obtaining the system characteristics for this set of param-
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Table I - An example of the optimization procedure

N1 N3 M B1 B2 13 Z($)

Initial Feasible
Solution 1 18 20 34 0.0887 0.0481 0.201 49900.

2 18 20 33 0.0912 0.0504 0.404 49150.
3 18 21 33 0.0926 0.0373 0.546 49650.
4 18 21 32 0.0970 0.0409 0.945 48900.

Solution 5 18 21 31 0.1034 0.0460 1.550 48150.Improvement 6 19 21 30 0.0939 0.0573 2.990 48200.
* 7 19 22 30 0.0976 0.0466 3.422 48700.

8 19 22 29 0.1120 0.0572 4.976 47950.
Termination 9 20 23 28 0.1220 0.0676 8.864 48500.

* Optimal solution.
System Parameters:

al = 15 erlangs,
as = 15 erlangs,

b1
b2

=
=

0.10,
0.05,

ci =
cs =

$800
$500

HT = 45 s, d = 5 s, C = $750.

eters, i.e., (18, 21; 33). As Table I indicates, this is a feasible solution,
is a cost improvement, and hence is stored as the tentative optimum.

As shown in Table I, the procedure continues from this point until
(20, 23 ; 28), at which point the delay constraint is violated. The
optimal solution is (19, 22 ; 30) at a cost of $48,700. We should note
that the parameters (20, 23 ; 29) were not examined since the accumu-
lated cost of added trunks, $1300, was greater than the accumulated
cost of removed attendants, $750.

The above solution is the global optimum for this constrained
problem. However, practitioners might suggest that (18, 21; 31) is a
more realistic design since, in fact, the blocking constraint is "es-
sentially" satisfied (0.1034 vs 0.1000). This can be incorporated in the
design procedure by allowing any solution that is within "e" of a
blocking objective to be retained. The algorithm can then be applied
as before.

V. SUMMARY

In this paper, an analysis of a particular multiserver, multiqueue
service system has been presented. Examples of this type of system
are the directory assistance systems used in the telephone companies
and credit verification bureaus used by the credit-card industry, which
use automatic call distributors. Expressions were derived for the
equilibrium -state probabilities, and four properties of the system char-
acteristics, overall average delay, and the blocking probabilities for each
queue were given.

These results were used in developing a procedure to obtain a least -
cost system configuration to satisfy a given set of single -hour grade -of -
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service constraints. That is, the procedure determines the number of
waiting positions for each queue and the number of servers required to
satisfy constraints placed on blocking probabilities and average delay
at minimum cost. The work reported here should form the basis for
the development of a practical method of traffic engineering and
administration for small automatic call distributor systems.
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Blocking is considered for an N -trunk group of exponential servers
with Poisson -offered load whose rate parameter varies with time. The
infinite trunk case is solved by means of a rapidly convergent series of
Poisson-Charlier polynomials. This solution is used to obtain practical
approximations of blocking probability, transition probabilities, and
recovery function for general time -variable offered load in the finite trunk -
group case. An integral equation is derived satisfied by the blocking
probability in the general case. In the situation of constant offered load,
two additional methods are derived for providing easily computable
approximations; one based on the integral equation, the other based on an
approximate inversion of the Laplace transform. To aid in the latter
approximation, bounds on the roots of Poisson-Charlier polynomials are
obtained; in particular, an approximation is obtained for the dominant
root. The inversion of the integral equation is studied with the purpose of
providing the basis for future investigations of errors of approximation.
Curves are provided for a number of examples permitting comparison of
exact and approximate solutions.

I. INTRODUCTION

The main purpose of this paper is to present a discussion of the
time behavior of blocking in a fully available N -trunk group for any
initial state with exponential servers and with Poisson -offered load
whose rate parameter a (t) itself may be considered to vary with time ;
that is, the probability of j calls arriving in a time interval (0, t) is as-
sumed given by

J
a (u)du]

exp (- a(u)du)[ ° . j = 0, 1, 2, . (1)

The service rate is taken equal to 1, so that a(t) is measured in erlangs.
The problem of blocking with time -variable offered load was con-

sidered by Palm' for finite trunk groups and by Khintchine2 for infinite
625



trunk groups. The impetus for this is the need felt for more accurate
computation of blocking probabilities and correlation information' than
can be obtained by quasi -stationary analyses, that is, by the use of
equilibrium formulas in which the offered load parameter is replaced
by its instantaneous value. Lack of statistical equilibrium renders
this approach inaccurate. The time -variable aspect of the input stream
should be carefully distinguished from other statistical descriptions
such as peakedness,4 since the effects on the system are separately
identifiable. It has been reported, for example, that offered load and
peakedness determinations from carried usage, peg count attempts
offered to a group, and overflows are misled by the time variability
of the offered load.

Palm had proposed an interesting method of accounting for the time
variability of the offered load, i.e., his "slow variations" model. In
this model, it was assumed that the actual ordering in time of a(t),
that is, the functional dependence of a(t) on t could be ignored if a(t)
varied slowly. He replaced a(t) by a random variable with an incom-
plete gamma function distribution.' Thus, traffic functions such as
blocking may be obtained from their equilibrium values by averaging
over the appropriate gamma distribution. This model, however, re-
quires further elaboration in view of the investigations of Iversen,'
who showed that the Palm approach does not correctly model the
empirical data collected in the extensive Holbaek measurements of
Danish telephone traffic. Iversen found that the correct time variation
of the traffic could not be ignored.

The trunk provisioning procedure whereby one uses the average
offered load over a busy hour to achieve a required grade of service
results, in some cases that were considered, in only a small under-
estimate of the required number of trunks as calculated by the methods
of this paper. Since the standard method is convenient, this may be
viewed as substantiation of the approach.

Essential for the methods of this paper is a Volterra integral equa-
tion derived in Section II satisfied by the blocking probability,
PN(t, N), experienced by a load of a(t) erlangs offered to an N -trunk
group. Exact analytical solution of this equation is not useful, but
numerical methods may be advantageously used. An important fea-
ture of the equation, nonetheless, is that it permits studying errors of
approximation and, in one instance (Appendix D), was directly used
in the construction of an approximate operator for studying the
transient response in the case of constant a(t). Appendix A presents an
explicit representation of PN(t, N) for general a(t) by means of an
infinite Neumann expansion. Inequalities for PN(t, N) and truncation
error estimates for the Neumann series are also given.
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The infinite trunk group case forms the basis of the approximations
developed in Section IV that are applicable to the general case of time
variable a(t). Although this case was solved by Khintchine,2 Section III
presents new representations in terms of rapidly convergent Poisson-
Charlier expansions. Truncation error estimates are obtained, and the
rate at which the state probabilities approach the Poisson form is
assessed. To aid in the use of Poisson-Charlier polynomials, Appendix
B provides a short discussion of their properties, especially providing
convenient means of expanding a function into a Poisson-Charlier
series. Since the state probabilities of the infinite trunk group system
are often close to Poisson, this form of representation is very useful.
The Poisson-Charlier expansion expresses the deviation of a function
from the Poisson form. Further, in Section IV, the Poisson-Charlier
polynomials are used to express the transition probabilities in explicit,
closed form.

The approximations of Section IV are applicable to time variable
a(t), and are developed from the infinite trunk group solution by
renormalization appropriate to the finite trunk group. To facilitate the
use of the approximations, closed expressions are obtained for the
relevant infinite trunk group solutions. This approximation procedure
gives rise to the useful notion of a "modified offered load." One of the
approximations obtained was, in fact, already obtained by Palm.'
This approximation is particularly interesting because it uses the
Erlang loss function, B (N, a), for which rapid methods of computation
are available.5,6 A special case of the approximations for transition
probabilities is that for the recovery function, which is important in
the discussion of correlation properties' and, hence, in the determina-
tion of variances of traffic parameter estimators.

The constant offered load case is studied in Appendix C. Although
the solution for the state probabilities is known,' the integral equation
formulation appears to be new. Certain advantages are obtainable from
this formulation. The errors of approximations to the state probabilities
satisfy the same integral equation but with a different inhomogeneous
term ; thus, the more general integral equation is studied, leading to
methods for investigating the quality of approximation. For this
purpose, a natural Banach space (uniform norm over [0, co ]) is
introduced, in which the integral operator is bounded and has a
bounded inverse. Of course, the known Laplace transform of the
transition probabilities is immediately obtained as a corollary. The
integral equation is also used in Appendix D as a tool for the con-
struction of an approximate solution (the scaling method) correspond-
ing to an arbitrary initial state. Appendix C also presents several
bounds on the required roots of Poisson-Charlier polynomials by
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obtaining general bounds on the largest and smallest members of sets
of positive numbers subject to isoperimetric constraints; the results
are then specialized to the Poisson-Charlier polynomials. One of the
bounds for the dominant root is explicit and easily calculable. Its
accuracy appears to be good (see Fig. 8).

Appendix D provides two approximations for the case of constant
offered load. The scaling approximation, whose genesis was suggested
by S. boring, is constructed by obtaining an approximate time in-
variant of the transition blocking probability from the initially empty
state. The subsequent generalization of this approximation to arbi-
trary initial states is then obtained by means of the integral equation.
The Laplace transform approximation is constructed by an adaptation
of the Widder formula9 for the inversion of the Laplace transform. It
requires the determination of the dominant root ; but, depending on
the needs, it may be made arbitrarily accurate. It has the interesting
property that, under certain conditions, it provides bounds for the
exact solution.

A discussion of some results and graphical illustrations is given in
Section V. In testing the quality of the modified offered load approxi-
mations, high change rates of a(t) were chosen, in fact, much higher
than would occur in practice. The errors of approximation increase with
increasing rate of change of a (t), hence, the examples chosen indicate
much higher errors than one would expect to encounter in the practical
application of these methods.

II. INTEGRAL EQUATION FOR BLOCKING

It is the object of this section to establish Theorems 1 and 2, which
provide integral representations of the binomial moments (13) of the
probability distribution (2) of the number of busy trunks, and corollary
1 of Theorem 2, in which an integral equation is given for the prob-
ability that all trunks are busy at a given time.

Let t = t (t, N) be the number of trunks busy at time tin an N -trunk
group, and Pi = P; (t, N) the corresponding probability,

P[ (t, N) = = P3(t, N). (2)

The probability generating function g(t, N) is given by

N
g = .Rce,N) = E P3(t, N)V.

i=0
(3)

At the point t dt, one has

g(t dt, N) = g ag, (t dt, N) = dE (4)
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and, hence,
g ag = EEWEDdEi (5)

in which EDdE I 0 is the conditional expectation of rdE given t, and EE
is the expectation over the probability distribution of t. The boundary
at j = N necessitates a further analysis of (5). One has

g + ag = (1 -P N)E E{rEEErdf I < NJ}
+ P NE ElrEEB4 I E = NJ}

The probability distribution of dE is

P[d = - lit = j,0 -5 j <N] = jdt,
PEcit = Olt = j,0<< NJ = 1- (a+ j)dt,
P[d = 11 = j,0<j < N] = adt,
P[d = 0 1 = NJ = 1 - Ndt,
P[d = -1I =N]=Ndt;

hence,

EDdE = j,0<j < IV] = 1 -I- (ar -a - j jri)dt,
EDdE I = N] = 1 - N(1 - r9dt.

From (6) and (8), one has

ag
at

ag
at

hence,

(6)

(7)

(8)

(1 - PAEEDE(ai" - a - t trI) I t < NJ
- PNEt[t0-1(" - 1)1t = N], (9)

(1 - PN)aQ" - 1)Et[Olt < N] - - 1)-Etart-1i;

a g-at + - 1) -ag = a(t- - 1)g - aU- - 1)r N P N. (10)

The infinite trunk group does not require the analysis of (6) nor the
boundary conditions (= N) of (7), hence (9) becomes

ag = - 1)g - - 1) E E-11. (11)at

Thus, the corresponding equation for the infinite trunk group is

ag ag- 1) = aQ' - 1)g. (12)

The binomial moments /3,(t, N) are defined by

38(t, N) = P i(t, N) (is) , (13)
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in which (is) designates the binomial function defined by

(j \ .i(i - 1)-  (j - s + 1) s > 1,
8 1 8!

(14)

(g) = 1.

The binomial moment generating function /(t, w, N) = Ejx-.0 i 3,(t, N)w
is given by

1(1, w, N) = g(t, 1 + w, N). (15)

Thus, the differential equation satisfied by 1 is

al
w cTii; =

alR' awl - aw(1 ± w)NP N.

The corresponding equation for the infinite trunk group is

(16)

al al
-aid- w ..tv = awl. (17)

Equation (16) is a linear partial differential equation that can be solved
by the following device (method of characteristics). Let 0 be a new,
independent variable and set

Then, comparison of

1 = 1(0),
w = w(0),
t = 1(0).

dl at dt al dw
de - at a ' Ow dO

with (16) yields the set of equations

dlcii = aw - aw(1 ± w)N p

dw
dO - w'
dta = 1,

(18)

(19)

(20)

whose solution for 1 is then obtained. To exhibit the solution conveni-
ently, let

t

a(t, r) = e -t i esa(s)ds,
,
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and
A = A(t) = a(t, 0) = e-t*a(t), (22)

where * designates convolution product over (0, t). The solution of
(16) takes the form

/(t, w, N) = 1(0, we -t, N)eAw

-w eaw+T-T1 wer-Ta(r)P pier, N)dr. (23)

Similarly, the solution of (17) is

1(1, w, co) = 1(0, we -t, co)eAw. (24)

To obtain the binomial moments themselves, it is convenient to intro-
duce the Volterra operator K,,

ICJ* = fot K.(t, T)f(r)dr,

defined by the kernel

K.(t, r) =
so Ti(s--j) e-(1-a)(e-r)a(r).
3-1 a;

Since the Laguerre polynomial Lr) (- 410 is given by

Ln-x) = -41 (n ± a\ ,

J..° 3 . n - 3
the kernel K,(t, T) may be written more compactly ; thus,

K.(t, r) = a(r)e-8(t-T)LprTs+1)( aeg-r).

The following theorems may now be stated.

Theorem. 1: The binomial moments, 0,(t, 00), for the infinite trunk group
are given by

(25)

(26)

(27)

(28)

i3.(t, cio) = E
=0 !

Proof: The coefficient of ws in the expansion of the right-hand side
of (24) yields the result.

Theorem 2: The binomial moments, 0,(t, N), for the finite trunk group
satisfy

08(t, N) = 13,(t, co) - K,PN.

Proof: The coefficient of w' in the expansion of the right-hand side of
(23) provides the required result.
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Corollary 1: The probability, PN(t, N), that all trunks are busy satisfies
the integral equation

PN(t, N) = 13N(t, co) - KNPN,

in which
N

1N(t) c°) = E #N__;(0, N)e-(N->>t -Ai
j=0 3.

KN(t, T) = a(T)e-N(t-T)L,(, i(-ctee-T).

Proof: For the finite trunk group (13) shows that

(3N(t, N) = PN(t, N).

Hence, the integral equation follows from Theorem 2. The explicit
expressions forfiN(t, co) and KN (t, T) are obtained from Theorem 1 and
(28), respectively.

The special case of all trunks free initially leads to a somewhat
simpler integral equation for PN(t, N). This is given in the following
corollary.

Corollary 2: When all trunks are initially free, PN(t, N) satisfies

ANPN(t, N) = -1- KNPN.

Proof: The initial probability distribution P;(0, N) has the form

P;(0, N) = 1
=0

j = 0,
j > 0.

Hence, the binomial moments satisfy

(38(0, N) = 1 s = 0,
=0 s > 0.

The equation for (3N(t, oo ) given in the first corollary now yields

AN
ONO, 00) = NT

(29)

(30)

(31)

The result of the corollary follows.
The probability PN(t, N) corresponding to all trunks initially busy

is called the recovery function; it satisfies the following integral
equation.

Corollary 3: When all trunks are initially busy, one has

PN(t, N) = e-NgLN(- OA) - KNPN.
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Proof: We have
P;(0, N) = 0 0 6 j < N,

=1 j = N.
Hence, the required binomial moments are

(32)

fl. (0, N) = (Ns). (33)

The result follows from the equation for 13N(t, co) and from (27).
A noteworthy case occurs when a is constant, then the integral

equation for PN(t, N) becomes of convolution type. Thus, let

KN(t) = ae-NtLY,LIE-a(et - 1)]. (34)

Then one has Corollary 4.

Corollary 4: When the offered load a is constant, PN(t, N) satisfies

PN(t, N) = 13N (t, co) - KN*PN.

Proof: Use of (21) and K N (g, r) as given in Corollary 1 yields the result.
For constant a, an equilibrium distribution Pi( CO , N) exists.2 Let

N k

SN(a) = L, -
k =o k!

Then

(35)

P;(60, N) = al
, 0 < j 5 N. (36)

The notation B(N, a) is used for the blocking probability PN( co, N)
and is referred to as Erlang's loss formula.' Corresponding to the
equilibrium distribution, one has the binomial moments 0,(0, N) and,
hence, the moments for the infinite trunk group given in Theorem 1.
These moments will be denoted by fist, a). It may be noted that

lira 13:(t, a) = 5- (37)
t-4co S !

The integral of KN(t) that is useful in error analyses may now be
easily obtained.

Theorem 3: When the offered load is constant, we have

fog

0

KN(r)dr = frN(t,, a)
B(N, a) 1,

KN(r)dr = SN(a) - 1,

in which KN(r) is given in (34).
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Proof: Since B(N, a) is the equilibrium solution of the integral equa-
tion of Corollary 4, and since (3N (t, a) corresponds to the equilibrium
state, the solution of the integral equation is constant and equal to
B(N, a); thus,

B(N, a) + KN*B(N, a) = tlfv(t, a).

This immediately implies the first equation of the theorem. The second
follows on considering t --400, and using (36) and (37).

It may be useful to observe that the positive character of the general
operator KN in Corollary 1 immediately supplies the inequalities

ON(t, co ) - KNON(t, co) < PN(t, N) < ON(t, co ). (38)

A Neumann -series solution of the integral equation of Corollary 1 is
discussed in Appendix A. Higher -order inequalities of type (38) are
also given.

III. THE INFINITE TRUNK SOLUTION

It will be convenient to express the solution for Px(1, 00) in terms of
Poisson-Charlier polynomials" whose relevant properties are dis-
cussed in Appendix B. The probability distribution of the number of
busy trunks for the infinite trunk case was considered by Khintchine2
and, for constant offered load, by Karlin and 1\'IcGregor.12 Theorem 4
presents a rapidly convergent form of the solution in terms of Poisson-
Charlier polynomials valid for any initial state. This solution will
be the main tool for the construction of approximations to distribu-
tions in the finite trunk case.

From (15), let /(0, w, 00) be given by

1(0, w, 00) = E .0w', (39)

then the binomial moment generating function for the infinite trunk
case is, from (24),

1(1, w, oo) = eAw E 05(0, co )e-igwi. (40)
=o

The mean, µ, of this distribution is the coefficient of w ; hence,

= A + Aoe-t, (41)

in which /20 is the mean of the initial distribution. One may now state
Theorem 4.
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Theorem 4: The probability distribution, Px(t, 00), of the number of busy
trunks in an infinite trunk group has the convergent representation

provided that

Px(t, 00) = 0(x, E e-jediGi(x,
1=0

dl
j

=
(-)v

EO
!

1

00 00

1(0, z - 1, co) = E 13;(0, 00)(z - 1)-1 = E Pi(0, oo)z'
1-0

converges for Izi < r(r > 2).

Proof: Use of (40) in (101) which the choice X = µ as given in (41)
yields

Hence,

and, from (95),

Let

then

C(w) = e-Powe-1 E (42)
j=.0

C1 = e-" E
1) P

AO0.7-v(0,
=0

Px(t, co) = 0(x, IL) E ciGi(x,
1=0

di
(1)P= E A6)31--,(0,

v !

(43)

(44)

(45)

c1 = e-i'di, (46)

and the formula of the theorem follows. A theorem of Uspensky"
states that the general representation of (95) is valid in the sense that
the series converges to F(x) if the series E;_o F(x)zz has radius of
convergence greater than 2. Since

1(t, z - 1, 00) =e-e+e:l[0,(z - 1)e -e, 00 ], (47)

the radius of convergence of /(t, z - 1, co) is greater than 2 by the
condition on /(0, z - 1, 00) stated in the theorem. Hence, by
Uspensky's theorem, the representation of (44) is valid for all t > 0.

A truncation error estimate for the series representation of Theorem
4 is given in Theorem 5.
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Theorem 5:
k

11).(t, 00) - it) - 0(x, E 12)
j=2

2 \ k+1 e-(k+l)t

w) 1 - (2/w)e-' ePou'l(0, w,

kz 1, R > w > 0, t > In -2
w '

co),

in which R is the radius of convergence of 1(0, w, 00).

Proof: Since

t'(x, iL)Gi(x, = 0(l)(x, It) I <2', j 0, (48)

1.1)G1(x, 14)1 5_ E e-i'21Id1I. (49)
k I> k

Also, from (45),

d1I µ0 #1_,(0, 00) elo1/(0, w, 00)w-j.
.J=0 v 

we have

Thus,

(50)

12)G;(x, 1.4)I < emowl(0, w, 00) E e-1124-1 (51)
J> k

)2 k+1 e- (k+1)
040,01(0, w, 00 ) G 1 - (2/w)e-g (52)

The conditions of the theorem ensure the convergence of /(0, w, 00)
and of the series of (51).

The corollaries below follow directly under the conditions of Theorem
5.

Corollary 1:
k

P z(t, 00) = (x, 11) E IL)
0(e--(k+w).

Corollary 2:

I

2t

P.(t, - #(x, POI < 4w2 1 - (2/w)e-t
ePow/(0, w,

Corollary 3:

co).

Pz(t, 00) = pc) 0(e-2').

Thus, the distribution quickly becomes nearly Poisson with the time
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variable parameteril, regardless of the initial distribution. In fact, if the
initial distribution is Poisson, one might anticipate Px(t, co) to remain
Poisson for all t > 0. This is asserted by Theorem 6.

Theorem 6: If Pz(0, co) is Poisson with parameter 120, then

P. (t, °°) = A).

Proof: The binomial moments, 08(0, co ), are

0.(0, = s ! '
s >= 0. (53)

It follows, from (45), that

d;= E( v) (-1)v = 0, j > 0. (54)

The result is now obtained from Theorem 3.

IV. APPROXIMATIONS

The Neumann series (75) is an explicit solution of the integral
equation of blocking given in Corollary 1, Theorem 2. For constant
offered load a, the resolvent kernel solution (108) and Theorem 11 are
also available ; however, especially when N is large, these solutions
are not convenient. It is therefore important to have approximations
that lend themselves to computation for large N in a sufficiently
convenient manner. Three such approximations have been developed,
namely : the "modified offered load" approximation that is useful and
fairly accurate in the general case, that is, for time variable offered
load, the "scaling" approximation, and the "Laplace transform"
approximation, which are applicable only to transient phenomena
under constant offered load. The scaling approximation is also fairly
accurate and does not require factorization of polynomials. The Laplace
transform approximation consists in fact of an infinite set of approxi-
mations of arbitrarily high accuracy. It usually requires finding a
single root-the so-called dominant root-of an appropriate poly-
nomial. The scaling and Laplace transform approximations are dis-
cussed in Appendix D. Appendix C provides approximations for the
required dominant root. The modified offered load approximation
is presented below.

Let Pi,z(t, N) be the probability that the N -trunk group started
from state i at time 0 and proceeded to state x at time t, then Pi,.(t, co )
may be computed from Theorem 4 using

(55)
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An approximation, Pi,z(t, N), for Pi,z(t, N) is given by

Pi z(t 00).i,z(t,N) = N
E Pi,(t, 00)

p =0

(56)

This approximation is suggested by the following considerations. One
has

urn Pi,z(t, N) = Pi,z(t, 00). (57)
N....

Hence, the approximation should be accurate even for time -varying
offered load when N is large. Furthermore, when a is constant, since

= a, one has
axlirn Pi' z(t, N) - (58)

x SN(a)

which, as previously indicated, is the exact equilibrium distribution;
hence, the approximation should be accurate when t is large even for
time -varying a(t), provided a(t) is small. Since, by the law of total
probability,

N
Pz(t, N) = oo Pi(0, N)Pi,z(t, N), (59)

one can construct an approximation, 13 z(t, N), to Pz(t, N) by use of
Pi,. (t, N); thus,

Pz(t, N) = E Pi(0, N)Pi,z(t, N). (60)

To facilitate the use of (60), Theorem 7 expresses Pi,. (t, 00) in finite
form.

Theorem 7:

Pi,z(t, 00) = (1 - e-t)ie-A ( -A)x
x!

G.[i' - (et - 1)A].

Proof: From Theorem 4 and (55), we have

Pi,z(t, 00) = tP(x, 1.1) (61)

d; = (1)v iv . ). (62)
v=o v: V

Comparison of (62) with (90) shows that

d; = i). (63)
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Let

C, = (ie
!7Of Gi(i, i),

3

then

C (w) = i (2e. It) i Gi (i, i)w',
j=0 3.

which, by comparison with (89), may be rewritten

C(w) = e-i6-gw(1 + e-tw)i.

B(w) = ePwC(w) = eAw(1 + e-tw)i

g(z) = B(z - 1) = e-AeAz(1 - e -t + e-tz)i.

Let

and

Then

Pi..(t, °°)

= (1 - e -t) i(et - 1) -=e--A i ( i ) [(et - )A],
Y =0 X V I V !

Hence, comparison of (69) with (90) finally yields

r()Pi,x(t, 00) = (1 - e-Oie-A -A Gx[i, - (et - 1)A]. (70)x!

Immediate corollaries are the following:

Corollary 1:

Px(t, 00) = e -A (-
x ! i

E0 Pi(0' 00(1 - e-OiGx[i, - (et - 1)A].A).

(64)

(65)

(66)

(67)

(68)

Corollary 2:

(69)

Pi,x(t, N) = N
Gx[i, - (et - 1)A]

E (x !/ v !)(- A)v-rG,[i, - (et - 1)A]
Y =0

Of particular interest are the functions Po,N(t, N) and PN,N(t, N);
the first describes the progression of the system from initially empty to
blocked, and the second describes the recovery of the system from an
initially blocked condition to the blocked condition again. The latter
function is called the "recovery function."' The following formulas
are obtained from Corollary 2.

Po,N(t, N) = B(N, µ). (71)

The general principle of approximation employed, namely, the re -

normalization of an appropriate solution for the infinite trunk group
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case, allows one to state, by use of Theorem 6, that, whenever one starts
from an approximately Poisson initial state, an approximation to
P N(t, N) is

P N(t, N) = B(N , µ). (72)

This approximation was known to C. Palm.' The parameter A is re-
garded as a modified offered load.

The recovery function approximation obtained from Corollary 2 is

GN[N, - (et - 1)A]
PN,N(t, N) - N (73)

E (N Vv!)(- A) P-NG[N, - (et - 1)A]
Y =0

V. NUMERICAL EXAMPLES

For the purpose of providing some idea of the accuracy of the ap-
proximations developed in Section IV and Appendix D, curves were
drawn up comparing exact and approximate solutions for a group of
ten trunks. These curves illustrate nonstationary behavior. Figure 1
shows the scaling and modified offered load approximations for a step
input problem in which a = 7 erlangs is offered to an initially empty
group. The scaling approximation of (166) was used, and (71) was used
for the modified offered load approximation. Apparently, for this situa-
tion, the scaling approximation is somewhat more accurate.

0.10

0.09.-

0.08 ,--

0.07 -

0.06 -
ii3

.1 0.05 -
0
Ix

c, 0.04 -

0.03

0.02

0.01

/

.........0

GROUP = 10 TRUNKSs/ OFFERED LOAD a = 7 ERLANGS
, B (10, 7) = 0.07874 (EQUILIBRIUM LEVEL)/ -....-, EXACT PROBABILITY

s/ --- MODIFIED OFFERED LOAD APPROXIMATION
--..--. SCALING APPROXIMATION

0 1 2 3 4 5 6 7

t (TIME)

Fig. 1-All trunks empty initially-scaling and modified offered load approximations.
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1.0

0.9

0.8

0.7

5:
1- 0.6
.71

co
< 0.5
cn
0
cr

0.4
a.

0.3

0.2

0.1

TRUNK GROUP = 10 TRUNKS

OFFERED LOAD a = 7 ERLANGS

B (10, 7) = 0.07874 (EQUILIBRIUM LEVEL)

EXACT PROBABILITY

- --- LAPLACE TRANSFORM APPROXIMATION
-- MODIFIED OFFERED LOAD APPROXIMATION

1

t (TIME)

2

Fig. 2-Recovery function-Laplace transform and modified offered load approx-
imations.

The recovery function approximations of (73) and (187) are com-
pared to the exact solution of (185) in Fig. 2. The approximations are
correct at the extremes t = 0, t = 00, and track the exact curve reason-
ably well. The approximation of (73) is more accurate initially and is,
of course, also applicable when the offered load is time -variable ; how -

0.5

0.4

TRUNK GROUP = 10 TRUNKS

OFFERED LOAD a = 4 + 4t - 1.6t2, 0 < t< 5
= 4, 5.t<10

TRUNKS IN EQUILIBRIUM INITIALLY UNDER
OFFERED LOAD a = 4 ERLANGS\

_1
I-: 0.3 - / \ EXACT PROBABILITY

Fin /// `\ --- MODIFIED OFFERED LOAD
< APPROXIMATION
co0
cc / \
a. 0.2- / \
o_ / \/ \/ \

0.1*-- /
/ \\// %......./

0 1 2 3 4 5 6

t (TIME)

Fig. 3-Pulse response-modified offered load approximation.

8 9
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TRUNK GROUP = 10 TRUNKS

OFFERED LOAD a = 7 + 3 SIN 47rt ERLANGS

EXACT PROBABILITY

- - -- MODIFIED OFFERED LOAD APPROXIMATION

1

2 3 4 5

t (TIME)
6 7 8 9

Fig. 4-All trunks empty initially-modified offered load approximation.
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0.07

0
cr

a_

0.06
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TRUNK GROUP = 10 TRUNKS

OFFERED LOAD a = 5 + 2 SIN 0.057rt

EXACT PROBABILITY

---- MODIFIED OFFERED LOAD APPROXIMATION

5 6 7

t (TIME)
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Fig. 5-All trunks empty initially-modified offered load approximation.
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Fig. 6-All trunks empty initially-modified offered load approximation.

I

6

TRUNK GROUP = 10 TRUNKS

OFFERED LOAD a = 5 + 2 SIN 0.57t

EXACT PROBABILITY

-- MODIFIED OFFERED LOAD
APPROXIMATION

/
\ /
\ //\ /\ /

\ //\

I
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Fig. 7-All trunks empty initially-modified offered load approximation.
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ever, the approximation of (187) is simply the case n = 0 of Theorem
16. Considerable enhancement of accuracy may, for example, be ob-
tained by using n = 1 or even higher values of n.

The modified offered load approximation, (72), is compared to a
pulse response in Fig. 3. It is seen that, despite the rapid variation of
a(t) (as high as 14 erlangs/call duration) and the large range of prob-
ability values, the approximation well imitates the course of the
response.

Figures 4, 5, 6, and 7 illustrate the modified offered load approxi-
mation applied to sinusoidal inputs. In all cases, the trunk group was
initially empty. Figure 4 shows the response, starting from t = 0, to
a = 7 + 3 sin 47t. This may be considered to have wide excursions
compared to the constant term 7, and rapid oscillations, i.e., the period,
T, is 5. The exact curve is seen to be well imitated by the
approximation.

One may consider the total error to consist of two components, an
evanescent part arising from the specific initial state and a component

1.5

1.4

1.3 -

1.2 -

1.1

1.0

TRUNK GROUP = 8 TRUNKS

EXACT ROOT- - APPROXIMATION

-1 2 3 4 5 6 7 8

a - OFFERED LOAD

Fig. 8-Upper bound approximation to dominant root.
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resulting from the rate of change of the offered load itself, that is, a
function of ci(t) which vanishes when a(t) = 0. Figures 5, 6, and 7
are intended to illustrate the latter component above; hence, the time
scale starts at five. The periods of 40, 20, and 4, respectively, were
chosen to reflect the effect of ci(t) on the approximations. To provide
clearer comparison, the probability scales of the graphs have been
expanded.

The lower bound of Theorem 13 provides an upper bound on the
dominant root. A comparison with the exact values for an eight -trunk
group taken from Bene is given in Fig. 8.

VI. NEEDED INVESTIGATIONS

Much work remains to be done to provide a satisfying and viable tool
for fully available trunk group analyses. One may mention error estima-
tion of the approximations suggested in Section IV and Appendix D,
the investigation of new approximations, such as studying the con-
sequences of using a refined scaling approximation or an improved
modified offered load, and the study of (I + KN)---1 in the Banach
space X, for variable a (t) . This, in turn, would permit new approxi-
mations to be constructed and would provide improved means of error
investigation. Relatively little is known about the behavior of the
zeros of Poisson-Charlier polynomials, especially in the present
context, as functions of a, N. It is hoped this paper will provide an
impetus for further investigation.
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APPENDIX A

Neumann -Series Solution

The Neumann -series solution of the integral equation for blocking,

PO) N) = 13N(t, °°) - KNPN,
is

(74)

PN(t, N) = i3N(t, 'D) - KNON(t, cc') K2NON(g, - , (75)

which, of course, is convergent for all t. The positivity of KN implies
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the system of inequalities

2k-1-1

E (-1)2K1vON(t, ) < PN(t, N) < (-1)iKON(t, co), k 0,
1=0 1=0

(76)

which generalize (38).
Truncation error estimates for (75) will now be obtained. The in-

equalities (76) yield
2k

-104-1,30, Go) < PN(t, N) - E - 1) iKON(t, cc) < 0, (77)
1=0

2k+1
0 < PN(t, N) - E 1)11(1;430, 03) < K2/P-113N(t, 00). (78)

J-0

Hence, it is only necessary to bound Kr'i3N(t, 00). Let

a(t) 5. a, (79)

then, from (27) and (34),

KN(t, T; a) -.5_ KN(t - r; a) < Ae-ce,),

A = aLA_1(- a) .

(80)

(81)

The dependence on a is explicitly shown in (80). One similarly obtains

N di
00) ; a) 6 = E ON -;(0, N)i , t > 0. (82)

=o

One may now state Theorem 8.

Theorem 8:

Proof: One has

Hence,

KrNON(t,
(Art??

KN(t; a) 5 Ae-t.

tr-i
1) !

KN,,.(t; a) (rAr e-t

(83)

(84)

in which KN,T(t ; a) is the r -fold convolution of KN(t ; a) with itself.
Convolving this with ON(t, 0o) finally yields

KN,ro, cc)
(Art??
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APPENDIX B

Poisson-Charlier Polynomials

Some properties of Poisson-Charlier polynomials" are developed in
this appendix, especially with a view to convenient representation of
functions by series expansion. Let

-0(x, X) = e-x -x x = 0, 1, 2, . (86)x! '

Then the polynomials Gi(x, X) are defined by

d011,(x, X) = A) = Gi(x, X)11,(x, A).

The Taylor expansion

r
(x, + = j.E=0 ji 41(3)(x) A)

yields the generating function

e -r (i + = E Gi(x, X)
A =0

(87)

(88)

(89)

Thus, explicit formulas for Gi(x, A) are

xGi(x, X) = (-1)v G v));ti

= (- 1) (3.v) v! X -P Xv ) (90)

The first few polynomials are

Go(x, A) = 1,

Gi(x, A) = (x - A),

G2(x, A) = -12 [x2 - (2X + 1)x + A2],x

G3(x, A) = [x3 - 3(A + 1)x2 (3A2 + 3A + 2)x - X2].

(91)

A recurrence relation derived from (89) is

Gi+I(x, = -X

- A Gi(x, A) - G; i(x, A). (92)
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The following inner product is defined for functions f(x), g(x) of the
discrete variable x:

(f, g) = xt Ifr(x, X) f(x)g(x). (93)
..-0

The Poisson-Charlier polynomials are orthogonal with respect to this
inner product"

(G5, Gk) = 0,

(G1, G1) = Vi

j k
(94)

Accordingly, the coefficients e; in the expansion of a function f(x)
in the form

are given by

f(x) = 1,1/(x, X) i ciGi(x, X)
i=o

xjci = -., E G.gx, x)f(x).
3! x=o

(95)

(96)

For the purpose of the present investigation, a more convenient mode
of determining ci is achieved by obtaining their generating function;
that is,

C(w) = E ciwj. (97)
J-0

From (96), one has
- - (xw pC (w) = E f(x)

J=0 .7 i

E ., G; (x, A).E
Hence, from (89),

Let

C(w) = e-xw i f(x)(1 + w)x.
..-0

(98)

(99)

B(w) = t f(x)(1 + w)x. (100)

Then B(w) is the binomial moment generating function of f(x) and

C(w) = e -x wB (w). (101)

From (101), the first few coefficients ci are obtained in terms of the
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corresponding binomial moments /3; of f(x); thus,

co = So,

c1- - XS°,
(102)

C2= - XS, + XVo,
C3 = 03 - X$2 -I- X201 *X3#0.

A useful choice of the parameter X is suggested by (102), namely,

which yields c1 = 0 and
= 131/130, (103)

C2 = #2
2Q10

(104)
C3 = 03

01 20 -
# 0 00

For a probability distribution, one has f3o = 1, and the choice (103)
for A implies that A is equated to the mean of the distribution. In this
case, one has

C2 = 1 (0-2 - Ag),
C3 = 6(« - 3(72 + 2A),

in which µ is the mean, a2 the variance, and a the third moment about
the mean of the distribution.

APPENDIX C

(105)

Constant Offered Load-Dominant Roots

In this appendix, the integral equation for the constant a case,
namely,

PN(1, N) = $N(t, 00) - KN*PN(t, N),
KN(t) = ae-NiLgLi[-a(et - 1)], (106)

SAT(t, °°) = N E ON -J(0, N) [a(et 1)ii
=0

is studied. In fact, the somewhat more general equation,

f(t) KN*f(t) = g (t) , (107)

is resolved. This presents a considerable advantage over the solution
of (106), since the errors of approximations to PN(t, N) satisfy (107),
and hence may be studied by means of Theorem 10 and its corollary.
Solutions for blocking have been obtained in the literature,7'8 but do
not provide a means for error analysis. For the practical utilization
of the solutions, bounds for the exponents occurring in the explicit
representation of the resolvent kernel will also be obtained.
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Integral equation theory" asserts that a resolvent kernel, QN(t),
exists with the property

f(t) = g(t) QN*g(t). (108)

Laplace transformation will be used to study (107) and (108).

Theorem. 9: The Laplace transforms, KN(s), ON(s), of KN(t), QN(t),
respectively, are

KN(s) =
(-1)NaNGN(-s - 1, a)

(s+1)(s+N 1'

(s 1)  (s N) - (-1)NaNGN(-s - 1, a)
ONO) = (-1)NaNGN(- - 1, a)

Proof: One has, from (27),

LNG
N71 N \XI
2r-Ok1-F117'

and hence,

(109)

)KN(t) = ae-N'N1 N aip(et - 1)'. (110)

Thus,

KN(s)
N

a-A) + 1)i! e 8-J"(1 - (111)

Letting X = e-', one has

KN(s) 1;7,1 N \al ri
ttok + 1 - (112)

The integral in (112) is the beta function, B(N s - j, j
Hence,

NE -1 N s- j)
KN(s)

+ 1).

(113))ajr(N
j=0 ± r(N + +1)

One has the following transformations:

EN(s)= (114)
(1,\rj (N -Fs)  (N -Fs- j+1)'

KN(s)
j),

(115)
- (s -I-1) (s+N) gi(Na)ai(s+1)...(8±N-

KN(s) =
aN -(8+ j), (116)

(117)

(s+1)  (s+N) 5=1
( ) a--j(s+1)

14(s)-
_i

(s+1) -aN(84-N),"7470 ()
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Thus, the required formula for gN(8) is obtained from (117) by
comparison with (90). From (107), one has

+ N* f = (118)

Hence,

thus,

= 2 - (119)
1 +NK 1 + N

G (8)
N (S) = (120)

1 .RN(s)

This, together with the formula for RN(s), yields the required expres-
sion for N (8) .

Corollary:

Pi.N(s, N) = (-1)N-i a)
sGN(-s - 1, a)

Proof: Use of Theorem 2, Corollary 4, Theorem 9, and eq. (178) with
l3, (0, N) = (;)

An expression equivalent to this corollary was given by Takacs."
It will be useful now to introduce the Banach space, X, of functions

f(t) that are bounded and measurable over (0, 00) and normed by

11f11 = sup 1 f
ezo

One may now state Theorem 10.

(121)

Theorem 10: The operators I + K N and (I + KN)--1 are bounded;
further,

II/ + KNII = SN(a),

11(1 + KN)--'11 = 1 + foceI QN(t) I dt,

in which the operator norms are those induced by (121).

Proof: The quantity II/ KNII is obtained directly from Theorem 3
and the formula

II/ + KNII = 1 -1-1c° KN(t)dt. (122)
0

Since the polynomials GN(x, a) are orthogonal over (0, 00), it follows
that the zeros, P1, , PN are distinct, real, and positive; hence, the
zeros, r1, , rN, of GN( - 1, a) are distinct, real, and less than
minus one. The Paley -Wiener theorem9 applied to ON(s) now asserts
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that I + K N has a bounded inverse with norm C given by

C = 11(/ + KN)-91 = 1 + .1: I QN(t)idt. (123)

An immediate corollary is the following.

Corollary: The integral equation

f + KN*f = g, g e X,

possesses a solution f E X satisfying

11f11 clIg11,

hill 1 f (t) I 5 C lim I g (t) I .

t-wo0 t-wco

In particular, if hint,. g(t) = 0, then limi... f(t) = 0.

Proof: The result follows from

f = g + QN*g (124)

and the definition of C.
The following theorem provides a representation of QN(t) and an

estimate of C.

Theorem 1 1 :

QN(t) =

N N

N H (7' i + v) N II I ri + v
v- --1
4-, N

erit, C 5 1 + E , =1
N

' =1 II (r1 - rv) j=1 11.11 II 1r1 - rd
v=1 v-1
vo; yo;

Proof: One has

(-1)NaNGN(-8 - 1, a) = (s - r1)  (s - rN) (125)

and, hence, from Theorem (9),

(s + 1)  (s -I- N) - (s - ri)  (s - rN)
(s - ri)  (8 -r)

The partial fraction expression for ON(s) is

ON(S) =

N
N 11 (ri + p)

171
j =1 II (ri - ry) s - rI i

v=1
voi
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Thus,
N

N -(ri P)

QN(t) = N1 eat.
-

v =1

Also, one has
N

N II Iri ± PI
(20)1 E N1 eat,

v=1 Ir; -
=1

pOj

and, accordingly,

C = 1 ± f IQNWIdt 5, 1 + E
1=1

P=1
N

Iril I Iri - rid
v=1
pp6j

(128)

(129)

(130)

To make the results of Theorem 11 accessible for estimation, partic-
ularly in numerical applications, and for the Laplace transform ap-
proximation of Appendix D, bounds for the roots, ri, will be obtained.
The generating function, g(z), for the equilibrium probability distribu-
tion, 1); (co , N), of (36) may be written as

g(z) = SN(z)(a (131)Sa)
Thus, the mean, m, and variance, 0-2, are

711 = - B(N, a)], (132)

= m - (N - m)aB(N, a). (133)

We now have Theorem 12.

Theorem 12: (Bend) r1 > - (m/cr2).

To obtain further bounds, the following lemmas are needed.

Lemma 1: p N > > p1 > 0,

P1.+  + PN = S1, +  ± PN = 82) pi.  pN = D,

then

p < pi :5 . . . < < S1 ± (N 1) (NS2

in which p is the small positive root of

p(81 - p)N-1 = D(N - 1)N-1.
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These bounds are sharp.

Proof: The equations

may be written

Let

P1+ -1- PN = Sly (134)

A +  + PN = s 2 (135)

p1 + -I-- PN-1 = S1 - PN, (136)

A + - - + P2,-1 = s2 - PI. (137)

pN = max pN (138)

over all allowable sequences. Then the sum (137) is minimum when pN
is replaced by p*N. This occurs, however, only when

Thus, from (137),

81 - PNP1 =  = PN-1 = N - 1

(N - 1) (si - P*12 *2= 82 - P.N.N - 1

The solution of (140) for plc, is

* s 1 + -1 (N - 1)(Ns2 - 8?)
PN = N

(139)

(140)

(141)

This proves the upper bound of the lemma. The inequality is attained
for the vector (p1, , pN) defined by (139) and (141).

Similarly, one may write

Let

P2 + ' + PN = 81 - pi., (142)

P2-  PN = Dim.. (143)

*
Pi = min pi (144)

over all allowable sequences. Then the product (143) is maximum when
P1 is replaced by pl. This occurs only when

Thus,

P2 = ' *81 - P1
 = PN = N - 1 (145)

r sl - pi 1 N -1
= D / pl (146)L N-1 i

and the equation of the lemma defining p has been established. The

654 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1975



inequality is attained for the vector (pi,  , pN) defined by (145) and
(146).

Lemma 2: pN > ->-. pi > 0,

1s_i = - , - , D = pi-  pN.
P1 PN

Then
PN?  > pi p,

in which p is the small positive root of

D (s_i - - = p(N

The bound is sharp.

Proof: One may write

1 , 1 1- -r -= s_i - (147)
P2 PN P1

P2  PN = D/Pi. (148)

Let
pi = min pi (149)

over all allowable sequences. Then the product (148) is maximum
when pi is replaced by pi. This occurs when

1
P2 = ' = PN =N 1 (150)

8-1 -

Thus,
N - 1 N-1

1 = D/pl (151)
s -1-

P1,

and the equation of the lemma is established. The inequality is at-
tained for the vector (pi, , PN) defined by (150) and (151).

The application of the lemmas to the polynomials GN(x, a) is ac-
complished by identifying p1, , pN with its zeros. For this purpose,
the form of GN(x, a) given in (90) will be recast, by the help of the
Stirling numbers of first kind," into standard form; that is,

N
G N(X, a) = E aN_,xm.

m=0
(152)
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The Stirling numbers, 87, are defined by

i-i i
11 (x - p) = E sTxm.
v-0 m=1

Thus, one has
N N -m

GN(x, a) = (-1)N + E xm E (-Dual -N

m=i w=0

( Np

(153)

) AS"N',. (154)

The sums si, s2 are accordingly given by

si = ( N2 ) ± aN, (155)

s2 = sl - 6 ( N4 ) - (6a ± 4) (237 ) - 2a2 ( 2 ) (156)

The reciprocal polynomial, that is, the polynomial whose zeros are
pi 1, , AV is given by

N
XNGN(x-1, a)GN(x, a) = E anant. (157)

m -o

Hence, the analogous quantities s_i and S-2 = P1-2 +  + PN2 are
given by

N 1
S-1 = E - Nooa-v, (158)

J.,=1 V

N
v

S__2 = S2 1 - 2 E
1

-N(P)a-v E-1 1-. , (159)
v=2 V j =1 I

in which

No) = 1, N(v) = N(N - 1)  (N - v + 1), v > 0. (160)

The upper bound of Lemma 1 now establishes Theorem 13.

Theorem 13:

N
s_i + 1,1(N - 1)(Ns-2 - 82-1) -

P1 <  < pm

< si + -NI (N - 1)(N s2 - 4)
N

Proof: The upper bound is immediate. The lower bound is obtained
by applying the upper bound of Lemma 1 to the reciprocal equation.

A numerical illustration of Theorem 13 is provided by the zeros of
Gio(x, 7) used in obtaining the recovery function plotted in Fig. 2.
They are 0.332811, 2.05847, 4.06653, 6.31227, 8.81308, 11.5197,
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14.6407, 18.0255, 22.0872, and 27.1438. The lower and upper bounds
given by the theorem are 0.32964 and 36.82292, respectively. It appears
that the lower bound may well be usable as an approximation to pi.
The accuracy of this when used to approximate -r1 = 1 + pi is
illustrated in Fig. 8. The exact values of -r1 are taken from Bene6.7
This provides an upper bound for r1 which, together with the available
lower bounds, is useful for error investigations.

APPENDIX D

Approximations-Constant Offered Load

It was suggested by S. boring that an appropriate scaling between
PN(t, N) and Pk(t, k) may exist; that is, a function FU3N(t, N),
Pk(t, k)] may exist, which would be approximately independent of t
and which may, therefore, permit the approximate determination of
PN(t, N) in terms of P1(t, 1), for example, thus permitting large trunk
groups to be studied in terms of the behavior of small ones. Since it is
feasible to use (108) for small trunk groups, this would constitute an
approximation of the solution of (106) for large trunk groups.

Consider the following

B(kl, a) 1!kV' Sz(a/k)k
B(1, a/k)k (k1)! Ski (a)

The ratio SI(a/k)k/Ski(a) is approximately independent of a since
Si(a/k)k = Ski(a) ea for k large. Thus,

B (kl, a)
B (1, a/k) k

is approximately independent of a. It would seem, therefore, that the
ratio (162) is approximately a time invariant of (106), especially for
large 1; that is, the function

Pki(t, kl; a)
Pi(t, 1; alk)k

is approximately equal to the ratio (162) when t is large ; thus,

Pk/(t, 1; a) B(kl, a) [P iB(t,(1, 1a/k);a/ k)

]k
(164)

(161)

(162)

We have, from (107) and Theorem 11,

aPi(t, 1; a) =a + 1
{1 _ e-(014)

(163)

(165)

when the trunk is initially empty. Hence, from (164) with 1 = 1,
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k = N,
PN(t, N) B(N, a){1 - e- [(al N)-1-1]t}N

for the case when all N trunks are initially empty.
It is desired now to extend the approximate solution

application to any initial condition. Define qN (t) by

qN(t) = B(N, a) {1 - e-[(al N) -1-1]t} N

(166)

(166) for

(167)

Then a convolution operator with kernel LN (t) will be constructed so
that one has

AN
qN LN *WI = N!, (168)

exactly. The operator LN will then be taken to approximate the opera-
tor KN of (106). Accordingly, an approximation PN to PN correspond-
ing to initial states other than all trunks empty is defined by the
equation

PN LN *PN = 13N (169)

Theorem 14: The Laplace transform, LN (s), of the approximating
LN (t) is

1 + LN
rwr (N (a/N)

s \

= (ck + 1) SN(a)
r(s+N-Fi)r( (a/N) ± 1

-
Proof : One has

4-N = B(N, a) f e-"e{1

Let u = [(a/N) 0, then
00B(N, a)

+ 1)-N

e-[81 cal

ji s + v[(a/N) + 1],SN (a)
P=1 s p

- e-[(al N)+1]t}Ndt. (170)

N+1)].(1 - e-u)Ndu. (171)
qN (a/N) 1 fo

The substitution x = e --is yields

B(N, a)

N

1(1 - X)NdX;

s

(172)j'x[si(o/N+0]-
qN = (a/N) 1 o

thus,

B(N, a) [ (a/N) 1
(173)qN = (a/N) + 1 r [N 1](a/N) + 1+
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One also has

N!r(s)f e -8t(1 - e-t)Ndt =
r(AT s

(174)

The Laplace transform of each term of (168) now yields

L) = aNr (8) (175)r(N + s 1)

Use of (173) yields the result of the theorem.
It may be noted that LN has an impulsive component at t = 0 whose

value is

cy'T INsN (a) - 1. (176)

For large N, this is nearly zero. The effect of this is to create an
error at t = 0; that is, PN (0, N) PN (0, N) if ON (0, N) 0. The
larger N is (for fixed a), the smaller the discrepancy.

Equation (169) is studied in Theorem 15.

Theorem 15: The solution of (169) is

N = N!
(a/N) + 1 B(N, a)

row [N
(a/N) 1+ 1N

 E N)a-jr(s j),
3 =0

PN =
=0 rMO N)a-i "D(D) j) qN(t), D -Ft

3

Proof: From Corollary 1, Theorem 2, one has

N al
ON = E NN -710, N) e-(N-3)`(1 - e-93;

3 =o
(177)

hence,

r [
S

(a/N) 1

11N= ir r(s j) (178)
=o 11(s N 1)

Transforming the terms of (169) yields

PN(1 LN) = 13N, (179)

and hence the result of the theorem is obtained from Theorem 14 and
eq. (178). The inversion of the transform, PN, by use of differentiation
follows on use of (173) in PN.
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Another method of approximation useful for constant offered load is
based on an approximate inversion of the Laplace transform. Let

then

j(s) = f e-auf(u)du, s > 0; (180)

(-n1)n Sn+1/(n)(3) = 5n-1-1 e-auun f(u)du.
! n 0

(181)

The function (sn+i/n !)e-auun is a probability density function for
any s > 0, n z 0 whose mean is (n + 1)/s and variance (n + 1)/s2.
Letting s = (n + 1)/t, the mean and variance are t and t2/ (n -I- 1),
respectively ; hence, Korovkin's theorem on sequences of positive
functionals" establishes the Widder inversion formula9:

(- 1)n
lim sn-f-li(n)(s)
n-,:o n! a=(n+1)/t

= f (t). (182)

The above discussion forms the basis for Theorem 16.

Theorem 16: Fore > 0, let the transform of e"f(t), namely, j(s - e),
exist for s > 0, and let Of (t) be convex in t > 0, then

-At) ..

(-1)ne-et sni-lf(n)(s _ )
n! a--(n-1-1)/t

n .- 0, t > 0.

Proof: Jensen's inequality applied to (181) in the form
1+n(-

n; ! 0)n

sn-1-1/(n)(s _ 0 = _ foo e---suuneeu j-ekui)du (183)

establishes the theorem. By virtue of (182), when similarly modified
for the function e"f(t), the dexter of the inequality always provides
an approximation to f (t) even when e" f (t) is not convex.

Corollary: j(s - e) exists for s > 0, and e"f(t) is convex in t > 0
implies

f (t) _-_ -t-1 e-"I (il - e], t > 0.

Proof: The case n = 0 of Theorem 16.

If Rs) should have a dominant pole, it is usually advantageous to
choose e equal to the negative of that pole.

The above corollary will now be applied to obtaining an inequality
for the recovery function. The corollary to Theorem 9 shows that

a)
PN,N(s, N) = GN(-s, (184)

sGN(- s - 1, a)
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The inversion of PN,N(s, N) is readily accomplished ; the result is'
N er,t

PN,N(t, N) B(N, a) - E -fl ( 1
1

J=1 - ri
It follows from (185) that

e-roU3N,N(t, N) - B(N, a)]

(185)

(186)

is convex for t > 0 and that the corresponding Laplace transform exists
for s > 0, hence, by the above corollary, one obtains

PN,N(t, N) S B(N, a)
NE- -a]B(N, a)1eritE G

(187)(1 ± rlt)GN[- (1/t) - rl - 1, a] 1 + rit j
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